

Lecture Notes in Computer Science 4623
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Martine Collard (Ed.)

Ontologies-Based
Databases and
Information Systems

First and Second VLDB Workshops,
ODBIS 2005/2006
Trondheim, Norway, September 2-3, 2005
Seoul, Korea, September 11, 2006
Revised Papers

13

Volume Editor

Martine Collard
Université de Nice - Sophia Antipolis
Laboratoire I3S
Les Algorithmes, 2000 route des Lucioles, 06903 Sophia Antipolis, France
E-mail: Martine.Collard@unice.fr

Library of Congress Control Number: 2007936205

CR Subject Classification (1998): H.2.1, H.2.4, H.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-75473-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75473-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12162703 06/3180 5 4 3 2 1 0

Preface

This volume constitutes the joint post-proceedings of the two international VLDB
workshops on Ontologies-based Techniques for DataBases and Information Sys-
tems, ODBIS 2005 and ODBIS 2006, co-located with the 31st and 32nd Inter-
national Conference on Very Large Data Bases (VLDB). It is a collection of
extended versions of papers presented at the workshops.

Ontologies are generally used to specify and communicate domain knowledge
in a generic way. While in a formal sense “ontology” means study of concepts,
one can use the word “ontology” as a concept repository about a particular area
of interest. Ontologies are very useful for structuring and defining the meaning
of the metadata terms that are currently collected inside a domain community.
They are a popular research topic in knowledge engineering, natural language
processing, intelligent information integration and multi-agent systems. Ontolo-
gies are also applied in the World Wide Web community where they provide the
conceptual underpinning for making the semantics of a metadata machine un-
derstandable. More generally, ontologies are critical for applications which want
to merge information from diverse sources. They become a major conceptual
backbone for a broad spectrum of activities dealing with databases and informa-
tion systems. In these workshops, the objectives were to present databases and
information systems research as they relate to ontologies and, more broadly, to
gain insight into ontologies as they relate to databases and information systems.
These post-proceedings are divided roughly into three sections: ontology-based
interoperability and schema matching, management of ontological bases and
links between ontologies and knowledge.

May 2007 Martine Collard

Editorial Board

ODBIS Co-chairs

Martine Collard University of Nice-Sophia Antipolis, France
Jean-Louis Cavarero University of Nice-Sophia Antipolis, France

Program Committee

Bill Andersen Ontology Works, Baltimore, USA
Jurgen Angele Ontoprise, Karlsruhe, Germany
Pascal Barbry CNRS, Sophia Antipolis, France
Paolo Bouquet University of Trento, Italy
Nieves R. Brisaboa University of A Coruña, Spain
Marion G. Ceruti Space and Naval Warfare Systems Center,

San Diego, USA
Bruno Cremilleux University of Caen, France
Monica Crubézy Stanford Medical Informatics, USA
Isabel Cruz University of Illinois, USA
Rose Dieng INRIA, Sophia Antipolis, France
Peter W. Eklund University of Wollongong, Australia
Maria-José Escalona University of Seville, Spain
André Flory University of Lyon, France
Carl-Chritian Kanne University of Mannheim, Germany
Isabelle Mirbel University of Nice-Sophia Antipolis, France
Michele Missikoff Lab. for Enterprise Knowledge and Systems,

IASI-CNR, Italy
Claire Nedellec INRA, Jouy-en-Josas, France
Natasha Noy Stanford Medical Informatics, USA
Nicolas Pasquier University of Nice-Sophia Antipolis, France
Oscar Pastor University of Valencia, Spain
Domenico Rosaci University “Mediterranea” di Reggio Calabria,

Italy
Heiner Stuckenschmidt University of Amsterdam, The Netherlands
Gerd Stumme University of Kassel, Germany
Vojtech Svtek University of Economics, Prague, Czech

Republic

Table of Contents

A Multi-level Matching Algorithm for Combining Similarity Measures
in Ontology Integration . 1

Ahmed Alasoud, Volker Haarslev, and Nematollaah Shiri

Class Structures and Lexical Similarities of Class Names for Ontology
Matching . 18

Sumit Sen, Suman Somavarapu, and N.L Sarda

Scalable Interoperability Through the Use of COIN Lightweight
Ontology . 37

Hongwei Zhu and Stuart E. Madnick

Domain Ontologies Evolutions to Solve Semantic Conflicts 51
Guilaine Talens, Danielle Boulanger, and Magali Séguran

Requirements Ontology and Multi-representation Strategy for Database
Schema Evolution . 68

Hassina Bounif, Stefano Spaccapietra, and Rachel Pottinger

Improving the Development of Data Warehouses by Enriching
Dimension Hierarchies with WordNet . 85

Jose-Norberto Mazón, Juan Trujillo, Manuel Serrano, and
Mario Piattini

Management of Large Spatial Ontology Bases . 102
Evangelos Dellis and Georgios Paliouras

Knowledge Extraction Using a Conceptual Information System
(ExCIS) . 119

Laurent Brisson

The Semantic Desktop: A Semantic Personal Information Management
System Based on RDF and Topic Maps . 135

Edgar R. Weippl, Markus Klemen, Stefan Fenz,
Andreas Ekelhart, and A Min Tjoa

Author Index . 153

M. Collard (Ed.): ODBIS 2005/2006, LNCS 4623, pp. 1–17, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Multi-level Matching Algorithm for Combining
Similarity Measures in Ontology Integration

Ahmed Alasoud, Volker Haarslev, and Nematollaah Shiri

Computer Science & Software Engineering, Concordia University
1455 De Maisonneuve W., Montreal, Quebec, Canada

{ahmed_a,haarslev,shiri}@cse.concordia.ca

Abstract. Various similarity measures have been proposed for ontology
integration to identify and suggest possible matches of components in a semi-
automatic process. A (basic) Multi Match Algorithm (MMA) can be used to
combine these measures effectively, thus making it easier for users in such
applications to identify “ideal” matches found. We propose a multi-level
extension of MMA, called MLMA, which assumes the collection of similarity
measures are partitioned by the user, and that there is a partial order on the
partitions, also defined by the user. We have developed a running prototype of
the proposed multi level method and illustrate how our method yields improved
match results compared to the basic MMA. While our objective in this study
has been to develop tools and techniques to support the hybrid approach we
introduced earlier for ontology integration, the ideas can be applied in
information sharing and ontology integration applications.

1 Introduction

The rapid increase in the number of multiple information sources requires efficient
and flexible frameworks for integration of these sources. Such frameworks should
provide a way for extracting, transforming, and loading data from these sources, and
be represented to the user in some appropriate way. There are two major approaches
for integration of information: (1) the data warehouse (DW) or materialized approach
and (2) virtual approach (also called mediator based).

In the context of ontology integration, we proposed a third approach [1] which is a
hybrid between fully materialized and fully virtual approaches. Fig. 1 shows the
architecture of this approach. The motivation of our ongoing research on integration
of source ontologies was to develop tools and techniques for situations in which the
information sources are expressed as ontologies, and to support queries over these
sources, we need to build the global ontology (which has a common vocabulary
among the sources). This allows the query processing (QP) component in the
integrated framework in Fig. 1 to extract information from the ontology sources. To
support this capability and realize the architecture proposed in Fig. 1, we need to
develop effective matching techniques to assist users in a semi-automatic process.
This is the motivation of the current work.

Let us review the issues faced in ontology matching, which is a fundamental
problem in sharing information and integrating ontology sources in numerous

2 A. Alasoud, V. Haarslev, and N. Shiri

applications. We witness a continuous growth in both the number and size of
available ontologies developed to annotate knowledge on the web through semantics
markups to facilitate sharing and reusing by machines. This, on the other hand, has
resulted in an increased heterogeneity in the available information. For example, the
same entity could be given different names in different ontologies or it could be
modeled or described in different ways. The Ontology Matching Problem (OMP) may
then be described as follows: given ontologies O1 and O2, each of which describing a
collection of discrete entities such as classes, properties, individuals, etc., we want to
find the semantic correspondences that exist between the components of these
entities.

Fig. 1. The architecture of the hybrid framework [1]

Very often existing matching algorithms focus on one-to-one (1:1) matching.
These methods hardly consider several entities at the same time and correspondingly
use several similarity measures to solve OMP. In fact, OMP is an n:m matching
problem. In order to obtain better matching results, existing measures should be used
simultaneously and combined in a multi-space matching framework. We have
developed such a method using a multi match algorithm (MMA).

 Maintenance of the MO (MMO)

 Ontology 2

 Materialized
 Ontology (MO)

Query Processor (QP)

Transformation Processor (TP)

Incremental Maintenance
Processor (IMP)

Global Ontology

...Wrapper 1 Wrapper 2 Wrapper n

Ontology 1 Ontology n

MetaData
(MD)

Query Answer

...

 A Multi-level Matching Algorithm for Combining Similarity Measures 3

The contributions of this paper are as follows:

1. We introduce an ontology matching approach, based on the idea of a multi-level
match algorithm, in which each level uses different similarity measure(s).

2. We propose a flexible measure to compute the best possible matching state offered
by MMA. This principle is based on the Dice coefficient adapted for our use.

The rest of the paper is organized as follows. In Section 2 we set up the formulation
of the framework. The description of the algorithm is introduced in Section 3. An
illustrative scenario is given in Section 4. The experiments and results are presented
in Section 5. The related work is provided in Section 6. We conclude the paper with a
summary and a discussion of future work in Section 7.

1.1 Motivating Example

In this section, we illustrate the ontology matching problem and introduce some
concepts and techniques. Let us consider the following examples. Consider source
ontology “S”, which offers different types of electronic products. For simplicity, we
consider only two products: PCs and laptops. Fig. 2 shows this ontology. As can be
seen, S includes the concept COMPUTERS which represents desktop and laptop

Fig. 2. Source ontology S

Fig. 3. Target ontology T

4 A. Alasoud, V. Haarslev, and N. Shiri

computers. Other concepts such as MONITOR, PROCESSOR, and PRICE, etc in this
ontology represent technical specifications of computers. As the target ontology, we
consider ontology “T”, shown in Fig. 3. The goal is to find the corresponding matches
among the entities in S and T.

There exist many methods to measure similarities between two entities, such as
string similarity, linguistic similarity, etc. However, when we use a single matching
measure for an input pair of ontologies, we may not be satisfied with the final match
result. For instance, if we use a string similarity measure only, the concepts PC and
LT in S have no matches in T. On the other hand, a string similarity measure is the
basis for some other methods of measuring similarities between entities, and it works
fine in some domains where a match in the entities on their syntax would most
probably mean agreement on their semantics.

Another example is when we use a more semantic measure such as a linguistic
based measure. For instance, we find out that the concept PC in S is mapped to the
concept desktop in T and as well to concept computer in T. So, this will not help the
user to focus his/her intention. As a result, if we use both measures (string and
linguistic), the concept computers in S will be mapped into the concept computers in
T with a very high confidence. Consequently, the concept PC in S will be mapped to
desktop in T, and the concept LT in S will be mapped to portable in T.

1.2 General Description of the Framework

We propose a multi-level search algorithm that combines different measures in one
unified framework to improve the matching results. Further, it minimizes user
interaction with the system and suggests a single matching result of a collection of n
elements in S to a collection of m elements in T.

Level 2

Candidate results
{e1, e2 … en}

Level 1

O1

O2

e1
e2
.
.
.
en

O2

O1

m1 m2 mk

ML-MMA
Level-1

… Candidate results

mk+1 mK+2 ml

MLMA
Level-2

…

Output
{ef}

Fig. 4. A schematic description of the multi-level method

 A Multi-level Matching Algorithm for Combining Similarity Measures 5

Fig. 4 illustrates the main idea of multi-level method, when there are two levels. It
shows the different similarity measures {m1, m2,…, ml} divided into two, and applied
at two levels.

For instance, and to ease the presentation we use three similarity measures divided
into two levels. The name and linguistic similarity measures have been applied in the
first level. Then, the structural similarity measure has been applied on the candidate
resulting states {e1, e2 … en} in the second level. As a result, our method will output
the state which has the highest confidence. Moreover, our resulting mapping state {ef}
is measured based on its rich structure on one hand and the greatest number of
corresponding concepts between the source ontologies on the other hand.

2 Formulation of the Framework

In this section, we provide the definitions for the main components of our framework.
These definitions give the meaning of our notations such as, what are the entities we
are referring to, the relationship matrix that gives the basis to compute the similarity
matrix, the matching matrix, the matching space, and in the subsection we introduce
the structure-based similarity measure.

We describe the mapping problem as identifying pairs of similar nodes (also called
vertices) in the input ontologies modeled as labeled directed graphs. The nodes in an
input graph correspond to entities in ontologies, and the edges indicate the
relationships between the pair of nodes they connect. The labels indicate the kind of
relationship, e.g. “domain” or “range.” In this study, we limit ourselves to finding
mappings for classes and relationships only.

Definition 1 (Entity-relationships). Let S be a source ontology, T be a target
ontology. We use ES = {s1, s2,…, sn} and ET = {t1, t2,…, tm} to denote the set of
entities in S and T, respectively. Entity refers to classes, properties, or individuals for
which we want to find matches in the input ontologies. We use R(rij), defined below,
to denote the relationship between entities si and tj. We use rij to denote a matching
degree between si and tj.

Definition 2 (Relationship Matrix). This relational matrix, denoted as R(rij),
represents the relationship between ontologies S and T, i.e., rij includes indicates the
similarity between concept si in S and concept tj in T. Using R, we define another
relational matrix, called the similarity matrix, which captures a different relationship
between S and T, defined as follows.

Definition 3 (Similarity Matrix). This relational matrix, denoted L(lij), includes
entries in [0,1], called the similarity coefficients, representing the degree of similarity
between si and tj. Both R and L are n×m matrices.

Definition 4 (Matching Matrix). A matching matrix, denoted Map0-1, is a 0-1 matrix

with dimension n×m and with entries rij ∊{0,1}. If rij = 1, it means that Si and tj are
“matchable.” They are unmatchable if rij = 0.

6 A. Alasoud, V. Haarslev, and N. Shiri

Definition 5 (Matching Space). All the possible assignments for the matching matrix
form a matching space, also called the mapping space. Every assignment is a state in
the matching space. The state represents a solution of ontology matching. The
following example illustrates the above concepts and terms.

Example 1. Let S and T be the input ontologies, and ES={s1,s2,…,sn} and ET={t1,
t2,…,tm}be the sets of entitie. A matching matrix Map0-1 indicates the similarity
relation between the elements of ES and ET. The number of relationship matrices
Map0-1 is 2nxm, i.e., the matching space has 2nxm states. These matrices form the
matching space. For instance, when Map0-1 is 2×2, the matching space would have 16
states. Some of these mapping states are as follows, in which the rows are entities in S
and the columns are entities in T. E.g., the first matrix indicates no mapping. The
third matrix below, it indicates that entity s1 is matched with t1 or t2, and s2 is matched
with t2, etc.

0 0 1 0 1 1 11
, , , , .

0 0 0 0 0 1 11

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

L

2.1 Tradeoff Between Structure and Size of the Mapping States

Many similarity measures have been introduced for a set of keywords representing a
text. For example, the Dice coefficient, the Jaccard coefficient, the Cosine coefficient
[21], etc. The Dice coefficient is defined as follows:

(2) () ., 1 2 1 21 2
S T T T TT T = ∩ +

where │Ti│ is the number of terms in set Ti, and│T1∩ T2│is the number of common
terms in T1 and T2. We will use this as the similarity measure in our work.

Let O1 and O2 be a pair of ontologies represented as labeled graphs, and OMMA be
the ontology induced by the similarity result SMMA obtained by applying the basic
MMA match algorithm (which combines the similarity measures in a single step/level
operation). Let Sstrc be the structural similarity measure S, calculated as follows,
which defines the similarities between the concepts provided by OMMA and those in
the original ontologies O1 and O2.

2 () ((()) (())) .1 2S r O r O O r O Ostrc MMA MMA MMA
= +

where │r(OMMA)│is the number of relationships in ontology OMMA, and
│r(OMMA(Oi))│is the number of relationships in the immediate neighborhood of OMMA
in Oi. This neighborhood of OMMA consists of the relationships of Oi with at least one
end (one of the edge’s end) belonging to OMMA.

We view Sstrc as a complementary measure to the output of MMA, applied in the
second level. This is justified as follows.

• The structure similarity Sstrc is mainly based on the presence of common
concepts between the matched ontologies induced by the states calculated by
MMA, and

• the similarity degree between the matched ontologies may still exist, even
when there is no structural match in the result of MMA, i.e., when Sstrc = 0.

 A Multi-level Matching Algorithm for Combining Similarity Measures 7

Accordingly, the combined similarity measure S is relative to SMMA, and should not
be zero in case Sstrc = 0. We further “smooth” the effect of Sstrc as follws:

() , (1) .S S x S where x SstrcMMA MMA= + ∗ = −

In the combined similarity S, suppose Sstrc= 0. This then means S just depends on
the similarity measure of MMA. On the other hand, if Sstrc = 1, the neighborhood of
the concepts matched by MMA is the same, and consequently S will take the
maximum value, and since 1= SMMA + x, we have that x = 1 – SMMA, representing the
complementary part of information described in the relationships among the concepts
in a desired state found by MMA.

As we do not want to miss a matching state found which includes a large number
of concepts matched, SMMA provides possible good matches in the input ontologies
together with the similarity degrees. The extended method will determine the same
collection of matched states, but with better differentiation among them by taking into
account the structural measures in the second level. An extension of this two level
method to a multi-level method is straightforward, when the user can identify which
measures could or should be applied at which level.

3 Structure-Based Multi Level Matching Algorithm

Now we study various matching spaces, and show how to construct the matching
spaces. Then, we describe an algorithm to solve OMP, using MLMA.

3.1 The MLMA Algorithm

There are many algorithms for matching spaces. The notion of multispace “combines”
all desired spaces into a single unified space. By searching from space to space, the
matching algorithm can find a reasonable solution eventually. The main idea of the
proposed Multi-Level algorithm is shown in Fig. 5.

The algorithm is mainly divided into three phases. In phase 1, which is the
initialization phase, an initial assignment for the matching matrix Map is provided, as
well as the functions of similarity to evaluate the relationship matrix. In phase 2 of
MMA, which is the search phase, it is an iterative refinement for the Map matrices. In
phase 3, the resulting mapping states from MMA will be qualified based on the
connectivity among their concepts. Then, the best possible final state will be offered
to the user.

The algorithm iteratively constructs matching spaces for entities of both S and T
(see illustrative example in the next section). Then, the Map matrices will be
evaluated according to the re/used spaces such as name and linguistic spaces, and
finally the mapping state with the highest evaluation value will be offered to the user.
If we only search one matching space, the algorithm behaves and computes as a single
matcher; otherwise, it is indeed a multi-matcher. This design is useful as it provides a
flexible and convenient way to use various relevant information about input
ontologies, and to combine feasible mapping methods to obtain a far better matching
result than the results obtained by each individual method. The method can employ
any desired search algorithm.

8 A. Alasoud, V. Haarslev, and N. Shiri

Fig. 5. The Multi-Level Match Algorithm

3.2 Multiple Matching Spaces

Matching spaces are distinguished by diverse similarity measures. Moreover, the
different kinds of similarity measures between the entities of the ontologies use
different methods to compare the similarity of two ontologies. Accordingly, we
construct the similarity matrices and matching spaces. Furthermore, different relation
spaces are built on the result of using different methods of measuring similarity.
These methods can be classified as follows (see [12] for more detailed explanation).

• String similarity. These methods are based on the hypothesis that concepts and
property names representing semantic similarity will have similar syntactic
features. The Levenshtein distance is the simplest implementation of string
distance.

• Linguistic similarity. This is an extension of string similarity measures with some
semantics. For example, considering the synonyms based on some specific
thesauri, e.g., WordNet.

Given: Two ontologies S and T
Output: The mapping result between S and T
Phase 1 Initialization

Design an initial assignment matching matrix.
/* For example, let Map be the zero matrix,
or let diagonal elements in Map be equal to 1, and so
on.*/
Use the similarity functions to evaluate similarity or
relationship matrix.

Phase 2 Search Matching Space
 begin
 Enter an active search space
 /* such as the name matching space */
 Evaluate an intermediate matching state
 /* more better matching results */
 begin

Enter another active search space
/* such as the linguistic matching space */
Evaluate a better intermediate matching state
 Begin
 ...

 /* various available matching spaces,
 i.e. many feasible matching methods */
 end;
 end;
 if the intermediate matching state is not
 the final solution
 /* the matching result does not satisfy
 the evaluation function */
 then use it as an initial solution in the
 next iteration;
 if the matching instance satisfies the
 evaluation function
 then return the final solution
end;

Phase 3 Apply the Complementary measures
 /* Apply the structure similarity measure
 to the output of phase 2. */

 A Multi-level Matching Algorithm for Combining Similarity Measures 9

• Structure-Aware. This refers to approaches that take into account the structural
layout of the ontologies considered, e.g., graph matching.

• Context-Aware. This is more semantically rich than structure similarity. In such
method, a variety of relationships among concepts are considered in order to
uniquely distinguish types of connections among the nodes in labeled directed
graph matching.

• Extension-Aware. Classifications of the instances reflect the semantics of
ontology. Data mining and Information Retrieval (IR) techniques are used to
determine the hidden correspondence between instances.

• Intension-Aware. These techniques find correlations between relations among
extent and intent, e.g., information flow.

• Semantic similarity. These focus more on logical correspondences, e.g.,
satisfiability.

4 Illustrative Scenario

In this scenario, we describe the main idea of the MLMA. Fig. 6. shows two sample
taxonomies for Researchers (O1) and Students (O2) of different universities.

 O1 O2

 Fig. 6. Researchers (O1) and Students (O2) ontologies

We have to integrate the ontolgies into a single ontology. For reducing the manual
work involved, we use a matching algorithm to identify the matching entities, and
then help the middleware to integrate the schemas. For ease of presentation, we use
very simple and small taxonomies.

As can be seen in Fig. 6, entities S1, S2, S3, and T1, T2, T3 are concepts, which are
high-level entities in the input ontologies.

For ease of explanation, we only use two different similarity measures to compare
the entities in S and T, name similarity (Levenshtein distance) and linguistic similarity
(WordNet). We thus obtain the following similarity matrices for the concepts.

_

0.0 0.2 0.308

0.2 0.2 0.0 .

0.308 0.308 1.0
name conceptL

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

_

0.75 0.181 0.307

0.4 0.181 0.0 .

0.307 0.166 1.0
ling conceptL

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

This induces two similarity spaces: name space and linguistic space. When an
assignment is found for matching space, we check the similarities of entities to see
whether they exceed a user-defined threshold, denoted as th. The choice of the

T1

 Student

 T2

 Project
 T3

CS-department

works
registeredin

S1

Researcher

S2

University
S3

CS-department

works
department

10 A. Alasoud, V. Haarslev, and N. Shiri

threshold value is application dependent and should be adjusted and suitably chosen
for each space. The automation of selecting the suitable threshold value is left for
future investigations. We define the following evaluation function, which measures
the threshold value for the states obtained by the first phase of the MLMA algorithm.

 ()0 1 0 1 0 1/ (,). (,) (,) .
1 1 1 1

n m n m
v Map L k Map i j L i j Map i j th

i j i j
− − −= ⋅ = ≥∑ ∑ ∑ ∑

= = = =

where k is the number of matched pairs.
We now provide a brief description of the search process. The initial state of the

mapping matrix is a zero matrix. Then, if the search process exceeds the maximum
iteration, the maximum similarity states (Mapmax) will be offered as the final mapping
result. Also, we need to set the additive constraints in the search process. For this
example, since the number of concepts in S is equal to that in T, we consider the
ontologies S and T have been fully matched. So, the mapping states of concepts
include 6 entries now, e1, e2, …, e6 as shown in Fig. 7.

Fig. 7. Searching in the matching space

The outputs of MMA are states e1, e2, …, e6 shown in Fig. 8, which are represented
as labeled directed graphs, in general.

As shown in Table 1, e1 indicates the “best” matching found. Using the formula for
computing the threshold values for name and linguistic similarity matrices Lname_concept
and Lling_concept above, we get values 0.4 and 0.64 for name similarity v1 and linguistic
similarity v2, respectively.

 A Multi-level Matching Algorithm for Combining Similarity Measures 11

Fig. 8. The states determined by MMA

To measure Sstrc for the mapping state e1:

• The number of common relationships between the common concepts that
connect these concepts to other common concepts is equal 1.

• The number of relationships in O1 with at least one end belonging to the
common concepts is equal 2.

• The number of relationships in O2 with at least one end belonging to the
 common concepts is equal 2.

As a result, we obtain Sstrc = ((2*1)/(2+2))=0.5.
Table 1 shows the individual and combined similarity match results for each state

ei. Note that if we only use the name similarity space, the mapping result would be e3.
In the same way, if we only use the linguistic space, we would obtain e1 as the result.
Also, using Mapname_concept, Mapling_concept, and the threshold value th we obtain SMMA .
Consequently, the output result state e1means that we matched n concepts from the
source ontology S to the m concepts from the target ontology T. That is, s1 matched
with t1, s2 with t2, and s3 with t3. Accordingly, the algorithm matches the properties
and/or instances of each matched pairs of the concepts. One could also build a logic
based space using, say description logics [3], and employ reasoning techniques to
decide subsumption between two concepts.

We can also notice the recognized performance of the measure and how the SMMA
and Sstrc similarities are combined to compute the final measure S. The scenario
indicates that S is always grater than or equal SMMA for our similarity measures. This
leads to the fact that S increases the weight of those states with connected common
concepts than the states of common concepts that are not connected.

As a result, using S we gain the following:

• S maintains as many as possible number of matched concepts
• S can improve the performance of SMMA, if the ontologies that are to be

matched are structurally similar. However, it will not affect SMMA even if there
is no structure similarity at all in the given input ontologies.

S1 , T3

S2 , T2 S3 , T1

e6 S1 , T2

S2 , T3 S3 , T1

e5

S1 , T2

S2 , T1 S3 , T3

e3

S1 , T3

S2 , T1 S3 , T2

e4

S1 , T1

S2 , T3 S3 , T2

e2
works S1 , T1

S2 , T2 S3 , T3

e1

12 A. Alasoud, V. Haarslev, and N. Shiri

Table 1. Individual and combined similarity match results

Level 1 Level 2

State Name

1v
Concept

2v
SMMA

Normalized cost

2/)(21 vvv +=

Sstrc ()MMA strcS x S= + ∗S

e1 0.4 0.64 0.52 0.5 0.77

e2 0.103 0.305 0.204 0.0 0.204

e3 0.466 0.527 0.497 0.0 0.497

e4 0.272 0.291 0.282 0.0 0.282

e5 0.169 0.163 0.166 0.0 0.166

e6 0.269 0.265 0.267 0.0 0.267

5 Experimentation and Results

In our evaluation we have used three pairs of ontologies as benchmarks: (1) the MIT
bibtex ontology1 (contains 43 named classes, 22 object properties, 24 data properties)
and the UMBC publication ontology2 (contains 15 named classes, 5 object properties,
27 data properties) which are publicly available, (2) computer ontologies (the first
onltology contains 17 named classes, 11 object properties, 15 data properties, and the
second one contains 15 named classes, 10 object properties, and 14 data properties),
and (3) ontologies about computer science departments; the first onltology contains
16 named classes, 12 object properties, 10 data properties, and the second one
contains 18 named classes, 14 object properties, and 9 data properties. We have
created the second and third pairs of the ontologies.

As match quality measures, we have used the following indicators: precision,
recall, and F-measure. Precision is a value in the [0, 1] range; the higher the value,
the smaller is the set of wrong mappings (false positives) computed. Recall varies in
the [0,1] range; the higher this value, the smaller is the set of correct mappings (true
positives) not found. F-measure varies in the [0,1] range, which is a global measure of
the matching quality. The version computed here is the harmonic mean of precision
and recall [6].

1 http://visus.mit.edu/bibtex/0.1/bibtex.owl
2 http://ebiquity.umbc.edu/ontology/publication.owl

 A Multi-level Matching Algorithm for Combining Similarity Measures 13

In a testing methodology, we are concerned with providing a ground for evaluating
the quality of match results. For this, we have determined expert matches for all the
input pairs of ontologies. The results produced by the matcher have been compared
with these expert mappings.

