
The Semantic Desktop: A Semantic Personal

Information Management System Based on RDF
and Topic Maps

Edgar R. Weippl, Markus Klemen, Stefan Fenz, Andreas Ekelhart,
and A Min Tjoa

Vienna University of Technology, A-1040 Vienna, Austria
weippl@securityresearch.at

http://www.securityresearch.at

Abstract. Desktop search tools are becoming more popular; they al-
low full text searches using inverted indexes. Yet, the amount of locally
stored data that they have to deal with is increasing rapidly. A different
approach is to analyze the semantic relationships among collected data
and thus preprocess the data semantically. The goal is to allow searches
based on relationships among various objects rather than focusing on ob-
jects’ names. This would allow for searches far more sophisticated than
those based on full text analysis. We introduce a database architecture
based on an existing software prototype that is capable of meeting the
various demands of a semantic information manager. This architecture
is also capable of storing and querying RDF and RDF schemata. More-
over, RDF is used as a key part of the technology. Therefore, in this sce-
nario, RDF is used not only to enrich the Web with machine-processable
semantics, but also to incorporate it into a kind of Semantic Desktop
Search Engine. In this paper, we describe the underlying technology of
this research project.

1 Introduction

More and more data is accumulating on personal computers these days. People
store their journals, time managers, contact data, photos, and other documents
on their computers. Despite all efforts, thus far no search tool has been created
that allows searches based on semantic connections. What is interesting is that
most current approaches focus on enriching the World Wide Web semantically.
Our approach focuses in on the domain of a single user who stores and retrieves
data on one or more computer systems using semantic enrichment.

Although it is accordingly situated somewhere between RDF-based or Topic
Map-based Semantic Web projects, such as, Sesame [8] and and personal lifetime
data storage projects, such as, MyLifeBits [13] or SemanticLife [3]the approach
and underlying architecture differ fundamentally from either of these concepts.

For retrieval, our approach focuses on the relationships among various local
data-objects (such as, photos, e-mails, graphics, and text files) and events (open-
ing a text file, receiving a phone call, sending an e-mail) rather than relying on

M. Collard (Ed.): ODBIS 2005/2006, LNCS 4623, pp. 135–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

136 E.R. Weippl et al.

the names of these objects. Our intent is to allow for more human-like retrieval
processes by adding semantic metadata to the data collections. For example,
instead of finding a text file based on its name, a semantic search would allow a
context-aware query, for instance, I don’t know the filename but I know I created
it when I was talking to Jim on the phone about a week ago.

Our prototype collects raw data from multiple sources such as the operating
system’s file events or user events from Microsoft Outlook via agents. At the file-
system level, we receive data identifying the applications that have accessed (read
or written) a particular file. The user can select which applications or directories
to monitor, typically these are local office applications and user document folders.
For instance, we can store the information that Word.exe has saved a specific file
document.doc on the disk at a certain time and date. From Microsoft Outlook
we can gather information on emails, contacts, and calendar items. We also store
information on the specific computer used (to differentiate between laptops and
workstations) and the user ID. Planned are additional data collectors that can
integrate incoming and outgoing telephone calls (via CTI or serial printer ports)
as well as facsimiles, GPS data, and EXIF1 metadata from digital camera images.

Based on the vast amounts of data accumulated, a semantic enrichment en-
gine (SEE) is implemented that uses the data and derives information from it
to build semantic databases for human users. Clearly, the usefulness of the sys-
tem as a whole depends on the quality, speed, and versatility of the semantic
databases and on the capabilities of the semantic enrichment engine. In this pa-
per, we will focus on the underlying database schema and propose a database
architecture that provides the foundation for semantic analysis. There are certain
requirements for such a database:

– Flexibility: A database for semantic storage must be highly flexible. It must
be able to store heterogeneous data from various sources including e-mail
systems, file systems, date books, telephones, and GPS modules. Defining
new relationships between existing entities will be a common task.

– Compliance: The database should be compliant to emerging Semantic Web
standards such as RDF or Topic Maps.

