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Foreword

The study of simple atoms and molecules permits unique confrontations be-
tween fundamental theory and precision measurements. It has played a central
role in many early discoveries that laid the foundations of quantum physics.
Since computational and experimental tools are still evolving rapidly, intrigu-
ing opportunities for future research continue to emerge.

How could precision measurements uncover limits of the standard model?
How can we improve the accuracy of fundamental constants? Are fundamental
constants really constant? How could we detect possible differences between
matter and antimatter? How can we overcome the problem of hadronic struc-
ture in precision tests of quantum electrodynamic theory? How well can QED
predict the energy levels of atoms with few electrons? What new physics can
be discovered in experiments with exotic atoms? How well do we understand
simple molecules? These are just a few of the questions that are now moving
into a new focus.

This volume collects contributions from experts at the frontier of atomic
and molecular precision physics. It illustrates the current state of the art,
points at future opportunities, and emphasizes an exciting frontier in atomic
and molecular physics that remains as important as ever despite several other
strong currents and fashions in the field.

Since I have devoted more than three decades of my career to precision
laser spectroscopy of the simple hydrogen atom, I am particularly grateful
to the editor, Dr Savely G. Karshenboim, for his initiative to highlight such
precision studies of simple atoms and molecules.

Garching Theodor W. Hänsch
April, 2007



Preface

Precision studies of simple atomic and molecular systems are a multidisci-
plinary field in modern physics. They massively involve methods and objects
from very different areas of physics.

Experimental methods vary from laser spectroscopy to accelerator physics,
from laboratory desktop-scale experiments to space missions. On the theoret-
ical side they deal with methods of molecular, atomic, nuclear, and particle
physics.

The specific feature of this area is that the simple atoms and molecules
are not the object of the studies, but a powerful instrument to look into the
deepest and most basic problems of physics. The most advanced precision
measurements allow us to see various tiny effects, while the atomic simplicity
provides us with the possibility of keeping the atomic details under control
and looking into a substantially more fundamental level.

Simple atoms and molecules provide us with a good opportunity to mea-
sure fundamental constants, to look for possible violation of basic symmetries,
to study properties of elementary particles and nuclei.

This book is based on extended review lectures from two recent interna-
tional meetings on simple atoms and presents the most recent progress in the
field. I am grateful to Claudio Lenz Cesar, Jochen Walz, and Theodor W.
Hänsch, who were co-organizers of these meetings (Mangaratiba, 2004, and
Venice, 2006) and made great efforts to make these meetings happen, and to
many other colleagues, whose help in organizing the meetings was important.

St.Petersburg—Garching Savely Karshenboim
April, 2007
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1 Introduction

Truly fundamental effects can seldom be studied directly. To learn about fun-
damental laws and fundamental quantities we have to find a probe object,
which we can really deal with and properties of which we can express in terms
of basic physical laws and fundamental constants. One of the most attractive
kinds of such objects is simple atoms and molecules.

Their structure is described by quantum mechanics and electrodynamics
and can be expressed in terms of such values as the speed of light c, the Planck
constant h, the elementary charge e, masses of electron and proton, etc. Some
rather effective parameters than fundamental ones, such as nuclear masses,
magnetic moments and charge radii, are also needed, but their values can be
achieved experimentally in terms of more fundamental quantities.

Meanwhile, atoms and molecules can be studied with various effective
techniques by means of optical, radio and NMR spectroscopy. The effectivity
of the various optical and microwave instruments has been a result of long
progress in the field.

That makes the simple atomic and molecular systems a great opportunity
to successfully access the deepest physical level. This book presents a col-
lection of lectures on progress in the field. The lectures were presented in
two international meetings on precision physics of simple atomic systems
(PSAS’2004 in Mangaratiba, Brazil, and PSAS’2006 in Venice, Italy) which
followed PSAS’2000 (Hydrogen Atom, II, Castiglione della Pescaia, Italy) and
PSAS’2002 (St. Petersburg, Russia), the review contributions of which were
published in [1, 2].

Here we give the progress in the subfields already presented in two previous
books and consider more broad applications of simple atoms to fundamental
physics.

The simplest atom, which is available for theoretical and experimental
studies is indeed the hydrogen atom and actually the odd conferences (in
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2000 and 2004) were named after it (the Hydrogen Atom, II, and the Hydro-
gen Atom, III) in order to emphasize the importance of the hydrogen atom
meeting in Pisa in 1988. The earlier conferences involved a number of lectures
devoted to the hydrogen atom (see, e.g. [3, 4, 5]). Besides, a good collection
of important quantum electrodynamics (QED) contributions is presented in
[6]. While the QED calculations present an example of a very advanced ab
initio theory, they are not complete because of effects beyond QED. Here, we
present a discussion of the effects of the proton structure [7, 8, 9], which was
missed in the two previous books. These effects determine the accuracy of any
ab initio calculations for hydrogen. A consideration of the nuclear effects in
light atoms was also presented in part in one of the two earlier books [10], but
a single publication could not cover all questions crucial for hydrogenic levels.
Here, we present an overview of crucial experiments and data evaluation for
the determination of details of the proton structure. We also consider effects
of the proton structure on the hydrogen energy levels and especially on the
ground state hyperfine interval.

The hydrogen atom contains only a single electron and general success
in QED theory for such atoms (see, e.g., reviews [11, 12]) turns attention to
atoms with two and three electrons. Here, we present two lectures on light
atoms of this kind. While in the two previous books we focused our attention
on neutral helium [13], here we give extensive reviews on neutral lithium
and the lithium ion (Li+) [14] as well as of neutral helium and lithium with
halo nuclei [15]. Studies of a light atom with such a nucleus, which contains
few additional neutrons, present an important opportunity for applications
of atomic methods to nuclear physics [15]. Such halo nuclei are unstable and
atomic methods can successfully deliver accurate data even for short-lived
species.

Another possibility for simple atoms, also related to short-lived and/or
artificial atoms, is to stay with two-body systems, but to study some systems
which are harder to create than usual hydrogen. The easiest source of
hydrogen-like atoms is accelerators which allow to strip electrons from nu-
clei with many electrons. Heavy hydrogen-like atoms are studied in [16]. More
exotic atoms involve particles which are unstable by themselves (like a pion)
or may annihilate with the others (like an antiproton). Pionic hydrogen is
considered in [17] and its study can provide important information on pion–
nucleon interaction, while antiprotonic helium is studied in [18]. The latter is
a very interesting system.

In principle, an antiproton should annihilate with the nucleus very fast.
However, a number of long-living states were discovered some time ago. Their
long lifetime allowed precision study and offers a possibility for comparison
of theory and experiment with high accuracy. A review on such an atomic
system was published in our first book [19]. Still, surprisingly for accelerator
physics, impressive progress in the field was achieved in a very short time and
is presented here in [18]. There are a number of very specific features in this
three-body system. One of them is a need for a high-n and high-l orbit of the
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antiproton, which allows to reduce the annihilation rate dramatically. Such a
high orbit for so massive a particle leads to a motion much slower than that
of the electron. As a result, a system with one electron and two heavy slow
particles is somewhat similar to the hydrogen molecular ion.

The hydrogen molecular ion is studied in [20]. While antiprotonic helium
can be used to determine the mass of an antiproton (or rather mp/me), the
molecular systems H+

2 and HD+ may be used to study the value of mp/me

and in particular to search for its possible variation with time or even for its
accurate determination. Another molecular ion, Ps−, is considered in [21]. It
does not have any heavy nucleus and because of that one cannot apply the
Born–Oppenheimer approximation (considering heavy nuclei at rest as the
first approximation). This is a pure QED system and its study provides us
with an additional possibility to test QED theoretical methods. In contrast
to the transparent pure QED system, one more review on molecular physics
[22] is related to NRM spectroscopy of various molecules, which allows to
determine nuclear magnetic moments with high accuracy, and an appropriate
theory of electronic shielding of the bare nuclear moments which plays a crucial
role in the interpretation of such experiments.

The determination of fundamental constants and development and tests
of the QED theory was always an important part of the PSAS topics (see, e.g.
[5, 11]). In this book we present a discussion on applications of fundamental
constants in atomic and particle physics [23] and also an overview of the
status of the muon anomalous magnetic moment study [24]. For a few recent
years theory and experiment were in a certain agreement, which was not
a perfect one. The theory and supportive experiments were under intensive
reconsideration. The present situation and perspectives need a clarification
and we hope the review presented in this book will be helpful for that.

Studies of simple atoms in their relation to fundamental theories (such
as QED), fundamental constants (such as the Rydberg constant R∞ and the
fine structure α) and properties of fundamental objects (such as the proton
charge radius or the muon magnetic moment) were for a while an important
part of physics. Advanced experimental and theoretical methods make the
competition of theory and experiment very exciting and fruitful. Intensive
progress in the field in the last decade was in part acknowledged by awarding
the Nobel prize in physics in 2005 to two participants of our first meeting
(PSAS’2000), namely John L. Hall and Theodor W. Hänsch, for their contri-
bution to precision frequency measurements (see their joint contribution to
PSAS’2000 book [25]).

A broad variety of methods and their deep advanced development have
created various gaps between different groups studying hydrogen and other
simple atomic systems. To intensify exchange and collaboration between dif-
ferent scientists working in the field, the conferences on simple atoms (PSAS)
have been organized. The series started in 2000 in Castiglione della Pescaia,
Italy, and since then have taken place every 2 years: in St. Petersburg (2002),
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Mangaratiba (2004), Venice (2006). The next meeting is scheduled for 2008
in Windsor, Canada.

Various materials of the conferences were published. The review lectures
have been published by Springer-Verlag as Lectures Notes in Physics [1, 2].
The contributed papers of the first meeting were published on CD as a part
of [1], while for conferences in 2002 and 2004 they were published in the
conference issues of the Canadian Journal of Physics [26, 27] and the papers
for PSAS’2006 will also be published there [28].

This book consists of extended and updated review lectures of conferences
in 2004 and 2006. This book is the last in the series since the Lectures Notes
are now intended for pedagogical use. We would like to thank Springer-Verlag
for the long-term cooperation in publishing our material.

To complete the introduction to the book I like to express my gratitude to
all contributing authors and to those colleagues who took efforts to organize
the meetings, in particular to Claudio Lenz Cesar, Jochen Walz, Theodor W.
Hänsch, Valery Shelyuto, Gordon Drake and many others.
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Abstract. The muon anomalous magnetic moment is one of the most precisely mea-
sured quantities in particle physics. Recent high-precision measurements (0.5 ppm)
at Brookhaven reveal a “discrepancy” by three standard deviations from the elec-
troweak Standard Model which could be a hint for an unknown contribution from
physics beyond the Standard Model. This triggered numerous speculations about
the possible origin of the “missing piece”. The remarkable 15-fold improvement of
the previous CERN experiment actually animated a multitude of new theoretical ef-
forts which led to a substantial improvement of the prediction of aμ. The dominating
uncertainty of the prediction, caused by strong interaction effects, could be reduced
substantially, due to new hadronic cross-section measurements in electron–positron
annihilation at low energies. After an introduction and a brief description of the
principle of the experiment, I review the status of the theoretical prediction and
discuss the role of the hadronic vacuum polarization effects and the hadronic light-
by-light scattering contribution. Prospects for the future will be briefly discussed.
As, in electroweak precision physics, the muon g − 2 shows the largest established
deviation between theory and experiment at present, it will remain one of the hot
topics in future also.

1 Lepton Magnetic Moments

The subject of our interest is the motion of a lepton in an external electromag-
netic field under consideration of the full relativistic quantum behavior. The
latter is controlled by the equations of motion of quantum electrodynamics
(QED), which describes the interaction of charged leptons (� = e,μ, τ) with
the photon (γ) as an Abelian U(1)em gauge theory. QED is a quantum field
theory (QFT) which emerges as a synthesis of quantum mechanics with special
relativity. In our case an external electromagnetic field is added, specifically a
constant homogeneous magnetic field B. For slowly varying fields the motion
is essentially determined by the generalized Pauli equation, which also serves
as a basis for understanding the role of the magnetic moment of a lepton on
the classical level. As we will see below, in the absence of electrical fields E the
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quantum correction miraculously may be subsumed in a single number, the
anomalous magnetic moment a�, which is the result of relativistic quantum
fluctuations, usually simply called radiative corrections.

Charged leptons in the first place interact with photons, and photonic
radiative corrections can be calculated in QED, the interaction Lagrangian
density of which is given by (e the magnitude of the electron’s charge)

LQED
int (x) = ejμ

em(x) Aμ(x) , jμ
em(x) = −

∑

�

ψ̄�(x)γμψ�(x) , (1)

where jμ
em(x) is the electromagnetic current, ψ�(x) the Dirac field describing

the lepton �, γμ the Dirac matrices and with a photon field Aμ(x) exhibiting
an external classical component Aext

μ and hence Aμ → Aμ+Aext
μ . We are thus

dealing with QED exhibiting an additional external field insertion “vertex”.
Besides charge, spin, mass and lifetime, leptons have other very interesting

static (classical) electromagnetic and weak properties like the magnetic and
electric dipole moments. A well-known example is the circulating current, due
to an orbiting particle with electric charge e and mass m, which exhibits a
magnetic dipole moment μL = 1

2ce r× v given by

μL =
e

2mc
L (2)

where L = m r × v is the orbital angular momentum (r position, v veloc-
ity). As we know, leptons have spin (intrinsic angular momentum) 1

2 , which
is directly responsible for the intrinsic magnetic moment. The fundamental
relation which defines the “g-factor” or the magnetic moment is

μ = g�
e�

2m�c
s , s the spin vector. (3)

For leptons, the Dirac theory predicts g� = 2 [1], unexpectedly, twice the
value g = 1 known to be associated with orbital angular momentum. It took
about 20 years of experimental efforts to establish that the electrons’ mag-
netic moment actually exceeds 2 by about 0.12%, the first clear indication of
the existence of an “anomalous” contribution to the magnetic moment [2]. In
general, the anomalous magnetic moment of a lepton is related to the gyro-
magnetic ratio by

a� = μ�/μB − 1 =
1
2
(g� − 2) , (� = e,μ, τ), (4)

where μB is the Bohr magneton.
Formally, the anomalous magnetic moment is given by a form factor, de-

fined by the matrix element

〈�−(p′)|jμ
em(0)|�−(p)〉

where |�−(p)〉 is a lepton state of momentum p. The relativistically covariant
decomposition of the matrix element reads
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γ(q)
μ(p )

μ(p)

= (−ie) ū(p ) γμFE(q2) + iσμνqν

2m FM(q2) u(p)
μ

with q = p′ − p and where u(p) denotes a Dirac spinor, the relativistic wave
function of a free lepton, a classical solution of the Dirac equation (γμpμ −
m) u(p) = 0. FE(q2) is the electric charge or Dirac form factor and FM(q2)
is the magnetic or Pauli form factor. Note that the matrix σμν = i

2 [γμ, γν ]
represents the spin 1/2 angular momentum tensor. In the static (classical)
limit q2 → 0 we have

FE(0) = 1 ; FM(0) = aμ (5)

where the first relation is the charge normalization condition, which must be
satisfied by the electrical form factor, while the second relation defines the
anomalous magnetic moment. aμ is a finite prediction in any renormalizable
QFT: QED, the Standard Model (SM) or any renormalizable extension of it.

By the end of the 1940s the breakthrough in understanding and handling
renormalization of QED had made unambiguous predictions of higher order
effects possible, and in particular of the leading (one-loop diagram) contribu-
tion to the anomalous magnetic moment

a
QED(1)
� =

α

2π
, (� = e,μ, τ) (6)

by Schwinger in 1948 [3]. This contribution is due to quantum fluctuations
via virtual photon–lepton interactions and in QED is universal for all leptons.
At higher orders, in the perturbative expansion, other effects come into play:
strong interaction, weak interaction, both included in the SM, as well as yet
unknown physics which would contribute to the anomalous magnetic moment.

In fact, shortly before Schwinger’s QED prediction, Kusch and Foley in
1948 established the existence of the electron “anomaly” ge = 2 (1.00119 ±
0.00005), a 1.2 per mill deviation from the value 2 predicted by Dirac in 1928.

We now turn to the muon. A muon looks like a copy of an electron, which
at first sight is just much heavier mμ/me ∼ 200; however, unlike the electron
it is unstable and its lifetime is actually rather short. The decay proceeds by
weak charged current interaction into an electron and two neutrinos.

The muon is very interesting for the following reason: quantum fluctua-
tions due to heavier particles or contributions from higher energy scales are
proportional to

δa�

a�
∝ m2

�

M2
(M � m�) , (7)

where M may be

– the mass of a heavier SM particle, or
– the mass of a hypothetical heavy state beyond the SM, or
– an energy scale or an ultraviolet cut-off where the SM ceases to be valid.
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On the one hand, this means that the heavier the new state or scale the harder
it is to see (it decouples as M →∞), typically the best sensitivity we have for
nearby new physics, which has not yet been discovered by other experiments.
On the other hand, the sensitivity to “new physics” grows quadratically with
the mass of the lepton, which means that the interesting effects are magnified
in aμ relative to ae by a factor (mμ/me)2 ∼ 4 × 104. This is what makes
the anomalous magnetic moment of the muon the predestinated “monitor for
new physics” or if no deviation is found it may provide severe constraints to
physics beyond the SM.

In contrast, ae is relatively insensitive to unknown physics and can be
predicted very precisely, and therefore it presently provides the most precise
determination of the fine structure constant α = e2/4π.

What makes the muon so special for what concerns its anomalous magnetic
moment?

• Most interesting is the enhanced high sensitivity of aμ to all kind of inter-
esting physics effects.

• Both experimentally and theoretically aμ is a “clean” observable, i.e., it
can be measured with high precision as well as predicted unambiguously
in the SM.

• That aμ can be measured so precisely is a kind of miracle and possible only
due to the specific properties of the muon. Due to the parity violating weak
(V–A) interaction property, muons can easily be polarized and perfectly
transport polarization information to the electrons produced in their decay.

• There exists a magic energy (“magic γ”) at which equations of motion
take a particularly simple form. Miraculously, this energy is so high (3.1
GeV) that the μ lives 30 times longer than in its rest frame! In fact only
these highly energetic muons can be collected in a muon storage ring. At
much lower energies muons could not be stored long enough to measure
the precession precisely!

Production and decay of the muons goes by the chain

π → μ + νμ

|−→ e + νe + νμ

2 The BNL Muon g − 2 Experiment

The first measurement of the anomalous magnetic moment of the muon be-
came possible at the CERN cyclotron (1958–1962) [4] in 1961. Surprisingly,
nothing special was observed within the 0.4% level of accuracy of the experi-
ment. It was the first real evidence that the muon was just a heavy electron. In
particular this meant that the muon is point-like and no extra short distance
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effects could be seen. This latter point of course is a matter of accuracy and
the challenge to go further was evident.

The idea of a muon storage ring was put forward next. A first one was
successfully realized at CERN (1962–1968) [5]. It allowed to measure aμ for
both μ+ and μ− at the same machine. Results agreed well within errors and
provided a precise verification of the CPT theorem for muons. An accuracy of
270 ppm was reached and an insignificant 1.7 σ (1σ = 1 standard deviation)
deviation from theory was found. Nevertheless the latter triggered a reconsid-
eration of theory. It turned out that in the estimate of the three-loop O(α3)
QED contribution the leptonic light-by-light scattering part (dominated by
the electron loop) was missing. Aldins et al. [6] then calculated this and after
including it, perfect agreement between theory and experiment was obtained.

The CERN muon g − 2 experiment was shut down at the end of 1976,
while data analysis continued to 1979 [7]. Only a few years later, in 1984
the E821collaboration formed, with the aim to perform a new experiment at
Brookhaven National Laboratory (BNL). Data taking was between 1998 and
2001. Data analysis was completed in 2004. The E821 g − 2 measurements
achieved the remarkable precision of 0.5 ppm [8], which is a 15-fold improve-
ment of the CERN result. The principle of the BNL muon g − 2 experiments
involves the study of the orbital and spin motion of highly polarized muons in
a magnetic storage ring. This method has been applied in the last CERN ex-
periment already. The key improvements of the BLN experiment include the
very high intensity of the primary proton beam from the alternating gradient
synchrotron (AGS), the injection of muons instead of pions into the storage
ring and a superferric storage ring magnet. The protons hit a target and pro-
duce pions. The pions are unstable and decay into muons plus a neutrino
where the muons carry spin and thus a magnetic moment which is directed
along the direction of the flight axis. The longitudinally polarized muons from
pion decay are then injected into a uniform magnetic field B where they travel
in a circle. If one lets travel polarized muons on a circular orbit in a constant
magnetic field, as illustrated in Fig. 1, then aμ is responsible for the Larmor
precession of the direction of the spin of the muon, characterized by the an-
gular frequency ωa. At the magic energy of about ∼ 3.1 GeV, the latter is
directly proportional to aμ:

ωa =
e

m

[
aμB−

(
aμ − 1

γ2 − 1

)
β ×E

]E∼3.1GeV

at “magic γ”

	 e

m

[
aμB

]
. (8)

Electric quadrupole fields E are needed for focusing the beam and they affect
the precession frequency in general. γ = E/mμ = 1/

√
1− β2 is the rela-

tivistic Lorentz factor with β = v/c, the velocity of the muon in units of
the speed of light c. The magic energy Emag = γmagmμ is the energy E for
which 1

γ2
mag−1 = aμ. The existence of a solution is due to the fact that aμ is a

positive constant in competition with an energy-dependent factor of opposite
sign (as γ ≥ 1). The second miracle, which is crucial for the feasibility of the
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ωa = aµ
eB
mc

actual precession×2

Fig. 1. Spin precession in the g − 2 ring (∼ 12◦/circle)

experiment, is the fact that γmag =
√

(1 + aμ)/aμ 	 29.378 is large enough
to provide the time dilatation factor for the unstable muon boosting the life
time τμ 	 2.197× 10−6 s to τin flight = γ τμ 	 6.454× 10−5 s, which allows the
muons, traveling at v/c = 0.99942 . . . , to be stored in a ring of reasonable size
(diameter ∼ 14 m). This provided the basic setup for the g − 2 experiments
at the muon storage rings at CERN and BNL. The oscillation frequency ωa

can be measured very precisely. Also the precise tuning to the magic energy
is not the major problem. The most serious challenge is to manufacture a
precisely known constant magnetic field B, as the latter directly enters the
experimental extraction of aμ (8). Of course one also needs high-enough statis-
tics to get sharp values for the oscillation frequency. The basic principle of the
measurement of aμ is a measurement of the “anomalous” frequency difference
ωa = |ωa| = ωs−ωc, where ωs = gμ(e�/2mμ)B/� = gμ/2 · e/mμB is the muon
spin–flip precession frequency in the applied magnetic field and ωc = e/mμ B
is the muon cyclotron frequency. Instead of eliminating the magnetic field
by measuring ωc, B is determined from proton nuclear magnetic resonance
(NMR) measurements. This procedure requires the value of μμ/μp to extract
aμ from the data. Fortunately, a high-precision value for this ratio is available
from the measurement of the hyperfine structure in muonium. One obtains

aμ =
R̄

|μμ/μp| − R̄ , (9)

where R̄ = ωa/ω̄p and ω̄p = (e/mμc) < B > is the free proton NMR frequency
which corresponds to the average magnetic field, seen by the muons in their
orbits in the storage ring. We mention that for the electron a Penning trap is
employed to measure ae rather than a storage ring. The B field in this case
can be eliminated via a measurement of the cyclotron frequency.

Since the spin precession frequency can be measured very well, the preci-
sion at which g−2 can be measured is essentially determined by the possibility
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to manufacture a constant homogeneous magnetic field B. Important but eas-
ier to achieve is the tuning to the magic energy.

3 Standard Model Prediction for aμ

The anomalous magnetic moment a� is a dimensionless quantity, just a num-
ber, and corresponds to an effective tensor interaction term

δLAMM
eff = −e�a�

4m�
ψ̄(x) σμν ψ(x) Fμν(x) , (10)

which in an external magnetic field at low energy takes the well-known form
of a magnetic energy (up to a sign)

δLAMM
eff = −Hm 	 −e�a�

2m�
σB . (11)

Such a term, if present in the fundamental Lagrangian, would spoil renormal-
izability of the theory and contribute to FM(q2) at the tree level. In addition,
it is not SU(2)L gauge invariant, because gauge invariance only allows mini-
mal couplings via a covariant derivative, i.e., vector and/or axial-vector terms.
The emergence of an anomalous magnetic moment term in the SM is a con-
sequence of the symmetry breaking by the Higgs mechanism, which provides
the mass to the physical particles and allows for helicity flip processes like the
anomalous magnetic moment transitions. In any renormalizable theory the
anomalous magnetic moment term must vanish at tree level. This means that
there is no free adjustable parameter associated with it. Actually, it is a finite
prediction of the theory.

The reason why it is so interesting to have such a precise measurement of
ae or aμ of course is that it can be calculated with comparable accuracy in
theory by a perturbative expansion in α of the form

a� 	
N∑

n=1

A(2n)(α/π)n , (12)

with up to N = 5 terms under consideration at present. The recent new
determination of ae [9] allows for a very precise determination of the fine
structure constant [10]:

α−1(ae) = 137.035999070(98) [0.71 ppb] , (13)

which we will use for the evaluation of aμ.
At two and more loops results depend on lepton mass ratios. For the eval-

uation of these contributions precise values for the lepton masses are needed.
We will use the following values for the muon–electron mass ratio, the muon
and the tau mass [11, 12]:

mμ/me = 206.768 2838 (54) , mμ/mτ = 0.059 4592 (97)
me = 0.510 9989 918(44) MeV , mμ = 105.658 3692 (94) MeV

mτ = 1776.99 (29) MeV .
(14)
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3.1 The Universal QED Contribution

The leading contributions to a� can be calculated in QED. With increasing
precision, higher and higher terms become relevant. At present, 4 loops are
indispensable and strong interaction effects like hadronic vacuum polarization
(vap) or hadronic light-by-light scattering (lbl) as well as weak effects have
to be considered. Typically, analytic results for higher order terms may be
expressed in terms of the Riemann zeta function:

ζ(n) =
∞∑

k=1

1
kn

(15)

and of the poly-logarithmic integrals

Lin(x) =
(−1)n−1

(n− 2)!

1∫

0

lnn−2(t) ln(1− tx)
t

dt =
∞∑

k=1

xk

kn
. (16)

We first discuss the universal contributions a� where internal and external
leptons are of the same type � (one flavor QED): at leading order one has
• One 1-loop diagram

γ
ae = aμ = aτ = α

2π

Schwinger 1948 [3] giving the result mentioned before.
• At 2-loops seven diagrams with one type of fermion lines

which contribute a term

a
(4)
� =

[
197
144

+
π2

12
− π2

2
ln 2 +

3
4
ζ(3)

] (α
π

)2

, (17)

obtained independently by Petermann [13] and Sommerfield [14] in 1957.
• At 3-loops, with �-type fermion lines only, 72 diagrams contribute. Most re-
markably, after about 25 years of hard work, Laporta and Remiddi in 1996 [15]
managed to give a complete analytic result:

a
(6)
� =

[
28259
5184

+
17101
810

π2 − 298
9
π2 ln 2 +

139
18

ζ(3) +
100
3

{
Li4

(
1
2

)
+

1
24

ln4 2

− 1
24
π2 ln2 2

}
− 239

2160
π4 +

83
72
π2ζ(3)− 215

24
ζ(5)

] (α
π

)3

. (18)
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It was confirming Kinoshita’s earlier numerical evaluation [16]. The big
advantage of the analytic result is that it allows a numerical evaluation at
any desired precision. The direct numerical evaluation of the multidimensional
Feynman integrals by Monte Carlo methods is always of limited precision and
an improvement is always very expensive in computing power.
• At 4-loops 891 diagrams contribute to the universal term. Their evaluation
is possible by numerical integration and has been performed in a heroic effort
by Kinoshita [17] (reviewed in [18]) and was updated recently by Kinoshita
and collaborators (2006/2007) [19, 20].

The largest uncertainty comes from 518 diagrams without fermion-loops
contributing to the universal term A

(8)
1 . Completely unknown is the universal

5-loop term A
(10)
1 , which is leading for ae. Some estimation discussed in [21]

suggests an uncertainty of 3.8 for the 5-loop coefficient. We adopt this estimate
and take into account A(10)

1 = 0.0(3.8) (as in [19]).
Collecting the universal terms we have

auni
� = 0.5

(α
π

)
− 0.32847896557919378 . . .

(α
π

)2

+1.181241456587 . . .
(α
π

)3

− 1.7283(35)
(α
π

)4

+ 0.0(3.8)
(α
π

)5

= 0.001 159 652 176 42(81)(10)(26) [86] . . . (19)

for the one-flavor QED contribution. The three errors are: the error of α, given
in (13), the numerical uncertainty of the α4 coefficient and the estimated size
of the missing higher order terms, respectively.

3.2 Mass-Dependent QED Contribution

At two loops and higher, internal fermion-loops show up, where the flavor of
the internal fermion differs from the one of the external lepton, in general.
As all fermions have different masses, the fermion-loops give rise to mass-
dependent effects, which were calculated at 2-loops in [22, 23] (see also [24,
25, 26]), and at 3-loops in [27, 28, 29, 30, 31, 32]. The leading mass-dependent
effects come from photon vacuum polarization, which leads to charge screening
manifest in the “running” of α. The corresponding shift in the fine structure
constant comes from the leptons (lep = e, μ and τ), the five light quarks (u,
b, s, c and b) and/or the corresponding hadrons (had). The running of α is
governed by the renormalization group (RG).

Typical contributions are the following:

• LIGHT internal masses give rise to logs of mass ratios which become sin-
gular in the light mass to zero limit (logarithmically enhanced corrections):

μ e

=
[

1
3 ln mμ

me
− 25

36 +O
(

me
mμ

)] (
α
π

)2
.
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• HEAVY internal masses decouple, i.e., they give no effect in the heavy
mass to infinity limit:

e μ
=

[
1
45

(
me
mμ

)2

+O
(

m4
e

m4
μ

ln mμ
me

)] (
α
π

)2
.

New physics contributions from states which are too heavy to be produced
at present accelerator energies typically give this kind of contribution. Even
though aμ is 786 times less precise than ae it is still 54 times more sensitive
to new physics (NP).

Corrections due to internal e, μ- and τ-loops are different for ae,
1 aμ and

aτ.
The SM prediction of aμ looks formally very similar to the one for ae; how-

ever, besides the common universal part, the mass-dependent, the hadronic
and the weak effects enter with very different weight and significance. The
mass-dependent QED corrections follow from the universal set of diagrams
by replacing the closed internal μ-loops by e- and/or τ-loops. Typical con-
tributions come from vacuum polarization or light-by-light scattering loops,
like

e
a(6)

μ
μ

μ

μ

(lbl, e) =
2
3
π2 ln

m

me
+

59
270

π4 − 3 ζ(3)

−10
3
π2 +

2
3

+O
me

m
ln
m

me

α

π

3

.γ’s
μ

γ

The result is given by

aμ = auni
e + aμ(mμ/me) + aμ(mμ/mτ) + aμ(mμ/me,mμ/mτ) (22)

with [23, 30, 31, 32]
1 A new extraordinary precise value

aexp
e = 0.001 159 652 180 85(76) (20)

for ae has been obtained recently [9]. By comparison with the theoretical result
α(ae) (13) has been obtained. The result is of the form aQED

e = auni
e + ae(μ) +

ae(τ) + ee(μ, τ) with ae(μ) = 5.197 386 70(27) × 10−7
(

α
π

)2 − 7.373 941 64(29) ×
10−6

(
α
π

)3
, ae(τ) = 1.83763(60)×10−9

(
α
π

)2−6.5819(19)×10−8
(

α
π

)3
and ae(μ, τ) =

0.190945(62) × 10−12
(

α
π

)3
[23, 30, 31]. The QED part thus may be summarized

in the prediction

aQED
e =

α

2π
− 0.328 478 444 002 90(60)

(α
π

)2

+ 1.181 234 016 828(19)
(α
π

)3

−1.9144(35)
(α
π

)4

+ 0.0(3.8)
(α
π

)5

+ 1.706(30) × 10−12 . (21)

The last term includes the small hadronic and weak contributions: ahad
e =

1.67(3) × 10−12 and aweak
e = 0.036 × 10−12, respectively. Therefore ae is almost a

pure QED object and therefore an excellent observable for extracting αQED based
on the SM prediction.
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aμ(mμ/me) = 1.094 258 311 1 (84)
(α
π

)2

+ 22.868 380 02 (20)
(α
π

)3

+132.682 3 (72)
(α
π

)4

,

aμ(mμ/mτ) = 7.8064 (25)× 10−5
(α
π

)2

+ 36.051 (21)× 10−5
(α
π

)3

+0.005 (3)
(α
π

)4

,

aμ(mμ/me,mμ/mτ) = 52.766 (17)× 10−5
(α
π

)3

+ 0.037 594 (83)
(α
π

)4

;

except for the last term, which has been worked out as a series expansion in the
mass ratios [33, 34], all contributions are known analytically in exact form [30,
31]2 up to 3 loops. At 4 loops only a few terms are known analytically [36].
Again the relevant 4-loop contributions have been evaluated by numerical
integration methods by Kinoshita and Nio [37]. The 5-loop term has been
estimated to be A(10)

2 (mμ/me) = 663(20) in [38, 39, 40].
Our knowledge of the QED result for aμ may be summarized by

aQED
μ =

α

2π
+ 0.765 857 410(26)

(α
π

)2

+24.050 509 65(46)
(α
π

)3

+ 130.8105(85)
(α
π

)4

+ 663(20)
(α
π

)5

. (23)

We thus arrive at a QED prediction of aμ given by

aQED
μ = 116 584 718.113(.082)(.014)(.025)(.137)[.162]× 10−11 (24)

where the first error is the uncertainty of α in (13), the second one combines
in quadrature the uncertainties due to the errors in the mass ratios, the third
is due to the numerical uncertainty and the last stands for the missing O(α5)
terms. With the new value of α[ae] the combined error is dominated by our
limited knowledge of the 5-loop term.

3.3 Weak Contributions

The electroweak SM is a non-Abelian gauge theory with gauge group SU(2)L⊗
U(1)Y → U(1)QED, which is broken down to the electromagnetic Abelian
subgroup U(1)QED by the Higgs mechanism, which requires a scalar Higgs
field H which receives a vacuum expectation value v. The latter fixes the
experimentally well-known Fermi constant Gμ = 1/(

√
2v2) and induces the

masses of the heavy gauge bosons MW and MZ
3 as well as all fermion masses

2 Explicitly, the papers only present expansions in the mass ratios; some result have
been extended in [32] and cross-checked against the full analytic result in [35].

3 MZ = 91.1876 ± 0.0021 GeV ,MW = 80.403 ± 0.026 GeV, also mH > 115 GeV.
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mf . Other physical constants which we will need later for evaluating the weak
contributions are the Fermi constant and the weak mixing parameter:

Gμ = 1.16637(1)× 10−5 GeV−2 , sin2 ΘW = 0.2225(5) . (25)

The weak interaction contributions to aμ are due to the exchange of the heavy
gauge bosons, the charged W± and the neutral Z, which mixes with the photon
via a rotation by the weak mixing angle ΘW and which defines the weak mixing
parameter sin2 ΘW = 1−M2

W/M
2
Z. What is most interesting is the occurrence

of the first diagram of Fig. 2, which exhibits a non-Abelian triple gauge vertex
and the corresponding contribution provides a test of the Yang–Mills structure
involved. It is of course not surprising that the photon couples to the charged
W boson the way it is dictated by electromagnetic gauge invariance. The

gauge boson contributions up to negligible terms of order O(
m2

μ
M2

W,Z
) are given

by (the Higgs contribution is negligible)

a
(2) EW
μ =

[
5 + (−1 + 4 sin2 ΘW)2

]
√

2Gμm
2
μ

48π2
	 194.82(2)× 10−11. (26)

The error comes from the uncertainty in sin2 ΘW given above.
The electroweak 2-loop corrections have to be taken into account as well.

In fact triangle fermion-loops may give rise to unexpectedly large radiative
corrections. The diagrams which yield the leading corrections are those includ-
ing a VVA triangular fermion-loops (VVA = 0 while VVV = 0 ) associated
with a Z boson exchange

γ Z

f

μ

γ

which exhibits a parity violating axial coupling (A). A fermion of flavor f
yields a contribution

a
(4) EW
μ ([f ]) 	

√
2Gμm

2
μ

16π2

α

π
2T3fNcfQ

2
f

[
3 ln

M2
Z

m2
f′

+ Cf

]
(27)

where T3f is the third component of the weak isospin, Qf the charge and Ncf

the color factor, 1 for leptons, 3 for quarks. The mass mf′ is mμ if mf < mμ

W W

νµ Z H
μ

γ

Fig. 2. The leading weak contributions to a�; diagrams in the physical unitary gauge
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and mf if mf > mμ, and Ce = 5/2, Cμ = 11/6 − 8/9 π2, Cτ = −6 [41].
However, in the SM the consideration of individual fermions makes no sense
and a separation of quarks and leptons in not possible. Mathematical consis-
tency of the SM requires complete VVA anomaly cancellation between lepton
and quark and actually

∑
f NcfQ

2
f T3f = 0 holds for each of the three known

lepton–quark families separately. Indeed, the ∼ lnMZ terms cancel if quarks
are treated as free fermions [42]. However, strong interaction effects must be
included as well.

In fact, low-energy QCD is characterized in the chiral limit of massless
light quarks u,d,s, by spontaneous chiral symmetry breaking (SχSB) of the
chiral group SU(3)V ⊗ SU(3)A, which in particular implies the existence
of the pseudo-scalar octet of pions and kaons as Goldstone bosons. The
light quark condensates are essential features in this situation and lead to
non-perturbative effects completely absent in a perturbative approach. Thus
low-energy QCD effects are intrinsically non-perturbative and controlled by
chiral perturbation theory (CHPT), the systematic QCD low-energy expan-
sion, which accounts for the SχSB and the chiral symmetry breaking by quark
masses in a systematic manner. The low-energy effective theory describing the
hadronic contributions related to the light quarks u,d,s requires the calcula-
tion of the diagrams of the type shown in Fig. 3. The leading effect for the
first plus second family takes the form [43]

a
(4) EW
μ

([
e, u, d

μ, c, s

])

CHPT

=

√
2Gμ m

2
μ

16π2

α

π

[
−14

3
ln
M2

Λ

m2
μ

+ 4 ln
M2

Λ

m2
c
− 35

3
+

8

9
π2

]

� −
√

2Gμ m
2
μ

16π2

α

π
× 26.2(5) � −7.09(13) × 10−11. (28)

The error comes from varying the cut-off MΛ between 1 and 2 GeV. Be-
low 1 GeV CHPT can be trusted above 2 GeV we can trust pQCD. For-
tunately the result is not very sensitive to the choice of the cut-off. For
more sophisticated analyses we refer to [42, 43, 44] which was corrected
and refined in [45, 46]. Thereby, a new kind of non-renormalization theorems
played a key role [47, 48, 49]. Including subleading effects yields −5.0× 10−11

for the first two families. The third family of fermions including the heavy
top quark can be treated in perturbation theory and was worked out to

γ
Z

π0,η ,η

μ

γ

(a) [L.D.]

γ
Z

π±, ±

μ

γ

(b) [L.D.]

γ
Z

u, d, s

μ

γ

(c) [S.D.]

K

Fig. 3. The two leading CHPT diagrams (L.D.) and the QPM diagram (S.D.). The
charged pion loop is sub-leading and is actually discarded. Diagrams with permuted
γ ↔ Z on the μ-line have to be included
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be −8.2 × 10−11 in [50]. Subleading fermion-loops contribute −5.3 × 10−11.
There are many more diagrams contributing, in particular the calculation
of the bosonic contributions (1678 diagrams) is a formidable task and has
been performed by Czarnecki, Krause and Marciano (1996) as an expansion
in (mμ/MV)2 and (MV/mH)2 [51]. Later complete calculations, valid also for
lighter Higgs masses, were performed [52, 53], which confirmed the previous
result −22.3× 10−11.

The complete weak contribution may be summarized by [46]

aEW
μ =

√
2Gμ m

2
μ

16π2

{
5
3

+
1
3

(1 − 4 sin2 ΘW)2 − α

π
[155.5(4)(2)]

}

= (154± 1[had]± 2[mH,mt, 3-loop])× 10−11 (29)

with errors from triangle quark-loops and from variation of the Higgs mass
in the range mH = 150+100

−40 GeV. The 3-loop effect has been estimated to be
negligible [45, 46].

3.4 Hadronic Contributions

So far when we were talking about fermion-loops we only considered the lep-
ton loops. Besides the leptons the strongly interacting quarks also have to be
taken into account. The problem is that strong interactions at low energy are
non-perturbative and straightforward first principle calculations become very
difficult and often impossible.

Fortunately the leading hadronic effects are vacuum polarization type cor-
rections, which can be safely evaluated by exploiting causality (analyticity)
and unitarity (optical theorem) together with experimental low-energy data.
The imaginary part of the photon self-energy function Πγ(s) is determined
via the optical theorem by the total cross-section of hadron production in
electron–positron annihilation:

σ(s)e+e−→γ∗→hadrons =
4π2α

s

1
π

Im Πγ(s) . (30)

The leading hadronic contribution is represented by Fig. 4, which has a rep-
resentation as a dispersion integral

aμ =
α

π

∫ ∞

0

ds
s

1
π

Im Πγ(s)K(s) , K(s) ≡
∫ 1

0

dx
x2(1− x)

x2 + s
m2

μ
(1 − x) . (31)

had
μ

γ

γ γ

Fig. 4. The leading order (LO) hadronic vacuum polarization diagram
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As a result the leading non-perturbative hadronic contributions ahad
μ can be

obtained in terms of Rγ(s) ≡ σ(0)(e+e− → γ∗ → hadrons)/ 4πα2

3s data via the
dispersion integral:

ahad
μ =

(αmμ

3π

)2
( E2

cut∫

4m2
π

ds
Rdata

γ (s) K̂(s)
s2

+

∞∫

E2
cut

ds
RpQCD

γ (s) K̂(s)
s2

)
. (32)

The rescaled kernel function K̂(s) = 3s/m2
μ K(s) is a smooth bounded func-

tion, increasing from 0.63... at s = 4m2
π to 1 as s→∞. The 1/s2 enhancement

at low energy implies that the ρ→ π+π− resonance is dominating the disper-
sion integral (∼ 75%). Data can be used up to energies where γ − Z mixing
comes into play at about 40 GeV. However, by virtue of asymptotic freedom,
perturbative quantum chromodynamics (pQCD) becomes more reliable the
higher the energy and in fact may be used safely in regions away from the
flavor thresholds where the non-perturbative resonances show up: ρ, ω, φ, the
J/ψ series and the Υ series. We thus use perturbative QCD [54, 55] from
5.2 to 9.6 GeV and for the high-energy tail above 13 GeV, as recommended
in [54, 55].

Hadronic cross-section measurements e+e− → hadrons at electron–positron
storage rings started in the early 1960s and continued up to date. Since our
analysis [56] in 1995 data from MD1 [57], BES-II [58] and from CMD-2 [59]
have led to a substantial reduction in the hadronic uncertainties on ahad

μ . More
recently, KLOE [60], SND [61] and CMD-2 [62] published new measurements
in the region below 1.4 GeV. My up-to-date evaluation of the leading order
hadronic VP yields [63]

a
had(1)
μ = (692.1± 5.6) × 10−10 . (33)

Some other recent evaluations are collected in Table 1. Differences in errors
come about mainly by utilizing more “theory-driven” concepts : use of selected

Table 1. Some recent evaluations of a
had(1)
μ

a
had(1)
μ × 1010 data Reference

696.3[7.2] e+e− [64]
711.0[5.8] e+e− + τ [64]
694.8[8.6] e+e− [65]
684.6[6.4] e+e− TH [66]
699.6[8.9] e+e− [67]
692.4[6.4] e+e− [68]
693.5[5.9] e+e− [69]
701.8[5.8] e+e− + τ [69]
690.9[4.4] e+e−∗∗ [70]
692.1[5.6] e+e−∗∗ [63]
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data sets only, extended use of perturbative QCD in place of data [assuming
local quark-hadron duality], sum rule methods, low-energy effective methods.
Only the last two (∗∗) results include the most recent data from SND, CMD-2
and BaBar.

In principle, the I = 1 iso-vector part of e+e− → hadrons can be ob-
tained in an alternative way by using the precise vector spectral functions
from hadronic τ-decays τ → ντ + hadrons which are related by an isospin
rotation [71]. After isospin violating corrections, due to photon radiation and
the mass splitting md −mu = 0, have been applied, there remains an unex-
pectedly large discrepancy between the e+e−- and the τ-based determinations
of aμ [64], as may be seen in Table 1. Possible explanations are so far unac-
counted isospin breaking [65] or experimental problems with the data. Since
the e+e−- data are more directly related to what is required in the dispersion
integral, one usually advocates to use the e+e− data only.

At order O(α3) diagrams of the type shown in Fig. 5 have to be calculated,
where the first diagram stands for a class of higher order hadronic contribu-
tions obtained if one replaces one internal photon line by a dressed one in
any of the 6-two loop diagrams which do not exhibit a fermion loop. The rel-
evant kernels for the corresponding dispersion integrals have been calculated
analytically in [72] and appropriate series expansions were given in [73] (for
earlier estimates see [74, 75]). Based on my recent compilation of the e+e−

data [63] I obtain

a
had(2)
μ = (−100.3± 2.2) × 10−11 , (34)

in accord with previous evaluations [75, 73, 71, 68].
We encounter much more serious problems with non-perturbative hadronic

effect with the hadronic light-by-light (LbL) contribution at O(α3) depicted
in Fig. 6. Experimentally, we know that γγ → hadrons→ γγ is dominated by
the hadrons π0, η, η′, . . . , i.e., single pseudo-scalar meson spikes, and that
π0 → γγ, etc., is governed by the parity odd Wess-Zumino-Witten (WZW)
effective Lagrangian

L(4) = − αNc

12 πf0
εμνρσF

μνAρ∂σπ0 + · · · (35)

which reproduces the Adler-Bell-Jackiw triangle anomaly and which helps in
estimating the leading hadronic LbL contribution. f0 denotes the pion decay
constant fπ in the chiral limit of massless light quarks. Again, in a low-energy

h e h h h
μ

γa) b) c)

Fig. 5. Higher order (HO) vacuum polarization contributions
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μ

γ

γ γ
γ

Fig. 6. Hadronic light-by-light scattering in g − 2

effective description, the quasi Goldstone bosons, the pions and kaons play an
important role, and the relevant diagrams are displayed in Fig. 7.

However, as we know from the hadronic VP discussion, the ρ meson is
expected to play an important role in the game. It looks natural to apply a
vector-meson dominance (VMD) like model. Electromagnetic interactions of
pions treated as point-particles would be described by scalar QED in a first
step. However, due to hadronic interactions the photon mixes with hadronic
vector-mesons like the ρ0, which is properly accommodated by the Reso-
nance Lagrangian Approach (RLA) [76] or versions of it, an extended ver-
sion of CHPT which incorporates vector-mesons in accordance with the basic
symmetries.

Based on such effective field theory (EFT) models, two major efforts in
evaluating the full aLbL

μ contribution were made by Hayakawa, Kinoshita
and Sanda (HKS 1995) [77], Bijnens, Pallante and Prades (BPP 1995) [78]
and Hayakawa and Kinoshita (HK 1998) [79] (see also Kinoshita, Nizic and
Okamoto (KNO 1985) [75]). Although the details of the calculations are quite
different, which results in a different splitting of various contributions, the
results are in good agreement and essentially given by the π0-pole contribu-
tion, which was taken with the wrong sign, however. In order to eliminate the
cut-off dependence in separating L.D. and S.D. physics, more recently it be-
came favorable to use quark–hadron duality, as it holds in the large Nc limit
of QCD, for modeling of the hadronic amplitudes [80]. The infinite series of
narrow vector states known to show up in the large Nc limit is then approxi-
mated by a suitable lowest meson dominance (LMD+V) Ansatz [81], assumed
to be saturated by known low-lying physical states of appropriate quantum
numbers. This approach was adopted in a reanalysis by Knecht and Nyf-
feler (KN 2001) [82, 83, 84] in 2001, in which they discovered a sign mistake

π0, η, η

μ

γ

q1 q2 q3

(a) [L.D.]

γ
γ

π±,K±

μ

γ

(b) [L.D.]

γ
γ

u, d, s

μ

γ

(c) [S.D.]

Fig. 7. Leading hadronic light-by-light scattering diagrams: the two leading CHPT
diagrams (L.D.) and the QPM diagram (S.D.). The charged pion loop is sub-
leading only, actually. Diagrams with permuted γs on the μ-line have to be included.
γ-hadron/quark vertices at q2 �= 0 are dressed (VMD)
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in the dominant π0, η, η′ exchange contribution, which changed the central
value by +167× 10−11, a 2.8 σ shift, and which reduces a larger discrepancy
between theory and experiment. More recently, Melnikov and Vainshtein (MV
2004) [85] found additional problems in previous calculations, this time in the
short distance constraints (QCD/OPE) used in matching the high-energy be-
havior of the effective models used for the π0, η, η′ exchange contribution.

The most important pion-pole term, Fig. 7(a), exhibits the non-perturbative
aspects in a product of two essentially unknown π0γγ form factors (FF) like
Fπ∗γ∗γ∗(q22 , q

2
1 , q

2
3) · Fπ∗γ∗γ∗(q22 , q

2
2 , 0) where the photon momenta q1 and q2

are the loop momenta to be integrated over.
A new quality of the problem encountered here is the fact that the in-

tegrand depends on three invariants q21 , q
2
2 , q

2
3 with q3 = −(q1 + q2), while

hadronic VP correlators or the VVA triangle with an external zero momentum
vertex only depends on a single invariant q2. In the latter case the invariant
amplitudes (form factors) may be separated into a low-energy part q2 ≤ Λ2

(soft) where the low-energy effective description applies and a high-energy
part q2 > Λ2 (hard) where pQCD works. In multi-scale problems, however,
there are mixed soft–hard regions where no answer is available in general,
unless we have data to constrain the amplitudes in such regions. In our case,
only the soft region q21 , q

2
2 , q

2
3 ≤ Λ2 and the hard region q21 , q

2
2 , q

2
3 > Λ2 are un-

der control of either the low-energy EFT or pQCD, respectively. In the mixed
soft–hard domains operator product expansions and/or soft versus hard fac-
torization “theorems” may apply. Actually, one more approximation is usually
made: the pion-pole approximation, i.e., the pion-momentum square (first ar-
gument of the F) is set equal to m2

π, as the main contribution is expected to
come from the pole. Knecht and Nyffeler modeled Fπγ∗γ∗(m2

π, q
2
1 , q

2
2) in the

spirit of the large Nc expansion as a “LMD+V” form factor:

Fπγ∗γ∗(m2
π, q

2
1 , q

2
2) =

fπ

3

q21q
2
2(q21 + q22) + h1(q21 + q22)2 + h2q

2
1q

2
2 + h5(q21 + q22) + h7

(q21 −M2
1 )(q21 −M2

2 )(q22 −M2
1 )(q22 −M2

2 )
,

(36)

with h7 = −(NcM
4
1M

4
2 /4π

2f2
π), fπ 	 92.4 MeV. An important constraint

comes from the pion-pole form factor Fπγ∗γ(m2
π,−Q2, 0), which has been

measured by CELLO [86] and CLEO [87]. Experiments are in fair agreement
with the Brodsky–Lepage [88] form

Fπγ∗γ(m2
π,−Q2, 0) 	 − Nc

12π2fπ

1
1 + (Q2/8π2f2

π)
(37)

which interpolates between a 1/Q2 asymptotic behavior and the constraint
from π0 decay at Q2 = 0. This behavior requires h1 = 0. Identifying the
resonances with M1 = Mρ = 769 MeV, M2 = Mρ′ = 1465 MeV, the phe-
nomenological constraint fixes h5 = 6.93 GeV4. h2 will be fixed by later. As
the previous analyses, Knecht and Nyffeler apply the above VMD-type form
factor on both ends of the pion line. In fact at the vertex attached to the
external zero momentum photon, this type of pion-pole form factor cannot
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apply for kinematical reasons: when qμ
ext = 0 not Fπγ∗γ(m2

π,−Q2, 0) but
Fπ∗γ∗γ(q22 , q

2
2 , 0) is the relevant object to be used, where q2 is to be integrated

over. However, for large q22 the pion must be far off-shell, in which case the
pion exchange effective representation becomes obsolete. Melnikov and Vain-
shtein reanalyzed the problem by performing an operator product expansion
(OPE) for q21 	 q22 � (q1 + q2)2 ∼ m2

π. In the chiral limit this analysis reveals
that the external vertex is determined by the exactly known ABJ anomaly
Fπγγ(m2

π, 0, 0) = −1/(4π2fπ). This means that in the chiral limit there is no
VMD-like damping at high energies at the external vertex. However, the ab-
sence of a damping in the chiral limit does not prove that there is no damping
in the real world with non-vanishing quark masses. In fact, the quark triangle-
loop in this case provides a representation of the π0∗γ∗γ∗ amplitude given by

FCQM
π0∗γ∗γ∗(q2, p2

1, p
2
2) ≡ (−4π2fπ)Fπ∗γ∗γ∗(q2, p2

1, p
2
2) = 2m2

q C0(mq; q2, p2
1, p

2
2) ,

where C0 is a well-known scalar 3-point function and mq is a quark mass
(q=u,d,s). For p2

1 = p2
2 = q2 = 0 we obtain FCQM

π0∗γ∗γ∗(0, 0, 0) = 1, which is the
proper ABJ anomaly. For large p2

1 at p2
2 ∼ 0, q2 ∼ 0 or p2

1 ∼ p2
2 at q2 ∼ 0 the

asymptotic behavior is given by

FCQM
π0γ∗γ(0, p2

1, 0) ∼ r ln2 r , FCQM
π0γ∗γ∗(0, p2

1, p
2
1) ∼ 2 r ln r, (38)

where r = m2
q

−p2
1
. As C0 is permutation symmetric the same power behavior

∼ 1/p2
i modulo logarithms holds in all channels. Thus at high energies the

anomaly gets screened by chiral symmetry breaking effects.
We therefore advocate to use consistently dressed form factors as inferred

by the resonance Lagrangian approach. However, other effects which were first
considered in [85] must be taken into account:

1) The constraint on the twist four (1/q4)-term in the OPE requires h2 = −10
GeV2 in the Knecht–Nyffeler form factor (36): δaμ 	 +5± 0.
2) The contributions from the f1 and f ′

1 isoscalar axial-vector mesons: δaμ 	
+10± 4 (using dressed photons).
3) For the remaining effects: scalars (f0) + dressed π±,K± loops + dressed
quark loops: δaμ 	 −5± 13.

Note that the remaining terms have been evaluated in [77, 78] only. The
splitting into the different terms is model dependent and only the sum should
be considered: the results read −5±13 (BPP) and 5.2±13.7 (HKS) and hence
the contribution remains unclear4.

Results are overviewed in Table 2. The last column gives my estimates
based on [77, 78, 82, 85]. The “no FF” column shows results for undressed
photons (no form factor). The constant WZW form factor yields a divergent
4 We adopt the value estimated in [78], because the sign of the scalar contribution,

which dominates in the sum, has to be negative in any case (see [84]).
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Table 2. LbL: Summary of most recent results for aμ × 1011

no FF BPP HKS KN MV FJ

π0, η, η′ +∞ 85 ± 13 82.7 ± 6.4 83 ± 12 114 ± 10 88 ± 12
axial-vector 2.5 ± 1.0 1.7 ± 0.0 22 ± 5 10 ± 4
scalar −6.8 ± 2.0 − − − −7 ± 2
π,K loops −49.8 −19 ± 13 −4.5 ± 8.1 0 ± 10 −19 ± 13
quark loops 62(3) 21 ± 3 9.7 ± 11.1 − − 21 ± 3

total 83 ± 32 89.6 ± 15.4 80 ± 40 136 ± 25 93 ± 34

result; applying a cut-off Λ one obtains [83] (α/π)3C ln2 Λ, with an universal
coefficient C = N2

cm
2
μ/(48π2f2

π); in the VMD dressed cases MV represents the
cut-off Λ→MV if MV →∞.

4 Theory Confronting the Experiment

The following Table 3 collects the typical contributions to aμ evaluated in
terms of α determined via ae (13). The world average experimental muon
magnetic anomaly, dominated by the very precise BNL result, now is [8]

aexp
μ = 1.16592080(60)× 10−3 (39)

(relative uncertainty 5.3× 10−7), which confronts with the SM prediction

athe
μ = 1.16591793(68)× 10−3 . (40)

Figure 8 illustrates the improvement achieved by the BNL experiment. The
theoretical predictions mainly differ by the L.O. hadronic effects, which also
dominate the theoretical error. A deviation between theory and experiment

Table 3. The various types of contributions to aμ in units 10−6, ordered according
to their size (L.O. lowest order, H.O. higher order, LbL. light–by–light)

L.O. universal 1161.409 73 (0)
e-loops 6.194 57 (0)
H.O. universal −1.757 55 (0)
L.O. hadronic 0.069 20 (56)
L.O. weak 0.001 95 (0)
H.O. hadronic −0.001 00 (2)
LbL. hadronic 0.001 00 (39)
τ -loops 0.000 43 (0)
H.O. weak −0.000 41 (2)
e+τ -loops 0.000 01 (0)

theory 1165.917 93 (68)
experiment 1165.920 80 (60)
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100 200 300

CERN (79)
TheoryKNO (85)

E821 (00) μ+

E821 (01) μ+

E821 (02) μ+

E821 (04) μ−

World
E969 goal

EJ 95 (e+e−)
181.3 ± 16.0
DEHZ03 (e+e−)
181.1 ± 8.2

2.6 σ

DEHZ03 (τ)
196.2 ± 7.1

1.2 σ

GJ03 (e+e−) 2.5 σ
180.0 ± 9.5
HMNT03 (e+e− incl.) 3.2 σ
177.6 ± 7.5
TY04 (e+e−) 3.2 σ
180.6 ± 5.9
FJ06 (e+e− ) 3.2 σ
179.3 ± 6.9 2.9 σLbL(MV) ⇒

(aµ-11659000)× 10−10

Fig. 8. Comparison between theory and experiment. Results differ by different
L.O. hadronic vacuum polarizations, except for the last point which includes the
Melnikov-Vainshtein estimate of the LbL contribution. EJ95 vs. FJ06 illustrates the
improvement of the e+e−-data between 1995 and now (see also Table 1)

of about 3 σ was persisting since the first precise BNL results came out, in
spite of progress in theory and experiment since.

At present the deviation between theory and experiment is

δaμ = aexp
μ − athe

μ = 287± 91× 10−11, (41)

which is a 3.2 σ effect. We note that the theory error is somewhat larger
than the experimental one. It is fully dominated by the uncertainty of the
hadronic low-energy cross-section data, which determine the hadronic vacuum
polarization and, partially, form the uncertainty of the hadronic light-by-light
scattering contribution.

As we notice, the enhanced sensitivity to “heavy” physics is somehow good
news and bad news at the same time: the sensitivity to “New Physics” we are
always hunting for at the end is enhanced due to

aNP
� ∼

(
m�

MNP

)2

by the mentioned mass ratio square, but at the same time also scale-dependent
SM effects are dramatically enhanced, and the hadronic ones are not easy to
estimate with the desired precision.
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5 Prospects

The BNL muon g−2 experiment has determined aμ (39), reaching the impres-
sive precision of 0.54 ppm, a 14-fold improvement over the CERN experiment
from 1976. Herewith, a new quality has been achieved in testing the SM and
in limiting physics beyond it. The main achievements and problems are

• a first confirmation of the fairly small weak contribution at the 2–3 σ level,
• a substantial improvement in testing CPT aμ+ = aμ− for muons,
• the hadronic vacuum polarization contribution, obtained via experimental

e+e− annihilation data, limits the theoretical precision at the 1 σ level,
• now and for the future the hadronic light-by-light scattering contribution,

which amounts to about 2σ, is not far from being as important as the weak
contribution; present calculations are model-dependent and may become
the limiting factor for future progress.