The evaluation results are shown in Fig. 9. From the point of view of the quality of
the matching results, the proposed MLMA method clearly outperforms the other
techniques.

Fig. 9. Experimentation and Results

The key point in MLMA is that it gives for each entity from the source ontology
only one corresponding entity match from the target ontology. This enables MLMA to
achieve in these cases high precession and recall numbers. For instance, in the case of
the computers ontologies, since both ontologies contain either the same names for the
corresponding entities, or they use totally different names, we see that the string-
based techniques provided a high precision rates (no wrong mappings returned to the
user), that is, the concept ‘Computers’ in the source ontology is mapped to the
‘Computers’ concept in the target ontology. However, the string-based techniques
reported a low recall rate because they failed to identify semantic mappings. For

14 A. Alasoud, V. Haarslev, and N. Shiri

example, the string-based technique missed to match the concepts (PC, Price, and
Monitor) in the source ontology to their corresponding concepts (desktop, cost, and
display) in the target ontology.

The semantics-based techniques had low precision rates (some even returned
incorrect mappings to the user). For instance, the concept Computers in the source
ontology will also be matched with the desktop and laptop concepts in the target
ontology. Also, the reason for the low recall rate is that it gives a large set of wrong
mappings compared with the expert defined mappings.

The MLMA method on the other hand benefits from existing techniques. Since
each concept from the source ontology will be matched with only one concept from
the target ontology, the Computers concepts from both, the source and target
ontologies will be identified as mapped to each other. Moreover, PC, Price, and
Monitor concepts in the source ontology will be matched to desktop, cost, and display
concepts in the target ontology. Consequently the MLMA produces a better final
result for its higher precision and recall rates.

The quality comparison between the basic MMA and MLMA methods is shown in
Fig. 10. As there are structure similarities between the first and second test pairs of
ontologies, the MLMA increases the matching quality for their best possible final
states. Even though the third test pairs of ontologies are structurally dissimilar, the
MLMA maintains the matching quality of the MMA without any changes, as desired.

Fig. 10. The quality comparison between the basic MMA and MLMA methods

6 Related Work

The RiMOM system [14] integrates multiple strategies such as, edit distance,
statistical learning, and three similarity propagation based strategies. Then, RiMOM
applies a strategy selection method in order to decide which strategy will rely more on
it. As a result, RiMOM combines the conducted alignment using linear interpo-
lation method. Similarity Flooding [17] and AnchorPrompt [20] compare graphs

 A Multi-level Matching Algorithm for Combining Similarity Measures 15

representing ontologies, and look for similarities in the graph structures. GLUE [4]
employs machine-learning techniques to find mappings. It uses multiple learners and
exploits information in concept instances and taxonomy structures of ontologies.
GLUE uses a probabilistic model to combine results of different learners. The notion
of similarity it uses is based on k-statistics which can be thought of as being defined
over the joint probability of the concepts involved. The work proposed in [18]
describes an ontology match enhance tool that improves existing ontology matching
algorithms based on probabilistic inferences.

The algorithm in [8] uses a complete proof procedure to decide subsumption or
equivalence between classes, given initial equivalence of some classes and analysis of
the relationships in the taxonomy. The work in [16] has a matching engine which
contains diverse libraries that supports many match algorithms and strategies. In [16]
they combine the match results by aggregating the results of the applied matchers on
the given input ontologies. Then the selected result will be made using e.g. threshold
value. In addition, a number of other systems use machine learning techniques for
finding class similarity from instances [5]. Falcon-AO [11] has three elementary
matchers; Linguistics matchers (V-DOC and I-sub) and structural matcher (GMO).
The results of falcon-AO mainly derived either from the alignments generated from
linguistic or structural matchers based on which has a higher results. Otherwise, the
Falcon-AO results will be generated by making a combination among both linguistic
and structural matchers with a weighting scheme. Some researchers propose similarity
metrics between concepts in different ontologies based on their relationships to other
concepts. For example, a similarity metric between concepts in OWL ontologies [7] is
a weighted combination of similarities of various features in OWL concept definitions
including their labels, domains and ranges of properties, restrictions on properties
(such as cardinality restrictions), types of concepts, subclasses and super classes, and
so on. Algorithms such as in [10] make use of derived graphs or alternative
representations such as the pair wise connectivity graphs.

There are two features which make our approach distinct from the aforementioned
algorithms and systems. The first point is the way how the similarities are
transformed into mappings is measured using a space search technique in order to
deal with a many to many match problem. The second point is, in contrast to other
approaches such as [10] our proposed similarity measure ensures that our approach
works even in the case if there are no structure similarities in the given input
ontologies.

7 Conclusions and Future Work

We proposed a new method for ontology matching that uses Multi-space search
techniques together with a flexible measure that is based on well-known graph
algorithm to obtain the best possible matching results. A main characteristic of our
technique is that it combines existing matching techniques to provide a solution to a
given ontology matching problem. Moreover, the optimal matching state has been
considered based on its rich structure on one hand, and the number of common
concepts of the matched ontologies on other hand. As a result, applying our mapping
transformation and similarity measure methods will not decrease the number of

16 A. Alasoud, V. Haarslev, and N. Shiri

matching concepts (size), and will increase the similarity measure of the state that has
high structural similarity among its concepts (structure). We have developed running
prototypes of both the basic MMA and the proposed MLMA, and conducted
experiments using some benchmark ontologies. Our results indicated that the
proposed MLMA technique provided improved match results. As a future work, we
would like to identify optimization opportunities in our context, and study the
scalability (quantity) using larger ontologies.

Acknowledgements. This work was supported in part by grants from Natural
Sciences and Engineering Research Council (NSERC) of Canada, and by Libyan
Ministry of Education.

References

1. Alasoud, A., Haarslev, V., Shiri, N.: A hybrid approach for ontology integration. In: Proc.
VLDB Workshop on Ontologies-based techniques for DataBases and Information Systems
(ODBIS), Trondheim, Norway, September 2-3, 2005 (2005)

2. Artale, A., Franconi, E., Mandreoli, F.: Description logics for modeling dynamic
information. In: Logics for Emerging Applications of Databases. Springer, Heidelberg
(2003)

3. Baader, F., Celanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description
Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press,
Cambridge (2003)

4. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontologies
on the semantic web. In: Proc. 11th Int’l WWW Conference, Hawaii, US (2002)

5. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: A machine
learning approach. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies in Information
Systems, pp. 397–416. Springer, Berlin (2003)

6. Do, H.H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Proc.
workshop on Web and Databases (2002)

7. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-Lite. In: Proc. 16th
European Conference on Artificial Intelligence (ECAI-04), Valencia, Spain (2004)

8. Giunchiglia, F., Shvaiko, P.: Semantic matching. In: Proc. IJCAI Workshop on ontologies
and distributed systems, pp. 139–146 (2003)

9. Gu, J.: Multispace search for satisfiability and NP-hard problems. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science 35, 407–517 (1997)

10. Hu, W., Jian, N.S., Qu, Y.Z., Wang, Y.B.: GMO: A Graph Matching for Ontologies. In:
Proc. K-Cap Workshop on Integrating Ontologies, pp. 43–50 (2005)

11. Hu, W., Cheng, G., Zheng, D., Zhong, X., Qu, Y.: The results of Falcon-AO. In: Proc.
International workshop on Ontology Matching (OM), Athens, Georgia, U.S.A, November
5, 2006 (2006)

12. Kalfoglou, Y., Hu, B.: CROSI Mapping System (CMS). In: Proc. Integrating Ontologies
Workshop, Banff, Canada, October 2, 2005 (2005)

13. Li, W., Clifton, C.: SEMINT: A tool for identifying attribute correspondences in
heterogeneous databases using neural networks. IEEE Trans. on Data & Knowledge
Engineering 33(1), 49–84 (2000)

 A Multi-level Matching Algorithm for Combining Similarity Measures 17

14. Li, Y., Li, J., Zhang, D., Tang, J.: Results of ontology alignment with RiMOM. In: Proc.
International workshop on Ontology Matching (OM), Athens, Georgia, U.S.A, November
5, 2006 (2006)

15. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid. In: Proc.
27th VLDB Conference (2001)

16. Massmann, S., Engmann, D., Rahm, E., Tang, J.: Results of ontology alignment with
COMA++. In: Proc. International workshop on Ontology Matching (OM), Athens,
Georgia, U.S.A, November 5, 2006 (2006)

17. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In: 18th Int. Conference on Data
Engineering (ICDE), San Jose, California (2002)

18. Mitra, P., Noy, N.F., Jaiswal, A.R.: OMEN: A probabilistic ontology mapping tool. In:
Proc. Workshop on Meaning Coordination and Negotiation, Hisroshima, Japan (2004)

19. Noy, N.F., Musen, M.A.: The PROMPT suite: Interactive tools for ontology merging and
mapping. Journal of Human-Computer Studies 59(6), 983–1024 (2003)

20. Noy, N.F., Musen, M.A.: Anchor-PROMPT: Using non-local context for semantic
matching. In: Proc. Workshop on Ontologies and Information Sharing (in conjunction with
IJCAI), Seattle, WA (2001)

21. Rasmussen, E.: Clustering Algorithms. In: Frakes, W.B., Baeza–Yates, R. (eds.)
Information Retrieval: Data Structures & Algorithms, Prentice Hall, Englewood Cliffs
(1992)

22. Zhang, Z., Che, H.Y., Shi, P.F., Sun, Y., Gu, J.: An algebraic framework for schema
matching. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739, Springer,
Heidelberg (2005)

M. Collard (Ed.): ODBIS 2005/2006, LNCS 4623, pp. 18–36, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Class Structures and Lexical Similarities of Class Names
for Ontology Matching

Sumit Sen1,2, Suman Somavarapu1, and N.L. Sarda1

1 Deptt of Computer Science, IIT Bombay, Mumbai-76 India
2 IfGI, University of Münster, Robert-Koch Str. 26, 48149 Münster, Germany
sumitsen@uni-muenster.de, {suman,nls}@cse.iitb.ac.in

Abstract. Semantic Interoperability is a major issue for National Spatial data
Infrastructures (NSDIs) and mapping across heterogeneous databases is
essential for such interoperability. Mapping of schemas based on ontology
mapping provides opportunities for semantic translation of schemas elements
and hence for database queries across heterogeneous sources. Such semantics
based mappings are usually human centered processes. This paper demonstrates
semi-automatic mapping using semantic similarity values from an electronic
lexicon. Lexical similarity of class names and class structures constitute
knowledge base for mapping between two schemas. We employ semantic
mapping based on synonym similarity matches from WordNet. We use
heuristics based propagation of similarities using attribute mapping and
superclass-subclass relations. The machine based similarity values are seen to
be comparable to human generated values of mapping.

Keywords: ontology, semantic mapping, lexical similarity, similarity
propagation, heterogeneous databases.

1 Introduction

Spatial databases usually store information relating to different themes but also spatial
information of the records. The spatial information, serves as the common geospatial
domain for such databases serves as a central point of integrated usage of such data.
Geographic Information Systems and more recently, Web Mapping Services (WMS)
as promulgated by the Open Geospatial Consortium (OGC) [1], display geospatial
data from such spatial databases. With increased possibilities of sharing of databases
across domains and user groups based on frameworks such as geospatial web services
and Spatial Data Infrastructures (SDIs), the need for resolving the semantic
interoperability of data has been identified as a major requirement. National Spatial
Data Infrastructures (NSDIs) can be considered as a typical testbed for semantic
interoperability experiments across heterogeneous database users.

Semantic mapping across heterogeneous data sources is reported as a major
requirement for National Spatial Data Infrastructures [2]. Such Infrastructures serve
as a common interaction mechanism between multiple organizations which need to
share geospatial data for their different applications. Figure 2 shows a typical scenario

 Class Structures and Lexical Similarities of Class Names for Ontology Matching 19

Fig. 1. Geospatial data usage scenario in an NSDI. The two types of data sources include
geospatial data sources and attribute data sources. The semantics of the data source region S
need not be same as that of the application region A.

of data sharing in an NSDI with multiple (semantically heterogeneous) data sources
being used. The traditional view of interoperability in an NSDI is based on mapping
of information sources based on human based interaction and documentation. A
strictly Top-Down approach advocating use of fixed class names can be seen as too
rigid and impractical for actual use. On the other hand, schema mappings based on a
bottom-up approach is difficult even if mappings can be achieved by organizations
participating in the NSDI because

(1) Schemas are continuously evolving
(2) Human knowledge about semantics of the table names and attribute names are

 often not completely expressed in the names used. Therefore mapping should
 be seen as a probability based process.

(3) It is not necessary that mappings exists always. In a probability based model
 this situation is equated with zero values. On the other hand it is not possible or
 necessary to have values for every mapping. Such cases where the mapping is
 not done should be equated to null values of probability of mapping.

In addition to these observations about schema mappings of databases in an NSDI we
also observe that organizations can join or leave the Infrastructure. Depending on this,
new mappings need to be generated at times and older mappings need to evolve.

It is imperative that a semi-automatic process of mapping of databases need to
evolve. Ontology based mapping has been increasingly viewed as an engineering
solution to the problems. Based on specifications of the conceptualizations [3] as a
more generic layer above the schema specifications, ontologies serve as an
intermediate step to specify and resolve semantics of the contents of a database

20 S. Sen, S. Somavarapu, and N.L. Sarda

system. Ontology based mapping allows us to generate schema translation rules [4].
Two categories of semantics can be differentiated in regard to

 (a) Classes or schema names and
 (b) Individuals or instances of the classes.

While the later is by no means a trivial problem we state our approach based on
semantics of the class or schema names. We aim to assist the generation of semantics
based mapping for classes or schema names based on lexicon based similarity values.
The approach is similar to the similarity flooding principle [5] but in our case,
propagation of similarity values is somewhat restricted. It is based on heuristics such
that class attributes and similarity values of superclasses and subclasses are reflected
in the overall similarity values. The machine based values of similarity are compared
to human generated values.

1.1 Paper Outline

This section has provided the introduction and also explains the motivation of this
work. § 2 outlines the previous work in semantic mapping generation and describes
the research problem at hand. Subsequently § 3 describes the generation of lexical
similarity values and their propagation based on attribute properties of classes and
their superclass -subclass structures.1 In § 4 we analyze the similarity values vis-à-vis
human generated values. We also provide the outline of a mechanism to translate data
from different sources based on the ontology mapping with a target domain in § 5.
Some conclusions and areas for future work are identified in the end.

1.2 Motivation

The motivation of our research is derived from efforts to achieve schema translations
from heterogeneous databases that participate in the NSDI. Since the objective of
sharing of resources in the NSDI is to maximize the usage of data and applications,
the requirement of allowing semantics based translations of queries and data is
primary in nature. We restrict our problems based on logical steps as follows:

(i) To identify the translations (in the form of XQuery statements), which could
 be applied to interface semantically heterogeneous systems in the NSDI

(ii) To generate such translations based on mappings between the ontologies of
 the two systems

(iii) To semi-automate the process of mapping between the ontologies

The last step is rather the focus of this paper. Such Mapping between ontologies is
dependent on both the explicit semantics of the class names or attribute names and
also the implicit semantics of subclasses and superclass relations. When we consider
the objective of translations it is important to have a directional mapping such that all
members of the target schema mapped to the source schema as shown in figure 2.

1 The term Class Structure in this paper refers to three different constituents -the attributes of the

class, its superclasses and subclasses.

 Class Structures and Lexical Similarities of Class Names for Ontology Matching 21

Ontology S1 S1 A1 Ontology A1

Fig. 2. Ontology mapping between Target and Source. The different components of the Source
ontology including layers, classes and their properties are mapped to each other. Layers can be
considered as a group of classes. Classes can have inherited classes and so can layers. The
relation between of layers and classes is not that of inheritance but rather that of aggregation.

2 Generating Semantic Mapping

Semantic Mapping can be considered as process, which generates rules for
transformations between different data sources which do not necessarily have the
same semantics for the same schema symbols. Schema symbols2, for our case consists
of layer names, class names and property names. We also need to be clear that having
different semantics for the same schema symbols also entails that sometimes

1 Same symbols could have different meanings
2 Different symbols could have the same meaning
3 Some symbols in the first schema may not have corresponding symbols with the

same meanings in second schema
4 Some symbols in the first schema could correspond to more than one symbol in

the second schema such that the meaning is conveyed by simple aggregation (or
further complex functions of aggregation) of the multiple symbols in the second
schema

5 Some symbols in the first schema could correspond to part of a symbol in the
second schema such that the meaning can be extracted fully from that
corresponding symbol.

6 Also some symbols in the first schema could correspond to multiple symbols in
the second schema but combining aspect 4 and 5 above.

Besides these we know that datatype heterogeneities (different datatype for the same
schema component in different databases) are closely associated to the above contexts
but we shall assume their absence for our case.

As discussed in the introduction, we use ontology based mapping to achieve schema
translations. Now consider the situation described in figure 1 with attribute data source

2 We refer to schema elements as schema symbols to stress that these symbols have certain

meaning and conceptualizations.

22 S. Sen, S. Somavarapu, and N.L. Sarda

(S) and application (A). Here we have ontologies with elements corresponding to the
different schema symbols – layers, classes, attributes as shown in figure 2.

We assume existing ontologies (OS1, OS2…OSM) of the data sources and the
applications (OA1, OA2…OAN). The aim of establishing semantic interoperability is
now reduced to provide mapping (OS1X OA1…OSM X OSN). This higher level mapping
is different from the XQuery-like physical level specification of mapping between
schemas because it avoids datatype and other implementation constraints. The
challenge here is to use an ontology of the database schemas and build up explicit
mapping. Given two ontologies OS1 and OA1 (see figure 2) a mapping OS1X OA1 is a set
of pairs (s,a) where s and a are concept contained in OS1 and OA1 respectively. The
mapping is complete and one-to-many. Any concept s maps to every concept in OA1w

but with different intensities which is dependent on how similar it is to the target
concept. When such similarities are taken into consideration while determining the
matching we can assume the highest mapping value as 1 and lowest as 0. Thus a
mapping is defined as a matrix of similarity values as below

M[OSX OA] = {mS1A1, m S1A2,.. m S1An

m S2A1, m S2A2, … m S2An

……

m Sm,A1, m SmA2, … m SmAn}

such that 0 m XY 1

(1)

The values of semantic similarity are dependent on the notion of semantics which
is employed. The similarity matrix can be used across ontologies if the notion of
semantics is consistent.

We discuss the previous work in the area of computing similarities for schema
matching in the next section. Thereafter we explain the theoretical basis of our
research problem.

2.1 Previous Work

Similarity based approach for schema mapping has been studied using different
approaches. Shvaiko [6] has classified schema matching approaches and has
discussed the heuristics based approaches both at structure and element level. The
Similarity Flooding approach [5] as implemented in Rondo [8] utilizes a hybrid-
matching algorithm based on the ideas of similarity propagation. Schemas are
presented as directed labeled graphs; the algorithm manipulates them in an iterative
fix-point computation to produce mapping between the nodes of the input graphs. The
technique starts from string-based comparison (common prefixes, suffixes tests) of
the vertices’ labels to obtain an initial mapping which is refined within the fix-point
computation. The basic concept behind the SF algorithm is the similarity spreading
from similar nodes to the adjacent neighbors through propagation coefficients. From
iteration to iteration the spreading depth and a similarity measure are increasing till

 Class Structures and Lexical Similarities of Class Names for Ontology Matching 23

the fix-point is reached. The result of this step is a refined mapping which is further
filtered to finalize the matching process.

Cupid [9] implements a hybrid matching algorithm comprising linguistic and
structural schema matching techniques, and computes similarity coefficients with the
assistance of a precompiled thesaurus. Input schemas are encoded as graphs. Nodes
represent schema elements and are traversed in a combined bottom-up and top-down
manner. Matching algorithm consists of three phases and operates only with tree-
structures to which no-tree cases are reduced. The first phase (linguistic matching)
computes linguistic similarity coefficients between schema element names (labels)
based on morphological normalization, categorization, string-based techniques
(common prefixes, suffixes tests) and a thesaurus look-up. The second phase
(structural matching) computes structural similarity coefficients weighted by leaves
which measure the similarity between contexts in which individual schema elements
occur. The third phase (mapping generation) computes weighted similarity
coefficients and generates final mappings by choosing pairs of schema elements with
weighted similarity coefficients, which are higher than a given threshold. Both Rondo
[8] and Cupid [9] are important to our approach because they allow propagation of
semantic similarity, which is important to integrate the explicit and implicit semantic
matching definitions stated previously. For a complete survey of other schema
matching approaches see [6] and [10].

Lexical matching in ontologies has also been studied in detail in Semantic
integration approaches using ontologies. A survey by Noy [10] separates matching
approaches based on

 (i) shared upper ontologies based approaches and
(ii) heuristics based machine learning approaches

While both of the above are said to have advantages in different objective settings, the
later is significant in the absence of a commitment to a shared upper ontology. The
mappings in this case need to be stored as GAV or LAV similar to the approach in
schema matching based on directional mappings [11] and with an overall objective of
allowing query answering across heterogeneous data. The Heuristics based
approaches are reported to employ automatic or semi-automatic techniques by
looking at

• concept names
• class hierarchies
• property definitions
• instance definitions class descriptions (as Description Logic statements)

While instance based approaches such as GLUE [12] can be seen as helpful to
understand the ontology commitment of the instances, the luxury of availability of
time and access to the data instances cannot be assumed. Giunchiglia and Shvaiko
[13] on the other hand use WordNet as a common source for grounding. Subsequently
mappings such as generalizations, specializations, and disjointness are determined
using a SAT prover.

24 S. Sen, S. Somavarapu, and N.L. Sarda

2.2 The Ontology Mapping Problem

An assessment of the problems of semantic interoperability in spatial data
infrastructures can be seen in [14] Semantic mapping is reported to work at two
levels-(1) explicit semantics of the schema elements and (2) implicit semantics
resulting from schema structure including class hierarchies and attribute properties.
We divide these based on the following definitions

Definition 1. A mapping M is defined to be reflective of explicit semantics of the
schema elements if and only if every schema element that maps to another schema
element, can substitute the later in the absence of any schema structure.

In a lexicon such substitution entails that one is a synonym of the other.

Example 1: For a mapping M [A, B] = {1, 0, 0, 1} where A={road, intersection} B =
{street, crossing} we can say that it reflects explicit semantics of A and B if one could
substitute ‘road’ by ‘street’ and ‘crossing’ by ‘intersection’. In WordNet [7] this
condition would be true. Also if this criterion can be proved, the mapping can be
termed as reflective of explicit semantics of the schema elements.

Definition 2. A mapping M is defined to be reflective of implicit semantics
resulting from super-class structures if and only if every element that maps to
another element in the structure, has similar super classes and attributes (Also the
related super classes have the same criteria with respect to its own super-classes and
attributes)

Example 2: For a mapping M[A, B] = {1, 0, 0, 1} where A and B have two elements
each, let us assume one element of both A and B are sub classes of the other and
represented in figure 3. Here only if the explicit similarity of attributes of element1 of
A and element1 of B are higher M is reflective of implicit semantics of the super class
structure. In this case the explicit similarity of attributes of Element 1 of A and
Element 2 of B should be 0 and so also that of attributes of element 2 of A and
element1 of B. In regard to the implicit semantics of super-class we can say that since
element 2 of both A and B have similar super-classes, their own similarity value is

-attribute1
-attribute2

Element1

-attribute1

Element 2

-attribute1
-attribute2

Element1

-attribute1
-attribute2
-attribute3

Element 2

Schema A Schema B

Fig. 3. Implicit semantics of the super class structure

 Class Structures and Lexical Similarities of Class Names for Ontology Matching 25

higher than the original implicit value of similarity and explicit similarity of the
attributes combined.

Definition 3. A mapping M is defined to be reflective of implicit semantics resulting
from sub-class structures if and only if every element that maps to another element in
the structure, has similar sub classes and attributes. Also the related sub classes have
the same criteria with respect to its own sub-classes and attributes.

Example 3: For a mapping M[A, B] = {1, 0, 0, 1} where A and B have two elements
each, let us assume one element of both A and B are sub classes of the other and
represented in figure 4. The relation to similarity of attributes of Element1 and
Element2 in both A and B is the same as explained in Example 2. In regard to the
implicit semantics of sub-class we can say that since element 1 of both A and B have
similar sub-classes, their own similarity value is higher than the original implicit
value of similarity and explicit similarity of the attributes combined. (Note that here
subclasses have same number of attributes although the significance of equal number
of attributes cannot be considered as critical as is the case in Example 2)

Fig. 4. Implicit semantics of the sub class structure

Definition 4. A mapping M is defined to be reflective of complete semantics resulting
from both schema structure and semantics of elements if and only if the mapping is
reflective of implicit semantics of attributes, super-class and sub-class structures and
explicit semantics of schema elements.

Let us be clear that definition 1 does not qualify as a syntactic match of the labels of
the schema elements. The substitutability sense implied here involves semantics and
implied meaning of the label. This may not be clear from the label name alone and
usually requires a more verbose description. Secondly since definition 4 can be seen
as a combination of the other three definitions, we define our problem stepwise: to
obtain mappings which are reflective of

a. Explicit semantics of the schema elements
b. Implicit semantics of the super-class schema structure
c. Implicit semantics of the sub-class schema structure

26 S. Sen, S. Somavarapu, and N.L. Sarda

3 Semantic Mapping Generation

We describe the approach of generating the semantic mapping as a three step process,
namely (i) generating values of lexical similarity based on synonym relations (ii)
propagating the similarity values for sub classes and similarly for superclasses (iii)
combining the values of step (ii) to obtain the most similar classes and attributes (of
the source ontology) for each class and attribute of the target ontology. We describe
each step as below.

3.1 Generating Lexical Similarity Values

Definition 5. Lexical similarity S is a function defined between two element names x
and y where

S(x,y)= β(measure of the distance of the two words in a lexicon)

Such that 0 ≤S(x, y) ≤1

Remark 1. β is a weigthage function that we employ to sensitize our similarity
function for optimality conditions. The measure of distance on the other hand is
computed as the (d)-4

where d is the number of nodes traversed in the graph of the
lexicon (say WordNet). In case d is null or zero we assign a zero value to the measure
of distance.

Lexical similarities are computed as binary values between two schemas
components based on their corresponding entries in the lexicon. We assume a
GAV approach by computing mappings for each target ontology. In the absence of
a corresponding entry in the lexicon or in the case where there is no lexical relation
we assume that d is null and zero respectively. Since there are two types of lexical
relations in which we are interested (out of the 9 discussed by Evens and Smith
[15]) we have lexical match algorithms for synonyms, hypernyms, and hyponym.
For synonym relations the distance between two words is either 0 or 1 depending
on their occurrence in a WordNet synset. For our case study the target ontology is
that of Ordnance Survey UK [16] and source is OGC transportation schema (full
version) [1]. We list lexical similarities of class names based on synonyms in
column 3 of table 1 below.

3.2 Propagation of Similarities of Attributes and Superclasses

If attributes of the target class have high similarity values with respect to certain
attributes of the source class, such a mapping stands to be more attractive in
comparison to any mapping where the attributes do not yield high similarity values.
This is based on the definition of implicit semantics of superclass relations of
definition 2 we can obtain a no penalty algorithm for computing the propagated
similarity value as shown below.

 Class Structures and Lexical Similarities of Class Names for Ontology Matching 27

For all attributes
Obtain lexical similarity matrix Ma[OSX OT] for all attributes

End For
For all classes do

Obtain lexical similarity matrix Mc[OSX OT] such that class Tqc in OT has similarity

value SpTqcm with respect to class Spc in source ontology OS

For all attributes (a1, a2,…an) of Tqc do

If
βα
βα

+
+)()(SpTqnSpTq acm

>)(SpTqcm then

)(SpTqcm =
βα
βα

+
+)()(SpTqnSpTq acm

End If
End For

End For

Set {ParentClassBasket} = Null

While {ParentClassBasket} < OT

For all Classes in OT such that Parent Class Tqp is in {ParentClassBasket}

If
φϕ
φϕ

+
+)()(SpTqSpTq pmcm

>)(SpTqcm then

)(SpTqcm =
φϕ
φϕ

+
+)()(SpTqSpTq pmcm

End If

Include Tqc as member of {ParentClassBasket}

End For
End While

Fig. 5. Algorithm for Propagation of similarity values of attributes and superclasses. α, β, φ, φ,
represent weightages of propagation.