– Backwards compatibility: All enhancements to the database must be back-
wards compatible. Modification of the database schema should occur only
rarely.

– Speed: The database must perform well at high speeds due to the high volume
of processed data.

– Scalability: The database design should allow for up-scaling of the database
with no significant performance loss.

More specifically, our contribution:

– provides an overview of the architecture of our Semantic Desktop Project
prototype

– proposes an intuitive and efficient method for storing arbitrary relationships
(Section 3.2).

1 http://www.exif.org/

http://www.exif.org/

The Semantic Desktop 137

– shows that our database schema is well suited to store both RDF Metadata
and Topic Maps (Section 3.3).

– explains why it is more efficient in comparison with other approaches
(Section 4).

2 The Problem

An increasing capacity for data storage enables people to save virtually their
whole life digitally in various file formats or databases-photos, videos, e-mails,
address databases, etc. Available personal programs to store and manage these
files usually offer searches either via file system hierarchies or via keywords or full
text search (in cases where the file contains text data). Filesystem hierarchies not
well suited since it is often not possible to make precise attributions to a single,
specific folder [11]. Keywords are commonly either based on the file name or must
be typed in manually. Manual keyword input is cumbersome, time consuming,
and subject to the Production Paradox [10]—people will simply not do it since
they see no immediate advantage. Fulltext-engines, on the other hand, are useful
for text-based documents only. Integrating photos and music into full-text-based
systems is difficult and an area of ongoing research.

Apart from that, people tend to forget names of specific objects. It is often
easier to remember the context of a situation in which a specific file was created,
modified, or viewed, especially with reference to a timeline (“I remember I just
got an e-mail from Mike when I was working on that document”).Semantic
enrichment of automated data-gathering processes is a useful tool to complement
this human, relational way of thinking, rather than thinking in keywords or tags.

3 The Semantic Desktop Project

At the first phase, Blackman should help the user to scan the computer, queried
by Blackman query language (see [12]), for certain data files and an important
part for this task is the integration of Microsoft Outlook 2003 and the collection
of data hosted there. A big part of information, a user is producing, is located
at the e-mail-client and so Blackman works in a first try with Microsoft Outlook
2003, to extract the following elements:

– e-mails
– calendar entries
– contact entries

The extracted data will be saved at database to make a future query- and rule-
creation possible. Due to the modular structure of Blackman it is not difficult
to integrate further watchers for additional e-mail-clients produced by other
vendors than Microsoft. The second part of the Blackman project should monitor
the file system and network activity to gather as much user data as possible. An
example: If the user is opening a file, Blackman should recognize this, to create

138 E.R. Weippl et al.

an entry of this event at database. This action will be represented by an event
which could be enriched with some information like time, location and certain
other circumstances at which the file was opened.

In a next step a ‘Semantic enrichment engine’ should make the collected data
useful to the user. The engine should implement certain ontologies which can be
used, to enrich collected data semantically, for purposes like ‘Personal organiza-
tion’, ‘Security’, ‘Visualization’ or any other usage where data of user’s behavior
is needed.

So how could this data be used to make the organization of user’s life much
easier?

At this phase of Blackman it is necessary that the user is planning his day,
is administering his contacts and is storing his e-mails with Microsoft Outlook
2003. With this precondition Blackman is able to reconstruct what and when
the user is doing something, to reconstruct users daily life.

The following listing describes a few sample use-cases to make the ideas above
more understandable:

– When the user is participating at a meeting from 10:00 to 12:00 and is
working at a certain document for a defined duration it is highly possible
that this document has something to do with the meeting. If there is a
meeting next week with the same participants and a similar topic, Blackman
should collect automatically all relevant documents and make them available
to the user before the meeting starts. This would be a use-case for a specific
business usage.