At present a 3.2σ deviation between theory and experiment is observed5

and the “missing piece” (41) could hint to new physics, but at the same time
rules out big effects predicted by many possible extensions of the SM.

Usually, new physics (NP) contributions due to not yet seen heavy states
via virtual corrections are expected to produce contributions proportional to
m2

μ/M
2
NP and thus are expected to be suppressed by M2

W/M
2
NP relative to the

weak contribution.
The most promising theoretical scenarios are super symmetric (SUSY) ex-

tensions of the SM, in particular the minimal MSSM. Typical super-symmetric
contributions to aμ stem from smuon–neutralino and sneutrino-chargino loops
Fig. 9. Some contributions are enhanced by the parameter tanβ which may
be large (in some cases of order mt/mb ≈ 40). One obtains [89] (for the
extension to 2-loops see [90])

aSUSY
μ 	 sign(μ)

α(MZ)
8π sin2 ΘW

m2
μ

m̃2
tanβ

(
1− 4α

π
ln

m̃

mμ

)
, (42)

ν̃

χ̃ χ̃

χ̃0

μ̃ μ̃

Fig. 9. Physics beyond the SM: leading SUSY contributions to g − 2 in super-
symmetric extension of the SM

5 It is the largest established deviation between theory and experiment in elec-
troweak precision physics at present.
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m̃ = mSUSY a typical SUSY loop mass and μ is the Higgsino mass term. In
view of (41) negative μ models give the opposite sign contribution to aμ and
are strongly disfavored. For tanβ in the range 3–40 one obtains

m̃ 	 110–430 GeV, (43)

precisely the range where SUSY particles are often expected. For a variety
of non-SUSY extensions of the SM typically

∣∣aμ(NP)
∣∣ 	 C m2

μ/M
2 where

C = O(1) [or O(α/π) if radiatively induced]. The current constraint suggests
M 	 1.5–2.5TeV[M 	 80–120GeV]. Note that C = O(1) could be in conflict
with the requirement that no tree level contribution is allowed. For a more
elaborate discussion and further references I refer to [91].

Plans for a new g − 2 experiment exist [92]. In fact, the impressive 0.5
ppm precision measurement by the E821collaboration at Brookhaven was still
limited by statistical errors rather than by systematic ones. Therefore an
upgrade of the experiment at Brookhaven or J-PARC (Japan) is supposed to
be able to reach a precision of 0.2 ppm (Brookhaven) or 0.1 ppm (J-PARC).

For the theory this poses a new challenge. It is clear that on the theory
side, a reduction of the leading hadronic uncertainty is required, which actu-
ally represents a big experimental challenge: one has to attempt cross-section
measurements at the 1% level up to J/ψ[Υ] energies (5[10] GeV). Such mea-
surements would be crucial for the muon g − 2 as well as for a more precise
determination of the running fine structure constant αQED(E). In particular,
e+e− low-energy cross-section measurements in the region between 1 and 2.5
GeV [93, 94] are able to substantially improve the accuracy of ahad(1)

μ and
αQED(MZ) [63].

New ideas are required to get less model-dependent estimations of the
hadronic LbL contribution.

In any case the muon g−2 story is a beautiful example which illustrates the
experience that the closer we look the more there is to see, but also the more
difficult it gets to predict and interpret what we see. Even facing problems to
pin down precisely the hadronic effects, the achievements in the muon g−2 is
a big triumph of science. Here all kinds of physics meet in one number which
is the result of a truly ingenious experiment. Only getting all details in all
aspects correct makes this number a key quantity for testing our present the-
oretical framework in full depth. It is the result of tremendous efforts in theory
and experiment and on the theory side has triggered the development of new
methods and tools such as computer algebra as well as high-precision numer-
ical methods which are indispensable to handle the complexity of hundreds
to thousands of high-dimensional integrals over singular integrands suffering
from huge cancellations of huge numbers of terms. Astonishing that all this
really works!
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Abstract. The CODATA recommended values of the fundamental constants are
widely applied in particle, nuclear and atomic physics. They are a result of a com-
plicated evaluation (adjustment) of numerous correlated data of different natures.
Their application is often rather mechanical and as a result is not free of various
confusions which are discussed in this note.

1 Introduction

Precision physics deals with numbers rather than with functions, but any
theoretical prediction in numerical terms can appear only after one applies
certain values of input parameters, the most important of which are the
fundamental physical constants. The most popular are recommended values
published by CODATA.1 Working for a while for precision physics of simple
atoms, which is based on quantum electrodynamics (QED) calculations, and
for fundamental constants, I have witnessed a certain number of confusions in
applications of the CODATA values. This chapter aims to serve as a guide to
fundamental constants with a hope to avoid such confusions in future. One can
consider it as a kind of ‘fundamental constants for non-experts’ or ‘frequently
necessary but not asked questions’.

Some applications of the values of certain fundamental constants to preci-
sion studies are sensitive to a choice of the values for the constant to be used.
For such a case it is incorrect to apply any value of the constant blindly. The
real option is to look for the origin of the result, checking what kind of mea-
surements and calculations have been done to obtain it, what suggestions were

1 CODATA is the Committee on Data for Science and Technology, an interdisci-
plinary Scientific Committee of the International Council for Science (ICSU). The
CODATA recommended values are published under the auspices of the CODATA
Task Group on Fundamental Constants.
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made if any. Before any application of a particular result on the fundamental
constant, one has to realize whether this application is in line with the actions
done to derive the constant.

The CODATA papers [1, 2] represent a very specific kind of papers, namely,
reference papers. They contain very important information, which can be
found on demand, but most of the users are aware only about the tables of
the recommended values of the fundamental constants, and even most of them
do not read the papers, but access the values through the Internet (via, e.g.,
the NIST web site [3]) or through other compilations, such as the Review of
Particle Properties [4]. In such a case they do not even have a chance to see
any details of the original CODATA evaluation.

We consider this note as a supplementary paper to [1] and intentionally
do not provide any references which can be found there. We also intentionally
do not present any progress since the adjustment-2002 [1]. In particular, there
have been a number of remarkable results improving accuracy in determina-
tion of the fine structure constant α and the Planck constant h, as well as
substantial progress in understanding the muon anomalous magnetic moment.

Our purpose is not to discuss the most accurate data for a particular time
period, since the data are continuously improving, but to explain how to deal
with the CODATA recommendations, which may be applied to any CODATA
recommendations, current and future.

Most of the physicists consider CODATA as a kind of brand for publication
of the list of the best values of the constants. However, the main objective
of the CODATA task group on the fundamental constants is to study the
precision data, their accuracy, reliability and overall consistency. Its papers
present a very detailed critical review of the experimental data which serve
as input data of the adjustments.

2 The Adjustment of the Fundamental Constants:
A General View

What is the adjustment? Normally, when one performs an experiment, the fi-
nal result is an average of various measurements, or a result of a simple fitting,
if we cannot measure the needed values directly, but only their combinations.
For instance, we can measure certain cross-sections as a function of the mo-
mentum transfer, and the slope of specifically normalized cross-section (as a
function of the momentum transfer squared, q2) gives us a charge radius.

In the case of the fundamental constants the ‘topology’ of correlation links
between data is cumbersome. It may be possible to measure e, h, e/h, e2/h,
e/me, h/me, etc. In contrast to the mentioned scattering experiment, the
accuracy of different results is high, but quite different, and the data them-
selves may also have substantial experimental or computational correlations
in uncertainties. The adjustment is such a procedure which attempts to find
the most plausible result for the output parameters.
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It involves a least-square method as a technical part; however, a crucial
issue is a careful reconsideration of each inconsistency between and inside
various portions of the input data. It depends on the physics of whether we
have to treat them symmetrically or asymmetrically. A symmetric treatment
may suggest, e.g., either multiplying their uncertainties by the same factor
in order to reach a reasonable χ2 value or, in contrast, assigning to all the
data equal uncertainties despite the fact that they have been claimed to be
very different. An example of an asymmetric treatment is the very removal of
certain doubtful data as an ultimate choice.

3 The Adjustment of the Fundamental Constants:
The Data

All the input data can be subdivided into a few groups as shown in Table 1
(see, e.g., [5, 6] for more detail). Two ‘big blocks’ involve substantially corre-
lated data of various kinds (see below). Evaluation of data of these two big
blocks is the main part of the procedure of the adjustment of the values of the
fundamental constants .

Data which are known with a higher accuracy can be found separately
before the main adjustment of these two blocks. Those most accurate data are

Table 1. The recommended values of some fundamental constants [1] and their
subdivision into the adjustment blocks. Here, ur is the relative standard uncertainty.
Comments: ∗ – fixed by the current definition of the SI units; ∗∗ – measured and
adjusted; † – derived from the adjusted data; ‡ – e is not measured directly, but its
various combinations with h and NA

Constant Value ur Comment

c 299 792 458 m/s 0 exact∗

μ0 4π × 10−7 N/A2 0 exact∗

R∞ 10 973 731.568 525(73) m−1 [6.6 × 10−12] auxiliary∗∗

mp/me 1 836.152 672 61(85) [4.6 × 10−10] auxiliary∗∗

me 5.485 799 094 5(24) × 10−4 u [4.4 × 10−10] auxiliary∗∗

α−1 137.035 999 11(46) [3.3 × 10−9] α-block∗∗

λC = �/(mec) 386.159 267 8(26) × 10−15 m [6.7 × 10−9] α-block†

hNA 3.990 312 716(27) × 10−10 J s/ mol−1 [6.7 × 10−9] α-block†

RK = h/e2 25 812.807 449(86) Ω [3.3 × 10−9] α-block∗∗

e 1.602 176 53(14) × 10−19 C [8.5 × 10−8] h-block‡

h 6.626 069 3(11) × 10−34 J s [1.7 × 10−7] h-block∗∗

NA 6.022 141 5(10) × 1023 mol−1 [1.7 × 10−7] h-block∗∗

me 0.510 998 918(44) Mev/c2 [8.6 × 10−8] h-block†

me 9.109 382 6(16) × 10−31 kg [1.7 × 10−7] h-block†

KJ = 2e/h 483 597.879(41) × 109 Hz V−1 [8.5 × 10−8] h-block∗∗

G 6.674 2(10) × 10−11 m3kg−1s−2 [1.5 × 10−4] independent
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referred to as auxiliary. An example of such data is the data on the Rydberg
constant R∞ and various mass ratios like me/mp (we have to mention also a
few constants such as the speed of light c whose numerical values are fixed in
the SI by definition).

Data which are less accurate can be in principle ignored. The related con-
stants are to be derived afterwards from the results of the adjustment. An
example is a value of h/(mec), which is in principle correlated with a value of
the fine structure constant α (see below); it cannot be directly measured with
high accuracy but can be extracted from adjusted data on R∞, α, etc. Such
data are related to blocks, but only as their output results.

There are also certain data which are completely uncorrelated with the two
big blocks as, e.g., the results for the Newtonian constant of gravitation G.

The first block is formed by the data related to the fine structure constant
α. It also includes the so-called molar Planck constant hNA and various results
for the particle and atomic masses in the frequency units (i.e., in the result for
the value Mc2/h related to the mass M). The results in the frequency units
are related to α because of the equation

R∞ =
α2mec

2h

=
1
2c
α2 Mc2

2h
me

M
, (1)

where M is related to the mass of the particle or atom measured in an
experiment in the frequency units and we remind that the Rydberg constant
and a number of important mass ratiosme/M are known with higher accuracy.

The molar Planck constant hNA enters this block as a conversion factor
between two units in which microscopic masses can be measured with a very
high accuracy, namely, the unified atomic mass units and frequency units.

The other block is formed by somewhat less accurate data related to the
electron charge e, the Planck constant h and the Avogadro constant NA.
Because of the high accuracy obtained for the fine structure constant

α =
e2

4πε0�c
(2)

and the molar Avogadro constant hNA, the final results for these three con-
stants are strongly correlated.

4 Electrical Data

An important feature of these two blocks is a substantial involvement of elec-
tric data related to standards and to some other macroscopic measurements.
Two fundamental constants of quantum macroscopic effects play an important
role there: the von Klitzing constant
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RK =
h

e2
=
μ0c

2α
, (3)

which describes the quantized resistance in the quantum Hall effect, and the
Josephson constant

KJ =
2e
h
. (4)

The related data are often refereed in a very confusing way. For instance,
in the so-called measurement of the von Klitzing constant RK the crucial part
is not the measurement proper, but a construction of a reference resistance,
which should have a known value in the SI units. The only opportunity for
such a resistance, or rather for an impedance, is based on a so-called calculable
capacitor. Surprising for devices based on classical physics, the value of the
capacitance of certain symmetric configurations can be set with high accu-
racy. That is because of the special topological Thompson–Lampard theorem.
Realizations of this theorem have recently provided us with classical-physics
standards of the SI farad and ohm for a long period. At present a realization
of the Thompson–Lampard capacitor is the only way to determine a value of
RK directly.

The watt-balance experiments do not involve any balance which deals
with the power. They deal with a special kind of ampere balance which can
be run in the dynamic and static regimes. The static regime involves an elec-
tric current, while the dynamic one deals with an induced potential. Com-
bining the two measurements we arrive at a new quantity, power, as their
product with an unknown geometric factor completely vanishing in the final
equation.

A number of electric measurements deal with the gyromagnetic ratio
or the Faraday constant. In practice, they do that in a very specific way.
We have been numerously told from the high school time that we have
to use the International System of Units, the SI (despite certain resistance
from the physical community). And that is under control of the Interna-
tional Committee on Weights and Measures, CIPM. However, the CIPM
has sanctioned a departure from the SI system in precision electric mea-
surements, for which the so-called practical units were recommended in 1990
[7]. The latter, ohm-90 and volt-90, are based on certain fixed values of RK

and KJ [7] and all accurate electric measurements have been performed in
these units.

If one declares a measurement of a certain electric quantity A (e.g., the gy-
romagnetic ratio of a proton in water), in practice the value actually measured
in the SI units is somewhat more complicated:

ARn
KK

m
J ,

where n and m are certain integer numbers (0,±1,±2) which depend on the
experiment.

This issue is so non-trivial that on measuring the same quantity, e.g.,
the gyromagnetic ratio of a proton, by different methods, ‘in a low magnetic
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field’ and ‘in a high magnetic field’, we arrive at very different results: a
determination of α in former case and of h in the latter, because of difference
in values of n and m. That is a kind of a metrological joke because even the
units of the gyromagnetic ratio are different because of involvement of factors
such as V90/V . Such factors appear because in certain situations we cannot
avoid applying the SI since the value of the magnetic constant μ0 is known
exactly in the SI units and we also have to deal with the practical units as
long as a real measurement is concerned.

One more confusing example is a measurement of the Compton wavelength
of a neutron h/(mnc). The experiment consisted of two important measure-
ments: one is related to the de Broglie wavelength λv = h/(mnv) and the
other to the velocity v. They were measured in a sense in quite different
units. The velocity was determined in the proper SI units directly. Meanwhile
the wavelength λv was compared with the lattice spacing of a certain crystal.
This crystal was indirectly compared with a so-called perfect crystal, basically
used for the Avogadro project. Because of that the h/mn result is strongly
correlated with a certain block of the data related to NA and it is not just an
isolated result related to a neutron.

Unfortunately, this customary practice with labelling the results is very
confusing and for a non-expert it is hard to understand what was really mea-
sured and which data are correlated.

5 Recommended Values and the ‘Less Accurate’
Original Results

Now, we can describe the adjustment. In the first approximation, we have to
evaluate the most accurate data only (i.e., the auxiliary data), next to deal
with the results from the α-block and afterwards to adjust the h-block. That
should give a good approximate result.

In reality, the less accurate data can still affect more accurate data, of-
ten marginally, but not always. The adjustment is very similar in a sense to
a simple least-square procedure, where the statistical weight of data drops
down with increase of their uncertainty. However, the less accurate data are
still very important. If they agree with the main part of the data, then that
increases the final reliability of the evaluation, which is not just a question
of the χ2 test. We always want confirmations, even not very accurate, but
independent. However, with such a large amount of data some may disagree.
In such a case the less accurate data can have very important impact on the
final results.

The data are strongly correlated and one may wonder what should be done
by a user if certain input data are inconsistent as it actually happens from
time to time. If the accuracy of the application is really sensitive to what
value of the constant to take, one should avoid using the CODATA tables
and use instead the CODATA analysis of the input data. If accuracy is not
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important, it is better to use the same data all over the world, i.e., the data
from the CODATA tables, and it should not matter whether they are well
consistent or not.

6 The Fine Structure Constant α and Related Data

Let us consider a situation with the fine structure constant as an example.
The CODATA’s result

α−1 = 137.035 999 11(46) , [3.3 × 10−9] , (5)

is based mainly on a datum from the anomalous magnetic moment of an
electron ae. All the related contributions are shown in Fig. 1.

The fine structure constant α plays a crucial role in quantum electrody-
namics (QED) and because of that a few questions may arise.

• Could we use the CODATA’s value to test QED theory? The answer is
negative. Comparisons of theory and experiment, which are the most sen-
sitive to a choice of α, have already been included in the deduction of the
result (5). If we like to check a particular QED effect we should apply a
value of α obtained without any use of the effects under question. The CO-
DATA adjusted value includes in principle all QED effects, for a precision
test of which we need an accurate value of α.

• Which value of α can we use then? The answer depends on what kind of
a test we would like to perform. If we would like to test QED ‘absolutely’,

Fig. 1. The fine structure constant α. The vertical strip is related to the CODATA
recommended values. The original results are explained in [1]
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we should take the best non-QED value which is

α−1(Cs) = 137.036 000 1(11) , [7.7 × 10−9] , (6)

a result derived from the Rahman spectroscopy of the caesium atom. If
we like to check the consistency of QED, we can take one of QED-related
values such as

α−1(ae) = 137.035 998 80(52) , [3.8 × 10−9] , (7)

and use it for a calculation of other QED effects, such as the hyperfine
interval in the muonium atom.

• If we calculate a value which is very sensitive to a choice of α among known
values, what have we to do? The best choice is to reverse the situation,
i.e., determine α and put it into Fig. 1. In this case we can see whether it
agrees with various values. Sometimes the data are not in good agreement
and a new value can completely change the situation.

• If we like to determine α, what is the crucial level of accuracy? Let us
assume for a moment that the data are perfectly consistent. In such a case
the crucial accuracy is that of the second value in the row, which is (6).
This value is vital for the reliability of the CODATA result. We remind
that the dominant contribution to (5) comes from the anomalous magnetic
moment and the result (7) has not been confirmed either experimentally
or theoretically.

• That is not an unusual situation. The most advanced experiments and
calculations are hard to repeat or confirm. Meanwhile, they have entered
‘terra incognita’ and despite high quality of the research teams they are
most vulnerable because of lack of experience or rather a wrong ‘expe-
rience’ based on trusted unimportance of various phenomena which may
become important. For instance, for recommendation of conservative com-
mittees of CIPM they sometimes introduce a kind of factor or reliability
for accurate measurements, which may increase the uncertainty tenfold [8].

• Have we to trust all data for α? That is not exactly the case since there is
no appropriate theory for the quantum Hall effect which provides us with
five data points.

• However, the agreement is good, but not perfect. We note that two values
with the gyromagnetic ratio of a proton are within certain disagreement
with the most accurate value. From a purely scientific point of view we have
a rather good general agreement (cf. with the situation on h and G below).
Nevertheless, there is an application which deals with a practical unit of
resistance by CIPM [7]. They conservatively estimate an uncertainty as a
part in 107. The related value of the fine structure constant is

α−1(CIPM) = 137.035 997(14) , [1 × 10−7] .

We should mention, however, that CIPM is overconservative because their
results may have legal consequences and their examinations are for this
reason not just a kind of scientific research (see [6] for further discussion).
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Actually, that is a strange story how we deal with, e.g., 3σ-off points. When
they are a part of a large statistics set of similar measurements, we are satisfied
by the χ2 criterium. Meanwhile, when the data are different such as for the
adjustment of the fundamental constants or QED tests with different systems,
we sometimes pay special attention to such ‘bad’ points trying to understand
what is wrong in their particular cases.

A comparison of α, extracted from a particular QED value, let us say, the
muonium hyperfine interval, after a certain improvement of theory, with other
αs has a number of additional reasons (in respect to a comparison with the
CODATA recommended value only):

• The muonium datum has already been used for determination of α in
(5). Despite the fact that it has a marginal effect, it is not appropriate to
compare a certain improvement of α(Muhfs) with an average value, which
includes an earlier version of α(Muhfs). The new and old values are based
on the same experiment and the very appearance of the new value means
that the old value is out of date.

• If we have a contradiction, we can clearly see whether the new value con-
tradicts to one or two most accurate data but agrees with most of the rest
or so, or it disagrees with all.

• Known data experience corrections from time to time. Using a set of
original data, one can introduce the proper corrections. However, there
is no way to correct the CODATA value, except indeed redoing the
adjustment.

The latter is a result of a complicated procedure which includes re-
examination of accuracy of various data and test of their accuracy. It is not
possible to update the list of recommended values very often. Because of that a
substantial delay may take place. For instance, the most recent CODATA pa-
per was published in 2005 and we can expect a new one in 2008. The deadline
for the input data in [1] was the end of 2002. That means that any evaluation
including data obtained since 2003 will not be available until 2008. Because
of that it may be important in certain cases to consider original results re-
viewed in the recent CODATA paper [1] and add the new results, available
since recently, if any.

7 The Planck Constant h and Related Data

Determination of the fine structure constant has demonstrated a rather good
agreement. The situation is not always so good. As an important example of a
substantially worse agreement we present data related to the Planck constant
h in Fig. 2.

The data are not in good agreement. In particular, a result related to
NA contradicts to the most accurate data obtained from the watt-balance
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Fig. 2. The Planck constant. The vertical strip is related to the CODATA recom-
mended values. The original results are explained in [1]

experiments. We will return to this result later. We need to mention that
CIPM recommended a value of the Josephson constant KJ = 2e/h with a
conservative uncertainty of 2 parts in 107 while their conservative value of
RK = h/e2 has uncertainty of a part in 107. The related value for the Planck
constant is

h(CIPM) = 6.626 068 9(53)× 10−34 J s , [8.1 × 10−7] .

8 The Newtonian Constant of Gravitation

The results on the Newtonian constant of gravitation G show an even much
worse situation with a scatter superseding the uncertainty by many times (see
Fig. 3).

Despite the gravitation constant being without any doubt one of the most
fundamental constants, its accuracy does not have great importance. Funda-
mentality of G shows itself first of all in the application to quantum gravity
where the obtained results are rather qualitative than quantitative. Another
important application is due to general relativity. Precision tests of general
relativity involve much higher accuracy than the one in the determination of
the Newtonian constant. For actual problems, the most important constant is
a product of a gravitating mass (of Sun or Earth) and G and such products
have been known much more accurately than G and from completely different
kind of data.
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Fig. 3. The Newtonian constant of gravitation. The vertical strip is related to the
CODATA recommended values. The original results are explained in [1]

Still there is a kind of experiments of fundamental nature which are in
part similar to measurements of G, namely, studies of equivalence principle
in laboratory distance scale. However, such experiments are differential, and
the essential part of uncertainty should cancel out.

As a result, we note that the determination of G is indeed an ambitious
and important problem, but it is somewhat separated from both the rest of
the precision data and applications of fundamental physics.

9 The Fundamental Constants and Their
Numerical Values

The discussion above raises a more general question on fundamental constants
and their values. The numerical value of a dimensional fundamental constant
involves the units and thus a certain kind of phenomena which are used to
determine units. Such an involvement can change the physical meaning when
going from the constant to its value drastically.

While the constants, such as the speed of light or the Planck constant,
are determined by Nature, their numerical values can be treated with a
certain room for arbitrariness. We can, e.g., adopt certain numerical values
by definition.

In the case of variability of the constants, the interpretation of possi-
ble changes of the constants and their numerical values is quite different
(see, e.g., [9]).
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Two constants, discussed above, h and G, are truly fundamental, but they
are not very often needed for accurate calculations. Below we consider certain
values more closely related to atomic and particle physics or, in more general
terms, to microscopic physics.

10 Microscopic and Macroscopic Quantities

In microscopic physics nobody intends to apply any macroscopic unit such
as a kilogram. However, the nature of the units is not a trivial issue. We
should distinguish between their rough values and their definition. Rough
values of various units have been determined historically. For most of the SI
units they are macroscopic, such as for a kilogram or a second. Meanwhile,
the SI kilogram is defined as a macroscopic unit, but the SI second at present
is defined as a kind of atomic unit via the hyperfine interval in caesium-
133 atom.

The only SI unit which has a clear historic microscopic sense is the volt. To
proceed with potentials one dealt with breaking atomic or molecular bonds.
A characteristic ionization potential is of a few volts and, in particular, in hy-
drogen it is about 13.6 V. A popular non-SI unit, the electron-volt possesses
a clear atomic sense in a rough consideration. Because of this ionization issue,
an energy related to R∞ is, indeed, 13.6 eV. However, if we look at the defi-
nition of the volt in a practical way, we find that the volt of the SI is defined
via the ampere and the watt. The latter are defined via the kilogram, the
metre, the second and a fixed value of the magnetic constant of vacuum μ0.
Because of the presence of the kilogram, the volt and the electron-volt have
macroscopic meaning from the point of view of measurements.

Measuring microscopic values in terms of macroscopic units is always
a complicated problem, which introduces serious unnecessary uncertainties.
Meanwhile, the very use of the electron-volt in the atomic, nuclear and par-
ticle physics is an issue completely based on a custom and never related to
real matter. It is a kind of illusion. However, for missing a difference between
reality and illusion, one has to pay. The price is an unnecessary uncertainty
in various data, expressed in the electron-volts, and a correlation between
uncertainties of various data.

The electron-volt is widely used in microscopic physics. In particular, it
is customarily applied to characterize the X-ray and gamma-ray transitions
by their energy and to present particle masses in units of GeV/c2. We have
to emphasize that nobody performs any precision measurement in these units
in practice. The transitions are measured in relative units. To measure them
absolutely one has to apply X-ray optical interferometry and either compare
an X-ray and an optical wavelength or calibrate a lattice parameter in a certain
crystal in terms of an optical wavelength. This means that in actual precision
measurements one really deals with the wavelength (or related frequency) and
not with the energy of the transition.
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The most accurate relative measurements of hard radiation are in fact more
accurate than the conversion factor between the frequency and the energy,
namely, e/h (if the energy is measured in the electron-volts). The uncertainty
of this coefficient is presently 8.5 × 10−8 [1]. We strongly recommend for
transition frequencies measured more accurately than 1 ppm to present results
in frequency units and for results in the electron-volts to present separately
two uncertainties: of the measurement and of the conversion into electron-
volts. It would also be helpful to specify explicitly the value of the conversion
factor used.

If one even tries to measure energy in electron-volts ‘by definition’, the
electron-volts proper are still not the best choice. CIPM recommended a prac-
tical unit, volt-90, in terms of which the Josephson constantKJ has an exactly
fixed value [7]. In such a case, the result would be expressed in terms of eV90,
rather than in eVs. The uncertainty of the conversion factor e/h in practical
units is zero.

MeVs and GeVs are also widely used for the masses of particles and for
the energy excess in nuclear physics. From the point of view of accuracy,
such units are not better than kilograms. The best choice is to apply direct
results of relative measurements (mass ratios), when available, or to express
the masses in terms of either of the two adequate microscopic units. One of
the latter is the unified atomic mass unit, u, and the other corresponds to the
frequency related to mc2/h. In these two units elementary masses are known
with the highest accuracy.

11 Reliability of the Input Data and the Recommended
Values

The easiest part of the evaluation is their mutual evaluation. Two most im-
portant questions are related to the data.

1. Not all available data are included as input data and not all input data
are exactly equal to the originally published data. The question to decide
prior to the evaluation is how to treat each piece of data? Should we accept
them ‘as they are’ or assign them a corrected uncertainty or even dismiss
some of them prior to any evaluation procedure? That should be decided
on the basis of quality of the data.

2. After initial probe mutual least-square evaluations are done, we used to
see that some pieces are not in perfect agreement with the rest of the
data. That cannot be avoided once we have many pieces of data. That
opens another important question, to be decided at the initial stage of
the evaluation. How should we treat the data when they are combined
together? In other words, should we do anything with the data due to
their inconsistency if any? At this stage the decision is partly based on
their consistency, partly on their correlations and partly still on their initial
properties.
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Fig. 4. Progress in determination of fundamental constants by the CODATA task
group (see [1, 2] and references to earlier results therein)

These questions are to be decided not on the basis of statistics (like when
in an easy case of a number of data points for the same quantity one drops
the smallest and the largest results) but first of all on the basis of their origin,
their experimental and theoretical background.

The CODATA’s recommended values are the best ones, but in principle
that does not mean all of them are really good. They are the best because the
authors perform the best possible evaluation of existing data. If data are not
good enough, the result of any evaluation cannot be good. The CODATA task
group are not magicians. That is why it is essential to have independent results
for each important quantity. Below we consider a question of the reliability of
data important in atomic and particle physics.

The conservative policy of CIPM and discrepancy in the input data (see
Fig. 2) show that direct use of the CODATA result is not a single option
to be considered. The CIPM treatment of the data does not contradict the
CODATA approach, because CIPM applies the CODATA analysis; however, it
prefers to derive a more conservative result from the CODATA’s consideration.

An important illustration of reliability of the recommended values is pre-
sented in Fig. 4. While for most of them progress with time reduced the uncer-
tainty, sometimes (e.g., for h or G) better understanding meant appearance
of a discrepancy.

12 Proton Properties

Among the particles listed in CODATA tables [1] two, a proton and muon,
are of particular interest. The most confusing datum on a proton is its charge
radius, Rp. The CODATA paper recommends the result
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Rp(CODATA) = 0.8750(68) fm , (8)

which, in principle, is based on all available data including electron scattering
and hydrogen spectroscopy. Nevertheless, we would not recommend to apply
this result blindly to any sensitive issue. The dominant contribution comes
from spectroscopy of hydrogen and deuterium and the related theory. The
spectroscopic data included various experiments, which partly confirm each
other. However, a substantial progress made in the theory (the Lamb shift)
is related to surprisingly large higher-order two-loop terms [10], which are
neither understood qualitatively nor independently confirmed quantitatively.
I would not consider the theoretical expressions at the moment as a reliable
result until their proper confirmation or understanding. Such a need for an
independent confirmation is a characteristic issue for any breakthrough in
either theory or experiment.

The second (in terms of accuracy) result mentioned in [1]

Rp(Sick) = 0.895(18) fm (9)

is the one obtained by Sick [11] from the examination of world scattering
data. This piece of CODATA input data is very specific. CODATA very sel-
dom accepts any evaluation of world data without performing a critical re-
consideration. A crucial feature of the CODATA treatment of the world data
is reconsideration of accuracy on experimental and theoretical results. The
most important scattering results were obtained long time ago. They dealt
with QED scattering corrections obtained a few decades ago. At present, the
QED corrections are known better, but there is no simple way to re-evaluate
the existing scattering data. The Sick’s examination is the most competent I
have ever seen. But it is an evaluation of the data ‘as they were published’.

The problem of correcting the experimental data because of a possibly
unappropriate treatment of higher-order radiative corrections by the original
authors was not addressed in his evaluations. I would rather consider the
central value of this evaluation as a valid one but would somewhat increase
the uncertainty (see discussion in [12]) achieving

Rp = 0.895(30) fm . (10)

It is hard to be more precise with the uncertainty. If such a re-evaluation
were done in the CODATA paper, the problem should be addressed. But it
was not done in [1]. A reason not to do that is twofold.

First, it is an obvious fear that the job could not be done properly because
of lack of necessary information for experiments done long time ago. Next, the
proton size from the scattering plays rather minor role in the adjustment. The
evaluation of the auxiliary block with the Rydberg constant is sensitive to the
theory of a so-called state-dependent part of the Lamb shift of the n states
and to theory of states with a non-zero orbital moment. Both depend on a
value of the proton size marginally. This means that CODATA evaluation of
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the Rydberg constant needs only a very rough value of the proton size and
we can accept any result for Rp for such an evaluation.

The recommended value of the proton charge radius is actually determined
by the same spectroscopic study. The rest of the data can rather produce a
marginal effect on the value of Rp. In particular, the second value of the ra-
dius, obtained from the scattering, is rather out of interest of the CODATA
evaluation and they do not care about it. The re-evaluation of the world scat-
tering data from the CODATA side looks like an unnecessary overcomplicated
problem with unclear reliability of the outcome.

One more proton property of interest is its magnetic moment or rather
electron-to-proton ratio of the magnetic moments:

μe

μp
= 658.210 6860(66) , [1 × 10−8] . (11)

The result is completely based on an MIT experiment performed long time
ago [13]. While for the most important for constants such as α and h one
can easily find all sources for particular results in [1], it is hard to see what
result is the second in accuracy. While details of the analysis will be published
elsewhere, here we conclude that the data may be obtained from a study of
the muonium magnetic moment and the most accurate partial result

μe

μp
= 658.210 70(15) , [2.3 × 10−7] (12)

is much less accurate than the MIT value.

13 Muon Properties

The muon data include the muon magnetic moment, mass and aμ, the anoma-
lous magnetic moment. The latter should not be used at all for any sensitive
issue. The CODATA can make a reasonable prediction only after the situ-
ation is settled, while for aμ it is not. Speaking more generally, CODATA
is a brand for the best constants, but not all products with this brand are
equally good. Critical examination of input data can improve their reliability
and reduce their scatter. I would say that is the most competent evaluation
of world data on the fundamental constants. Nevertheless, there is no magic
in the CODATA adjustment and the result cannot be better than the input
data. Before trusting any particular CODATA result one has to take a look
into the data analysis.

The result for aμ has contributions from experiment and theoretical eval-
uations based on e+e− and τ data. To consider physics we should not average
these partial results but re-examine and compare them.

The mass and magnetic moment have been used numerously in a quite con-
fusing way. The experiment, most sensitive to their values, has been included
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in the evaluation. For instance, one can apply a value of me/mμ (or μμ/μp) to
the hyperfine interval in muonium, either assuming QED to determine α or
accepting a certain value of α to verify QED. However, the CODATA results

mμ

me
= 206.768 283 8(54) , [2.6 × 10−8] ,

μμ

μp
= 3.183 345 118(89) , [2.6 × 10−8] , (13)

are dominated by a value extracted from the muonium hyperfine interval
assuming a certain value of α and validity of QED. The second best set

mμ

me
= 206.768 276(24) , [1.2 × 10−7] ,

μμ

μp
= 3.183 345 24(37) , [1.2 × 10−7] , (14)

comes from separate data and may be used to either determine α or test QED.
We emphasize that all this information is contained in the CODATA pa-

pers [1, 2]; however, since ‘simple users’ are more interested just in the tables
they usually miss it.

We remind that there is a number of compilations of various kinds of data
around the world and even reading carefully most of the compilations, there
is no chance to find details of input data. Sentences such as ‘the uncertainty
does not include systematic error’ or so are often missing when a datum came
from the original paper to a compilation. The CODATA paper is one of the
very few exceptions; however, a way of reader’s treatment of the CODATA
papers sometimes does not make use of this advantage.

14 Impact of a Redefinition of the Kilogram
on Values of the Fundamental Constants

To conclude the paper, we would like to discuss two issues. One is rather tech-
nical and related to a possible redefinition of the kilogram and the ampere in
terms of fixed values of h and e [14]. It is most likely that this redefinition will
be adopted, but it is unclear when. The numerical values of the fundamental
constants play two roles. One is that they represent in a numerical way certain
experimental data. Redefining the kilogram, obviously the experimental re-
sults would not change and the information would not be added. Still, certain
pieces of the information and related uncertainty can be removed from some
data. After redefinition of units, certain experiments done with a relatively low
accuracy could be isolated from the fundamental constants (e.g., any direct
study of the prototype of the kilogram would have no relation to basic physical
quantities anymore). The other role of the numerical values is that they are
reference data. As we mentioned above, it is customary to use, without any
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experimental or theoretical reasons, the electron-volts. The redefinition of the
kilogram and the ampere would establish them as microscopic units (and the
volt as well). The conversion factor e/h would be known exactly. This means
that all values in electron-volts would have adequate accuracy.

15 Legacy of the Adjustment of the Fundamental
Constants

The last question to discuss here is a conceptual one. Doing precision physics,
we cannot ignore the very fact that we accept a large number of physical laws.
Sometimes they are proved with a certain accuracy, sometimes they are not.

For instance, there is no accepted theory which demands that the elec-
tron charge and the proton charge be of the same value. We have various
direct experimental tests, but those are always limited by their accuracy. The
conceptual evidence should come from a new theory, which is confirmed ex-
perimentally. We strongly expect a certain unification theory, but no evidence
has been available up-to-date.

We expect that the fundamental constants are really constant, but we
do not understand their origin and we (or most of us) believe that during
the inflation epoch of the universe some constants such as me/mp changed.
So, the constancy of the constants is merely an experimental fact. What is
even more important is that certain physical laws are put into the very base
of our system of units, the SI, and if they would occur incorrect, one may
wonder whether that is detectable. The answer is positive. If we adopt a
set of assumptions, either with an internal inconsistency or inconsistent with
Nature, we should be able to see either an inconsistency in the interpretation
of the results (e.g., a contradiction within two determinations of the same
quantity) or a discrepancy between the trusted assumption and the observed
reality.

To test any particular law, one has to rely on specific experiments sensi-
tive to such a violation. The CODATA examination is mainly based on the
assumption that we can follow the known physical laws. We know that any
particular physical theory is an approximation. Combining the data from dif-
ferent fields we check the consistency of the overall picture (both the laws and
the approximations) and the result obtained is satisfactory, up to now.
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Proton Structure and Hydrogen Energy Levels
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Abstract. We summarize various analyses of the world data on elastic electron
scattering for the determination of the most precise rms-radii of light nuclei. We
also present the Zemach moments needed for the interpretation of atomic hyperfine
structure and μ-X-ray experiments.

1 Introduction

The root-mean-square (rms) radii of light nuclei are quantities of great interest
for the understanding of these nuclei. They describe the most integral property
concerning their size. The most precise radii are needed for the interpretation
of modern data on atomic transitions, measurements performed in connection
with determinations of fundamental constants and QED tests. These measure-
ments recently have reached extreme precisions with, e.g., the 2p–1s energy
difference and the hyperfine splitting (HFS) in hydrogen determined to 14
and 12 significant digits, respectively [1, 2]. The interpretation of such data is
now entirely limited by the knowledge on the nuclear radii.

In this contribution we discuss the use of the world data on electron–
nucleus elastic scattering for the determination of the most accurate radii.
For the proton charge radius in particular we find significantly larger values
than past studies and understand the reason for the dispersion of previous
results. We also address the quantity — the Zemach moment — required to
calculate the atomic HFS.

2 Proton Charge Radius

Elastic electron scattering from the proton has received extensive attention
and the data [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] today
cover a very large range of momentum transfer. In several cases, these data
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are very precise (systematic errors below 1%) with the consequence that
electron–proton scattering often served as cross-section reference.

Due to the spin I=1/2 nature of the proton, the elastic cross-section is
determined by two independent form factors, the electric (Sachs) form factor
Gep(q) and the magnetic form factor Gmp(q), depending on the (four) momen-
tum transfer q. In plane wave Born approximation (PWBA) the cross-sections
can be written as

dσ
dΩ

= σMottfrecoil
[
(G2

ep + τG2
mp)/(1 + τ) + 2τG2

mptg2(θ/2)
]

with τ = q2/4m2, m being the mass of the proton. In order to separate Gep

and Gmp a so-called Rosenbluth separation has to be done. Measurements at
the same momentum transfer q but different angles (hence different electron
energies) allow one to separate Gep and Gmp. For the low momentum transfers
of interest here (1 + τ) ∼ 1 and the [..] bracket in the above equation reads

G2
ep + 2G2

mpτ(1/2 + tg2(θ/2)).

A plot of [..] as a function of 1/2 + tg2(θ/2) yields a straight line with slope
proportional to G2

mp and intercept given by G2
ep. For a precise determination

of the Gs, measurements covering the largest possible range in scattering
angle are desirable. The standard procedure in the past was to use data from
individual experiments to produce the Gs, of which thus many independent
sets are available in the literature.

In order to extract the proton rms-radii of the charge and magnetization
densities, one can start from the low-q expansion of G(q):

G(q) = 1− q2〈r2〉/6 + q4〈r4〉/120− · · · .
Most of the radii in the literature have been obtained using this model-
independent expansion. Some of the earlier radii have been determined by
fitting G(q) with a suitable model-parameterization, Gmod, and determining
the rms-radius by the q2 = 0 slope of (1 −G(q)). Some of the radii given in
the literature have been obtained by fitting the data using parameterizations
derived in terms of the vector dominance model (VDM) which starts from the
assumption that the photon–nucleon coupling proceeds via the various vector
mesons.

A selection of results for the proton charge rms-radius is shown in Fig. 1.
The CODATA value was, before the publication of the proton radius discussed
below, the “recommended” value. It was obtained by averaging two of the
determinations (Mainz MI, VDM) that were considered to be particularly
reliable. The error bar was basically a guess.

Figure 1 shows that the results for the proton rms-radius have a large
amount of scatter; this scatter is actually considerably larger than one could
expect from the high-quality database available. Particularly worrisome is the
high value of the Mainz 2-pole fit, which used a database that was very similar
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Fig. 1. Published values for the charge rms-radii of the proton [5, 7, 20, 21, 22, 23]

to the one employed in the Mainz MI fit. The low value from the very early
Stanford data is not much of a concern; the data set did not contain cross-
sections at low enough a momentum transfer to really be sensitive to the
rms-radius.

This situation on the charge rms-radius was clearly very unsatisfactory.
Moreover, the CODATA value disagreed with the radius 0.89 ± 0.014 fm
determined using the hydrogen Lamb shift data [24].

The past determinations of the radius suffer from a number of shortcom-
ings which we will discuss below.
• The cross-sections have always been analyzed in terms of PWBA, which

treats the electron waves as plane waves and thus neglects Coulomb distor-
tion. This was done because Zα, the parameter which governs Coulomb dis-
tortion, is small for Z = 1. The Coulomb distortion was neglected because the
difference between q and qeff ∼ q(1 + 4Zα/(3RE)) appeared to be small. qeff
does more or less correctly account for the shift of diffraction minima due to
Coulomb distortion. However, the shift (q−qeff) is not the main Coulomb effect
at low q. There, Feshbach and McKinley [25] showed, in second Born approx-
imation and for a point nucleus, that the dominant effect is a multiplicative
change of the Mott cross-section:

σ̃Mott =
(
Ze2

2E

)2 cos2(θ/2)
sin4(θ/2)

[
1 +

πZ

137
sin(θ/2)(1− sin(θ/2))

cos2(θ/2)

]
.

The consequences of the terms in the [...] are by no means negligible.
This is shown in Fig. 2 which displays both the effect of Coulomb distortion
(exchange of one additional soft photon) and the exchange of an additional
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Fig. 2. Relative contribution of two-photon exchange to elastic e–p scattering at
E=160 MeV. The results in second Born approximation account for the Coulomb
distortion (exchange of second soft photon) only

(soft or hard) photon to be discussed later. If one is interested in determining
radii with accuracies in the %-region, the Coulomb effect obviously must be
accounted for.

Convenient expressions for the Coulomb distortion for nuclei of finite size
have been derived in [26]. For Z = 1, 2 these expressions are much easier to
use than the full (numerical) solution of the Dirac equation standard for the
heavier nuclei; the second Born approximation used is accurate enough as the
neglected terms are of the order (Zα)2 ∼ 10−4.
• A second problem concerns the usage of the “model-independent” power

expansion of G(q) which at first sight appears to be more reliable than the
uses of Gmod or GVDM. In order to make the “model-independent” approach
practical, one wants to reduce the importance of the higher moments. One
could hope that the q4〈r4〉 and higher-order terms can be made sufficiently
small by going to low q. This is true in principle, but very hard in practice.
At small momentum transfer also the q2〈r2〉/6 is small and very difficult
to extract from data that have finite (statistical or systematic) errors. The
measured cross-section is proportional to (1− q2〈r2〉/6)2, so very small errors
in the cross-section lead to large errors in q2〈r2〉/6. One therefore in practice
has to include data at not-so-low q, and these are also sensitive to the higher
moments. This is particularly problematic for the proton, which has a density
that can be reasonably approximated by an exponential function. For such a
density, the higher moments are rapidly increasing with order, i.e., 〈r4〉= 2.5
〈r2〉2, 〈r6〉 =11.6 〈r2〉3, etc., and give a large contribution to G(q).

As a consequence, there is no region of q where the 〈r2〉-term dominates the
finite size effect to >98% and the finite size effect is sufficiently large to get an
accurate rms-radius with say <2% error bar. There is also no region where, in
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Fig. 3. The figure shows the contribution of the qn terms to the finite size effect,
calculated using the moments from the CF parameterization. The full curve labeled
1 −G(q) gives the total finite size effect

a fit with 〈r2〉 and 〈r4〉, one does not get into trouble with the 〈r6〉 term. This
is illustrated in Fig. 3. Towards larger q the model-independent expansion is
anyway seriously limited by the low convergence radius of q ∼ 1.4 fm−1.

Padé approximants have been invented to solve the “problem of moments”
and deal optimally with the reconstruction of a function from its moments
〈zn〉. These approximants also accelerate the convergence of poorly converging
(even diverging) series [27] and have a much larger convergence radius. For the
fit of the proton form factor, we use a special subclass of Padé approximants,
which can be rewritten as a continued fraction (CF) expression:

G(q) =
1

1 +
q2b1

1 +
q2b2
1 + · · ·

.

The CF expansion is also the natural parameterization for form factors ob-
tained in the VDM, where the nearest (dominating) pole gives a contribution
like 1/(1 + q2b1).
• A third problem relates to the fact that in most of the fits of G(q)-

data the overall normalization of the cross-sections has been floated in order
to minimize the χ2. This procedure unfortunately reduces the sensitivity of
the data to the rms-radius considerably. It also means that one disregards
a large fraction of the effort (typically 1/2) that went into the experiment.
“Elimination” of potential normalization errors by floating the data makes
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the normalization-determining (implicit) extrapolation to q = 0 very sensitive
to q-dependent systematic errors. These errors are never discussed in the pub-
lications describing the experiment, and thus always ignored.

For the determination of the proton radii not subject to the above short-
comings we have used the world data [28]. In these fits we use the primary
cross-sections and not the form factors extracted in PWBA. This allows us
to apply the Coulomb corrections, which depend on energy and angle. When
parameterizing both Gep and Gmp and then fitting the data, the separation of
Gep and Gmp is automatically performed. This separation is of much superior
quality as compared to the standard one, since for the L/T-separation all the
world data in the considered q-range are employed, and not only those of a
given individual experiment.

This approach has another fundamental advantage: when fitting the data
with their random uncertainties, one obtains the error matrix which allows
one to calculate the random errors of all derived quantities, and this error
includes all the correlations that result from the fact that the cross-section
depends on a combination of Gep and Gmp.

At the same time, this approach allows for a consistent inclusion of the
systematic errors of the data (mainly normalization uncertainties). When us-
ing published form factors, the correct treatment of statistical and systematic
errors is virtually impossible. In the approach used here, the systematic errors
are included by changing each data set individually by its quoted systematic
error, re-fitting and adding quadratically all the resulting changes for the
derived quantities (radii, form factors, ...). The systematic errors are quadrat-
ically added to the random ones; this should be fine given the large number
of data sets employed. The treatment of the systematic errors in particular
is most conservative, i.e., produces uncertainties that are larger than what is
found using other approaches described in the literature.

In order to use the CF expansions, two quantities have to be fixed: the
number of terms bn, n = 1, N and the maximum momentum transfer qmax

of the data employed. In order to explore possible ambiguities resulting from
a particular choice, we have tested the dependence on N and qmax using
pseudo-data. These data were generated using parameterized expressions for
the form factors (dipole form or the dispersion relation parameterization of
Hoehler et al. [29]). The pseudo-data were generated at the energies and an-
gles of the experimental data and with the error bars of the experimental
data. In the fits, the pseudo-data were used as calculated from the parame-
terization or with random fluctuations calculated from the experimental error
bars superimposed.

When using the q-region 1 fm−1 < qmax < 5 fm−1 and when using
2–5 terms in the CF expansion, we find a scatter of the fitted rms-radius
of ±0.010 fm around the true (input) value. This scatter then is representa-
tive of the uncertainty due to the choice of N and qmax; it covers at the same
time the statistical errors (which for pseudo- and real data are the same by
construction).
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With respect to the range of momentum transfer it is of interest to explore
the region of q which contributes most to the determination of the rms-radius.
It is by no means obvious, for example, that the very low q data are the most
important. The cross-sections measure (1−q2〈r2〉/6)2; if the data on the cross-
sections have uncertainties (statistical or systematic), then the finite size effect
q2〈r2〉/6 has a much larger uncertainty.

In order to explore the importance of real data for the determination of the
rms-radii, we have carried out the following “notch test”. The cross-sections
in a given q-region of q0 ± 0.1 fm−1 have all been increased by 1%, the total
data set then has been re-fitted and the change of the rms-radii plotted as a
function of q0. Figure 4 shows the result. For the determination of both the
charge- and the magnetic radii, the q-region of 0.85±0.3 fm−1 is the most
important one.

In Fig. 5 we show the ratio of the experimental data and the fit cross-
sections. No systematic deviation is visible, and no (arbitrary but) χ2-
improving renormalization of some data set is called for.

Although the data have been taken over a long time-span and at different
facilities the quality of the fits is very good. The χ2 is 512 for 310 data points.
The main data set yielding a χ2 per degree of freedom > 1 is the very early
one from Stanford, which has data points that scatter too much; omitting this
set or adding 3% to the error bars reduces the χ2 to close to 1 per d.o.f., but
changes the resulting radius by < 0.1% only. The charge-rms-radius from the
above analysis is 0.895 fm. The uncertainty due to N , qmax and statistics is
±0.010 fm, the systematic uncertainty 0.013 fm. This yields as the final result
for the charge radius of the proton rerms = 0.895± 0.018 fm.
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Fig. 4. The figure shows the results of the “notch test” used to explore the sensitivity
of the radii (solid: charge) to different q-regions
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The charge rms-radius we find is significantly larger than the values
cited in the literature. Although we use the world data, the error bar has
not really decreased; this is a consequence of the fact that we treat the
systematic errors in a very conservative way. It is satisfactory to observe
that our radius agrees with the one determined from atomic transitions [24]
0.890± 0.014 fm.

This re-determination of the radius would not be complete without an
understanding of the differences to previous analyses. We here discuss the
two which were considered to be perhaps the most reliable ones. Simon et al.
[7], who found rrms = 0.862 fm, used the polynomial expansion up to q4 and
qmax = 1.2 fm−1. They quote a value for the 〈r4〉-moment that turns out to
be a factor of 10 smaller than given by fits that explain the proton data to
higher q; this difference comes from very small systematic problems in the
data and the fact that the normalization has been floated, which enhances
small q-dependent errors. When repeating their fit with a value of 〈r4〉 that
explains the data at larger q, one finds a radius that agrees with the one we
obtain.

The rms-radius coming from the analysis of the data using dispersion
relations and the VDM also often has been considered as the most reliable.
The VDM provides a strong constraint to the fit, partly because of the desire
to fit all four nucleon form factors simultaneously. When looking at the ratio
of experimental and VDM cross-sections with the resolution used in Fig. 5
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one immediately observes a systematic difference reaching 2% as q increases
from 0 to 1 fm−1. This difference fully explains the low VDM-radius.

We have also looked at all other determinations of the radii. In all cases,
we understand the origin of the differences, resulting either from misfit of the
data, use of PWBA and/or use of the “model-independent” expansion.

3 Radius of Magnetization Density

The fit described above yields both Gep and Gmp, hence also the magnetic
rms-radius. Gmp at low q is harder to extract as the magnetic contribution to
the cross-section comes with an additional q2-factor. As a consequence, much
of the world data at low q is dominated by the Gep-contribution as shown by
Fig. 6 where we plot the ratio of contributions r = (charge)/(magnetic+charge)
for all cross-section data. There are, however, some accurate 180◦ data in the
q-region of interest (points at r = 0) and these are totally dominated by G2

mp.
Our fit to the world data, performed in the manner described above, gives

rmrms = 0.855± 0.035 fm for the radius of the magnetization density; the error
bar again includes statistics, systematics and model dependence.
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4 Zemach Moment of Proton

For the calculation of the atomic hyperfine structure HFS one obviously needs
information on the radial distribution of the magnetization in the proton. The
situation is, however, more complex than for the Lamb shift, which depends
only on the charge rms-radius. The electron–nucleus magnetic interaction in
the H-atom is very short-ranged and confined to the vicinity of the nucleus. In
this region the electron wave function is also affected by the radial distribution
of the nucleon charge. The HFS thus depends simultaneously on the proton
charge- and magnetization densities.

Zemach [30] has derived the finite size effect on HFS a long time ago and
has shown that it depends on a convolution of the charge- and magnetization
densities:

ΔEZemach = −2Z αm 〈r〉(2) EF ,

〈r〉(2) =
∫

d3r r

∫
d3r′ρe(|r− r′|)ρm(r′).

The folding integral can be, by partial integration, re-expressed recognizing
that the Gs are Fourier transforms of the ρs:

〈r〉(2) =
∫ ∞

0

dq
q2

(Ge(q2)Gm(q2)− 1) .

Above, EF is the Fermi hyperfine splitting, m is the electron mass, Z is the
nuclear charge, α is the fine-structure constant. The latter expression for 〈r〉(2)
is obviously easier to exploit.

From the above equation, it would appear that, due to the 1/q2 factor,
the Zemach integral would depend on data at very low q, lower than relevant
for the rms-radii. This conclusion would, however, be incorrect. At q = 0 the
term GeGm compensates the “1” in the integrand, and the next higher term
is proportional to q4, thus leading to a small contribution of the low-q data.
We have, as described for the rms-radii, used the “notch test” to explore the
range of sensitivity in q for the Zemach moment. We find that the data for
0.8 < q < 2.6 fm−1 are the most important ones.

This Zemach moment has been extracted from the CF parameterizations
obtained as discussed above [31]. Our procedure has the important feature
that we have fitted the charge and magnetic form factors simultaneously to
the available cross-sections. The error matrix of the fit therefore contains all
the correlations between the two form factors, resulting from the fact that the
cross-sections depend on a linear combination of charge and magnetic form
factors squared. These correlations obviously are important when computing
the uncertainty in the Zemach integral. The separation of charge and magnetic
form factors leads to an anticorrelation between Gep and Gmp since the cross-
sections depend on G2

ep + · · · + G2
mp. As the Zemach moment depends on
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Gep ·Gmp, where part of this anticorrelation compensates, the Zemach moment
interestingly can be determined more accurately than quantities depending on
Gep or Gmp alone such as, e.g., the rms-radii.

The systematic uncertainties of the data are also affecting the uncertainty
of the Zemach moment. We have determined this uncertainty again in the
most conservative way, by changing the individual data sets by their quoted
systematic uncertainty, re-fitting the form factors and adding quadratically
the resulting changes of the Zemach moments.

We have found that the Zemach moment is quite sensitive to the exact
shape of the densities (the q-dependence of the Gs). The values used previ-
ously in the literature, all calculated using too simple-minded model-densities
(model-Gs) thus should no longer be employed.

The Zemach moment for the proton is 1.086±0.012 fm [31]. The anticor-
relation mentioned above and the fact that the Zemach moment depends on
data at large q where the finite size effect in G(q) is larger lead to the smaller
error as compared to the rms-radii.

J. Friar has used our value of the Zemach moment to calculate the atomic
HFS [31] based on the available CODATA evaluation [23] and the QED and
recoil corrections listed in [2]. In calculating the HFS, a complication arises
from the contribution of two-photon exchange (the same effect discussed below
for electron scattering). This contribution is difficult to evaluate as it depends
on the excitation of the proton to all conceivable intermediary (continuum)
states. Faustov and Martynenko [32] has calculated this contribution using
the knowledge on the spin structure functions then available. This correction
brings calculated and experimental value of the HFS closer to each other,
but a difference of 1.8±0.8 ppm remains [33]. This difference at present is not
understood.

The polarization correction calculated by Faustov et al. depends strongly
on the nucleon spin structure functions at low q and large Bjorken-x (low
electron energy loss). Nazaryan et al. [34] have recently done a new analy-
sis by including the recent data on the spin structure functions from CLAS.
Their result is similar to the Faustov result, but has a smaller error bar. This
therefore does not resolve the HFS discrepancy. The usage of a subtracted dis-
persion relation does, however, introduce an ambiguity [35], the consequences
of which should be clarified.

One might, of course, also suspect the QED calculations as a source for
the HFS discrepancy. This, however, is very unlikely. Brodsky et al. [36] have
shown that many terms for the HFS calculation occur similarly in positronium,
where experiment and QED calculation perfectly agree.

In the hope to find alternative Gs that could explain the HFS-puzzle,
Brodsky et al. have looked at some 10 (combinations of) parameterizations
of Gep and Gmp. From the resulting values of 〈r〉(2) one finds that there is
quite a strict linear correlation with the charge rms-radius, see Fig. 7. Our
fit also agrees with this correlation line, while the point from the hydrogen
atom with and without nuclear polarization correction disagrees [33]. While
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the correlation is an interesting one, one should not forget that all points
numbered # in Fig. 7, except number 10, correspond to form factors that
give unacceptably large χ2 to the low-q (e,e) data, as pointed out in [33].

5 Effect of Two-Photon Exchange

Recent measurements of Gep at very large q have revealed a pronounced dis-
crepancy: measurements using polarization transfer such as p(e, e)p give much
smaller values than found via Rosenbluth separation. At large qs (several
GeV/c) the contribution of G2

ep to the cross-section becomes very small (a
few %) so any small correction to the cross-section can have a large effect on
Gep. It has been shown that even at the large electron energies used to get
large q the small Coulomb corrections have a significant effect [37].

The main cause presently held responsible for the Gep-discrepancy is the
presence of two-photon exchange. While Coulomb distortion corresponds to
the exchange of a second soft photon, the exchange of a second hard photon is
also possible. This process has been calculated by two groups [38, 39] and they
find that two-photon exchange can explain about half of the discrepancy. Both
calculations are incomplete, though, as one includes as intermediary state only
the proton in its ground state, while the other includes only the deep-inelastic
continuum.

In the present context the question is: does this exchange of a second hard
photon affect the rms-radius and Zemach moment discussed above? We have
investigated this problem [40] using the two-photon corrections as calculated
by P. Blunden [39]. In Fig. 2 we have already shown the effect of the exchange
of a second hard photon — the difference between solid and dashed lines.
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We have found that the effect on the moments is rather small. When
including the correction, the charge rms-radius increases by 0.0015 fm, and
the Zemach moment increases by 0.0052 fm. These changes are small, and go
in the wrong direction to explain the HFS discrepancy.

6 Third Zemach Moment of Proton

At PSI, a group is in the process of measuring the Lamb shift in muonic
hydrogen. Such a measurement could potentially improve the precision on the
charge rms-radius by an order of magnitude relative to what can be achieved
using electron scattering.

Such a muonic hydrogen experiment of course also requires a high-precision
calculation based on QED. In order to calculate the terms of order (Zα)5 one
requires another moment that can be determined via (e,e), the third Zemach
moment given by

〈r3〉2 =
48
π

∫ ∞

0

dq
q4

(G2
e(q

2)− 1 + q2〈r2〉e/3).

Very different values are found in the literature, as the subtraction of the
dominant term (−1 + q2〈r2〉/3) makes the integrand very sensitive to small
changes in the q-dependence of Gep.

We have extracted the third Zemach moment from the fit to the world
proton data described above. We find 〈r3〉2 = 2.71(13) fm3, where the error
bar includes both random and systematic errors of the data. The two-photon
corrections again have a very minor effect, they would increase the moment
by 0.02 fm3.

7 Deuteron Radius

For a number of applications in atomic physics, the charge radius of the
deuteron is of interest. We discuss below the determination of this radius
from the world set of e–d scattering data.