In short this algorithm allows an increase of the similarity values if the combined
value of similarity based on attribute similarity and thereafter, the superclass
similarity has increased. The use of such weightages clearly shows the use of
heuristics based measures. Table 1 below shows some values of improved similarity
values using the propagation described above.

3.3 Propagation of Similarities of Attributes and Subclasses

The propagation in this case is similar but uses subclass similarity values instead of the
superclass similarity values. Results of the propagation are shown in the table 2 below.

28 S. Sen, S. Somavarapu, and N.L. Sarda

Table 1. Top class matches based on propagated values of similarity of supper classes and
attributes

Target Class (cTq) Source Class (cSp) Lexical
Similarity

S(x,y)

Propagated
Similarity

(cmSpTq)

OS:RoadRouteInformation OGC:RailRoadRoute 0,6666667 0,766666667

OS:InformationPoint OGC:TransportationPoint 0,6052632 0,723684211

OS:InformationPoint OGC:TransportationPoint 0,6052632 0,723684211

OS:RoadPartiaRouteInformation OGC:RailRoadRoute 0,5714286 0,7

OS:road OGC:RailRoadPoint 0,5 0,65

OS:road OGC:RailRoadSegment 0,5 0,65

OS:road OGC:RailRoadSwitch 0,5 0,65

OS:InformationPoint OGC:TransportationPath 0,4166667 0,591666667

OS:InformationPoint OGC:TransportationPath 0,4166667 0,591666667

OS:roadInformationMember OGC:TransportationSegment 0,4047619 0,583333333

OS:roadLink OGC:RailRoadStation 0,4 0,58

OS:roadLink OGC:RailRoadPoint 0,4 0,58

OS:roadLink OGC:RailRoadSegment 0,4 0,58

OS:roadLink OGC:RailRoadRoute 0,4 0,58

OS:roadNode OGC:RailRoadStation 0,4 0,58

OS:roadNode OGC:RailRoadSegment 0,4 0,58

OS:roadNode OGC:RailRoadRoute 0,4 0,58

OS:roadNode OGC:RailRoadBridge 0,4 0,58

Table 2. Top class matches based on propagated values of similarity of subclasses and attributes

Target Class (cTq) Source Class (cSp) Lexical
Similarity

S(x,y)

Propagated
Similarity

(cmSpTq)

OS:RoadRouteInformation OGC:RailRoadRoute 0,6666667 0,766666667

OS:InformationPoint OGC:TransportationPoint 0,6052632 0,723684211

OS:RoadPartiaRouteInformation OGC:RailRoadRoute 0,5714286 0,7

OS:road OGC:RailRoadPoint 0,5 0,65

OS:road OGC:RailRoadSegment 0,5 0,65

OS:road OGC:RailRoadSwitch 0,5 0,65

OS:road OGC:RailRoadStation 0,5 0,55000001

OS:road OGC:RailRoadRoute 0,5 0,55000001

OS:road OGC:RailRoadSignal 0,5 0,53

OS:road OGC:RailRoadBridge 0,5 0,5

OS:InformationPoint OGC:TransportationPath 0,4166667 0,591666667

 Class Structures and Lexical Similarities of Class Names for Ontology Matching 29

Table 2. (continued)

OS:roadInformationMember OGC:TransportationSegment 0,4047619 0,583333333

OS:roadLink OGC:RailRoadStation 0,4 0,58

OS:roadLink OGC:RailRoadPoint 0,4 0,58

OS:roadLink OGC:RailRoadSegment 0,4 0,58

3.4 Most Similar Mappings

Generation of most similar mappings is based on a simple combination of the values
generated from 3.2 and 3.3. We use weightages (50:50 and 70:30) to obtain two sets
of most similar mappings. The basic lexical similarity values of both these mappings
and also the attribute similarity propagation is same. The results are shown in the
table 3 below.

Table 3. Top class matches based on overall similarity

Target Class Source Class Overall Similarity

(cTq) (cSp) (cmSpTq)

OS:InformationPoint OGC:TransportationPath 0,591666667

OS:InformationPoint OGC:TransportationPoint 0,723684211

OS:road OGC:RailRoadPoint 0,65

OS:road OGC:RailRoadSegment 0,65

OS:road OGC:RailRoadSwitch 0,65

OS:roadInformationMember OGC:TransportationSegment 0,583333333

OS:roadLink OGC:RailRoadPoint 0,58

OS:roadLink OGC:RailRoadSegment 0,58

OS:roadLink OGC:RailRoadStation 0,58

4 Analysis of Machine Generated Similarity Values

Since the objective of generating similarity values is to assist in human based
mapping and semi-automate the process of transformations, we need to analyze the
generated values vis-à-vis human generated values of similarity in the absence of any
assisting tool. The purpose here is to get an overview of how good the generated
values are and also the presence of errors (which we shall group as false positives and
false negatives)

4.1 Human Generated Similarity Values

The human generated similarity values were obtained by a small experiment. A blank
similarity matrix sheet, class-attribute list and the class diagrams of the ontologies A
and T (Appendix) were made available to the subject. Three steps were followed

30 S. Sen, S. Somavarapu, and N.L. Sarda

(i) A score of similarity (binary value) was recorded for every class name of the
 target with respect to each class name of the target based on English meaning
 of the words.

(ii) Two scores of similarity (binary values) were recorded for every class name
 of the target with respect to each class name of the target based on its
 position in the class structure. The first score is reflective of the subclass
 occurring in the class structure. Thus a class in the Target with same number
 of child classes and attributes as another class in the Source will have a
 higher score. The Second score is reflective of the superclass and hence if the
 target ontology superclass contains same number of attributes as the source
 ontology, it results in a higher score.

(iii) The three scores which are recorded in the similarity matrix sheet are
 combined to obtain the most similar class and attributes. The basis of
 combination is not fixed but left to the judgment of the human so that if
 he/she feels that the English meaning of the word is more important for
 matching, the values of subclass structure and superclass structure can be
 ignore. By default an average of the three is taken.

4.2 Performance Parameters

We can now compare the performance of our machine generated similarity values.
Graph 1 shows the difference in similarity values expressed as percentages. It should
be remembered that the granularity of the human generated values is lower. Therefore
it is more important to decide upon thresholds for the machine generated values in
order to compare the two. Table 4, on the other hand, summarizes the top 10 class

Similarity value comparision

-20

0

20

40

60

80

100

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

machine base similarity values

P
er

ce
nt

ag
e

ch
an

ge
se

en
in

hu
m

an
ge

ne
ra

te
d

va
lu

es

Graph 1. Percentage difference of human and machine based similarity values. We can see that
there is higher percentage change among lower values of machine based similarity.

 Class Structures and Lexical Similarities of Class Names for Ontology Matching 31

matches obtained from the human based similarity values. The numbers in italics are
machine generated values lower than the threshold limits discussed.

False Positives: False Positives can be identified from the faulty values of the
machine generated values. In our case this was 12.3% at t threshold of 0.50 and
36.9% at a threshold of 0.40. False positives were mainly seen in the cases where
parts of the target class name existed as a part of the source class name.

False Negatives: Table 4 below shows the top ten class matches. The lower three
cases have low machine generated values which indicate that such matches would not
quality for mapping between the schemas. Overall Percentage of False negatives has
been observed to be 4% at a threshold of 0.30 although the occurrence is higher(25%)
in the top 20 class matches based on human generated similarity values.

Table 4. Top ten matches based on human generated similarity values

Target Class Source Class Machine
Similarity

(cTq) (cSp) (cmSpTq)

OS:roadLink RailRoadRoute 0,58

OS:roadLink RailRoadSegment 0,58

OS:roadMember RailRoadStation 0,58

OS:road RailRoadRoute 0,55

OS:roadMember RoadLinearFeatureEvent 0,533333

OS:roadLink TransportationPath 0,377778

OS:ferryTerminal TransferCluster 0,267436

OS:roadLink LinearFeatureEvent 0,169114

OS:ferryTerminal RailRoadRoute 0,168297

5 Data Translations Based on Ontology Mappings

Ontology mappings discussed in the previous sections are generated with a purpose to
allow a framework to translate or extract the database records from a particular source
database (and hence its schema elements) into that of another database (the target).
Such a framework needs to include

• Translation of the query originating from a certain target database in terms of
the schema elements of the source database based on ontology mappings of
these elements.

• Similar translation of the results from the source into the schema elements of the
target.

Both these points can be achieved using a wrapper based mechanism based on Xpath
statements as shown in Figure 6 below. This approach is similar to the approach

32 S. Sen, S. Somavarapu, and N.L. Sarda

-

-
-

Fig. 6. XQuery based Wrapper generated from ontology mapping

discussed by based on the ontology mapping and allows data to extracted from the
source into the target. However, this framework assumes XML enabled databases.

Geographic Markup Language (GML)[1] supported data allows the use of XQuery
statements and a sample translation of data from one (source)database to another
(target) database is shown below. The figure 7 shows maps rendered from the source
data and the translated version. Since the geometric data remains unchanged in the
ontology mapping, changes can be seen in the attribute properties of the data classes
seen in the properties window.

The translation is based on the following principles:

(i) Data records belonging to a class, which maps to another class in the target
database, are reported as members of the mapped class.

(ii) If the class is a part of another class and the target class is constituted as a join
or manipulation3

of record values from the source data class.

3 Although manipulation could include transformation of data structures such as string to

integer, in this case we mean manipulations, which transform the data without additional
information such as multiplication factor or addition/deletion of a constant value.
manipulation formula although we have not used the same.

 Class Structures and Lexical Similarities of Class Names for Ontology Matching 33

Fig. 7. GML data from Source and translated version displayed along with class attributes

6 Conclusions and Future Work

We have seen that lexical similarities of schema element labels and descriptions can
help in ontology mapping. Along with similarity propagation based on heuristics
allows integration of implicit semantics of the ontology structure and hence improves
the mapping process. The propagation of similarity is directional in nature as opposed
previous approaches [5,8,9]. However the experiments have also shown that there are
problems with machine based similarity assessment.

(i) Thesemantic similarity of individual words does not always provide a good
indicator of the semantic similarity of group words. Since class descriptions
were used for similarity assessment this led to false positives in many cases.

(ii) Similarly although limited word senses were evaluated based on part of speech,
word sense disambiguation would help to reduce number of false negatives.
Such cases explain the occurrence of high percentage change of human
generated similarity values among lower values machine generated values

It is also important to note that use of heuristics and threshold values is critical in
order to use the semi-automatic mapping approach.

These are only the initial results from our efforts to allow transformations based on
a semi-automated approach as discussed in the motivation. The translation of data
from the source to the target as shown in § 5 is only a step towards a broader
framework of interoperable databases using ontologies. The whole exercise of

34 S. Sen, S. Somavarapu, and N.L. Sarda

ontology mapping can be seen in the context of ontology aware database management
systems [18] and query answering across databases.

Comparison of human generated values helps to see the utility of the semi-
automated approach with machine based mappings. The main aspect of error prone
and non-standard techniques followed in human based matching has not been set out
forth in this paper and is beyond the scope of this paper. We can assume that machine
generated values provide an advantage. Future work in this area, therefore, has to
involve a comparison of performance in human based mapping with and without the
assistance of machine-based values.

Acknowledgments

The work presented in this paper is supported by the NRDMS, Dept of Science and
Technology, Government of India. We are also thankful to Ordnance Survey, UK for
their help in this project.

We are grateful to other members of the team at CSE and CSRE, IIT Bombay for
their help and discussions in this project.

References

1. OGC: Geography Markup Language (GML) Implementation Specification, Version 3.0
2003, (last visited 22.04.2006) available at

 http://www.opengeospatial.org/docs/02-023r4.pdf
2. Lutz, M., Klien, E.: Ontology-Based Retrieval of Geographic Information. International

Journal of Geographical Information Science 20(3), 233–260 (2006)
3. Gruber, T.R: Toward Principles for the Design of Ontologies Used for Knowledge

Sharing. In: Formal Ontology in Conceptual Analysis and Knowledge Representation,
Kluwer Academic Publishers, Dordrecht (1993)

4. Sen, S., Somavarapu, S., Sarda, N.L.: Resolving Semantic Heterogeneity in the Indian NSDI:
An Ontology Mapping Approach. In: Proc. of MapIndia Conference, New Delhi (2006)

5. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching
algorithm. In: Proceedings of the International Conference on Data Engineering (ICDE),
pp. 117–128 (2002)

6. Shvaiko, P.: A Classification of Schema-based Matching Approaches. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298. Springer,
Heidelberg (2004)

7. Fellbaum, C. (ed.): WordNet - An Electronic Lexical Database. The MIT Press,
Cambridge (1999)

8. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A Programming Platform for Model
Management. In: Proc. ACM SIGMOD 2003, San Diego (June 2003)

9. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching Using Cupid. In:
Proc. VLDB 2001(PDF, 140KB) Extended version: MSR-TR-2001-58 (2001)

10. Noy, N.F.: Semantic Integration: A Survey Of Ontology-Based Approaches SIGMOD
Record. Special Issue on Semantic Integration 33(4) (December 2004)

11. Halevy, A.Y., Ives, G.I., Mork, P., Tatarinov, I.: Data Management Infrastructure for
Semantic Web Applications. IEEE Transactions on Knowledge and Data
Engineering 16(7), 787–798 (2004)

12. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontologies on
the semantic web. In: The Eleventh International WWW Conference, Hawaii, US (2002)

 Class Structures and Lexical Similarities of Class Names for Ontology Matching 35

13. Giunchiglia, F., Shvaiko, P.: Semantic Matching. The Knowledge Engineering Review
Journal 18(3), 265–280 (2003)

14. Bishr, Y.: Semantic aspects of interoperable GIS. In: Ph.D. Dissertation, International
Institute for Aerospace Survey and Earth Sciences, Enschede, The Netherlands, p. 154.
ITC Publication No. 56 (1997)

15. Evens, M., Smith, R.: Properties of Lexical Semantic Relations. The Finite String, No. 4
(1978)

16. Ordnance Survey: Ordnance Survey OS MasterMap Integrated Transport Network (ITN)
Layer available at http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/itn/
(last visited 22.04.2006)

17. Cruz, I.F., Rajendran, A.: Semantic Data Integration in Hierarchial Domains. IEEE
Intelligent Systems 18(2), 66–73 (2003)

18. Sarda, N.L.: Ontology-aware database management systems. In: Proceedings of IRMA
International conference, Philadelphia (2003)

Appendix: Ontologies from the geospatial domain used for the case study.

T
Source

Layers

Classes

36 S. Sen, S. Somavarapu, and N.L. Sarda

A

Source

Layers

Classes

M. Collard (Ed.): ODBIS 2005/2006, LNCS 4623, pp. 37–50, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Scalable Interoperability Through the Use of COIN
Lightweight Ontology

Hongwei Zhu1,2 and Stuart E. Madnick1

1 Massachusetts Institute of Technology
Sloan School of Management

30 Wadsworth Street, E53-320, Cambridge, MA 02142, USA
{mrzhu,smadnick}@mit.edu

2 Old Dominion University
College of Business and Public Administration

Constant 2079, Norfolk, VA 23529, USA
hzhu@odu.edu

Abstract. There are many different kinds of ontologies used for different
purposes in modern computing. A continuum exists from lightweight ontologies
to formal ontologies. In this paper we compare and contrast the lightweight
ontology and the formal ontology approaches to data interoperability. Both
approaches have strengths and weaknesses, but they both lack scalability
because of the n2 problem. We present an approach that combines their
strengths and avoids their weaknesses. In this approach, the ontology includes
only high level concepts; subtle differences in the interpretation of the concepts
are captured as context descriptions outside the ontology. The resulting
ontology is simple, thus it is easy to create. It also provides a structure for
context descriptions. The structure can be exploited to facilitate automatic
composition of context mappings. This mechanism leads to a scalable solution
to semantic interoperability among disparate data sources and contexts.

Keywords: lightweight ontology, formal ontology, context, mediation,
scalability, semantic heterogeneity.

1 Introduction

Ontologies have been widely used in modern computing for purposes such as
communication, computational inference, and knowledge organization and reuse [7].
For different purposes there are a variety of different ontologies, which range from a
glossary, to a taxonomy, a database schema, or a full-fledged logic theory that
consists of concepts, relationships, constraints, axioms, and inference machinery. As
illustrated in [21], a variety of ontologies form a continuum from lightweight, rather
informal, to heavyweight, and formal ontologies.

The lightweight ontology approach and the formal ontology approach are often
used differently and have different strengths and weaknesses. Both approaches can be
used to support data interoperability among disparate sources.

38 H. Zhu and S.E. Madnick

Lightweight ontologies usually are taxonomies, which consist of a set of concepts
(i.e., terms, or semantic types) and hierarchical relationships among the concepts. As
an artifact, it is relatively easy to construct a lightweight ontology. However, such
lightweight ontologies do not capture the detailed semantics of the concepts, which
sometimes is documented in a data dictionary, and/or embedded in the data models
and the data processing programs.

There are two different approaches to using lightweight ontologies for intero-
perability purposes. One approach is to develop a single lightweight ontology, in
which case all parties need to agree on the exact meaning of the concepts. The
lightweight ontology and the agreements together form a standard that all parties
uniformly adopt and implement. That is, a lightweight ontology is often used to sup-
port strict data standardization. However, reaching such agreements can be difficult.
For example, a data standardization effort within the U.S. Department of Defense
(DoD) took more than a decade only to standardize less than 2% of the data across all
organizations of the DoD [18]. The alternative approach is to allow multiple light-
weight ontologies to co-exist, in which case mappings among the ontologies need to
be provided. Because the semantics is not formally captured in the ontologies, efforts
are required to identify the semantic differences and then develop (often hand-code)
the mappings to enable pair-wise interoperability. The number of pair-wise mappings
is n(n-1) (which is O(n2)) if there are n different ontologies, thus the amount of effort
required increases quickly as n becomes large. This is the so called n2 problem of data
interoperability. A survey [19] shows that approximately 70% of the costs of data
interoperability projects are spent on identifying the semantic differences and
developing code to reconcile them.

In contrast, the formal ontology approach uses axioms to explicitly represent
semantics and has inference capabilities. This approach can also support interoperability
either via a single ontology or via mappings of multiple ontologies. The key difference
is that the semantics of the ontological concepts and the mappings are explicitly
captured in a formal logic theory.

To summarize, both ontology approaches can be used to support data
interoperability either via standardization or via mappings of multiple ontologies. The
difficulty of reaching an agreement on a single data standard can be enormous so that
in practice multiple standards (i.e., ontologies) co-exist even within a single
organization. Thus, in practice ontology mappings are required to enable interoper-
ability among data sources and systems. Both ontology approaches suffer from the n2
problem. The key difference between the two ontology approaches is that lightweight
ontologies do not capture the semantics in the ontologies, whereas formal ontologies
explicitly capture semantics. As artifacts, lightweight ontologies are simple and easy to
create, whereas formal ontologies are complex and difficult to create. But the sem-
antics and the mappings of lightweight ontologies are often scattered in various data
models and data processing programs, making maintenance extremely difficult. The
semantics and mappings of formal ontologies are in the form of a logic theory, which
is relatively easier to maintain. Both approaches have weaknesses that limit their
effectiveness.

It is desirable to have an approach that combines the strengths and avoid the
weaknesses of the two ontological approaches. In this paper, we present such an
approach, which is developed in the COntext INterchange (COIN) project [3, 5, 25]

 Scalable Interoperability Through the Use of COIN Lightweight Ontology 39

for semantic data interoperation purposes. It uses a lightweight ontology, which
provides the structure for organizing context descriptions to account for the subtleties
of the concepts in the ontology. We will use the terms COIN ontology and COIN
lightweight ontology interchangeably. COIN also implements a reasoning algorithm
to determine and reconcile semantic differences between different data sources and
receivers.

The rest of the paper is organized as follows. In Section 2, we describe the COIN
lightweight ontology approach. In Section 3, we present the scalability benefit of the
approach. In Section 4, we discuss related work. In Section 5, we conclude and point
out future research.

2 COIN Lightweight Ontology

We will use an online price comparison example to illustrate the COIN lightweight
ontology approach.

2.1 Online Price Comparison Example

Numerous vendors make their pricing information available online. With web
wrappers, such as Cameleon [2] and others [1], and the increasing adoption of XML
and web services, one can gather price data and compare offers from different
vendors. To perform meaningful comparisons, one has to reconcile the semantic
differences of price data, especially when data is from vendors scattered around the
world [22].

Consider a scenario where data is from 30 vendors from 10 different countries. For
simplicity of discussion in this paper, let us assume that all vendors quote prices using
the same schema and same Product identification, represented using the following
first order predicate:

quote(Product, Price, Date)

but different vendors use different conventions so that the price values are interpreted
differently depending on which vendor provides the quote. Table 1 provides a few
examples of different interpretations of price. A base price refers to price with taxes
and shipping & handling (S&H) excluded (e.g., price quotes from vendors 2 and 3).

Let us assume that each vendor uses a different convention, thus we have 30
unique conventions, which we call contexts. We can label vendor i’s context as ci. For

Table 1. Interpretations of Price

Vendor Interpretation of Price
1
2
3
…
30

In 1’s of USD, taxes and S&H included
In 1’s of USD, taxes and S&H excluded
In thousands of Korean won, taxes and S&H excluded
…
In millions of Turkish lira, taxes included

40 H. Zhu and S.E. Madnick

simplicity, we will assume that users normally adopt a vendor context. Or we can
assume that the only users are the vendors, each of whom wants to compare his prices
with all of his world-wide competitors and wants the comparison done in his own
context. In this scenario, to allow users in all contexts to meaningfully compare
vendor prices, it is necessary that price data from other contexts be converted to the
user context, which would require 870 (i.e., 30*29=870) conversions. Hand-coding
these conversions and maintaining them over time, since contexts do change (e.g.,
prices in French francs and German deutschemarks became Euros), can be costly and
error-prone.

2.2 COIN Lightweight Ontology

In the example, there are a number of subtle differences in the meaning of the high
level concept price. It is important that these subtleties are captured and the
differences are reconciled for meaningful comparisons.

Like the traditional lightweight ontology, the COIN ontology includes a set of
concepts, among which there can be a hierarchy represented with an is_a relationship.
Besides, the COIN ontology also includes attribute as a binary relationship between a
pair of concepts. Attributes are also called roles, and correspondingly attribute names
are called role names. For example, price can be the hasPrice attribute of product.
Conversely, product can be the priceOf attribute of price. To capture the subtle
differences in meaning, the COIN lightweight ontology introduces modifier as a
special kind of attribute. The values of modifiers are specified as context descriptions
outside the ontology. Fig. 1 shows a graphic representation of the COIN lightweight
ontology for the online price comparison example.

basic

Price

currency scaleFactor
kind

ProductpriceOfDate dateOf

t Concept/
Semantic type

a Attribute m Modifier

is_a

Legend

Fig. 1. COIN lightweight ontology for online price comparison example. It contains only high
level concepts, the refined variants of which can be derived from the assignments of modifiers
that belong to each high level concept.

In this ontology, we include a modifier-free root concept basic, which is similar to
thing as the root in many object-oriented models. We include three modifiers: kind,
currency, and scaleFactor. Each modifier captures a particular aspect in which the
underlying concept can have different interpretations. Contexts are described by
assigning values to modifiers present in the ontology. In simple cases, a specific value
is assigned to a modifier in a context. In other cases, the assignment must be specified
by a set of rules. In either case, a context is conceptually a set of assignments of all
modifiers and can be described by a set of <modifier, value> pairs. For example,
contexts c2 and c3 (refer to vendors 2 and 3 in Table 1) can be described as:

 Scalable Interoperability Through the Use of COIN Lightweight Ontology 41

 c2 := { <kind, basePrice>, c3 := { <kind, basePrice>,
 <currency, usd>, <currency, krw>,
 <scaleFactor, 1> } <scaleFactor, 1000> }

The language used in COIN for describing context (as well as context mappings

and the lightweight ontology) is based on F-logic [12], an object-oriented logic. F-
logic rules are converted to Datalog for reasoning purposes. In COIN, various “user-
friendly” front-ends have been created so that developers do not directly need to use
F-logic or Datalog. Below is example rule using the logic to assign a value to
currency modifier in context c3:

].'')([])([
|::

33 KRWcvalueYYccurrencyX
basicYpriceX

→∧→
−∃∀

where variables (e.g., X, Y) are objects, the modifier and attributes of which are
represented by methods (which are declared in square brackets). The method value is
similar to the value predicate in context logic of [15]; it returns the ground value of
the object in the context specified by the parameter (which is c3 in the example).

2.3 Characteristics of COIN Lightweight Ontology

A COIN ontology, as shown in Fig. 1, includes only high level concepts (plus their
relationships, such as the binary relationships of context modifiers). Thus it is simple
and relatively easy to create and reach agreement. But the involved parties do not
need to agree on the details of each concept. Each party can continue to use its
preferred interpretation for each high level concept. In other words, each party can
conceptually have its own local ontology. Fig. 2 depicts the conceptual local
ontologies for vendors 2 and 3. To avoid clutter, we have omitted attribute names in
the figure.

basic

basePrice_1s_USD ProductDate

basic

basePrice_1Ks_KOW ProductDate

Fig. 2. Conceptual local ontologies for vendor 2 (left) and vendor 3 (right), derivable from
COIN lightweight ontology shown in Fig. 1

These local ontologies are not part of the COIN lightweight ontology, but they can
be derived from the COIN ontology using the context descriptions. In other words, the
COIN lightweight ontology provides a structured way to describe contexts and derive
refined local ontologies.

Furthermore, a more traditional global ontology that integrates all the local
ontologies could be constructed from the COIN ontology and the accompanying
context descriptions. A graphic representation of such a global ontology for the online
price comparison example is given in Fig. 3, which includes two intermediate layers
(i.e., the layers starting with BasePrice and In USD concepts, respectively). Concepts

42 H. Zhu and S.E. Madnick

in each layer remove a certain kind of ambiguity. For example, BasePrice indicates
the kind of price, which does not include shipping and handling charges. The nodes
below it further refine the base price concept by specifying the currency, e.g., in USD.
Alternatively, the intermediate layers can be omitted. In this case, specialized
concepts on the leaf level, such as basePrice_1s_USD, directly connect to the generic
Price concept.

Price

BasePrice Base+T+SH

In USD In EUR… In USD In EUR…

In 1’s In 1M’s… … In 1’s In 1M’s…

ProductpriceOfDate dateOf

…

basic

Fig. 3. An example fully-specified global ontology for the online price comparison example.
Leaf nodes represents the concepts with specific semantics, e.g., the first leaf node on the left
represent the concept of “price, not including taxes or shipping handling, in 1’s of USD”.

Ontologies are design artifacts. Comparing the artifacts shown in Fig. 1 and Fig. 3,
we observe that the COIN approach creates much simpler ontologies – though, for
many purposes, they are functionally equivalent. As discussed in [13, 24], the COIN
approach has several advantages over the formal ontology approach. First, the COIN
ontology is usually much simpler, thus easier to manage. Although in practice it is
unlikely that one would create an ontology to include all possible variations (e.g.,
basePrice_1M’s_USD), a COIN ontology is still much easier to create than any
ontology similar to the one in Fig. 3 even with a smaller number of refined concepts.
Second, related to the first point, although the COIN ontology is simple, it provides
the means to derive all refined concepts as illustrated in Fig. 3. Third, a COIN
ontology facilitates consensus development, because it is relatively easier to agree on
a small set of high level concepts than to agree on every piece of detail of a large set
of fine-grained concepts. And more importantly, the COIN ontology is much more
adaptable to changes. For example, when a new concept “base price + S&H in 1000’s
of South Korean Won” is needed, the fully specified ontology may need to be updated
with insertions of new nodes. The update requires the approval of all parties who
agreed on the initial ontology if a single ontology is used, or mappings need to be
added to ensure its interoperability with other variants of the price concept. In
contrast, the COIN approach can accommodate this new concept by adding new
context descriptions without changing the ontology. As we will see later, the new
mappings may not need to be added when they can be derived from existing
mappings using a reasoning mechanism.