– In many companies it is normal that documents, even confidential doc-
uments, are sent by e-mail to the desired recipient(s). This could be a
security approach for Blackman; the semantic enrichment engine could be im-
plemented in a way that it ‘knows’ which documents are confidential. There
are several ways how Blackman could classify a document automatically as
confidential. One possible approach would be that Blackman is looking, when
user receives a document, in the address book entries for sender’s position
within the company. Blackman also looks on the list of recipients which can
be found in the header of any e-mail. If, for instance, user’s department chief
is the sender and the mail was sent only to one person it is highly possible
that this document is confidential. From this point Blackman ‘knows’ that
this document is confidential and monitors every action which has something
to do with the, as confidential classified, document. At another day the user
wants to forward this document unintended to all co-workers, due to analysis
of e-mail header and content Blackman will recognize that, and fires up an
alarm.

A different security approach would be the detection of abnormal user ac-
tivity. Blackman records almost every action taken at users machine. If, for
instance, due to a evil worm, abnormal outgoing network traffic is generated,
Blackman could block and alert this traffic, to ensure users data integrity
and security. Therefore Blackman could be implemented in a specific way,
to provide similar functions as a ‘Intrusion Prevention System’.

The Semantic Desktop 139

– If Blackman is installed organization wide it is possible to track document
changes to enable the creation of a work flow visualization. Not only the
work flow within the organization is tracked, due to e-mail monitoring also
contacts to external actors are recognized by Blackman and could be merged
with the internal work flow. The creator or owner of a document could see
what is happening with ‘his’ document and who sends it to whom.

The surveillance of network- and e-mail traffic enables Blackman also to
build up a visualization of social networks.

Recapitulating, Blackman should help the user to organize his data, which
could be realized by recording his daily life behavior. Based on automatically or
manually created rules the collected data will be enhanced with semantic data
to provide, through Blackman, a practical benefit to the user. The whole data
gathering process is happening in background, to ensure that the user has not
to ‘fight’ with an additional system on this machine.

The Semantic Desktop project goes far beyond typical full-text analysis search
engines by automatically enriching collected data with semantic context that can
be used for retrieving it more easily than without this context.

Our prototype was developed in DotNet and Java, and consists of five major
development components:

1. Request Handler: The Request Handler consists of various modules to process
external data sources. It is explained in more detail in Section 3.1.

2. Semantic Storage: Storing semi-structured, highly interconnected data re-
quires data models that take these characteristics of semantic environments
into consideration. In this paper, we thoroughly explain how our approach
satisfies those requirements.

3. Semantic Enrichment: Semantic Enrichment is crucial for the usability of a
semantic information management system.

4. Querying Interface: The Querying Interface is another critical element. We
develop an interface that is compatible with OWL while still providing easy
and secure access to the specific needs of a personal desktop information
system.

5. Client Application: Currently, we have a prototype client in use written
in DotNet. A Java-based Webclient is planned after the DotNet client is
released and sufficiently stable.

In this paper, we will focus on the Semantic Storage development area. We
introduce an improved database schema and provide examples for how concepts
and relationships are stored among the databases. We then show (Sections 3.3
and 3.4) how both RDF and Topic Maps can be stored efficiently.

3.1 Request Handler

We distinguish four types of data input channels: (1) Native Data Pipes (2)
XML-based data exchange (3) SOAP request broker (4) HTTP request broker

140 E.R. Weippl et al.

Fig. 1. System architecture: data is collected from various sources and stored in the
raw data collection. Subsequently, the semantic enrichment engine (SEE) analyzes the
data based on ontology guidelines and RDF or Topic Map based rules and adds links
between recorded data items.

Native Data Pipes: Currently we have three data pipes. (1) Outlook Data
Pipes for Microsoft Exchange Server, to access calendar entries, contacts, and e-
mails; (2) an OS File Data Pipe, which is hooked directly into the I/O system of
Windows 2000/XP/2003; and (3) a Network Traffic Data Pipe, which monitors
network traffic for both URL requests and for tracking visited websites.

XML-Based Data Exchange: We use this module for research studies com-
paring Unix-based semantic data collection with the Windows-based variants.
The idea behind this is to develop universally valid semantic statements, which
may be used in both Windows-based and Unix-based environments. We are cur-
rently collecting data for semantic analysis on both Windows and Unix machines
and we expect interesting results within the next half year.