The deuteron on the one hand presents an additional complication due to
its spin I=1 nature. It has three form factors, with multipolarity C0 (charge
monopole), M1 (magnetic dipole) and C2 (charge quadrupole). These in turn
determine the two structure functions A(q) and B(q):

σ(E, θ)PWIA = σMott(E, θ)[A(q) +B(q) tg2(θ/2)] ,

where σMott includes the recoil factor, with

A(q) = F 2
C0(q) + (M2

dQ)2
8
9
τ2F 2

C2(q) +
(
Md

Mp
μ

)2 2
3
τ(1 + τ)F 2

M1(q) ,
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B(q) =
(
Md

Mp
μ

)2 4
3
τ(1 + τ)F 2

M1(q) with τ = q2/(4M2
d) .

In the above equations, M are the masses, μ the deuteron magnetic moment
in units of magnetons, Q the quadrupole moment and q is the four momentum
transfer (>0). While the structure functions A(q) and B(q) can be separated
using the standard Rosenbluth approach, the charge monopole and charge-
quadrupole form factors can only be separated when including the tensor
polarization data in the analysis, in particular T20:

T20

√
2
(
A+Btg2 θ

2

)
= −

(
8
3
τFC0FC2QM

2
d +

8
9
τ2F 2

C2Q
2M4

d

+ τ

(
1
3

+
2
3
(1 + τ) tg2 θ

2

)
F 2

M1

(
Md

Mp
μ

)2
)
.

The data on T20 are not very extensive nor very precise, leading potentially
to a larger uncertainty of the radius.

On the other hand, the deuteron radius is strongly influenced by the large-
radius tail of the proton wave function, as a consequence of the small deuteron
binding energy. The shape of this tail outside the range of the N–N interaction
is well known, a Hankel function, and can be used as a constraint during
the analysis of the data. This additional knowledge largely compensates the
potential increase of the uncertainty cited above.

We have analyzed the world data for e–d scattering [41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 14, 57, 58, 59, 60, 61, 62, 19, 63, 64] in
the analogous way as described above for the proton [65] (see Fig. 8). The
major difference is the use of the SOG parameterization, which allows one to
write the density in r-space as needed when employing the shape of ρ(r) as a
constraint.

The analysis of the world data on electron–deuteron scattering yields
2.130± 0.010 fm for the deuteron charge rms-radius. This value agrees with
the one derived from optical isotope shifts [66] and from the low-energy prop-
erties of the deuteron as measured by N–N scattering (scattering length and
asymptotic normalizations) [67]. The long-standing discrepancy with the lat-
ter value had been removed when realizing that for scattering from Z =1 nuclei
also Coulomb corrections are important [65].

As a consequence of the disagreement in the past of deuteron rms-radii
coming from different sources as mentioned above, various correction terms
have been studied. Dispersive effects — corresponding to a two-step scattering
process with excitation of the deuteron in the intermediate state — can give
a small correction to the cross-sections. This correction has been studied by
Herrmann and Rosenfelder [68] who take into account the Coulomb excita-
tion only and use an S-wave separable potential (Yamaguchi) to calculate the
deuteron wave function. When analyzing the data of Simon et al. [19], they
find a change of the rms-radius of –0.003 fm when correcting the data for the
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Fig. 8. Ratio of data and fit for the most precise sets of data at low q [26]

dispersive effects. This calculation gives a significantly smaller effect than a
previous estimate [69], but is much more reliable. When using their parame-
terized dispersion corrections with the full set of data, we find, in agreement
with their result, a change of –0.0024 fm.

Another correction to the electron scattering data results from the con-
tribution of non-nucleonic degrees of freedom. The effects of meson exchange
currents (MEC) have been studied in great detail by Buchmann et al. [70].
When correcting the experimental data for the mesonic effects, these authors
find a change of the rms-radius of –0.005 fm, with a fluctuation of 0.001 fm
depending on the approach used. The estimate for the contribution of 6-quark
components is much smaller, and presumably also much more uncertain.

These corrections are quite small and have considerable uncertainties. We
prefer at the present time to not apply these as corrections to the rms-radii
extracted from the DWBA analyses.

The Zemach moment of the deuteron is another quantity that can be
derived from the fits: it amounts to 2.593±0.016 fm, where the error bar
includes both random and systematic errors of the data.

8 Radii of A = 3 Systems

The world data on electron scattering from 3H and 3He [71, 72, 73, 74, 75,
76, 77, 78, 79, 80] have been analyzed in [81]. The resulting rms-radii are
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Table 1. The rms nuclear radii of A = 3 systems

nucleus type rms-radius

3H charge 1.755 ± 0.087 fm

3H magnetic 1.840 ± 0.182 fm

3He charge 1.959 ± 0.034 fm

3He magnetic 1.965 ± 0.154 fm

less precise than for A= 1,2,4, as a consequence of the less extensive and
less precise database at low q. The 3H and 3He nuclei, present particular
challenges for the experimentalist. For both nuclei, targets of adequate and
well-known thickness are difficult to produce and use, particularly of course
for the radioactive 3H.

Table 1 gives the radii together with their errors, covering both random
and systematic uncertainties of the data.

For 3He the isotope shift to 4He has been determined in [82]. In combi-
nation with the 4He radius discussed below, this yields a 3He -radius which
agrees with the one given in Table 1, but is more precise.

9 Radius of 4He

The nucleus 4He may be of interest to ongoing and future studies of high-
precision atomic spectroscopy, as witnessed by several contributions to this
volume. We therefore discuss 4He as well.

The 4He nucleus presents an especially simple case: due to its spin I = 0
nature there is only one form factor, so no error-magnifying L/T-separation
is necessary. The electron scattering database is also very good [83, 78, 84,
75, 80], in particular there is one very accurate data set [75] in the q-region
of interest for the radius determination (see Fig. 9).

For 4He there is another aspect that helps the determination of a very
precise radius: at large radii not only the shape of the proton radial wave
function is known (a Whittaker function depending on the proton separation
energy) but also the absolute value of the large-r wave function. The study
of the world proton-4He elastic scattering data in terms of forward dispersion
relations (FDR) [85] has provided an accurate value of the residuum of the
proton-exchange pole, which translates into the asymptotic normalization of
the large-r proton wave function. This quantity can be included in the analysis
of the (e,e) data. Knowledge of the large-radius density greatly benefits the
accuracy of the radius one can deduce.

We have recently updated the analysis described originally in [86] by in-
cluding the data from [75] not yet available at the time. The 4He charge
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Fig. 9. Ratio of experimental cross-sections to fit for 4He

rms-radius resulting from this analysis is 1.680±0.005 fm, where the error
bar covers both random and systematic errors of the data. This radius of 4He
is actually the most precise rms-radius determined from electron scattering
data for any nucleus.

The above radius agrees with the (apparently) more precise value deter-
mined from the 2p–2s transition in muonic Helium [87] of 1.673±.003 fm.
There are, however, serious doubts about this value. Subsequent experiments
on muonic helium [88, 89] never could detect the 2s-state with sufficiently long
lifetime to allow for a 2p–2s transition measurement.

10 Heavier Nuclei

The accuracy of rms-radii that can be obtained from electron scattering ex-
periments is typically in the ±1% region. For exceptional cases such as, e.g.,
12C [86], which has received much attention as it is often used as an absolute
cross-section reference, a higher accuracy can be achieved. The ±1% accuracy
may suffice for the interpretation of most atomic-physics experiments, partic-
ularly for the ones involving many-electron systems where the uncertainties of
the electronic structure come in. For selected systems, such as one-electron sys-
tems of large-Z nuclei, however, more accurate rms-radii might be desirable.
We briefly mention below how one might get such radii from published data.
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Very accurate information on nuclear sizes is available from muonic X-ray
experiments. For A > 20 these experiments typically provide more accurate
radii than electron scattering. The radii measured by μ-X-ray experiments are,
however, not rms-radii but moments of the type 〈rke−αr〉, where k depends
on the transition studied (2p–1s, ..) and α is derived from the calculated muon
wave functions and chosen such as to make the moment 〈rke−αr〉 essentially
model-independent, i.e., within reasonable bounds not depend on the particu-
lar shape of the nuclear charge density ρ(r) (this would not be the case for the
rms-radius). For some of the heavier nuclei, more than one of these so-called
Barrett moments have been determined.

For nuclei where both (e,e) data and precise Barrett moments are available,
the two can be combined to determine precise rms-radii. The usually very
detailed information on the shape of the nuclear charge density from (e,e)
allows one to go from the precisely known Barrett moment to 〈r2〉 with little
ambiguity.

The feasibility of this approach obviously depends on the quality of the
available (e,e) and μ-X-ray data for the specific nucleus of interest. It may
be useful, however, to remember that the approach outlined above at least
in principle provides a viable means to get precise rms-radii for the heavier
nuclei as well.

11 Summary

From the world data on electron–nucleus scattering one can extract rather
precise values of the rms-charge radii and Zemach moments. One finds con-
sistently good fits to the data, somewhat surprisingly given the fact that the
database has been accumulated over some 30 years.

For the determination of precise radii it is important to account for the
Coulomb distortion of the e-waves. This in the past systematically has been
neglected for Z = 1, assuming that the distortion effect is small. This, however,
is not the case. Surprisingly, the distortion effects not only are important for
the low-energy (low-q) data of interest to the determination of radii. Coulomb
distortion also is non-negligible at large q, where the contribution to the cross-
section of G2

ep becomes small as compared to the one of G2
mp in which case

small (Coulomb) corrections to the Gmp-dependent term have significant ef-
fects upon the value of Gep extracted in a Rosenbluth separation [37].

In order to extract reliable values, it is important to use adequate pa-
rameterizations of the form factors; the standard low-q expansion of the form
factors in terms of 〈r2nq2n〉 moments is seriously affected by problems with
the higher moments, particularly for the proton which has a density with
unusually large higher moments.

It is also important to analyze the cross-sections, and not the form fac-
tors determined from individual experiments. The separation of charge- and



Precise Radii of Light Nuclei from Electron Scattering 75

magnetic form factors can be done with much superior quality when starting
from the cross-sections and fitting the full data set simultaneously with pa-
rameterized charge- and magnetic form factors.

Potential corrections to the standard interpretation of (e,e) involve the
effect of two-photon exchange which, at very large momentum transfer, has
been shown to have an appreciable effect for the proton. For the low qs of
interest to determinations of rms-radii their effect is found to be small.

The radii for the light nuclei given above are not likely to be superseded
in any foreseeable future by more accurate values from electron scattering.
For more precise radii, one presumably will have to turn to muonic X-ray
experiments, particularly for the proton which is of special interest to atomic
physics.
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Nucleon Form Factor Measurements in Mainz:
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Abstract. The form factors of proton and neutron provide a natural and direct
insight into their internal structure. They were a main research goal in the nuclear
physics program of the Universität Mainz, which led to some of the most precise
measurements to date. This article gives an overview, starting from the very first
experiments at the now obsolete linear accelerator and ending at the exhaustive
experiments currently underway at the Mainz Microtron (MAMI) facilities.

1 Introduction

Form factors encode unique information about the internal structure of the
scatterer. Provided they are sufficiently precisely known over a sufficiently
large range of momentum transfer, the Fourier transformation gives the spatial
distribution of the “charge” associated with the interaction between scatterer
and projectile, e.g., mass, electrical charge or magnetization. This leads to
insights into aspects of the internal structure like the presence of constituents
and their interaction. Therefore, the measurement of the form factors consti-
tute a significant test of any model of the scatterer.

In an elastic electron nucleon scattering experiment, the electric and mag-
netic form factors, GE and GM, are determined, as can be seen from the cross-
section for the unpolarized case, given in the one photon exchange picture by
the well-known Rosenbluth formula [1],

dσ
dΩ

=
(

dσ
dΩ

)

Mott

· 1
ε (1 + τ)

(
τG2

M(Q2) + εG2
E(Q2)

)
, (1)

where Q2 is the negative transferred four-momentum squared and τ =
Q2/4m2

N, where mN is the nucleon mass. In this picture, the exchanged virtual
photon has a longitudinal polarization given by

ε =
(

1 + 2 (1 + τ) tan2 θ

2

)−1

. (2)
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The measurement of this cross-section for different angles and incident beam
energies allows the disentanglement of the form factors; in the case of mea-
surements at constant momentum transfer Q and different ε, this can be done
without any model dependency by means of the Rosenbluth separation. In
general, either a projection to constant Q2 using a local model or a fit using
a global model has to be employed to determine the form factors.

To get the distribution of the charge in r-space, the form factors have to be
Fourier transformed. While an exact result is only achievable with complete
knowledge of the Q2-dependence of the form factors, some special quantities
are accessible more easily. The root mean square radius of the nucleon is
directly related to the slope of the form factors at Q2 = 0

〈
r2E,M

〉
= −6

d (GE,M/GE,M (0))
dQ2

∣∣∣∣
Q2=0

. (3)

While the form factors are interesting quantities in their own right, the radii
are a link between nuclear physics and atomic physics. For the Lamb shift, the
first order correction due to the finite size of the proton depends quadratically
on the radius

ΔE(nl) =
2
3

(Zα)4

n3
m3

〈
r2E

〉
δl0. (4)

Interpreting a comparison between the theoretical Lamb shift and the ex-
perimental value not as a test for bound state QED but as a determination
of the proton charge radius, Karshenboim [2] found

〈
r2E

〉 1
2 = 0.89 ± 0.02 fm.

This value agrees with the Mainz result of Simon et al. presented below. On
the other hand, the Stanford value of [3] disagrees with both the Mainz and
the spectroscopy result. To facilitate the Lamb shift as a test of theory, the
uncertainty in the proton radius has to be reduced further.

A common, but (as will be shown below) not very accurate, phenomeno-
logical parameterization of the form factors is the so-called dipole form factor,
introduced by Hofstadter [4]

GEP = GMP/μP = GMN/μN = Gdipole =

(
1 +

Q2

0.71
(

GeV
c

)2

)−2

. (5)

Here, P/N refers to the proton/neutron and μP/N is the proton/neutron mag-
netic moment in units of the nuclear magneton. This parameterization is com-
patible with the Stanford value for the radius.

The form factors were in the focus of many institutes, so the number of
scattering experiments to measure the form factors is quite extensive. For
any detailed review, one has to confine oneself to a certain subset of these
experiments. For the low Q2-region, which is of special interest not just in
the context of the radii as will be seen below, no experiment rivals the accu-
racy of the Mainz proton data. Thus, the following review is limited to the
experiments conducted in Mainz.
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2 Mainz Experiments

The history of the experiments in Mainz can be divided into three parts:

• The LINAC era
• The MAMI B era
• The MAMI C era

2.1 The Mainz LINAC era

In 1965 the first accelerator in Mainz was commissioned. It was a normal con-
ducting commercial linear accelerator (CSF, France) with a maximum energy
of 400 MeV at the end of its operating life in 1983. In contrast to other linear
accelerators of its time, the Mainz setup used a chicane and a rf-section posi-
tioned after the linac to reduce the energy spread considerably. The principle
of operation is shown in Fig. 1. In essence, the same effect is intrinsically used
in modern accelerators like MAMI or ELSA as longitudinal beam stabilization.

Δ t [a.u.] Δ t [a.u.]

Δ t [a.u.] Δ t [a.u.]

Δ 
E

 [
a.

u.
]

ΔE
 [

a.
u.

]
Δ 

E
 [

a.
u.

]

Δ  
E

 [
a.

u.
]

Fig. 1. The principal function of the energy compressing system of the Mainz linac:
The ensemble of electrons in a bunch has a small spread in time and a big spread
in energy, as shown in the top left phase space diagram (color coded according to
the energy after the accelerator line). Electrons with higher energy are less deflected
in the magnetic fields of a chicane. Thus, the path length varies according to ini-
tial energy (middle of top row), and the phase space after the chicane exhibits a
correlation between relative time and relative energy (top right, bottom left). The
phase of the rf-wave in the following small accelerator section is chosen such that
the earlier electrons (those with higher energy) are decelerated, the later ones (with
lower energy) accelerated. This results in a compression of the energy spread, as
depicted in the phase diagram on the bottom right
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In this era, two measurements of the electron–proton cross-section were
performed. Both used the experimental setup available in the experimental
hall 2 of the Institut für Kernphysik. The main detector was a 180◦ spectrom-
eter which could be rotated around the fixed target. An additional spectrom-
eter was at a fixed angle of about 30◦. It was used mainly as a luminosity
monitor.

The First Experiment: Borkowski et al.

The first measurement was performed by Borkowski et al. [5]. A liquid hy-
drogen target was used to measure the cross-section for several incident beam
energies between 150 and 275 MeV and scattering angles between 28◦ and 75◦.
The measured data points cover the Q2-region from 0.005 to 0.083 (GeV/c)2.
Figure 2 depicts the measured cross-sections normalized to the dipole cross-
section. With increasing Q2, the measured values fall below this model.

For a fit, the form factors were parameterized as a sum of monopoles,

G
(
q2

)
=

4∑

i=1

ai

(1 + q2/m2
i )

;
∑

ai = 1 , (6)
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Fig. 2. The experimental cross-section of Borkowski et al. [5], normalized to the
dipole prediction
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with two of the parametersmi fixed to the masses of the ρ and ρ′ mesons. From
the slope of the parameterization, they found a charge rms radius

〈
r2E

〉 1
2 =

0.92± 0.03 fm and a magnetic rms radius
〈
r2M

〉 1
2 = 0.83± 0.07 fm.

A Better Target: Simon et al.

In 1979, the experiment done by Simon et al. [6] was a more sophisticated ver-
sion of the Borkowski experiment. A lot of care was taken to eliminate or at
least reduce the systematic errors resulting from uncertainties in the luminos-
ity, target thickness and beam position, etc. The main improvement was the
new target, a high-pressure cell, filled with great care at the TH Darmstadt by
the group of Prof. Frank with 10 bar of hydrogen gas. This reduced the uncer-
tainty of the target thickness to 0.05%. The data, measured in the Q2-range
from 0.005 to 0.054 (GeV/c)2, were analyzed using the scaling relation

GE =
GM

μ
, (7)

which is believed to be (sufficiently) true at least for very small Q2 and allows
the pointwise disentanglement of the form factors for each measured cross-
section. The extracted values for GE are shown in Fig. 3, again normalized to
the dipole. As before, the data deviate from the dipole prediction as in the
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Fig. 3. The electric form factor GEP, as extracted from the measurements of Simon
et al. [6], normalized to the dipole prediction
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Borkowski experiment (note that Fig. 3 shows the form factor while Fig. 2
shows the cross-section, which depends quadratically on the former).

Together wird data from other laboratories (Dudelzak [7], Orsay and
Murphy [8], Saskatoon), the data were fitted using

G(q2) = a0

(
1 + q2

a1

a0
+ q4

a2

a0

)
(8)

with adjustable parameters a0, a1, a2. The normalization parameter a0 was
allowed to be different for the data sets of the different laboratories. From the
fit there resulted the rms radius

〈
r2E

〉 1
2 = 0.862± 0.012 fm.

2.2 The MAMI B era

Because linear accelerators are a very ineffective design – most of the electric
power is needed to generate the accelerating field – a new design was called
for. The racetrack design, i.e., the repeated use of an accelerator segment
by circulating the beam back many times, was the key for the design of the
high-performance Mainz Microtron. The principle is realized in three cascaded
RTMs (Racetrack Microtrons) with increasing output energy. While the two
RTMs of MAMI A yield a fixed output energy of 180MeV, the beam can be
extracted from every other recirculation line of the third RTM (MAMI B),
allowing to vary the beam energy in 15MeV steps from 180 to 855MeV. A
complete energy shift can be realized in less than 6 h, allowing a very flexible
design of experiments. Two electron sources are installed: A thermic electron
gun generates an unpolarized electron beam with currents up to 100μA, the
second source uses a crystal and a laser to produce a highly polarized beam
(>80% polarization) up to 30 μA. The accelerator provides an excellent cw-
beam with an energy spread of 30 keV (FWHM), a horizontal emittance of
13πmm mrad (1 σ) and a vertical emittance of 1.7πmm mrad (1 σ) (mea-
sured at 855MeV, 100 μA). In 1991, the productive phase of the Mainz Mi-
crotron MAMI began. The form factor experiments were done in the hall of
the three-spectrometer facility [9]. With the advancement of the accelerator
and experimental capabilities, the objective shifted.

A Polarization Experiment: Pospischil et al.

While the main focus was on the neutron, there was one form factor exper-
iment on the proton. It was meant as a test for the new proton polarimeter
installed in the focal plane of one of the three spectrometers. Via polarization
transfer in the reaction p(−→e , e′−→p ′), one measures the ratio GE

GM/µ [10, 11]. As
seen in Fig. 4, the Q2-region where the data were taken by Pospischil et al.
[12] is much higher than in the previous Mainz experiments with the linac.
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Fig. 4. The ratio GE
GM/µ

extracted from the Pospischil et al. [12] polarization-transfer

experiment. The gray box represents the Q2-range in the Simon et al. experiment

GMN Experiments: Anklin et al., Kubon et al.

The neutron form factors were in the main focus of the experimental work.
While hydrogen is a readily available (free) proton target, there is no free
neutron target, so one has to resort to simple systems of proton and neutron,
like the deuteron or 3He.

Anklin [13] and Kubon [14] measured the neutron magnetic form factor
via the branching ratio of the deuteron breakup channels

R =
dσ [D(e, e′n)p]

dΩ
/
dσ [D(e, e′p)n]

dΩ
(9)

in the Q2-region from 0.071 to 0.89 (GeV/c)2. Since the cross-sections of both
channels were measured simultaneously, the ratio is independent of the lumi-
nosity. The result is shown in Fig. 5, again normalized to the dipole. As for
the proton form factor, the measured data fall below the dipole form factor
for lower Q2, while, for higher values, the data lie above this canonical fit.

GEN Experiments

The neutron has no net charge and the electric form factor is quite small.
Therefore, it needs a lot of effort to measure it with high precision. In 1999,
Rohe et al. [15] and Becker et al. [16, 17] used a polarized target to measure the
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Fig. 5. The neutron magnetic form factor measured by Anklin et al. [13] and Kubon
et al. [14], normalized to the dipole fit

electric form factor of the neutron in the reaction 3H−→e (−→e , e′n) for Q2-values
of 0.67 and 0.385 (GeV/c)2. In 2003 Bermuth et al. [18] performed an updated
experiment with the same kinematics as Rohe et al. to reduce the statistical
error. The asymmetry in double polarization experiments is determined as

A(θ, φ) =
1

PePt

N+ −N−

N+ +N− (10)

where θ, φ are the polar and the azimuthal angles of the target-spin direc-
tion with respect to the three momentum transfer, Pe, Pt the polarization
of beam and target and N+ (N−) the normalized 3H

→
e (

→
e , e′n) events for

positive (negative) electron helicity. With the target-spin orientation parallel
and perpendicular to q, two independent asymmetries A‖ = A(0◦, 0◦) and
A⊥ = A(90◦, 0◦) can be measured. In PWIA, GEN can be determined via

GPWIA
EN ∝ GMN

(PePtV )‖
(PePtV )⊥

A⊥
A‖

, (11)

with V accounting for a possible dilution due to contributions of vanishing
asymmetry.

In 1999 Herberg et al. [19] and Ostrick et al. [20] measured GEN at two
Q2-values via the reaction D(

→
e , e′

→
n)p, i.e., using the deuteron as a target and

measuring the polarization of the outgoing neutron. In 2005, an experiment
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done by Glazier et al. [21] added three additional data points using the same
reaction. For a free neutron target, with the z-axis parallel to momentum
transfer and the x-axis in the scattering plane, the ratio of the neutron polar-
ization along these axes is related to the form factors as

PN
x

PN
z

=
−√2ε√
τ(1 + ε)

× GEN

GMN
. (12)

For a neutron bound in the deuteron, the model dependence of the extracted
form factors, which occurs via the dependence of the neutron wave function
on the nuclear potential, cancels in leading order.

The complete Mainz data set is shown in Fig. 6, together with the Galster
parameterization, which is in agreement with the dataset.

2.3 The MAMI C era

With the almost completed MAMI C, the third stage of the MAMI accelerator,
the maximum energy will be boosted to 1.5GeV. In contrast to MAMI A
and B, the third stage is a harmonic, double-sided microtron (HDSM), with
two accelerator segments, one operating at the base frequency, the other at
the first harmonic. The higher incident beam energy allows to do new kinds
of experiments, like kaon production; but it also allows to extend the Q2-
range for the determination of the elastic form factors. For the near future,
two experiments have been conceived and accepted by the program advisory
committee.
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Fig. 6. The complete Mainz data set for GEN
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A High-Precision Proton Experiment: Bernauer et al.

When Friedrich and Walcher, triggered by the publication of new, high-
precision GEN data, reanalyzed the world data for the nucleon form fac-
tors [22], they found in all four form factors a very interesting anomaly, a
bump/dip-structure around 0.2 (GeV/c)2. They used the superposition of two
dipoles,

Gs(q2) =
a1

(1 +Q2/a2)
+

a3

(1 +Q2/a4)
, (13)

to describe the smooth part of the form factors and a bump term,

Gb(q2) = exp

(
−1

2

(
Q−Qa

σb

)2
)

+ exp

(
−1

2

(
Q+Qa

σb

)2
)
, (14)

to describe the bump structure. To attribute the full normalization to the
dominating smooth part, i.e., G(Q2 = 0) = Gs(Q2 = 0), Gb is multiplied by
Q2, so that the full parameterization is

G(Q2) = Gs(Q2) + ab ·Q2Gb(Q2) . (15)

Inspecting the top plot in Fig. 7, it is obvious that the dipole prediction
completely fails for the higher Q2-regime where the data from polarization-
transfer experiments are taken into account [23, 24]. The bottom plot shows
the contribution of the bump term to the full parameterization. While the data
sets, measured over decades all around the globe, agree surprisingly well, there
is not one complete data set completely overlapping the dip structure. Since
the global normalization is always problematic, it is possible but unlikely that
this structure is an artifact. To establish the existence of such a structure
and its shape, a new and comprehensive data set is called for. Luckily, the
complete region is accessible by the MAMI facility.

The experimental program is designed to achieve an overall error in the
range of 0.5%, which, for the time being, is only possible for the proton. While
the original experiment [25] was planned to focus on the bump region, input
from the atomic community widened the focus to include the very low Q2-
region to determine the root mean square radii of the proton. The Q2-range
from 0.002 to 2 (GeV/c)2 will be covered with more than 250 kinematical
setups. The first data have been taken by now.

GEN for Higher Q2: Rohe et al.

Rohe et al. [26] are planning to redo their original experiment for a higher
Q2-value of 1.5 (GeV/c)2 in order to get good overlap with the data from the
Jefferson laboratory [27, 28]. This will become possible with the higher beam
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energies provided by MAMI C. As an improvement over the original exper-
iment, the scintillator volume of the neutron detector will be doubled. The
construction of this new detector is already in progress and will be completed
by the end of the year.

3 Conclusion and Outlook

As shown, not only the Mainz data for the standard nucleon form factors but
the world data as well disagree with the dipole parameterization. There exist
many better models and parameterizations of the form factors, phenomeno-
logical one and those with physical footing.

Upcoming experiments will clarify the situation concerning the dip in the
proton form factors; also, additional data points for the neutron will become
available in the near future.
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Proton Structure Corrections to Hydrogen
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Abstract. The largest uncertainty in calculations of hydrogen ground-state hy-
perfine splitting comes from corrections due to proton structure. We review these
corrections, with special mention of the inelastic, or polarizability, corrections which
have been recently re-evaluated. Summing up the arguably best current values for
the calculated corrections leaves us 1–2 ppm short of the experimental data. We
speculate how one may explain this shortfall, and along the way broadly outline the
derivations of the relevant formulas, attempting to explain how certain terms come
to appear and commenting on the use of unsubtracted dispersion relations.

1 Introduction

Hyperfine splitting (hfs) in the hydrogen ground state is measured to 13 sig-
nificant figures in frequency units [1],

Ehfs(e−p) = 1 420.405 751 766 7(9) MHz . (1)

Theory is far from this level of accuracy, and theorists are hopeful of obtain-
ing calculations accurate to a part per million (ppm) or so. We are close to
reaching this goal, but some improvement is still needed and there currently
seems to be a few ppm discrepancy between the best calculations and the
data.

The main uncertainty in calculating the hfs in hydrogen comes from the
hadronic, or proton structure, corrections. One can contrast this to the case
of muonium, where the “nucleus” is a point particle, so that calculations are
almost purely QED, and agreement between theory and experiment is about
0.1 ppm [1].

For ordinary hydrogen, as we have said, one must consider the proton
structure, and find that it contributes about 40 ppm to the hfs. Working
out these contributions theoretically requires knowing details about proton
structure that cannot be obtained currently from ab initio calculation. Instead,
one has to measure information about proton structure in other experiments,
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particularly experiments on elastic and inelastic electron–proton scattering.
Then calculations are done to relate the scattering information to the bound
state energy. Recent new results have been driven by improvement in the data,
including both new data for polarized inelastic scattering in kinematic regions
of interest to hfs calculators and new analyses of the elastic scattering data.
These will be outlined below.

Historically, the elastic and inelastic contributions, the latter also called
polarizability corrections, have often been treated separately, with the elastic
corrections further divided into a non-relativistic Zemach term and relativistic
recoil corrections. From a modern viewpoint, the elastic and inelastic correc-
tions should be treated as a unit since the sum lacks certain ambiguities that
exist in the individual terms. The present discussion will focus on the polariz-
ability contributions, but following the last remark, discussion of the Zemach
and recoil corrections will not be omitted.

2 Hyperfine Splitting Calculations

The calculated hyperfine splitting in hydrogen is [1, 2, 3]

Ehfs(e−p) =
(
1 + ΔQED + Δp

weak + ΔStr

)
Ep

F , (2)

where the Fermi energy is

Ep
F =

8α3m3
r

3π
μBμp =

8α4m3
r

3memp
(1 + κp) , (3)

with mr = memp/(mp +me) being the reduced mass (and there are hadronic
and muonic vacuum polarization terms [2] which are included as higher or-
der corrections to the Zemach term below). The QED terms are accurately
calculated and well known. They will not be discussed, except to mention
that they could be obtained without calculation. The QED corrections are
the same as for muonium, so it is possible to obtain them to an accuracy
more than adequate for the present purpose using muonium hfs data and
a judicious subtraction [4, 5]. The weak interaction corrections [6] also will
not be discussed, and are in any case quite small. We will discuss the proton
structure dependent corrections,

ΔStr = Δel + Δinel = ΔZ + Δp
R + Δpol , (4)

where the terms on the right-hand-side are the Zemach, recoil and polariz-
ability corrections.

Generically, the proton structure corrections come from two-photon ex-
change, as diagramed in Fig. 1. The diagram can be seen as Compton scatter-
ing of off-shell photons from an electron knit together with similar Compton
scattering from the proton. (We are neglecting the characteristic momentum
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e–

p

q q

Fig. 1. Generic two-photon exchange diagrams, giving proton-structure corrections
to hyperfine splitting

of the bound electron. This allows a noticeably simpler two-photon calculation
than for a scattering process [7]. One can show that keeping the characteristic
momentum would give corrections of O(αme/mp) smaller than terms that are
kept [8].)

2.1 Elastic Terms: The Zemach Correction

In this author’s opinion, the best calculation of the box diagram uses disper-
sion relations, even though there are questions about using dispersion relations
in their unsubtracted form. In a dispersive calculation, it is easy to consider
the elastic and inelastic intermediate states simultaneously. This one should
do because the full calculation is well defined, even though historically terms
have been shuttled between the “elastic” and “inelastic” contributions.

At the outset, however, we will present results from a direct calculation
of the elastic contributions, without dispersion theory. The results have been
obtained by a number of authors [9, 10], and follow after assuming a certain
photon–proton–proton vertex which is plausible but which cannot be defended
perfectly.

The “elastic” contributions are those where the hadronic intermediate
state, the blob in Fig. 1, is just a proton. The diagram specializes to Fig. 2.
The photon–electron vertex is known, and we use [9, 10]

Γμ = γμF1(q2) +
i

2mp
σμνq

νF2(q2) (5)

for the photon–proton vertex with incoming photon momentum q. Functions
F1 and F2 are the Dirac and Pauli form factors of the proton, which are

q q
q q

p p pp

k kkk

Fig. 2. Two-photon exchange diagrams for the elastic proton structure corrections
to hyperfine splitting
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measured in elastic electron–proton scattering. The normalization is F1(0) =
1 and F2(0) = κp, where κp is the proton’s anomalous magnetic moment
measured in proton magnetons.

The above photon–proton vertex is complete and correct only if the pro-
tons entering and exiting the vertex have physical, on-shell, momenta. In a
loop diagram, the intermediate proton is on-shell only at special values of mo-
menta out of a continuum of momenta. Hence one may feel some hesitation
in using the results that follow. However, there is also the (coming) disper-
sive calculation which only needs the vertices when all protons are on-shell,
and so (again modulo questions surrounding dispersion relations with no sub-
traction) gives a reliable result. Any terms in the “elastic” calculations that
appear to require modification can be fixed by adding or subtracting terms in
other parts of the quoted result.

The elastic contributions are separated as

E2γ

EF

∣∣∣∣
el

= ΔZ + Δp
R . (6)

The separation is into non-relativistic and relativistic terms—“Zemach” and
“recoil.” Non-relativistic means the limit mp → ∞ with me held fixed and
with the proton size held fixed; proton size information is embedded in the
form factors F1 and F2.

The Zemach correction was worked out by Zemach in 1956 [11]; in modern
form it is

ΔZ =
8αmr

π

∫ ∞

0

dQ
Q2

[
GE(−Q2)

GM(−Q2)
1 + κp

− 1
]

= −2αmrrZ , (7)

where the last equality defines the Zemach radius rZ and we have used Q2 =
−q2. The charge and magnetic form factors are linear combinations of F1

and F2,

GM = F1 + F2 ,

GE = F1 − Q2

4m2
p

F2 . (8)

Table 1 gives the evaluated Zemach radius rZ and correction ΔZ for two
modern form factor fits, and for the dipole fit, which is out of date and included
only because it is a common benchmark. We believe the Ingo Sick fit is best
for the purpose at hand, because the Zemach integrals depend mainly on the
form factors at low Q2, and Sick’s fit concentrates on the low Q2 scattering
data.

2.2 Elastic Terms: Recoil Corrections

The relativistic elastic corrections Δp
R are known as recoil corrections. They

depend on the form factors and hence are part of the proton structure cor-
rections. However, evaluating Δp

R with different form factor representations
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Table 1. Values of the Zemach radius and the Zemach corrections for selected fits to
proton elastic form factors (The Zemach term ΔZ includes a 1.53% correction from
higher order electronic contributions [12], as well as a +0.07 ppm correction from
muonic vacuum polarization and a +0.01 ppm correction from hadronic vacuum
polarization [2])

form factor rZ (fm) ΔZ (ppm)

Kelly [13] 1.069(13) −40.93(49)
Sick [13] 1.086(12) −41.59(46)
dipole 1.025 −39.24

based on fits to the scattering data reveals that its numerical value is fairly
stable (to about ±0.15 ppm) by present standards.

The full result is

Δp
R =

αmemp

2(1 + κp)π(m2
p −m2

e)
×

×
{ ∫ ∞

0

dQ2

Q2

(
β1(τp)− 4√τp

τp
− β1(τe)− 4

√
τe

τe

)
F1(−Q2)GM(−Q2)

+ 3
∫ ∞

0

dQ2

Q2

(
β2(τp)− β2(τe)

)
F2(−Q2)GM(−Q2)

}

+
2αmr

πm2
p

∫ ∞

0

dQF2(−Q2)
GM(−Q2)

1 + κp

− αme

2(1 + κp)πmp

∫ ∞

0

dQ2

Q2
β1(τe)F 2

2 (−Q2) , (9)

where β1,2 are auxiliary functions that were first found useful in discussing
the inelastic terms [14, 15, 16, 17, 18, 19],

β1(τ) = −3τ + 2τ2 + 2(2− τ)
√
τ(τ + 1) =

9
4
β(τ) ,

β2(τ) = 1 + 2τ − 2
√
τ(τ + 1) . (10)

These are used with the notation,

τp ≡ Q2

4m2
p

, τe ≡ Q2

4m2
e

. (11)

The reasons for showing the whole formula for the recoil corrections is
partly to show it is not so long (it sometimes appears more forbidding, cf. [9]),
to explicitly see the form factor dependence, and to display the F 2

2 term in
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the last line. The F 2
2 term is noteworthy because it is absent in a dispersive

calculation, in contrast to all the other terms, which come forth unchanged.
All the integrals are finite, although some require the form factors to pre-

vent ultraviolet divergence, and some would be infrared divergent if me → 0.
Of minor interest, the penultimate line could be subsumed into the Zemach
correction, if the Zemach correction were to be written in terms of F1GM

rather than GEGM.

2.3 Inelastic Terms: Polarizability Corrections

When the blob in Fig. 1 is not a lone proton, we obtain inelastic contributions
or polarizability contributions [14, 15, 16, 17, 18, 19]. The inelastic contribu-
tions are not calculable ab initio. Instead, one relates them to the amplitude
for forward Compton scattering of off-shell photons off protons, given in terms
of the matrix element

Tμν(q, p, S) =
i

2πmp

∫
d4ξ eiq·ξ 〈pS| jμ(ξ)jν(0) |pS〉 , (12)

where jμ is the electromagnetic current and the states are proton states of
momentum p and spin 4-vector S. The spin dependence is in the antisymmetric
part

TA
μν =

i
mpν

εμναβq
α

[(
H1(ν, q2) +H2(ν, q2)

)
Sβ −H2(ν, q2)

S·q pβ

p·q
]
. (13)

There are two structure functions H1 and H2 which depend on q2 and on the
photon energy ν, defined in the lab frame so that mpν = p · q.

There is an optical theorem that relates the imaginary part of the forward
Compton amplitude to the cross-section for inelastic scattering of off-shell
photons from protons. The relations precisely are

ImH1(ν, q2) =
1
ν
g1(ν, q2) and ImH2(ν, q2) =

mp

ν2
g2(ν, q2) , (14)

where g1 and g2 are functions appearing in the cross-section and are mea-
sured [20, 21, 22, 23, 24] at SLAC, HERMES, JLab and elsewhere.

Using the Compton amplitude in terms of H1 and H2, (13), in evaluating
the inelastic part of the two-photon loops gives

Δpol =
E2γ

EF

∣∣∣∣
inel

=
2αme

(1 + κp)π3mp

∫
d4Q

(Q4 + 4m2
eQ

2
0)Q2

× (15)

×
{
(2Q2 +Q2

0)H
inel
1 (iQ0,−Q2)− 3Q2Q2

0H
inel
2 (iQ0,−Q2)

}
,

where we have Wick rotated the integral so that Q0 = −iν, Q = q and
Q2 ≡ Q2

0+Q2. Since H1,2 are not measured, we obtain them from a dispersion
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relation, which will be discussed in a subsequent section. Assuming no
subtraction,

H inel
1 (ν1, q2) =

1
π

∫ ∞

ν2
th

dν
ImH1(ν, q2)
ν2 − ν2

1

, (16)

where the integral is only over the inelastic region (νth = mπ + (m2
π +

Q2)/(2mp)), and similarly for H2.
Putting things together, neglecting me inside the integral and integrating

what can be integrated, one obtains the expression

Δpol =
αme

2(1 + κp)πmp
(Δ1 + Δ2), (17)

where, with τ = ν2/Q2,

Δ1 =
9
4

∫ ∞

0

dQ2

Q2

{
F 2

2 (−Q2) + 4mp

∫ ∞

νth

dν
ν2
β(τ)g1(ν,−Q2)

}
, (18)

Δ2 = −12mp

∫ ∞

0

dQ2

Q2

∫ ∞

νth

dν
ν2
β2(τ)g2(ν,−Q2).

The integral for Δ1 is touchy. Only the second term comes from the proce-
dure just outlined. The first arises when one applies the dispersive calculation
also to the elastic corrections, and discovers that the F 2

2 term pointed out
earlier in (9) is absent. It was then thought convenient to add the first term
as seen above, and then subtract the same term from the recoil contributions.
This leaves the elastic corrections exactly as already shown. This stratagem
also allows the electron mass to be taken to zero in Δ1. The individual dQ2

integrals in Δ1 diverge (they would not had the electron mass been kept),
but the whole is finite because of the Gerasimov–Drell–Hearn (GDH) sum
rule [25, 26],

4mp

∫ ∞

νth

dν
ν2

g1(ν, 0) = −κ2
p , (19)

coupled with the observation that the auxiliary function β(τ) becomes unity
as we approach the real photon point.

The polarizability expressions have some history. A short version is that
considerations of Δpol were begun by Iddings in 1965 [14], improved by Drell
and Sullivan in 1966 [15] and given in present notation by de Rafael in
1971 [16]. But no sufficient spin-dependent data existed, so it was several
decades before the formula could be evaluated to a result incompatible with
zero. In 2002, Faustov and Martynenko became the first to use g1,2 data to
obtain results inconsistent with zero [18]. Their 2002 result was

Δpol = (1.4± 0.6) ppm (20)
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However, they only used SLAC data and Δ1 and Δ2 are sensitive to the behav-
ior of the structure functions at low Q2. Also in 2002 there appeared analytic
expressions for g1,2 fit to data by Simula, Osipenko, Ricco, and Taiuti [27],
which included JLab as well as SLAC data. They did not at that time inte-
grate their results to obtain Δpol. Had they done so, they would have obtained
Δpol = (0.4± 0.6) ppm [19].

We now have enough information to discover a bit of trouble. Table 2
summarizes how things stood before the 2005/2006 re-evaluations of Δpol.
The sum of all corrections is 1.59± 0.77 ppm short of what would be desired
by experimental data. Using the Simula et al. value for Δpol would make
the deficit greater. Using other proton form factor fits (limiting ourselves to
modern ones that fit the data well) in evaluating ΔZ can reduce the deficit
somewhat, but not enough to ameliorate the problem [19].

The discrepancy is not large, measured in standard deviations. On the
other hand, the problem is clearly not in statistical fluctuations of the hfs
measurement one is trying to explain, so one would like to do better. As listed
in the table, the largest uncertainty in the corrections comes from Δpol. Fur-
ther, the polarizability corrections require knowledge of g1 and g2 at relatively
low Q2, and good data pressing farther into the required kinematic regime
has relatively recently become available from JLab (the Thomas Jefferson
National Accelerator Laboratory, in Newport News, VA, USA). Accordingly,
we shall present a state-of-the-art evaluation of the polarizability correction
for electronic hydrogen. To give away our results [19] at the outset, we essen-
tially confirm (remarkably, given the improvements in data) the 2002 results
of Faustov and Martynenko.

Table 2. Corrections to hydrogenic hyperfine structure, as they could have been
given in 2004. The first line with numbers gives the “target value” based on the
experimental data and the best evaluation of the Fermi energy (eight figures) based
on known physical constants. The corrections are listed next. (The Zemach term
includes a 1.53% correction from higher order electronic contributions [12], as well
as a +0.07 ppm correction from muonic vacuum polarization and a +0.01 ppm
correction from hadronic vacuum polarization [2].) The total of all corrections is
1.59 ± 0.77 ppm short of the experimental value

quantity value (ppm) uncertainty (ppm)

(Ehfs(e
−p)/Ep

F) − 1 1 103.49 0.01

ΔQED 1 136.19 0.00
ΔZ (using Friar and Sick [28]) −41.59 0.46
Δp

R 5.84 0.15
Δpol (from Faustov and Martynenko, 2002 [18]) 1.40 0.60

Δp
weak 0.06

total 1101.90 0.77
deficit 1.59 0.77
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3 Re-evaluation of Δpol

Data for g1(ν, q2) has improved due to the EG1 experiment at JLab, which had
a data run in 2000–2001. Some data based on preliminary analysis became
available in 2005 [24]; final data are anticipated in late 2006. A sample of
the new data is shown in Fig. 3. Since a function of two variables can be
complicated to show, what is shown is the integral

I(Q2) ≡ 4mp

∫ ∞

νth

dν
ν2

g1(ν,−Q2) , (21)

which differs from an integral appearing in Δ1 in lacking the auxiliary func-
tion. The integration was done by the experimenters themselves. We remind
the reader that this integral is expected to reach the Gerasimov–Drell–Hearn
value −κ2

p at the real photon point, and that because of cancellations the
difference of this integral from −κ2

p is more relevant to the final answer for
Δpol than its absolute value.

All the data shown are new; there was no polarized electron–proton scat-
tering data available below Q2 = 0.3 GeV2 when Simula et al. and Faustov
and Martynenko did their earlier fits. A curve obtained by integrating Simula
et al.’s fit for g1 is also shown in the figure; we do not have enough information
to produce a similar curve for Faustov and Martynenko’s fit.

Integration in the region Q2 > 0.05 GeV2 is done using analytic fits to
actual data for g1. For Q2 below 0.05 GeV2, where there is no data, we do
an interpolation based on a low Q2 expansion within the integral to get (with
Q2

1 → 0.05 GeV2),

2

2 2

2

2κ
p

Fig. 3. Data for (an integral over) the spin-dependent structure function g1(ν, q2).
The data is from the EG1 experiment at Jefferson Lab and from the year 2005. The
Simula et al. curve is from a fit published in 2002
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Δ1[0, Q2
1] ≡

9
4

∫ Q2
1

0

dQ2

Q2

{
F 2

2 (−Q2) + 4mp

∫ ∞

νth

dν
ν2
β(τ)g1(ν,−Q2)

}
(22)

=

[
−3

4
r2Pκ

2
p + 18m2

p c1 −
5m2

p

4α
γ0

]
Q2

1 +O(Q4
1) .

Here rP is from the expansion of the Pauli form factor

F2(−Q2) = κ2
p

(
1− r2PQ2/6 + . . .

)
,

and the “forward spin polarizability” γ0 has been evaluated from data for
other purposes [29],

γ0 ≡ 2α
mp

∫ ∞

νth

dν
ν4

g1(ν, 0) = [−1.01± 0.08± 0.10]× 10−4 fm4 . (23)

The parameter c1 is defined from the slope at low Q2 of the integral shown
in Fig. 3,

I(Q2) = 4mp

∫ ∞

νth

dν
ν2

g1(ν,−Q2) = −κ2
p + 8m2

p c1Q
2 +O(Q4) ; (24)

we find and use c1 = 2.95± 0.11 GeV−4 [19].
We need to comment that for Δ2, we need g2, and there is almost no

data for g2 on the proton. One estimates g2 by relating it to g1 using the
Wandzura–Wilczek relation [30], which we shall not detail here. Fortunately,
the auxiliary function β2(τ) is small over the region where we need to do the
integrals, so that even when we assigned 100% error bars to the contribution
from g2, the effect on the final answer was not great.

Our overall result is [19]

Δpol = 1.3± 0.3 ppm , (25)

which is similar to the 2002 Faustov–Martynenko result. This result means
that the polarizability corrections no longer give the largest uncertainty in
Table 2. It also means that the theory deficit outlined in Table 2 still remains,
even becoming modestly larger with a smaller uncertainty limit, at (1.69 ±
0.57) ppm.

Faustov, Gorbacheva, and Martynenko [31] quite recently published a new
analysis and result for Δpol, obtaining the somewhat larger value

Δpol = 2.2± 0.8 ppm . (26)

We still believe our published result [19] is the best one for now because the
Jefferson Lab EG1b data, which goes to lower Q2 than other data sets, have
been used to constrain and validate the fits that we use to do the integrals.
Faustov et al. used only higherQ2 data from other laboratories. It is, of course,
possible that the final EG1b data will lead to some change.
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4 Comments on the Derivations of the Formulas

The polarizability corrections depend on theoretical results that are obtained
using unsubtracted dispersion relations. This has been alluded to before in
this text, and this section will attempt to explain how a dispersion calculation
works and what an unsubtracted dispersion relation is. Also, given that there
may be a small discrepancy between calculation and data, one would like to
assess the validity of unsubtracted dispersion relations.

Also, the hyperfine splitting in muonic hydrogen may be measured soon.
The polarizability corrections have been calculated for this case also [32],
albeit only with older fits to the structure function data and the relevant
formulas, with non-zero lepton mass everywhere, are available [32] from a
single source, so one would like to verify these formulas. It turns out that
keeping the lepton mass does not greatly increase calculational effort or the
length of the formulas, so we can do the groundwork for the muonic hfs case
simultaneously with the assessment of the ordinary hydrogen hfs calculation,
although we shall not display here the formulas for non-zero lepton mass.

The calculation begins by writing out the loop calculation using the known
electron vertices and the definition of the Compton scattering amplitudes in-
volving H1 and H2 as given in (13). One can and should use this formalism for
all the hadronic intermediate states, including the single proton intermediate
states. The single proton intermediate states give contributions to H1 and
H2 that can be (more-or-less) easily calculated given a photon–proton–proton
vertex such as (5). For reference, we give the result for H1,

Hel
1 = −2mp

π

(
q2F1(q2)GM(q2)

(q2 + iε)2 − 4m2
pν

2
+
F 2

2 (q2)
4m2

p

)
. (27)

The criticism of the proton vertex used to obtain the above result is that it is
not demonstrably valid when the intermediate proton is off shell, so the above
expression may or may not be correct overall. However, it is correct at the
proton pole.

One may do a unified calculation of the elastic and inelastic contributions.
Since we do not have a direct calculation of the Hi for the inelastic case,
we have to obtain them using dispersion relations. Also obtaining the elastic
terms from the dispersion relation is no problem [14, 15]. One just needs the
imaginary parts of Hel

i ; these are easy to obtain, and contain Dirac delta-
functions that ensure the elastic scattering condition ν = ±Q2/(2mp) and
hence depends only on the reliable part of (27).

Dispersion relations involve imagining one of the real variables to be a
complex one and then using the Cauchy integral formula to find the functions
Hi at a particular point in terms of an integral around the boundary of some
region. In the present case we “disperse” in ν, treating q2 as a constant while
we do so. Three things are needed to make the dispersion calculation work:

• The Cauchy formula and knowing the analytic structure of the desired
amplitudes.
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Im ν 
2

Re ν 
2

ν 
2

Fig. 4. Contour in complex ν2 plane for applying Cauchy identity to H1 or H2

• The optical theorem, to relate the forward Compton ImHi to inelastic
scattering cross-sections.

• Legitimately discarding contributions from some∞ contour, if the disper-
sion relation is to be “unsubtracted.”

The first two are not in question.
For the present case, the contour of integration is illustrated in Fig. 4,

where one should imagine the outside circle having infinite radius. The result
for H1 begins its existence as

H1(ν, q2) =
Res H1(ν, q2)

∣∣
el

ν2
el − ν2

(28)

+
1
π

∫

cut

ImH1(ν′, q2)
ν′2 − ν2

dν′2 +
1

2πi

∫

|ν′|=∞

H1(ν′, q2)
ν′2 − ν2

dν′2 .

The numerator of the first term is the residue (Res) from the poles in ν
for the elastic part of H1, as from (27). Note that the F 2

2 term in Hel
1 , (27),

is constant in ν, certainly lacking a pole in ν. Hence this term never enters
the dispersion relation, and no F 2

2 term arises from the elastic contribution,
as calculated this way.

The second term leads to the g1 term in the quantity Δ1 given earlier,
after using the optical theorem to relate ImHi to g1.

The third term is the integral over the part of the contour which is the
infinite radius circle. The commonly quoted results for Δpol, which appear in
this chapter, depend on dropping this term. The term is zero, if H1 falls to
zero at infinite |ν|. Assuming this is true, however, appears to be a dramatic
assumption. It fails for Hel

1 alone. Hence, for the assumption to succeed re-
quires an exact cancellation between elastic and inelastic contributions (or a
failure of (27) on the big contour). On the positive side are several considera-
tions. One is that nearly the same derivation gives the GDH sum rule, which
is checked experimentally and works, within current experimental uncertainty
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(8%) [33]. Also, the GDH sum rule is checkable theoretically in QED, where
lowest order and next-to-lowest order perturbation theory calculations can be
done, and the GDH sum rule appears to work [34, 35]. Finally, Regge theory
suggests the full Compton amplitude does fall to zero with energy [36], as
one would like, although Regge theory famously gave wrong high ν behavior
for spin-independent analogs of g1 and g2 [37]. Hence there are indications,
though not decisive proof, supporting the unsubtracted dispersion relation.

The derivation finishes, as noted earlier, by subtracting a term involving
F 2

2 from the relativistic recoil term, so as to obtain exactly the elastic correc-
tions Δel = ΔZ + Δp

R that were obtained (say) by Bodwin and Yennie for a
calculation of the elastic terms only, using (5) at the photon–proton vertices
and no dispersion theory [9]. After adding the same term to the polarizability
corrections in Δ1, one obtains the commonly quoted result for Δ1 [15, 16, 18].
Beyond the historical connection, if one is comfortable with the unsubtracted
dispersion relation, the use of the dispersion theory gives a more secure result
because it uses only the pole part of the photon–proton–proton vertex, so
that the combined elastic and inelastic result does not depend on the general
validity of whatever photon–proton–proton vertex one uses.

5 Conclusion

The evaluation of the polarizability contributions to hydrogen hyperfine
structure, Δpol, based on latest proton structure function data is Δpol =
1.3 ± 0.3 ppm [19]. This is quite similar to the Faustov–Martyenko 2002 re-
sult, which we think is remarkable given the improvement in the data upon
which it is based. Most of the calculated Δpol comes from integration regions
where the photon four-momentum squared is small, Q2 < 1 GeV2.

There is still a modest discrepancy between the hydrogen hfs calculation
and experiment, on the order of 2 ppm. Optimistically, one can hope for
a rapid reconciliation between data and calculation. It surely has not been
missed that using the Kelly form factor [13] value of the Zemach radius and
the new Faustov–Gorbacheva–Martynenko value for Δpol [31] give excellent
agreement between theory and data. Nonetheless, one can argue that other
choices are currently better. The integrals that give ΔZ and Δpol emphasize
the low-Q2 region. The Sick form factors are the only modern ones that are
tuned to fit best at low Q2, and the determination of Δpol in [19] is the only
one that has explicitly used the lower Q2 Jefferson Lab inelastic data.

An interplay between the fields of atomic and nuclear or particle physics
may be relevant to sorting out problem. For one example, the best values
of the proton charge radius currently come from small corrections accurately
measured in atomic Lamb shift [38]. Sick’s value of the charge radius [13], from
the analysis of scattering data, is somewhat larger. The precision of the atomic
measurement of the proton charge radius can increase markedly if the Lamb
shift is measured in muonic hydrogen [39], which could happen in 2007, if the
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Paul Scherrer Institute accelerator schedule holds. In the present context, the
charge radius is noticed by its effect on determinations of the Zemach radius.

For ourselves, we look forward to a high-accuracy resolution of the proton
structure corrections to hydrogen hfs, and also to finishing a clear continuation
of the present program by the evaluation of the muonic hydrogen ground-
state hfs. We have formulas with all lepton masses in place, and are currently
waiting until the final EG1 data is released, which we think will be rather
soon, before proceeding and publishing a numerical evaluation.
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Abstract. Lithium has a number of properties that make it useful for both experi-
mental and theoretical study. Precise spectroscopic measurements of optical transi-
tions in both Li+ and neutral Li are reviewed. Experiments have yielded hyperfine
and fine structure splittings that test QED as well as isotope shifts that determine
the relative nuclear charge radius between isotopes to an accuracy of 2 × 10−17 m.
Experimental and theoretical results agree very well for Li+ and a measurement of
the fine structure of the 1s2p 3P0,1,2 levels is of interest to determine the fine struc-
ture constant. For neutral lithium, additional theoretical work is needed to match
the experimental accuracy for the 2P fine structure splitting.

1 Introduction

Lithium is the lightest naturally occurring solid element in the periodic table.
It has a number of properties that make it a preferred atom to study for exper-
imentalists including a relatively low melting point of 180◦C that facilitates
the generation of an atomic beam and most importantly for the application
of precise spectroscopic techniques, transitions at visible wavelengths where
continuous wave lasers readily operate. These transitions include the Li+ 1s2s
3S1 →1s2p 3P0,1,2 at 548 nm and the D lines in neutral lithium at 670 nm.
Lithium has a number of isotopes, two of which are stable, as shown in Table 1.
This is important when doing precise experiments where nuclear effects are
comparable or exceed the measurement accuracy. The experiment can then
be repeated using different isotopes whose nuclear size differ markedly. This is
especially important for 11Li which has been found to have halo neutrons [1].

Lithium is a multielectron system that precludes a simple analytic solution
to the Schrödinger equation. Theoretical progress remained limited until about
15 years ago when G. W. F. Drake and collaborators began applying the so-
called Hylleraas variational method to initially model two-electron and more
recently three-electron systems [4]. Extensive computations using thousands
of carefully constructed basis functions to represent the wavefunction have
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Table 1. Lithium isotopes

Isotope Natural Nuclear Lifetime
Abundance Spin (msec)

6Li 7.5% 1
7Li 92.5% 3/2
8Li 2 836 ± 6 [2]
9Li 3/2 178.3 ± 0.4 [2]

11Li 3/2 8.59 ± 0.14 [3]

enabled the non-relativistic eigenenergies for helium states to be found with
an accuracy of one part in 1016 [5]. These wavefunctions have in turn been
used to perturbatively evaluate relativistic, hyperfine and QED terms to high
accuracy. Comparison of theoretical energy estimates to measured isotope
shifts has permitted the determination of the nuclear charge radius with an
order of magnitude higher accuracy than is possible in electron scattering
experiments [6, 7].

Several review articles give detailed descriptions of the various experimental
techniques used to measure isotope shifts, fine and hyperfine splittings in neu-
tral and singly ionized lithium [8, 9]. This article presents the results of the
most accurate experiments and emphasizes recent work that has yielded im-
proved values of the relative charge radii for the various lithium isotopes
[6, 7, 10].

This paper is organized as follows. First, Sect. 2 gives a brief background
of the theoretical and experimental techniques used in the most recent work.
Next in Sect. 3, experimental data for the hyperfine and fine structure split-
tings found for the Li+ 1s2s 3S1 and 1s2p 3P0,1,2 states are presented and
compared to theory. The possibility of determining the fine structure constant
from an improved measurement of the 1s2p 3P0,1,2 fine structure splittings is
examined. Section 4 presents results for the 2P fine structure as well as the
D1 and D2 isotope shifts. The latter allow the determination of the relative
nuclear charge radii of the various lithium isotopes. Finally, conclusions re-
garding the status of the work are made.

2 Background

The energy of an atom or ion having a nucleus with charge Z can be ex-
pressed as

E = ENR + Z2α2ERel + Z4α3EQED + EHyp + ENuc . (1)

Here, ENR is the sum of the kinetic energy of the electrons and the Coulomb
interaction of the electrons with each other and with the nucleus. For light
atoms such as lithium, ENR is about 104 times larger than the relativistic
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correction term Z2α2 ERel where α is the fine structure constant. EQED rep-
resents the QED corrections whose largest term is the Lamb shift while EHyp

is the hyperfine interaction. The finite size of the nucleus is described by [11]

ENuc =
2πZe2rc2

3
< Σiδ(ri) > , (2)

where rc is the nuclear charge radius, e is the charge of the proton and the
summation term equals the expectation value of the electron density at the
nucleus where i is summed over all the electrons.

ERel, EQED, EHyp and ENuc can be evaluated if highly accurate wave-
functions corresponding to the non-relativistic energy ENR are known. These
wavefunctions have been found using a so-called Hylleraas basis set [4]. The re-
quired computational time increases rapidly with the electron number. Hence,
Li+ is much easier to model than neutral lithium. Precisely measured hyper-
fine and fine structure intervals provide a stringent test of the theoretical
calculations. The computed wavefunctions can also be used in conjunction
with measured isotope shifts to determine the nuclear charge radius rc.

A common technique to determine a frequency interval is to use a narrow
linewidth laser to excite the transitions to the two energy levels. One then
measures the absolute laser frequency to high accuracy for each transition.
In practice, two separate lasers are commonly used. Each laser is locked to
one of the transitions and the frequency difference of the two lasers is found
by focussing part of each laser beam onto a fast photodiode and measuring
the beat frequency [12]. Large frequency intervals can be found by locking one
laser beam to an iodine reference transition [13]. Recently, the femtosecond fre-
quency comb has simplified absolute frequency measurements [14]. However,
accurately locking a laser to a line center may not be possible for transitions
to various hyperfine levels and/or different isotopes that overlap. In that case,
it is essential to examine the entire spectrum.