The COIN lightweight ontology approach also has advantages over the traditional
lightweight ontology approach. Although, similar to the traditional approach, the

 Scalable Interoperability Through the Use of COIN Lightweight Ontology 43

COIN ontology does not include detailed descriptions of semantics, it does provide a
vocabulary and the structure for describing semantics using context descriptions. As
we will see in the next section, the context reasoning mechanism exploits the structure
to solve the n2 problem.

3 Scalable Interoperability with COIN Lightweight Ontology

When data sources and data receivers are in different contexts, conversions (also
called lifting rules or mappings) are needed to convert data from source contexts to
the receiver context. We call the set of conversions from a context to another context
a composite conversion. When conversions are specified pair-wise between contexts,
it requires ~n2 composite conversions to achieve interoperability among n contexts. It
is costly and error-prone to develop and maintain such a large number of conversions.
Thus approaches that hand-code the ~n2 composite conversions do not scale well
when n increases.

The use of lightweight ontology in COIN makes it possible to avoid the above
mentioned problem. In addition to using ontology and contexts to represent semantic
heterogeneity, COIN also has a reasoning component to determine and reconcile
semantic differences. We explain how COIN achieves scalability though conversion
composition in the remainder of the section.

3.1 Conversion Composition

In COIN, conversions are not specified as convoluted rules pair-wise between
contexts. Instead, they are specified for each modifier between different modifier
values. For example, a conversion can be defined for currency modifier to convert
values in different currencies such as by using an exchange rate function represented
by the following predicate:

olsen(CurFrom, CurTo, Day, Rate)

It returns an exchange Rate from CurFrom currency to CurTo currency on a given
Day. The function can be implemented externally as a table lookup or as a callable
service1. We call a conversion defined for a single modifier a component conversion.

The component conversions in COIN are also specified using F-logic. Below is an
example component conversion for currency modifier; it is parameterized with
context C1 and C2 and can convert between any currencies. We use olsen_ for the
skolemized version of original olsen predicate.

.*])2([),,,_(

][])2([])1([
],1@)2,([

|:

222
ruvrCvalueRDTBCACDRBAolsen

TdataOfxCCcurrencyXCCcurrencyX
vuCCcurrencycvtX

priceX

CC

t

C

f

tf

=∧→∧=∧=∧=∧

∧→∧→∧→
←→

−∀

1 In many applications using COIN, such conversion functions are implemented by using web

wrapped services, such as the www.oanda.com currency conversion web site.

44 H. Zhu and S.E. Madnick

Once all component conversions are defined, composite conversions can be
composed automatically using a context reasoning algorithm. Fig. 4 illustrates the
concept of conversion composition.

In Fig. 4, the triangle symbol on the left represents the price concept in context c3,
i.e., base price in 1000’s of South Korean won (KRW); and the circle symbol on the
right represents the price concept in context c2, i.e., base price in 1’s of USD. For data
in context c3 to be viewed in context c2, they need to be appropriately converted by
applying the appropriate composite conversion. The dashed straight arrow represents
the application of the composite conversion that would have been implemented
manually in other approaches. With the COIN lightweight ontology approach, the
composite conversion can be automatically composed using the predefined
component conversions. As shown in Fig. 4, we first apply the component conversion
for currency modifier (represented by cvtcurrency), then apply the component
conversion for scaleFactor modifier (represented by cvtscaleFactor).

Price in
1000’s of KRW

Price in
1’s of USD

cvtcurrency(∆) =⌂ cvtscaleFactor(⌂)

∆ ○

Implemented manually when
contexts are unstructured

Composed automatically
when contexts are structured

Fig. 4. Composite conversion composed using component conversions. Without composition,
one would hand-code a direct conversion to convert the price in 1000’s of KRW to the price in
1’s of USD; this conversion illustrated by the straight dashed arrow. With COIN, this
composite conversion can be derived from the component conversions for currency (cvtcurrency)
and scale factor (cvtscaleFactor).

The composition algorithm, shown in Fig. 5, is quite simple. In COIN project, it is
implemented in a query rewriting mediator using abductive constraint logic
programming (ACLP) [10] and constraint handling rules (CHR) [4]. With the
mediator, queries can be issued as if all data sources were in the requester’s context
(i.e., the target context). The mediator generates mediated queries that contain the
composite conversions. Data is converted from source contexts to the requester’s
context when the mediated queries are executed.

A demonstration of the query mediator is shown in Fig. 6. The source used also
includes a Vendor column, as shown in the sample schema near the middle of the
figure. The source context corresponds to context c3, and the requester context
(c_c_usa2 in the figure) is equivalent to context c2 in the online price comparison
example discussed earlier. In the demonstration, the QuoteDate field can have
different date formats, which we did not include in the ontology discussed earlier but
can be accommodated by adding a dateFormat modifier to Date concept in the
ontology in Fig. 1.

 Scalable Interoperability Through the Use of COIN Lightweight Ontology 45

Input: data value V, corresponding concept C in ontology,
 source context C1, target context C2
Output: data value V (interpretable in context C2)

Find all modifiers of C
 For each modifier mi
 Find and compare mi’s values in C1 and C2
 If different: V=cvtmi(V); else, V=V
Return V

Fig. 5. Algorithm for composing composite conversion using component conversions

Mediated Datalog query

Mediated SQL query

src_krea
<Product, Vendor, QuoteDate, Price>

answer('V7', 'V6'):-
src_korea("iPod", 'V7', 'V5', 'V4'),
'V3' is 'V4' * 1000.0,
datexform('V5', "ISO Style -", 'V2', "American Style /"),
olsen("KRW", "USD", 'V1', 'V2'),
'V6' is 'V3' * 'V1'.

Requester context = c2

Fig. 6. A demonstration of conversion composition as query mediation

The requester SQL query, shown in the upper left of the figure, need not be aware
of any context differences. Our demonstration system allows us to step through the
various steps of mediation individually (e.g., converting the SQL to naïve Datalog
query, etc.). The Conflict Detection step outputs a table that summarizes the concepts
(called Semantic Types) whose modifiers have different values in the source and

46 H. Zhu and S.E. Madnick

requester contexts. A mediated Datalog query is generated using the algorithm shown
in Fig. 5. As can be seen, the mediated query contains the necessary conversions to
reconcile the context differences (namely currency and scale factor differences of
price concept, which corresponds to the Price filed in the source table, and format
difference of the Date concept, which corresponds to the QuoteDate field). The
mediated Datalog query can be converted an SQL query, which is shown at the
bottom in the figure.

3.2 Scalability Benefit

The primary benefit of the composition capability is the small number of component
conversions required, thus increased scalability when many data sources and contexts
are involved in data integration applications [23, 24].

In the worst case, the number of component conversions required by the light-
weight ontology approach of COIN is:

∑ −
=

m

i
ii nn

1
)1(

where ni is the number of unique values that the ith modifier has to represent all
contexts, m is the number of modifiers in the light-weight ontology.

While the formula appears to be n2, it is fundamentally different from the approach
that supplies comprehensive conversions between each pair of contexts. The supplied
conversions in COIN are component conversions, which are much simpler than the
comprehensive conversions that consider the differences of all data elements in all
aspects between two contexts. Furthermore, as shown below, the number of
component conversions required can be significantly smaller.

Let us use the online price comparison example to illustrate the scalability benefit
of the approach. With the given scenario, we can model the 30 unique contexts using
the three modifiers in the light-weight ontology shown in Fig. 1. Suppose the number
of unique values of each modifier is as shown in Table 2.

Table 2. Modifier values

Modifier Unique values
currency 10, corresponding to 10 different currencies
scaleFactor 3, i.e., 1, 1000, 1 million
kind 3, i.e., base, base+tax, base+tax+S&H

In the worst case, the light-weight ontology approach needs 102 (i.e., 90+6+6)
component conversions. But since the conversions for currency and scaleFactor
modifiers are parameterizable, the actual number of component conversions needed is
further reduced to 8, which is a significant improvement from the 870 composite
conversions required when conversions are specified pair-wise between contexts.

The number of component conversions can be further reduced when equational
relationships exist between contexts with different values of a modifier. Symbolic
equation solver techniques have been developed to exploit such relationships [3]. For
example, consider the three definitions for price: (A) base price, (B) price with tax

 Scalable Interoperability Through the Use of COIN Lightweight Ontology 47

included, and (C) price with tax and shipping & handling included. With known
equational relationships among the three price definitions, and two component
conversions:

(1) from base_price to base_price+tax (i.e., A to B) and
(2) from base_price+tax to base_price + tax + shipping & handling (i.e., B to C)

the symbolic equation solver can compute the other four conversions automatically (A
to C and the three inverses). This technique further reduces the number of component
conversions needed for a modifier from ni(ni-1) to (ni-1).

In many cases, the component conversion for a modifier can be parameterized, i.e.,
the component conversion can be applied to convert for any given pair of modifier
values. In this case, we only need to supply one component conversion for the
modifier, regardless of the number of unique values that the modifier may have. The
exchange rate function given earlier is such an example; with it, we only need one
component conversion for the currency modifier.

We use Fig. 7 to illustrate the intuition of the scalability result.

Currency

S
ca

le
 f

ac
to

r

Pric
e n

otio
n

KRW

base base

100
0 1

USD

Fig. 7. Intuition of scalability of COIN approach. Component conversions are provided along
the modifier axes. Composite conversions between any cubes in the space can be automatically
composed.

The modifiers of each ontological concept span a context space within which the
variants of the concept exist. Each modifier defines a dimension. In the figure, we
show the space spanned by the three modifiers of price concept. The component
conversions required by the COIN approach are defined along the axes of the
modifiers. With the composition capability, the COIN approach can automatically
generate all the conversions between units (e.g., the cubes in a three-dimensional
space, as sown in Fig. 7) in the space using the component conversions along the
dimensions. In contrast, the approaches that suffer from the n2 problem require the
conversions between any two units in the space to be supplied.

48 H. Zhu and S.E. Madnick

4 Related Work and Discussion

The most commonly cited definition for ontology is given in [6], where an ontology is
a “formal explicit specification of a share conceptualization”. But as discussed in
[7, 20], there is not a consensus definition for ontology, and there are many types of
ontologies, some of which use formal logic to explicitly capture the intended
meanings, and others use a set of mutually agreed terms to provide a shared
taxonomy. In the latter case, the intended meanings are not explicitly captured in the
ontology, rather, they are implicitly captured in the agreement.

The term lightweight ontology has been used very loosely in the literature.
Generally speaking, a lightweight ontology refers to a set of concepts organized in a
hierarchy with is_a relationships. Data dictionaries, product catalogs, and topic maps
are often considered to be lightweight ontologies. Opposite to lightweight ontologies
are formal ontologies, which often use formal logic to specify constraints,
relationships, and other rules that apply to the concepts [8, 14].

The use of ontology and contexts in the COIN approach is quite unique. The
ontology provides the necessary structure for context descriptions; and the context
descriptions, in turn, disambiguate the high level concepts in the ontology. The
structure provided by the ontology also facilitates the provision of component
conversions and the automatic composition of composite conversions necessary to
enable semantic interoperability among contexts. The resulting solution is scalable
because it requires significantly less manually created conversions.

There are other approaches that use ontology or contexts to enable interoperability
among disparate data sources [21]. It is beyond the scope of this paper to provide a
detailed comparison of these different approaches. We only make comments on a few
approaches to further articulate the uniqueness of the COIN approach.

Contexts can be described without using an ontology. For example, they can be
described using a context logic [15]. The so described contexts lack the structure like
the one provided by the COIN ontology. As a result, a large number of conversions
(i.e., lifting rules) are needed to enable semantic interoperability. Below is an example
conversion rule to convert price in c3 to price in c2 by reconciling the currency and
scale factor differences; the rule is a logic implementation of the conversion
represented by the straight dashed line in Fig. 4:

.1000**),,,,()),,,(,(
)),,(,(:

3

20
RPXRDusdkrwolsenDPIquotecist

DXIquotecistc
=

←

Suppose there n cubes in the contextual space shown in Fig. 7, the approach
requires n(n-1) conversion rules like the above one to enable full interoperability.

A recent effort tries to categorize lifting rules and attempts to use the patterns
revealed to devise general lifting rules [9]. More work is needed to show how these
patterns help with creation of general lifting rules and how these rules can be applied
to reason with multiple contexts.

Ontology is used in [16], where all types of data level and schema level
heterogeneity in multiple data sources are explicitly represented using a semantic
conflict resolution ontology (SCROL). For example, when acres and square meters
are used in different sources to represent the area of a parcel of land, the SCROL
ontology will explicitly represent the semantic difference by including two sub-
concepts of area: area_in_acre, and area_in_sq_meter. A SCROL ontology

 Scalable Interoperability Through the Use of COIN Lightweight Ontology 49

resembles the one in Fig. 3. The ontology needs to be updated when a new kind of
heterogeneity is introduced, e.g., “area in square miles”. No characterization on the
number of conversions needed is given in the paper.

Ontology is also used in [11] to provide structured context representation for
purposes of data interoperability in a multi-database environment. However, we are
not certain if their ontology would constitute a lightweight ontology. Nor does the
paper provide an assessment about the number of conversions required.

5 Conclusion

The COIN lightweight ontology approach to semantic interoperability has several
advantages. The ontology is simple, thus it is easy to create. The semantics of the
concepts is described as context descriptions outside the ontology. It can be as a
hybrid approach where are a lightweight ontology is annotated with a logic (i.e., F-
logic) that can be in a formal ontology approach. The use of modifiers to capture
subtle meaning differences provides the structure for describing the subtleties, and
facilitates the provision of component conversions, with which any composite
conversions can be composed dynamically to reconcile the semantic differences
between the sources and the receivers of data.

For future research, we would like to explore the applicability of the COIN approach
in other application domains, such as context-aware web services and peer-to-peer
information sharing. Another promising area is to apply the context represent-tation and
reasoning techniques to Semantic Web applications. Initial work has been done [19] to
represent COIN ontology and contexts using Semantic Web languages, such as OWL
and RuleML. The preliminary results indicate that COIN lightweight ontology,
structured context descriptions, and component lifting rules can be represented using
Semantic Web languages. Future work will adapt the reasoning algorithm and evaluate
its performance at large scales that are typical on the Semantic Web.

Acknowledgements. This work has been supported, in part, by The MITRE
Corporation, the MIT-Malaysia University of Science and Technology (MUST)
project, the Singapore-MIT Alliance (SMA), and Suruga Bank.

References

1. Chang, C.H., Kaye, M., Girgis, M.R., Shaalan, K.F.: A Survey of Web Information
Extraction System. IEEE Transactions on Knowledge and Data Engineering 18(10), 1411–
1428 (2006)

2. Firat, A., Madnick, S.E., Siegel, M.D.: The Cameleon Web Wrapper Engine. In:
Workshop on Technologies for E-Services (TES’00), Cairo, Egypt (2000)

3. Firat, A.: Information Integration using Contextual Knowledge and Ontology Merging. In:
PhD Thesis, Sloan School of Management. MIT, Cambridge, MA (2003)

4. Frühwirth, T.: Theory and Practice of Constraint Handling Rules. Journal of Logic
Programming 37(1-3), 95–138 (1998)

5. Goh, C.H., Bressan, S., Madnick, S., Siegel, M.: Context Interchange: New Features and
Formalisms for the Intelligent Integration of Information. ACM Transitions on
Information Systems 17(3), 270–293 (1999)

50 H. Zhu and S.E. Madnick

6. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition 5(2), 199–220 (1993)

7. Gruninger, M., Lee, J.: Ontology Applications and Design. Communications of the
ACM 45(2), 39–41 (2002)

8. Guarino, N.: Formal Ontology and Information Systems. In: Guarino, N. (ed.) Proceedings
of Formal Ontologies in Information Systems (FOIS ’98), Trento, Italy, June 6-8, 1998,
pp. 3–15. IOS Press, Amsterdam (1998)

9. Guha, R., McCarthy, J.: Varieties of Contexts. In: Blackburn, P., Ghidini, C., Turner,
R.M., Giunchiglia, F. (eds.) CONTEXT 2003. LNCS, vol. 2680, pp. 164–177. Springer,
Heidelberg (2003)

10. Kakas, A.C., Michael, A., Mourlas, C.: ACLP: Abductive Constraint Logic Programming.
Journal of Logic Programming 44(1-3), 129–177 (2000)

11. Kashyap, V., Sheth, A.P.: Semantic and Schematic Similarities between Database Objects:
A Context-Based Approach. VLDB Journal 5(4), 276–304 (1996)

12. Kiffer, M., Laussen, G., Wu, J.: Logic Foundations of Object-Oriented and Frame-based
Languages. J. ACM 42(4), 741–843 (1995)

13. Madnick, S.E., Zhu, H.: Improving data quality through effective use of data semantics.
Data & Knowledge Engineering 59(2), 460–475 (2006)

14. Mädsche, A.: Ontology Learning for the Semantic Web. Kluwer Academic Publishers,
Boston, MA (2002)

15. McCarthy, J., Buvac, S.: Formalizing Context (Expanded Notes). In: Aliseda, A., van
Glabbeek, R., Westerstahl, D. (eds.) Computing natural language, Sanford University
(1997)

16. Ram, S., Park, J.: Semantic Conflict Resolution Ontology (SCROL): An Ontology for
Detecting and Resolving Data and Schema-Level Semantic Conflict. IEEE Transactions
on Knowledge and Data Engineering 16(2), 189–202 (2004)

17. Rosenthal, A., Seligman, L., Renner, S.: From Semantic Integration to Semantics
Management: Case Studies and a Way Forward. ACM SIGMOD Record 33(4), 44–50 (2004)

18. Seligman, L., Rosenthal, A., Lehner, P., Smith, A.: Data Integration: Where Does the
Time Go? IEEE Bulletin of the Technical Committee on Data Engineering 25(3), 3–10
(2002)

19. Tan, P., Madnick, S.E., Tan, K.-L.: Context Mediation in the Semantic Web: Handling
OWL Ontology and Data Disparity Through Context Interchange. In: Bussler, C.J.,
Tannen, V., Fundulaki, I. (eds.) SWDB 2004. LNCS, vol. 3372, pp. 140–154. Springer,
Heidelberg (2005)

20. Uschfold, M., Gruninger, M.: Ontologies and Semantics for Seamless Connectivity. ACM
SIGMOD Record 33(4), 58–64 (2004)

21. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,
Hübner, S.: Ontology-Based Integration of Information - A Survey of Existing
Approaches. In: IJCAI-01 Workshop: Ontologies and Information Sharing, Seattle, WA,
pp. 108–117 (2001)

22. Zhu, H., Madnick, S., Siegel, M.: Global Comparison Aggregation Services. In: 1st
Workshop on E-Business, Barcelona, Spain (2002)

23. Zhu, H., Madnick, S.E: Context Interchange as a Scalable Solution to Interoperating
Amongst Heterogeneous Dynamic Services. In: 3rd Workshop on eBusiness (WEB),
Washington, D.C., pp. 150–161 (2004)

24. Zhu, H.: Effective Information Integration and Reutilization: Solutions to Technological
Deficiency and Legal Uncertainty. In: Ph.D. Thesis. MIT, Cambridge, MA (2005)

M. Collard (Ed.): ODBIS 2005/2006, LNCS 4623, pp. 51–67, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Domain Ontologies Evolutions
to Solve Semantic Conflicts

Guilaine Talens1, Danielle Boulanger1, and Magali Séguran2

1 MODEME, Université Jean Moulin
6 cours Albert Thomas – BP 8242

69355 Lyon cedex 08, France
{talens,db}@univ-lyon3.fr

2 SAP Labs France, SAP Research
805, avenue du Dr. Maurice Donat

06254 Mougins Cedex
magali.seguran@sap.com

Abstract. The growth and variety of distributed information sources imply a
need to exchange and/or to share information extracted from various and
heterogeneous databases. The cooperation of heterogeneous information
systems requires advanced architectures able to solve conflicts coming from
data heterogeneity (structural and semantic heterogeneity). To resolve semantic
conflicts relatively to evolutive domain ontologies following databases
evolution according to the dialogue between agents, taking care of scalability
issues, we propose a multi-agent system. These interaction protocols allowing
ontologies evolution are currently implemented by using Java and the JADE
(Java Agent DEvelopment framework) platform.

Keywords: Cooperation of heterogeneous information systems, Ontology
elicitation from databases, Ontology evolution.

1 Introduction

The growth and diversity of automated information systems in organizations make the
cooperation of information from heterogeneous databases [1], [2] and/or knowledge
bases necessary. Every cooperative architecture has to face heterogeneity problems:
technical heterogeneity (refers to various operating systems and platforms), syntactic
(concerns the diversity of choices regarding data models and query languages) and
application heterogeneities. This heterogeneity refers to schema, structural (like
generalization/specialization conflict) and semantic heterogeneities.

In order to achieve semantic interoperability the meaning of the exchanged
information must be understood across the different systems. Semantic heterogeneity
is information sources dependent: semantic conflicts arise when two contexts do not
use the same interpretation of the information. Semantic conflicts are classified as
follows:

52 G. Talens, D. Boulanger, and M. Séguran

− Synonymy conflicts (two entities semantically similar could have two different
names)

− Homonymy conflicts (two entities semantically different could have similar
names)

− Confounding conflicts (two attributes could be represented by different values or
precisions)

− Scaling conflicts (two attributes semantically similar could be represented by
different units).

Since a few years, the use of ontologies to extract implicit knowledge is a research-
intensive approach to overcome semantic heterogeneity difficulties in the context of
cooperation of heterogeneous information sources.

From an other point of view an agent-based solution seems well-adapted to solve
semantic heterogeneity problems. In a multi-agent system, it is natural to deal with
heterogeneities and conflicts: agents communicate by interaction and negotiation
protocols to treat these conflicts.

In our proposal, cooperation is achieved by means of an abstract descriptive layer
supporting advanced reconciliation processes and a multi-agent system. The metadata
involves descriptive data objects and links constituting a knowledge base (ontology)
rich enough to describe: various data models, and constraints, syntactic expressions of
local available data, semantic links between local data depending on various
application contexts. The knowledge base is integrated in a global project based on a
multi-agent approach for heterogeneous information sources cooperation.

Because metadata are distributed in the cooperating agents we have several
ontologies but as they share a common description, our approach could be qualified
‘hybrid ontology approach’ [3].

In first, we have briefly presented the context and the second point reminds some
related works. In a third point, agent ontologies are defined. The fourth point focuses
on the evolution of the agent ontologies with the interaction protocols during the
semantic conflicts resolution. Finally, we conclude and expose some perspectives.

2 Related Works

Numerous projects, based on information brokering have partially dealt with the
semantic conflicts solving. These systems use advanced technologies such as
information mediation, agent technology or semantic representation based on
ontologies, metadata or contexts [4]. For instance, whereas recent works emphasize
the need for adaptive ontologies following data source evolutions [5], [6], projects
often utilize global [7], [8], [9] and non scalable ontologies. The SIMS [7] model of
the application domain offers a hierarchical terminological knowledge base. Each
information source is related to one global ontology. INFOMASTER [8] also use
single ontology approach. InfoSleuth [10] captures developments such as agent
technology, domain ontologies and brokerage to support interoperation of data and
services in a dynamic and open environment. InfoSleuth emphasizes on ontologies
and brokers. Ontologies give a uniform and declarative description of semantic
information and an ontology agent provides an overall view of ontologies. Specialized

 Domain Ontologies Evolutions to Solve Semantic Conflicts 53

broker agents semantically match information needs in order to route requests to the
relevant resources. The InfoSleuth architecture consists of a set of collaborating
agents communicating by the query language KQML. Users express queries over
specified ontologies via applet-based user interfaces. KIF (Knowledge Interchange
Format) and SQL are used to represent queries over ontologies. Queries are routed by
mediation and brokerage to specialized agents for data retrieval from distributed
sources and for integration [10]. But the exact description of ontologies integration is
not proposed.

In OBSERVER [11] the semantics of one information source is described by one
separate ontology. It is not mentioned that the different ontologies share a common
vocabulary. To compare the different ontologies, mapping rules are needed. In
practice, to define inter-ontology mappings is not trivial.

SCROL [12] proposes a common ontology which specifies consensual vocabulary.
The authors argue that a common ontology and the use of a semantic data model
provide a complete agreement within the application domains.

COIN project [13], [14] uses a lightweight ontology coupled with powerfull
algorithms to realise context mediation.

The approach chosen in PICSEL project [15] is to define an information server as a
knowledge-based mediator (called domain ontology) in which the language CARIN is
used as the core logical formalism to describe both the domain of applications and the
contents of the relevant information sources.

Most recent projects propose an architecture of multi-agent system based on
evolutive ontology in a context of e-commerce as [16]. The DASMAS project [17]
presents a dialogue framework-based for resolving semantic interoperability in multi-
agent systems. The approach is characterized by: several multi-agent systems with
real world heterogeneous ontologies, the resolution of semantic differences at run-
time through an adapted protocol and the use of WordNet lexicon in the resolution
process. An ontology is associated to one multi-agent system and WordNet permits to
find semantically similar concepts in the heterogeneous ontologies.

To address the problem of ontology evolution, research projects propose to build
different versions of an ontology.

The problems of versioning and evolution in ontologies is significantly different
with those in the relational databases [18], [19], [20]. The authors [20] define
ontology versioning and evolution as ‘the ability to manage ontology changes and
their effects by creating and maintaining different variants of the ontology’.

In ontology evolution and versioning, two techniques exist : the first keeps track of
changes in a new version or compares ontologies and computes differences or
mappings between them. The second proposes automatic techniques based on
heuristics comparisons to find similarities and differences between the different
versions.

The OntoView system [21] helps a user to manage changes in ontologies and keeps
the ontology versions. It compares the versions of ontologies and highlights the
differences. It also allows the users to specify the conceptual relations between the
different versions of concepts.

In [22], the researchers propose a general framework for ontology evolution that
allows tools supporting different evolution tasks to share change information and

54 G. Talens, D. Boulanger, and M. Séguran

leverage change information obtained by other external tools. A structural comparison
of ontology versions is also proposed.

SHOE [23] does not keep track of changes from one version to another. SHOE
maintains each version of the ontology as a separate web page. The ontology designer
copies the original ontology file, assigns it a new version number, and adds or
removes elements as needed.

In [24] through the notion of evolution strategy, the users guide the ontology
evolution. They can control and customize the evolution process. [25] keeps track of
different versions of an ontology and offers the possibility to allow branching and
merging operations. Protegé [26] keeps track of, and records, ontology changes within
the ontology itself. It also compares versions of the same ontology.

On the market, Software AG [27] emerges and has developed an XML integration
solution allowing the integration of data sources as databases, XML-files and Web
Services. More recently, the ‘Information Integrator’ [28] proposes a single and
coherent view of disparate information sources by using a common ontology. This
domain ontology so-called ‘business ontology’ reinterprets the data described in the
local data-source ontologies. This reinterpretation is a way to represent complex
knowledge interrelating these data. This reengineering process of the data source
contents cannot be done automatically.

Scalability (the complexity of creation and maintaining the interoperation services
should not increase exponentially with the number of participating local information
sources) and extensibility (the ability to incorporate local information system changes
without having adverse effects on other parts of the larger system) are not really
treated in the case of multi-domain approaches.

Therefore, cooperative architectures with a multi-domain approach have
difficulties to deal with scalability and extensibility. Thus, they do not deal with
adaptative ontologies.

So, we present a proposition for semantic conflict resolution that integrates domain
ontologies evolution.

3 Agent Ontologies

This work is involved in the ACSIS (Agents for the Cooperation of Secure
Information System) project [29], [30], [31].

In our proposal actual information sources cooperation is based on agents
interactions. Each local source is represented by one or several agents and the set of
agents constitutes a multi-agent system. The scope of distributed artificial intelligence
brings techniques to implement multi-agent architectures able to dynamically face the
various emerging problems of information systems cooperation. The reasons for
modelling a system using multiple cognitive agents are various, they range from agent
cognitive capabilities to multi-agent dynamic features [32], [33]:

− Agents are autonomous, thus they can define their own internal goals and plans,
− they are able to deal with high level interactions through domain independent

communication messages,
− a multi-agent architecture can dynamically evolve according to the problem to

solve and even during the problem resolution,

 Domain Ontologies Evolutions to Solve Semantic Conflicts 55

− agents can detect changes in their environment, modify their behaviour and update
their internal knowledge base describing the environment,

− they are able to cooperatively solve problems (in particular knowledge-intensive
ones like semantic conflict resolution) through interactions and negotiation
protocols,

− agents allow the construction of open and scalable architectures (easy addition or
removal of data sources).