SOAP Request Broker and HTTP Request Broker: Both modules are
in the early stages but will facilitate the networking of various client machines
to build a unified personal information management system. This will be an
important part of the project since more and more users are working on more
than one computer and therefore could profit from a system that would allow
the interconnection of these devices.

The Semantic Desktop 141

3.2 Semantic Storage

Our prototype, first described in [17], is based on an architecture that uses
relational databases. Tables are not linked to others directly with foreign keys or
by using n : m intermediary tables, but instead, via a single, generic association
table referred to as the link table.

In the classical schema, adding an n : m relationship between two tables
requires creating a new intermediate table to resolve the n : m relationship into
a 1 : n and a 1 : m relationship. Our approach is to merge these intermediate
tables into one link table that stores all relationships centrally.

The advantages of our approach are:

1. In contrast to classical E-R approaches, any relationship can be added with-
out schema modifications. This allows for easy performance of operations
within transactions.

2. Tables and indices can be clustered to improve the speed of join operations
with the central link table. In the classical model, multiple n : m relationships
exist, therefore, cluster optimizations are far more difficult and less efficient.

3. Our approach permits retrieval of relationships from the link table without
accessing the data dictionary. Since the data dictionary is vendor specific,
the classical approach requires modifying the application for each database
system.

4. If n entities exist and n : m relationships are to be established between all
entities, the number of additional tables is O(n2), whereas our approach is
O(1). Of course this applies only to new relationships, not to new tables.

Detailed explanations on the advantages can be found in [17].

Fig. 2. The database schema to store the information as given in Table ref1

142 E.R. Weippl et al.

Fig. 3. Reification

Figure 2 shows a simple database schema. Table 1 contains the SQL state-
ments of the following example. A new file type, Document (.doc), is created
with OpenOffice. An optional description is added and a relationship between
the two topics is established (steps 1–4). In the same way, occurrences can be
linked to topics.

Reification is an important process for a semantic system. It is highly probable
that a semantic analysis module will initiate reification while processing collected
raw data. Steps 5-10 in Table 1 show how reification (Figure 3) can be easily
implemented using our schema.

Table 1. A relationship between a document and an application is stored (steps 1–4).
An example for a reification is given in the following steps.

Step SQL Command

1 INSERT INTO file VALUES (1, ‘Document (.doc)’)

2 INSERT INTO application VALUES (10, ‘OpenOffice’)

3 INSERT INTO description VALUES (90, ‘save as operation’)

4 INSERT INTO link VALUES (111, 1, ‘file’, 10, ‘application’,

‘assocrl’, ‘1’, 90)

5 INSERT INTO event VALUES (42, ‘save as’)

6 INSERT INTO link VALUES (112, 1, ‘file’, 42, ‘event’, ‘assocrl’,

‘1’, 91)

7 INSERT INTO link VALUES (113, 42, ‘event’, 10, ‘application’,

‘assocrl’, ‘1’, 91)

8 DELETE FROM link WHERE linkGUID=111

9 DELETE FROM description WHERE descriptionID=90

10 INSERT INTO description VALUES (91, ‘reification’)

The Semantic Desktop 143

Our concept differs from to other approaches (Section 4) by using separate
tables to store different types of entities but one central link table for all rela-
tionships. The data-centric approach, which we also refer to as the “classical”
method, uses one table for each n : m relationship. The structure-centric ap-
proach stores everything in one table (such as an RDF triple store).

The advantage of our approach as compared to the data-centric approach is
that we require fewer changes of the database schema during normal database
operations. Adding a new type of relationship—a very common operation in se-
mantic systems-requires no schema modification. The structure-centric approach
has the same advantage but suffers from a different drawback. Since everything
is stored in a single (or very few) tables, this table will quickly become very
large and thus be slower to access. Numerous self-joins, which will be required,
also have a negative impact on performance. Moreover, only general purpose
database indexes (B-trees) can be used. Our approach, in contrast, permits
defining Bitmap and Function-based Indexes2 that are extremely efficient in
some cases and completely useless in all other cases.