3 Li+ (1s)2 3S → 1s2p 3P Transition

Our group has developed a method to measure frequency intervals whereby
an electro-optically modulated laser beam excites either an ion (LIBEO) or
neutral atomic beam (LABEO) that is illustrated in Fig. 1 [15, 16]. It re-
quires only a single laser having frequency ν that is passed through either an
acousto or electro-optic modulator (EOM). The modulation frequency is con-
veniently specified by a frequency synthesizer to one part in 107. The output
laser beam then has frequencies ν, ν ± nνmod where n is an integer. Fluores-
cence, generated by the radiative decay of the excited state, is detected by
a photomultiplier (PMT) as the laser is scanned across the resonance. Each
transition therefore generates multiple peaks in the spectrum that are sepa-
rated by the modulation frequency which in turn permits calibration of the
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Fig. 1. Apparatus. See text for a description. For the case of a neutral atomic beam,
Helmholtz coils surround the region where the laser and atomic beams intersect to
cancel the Earth’s magnetic field

frequency scan. The linearity of the laser scan is checked by monitoring the
transmission of part of the laser beam through a Fabry–Perot etalon.

This technique was used to study the Li+ 1s2s 3S1 → 1s2p 3P0,1,2 tran-
sition [17]. The various hyperfine levels corresponding to this transition are
shown in Fig. 2 for 6,7Li+. The Li+ 1s2s 3S1 state is 59 eV above the ground
state and has a lifetime of 59 sec. It was produced by colliding an electron
beam with a neutral Li beam. The ions were then passed through a Wien filter.
A Faraday cup measured a Li+ current of 250 nA. An argon ion laser pumped
a ring dye laser that had a linewidth of 0.5 MHz. The dye laser beam was
directed nearly collinearly to the ion beam. A wavemeter was used to coarsely
tune the dye laser wavelength in order to locate the resonance. Fluorescence
was detected by a liquid nitrogen cooled photomultiplier.

Figure 3 shows a sample signal obtained when a dye laser beam electro-
optically modulated at 9.200000 GHz excited the transition. The peaks
generated by the laser beam frequency shifted by νmod, have a smaller am-
plitude as most of the laser power was not frequency shifted. The fluorescent
peaks have an asymmetric shape because of the non-Gaussian distribution of
ion velocities. The etalon transmission peaks occurred nearly every 300 MHz
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Fig. 2. Fine and hyperfine levels involved in the Li+1s2s 3S1 → 1s2p 3P0,1,2 tran-
sition. The vertical axis is not drawn to scale

corresponding to the free spectral range of the Fabry–Perot etalon. The free
spectral range of the confocal etalon was monitored for each laser scan us-
ing the electro-optic modulation frequency to account for any change of the
etalon length caused by temperature or pressure fluctuations. The laser scan
was found to be linear to better than one part in 103. The position of each flu-
orescence peak relative to the nearest Fabry–Perot peak was determined using
a fifth-order polynomial to interpolate between the six nearest Fabry–Perot
peak centers to account for any non-linearity of the laser frequency scan.

The measured hyperfine splittings are shown in Table 2. There is excellent
agreement with the results for the 1s2s 3S1 hyperfine splittings obtained by
a so-called laser microwave (LM) experiment [18]. The latter method used
a laser to excite the ions before they passed through a microwave region.
The laser excitation depleted one hyperfine level of the metastable 1s2s 3S1

state which was in turn repopulated if the microwaves were in resonance with
a transition between the metastable state hyperfine levels. A second laser
beam then probed the ions after the microwave region. The data from both
experiments is in excellent agreement with the calculated values [12].

Our experiment determined the 1s2p 3P1,2 fine structure splitting by mea-
suring the frequency difference between transitions A and B shown in Fig. 2
and using the appropriate hyperfine splittings. Table 3 shows our result agrees
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Fig. 3. (a) Fluorescent signal recorded as laser frequency modulated at 9.200000
GHz was scanned across Li+ transitions labeled between hyperfine levels F → F′.
(b) Transmission of dye laser beam through etalon

very well with that found by Riis et al. [12] who precisely measured absolute
laser frequencies for transitions to the various fine structures levels using a
fast ion beam (LIB). Both of these experiments differ sharply with the result
found by Rong et al. [13] who performed a laser heterodyne (LH) experiment
using two frequency-locked dye lasers. One laser was locked to the Li+ tran-
sition while the second laser was locked to an iodine transition. A portion of
each laser beam was then focussed onto a fast photodiode that was connected
to a frequency counter that measured the beat frequency. The results of Rong
et al. also disagree with the Hylleraas variational calculation [12] for both the
1s2p 3P1−2 and 3P0−1 fine structure intervals.



Precision Laser Spectroscopy of Li+ and Neutral Lithium 117

T
a
b
le

2
.

H
y
p

er
fi

n
e

sp
li
tt

in
g
s

o
f

6
,7

L
i+

1
s2

s
3
S

1
a
n

d
1
s2

p
3
P

1
,2

st
a
te

s

Is
o
to

p
e

S
ta

te
In

te
rv

a
l

L
IB

E
O

[1
7
]

M
W

[1
8
]

T
h

eo
ry

[1
2
]

(M
H

z)
(M

H
z)

(M
H

z)

6
L

i
1
s2

s
3
S

1
2
–
1

6
0
0
3
.6

6
±

0
.5

1
6
0
0
3
.6

0
0
±

0
.0

5
0

6
0
0
3
.6

1
4
±

0
.0

2
4

1
–
0

3
0
0
1
.8

3
±

0
.5

1
3
0
0
1
.7

8
0
±

0
.0

5
0

3
0
0
1
.7

6
5
±

0
.0

3
8

1
s2

p
3
P

1
2
–
1

2
8
8
8
.9

8
±

0
.5

9
2
8
8
8
.3

2
7
±

0
.0

2
9

1
–
0

1
3
1
6
.0

6
±

0
.5

9
1
3
1
7
.6

4
9
±

0
.0

4
6

1
s2

p
3
P

2
3
–
2

4
1
2
7
.1

6
±

0
.7

6
4
1
2
7
.8

8
2
±

0
.0

4
3

2
–
1

2
8
5
7
.0

0
±

0
.7

2
2
8
5
8
.0

0
2
±

0
.0

6
0

7
L

i
1
s2

s
3
S

1
5
/
2
−3

/
2

1
9
8
1
7
.9

0
±

0
.7

3
1
9
8
1
7
.6

7
3
±

0
.0

4
0

1
9
8
1
7
.6

8
0
±

0
.0

2
5

3
/
2
−1

/
2

1
1
8
9
1
.2

2
±

0
.6

0
1
1
8
9
0
.0

1
8
±

0
.0

4
0

1
1
8
9
0
.0

1
3
±

0
.0

3
8

1
s2

p
3
P

1
5
/
2
−3

/
2

9
9
6
6
.3

0
±

0
.6

9
9
9
6
5
.2

±
0
.6

9
9
6
6
.1

4
±

0
.1

3
3
/
2
−1

/
2

4
2
3
9
.1

1
±

0
.5

4
4
2
3
8
.8

6
±

0
.2

0
1
s2

p
3
P

2
7
/
2
−5

/
2

1
1
7
7
4
.0

4
±

0
.9

4
1
1
7
7
5
.8

±
0
.5

1
1
7
7
3
.0

5
±

0
.1

8
5
/
2
−3

/
2

9
6
0
8
.9

0
±

0
.4

9
9
6
0
8
.1

2
±

0
.1

5
3
/
2
−1

/
2

6
2
0
4
.5

2
±

0
.8

0
6
2
0
3
.6

±
0
.5

6
2
0
3
.2

7
±

0
.3

0



118 W. A. van Wijngaarden and G. A. Noble

Table 3. Li+ 1s2p 3P fine structure splittings

Interval Experiment Technique Theory[19]
(MHz) (MHz)

3P1−2 62667.4 ± 2.0 LH [13] 62679.4 ± 0.5
62678.41 ± 0.65 LIB [12]
62679.46 ± 0.98 LIBEO [17]

3P0−1 155709.0 ± 2 LH [13] 155703.4 ± 1.5
155704.27 ± 0.66 LIB[12]

Our experimental uncertainty arises from the asymmetric lineshape of the
fluorescent peaks. The full width at half maximum (FWHM) natural linewidth
estimated using the 44 ns radiative lifetime of the 1s2p 3P state is 3.7 MHz.
Hence, an experiment that determined the line center to 0.1% as is done in
other careful spectroscopic work has the potential to determine the 1s2p 3P0−1

interval to one part in 4×108. Such an experiment could be done using a single
ion in a trap or a so-called optical double resonance experiment [8]. It would
be interesting if theory could calculate the fine structure to a few kHz as this
would then enable the determination of the fine structure constant. Work is
underway to evaluate higher order QED effects [19]. It would be of interest
to compare such a result for α with the recent value as determined by the
electron g−2 experiment [20, 21].

4 Li D Lines

The lithium D lines have been studied by a number of different experimental
techniques [8, 22]. The advantage of our method using an electro-optically
modulated laser to excite an atomic beam is that one single experiment yields
information about the hyperfine intervals of both the ground and excited
states, the 2P fine structure splitting as well as the D1 and D2 isotope shifts
[10]. A stringent test is to check that the result for the ground state hyperfine
splitting agrees with the value obtained using the atomic beam magnetic res-
onance method which is known to one part in 109 [23]. Our measured 2S1/2

hyperfine splittings are within 40 kHz of the accepted values for both 6,7Li.
Figure 4 illustrates the 12 lines comprising the D lines. The experiment

used a neutral atomic beam of lithium that was orthogonally intersected by a
laser beam to eliminate the first-order Doppler shift. Electro-optic modulators
operating at 6.8 and 9.2 GHz were used to avoid overlapping peaks. Data
were taken separately using 6Li and natural lithium as shown in Figs. 5 and 6,
respectively. Data were recorded by a fast digital storage oscilloscope such that
each point corresponded to a frequency interval of 12 kHz. The fluorescence
peak positions were found by fitting a sum of Lorentzian functions to the
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Fig. 4. Neutral lithium energy levels involved in D line transitions. The vertical
energy axis is not drawn to scale. The positions of the various hyperfine levels are
indicated relative to the center of gravity energy of a state Ecg = ΣF (2F + 1)EF/
ΣF (2F + 1). All units are in MHz

spectrum using MATLAB 7.0. Each fluorescence peak position was found
using the same procedure as described previously for the Li+ work.

A complication arises in analyzing peaks 11 and 12 because the 5.8 MHz
fullwidth at half maximum (FWHM) natural linewidth of the 2S–2P transition
is comparable to the 7Li 2P3/2 hyperfine splittings as shown in Fig. 4. This
causes the observed peaks to have an asymmetric shape as shown in Figs. 7
and 8. Peaks 11 and 12 were fit using three Lorentzian functions. The relative
center frequencies of the three peaks were set equal to the 2P3/2 hyperfine
intervals that were previously determined [24]. The red fitted curve appearing
in each of Figs. 7 and 8 was found by varying the center frequency of the first
peak appearing in the laser scan as well the amplitudes and widths of all three
Lorentzian functions to obtain the optimum fit to the data.

For peak 11, the fluorescence is dominated by the radiative decay of the
F = 3 hyperfine level of the 2P3/2 state. The linearly polarized laser beam
preferentially excites more atoms from the 2S1/2 F = 2 level to the F = 3 level
than to the F = 2 and F = 1 levels of the 2P3/2 state. Moreover, selection
rules only allow the 2P3/2 F = 3 level to radiatively decay to the F = 2
ground state level from which it can be re-excited by the laser. In contrast,
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Fig. 5. Excitation of 6Li. (a) shows a scan where the laser-excited transitions 1–6
illustrated are in Fig. 4. The first four peaks are shown in (b) along with the red
curve fitted to the data as is discussed in the text

the 2P3/2 F = 1 and 2 levels can also decay to the F = 1 ground state level
which is not in resonance with the laser beam.

For peak 12, no one 2P3/2 hyperfine level has a dominant contribution
to the fluorescent signal. This can be understood by modeling the effect of
repeated excitation and radiative decay as an atom passes through the lin-
early polarized laser beam. An atom, initially entering the laser beam, was
assumed to have all of its ground state hyperfine sublevels equally populated.
A computer program modeled changes of the sublevel populations caused by
the repeated laser excitation and radiative decay. The fluorescence contribu-
tions to peak 12 from the 2P3/2 F = 0, 1 and 2 hyperfine levels were predicted
to be 28%, 36% and 36%, respectively. This compares very closely with the
averaged fitted peak amplitude values of 29%, 34% and 37%.
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Fig. 6. Excitation of natural lithium. (a) shows a scan where transitions 5 and 6 of
6Li and transitions 7–12 of 7Li, as illustrated in Fig. 4, were excited. (b) shows the
first six peaks where the gray curve is fitted to the data as is discussed in the text

The 2P fine structure splittings were found by measuring the frequency
difference between the D2 and D1 transitions illustrated in Fig. 4. For 7Li, the
2P fine structure splitting was found by determining the frequency separating
peaks 11 and 12 from peaks 7 to 10 and using the appropriate hyperfine
splittings. Our hyperfine splittings of the 2P1/2 state agreed with the most
accurate measurements in the literature [22]. The 2P fine structure splittings
using peaks 11 and 12 were found to be 10053.116 ± 0.079 and 10053.123 ±
0.086 MHz, respectively. These two values were averaged to give the result
listed in Table 4.

The 6Li 2P fine structure was found as follows. The repeated excitation
of the 2S/2 F = 1/2 level to the 2P3/2 F = 1/2 and 3/2 levels and their
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Fig. 7. Analysis of peak 11. The red fitted curve is comprised of three peaks to the
2P3/2 state hyperfine levels F = 1, 2, 3 as discussed in the text. The fluorescence
contributions from the 2P3/2 F = 1, 2 hyperfine levels are magnified by a factor of 4

subsequent radiative decay do not affect the relative populations of the 2S1/2

F = 1/2 mF = ±1/2 hyperfine sublevels. The fluorescence contributions from
the 2P3/2 F = 1/2 and 3/2 levels were calculated to be 47.8% and 52.2%,
respectively. Hence, using the 2P3/2 hyperfine splitting, peak 6 is shifted 1.987
MHz above the 2P3/2 center of gravity as indicated in Fig. 4. The shift of
peak 5 below the 2P3/2 center of gravity is found by measuring the frequency
interval separating peaks 5 and 6 and subtracting the aforementioned shift of
peak 6 and the hyperfine splitting of the 6Li ground state which is known to
very high accuracy [23]. The shifts of peaks 5 and 6 relative to the 2P3/2 center
of gravity were comparable in magnitude but opposite in sign. Hence, the
effect of these shifts was minimized by determining the 6Li 2P fine structure
by averaging the values obtained using peaks 5 and 6 relative to peaks 1–4
giving the result listed in Table 4.

The D1 isotope shift can be found by measuring the frequency inter-
vals separating the 6Li D1 transition peaks 1–4 from the corresponding 7Li
D1 peaks 7–10 and using the hyperfine splittings of the 2S1/2 and 2P1/2

states. Ideally, data would be taken using a lithium sample consisting of equal
amounts of the two isotopes 6,7Li. This was not done as increasing the amount
of 6Li enhances the amplitude of peak 6 which overlaps with peaks 7 and 8.
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Fig. 8. Analysis of peak 12. The red fitted curve is comprised of three peaks to the
2P3/2 state hyperfine levels indicated as discussed in the text

The isotope shift was therefore found by first finding the separation of peaks
7–10 relative to peak 5 for scans obtained using natural lithium as shown in
Fig. 6. The frequency interval separating peak 5 from peaks 1 to 4 was then
found from laser scans using 6Li as shown in Fig. 5.

Table 4. Neutral lithium 2P fine structure (FS) and D1 isotope shift

Quantity Experiment Technique Theory[25]
(MHz) (MHz)

6Li 2P FS 10052.76 ± 0.22 LC [26] 10050.846 ± 0.012
10051.62 ± 0.20 LAB[27]
10052.964 ± 0.050 LABEO[10]

7Li 2P FS 10053.24 ± 0.22 LC [26] 10051.214 ± 0.012
10053.184 ± 0.058 ODR [28]
10053.4 ± 0.2 LAB [27]
10053.119 ± 0.058 LABEO [10]

D1 Isotope Shift 10534.3 ± 0.3 LAB[29] 10534.12 ± 0.07
10533.13 ± 0.15 LAB [27]
10533.160 ± 0.068 LAB [30]
10534.039 ± 0.070 LABEO[10]
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Table 4 lists the most accurate published 2P fine structure splittings. Our
measurements agree very well with the results of level crossing spectroscopy
(LC) [26] as well as an optical double resonance experiment (ODR) [28] for
both 6,7Li. There is only disagreement with the result for the 6Li 2P fine
structure interval as found by a laser atomic beam (LAB) measurement [27].
The latter experiment uses a Fabry–Perot etalon to monitor the change of the
laser frequency during a scan. Unfortunately, it is difficult to maintain proper
calibration of the etalon as its length can be affected by pressure and tem-
perature fluctuations that have caused errors in previous work [31]. All of the
experiments obtain values for the fine structure that are several MHz greater
than the theoretical value [25]. The uncertainty listed for the theoretical value
in Table 4 is the computational uncertainty. It does not consider the effect of
QED correction terms proportional to α4 times the Rydberg energy which for
helium contribute several MHz to the fine structure splitting [32].

Table 4 also lists the most accurate published results for the D1 isotope
shifts. Our value agrees with an earlier laser atomic beam measurement [29]
and also is very close to the theoretical estimate [25] but disagrees with the two
other measurements. Further insight into these isotope shifts can be obtained
by determining the nuclear charge radius using [4]

Δrc
2 = rc

2(6Li)− rc2(7Li) = (δνjk − δEjk)/Cjk . (3)

Here, δνjk is the measured isotope shift for the transition between states j and
k, δEjk is the calculated isotope shift difference for the two states excluding
the nuclear size correction ENuc and Cjk is proportional to the square of the
electron wavefunction at the nucleus.

Table 5 lists the results for a number of experiments that studied various
transitions in Li+ and neutral Li. The data listed for the 6Li nuclear charge
radius rc were found using the measured value for 7Li of 2.39±0.03 fm obtained
in an electron scattering experiment [33]. Our result for the D2 isotope shift
listed in Table 5 was obtained by adding the 7Li 2P fine structure splitting
to the D1 isotope shift and subtracting the 6Li 2P fine structure splitting. An
important test of each experiment is to check whether the results obtained
for different transitions give consistent results. All three results for the Li+

transitions made by Riis et al. [12] agree well with each other as do our results
[10]. The two results for Δr2c found by Scherf et al. [27] disagree by nearly 10
times the stated uncertainty. The remaining isotope shifts found for the Li 2
2S1/2 → 3 2S1/2 transition and one value for the D1 isotope shift were all found
by the same group. For the two photon 2S1/2 → 3S1/2 transition, the atoms
passed through an optical cavity that enhanced the power of the dye laser
tuned at 610 nm. The uncertainty of their first measurement [30] apparently
did not adequately take into account the ac Stark shift which was estimated
in their later experiment to increase the uncertainty by 110 kHz [6, 7]. Both
isotope shifts of their initial experiment yield results for Δr2c which are lower
than the results of our work, Riis et al. and an electron scattering experiment
[33] as well as the results predicted by the nuclear theory [34].
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The value of Δr2c obtained by averaging the results of the Riis experiment
[12] that studied the Li+ 23S1 →3P0,1,2 transitions and the Ewald experiment
[6] that examined the Li 2 3S1/2 → 3 2S1/2 transition is 0.700 fm2. This is
in excellent agreement with the average value of our two measured values of
0.704 fm2. However, the uncertainty of our results is due about equally to
experimental and theoretical uncertainties whereas it is dominated by exper-
imental effects in the other experiments. The uncertainties listed in Table 5
for rc(6Li) are dominated by the accuracy of rc(7Li). The average value of the
6Li charge radius obtained by averaging the results of the experiments by Riis
et al., Ewald et al. and our work is 2.53 fm which is listed in Table 6.

The charge radii of the radioactive lithium isotopes were found using the
accelerator at the GSI facility in Darmstadt, Germany [6, 7]. The 8,9Li nuclei
were generated using a 11.4 MeV/u beam of 12C incident on a tungsten target.
The reaction products were then ionized and passed through a magnetic mass
separator before being stopped by a graphite foil. The graphite was heated
to 1800− 1900◦C using a 4 W CO2 laser to enable the lithium to diffuse
out of the foil. The lithium atoms were then laser ionized and detected after
passing through a quadrupole mass spectrometer. 8,9Li beams of 2× 105 and
1 × 105 atoms/sec were obtained. The atoms were laser ionized when they
passed through an optical cavity. For the case of the two-photon 2S1/2 →
3S1/2 transition, a dye laser operating at 610 nm was tuned to maximize the
production of Li+. Part of this laser was focussed onto a fast photodiode along
with a diode laser locked to an iodine reference line. The isotope shift was then
found by measuring the beat frequency.

Table 6. Lithium charge and mass radii

Isotope Δr2c Charge Radius Mass Radius [1]
(fm)2 (fm) (fm)

6Li 0.636 ± 0.051 2.53 ± 0.03 2.35 ± 0.03
7Li 2.39 ± 0.03 [33] 2.35 ± 0.03
8Li −0.43 ± 0.11 2.30 ± 0.04 [7] 2.38 ± 0.02
9Li −0.72 ± 0.14 2.24 ± 0.04 [7] 2.32 ± 0.02

11Li 3.10 ± 0.17

Table 6 lists values for the charge and mass radii for the lithium isotopes. It
is not surprising that the mass and charge radii differ as the quark constituents
of the nuclei do not have equal charge. The mass radii of the radioactive
lithium isotopes was determined by scattering an accelerator-generated beam
of these nuclei from a target nucleus and measuring the interaction cross-
section given by [1]:

σI = π[R2
I +R2

T] . (4)
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Various targets composed of Be, C and Al were used in order to separately
determine the radii of the target RT and incoming nuclei RI. The root mean
square mass radius of the nucleon distribution was then deduced from RI

using a variety of nuclear models. Values for the mass radii found using the
so-called Gaussian and harmonic oscillator nucleon distributions differed by
less than the experimental uncertainties [35, 36]. The mass radius remains
nearly constant for 6,7,8,9Li while a small decrease is evident for the charge
radius. It will be interesting to compare the mass and charge radii of 11Li
to determine whether the charge radius is also significantly perturbed by the
halo neutrons as is the mass radius [37].

5 Conclusions

Important advances in both theory and experiment have been made in recent
years in both Li+ and neutral lithium. For the case of Li+ it will be interesting
to improve both the theory and measurement to reduce the uncertainty of the
1s2p 2 3P fine and hyperfine structure splittings to 1 kHz. Future experiments
with this level of accuracy would not only test QED but also enable the fine
structure constant α to be determined with an accuracy competitive with
other techniques that yield conflicting results [20, 21]. For the case of the
neutral lithium D lines, the 2P fine structure as measured using a variety
of techniques by a number of experimental groups, all agree. The theoretical
result is significantly lower than the measured value. It is interesting that the
variational calculations yield a D1 isotope shift that agrees much better with
the experimental value than is the case with the fine structure. The reason is
that various QED terms are mass independent and cancel in the calculation
of an isotope shift but cannot be neglected when evaluating the fine structure
[4]. Hence, further theoretical work to improve the estimate of the lithium 2P
fine structure is needed.

Optically measured isotope shifts have permitted the nuclear charge radii
of the various lithium isotopes to be found with an experimental uncertainty
of ≤ 0.02 fm. It is remarkable that these experiments yield more accurate
results than is obtained using electron scattering. Ironically, one now has a
better understanding of how an electron in the lithium atom interacts with the
nucleus than of how a macroscopic electron beam scatters from a Li nucleus.
This underscores the incredible advances made in both atomic theory and
experiment and motivates future work in both Li+ and neutral lithium.
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7. G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H. J. Kluge,
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(1999). 113
15. W. A. van Wijngaarden: Adv., At., Mol., Opt. Phys. 36, 141 (1996). 113
16. W. A. van Wijngaarden: Proc. of Int. Conf. on Atomic Phys. 16, 305 (1999). 113
17. J. J. Clarke and W. A. van Wijngaarden: Phys. Rev. A 67, 012506 (2003). 114, 117, 118
18. J. Kowalski, R. Neumann, S. Noehte, K. Scheffzek, H. Suhr and G. zu Putlitz:

Hyp. Int. 15/16, 15 (1983). 115, 117
19. T. Zhang, Z. C. Yan and G. W. F. Drake: Phys. Rev. Lett. 77, 1715 (1996). 118
20. G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio and B. Odom: Phys. Rev. Lett.

97, 030802 (2006). 118, 127
21. G. W. F. Drake: Can. J. Phys. 80, 1195 (2002). 118, 127
22. J. Walls, R. Ashby, J. J. Clarke, B. Lu and W. A. van Wijngaarden: Eur. Phys.

J. D 22, 159 (2003). 118, 121
23. A. Beckmann, K. D. Böklen and D. Elke: Z. Phys. 270, 173 (1974). 118, 122
24. E. Arimondo, M. Inguscio and P. Violino: Rev. Mod. Phys. 49, 31 (1977). 119
25. Z. C. Yan and G. W. F. Drake: Phys. Rev. A 66, 042504 (2002). 123, 124
26. K. C. Brog, T. G. Eck and H. Wieder: Phys. Rev. 153, 91 (1967). 123, 124
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1 Introduction

The purpose of this paper is to summarize recent progress in the use of high-
precision atomic theory and spectroscopy to develop a new tool to probe the
properties of the nucleus. Of particular interest will be the so-called halo nu-
clei first discovered more than 20 years ago by I. Tanihata et al. [1, 2]. They
observed that some isotopes of the lightest elements close to the neutron
dripline have nuclear matter radii that by far exceed those of their neighbors.
At that time, it was possible to extract the matter (mass) radii from inter-
action cross-section measurements, with the results shown in Fig. 1. It soon
became evident that these large radii reflect the presence of weakly bound
neutrons whose wavefunctions extend far into the classically forbidden region
far from the more tightly bound nuclear core. Hansen and Jonson [3] first
used the term “halo nucleus” to describe such systems. As reviewed by Tani-
hata [4], the halo structure reveals itself most clearly as a difference between
the nuclear mass radius and the nuclear charge radius. Since the neutrons
are massive but uncharged, one expects the mass radius to be larger than
the charge radius. Moreover, the change in the charge radius relative to the
corresponding isotope without the halo neutrons provides a sensitive probe of
the core structure, and the effective low-energy nucleon–nucleon interaction
potential.

This new form of nuclear matter has been extensively investigated us-
ing various techniques from nuclear and atomic physics (for review see, e.g.,
[4]) and many properties were determined. However, a nuclear-model-free
direct measurement of the nuclear charge radius was not possible until re-
cently. Based on new and very specialized techniques two groups succeeded
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Fig. 1. Comparison of nuclear matter radii of helium, lithium and beryllium isotopes
from Tanihata et al. [1, 2, 5]

in measuring for the first time isotope shifts of radioactive very light nuclei
with a precision that is sufficient to extract nuclear charge radii. At Argonne
National Lab the charge radius of 6He was obtained from laser spectroscopy
on helium atoms in a magneto-optical trap, while a collaboration from GSI
Darmstadt and the University of Tübingen developed a method for high-
resolution resonance ionization spectroscopy and measured the charge radii of
8,9Li at GSI [6] and of 11Li [7] at the ISAC mass separator at TRIUMF. To
determine the charge radius from the isotope shift it is necessary to calculate
the mass-dependent part of the isotope shift with high accuracy. While this
was possible for one- and two-electron systems already since the 1980s, as first
suggested by Drake for helium [8], for lithium-like three-electron systems the
breakthrough came in 2000 when Yan and Drake succeeded in calculating the
mass effect in transitions of neutral lithium with a relative accuracy of bet-
ter than 5× 10−6 [9]. These calculations were the foundations of the lithium
experiment and similar calculations are in progress for the singly charged
beryllium ion. 11Be is the archetype of a one-neutron halo and has been the
subject of many investigations [4, 5 W. Geithner et al., PRL 83, 3792 (1999)].
After the charge radii determinations of borromean two-neutron halo systems
of first (11Li) and second kind (6He), this would be the first measurement
of a nuclear-model-independent charge radius of a one-neutron halo nucleus.
Hence, it should provide information that is complementary to that obtained
in the other cases.
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There is now a large body of related work where the isotope shift method
has been used to measure other known nuclear radii as reviewed by Drake
et al. [10]. The good agreement obtained in these cases gives confidence that
the isotope shift method can indeed be used to determine the size of light
nuclei. There are also other high-precision measurements for absolute transi-
tion frequencies, as reviewed by Morton et al. [11] and Drake and Martin [12].
The comparison between theory and experiment provides significant tests of
the relativistic and QED corrections that are also needed for the analysis of
isotope shift measurements.

The remainder of this chapter is organized as follows. The next two sections
give a brief overview of the theory needed to calculate the atomic isotope
shift to sufficient accuracy so that a value for the nuclear charge radius can
be extracted from the measured isotope shift. The following two sections then
describe the experiments that have been performed for the cases of 6He and
11Li, including a brief discussion of the significance of the results for theories
of nuclear structure. This is followed by a concluding section that discusses
prospects for future work in this area, including the determination of nuclear
charge radii directly from absolute transition frequency measurements.

2 Theory

Table 1 summarizes the various contributions to the energy, expressed as
a double expansion in powers of α � 1/137.036 and the electron reduced
mass ratio μ/M � 10−4. Since all the lower-order terms can now be calcu-
lated to very high precision, including the QED terms of order α3 Ry, the
dominant source of uncertainty comes from the QED corrections of order
α4 Ry or higher. For the isotope shift, the QED terms independent of μ/M
cancel out, and so it is only the radiative recoil terms of order α4μ/M �

Table 1. Contributions to the energy and their orders of magnitude in terms of Z,
μ/M � 10−4, and α2 = 0.532 513 5450 × 10−4

Contribution Magnitude

Nonrelativistic energy Z2

Mass polarization Z2μ/M
Second-order mass polarization Z2(μ/M)2

Relativistic corrections Z4α2

Relativistic recoil Z4α2μ/M
Anomalous magnetic moment Z4α3

Hyperfine structure Z3gIμ
2
0

Lamb shift Z4α3 lnα+ · · ·
Radiative recoil Z4α3(lnα)μ/M
Finite nuclear size Z4〈r̄c/a0〉2
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10−12Ry (∼ 10 kHz) that contribute to the uncertainty. Since this is much
less than the finite nuclear size correction of about 1 MHz, the comparison
between theory and experiment clearly provides a means to determine the
nuclear size.

2.1 Solution to the Nonrelativistic Schrödinger
Equation for Helium

The starting point for the calculation is to find accurate solutions to the
Schrödinger equation for helium. Considering first the case of infinite nuclear
mass, the equation in atomic units is given by

(
−1

2
∇2

1 −
1
2
∇2

2 −
Z

r1
− Z

r2
+

1
r12

)
Ψ(r1, r2) = EΨ(r1, r2) . (1)

The usual methods of theoretical atomic physics, such as the Hartree–Fock
approximation or configuration interaction methods, are not capable of yield-
ing results of spectroscopic accuracy. For this reason, specialized methods
have been developed. As long ago as 1929, Hylleraas suggested expanding the
wavefunction in an explicitly correlated variational basis set of the form

Ψ(r1, r2) =
∑

i,j,k

aijk r
i
1r

j
2r

k
12 e−αr1−βr2 YM

l1l2L(r̂1, r̂2) , (2)

where r12 = |r1 − r2| is the interelectronic separation, and YM
l1l2L is a vector-

coupled product of spherical harmonics to form a state of total angular mo-
mentum L and component M .

The coefficients aijk are linear variational parameters, and α and β are
nonlinear variational coefficients that set the distance scale for the wavefunc-
tion. The usual strategy is to include all powers such that i + j + k ≤ Ω (a
so-called Pekeris shell), where Ω is an integer. In addition, the nonlinear pa-
rameters α and β are separately optimized for each set of angular momentum
terms and, as discussed in [8, 13, 14], it is desirable further to “double” the
basis set so that each set of powers {i, j, k} is included two (or more [15]) times
with different values of α and β. Finally, a complete optimization is performed
with respect to variations in the αs and βs so as to minimize the energy. For
sufficiently large basis sets, the doubling is very important because it helps to
preserve the numerical stability of the wavefunction, gives improved accuracy
for a given total size of basis set, and avoids the disastrous loss of accuracy
that normally sets in for variational calculations involving the higher-lying
Rydberg states [8, 13, 14].

For high-precision calculations, and especially for the isotope shift, it is
necessary to also include the motion of the nucleus in the center-of-mass (CM)
frame. A transformation to CM plus relative coordinates yields the additional
−(μ/M)∇1 · ∇2 mass polarization term in the modified Hamiltonian:

H = −1
2
∇2

1 −
1
2
∇2

2 −
Z

r1
− Z

r2
+

1
r12
− μ

M
∇1 · ∇2 (3)
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in reduced mass atomic units e2/aμ, where aμ = (m/μ)a0 is the reduced mass
Bohr radius, and μ = mM/(m +M) is the electron reduced mass, M is the
nuclear mass, and a0 = �

2/me2 is the Bohr radius. The mass polarization
term can be treated by including it explicitly in the Hamiltonian, and the
coefficient of the second-order term extracted by differencing [13, 14].

As an example, Table 2 shows a convergence study for the very well stud-
ied case of the ground state of helium [15]. The quantity R in the last col-
umn is the ratio of successive differences between the energies. A constant or
slowly changing value of R indicates smooth convergence and allows a reli-
able extrapolation to Ω → ∞. The results clearly indicate that convergence
to 20 or more figures can be readily obtained, using conventional quadruple
precision (32 decimal digit) arithmetic in FORTRAN. The very large calcu-
lation by Schwartz [17], using 104-digit arithmetic, provides a benchmark for
comparison.

2.2 Variational Basis Sets for Lithium

The same variational techniques can be applied to lithium and other three-
electron atomic systems. In this case, the terms in the Hylleraas correlated
basis set have the form

Table 2. Convergence study for the ground state of helium (infinite nuclear mass
case) [15]. N is the number of terms in the “triple” basis set

Ω N E(Ω) R(Ω)

8 269 –2.903 724 377 029 560 058 400
9 347 –2.903 724 377 033 543 320 480

10 443 –2.903 724 377 034 047 783 838 7.90
11 549 –2.903 724 377 034 104 634 696 8.87
12 676 –2.903 724 377 034 116 928 328 4.62
13 814 –2.903 724 377 034 119 224 401 5.35
14 976 –2.903 724 377 034 119 539 797 7.28
15 1150 –2.903 724 377 034 119 585 888 6.84
16 1351 –2.903 724 377 034 119 596 137 4.50
17 1565 –2.903 724 377 034 119 597 856 5.96
18 1809 –2.903 724 377 034 119 598 206 4.90
19 2067 –2.903 724 377 034 119 598 286 4.44
20 2358 –2.903 724 377 034 119 598 305 4.02
Extrapolation ∞ –2.903 724 377 034 119 598 311(1)

Korobov [16] 5200 –2.903 724 377 034 119 598 311 158 7
Korobov extrap. ∞ –2.903 724 377 034 119 598 311 159 4(4)
Schwartz [17] 10259 –2.903 724 377 034 119 598 311 159 245 194 404 4400
Schwartz extrap. ∞ –2.903 724 377 034 119 598 311 159 245 194 404 446
Goldman [18] 8066 –2.903 724 377 034 119 593 82
Bürgers et al. [19] 24 497 –2.903 724 377 034 119 589(5)
Baker et al. [20] 476 –2.903 724 377 034 118 4
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rj1
1 rj2

2 rj3
3 rj12

12 rj23
23 rj31

31 e−αr1−βr2−γr3 YLM
(�1�2)�12,�3

(r1, r2, r3)χ1 , (4)

where YLM
(l1l2)l12,l3

is again a vector-coupled product of spherical harmonics,
and χ1 is a spin function with spin angular momentum 1/2. As for helium,
the usual strategy is to include all terms from (4) such that

j1 + j2 + j3 + j12 + j23 + j31 ≤ Ω (5)

and study the eigenvalue convergence as Ω is progressively increased. The
lithium problem is much more difficult than helium both because the inte-
grals over fully correlated wavefunctions are more difficult, and because the
basis set grows much more rapidly with increasing Ω. Nevertheless, there has
been important progress in recent years [9, 21, 22, 23, 24], and results of
spectroscopic accuracy can be obtained for the low-lying states.

2.3 Relativistic Corrections

This section briefly summarizes the lowest-order relativistic corrections of
order α2 Ry and the relativistic recoil corrections of order α2μ/M Ry. The
well-known terms in the Breit interaction [25] (including for convenience the
anomalous magnetic moment terms of order α3 Ry) give rise to the first-order
perturbation correction

ΔErel = 〈ΨJ |Hrel|ΨJ〉 , (6)

where ΨJ is a nonrelativistic wavefunction for total angular momentum J =
L + S and Hrel is defined by (in atomic units)

Hrel =
(
μ

me

)4

B1 +
(
μ

me

)3 [
B2 +B4 +Bso +Bsoo +Bss +

me

M
(Δ̃2 + Δ̃so)

+ γ

(
2Bso +

4
3
Bsoo +

2
3
B

(1)
3e + 2B5

)
+ γ

me

M
Δ̃so

]
(7)

with γ = α/(2π). The factors of (μ/me)4 = (1 − μ/M)4 and (μ/me)3 =
(1− μ/M)3 arise from the mass scaling of each term in the Breit interaction,
while the terms Δ̃2 and Δ̃so are dynamical corrections arising from the trans-
formation of the Breit interaction to CM plus relative coordinates [26]. These
latter terms are often not included in atomic structure calculations, but they
make an important contribution to the isotope shift. As usual, B1 denotes the
p4 relativistic variation of mass with velocity, B2 is the orbit–orbit interaction,
B4 contains the Dirac delta-function terms, and Bso, Bsoo, and Bss represent
the spin–orbit, spin-other-orbit and spin–spin interactions, respectively. The
relativistic recoil “Stone” terms are [26]

Δ̃2 = −Zα
2

2

{
1
r1

(p1 + p2) · p1 +
1
r31

r1 · [r1 · (p1 + p2)]p1

+
1
r2

(p1 + p2) · p2 +
1
r32

r2 · [r2 · (p1 + p2)]p2

}
, (8)
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Δ̃so =
Zα2

2

(
1
r31

r1 × p2 · σ1 +
1
r32

r2 × p1 · σ2

)
. (9)

It is then a relatively straightforward matter to calculate accurate expectation
values for these operators. Also, asymptotic expansions have been derived for
the matrix elements and compared with the direct variational calculations, as
discussed in [14].

2.4 QED Corrections

For a many-electron atom, the total QED shift of order α3 Ry consists of
two parts—an electron-nucleus part EL,1 (the Kabir-Salpeter term [27]) and
an electron–electron term EL,2 originally obtained by Araki [28] and Sucher
[29]. The EL,2 term is relatively small and straightforward to calculate. The
principal computational challenges come from the EL,1 term given by (in
atomic units)

EL,1 =
4
3
Zα3〈δ(r1) + δ(r2)〉

[
lnα−2 − β(1sn�) +

19
30

]
, (10)

where β(1sn�) is the two-electron Bethe logarithm arising from the emission
and re-absorption of a virtual photon (see Fig. 2). It is the logarithmic re-
mainder after mass renormalization and is defined by

β(1sn�) =
N
D =

∑

i

|〈Ψ0|p1 + p2|i〉|2(Ei − E0) ln |Ei − E0|
∑

i

|〈Ψ0|p1 + p2|i〉|2(Ei − E0)
. (11)

The foregoing equations are virtually identical to the corresponding
one-electron (hydrogenic) case, except that there the δ-function matrix el-
ements can be replaced by their hydrogenic value 〈δ(r1)+δ(r2)〉 → Z3/(πn3).

The accurate calculation of β(1sn�) has been a long-standing problem in
atomic physics. The problem has recently been solved by use of a discrete
variational representation of the continuum in terms of pseudostates [30]. The
key idea is to define a variational basis set containing a huge range of dis-
tance scales through multiple sets of exponential scale factors α and β that

Ψ0

hν

Ψi

Ψ0

Fig. 2. Feynman diagram for the electron self energy
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themselves span many orders of magnitude. the Bethe logarithm comes al-
most entirely from virtual excitations of the inner 1s electron to p-states lying
high in the photoionization continuum, and so the basis set must be extended
to very short distances for this particle. The outer electrons are to a good
approximation just spectators to these virtual excitations.

Results for the low-lying states of helium and the He-like ions are listed
in Table 3 (see also Korobov [31]). In order to make the connection with
the hydrogenic Bethe logarithm more obvious, the quantity tabulated is
ln(k0/Z

2Ry). The effect of dividing by a factor of Z2 is to reduce all the
Bethe logarithms to approximately the same number β(1s) = 2.984 128 556
for the ground state of hydrogen.

Table 4 compares the Bethe logarithms for the two lowest S-states of
lithium with those for the Li-like ions Li+(1s2 1S) and Li2+(1s 2S). The
comparison emphasizes again that the Bethe logarithm is determined almost
entirely by the hydrogenic value for the 1s electron and is almost independent
of the state of excitation of the outer electrons or the degree of ionization.

3 Theoretical Isotope Shifts

The various contributions to the isotope shift are listed in Table 5 for 6He
relative to 4He and Table 6 for 11Li relative to 7Li. The results are expressed
as contributions to the isotope shift for the ionization energy of each state

Table 3. Bethe logarithms ln(k0/Z
2Ry) for He-like atoms, from [30] (see also [31])

State Z = 2 Z = 3 Z = 4 Z = 5

1 1S 2.983 865 9(1) 2.982 624 558(1) 2.982 503 05(4) 2.982 591 383(7)
2 1S 2.980 118 275(4) 2.976 363 09(2) 2.973 976 98(4) 2.972 388 16(3)
2 3S 2.977 742 36(1) 2.973 851 679(2) 2.971 735 560(4) 2.970 424 952(5)
2 1P 2.983 803 49(3) 2.983 186 10(2) 2.982 698 29(1) 2.982 340 18(7)
2 3P 2.983 690 84(2) 2.982 958 68(7) 2.982 443 5(1) 2.982 089 5(1)
3 1S 2.982 870 512(3) 2.981 436 5(3) 2.980 455 81(7) 2.979 778 086(4)
3 3S 2.982 372 554(8) 2.980 849 595(7) 2.979 904 876(3) 2.979 282 037
3 1P 2.984 001 37(2) 2.983 768 943(8) 2.983 584 906(6) 2.983 449 763(6)
3 3P 2.983 939 8(3) 2.983 666 36(4) 2.983 479 30(2) 2.983 350 844(8)
4 1S 2.983 596 31(1) 2.982 944 6(3) 2.982 486 3(1) 2.982 166 154(3)
4 3S 2.983 429 12(5) 2.982 740 35(4) 2.982 291 37(7) 2.981 988 21(2)
4 1P 2.984 068 766(9) 2.983 961 0(2) 2.983 875 8(1) 2.983 813 2(1)
4 3P 2.984 039 84(5) 2.983 913 45(9) 2.983 828 9(1) 2.983 770 1(2)
5 1S 2.983 857 4(1) 2.983 513 01(2) 2.983 267 901(6) 2.983 094 85(5)
5 3S 2.983 784 02(8) 2.983 422 50(2) 2.983 180 677(6) 2.983 015 17(3)
5 1P 2.984 096 174(9) 2.984 038 03(5) 2.983 992 23(1) 2.983 958 67(5)
5 3P 2.984 080 3(2) 2.984 014 4(4) 2.983 968 9(4) 2.983 937 2(4)
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Table 4. Comparison of Bethe Logarithms for lithium and its ions

Atom Li(1s22s) Li(1s23s) Li+(1s2) Li2+(1s)

ln(k0/Z
2Ry) 2.981 06(1) 2.982 36(6) 2.982 624 2.984 128

so that the isotope shift for the transition is obtained by subtracting the en-
tries for the corresponding initial and final states. The terms are classified
according to their dependence on μ/M and the fine structure constant α. The
various contributions are as follows. The term labeled μ/M contains the sum
of the reduced mass scaling of the nonrelativistic ionization energy and the
first-order mass polarization correction. For example, the mass-scaling term
is 2R∞[2 − ENR(∞)][(μ/M)6He − (μ/M)4He], where ENR(∞) is the nonrel-
ativistic energy for infinite nuclear mass (in atomic units), and R∞ is the
corresponding Rydberg. The term of order (μ/M)2 comes from second-order
mass polarization. The relativistic recoil terms of order α2μ/M come from
mass scaling, mass polarization, and the Stone terms as expressed by (7) and
(8). The radiative recoil terms similarly come from a combination of mass
scaling, mass polarization, and higher-order recoil corrections, as discussed by
Pachucki and co-workers [24, 32, 33] and Yan and Drake [21, 22, 23]. In addi-
tion, Puchalski et al. [24] have calculated the nuclear polarizability correction
to the isotope shift and found that it makes a significant contribution for the
case of the isotope shift for 11Li. The correction is an additional contribu-
tion of 39±4 kHz to the (positive) 3 2S1/2–2 2S1/2 isotope shift for 11Li. The
correction is negligibly small for the other isotopes.

Concerning the accuracy, for helium the uncertainty is completely dom-
inated by the nuclear mass uncertainty for 6He, as listed in Table 7. This
is also largely the case for lithium, where the largest source of uncertainty
is the nuclear mass for 11Li. The one exception for Li is the relativistic re-
coil term of order α2μ/M . Because of severe numerical cancellation among the

Table 5. Contributions to the isotope shifts in the ionization energies of 6He relative
to 4He. Units are MHz

Term 2 3S1 2 3P2 3 3P2

μ/M a 55 195.526(19) 20 730.146(7) 12 000.673(4)
(μ/M)2 –3.964 –14.132 –4.847
α2μ/M 1.435 3.285 0.724
α3μ/M –0.280 –0.206 –0.036
Total 55 192.717(19) 20 719.093(7) 11 996.515(4)
Nuc. vol.b –1.315 0.401 0.115

aUncertainties for this line are dominated by the nuclear mass uncertainty for 6He.
bNuclear volume correction, assuming rp(6He) = 2.056 fm and rp(4He) = 1.676 fm.
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Table 6. Contributions to the isotope shifts in the ionization energies of 11Li relative
to 7Li. Units are MHz

Term 2 2S1/2 3 2S1/2

μ/M a 39 602.308(34) 14 497.818(12)
(μ/M)2 –5.647 –2.679
α2μ/M –0.097(1) –0.119(11)
α3μ/M –0.154(4) –0.036
Total 39 596.410(19) 14 494.984(7)

Nuc. vol.b –0.257 –0.060

aUncertainties for this line are dominated by the nuclear mass
uncertainty for 11Li.
bNuclear volume correction, assuming rp(7Li) = 2.39 fm and
rp(11Li) = 2.42 fm.

reduced mass, mass polarization, and Stone terms, the final numerical value is
small and the percentage uncertainty is correspondingly large. Our numerical
value is 0.022(11) MHz (from the column difference in Table 6), as compared
with 0.038 MHz obtained by Puchalski et al. [24]. Further calculations are
in progress to improve the accuracy of this term. Since the value from [24]
appears to be more accurate, we will adopt it for the present work.

Finally, the correction for the finite nuclear size is given in lowest order by

ΔEnuc =
2πZe2r2c

3

〈
∑

i

δ3(ri)

〉
. (12)

The contributions to the isotope shift shown in Tables 5 and 6 correspond
to the adjusted value of rc to bring theory and experiment into agreement,
as discussed in the following sections. For convenience, the theoretical results
relating the measured isotope shift δν to the nuclear radii are as follows:

Table 7. Table of nuclear masses used in the calculations. Units are atomic mass
units

Isotope Mass
3He 3.016029310(1)
4He 4.002603250(1)
6He 6.0188881(11)
6Li 6.015122794(16)
7Li 7.0160034256(45)
8Li 8.02248736(10)
9Li 9.0267895(21)
11Li 11.0437157(54)
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δν(2 3S1–2 3P2) = 34 473.625(13)+ 1.210
[
r2c (

4He)− r2c (4He)
]
, (13)

δν(2 3S1–3 3P2) = 43 196.202(16)+ 1.008
[
r2c (

4He)− r2c (4He)
]
, (14)

δν(2 2S1/2–3 3S1/2) = 25 101.474(22)+ 1.566
[
r2c (

7Li)− r2c (11Li)
]
. (15)

The last line for Li includes the nuclear polarization correction and the ad-
justed relativistic recoil term of Puchalski et al. [24]. These results are com-
pared with experiment in the following two sections.

4 6He Isotope Shift and Nuclear Radius

The principal challenge in measuring the isotope shift for 6He is the high
sensitivity needed to probe the small number of 6He atoms available and
their short half-life of 0.8 s. To overcome these difficulties, laser spectroscopy
was performed on single atoms prepared in a magneto-optical trap (MOT)
[34]. The experiment was made even more difficult by the fact that there are
no suitable transitions from the 1s2 1S ground state that can be used for
trapping the helium atoms, and for subsequent isotope shift measurements.
For example, the 1 1S0–2 3P1 resonance transition lies at 58.4 nm in the far
vacuum ultraviolet. For this reason, the atoms must first be excited to the
2 3S1 metastable state in a discharge via electron impact excitation. From
the metastable state, the 2 3S1–2 3P2 transition can be used for cooling and
trapping and the 2 3S1–3 3PJ transition at 389 nm used for fluorescence
detection of single atoms and isotope shift measurements.

The details of the experiment are as follows [35]. The 6He nuclei were
produced by aiming a 60 MeV beam of 7Li from the ATLAS accelerator onto a
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Fig. 3. Schematic diagram of the apparatus of the 6He experiment
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hot (750◦) graphite target and extracting the products of the 12C(7Li,6He)13N
reaction. The neutral 6He atoms diffused out of the target at the rate of
about 106 s−1 and into the nearby atomic beam assembly (see [36] for further
details, and Fig. 3). The atomic transition 2 3S1–2 3P2 was excited by laser
beams at 1083 nm produced by a diode laser and a fiber amplifier to trap
the small fraction (∼10−5) of 6He atoms that were successfully excited to the
2 3S1 metastable state. The excitation was accomplished by mixing the atoms
with a krypton carrier gas and sending them through an RF discharge. The
metastable helium atoms were then transversely cooled and decelerated by the
Zeeman slowing technique before entering the MOT. The 6He atoms remained
trapped in the MOT for an average of only 0.4 s due to collisional losses and
nuclear β decays. The overall capture rate was about 100 h−1, with a total
capture efficiency of 2 × 10−8. A single trapped atom emitted fluorescence
photons at the rate of 106 s−1, and fluorescence from a single atom induced
a photon count rate of 7× 102 s−1, compared with a background count rate
of 2× 102 s−1.

The experiment itself consisted of two modes: a capture mode and a spec-
troscopy mode. Because of the low capture rate, the capture mode was spent
mostly waiting for a 6He atom to arrive at the MOT. During this phase, the
trapping laser beams at 1083 nm were constantly on, with their intensity (10
mW/cm2) and frequency detuning (–20 MHz) tuned to maximize the cap-
ture probability. The probing laser beams at 389 nm were also constantly on
in order to detect the arrival of a trapped 6He metastable atom. Within 0.1
s of its arrival, the system switched to the spectroscopy mode in which the
intensity of the trapping beams was lowered (0.8 mW/cm2) and the detun-
ing decreased (–3MHz) in order to provide a tighter confinement and more
cooling to the trapped atom. In addition, the trapping laser and the probing
laser beams were chopped alternately at 100 kHz such that, for each chopping
period of 10 μs, only the probe laser beams were on for 2 μs, during which
time the fluorescence signal was collected, and then only the trapping laser
beams were on for 8 μs to recapture and cool the atom. Meanwhile, the sys-
tem scanned the frequency of the probing laser over a range of 18 MHz at
a repetition rate of 85 kHz. This fast scanning and chopping was necessary
to minimize systematic effects due to the heating/cooling of the atom by the
probing light. Furthermore, in order to minimize the dependence of the spec-
trum on the magnetic field and on laser intensity, the probing laser beams
consist of a pair of counter-propagating, linearly polarized beams with their
intensities carefully matched.

All these controls and adjustments were tested extensively off-line on the
stable 4He and 3He atoms. Figure 4(a) shows a typical spectrum of the
2 3S1–3 3P2 transition accumulated over five minutes with a trap filled with a
few 4He atoms. Measurements on this transition, as well as on the fine struc-
ture partners 2 3S1–3 3P1 and 2 3S1–3 3P0 were performed while changing
the intensity of the probing beams by as much as a factor of 60 and changing
the magnetic field gradient of the MOT by a factor of 2. A group of 30 such
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Fig. 4. Comparison of fluorescent spectra for 4He and 6He

measurements had a standard deviation of 0.040 MHz, which represents the
systematic error in the isotope shift measurement due to trap effects (Table 8),
including any residual Zeeman shifts and the effects of heating/cooling of the
atom.

Figure 4(b) presents a spectrum of the 2 3S1–3 3P2 transition accumulated
over 1 h with a total of 150 trapped 6He atoms. The isotope shift between 6He
and 4He was obtained by fitting a Gaussian function to the spectra and taking
the difference of peak centers, with due allowance for the recoil effect shown
in Table 8. A total of 18 such measurements was performed with comparable
precision during two separate runs one month apart, yielding a statistical
error of 0.033 MHz (reduced chi square = 0.85). The isotope shift on the
2 3S1–3 3P2 transition between 6He and 4He was determined in this work to
be 43 194.772± 0.056 MHz.
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Table 8. Errors and corrections in the isotope shift of the 2 3S1–3 3P2 transition
between 6He and 4He. The resulting corrected value for the measured isotope shift
is 43 194.772 ± 0.056 MHz

Source Correction (MHz) Error (MHz)

Statistical 0.033
Trap effects 0.040
Uneven background 0.020
Frequency counter 0.009
Recoil effect 0.110 <0.001
Total 0.110 0.056

Based on the atomic theory illustrated in Sect. 2, the measured iso-
tope shift translates into a difference between the mean-square charge radii
〈r2c 〉He6−〈r2c 〉He4 of 1.418±0.058 fm2. Given the previously determined charge
radius of 4He of 1.676(8) fm [37], the charge radius of 6He from this measure-
ment is then 2.056± 0.015 fm. This value represents the first nuclear-model-
independent determination. It has achieved a much improved accuracy and
is in disagreement with that previously derived from the interaction cross-
section, presumably reflecting the inadequacies of the model assumptions.
The point-proton radius of 6He has been calculated using a variety of nuclear
structure models, including ab initio calculations based on either the no-core
shell model [38] or the quantum Monte Carlo methods [39]. The experimental
value was compared to the predictions and is used to check the validity of our
understanding of the forces between nucleons.

As an interesting sidelight to this work and as a further check on the
measurements, the fine structure splittings for the 1s3p 3PJ states of 4He
with J = 0, 1, 2 were also measured. The results in fact disagree with older
measurements by Yang, McNicholl, and Metcalf [40], but they agree with
recent calculations of the fine structure splittings, including spin-dependent
corrections up to order α5 lnα Ryd. The results are presented in [41].

5 Experiments in Lithium

Since the halo nucleus 11Li can be readily produced at ISOL facilities and
due to the availability of spectral lines in the visible region for the neutral
atom it was the first halo isotope that was studied with laser spectroscopy.
However, this was always a challenge since the production rates for this isotope
have never been exceeding 10,000 ions/s and its half-life is only 8.4 ms and
therefore highly efficient and sensitive techniques are required. Already in the
late 1980s the COLLAPS collaboration at ISOLDE determined the spin, the
nuclear magnetic dipole, and the electric quadrupole moment of 11Li in a
combination of optical pumping in collinear laser spectroscopy and β-NMR
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[42, 43, 44]. With respect to the halo structure of 11Li, the most remarkable
result is the small difference in the moments in 9Li and 11Li. The magnetic
moments were found to be close to the Schmidt value and less than 10%
different, while the quadrupole moments agreed within their uncertainties.
This is a clear sign that a strong deformation cannot be the reason for the large
matter radius. More recently, the collaboration could improve the accuracy
of these measurements [45, 46] and a small difference in the 9Li and 11Li
quadrupole moments was resolved. As mentioned above, the halo structure
reveals itself most clearly as a difference between the nuclear matter and
charge radius. Therefore, the question whether the nuclear charge radius of
these exotic isotopes can be measured arose very early after their discovery.
In principle, the collinear spectroscopy, as it has been applied for the optical
pumping of 11Li, is regularly used for isotope shift measurements and nuclear
charge radii determination. However, for the light isotopes the uncertainties
due to the insufficient knowledge of the acceleration voltage is too large to
reach the required accuracy of a few 100 kHz for charge radius extraction
of very light nuclei. Sophisticated techniques made it possible to measure
charge radii of short-lived neon isotopes down to 17Ne. Until 2003 this was
the lightest radioactive isotope of which the nuclear charge radius has been
determined [47].

5.1 Experimental Technique

The experimental setup used in the isotope shift measurements is shown in
Fig. 5. Lithium isotopes 8,9Li were produced at GSI with an 11.4 MeV/u
12C beam impinging on a target made of carbon (for 8Li) or tantalum and
tungsten (for 9Li). The halo nucleus 11Li cannot be generated in this reac-
tion, instead it was produced at TRIUMF (Vancouver) by bombarding a thick
tantalum target with 40 μA of a 500 MeV proton beam. In both cases, the
lithium atoms were ionized on hot surfaces, extracted with a 30–40 kV ex-
traction voltage, mass separated, and transported to the setup for the isotope
shift measurement. Here, the ion beam was focussed to a beam size of approx-
imately 2 mm diameter with an electrostatic quadrupole triplet, stopped, and
neutralized inside a thin graphite foil with a “layer thickness” of 80 μg/cm2,
corresponding to a real thickness of approximately 330 nm. Range straggling
for 30 keV ions in graphite is on the order of 40 nm. Thus, the majority of
ions were stopped and neutralized just before they could leave the foil. A
quasi-continuous 4 W CO2 laser beam was focussed with a similar spot size
onto the foil and heated up to ≈ 2000 K. The neutralized lithium ions quickly
diffused out of the foil. From a simple geometrical model it was estimated
that about 70% of the atoms are released towards the side opposite to the
incoming ion beam. A release time of less than 500 μs was measured, which
is about 6% of the 11Li half-life and clearly sufficient to have a good release
efficiency for this isotope. Atoms released from the surface drifted through a
hole of 3 mm diameter into the ionization region of a commercial quadrupole
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Fig. 5. Experimental setup of the lithium experiment including the production
region for the radioactive isotopes, neutralization, resonance ionization scheme and
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mass spectrometer. Surface ions produced on the hot graphite foil were re-
pelled from the ionization region by a small positive offset voltage of +4 V
relative to the graphite catcher.

The isotope shift between the different lithium isotopes was measured
in the 2s 2S1/2 → 3s 2S1/2 two-photon transition. Excitation of this tran-
sition with counter-propagating laser beams leads to first-order Doppler-
free signals. The excitation and ionization scheme is shown in the inset of
Fig. 5. Atoms excited into the 3s state relax to the 2p 2P1/2,3/2 levels.
Instead of resonance fluorescence detection, resonance ionization along the
2p 2P1/2,3/2 → 3d 2D3/2,5/2 → Li+ path was applied to observe the 2s → 3s
transition, which was found to be more efficient and gave a much better signal-
to-noise ratio. This scheme was carefully chosen to obtain the required accu-
racy and to minimize systematic effects, like AC-Stark broadening and shifts.
The spontaneous decay process into the 2p level separates the spectroscopy
transition, where high accuracy was needed, from the resonance ionization
step, which could then be independently optimized for high efficiency. High
laser power could be applied for the 2p → 3d transition in order to get as
much ionization efficiency as possible. This would be prohibitive if the laser
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would directly couple the 3s state with, e.g., the 5p state since the resonant
AC-Stark shift and broadening of the 3s level would spoil the accuracy in the
2s→ 3s transition frequency.