ACSIS architecture aims at resolving technical, syntactic, application (structural
and semantic) heterogeneities that appear during the cooperative processes. Our
architecture [29] comprises several levels to treat these different types of
heterogeneities:

− The technical heterogeneity between information sources is performed by using a
CORBA (Common Object Request Broker Architecture) middleware.

− The syntactic heterogeneity is resolved by Data Descriptive Objects (cf. paragraph
3.2) ensuring the homogenization of local data or knowledge bases.

− The structural and semantic heterogeneity is resolved during query processing by
using multi-agent system and interaction protocols.

Scalable domain ontologies are used to represent the agents’ knowledge corpus.
Each agent owns its ontology. The agents and their ontologies are described as
follows.

3.1 The Agent Model

An agent comprises several units (ontology unit constituted by Data Descriptive
Objects and links between these objects), acquaintances (list of closed known agents),
reasoning, communication, behaviour.

The defined multi-agent system is composed of different types of agents (see
Fig. 1).

The Wrapper Agent (WA) ensures the participation of local data to the cooperative
processes. Each WA is linked to a domain from a local database and DDOs (Data
Descriptive Objects) and intra-base links form its ontology.

The Information Agent (IA) structures the exchange between WAs during the
processing of global queries and semantic conflict resolution. Its ontology is
composed of the semantics links at the global level (inter-bases links). Each IA
groups WAs according to semantic characteristics. An IA accesses to at least one, and
potentially many information sources, and is able to collate and manipulate
information extracted from these sources in order to answer the users and other IAs.

Each IA is a multi-domain agent. Its ontology is formed by the inter-bases links.
The Interface Agent insures intermediation between the user (expert or user role)

and the other agents:

− The User Agent manages the query, validates the results and asks the re-execution
of the query if the results are not correct.

− the domain Expert Agent defines some intra-base links, chooses the database type
(relational/object) and gives a representative name of the domain.

56 G. Talens, D. Boulanger, and M. Séguran

Database n°1 Database n°2

Relational databases

Database n°3

Descriptive
level (database n°1)

Descriptive
level (database n°2)

Descriptive
level (database n°3)Wrapper

User
Agent

queries

IA1 IA2

Database n°n

WA1 WA2 WA3

Descriptive
level (database n°n)

IAn

WAn Expert
Agent

Database n°1 Database n°2 Database n°3

Object databases

Descriptive
level (database n°1)

Descriptive
level (database n°1)

Descriptive
level (database n°2)

Descriptive
level (datab n°2)

Descriptive
level (database n°3)

Descriptive
level (database n°3)Wrapper

User
Agent

queries

IA1 IA2

Database n°n

WA1 WA2 WA3

Descriptive
level (database n°n)

Descriptive
level (database n°n)

IAn

WAn Expert
Agent
Expert
Agent
Expert
Agent
Expert
Agent

Fig. 1. The different agents

Agents exchange information by interaction protocols to solve semantic conflicts
and to manage the evolution of domain ontologies.

3.2 Scalable Domain Ontologies

Models describing ontologies come from Distributed Artificial Intelligence,
Knowledge representation or Databases [34]. Two different directions are envisaged:

− the first is Distributed Artificial Intelligence oriented and proposes descriptive
logic with inference tools

− the second is Database-oriented and presents extended conceptual models so as to
represent all the informations.

We will adopt the ontology definition in a database/knowledge sharing approach.
Nevertheless, we integrate some inference rules. Ontology is an explicit, partial
specification of a conceptualization [35]. A conceptualization could be a set of
concepts, relations, objects and constraints defining the domain semantic model. An
ontology can be defined as a specific vocabulary and relationships used to described
certain aspects of reality and a set of explicit assumptions regarding the intended
meaning of the words vocabulary [36].

Recently, other definitions are used in the context of oriented mediation-
cooperation projects. Mena gave the following precise definition [37]:
‘ontology is a description of the concepts and relationships that can exist for an agent
or a community of agents. This definition is consistent with the usage of ontology as
set-of-concept-definitions, but more general. And it is certainly a different sense of
word than its use in philosophy. Ontology is a set of terms of interest in a particular
information domain and the relationships among them’.

In our approach, the ontology of each agent contains Data Descriptive Objects
(DDO) and links between these objects [29]. The DDOs contain the description of
data from local information sources as well as the access primitives to this data. Local
information entities (relation, relation attribute, primary key, object type, object
attribute…) are described so that each information source involving the cooperation

 Domain Ontologies Evolutions to Solve Semantic Conflicts 57

process is represented by a set of DDOs. The relation/object DDOs describe a class or
a relation. There is no difference between relationship or entity in our modeling
process, each concept is a relation DDO. The attribute DDOs include object attributes
(it could be object attribute or reference object attribute that stores a pointer on an
object) and relation attributes (it could be primary key, foreign key or relation
attribute).

The links connect DDOs, according to schematic, structural or semantic
characteristics.

Schematic Links between these DDOs are automatically extracted. The figure 2
presents the relations: firm (id firm, name), office worker (id, firstname, wage, id
firm).

The dependence links allow connecting the attribute DDOs to a relation/object
DDO.

The reference links allow to connect a reference DDO and a refereed DDO.

name : firm

:relation DDO

caption Dependence Link Reference Link

:primary key
DDO

name : id firm
type : string
length :15

: relation
attribute DDO

name : name
type : string
length :10

name : office
worker

:relation DDO

:foreign key
DDO

name : id firm
type : string
length :15

:relation
attribute DDO

name:firstname
type : string
length :10

name : wage
type : real
length :10
unit : dollar

:relation
attribute DDO

name : id
type : string
length : 15

:primary key
DDO

name : firm

:relation DDO

name : firm

:relation DDO

caption Dependence Link Reference Link

:primary key
DDO

name : id firm
type : string
length :15

:primary key
DDO

name : id firm
type : string
length :15

: relation
attribute DDO

name : name
type : string
length :10

: relation
attribute DDO

name : name
type : string
length :10

name : office
worker

:relation DDO

name : office
worker

:relation DDO

:foreign key
DDO

name : id firm
type : string
length :15

:foreign key
DDO

name : id firm
type : string
length :15

:relation
attribute DDO

name:firstname
type : string
length :10

:relation
attribute DDO

name:firstname
type : string
length :10

name : wage
type : real
length :10
unit : dollar

:relation
attribute DDO

name : wage
type : real
length :10
unit : dollar

:relation
attribute DDO

name : id
type : string
length : 15

:primary key
DDO

Fig. 2. Reference and dependence links between DDOs

Structural Links (generalization, specialization) are automatically extracted in the
case of object approach or defined by a domain expert in the case of relational
approach.

Semantic Links connect two DDOs, according to their semantic characteristics. The
links are defined either by a domain expert or are automatically created during the
query processing.

Synonymy Links describe a similar sense between two DDOs with different name
(for example between employee DDO and office worker DDO).

Non Synonymy Links describe a different sense between two DDOs with different
names.

Similarity Links describe a similar sense between two DDOs with same name.
Homonymy Links describe a different sense between two DDOs with same name

(name DDO and name DDO if name is the attribute of project and name is the
attribute of employee (see Fig. 3)).

Scale Links describe a same scale between DDOs which have a same unit
(employee wage DDO and director wage DDO with Dollar unit).

58 G. Talens, D. Boulanger, and M. Séguran

caption Detected Link

Expert Link

Dependence Link

Generalization

Specialization

name
:director

:relation
attribute DDO

name : name
type : string
length :10

:relation DDO

name :project

Homonymy

Permanent intra-base similarity and scale link

name :
employee

:relation DDO :relation DDO

name : name
type : string
length :10

:primary key
DDO

name : id
type : string
length: 10

:primary key
DDO

name : wage
type : real
length :10
unit : dollar

:relation
attribute DDO

name : id
type : string
length : 10

:primary key
DDO

name : name
type : string
length :10

:relation
attribute DDO

name : wage
type : real
length: 10
unit :dollar

:relation
attribute DDO

caption Detected Link

Expert Link

Dependence Linkcaption Detected Link

Expert Link

Dependence Link

Generalization

Specialization

name
:director

:relation
attribute DDO

name : name
type : string
length :10

:relation
attribute DDO

name : name
type : string
length :10

:relation DDO

name :project

Homonymy

Permanent intra-base similarity and scale link

name :
employee

:relation DDO

name :
employee

:relation DDO :relation DDO

name : name
type : string
length :10

:primary key
DDO

name : name
type : string
length :10

:primary key
DDO

name : id
type : string
length: 10

:primary key
DDO

name : id
type : string
length: 10

:primary key
DDO

name : wage
type : real
length :10
unit : dollar

:relation
attribute DDO

name : wage
type : real
length :10
unit : dollar

:relation
attribute DDO

name : id
type : string
length : 10

:primary key
DDO

name : id
type : string
length : 10

:primary key
DDO

name : name
type : string
length :10

:relation
attribute DDO

name : name
type : string
length :10

:relation
attribute DDO

name : wage
type : real
length: 10
unit :dollar

:relation
attribute DDO

name : wage
type : real
length: 10
unit :dollar

:relation
attribute DDO

Fig. 3. Ontology example

Different Scale Links specify a unit existence between two DDOs with same name
(employee and director wage DDOs with Dollar unit because there are US and
Canadian dollar).

Conflict semantic resolution is performed by the use of links and DDOs and by the
new links detection during the query processing. The user must validate these
detected links. Therefore, these synonymy, similarity and different scale links could
be temporary links (detected by the system and have to be validated), permanent
links (created by an expert, or validated) or user links (link inserted by the user). Non
synonymy, homonymy and scale links are permanent links. An intra-base link
connects two DDOs extracted from the same database; an inter-bases link connects
two DDOs extracted from two different databases.

DDOs hierarchy along with these local semantic links forms an ontology.

4 Interaction Protocols and Ontologies Evolutions

The interactions between agents are managed by a set of rules that forms interaction
protocols dedicated to conflict resolution.

In ACSIS project, interactions reuse the FIPA protocols [38]. The conflict
resolution is performed in a dynamic way during the insertion of a new information
source and the global query processing. The conflicts are solved relatively to the link
exploitation. The interaction protocols allow the domain ontologies to evolve with the
automatic detection of new links. When the detected links are validated, a semantic
inference process also allows the ontologies evolution.

In [39], an ontology is used to describe interaction protocols. Thanks to the global
ontology, the agents can dynamically adapt their behavior. In ACSIS project, the
interaction protocols cannot be changed because only the ontologies encapsulated in
the agents evolve, not the agents. These latter transfer the informations according to
predefined interaction protocols.

 Domain Ontologies Evolutions to Solve Semantic Conflicts 59

4.1 Insertion of a New Information Source

The registration step begins with the creation of a WA (a Wrapper Agent is created
for one database) and continues with the attachment to an IA (Information Agent).

Creation Step of a WA
The DDO hierarchy with the extracted links is encapsulated in a WA. Once created,
each WA can automatically detect temporary intra-base similarity links relatively
equivalence based on the DDO's name (for example, director.wage (dollar) and
employee.wage (dollar)). If a unit is specified in the attribute DDOs, some scale
difference links are created. For the scale, we cannot detect equivalence with the
name of the unit because wage (dollar) and wage (dollar) could not be a scale link (for
example, it could be US dollar or Canadian dollar). Temporary similarity and
different scale links are created if there are not existing homonymy and scale links.

Some similarity and scale links between attribute DDOs could be created in a
permanent mode if specialization/ generalization links exist between the respective
relation DDOs.

The following example (see Fig. 3) presents the relations: project (name),
employee (id, name, wage), director (id, name, wage). The director relation DDO
specializes employee relation DDO. So, there are a permanent similarity and scale
link between the wage attribute DDO (depending of director relation DDO) and the
wage attribute DDO (depending of employee relation DDO). The expert creates only
some intra-base links which cannot be automatically created, for example the
homonymy links. He also specifies the database domains.

Registration of a WA to an IA
The Registration protocol allows the registration of a WA (when a new source
integrates the system) and therefore increases the WA network attached to an
Information Agent. Each WA dynamically queries to be joined to the IAs that are
previously created. The IA, whose domain is semantically the closest, integrates this
WA into its acquaintance network (the Contract Net Protocol allows to choose the
WA). The IA establishes a comparison between the network's WA so as to create
temporary inter-bases similarity and different scale links (the Fipa Query Protocol is
used).

When a new WA is recorded into an IA, the different DDOs are sent to the other
WAs in order to discover new temporary inter-bases links. In our example, five
similarity links are created:

− firm name DDO respectively with employee name, with director name, with
project name,

− office worker wage respectively with employee wage DDO, with director wage
DDO.

Two different scale links are added: office worker wage respectively with
employee wage DDO, with director wage DDO.

60 G. Talens, D. Boulanger, and M. Séguran

4.2 The Global Query Processing Protocol

The global query processing protocol organizes the negotiation phases between the
IAs and the WAs to resolve semantic conflicts. There are different phases in the
global query processing protocol (principally based on the Fipa Query Protocol):

Transmission of the Query from the User Agent to IAs and WAs
Each Information Agent looks for its inter-bases semantic links and broadcasts the
query to the WAs of its acquaintance network all the while taking into account its
inter-bases links.

Semantic evaluation
Each WA accepts or refuses the query request relatively on knowledge of query
elements by using synonymy intra-base links and homonymy links.

Links of others IAs
When the WAs of the acquaintance network don’t have sufficient knowledge to
answer the query, the IA asks other IAs inter-bases synonymy links to modify the
concepts of the query. The modified query is send again to its connected WAs.

Foreign key
DDO

Detected
relation DDO

Refereed
relation DDO

Primary
key DDO

Dependence link

caption

Reference link

Primary
key DDO

Detected
relation DDO

Refereed
relation DDO

Primary
key DDO

Relation
DDO

Primary
key DDO

Primary
key DDO

1:n relation n:m relation

Detected
Object DDO

Reference
Object DDO

Refereed
object DDO

RELATION DDO

OBJECT DDO

Foreign key
DDO

Detected
relation DDO

Refereed
relation DDO

Primary
key DDO

Dependence link

caption

Reference link

Primary
key DDO
Primary

key DDO

Detected
relation DDO

Refereed
relation DDO

Primary
key DDO
Primary

key DDO

Relation
DDO

Relation
DDO

Primary
key DDO

Primary
key DDO

1:n relation n:m relation

Detected
Object DDO

Reference
Object DDO
Reference

Object DDO

Refereed
object DDO

RELATION DDO

OBJECT DDO

Fig. 4. Selection of the refereed DDO with reference and dependence links

Creation of New Temporary Intra-base Synonymy Links
During this semantic evaluation, each WA can create temporary intra-base synonymy
through some schematic links (like the reference links and dependence links)
according to the following method:

 Domain Ontologies Evolutions to Solve Semantic Conflicts 61

− Item 1. For each query element, if none DDO corresponds, there is a selection of
the refereed DDO relatively dependence and reference links, from detected DDO
(see Fig. 4).

− Item 2. If there is no attribute specified in the query, or if the specified attribute is
equivalent to the attribute DDO depending of the object/relation DDO, a temporary
intra-base synonymy link is created between the reference DDO and a virtual
object/relation DDO (a virtual DDO is a DDO only created for the representation
of this temporary link). If the attribute specified in the query matches with the
attribute DDO depending of the reference DDO, a temporary intra-base similarity
link is created between this attribute DDO and the attribute element of the query.

In the following example (see Fig. 5), the database contains the relations: project
(name), work (id, name) and employee (id).

Select * from office worker
where project.name=‘acsis’

:relation DDO

name :project

:primary key
DDO

name :name
type :string
length :10

:relation DDO

name:employee

:primary key
DDO

name : id
type : string
longueur :10

: relation DDO

name : work

:primary key
DDO

name : name
type : string
length :10

:primary key
DDO

name : id
type : string
length :10

2) reference link (project,work) (work, employee)

: relation DDO

name : office worker
extracted :no

(employee, office worker) temporary
intra-base synonymy link

« virtual »
DDO

1) project relation DDO in the ontology

3) attribute not existing in the query

Query

caption Reference LinkDependence Link

Detected Link

Select * from office worker
where project.name=‘acsis’

:relation DDO

name :project

:primary key
DDO

name :name
type :string
length :10

:relation DDO

name:employee

:primary key
DDO

name : id
type : string
longueur :10

:primary key
DDO

name : id
type : string
longueur :10

: relation DDO

name : work

:primary key
DDO

name : name
type : string
length :10

:primary key
DDO

name : id
type : string
length :10

2) reference link (project,work) (work, employee)

: relation DDO

name : office worker
extracted :no

(employee, office worker) temporary
intra-base synonymy link

« virtual »
DDO

1) project relation DDO in the ontology

3) attribute not existing in the query

Query

caption Reference LinkDependence Link

Detected Link
caption Reference LinkDependence Link

Detected Link

Fig. 5. Creation of a temporary intra-base synonymy link

The query is "select * from office worker where project.name='acsis'". The office
worker DDO does not exist in the WA’s ontology. Relatively to the reference link
between project (existing element in the ontology) and work and, work and employee,
the refereed employee DDO is selected. There is no attribute relevant to office worker
indicated in the query (respect of item 2). Therefore, a temporary intra-base
synonymy link is created between the employee DDO and an office worker virtual
DDO. The WA replies with these temporary intra-base synonymy links and with the
DDO names equivalent to the query elements.

Creation of New Temporary Inter-bases Synonymy Links
When the WAs send some temporary intra-base synonymy links to their IA, the IA
could create some temporary inter-bases synonymy links if there is the same term in
an other WA of its acquaintance network. For example, the office worker DDO exists
in another WA. A temporary inter-bases synonymy link is created between the office

62 G. Talens, D. Boulanger, and M. Séguran

worker DDO and the employee DDO. When there is a creation of synonymy and
similarity link, a corresponding link to validate is instantiated, and passed from the IA
or WA to the User Agent. It allows simplifying the queries execution on the local
databases. A sub-query comprises only the global query parts on which the IA has the
relevant knowledge and replaces term by using temporary inter-bases synonymy
links. The IAs then contact the WAs which contain knowledge in order to perform the
sub-query.

Retrieving the Results
Each WA can accept or refuse (agree/refuse performative) to process the query. If it
agrees, it queries its local database using temporary and permanent semantic intra-
base links and structural links, retrieves data coming from local sources via DDOs
and sends them to its IA (inform or failure performative).

The global query processing is presented (see Fig. 6) by using Agent UML [40].

request

AUt/initiator:
User Agent

AUt/initiator:
User Agent

AI /participant:
Information Agent

AI /participant:
Information Agent

« role change »

AI /initiator:
Information Agent

AI /initiator:
Information Agent

AA1 /participant:
WrapperAgent
AA1 /participant:
WrapperAgent

refuse

agree

necessary]

Use of temporary
synonymylinks

failure

creationof temporaryinter
bases synonymylinks

AUt/participant:
User Agent

AUt/participant:
User Agent

« role change »

Retrieving of results

inform

Links validation

Inform (validated links)

Creation of
temporary
intra-base
synonymy

links

refuse

agree

failure

Inform (validated links)

query-ref

request

AUt/initiator:
User Agent
AU/initiator:
User Agent

AI /participant:
Information Agent

IA/participant:
Information Agent

« role change »

Information AgentInformation Agent
AA1 /participant:
WrapperAgent
AA1/participant:
Wrapper Agent

[refused]

agree
[Agreed and notification

use of temporary inter-bases
synonymy links

inform-result : inform
[agreed]

failure

creation of temporary inter-
bases synonymy links

Sub-queries execution

AUt/participant:
User Agent

UA/participant:
User Agent

« role change »

Retrieving of results

inform

Links validation

Inform (validated links)

Creation of
temporary
Intra-base
synonymy

links

query-ref (sub-query)

refuse
[refused]

failure

Inform (validated links)

necessary]
[Agreed and notification

inform-result : inform

AI/initiator:

Fig. 6. Protocol for global query processing (in Agent UML)

For example, if the query is "select * from employee where
employee.name='smith'", with the specialization/generalization link, the following
query "select * from director where director.name='smith'" is also executed. When
they retrieves the results, each WA (at the local level) and each IA (at the global
level) uses intra-base or inter-bases different scale links to translate data in the
expected format (if conversion functions are detected in the DDOs).

 Domain Ontologies Evolutions to Solve Semantic Conflicts 63

Validation of Results
Each IA restructures the responses obtained from its WAs and sends them to the user
agent. At the end of the protocol, the ontologies are updated when new semantic links
are discovered and after the validation of these links by the User Agent. If synonymy,
similarity and different scale links are validated, they become permanent links : if
they are not validated, they become non synonymy, homonymy and scale links. The
User Agent can insert synonymy links if the results are not correct. Some creation of
synonymy links could be performed by the WA or the IA:

− An inter-base synonymy link (user type) is created if the two involved terms are
situated in the two different WA.

− An intra-base synonymy link (user type) is created if the two involved terms are
situated in the same WA. An intra-base synonymy link is created using a virtual
DDO as soon as a term is in a WA.

Sub-queries (WA or IA level) are re-executed in several cases (see Fig. 7):

− when intra-base or inter-bases links are not validated, the sub-queries are re-
executed at the WA level or the IA level,

− when synonymy links are inserted by the user, only the modified parts of the query
are re-executed towards the WA, the results being preserved at the level of each IA,

− when conversion functions are inserted by the user (they are encapsulated within
the validated links towards IAs which transmit to the WAs), the corresponding
sub-query must be again re-executed.

User
Agent

Update of the link (from temporary to permanent)Validated Results

Delete of the link
Non validated Results

Insertion of
conversion

functions (DDO)
different scale link

Insertion of synonymy link (user type)

RE-EXECUTION OF SUB-QUERIES

If synonymy link is deleted
=> not synonymy is created

If similarity => homonymy

If scale different =>scale

Creation of links

User
Agent

Update of the link (from temporary to permanent)Validated Results

Delete of the link
Non validated Results

Insertion of
conversion

functions (DDO)
different scale link

Insertion of synonymy link (user type)

RE-EXECUTION OF SUB-QUERIES

If synonymy link is deleted
=> not synonymy is created

If similarity => homonymy

If scale different =>scale

Creation of links

Fig. 7. Links validation process

4.3 Database Update

Different problems arise with the ontology modifications: Incompatibility of instances
and incompatibility of the related applications. In ACSIS, they are managed by the
database administrator in respect of the local sources autonomy.

64 G. Talens, D. Boulanger, and M. Séguran

Further, we think to use ontology versioning to capture the evolution proposed by
the user as long as it is not a sound and validated evolution.

Different modifications can be performed on a database. Incompatibilities of linked
ontologies are managed as follows.

 Addition Deletion Modification
Relation/Class Adding of the

corresponding DDO
Deletion of the DDO
and updating of the
concerned links

- name
- attribute adding
- attribute deletion

Attribute Adding of the
corresponding DDO

Deletion of the DDO
and updating of the
concerned links

- name

- type (modification of
the DDO)
- unit

− Addition :
The creation of similarity and different scale intra-base links is processed as for the
insertion of a new database as previously explained. The new DDOs are compared
with the other DDOs in order to create new links.

− Deletion :
The intra-base links are deleted but not the inter-bases links because they constitute
global knowledge.

− Modification of attribute, relation or class name:
 Modification of the concerned DDO, creation of a virtual DDO in order to store the
 old name and creation of a synonymy link between the two DDOs.
− Modification of attribute unit :
 Modification of the DDO and updating of the scale and different scale intra-base
 links.

The different modifications are sent to the IA and the latter sends them to its WAs.
The creation of new links is therefore performed in a dynamic way during the

insertion of a new information source and the global query processing. It also
performed after the User Agent validation when links become permanent. When a
link becomes permanent, each WA or IA could automatically create new semantic
links in respect of semantic inferences rules [31]. Semantic inferences also contribute
to perform the ontology evolution.

5 Conclusion

Semantic conflict resolution is processed by using ontology during two steps: the
insertion of a new information sources and the global queries resolution. The real
dialogue between agents managed by a protocol, enables agents’ ontologies to evolve.
The scalability of the system comes from the new link detection (scalable domain
ontology) and the ability of following the evolution of local databases (relatively to
the DDOs level). The cooperative architecture with the interaction protocols is
implemented by using Java and the JADE platform (Java Agent DEvelopment
framework) [41][42]. JADE is a software framework to develop agent-based
applications in compliance with the FIPA specifications for interoperable intelligent

 Domain Ontologies Evolutions to Solve Semantic Conflicts 65

multi-agent systems and provides a library of FIPA interaction protocols ready to be
used. JADE provides a support for content language and ontologies allowing the
developers manipulating information within their agents as Java objects without
the need of any extra work. The JADE support performs the conversion between the
information represented as a string or a sequence of bytes at ACL Message level and
Information represented as Java objects (easy to manipulate) at agent level. In our
platform, this support has been useful to pass links and queries objects. Currently the
prototype runs. We have implemented the main protocols and processed some
queries. We have proposed a solution based on an extended conceptual model
integrating some principles coming from Distributed Artificial Intelligence like
interaction protocols between agents and inference rules on the detected links. It is a
mixed approach combining advantage from descriptive logics and an extended
conceptual model. In our future works, we wish to continue to integrate tools of
reasoning in the model of evolutive ontologies proposed in this article.

The concept of version must be developed on the ontology to capture the
modifications performed by the user. The ontology must be not directly modified as
long as the modifications have not been completely validated. The user’s modification
becomes public after its validation by a super user or an administrator. Our ontology
versions will keep track of the different modifications (add, update, delete) in order to
better follow the evolution and to perform the impacts on the other ontologies after
the version validation.