3.3 Storing Topic Maps

Even though the structure-based approach is slower during retrieval, it may make
sense to implement it in a very dynamic environment where new entities, new rela-
tionships, and even new types of relationships are created frequently. These char-
acteristics typically apply to semantic environments such as RDF or Topic Maps.
Modifying the aforementioned link-based architecture, we show that the relational
storage model as proposed by [19] can be optimized in several ways helping to im-
prove the performance and reduce the complexity of the database schema.

First and foremost, we can reduce the number of tables used without the loss
of data or metadata (Figures 4 and 5). By using qualifiers in the link table we
can combine tables such as basename, sortname, dispname and topname into one
table called name. The qualifier attribute in the link table contains information
on whether the name is used as basename, sortname, etc.

Following the XTM standard3 we also no longer need the table facet. The link
that connects topics and associations stores the association role as qualifier,
rather than in a separate table. In the same way we can avoid separate tables
for fvalue, locationstype, nonconforming and cassign.

Since ‘everything’ is a topic we do not need to explicitly store this information
in a table. Instead, we propose creating a view that contains all the information
(create view ... as select from ... UNION selection from ...).

The main difference between RDF and Topic Maps that is relevant to storing
information is that RDF only supports relationships between two entities-RDF
uses nodes and arches to build graphs of concepts and relationships between
them. This makes storage much easier and the simplest approach is to store
RDF triples in the form (s, p, o) (subject, predicate, and object) [2].

2 Using an Oracle database.
3 http://www.topicmaps.org/xtm/1.0/

http://www.topicmaps.org/xtm/1.0/

144 E.R. Weippl et al.

Fig. 4. Storing Topic Maps in an RDBMS [19]

3.4 Storing RDF

However, RDF can be stored similarly to Topic Maps by using either the “pure”
link-based approach (Section 3.2) or modifying it in a way that is analogous to
what we showed for Topic Maps. All four major differences between RDF and
Topic Maps can be handled by the link-based approach:

The Semantic Desktop 145

Fig. 5. By storing all relationships in the link table together with a qualifier, fewer
tables (compare to Figure 4) are needed but all advantages as described in [19] are
retained

1. In RDF, relationships can only be established between two resources whereas
Topic Maps support relationships among any number of topics. The link
table supports an arbitrary number of links.

2. In RDF, relationships are directed and only valid for one direction. In most
cases this requires creating a redundant second and inverse relationship. In
the link table, an attribute is used to store the direction.

3. In contrast to Topic Maps, RDF does not support scopes, which makes
it difficult to create large ontologies by combining existing smaller ones.
If scopes are required, a table (scope) needs to be added. By linking the
appropriate scope via the link table, scopes can be handled easily.

4. In RDF, reification is necessary if additional information must be attached to
a relationship at a later time. This is not necessary for Topic Maps since ev-
erything is already reified. As shown previously, reification can be performed
efficiently with our database schema.

Figure 6 shows how RDF data as described in [8] can be stored in our database
structure. For efficiency and design considerations, we use five entities: Domain,
Range, Resources, Property, and Class. All other entities described by [8] can
be mapped by appropriate links and qualifiers in the link table.

Rather than using a table subPropertyOf (Figure 7) we qualify the recursive
relation of property accordingly. Literals and labels are mapped to descrip-
tions, the type to the qualifier of the link table and namespaces are implicitly
defined in the description. Range is a qualifier of domain; subClassOf is mapped
to class with a qualified recursive relation. The link table corresponds to the
triples.

146 E.R. Weippl et al.

Fig. 6. Our database schema can store RDF (such as shown in Figure 7) independently
of Topic Maps in the same schema

Fig. 7. The original RDF storage schema as proposed by [8]

The Semantic Desktop 147

4 Evaluation of Other Storage Concepts

In this section we look briefly at three systems that store personal information
and strive to provide semantically enriched retrieval capabilities. For more details
please refer to [18]. We then look at existing solutions (data-centric approach
and structure-centric approach) to organizing a semantic data store.