The laser ionized particles could be easily extracted from the ionization
region, mass analyzed in the quadrupole mass filter, and detected with a
continuous secondary electron multiplier. The total efficiency for the detection
of the laser-ionized particles is of the order of 80–90% as has been shown in
extensive previous studies of this mass filter system [48].

The 735 nm light for the two-photon transition was produced by a tita-
nium sapphire (Ti:Sa) laser pumped with 15 W of an argon-ion laser, while the
610 nm light was provided by a dye laser (Rhodamin 6G) pumped with 8 W of
a VERDI V8 frequency-doubled Nd:YAG laser. A reference frequency for the
isotope shift measurement was provided by an amplified diode laser system
locked to the a1 hyperfine component in the X 1Σ+

0g → B 1Π+
0u R(114) 11-

2 transition in molecular iodine by frequency modulation saturation spec-
troscopy [49]. The frequency of the Ti:Sa laser was measured and stabilized
relative to the iodine-locked diode laser, by observation of the beat frequency
between the two lasers.

The two-photon excitation as well as the nonresonant ionization requires
high laser intensities to reach the efficiency that was needed in this exper-
iment. This was realized by resonant enhancement of the two laser beams
in an optical cavity that was formed by two mirrors in the vacuum cham-
ber around the excitation region. A resonance enhancement of approximately
100 was obtained. The laser intensities inside the cavity were recorded during
the experiment by measuring the light power leaking through the rear cavity
mirror with two photodiodes.

5.2 Results

Resonance Profiles

Figure 6 shows a spectrum of the 7Li 2s → 3s transition on a logarithmic
scale. Hyperfine selection rules restrict the possible excitations in an s1/2 →
s1/2 transition to those with ΔF = 0. Thus, all lithium isotopes exhibit two
transitions connecting the respective F = I ± 1/2 states. The spectrum of
7Li shows two narrow peaks on a broad background. The narrow peaks are
the Doppler-free components which arise from the absorption of two-photons,
traveling in opposite directions. But the atoms can also absorb two photons
from the same direction. In this case the resonance frequency depends on the
velocity of the atom and this is the origin of the weak but very broad Doppler
pedestal that is clearly visible with an intensity about three to four orders of
magnitude smaller than the Doppler-free signal.

In on-line operation, spectra were taken only across the two resonances in
a range of ±15 MHz for the radioactive and ±30 MHz for the stable isotopes
while the intermediate region was skipped. For 8,9Li the production rates were
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Fig. 6. Line profile of the 7Li 2s → 3s two-photon transition with narrow Doppler-
free transitions and Doppler-broadened background

sufficient to fit each individual scan, as is demonstrated in Fig. 7 (a). For 11Li
about six consecutive scans were combined in order to improve fitting quality.
A resulting resonance profile of 11Li is shown in Fig. 7 (b). Overall 24 scans
of comparable quality could be recorded during 4 days of 11Li beamtime. The
isotope shift is defined as the shift of the hyperfine center of gravity (cg) that
can be calculated from the two transition frequencies νF and νF ′ according to

νcg =
CF νF ′ − CF ′ νF

CF − CF ′
(16)

with CF being the Casimir factor CF = F (F + 1)− J(J + 1)− I(I+ 1) of the
respective F state.

AC-Stark Shift Correction

The strong laser fields inside the cavity, even though they are not resonant
with any s → p transition, cause a weak nonresonant coupling of the p-
states to the s-states. This leads to small energy shifts of the individual levels

Fig. 7. Resonance spectra of 9Li and 11Li with skipped intermediate region
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Fig. 8. Resonance frequency of the center of gravity (CG) of 6,9Li as a function
of the Ti:Sa laser power on the photodiodes behind the enhancement cavity. The
dye laser power was kept constant. AC-Stark shift is corrected by extrapolating the
linear behavior back to zero laser powers

that have to be carefully considered when analyzing the isotope shift data.
Therefore, the hyperfine cg frequencies of 6,7,8,9Li were measured as a function
of the Ti:Sa laser power detected on the photodiodes behind the enhancement
cavity. The dye laser power was kept constant during these measurements.
Results for 6,9Li are shown in Fig. 8 and a clear linear behavior of the AC Stark
shift is observed. For 6–9Li, the isotope shifts were calculated determining the
differences of the intersection points with the frequency axis. This method
could not be used for 11Li because of the small production rates and the limited
statistics for measurements at lower laser power. However, it was found that
the slope coefficients for all lithium isotopes agree within their uncertainties,
showing no isotopic dependence of the AC-Stark shift. Hence, the isotope shift

Fig. 9. Extracted δ〈r2〉 for all lithium isotopes (•) and comparison with different
nuclear model predictions: �: Greens function Monte Carlo calculations [52, 53], �:
stochastic variational multi-cluster model [54, 55] (�: assuming a frozen 9Li core),
⊕: fermionic molecular dynamics [56], ◦: dynamic correlation model [57, 58], � and

: ab initio no-core shell model [59, 60]
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can also be calculated as the difference between the 11Li cg frequency and the
reference isotope AC-Stark shift function at the corresponding laser intensity.

Isotope Shifts and Charge Radii

Isotope shift results for all lithium isotopes are summarized in Table 9.
For 11Li the standard error of the mean of the 24 measurements is 66
kHz. Including systematic uncertainties the total isotope shift amounts to
δν11,7 = 25 101.226 (125) MHz. Applying (15) from Sect. 3, the changes in
the mean-square nuclear charge radii relative to 7Li can be obtained. These
values are also included in Table 9. In the original publications [6, 7] the
absolute charge radii of all lithium isotopes were calculated according to
rc(ALi) =

√
rc(7Li) + δ〈r2〉A,7 based on a charge radius of rc = 2.39(3) fm

for 7Li. This reference radius has been obtained as a weighted average of 7Li
electron scattering measurements compiled in [50]. However, it was pointed
out recently [51] that the uncertainty of the reference radius has probably
been underestimated and that the charge radius of 6Li has been determined
more reliably. Charge radii uncertainties for the lithium isotopes are always
dominated by the uncertainty of the reference radius.

To avoid this complication the mean-square charge radii differences rather
than the charge radius itself is plotted in Fig. 9. For comparison, the δ〈r2〉
values predicted by a variety of theoretical models are included as well. In most
theoretical papers the modeled charge radii are given as point-proton radii
〈R2

pp〉 [52, 53, 54, 55, 59, 60]. In the figure, the differences of these mean-square
radii relative to 7Li are plotted, taking into account also the contribution of
the mean-square charge radius of the neutron 〈R2

n〉 = −0.117(4) fm2 [61]. The
neutron contribution was calculated according to

δ〈r2c 〉A,7 = δ〈R2
pp〉A,7 +

δN

Z
· 〈R2

n〉 = δ〈R2
pp〉A,7 +

A− 7
3
· 〈R2

n〉. (17)

and is as large as −0.155 fm2 for 11Li .
Good agreement between predicted and measured mean-square radii of

6−9Li is observed for the Greens function Monte Carlo (GFMC) [53, 52] and
the stochastic variational multi-cluster (SVMC) model [54, 55]. From these

Table 9. Summary of the lithium isotope shift results. Measured isotope shifts
δνA,7

exp relative to 7Li, corresponding calculated mass shifts δνtheo, and changes in
the mean-square charge radii δ〈r2〉A,7 for all isotopes are given

Isotope δνA,7
exp [MHz] δνA,7

theo [MHz] δ〈r2〉A,7 [fm2]

6Li –11 453.983 (20) –11 452.822(2)(0) 0.738(13)
8Li 8 635.782(44) 8 634.990(1)(1) –0.503(28)
9Li 15 333.272(39) 15 331.797(3)(13) –0.938(26)
11Li 25 101.226(125) 25 101.473(9)(21) 0.157(81)
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descriptions, only the SVMC is able to model the 11Li nucleus so far. How-
ever, its prediction does not agree with our measurement, either in the full
calculation or in a frozen-core approximation where intrinsic excitation of the
9Li core is not considered. The fermionic molecular dynamics (FMD) model
[56] gives the correct trend from 6Li to 9Li but 11Li has not been calculated
yet. The agreement of other models with the experimental data is rather poor
with exceptions for individual isotope pairs. It is striking that the difference
between the stable isotopes 6,7Li, which has been known from electron scat-
tering for decades [50], is particularly well described by almost all models with
the exception of the no-core shell model [55].

6 Discussion and Future Work

It is clear from this work that the accuracy of both theory and experiment
for isotope shifts has now reached the stage that the two can be combined
to provide a powerful new tool for the measurement of nuclear radii in the
low-Z region, and that the method can be applied even at the level of single-
atom spectroscopy. The results for the radii of halo nuclei provide a significant
new test of various models for nuclear structure and the effective low-energy
nucleon–nucleon interaction potential. The principal limitation is that the
measurements of nuclear radii are relative to a reference nucleus obtained by
nuclear scattering. An important project for future work is to improve the
accuracy of theory to the point that absolute measurements of nuclear radii
can be extracted directly from atomic spectroscopy for a single isotope, rather
than relative values from the shift between two isotopes. At present, theory
is complete only up to QED terms of order α3 Ryd. This is sufficient for
isotope shift measurements because it is only the mass-dependent part of the
QED shift that contributes, and so it is suppressed by a factor of μ/M � 10−4.
However, the suppression factor is no longer present for the absolute transition
frequency of a single isotope, and so complete calculations of the relativistic
and QED shifts must be extended to terms of order α4 Ryd and α5 Ryd. This
has been done for the case of hydrogen (i.e., the one-electron Lamb shift),
but only estimates and partial results are available for helium and lithium.
However, there has been significant progress in recent years by Pachucki and
co-workers [62, 63] and by Drake [64] especially for the spin-dependent parts
of the operators. This gives hope that complete results may be within reach
for these terms, using the methods of nonrelativistic QED [65].

On the experimental side, experiments with the even more exotic species
8He have been performed recently at Argonne/GANIL, and are planned for
11Be+ at GSI [66]. 11Be is the archetype of a one-neutron halo structure, and
the proposed measurement would be the first of its type to give a value for the
charge radius in a way that does not depend on an assumed nuclear model.
Calculations are currently in progress for the isotope shift of Be+ similar to
those already done for lithium.
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Abstract. In this review we address the topic of X-ray spectroscopic investiga-
tions of the ground-state transitions in the heaviest one-electron systems by using
the intense beams of cooled heavy ions provided by the Experimental Storage Ring
(ESR) at GSI Darmstadt. Such experiments on high-Z ions open up unique possi-
bilities for the investigation of the quantum electrodynamical (QED) effects in the
nonperturbative domain of extremely strong electromagnetic fields. Particular em-
phasis is given to the developments as well as to the current progress for the future
experiments aiming for the sensitive tests of the higher-order bound-state QED ef-
fects. These include novel high-resolution detection systems: crystal spectrometers
in combination with position-sensitive solid-state detectors and bolometers.

1 The Current Status of the Experimental
and Theoretical Investigations

Hydrogen-like ions traditionally serve as an important testing ground for fun-
damental atomic structure theories and for investigation of relativistic and
QED effects. Atomic hydrogen has provided the unique venue for the devel-
opment, testing and establishment of the quantum mechanical and relativistic
theories. Furthermore, the discovery by Lamb and Rutherford [1] of a small
difference between the binding energies of the 2s1/2 and 2p1/2 states, known
as the Lamb shift, has triggered the decisive developments in the formulation
of the QED theory. For the light one-electron systems such as atomic hydro-
gen, the QED predictions are now well confirmed with extraordinary precision
[2, 3]. On the other hand, the developments in efficient production and storing
of the heaviest one- and few-electron systems provide a complementary way for
testing our understanding of relativistic and quantum electrodynamic effects
in the formerly not accessible domain of extremely strong fields. Furthermore,
during the last few years significant progress took place in the theoretical stud-
ies of these systems, resulting in nonperturbative (without expansion in αZ,
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in contrast to the methods applied for the low-Z ions) calculations for high-Z
hydrogen-like systems which do now comprise all second-order (in α) correc-
tions [4, 5]. For such ions, the most direct experimental approach for the inves-
tigation of the effects of quantum electrodynamics in strong Coulomb fields is
a precise determination of X-ray energies for transitions into the ground state
of the ion. In particular, the Lyman-α transitions are used as they appear
most intense and well resolved in the X-ray spectra. In these experiments the
Lamb shift value is deduced from the measured transition energy by compar-
ison with the Dirac energy eigenvalue for the 1s ground state of a point-like
nucleus and the additional assumption that the binding energies of the excited
states involved are known to high accuracy.

The Experimental Storage Ring (ESR) at GSI with its brilliant beams
of cooled heavy ions has proven to provide unique conditions for precision
investigations of high-Z fundamental atomic systems. Experimental studies
at the ESR devoted to precise spectroscopy of X-ray transitions from bound
or continuum states into the ground state of the heavy ion-electron systems
have provided substantial improvements in accuracy over the last decade. In
Fig. 1, this is shown for the example of the 1s Lamb shift in H-like uranium
(U91+). Here, an increase of precision by more than an order of magnitude
over the last decade has been achieved. The most recent value (from 2005)
has been obtained at the electron cooler device of the ESR by utilizing the
deceleration capability of the ring in combination with the 0◦ geometry [6].
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Fig. 1. Left side: Various individual contributions to the ground-state Lamb shift in
H-like uranium together with the experimental accuracies achieved so far [6, 7, 8, 9];
Right side: Comparison between theoretical and experimental values for the 1s
Lamb shift in H-like uranium. Squares show results obtained at the BEVALAC
accelerator. Circles depict the values obtained at the ESR. The theory is represented
by the line
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Table 1. The ground-state Lamb shift for H-like uranium. All values are given in eV

Finite nuclear size 198.81

First order QED 266.45
Second order QED –1.26(33)
Total theory [4, 5] 464.26±0.5
Experiment 460.2±4.6

The latest experimental result is presented in Table 1 in comparison with
the most recent theoretical value. The latter includes all of the second-order
(α2) QED contributions whose evaluations have been completed very recently,
following the work during the last decade (see [4, 5] and references therein).
From the comparison, a good agreement between the theoretical prediction
and the experimental value can be stated whereby the experimental result
provides a test of the leading QED effects at the percent level.

2 Next Generation Spectroscopic Experiments
on High-Z H-like Ions

The recent achievement of complete evaluation of all the second-order (α2)
QED effects opens up unique opportunities for probing higher-order QED
effects in the most fundamental atomic system in the presence of strongest
electromagnetic fields. Accordingly, the goal of the experiments is to achieve
a precision which not only tests the higher-order contributions in αZ but
also probes QED corrections which are beyond the one-photon exchange cor-
rections, such as the two-photon exchange diagrams, i.e., α2 contributions.
These effects contribute on the level of about 1 eV (see Table 1). Therefore,
for the next generation experiments devoted to the ground-state Lamb shift
in high-Z H-like systems, a dedicated high-resolution X-ray crystal spectrom-
eter (FOCAL) has been developed at GSI [10, 11, 12]. This development is
complemented by progress in production of semi-conductor position-sensitive
(two-dimensional) detectors [13] which are indispensable for the crystal-
spectrometer-based precision X-ray spectroscopy. In addition, a different kind
of high-resolution X-ray detection system, a X-ray calorimeter, has been de-
veloped at GSI and will be exploited in the future Lamb shift studies [14].

Very recently, a first experiment utilizing these devices has been conducted
at the gasjet target of the ESR devoted to a measurement of the ground-state
Lamb shift in H-like Pb. The setup used in the experiment is shown in Fig. 2.
The bare Pb ions injected from the SIS into the ESR were brought to interact
with a supersonic jet of krypton atoms. Here, the ions may capture an electron
thus populating bound states of a hydrogen-like lead ion (Pb81+). The ground-
state binding energy and thus the Lamb shift can be directly derived from the
centroid energy of the Lyman α1 X-rays which can be obtained with high
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Fig. 2. The experimental arrangement used in the first beam-time dedicated to mea-
sure ground-state Lamb shift in H-like Pb exploiting high-resolution X-ray spectrom-
eters in combination with position-sensitive Ge(i) detectors as well as the specially
developed low-temperature microcalorimeter

accuracy from one hand by the spectrometer and the 2D-detector setup and
from the other hand by the microcalorimeter. In the present experiment, two
of the crystal spectrometers were aligned at 90◦ with respect to the beam di-
rection in order to reduce uncertainties stemming from the relativistic Doppler
transformation due to possible ion beam misalignment. Position-sensitive Ger-
manium detectors were mounted behind both of the spectrometers for energy
and time-resolved detection of Lyman X-rays deflected by the spectrometers.
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+HV
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n

Fig. 3. Two-dimensional germanium X-ray detector developed at FZ Jülich [13].
The front contact (128 strips and a pitch of 250 m) and the rear contact (48 strips
and a pitch of 1167 m) are realized by means of plasma etching
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Fig. 4. Calibration line of the 169Yb source projected on the position-sensitive
detector mounted behind one of the spectrometers. For details see text

One of the detectors exploited in the experiment is shown in Fig. 3. The
calorimeter was mounted at 145◦ with respect to the beam direction.

In Fig. 4 we show an X-ray image of the 169Yb source as recorded by a 2D
position-sensitive Germanium detector mounted behind one of the spectrom-
eters. The intense line corresponds to the 169Yb γ photons with an energy
of 63.121 keV. This line is used for calibration purposes, and energies of the
Lyman X-rays expected at about 60.98 and 63.13 keV in the laboratory frame
will be determined relative to it. In addition, in Fig. 5 we present a preliminary
X-ray spectrum recorded by the calorimeter for a run with H-like uranium.
Here, the Lyman α1, Lyman α2 as well as Lyman β lines are clearly identified
along with 59.8 keV γ-line of the 241Am source used for calibration. The data
analysis is currently being conducted.
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3 Conclusions

The current status and recent developments in experimental investigations
of the strong field QED effects in heaviest hydrogen-like ions are reviewed.
Comparison of the most recent experimental results with the state-of-the-art
theoretical values shows a good agreement and provides test of the domi-
nant QED contributions on a percent level. In order to reach the sensitivity
needed for testing the higher-order QED contributions the next-generation
spectroscopic experiments will exploit the high-resolution X-ray detection sys-
tems, the specially developed FOCAL crystal spectrometers in combination
with the state-of-the-art position-sensitive germanium detectors and the low-
temperature calorimeters. The beam-time utilizing both of these devices has
already been conducted providing the first high-resolution spectra for ground-
state transitions in hydrogen-like lead. From the current status of the data
evaluation, we can conclude that the achievement of the envisioned accuracy
will require improvements in the detection setup and thus reduction of var-
ious systematic uncertainties as well as developments for the digital signal
processing which are currently being conducted [15].
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Abstract. Strong-interaction shift ε1s and broadening Γ1s in the pionic hydrogen
atom are determined from the energies and line widths of X-ray transitions to the 1s
ground state. They are directly connected to the πN scattering lengths which are re-
lated to the πN coupling constant and the πN sigma term being a measure of chiral
symmetry breaking. Therefore, the measurement of the pion–nucleon s-wave scat-
tering lengths constitutes a high-precision test of the methods of chiral perturbation
theory (χPT), which is the low-energy approach of QCD. Additional constraints for
the πN scattering lengths are obtained from the measurement of the ground-state
shift in pionic deuterium. The hadronic width is linked to s-wave pion production
in nucleon–nucleon collisions. A new experiment, set up at the Paul Scherrer Insti-
tut (PSI), has finished taking data recently and will allow the determination of the
scattering lengths at the few per cent level.

1 Introduction

Quantum chromodynamics (QCD) is today’s microscopic theory of strong
interaction based on colored fermions – the quarks – and colored massless spin
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one-field quanta – the gluons. At highest energies, perturbative methods are
applied with great success because of the decreasing strength of the interaction
as described by a running strong coupling constant αs (asymptotic freedom).
At low energies, in the non-perturbative regime, a new framework – chiral
perturbation theory (χPT) – has been proposed [1], which exploits the left–
right symmetry of the QCD Lagrangian in an ideal world of 2 (or 3) massless
light quarks u, d (and s) (chiral limit). Here chirality is conserved forever and
pions become stable and even massless. In the real world chiral symmetry of
the strong force is explicitly broken because of finite masses of about 3, 5 and
95 MeV/c2 for the u, d and s quark [2]. Such small (current) quark masses
are, however, unable to explain the masses of the hadron multiplets.

The weak decay of pseudoscalar (0−) fields like pions corresponds to the
non-conservation of the axial charge hiding the chiral symmetry. It results
in a non-zero expectation value B =| 〈0 | q̄q | 0〉 | (chiral condensate) of qq̄
states between the QCD vacuum (spontaneous chiral symmetry breaking).
This fact is known from current algebra as partially conserved axial current
(PCAC) [3, 4]. Furthermore, neutron decay can be regarded as the strong
decay n→ pπ− and subsequent pion disintegration which connects the strong
πN coupling constant fπN , the weak pion decay constant Fπ and the weak
axial coupling gA by fπN = mπ±gA/2Fπ (Goldberger–Treiman relation [5]).
A comprehensive discussion is given, e. g., in [6].

Spontaneous symmetry breaking leads mandatorily to eight massless pseu-
doscalar particles (Goldstone bosons) which may be identified with the 0− me-
son octet (π,K, η). Finite masses of these pseudoscalar mesons, though well
below the usual hadronic scale of 1 GeV/c2, especially in the case of pions, re-
quire both finite current quark mass values and a non-vanishing chiral conden-
sate. In lowest order their masses are given by the Gell-Mann–Oakes–Renner
relations [7]. For the case of pions, e. g.,m2

π = 1
2 (mu+md)B/F 2

π + higher orders.
The chiral condensate, equal for all pseudoscalar mesons, adjusts the phys-
ical masses of the pseudoscalar octet. The parameters B and Fπ are prin-
cipally calculable within lattice QCD, but precise values still must be de-
termined from experiment. An introduction to the concepts describing the
structure of hadrons and the methods of χPT may be found elsewhere
[8, 9, 10].

Approaching the chiral limit, degrees of freedom are field quanta like pi-
ons, to be described by the methods of field theory. Their interaction with
(hadronic) matter can be regarded as a kind of residual interaction of QCD
and is strongly influenced by the underlying chiral symmetry. On the strong-
interaction scale corresponding to about the nucleon’s mass, the zero mass
limit is closely approached considering light mesons like the pion because of
(mπ/Mp)2 ≈ 2%� 1. Therefore, a perturbative approach within an effective
field theory (χPT ) becomes possible [1, 11, 12, 13] where symmetry proper-
ties of the QCD Lagrangian manifest in observables by means of low-energy
theorems. A (chiral) expansion ordered by counting the powers of (small) mo-
menta, the quark mass difference (md −mu) and the fine structure constant
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α allows to include on the same footing strong isospin breaking effects re-
sulting from the mass difference (md �= mu) and those of electromagnetic
origin. The unknown structure of QCD at short distances is parameterized by
so-called low-energy constants (LECs) and, disregarding future lattice QCD
calculations, must be taken from experiment.

According to its origin, χPT works best for the lightest quarks u and d as
combined in the lightest strongly interacting particle – the pion – and for the
description of the pion–pion interaction [14, 15]. The experimental approach,
however, is very demanding [16, 17]. On the other hand, it has been shown
that such an approach can also be applied to the meson–nucleon case, then
often denoted as Heavy Baryon Chiral Perturbation Theory (HBχPT) [9, 10,
13, 18, 19].

So called sigma terms represent the contribution from the finite quark
masses to a baryon’s mass. Applied, e.g., to the proton and u and d quarks
the resulting πN σ term σπN = 1

2 (mu +md) | 〈p | q̄q | p〉 | measures that con-
tribution from the quark–antiquark pairs uū+ dd̄ at the (unphysical) Cheng–
Dashen point s − u = 0, t = 2m2

π (s, t, u are the Mandelstam variables).
Though located outside the physical region, sigma terms are related to ob-
servables by extrapolation of meson–baryon amplitudes into the unphysical
region. Hence, scattering lengths are of great importance because they repre-
sent the closest approach in the real world. When comparing the result of the
extrapolation to the HBχPT result, σπN is sensitive to the s̄s contents of the
nucleon [20, 21].

Exotic atoms provide an ideal laboratory to study the low-energy strong
meson–baryon interaction without the need of any extrapolation to threshold
because relative energies are restricted to the keV range [22]. The experiment
described here aims at a precise determination of the hadronic shift ε1s and
broadening Γ1s by measuring the transition energies and line widths of the
K X-radiation from pionic hydrogen (πH) [23] in order to extract the πN
scattering lengths to an accuracy of a few per cent. Further constraints will
be achieved by a similar measurement of pionic deuterium (πD) [24].

At first, relations between scattering lengths, pionic atom observables and
mechanisms of formation and de-excitation of pionic-hydrogen atoms are out-
lined. The measurement strategy is introduced followed by a short description
of the experimental approach. Results achieved in earlier measurements and
preliminary ones of this experiment are briefly discussed.

2 Pion–Nucleon Interaction at Threshold

Pions and nucleons combine to isospin 1/2 or 3/2 systems. For the two pa-
rameters one may choose the isoscalar and isovector scattering lengths a+ and
a−, which are given by the isospin combinations a+ = (a1/2 + 2a3/2)/3 and
a−(a1/2 − a3/2)/3 or in terms of the elastic reactions by a± = (aπ−p→π−p ±
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aπ+p→π+p)/2. In the limit of isospin conservation, the elastic channels are re-
lated to charge exchange by the isospin triangle, aπ−p→π−p − aπ+p→π+p =
−√2 aπ−p→π◦n. Obviously, then aπ−p→π−p = a+ + a− and aπ−p→π◦n =
−√2 a− holds. At threshold the πN interaction is completely described by two
amplitudes reducing to two (real) numbers being identified with the s-wave
scattering lengths.

Approaching threshold and considering negatively charged pions only two
“nuclear” channels, π−p → π−p and π−p → π◦n, and the radiative capture
reaction π−p→ γn occur. The relative strength of charge exchange and radia-
tive capture defines the Panofsky ratio determined to P = 1.546± 0.009 [25].

The leading order result (LO) for a+ and a− derived from current alge-
bra [26, 27] already revealed an important feature of the underlying chiral
symmetry – the vanishing of the isoscalar combination a+ in the chiral limit
a+ = 0 and a− = − 0.079/mπ. Deviations from these values are due to higher
orders of the chiral expansion and should be small.

Within χPT a+ and a− are pure QCD quantities and, therefore, sub-
stantial effort is undertaken to elaborate the corrections to relate the exper-
imentally accessible quantities to a+ and a− [28, 29, 30, 31, 32, 33, 34]. The
πN sigma term is determined by extrapolation of the amplitude a+ to the
Cheng–Dashen point. The πN coupling constant f2

πN/4π is related to a−

by dispersion relation methods (Goldberger–Miyazawa–Oehme sum rule [35]).
The higher orders to be calculated by χPT are obtained by comparison with
the current algebra result f2

πN,LO/4π = 0.072 (Goldberger–Treiman discrep-
ancy ΔGT) and are expected to be of the order of 2% [9, 10].

Access to the πN scattering lengths a+ and a− and aπD is given by

• Analysis of scattering data extrapolated to threshold
• Hadronic level shift επH

1s and broadening ΓπH
1s in pionic hydrogen as well

as επD
1s in pionic deuterium.

In the limit of charge symmetry, aπ−n→π−n = aπ+p→π+p holds. Then
the isoscalar scattering length is also represented by a+ = (aπ−p→π−p +
aπ−n→π−n)/2 which may be regarded as pion–deuteron scattering in the limit
of a scattering on a free proton and neutron. To achieve the πD scatter-
ing length itself multiple scattering, nuclear structure and absorption must
be taken into account. Significant corrections are expected, because the sum
aπ−p→π−p + aπ−n→π−n almost vanishes and, consequently, the hadronic shift
in πD must be small compared to estimates using a simple geometrical scaling
with respect to πH .

In πD scattering true inelastic channels are open and, hence, aπD becomes
a complex number. The real part 	 aπD , i. e., a+ + corrections accounts for
single and multiple scattering and the imaginary part 
 aπD for true pion
absorption (π−d → nn) and radiative capture (π−d → nnγ). The ratio of
the dominant channels (π−d → nn)/(π−d → nnγ) was found to be Pπ−d =
2.83 ± 0.04 [36]. Other channels contribute only to 0.1%.
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3 Scattering Lengths and Pionic Atoms

3.1 Pionic Hydrogen

The scattering lengths of the elastic channel aπ−p→π−p and the charge-
exchange reaction aπ−p→π0n are related to the strong-interaction shift ε1s

and broadening Γ1s by the Deser-type formulae [37, 38] with rB being the
exotic atom Bohr radius and B1s the binding energy of the atomic ground
state:

ε1s

B1s
= − 4

rB
aπ−p→π−p(1 + δε) , (1)

Γ1s

B1s
= 8

q0
rB

(
1 +

1
P

)
[aπ−p→π0n(1 + δΓ)]2. (2)

In terms of the isospin odd and even amplitudes, ε1s ∝ a+ + a− and Γ1s ∝
(a−)2 hold.

The quantities δε,Γ represent the corrections to be applied to the ex-
perimentally determined scattering length in order to obtain pure strong-
interaction quantities. Recent calculations for δε,Γ performed within χPT
include the corrections for isospin breaking both from the electromagnetic
interaction and the light quark mass difference on the same footing (md −
mu) [39, 40, 41, 42]. In the higher order terms of the chiral expansion further
low-energy constants (LECs) appear. These constants have to be determined
from experiment and not all of them are well known [39, 41]. Alternatively,
a potential model [43] and phenomenological approaches [44] to δε,Γ are pre-
sented, which differ substantially in the numerical values. Finally, the pionic-
atom results must be consistent with the extrapolation of πN scattering data
to threshold and πN phase-shift analyses [45, 46, 47].

3.2 Pionic Deuterium

In general, the complex pion-nucleus scattering length aπA(Z,N) is related to
the measured shift ε1s and width Γ1s by the classical Deser formula [37]

ε1s + iΓ1s/2 = − (2α3Z3m2
redc

4/�c) · aπA, (3)

where mred is the reduced mass of the pion-nucleus system. Because of the
small ratio hadronic scattering length a to Bohr radius rB of the exotic atom
| a | /rB � 1, second order corrections due to strong Coulomb interference as
given by Trueman’s expansion [48] have been neglected up to now in view of
the experimental accuracy of several per cent. Then the relations ε1s ∝ 	 aπD

and Γ1s ∝ 
 aπD are still sufficient.
Significant effort has been undertaken and is still going on to describe the

πD interaction at threshold in the framework of chiral Lagrangians [49, 50, 51,
52, 53, 54], in particular, since the large contribution of the isospin breaking
corrections has been realized [55]. The leading term is proportional to a+ and,
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hence, about one order of magnitude smaller than the corrections originating
from multiple scattering.

	aπd = S + D + · · ·
=

1 +mπ/M

1 +mπ/Md
(aπ−p + aπ−n)

+ 2
(1 +mπ/M)2

1 +mπ/Md

[(
(aπ−p + aπ−n)

2

)2

− 2
(

(aπ−p − aπ−n)
2

)2
]
〈1/r〉

+ · · ·
= 2

1 +mπ/M

1 +mπ/Md
a+

+ 2
(1 +mπ/M)2

1 +mπ/Md

[(
a+

2

)2

− 2
(
a−

2

)2
]
〈1/r〉

+ · · · (4)

Structure, multiple scattering and absorption effects are understood to
be sufficiently under control [49, 50, 51, 56, 57, 58] and, consequently, 	 aπd

must be expressible in terms of the elementary pion–nucleon amplitudes a+

and a−. Or vice versa, pionic deuterium yields a decisive constraint on the
pionic hydrogen data.

In the limit of charge symmetry, pion absorption from the ground state in
deuterium represents the inverse reaction of s-wave pion production π+d → pp
at threshold. In both cases, the isospin ΔI = 1 transition of the nucleon pair
(3S1(I = 0) →3 P1(I = 1)) is considered which has been found to dominate
pion absorption at rest in the helium isotopes [59, 60]. The cross-section is
parameterized by σ(pp → π+d) = αC2

0η + βC2
1η

3. The parameters α and
β account for s- and p-wave production, respectively, η = kπD/Mπ is the
reduced momentum of the pion in the πD rest frame, and the factors Ci

take into account the Coulomb interaction. Detailed balance relates α to the
hadronic width in πD by 
 aπD = Mp α / 6π [61].

Pion production in pp collisions is well studied at low energies. The average
of the most recent data yield α ≈ 215 μb [62, 63], which results in 
 aπD ≈
(0.0037 ± 0.0004)m−1

π . The result from the pionic deuterium width, corrected
for PπD, is 
 aπD = (0.0043 ± 0.0005)m−1

π .
A first study in the approach of χPT including the next-to-leading order

(NLO) terms yields αNLO ≈ 220 ± 70 μb [64]. The accuracy of the calculation
is expected to improve by at least a factor of three within a few years [65].
Without the need of extrapolation to threshold the hadronic width of πD, to
be significantly improved in the new πD experiment, provides the quantity α
at the few per cent level.
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4 Atomic Cascade in Pionic Hydrogen

Exotic atoms are formed when the kinetic energy of negatively charged
particles like muons, pions or antiprotons are slowed down to a few eV. Af-
ter capture by the Coulomb field of the nucleus into highly excited states a
de-excitation cascade starts (Fig. 1). In atoms with Z > 2 the upper part
of the cascade is dominated by Auger emission because the de-excitation
rate depends on the energy difference ΔEnn′ between two levels n and n′

by ΓAuger ∝ (1/
√

ΔEnn′). In the lower part X-ray emission becomes more
and more important owing to ΓX ∝ (ΔEnn′)3. In the case of hadronic atoms
the overlap of nuclear and atomic wave functions becomes significant and the
occurrence of nuclear reactions from the low-lying states leads to level shifts
and broadenings observable in X-ray transitions. A detailed discussion of the
exotic-atom cascade may be found in [66].

In the case of a fully depleted electron shell already in the intermediate
part X-ray emission dominates. Such a situation occurs for medium Z atoms
when electron refilling is suppressed by using dilute targets [67, 68, 69]. This
allows to use hydrogen-like exotic atoms as calibration standards in the few
keV range because finite size effects are still negligibly small [70].

In Z = 1 exotic atoms, i. e., hydrogen, additional de-excitation processes
play a decisive role. Because internal cascade processes proceed like ΓX ∝ Z4,

Stark mixing n – 1 capture

Coulomb deexcitation

external Auger effect

X-radiation

observable hadronic
shifts and broadening

2

1 Γ1s

π
0 n +

 γ n

3

4

n

~16
I = 0 1 2

ε1s

Fig. 1. Atomic cascade in pionic hydrogen. The transition energies of the 2p − 1s,
3p−1s and 4p−1s X-rays are 2.4, 2.9 and 3.0 keV. The hadronic parameters εns and
Γns scale with 1/n3. In case of pionic hydrogen, the s-wave interaction is attractive
resulting in an increase of the binding energy (ε1s > 0)
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there is a frequent chance for collisions during the life time of the exotic sys-
tem. In addition, exotic hydrogen is electrically neutral and, therefore, pen-
etrates easily into other molecules of the target and experiences a strong
Coulomb field there. Several processes competing during the cascade are
briefly discussed below.

• Stark mixing: Within an electric field, to the pure parity states |nm〉 ad-
mixtures are induced from states of the same principal quantum number n
but different angular momentum according to the selection rules Δ = ± 1
and Δm = 0 [71]. In the case of pions the induced low angular momentum
leads to nuclear reactions already in high n states, which in turn depletes
the cascade and reduces significantly the X-ray yields (Day–Snow–Sucher
effect [72]). In the case of pionic hydrogen, only s-wave components expe-
rience the strong interaction.

• Coulomb de-excitation: The energy release for the de-excitation step
(πp)nl → (πp)n′l′ may be converted to a kinetic energy increase between
the collision partners π−p and H (bound in an H2 molecule). Coulomb
de-excitation has been observed directly first by a Doppler broadening
of time-of-flight distributions of neutrons from the two-body reaction
π−p → π0n [73]. Doppler contributions from several radiationless tran-
sitions n → n′ were identified and kinetic energies up to 209 eV corre-
sponding to 3–2 transitions have been seen both in liquid hydrogen and at
a pressure of 40 bar. The acceleration increases (i) the collision probability
and (ii) in the case of subsequent photon emission leads also to Doppler
broadening of X-ray lines. As observed in the time-of-flight experiment,
Coulomb transitions occur at any stage of the cascade, hence, a superpo-
sition of the various components is measured. Coulomb de-excitation even
at lowest densities has been observed in muonic hydrogen μH [74]. There,
however, no depletion of the cascade occurs by hadronic effects.

• Inelastic and elastic scattering: Between two radiationless transitions the
velocity of the πH system is moderated by elastic and inelastic collisions,
e. g., external Auger effect. For a precise determination of the hadronic
width, the knowledge of the correction owing to the Doppler broadenings is
indispensable. Important to mention, the Doppler broadening as measured
by the neutrons may be composed very differently. The reaction π−p →
π0n takes place from ns states with mainly n = 2−5, whereas initial states
πH(np− 1s) X-ray transitions can be populated only by transitions from
the outer part of the cascade.

• Molecular formation: As well established in muon-catalyzed fusion the
collision of a μH atom with H2 leads to resonant formation of complex
molecules like (πH)nl +H2 → [(ppπ)nvj p]2e− [75]. The quantum numbers
v and j denote vibrational and total angular momentum of the 3-body
molecular state. Similarly the 3-body system (ppπ)nvj should be formed
which is assumed to de-excite mainly by Auger emission [76, 77, 78]. But
beforehand it cannot be excluded that a small fraction of a few per cent
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of πH atoms bound into such molecules decays radiatively to the ground
state. Decaying from molecular states small X-ray line shifts occur – always
to lower energies – which cannot be resolved and, hence, could falsify
the extracted hadronic shift. In the case of πD, it is predicted that the
fraction of X-ray emission increases significantly [78]. However, it must be
mentioned that metastable 2s states cannot occur for pions because of the
nuclear reactions.
Besides small shifts due to the existence of molecular levels, Auger sta-
bilization of [(ppπ)nvj p] molecules is discussed. Again Auger transitions
with lowest energy difference are preferred and satellites may occur a few
eV below the line energy of the isolated system.

5 Experimental Approach

Both Coulomb de-excitation and molecule formation are scattering processes
and, hence, depend on the collision rate, i. e., on density. Consequently, the
strategy of the experiment was to study X-ray transitions at different densi-
ties. To be in addition sensitive to the initial state dependence of the maximal
Doppler broadening, all πH transitions of sufficient line yield were also mea-
sured.

• The πH(3p− 1s) line (only in this case a suitable calibration line is avail-
able) was studied in the density range equivalent to 3.5 bar to liquid hy-
drogen, which corresponds to about 700 bar pressure.

• Information on Coulomb de-excitation is obtained by measuring besides
the πH(3p − 1s) also the πH(4p − 1s) and the πH(2p − 1s) transitions.
An increasing total line width with decreasing initial state must be ex-
pected because of the larger energy gain possible for the feeding transition,
whereas the hadronic broadening is due to the 1s level only and therefore
the same for all three lines.

• The measurement of the line width in muonic hydrogen allows the de-
termination of the Doppler broadening without the necessity to subtract
the hadronic line width. In this way a detailed comparison with predic-
tions from cascade calculations on effects caused by Coulomb de-excitation
becomes possible.

5.1 Set-Up at PSI

The new pionic hydrogen experiment is performed at the Paul Scherrer In-
stitut (PSI, Switzerland). The experiment is set up at the high-intensity low-
energy pion beam πE5 and consists of the cyclotron trap II, a cryogenic target,
a reflection-type crystal spectrometer equipped with spherically bent crystals
and a large-area CCD array for position-sensitive X-ray detection (Fig. 2). It
is based on techniques developed and applied to the precision spectroscopy
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Fig. 2. Johann-type set-up of the Bragg spectrometer using the cyclotron trap to
produce a high stop density for pions and a two-dimensional X-ray detector allowing
the simultaneous measurement of an energy interval of several eV

of X-rays with the cyclotron trap I from antiprotonic and pionic atoms [22]
together with substantial improvements in background suppression compared
to the earlier πH experiments [79, 80].

The cyclotron trap, basically consisting of a superconducting split coil
magnet, provides a concentrated X-ray source of suitable extension for a fo-
cusing low-energy Bragg spectrometer. Such a device is superior in stop den-
sity to a linear stop arrangement by two orders of magnitudes [81] and is
indispensable because Stark mixing and hadronic reactions reduce the πH K
X-ray line to a few per cent only [82].

After injection into the trap the beam is degraded by moderators in order
to spiral into a gas cell positioned in the axis of the trap with a few revolutions
only because of short pion life time. The wall of the gas cell is made of 50 μm
thick kapton stabilized by a metallic frame and with a thin window of typically
7.5 μm mylar towards the crystal spectrometer. Higher densities than 1 bar
of the target gases hydrogen and deuterium are established by cooling. At
a pressure of 1 bar, about 0.5% of the incoming pions are stopped in the
gas increasing linearly with density. In this experiment, cyclotron trap II has
been used. Having a larger gap between the coils, one order of magnitude
higher stop rates for muons could be achieved than for trap I. The muons are
produced inside the trap from slow pions decaying close to the center of the
magnet. Muon stop rates are typically 10% of the ones for pions.

X-rays emitted from the target gas are reflected by spherically bent silicon
or quartz Bragg crystals of 10 cm diameter having a radius of curvature of
about 3m. To keep abberations (mainly from Johann broadening) small, the
reflecting area is restricted to 60mm horizontally. The spherical bending leads
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to a partial vertical focusing, which increases the count rate. Typical Bragg
angles are between 40◦ and 54◦.

The X-rays are detected by a large-area two-dimensional position-sensitive
detector built up from an array of six charge-coupled devices (CCDs) of type
CCD22 with frame storage option [83]. Each CCD provides 600×600 pixels
of 40 μm× 40 μm size yielding a total sensitive area of 48mm×72mm for the
full array. With a depletion depth of about 30 μm the efficiency is maximal
around 3.5 keV, ideally suited for the pionic and muonic X-rays having energies
between 1.9 and 3.1 keV. The devices are cooled to –100◦C and located inside
a cryostat, which is separated from the spectrometer vacuum by an 5 μm thick
aluminized mylar window.

An important feature when using CCDs as X-ray detectors is due to their
two-dimensional sensitivity, the capability to analyze the hit pattern and
having an energy resolution as good as high-performance Si(Li) detectors of
typically 140 eV at 6 k̇eV. At hadron machines, a high beam-induced back-
ground level is present from nuclear reactions. Such events, typically originat-
ing from Compton-induced processes, produce large structures. In comparison,
the charge produced by few keV X-rays is collected in one or two pixels only.
Together with massive concrete shielding (Fig. 3), a background reduction of
more than two orders of magnitude is achieved, which is an decisive progress
in view of exotic-atom X-ray rates of 20–100 per hour.

5.2 Energy Calibration

Johann-type spectrometers do not provide measurements of the absolute
Bragg angle and, therefore, need a calibration line as close in energy as pos-
sible. The best choice is a narrow and intense transition in a hydrogen-like
pionic atom not affected by strong interaction. In the case of pionic hydrogen
the pair πH(3p− 1s) and πO(6h− 5g) fulfills these conditions. The large sen-
sitive area of the X-ray detector allows the measurement of the πH(3p− 1s)
transition and a calibration line without any change in the spectrometer set–
up (Fig. 4 – left). This calibration method is basically free of systematic er-
rors due to long-term instability. At higher densities hydrogen and oxygen
have to be measured alternately to prevent the oxygen gas from freezing
(Fig. 4 – right).

Fluorescence X-rays are much broader due to the large Auger width and
may show satellite structures depending even on the excitation mechanism.
Unfortunately, for the other πH lines considered as well as for πD no pionic
lines are available. For pionic deuterium the fluorescence X-rays from gallium
(measured in third order) and chlorine had to be used to determine the energy
of the πD(3p− 1s) and πD(2p− 1s) transition, respectively. The accuracy is
about a factor of 2 less compared to the exotic-atom case.
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Fig. 3. Set-up for the pionic hydrogen experiment in the πE5 area at PSI. The
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5.3 Response Function

For the precise determination of the Lorentz contribution to the πH X-ray
line shapes the knowledge of the crystal spectrometer response is required in
detail. Because narrow fluorescence X-rays or few keV Γ lines for testing Bragg
crystals are not available in practical cases, as a first approach narrow pionic-
atom transitions were used [22, 80, 84]. Such lines have a natural width of a few
tens of meV being negligible compared to the rocking curve width of silicon or
quartz crystals of about 500 meV around 3 keV. Using CH4 gas as target the
experimental line shape was determined from the πC(5g−4f) line, the energy
of which is between the πH(3p−1s) and πH(4p−1s) transitions (Fig. 5 – left).
In CH4 a measurable Doppler broadening from Coulomb explosion is not
expected, but cannot be completely excluded. The πC measurements reveal
interesting cascade features by comparing the circular transition πC(5g− 4f)
to the parallel transitions πC(5f − 4d) and πC(5d− 4p) and the πC(5d− 4p)
line gives in addition access to the strong-interaction effects in the 4p states.

For a detailed measurement of the tails of the rocking curve the lim-
ited count rate, even at the high-flux pion channels, leads to unaccept-
able long measuring periods. Furthermore, a calibration line close to the
πH(2p − 1s) transition at 2.4 keV is also desirable. Therefore, to allow
an ultimate determination of the crystal properties, the technique of an
Electron–Cyclotron-Resonance source has been used. In such a device few
electron atoms are produced at high rates, in particular hydrogen- and helium-
like systems which emit narrow X-ray lines because of the absence of Auger
transitions.

The Electron–Cyclotron-Resonance Ion Trap (ECRIT), set up at PSI, uses
the split coil magnet of the cyclotron trap to produce a bottle field with a
high mirror ratio of about 4 [85]. A hexapole magnet is inserted in between
the coils and the plasma is created by means of a 6.4 GHz high-frequency
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emitter. The crystal spectrometer was attached to one of the bore holes of
the magnet. A cleaning magnet between ECRIT and Bragg crystal deflects
the numerous electrons emitted on the magnet’s axis in order to avoid a large
background due to the scattered particles.

The plasmas were produced from sulfur, chlorine and argon, because for
these elements the energies of the 23S1 → 11S0 M1 transitions coincide with
the ones of the πH(2p−1s), πH(3p−1s) and πH(4p−1s) lines. Count rates of
up to 30000 per hour could be achieved allowing for a comprehensive diagnosis
of the crystals (Fig. 6). In this way, focal lengths, the dependence of the res-
olution on apertures as well as the (asymmetric cut) angle between reflecting
planes and surface could be determined precisely from the diffracted X-rays
themselves [86]. A detailed study of X-ray emission from multiple charge states
is in progress.

5.4 Muonic Hydrogen

The experimental response given, any additional broadening in muonic hydro-
gen transitions owes to Coulomb de-excitation. In Fig. 7 – left, the line shape
of the μH(3p−1s) line is compared to the resolution function as derived from
the sulfur M1 transition.

Three components of the Doppler broadening are easily identified numer-
ically by fitting the line shape. The kinetic energy distribution is modeled
by four boxes adapted to cascade calculation (Fig. 7 – right) result with the
relative weight being a free parameter in the fit. The two high energetic ones
originating from Coulomb de-excitation between the states 5–4 and 4–3 are
visible in the tails and as a kink at about 20% of the peak intensity, respec-
tively. A low-energy component collects the transitions between higher states.

The spectrometer was set up in a way that an energy range of 10 eV to
lower energies was accessible to allow the search for such satellite transitions
stemming from Auger stabilization of molecule levels with subsequent X-ray
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de-excitation. No evidence was found for such nearby X-ray transitions from
molecular states at the 1% level. This corroborates the findings from pionic
hydrogen measurements where no pressure dependence of the Kβ transition
energy could be identified.

As an additional result the fit to the line shape gives a triplet to singlet
ratio of 2.96 ± 0.63 as expected from a statistical population of 3:1 for the
3p hyperfine levels. Leaving even the energy splitting as a free parameter the
result is consistent with the calculated ground-state splitting of 183meV [87].

6 Results

6.1 Transition Energy and Hadronic Shift

In pionic hydrogen, no density dependence was observed for the energy of
the πH(3p − 1s) transition within the full density range of 3.5 bar to liq-
uid [84] (Fig. 5 – right). It is concluded that the radiative decay of molecules
is suppressed in hydrogen. The energy values obtained at all densities are
consistent within the errors. A weighted average was calculated and com-
pared to the pure electromagnetic πH(3p − 1s) transition energy calculated
to EQED

3p−1s = 2878.809± 0.001 eV [89]. The preliminary result for the shift in
hydrogen of the new experiment (R–98.01) is

επH
1s = 7120 ± 11 meV. (5)

The error represents the quadratic sum of the statistical accuracy and all
systematic effects, which originate from spectrometer set-up, imaging prop-
erties of extended Bragg crystals, analysis and instabilities. The contribution
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from the uncertainty of the pion mass is negligible because the energy calibra-
tion was performed with the pionic-atom transition π16O(6h− 5g). The new
value for ε1s is in good agreement with the result of the previous experiment
(7.108 ±0.036 eV), which used the cyclotron trap I and an energy calibration
with argon Kα fluorescence X-rays [80].

For pionic deuterium, two earlier measurements of the transitions πD(3p−
1s) at 15 bar and πD(2p − 1s) at 2.5 bar pressure found επD

1s = −2.43 ±
0.10 eV [79] (energy calibration with Ar Kα) and επD

1s = −2.469±0.055eV [90]
(Cl Kα). Both experiments are of limited statistics and small contributions
from satellites due to molecular formation cannot be excluded. The πD(3p−
1s) experiment suffers in addition from a significant background level. The
uncertainty of the πD(2p − 1s) line energy is dominated by the accuracy of
the Cl Kα energy [91]. Therefore, a new high statistics measurement was
performed recently, studying also the density dependence [24]. The analysis
is in progress.

6.2 Line Width and Hadronic Broadening

For the πH(2p − 1s) line, a significant increase of the total width was
found compared to the πH(3p − 1s) transition, which is explained by the
higher energy release available from preceding transitions. Correspondingly,
the πH(4p− 1s) line was found to be narrower [84] (Fig. 8 – left).

Already from the πH(4p− 1s) transition and using the πC(5g − 4f) line
for the spectrometer response, an upper limit for Γ1s < 0.850 eV can be
determined. A more refined analysis using the ECRIT measurements corrob-
orates this finding. To extract the hadronic width, the Doppler broadening
was modeled by 2, 3 and 4 components for the πH(4p− 1s), πH(3p− 1s) and
πH(2p − 1s) transitions. Very important is, due to the size of the detector,
the possibility to cover fully the tails of the πH transitions. As important is
a large enough region of background to the left and right.

The analyses of the three transitions πH(2p − 1s), πH(3p − 1s) and
πH(4p − 1s) lines, treating the relative intensities of the Doppler broaden-
ing as free parameters, yield consistent values for the hadronic broadening
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Fig. 8. Left: Total line width after subtraction of the spectrometer response only.
Right: Hadronic width after subtraction of response and Doppler contributions
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both for the various transitions and different densities (Fig. 8 – right). The
averaged preliminary result of experiment R–98.01 is

ΓπH
1s = 823± 19 meV (6)

consistent with the result of the previous experiment (Γ1s = 865± 69meV [80]).
The hadronic width in pionic deuterium extracted first from the πD(3p−

1s) transition, ΓπD
1s = 1020±210meV [79], is in good agreement with the

πD(2p−1s) measurement yielding ΓπD
1s = 1093±129meV [90]. Due to limited

statistics the fit is not sensitive to any Doppler contribution to the line width.
The value given for πD(2p − 1s) line contains an estimate for the correction
of 5 ± 5%. The resolution function was obtained here from a measurement of
the π20Ne(7i− 6h) line. In the new πD experiment a 20-fold higher statistics
was collected and the ECRIT results are available for an ultimate description
of the experimental response.

6.3 Scattering Length and Pion–Nucleon Coupling Constant

The shift ε1s in πH yields the sum a+ + a− of the isoscalar and isovector
scattering lengths. In view of the precise experimental values, the accuracy is
determined by the knowledge of the correction δε (see Sect. 3). Within χPT
δε = (−7.2± 2.9)% [41] has been obtained. The uncertainty originates mainly
from one particular LEC (f1), which is practically unknown and dominates
the uncertainty of a+ (see Fig. 9). The result also obtained within χPT for
the correction of the level broadening is reported to be δΓ = (0.6 ± 0.2)%,
[42]. Here, the LEC f1 does not contribute and no significant uncertainty for
the isovector scattering length a− emerges from δΓ. An earlier approach for
δε and δΓ within a potential model ansatz led to δε = (−2.1 ± 0.5)% and
δΓ = (−1.3± 0.5)% [43] which, however, has been criticized to be incomplete.

As discussed earlier, any determination of a+ from the hadronic shift in
πD must be consistent with the values extracted from the πH results. Dis-
crepancies have been reduced substantially by a recent calculation taking into
account so-far neglected isospin breaking correction [55] (Fig. 9). Due to the
smallness of a+ these corrections amount to 42% in second order. The new
and more precise measurement of επD

1s [24] will improve the constraints on
a+ and, in addition, for the electromagnetic LEC f1, which appears in χPT
calculations of charged pion scattering [39, 41, 55, 92].

Using the corrections calculated within χPT [41, 42], we obtain

a+ = 0.0069± 0.0031m−1
π , (7)

a− = 0.0864± 0.0012m−1
π . (8)

With the GMO sum rule analysis according to Ericson et al. [57], but inserting
directly our value for a− the πN coupling constant reads f2

πNN/4π = 0.076±
0.001 which yields ΔGT = (1.98± 0.02)%.
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An independent source for a− is the photoproduction reaction γn→ π−p.
The electric dipole amplitude is related to the isovector scattering length by
(a−)2 = (q/k0)· | Ethres

0+ (π−p) |2, where q and k0 are c.m.s. momenta of the
photon and the pion [8]. With the result of Kovash et al., Ethres

0+ (π−p) =
(−31.5± 0.8) · 10−3m−1

π [93], one obtains a− = 0.0842± 0.022m−1
π . In turn

a− from πH yields a precise value | Ethres
0+ (π−p) |= (−32.5± 0.4) · 10−3m−1

π

in good agreement with the prediction of χPT [94].
The hadronic width in pionic deuterium yields an imaginary part of the

πd scattering length of 
 aπD = (0.0063 ± 0.0007)m−1
π [90]. Corrected for

radiative capture the threshold parameter for pion production reads α =
250 ± 30 μb. An improvement by a factor of about 4 is expected from the
new πD experiment to be compared with the continuously improving χPT
calculations.

7 Summary and Outlook

A second series of high-precision experiments has been performed to determine
strong interaction effects in pionic hydrogen and deuterium. A thorough study
of the density dependence of X-ray energies and line widths together with a
new method for an ultimate precision measurement of the crystal spectrometer
response allows to a large extent the separation of atomic cascade and hadronic
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effects resulting in an accuracy of about 1.5% for the πN scattering lengths.
An extension to A = 3 systems may give additional clarification on how to
build up light nuclei within the approach of χPT [95].

The accuracy in the determination of the πN scattering length concerning
the presently available techniques have almost exploited their potentialities.
Limitations now are mainly due to the understanding of the atomic cascade.
First steps have been undertaken by including the development of the ki-
netic energies in order to develop a dynamical picture which is able to pro-
vide boundary conditions for the intensity of the components of the Doppler
broadening [96, 97]. But up to now, the cross-sections used as input to such
calculations do not allow a satisfactory description of the line shape mea-
sured in the μH(3p− 1s) experiment or the K-line intensities from high-lying
states in πH . More detailed cross-section calculations are planned [98], and
in particular the inclusion of molecular effects during the collisions seems to
be needed.
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Abstract. A radiofrequency quadrupole antiproton decelerator, a femtosecond op-
tical frequency comb and continuous-wave pulse-amplified laser were used to mea-
sure 12 transition frequencies of antiprotonic helium (metastable three-body neutral
atom consisting of an electron, an antiproton and a helium nucleus) to fractional
precisions of (9−16)×10−9. Comparisons with three-body QED calculations yielded
an antiproton-to-electron mass ratio of mp̄/me =1836.152674(5). The physics of an-
tiprotonic helium atom spectroscopy and the method of mp̄/me determination are
presented, and future prospects are discussed.

1 Introduction

Spectroscopy of exotic atoms, the atoms which comprise an ordinary nucleus
and a negatively charged particle such as μ−, π−,K−, p̄,Σ−, offers a power-
ful tool to study fundamental interactions as well as particle properties. For
example, the μ− mass [1] as listed in the review of particle physics [2] was
determined by the exotic-atom X-ray spectroscopy, and the ‘CPT theorem’
was used to assign the same value to the mass of its antiparticle, μ+. Here, the
CPT theorem states that physical laws remain invariant under the simulta-
neous reflections of charge, parity and time, and if the CPT symmetry holds,
the masses of a particle and its antiparticle must be identical. The masses of
π± [3] and K± [4] were similarly determined.

The situation is different for the proton, since the proton mass rather
than the antiproton mass can be more precisely determined using Penning
traps. The 1998 CODATA (Committee on Data for Science and Technology)
recommended value [1] for mp/me of 1836.152 6675(39) (relative standard un-
certainty of 2.1× 10−9, see Fig. 1) was based on the measurement conducted
by the University of Washington group [6], who compared the cyclotron fre-
quencies ωc = qB/m of a single C6+ ion and a single electron trapped in
a Penning trap (i.e., the determination of the electron mass in units of the
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Fig. 1. Proton-to-electron [5] and antiproton-to-electron [10] mass ratios

atomic mass unit). This was then combined with their comparison of the cy-
clotron frequencies of a single proton and a single C4+ ion [7], yielding the
mp/me value.

The 2002 CODATA recommended value [1] formp/me of 1836.152 672 61(85)
(relative standard uncertainty of 4.6× 10−10) is based on a new measurement
carried out by the GSI-Mainz collaboration [8], who compared the 12C5+ cy-
clotron frequency and its spin precession frequency ωL = geB/(2me). From
the measured ratio ωc/ωL and the quantum electrodynamical (QED) predic-
tion for the bound-electron g factor, the electron’s mass in units of the atomic
mass unit was obtained. The proton mass values thus obtained are so much
more precise than the antiproton mass value obtained by the antiprotonic-
atom X-ray measurements (having relative uncertainties of ∼ 4× 10−5) [9].

Recently, the ASACUSA (atomic spectroscopy and collisions using slow
antiprotons) collaboration at CERN’s antiproton decelerator facility (AD)
measured the transition frequencies of antiprotonic helium atoms (p̄He+, a
neutral three-body system made of an electron, an antiproton and a helium
nucleus) using the laser-spectroscopic method to some 10 ppb [10]. By compar-
ing the experimental results with the results of high-precision three-body QED
calculations, the antiproton-to-electron mass ratio mp̄/me was determined to
be 1836.152 674(5) (relative standard uncertainty of 2.7 × 10−9). Using the
CPT theorem, this result can be directly compared with the mp/me, as in
Fig. 1, which shows that the precision of mp̄/me has come close to that of
mp/me.
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In the following, the physics of antiprotonic helium atom spectroscopy and
the method of mp̄/me determination are presented, and future prospects are
discussed.

2 Antiprotonic Helium Atoms

Normally, when an antiproton is stopped in matter, the antiproton annihi-
lates on a nucleus within picoseconds, leaving no time for high-precision spec-
troscopy. The only exception is known to occur in helium, due to the forma-
tion of the antiprotonic helium atom (hereafter denoted p̄He+), a naturally-
occurring antiproton trap in which an antiproton can be “stored” for several
microseconds. This was serendipitously discovered at the 12GeV proton syn-
chrotron of KEK, Japan, and has subsequently been studied in detail at CERN
[11].

The p̄He+ atoms have the following remarkable features:

1. The atom has a metastable lifetime in excess of a microsecond. This
longevity occurs when the antiproton occupies a near-circular orbit having
a large n (∼ 38) and also large � ( >∼ 35).

2. The p̄He+ atoms can be abundantly produced just by stopping antiprotons
in a helium target. Then, about 3% of the stopped antiprotons automat-
ically become trapped in the metastable states.