References

1. Bouguettaya, A., Benatallah, B., Elmagarmid, A.K.: Multidatabase Systems: Past and
Present. In: Elmagarmid, A.K., Rusinkiewicz, M., Sheth, A. (eds.) Distributed and
Heterogeneous Database Systems. Morgan Kauffmann, San Francisco (1998)

2. Fankhauser, P., Gardarin, G., Lopez, M., Muñoz, J., Tomasic, A.: Experiences in
Federated Data-bases From IRO-DB to MIRO-Web. In: 24th VLDB’98, New-York, USA,
pp. 655–658 (1998)

3. Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,
Hubner, S.: Ontology-Based Integration - a survey of Existing Approaches. In: IJCAI’01
Workshop: Ontologies and Information Sharing, pp. 108–117 (2001)

4. Sheth, A.: Changing Focus on Interoperability in Information Systems: from System,
Syntax, Structure to Semantics. In: Interoperating Geographic Information Systems.
Kluwer Academic Publishers, Boston, MA (1999)

5. Kahng, J., Mac Leod, D.: Dynamic Classificational Ontologies. In: Arbid, M.A., Grethe, J.
(eds.) Computing the Brain : A Guide to Neuroinformatics. Academic Press, San Diego
(2000)

6. Gal, A.: Semantic Interoperability in Information Services. Experiencing with
CoopWARE. ACM Sigmod record 28(1) (1999)

7. Arens, Y., Chee, C.Y., Hsu, C., Knoblock, C.A.: Retrieving and Integrating Data from
Multiple Information Sources. IJCIS 2(2), 127–157 (1993)

8. Genesereth, M.R., Keller, A.M., Duschka, O.M.: Infomaster: an Information Integration.
System. In: Proceedings of the ACM SIGMOD Conference (1997)

9. Aparicio, A.S., Farias, O.L.M., dos Santos, N.: Applying Ontologies in the Integration of
Heterogeneous Relational Databases. In: Australian Ontology Workshop, AOW’2005,
Sydney, Australia (2005)

66 G. Talens, D. Boulanger, and M. Séguran

10. Nodine, M., ali.: Active Information Gathering in InfoSleuth. IJCIS 9(1-2), 3–28 (2000)
11. Mena, E., Illarramendi, A., Kashyap, V., Shet, A.: Observer: an approach for query

processing in global information systems based on interoperation across pre-existing
ontologies. Int’l Journal Distributed and Parallel Databases 8(2), 223–271 (2000)

12. Ram, S., Park, J.: Semantic Conflict Resolution Ontology (SCROL): An Ontology for
detecting and resolving data- and schema-level semantic conflicts. IEEE Transactions on
knowledge and data engineering 16(2), 189–202 (2004)

13. Goh, C.H.: Representing and Reasoning about Semantic Conflicts in Heterogeneous
Information Sources. PhD. MIT, Cambridge, MA (1997)

14. Zhu, H., Madnick, S.: Structured contexts with lightweight ontology. In: VLDB Workshop
on Ontologies-based techniques for DataBases and Information Systems, Korea (2006)

15. Reynaud, C., Safar, B.: Representation of ontoloies for Information Integration. In:
Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473,
Springer, Heidelberg (2002)

16. Rosaci, D.: A Model of Agent Ontologies for B2C E-Commerce. In: Proceedings of the
International Conference on Enterprise Information Systems (ICEIS 2004), Porto,
Portugal, pp. 3–9 (2004)

17. Orgun, B., Dras, M., Nayak, A.: DASMAS – Dialogue based Automation of Semantic
Interoperability in Multi Agent Systems. In: Australian Ontology Workshop, AOW’2005,
Sydney, Australia (2005)

18. Bounif, H.: Predictive Approach for Database Schema Evolution. In: Ma, Z.M. (ed.)
Intelligent Databases. Idea Group Publishing, USA (2006)

19. Bounif, H., Pottinger, R.: Schema Repository for Database Schema Evolution. In: Bressan,
S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 647–651. Springer,
Heidelberg (2006)

20. Noy, N.F., Klein, M.: Ontology Evolution: Not the same as Schema Evolution. Knowledge
and Information Systems 5 (2003)

21. Klein, M., Kiryakov, A., Ognyanov, D., Fensel, D.: Ontology versioning and change
detection on the web. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS
(LNAI), vol. 2473. Springer, Heidelberg (2002)

22. Klein, M., Noy, N.F.: A component based framework for ontology evolution. In:
Workshop on Ontologies and Distributed Systems, IJCAI’03, Mexico (2003)

23. Heflin, J., Hendler, J.: Dynamic Ontologies on the Web. In: Proceedings of the 17th
national conference on Artificial Intelligence, AAAI 2000, pp. 443–449. AAAI/MIT Press,
Menlo Park, CA (2000)

24. Stojanovic, L., et al.: User-driven Ontology Evolution Management. In: Proceedings of the
13th International Conference on Knowledge Engineering and Knowledge Management,
Ontologies and the semantic web (2002)

25. Auer, S., Herre, H.: A Versioning and Evolution Framework for RDF Knowledge Bases.
In: Proceedings of Ershov Memorial Conference (2006)

26. Liang, Y., Alani, H., Shadbolt, N.R.: Ontology change management in Protégé. In:
Proceedings of Advanced Knowledge Technologies Doctoral Colloquim, United Kingdom
(2005)

27. Software AG: http://www.softwareag.com/fr/
28. Angele, J., Gesmann, M.: Semantic Information Integration with Software AGs

Information Integrator. In: Second International Conference on Rules and Rule markup
languages for the Semantic Web, Athens, Georgia, USA (2006)

29. Boulanger, D., Dubois, G.: An Object Approach for Information System Cooperation.
Information Systems 23(6), 383–399 (1998)

 Domain Ontologies Evolutions to Solve Semantic Conflicts 67

30. Couturier, V., Séguran, M.: Patterns and Components to Capitalise and Reuse a
Cooperative Information System Architecture. In: Int’l Conf on Enterprise Information
System Architecture ICEIS 2003, Angers, April 23-26, pp. 225–231 (2003)

31. Séguran, M.: Résolution des conflits sémantiques dans les systèmes d’information
coopératifs. PhD thesis, Université Jean Moulin, Lyon, France (2003)

32. Papazoglou, M., Laufmann, S., Sellis, T.: An Organizational Framework for Cooperating
Intelligent Information Systems. IJCIS 1(1) (1992)

33. Klusch, M.: Intelligent Agent Technology for the Internet: A Survey. Journal on Data and
Knowledge Engineering. In: Fensel, D. (ed.) Special Issue on Intelligent Information
Integration, vol. 36(3), Elsevier Science (2001)

34. Cullot, N., ali.: Ontologies: A contribution to the DL/DB debate. In: Proceedings of the
1rst Int’l Workshop on Semantic Web and Database (SWDB’2003) co-located
VLDB’2003, Germany, pp. 109–130 (2003)

35. Gruber, T.: The Role of a Common Ontology in Achieving Sharable, Reusable Knowledge
Bases. In: Proceedings of the 2nd International Conference on Principles of Knowledge
Representation and Reasoning, pp. 601–602. Cambridge University Press, Cambridge
(1991)

36. Guarino, N.: Formal Ontology and Information Systems. In: Proceedings of the 1st
International Conference on Formal Ontology in Information Systems (FOIS’98), Torino,
pp. 3–15 (1998)

37. Mena, E., Illarramendi, A.: Ontology-based Query Processing for Global Information
Systems. Kluwer Academic Publishers, Boston, MA (2001)

38. Fipa: http://www.fipa.org
39. Toivonen, S., Helin, H.: Representing Interaction Protocols in DAML. In: van Elst, L.,

Dignum, V., Abecker, A. (eds.) AMKM 2003. LNCS (LNAI), vol. 2926, pp. 310–321.
Springer, Heidelberg (2004)

40. Odell, J., Parunak, H., Bauer, B.: Extending UML for Agents. In: Wagner, G., Lesperance,
Y., Yu, E. (eds.) Proceedings of Agent-Oriented Information Systems Workshop at the 17
th National conference on Artificial Intelligence. Icue Publishing, Austin, Texas (2000)

41. Bellifemine, F.: Jade and beyonds. Presentation at AgentCities Information Day 1,
Lausanne (2002)

42. Jade: http://sharon.cselt.it/projects/jade

M. Collard (Ed.): ODBIS 2005/2006, LNCS 4623, pp. 68–84, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Requirements Ontology and Multi-representation
Strategy for Database Schema Evolution

Hassina Bounif, Stefano Spaccapietra, and Rachel Pottinger

Database Laboratory, EPFL, School of Computer and Communication Science
Lausanne, Switzerland

Data Management and Mining Laboratory, University of British Columbia
Vancouver, Canada

hassina.bounif@epfl.ch,
stefano.spaccapietra@epfl.ch, rap@cs.ubc.ca

Abstract. With the emergence of enterprise-wide information systems,
ontologies have become by definition a valuable aid for efficient database
schema modeling and integration, in addition to their use in other disciplines
such as the semantic web and natural language processing. This paper presents
another important utilization of ontologies in database schemas: schema
evolution. Specifically, our research concentrates on a new three-layered
approach for schema evolution. These three layers are 1) a schema repository,
2) a domain ontology called a requirements ontology, and 3) a multi-
representation strategy to enable powerful change management. This a priori
approach for schema evolution, in contrast with existing a posteriori solutions,
can be employed for any data model and for both 1) design from scratch and
evolution and 2) redesign and evolution of the database. The paper focuses on
the two main foundations of this approach, the requirements ontology and the
multi-representation strategy which is based on a stamping mechanism.

Keywords: Requirements ontology, multi-representation strategy, Schema
Evolution.

1 Introduction

With the emergence of enterprise-wide information systems, the number of ontologies
in semantic-driven data access and processing is increasing. For example, ontologies
are crucial in semantic web and natural language processing. In addition to that,
ontologies have become a valuable aid for efficient database schemas modeling and
integration – they provide richer semantics than studying the schemas alone. This
work investigates another area in which ontologies have a colossal potential of
utilization and which is related to information systems: database schema evolution.
Database schema evolution has an active research agenda due to its importance, cost
to users, and the complexity of the problem. Many solutions have been proposed and
much progress has been made in data structures, rules, constraints, schemata models
and meta-models. We build on this work and advocate a novel approach for schema
evolution: we predict potential changes, and integrate them into the schema for future

 Requirements Ontology and Multi-representation Strategy 69

use. Since predicting the exact changes that will occur over time is impossible, we
detect the changes that are plausible to be carried out on a schema and are important
for the database users. Our intent is to move one step towards developing multi-
disciplinary and a priori approaches for database schema evolution, in contrast with
existing a posteriori solutions that track changes instead of planning for them.

Our approach relies on the use of: 1) a schema repository that stores and provides
to the system a set of relevant schemas and their relative versions, if any. In our case,
the repository contains approximately 4000 schemas, 2) a requirements ontology that
contains the changes that are plausible to be carried out on a database schema and are
important for the database users and 3) a multi-representation strategy to aid powerful
change management.

1.1 Problem Description

Having understood the overall motivation of schema evolution and our predictive
approach, we are now ready to explain schema evolution in more detail. Intuitively,
schema evolution means the ability of a schema to undergo changes over time without
any loss of the extant data. However, besides managing the changes to the schema,
applications and data linked to it need to be adapted as well. Changes to the schema
are divided into three categories depending on their impact on the schema [1]:

1- Additive : additional semantic knowledge needs to be designed on the schema
2- Subtractive: semantic knowledge needs to be removed from the schema
3-Descriptive: the same semantic knowledge needs to be designed on the schema in a
different manner.

In addition to the categories of changes that could occur on the schema over time, we
need to consider the general problem of database schema evolution from two different
sides, depending on the kind of solution we choose: 1) From the a posteriori solution
perspective, 2) From the a priori solution perspective

1) From the a posteriori solution perspective
Historically, from this perspective, to resolve the schema evolution problem, one
should take into consideration two major criteria, which are respectively [2]: a) the
semantics of change, i.e. the understanding of the change that has taken place because
of several reasons such as the new perceptions of the real world over time and
technology development and performance strategies and b) the propagation of this
change on the schema immediately or at a deferred time fixed by the database
administrator. There is a posterior order in which the change must be received after by
the schema and its components. Schema evolution is resolved either by versioning the
original schema, by modifying it using restricted evolution primitives, by adopting
views on the top of it or by refining it by accommodating the exceptional information
in the database [3]. All these solutions react to changes that could occur on the
schema. However, they are insufficient solutions, especially when the schema is
facing complex changes. For instance, the modification approach simply modifies the
schema to adhere to the new requirements. This changing of the schema without
saving past information may lead to a loss of data. The versioning approach replicates
the schema to save both the old and the new version. This replication avoids data loss;

70 H. Bounif, S. Spaccapietra, and R. Pottinger

however, it creates complex navigation through the different generated versions and
slows down the DBMS (Database Management System). The combination solution –
a solution that incorporates both existing approaches (e.g. the work presented in [4]) –
avoids the above problems. Unfortunately, it also is characterized by the complexity
and the onerous mechanisms to be executed. Hence, a new approach must be used;
the a priori solution.

2) From a priori solution perspective
To resolve the problem of schema evolution from this perspective, one must clearly
take into account these imperative criteria:

• Understand the current database structure and content
• Identify the dependencies among the current database schema, data and

applications because the impact of one element on another needs to be
known and accounted for before making changes on the database

• Detect potential changes that are plausible to occur on the schema
• Understand the potential future changes and new applications and identify

their impacts on the current schema
• Consider the two possible cases, related to the database, that are respectively:

1) the case in which the initial database schema is not created yet and 2) the
case in which the initial schema has already been created; however, it needs
to be redesigned.

Compared to the previous perspective, in the a priori solution, the order of
applicability of the changes has been modified. The changes are incorporated before
they really occur. There is what is called an a priori order in which the potential
change must be received before by the schema and its components.

1.2 Contribution and Outline of the Paper

The contributions of this paper are as follows:

1. Presentation of the predictive approach for database schema evolution,
including the characteristics and the differences with other existing
approaches for schema evolution

2. Presentation of the requirements ontology, including its role, construction
and structure

3. Presentation of the multi-representation strategy with the two defined
mechanisms views and stamping

4. Presentation of examples showing how the predictive approach works and
outlining the role of both the requirements ontology and the multi-
representation strategy.

The paper comprises five main sections. Section 2 presents the articulation of the
predictive approach. Section 3 presents 1) the role of the requirements ontology in the
predictive approach for evolution and 2) the structure and how it is built from the
schema repository. Section 4 describes the multi-representation strategy and how it is
used for schema evolution. Section 5 presents a motivating example to demonstrate

 Requirements Ontology and Multi-representation Strategy 71

the feasibility of the proposed approach. Section 6 is a conclusion and a summary of
the important points dealt with in this paper and introduces perspectives on the future
work.

2 Predictive Approach for Schema Evolution

The predictive approach for schema evolution is an innovative approach for schema
evolution. In this section, we consider some of the specific characteristics that justify
the decision of the selection of such approach. We begin by listing them, and then
consider each one in more depth in turn:

• A priori solution (a)
• Predictive analytic solution (b)
• Proactive schema solution (c)
• Three different stages solution (d)
• Data modeling methodology independent solution (e)
• Collecting data solution (f)

a) A priori Approach
In contrast with existing posterior solutions for evolution such as modification or
versioning approaches that support the evolution at evolution time, the Predictive
Approach prepares the database schema for future use before the changes occur. The
basic motivations that influence our choice of a methodology that plans in advance for
evolution are: 1) the problem of schema evolution is better understood now because
researchers have already provided an overview of its causes and consequences,
therefore it is now time to turn towards complex and multi-disciplinary approaches 2)
the posteriori approaches have not been sufficient solutions for schema evolution even
if they are considered to be standard solutions and finally 3) the a priori approach is
absolutely the best alternative: the key to evolution problem lies in thinking of the
evolution from the beginning of the lifecycle of the database.

b) Predictive analytic solution
A predictive solution generally refers to data mining techniques such as classification
to predict the value of a particular attribute based on the value of other attributes. The
attribute to be predicted is called the dependent variable while the attributes used for
making prediction are called the independent variables [5]. Our predictive solution 1)
uses data-mining techniques such as Classification Based on Association Rules, and
2) in particular, it explicitly includes a requirement analysis phase. In the
requirements analysis phase, besides assessing the current user requirements via the
database user’s feedback and comments, additional requirements called potential
future requirements are investigated using the current requirements of several
databases. These new requirements, representing potential future needs that might
emerge during the lifecycle of the database in the future are inspected inside a schema
repository. In this case, the current requirements are representing the independent
variables while the future requirements are the dependent variables.

72 H. Bounif, S. Spaccapietra, and R. Pottinger

c) Proactive schema solution
Our solution takes actions to handle changes before the evolution of the database
schema. In other words, this approach generates a scalable database schema called the
predicted schema at design time that contains three different layers which are
respectively: 1) Operational Layer, 2) Existing but not Operational Layer, 3) Not
Existing but Planned Layer. In these three layers, the schema potential structural
changes are hold at the present time for its use in the evolution time.

d) Three different stages solution
The approach holds one additional stage which is novel in database modeling design;
in contrast existing approaches enclose just two stages: (1) design time and (2)
evolution time. The additional third stage of the predictive approach, the before
design time stage, is an important stage. It paves the way for the design time stage by
conducting the preparation of the accurate data for the schema evolution from the
schema repository.

e) Data modeling methodology independent solution
Because of the diversity of the data models used to represent a database schema, we
have chosen to develop an approach that can be adopted by any modeling
methodology.

f) Collecting data solution
Our solution uses the direct collection of information from different external sources
and a consultation of schemas of existing databases.

There are multiple advantages of this approach. Indeed, it contributes significantly in
the ability of the database schema to 1) accommodate the future changes, and 2)
facilitate the work of designers and help them save time and money on the evolution
of their databases. Consequently, all these qualities have a positive impact on both
database users and the organisms that employ such pre-emptive approaches.

3 Requirements Ontology for Schema Evolution

The requirements ontology is a domain ontology in which requirements are expressed
with concepts (terms), relationships and constraints. It allows the system to relate the
current schema to possible future needs. For example, if a database designer needs to
create a database for meetings, the requirements ontology associated to this database
contains concepts, relationships and constraints related to meeting domain such as
MEETING, PARTICIPANT, ROOM and AGENDA concepts and IS, HAS relationship
types and so on. This is illustrated in figure 1. The requirements ontology gains its
insights into the possible future needs of the schema through various methods; its
construction is described further in Section 3.2.

The requirements ontology looks like a global entity relationship model; however,
it is richer than an entity relationship model because 1) it contains more semantics
related to a specific domain. 2) the instances of the requirements ontology are divided
into two categories: in addition to the instances representing the current requirements,
the database designer needs to choose the concepts that might correspond to potential
future requirements. Consequently, several design suggestions about the entities with
their relationships are taken from the requirements ontology and are provided to the
database designers.

 Requirements Ontology and Multi-representation Strategy 73

Fig. 1. Presentation of a part of requirements ontology of meeting domain

Since the system is designed to be flexible enough for many situations, and it is
impossible to predict with 100% accuracy which requirements will be desired, the
system includes three strategies to the database designers for the selection of those
requirements ontology concepts and their corresponding relationships. These
strategies are:

1) Blind selection: all the concepts of the requirements ontology belonging to future
requirements are selected without exception.

2) Case based selection: This selection mechanism allows the inclusion of concepts
that are particularly likely to be needed in the future. In particular, the concepts that
satisfy one of the following cases are selected. This is a way to find out the important
concepts that have already pre-established links among them
Case 2.a: a concept belonging to future requirements which is situated between two
concepts of current requirements. This is illustrated in figure 2.

Fig. 2. Case of future concept between current concepts

Case 2.b: a concept that is a final node (part i) or belongs to the end of a branch in the
requirements ontology (part ii) is selected. This is illustrated in figure 3 and 4.

- (i) A final node
A final node is a concept in the requirements ontology which has only one

relationship with another concept of the requirements ontology. For example in figure 3,

74 H. Bounif, S. Spaccapietra, and R. Pottinger

the concept Ref_Order_Status, belonging to the category future requirements,
has only one relationship in the whole requirements ontology which is with the
concept Order that is its direct ancestor. An ancestor is a node from which starts the
selection of the nodes of the requirements ontology.

Order Ref_Order_Status

Has
Current requirements
Future requirements

Order_items
Descriptive

Fig. 3. Case of a concept as a final node

- (ii) An end of a branch
A branch is a sequence of concepts linked together with one or several links

however one concept of this succession has only one relationship with another
concept of the sequence in the whole requirements ontology. This is illustrated in
figure 4 in which the concept Product_description is a concept of the sequence that
has only one relationship with the concept Product.

Fig. 4. Case of concepts as an end of a branch

Case 2.c: the concepts that form a clique of a graph in the requirements ontology are
selected. This is illustrated in figure 5.

Fig. 5. Case of a clique graph

 Requirements Ontology and Multi-representation Strategy 75

3) Change perspective selection: the concepts are selected according to their change
perspectives. A change perspective is a special graph that shows the potential changes
of each concept belonging to the ontology. It is built using several data mining
techniques such as classical association rules and classification based on association
rules[5]. The requirements ontology contains three different types of change
perspectives with specific roles which are respectively: informative, descriptive and
predictive.

To illustrate this point, we consider the following example that represents the
modelling of a simple case of scientific meeting in which the requirement is to
determine the people participating to a conference. At the ontological level, for the
concept “Meeting”, the change perspectives, illustrated in figure 6, show the potential
changes related to it and the other concepts that might be implied at the evolution
time.

Fig. 6. Change perspectives for the concept meeting

3.1 Requirements Ontology Role

There are two ways in which the requirements ontology is used in the predictive
approach for evolution. These two primary functions are 1) design and evolution and
2) redesign and evolution.

1) Design and evolution
In case the initial database schema is not created yet, the ontology fulfils several
tasks, as presented in [6] and [7]: it generates a design “from” scratch using the
defined terms and relationships as a representative model of the domain. It suggests
possible missing entities and relationships in the case just a part or selected parts of it
is/are considered by the database designer. The requirements ontology offers
additional features; it includes terms, relationships and constraints that might
represent potential future requirements and identifies in advance their dependencies
with terms and relationships representing current requirements. Consequently, it
facilitates the work of database designer when changes should be made on the
schema.

2) Redesign and evolution
In case the initial schema has already been created and now needs to be redesigned,
then the ontology fulfils other important tasks as presented in [6] and [7]. For

76 H. Bounif, S. Spaccapietra, and R. Pottinger

example, it is used to check for missing entities or relationships or inconsistencies in
an existing or partial design because the data model produced in the redesign process,
called a reverse engineered (RE) data model [8], cannot be considered as a conceptual
schema. The RE model converts all the logical schema tables to entities without
making distinction between data tables and the other tables of the schema whose
function is to join tables. This model is not a logical schema because some important
schema information is lost during the conversion process, such as in the case of
foreign keys.

In the following, we portray the three categories of changes presented previously,
which are 1) the additive evolution, 2) the subtractive evolution and 3) the descriptive
evolution and how the requirements ontology proceeds in each case.

1) Additive Evolution
There are two types of additive changes: simple and complex. For the simple
additive change, the database administrator can use the functionalities of the DBMS
(Database Management Systems) to add for example a table or an attribute. In
contrast, for the complex additive change adding an element perturbs the dependency
between existing elements and causes damaging effects on existing applications.
Consequently, the logical schema is in inconsistent state and the associated
applications do not work anymore.

In Section 5.1, we illustrate through a detailed example why complex additive
evolution must be handled specially and show how the predictive approach offers a
better solution than existing posteriori solutions.

2) Subtractive Evolution
Subtractive evolution occurs when elements in the schema are no longer required.
However, deleting an element on existing schema is not always obvious, leading to
two types of subtractive changes: simple and complex. For the simple subtractive
change, the database administrator can use the functionalities of the DBMS (Database
Management Systems) to delete the no longer required elements. Whereas for the
complex subtractive evolution, the DBMS does not offer any functions for it and the
changes have direct and critical consequences on the schema and applications.

In Section 5.2, we illustrate through a detailed example why complex subtractive
evolution must be handled specially and show how the predictive approach offers a
better solution than existing posteriori solutions.

3) Descriptive Evolution
Descriptive evolution is made for convenience or efficiency. It is the hardest to handle
in traditional database systems because it implies more than one risky modification
operation on the schema. The consequences of the changes on the schema are also
critical, such as data loss.

In Section 5.3, we illustrate through an example why complex descriptive
evolution must be handled specially and show how the predictive approach offers a
better solution than existing posteriori solutions. The lack of space in this paper does
not allow us to explain in detail the example.

 Requirements Ontology and Multi-representation Strategy 77

3.2 Requirements Ontology Construction

The requirements ontology is developed using both a schema repository in which the
main concepts are extracted and WordNet ontology [9] for extracting their
corresponding synonyms and antonyms. The requirements ontology consists of two
kinds of partitions, the ones representing current requirements called Current sub-
domains and the ones corresponding to potential future requirements called Future
sub-domains.

The process of the requirements ontology creation is iterative and complex some
how compared to existing approaches. It consists on four main phases: knowledge
acquisition, Data mining and informal conceptualisation, Evaluation for Refinement
or Revision and Formal Conceptualization

1 -Knowledge acquisition and pre-processing: consists of schemas collection and
preparation

2 -Data mining algorithms and informal conceptualization: in which concepts and
relationships are extracted from schema data sets repository in an unsupervised way
and used as output for the informal conceptualization of the ontology from scratch.

3 -Evaluation for Refinement or Revision: means to test the validity of the
concepts belonging to the taxonomy and to decide to keep or reject them using
qualitative and quantitative methods.

4 -Formal Conceptualization: consists in building formally the requirements
ontology using OWL and description logic.

These phases are not very developed in this paper because they necessitate a
considerable space.

The schema repository contains many different schemas that model a specific
domain. These schemas and their related versions may be of different types, such as
ER, relational, object and object-relational schemas. The XML databases can be
included as well as the ontological schemas expressed in OWL technology [10]. The
schema repository has a dual role in building the requirements ontology [11]: (1) the
repository serves in the data-mining process to identify and analyze trends on
different kinds of schemas collected. (2) The repository contains selected concepts
and relationships to be included in the requirements ontology.

3.3 Requirements Ontology Structure

The structure of this ontology includes: a) Concepts, b) Relationships, c) constraints
d) Current versus Future Labels, and described in more detail below:

a) Concepts (Terms) Description:
Each term has one or several attributes with one or several values and one or several
synonyms and antonyms.

b) Relationships Description
Relations are between two concepts. There are six kinds of relations: (1) hierarchic –
identified by the label “kind-of”, which expresses the specialization of one concept

78 H. Bounif, S. Spaccapietra, and R. Pottinger

regarding another and inherits attributes from this super concept; (2) composition –
identified by the label “has”, which expresses that a concept is a part of another
concept; (3) descriptive – when it is possible to define several types of relations and is
identified by a verb form; (4) reflexive – allows self-loops in which an arc whose
endpoints are the same concept.

We consider the previous example of meeting domain to show some relationships
among concepts: kind-of (meeting, conference) is a hierarchic relationship, has
(meeting, utterances) is a composition relationship, lives (Person, Country), originates
(Person, Country) and represents (Person, Country) are descriptive relationships and
finally invites (Person, Person) is a reflexive relationship.

c) Constraints
Similar to the work presented in [6] and [7], we use four types of constraints which
are respectively: 1) pre-requisite constraint, 2) mutually inclusive constraint, 3)
mutual exclusive constraint and 4) temporal constraint.

d) Current versus future labels
The requirements ontology is a labeled graph: special labels are added and exploited
in order to indicate whether a concept, respectively a relationship belongs to current
or future requirements. A concept respectively, a relationship belongs to either current
requirements or future requirements but not to both at the same time. This is main
structure characteristic that distinguishes the requirements ontology from the
remaining domain ontologies.

e) Change perspectives

4 Multi-representation Strategy for the Predictive Approach

In the predictive approach, the predicted schema is semi-automatically generated from
the requirements ontology. At the conceptual level, the predicted schema is
represented either 1) with the multi-representation strategy or 2) without the
representation strategy. In this paper, we stress the use of the multi-representation
strategy as follows:

4.1 Definition of the Multi-representation Strategy

The multi-representation strategy is well-known in the object-modeling field, as
well as in the spatial databases. In [12], the multi-representation strategy based on
stamping in geographic databases is presented. On the other hand, in the object
modeling, the multi-representation is called semantic object views. It allows to
make the object visible for certain applications and to hide it to others using the
views mechanism. In this work, we focus on the multi-presentation based on
stamping.

4.2 The Predicted Schema at the Conceptual Level

This strategy consists in using stamps at the conceptual level in order to have different
representations for the modeling of the same universe of discourse i.e. the modeling

 Requirements Ontology and Multi-representation Strategy 79

of the same real-world. A stamp S is defined as a vector S=<s1, s2, Sn> where each s¡
represents the ¡ representation of the real-world. For example, in the following simple
example, we have defined a stamp S =<S1, S2> in which, according to the element S1
of the stamp S, the conceptual schema contains the entities E1, E1’ and the
relationships A1’. However, according to the element S2 of the stamp S, the
conceptual schema contains the entities E1 and E2 and one relationship A1. This is
illustrated in figure 7.

Fig. 7. A Simple Example using Multi-Representation Based on Stamping

The stamping mechanism is not a simple mechanism as it may appear. For
example, in the case of successive evolutions on the database schema, the stamp
components and the constraints on the stamps should be studied carefully in order to
avoid any potential contradiction among them.

5 Motivating Examples

In this section, we present examples of schema changes to illustrate how the
predictive approach for evolution discussed in this paper works. The examples portray
the three categories of changes presented previously, which are 1) the additive
evolution, 2) the subtractive evolution and 3) the descriptive evolution.

5.1 Additive Evolution

A case of complex additive change is illustrated in the side 1 of the figure 8 in which
the addition of the entity E’1 creates problems for existing applications. At the time
T= t0, we have a schema with two entities E1 and E2 and an association between
them A1 as presented in figure 8. At the time T=t1, the evolution time, a schema has
been modified and complex additive changes occur: an Entity E’1 and two
associations A’1 and A2 are added. The association A1 between the entities E1 and
E2 is consequently deleted to avoid a redundancy which is itself a problem and
information on schema is lost. The way to resolve such a problem with the predictive
consists in:

1 - At the ontological level: the database designer examines whether the requirements
ontology reveals the existence of concepts/relationships that belong to the category of
future requirements and represent potential simple and complex additive changes.

80 H. Bounif, S. Spaccapietra, and R. Pottinger

2- At the conceptual level, the database designer incorporates these concepts/
relationships using the multi- representation strategy based on stamping mechanism.
The resulted conceptual schema represents consequently two universes of discourse
(real-world). This is illustrated in the side 2 of the figure 8.