4.1 Storing Personal Digital Information

Vanevar Bush’s vision of the Memex [9]—a paper cited nearly universally when
writing about semantically enriched information storage-provides the base for
projects, such as, Microsoft’s MyLifeBits [13] or the SemanticLIFE project [3]
build. The authors aim to create a personal digital storage that records all of an
individual’s documents, emails, photos, videos, etc.

MyLifeBits focuses on storing digital content in a database; unlike Semanti-
cLIFE its primary aim is not a semantic enrichment of the stored data. Instead,
MyLifeBits relies on future improvement of search engines and desktop search
solutions. The focus of SemanticLIFE is to build ontologies and discover rela-
tionships between existing data items.

Haystack [1] is a platform to visualize and maintain ontologies. The system is
designed to flexibly define interactions and relationships between objects. Focus
lies on the quality of the retrieval process and not on storing data.

While both systems inherently address issues of storing ontologies, they do
not focus on an efficient storage concept. MyLifeBits assumes that the MSSQL
Server will provide all the needed functions without providing details on the
database schema used.

4.2 Data-Centric Approach

One approach also known as a data-centric approach is often mentioned in the
context of mapping XML documents to relational databases [15,5,6,16]. In terms
of ontologies, the process can be described as follows:

The first step is to identify the types of concepts and their properties that
are to be stored in the ontology. Then, these types of concepts are mapped
to corresponding tables in a traditional RDBMS, with the previously identified
properties being the fields of the tables. Finally, the instances of the classes can
be inserted into the tables as rows, with one row representing one instance of
a concept. This procedure is the same for subjects, relationships, and all other
data model entities defined by the respective standard.

In addition, several ‘auxiliary’ tables are needed to keep track of whether
a certain table maps to a subject or to a relationship, etc. This leads to a
situation in which the database is actually split into two ‘virtual layers’: the
virtual ‘schema layer’ consists of the auxiliary tables that keep track of all classes
in the ontology, whereas the virtual ‘data layer’ contains the tables created as
instance containers for specific classes.

148 E.R. Weippl et al.

Such a data-centric approach was, for instance, originally followed by the
Sesame ontology framework [7,8] in conjunction with a PostgreSQL database.
Figure 8 shows the setup of the Sesame data centric object-relational mapping.

There are two advantages that can be exploited with the data-centric ap-
proach. First, query answering as well as inserting, removing, and updating
instances of classes is extremely inexpensive and straightforward, as there is
virtually no difference to traditionally designed databases. All manipulations
concerning instances are, in effect, nothing more than executions of the data
manipulation commands that are natively provided by all RDBMS.

Fig. 8. Data-centric approach of Sesame [7]

Second, some RDBMS, such as, PostgreSQL, offer built-in object-relational
features that can be used directly for modeling class-subclass relationships, etc.
PostgreSQL databases offer, for instance, the possibility to create subtables that
are connected to their parent tables through transitive relationships. This enables
creating a table for a certain class and corresponding subtables (for subclasses
of that class). The same is true for properties and subproperties, accordingly.

The Semantic Desktop 149

The main drawback of the data-centric approach is that changes to the class
hierarchy in an ontology are extremely expensive, as they require creating new
entities in the database. For every new class (and also subclass) that is to be
inserted into the ontology, a respective table has to be created, even if only a
small number of instances are present. This means that changes to the class
hierarchy always require the performance of data definition commands, which
are expensive in almost any RDBMS.

4.3 Structure-Centric Approach

The second approach is also known as structure-centric and is equally popular
among Topic Map and RDF implementations. As is the case with the data-centric
approach, persistency is provided by a traditional RDBMS, but usually without
requiring object-relational features. In contrast to the first approach, the key
idea here is to map the finite number of data model concepts to corresponding
structures (tables) in the relational database. Again, the process has also been
described for XML documents [15,5,6,16], but additionally, has been specifically
implemented for both Topic Map and RDF applications.

As shown in detail in Section 3.3, the Topic Map data model offers a small
number of built-in concepts, such as, Topic, Association, Occurrence, Scope,
etc., whose properties are well defined. In contrast to the actual classes and
instances they represent, the number and design of these built-in concepts are
static (as they are standardized). Therefore, it is a straightforward task to create
corresponding structures in a RDBMS and map the concepts to these structures
in such a way that in the end there is one table for all topics, one table for all
associations, etc. Various examples of this implementation for Topic Maps exist,
e.g., [14,19].