3. We usually use low-temperature (T ∼ 10 K) helium gas as the target.
The p̄He+ atoms that are produced collide with the surrounding helium
atoms and are thermalized. Therefore, the antiprotonic helium atoms are
already cold and are well suited for high-precision spectroscopy (i.e., small
Doppler width).

4. We have demonstrated already that we can perform laser spectroscopy of
p̄He+. Note that we are not changing the electronic state as in ordinary
laser spectroscopy, but are inducing transitions between different antipro-
ton orbits.

Figure 2 shows an energy level diagram of p̄4He+. The levels indicated by
the continuous lines have metastable ( >∼ 1μs) lifetimes and de-excite radia-
tively, while the levels shown by wavy lines are short lived ( <∼ 10 ns) and
de-excite by Auger transitions to antiprotonic helium ion states (shown by
dotted lines). Since the ionic states are hydrogenic, Stark collisions quickly
induce antiproton annihilation on the helium nucleus, as indicated in Fig. 2.
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3 Principle of the p̄He+ Laser Spectroscopy

Laser spectroscopy of p̄He+ works as follows: As shown in Fig. 2, there is
a boundary between metastable states and short-lived states. For example,
(n, �) = (35, 33) is metastable, while (n, �) = (34, 32), which can be reached
from (35,33) by an E1 transition, is short lived. Thus, if we use a laser
(λ = 372.6 nm in this particular case) to induce a transition from (35,33) to
(34,32), (and of course if an antiproton happens to be occupying the (35,33)
level at the time of laser ignition), the antiproton is de-excited to the short-
lived state, which then Auger decays to an ionic (ni, �i) = (30, 29) state within
<∼ 10 ns. The ionic state is then quickly (usually within ∼ ps) destroyed by
Stark collisions, leading to the nuclear absorption or annihilation of the an-
tiproton. Adding all these together, we expect to see a sharp increase in the
p̄ annihilation rate in coincidence with the laser pulse, as shown in Fig. 3. We
measure the intensity of the laser-induced annihilation spike as a function of
laser detuning to obtain the transition frequency νexp.

The transition frequency from the state (n, �) to (n′, �′) can be (approxi-
mately) written similarly to the well-known hydrogen formula,
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Fig. 3. Delayed-annihilation time spectrum of p̄4He+, with laser-induced annihila-
tion spike of the transition (35, 33) → (34, 32) [20]

νn,�→n′,�′ = Rc
m∗̄

p

me
Z2

eff(n, �, n′, �′)
(

1
n2
− 1
n′2

)
, (1)

where R is the Rydberg constant, c is the speed of light, m∗
p̄/me is the reduced

antiproton-to-electron mass ratio and Zeff is the effective nuclear charge. Here,
Zeff = 2 for the antiprotonic helium ion (p̄He2+), but is < 2 in the case of
p̄He+ due to the nuclear-charge shielding by the remaining electron, and it
must be calculated by three-body QED theories. This formula shows how
mp̄/me can be deduced from the precision measurement of νexp with the help
of three-body calculations.

4 Why Further p̄ Deceleration Using an “Inverse Linac”
Is Needed?

Our first series of measurements, conducted at CERN’s low-energy antiproton
ring (LEAR, closed down at the end of 1996), were of exploratory nature, in
which we established the formation and structure of the antiprotonic helium
atoms [11]. Our first successful observation of the (n, �) = (39, 35)→ (38, 34)
laser resonance of p̄4He+ at λ = 597.3 nm [12] triggered theoretical efforts
to preform high-precision three-body QED calculations [13, 14, 15], which
in turn helped us guide the search for new transitions. The most impor-
tant outcome of the LEAR era was the study of the density-dependent shifts
and widths of the transition frequencies as shown in Fig. 4(a) [16]. Since
the p̄He+ atoms were produced by stopping antiprotons in a helium gas tar-
get of temperature T ∼ 5 K and pressure P ∼ 0.5 bars, or atomic density of
ρ ∼ 1021 atoms·cm−3, the atoms undergo many collisions against ordinary he-
lium atoms, producing density-linear (as well as state-dependent) shift of the
transition frequencies of ∼ 500 MHz. By taking data at several different target
densities in the range 0.1− 3× 1021 cm−3 and determining the zero-density-
extrapolated value, we were able to determine two transition frequencies of
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p̄4He+ ((n, �) = (39, 35) → (38, 34) and (37, 34) → (36, 33)) with precisions
δν/ν of 0.5− 1× 10−6 [16].

In the first experiment of ASACUSA collaboration at CERN’s antipro-
ton decelerator (AD), we measured six transition frequencies of p̄4He+ to
δν/ν = 1−10×10−7 [17]. The essential difference between the LEAR and the
AD experiments was the time structure of the antiproton beam. At LEAR,
antiprotons were slowly extracted from the LEAR ring, so that an excimer-
pumped dye laser was fired for each p̄He+-candidate event which occurred
randomly with a mean rate of about 300 Hz. In contrast, the AD provides
a short pulse of ∼ 100 ns wide containing some 3 × 107p̄s, repeated every
100 s. A single laser pulse in this case irradiates some 106 metastable atoms.
The conventional event-by-event collection of antiproton-annihilation events
used at LEAR is impossible with the pulsed beam at AD. We thus devel-
oped an entirely new detection scheme based on analog-waveform-recording of
Čerenkov detectors viewed by gateable photomultipliers [18]. Good control of
systematic errors by stabilizing the laser frequency, intensity, the antiproton-
beam position, etc., over a long measuring time of ∼ 8 hours was essential
to achieve high precision. As was in the case of the LEAR experiments, the
zero-density extrapolation procedure was inevitable in the first AD experi-
ment (see Fig. 4(b)), but this was largely eliminated as follows by using an
ultra-low-energy p̄ beam generated by a radiofrequency quadrupole decelera-
tor (RFQD) [19], the first successful “inverse linac” constructed by ASACUSA
in collaboration with CERN.
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of p̄4He+ (n, �) = (39, 35) → (38, 34) observed at LEAR [16]. (b) The density
dependence of the p̄4He+ transition frequencies measured in the first AD experiment
[17]. Linear extrapolations to zero density were used to deduce the “in vacuo” values
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The experimental arrangement using the RFQD is schematically shown in
Fig. 5. The 5.3 MeV antiprotons from the AD were first time-wise compressed
by the RF buncher so as to be in phase with the decelerating rf field in the
RFQD, entered the 3.5-m-long quadrupole electrode structure, operated at
202.5 MHz, and were decelerated to 65±20 keV with an efficiency of 20–25%.
In order to separate the decelerated p̄s from the undecelerated component
which nevertheless reach the end of the RFQD, a magnetic spectrometer was
installed between the RFQD and the low-density helium target (150 mm in
diameter, 300 mm in length). A thin (0.8 μm) polyethylene window was used
to contain the 10 K helium gas of 1016 − 1018 atoms/cm3. In 2003, we used
this setup to measure seven transition frequencies of p̄4He+ and six of p̄3He+,
with errors of δν/ν ∼ 0.5 − 2 × 10−7 [20], about a factor 6 better than the
pre-RFQD measurement.

5 Further Improvement Using an Optical Frequency
Comb

Having eliminated the collisional shift, the line width of the laser and its
frequency calibration were the large source of errors, as shown in Table 1.
Only pulsed lasers can provide the megawatt-scale intensities needed here to
induce the p̄He+ transitions. However, fluctuations in their frequency and
linewidth and the difficulty of calibrating the wide range of p̄He+ wavelengths
indicated in Fig. 6 have limited our experimental precision. We circumvented
these problems by basing our experiments on a continuous-wave (CW) laser
whose frequency νcw could be stabilized with a precision < 4× 10−10 against
an optical comb. Its intensity was then amplified by a factor 106 to produce
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a pulsed laser beam of frequency νpl ∼ νcw with an accuracy and resolution
1–2 orders of magnitude higher than before.

A schematic diagram of the laser system which enabled this improvement
is shown in Fig. 7. A Nd:YVO4 laser (in block (C) of Fig. 7) pumped either a
ring Ti:sapphire or dye laser (Coherent MBR-110 or 899-21), thus producing
CW laser beams covering the required wavelengths λ = 574.8−941.4 nm with
linewidth Γ = 1 or 4 MHz and power P ∼ 1 W. This seed beam was amplified
in three dye cells pumped by a pulsed Nd:YAG laser. This is shown in Fig. 7
block (E), where we also show a pulse stretcher, which stretched the laser pulse
length to 20 ns to decrease the Fourier-limited linewidth. The cells emitted
laser pulses with Γ ∼ 60 MHz and E = 5 − 20 mJ. The shorter wavelengths
λ = 264.7−470.7 nm were obtained by frequency doubling beta-barium borate
(BBO) or lithium triborate (LBO) crystals as shown in Fig. 7 block (E) or by
frequency tripling using both crystals.

The optical frequency comb (Menlo Systems FC-8004, shown in block
(D)) [21, 22] constituted a mode-locked Ti:sapphire laser pumped by a CW
Nd:YVO4 laser, which produced 15-fs-long laser pulses of repetition rate
frep = 200 MHz. The spectral width λ = 750 − 850 nm of this pulsed beam
was first broadened to λ = 500 − 1100 nm by propagating it through a mi-
crostructure fiber. This beam was then used to stabilize (i) the frequency
offset foff = 20 MHz common to all the modes of the comb and (ii) the CW
seed laser to frequency νcw = ncfrep + foff + fdif which was fdif = 20 MHz
above the ncth mode of the comb. The value nc was measured using a Fizeau
wavelength meter. All frequencies frep, foff , and fdif were synchronized to a
quartz oscillator, which was stabilized to a timing signal provided by global
positioning satellites. The seed (and consequently the pulsed dye) laser was
scanned over a region 4 GHz around the p̄He+ lines by changing the above rep-
etition rate from frep = 200.000 to 200.004 MHz. Doppler-free spectroscopy of
Rb and I2 in the seed beam (blocks (A) and (B)) indicated that its frequency
precision was < 4× 10−10.

Table 1. Various factors contributing to the precision of p̄He+ laser spectroscopy

ASACUSA2001 [17] ASACUSA 2003 [20] ASACUSA2006 [10]
(MHz) (MHz) RFQD CW laser + Comb

Natural width 20–100 ← ←1

Collisional shift ∼ 500 < 10 0.1 − 2 MHz
Collisional width ∼ 500 < 10 < 10 MHz
Doppler width ∼ 500 ← ←
Laser line width 800 − 2000 ← < 60 MHz
Calibration 10 − 60 ← ∼ 2 − 42

1 In [10], we also measured for the first time a metastable–metastable transition
(n, �) = (36, 34) → (35, 33), having a narrow natural width of 100 kHz.
2 The uncertainty of 2 − 4 MHz is due to frequency chirp correction.
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The frequency νpl of the dye laser pulse can deviate from the seed value νcw
due to sudden changes in the refractive index of the dye during the amplifica-
tion. This so-called chirp effect of magnitude Δνc(t) = νpl(t) − νcw can shift
the measured p̄He+ frequencies νexp from their true values, so it had to be
corrected. The time evolution of Δνc(t) was measured by the setup shown in
blocks (F) and (G) of Fig. 7. We also minimized Δνc(t) using an electro-optic
modulator (EOM, shown in block (E)) to apply a frequency shift of opposite
sign to the seed laser, which canceled the chirp induced in the dye cells.

The profile of the (n, �) = (36, 34)→ (37, 33) resonance in p̄3He+ is shown
in Fig. 8(a). It contains (i) eight intense lines (indicated by four arrowed pairs)
corresponding to E1 transitions involving no spin-flip between the eight hyper-
fine substates [23] of states (36, 34) and (37, 33) and (ii) 12 weak lines wherein
one of the constituent particles flips its spin. Only the two peaks separated by
1.8 GHz that arise from the interaction between the orbital angular momen-
tum of the antiproton and electron spin could be resolved, however, due to the
400 MHz Doppler broadening caused by the motion of the p̄3He+ thermalized
to T = 10 K. The spin-averaged transition frequency νexp was determined
by fitting this profile with the theoretical line shape (solid line) obtained from
the optical Bloch equations which describe the evolution of the p̄He+ state
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Fig. 6. Partial level diagrams of p̄4He+ and p̄3He+. Wavelengths of transitions
studied in [10] are indicated in nanometers
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populations during laser irradiation. The small remaining chirp introduced a
time dependence to νpl(t) when performing the Bloch equation integration.
In this we took transitions between all hyperfine and magnetic substates into
account, using the theoretical values for their splittings (precision < 1 MHz)
and dipole moments [23]. Doppler broadening, laser power broadening, and

Fig. 7. Stabilization of CW pulse-amplified laser to femtosecond frequency comb
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collisional dephasing effects were also included. The νexp values of p̄4He+ res-
onances (Fig. 8(b)), which contain four intense, non-spin-flip lines and four
weak, spin-flip ones, were similarly obtained. The ac Stark shifts caused by
the laser interacting with p̄He+ are estimated to be <∼ MHz, due to the small
scalar (−3 to 2 a.u.) and tensor ((0.1− 2)× 10−3 a.u.) terms of the dynamic
polarizability for these transitions [24].

6 The First Measurement of a Metastable-to-Metastable
Transition Frequency

All transitions heretofore accessible to our precision laser spectroscopy in-
volved a daughter state with a short Auger lifetime, the natural width
Γn

>∼20 MHz of which would ultimately limit the achievable precision on νexp

to around ∼ 10−9. We have now extended our studies to include one p̄4He+

transition (36, 34)→ (35, 33) between two metastable states (see Fig. 6) with
Γn ∼ 100 kHz. This implies an ultimate precision of ∼ 10−12, although our
present experiments are Doppler rather than natural width limited. To mea-
sure this transition we developed the following three-laser method (see Fig. 9),
which also utilizes the above CW pulse-amplified laser: (i) An additional dye
laser pumped by a 355nm Nd:YAG laser (not shown in Fig. 7) first irradiated
the p̄He+ with a 3-ns-long pulse at λ = 372.6 nm. This depleted the popula-
tion in state (35, 33) at t = t1 by inducing the transition (35, 33) → (34, 32)
to a short-lived state. (ii) At t = t2 ∼ t1 + 50 ns, the CW pulse-amplified
laser tuned to (36, 34) → (35, 33) at λ = 417.8 nm equalized the population
in the parent and daughter states. (iii) Another 372.6 nm dye laser pumped
by the same Nd:YAG laser probed the increased population of (35, 33) at
t = t3 ∼ t1 +100 ns resulting from the transitions stimulated by the 417.8nm
laser pulse and produced an annihilation peak at t = t3. The profile of the
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Fig. 9. (a) A part of the p̄4He+ energy diagram. (b) Delayed-annihilation time
spectrum with three lasers fired at t = t1, t2, t3 to measure the 417.8 nm transition

(36, 34) → (35, 33) resonance obtained by plotting the intensity of this peak
against the frequency of the 417.8 nm laser is shown in Fig. 8(c).

7 Experimental Results

The νexp values thus obtained are compared with two sets of theoretical values
νth [25, 26] in Fig. 10, both of which include QED and nuclear-size (Δνnuc =
2−4 MHz) effects. Values from [25] scatter within 7−8σ of νexp. Those of [26],
the only calculation claiming precision σth = 1− 2 MHz commensurate with
νexp, agree within < 1 × 10−8 with the four highest-precision measurements
in p̄4He+ and (36, 34) → (37, 33) in p̄3He+. Four of its p̄3He+ frequencies
were ∼ 2σ below our νexp values. Concerning [25], unpublished results from
the authors have recently moved by 3− 100 MHz from those in Fig. 10. We
therefore use only the values from [26] in the following.

The theoretical calculations for νth were performed using the 2002 CO-
DATA recommended values for fundamental constants, including mp̄/me =
mp/me = 1836.15267261, m4He/me = 7294.2995363(32) and m3He/me =
5495.885269(11). Theory [26] also provided coefficients for dνth/d(mp/me).
These we used to determine the antiproton-to-electron mass ratio as the value

4 He+p– 3 Hep–(40,35)⇒(39,34)
(39,35)⇒(38,34)
(37,35)⇒(38,34)
(37,34)⇒(36,33)
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(35,33)⇒(34,32)
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(νth – νexp) / νexp ppb)
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(36,34)⇒(37,33)
(36,33)⇒(35,32)
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(32,31)⇒(31,30)

-50 500

(νth – νexp) / νexp ppb)
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+

Fig. 10. Experimental νexp (circles with 1σ errors) vs theoretical νth (triangles [25]
and squares [26]) transition frequencies
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mp̄/me = 1836.152674(5) by minimizing the sum Σ[νth(mp̄/me)−νexp]2/σ2
exp

over the 12 transitions. Here νexp, the experimental 1 standard deviation (1σ)
error σexp = 4 − 15 MHz (Fig. 10) was the quadratic sum of the statistical
(3 − 13 MHz) and systematic ones σsyst arising from the chirp (2 − 4 MHz),
collisional shifts (0.1−2 MHz) and the harmonic generation (1−2 MHz). The
error 5 on the last digit of mp̄/me is the quadratic sum of 4 (the minimization
error) and the systematic ones 3 (arising from σsyst) and 2 (from σth).

8 Summary and Outlook

A radiofrequency quadrupole antiproton decelerator, a femtosecond optical
frequency comb and continuous-wave pulse-amplified laser were used to mea-
sure 12 transition frequencies of antiprotonic helium to fractional precisions
of (9−16)×10−9. Comparisons with three-body QED calculations yielded an
antiproton-to-electron mass ratio of mp̄/me =1836.152674(5). Since our first
observation of the p̄4He+ laser resonance in 1993 [12], with precision δν/ν of
∼ 5×10−4, the experimental precision has improved by 6 orders of magnitude.
Meanwhile, theoretical precision has also improved by using more elaborate
schemes to solve the three-body problem and by adding higher-order QED
corrections. As shown in Fig. 10, precisions of experiment and theory have
reached similar order, and in order to further improve the precision of mp̄/me

determination, both experiment and theory must improve. On the theory side,
we need at least two theoretical predictions which agree with each other within
quoted numerical errors.

Experimentally, it is possible to achieve higher frequency precision by
performing a metastable-to-metastable spectroscopy using the two-photon
(36, 34) → (34, 32) transition (by using two counter-propagating beams of
λ1 ∼ 372 nm and λ2 ∼ 417 nm, we can approximately cancel the Doppler
width).

Another possibility is to try laser spectroscopy of antiprotonic helium ions,
recently discovered by stopping antiprotons in a very low density helium target
of 1016 atoms/cm3 [27], since the transition frequencies of the two-body p̄He2+

can be calculated without theoretical ambiguities. Let us go back again to
Fig. 2 and consider the fate of p̄He2+ ions at very low target densities. The
destruction of the p̄He2+ states usually takes place in a matter of pico seconds
due to the Stark collisions. If the p̄He2+ ion is isolated in a vacuum, there
are no collisions, and hence the p̄He2+ states should become metastable (the
radiative lifetimes of the circular states around ni ∼ 30 is several hundred
ns). We, therefore, expect the prolongation of [27] lifetimes at very low target
densities.

This is exactly what we recently observed. In the left panel of Fig. 11,
we show the annihilation spike produced by inducing the p̄4He+ transition
(n, �) = (39, 35) → (38, 34) measured by using the RFQD-decelerated beam
at a low target density of 2× 1018 atom/cm3. At this density, the decay time
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Fig. 11. Annihilation spike produced by inducing the p̄He+ transition (n, �) =
(39, 35) → (38, 34), measured at a high target density (a). A prolongation of the tail
is observed at ultra-low densities (b), indicating the formation of long-lived p̄He2+

ions.

constant of the laser spike is still consistent with the Auger lifetime of the
(38, 34) level. However, as shown in the right panel, the shape of the laser-
induced spike changes drastically in an ultra-low target density of 3 × 1016

atoms/cm3. Lifetime prolongation was also observed in the case of antipro-
tonic helium 3 ions. Systematic measurements of the ion lifetimes at various
target densities have been done, which showed that the ionic-level lifetimes
get shorter for larger principle quantum numbers [27]. Experiments to observe
laser-resonant transitions of p̄4He2+ and p̄3He2+ are being carried out by the
ASACUSA collaboration.

If both experiment and theory are improved, it appears possible to de-
termine mp̄/me as good as or even better than mp/me within a few years.
Assuming that the CPT symmetry is valid at this level of precision, these
efforts will then contribute to the better determination of a fundamental
constant.
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Abstract. We describe the current status of high-precision ab initio calculations
of the spectra of molecular hydrogen ions (H+

2 and HD+) and of two experiments
for vibrational spectroscopy. The perspectives for a comparison between theory and
experiment at a level of 1 part in 109 are considered.

1 Introduction

The molecular hydrogen ion (MHI) is the simplest stable molecule, containing
just two nuclei and a single electron. Since the birth of the field of molecular
physics it has played an important role: it is on the one hand an important
benchmark system for detailed studies of energy levels [1], for collisions and
chemical reactions between charged molecules and neutral atoms/molecules, of
interactions with laser radiation and energetic charged particles and for testing
the respective theoretical descriptions. On the other hand, the MHI is also an
astrophysically important molecule, involved in reaction chains leading to the
production of polyatomic molecules. Over 800 publications have been written
on this molecule in the last 35 years [2]. The large majority are theoretical
studies.

Concerning high-resolution spectroscopy of MHIs, only a limited number
of investigations have been carried out, most of which a long time ago. Ra-
diofrequency spectroscopy of the hyperfine structure in several vibrational
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levels has been performed on H+
2 trapped in a Paul trap [3]; several low-

lying fundamental ro-vibrational transitions of HD+ have been measured us-
ing laser spectroscopy on an ion beam [4], while rotational and ro-vibrational
transitions of H+

2 , D+
2 and HD+ close to the dissociation limit were inves-

tigated using microwave and laser spectroscopy, also on an ion beam [5, 6].
The highest spectroscopic accuracies reported so far were achieved in the ex-
periments of Jefferts and of Wing et al. [4, 7], � 3.8 ·10−7 in relative units.
Recently, the dissociation energies have also been obtained with accuracies
� [0.6 − 1.2] · 10−6 [8]. Thus, the experimental accuracies have been far less
than those achieved in hydrogen or helium spectroscopy.

In the late 1990s, it was recognized that there are attractive reasons and
many opportunities to study MHIs in novel ways and to achieve a much
higher precision than previously possible [9]. Several techniques, not used
before on MHIs, appeared to be applicable, including translational cooling,
internal cooling, spectroscopy with reduced Doppler broadening, Doppler-free
spectroscopy, high-sensitivity ion detection. Novel laser systems not avail-
able at the time of the earlier precision spectroscopic studies can be used
advantageously, among them diode lasers, quantum cascade lasers and the
femtosecond frequency comb. The prospect of significantly improved experi-
mental precision has also motivated us to develop more extended theoretical
treatments of the MHI; in the course of these efforts, the accuracy of the
energy levels has been increased by approximately two orders of magnitude
compared to previous work.

Some of the above techniques have by now been implemented and are
reported here; the remaining appear to be feasible in the near future. These
recent developments open up a number of novel applications of MHIs:

(i) Test advanced ab initio molecular calculations (in particular, QED con-
tributions);

(ii) Measure fundamental constants;
(iii) Test concepts for the manipulation of molecules (state preparation, align-

ment);
(iv) Sense fields (blackbody radiation [10]);
(v) Probe fundamental physics laws (e.g. Lorentz Invariance [11], time in-

variance of fundamental constants [12, 13]);
(vi) Study electric dipole interactions between molecules [14];
(vii) Explore elastic, reactive and charge exchange collisions with neutral

atoms and molecules at ultra-low collision energies.

The successful demonstration of manipulation of MHIs at the quantum-
state level could also open up the possibility to study collisions with quantum-
state resolution, i.e. where all parent particles are in specific quantum states.

An attractive perspective of our work pursued under (i) is to eventually
determine the ratios of electron-to-proton mass (me/mp), proton-to-deuteron
mass (mp/md) and proton-to-triton mass (mp/mt) from a comparison be-
tween accurate experimental and theoretical energy level data. The basis for
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this possibility is the dependence of the vibrational and rotational transition
frequencies on the fundamental constants. For fundamental vibrational and
rotational transitions, the frequencies scale approximately as

νvib ∼
√
me/μ R∞c , νrot ∼ (me/μ)R∞c , (1)

where μ = M1M2/(M1 +M2) is the reduced mass of the two nuclei and
R∞ is the Rydberg energy. The precise dependencies have been computed
in [12, 15, 16]. The mass ratios mp/md, mp/mt and me/mp are convention-
ally determined by Penning ion trap mass spectrometry on single particles
or by electron spin resonance of single hydrogen-like ions in a Penning ion
trap. Relative accuracies are currently 2.0 · 10−10 [17], 2 · 10−9 and 4.6 · 10−10

[17, 18], respectively. Note that in the case of me/mp, the determination in-
volves the use of QED [19]. Clearly, the corresponding accuracies of νvib, νrot
represent the goal levels for our ongoing experimental and theoretical efforts
on H+

2 and HD+.
Several aspects support the expectation that such accuracies can be

reached in the near future. First, the lifetimes of vibrational levels are long,
the shortest ones occurring for low-lying levels in HD+ are � 10 ms. The rel-
ative linewidth due to spontaneous decay is thus of the order or smaller than
10−13. Second, Doppler broadening can be strongly reduced or eliminated by
either cooling the molecular ions or by performing two-photon Doppler-free
spectroscopy. Finally, collision broadening and time-of-flight broadening can
also be minimized by both cooling and providing a good ultra-high vacuum
environment. Systematic shifts due to light fields, trap electric fields and trap
and environmental magnetic fields will need to be considered; hereby it will
be helpful that these influences be calculated accurately, using the relative
simplicity of the MHI. The theoretical determination of the energy levels at
the goal accuracy level will need as input nuclear properties such as the pro-
ton and deuteron nuclear radii, which may be obtained, e.g. from hydrogen
spectroscopy or nuclear scattering experiments.

In this contribution we present an overview of our theoretical and experi-
mental results achieved recently on MHIs. Section 2 describes the theoretical
approaches for a precise computation of energy levels, including hyperfine
and QED effects and the computation of one- and two-photon spectra. Sec-
tion 3 presents the development and results from an experiment for trapping
and spectroscopy of H+

2 performed at the Université d’Evry Val d’Essonne.
Section 4 summarizes an experiment on HD+ at the Universität Düsseldorf.

2 Ab Initio Theory of H+
2 and HD+

The dissociation energies of 462 states in H+
2 and 619 in HD+ in a wide range of

v and L, vibrational and rotational quantum numbers, have been calculated
some time ago by R.E. Moss [20, 21] with a relative accuracy of ∼ 5 ·10−9
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(including the leading-order relativistic and radiative corrections). Later the
numerical precision of the nonrelativistic energies have been improved up to
10−15–10−24 a.u. [12, 15, 22, 23, 24, 25, 26] by using variational methods.
The ultimate accuracy of ∼10−24 a.u. has been obtained for the H+

2 ground
state [26]. These calculations demonstrate that at least the nonrelativistic
ro-vibrational transition frequencies can be determined with an uncertainty
well below the 1 kHz level. In this section we describe the calculation of QED
corrections as an expansion in terms of α, the fine structure constant. The
numerical method exploits a variational approach based on the Slater-type
exponentials as basis functions. We demonstrate that the frequencies of ro-
vibrational transitions can be obtained in this way with a precision better
than 1 part in 10 9 (1 ppb).

2.1 Variational Expansion

The variational bound state wave functions are calculated by solving the three-
body Schrödinger equation with Coulomb interaction using the variational ap-
proach based on the exponential expansion with randomly chosen exponents.
Details and the particular strategy of choice of the variational nonlinear pa-
rameters and basis structure that have been adopted in the present work can
be found in [23].

Briefly, the wave function for a state with a total orbital angular momen-
tum L and a total spatial parity π = (−1)L is expanded as follows:

Ψπ
LM (R, r1) =

∑

l1+l2=L

Y l1l2
LM (R̂, r̂1)GLπ

l1l2(R, r1, r2),

GLπ
l1l2(R, r1, r2) =

N∑

n=1

{
Cn Re

[
e−αnR−βnr1−γnr2

]

+Dn Im
[
e−αnR−βnr1−γnr2

]}
.

(2)

Here Y l1l2
LM (R̂, r̂1) = Rl1rl2

1 {Yl1 ⊗Yl2}LM are the solid bipolar harmonics, R is
the position vector of nucleus 2 relative to nucleus 1 and r1, r2 are positions
of an electron relative to nuclei 1 and 2, respectively. The complex exponents,
α, β, γ, are generated in a pseudorandom way.

When the exponents αn βn and γn are real, the method reveals slow con-
vergence for molecular-type Coulomb systems. The use of complex exponents
allows to reproduce the oscillatory behaviour of the vibrational part of the
wave function and to improve convergence [23, 27].

The advantage of choice (2) is the simplicity of the basis functions. It al-
lows evaluating analytically matrix elements of the Breit–Pauli Hamiltonian
and the leading-order radiative corrections and, more importantly, to treat in
a systematic way the singular integrations encountered in higher-order con-
tributions [28].
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2.2 Leading-Order Relativistic and Radiative Corrections

Relativistic corrections of the leading R∞α2 order, the Breit–Pauli Hamilto-
nian, are well known and can be found in many textbooks [29, 30]. The nuclear
finite size effects are considered as contributions to this order. Details, relevant
particularly to the case of the MHIs, can be found in [31]. In what follows we
assume that the nuclear charges are Z1 =Z2 =Z =1 and nuclear masses are
denoted by capital Mi. The units adopted are (�=e=me =1).

The radiative corrections of an order R∞α3 for a one-electron molecular
system can be expressed by the following set of equations (see [32, 33, 34]).

The one-loop self-energy correction (orders R∞α3 and R∞α3(m/M)) is

E(3)
se =

4α3Z

3

(
ln

1
α2
− β(L, v) +

5
6
− 3

8

)
〈δ(r1)+δ(r2)〉

+α3Z2
∑

i=1,2

[
2

3Mi

(
− lnα−4 β(L, v)+

31
3

)
〈δ(ri)〉 − 14

3Mi
Q(ri)

]
,

(3)

where
β(L, v) =

〈J(H0−E0) ln ((H0−E0)/R∞)J〉
〈[J, [H0, J]]/2〉 (4)

is the Bethe logarithm. The latter quantity presents the most difficult numer-
ical problem in computation of QED corrections for the three-body bound
states. In [34, 35] the calculations for a wide range of ro-vibrational states in
H+

2 and HD+ have been performed to an accuracy of about seven significant
digits. The operator J in (4) is the electric current density operator of the sys-
tem.1 The last term, Q(r), in (3) is the mean value of a regularized operator
introduced by Araki and Sucher [36] for the 1/(4πr3) potential:

Q(r) = lim
ρ→0

〈
Θ(r − ρ)

4πr3
+ (ln ρ+ γE)δ(r)

〉
. (5)

The values of this matrix element for ro-vibrational states are calculated in
[31].

The remaining contributions in this order can be obtained from the Pauli
form factor of an electron (anomalous magnetic moment),

E(3)
anom = πα2Z

[
1
2

(α
π

)]
〈δ(r1)+δ(r2)〉 , (6)

and from the one-loop vacuum polarization,

E(3)
vp =

4α3Z

3

[
−1

5

]
〈δ(r1)+δ(r2)〉 . (7)

1 J =
∑

a zapa/ma, where za, pa, ma are the charge, momentum and mass of
particle a. The sum is performed over all particles of the system.
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2.3 R∞α4 Order Corrections in the Nonrecoil Limit

The contribution of recoil corrections, proportional to (m/M), in the R∞α4

order are too small for our present consideration and may be neglected. Radia-
tive corrections for a bound electron in an external field are known analytically
[38, 39]:

E(4)
se = α4Z2

[
4π

(
139
128
− 1

2
ln 2

)]
〈δ(r1)+δ(r2)〉 ,

E(4)
vp = α4Z2

[
5π
48

]
〈δ(r1)+δ(r2)〉 ,

E(4)
anom = α2Zπ

[(α
π

)2
(

197
144

+
π2

12
− π2

2
ln 2 +

3
4
ζ(3)

)]
〈δ(r1)+δ(r2)〉 ,

E
(4)
2loop = α2Zπ

[(α
π

)2
(
−6131

1296
− 49π2

108
+ 2π2 ln 2− 3ζ(3)

)]
〈δ(r1)+δ(r2)〉 .

(8)
The last equation includes both the Dirac form factor and polarization oper-
ator contributions.

The R∞α4 relativistic correction is obtained using the adiabatic “effective”
potential for an mα6 term in the α expansion of the two-center Dirac energy
(see Fig. 1). Averaging over the squared wave function density of a state, one
gets E(4)

rc . The adiabatic potentials have been obtained recently with about five
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Fig. 1. Adiabatic potential of the mα6 order contribution (in atomic units) to the
Dirac energy of the two-center problem (Z1 =Z2 =1). Dashed curves are the squared
densities of the ground and first vibrational state wave functions of the H+

2 ion
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significant digits [37], and the Born–Oppenheimer solution yields approximate
wave functions at the (m/M)≈10−4 level, which allows to claim that E(4)

rc is
now known to four digits.

Some higher-order radiative corrections for a bound electron in an external
field are also known in an analytic form [38, 39] and can be included:

E(5)
se = α5Z3 ln2(Zα)−2

[−1
] 〈δ(r1)+δ(r2)〉 . (9)

The electron ground state wave function may be approximated by ψe(re) =
C[ψ1s(r1) + ψ1s(r2)], where ψ1s is the hydrogen ground state wave function
and C is a normalization coefficient. Thus, one may use this approximation
to evaluate other contributions in the R∞α5 order:

E(5′)
se = α5Z3

[
A61 ln (Zα)−2 +A60

]
〈δ(r1)+δ(r2)〉 ,

E
(5)
2loop =

α5

π
Z2

[
B50

] 〈δ(r1)+δ(r2)〉 ,
(10)

where the constants A61, A60 and B50 are taken equal to the constants of the
1s state of the hydrogen atom A61 = 5.419 . . . [40], A60 = −30.924 . . . [41]
and B50 = −21.556 . . . [42] (see also [39] and references therein). The final
theoretical uncertainty in the transition frequency (see Table 1) is determined
by the total contribution of the last two equations.

2.4 Hyperfine Structure of States

The leading-order contribution to the hyperfine splitting of the ro-vibrational
states is calculated using the spin-dependent part of the Breit–Pauli inter-
action Hamiltonian, with phenomenological values for the nuclear magnetic
moments and the electron anomalous magnetic moment. The hyperfine levels
of HD+, EvLFSJ , are labelled with the quantum numbers F , S and J of the
intermediate angular momenta F = Ip + se, S = F + Id and of the total
angular momentum J = L + S [43]. In case of H+

2 due to the Pauli exclusion
principle the total nuclear spin I is uniquely defined by L and the parity of

Table 1. Summary of contributions to the (v=0, L=0)→ (v′=1, L′ =0) transition
frequency (in MHz). ΔE − nr is the nonrelativistic energy

H+
2 HD+

ΔEnr 65 687 511.0686 57 349 439.9717
ΔEα2 1091.041(03) 958.152(03)
ΔEα3 −276.544(02) −242.118(02)
ΔEα4 −1.997 −1.748
ΔEα5 0.120(23) 0.106(19)
ΔEtot 65 688 323.688(25) 57 350 154.368(21)
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the electronic state. The following coupling scheme is adopted: F = I+se and
J = L + F [44]. The hyperfine structure (HFS) of the ro-vibrational states of
HD+ consists of 4, 10 or 12 hyperfine sub-levels for L= 0, L= 1 and L≥ 2,
respectively (see Fig. 2). The multiplicity of the HFS of H+

2 is reduced to
1 for L = 0, 5 for L = 1, 2 for even and 6 for odd L > 1 states. Typically,
the hyperfine splitting of the lower ro-vibrational states of HD+ and H+

2 is
about 1 GHz. The uncertainty in the hyperfine spectrum is related to the un-
known contribution of the spin interaction terms of orders O(R∞α4(m/M))
and higher, which have not yet been taken into consideration, and is estimated
not to exceed 100 kHz.

Each transition line between ro-vibrational states is split into a multiplet of
hyperfine components, corresponding to the allowed transitions i→ f between
the states of the hyperfine structure of the initial and final states. Whether
these hyperfine components will be resolved or not depends on the initial and
final state lifetime and on the experimental conditions (effective transition
linewidth Γf , laser intensity I, temperature, interaction time, etc.) Examples
of spectral data are presented in experimental sections of our review (see
Fig. 13). The shape of the profile also depends on the population of the initial
hyperfine states. The general expressions for the probability per unit time for
one- and two-photon transitions between ro-vibrational states of the MHIs
with account of the hyperfine structure are given in [45].

The probability per unit time for the hyperfine transition i→ f at resonance
(averaged over the magnetic numbers of initial and final states), Γf,i, may be
represented in the form:

Γf,i = T 2
f,i Γv′L′,vL , Γv′L′,vL =

2πα
3�

I

Γf

〈v′L′||d ||vL〉2
2L+ 1

. (11)

Here Γv′L′,vL is the probability per unit time of laser-stimulated dipole tran-
sitions between ro-vibrational states, 〈v′L′||d ||vL〉 is the reduced matrix

L,v

F = 1

S = 2

J = L+2
J = L+1

J = L+1

J = L–1

J = L–1

J = L–1

J = L+1

J = L

J = L

J = L

J = L

J = L–2
S = 1

S = 0

S = 1F = 0

Fig. 2. Hyperfine structure of a ro-vibrational state of HD+ with L ≥ 2
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element of the electric dipole moment of the HD+ ion d =
∑

a zara and

Tf,i =
√

(2J ′ + 1)(2L+ 1)
∑

F ′′S′′
(−1)S′′+J+L′

{
L 1 L′

J ′ S′′ J

}
βf

F ′′S′′βi
F ′′S′′ ,

(12)
where βvLFSJ

F ′′S′′ are constant amplitudes of the state vectors of the hyperfine
states,

|vLFSJ, Jz〉 =
∑

F ′′S′′
βvLFSJ

F ′′S′′
∑

Mζ

CJJz

LM,S′′ζΨvLM (R, r1)χ(F ′′S′′, ζ), (13)

determined from the effective Hamiltonian of spin interaction. Here χ(FS, ζ)
are basis spinors of definite values of F , S and Sz in the space of the spin
variables. The relative intensity of the hyperfine components of a transition
line between ro-vibrational states is thus determined by the amplitudes Tf,i. In
case the individual hyperfine components cannot be resolved, the observable
intensity is reduced to the intensity of the dipole ro-vibrational transition
Γv′L′,vL, in agreement with the identity

∑
f T

2
f,i = 1.

The hyperfine structure of the one- and two-photon transition lines in-
cludes a large number of components, most of which, however, are suppressed.
There are as well dominant (or “favoured”) transitions between states with
similar spin structure, such as (vLFJ)→ (v′L′FJ ′) with ΔJ=ΔL (for H+

2 ).
In such pairs of homologous hyperfine states the spin-dependent corrections to
the ro-vibrational energies Ev′L′FJ′ and EvLFJ have close values, which par-
tially cancel each other when evaluating the spin correction to the resonance
transition frequency (Ev′L′FJ′−EvLFJ)/h. Indeed, the favoured hyperfine tran-
sitions span over a frequency interval less than 25 MHz (see Fig. 3). It is natu-
ral to expect that the unknown contributions to the frequency of the favoured
transitions from the spin interactions of order R∞α4(m/M) and higher also
tend to cancel each other; therefore, the theoretical uncertainty of the reso-
nance frequency of the favoured hyperfine sublines will be less than ∼ 5 kHz.
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Fig. 3. Hyperfine splitting and intensities of the two-photon ro-vibrational tran-
sitions of the H+

2 ion: (a) (v = 0, L = 1) → (v′ = 1, L′ = 1), (b) (v = 0, L = 2) →
(v’=1,L’=2)
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2.5 Two-Photon Transition Probabilities

In order to assess the feasibility of Doppler-free two-photon spectroscopy in
H+

2 or HD+, it is essential to evaluate transition probabilities between ro-
vibrational states. This can be done using the formula from second-order
perturbation theory [46] and the accurate wavefunctions provided by varia-
tional calculations. Assuming that magnetic sublevels are equally populated,
the two-photon transition probability at resonance between states v, L and
v′, L′ is

Γv,L,v′,L′ =
(

4πa3
0

�c

)2 4I2

Γf
Qv,L,v′,L′ (14)

where I is the excitation intensity, Γf the transition linewidth and

Qv,L,v′,L′ =
1

2L+ 1

∑

k=0,2

∣∣〈vL‖Q(k)‖v′L′〉∣∣2
2k + 1

. (15)

Q(0), Q(2) are, respectively, the scalar and tensor parts of the two-photon
transition operator

Q =
1

4πε0a3
0

d·ε 1
E −H d·ε. (16)

Here, E = [E(v, L) + E(v′, L′)]/2 is the one-photon resonance energy and ε
the exciting field polarization. The two-photon transition probabilities were
calculated in [22, 47].

For the H+
2 case [47] there exists a quasi-selection rule Δv = ±1, and the

dimensionless transition probabilities Qv,L,v′,L′ are rather small, of the order
of 1, which is due to the level structure of H+

2 . If we consider the example
of transitions between L = 0 states, these states are of 1Se symmetry, and
there is no resonant intermediate level of 1P o symmetry that could enhance
the transition probability.

The situation is different in the HD+ case [22], since there is no splitting
between singlet and triplet states due to the loss of exchange symmetry be-
tween the nuclei. As a result, for a transition between L=0 (Se) states, there
exist intermediate bound Po levels which can be very close in energy and
efficiently enhance the transition probability. This is most likely to happen
if the difference between v and v′ (the initial and final vibrational quantum
numbers) is an even number. In this case, the state (v′′=(v+v′)/2, L′′=L±1)
is often close to the middle energy E = [E(v, L) + E(v′, L′)]/2, because of
the quasi-harmonic structure of vibrational levels. As a result, some of the
most intense two-photon lines are Δv=2 transitions in the 5–6 μm range or
Δv = 4 transitions in the 2.5–3 μm range, accessible, e.g., with continuous-
wave optical parametric oscillator or quantum cascade lasers. The dimension-
less transition probabilities Qv,L,v′,L′ can reach values as high as 300 for the
(v=0, L=1)→ (v=2, L=1) transition at 5.366 μm. Thus, the HD+ molecu-
lar ion is a promising candidate for precise two-photon spectroscopy.

The next step is to consider the hyperfine structure of two-photon transi-
tion lines. The representation of the hyperfine state vectors in the H+

2 case is
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|vLFJJz〉 =
∑

F ′
βvLFJ

F ′
∑

Mζ

CJJz

LM,F ′ζ ψvLM (R, r1) χ(F ′, ζ). (17)

The definitions for χ(F ′, ζ) and βvLFJ
F ′ are similar to those in (13). Assuming

equal populations for hyperfine magnetic sublevels, the dimensionless transi-
tion probability between levels |i〉 = |vLFJ〉 and |f〉 = |v′L′F ′J ′〉 is

Qi,f =(2J ′+1)
∑

k=0,2

∣∣∣∣〈vL‖Q(k)‖v′L′〉∑
F ′′(−1)J′+L+F ′′

{
L k L′

J ′ F ′′ J

}
βf

F ′′βi
F ′′

∣∣∣∣
2

2k + 1
.

(18)

The hyperfine structure of two different transitions for linear polarization is
shown in Fig. 3. Transitions between odd L states (Fig. 3(a)) comprise between
25 and 34 components, 5 or 6 of which are favoured. Transitions between even
L states (Fig. 3(b)) have a much simpler structure, the total nuclear spin being
zero. The nonzero even L spectrum comprises only two main components
(verifying ΔJ = 0) together with two weak satellites. Transitions between
L=0 states are structureless, which makes them especially attractive from a
metrological point of view.

3 Two-Photon Spectroscopy of H+
2

A two-photon vibrational spectroscopy experiment aimed at the determina-
tion of the electron-to-proton mass ratio is being set up at the Kastler Brossel
Laboratory. We begin by recalling the basic spectral features of the MHI and
discuss the planned experimental sequence. In the second part, we report on
the present status of the experimental setup. It is composed of a hyperbolic
Paul trap in which a few thousand H+

2 ions can be confined, a UV laser for ion
preparation and detection by state-selective photodissociation and a narrow-
line, tunable laser system that will excite the two-photon transition.

3.1 H+
2 Level Structure

Although the Born–Oppenheimer (BO) approximation is not relevant for
highly accurate calculations, it remains a very convenient tool to get use-
ful insight into the H+

2 level structure. In order to understand the processes
discussed here, it is enough to consider the first two BO electronic curves: the
ground state 1sσg and first excited state 2pσu, which are depicted in Fig. 4.

The exact symmetries of the system are the total spatial parity π and the
exchange of nuclei P12; the g/u electronic parity πe used in the BO approach
is related to them by πe = πP12. The bound levels of H+

2 can be labelled
v, (2I+1Le,o) where v and L are the vibrational and orbital quantum numbers,
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Fig. 4. Born–Oppenheimer electronic energies (in a.u.) of the adiabatic potential
terms

I is the total nuclear spin quantum number and (e, o) stands for the total
parity. Since the total spatial parity is π = (−1)L, the 1sσg curve only supports
1Se, 3P o, 1De . . . levels.

The 2pσu electronic curve presents at large internuclear distances a weak
attractive potential that supports two bound L = 0 energy levels [20, 48].
Some of those states have been observed by microwave or laser spectroscopy
experiments [49]. At higher L the 2pσu potential supports bound or dissocia-
tive 1P o, 3De 1F o . . . states that can be calculated numerically using either
the variational or the complex coordinate rotation method.

3.2 One-Photon Transitions: Photodissociation

The selection rules for one-photon dipole transitions are ΔL = ±1 and
ΔI = 0. As a consequence, transitions between 1sσg bound ro-vibrational
states of H+

2 are forbidden (in contrast with the HD+ case), resulting in very
long-lived states. On the other hand, one-photon photodissociation transitions
from 1sσg to 2pσu electronic states are allowed. The photodissociation cross-
sections σv of the (1Se, v) states have been first computed by Dunn [50] in the
Born–Oppenheimer approximation and then using the perimetric coordinate
variational method in [51]. The results are given in Fig. 5. They show that a
laser source in the 250 nm range can be used to selectively photodissociate
the v = 1, 2, 3, . . . vibrational states while keeping the ions in the v = 0 level
since the successive cross-section ratios σv+1/σv are 214, 40, 10, for v = 0, 1, 2,
respectively.
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Fig. 5. Photodissociation cross-sections of the L= 0, v levels of H+
2 . The dashed

lines are the result of a Born–Oppenheimer calculation [50], which takes the 1sσg and
2pσu electronic curves into account. The nodal structure of the cross-section reflects
that of the vibrational wavefunction. The solid lines are obtained from an exact
variational method which fully takes into account the three-body dynamics [51].
The additional nodal structure appearing in the short wavelength domain can be
interpreted as the photodissociation to higher excited electronic states (3dσg, 2pπu,
4fσu, . . . ). The dot-dashed vertical line corresponds to the KrF laser wavelength of
248 nm

3.3 Two-Photon Transitions: Choice of the Transition

One-photon transitions between bound states being forbidden, a high-resolu-
tion study of the vibrational structure of H+

2 is only possible using Doppler-
free two-photon spectroscopy. Two-photon transitions obey the selection rule
ΔL = 0,±2 as well as the quasi-selection rule Δv = ±1, as discussed in
Sect. 2.5. The corresponding (v, L)→ (v′=v+1, L′) transition frequencies lie
in the 8–12 μm range. Among them, we have chosen to probe the v=0→ v=1
transitions, for L and L′ equal to 0 or 2 and eventually 1 or 3. We now give
the arguments that explain this choice.

The first condition to fulfil is that it should be possible to prepare a large
enough number of H+

2 in the initial state of the transition. The ro-vibrational
populations of H+

2 ions, after creation by electron impact ionization of a low-
pressure H2 gas, have been studied both theoretically and experimentally [52].
The vibrational populations are linked to the overlap of the H2 and H+

2 vi-
brational wave functions (Franck–Condon principle); they are found to be of
the order of 12, 19, 19, 15, 12, 8, 5, 4% for the first few levels. The rotational
populations of the H+

2 ions are those of the H2 mother molecules, i.e. 13, 66,
12, 8% at 300 K. Moreover, we have shown in the previous paragraph that
UV photodissociation provides a convenient way to prepare ions in the ground
vibrational state; it is then desirable to choose a v = 0 state as initial state
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of the transition, with L between 0 and 3, L=1 being the best choices with
respect to the number of ions. The same photodissociation process can be
used to detect the ions in the excited v=1 state.

The hyperfine structure of two-photon lines should also be considered; it is
apparent from Fig. 3 that it is simpler for transitions between even L states.
This makes such transitions much more attractive, since the ion fraction in
a given hyperfine substate of the initial state will be larger, as will be the
intensities of the various hyperfine components of the transition line.

The intensities of the various (v = 0, L) → (v′ = 1, L′) (with low L) two-
photon lines are of the same magnitude; the choice of a particular transition
depends mostly on the availability and characteristics of laser sources at the re-
quired wavelength. The whole mid-infrared range is accessible by the recently
developed quantum cascade lasers (QCL); L′ = L transitions are especially
attractive, because they lie within the spectrum of CO2 lasers (λ � 9–10 μm).
Also, a number of frequency reference molecular absorption lines are known
in this range [53]. The first transition that is going to be probed in our ex-
periment is the (v=0, L=2) → (v′ =1, L′ =2) line at 9.166 nm. The details
of coincidences with CO2 lines and molecular reference lines, which make this
transition favourable, are explained below.

3.4 Experimental Sequence

The two-photon transition matrix elements |Qv,L,v′,L′ |2 of the “favoured” hy-
perfine components of two-photon transitions are of the order of 0.2 (see
Fig. 3). A typical QCL can deliver about 50 mW of single-mode optical power.
Assuming a perfect coupling to a build-up cavity of finesse 1000 with a waist
of 1 mm, one obtains a laser flux of 15 W/mm2. Assuming an instrumental
width Γf ≈10 kHz (see below) yields transition rates of about 70 per second.
This order of magnitude shows that long interaction times are needed and
that one has to work with a cloud of trapped ions, having a radius of the
order of the beam waist.

The considerations of the previous paragraph show that vibrational two-
photon spectroscopy of H+

2 can be performed by (2+1′) resonance-enhanced
multiphoton dissociation (REMPD). This process is very similar to that im-
plemented for HD+ vibrational spectroscopy and described in more detail in
Sect. 4.

The experiment will be conducted in the following stages:

• Simultaneous creation, trapping and selection of (L, v = 0) H+
2 ions;

• Excitation of the (L, v=0)→ (L′, v′=1) two-photon transition;
• Photodissociation of the (L, v=1) H+

2 ions;
• Time-of-flight detection of H+ and H+

2 ions.
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3.5 Experimental Setup

The ion trap is depicted in Fig. 6(a). It is a hyperbolic Paul trap with a ring
of inner radius r0 = 4.2 mm and two end caps separated by 2z0 = 6 mm. Two
pairs of holes (5 mm in diameter) are drilled in the ring along two orthogonal
axes to shine the ion cloud with the UV and IR light. Both end cap electrodes
are AC grounded. A RF voltage (about 200 V peak-to-peak amplitude at
10.3 MHz) and a continuous voltage of a few volts are applied to the ring
electrode, resulting in trapping well depths of a few eV.

The H+
2 ions are produced by electron impact ionization from the residual

H2 gas. The electron gun is made of a tungsten wire and a Wehnelt cylinder;
it is typically turned on for 100–200 ms. A 1 mm hole in one of the end cap
electrodes allows access to the trap.

The contents of the trap are analysed by applying a short negative high-
voltage pulse to the second end cap, thus extracting the ions from the trap
through a 2 mm hole. The extracted ions are accelerated and focused onto a
multichannel plate (MCP) detector located 7 cm away, a long enough distance
to separate by time of flight the H+, H+

2 and H+
3 ions that are simultaneously

produced and trapped. A typical time-of-flight spectrum is shown in Fig. 6(b).
Up to a few thousand H+

2 ions can be stored in the trap. The ion lifetime is of
a few seconds and is limited by the residual pressure in the vacuum chamber.

The undesirable H+ and H+
3 ions are eliminated using the parametric

excitation of their secular motion, by applying RF voltage in the MHz range
on one of the end cap electrodes during the ionization process. A KrF excimer
laser at 248 nm is used to photodissociate the v≥1 states in order to produce
a (L, v=0) ions cloud. The ions are shined by 20 mJ pulses during the filling
of the trap. The characterization of ro-vibrational populations of the resulting
ion cloud is now in progress.

Since all the bound states of H+
2 are metastable, the natural widths of

the two-photon transitions are extremely small. In Paul traps, the ion cloud
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Fig. 6. (a) Simulation of the experimental setup for ion creation, trapping and
detection using the SIMION7 software. MCP is a multichannel plate detector. (b)
Time-of-flight spectrum showing the H+, H+

2 and H+
3 species confined in the Paul

trap
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temperature is of the order of magnitude of the potential depth expressed in
K, i.e. ≈104 K in our trap. Under those conditions, the two-photon linewidth
expected to be limited by the second-order Doppler effect, i.e. of the order
10 kHz. It will limit the ultimate frequency resolution of the experiment at
the 3·10−10 level and the mass ratio resolution at the 6·10−10 level.

Ion cooling will thus be necessary in order to reach the metrological ob-
jective of the experiment at the 10−10 level. Nevertheless, the first step of
the experiment is the observation of a two-photon transition, which is feasible
with hot ions using a kHz linewidth laser source.

3.6 Two-Photon Excitation Laser Source

The laser system we have built is aimed at exciting the (L=2, v=0)→ (L′=
2, v′=1) two-photon transition at 9.166 μm. In this range, two kinds of laser
sources are available. Single-mode CO2 lasers have high output power and
sub-kHz linewidths, but are hardly tunable on ranges exceeding 100 MHz,
i.e. much smaller than the 1.65 GHz gap between the closest CO2 emission
line (9R(42)) and the H+

2 line (see Fig. 7(b)). Recently, single-mode quantum
cascade laser (QCL) became commercially available. They can be tuned over
about 10 cm−1 (300 GHz) through their temperature and injection current,
but have large linewidths of the order of a few MHz. Several experiments
have shown that the linewidth can be reduced well below the kHz level by
injection-current locking the QCL to a molecular line [54] or to a high-finesse
Fabry–Perot cavity resonance [55]. We have developed a laser source that takes
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Fig. 7. (a) Absorption spectrum of formic acid (HCOOH) [53]. The line intensi-
ties are given in cm−1/(molecule cm−2). (b) Two-photon transition probabilities in
atomic units. The central peak is made of two close components (see Fig. 3). The
dashed line is the 9R(42) CO2 emission line. The detunings between the 9R(42)
CO2 line and the HCOOH lines are indicated in MHz. The CO2 laser is locked to
the HCOOH line indicated by the star
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to main experiment

Fig. 8. Simplified setup of the CO2/HCOOH phase-locked quantum cascade laser
source. The QCL is mounted in a liquid nitrogen optical cryostat. The mixer is a
room temperature HgCdZnTe detector. Solid lines are optical paths. Dashed lines
are electrical paths and servo loops. A.O. is an acousto-optic modulator

advantage of both the narrow linewidth of the CO2 laser and the tunability
of the QCL [56].

The setup is shown in Fig. 8. A CO2 laser oscillating on the 9R(42) line is
frequency shifted by 128 MHz and stabilized on the intracavity saturated ab-
sorption signal of the (21, 3, 19)→(21, 2, 20) line of the ν6 band of formic acid
(HCOOH) (see Fig. 7(a)). The absolute frequency of that transition (32 708
263 980.5 kHz) has recently been determined with an uncertainty of 1 kHz [57]
by sum frequency mixing with a 30 THz wide visible femtosecond frequency
comb [58]. The QCL is operated in a liquid nitrogen optical cryostat. The
output power is 50 mW with a 700 mA injection current and a temperature
of 80K. The QCL is phase-locked to the CO2 laser with a tunable frequency
offset in the 500–2000 MHz range [56]. The analysis of the beat note spectrum
under locked conditions (see Fig. 9) shows that we have realized a narrow-line
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Fig. 9. Phase-locked beat note between the QCL and the CO2/HCOOH frequency
reference. RBW 10 kHz, VBW 1 kHz. The spectrum shows a loop bandwidth of
the order of 6 MHz. The central peak is extremely narrow, with a −3 dB width
smaller than the 200 Hz resolution of the spectrum analyser. The inset shows the
free running beat note with the same scale and a 500 kHz RBW
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tunable laser source well suited to probe the H+
2 two-photon lines and also

the ro-vibrational spectrum of HCOOH [58] or other molecules (NH3, . . . ) of
atmospheric or astrophysical interest.

4 Cooling and Spectroscopy of HD+

In experiments performed at the Universität of Düsseldorf, the MHIs H+
2 ,

D+
2 and HD+ were cooled to temperatures of � 10 mK in a radiofrequency

trap, by sympathetic cooling with laser-cooled beryllium ions. High-resolution
spectroscopic studies of several ro-vibrational infrared transitions in HD+ were
performed. Hyperfine splitting of the lines was observed and is in good agree-
ment with theoretical predictions. The transitions were detected by monitor-
ing the decrease in ion number after selective photodissociation of HD+ ions
in the upper vibrational state.

4.1 Preparation and Characterization of Cold MHI Ensembles

MHIs are just a few of a multitude of ion species that can be cooled to mK
temperatures, by sympathetic cooling [59, 60] where the molecular species
and a laser-coolable atomic species, with the same sign of charge, are simul-
taneously stored in a radiofrequency trap. Laser cooling the atoms then also
efficiently cools the molecular ions via the long-range Coulomb interaction.
Temperatures below 20 mK can be reliably reached. We have shown that us-
ing Be+ ions as coolant permits to cool sympathetically ions from mass 1 to
200 amu [61, 62, 63]. A heavier atomic coolant species can be used to extend
the mass range. For example, using 138Ba+ as coolant molecular ions up to
mass 410 amu have recently been cooled [64].

We use a linear quadrupole trap to simultaneously store both Be+ and
MHIs. The radiofrequency trap is driven at 14 MHz, with a peak-to-peak
amplitude of 380 V. This results in a radial Mathieu stability parameter qr �
0.13 for HD+. The trap is enclosed in a UHV chamber kept below 10−10 mbar.
The chamber is equipped with a leak valve for the controlled introduction of
gases. An all-solid-state 313 nm laser system is used for cooling Be+ [65].

To load Be+ ions into the trap, atoms are thermally evaporated from
a beryllium wire and ionized by an electron beam. The molecular loading is
achieved by leaking in neutral gas at a pressure of ∼(1−3)·10−10 mbar, ionized
by an electron beam with an energy of 200 eV and a current of ∼ 30 μA, for
a loading time of 2 s. This produces mixed-species crystals like those shown
in Fig. 10(a,b). The ions with a higher charge-to-mass ratio (in this case the
molecular ions) experience a stronger trap pseudopotential, and thus form
a dark (nonfluorescing) core in the crystal. The asymmetric distribution of
species along the z-axis observed in Fig. 10(b) is caused by the light pressure
of the cooling laser on the beryllium ions.
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Fig. 10. Fluorescence images of (a) a large ion crystal with a high fraction of
sympathetically cooled ions (approximately 1200 light ions and 800 Be+ ions), (b)
a smaller crystal containing approx. 690 Be+ ions and 12 (exactly) HD+ ions, and
simulated images of this crystal at (c) 20 mK, (d) 12 mK, (e) 8 mK and (f) 6 mK.
Laser cooling beam propagation is to the right, along the z-axis [61]

The observed crystals are well reproduced by molecular dynamics (MD)
simulations [61, 66]. Visual matching of overall structure, structural details
and blurrings of CCD and simulated images allows fitting the ion numbers and
temperatures of the different species. The number of ions of different species
given in Fig. 10(b) are found in this way. In the simulations we assume an
ideal linear trap, use the quasi-potential approximation and model heating
effects by stochastic forces on the ions. The obtained temperatures are thus
secular temperatures. Figure 10 shows a determination of the temperature;
agreement between observed and simulated images is found for a Be+ temper-
ature of approx. 10 mK. This sets an upper limit, as our experimental images
are also limited in sharpness by our detection optics, CCD resolution and
sensor noise, which are not considered. The temperature varies depending on
crystal size and cooling parameters and is typically in the range 5 to 15 mK,
with smaller crystals generally colder. These temperatures are consistent with
measurements of the fluorescence lineshape of the Be+ ions.