Fig. 8. Additive Evolution on an Example with both Classical and Predictive approaches

Client

Hotel

Country

City

Travel

Agency

Carrier

Room

Insurance

Law assistance

Medical
assistance

Ticket

Voucher
choses

Client Travel

affected

Carrier

goes

City

1.. * 1.. 1

1.. *

1.. 1

1.. *1.. *

affected
Insurance

1.. *

1.. *

A part of the Requirements Ontology

choses

Client Travel

affected

Transport
 Companygoes

City

1.. * 1.. 1

1.. *

1.. 1

1.. *1.. *

Transport
Company

S0 : initial Conceptual Schema

Current concept

Future concept

Current attribute

Future attribute

1.. * has 1.. *

Transport
Company

S1 : Predicted Conceptual Schema

Fig. 9. An example of travel with both classical and predictive approaches

 Requirements Ontology and Multi-representation Strategy 81

A case of complex and simple additive changes on the schema is illustrated in
figure 9 where we consider the example that represents the modeling of a simple case
of travel, in which the requirement is to determine the clients traveling around the
world. In a classical design approach, the initial conceptual schema S0 contains four
entities which are Client, Travel, City and Transport Company. However, in the
predictive approach, the schema S1 that has been proposed by the requirements
ontology contains six entities. The two additional entities Insurance and Carrier
represent two potential future changes on the schema that belong to simple and
complex additive changes respectively.

5.2 Subtractive Evolution

A case of complex subtractive change is illustrated in the side 1 of the figure 10 in
which the deletion of the entity E2 creates problems for the existing applications that
need such entity. The whole process to resolve such problem is illustrated in the side
2 of the figure 10.

Current
Concept

Future
Concept

Current
Concept

11' 2

Classical Approach for Schema Design

E1 E2

A1

S1: E1
S2: E1

S1: E1'

S1:A1'

Case : Multi-representation strategy

S2:A1

S2: E2

Predictive Approach for Schema Design and Evolution

O
ntological L

ayer
C

onceptual L
ayer

S1 : Representation 1
S2 : Representation 2E1 E1'

A1'

E2

Time

T = to

T = t1

Evolution Phase

A1

Delete A1 Delete E2
Side 1 Side 2

Fig. 10. Presentation of subtractive evolution on a simple example with both Classical and
Predictive approaches

5.3 Descriptive Evolution

This is illustrated in the side 1 of the figure 11. Similarly to the previous, we follow
the same steps for the resolution of this problem according to the predictive approach.
The whole process is illustrated in the side 2 of the figure 11.

82 H. Bounif, S. Spaccapietra, and R. Pottinger

C
ur

re
nt

 C
on

ce
pt

1 32

Classical Approach for Schema Design

E1 E2

A1

S1: E2
S2: E2

S1: E1
S2: E1

S1:A1

Case : Multi-representation strategy

Predictive Approach for Schema Design and Evolution
O

ntological L
ayer

C
onceptual L

ayer

S1 : Representation 1
S2 : Representation 2

E3

A1

Time

T = to

T = t1Evolution Phase

Delete A1
Delete E2

Future Link

Current
Link C

ur
re

nt
 C

on
ce

pt

C
ur

re
nt

 C
on

ce
pt

Current
Link

A2

E1 E2

E3

A2

A3

E2

S1: E3
S2: E3

S1:A2
S2:A2 S2:A3

Side 1 Side 2

Fig. 11. Presentation of Descriptive evolution on a simple example with both Classical and
Predictive approaches

6 Conclusion and Future Work

In this paper, we have presented another area where ontologies have a huge potential
benefit to information systems: database schema evolution. The approach we propose
belongs to a new tendency called the tendency of a priori approaches. It implies the
investigation of potential future requirements besides the current requirements during
the standard requirements analysis phase of schema design or redesign and their
inclusion into the conceptual schema. Those requirements are determined with the
help of a domain ontology called “a requirements ontology” using data mining
techniques and schema repository. The advantages of this approach include: 1) new
perspectives in the way requirements are inspected and integrated into the schema, 2)
two categories of database designers were taken into consideration, the category of
those who design a schema from scratch and the category of those who redesign the
schema from existing schemas using reverse engineering and dependency graphs, 3)
the reinforcement of the conceptual schemas, 4) and finally the compatibility of the
approach with any data model.

Prediction in schema evolution means to envision the potential changes that could
occur over time on the schema. However, prediction does not work all the time; i.e. it
is not always possible to detect the changes that are plausible to occur on a database

 Requirements Ontology and Multi-representation Strategy 83

schema and are important for the database users because of the complex perception of
the real world. Therefore, the predictive approach operates according to three main
scenarios which are respectively:

1- Scenario 1: Avoid redesign because better designed schema ready for evolution
The first scenario involves the case in which the predicted schema of the database does
not need to be evolved or in other words, the schema has already evolved because the
required changes are already built-in and the database designer or the database
administrator does not have to adjust the schema for them at the evolution time.

2- Scenario 2: Redesign slightly because already planned so easier
The second scenario involves the case in which the predicted schema needs to evolve.
However this evolution is straightforward to realize because the required changes
have already been planned and therefore need just to be added in the database schema.
Consequently, in the evolution time, the schema is redesigned slightly.

3- Scenario 3: Redesign from scratch
The third scenario concerns the case in which the anticipated changes are not accurate
for the evolution of the database scheme because somehow the potential detected
future changes are not appropriate and sufficient. Consequently, in the evolution time,
the database schema needs absolutely to be redesigned from scratch in order to
include all the adequate changes that have occurred on it over time. This scenario
raises the problem that prediction is not feasible each time and it therefore implies 1)
Maybe more work since the requirements ontology needs to be updated because it
does not contain the needed information. 2) However, Updating the requirements
ontology may help for other future schemas redesign and evolution. For example, a
case in which the government legislation means radical changes in the way tax is paid
on investment interest involves changes to the investment file.

Another problem of this approach is that the effectiveness of this approach for
evolution is limited by the amount and the quality of the knowledge accumulated
inside the requirements ontology. Therefore, we have taken into consideration the
problem of the evolution of the requirements ontology as well. For this purpose, we
have adopted the multi-representation strategy based on stamping mechanism. In [13]
a multi-representation solution for ontologies is presented. This solution develops a
language based on description logic (DL) [14] to implement the stamping mechanism.
Unfortunately, this new approach is not without problems.

Future work will proceed in both theoretical and practical directions. The theory
will focus on extending the idea behind the requirements ontology and the stamping
mechanism. The practical work consists in testing this approach significantly through
several case studies with the use of a prototype that is under development.

References

1. Connor, R.C.H., Cutts, Q.I.: Using Persistence Technology to Control Schema Evolution.
In: Proceedings of the ACM symposium on Applied computing Phoenix, Arizona. ACM
Press, New York (1994)

2. Roddick, J.F: A survey of schema versioning issues for database systems. Information and
Software Technology 37(7), 383–393 (1995)

84 H. Bounif, S. Spaccapietra, and R. Pottinger

3. Borgida, A., Williamson, K.E.: Accommodating Exceptions in Databases, and Refining
the Schema by Learning from them. In: 11th International Conference on Very Large Data
Bases, Stockholm, Sweden. Morgan Kaufmann, San Francisco (1985)

4. Benatallah, B.A: Unified Framework for Supporting Dynamic Schema Evolution in Object
Database. In: Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999.
LNCS, vol. 1728, Springer, Heidelberg (1999)

5. Tan, P.-N., et al.: Introduction to Data mining Pearson. Addison Wesley, Pearson (2006)
6. Sugumaran, V., Storey, V.C.: Ontologies for conceptual modeling: their creation, use, and

management. Data Knowledge. Engineering 42(3), 251–271 (2002)
7. Sugumaran, V., Storey, V.C.: An Ontology-Based Framework for Generating and

Improving Database Design. In: Andersson, B., Bergholtz, M., Johannesson, P. (eds.)
NLDB 2002. LNCS, vol. 2553, pp. 1–12. Springer, Heidelberg (2002)

8. Kroenke, D.M.: Database Processing: Fundamentals, Design and Implementation. In:
Acevedo, G.S.d. (ed.), pp. 265–275. Prentice Hall, Pearson (2004)

9. WordNet: http://wordnet.princeton.edu/
10. Lacy, L. W.: OWL: Representing Information Using the Web Ontology Language (2005)
11. Bounif, H., Pottinger, R.: Schema Repository for Database Schema Evolution. In: 2nd

international workshop on Data Management in Global Data Repositories (GREP) 2006 at
International Conference on Database and Expert Systems Applications 06 (2006)

12. Spaccapietra, S., et al.: Supporting Multiple Representations in Spatio-Temporal
databases. In: Proceedings of the 6th EC-GI & GIS Workshop, Lyon, France, June 28-30
(2000)

13. Benslimane, D., et al.: Multi-representation in ontologies. In: Kalinichenko, L.A.,
Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS 2003. LNCS, vol. 2798, pp. 4–15.
Springer, Heidelberg (2003)

14. Baader, F., Nutt, W.: Basic Description Logics. In: Baader, F. (ed.) The Description Logic
Handbook: theory, implementation and application, pp. 43–95. Cambridge University
Press, Cambridge (2003)

M. Collard (Ed.): ODBIS 2005/2006, LNCS 4623, pp. 85–101, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Improving the Development of Data Warehouses by
Enriching Dimension Hierarchies with WordNet

Jose-Norberto Mazón1, Juan Trujillo1, Manuel Serrano2, and Mario Piattini2

1 Dept. of Software and Computing Systems
Apto. Correos 99. E-03080

University of Alicante, Spain
{jnmazon,jtrujillo}@dlsi.ua.es

2 Alarcos Research Group
University of Castilla-La Mancha

Paseo Universidad, 4; 13071 Ciudad Real, Spain
{Manuel.Serrano,Mario.Piattini}@uclm.es

Abstract. OLAP (On-Line Analytical Processing) operations, such as roll-up or
drill-down, depend on data warehouse dimension hierarchies in order to
aggregate information at different levels of detail and support the decision-
making process required by final users. This is why it is crucial to capture
adequate hierarchies in the requirement analysis stage. However, operational
data could not be enough for supplying information to construct every level of
these hierarchies. In this paper, we apply knowledge given by relationships
among concepts from WordNet to overcome this problem. Therefore, richer
dimension hierarchies will be specified in the data warehouse, and OLAP tools
will be able to show proper information to improve decision-making process.
Decision makers thus will be able to achieve their information needs for
analysis. Finally, we will show the benefits of our approach by providing a case
study in which a poor hierarchy is enriched with new levels of aggregation.

Keywords: Data warehouse, dimension hierarchies, WordNet.

1 Introduction

According to Inmon’s definition [8], a data warehouse (DW) is "a subject ori-
ented, integrated, non-volatile, and time variant collection of data in support
of management’s decision". It is widely accepted that DWs are based on
multidimensional (MD) modeling which structures information into facts and
dimensions. A fact contains useful measures of a business process (sales, deliveries,
etc.), whereas a dimension represents the context for analyzing a fact (product,
customer, time, etc.) by means of hierarchically organized dimension attributes [26].
These dimension hierarchies are of paramount importance in OLAP (On-Line
Analytical Processing) tools. These tools are commonly used to support the decision-
making process, by allowing users to analyze the large amount of data stored in the
DW. In this analysis, operations such as roll-up or drill-down are used to aggregate or
disaggregate data, depending on levels of aggregation which must be explicitly

86 J.-N. Mazón et al.

specified by organizing the members of a given dimension into hierarchies
[2,9,12,15,21,22,26]. Thus, hierarchies must be properly defined for analyzing data
stored in DW according to user requirements in order to improve the decision-making
process. In fact, the richer a hierarchy is defined, the more meaningful users’ queries
will be answered and the better decisions will be made.

Lately, we have been defining an approach [12,30], based on the UML (Unified
Modeling Language) [20] and the i* notation [31] for the development of DWs from
user requirements and data sources. Within this approach, once user requirements are
correctly captured, we obtain the corresponding MD conceptual schema (i.e. required
MD schema). The required MD schema is then conformed to the operational sources
that will populate the DW by using a set of multidimensional normal forms in order to
assure certain desirable properties, such as faithfulness, completeness or avoidance of
redundancies [32]. Nevertheless, in this conformation process, we found that the
required MD schema could not be totally specified as many MD elements do not have
their counterpart on the operational data sources and only a reduced version of this
schema was obtained: the conformed MD schema [41]. One of the major constraints
in this conformed MD schema is the fact that the levels of aggregation of the
dimension hierarchies are restricted by the available data sources, and then the
required levels of aggregation could not be specified in the schema.

Fig. 1. Using WordNet to enrich the conformed MD schema

Consequently, data sources may not be enough to obtain required hierarchies and
DW users can only analyze data by using conformed hierarchies1. Therefore, the final
DW will not completely satisfy final user requirements. Thus, in this paper we present
an approach to enrich conformed dimension hierarchies by adding new levels of
aggregation in order to obtain the required hierarchies, even although available data
sources are not enough to provide the required MD elements. DW users will thus
satisfy their analysis needs. To accomplish this, we propose the use of semantic
relations among concepts provided by WordNet [16]. The initial hypothesis is that
both DWs and WordNet present hierarchical structures: dimension hierarchies in

1 We regard required hierarchies to be those obtained from end user requirements (i.e. they are

part of the required MD schema); while conformed hierarchies are those that conform to the
data provided by operational sources (i.e. they are part of the conformed MD schema).

 Improving the Development of Data Warehouses by Enriching Dimension Hierarchies 87

DWs show the relationships between value domains from different dimension
attributes [1,2,12,15,21,22,23] (set by levels of aggregation), while WordNet presents
hierarchical semantic relations between concepts, such as hypernymy/hyponymy or
meronymy/holonymy [16,17]. Therefore, our approach is based on using these
WordNet relations to add new levels to conformed dimension hierarchies in order to
obtain the required hierarchies. Figure 1 summarizes this scenario.

The benefit of our proposal is clear: using knowledge provided by WordNet to
ameliorate the development of DWs, since the quality of dimension hierarchies is
improved by means of adding new hierarchy aggregation levels, which allow DW
users to achieve their analysis information needs and, in this way, to better support the
decision-making process.

The remainder of this paper is structured as follows. Section 2 presents an overview
of works about the development of DWs and the use of WordNet and ontologies in the
development of information systems. Section 3 describes our approach for modeling
DWs and their dimension hierarchies based on UML. Section 4 overviews WordNet.
Section 5 defines our approach for enriching dimension hierarchies using WordNet. In
section 6, a case study is presented. Finally, we point out our conclusions and sketch
some future work in Section 7.

2 Related Work

It is widely accepted that the development of DWs must be based on the conceptual
modeling of the main MD properties. Therefore, in this section, we focus on briefly
describing the most relevant approaches for the conceptual modeling of DWs and,
more generally, the use of ontologies and WordNet in conceptual modeling.

2.1 Conceptual Modeling of DWs

Various approaches for the conceptual design of DW systems have been proposed in
the last few years. In this section, we present a brief discussion about some of the
most well-known approaches.

In [11], different case studies of data marts (DM) are presented. The DW design is
based on the use of the star schema and its different variations (snowflake and fact
constellation). Moreover, the BUS matrix architecture is proposed to build a corporate
DW by integrating the design of several DMs. Although we consider this work as a
fundamental reference in the MD field, we miss a formal approach for dealing, in an
integrated way, with both user requirements and data sources in the development of
DWs.

In [37], authors propose the Dimensional-Fact Model (DFM), a particular notation
for the DW conceptual design. Moreover, they also propose how to derive a DW
schema from the data sources described by Entity-Relationship (ER) schemas. From
our point of view, this proposal assumes that ER schemas contain all the required
information for build a DW which provides data in a suitable way for achieving user
analysis needs. Unfortunately, some important terms and data could be missing from
the data sources and some external sources could be needed.

88 J.-N. Mazón et al.

In [38], authors present the Multidimensional Model, a logical model for OLAP
systems, and show how it can be used in the design of MD databases. Authors also
propose a general design method, aimed at building a MD schema starting from an
operational database described by an ER schema. Although the design steps are
described in a logic and coherent way, the DW design is only based on the operational
data sources, what we consider insufficient because some user analysis needs could
not be accomplished unless other data sources are used.

In [39], the building of star schemas (and its different variations) from the
conceptual schemas of the operational data sources is proposed. Once again, it is
highly supposed that the required information for constructing the DW comes only
from the available data sources.

Every of the above-described approaches present the following main drawback:
they consider the available data sources enough for specifying a DW which provides
proper information to allows decision makers to achieve their analysis needs.
However, decision makers could improve their analysis needs if other sources are
considered. This must be taken into account in early stages of the development
process, i.e. conceptual modeling of the DWs.

2.2 Ontologies and WordNet in Conceptual Modeling

Traditionally, WordNet has been used to improve natural language processing
systems. It has supported several kinds of tasks, such as information retrieval and
extraction, document structuring and categorization, etc. A comprehensive review of
applications related to WordNet can be found in [19].

On the other hand, ontologies have been successfully used for conceptual
modeling. In [33], authors apply named entity recognition and ontologies to database
prototyping process and sample data.

In [34], authors present a framework for supporting the generation and analysis of
conceptual database designs through the use of ontologies. This paper demonstrates
how the use of domain knowledge stored in the form of an ontology can be useful to
assist in the generation of more complete and consistent database designs, both for
design generation and design verification.

In [35], authors present experiments designed to assess the extent to which a
natural language processing tool improves the quality of conceptual models,
specifically object-oriented ones.

The work presented in [36] proposes a UML profile for ontology representation
and conceptual modeling. Authors point out that a conceptual modeling language
should be founded on formal upper-level ontologies to be able to model reality. They
show the relevance of the tools proposed by applying them to solve recurrent
problems in the practice of conceptual modeling.

Within multidimensional environments, ontologies have been specially used for
data integration. The work presented in [10] uses linguistic knowledge provided by
ontologies during the process of data cleaning in multisource information systems to
solve terminological conflicts between data instances. In this work, authors advocate
the use of WordNet. In [27], authors present an ontology-based method to find
suitable data from different sources and to semantically integrate them into one OLAP

 Improving the Development of Data Warehouses by Enriching Dimension Hierarchies 89

cube. A review of the use of ontologies for data integration can be found in [29]. For a
more general review, we refer reader to [3].

Finally, we would like to point out that although several works [2,9,15] have paid
attention to the importance of dimension hierarchies in DWs, to the best of our
knowledge, our contribution is the first work about employing ontologies for
improving the design of dimension hierarchies in DWs.

3 Using UML for Data Warehouse Modeling

Multidimensional databases, OLAP applications, and DWs provide companies with
many years of historical information for the decision-making process. It is widely
accepted that these systems are based on multidimensional (MD) modeling which
structures information into facts and dimensions. A fact contains interesting measures
(fact attributes) of a business process (sales, deliveries, etc.), whereas a dimension
represents the context for analyzing a fact (product, customer, time, etc.) by means of
dimension attributes hierarchically organized. A set of fact measures is based on a set
of dimensions that determine the granularity adopted for representing facts.

In this paper, we follow our object oriented approach for the development of
conceptual models of DWs [12]. This approach has been specified by means of a
UML profile that contains the necessary stereotypes in order to successfully represent
the MD properties in a UML class diagram [20]. In this diagram, the information is
clearly organized into facts and dimensions represented by means of fact classes and
dimension classes respectively (see Table 1).

Fact classes are defined as composite classes in shared aggregation relationships of
n dimension classes. The minimum cardinality in the role of the dimension classes is
1 to indicate that all the facts must always be related to all the dimensions. The
relations “many-to-many” between a fact and a specific dimension are specified by
means of the cardinality 1...* in the role of the corresponding dimension class. A fact
is composed of measures or fact attributes. By default, all measures in the fact class
are considered to be additive. For non-additive measures, additive rules are defined as
constraints and are included in the fact class. Furthermore, derived measures can also
be explicitly represented (indicated by /) and their derivation rules are placed between
braces near the fact class.

Regarding dimensions, there are two kinds of hierarchies: classification
hierarchies, represented by association relationships, and categorization hierarchies,
represented by means of generalization relationships.

Classification hierarchies defined on certain dimension attributes are crucial
because the subsequent data analysis will be addressed by these hierarchies. A
dimension attribute may also be aggregated (related) to more than one hierarchy, and
therefore multiple classification hierarchies and alternative path hierarchies are also
relevant. For this reason, a common way of representing and considering dimensions
with their classification hierarchies is using Directed Acyclic Graphs (DAG).
Nevertheless, classification hierarchies are not so simple in most of the cases. The
concepts of “strictness” and “completeness” are important, not only for conceptual
purposes, but also for further steps of MD modeling. “Strictness” means that an object
of a lower level of hierarchy belongs to only one of a higher level, e.g. a city is only

90 J.-N. Mazón et al.

related to one state. “Completeness” means that all members belong to one higher
class object and that object consists only of those members. For example, suppose we
say that the classification hierarchy between the state and the city levels is
“complete”. In this case, a state is formed by all cities recorded and all the cities that
form the state are recorded. In our MD conceptual model, each level of a
classification hierarchy is specified by a base class (see Table 1). An association of
base classes specifies the relationship between two levels of a classification hierarchy.
The only prerequisite is that these classes must define a DAG rooted in the dimension
class.

Lastly, categorization hierarchies are useful when OLAP scenarios become very
large as the number of dimensions increases significantly. This fact may lead to
extremely sparse dimensions and data cubes. In this way, there are attributes that are
normally valid for all elements within a dimension while others are only valid for a
subset of elements. For example, attributes number of passengers and number of
airbags would only be valid for cars and will be “null” for vans. In our MD
conceptual model, categorization hierarchies are considered by means of the
generalization/specialization relationships of UML.

Table 1. Class stereotypes of our UML profile to be used in this paper

Stereotype Description Icon

Fact class Represent facts consisting of measures

Dimension class Represent dimensions consisting of hierarchy levels

Base class Represent dimension hierarchy levels and their attributes

Once the structure of the MD model has been defined, final users require fulfilling

a set of initial analysis requirements as a starting point for the subsequent analysis
phase. From these initial requirements, users can apply a set of operations (OLAP
operations) to the MD view of data for further analysis. OLAP operations related to
dimension hierarchies are usually as following: roll-up (increasing the level of
aggregation) and drill-down (decreasing the level of aggregation) along one or more
classification hierarchies.

4 WordNet

WordNet [16] is a linguistic resource that provides lexical information about words
and their senses. Furthermore, WordNet also provides a variety of semantic relations
which are defined between concepts [17], so it can be used like an ontology. Syntactic
category of each word determines its potential semantic relationships. In this paper,
we focus on noun semantic relations (since dimension attributes are usually nouns)
namely:

 Improving the Development of Data Warehouses by Enriching Dimension Hierarchies 91

• Synonymy: it is a symmetric relation between word forms. It is a similar
relationship: synonymy indicates that two concepts have a similar meaning.
For example: pipe and tube are synonyms.

• Antonymy: it is also a symmetric relation between word forms. It is an
opposite relationship: antonymy indicates that two concepts have an opposite
meaning. For example: hell and heaven are antonyms.

• Hyponymy/Hypernymy: they represent transitive relations between concepts.
It is a subtype/supertype relationship. Giving two concepts X and Y, it is
expressed as X is-a-kind-of Y, where X is a more specific concept
(hyponym) and Y is a more generic concept (hypernym). An example: cake
is-a-kind-of baked goods. In Fig. 2, an example of a more comprehensive
hypernym hierarchy is given: chocolate cake is-a-kind-of cake, which is-a-
kind-of baked goods, which is-a-kind-of food.

• Meronymy/Holonymy: they are complex semantic relations, such as
components parts, substantive parts, and member parts. They are whole-part
relationships. Giving two concepts X and Y, it is expressed as X is-a-part-of
Y, where X is a concept that represents a part (meronym) of whole concept
Y (holonym). For example: wheel is-a-part-of car.

Fig. 2. Hypernym hierarchy for chocolate cake

These semantic relations allow us to organize concepts into hierarchical structures
(an example of a hypernym hierarchy is shown in Fig. 2). In particular we are
interested in hypernymy (“is-a-kind-of” or generalization) and meronymy (“is-a-part-
of” or aggregation) relations between nouns; since, they are the most useful
relationships in a dimension hierarchy [1,2,12,15,22].

To sum up, in our approach, WordNet is used because it provides concepts from
many domains, and it presents relations between these concepts which are easy to
understand and use. Furthermore, it can be easily extended to other languages, apart
from English, by means of EuroWordNet [28].

5 Using WordNet to Enrich Dimension Hierarchies

Dimension hierarchies in DWs show the relationships between domains of
values from different dimension attributes (set in levels of aggregation). As
above-described, WordNet also presents hierarchy relationships between con-
cepts, such as hypernymy/hyponymy and meronymy/holonymy. Thereby, we will use
this hierarchical organization of WordNet to automatically complete dimension
hierarchies.

92 J.-N. Mazón et al.

We focus on the dimension hierarchy definition provided by [12], described in
section 3. Since UML is used for designing a DW, hierarchies are modeled by using
UML relationships. Particularly for classification hierarchies we use associations
(including aggregations) between levels and generalizations for categoriza-
tion hierarchies. For generalization we will use hypernymy/hyponymy relation-
ship provided by WordNet. Association relationship from UML is more general,
since it only specifies that two elements are connected. Thus, we will use
hypernymy/hyponymy or meronymy/holonymy relationships from WordNet
depending on the domain of dimension attributes: if an association is considered as an
aggregation then we use meronymy/holonymy, else we use hypernymy/hyponymy.
For example, in the case of the hierarchy city-state-country, we will use
meronymy/holonymy relationship due to the fact that city is a part of state and state is
a part of country (e.g. Boston is a part of Massachusetts and Massachusetts is a part of
USA). However, if the hierarchy is product-family-class, hypernymy/hyponymy
relationships will be used, because of every product is a kind of family and every
family is a kind of class (e.g. cake is a kind of baked good and baked good is a kind of
food).

For the sake of clarity when explaining our proposal, from now on, we assume that
only strict hierarchies are taken into account. So, non-strict hierarchies are not
considered. It can be assumed because of WordNet restrictions regarding
relationships, since there is usually only one hypernym for each word sense [4,16].

Our approach consists of grouping word senses whose hypernyms/meronyms
are equal, into a new set of word senses. This new set corresponds to a level
of a dimension hierarchy. Each set of senses is described by its common
hypernym/meronym. In order to create another level in a hierarchy, grouping again
into hypernym/meronym senses (by its common upper concept) is required until the
needed level of aggregation is achieved. Before starting, word senses must be
disambiguated to obtain the right sense for each one. For disambiguation we have
based on specification marks WSD (Word Sense Disambiguation) algorithm from
[18], since it offers good results when every word for disambiguating belongs to the
same domain2.

Fig. 3. Overview of our approach

Following, we explain the main steps of our approach (an overview is shown in
Fig. 3):

Prerequisite 1. A dimension attribute (denoted as D) is chosen from a conformed
hierarchy. The dimension hierarchy will be enriched starting from this attribute.

2 We assume that every possible value of a certain dimension attribute belongs to the same

domain. For example, all possible values of the attribute city will be names of cities.

 Improving the Development of Data Warehouses by Enriching Dimension Hierarchies 93

Prerequisite 2. A level of aggregation (called a) is specified. This is the number of
aggregation levels required to properly analyze data from the DW.

Prerequisite 3. Create a variable t. This variable increments its value when a new
level of aggregation is created. It must be initialized: t=0.

Step 1. Extract all values (without repeating any value) from chosen dimension
attribute. These values are nouns and they constitute the input (or context) for
specification marks WSD algorithm:

W={w1, w2, ..., wn}; where wi denotes every value of the selected dimension
attribute

Step 2. For each word in W, we have to obtain its correct senses from WordNet using
specification mark WSD. Here si represents the correct sense for context value wi.

S={s1, s2, ..., sn}; where si is the sense of wi

Step 3. For each sense in S, we obtain one hypernym/meronym (only the lowest one)
as hi.

Hsi={hi} ∀si∈S, hi is the lowest hypernym/meronym of si

The set of every hypernym/meronym senses obtaining from every Hsi without
repeating is also formed:

H={h1, h2, ..., hn}

Step 4. A new hierarchy level is created and every hypernym/meronym sense from
Hsi is added as instance.