With respect to RDF, the data model basically consists of statements only,
with each statement including a subject, an object, and a predicate. This means
that for a naive approach, only one single table (with three corresponding text
fields containing the respective URIs or literals) is needed to express a complete
RDF graph. Due to the layout of their tables, databases configured this way are
therefore commonly referred to as triple stores. They are certainly a very elegant
solution for ontology persistence and are probably one of the main reasons that
RDF/OWL has gained significant popularity among ontology developers. Also,
many variations and improvements over the naive approach are available, mainly
for achieving high levels of scalability.

The first advantage of the structure-centric approach is its ability to allow
for inexpensive, frequent changes of instance data as well as of schema informa-
tion (class hierarchies). Since all assertions, including hierarchical relations, are
broken down to the level of single statements, it is not necessary to make any
artificial distinction between ‘schema layer’ and ‘data layer.’ This not only allows
for the representation of frequently changing ontology hierarchies, but also for
efficient incremental incorporation of large datasets, since no structural changes
of the underlying database schema are required.

150 E.R. Weippl et al.

The second advantage of structure-centric ontology representation is com-
monly reported for dedicated triple stores, but also applies to Topic Map rep-
resentations. Due to the fixed, rather simple architecture of the database, scal-
ability optimizations are easy to apply, enabling the efficient storage of millions
of concepts and relationships.

One main disadvantage of the structure-centric approach (in the case of RDF
triple stores) is encountered when retrieving statements for answering ontology
queries. In order to evaluate a condition that does not directly address the URIs
or literals of the statements to be retrieved, the table containing the statement
triples has to perform one or more self-joins, an operation that is expensive for
large datasets [15,4]. Such large datasets must be seen as occurring frequently, as an
ontology’s entire information is stored within a single triple table. It is, therefore,
common for such a table to contain millions of triples, and these triples must be
compared to one another, often several times, depending on the nature of the query
to be answered.Althoughvarious optimization efforts attempt to limit the negative
effects of storing triples in a single table, in general, a lower level of performance in
answering queries is to be expected as compared to the object-relational approach.

5 Conclusion

The Semantic Desktop Project aims at bringing the potential of RDF, Topic
Maps, and Semantic Technologies to users’ desktops. The goal is to develop a
semantic personal information management system based on standards, such
as, RDF, XTM and DAML+OIL/OWL, which assists users by automatically
enriching collected data with semantic metadata.

Some important milestones are already in beta-testing, allowing performance
tests and research regarding the querying of semantic statements. In this paper,
we presented the current status of the project and proposed our improved method
for storing ontologies in a relational database, which allows changes of hierarchies
and relationships between tables to be added easily without schema modification.

The advantages of our approach are:

1. The modifications require no data-definition language (DDL) statements
that cannot be executed within a transaction.

2. Tables and indices can be clustered to improve the speed of joins with the
central link table.

3. Our approach is vendor-independent as no metadata on relationships need
to be retrieved from the data dictionary.

In addition, we showed that Topic Maps and RDF can be stored efficiently using
our database schema.

Acknowledgements

This work was performed at the Research Center Secure Business Austria funded
by the Federal Ministry of Economics and Labor of the Republic of Austria
(BMWA) and the federal province of Vienna.