For the MHI species discussed here, our MD simulations show that the
sympathetically cooled molecular ion ensemble is also crystalline, i.e. its time-
averaged ion distribution is strongly inhomogeneous, and that it is strongly
thermally coupled to the Be+ ions. Assuming similar heating effects for the
molecular ions and the Be+ ions, the simulations show that the molecular
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ions have a temperature similar to that of Be+, due to the strong Coulomb
coupling.

The trapped species are identified and the time evolution of their numbers
is monitored by excitation of their mass-dependent radial (secular) modes, us-
ing a spatially homogenous and temporally oscillating electric field. For HD+

ions the measured secular frequency was ≈770kHz, significantly shifted from
the calculated single-particle frequency, due to Coulomb coupling between
different species in the trap [67]. Excitation amplitude, sweep rate and cov-
ered frequency range were chosen so that the ion crystal had sufficient time
to cool back to its initial temperature between individual excitation cycles.
The excitation heats both the molecular ions and the atomic coolants, which
changes the scattering rate of 313 nm cooling light by the Be+ ions. The HD+

secular resonance becomes visible in the Be+ fluorescence, and its strength is
proportional to the amount of HD+ ions in the ion crystal.

4.2 Spectroscopy of HD+

The choice of HD+ for spectroscopic studies was made because of the avail-
ability of dipole-allowed ro-vibrational transitions which simplify the spec-
troscopic techniques. Nevertheless, vibrational spectroscopy in the electronic
ground state in near-absence of collisions, as is the case for the present molec-
ular ions ensembles, is faced with the difficulty that molecules excited to a
vibrational level decay only slowly, implying very low fluorescence rates. As
the fluorescence wavelengths are in the mid to far infrared, photon counting
would require a sophisticated detection system. We circumvent this difficulty
by applying the technique of (1+1′) resonance-enhanced multiphoton disso-
ciation (REMPD): the molecules are excited by an infrared (IR) laser and
then selectively photodissociated from the upper vibrational state by a sec-
ond, fixed-wavelength ultraviolet (UV) laser (Fig. 11). The remaining number
of molecular ions is the quantity measured as a function of the frequency
of the IR laser. As the molecular sample is small (typically 40–100 ions)
the spectroscopy requires the spectra to be obtained by repeated molecular
ion production and interrogation cycles. The lasers employed are a single-
frequency, widely tunable diode laser at 1.4 μm (Agilent 81480A) and a res-
onantly frequency-doubled Yb:YAG laser at 266 nm. The IR laser linewidth
was ∼ 5 MHz, and its frequency was calibrated with an accuracy of 40 MHz
by absorption spectroscopy in a water vapour cell.

Due to the weak coupling between external and internal (rotational) de-
grees of freedom, the internal temperature of the HD+ ions is close to room
temperature, in thermal equilibrium with the vacuum chamber [70, 10]. There
is significant (> 5%) population for rotational levels up to L= 6. Indeed, we
have observed 12 transitions between 1391 and 1471 nm, from lower rotational
levels L=0 to L=6.

The loss of HD+ ions depends not only on the REMPD process, but also
on transitions induced by blackbody radiation (BBR). We modelled the loss
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Fig. 11. Principle of (1+1′) REMPD spectroscopy of HD+ ions. A tunable IR diode
laser excites a ro-vibrational overtone transition (v= 0, L)→ (v′ = 4, L′). The HD+

ions excited to the v′ = 4 vibrational level are dissociated using cw 266 nm laser
radiation: HD+(v′ =4) +hν → H + D+, or H+ + D. Due to different Franck–Condon
wavefunction overlap, the calculated UV absorption cross-section from the v′ = 4
level (∼2.4×10−17 cm2) is about 7 orders of magnitude larger than from v=0 [68].
Energy values represent total binding energies of the molecule [69]

of HD+ by solving the rate equations for the populations of all (v, L) levels
interacting with the IR and UV lasers, as well as with the BBR radiation at
300 K. The theoretically obtained excitation spectrum (see Fig. 13 and text
below) of the levels probed by the IR laser is included, but for the remainder
of the analysis hyperfine structure is ignored. The ro-vibrational transition
moments involved are taken from [71]. The rate of dissociation by UV light is
obtained using cross sections from [68]. For typical UV intensities, dissociation
rates of 102–103 s−1 are found. The rate equation model reveals two different
timescales at which the HD+ number declines during a typical experiment. A
first, fast (<1 s) decay occurs when the IR laser selectively promotes HD+ ions
from a specific (v=0, L) level to a rotational level in v′=4, from which they are
efficiently photodissociated. This process rapidly dissociates those (v = 0, L)
HD+ ions which are in the hyperfine states probed by the IR laser. The
remaining molecular ions (a significant fraction of the total initial number) are
dissociated significantly slower, essentially at the rate at which the hyperfine
levels of (v = 0, L) are repopulated by BBR and spontaneous emission. For
example, for the (v = 0, L = 2) → (v′ = 4, L′ = 1) transition and for typical
intensities of 6 W/cm2 for the IR and 10 W/cm2 for the UV laser, the fast HD+

decay takes place at a rate ∼10 s−1 (which is not resolved experimentally),
whereas the decay due to BBR-induced repopulation occurs at a rate of ∼0.04
s−1. The latter rate is fairly consistent with the measured decay depicted
in Fig. 12(b), but observed decay rates depend strongly on which part of
the hyperfine spectrum is interrogated. This points at a shortcoming of the
simple rate equation model used here, and our observations can probably



226 B. Roth et al.

HD+

1.4 mm + 266 nm
lasers on

a

Fig. 12. (a) Initial ion crystal: ≈1100 Be+, ≈100 HD+ and ≈20 D+ ions at ≈20 mK
(the presence of cold HD+ ions is obvious from the dark crystal core). (b) Repeated
secular excitation of the crystal in (a) at 3 V amplitude. The excitation frequency
was swept between 500 and 1500 kHz. The IR laser is tuned to the maximum of the
(v = 0, L= 2) → (v′ = 4, L′ = 1) line. The curve is an exponential fit with a decay
constant of 0.04 s−1. (c) Ion crystal after dissociation of all HD+ ions: ≈1100 Be+

and ≈50 D+ ions at ≈20 mK. (d) Measurement cycle consisting of repeated probing
of the number of HD+ ions before and after exposure to the spectroscopy lasers [69]

be explained precisely only by a rate equation model which takes the full
hyperfine structure of all involved (v, L) levels into account.

As an example, Fig. 12(b) shows the time evolution of the HD+ secular
excitation resonance while the HD+ ions are excited on the maximum of the
ro-vibrational line (v = 0, L = 2) → (v′ = 4, L′ = 1) at 1430.3883 nm. The
decrease of the HD+ resonance in the secular excitation spectrum, induced by
the REMPD process, is accompanied by a decrease of the dark crystal core
containing the MHIs. The secular excitation spectrum also shows an increase
of the number of D+ ions, which result from the dissociation of excited HD+

ions. These ions are sympathetically cooled and remain in the crystal core.
Fig. 12(c) shows the mixed-species ion crystal after all HD+ was dissociated.
The dark crystal core has shrunk significantly, and the crystal now contains
≈1100 Be+ and ≈50 D+ ions. Assuming equal probability for photodisso-
ciation to D+ and H+, this number indicates that most generated D+ ions
are sympathetically cooled and trapped. Loss rates are obtained by exponen-
tial fitting to the maxima of the HD+ resonances in the secular excitation
spectrum (solid line in Fig. 12(b)). In this way, a 0.01 s−1 background loss
rate of HD+ ions from the trap is obtained when both the IR and UV lasers
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are turned off. This loss is due to chemical reactions between HD+ ions and
background gases. The observed background loss rate is fitted well by a single
exponential decay, which rules out strong nonlinear dependence of the Be+

fluorescence during secular excitation on the number of HD+ ions.
The spectroscopic signal used to produce the spectra in Fig. 13 is the

molecular ion dissociation probability, obtained as the relative change of the
heights of the HD+ secular resonances in the Be+ fluorescence before and after
the REMPD excitation (Fig. 12(d)). For each transition, the HD+ dissociation
probability was measured as a function of the frequency of the IR laser, in
steps of 15 MHz. Each data point was obtained by averaging over several
individual measurements of the HD+ dissociation probability occurring over
∼5 s. Each data point requires a new loading of HD+ ions in the Be+ crystal.
For all measurements, comparable HD+ ion numbers were used, as deduced
from the size of the crystal core after loading. However, during each HD+

loading cycle a small fraction of the Be+ is lost from the trap, due to chemical
reactions with neutral HD gas [63]. The same Be+ ion crystal can be used
for up to 40 HD+ loadings, sufficient for obtaining the spectra in Fig. 13. A
typical spectrum is taken within 1–2 hours.

Detailed measurements for two transitions (v = 0, L= 2) → (v′ = 4, L′ =
1, 3) are shown in Fig. 13(a,b). Both spectra reveal a partly resolved hyperfine
structure, which can be compared with the prediction from an effective spin
Hamiltonian, written as [72, 73]:

Heff = b1Ip · S + c1IpzSz + b2Id · S + c2IdzSz + γS · J .
Here, Ip, Id and S denote the spin of the proton, deuteron and electron, re-
spectively; the subscript z indicates the projection on the internuclear axis.
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Fig. 13. Ro-vibrational transition spectra with partially resolved hyperfine splitting:
(a) (v= 0, L= 2) → (v′ = 4, L′ = 1) at 1430 nm, (b) (v= 0, L= 2) → (v′ = 4, L′ = 3)
at 1394 nm. The curves are fits to the data (•), where the theoretical stick spectra
were broadened by ≈40 MHz. The theoretical spectrum exhibits a large number
of very weak transitions, due to weak mixing of pure coupled angular momentum
states. The ordinate values are the molecular ion dissociation probability for a 5 s
irradiation of 0.65 W/cm2 IR and 10 W/cm2 UV light. The insets show typical error
bars [69]
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The hyperfine coefficients b1, b2, c1, c2 and γ have been recently calculated
to high accuracy [43], see Sect. 2.4. The hyperfine level energies and eigen-
functions are found by diagonalization of the matrix representation of Heff

in a suitable angular momentum coupling scheme. Terms arising from the
nuclear spin-rotation and deuteron quadrupole interactions are neglected as
they contribute �1 MHz to the hyperfine level energies [43]. The results of
the diagonalization were subsequently used to calculate line strengths (11) of
the individual hyperfine components within a given ro-vibrational transition,
leading to “stick spectra”, as shown in Fig. 13. Inhomogeneous broadening
of the spectra may be accounted for by convolving each line with a Gaussian
lineshape of a given width.

The broadened stick spectra are fitted to the experimental spectra using
the linewidth, the vertical scale and the frequency offset as fit parameters
(Fig. 13). The frequency offset corresponds to the deperturbed ro-vibratio-
nal transition frequency, which is thus determined to within the accuracy of
the wavelength calibration of the IR laser (40 MHz) and the fit uncertainty
(3 MHz). The measured deperturbed ro-vibrational transition frequency is in
good agreement with the ab initio results from [21], see Fig. 13. The partly
resolved hyperfine structure in the measured spectra agrees well with the
theoretical results obtained from [72, 43]. We find both theoretically and ex-
perimentally that the hyperfine structure for other transitions in the P and R
branches is similar to that in Fig. 13(a,b).

We observe a typical line broadening of 40 MHz, which corresponds to
kB(0.2 K) of energy in the axial motion. The kinetic energy in the secular
motion (as inferred from molecular dynamics simulations) of the HD+ ions
can give rise to broadening of about 10 MHz only [61]. Saturation broadening
also does not play a significant role, as confirmed by comparing spectra taken
at different IR and UV intensities. Using the polarization-dependent 313 nm
fluorescence of the Be+ ions as a magnetic field probe, the magnetic field
(which is along the direction of propagation of the 313 nm laser beam) has
been adjusted and verified to be 50 mT and to vary by no more than 40
mT over the extent of the crystal, which implies Zeeman broadening of less
than 1 MHz. This leaves Doppler broadening due to micromotion as the most
probable cause for the observed line broadening. This micromotion could arise
from phase shifts in the rf potentials applied to the various electrodes and from
coupling between axial (IR laser beam direction) and radial ion motion. For
our trap, in which the HD+ ions are located at least 10 μm away from the
trap axis, the (radial) micromotion energy exceeds kB(0.5 K).

The results described are of significance in several respects. They demon-
strate, for the first time, the possibility of high-resolution spectroscopy of
small, trapped molecular ion samples, sympathetically cooled well into the
millikelvin range. We have achieved a spectral resolution 10 times higher than
with any previous cold molecular ion method, and the same enhancement was
obtained for the excitation rate. The observed population dynamics demon-
strated the weakness of collisions. The methods used for trapping, cooling and
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detection are quite general and are applicable to a host of other molecular
ion species. This includes other ions of astrophysical and cosmological inter-
est such as H+

3 and its isotopomers, which have been trapped in our setup
[61, 62]. Also, the spectral resolution achieved here may be further improved:
for instance, first-order Doppler broadening may be circumvented by use of
a tightly confining trap which holds the ions in the Lamb–Dicke regime, or
by two-photon spectroscopy. Furthermore, the presence of the atomic coolant
ions offers an in situ tool to detect possible perturbing fields.

5 Conclusion and Outlook

In summary, the development of high-accuracy laser spectroscopy of trapped
MHIs has made significant progress. On the theory side, the energies have
been calculated with a relative accuracy of the order of 1 ppb. Detailed pre-
dictions of the line strengths of one- and two-photon transitions have been
given, which are important guides for the experiments. Certain systematic
shifts (dc and ac Stark shifts [15, 22]) have also been calculated, but are not
described here. On the experimental side, several important techniques have
been demonstrated: cooling of MHIs to tens of mK, vibrational-state selective
photodissociation, one-photon vibrational spectroscopy with spectral resolu-
tion at the level of 2 · 10−7, rotational population measurement, in situ ion
detection, tunable, high-power, continuous-wave narrow-linewidth laser for
two-photon spectroscopy. Based on the present results, it is expected that the
two-photon H+

2 spectroscopy experiment will ultimately allow a spectral reso-
lution at the level of 3 ·10−10, while the one-photon 1.4 μm HD+ spectroscopy
in the current apparatus will be limited by Doppler broadening to several
parts in 108. One-photon spectroscopy of HD+ vibrational transitions having
longer wavelength or the use of a trap with stronger confinement should allow
reaching the Lamb–Dicke regime, with a strong increase in spectral resolution.
As described above, two-photon spectroscopy is another alternative.

For both ion species, the investigation of systematic shifts will become
an important task. It is expected that Zeeman shifts and Stark shifts can be
reduced or measured to a level below one part in 1010 in a cold ion ensemble.
This should enable comparisons of experimental and theoretical transition
frequencies at levels below 1 ppb and, in the longer term, the development of
a novel approach to the measurement of mass ratios of electron and hydrogen
isotopes.

In the future, it may become attractive to use the method of quantum-
logic-enabled spectroscopy [74, 75]. Some of the experimental limitations
(broad state population distribution, need for destructive detection of molec-
ular excitation, systematic effects) encountered with the approaches described
here could be substantially alleviated.
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The transition frequency (v = 4, L′ = 3) ← (v = 0, L = 2) of cold HD+

molecules has been measured with a relative accuracy of 2.3·10−9 and agrees
within the experimental error with the theoretical value [76].
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Abstract. We discuss new values of nuclear magnetic dipole moments, obtained
from accurate absolute shielding constants and gas-phase NMR data, for a series of
nuclei. The generally accepted previous values of magnetic moments were for many
isotopes derived from NMR spectra. However, in the procedure applied to determine
the moments of bare nuclei the effects of the molecular electronic structure have
been often described in a very approximate manner. Accurate absolute shielding
scales can be presently established analysing gas-phase NMR spectra and shielding
constants determined by ab initio methods of quantum chemistry.

We present a systematic analysis of the nuclear magnetic moments, based on
the relation between these moments, the resonance frequencies and the shielding
constants. With the new values of nuclear magnetic dipole moments the relations
between the NMR parameters of different nuclei are fulfilled in a consistent manner,
whereas using the literature values leads to significant errors.

1 Introduction

The magnetic dipole moment is an important physical constant, related to
the spin of a particle and determining its electromagnetic interaction. There
is no satisfying theory predicting the nuclear magnetic moments, their accu-
rate values in practice are obtained from experiment. Several experimental
techniques, such as optical spectroscopy (hyperfine structure of spectra) and
measurements in molecular beams, have been used; the most accurate results
for many stable nuclei were obtained from nuclear magnetic resonance (NMR)
spectra. A standard reference for nuclear magnetic dipole moments is the re-
view by Raghavan [1]; for many isotopes this is the source of the data quoted
in more recent literature [2, 3, 4]. Although these commonly used values of nu-
clear magnetic moments were tabulated and published in 1989, they are often
based on NMR experiments done in 1950s–1960s (see for instance [5, 6, 7, 8]).
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It appears that very approximate treatment of the magnetic shielding was the
main origin of inaccuracies in these predictions of magnetic moments.

The existence of NMR spectra is due to the interaction of external mag-
netic fields with nuclei with nonzero spin. The values of spin-related nuclear
magnetic dipole moments, which determine the spectrum, are usually treated
as physical constants, defined for bare nuclei. The essential role of NMR in
many applications – for instance in chemistry – is related to the shielding
of the external field by electrons, specific for each nucleus in a molecule and
strongly dependent on the molecular structure. The same effect had to be
considered when NMR was used for determining the nuclear magnetic dipole
moments – the experiments were not performed for bare nuclei; the nuclear
moments were obtained analysing molecular spectra. However, in many cases
when the nuclear moments were determined the NMR shielding constants
needed to derive the bare nucleus moment from the molecular spectrum were
not properly taken into account. For many isotopic species the relevant exper-
iments were performed 50 years ago, when the absolute shielding scales were
not known and inaccurate treatment of magnetic shielding led to systematic
errors in the derived nuclear moments. A satisfactory solution of this problem
requires simultaneous accurate ab initio calculations of the nuclear magnetic
shielding constant and precise gas-phase NMR measurements.

The recent advances in the ab initio methods in quantum chemistry have
enabled practical calculations leading to reliable and accurate results. Within
the modern ab initio methods [9] one can define a hierarchy of approximations
converging to the exact solution of the Schrödinger equation. The correspond-
ing perturbation theory methods can be applied to study molecular properties,
such as the NMR shielding constants [10, 11, 12]. Moreover, the implemen-
tation and development of the computer codes have made the calculations
applying these advanced methods feasible, at least for small molecules.

The precision of NMR experiments 50 years ago was rather poor and
the studies were limited to nuclei with large natural abundance, like 1H, 19F
or 31P. During the last decades more advanced spectrometers became avail-
able and the sensitivity of new instruments was greatly improved due to the
progress in electronics and to the development of stable cryomagnets. As a
result NMR studies in gases became available also for nuclei with low natu-
ral abundance. For instance, the first density-dependent spectra of 13C were
observed in 1977 [13, 14], 17O in 2001 [15] and 33S in 2002 [16, 17].

We shall begin with an interpretation of the NMR parameters, based on
the NMR effective spin Hamiltonian. Next, we discuss ab initio studies of
NMR shielding constants, with very brief comments on the relevant quan-
tum chemistry methods and approximations. We describe the differences be-
tween the calculated and measured NMR parameters and present the most
important aspects of the analysis of gas-phase NMR results. We discuss next
the determination of nuclear magnetic moments from NMR spectra, and in-
verting the relevant equations we obtain a very useful formula to examine
the obtained nuclear magnetic dipole moments. This relation between the
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resonance frequencies, shielding constants and nuclear moments of two dif-
ferent nuclei provides an excellent test of the consistency of all these NMR
parameters. In the discussion of the results we concentrate on selected ex-
amples. We consider a sequence of approximations, analyse the convergence
of the computed shielding constants with the improvement of the ab initio
method and estimate the error bars for the absolute shielding constants and
nuclear magnetic moments.

Before we proceed, let us note that a similar approach is successfully used
to determine the nuclear electric quadrupole moments. The property needed
is the electric field gradient, and – as in our case – ab initio methods of quan-
tum chemistry are used to describe all the effects due to molecular electronic
structure (see [18] and references therein). Let us finally add that the need for
remeasurement of nuclear magnetic dipole moments has been recognised, the
issue was discussed mainly for heavy nuclei [19, 20].

2 NMR Shielding Constants

2.1 NMR Effective Spin Hamiltonian

In the analysis of NMR spectra only the nuclear spins, proportional to the
magnetic moments, are considered. The observed resonance frequencies are
determined by the energy levels in the space spanned by the available nuclear
spin states. They can be calculated using the NMR spin Hamiltonian HNMR,
an effective Hamiltonian designed to interpret the spectrum:

HNMR = −
∑

X

BT (1− σX)μX + · · · (1)

where B and μX denote the external magnetic field induction and the nuclear
magnetic moment. We neglect here and in the following discussion all the ef-
fects not related to the shielding, such as the spin–spin coupling, since in the
applications we discuss they can be eliminated in the analysis of the results.
The first term in the parentheses represents the direct Zeeman interaction be-
tween the nucleus and the field, the second term involving σX – the shielding
tensor – describes the role of the chemical environment of the nucleus. All
the electronic structure effects are incorporated in the effective Hamiltonian
in this manner.

For a rotating molecule in an isotropic medium, assuming the external
magnetic field along the z axis, (1) is reduced to

HNMR
iso = −

∑

X

Bz (1− σX) μz
X + · · · , (2)

where σX = Tr σX/3, and Tr is the trace of the tensor. The shielding constant
σX is dimensionless, and in chemical applications usually given in ppm (parts
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per million) because of the range of chemical effects – for instance, for 1H
≈10 ppm, 13C ≈200ppm, 31P ≈1000ppm. For our purposes it is essential
to keep in mind that σX is the absolute shielding constant [21], that is the
shielding relative to bare nucleus. The resonance frequency νX observed in
NMR spectroscopy is determined by the splitting of the energy levels in the
magnetic field.

The nuclear magnetic moment is a property related to nuclear spin:

μX = �γXIX = μNgXIX , (3)

where μN is the nuclear magneton and γX and gX denote the magnetogyric
ratio and the g factor for the bare nucleus, respectively. From the NMR ex-
periment one determines the nuclear magnetic dipole moment μX as the max-
imum projection of the vector on the axis of the external field (related to the
maximum projection of the nuclear spin). The NMR resonance frequency νX

for nucleus X in an isotropic sample is

hνX = Δμz
X(1 − σX)Bz , (4)

where Δμz
X is the transition-related change of the projection of the magnetic

moment on the field axis. In the standard NMR spectra, transitions between
spin states which differ in spin projections by one are observed, (ΔIz

X =
1), and the frequency is proportional to Δμz

X = μXΔIz
X/IX . We note that

various definitions of nuclear dipole moment are used, for comparison with
[4] one needs μlength

X = (
√
IX(IX + 1)/IX) μX instead of μX . We assume

in what follows that the nuclear spin and the sign of the magnetic moment
are known, the quantity to be accurately determined which we discuss is the
proportionality coefficient – the gyromagnetic (magnetogyric) ratio γX or the
nuclear factor gX . With this assumption, NMR data are sufficient to determine
the magnetic moment; we shall consequently often use a simplified notation
and replace the symbol Δμz

X by μX in the text.

2.2 Ab Initio Studies of NMR Shielding Constants

Recalling that the shielding tensor describes the bilinear interaction in the
effective NMR spin Hamiltonian (1), we consider in the molecular Hamilto-
nian the terms linear and bilinear in the external magnetic field induction
and the nuclear magnetic moments. We obtain then each component of the
nuclear magnetic shielding tensor as the (bilinear) second-order perturbation
correction to the electronic energy Eel, with the Cartesian αβ component of
σX determined as

σX,αβ =
∂2Eel(B,μX)
∂Bα∂μX,β

∣∣∣∣
B=0,μX=0

. (5)
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The shielding can thus be evaluated as the mixed second-order derivative of
the energy using linear response methods [22] of the time-independent pertur-
bation theory. We need to consider here only perturbation theory equations
for closed-shell molecules in their ground electronic states.

Numerous advanced methods of quantum chemistry suitable for the cal-
culation of linear response properties have been developed in the last decade.
In practice, we now have at our disposal a hierarchy of methods of increasing
reliability [23]. Using these methods in a series of calculations we can often
reach the convergence region, with the consecutive changes in the results pre-
dictable and diminishing. This applies also to the NMR shielding constants
in small molecules and allows for an extrapolation of the results and for an
estimate of the remaining errors within a given model.

In the commonly used approach based on the nonrelativistic Schrödinger
equation the Born–Oppenheimer approximation is applied. We start with the
calculations for the clamped nuclei and next add to the shielding constant at
the equilibrium molecular geometry the corrections for zero-point vibrations
(larger) and temperature (smaller). We shall discuss repeatedly the shielding
constants computed in the hierarchy including the SCF (self-consistent field),
MP2 (Møller–Plesset second-order perturbation theory), CCSD (coupled clus-
ter singles and doubles) and CCSD(T) (CCSD with noniterative account of
triple excitations) approximations. In the discussion of the results, we shall
also consider the relativistic effects. The NMR shielding is a property strongly
dependent on the electronic structure close to the nucleus, therefore these ef-
fects are often more important for the shielding than for other properties.

Vibrational and Temperature Corrections

To obtain accurate shielding constants it is not sufficient to perform calcula-
tions at the molecular equilibrium geometry. The strong dependence of NMR
shielding on molecular geometry leads to significant vibrational effects and ob-
servable temperature dependence of the shielding. The dominant effect may
usually be obtained considering the zero-point vibrational (ZPV) contribution,
the temperature effects can be determined via Boltzmann averaging over rovi-
brational states. For small polyatomic molecules these effects can be described
using the expansion [24]

σ = σe +
∑

i

∂σ

∂Qi
〈Qi〉+ 1

2

∑

i

∂2σ

∂Q2
i

〈Q2
i 〉, (6)

where σe is the shielding at the equilibrium, Qi represents a normal coordi-
nate and 〈Qi〉 is its average in a given rovibrational state (a similar expression
can be used for temperature averages). The harmonic frequencies needed in
the approximate formulae for 〈Qi〉 and 〈Q2

i 〉 can be obtained as second an-
alytical derivatives of the energy; however, finite field methods are generally
used for cubic force constants and first and second derivatives of properties.
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In addition to a calculation at the very accurately optimised equilibrium ge-
ometry one thus needs several (≈ 10 for a small molecule) shielding constant
calculations at additional geometries, thus the analysis of ZPV corrections is
more time demanding and often restricted by the computational possibilities.
It is advantageous to apply different approximations or basis sets to describe
the energy surface (equilibrium geometries and force constants) and the prop-
erty surface (for instance, to describe the core correlation effects needed for
shielding constants).

3 Comparison of the Gas-Phase NMR Spectra
with Ab Initio Results

In a standard ab initio calculation the NMR shielding constant is determined
considering as the unperturbed reference state the wavefunction of an isolated
molecule. The result is in agreement with the concept of the shielding constant
as a property characterising the nucleus in a specific molecule, but does not
correspond to the easily available experimental data. The difficulties in the
comparison of ab initio result with experiment are illustrated in Fig. 1.

The state-of-the-art ab initio calculations are usually done for the absolute
shielding constant at a single molecular geometry, whereas the experimental
results are usually obtained in the condensed phase. Moreover, the quan-
tities available from experiment are the chemical shifts, that is the shield-
ing constants on a relative scale, defined with respect to a chosen reference
molecule [4]:

δX =
νX − νX,ref

νX,ref
=
σX,ref − σX

1− σX,ref

∼= σX,ref − σX . (7)

However, when NMR is used to determine magnetic dipole moments of nuclei,
absolute shielding constants are required in (4).

To fix the scale for the absolute shielding, one should take into account
all the effects shown in Fig. 1. It appears that presently the best way to do
it is to include within the theory the zero-point vibrational and temperature
contributions. Unfortunately, the intermolecular forces in the liquid, which are
not easily described by theory, change significantly the shielding constants.
We shall therefore discuss primarily the results of systematic NMR gas-phase
experiments, in which the pressure dependence is analysed and extrapolation
to zero density enables the elimination of the effects due to intermolecular
forces.

To construct an absolute shielding scale for nucleus X , enabling a direct
comparison of theoretical and experimental results, it is sufficient to determine
the absolute shielding constant for this nucleus in a single molecule. This
can be achieved within ab initio methods of quantum chemistry. Moreover,
as discussed in Sect. 2.2, for an isolated small molecule the accuracy of the
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Fig. 1. Comparison of the theoretical shielding constants and the experimental
chemical shifts

calculated shielding constant can be estimated. One can next proceed using
the measured chemical shifts and determine the absolute shielding in other
molecules. Another option to fix the absolute shielding scale is to use the
measured spin-rotation constant (see Sect. 3.1) and compute ab initio the
diamagnetic part of shielding. Unfortunately, there are not too many accurate
spin-rotation constants available.

3.1 Spin-Rotation Constants

The spin-rotation constant MK is defined within perturbation theory as the
parameter describing the coupling of the rotational angular momentum of
the molecule and the magnetic dipole moment of nucleus. In the discussed
nonrelativistic approximation the spin-rotation constant is proportional to
the paramagnetic shielding, defined with the gauge origin at RK , the nucleus
of interest. It is best evaluated as the total shielding minus the diamagnetic
part, that is
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Mel
K =MK−Mnucl

K =
�μNgK

2πμB
σpara

K (RK)I−1 =
�μNgK

2πμB

[
σGIAO

K −σdia
K (RK)

]
I−1,

(8)
where the superscripts denote the electronic and nuclear parts of MK , I is
the moment of inertia tensor and μB the Bohr magneton.

Therefore, we can compare a fully ab initio value of the absolute shield-
ing constant with another one derived using the experimental spin-rotation
constant and ab initio diamagnetic shielding contribution (this contribution
is very simply calculated). However, (8) does not have a relativistic equiva-
lent and the discrepancy due to relativistic effects appears to be nonnegligible
already for the third-row atoms.

4 NMR Experiment in the Gas Phase

NMR spectroscopy is widely used for routine analyses of molecular struc-
ture. However, in NMR the spectral parameters are not usually measured for
isolated molecules and consequently almost all the conclusions drawn from ex-
periment are based on approximate data. Let us consider the chemical shift,
that is the difference of the shielding measured for the magnetic nuclei present
in reference and sample molecules, see (7), as an example. As shown in Fig. 1
the magnetic shielding of each nucleus is modified by intramolecular dynam-
ics and intermolecular interactions. Both these effects, although similar, are
never perfectly equal for two different molecules. Therefore, the NMR chem-
ical shift observed for any macroscopic sample only represents, in a better
or worse approximation, the real difference of the shielding constants in iso-
lated molecules. The above difficulties can partly be overcome if the magnetic
shielding is studied as a function of density in the gas phase. This approach
allows for the elimination of all the intermolecular effects in NMR shielding
and therefore gives the shielding constants for isolated molecules, suitable for
comparison with the results of a corresponding standard ab initio calculation.

In the gas phase, the effects related to intermolecular interactions and
intramolecular motion are observed as a dependence of the shielding σ(T, ρ)
on density and temperature [25]:

σ(T, ρ) = σ0(T ) + σ1(T ) ρ+ σ2(T ) ρ2 + · · · , (9)

where σ0(T ) is the shielding for an isolated molecule and the next terms de-
pend on the density ρ and describe the intermolecular interactions in gases.
The observed frequency ν(T, ρ) may also be defined in terms of a virial expan-
sion, with ν0(T ) representing the resonance frequency at the zero density limit
(the resonance frequency, the chemical shift and the shielding constant are lin-
early dependent when the properties of the reference molecule are constant,
see (7)). For most gaseous compounds at constant temperature the shielding
σ(T ) varies linearly with density if the pressure of gas does not exceed 40
atm [26]. In such a case the σ2(T ) and higher-order coefficients in (9) can be
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safely neglected and the remaining parameters, that is σ0(T ) and σ1(T ), can
be precisely determined from the linear equation

σ(T, ρ) = σ0(T ) + σ1(T ) ρ , (10)

in which σ1(T ) is solely responsible for all the intermolecular effects and in-
cludes the bulk susceptibility correction, dependent on the magnetic suscep-
tibility of sample medium (χv), the shape of the sample and the direction of
external magnetic field [27].

Similar measurements of the shielding can also be carried out for chemi-
cal compounds which exhibit stronger intermolecular interactions and remain
liquid at standard ambient temperature and pressure, that is at 298.15 K and
1 bar. It is convenient to use as a solvent (B, matrix) a chemically inert gas
and a small amount of the investigated compound (A, solute), then the solvent
molecules will hold the solute molecules apart. For a binary gaseous mixture
of compound A and gas B as the solvent (10) can be rewritten for molecule
A as follows:

σA = σA
0 + σAA

1 ρA + σAB
1 ρB , (11)

where ρA and ρB are the densities of A and B, respectively, and σA
0 is the

shielding at the zero density limit, that is the value for an isolated A molecule.
The coefficients σAA

1 and σAB
1 (we use here the superscripts to denote the

molecules, identical equation applies to each nucleus within the molecule) con-
tain the bulk susceptibility corrections and the terms taking account of inter-
molecular interactions during the binary collisions of A–A and A–B molecules.
At the very low density of solute (ρA) the second term in (11) is negligibly
small and this simplifies the description of the experiment to linear depen-
dence of σA on the density of the solvent gas (B):

σA = σA
0 + σAB

1 ρB . (12)

The shielding parameters in (11) and (12) are obviously temperature depen-
dent and the measurements for various densities must be performed at con-
stant temperature.

We have used (12) to determine the σH,0 and σO,0 shielding constants of
water observed in xenon gaseous matrix [28], while (10) was applied for the
measurements of all the other shielding constants cited in this work [16, 29,
30, 31, 32].

Gas samples were prepared condensing pure gases or their mixtures from
the calibrated part of vacuum line as described earlier [31, 32]. NMR chemical
shifts were measured relative to the external reference standards. For this
purpose the absolute frequency of the reference standard was determined in
the conditions of lock system tuned to the CD3 signal of external toluene-
d8. The constant frequency of the lock system at our Varian UNITYplus-500
multinuclear spectrometer allows us to preserve the same magnetic field for
all measurements and to compare resonance frequencies for different samples.
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Fig. 2. Extrapolation of the proton shielding observed in SiH4 and GeH4 to the
zero density limit. For the exact values of the σA

0 and σAB
1 parameters, see [32]

Figure 2 shows an example of the results – the shielding of 1H in silane
and germane as a function of the density. The dependence on density is linear
for both these compounds, which confirms that σ2(T ) and higher-order coef-
ficients in (9) can be neglected. The isolated molecule values clearly cannot
be extracted from the results of a single measurement; however, with linear
dependence of σ(T, ρ) on the density both parameters σ0(T ) and σ1(T ) can be
easily determined (see [32, 33] for examples). For our purposes, the extrapola-
tion to zero density permits precise determination of the shielding constants
for isolated molecules, σ0, while all intermolecular effects from gas medium
described by σ1 are removed. The precision of extrapolation of experimental
points to the zero density limit varied for different nuclei, but it was always
better than ±0.01ppm.

5 Nuclear Magnetic Moments – A General Scheme
for Different Nuclei

Let us consider how the unknown nuclear magnetic dipole moment can be
obtained using (4). The resonance frequency can be very accurately measured;
the absolute shielding constant is not known from experiment, but it can be
obtained from theoretical results and measured chemical shifts. Nevertheless,
(4) cannot be used to determine directly the magnetic moment because the
strength of the external magnetic field within the NMR sample cannot be
measured with sufficient accuracy. To bypass this problem one can compare
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experimental frequencies for two different nuclei, possibly even in different
molecules:

hνX = Δμz
X(1− σX)Bz , (13)

hνY = Δμz
Y (1− σY )Bz , (14)

and next eliminate Bz:

Δμz
Y =

νY

νX

(1 − σX)
(1 − σY )

Δμz
X . (15)

One can thus determine the magnetic moment μY using the measured fre-
quency ratios and the shielding constants for appropriate source compounds
(X and Y indices now specify both the nucleus and the molecule) assuming
that μX is known. This is the standard procedure used to establish the nuclear
magnetic dipole moment from an NMR spectrum. In practice, this approach
was applied for nuclei Y and X in the same molecule, to avoid experimental
errors. The most suitable nucleus X to be used as the reference is 1H, because
the magnetic moment μ(1H) = 2.792847337(29)μN [34] is known with high
accuracy.

When the magnetic moments of two nuclei are known, we can verify their
accuracy by rewriting (15) in a generalised scheme as

σX = 1− νX

νY

Δμz
Y

Δμz
X

(1− σY ) (16)

or equivalently
σX = 1− νX

νY

γY

γX
(1− σY ) . (17)

We stress that these equations should be fulfilled for any pair of nuclei in any
molecules. In this scheme, we shall use repeatedly (16) to test the consistency
of the ab initio and experimental data, with the old and new values of magnetic
moments of nuclei. In summary, to determine μY and/or to verify its accuracy
we need to know νX , νY , σX and σY ; we use experimental frequencies and the
shielding constants from theory, if needed with the experimental chemical
shifts.

For light nuclei, the accuracy of known σX values is often ≈1–3ppm. Obvi-
ously, to reproduce so well a known shielding constant we need accurate input
data, in particular μY and μX , and thus (16) provides a very strict test of
the consistency of their values. Simple checks indicate that with the literature
values of nuclear magnetic moments we obtain often completely wrong results.
For example, let us use σ(1H in TMS,liquid) as input (TMS, tetramethylsi-
lane, Si(CH3)4 is the reference standard for the chemical shifts of 1H, 13C and
29Si nuclei). We find for the derived shielding σ(15N in CH3NO2,liquid) =
330 ppm, whereas it is known to be approximately −135.8 ppm; so the error,
almost 500 ppm, is two orders of magnitude too large.
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To find the origin of these errors, we should consider various experimental
problems – such as sample preparation, bulk susceptibility (in the liquids), in-
fluence of intermolecular forces or insufficiently accurate measurement of the
frequency ratio. For instance, in the performed in 1951 studies of 33S mag-
netic moment the ratio ν(33S)/ν(14N) = 1.06174(13) [8] was used. However,
simple numerical tests based on (16) indicate that the most obvious and most
important problem is the error in the nuclear magnetic moments.

6 Results and Discussion

In the studies of NMR properties discussed below practically only the standard
Dunning’s basis sets [35, 36] of Gaussian-type orbitals have been used. They
are built in a systematic manner and they are suitable to describe electron
correlation effects. The NMR properties depend on the description of the
region close to the nucleus, thus primarily the sequence of core-valence (cc-
pCVXZ) basis sets has been used. An important problem arising whenever
one of the perturbing operators represents the external magnetic field is to
ensure gauge invariance of the results, which may otherwise strongly depend in
approximate calculations on the choice of the vector potential. This problem
is bypassed in the methods we discuss by the application of gauge-including
atomic orbitals (GIAOs) [37, 38] in the calculation of the shielding constants.

The most reliable presently available methods to obtain NMR shielding
constants in polyatomic molecules are based on the application of pertur-
bation theory for coupled cluster reference wavefunctions. These methods,
developed by Gauss and Stanton [39, 40], have been implemented with the
use of GIAOs, for a variety of coupled cluster levels. The CCSD and CCSD(T)
approximations can be applied successfully with large basis set. Kállay and
Gauss [41] considered higher level approaches (CCSDT, CCSDTQ, ... up to
full CI), but these benchmark studies are so far limited to small molecules
and basis sets.

Most of the discussed ab initio results, taken from [31, 32, 42, 43],
were obtained using the program packages Aces II [44], Dalton [45] and
Dirac 04 [46].

6.1 NMR Shielding Constants for the First- and
Second-Row Atoms

Two-Electron Systems

The most accurate results can be obtained for two-electron systems. For these,
CCSD is equivalent to full configuration interaction (FCI), so the description
of electron correlation is determined in the standard CCSD approach by the
basis set size. For He, wavefunctions explicitly dependent on the interelectronic
distance have also been successfully used. For a closed-shell atom the shielding



Nuclear Magnetic Dipole Moments from NMR Spectra 245

constant is proportional to the expectation value < 1/r > (r is the electron–
nucleus distance) and for 3He it is 1.688316800717 a.u. [47], corresponding to
≈59.93677ppm.

A study of H2 [48] and its isotopomers provided benchmark results, which
are used to set the scale for 1H shielding. The results of [48] have been con-
firmed recently in a new calculation with significantly larger [15s7p6d5f4g3h2i]
CGTO basis set [49]. The total shielding constant was 26.2983ppm [48],
the new result is 26.2980ppm, with the basis set error now estimated to
be <0.001ppm. Unfortunately, there is no simple way to include in such
calculations the nonadiabatic effects, so for instance in the HD isotopomer
we have σ(H) = σ(D).

For both systems, the relativistic effects have been analysed; the correc-
tions are ≈0.04ppm for He [50] and ≈0.0005ppm for σ(H) in H2 [49].

Methane

To illustrate the accuracy of the ab initio methods we present in some detail
the results for CH4 and, in the next section, for SiH4. The convergence in
a series of CCSD(T) calculations for methane is shown in Table 1. We have
chosen a sequence of correlation-consistent basis sets (the cc-PCV5Z basis was
truncated for computational reasons) and a special smaller basis set.

The quality of the ab initio absolute shielding constants in methane can
be, in contrast to most other systems, analysed considering experimental data.
Namely, there are gas-phase NMR results, spin-rotation constants and accu-
rate ab initio values for other molecules available for comparison: CO for 13C
and H2 for 1H. For 13C, the best result in Table 1 is 198.9 ppm; the ZPV
correction is −3.2 ppm [52] and the temperature correction is negligible [53],
so the total shielding is 195.7 ppm. The measured 13C chemical shift between
CH4 and CO is 194.27ppm [28], which leads to σ(13C in CO) = 1.43ppm.
The computed ab initio value is 2.9(20)ppm, and the value derived using the
spin-rotation constant is 0.9(9) ppm [51]. The measured chemical shift and the

Table 1. Basis set convergence of the CCSD(T) shielding constants in CH4

Basis set C H Basis set σ(C) σ(H)

CGTO CGTO size (ppm) (ppm)

cc-PCVTZ 6s5p3d1f 3s2p1d 99 200.321 31.446

cc-PCVQZ 8s7p5d3f1g 4s3p2d1f 204 199.223 31.359

cc-PCV5Z(-1g1h) 10s9p7d5f2g 5s4p3d1f 281 198.870 31.320

pz3d2p/pz3p2da 8s5p3d2f 5s3p2d 148 199.029 31.391

aFor a description of this basis set, suitable for NMR calculations, see [51].
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calculated difference in the shielding are therefore in very good agreement, and
this indicates that the absolute shielding constants are also reliable. Similarly,
for 1H in CH4 the ZPV correction is −0.6 ppm [52] and the chemical shift
between CH4 and H2 is 4.403ppm [28], leading to σ(1H in H2) = 26.317ppm.
The fully ab initio result is 26.298(20)ppm, using the spin-rotation constant
leads to 26.288(2)ppm [51]. The results for the carbon shielding constant are
practically converged to ±1 ppm, for the hydrogen constant to ±0.1 ppm. It
does not appear worthwhile (even if it were possible) to increase the basis set
further, because the errors due to other approximations are of the same order
of magnitude or larger.

6.2 NMR Shielding Constants for the Third-Row and Heavier
Atoms

We present the problems arising in the studies of absolute shielding scales for
third-row and heavier atoms beginning with the calculations of NMR shielding
for hydrides of third-row atoms – SiH4, PH3 and H2S [42].

The new results, recommended as reference for absolute shielding scales [42],
were combined from CCSD(T)/cc-pCVQZ shielding constants at the equilib-
rium geometry (optimised at the CCSD(T)/cc-pVTZ level), 300K rovibra-
tional contribution computed at the CCSD/cc-pCVTZ level and an estimate
of the relativistic effects determined using Dirac–Hartree–Fock (DHF) four-
component approximation and cc-pwCV5Z basis set (at the equilibrium ge-
ometry).

The convergence within the hierarchy of approximations was studied to
estimate additional corrections and error bars of the results. To analyse the
convergence of the basis set, correlation treatment and relativistic contribution
the following differences were considered:

• Basis set: cc-pwCV5Z – cc-pCVQZ ; at the MP2 level;
• Correlation method: CCSD(T) – CCSD ; with the cc-pCVQZ basis;
• Relativistic contribution: DHF/cc-pwCV5Z – DHF/cc-pCVQZ.

In the analysis of the computed values, as well as in the analysis of conver-
gence, additivity of different contributions is assumed.

The results for the equilibrium geometry, shown in Table 2, indicate con-
vergence with respect to both main parameters of the calculation: the basis
set size and the electron correlation model (the results for σ(1H) in PH3 and
H2S are similar to the SiH4 values).

In principle, convergence can be investigated also for the zero-point vi-
brational and temperature corrections. However, since these corrections are
much smaller than the total shielding constant and the calculations are (see
Sect. 2.2) much more expensive, usually the ZPV and temperature effects
are treated in a more approximate manner than the equilibrium geometry
calculation. The results shown in Table 3 confirm that the rovibrational con-
tributions are significant and cannot be totally neglected; in many cases they
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Table 2. SiH4 , PH3 and H2S equilibrium geometry NMR shielding constants
(ppm)a

Basis set SCF MP2 CCSD CCSD(T)

29Si in SiH4 cc-pCVTZ 477.214 474.986 475.575 476.067

cc-pCVQZ 474.331 469.246 470.146 470.640

cc-pwCV5Z 473.953 467.104

1H in SiH4 cc-pCVTZ 28.345 28.127 28.148 28.099

cc-pCVQZ 28.344 28.057 28.081 28.023

cc-pwCV5Z 28.331 28.020

31P in PH3 cc-pCVTZ 587.240 614.376 606.126 608.965

cc-pCVQZ 584.052 610.508 602.378 605.831

cc-pwCV5Z 584.025 609.464

33S in H2S cc-pCVTZ 713.602 755.587 736.083 738.990

cc-pCVQZ 710.510 753.827 734.256 737.923

cc-pwCV5Z 710.902 754.024

aFor details, see [42].

are larger than the estimated error of the equilibrium value of the shielding
constant. It should also be recalled that within the clamped nuclei model the
shielding of a nucleus in the molecule does not depend on the isotopic species,
the differences in the shielding leading to the isotope shift arise only when the
nuclear motion is considered.

We have also computed the spin-rotation constants for these three hy-
drides. The results for the heavy atoms are: M(29Si) = 41.387, M(31P) =
−113.593 and M(33S) = −35.104 kHz [42]. Unfortunately, the experimental
data are not very helpful when one wants to analyse the computed param-
agnetic shielding contributions. The experimental results for 29Si and 33S are

Table 3. ZPV corrections to the heavy atom NMR shielding constants (in ppm)

Molecule ZPV Methoda Molecule ZPV Method

CH4 −3.3 MCSCF [52] SiH4 −1.4 CCSD [42]

−2.909 CCSD(T) [42]

NH3 −7.0 MBPT [54] PH3 −9.2 CCSD [42]

H2O −12.04 MCSCF [55] H2S −20.9 CCSD(T) [42]

aMCSCF = Multiconfiguration SCF; MBPT = many body perturbation theory.
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not sufficiently accurate (in fact, the 33S value should apparently be revised).
On the other hand, for 31P the experiment is very accurate, the tensor av-
erage is −115.39 ± 0.21 kHz [56]. However, it is difficult to say how large
the relativistic contribution is – for the 31P shielding in PH3 the relativistic
correction is ≈2.5% of the total value. The difference between the computed
and experimental spin-rotation constant is similar, so we cannot estimate the
quality of the nonrelativistic calculation using the experimental result.

Relativistic Effects

A reliable ab initio relativistic calculation of shielding constants would require
simultaneous and accurate treatment of relativistic effects, electron correlation
and gauge invariance. In practice the available options are restricted; we shall
discuss mainly the results obtained using the DHF linear response [57] or
perturbational treatment [58].

Table 4 shows the differences between the nonrelativistic SCF and rela-
tivistic DHF values for three hydrides. In these calculations the unrestricted
kinetic balance approach was used to generate the small component basis set,
and the gauge origin was placed on the heavy atom. For comparison, in an-
other approach the relativistic corrections are 13.61ppm for σ(29Si in SiH4)
(at the MCSCF level [43]) and 23 ppm for σ(33S in H2S) [59].

Clearly, the relativistic effects are not negligible, they are far larger than
the errors in the nonrelativistic results. Unfortunately, as shown in Table 4 the
relativistic contribution is not easy to determine, because large basis sets are
needed to reach convergence. The remaining basis set error in the relativistic
correction may be as important as the error in the much larger nonrelativistic

Table 4. Relativistic corrections to NMR shielding at DHF level (in ppm)a

Basis set SCF DHF DHF − SCF

29Si in SiH4 cc-pCVTZ 478.02 484.18 6.16

cc-pCVQZ 474.08 484.25 10.18

cc-pwCV5Z 473.80 486.92 13.11

31P in PH3 cc-pCVTZ 577.95 587.13 9.19

cc-pCVQZ 581.74 595.21 13.47

cc-pwCV5Z 582.73 598.09 15.36

33S in H2S cc-pCVTZ 695.30 704.68 9.38

cc-pCVQZ 703.75 721.20 17.45

cc-pwCV5Z 707.38 726.92 19.55

aThe large component basis set is specified. For details, see [42].
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part (we note here that in a recent version of the Dirac 04 programme [46]
GIAOs may be used in the DHF calculations).

For heavier atoms the treatment of the relativistic effects may become
the dominant issue. This is demonstrated when the total shielding constant is
computed as the sum of the nonrelativistic part and a perturbation correction,
which accounts for the relativistic effects [58]. For instance, for σ(73Ge) in
GeH4 the nonrelativistic value is 1809ppm and the correction is 179ppm;
the corresponding values for 119Sn in SnH4 are 3324 and 694ppm [43]. To
obtain reliable absolute shielding constants it is therefore essential to describe
properly the relativistic contribution. We recall that when the relativistic
effects become large, one cannot apply the nonrelativistic relationship between
the spin-rotation constant and the paramagnetic term to determine the total
shielding. Therefore, even though the computed shielding constants are often
not as accurate as for the molecules containing only light atoms, the only way
to fix the shielding scale and derive the nuclear magnetic moment for a heavy
nucleus may be to use an ab initio result.

7 Consistency of the New Values of Nuclear Magnetic
Moments

Let us consider as the first example the magnetic dipole moment of 13C. The
generally accepted, literature value of 13C magnetic moment tabulated by
Raghavan [1] is 0.7024118(14)μN. It is based on the measured [5] frequency
ratio ν(13C)/ν(1H) in CH3I molecule. However, to extract the 13C bare nu-
cleus magnetic moment the so-called “diamagnetic correction”, corresponding
to the shielding in the ground state C atom (267 ppm), was used. The cor-
responding ab initio result [60] for the isolated molecule is σ (13C in CH3I)
= 227 ppm, a recent experimental gas-phase value is 220.59ppm [61], and it
is very unlikely that they differ by 40ppm from the required experimental
value in the liquid. The inaccurate treatment of NMR shielding led to sys-
tematic errors; it appears that when the “diamagnetic correction” was used
the shielding was generally overestimated, and thus the magnetic moments of
bare nuclei were also overestimated.

7.1 New Values of the Nuclear Magnetic Dipole Moments

To illustrate the dependence of the nuclear magnetic dipole moments on the
source data and the effect of the corrections to the moments we discuss in
general four approaches:
(a) We use the literature magnetic moments from Raghavan [1].
(b) We consider the old literature NMR data, that is the same source molecules
and frequency ratios νX/νY as in (a); but we use modified, more recent liter-
ature data for the shielding constants of X and Y nuclei in these molecules
(see [31, 32] for details and references). In this approach, improved values of
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magnetic moments may be derived extracting the required information from
previously available literature data.
(c) In this approximation, accurate frequency ratios and chemical shifts de-
termined from new gas-phase spectra (see Table 5) are used. Thus, the ex-
perimental results are not contaminated by intermolecular interactions and
describe well the relevant parameters for the isolated molecules.
(d) The same experimental data as in (c) are used, but the absolute shielding
constants are determined from new ab initio calculations [31, 32, 42, 43].

We note in Table 6 that the differences between (b), (c) and (d) nuclear
magnetic moments are much smaller than the differences between the new
values and the old literature data. Further improvement of the input data
would not change significantly the magnetic moments. We have checked that
for instance using for σ(1H in CH4) an ab initio value instead of the ex-
perimental one (taken from H2 and chemical shift), μ(13C) = 0.7023706μN.
Similarly, including the relativistic correction to the 13C shielding in methane,
1.07 ppm [43], leads to a very small change, μ(13C) = 0.7023707μN.

7.2 Derived Shielding Constants

To our knowledge (16),

σX = 1− νX

νY

Δμz
Y

Δμz
X

(1− σY )

has not previously been applied to examine the derived shielding constants,
most likely because using literature values of magnetic moments one obtains
meaningless results. The nuclear magnetic moments are in this approach

Table 5. Source data from gas-phase NMR and ab initio calculationsa

Molecule Frequencyb Shieldingb Frequencyb Shieldingb

Y νY (Hz) σY (ppm) X νX (Hz) σX (ppm)

CH4
13C 125.87667513(20) 195.02 1H 500.60854854(13) 30.61

H2O 17O 67.862408(4) 322.81 1H 500.608828(5) 30.05

CH3F 19F 470.9104056(50) 470.85 1H 500.6105529(25) 26.60

SiH4
29Si 99.4462169(1) 482.85 1H 500.610044(2) 27.625

SF6
33S 38.4198861(6) 379.89 19F 471.0665830(5) 139.31

GeH4
73Ge 17.4570625(2) 1988.71 1H 500.609969(4) 27.774

aData for isolated molecules.
bFrequencies from experiment; absolute shielding constants from ab initio calcula-
tions combined, when needed, with measured chemical shifts. For estimates of the
error bars and other details, see [31, 32].
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Table 6. Nuclear magnetic dipole momentsa (in μN)

Nucleus Gas sample Magnetic moment, μX

moleculeb [1] [31, 32]c

13C (a) 0.7024118(14) (b) 0.7023715

CH4 (c) 0.7023694(35)

CH4 (d) 0.7023698

14N (a) 0.40376100(6) (b) 0.4035729(20)

15N (a) −0.283188842(45) (b) −0.2830569(14)

17O (a) −1.89379(9) (b) −1.8935693

H2O (c) −1.8935428(95)

H2O (d) −1.8935493

19F (a) 2.628868(8) (b) 2.6284316

CH3F (c) 2.628321(13)

29Si (a) −0.55529(3)

SiH4 (d) −0.5550520(31)

31P (a) 1.13160(3) (b) 1.130903(17)

33S (a) 0.6438212(14) (b) 0.6431603

SF6 (c) 0.643247(11)

73Ge (a) −0.8794677(2)

GeH4 (d) −0.878241(44)

119Sn (a) −1.04728(7) (b) −1.04506(11)

aThe approximations (a–d) are described in the text.
bGas samples were used in [31, 32]; (a) and (b) values are derived from other (con-
densed phase) data, see the references for more details.
cFor the recommended values we have given estimated error bars, see [31, 32].

treated as fixed input data and we check the consistency of the NMR fre-
quencies and shielding constants. Thus, we compute σX assuming that the
frequency ratios νX/νY are known, and using a known value of σY (a single
index X or Y denotes here both the nucleus and the molecule). The main
idea is that we check the consistency of all the NMR parameters in a series
of different tests; obviously when the same data that served to determine the
magnetic moment from (15) are used in (16) it is fulfilled by default. The test
provided by (16) is most demanding when all the data are taken from different
sources, for instance we consider the same pair of nuclei but in two different
molecules (thus with different resonance frequencies and shielding constants).

In the tests discussed below we use either
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• A fixed X and a loop over Y , that is we derive a chosen σX from various
input data, or

• A fixed Y and a loop over X , that is we derive the shielding constants of
various other nuclei using a chosen reference.

Most importantly, in each sequence the results obtained using old and new
values of the magnetic moments in (16) will be compared.

Experimental frequency ratios for ≈100 nuclei (in molecules which consti-
tute recommended chemical standards for NMR) with respect to 1H frequency
in TMS are tabulated [4]. We have confirmed in our own studies that the in-
accuracies of the measured frequencies are negligible in comparison with the
other sources of error; we shall similarly assume that these tabulated values of
frequency ratios νX/νY are exact for our analysis. In the discussed examples,
when we derive the shielding constants applying old and new magnetic mo-
ments, in addition to our own results we use these tabulated frequency ratios.

As the first example illustrating in detail the consistency of the new NMR
data we present the derived shielding constant in atomic helium. The correct
value of σ(3He) is known with high accuracy from ab initio calculations (see
Sect. 6.1). The values of σ(3He) derived using as input σY the best estimated
shielding constants for a series of nuclei are shown in Table 7. With the old
values of nuclear magnetic moments most of the results are completely wrong.
In analogous calculations, but with the new values of the magnetic moments
we obtain very reasonable results; the errors with respect to the correct value,
59.93677ppm, are reduced by an order of magnitude or more. The shielding of
3He derived from 1H data is 56.02ppm, therefore to obtain higher consistency
one has to analyse the accuracy of the 3He experiment.

The results of another test are shown in Table 8. We have cross-examined
the new nuclear moments; we can take the shielding of any nucleus as input in

Table 7. Derived NMR shielding constant for 3He atom (in ppm)a

Nucleus Input Input

Y old μY new μY

13C (a) −3.61 (b) 53.85 (c) 56.76 (d) 56.28

17O (a) −80.33 (b) 39.55 (c) 53.53 (d) 50.11

19F (a) −151.55 (b) 14.48 (c) 56.42

33S (a) −836.55 (b) 190.89 (c) 55.52

29Si (a) −373.94 (d) 54.35

73Ge (a) −1340.67 (d) 55.64

a For the description of (a–d) approximations, see the text.
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(16). We observe similar systematic improvements, the errors in the derived
shielding constants decrease from a few hundred to a few ppm – on the average
by more than an order of magnitude. The improvement obtained using the
new values of the magnetic moments is proven by the overall consistency of
the set of the derived shielding constants.

7.3 Accuracy of the Results

The accuracy of ab initio results is in practice determined by the computa-
tional limits of the applied programs. In the discussed nonrelativistic calcu-
lations of the shielding constants these limits usually depend on the basis set
size and on the approximation describing the electron correlation effects, not
on the size or structure of the studied molecule. Not surprisingly, within such
predefined limits we can reach most accurate results for the smallest atoms
and molecules, like He and H2; the accuracy is lower for molecules like CH4

(5 nuclei, 10 electrons), lower again for molecules containing third-row atoms
with more electrons, etc.

Table 8. Derived shieldings constants for NMR standards (in ppm)

Nucleus Reference σ(X) σ(X) σ(X)

X standarda μX oldb μX newb best estimate

input: σ(1H in TMS) = 33.440 ppmc

13C TMS 246.73 186.38 186.37 [33]

19F CFCl3 400.87 192.97 192.7 [29]

33S (NH4)2SO4 1096.31 205.17 204.0 [17]

input: σ(13C in TMS) = 186.44 ppma

1H TMS −26.86 33.03 33.440c

17O D2O 364.19 290.25 287.5 [62]

19F CFCl3 340.59 192.56 192.7 [29]

29Si TMS 746.65 378.53 378.51d

33S (NH4)2SO4 1036.07 204.77 204.0 [17]

a For a detailed description of the compounds considered as NMR standards, see [4].
b μX old: (a) values; μX new: (c) values from Table 6 when available, (d) for 29Si;
(b) values otherwise.
c Obtained using 32.775 ppm [33] and a shift of 0.665 ppm between pure liquid TMS
and TMS, 1% solution in deuterated chloroform.
d See Sect. 7.3.
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Basis Set and Correlation Errors

The practical limit for coupled cluster calculations of shielding constants (on
a standard workstation) is presently ≈300 CGTO basis set functions. This
means that relatively accurate results may be obtained for instance at the
CCSD(T)/cc-pCVQZ level for SiH4, but it is not possible to achieve similar
accuracy for SF6 molecule.