The Semantic Desktop 151

References

1. Adar, E., Karger, D., Stein, L.A.: Haystack: Per-user information environments. In:
Proceedings of the Conference on Information and Knowledge Management (1999)

2. Agrawal, R., Somani, A., Xu, Y.: Storage and querying of e-commerce data. In:
Proceedings of VLDB 2001, Rome, Italy (2001),
http://www.vldb.org/conf/2001/P149.pdf

3. Ahmed, M., Hanh, H.H, Karim, S., Khusro, S., Lanzenberger, M., Latif, K., Elka,
M., Mustofa, K., Tinh, N.H, Rauber, A., Schatten, A., Tho, N.M, Tjoa, A.M.:
Semanticlife — a framework for managing information of a human lifetime. In:
Proceedings of the 6th International Conference on Information Integration and
Web-based Applications and Services (IIWAS) (September 2004)

4. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D.: On storing vo-
luminous RDF descriptions: The case of web portal catalogs. In: ICSFORTH. Pro-
ceedings of the 4th International Workshop on the the Web and Databases (2001)

5. Bourret, R.: Xml-dbms, http://www.rpbourret.com/xmldbms/readme.htm
6. Bourret, R.: Mapping dtds to databases. Technical report, XML.com (2001),

http://www.xml.com/lpt/a/2001/05/09/dtdtodbs.html
7. Broekstra, J., Kampman, A., van Harmelen, F.: Semantics for the WWW. In:

Sesame: An Architecture for Storing and Querying RDF Data and Schema Infor-
mation. MIT Press, Cambridge (2001),
http://www.cs.vu.nl/∼frankh/postscript/MIT01.pdf

8. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In: Horrocks, I., Hendler, J. (eds.) ISWC
2002. LNCS, vol. 2342. Springer, Heidelberg (2002)

9. Bush, V.: As we may think. The Atlantic Monthly 176(7), 101–108 (1945)
10. Carroll, J.M., Rosson, M.B.: Paradox of the active user. ch. 5, pp. 80–111. Bradford

Books/MIT Press (1987)
11. Dourish, P., Edwards, W.K., LaMarca, A., Lamping, J., Petersen, K., Salisbury,

M., Terry, D.B., Thornton, J.: Extending document management systems with
user-specific active properties. ACM Trans. Inf. Syst. 18(2), 140–170 (2000)

12. Ekelhart, A.: The blackman project: Collecting and querying semi-structured data
for the ‘semantic desktop’. Masterthesis, University of Technology Vienna, Vienna
(2005)

13. Gemmel, J., Bell, G., Lueder, R., Drucker, S., Wong, C.: Mylifebits: Fulfilling the
memex vision. In: ACM Multimedia ’02, pp. 235–238. ACM Press, New York (2002)

14. Kiyakov, A.K., Simov IV, K., Dimitrov, M.: Ontomap: Ontologies for lexical se-
mantics. Technical report, OntoText Lab, Sirma AI EOOD (2001),
http://www.ontotext.com/publications/ranlp01.pdf

15. Kuckelberg, A., Krieger, R.: Efficient structure oriented storage of xml documents
using ordbms. Technical report, RWTH Aachen (2003)

16. Mittermeier: Naiv nativ. iX 42(8) (2003)
17. Weippl, E.R., Klemen, M., Linnert, M., Fenz, S., Goluch, G., Tjoa, A M.: Semantic

storage: A report on performance and flexibility. In: Andersen, K.V., Debenham, J.,
Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 586–595. Springer, Heidelberg
(2005)

18. Weippl, E.R., Klemen, M.D., Raffeiner, S.: The Semantic Web for Knowlege and
Data Management: Technologies and Practices. In: Improving Storage Concepts
for Semantic Models and Ontologies. Idea Group, USA (2007)

19. Widhalm, R., Mück, T.: Topic Maps: Semantische Suche im Internet. Springer,
Heidelberg (2002)

http://www.vldb.org/conf/2001/P149.pdf
http://www.rpbourret.com/xmldbms/readme.htm
http://www.xml.com/lpt/a/2001/05/09/dtdtodbs.html
http://www.cs.vu.nl/~frankh/postscript/MIT01.pdf
http://www.ontotext.com/publications/ranlp01.pdf

	The Semantic Desktop: A Semantic Personal Information Management System Based on RDF and Topic Maps
	Introduction
	The Problem
	The Semantic Desktop Project
	Request Handler
	Semantic Storage
	Storing Topic Maps
	Storing RDF

	Evaluation of Other Storage Concepts
	Storing Personal Digital Information
	Data-Centric Approach
	Structure-Centric Approach

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