For the second-row hydrides, methane (see Table 1) and water the shield-
ing constants at the equilibrium geometries were obtained applying large basis
sets (cc-pCVQZ, cc-pCV5Z and intermediate). The basis set errors were esti-
mated as ≈0.2 ppm for the H atom and ≈0.5 ppm for C and O atoms [31]. In
analogous CCSD(T) calculations for the third-row hydrides [42], cc-pCVQZ
basis becomes the limit and the basis set incompleteness error is more signif-
icant. It has to be examined at a correlated level, and larger bases could be
used in MP2 calculations. The error varied from −2.1 to 0.2 ppm in the MP2
results, and we have estimated it should not exceed ≈3 ppm for the CCSD(T)
approximation.

The highest approximation suitable for practical applications is CCSD(T);
a comparison with the CCSD results indicated that it is sufficiently ac-
curate for the studied molecules. In the analysis of the contributions of
higher clusters to NMR shielding, Kállay and Gauss [41] observed that σ(full
CI)−σ(CCSD(T)) � σ(CCSD(T))−σ(CCSD). Although for computational
reasons the analysis was restricted to small molecules including only first-
and second-row atoms, and small basis sets, it appears that one can use
(1/2)[σ(CCSD(T))−σ(CCSD)] as an estimated correction for the incomplete
treatment of electron correlation effects. For the shielding of heavy atoms in
the third-row hydrides this error due to the truncated cluster expansion has
been estimated in this way as ≈3 ppm [42].

Accuracy of the Absolute Shielding Scales

As an example illustrating the accuracy of the computed shielding constants
we consider various contributions to the absolute shielding of 29Si and 1H in
SiH4.

The literature absolute shielding scale for 29Si was based on the exper-
imental spin-rotation constants and chemical shifts of SiF4 and SiH4 [63].
The spin-rotation constant of 29Si in SiH4 was estimated to be 41.3±1.0kHz,
the calculated value was 41.387kHz [42]; the agreement with experiment is
partly fortuitous. The value of σ(29Si in SiH4) derived from experiment is
475.3±10ppm, the ab initio results [42] are shown in Table 9. The error of the
basis set has been estimated as ≈ −2.1ppm, the correlation error as ≈ 0.2 ppm
and the error of the relativistic contribution as ≈ 2.9 ppm, with the cumu-
lative correction estimated to be ≈ 1.0 ppm. The total σ(29Si in SiH4,300K)
including an estimate of all the corrections was 483.4 ppm, the differences be-
tween our various results are much smaller than the assumed (see below) error
bar of 5.0 ppm.
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Table 9. Absolute shielding constants in SiH4 (in ppm)

29Si in SiH4 σe [CCSD(T)/cc-pCVQZ] 470.640

vibrational contribution [CCSD/cc-pCVTZ, 300 K] −1.404

relativistic correction [DHF]a 13.11

σ ab initio 482.35

1H in SiH4 σe [CCSD(T)/cc-pCVQZ] 28.023

vibrational contribution [CCSD/cc-pCVTZ, 300 K] −0.379

σ ab initio 27.644

σ, experiment (ab initio H2 + chemical shiftsb) 27.625

aA perturbation theory result [43], 13.61 ppm, was used as a better estimate in
Table 5 and to obtain μ(29Si) in Table 6.
b Gas-phase NMR experiment [32]; chemical shift, SiH4 vs liquid TMS:
1H: −5.150 ppm.

The NMR reference standard for 29Si is liquid TMS. Combining the SiH4

ab initio shielding constant and the experimental chemical shift of 29Si be-
tween isolated SiH4 molecule and TMS, 104.34ppm [32], leads to 378.51ppm
for the shielding of 29Si in liquid TMS at 300K. This value is in our
opinion more reliable than the earlier reference result, 368.50±10ppm [63].
Consequently, the absolute shielding σ(29Si in SiH4,300K) is taken from the
described ab initio calculations.

The results for the proton shielding in SiH4 are shown in Table 9, and in
this case the experimental value is preferred. The absolute shielding scale for
1H was derived using very accurate calculations for H2, the measured chemical
shifts are also accurate and it would be very difficult to obtain a more reliable
value of σ(1H in SiH4,300K) from a direct calculation. The values of σ(29Si)
and σ(1H), together with μ(1H) and the measured 29Si/1H frequency ratio in
SiH4, were used to obtain the nuclear magnetic moment of 29Si [32].

In general, for the NMR shielding at the equilibrium geometry accuracy
of a few ppm can be reached, at least for the third-row hydrides. The basis
set and correlation errors can be estimated. The vibrational and temperature
corrections can be computed accurately to ≈1 ppm. The relativistic effects
on NMR shieldings become important already for the third-row atoms, up to
25 ppm for H2S (≈3% of nonrelativistic value). They require large or specially
designed basis sets to reach accuracy of a few ppm. In fact, the largest un-
certainty comes from the relativistic correction; the basis set convergence and
the role of electron correlation in relativistic calculations have to be examined
in more detail.

The inaccuracy of the absolute shielding scale varies with the nucleus,
similar to the magnitude and the span of the shielding constants in different
molecules. It is a fraction of a ppm for 1H, several ppm for third-row nuclei
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like 33S and larger and more difficult to estimate for heavier nuclei. For heavy
nuclei the relativistic effects become large and that puts in doubt the assumed
additivity of various corrections to the shielding.

Accuracy of the Magnetic Dipole Moments

The accuracy of the studied magnetic dipole moment depends on the errors
in the frequency ratio and in the shielding constants of X and Y nuclei as
well as on the error in the reference dipole moment μX . We have observed
that the frequency ratios measured in the gas phase and extrapolated to the
zero density limit can be treated as exact. Also, the error in the reference
dipole moment μX is negligible when the reference nucleus is 1H. Otherwise,
the analysis of the error bars unfortunately requires an arbitrary decision:
what is the known input and what is to be determined. For example, the
magnetic moment of 33S in the discussed approximation (c) was determined
using as input the previously determined moment of 19F; that sequence could
be reversed.

Practically, the error of the computed magnetic moment is proportional
to the error in the shielding constants. This inaccuracy of the shielding con-
stants depends on the error in the absolute shielding scale and, possibly, the
error in the measured chemical shift. However, the latter is in the discussed
experiments 0.1 ppm or smaller, as confirmed for instance by our own mea-
surement of the chemical shift between gaseous o-H2 and liquid TMS [28].
It is therefore negligible in comparison with the error in the absolute scale;
that is why we examined in detail the accuracy of all the contributions to the
ab initio shielding constants.

The following estimates of the errors in the absolute shieldings: 0.5 ppm
for 1H, 5 ppm for second-row atoms (13C, 14N, 15N, 17O, 19F) and 15ppm
for third-row atoms (31P, 33S) have been used [31] to derive the magnetic
moments shown in Table 6. In [32], these values were estimated to be 1H:
0.5 ppm (in all the studied molecules), 13C: 3.0, 29Si: 5.0, 73Ge: 50, and 119Sn:
100 ppm, respectively. Hopefully, the uncertainties in the absolute shielding
constants are in fact smaller than these assumed values; only estimates can be
given. Let us return to the magnetic moment of 29Si. The discussed dominant
basis set errors in the nonrelativistic and relativistic part of the shielding
constant largely cancelled out; we have nevertheless assumed a maximum error
of 5.0 ppm in σ(29Si in SiH4). With this estimate and the data of Table 9 we
have μ(29Si) = −0.5550520(31)μN, to be compared with −0.55529(3)μN [1],
thus the predicted improvement is an order of magnitude larger than our error
estimate.

The accuracy of all the data decreases for the heavier nuclei – for instance,
in the ab initio studies [43] of GeH4 and SnH4 rovibrational corrections were
not taken into account, the experimental values for SnH4 [20] have not been
extrapolated to zero density, etc. However, for these nuclei the accuracy of the
magnetic moments depends primarily on the proper description of the large
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relativistic effects. Regrettably, there are at the moment no ab initio methods
that would enable a reliable and highly accurate description of these effects
in heavier nuclei, such as for example 207Pb.

8 Conclusions

In the simplest approach, the values of nuclear magnetic dipole moments
can be significantly improved using literature NMR resonance frequencies if
more accurate absolute shielding constants are presently available. Further
improvement is obtained for many nuclei using absolute shielding constants
derived from new and more accurate ab initio calculations, combined with new
gas-phase NMR frequencies and chemical shifts. In the gas-phase NMR ex-
periments extrapolation to the zero density point eliminates the effects due to
intermolecular forces, providing isolated molecule values for comparison with
ab initio results. The absolute shielding scale is defined applying state-of-the-
art ab initio methods to obtain the shielding constant in the same molecule.
The electron correlation effects are well described using coupled cluster per-
turbation approaches, the basis set convergence can be examined and the final
results for the equilibrium geometries obtained with high accuracy. In addi-
tion, the zero-point vibrational and temperature contributions are included
and the relativistic effects can be estimated. It appears that for light atoms
the accuracy of the Schrödinger equation is exhausted and a careful analysis
of the relativistic corrections is essential to reach higher accuracy of the total
shielding constants.

The final values of the constants are used to fix reliable shielding scales,
and consequently to derive new, more accurate values of the nuclear magnetic
dipole moments. The changes of the nuclear moments with respect to the
previous values are ≈ 10−4 μN for many nuclei. Thus, although the literature
values of the moments are given with more digits, we observe a change on
the fourth decimal when we describe systematically the role of the shielding.
In the discussion of the results we have concentrated primarily on the nu-
clei of interest for standard chemical applications, a similar analysis can be
performed for any other isotope with nonzero magnetic moment.

We have shown that the corrected values of nuclear magnetic moments give
much better consistency of NMR parameters. The absolute shielding constants
derived with the new values of the magnetic moments are much closer to
the best available experimental data. With the old values of the magnetic
moments we find large errors in the derived shielding constants; in analogous
calculations, but with the new values of nuclear magnetic moments, the errors
are reduced by an order of magnitude or more. The differences between the old
and new values are small, ≈10−4 of the total moment, but their importance
for the consistency of all the NMR spectroscopic parameters becomes clear
when we attempt to reproduce a shielding constant known accurately to a few
parts per million.
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260 M. Jaszuński and K. Jackowski
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Abstract. Consisting of two electrons and a positron (e+e−e−), the negative ion
of positronium (Ps−) represents the simplest three-body system with a bound state.
Its constituents are stable, point-like particles, and it is essentially free from pertur-
bations by strong interaction effects. Together with the rather unique mass ratio,
these properties make the positronium ion an interesting object for studying the
quantum-mechanical three-body problem. Accordingly, there is a considerable num-
ber of theoretical publications on this exotic ion, but experimental data are very
scarce. In this article, after giving a short overview of the theoretical results on Ps−,
we review the measurements of its decay rate, and we discuss the prospects for fur-
ther experiments now becoming possible at the new high-intensity positron source
NEPOMUC at the FRM-II research reactor in Garching (Germany).

1 Introduction

For several decades it has been known that there is a particle-stable bound
state consisting of a positron and two electrons. The first one to discover
this was J.A. Wheeler, who calculated a lower limit for its binding energy
in 1946 [1], using the variational principle with a 3-parameter Hylleraas-type
wavefunction. Obtaining an expectation value of −6.96 eV, he concluded that
the second electron is bound by at least 0.19 eV with respect to the ground
state of positronium – calculated to have an energy of −6.77 eV in the same
paper. For such systems made of electrons and positrons he proposed the name
“polyelectrons”. He could not establish the stability of species consisting of
more than three particles; nevertheless, he suggested that larger clusters of
electrons and positrons might explain the nature of the mesons, which had
been discovered in the cosmic radiation not long before.

While Wheeler’s two-body polyelectron – today known as positronium –
has been the object of intense studies both on the theoretical and exper-
imental side, the three-body polyelectron or positronium ion (Ps−) almost
exclusively found the interest of theoreticians. Up to now, a considerable
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number of articles covering theoretical calculations of different parameters
of the positronium ion have been published. In 1981 A.P. Mills succeeded
in producing Ps− using a beam-foil method [2], identifying the ions by the
Doppler-shifted annihilation radiation of Ps− decaying in flight. Following the
same approach he made a first decay rate measurement of Ps− [3] in 1983 (see
Sect. 3.2).

Both the neutral positronium atom and the Ps− ion exhibit a number of
attractive features, which also explains the theoretical interest in these sys-
tems. According to our present knowledge, their constituents, electrons and
positrons, are stable, point-like particles without any structure. To a very
good approximation Ps and Ps− are purely quantum-electrodynamical sys-
tems. Other simple atomic systems like hydrogen have to deal with nuclear
size effects; in fact the theoretical prediction of the atomic properties of hy-
drogen is limited by the poor knowledge of the proton charge radius. By
turning the problem around and assuming the validity of bound-state QED, a
comparison of higher-order calculations and precision measurements of simple
atomic systems can be used to determine such nuclear parameters. Obviously,
this approach excludes a use of the experimental data as a test of QED. As
pointed out in [4], positronium (being free from the effects mentioned above)
is ideally suited for high-precision bound-state QED tests. The positronium
ion in principle has the same advantages, but due to the complication in-
troduced by the third particle, it is less interesting as a high-precision QED
test. On the other hand, it is just the three-body nature of Ps− which makes
this an attractive system to study: with all three constituents having the
same mass, the positronium ion has a rather unique mass ratio between H+

2

and H−. It is intrinsically a three-body problem, and simplifications like the
Born–Oppenheimer approximation or the assumption of an infinitely heavy
nucleus are not applicable. Lying in the middle between the two extremes of
H+

2 and H−, Ps− also allows for a study of the transition from the atomic
to the molecular set of quantum numbers. Altogether, it is ideally suited to
test the different approaches which have been applied to the solution of the
quantum-mechanical three-body problem.

2 A Brief Survey of the Properties of Ps−

This section gives a short overview of the theoretically calculated properties
of Ps−. After starting with the ground-state properties of the positronium
ion, the results on the different decay branches are discussed, and finally
excitations and resonances are considered.

2.1 Ground-State Binding Energy

The positronium ion represents a genuine three-body problem, where the
molecular Born–Oppenheimer approximation as well as the assumption of
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an infinitely heavy nucleus must necessarily fail. With practically useful
analytical solutions of the three-body problem being unavailable, a theoretical
treatment is possible only on the basis of numerical approximations.

As a sufficiently precise wavefunction is the necessary prerequisite for all
further theoretical considerations, quite a few attempts have been made to
calculate this fundamental quantity. Mainly, these are variational calculations
[1, 5, 6, 7, 8, 9, 10, 11, 12, 13], but there has also been a non-variational
approach [14, 15]. It turns out that, as in the case of H−, the ground state
is the only state which is stable against dissociation. In this state the two
electrons are in a singlet S-state, the parity is even (SLπ = 1Se).

The large number of significant figures (up to 20) in the more precise of
the above-mentioned ground-state energy results is somewhat misleading. As
a physical quantity (as opposed to a mathematical measure of the properties
of the variational trial function), it is certainly not meaningful without consid-
eration of relativistic effects or QED contributions. A partial evaluation can
be found in [16], where Bhatia and Drachman considered the relativistic cor-
rections to the energy and started to compute the relevant expectation values.
Also Frolov [5] discussed the relativistic corrections, but an evaluation of the
necessary expectation values was still missing. A complete calculation of the
lowest-order relativistic and QED corrections has only recently been published
by Drake, giving a ground-state energy of E = −0.261 998 108 122(1) a.u. [17].

Given the wavefunction, also the expectation values of the interparticle
distances can be calculated. Looking at the values 〈r1p〉 and 〈r12〉 shown in
Fig. 1, the rather large size of the positronium negative ion is remarkable: the
two electrons are separated by a distance of several Ångström. It is important
to note, however, that the basic structure of the positronium negative ion is
not that of an equilateral triangle. In fact, the two electron–positron distances
are rather different and the system can be crudely described as a positronium
atom plus a second, loosely bound electron [7].

2.2 Annihilation and Decay Rates

Due to the possibility of electron–positron annihilation, the positronium ion
has a finite lifetime. Many aspects of the Ps− decays can be understood in
terms of the corresponding decay channels of neutral positronium. Given the

<r12> = 0.452 nm

<r1p> = 0.290 nm

e- e-

e+

Fig. 1. Average interparticle distances (see, for example, [5]) and spin orientations
in the positronium negative ion
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above-mentioned geometrical structure, this is not too surprising: in a first ap-
proximation, the decay of the positronium ion can be considered as a positro-
nium decay plus a spectator electron. For this reason, it is worth recalling
the decays of the ground state of neutral Ps atoms, which form two distinct
spin states, depending on the relative spin orientation of the electron and
the positron: a singlet state 1S0 (para-Ps) and a triplet state 3S1 (ortho-
Ps). Both decay by electron–positron annihilation, but due to their different
behaviour under charge conjugation, they differ in the possible numbers of
final-state photons. While the singlet state can decay only into an even num-
ber of photons (Γ(Ps, 1S0) = 7990.9(17) μs−1 [18]), for the triplet state only
odd numbers are possible (Γ(Ps, 3S1) = 7.0404(10)(8) μs−1 [19]). In the Ps−

ion, the two electrons are in a relative singlet spin state, a spherically symmet-
ric configuration without a preferred axis of orientation of the positron spin.
Therefore, either combination of electron and positron spins is available, and
a positronium ion may decay into any number of photons. With the presence
of a third particle to help ensure the energy–momentum conservation, even
one-photon decays are possible.

Nevertheless, as one might expect, the 2γ decay channel is clearly dom-
inating. The 3γ decay and all channels involving more photons are higher-
order effects in the QED perturbation expansion, and the 1γ decay requires
a three-body interaction, which is extremely unlikely. Also the 3γ/2γ branch-
ing ratio in the decays of Ps− can be understood from the simple picture
of a Ps atom plus a spectator electron, as it reflects the ratio of the triplet
and singlet positronium decay rates, weighted by their respective multiplicity:
Γ3γ/Γ2γ ≈ 3Γ(Ps, 3S1)/Γ(Ps, 1S0).

The first theoretical calculation of the 2γ and 3γ decay rates has been made
by Ferrante [20], analogous to the corresponding computation for positronium
[21]. The 2γ result – apart from the wavefunction-dependent expectation value
〈δ(r1p)〉 to find the electron and the positron at the same place – only differs
by a factor of 1/2 from the one for the decay of 1S0 positronium. This simply
reflects the availability of a second electron and the different probabilities to
find the electron–positron pair in a singlet state. In other words, there is no
qualitative difference between the Ps and Ps− decays in our approximation.

Experimentally it is much easier to measure the total decay rate Γ =
Γ1γ +Γ2γ+Γ3γ+· · · , summing up the contributions from all possible branches,
than the decay rate for a single branch. Approximately, this quantity is given
by the expression

Γ = 2πα4 c

a0

[
1− α

(
17
π
− 19π

12

)]
〈δ(r1p)〉 , (1)

where α = e2/(�c) is the fine-structure constant, c the speed of light and
a0 = �

2/(mee
2) the Bohr radius [7]. Equation (1) gives Γ as the dominat-

ing 2γ decay rate [20], multiplied by a factor (1 + η1 + η2) to account for
the 3γ decays (η1 = Γ3γ/Γ2γ = α/π(4π2/3 − 12)) and to correct for the
leading radiative corrections to the 2γ decay rate (η2 = α/π(5 − π2/4)).
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The 3γ correction η1 was taken from the work of Ore and Powell [22], who
calculated the probability of 3γ decays (in lowest order) for the case of neutral
positronium. Likewise, Harris and Brown originally investigated the radiative
correction η2 to the annihilation amplitudes for free particles and positronium
atoms [23]. According to [7], there are still contributions of order α missing,
but unfortunately no estimates of the size of these contributions – which de-
fine the theoretical uncertainty of (1) – can be found in the literature. As a
conservative estimate, we may assume that they are at most of a magnitude
comparable to the corrections η1 and η2. Consequently, the uncertainty could
still be of the order of 3× 10−3.

As the numerical calculation of the decay rate from (1) requires the knowl-
edge of the wavefunction, more precisely of the expectation value 〈δ(r1p)〉,
virtually all authors who have published a numerical result for the wavefunc-
tion also have given a value for Γ. Combining their results with our guess for
the theoretical uncertainty, the calculated total decay rate is given by

Γ = 2.086(6) ns−1 . (2)

Another decay parameter of Ps− which stimulated theoretical interest is
the one-photon decay rate Γ1γ . As already discussed above, this is a genuine
three-body effect. It has been investigated by Kryuchkov [24], for the first time
including all lowest-order Feynman diagrams contributing to the process. He
arrived at the expression

Γ(0)
1γ =

64π2

27
α3m−5

e |Ψ(0, 0, 0)|2 , (3)

with me being the electron mass. In this equation, |Ψ(0, 0, 0)|2 is the proba-
bility density to find all three particles at the same point. There is an earlier
calculation [25], giving a result which is larger by a factor 9/4; the differ-
ence is attributed to the fact that only four of eight diagrams have been
considered in this calculation [24]. Numerical results can be found in a few
papers [5, 12, 24], the most recent one resulting in a partial decay rate of
Γ1γ = 3.823× 10−2 s−1 [5].

In connection with the γ-decays, not only the decay rates, but also the
photon energies and the angular correlations are of interest. Considering a
positronium ion at rest – or equivalently, viewing it in its centre-of-mass sys-
tem – the sum of all final-state momenta has to be zero. As one would expect
from the Ps + e− picture, a large momentum transfer to the second electron
is quite unlikely. Therefore, the two gamma rays from a two-photon decay
have an energy of about mec

2 = 511 keV each, and their momenta are ap-
proximately equal and opposite. Reference [26] calculated the corresponding
angular correlation function, which turns out to be narrower than its equiv-
alent for neutral positronium. This is in accordance with what one would
expect in a loosely bound system: as the particles are less strongly confined
in position, their momentum distribution becomes narrower.
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In the case of the 3γ decay, the situation is slightly more complex; while it is
still true that the second electron to a good approximation remains unaffected,
there are now three photons to share the energy and the momentum. For this
reason, the gamma energies are not fixed but continuously varying. But except
for the small momentum transfer to the remaining electron, they have to sum
up to a total energy of 2mec

2 = 1022 keV and to zero total momentum.
Finally, the 1γ decay gives rise to a free electron and a photon, both of

them having fixed energies. As a simple relativistic kinematics calculation
shows, the electron gains a kinetic energy of 2/3 × mec

2 = 341 keV, and a
681 keV photon is emitted. In the initial Ps− rest frame, these two are sent
out in exactly opposite directions.

Annihilation into four or more gamma rays is suppressed by additional
factors of the fine-structure constant α. Because of the very small contribution
of these decays, none of them seems to have been investigated in more detail.

2.3 Excitation and Resonances

As already mentioned, the ground state of the positronium ion is the only
state which is stable against dissociation. Nevertheless, Ps− features a num-
ber of doubly excited states in the continuum, which show up as resonances
in electron–Ps scattering or in the Ps− photodetachment cross-section. Ex-
perimentally, measurements of the photodetachment process

Ps− + �ω → Ps(n) + e− (4)

are the most promising means of accessing the predicted resonances, but they
give access only to the 1Po resonances. Regarding the spin state of the so-
produced neutral positronium atom, one expects to find ortho- (3S1) and
para-Ps (1S0) with a probability given by the respective multiplicity of these
spin states: this means that 1/4 of the positronium should be in the singlet
state and 3/4 in the triplet state.

For an experimental observation of the doubly excited states of Ps−, it is
important to consider the possible decay channels of the doubly excited states,
namely annihilation, autodetachment and de-excitation in a radiative cascade
to the ground state. An investigation by Ho [27] has shown that the autode-
tachment rates are several orders of magnitude larger than those for direct
annihilation. Accordingly, the doubly excited states should be observable in
the photodetachment cross-section. Ho also concluded that the de-excitation
by photon emission should be far less probable than the autodetachment pro-
cess. This has important consequences for the decay rate measurements to
be discussed later (see Sect. 3.2) because it means that feeding effects are
negligible as a source of systematic errors: even if a significant fraction of the
positronium ions was formed in one of the excited states, they would decay
by autodetachment rather than by radiative transitions to the ground state.

A number of publications can be found on the subject of Ps− resonances,
including, for example, calculations of resonance positions and widths for a
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large number of resonances up to the Ps (n = 6) threshold [28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38].

In [39], the photodetachment cross-section has been calculated. Part of the
results in shown in Fig. 2, which additionally displays the off-resonant cross-
section below the Ps(n = 2) threshold as computed by other authors [40, 41,
42] for comparison. The obvious deviations between the different results are
discussed in [39]. For every Ps(n) threshold in the energy range considered in
the photodetachment cross-section calculations (in [39], up to n = 6), there is
a series of Feshbach resonances just below threshold. These resonances can be
interpreted as a consequence of the attractive dipole potential which results
from the degeneracy of the excited states in positronium. Further, there is
a shape resonance above the n = 2 threshold. As already discussed at the
beginning of this section, only resonances of 1Po symmetry contribute to the
photodetachment cross-section in the dipole approximation. For this reason,
these are the only resonances showing up in this calculation.

From an experimental point of view, the doubly excited resonances below
the Ps(n = 2) threshold can provide a way of measuring the ground-state
binding energy of Ps− in a photodetachment experiment: the photon energies

(a) (b)

Fig. 2. The photodetachment cross-section of the positronium negative ion. (a)
Results of a calculation by Igarashi et al. for the total cross-section. (b) Partial
cross-sections for the production of Ps(n = 1) (solid line) and Ps(n = 2) (dotted line)
and the corresponding graph for H− for comparison. Only the first two resonances
of the series below the n = 2 threshold of the neutral atom are shown. For further
resonances, the distance to the threshold decreases exponentially (from [39])
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at the Feshbach resonances correspond to the energy differences between the
ground state and the respective resonances, and these in turn rapidly converge
to the known n = 2 threshold of neutral positronium.

In the context of the doubly excited states, the possibility for a metastable
3Pe state should also be mentioned. Such a state, which is predicted to exist
in H− [43], would be experimentally interesting because of its comparably
long lifetime: if energetically lower than the Ps (n = 2) threshold, it could
not decay by autodissociation, there were no dipole-allowed transitions to the
ground state, and direct annihilation was strongly suppressed by the form of
the wavefunction. The first one to point out this possibility and its conse-
quences was Mills [43]. He tried to establish its stability against dissociation,
but he could not obtain a binding energy below the n = 2 threshold of neutral
positronium. Later, it has been shown that the 3Pe metastable state, in con-
trast to H−, lies above the Ps(n = 2) threshold [44] and is therefore rapidly
decaying by autodetachment.

3 Experiments with the Negative Positronium Ion

Despite the wealth of theoretical results, experimental data on Ps− is ex-
tremely scarce: to our knowledge only three experiments on the positronium
ion have been performed and published so far. The first two established the ex-
istence of this exotic ion [2] and determined its lifetime [3]. This year, we have
presented an improved decay rate measurement [45], and we are planning
further experiments which are becoming possible now at the high-intensity
positron source NEPOMUC at the FRM-II research reactor in Garching.

3.1 Production of Ps−

Until a recent observation of positronium ion emission from a polycrystalline
tungsten surface [46], the only known Ps− production method was the one
used in the first experiments by Mills [2, 3], which is based on sending a beam
of low-energy positrons through an extremely thin carbon foil of only a few
nanometres thickness. When a suitable positron energy is chosen, a fraction
of roughly 10−4 of the positrons picks up two electron and leaves the foil
as Ps−. Already these first experiments indicated that the optimum yield is
reached for kinetic energies of a few hundred eV, rather precisely the energy,
where about half of the positrons are transmitted. Our systematic studies
using a number of diamondlike carbon (DLC, see [47]) and standard carbon
foils of different thicknesses confirmed this observation and showed that the
maximum formation efficiency does not seem to vary by more than a factor
of 2–3 for foils between 4 and 13 nm thickness [48].

Once formed, the low mass of Ps− and its opposite charge as compared to
a positron allows for a separation of the ions from the transmitted positrons
and for an easy acceleration to velocities of a few percent the speed of light.



The Negative Ion of Positronium 269

The first observation in [2] took advantage of this fact and detected the blue-
shifted annihilation radiation of in-flight decaying positronium ions with a
germanium detector placed in forward direction. With such a setup, already
moderate acceleration voltages lead to Doppler shifts large enough to distin-
guish the decays of Ps− from the large background of other electron–positron
annihilations. A voltage of 3900 V, for example, gives rise to a shift of 37.8 keV,
much more than the energy resolution of a germanium detector of typically a
few keV. As the measurement of the Doppler shift allowed to determine the
charge-to-mass ratio of the decaying ions from the known acceleration voltage,
it was used to prove the existence of the positronium ion.

3.2 Measurements of the Decay Rate

The decay rate of Ps− is not only a genuinely quantum-electrodynamical ef-
fect, it is also the property of this elusive ion which is most straightforward to
measure. Therefore, it is not surprising that this is the only quantity known
from experiment so far. In the following, the two published decay rate exper-
iments are discussed.

The First Decay Rate Measurement

In 1983, a first decay rate measurement was published by Mills [3]. The
positronium ions were produced in the way described above from a beam of
low-energy positrons transmitted through a thin carbon foil, using a positron
source consisting of a 150 mCi 58Co β+ source and a single crystal tungsten
moderator. The decay of Ps− was observed by accelerating it in a homogeneous
electric field and monitoring the survival rate when crossing the precisely vari-
able acceleration gap d to the detection section.

In order to extract the decay rate from such a measurement, the relativistic
relation between the distance d and the time of flight t′ in the rest frame of
the ion is needed. Correct up to terms of order Λ3/2 and Λ0/Λ, one obtains

t′ =
d

Λc
ln

[
1 + Λ +

√
Λ2 + 2Λ

] (
1−

√
Λ0/Λ

)
, (5)

where Λ = eU/3mec
2 and Λ0 = T0/3mec

2. U denotes the acceleration voltage,
me the electron mass and T0 the initial longitudinal kinetic energy of the
positronium ions on leaving the production foil. Thus, the rate of surviving
Ps− exponentially decreases with the distance as R(d) ∝ exp(−μd), where μ
is defined by

Γ
(
1−

√
Λ0/Λ

)
= μ

[
Λc/ ln

(
1 + Λ +

√
Λ2 + 2Λ

)]
, (6)

with Γ being the decay rate of the positronium ion. Equation (6) allows to
calculate the decay constant Γ from the experimentally measurable quantity
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μ. The conversion factor depends not only on the acceleration voltage U but
also on T0, the average longitudinal kinetic energy of the Ps− when leaving the
production foil. Repeating the experiment with different acceleration voltages
U and plotting the quantity Γ∗ = Γ(1 −√

Λ0/Λ) (i.e. the left-hand side of
(6)) as a function of Λ−1/2, both Γ and T0 can be obtained by extrapolating
to Λ → ∞. In such a plot, a significant T0 > 0 shows up as a negative slope
— for smaller values of U the contribution of the initial energy T0 becomes
more important, and correspondingly a smaller uncorrected decay rate Γ∗ is
measured.

A principle sketch of the setup used in the original decay rate experiment
of Mills is shown in Fig. 3. For the production of Ps−, the already mentioned
beam-foil technique was employed, and as a means of detection, a Ge(Li)
gamma detector placed in forward direction was used as explained above.
Following the variable acceleration gap d, the positronium ions entered the
field-free region inside a Faraday cage, where they were allowed to decay in
flight. Only those ions which survived the acceleration across the gap reached
the full velocity and contributed to the fully Doppler-shifted photo peak, while
the ions which decayed before reaching the acceleration grid only contribute
to the continuous background between the unshifted 511 keV positron anni-
hilation line and the fully shifted peak. The gap width d could be changed by
moving the production foil, which was mounted on a long manipulator with
a micrometer. For calibration of the manipulator, a travelling microscope was
used. Figure 4(a) shows a few examples of such gamma spectra for different
values of d and different acceleration voltages.

The area of the fully Doppler-shifted photo peak, normalized to the solid-
angle corrected 511 keV peak area, was plot as a function of the distance. After
fitting the results by an exponential R0 exp(−μd) with μ and R0 as fit param-
eters, (6) was used to determine the uncorrected decay rate Γ∗. Such a mea-
surement was performed for two different acceleration voltages, U = 1000 V
and U = 3936 V, and the decay rate Γ was calculated using the procedure

slow
positrons

carbon foil

movable
(manipulator)

Ge (Li) detector

graded Pb-Sn-Cu-Al
shield

Ps-

UaUe

d

Fig. 3. A schematic view of the experimental setup used for the first Ps− decay rate
measurement in [3]. The positronium ions are detected by observing their Doppler-
shifted annihilation photons when decaying in flight
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Fig. 4. Results of the first decay rate measurement of the positronium ion.
(a) Gamma spectra for different acceleration gap widths d and different acceler-
ation voltages W (in the text, this voltage is named U). The prominent peak on the
left is the unshifted 511 keV annihilation line, the smaller peak on the right (larger
view in the inset) is the fully Doppler-shifted signal from Ps− decaying in flight. (b)
Decay curves for acceleration voltages of 1000 V and 3936 V, respectively. The upper
inset shows the extrapolation explained in the text, the lower inset shows the count
rate in the 511 keV peak as a function of d. Reprinted figure with permission from
A.P. Mills, Jr., Phys. Rev. Lett. 50, 671 (1983). Copyright 1983 by the American
Physical Society

discussed above. Figure 4(b) displays the measured decay curves and the ex-
trapolation (upper inset). As a final result, this extrapolation yielded a decay
rate of

Γ = 2.09(9) ns−1 . (7)

For the initial kinetic energy of the ions, a value of T0 = 13+19
−10 eV was

obtained from the extrapolation. The errors were completely dominated by
statistics.



272 F. Fleischer

Improved Measurement Based on a Stripping Method

Recently, we have performed an improved decay rate measurement at the
Max-Planck-Institut für Kernphysik. Although this is the only property of
Ps− where there already was experimental data available and the previous
result is in perfect agreement with the calculated value, a serious challenge of
the theoretical predictions required a substantial increase in precision.

Concerning the Ps− production by a beam-foil method and the variable
acceleration gap for adjusting the time of flight, the experiment followed the
same basic approach already used in the earlier measurement by Mills (see
above). But instead of detecting the annihilation photons from positronium
ions decaying in flight, our experiment relied on a stripping method and a
particle detector for counting the ions surviving the acceleration.

In order to provide the experiment with the necessary beam of low-energy
positrons, a laboratory positron source with a 40 mCi 22Na source and a
4 μm thick polycrystalline tungsten moderator foil was used. The moderated
positrons were extracted by a 30 V bias voltage and the resulting beam of
7 mm diameter and 1.5× 105 e+/s was filtered and guided to the experiment
chamber by a longitudinal magnetic field of about 60 G. The details of the
positron source design have been described elsewhere [48, 49].

A schematic sketch of the setup used in our decay rate measurement is
shown in Fig. 5. The positrons were accelerated towards a diamondlike car-
bon foil of roughly 5 nm thickness supported by a 12 mm diameter copper grid
of 86% transmission. The bias voltage Ue of the foil could be varied in order to
maximize the yield of Ps− ions, resulting in a rate of about 15 s−1. Following
the foil, a grid of the same type as used for the foil support was mounted,
biased to a positive voltage Ua. While the positronium ions were acceler-
ated by the resulting field, transmitted positrons were stopped and repelled.

DLC foil
(production)

movable
precision stage

DLC foil
(stripping)

Si detector
(cooled to –20°C)

lead collimators
Al foil
2×0.75 µm

slow
positrons

Positrons

Ua = +3.1kV

Ue = –800V +30kV

Ps-

d

Fig. 5. Schematic view of the experimental arrangement used at the Max-Planck-
Institut für Kernphysik to measure the decay rate of Ps− with a stripping technique.
The setup is surrounded by a solenoidal magnetic field of 100−130G
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Mounting the Ps− production foil on top of a motorized precision linear trans-
lation stage with a position reproducibility better than 1 μm allowed for a
precise variation of the gap d between the foil and the grid in the range of
2.7–28mm. Additionally, the translation stage carried a grounded entrance
grid on the upstream side of the foil to ensure a homogeneous electric field
for the energy adjustment of the incoming positrons. Up to this point, the
setup differed from the one used by Mills only by a few minor improvements,
among these especially the use of a motorized linear translation stage with
an optical position encoder in closed-loop operation for setting the foil-grid
separation d.

As in the earlier experiment, the positronium ions entered the detection
setup after passing the variable acceleration gap. But this time, instead of let-
ting them decay in flight, the Ps− ions were further accelerated over a distance
of 16.8 mm towards a second DLC foil mounted on a grid biased at +30 kV.
When traversing this foil, the electrons were stripped off, and the remaining
positrons experienced another accelerating field between the stripper foil and
a grounded grid. The electrons, having the opposite charge, were decelerated
and returned to the stripper foil. In this way, only those positrons which had
been part of a positronium ion when reaching the stripper foil could make
it through the setup. These positrons could then be easily transported out
of the region of high gamma background to a silicon particle detector. All
other particles (positive or negative) with an energy in the relevant range
were stopped or turned back at some point. As the positron and each of the
two electrons had a kinetic energy of about 10 keV after the stripping process,
the positron acquired a final energy of ∼ 40 keV. In order to be able to de-
tect these particles without being disturbed by electronic noise, we employed
an ion-implanted silicon detector of 300 mm2 active surface area and 100 μm
depletion depth cooled down to −20◦C and a low-noise preamplifier. In the
detection section, all spacings and all voltages were kept fixed to ensure a
constant, d-independent detection probability.

In principle, this method should be largely background-free, but as it
turned out, there is a significant contribution of ions and electrons to the
spectrum. The ions could be easily stopped by two 0.75 μm Al foils,1 which
were mounted close to the front face of the detector. While this effectively re-
moved the ionic background, the positrons we are interested in lost only about
800 eV. For the electrons, which originate from Compton scattering events of
the high intensity 511 keV gamma radiation in the experiment chamber, there
is no such simple solution. However, at least the number of electrons hitting
the detector could be reduced considerably by inserting two lead collimators
of 20 mm inner diameter. They absorbed electrons with large transversal en-
ergies because of their greater cyclotron radii, and they prevented the annihi-
lation γ-rays from hitting the inner wall of the tube leading to the Si detector,

1 Due to the fact that no pin-hole free aluminum foils of less than a few microns
are available, a sandwich of two foils was used.
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thus avoiding the production of further Compton electrons. As an additional
means of background suppression, the detector section was covered by a lead
housing of 5 cm lead bricks with an inner lining of 5 mm of copper to shield
the detector from room background. The overall efficiency for detecting Ps−

with this setup was of the order of 1%. The main loss in efficiency has to be
attributed to the angular scatter introduced by the stripper foil, which could
be compensated only partly by the guiding magnetic field.

As already explained above, the exponential decay needs to be measured
for a number of different acceleration voltages. Over the duration of the ex-
periment of roughly 8 months, ten runs at six different voltages U = Ua−Ue

(985 V, 1285 V, 1882 V, 3875 V, 3973 V and 4766 V) have been performed. In
all cases, the voltage varied was the acceleration voltage Ua. The foil bias Ue,
which defines the positron energy when hitting the production foil, influences
the primary Ps− yield and was therefore kept constant. To be sure of the
reproducibility of the results, a separately analysed control run at the first
voltage (3875 V) has been made near the end of the data-taking period. For
each voltage, the set of d values was chosen in such a way that the count rate
drops by roughly a factor of ten from the shortest to the longest distance.
Additionally, the largest possible gap width of 28 mm has been included in
all the runs to obtain an approximation of the background. More data-taking
time per cycle has been assigned to the larger values of d in order to com-
pensate for the lower count rate, thus the total number of counts is more or
less the same for all data points of a given run except for the background
measurements.

The option to set the acceleration gap d automatically using the motorized
linear translation stage allowed us to switch frequently between the different
d values. A measurement at a given voltage consisted of a loop, where for each
cycle data were taken at the previously defined gap widths d in random order.
This not only averages out possible long-term fluctuations of the primary
positron flux, but also avoids the need for an explicit correction for the slowly
decaying 22Na positron source when normalizing the number of Ps− counts
to the respective measuring time instead of the number of counts, e.g. in the
511 keV peak. After checking that there are no short-term fluctuations in the
positron beam, we decided to use this approach.

The left panel of Fig. 6 shows a typical sample spectrum, taken at
U = 3875 V and d = 2.7 mm. In order to extract the Ps− count rate from
the spectrum, an approximation to the background was obtained from the
spectrum taken at the largest distance, d = 28.0 mm. An iterative procedure
was employed to correct the background measurement for the residual contri-
bution due to positronium ions surviving the acceleration across the 28.0 mm
gap. After fitting the spectra with a linear combination of the corrected back-
ground and an empirical line shape, the background was subtracted and the
number of Ps− counts was determined by integrating the counts in the interval
from channel 90 to 135.
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Fig. 6. Left panel: energy spectrum recorded with the silicon detector for an
acceleration voltage of U = 3875 V and a gap width d = 2.7 mm. The prominent
peak around channel no. 115 is due to the positrons resulting from the stripping
of the positronium ions. Additionally, an appropriately scaled approximation to the
background is drawn (dotted line), produced from a measurement at d = 28.0 mm
by applying an iterative correction for the residual Ps− contribution. The vertical
lines mark the integration interval which has been used to evaluate the number of
positronium ions. Right panel: decay curve for U = 3875 V. In the upper part, the
count rate of surviving positronium ions is plotted as a function of the gap width
d. The best fit by an exponential R0 exp(−μd) is shown (solid line). Below, the
residuals after subtracting the fit values from the data are displayed

In the right panel of Fig. 6, the resulting rates for the U = 3875 V run, cal-
culated from the number of positron events in the spectrum and the respective
dead-time corrected measuring time, are plotted as a function of the distance
d. The errors have been determined by error propagation from the counting
errors for the signal and the corrected background. The uncertainties of the
measuring times make a negligible contribution. Beside the data points, the
figure also shows the best fit by an R0 exp(−μd) function (solid line), from
which the decay constant μ was obtained. R0 and μ were used as fit parame-
ters, the error was determined from the Δχ2 = +1 contour line in a plot of χ2

over the R0 vs μ parameter plane. After careful checking for the consistency
of the results [45], the uncorrected decay constants Γ∗ = Γ(1−√

Λ0/Λ) have
been calculated from (6). Figure 7 displays Γ∗ plotted as a function of 1/

√
eU .

Accounting for the constraint m =
√
T0 ≥ 0, the best fit using Γ(1−m/√eU)

as a fitting function is obtained for Γ = 2.089 ns−1 and m = 0. Again using
the Δχ2 = +1 contour of a χ2 plot over the parameter plane, the 1σ uncer-
tainty of Γ was determined to be ±0.013 ns−1. For T0, a 90% confidence level
upper limit of T0 < 0.12 eV has been calculated following the suggestions of
the particle data group [50]. While details of the Ps− formation process are
not known and a substantial influence of the foil’s surface conditions could be
possible, this value meets the expectation that the energy of a positronium
ion leaving the foil be in the range between thermal energies and the binding
energy of the system, i.e. 0.025 eV < T0 < 0.3 eV. The value of T0 = 13+19

−10 eV
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Fig. 7. Results of the Heidelberg decay rate measurement runs: the uncorrected
decay rate Γ∗ = Γ(1−√

Λ0/Λ) is plotted as a function of 1/
√
eU . In order to show

the results more clearly, the data points for U = 3875 V and 3973 V are drawn
at slightly shifted positions along the horizontal axis. A finite value of the average
initial (longitudinal) kinetic energy T0 would show up as a negative slope. The best
fit (solid line) corresponds to T0 = 0 eV, leading to a fit result of Γ = 2.089(13) ns−1.
For comparison, the theoretical value from (2) is also shown

obtained by Mills (see Sect. 3.2) is considerably higher but – given the large
uncertainty – statistically still compatible with our result.

A thorough investigation of the possible sources of systematic errors has
been done, taking into account fluctuations of the primary positron beam
flux, errors in the beam alignment, the positioning precision of the linear
translation stage, the stability of the acceleration voltage and the geometrical
imperfections of the production foil and acceleration grid arrangement. For a
discussion of the individual contributions and an estimate of their sizes, please
refer to [45]. As a result, including the systematic error estimates, we obtained
a Ps− decay rate of

Γ = 2.089(15) ns−1 . (8)

This value is in perfect agreement both with the theoretical value of Γ =
2.086(6) ns−1 [5] and with the previous experimental value of Γ = 2.09(9) ns−1

measured by Mills (see above), and it is a factor of six more precise than the
latter.

3.3 Outlook: Current Status of the Decay Rate Measurements and
Prospects for Further Experiments

As the study of systematic errors [45] has shown, our present decay rate result
is still limited by statistics, and a further improvement in precision by a factor
of 4–5 seems feasible with minor modifications to the present setup. Prereq-
uisite for such a measurement is a sufficiently high intensity of the positron
beam. With the new NEPOMUC positron source at the FRM-II research re-
actor in Munich, which is now operational and delivers a flux of ≥ 5 × 108

moderated positrons per second, such a facility has become available. In
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preparation for an improved decay rate measurement, we are currently work-
ing on adapting our setup to the characteristics of the NEPOMUC positron
beam. Two parameters, its significantly larger diameter of roughly 20 mm as
compared to our 7 mm diameter laboratory beam and its much greater trans-
verse energy, prevent us from using it directly and require some extra effort
in order to shape it for the Ps− decay rate measurement. In the course of
these modifications, we are also implementing a few improvements to further
minimize the systematic errors.

The high intensity of the NEPOMUC positron facility not only allows
for an improved decay rate measurement, it also opens up new experimental
possibilities, which are not accessible with standard laboratory positron beams
based on β+ emitters. Properties of the positronium ion, which so far have
never been investigated experimentally, are coming within reach now.

The next step in studying the positronium ion will be a photodetachment
experiment. Several properties of Ps− can be addressed by this technique:
while resonant photodetachment allows for a study of the predicted doubly
excited resonances of Ps− and offers the chance to gain information on the
Ps− binding energy; the non-resonant process is of interest mainly because of
its prospect of producing a directed, energy-variable, monoenergetic beam of
ortho-Ps in vacuum.

While there exists in principle the possibility to look for doubly excited res-
onances in the e−–Ps scattering cross-section, most of the calculated widths
are too narrow (of the order of 10−5−10−3 eV) to be resolved with an ex-
perimentally available electron beam. Laser spectroscopy, on the other hand,
provides the necessary resolution, but from the 1Se ground state only reso-
nances of 1Po symmetry are accessible by one-photon transitions due to the
selection rules for optical transitions. States of 1Se symmetry might be excited
by two-photon absorption (as in the Doppler-free two-photon spectroscopy of
the hydrogen 1S–2S transition, for example), but this requires high intensities
and experiments which are not easy to realize. Looking at the energy scale,
the most interesting resonances are those around the n = 2 threshold, but
even they require rather short wavelengths (∼ 230 nm for a positronium ion
at rest).

In the non-resonant case, the positronium ion beam, produced by the
standard beam-foil method, is crossed with a high power laser beam from a
Nd:YAG laser (see Fig. 8). In order to enhance the detachment probability,
a multipass configuration can be employed which maximizes the geometrical
overlap of the laser beam and the particle beam. According to spin statistics,
one expects 3/4 of the detached positronium atoms to be in the 3S1 state and
1/4 in the 1S0 state. Due to its much shorter lifetime, the para-Ps component
quickly decays, and further downstream an effectively pure beam of ground-
state ortho-Ps can be obtained. Assuming a laser power of 1 kW (cw) for the
Nd:YAG laser, an estimated intensity of about 150 Ps/s can be reached. With
a pulsed laser and appropriate bunching of the positron beam, an intensity of
4× 104 Ps/s seems feasible.



278 F. Fleischer

mirror

foil
positrons

+3 kV

Ps

Ps(3S1)

Ps-

detector

st
op

pe
r

Fig. 8. Photodetachment experiments with positronium ions: a multipass geometry
is used to achieve a large overlap of the positronium ion beam with the laser beam.
For detection of the photodetachment events, a stopper foil is placed sufficiently
far downstream from the interaction region and a shielded gamma detector setup is
used to register the 2γ decays due to the quenching of ortho-Ps atoms in the foil

The resonant photodetachment experiment might use in a first approach
the same general setup, with the Nd:YAG being exchanged for a suitable UV
laser. As the doubly excited states predominantly decay by autodetachment
(see Sect. 2.3), the detection of the excited ions can be achieved by counting
the resulting Ps atoms: a stopper foil, placed sufficiently far downstream from
the interaction region, and a shielded gamma detector setup can be used to
register the 2γ decays due to the quenching of the ortho-Ps atoms in the foil.

Another interesting parameter of the negative positronium ion is the 3γ/2γ
branching ratio. This quantity essentially reflects the ratio of the decay rates
of ortho- and para-Ps, multiplied by a factor of three to take into account
the spin statistics. It could be measured using a setup as shown schematically
in Fig. 9. Again this is based on the standard Ps− production technique.
The positronium ions are accelerated to a relatively high energy, e.g. 50 keV,
and are then allowed to decay in flight inside a long, field-free drift tube.
Around the drift tube, separated from the production foil region by several
centimetres of lead (or a tungsten alloy) shielding, a ring of HPGe detectors
(for example MINIBALL modules, see [51]) is mounted. The acceleration of
the ions to a few tens of keV is necessary in order to make the distance travelled
within the Ps− lifetime long enough to leave room for the detector shielding
and to distinguish the positronium ions decaying in flight from the ambient
background due to positron annihilations at rest via the higher photon sum
energy. Under optimal conditions, count rates of up to 0.1 detected 3γ events
per second can be expected.

It would be very interesting to study the predicted 1γ decay of Ps−. Al-
though this process has a distinct signature concerning the energy and the an-
gular correlation of the photon and the electron in its final state, the extremely
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Fig. 9. Possible experimental setup to measure the 3γ/2γ branching ratio in Ps−

decays. Coming from the standard beam-foil Ps− production setup, the positronium
ions are accelerated to a relatively high energy, e.g. 50 keV, and are then allowed to
decay in flight inside a long, field-free drift tube. Around the drift tube, separated
from the production foil region by several centimetres of lead (or tungsten alloy)
shielding, a ring of HPGe detectors is mounted

small branching ratio of about 4 × 10−11 of this exotic decay channel is still
out of reach even at the NEPOMUC source.

4 Conclusion

Quite a few properties of the positronium negative ion have been investigated
theoretically, but experimental data are largely unavailable; so far only the
decay rate has been measured. More than 20 years after the experiments by
Mills [2, 3], we have reported on a new measurement of the decay rate of
the negative positronium ion. Our result, Γ = 2.089(15) ns−1, is in excellent
agreement both with the theoretical value of Γ = 2.086(6) ns−1 [5] and the
only previous experimental result of Γ = 2.09(9) ns−1, and with an error of
0.8%, it is a factor of six more precise than the latter.

With the very intense positron facility NEPOMUC at the FRM-II research
reactor in Munich now being available, we are currently working on an im-
proved decay rate measurement with better statistics. According to the anal-
ysis of the systematic error budget, a further improvement in precision by a
factor of 4–5 seems feasible without major modifications to the present setup.
Additionally, the high positron flux of NEPOMUC makes new experiments
on the properties of the exotic Ps− ion possible, thus presenting new oppor-
tunities for testing our understanding of the quantum-mechanical three-body
system.
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Absolute shielding constant, 236
Ab initio methods

shielding constant, 236
AD, 188
ae, 42, 115

experimental value, 18
theoretical prediction, 18

α, see Fine structure constant
aµ, 50

analytic results, 16, 19
experimental value, 28
QED prediction, 19
theoretical prediction, 28

Anomalous magnetic moment, 10, 11
of electron, see ae

of muoon, see aµ

Antiproton-to-electron mass ratio, 187
Antiprotonic helium atom, see p̄He+

Antiproton decelerator, see AD
ASACUSA, 188

Bohr magneton, 10
Born-Oppenheimer approximation, 3,

215
Bound-state QED, 262

CERN, 188
Charge–coupled devices, 175
Charge screening, 17
Chiral perturbation theory, 166
CODATA, 35–36, 187, 188
Contribution to aµ

hadronic, 22
leading, 23

subleading, 24
universal, 16
weak

leading, 20
subleading, 21

Contribution to aμ

weak, 22
Corrections

mass dependent, 17
universal, 17

Coupled cluster methods, 244
CPT symmetry, 30
CPT theorem, 13, 187
Crystal spectrometer, 174
Current

axial, 20
electromagnetic, 10

Cyclotron trap, 174
ECRIT, 177

Decoupling of heavy states, 12
Deser formula, 169
Determination of fundamental con-

stants via rovibrational spec-
troscopy of MHIs

me/mp, 206
mp/md, 206

Dirac–Hartree–Fock calculations, 246
Dispersion integral, 22
Dispersion relations, 103
Doppler-free spectroscopy, 206, 214, 217

Effective field theory, 21, 25
Electro-optic modulator, 119
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Electron-positron annihilation, see
e+e−-annihilation

Electron anomaly, see ae

Electron g − 2, see ae

Electron scattering, 111
e+e−-annihilation, 22
e+e−-data, 22, 31
Exotic atoms, 2, 187
Exotic atom cascade, 171

Coulomb de–excitation, 172, 178
molecular formation, 172
muonic hydrogen, 178
pionic hydrogen, 172
Stark mixing, 172

Fabry Perot etalon, 113
Femotosecond frequency comb, see

Optical frequency comb
Fermion loops, 17

triangle loop, 20
Fine structure, 111
Fine structure constant, 15, 17, 31, 38,

41–43, 112
Form factor, 26

dipole, 80
GEM , 88
GEN , 85, 88
GEP , 82–84, 88
GMN , 85

Fundamental constants, 3, 35–52
adjustment of, 36–38

auxiliary data, 38
CODATA recommended values,

35–52

g-factor, 10
Goldstone bosons, 21, 25
Gravitation constant, 44–45
Gyromagnetic ratio, 10

H-like ions, 2, 157–162
H+

2 ions, 211
H+

2 ions, 215
intensities of HFS lines, 215
ion trap, 219
laser system, 220
photodissociation, 216

Hadrons, 17
Halo nuclei, 2, 131–152

He, 133
atomic spectroscopy, 141–144

Li, 131–133
atomic spectroscopy, 144

Harmonic Double Sided Microtron, 87
HD+ ions, 211, 225
HD+ ions

Doppler broadening, 228
effective spin Hamiltonian, 227
Lamb-Dicke regime, 228
photodissociation, 224
population of ro-vibrational states,

224
sympathetic cooling, 222

HDSM, see Harmonic Double Sided Mi-
crotron

Helium, 2
HFS, see Hyperfine splitting
Hydrogen atoms, 1–2
Hydrogen molecular ions, see also H+

2

and HD+, 3, 205
hyperfine structure, 211, 227
intensities of transition lines, 213, 215
level structure, 215
ro-vibrational spectroscopy, 206
theory, 207

Hylleraas Variational method, 111,
133–136

Hyperfine splitting
in hydrogen, 93

polarizability correction, 98
recoil corrections, 96

in muonic hydrogen, 103
Hyperfine structure, 111

Isospin violations, 24
Isotope shift, 111, 138, 141, 150

KEK, 189

Lagrangian
effective, 24
Wess-Zumino-Witten, 24

Lamb shift, 59, 66, 69, 80, 105, 112
Larmor precession, 13
Laser atomic beam measurement, 124
Laser heterodyne, 115
Laser spectroscopy, 111
LEAR, 191
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Leptons, 20, 21
Level crossing spectroscopy, 124
Light-by-light scattering, 13

electron, 18
hadronic, 16, 24

Lithium, 2, 111

Magic energy, 12, 13
Magnetic moment, 10

anomalous, see Anomalous mag-
netic moment

of lepton, 9
Mainz accelerator

energy compressing system, 81
LINAC, 81
Mainz Microtron MAMI A/B, 84
Mainz Microtron MAMI C, 87

Mainz experiments
Anklin et al., 85
Becker et al., 85
Bermuth et al., 85
Bernauer et al., 88
Borkowski et al., 82
Glazier et al., 86
Herberg et al., 86
Kubon et al., 85
Ostrick et al., 86
Pospischil et al., 84
Rohe et al., 85, 88
Simon et al., 83

Mass radii, 126
MHIs, see Hydrogen molecular ions
Micromotion of ions in an ion crystal,

228
Microwave, 115
Muon

decay, 11
life time, 14
magnetic moment, 50
mass, 50
polarization, 13
storage ring, 13

Muon g − 2, see aµ

Muoon anomaly, see aµ

Natural linewidth, 119
NEPOMUC positron source, 276
New physics scale, 31
New physics search, 11

NMR
absolute shielding, 236
ab initio shielding constant, 236
chemical shift, 238
effective spin Hamiltonian, 235
gas phase experiment, 240

Non-perturbative effects, 21, 26
NRM spectroscopy, 3
Nuclear magnetic dipole moment, 233,

249

Optical double resonance, 124
Optical frequency comb, 113, 194
Optical theorem, 22

Parity violation, 12, 20
p̄He+, 187–200
Penning trap, 187
Perturbation theory

chiral, 25
extended, 25

Pion, 21, 25, 26
Pion–nucleon interaction, 167

chiral perturbation theory, 168
coupling constant, 167, 181
scattering length, 167, 181

Pionic atoms, 167
pionic deuterium, 169
pionic hydrogen, 169

Planck constant, 43–44
Poly-logarithms, 16
Polyelectrons, 261
Positronium

decay rate, 264
production of a beam, 277

Positronium ion, 3
binding energy, 263
decay rate, 261–279

angular correlation, 265
branching, 264, 278
measurement, 269–276
one-gamma decay, 265, 278

doubly excited states, 266–268
meta-stable state, 268
observation, 269
photodetachment

cross section, 267
experiments, 277

production, 268
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size, 263
Positronium molecular ion, see

Positronium ion
Proton-to-electron magnetic mo-

ment ratio, 50
Proton-to-electron mass ratio, 187
Proton structure, 2
Pseudo-scalars, 21

exchange, 26

QCD, 21, 23
large Nc, 25

QED, 1–3, 9, 19, 111, 137, 262–264
scalar, 25

Quantum chemistry
ab initio methods, 237

Quantum chromodynamics, see QCD
Quantum electrodynamics, see QED
Quantum fluctuations, 11
Quark–hadron duality, 24, 25
Quarks, 17, 20, 21

Racetrack Microtron, 84
Radiative corrections, 10
Radioactive lithium isotopes, 126
Radiofrequency quadrupole decelerator,

see RFQD
Relativistic correction, 112, 136–137
REMPD, see Resonance enhanced mul-

tiphoton dissociation method
Renormalization group, 17
Resonances, 23
Resonance enhanced multiphoton disso-

ciation method, 218, 224
RFQD, 192
ρ-meson, 23, 25
RMS radii

of neutron, 79–80
of proton, 48–50, 57–65, 79–84
of deuteron, 69–71
A = 3 nuclei, 71
A = 4, 72
A > 4, 73
of 6He, 144

of 6Li, 151
of 7Li, 111
of 8,9,11Li, 151

RTM, see Racetrack Microtron
Rydberg Energy, 124

Scaling relation, 83
Short distance constraints, 26
Simple atoms, 1–3
Spin-rotation constant, 239
Standard Model, 11, 19
Stark collisions, 190
Strong interactions, 22
Super-symmetric SM, 30
Super symmetry, 30
Symmetry breaking

chiral, 21
Systematic shifts, 207, 229

τ -data, 24
τ spectral-functions, 24
Three-body systems, 262
Time dilatation, 14
Triangle anomaly, 21, 24, 27
Two photon exchange

in e-d scattering, 70
in e-p scattering, 68
in HFS, 67

Vacuum polarization, 17
hadronic, 16, 22

Vector-meson, 25
dominance, 25

Weak gauge bosons, 20
Weak interactions, 11, 20

Yang–Mills structure, 20

Zemach moment
of deuteron, 71
of proton, 66–68, 95–96
third, 69

Zemach radius, see Zemach moment
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