Step 5. Take new input values as all hypernym/meronym senses: S=H.

Stop condition. t=t+1. If the required level of aggregation is reached (t=a) or S has
only one element (all input attributes already have a common hypernym/ meronym),
then the maximum level of aggregation has been reached for these input values.
Otherwise, go to step 3.

In Fig. 3, every step of our approach is illustrated. From a conformed dimension
hierarchy in a MD model which not accomplishes user requirements because it does
not have enough levels of aggregation, a dimension attribute is chosen and all its
values form the context for specification marks WSD algorithm in order to obtain
right senses for each value of dimension attributes. Afterwards, iterations start to
obtain hypernyms/meronyms of values, a new level of the dimension hierarchy is
created, and values are mapped into this new level of the hierarchy. Iterations are
repeated until the required dimension hierarchy, with every needed level of
aggregation, is obtained.

6 Case Study

In this section, we will show the benefits of our approach by providing a little case
study in which a conformed hierarchy is enriched with new levels of aggregation. Our

94 J.-N. Mazón et al.

case study consists of a retail sales business composed of several grocery stores
spread over several regions. In each store several products are sold. This business
process deals with analyzing which products have been sold in which stores on what
date. The store manager needs to further study these sales, analyzing them by means
of several levels of aggregation (e.g. user needs to analyze the sales aggregating by
classes of product), which must be specified in the required dimension hierarchy (see
Fig. 4). However, only name of the product is available in the operational sources (see
Table 2), so after the conformation process, the conformed hierarchy only consists of
one level: product (see Fig. 5).

Fig. 4. Required MD schema (according to user requirements)

Conformed dimension hierarchies are shown in Fig. 5. We can see that product
dimension has not enough levels to accomplish user requirements. Since user
requirements are not achieved by this conformed hierarchy, we apply the approach
above-described to introduce new levels in the dimension hierarchy and enrich it.
Conformed hierarchy consists of an aggregation level, named product (see Fig. 5).
However, decision makers need to aggregate data in three more levels (according to
the required hierarchy in Fig. 4): a lower level called subtype, an intermediate level
called type and a higher level called class (see figure 4). Three new levels have to be
added to the conformed hierarchy in order to enrich it, thus obtaining the required
one. We consider that the user knows the semantic of each level, so levels will be
denoted as level 1, level 2, and level 3.

 Improving the Development of Data Warehouses by Enriching Dimension Hierarchies 95

Fig. 5. Conformed MD schema

Now, every step to obtain the required hierarchy from the conformed one is
described:

Prerequisite 1. Dimension attribute product is chosen (see Table 2).

Prerequisite 2. Three new levels of aggregation are required, so a=3.

Prerequisite 3. t=0.

Table 2. Some of data stored in the operational data sources

Quantity Product Date
2 Bourbon 17/01/2002
3 Merlot 01/02/2002
2 Chardonnay 03/02/2002
2 Cabernet 10/01/2002
1 Scotch 09/02/2002

Step 1. Input values are the following:

W={bourbon, merlot, chardonnay, cabernet, scotch}

Step 2. For each word in the input, its correct senses using specification marks WSD
are the following:

S={s1, s2, s3, s4, s5}={bourbon#2, merlot#2, chardonnay#2, cabernet#1, scotch#1}

96 J.-N. Mazón et al.

Step 3. Hypernyms for each sense of S are obtained from WordNet (only the lowest
hypernym for each sense). Fig. 6 shows an example of hypernym path of the concept
bourbon with sense #2.

H bourbon#2={whisky#1}, Hmerlot#2={red wine#1},
Hchardonnay#2={white wine#1}, Hcabernet#1={red wine#1},

H scotch#2={whisky#1}
H={whisky#1, red wine#1, white wine#1}

Fig. 6. Hypernym path of the concept bourbon from our case study

Step 4. Level 1 is added (see Table 3).

Table 3. First created hierarchy level and its mapped values

Product Level 1
Bourbon Whisky
Merlot Red wine

Chardonnay White wine
Cabernet Red wine
Scotch Whisky

Step 5. Definition of new values for S:

S=H={whisky#1, red wine#1, white wine#1}

Stop condition. t=1. t<a, then go to step 3.

Step 3. Hypernyms for each sense of S are obtained:

Hwhisky#1={liquor#1}, Hred wine#1={wine#1},
Hwhite wine#1={wine#1}

H= {liquor#1, wine#1}

Step 4. Level 2 is added (see Table 4).

Step 5. S=H={liquor#1, wine#1}.

Stop condition. t=2. t<a then go to step 3.

 Improving the Development of Data Warehouses by Enriching Dimension Hierarchies 97

Step 3. Hypernyms for each sense of S are obtained

Hliquor#1={alcohol#1}, Hwine#1={alcohol#1}
H={alcohol#1}

Step 4. Level 3 is added (see Table 5).

Step 5. S=H={alcohol#1}.

Stop condition. t=3=a then stop.

Table 4. First and second levels created and its values

Product Level 1 Level 2
Bourbon Whisky Liquor
Merlot Red wine Wine

Chardonnay White wine Wine
Cabernet Red wine Wine
Scotch Whisky Liquor

Table 5. Hierarchy levels created by our approach and its values

Product Level 1 Level 2 Level 3
Bourbon Whisky Liquor Alcohol
Merlot Red wine Wine Alcohol

Chardonnay White wine Wine Alcohol
Cabernet Red wine Wine Alcohol
Scotch Whisky Liquor Alcohol

Fig. 7. Instances before and after applying our approach

After applying our approach, an enriched hierarchy is obtained (see Fig. 4 and
Table 5) which accomplishes user requirements: analyzing quantity of product sold
aggregating by several hierarchy levels (subtype, type, and class of product), despite
only one level of aggregation (product) was available in the operational data sources.
Then, our approach was applied starting with a conformed hierarchy (see Fig. 5 and

98 J.-N. Mazón et al.

Table 2) only with one level of aggregation (product) and the required hierarchy has
been obtained by adding the following aggregation levels: subtype, type, and class of
product). This enriched hierarchy is shown in Fig. 4, while its instances can be both
observed in Table 5 and Fig. 7.

Fig. 8. An example of using WordNet in our overall proposal for the development of DWs

Fig. 8 shows an example (based on our case study) about how WordNet is applied
within our overall proposal for the development of DWs: a user requirement states
that a quantity of sold product must be analyzed according to several aggregation
levels (subtype, type, and class of product). Therefore, a hierarchy is specified
according to this requirement (i.e. required hierarchy). However, only the name of the
product is available from the data sources. Thus, when the required hierarchy is
conformed to these sources, the resulting conformed hierarchy does not have enough
aggregation levels to satisfy user needs. WordNet is then applied to enrich this
conformed hierarchy and obtain the required hierarchy according to the above-
described approach.

7 Conclusion and Future Work

Dimension hierarchies are of paramount importance in OLAP tools to support the
decision making process, since they allow the analysis of data at different levels of
detail (i.e. levels of aggregation). Then, obtaining the required dimension hierarchies
captured from decision makers in the requirement analysis stage is crucial for
specifying a successful DW. However, when required hierarchies are conformed to
operational sources, we found that these sources may not provide enough data to
construct every level of required hierarchies, meaning that only conformed hierarchies
can be obtained. Therefore, user requirements are not satisfied, as conformed
hierarchies may not deliver the expected information to support the decision-making
process. In this paper, we have proposed the application of WordNet to obtain the
required hierarchies. The advantage of our proposal is clear: the enrichment of
conformed hierarchies by adding new aggregation levels in order to satisfy the

 Improving the Development of Data Warehouses by Enriching Dimension Hierarchies 99

required hierarchies. These required hierarchies allow DW users to satisfy their
information analysis needs, since they better support the decision-making process.

In spite of using WordNet, we have to point out that it presents several ontological
problems [4] which must be overcome in a next future. For instance, WordNet does
not have enough relations, such as attribution (“is-an-attribute-of”) [24], which could
be used to enrich every level of the hierarchy by adding several possible attributes
(i.e. for city, attributes like population or area could be added). Some kind of formal
specification of WordNet (like OntoWordNet [5]) could be used to solve these
ontological problems.

Just as the work presented in [25], we can study a methodology for creating and
managing domain ontologies to properly apply them in our approach.

Finally, we can use WordNet within DWs systems to overcome dimension update
problems [7] or to resolve integration problems [10] and inaccuracy problems
regarding summarizability [6,40].

Acknowledgments. This work has been partially supported by the METASIGN
(TIN2004-00779) project from the Spanish Ministry of Education and Science, by the
DADASMECA project (GV05/220) from the Valencia Ministry of Enterprise,
University and Science (Spain), and by the DADS (PBC-05-012-2) project from the
Castilla-La Mancha Ministry of Education and Science (Spain). Jose-Norberto Mazón
is funded by the Spanish Ministry of Education and Science under a FPU grant
(AP2005-1360).

References

1. Abelló, A., Samos, J., Saltor, F.: Understanding Analysis Dimensions in a
Multidimensional Object-Oriented Model. In: Int. Workshop on Design and Management
of Data Warehouses (DMDW) (2001)

2. Akoka, J., Comyn-Wattiau, I., Prat, N.: Dimension Hierarchies Design from UML
Generalizations and Aggregations. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER
2001. LNCS, vol. 2224, pp. 442–455. Springer, Heidelberg (2001)

3. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: Ontologies: What are they? why do
we need them? IEEE Intelligent Systems and Their Applications 14(1), 20–26 (1999)

4. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A.: Sweetening WORDNET with
DOLCE. AI Magazine 24(3), 13–24 (2003)

5. Gangemi, A., Navigli, R., Velardi, P.: The OntoWordNet Project: Extension and
Axiomatization of Conceptual Relations in WordNet. In: Meersman, R., Tari, Z., Schmidt,
D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 820–838.
Springer, Heidelberg (2003)

6. Horner, J., Song, I.-Y., Chen, P.: An analysis of additivity in OLAP systems. In: 7th ACM
Int. Workshop on Data Warehousing and OLAP (DOLAP), pp. 83–91. ACM Press, New
York (2004)

7. Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Maintaining Data Cubes under
Dimension Updates. In: 15th International Conference on Data Engineering (ICDE), pp.
346–355. IEEE Computer Society Press, Los Alamitos (1999)

8. Inmon, W.: Building the Data warehouse. John Wiley & Sons, Chichester (1996)

100 J.-N. Mazón et al.

9. Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D.: What can Hierarchies do for Data
Warehouses? In: 25th VLDB Conference (1999)

10. Kedad, Z., Métais, E.: Ontology-Based Data Cleaning. In: Andersson, B., Bergholtz, M.,
Johannesson, P. (eds.) NLDB 2002. LNCS, vol. 2553, pp. 137–149. Springer, Heidelberg
(2002)

11. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques For Building
Dimensional Data Warehouse. John Wiley & Sons, Chichester (1996)

12. Luján-Mora, S., Trujillo, J., Song, I.-Y.: A UML Profile for Multidimensional Modeling in
Data Warehouses. Data & Knowledge Engineering 59(3), 725–769 (2006)

13. Luján-Mora, S., Trujillo, J.: A Comprehensive Method for Data Warehouse Design. In:
Proceedings of the 5th International Workshop on Design and Management of Data
Warehouses (DMDW’03), Berlin, Germany, pp. 1.1–1.14 (September 2003)

14. Luján-Mora, S., Trujillo, J.: A Data Warehouse Engineering Process. In: Yakhno, T. (ed.)
ADVIS 2004. LNCS, vol. 3261, pp. 14–23. Springer, Heidelberg (2004)

15. Malinowski, E., Zimányi, E.: OLAP Hierarchies: A Conceptual Perspective. In: Persson, A.,
Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 477–491. Springer, Heidelberg (2004)

16. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: WordNet: An on-line
lexical database. International Journal of Lexicography 3(4) (1990)

17. Miller, G.A., Fellbaum, C.: Semantic networks of English. Lexical And Conceptual
Semantics. Blackwell Cambridge and Oxford. England, pp. 197–229 (1992)

18. Montoyo, A., Palomar, M.: WSD Algorithm Applied to a NLP System. In: Bouzeghoub,
M., Kedad, Z., Métais, E. (eds.) NLDB 2000. LNCS, vol. 1959, pp. 54–65. Springer,
Heidelberg (2001)

19. Morato, J., Marzal, M.A., Lloréns, J., Moreiro, J.: WordNet Applications. In: Proc. of the
2nd International WordNet Conference (GWC), pp. 270–278 (2004)

20. Object Management Group (OMG). Unified Modeling Language Specification 1.5 (2004),
http://www.omg.org/cgi-bin/doc?formal/03-03-01

21. Pourabbas, E., Rafanelli, M.: Characterization of Hierarchies and Some Operators in
OLAP Environment. In: Proc. of the 2nd ACM Int. Workshop on Data Warehousing and
OLAP (DOLAP), pp. 54–59. ACM Press, New York (1999)

22. Schneider, M.: Well-formed Data Warehouses Structures. In: 5th International Workshop
Design and Management of Data Warehouses (2003)

23. Smith, J.M., Smith, D.C.P.: Database Abstractions: Aggregations and Generalizations.
ACM TODS 2(2) (1977)

24. Storey, V.: Understanding Semantic Relationships. VLDB Journal 2, 455–488 (1993)
25. Sugumaran, V., Storey, V.: Ontologies for conceptual modeling: their creation, use, and

management. Data & Knowledge Engineering 42(3), 251–271 (2002)
26. Trujillo, J., Palomar, M., Gómez, J., Song, I.Y.: Designing Data Warehouses with OO

Conceptual Models. IEEE Computer 34(12), 66–75 (2001)
27. Toivonen, S., Niemi, T.: Describing data sources semantically for facilitating efficient

creation of OLAP cubes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298. Springer, Heidelberg (2004)

28. Vossen, P.: EuroWordNet: building a multilingual database with wordnets for European
languages, vol. 3(1), pp. 7–10. Published in: The ELRA Newsletter, Paris (February 1998)
ISSN: 1026-8300

29. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,
Hübner, S.: Ontology-based integration of information – A survey of existing approaches.
In: Proceedings of IJCAI-01. Workshop: Ontologies and Information Sharing, Seattle,
WA, pp. 108–117 (2001)

 Improving the Development of Data Warehouses by Enriching Dimension Hierarchies 101

30. Mazón, J.-N., Trujillo, J., Serrano, M., Piattini, M.: Designing Data Warehouses: from
Business Requirement Analysis to Multidimensional Modeling. In: Int. Workshop on
Requirements Engineering for Business Needs and IT Alignment, REBNITA (2005)

31. Yu, E.: Modeling Strategic Relationships for Process Reenginering, Ph.D. Thesis.
University of Toronto (1995)

32. Mazón, J.-N., Trujillo, J., Lechtenbörger, J.: A Set of QVT Relations to Assure the
Correctness of Data Warehouses by Using Multidimensional Normal Forms. In: Embley,
D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 385–398. Springer,
Heidelberg (2006)

33. Moreda, P., Muñoz, R., Martínez-Barco, P., Cachero, C., Palomar, M.: A web information
extraction system to DB prototyping. In: Andersson, B., Bergholtz, M., Johannesson, P.
(eds.) NLDB 2002. LNCS, vol. 2553, pp. 13–26. Springer, Heidelberg (2002)

34. Sugumaran, V., Storey, V.: An Ontology-Based Framework for Generating and Improving
Database Design. In: Andersson, B., Bergholtz, M., Johannesson, P. (eds.) NLDB 2002.
LNCS, vol. 2553, pp. 1–12. Springer, Heidelberg (2002)

35. Kiyavitskaya, N., Zeni1, N., Mich, L., Mylopoulos, J.: Experimenting with Linguistic
Tools for Conceptual Modeling: Quality of the Models and Critical Features. In: Meziane,
F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 135–146. Springer, Heidelberg
(2004)

36. Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M.: An Ontologically Well-
Founded Profile for UML Conceptual Models. In: Persson, A., Stirna, J. (eds.) CAiSE
2004. LNCS, vol. 3084, pp. 112–126. Springer, Heidelberg (2004)

37. Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: A Conceptual Model for
Data Warehouses. Int. J. Cooperative Inf. Syst. 7(2-3), 215–247 (1998)

38. Cabibbo, L., Torlone, R.: A Logical Approach to Multidimensional Databases. In: Schek,
H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 183–197.
Springer, Heidelberg (1998)

39. Tryfona, N., Busborg, F., Christiansen, J.: starER: A Conceptual Model for Data
Warehouse Design. In: Proc. Of the ACM 2nd Intl. Workshop on Data Warehousing and
OLAP (DOLAP’99), Kansas City, USA. ACM Press, New York (1999)

40. Horner, J., Song, I.-Y.: A Taxonomy of Inaccurate Summaries and Their Management in
OLAP Systems. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó.
(eds.) ER 2005. LNCS, vol. 3716, pp. 433–448. Springer, Heidelberg (2005)

41. Mazón, J.-N., Trujillo, J.: Enriching Data Warehouse Dimension Hierarchies by Using
Semantic Relations. In: Bell, D., Hong, J. (eds.) Flexible and Efficient Information
Handling. LNCS, vol. 4042, pp. 278–281. Springer, Heidelberg (2006)

Management of Large Spatial Ontology Bases

Evangelos Dellis and Georgios Paliouras

Institute of Informatics & Telecommunications,
National Centre for Scientific Research “Demokritos”,

15310 Ag. Paraskevi, Athens, Greece
{dellis,paliourg}@iit.demokritos.gr

Abstract. In this paper we propose a method for efficient management
of large spatial ontologies. Current spatial ontologies are usually repre-
sented using an ontology language, such as OWL and stored as OWL
files. However, we have observed some shortcomings using this approach
especially in the efficiency of spatial query processing. This fact moti-
vated the development of a hybrid approach that uses an R-tree as a
spatial index structure. In this way we are able to support efficient query
processing over large spatial ontologies, maintaining the benefits of on-
tological reasoning. We present a case study for emergency teams during
Search and Rescue (SaR) operations showing how an Ontology Data
Service (SHARE-ODS) can benefit from a spatial index. Performance
evaluation shows the superiority of our proposed technique compared to
the original approach. To the best of our knowledge, this is the first at-
tempt to address the problem of efficient management of large spatial
ontology bases.

Keywords: Spatial Databases, Ontologies, Knowledge Bases.

1 Introduction

The SHARE project1 develops a Push-To-Share (PTS) advanced mobile ser-
vice that provides communication support for emergency teams during Search
and Rescue (SaR) operations. SaR operations are conducted by fire-brigade,
rescue and medical units, operating under a complex unified command-and-
communications structure. The SHARE Ontology Data Service (SHARE-ODS)
[1], [2] which supports the PTS service, combines multimedia semantic modeling
and spatio-temporal modeling in a unified ontology. A model for the semantic
indexing of multimedia objects in the context of SaR processes and activities
is also proposed in [1], [2]. This model unifies the various aspects of a SaR
operation, while allowing the semantic cross-checking of possibly-unreliable in-
formation automatically extracted from multimedia objects.

Ontologies represent concepts, relations among them and instances. Com-
monly, an ontology consists of a relatively small conceptual part (TBox in
Description Logic terminology) and a much larger instance base (ABox in De-
scription Logic terminology), or a dense combination of concepts, relations and
1 http://www.ist-share.org/

M. Collard (Ed.): ODBIS 2005/2006, LNCS 4623, pp. 102–118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Management of Large Spatial Ontology Bases 103

instances [3]. Like most ontologies, the SHARE ontology (TBox and ABox) is
stored as an external xml file (OWL-file) to disk. This approach, however, is
inefficient for very large spatial ontologies that require loading the entire OWL
file from disk into main memory for further processing.

In the context of non-spatial ontologies there have been approaches [4], [5] to
distinguish the ontological model from the actual instances, which make use of a
relational database system (RDBMS). In this way individual instances are stored
as tuples in the database, and as a consequence only the required instances are
read from the database and processed in memory. Despite the obvious gains
from this approach, in SHARE ODS, we have observed significance performance
problems in the spatial sub-ontology. This is due to the lack of efficient spatial
query processing. The most important reason is that relational storage modelling
is inefficient when dealing with space. Early attempts in this area focused on
creating spatial database models and query languages, as well as on devising
logic representations and algebras for reasoning about space. The emergence
of the Semantic Web vision and related technologies, such as ontologies and
semantic web services, has put Spatial Knowledge Representation under a whole
new perspective.

To illustrate the problem, consider a large spatial ontology base storing ob-
jects (instances) at various locations. These objects have spatial attributes, such
as x, y coordinates representing the object’s location and the area it covers is rep-
resented as a minimum bounding rectangle. Apart from these spatial properties,
each object refers to a concept of the ontology (TBox taxonomy) and consists of
non-spatial aspects, such as the type of the object (e.g. building, hotel), height
of the building, roof type, etc. Our goal is to answer queries that combine spatial
with non-spatial (thematic) aspects over this database of objects effectively and
to discard during the search process unnecessary objects from consideration.

In this paper, we focus on supporting the querying and management of large
spatial ontologies. We propose to store the instances of the spatial sub-ontology
using a spatial index structure (e.g. R-tree [6]). In this way we are able to sup-
port efficient query processing over large spatial ontologies. In addition, we are
able to combine spatial query processing with reasoning mechanisms to speed up
the process of inferring new knowledge. Our contributions can be summarized as
follows. First, we address the problem of management of large spatial ontologies
and we propose a hybrid approach that uses a spatial index structure (R-tree) as
the underlying storage model. Second, a case-study using the SHARE system is
presented showing how a spatial ontology can benefit from a spatial index struc-
ture. In addition, we present a series of experiments showing the performance
gains.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents the SHARE Ontology Data Service and motivates the need for
spatial indexing. In Section 4 we show how we can index large spatial ontologies
supporting efficient spatial query processing and present a case study using the
SHARE system. The experimental results are presented in Section 5. Finally,
Section 6 concludes the paper with directions for further work.

104 E. Dellis and G. Paliouras

2 Background

The power of Geographical Information Systems (GIS) which integrate ontolo-
gies describing thematic aspects of entities has yet to be fully explored. An infor-
mation system which can use ontology to capture spatial as well as non-spatial
aspects has enormous potential in many application areas, such as national secu-
rity and emergency response. A fast access to such ontology-enriched data, the
volume of which is usually extremely large, requires the use of indexes, which can
handle queries related to the location of the objects. In the remaining of this sec-
tion we provide some background information related to ontology management
and spatial query processing.

2.1 Ontology Management

In the context of non-spatial ontologies, an early attempt in [3] describes an
environment for supporting very large ontologies. The system was created to
manage ontologies of essentially unlimited size. The architecture of the system
uses a relational database system as the storage model and describes different
approaches to ontology management. In [5], the authors discuss DL reasoning
over large ontologies (ABoxes) and present the KAON2. The system can decide
knowledge base and concept satisfiability, compute the subsumption hierarchy,
and answer conjunctive queries in which all variables are distinguished. The
architecture of KAON2 is presented where the ontology API provides ontology
manipulation services, such as adding and retrieving ontology axioms. The API
fully supports OWL and the Semantic Web Rule Language (SWRL) at the
syntactic level. ABox assertions are stored in a relational database (RDBMS).
By mapping ontology entities to database tables, KAON2 is able to query the
database on the fly during reasoning.

In the spatial domain, the majority of the work so far was related to the
evolution of spatial databases, whose primary objective was to store spatial in-
formation and evolving geometries. Application of ontologies in GIS focuses on
practical problems of defining a common vocabulary to describe the geospatial do-
main which can facilitate interoperability and limit data integration problems [7],
[8]. On the Web, this use of ontology for better search and integration of geospatial
data and applications is embodied in the Geospatial Semantic Web [9]. A system
which provides Geographical Information Systems (GISs) with enhanced capabil-
ities for supporting spatio-temporal reasoning is presented in [4].

Simultaneous to our study, Wessel and Moller [10] examine various methods
to solve the map representation problem. However, their focus is on Description
Logics reasoning using qualitative spatial information. Similar to our work the
authors propose the use of an exterior component (called SBox, typically an
R-tree [6]) combined with the rest of the ontology to answer spatio-thematic
queries. Their hybrid approach uses both components in an interactive fashion.
In addition they examine the materialization of spatial relationships and pro-
pose a graph structure (called RCC graph). Moreover, the authors decide not
to represent the geometry of the map at all, but just exhaustively represent

Management of Large Spatial Ontology Bases 105

certain selected qualitative spatial aspects of the map, using a predefined qual-
itative spatial description vocabulary. This approach has essential drawbacks.
Even though it is easy to compute such an ABox from the explicit geometry of
a map, the resulting ABox is very large. Nevertheless, the size of the generated
ABoxes may become a serious problem if bigger maps are considered. Typical
maps gives rise to over 29 million role membership assertions! Since the RCC
network is explicitly encoded in the ABox, the number of required role assertions
is quadratic in the number of map objects. In addition, most spatial aspects can-
not be handled in that way. For example, distance relations are very important
for map queries, such as range queries and for that reason query processing is
not efficient.

2.2 Spatial Query Processing

The problem of spatial indexing has motivated several research efforts. In this
regard, the R-tree [6] is one of the most popular spatial index structures. For
a comprehensive study on spatial index structures, see [11]. Each spatial data
object in the R-tree is represented by a Minimum Bounding Rectangle (MBR).
Leaf nodes in the R-tree contain entries of the form (oid, rect) where oid is a
pointer to the object in the database and rect is the MBR of the object. Non-
leaf nodes contain entries of the form (ptr, rect) where ptr is a pointer to a child
node in the R-tree and rect is the MBR that covers all the MBRs in the child
node.

For the following examples we use the R-tree of Figure 1, which indexes a set of
points {a, b, ..., k}, assuming a capacity of three entries per node. Points that are
close in space (e.g., a and b) are clustered in the same leaf node (N3), represented
as a minimum bounding rectangle (MBR). Nodes are then recursively grouped
together following the same principle until the top level, which consists of a
single root. See [6] for more details on the R-tree construction.

R-trees (like most spatial access methods) were motivated by the need
to efficiently process range queries, where the range usually corresponds to a
rectangular window or a circular area around a query point. The R-tree answers
the range query q (shaded area) in Figure 1 as follows. The root is first retrieved
and the entries (e.g., E1, E2) that intersect the range are recursively searched
because they may contain qualifying points. Nonintersecting entries (e.g., E4)

Fig. 1. Spatial Queries on R-trees

106 E. Dellis and G. Paliouras

are skipped. Notice that for non-point data (e.g., lines, polygons), the R-tree
provides just a filter step to prune non-qualifying objects. The output of this
phase has to pass through a refinement step that examines the object represen-
tation to determine the actual result. The concept of filter and refinement steps
applies to all spatial queries on non-point objects.

Besides range queries the nearest neighbor (NN) query retrieves the k (k ≥ 1)
data point(s) closest to a query point q. The R-tree NN algorithm proposed in
[12] keeps a heap with the entries of the nodes visited so far. Initially, the heap
contains the entries of the root sorted according to their minimum distance
(mindist) from q. The entry with the minimum mindist in the heap (E2 in
Figure 1) is expanded, i.e., it is removed from the heap and its children (E5, E6
and E7) are added together with their mindist. The next entry visited is E1
(its mindist is currently the minimum in the heap), followed by E3, where the
actual 1-NN result (a) is found. The algorithm terminates, because the mindist
of all entries in the heap is greater than the distance of a. The algorithm can be
easily extended for the retrieval of k nearest neighbors (k-NN). Furthermore, it
is optimal (it visits only the nodes necessary for obtaining the nearest neighbors)
and incremental, i.e., it reports neighbors in ascending order of their distance to
the query point, and can be applied when the number of nearest neighbors to
be retrieved is unknown in advance.

3 The SHARE Ontology Data Service

The basis for our work is the SHARE Ontology Data Service (SHARE-ODS)
[1]. SHARE-ODS combines multimedia semantic modeling and spatio-temporal
modeling in a unified ontology. The main objective of the project SHARE is to
develop a new type of advanced mobile service, called Push-To-Share, to support
“mobile content sharing” by the participants of field operational teams, such as
fire rescue forces. Push-To-Share is an innovative extension of the Push-To-Talk
mobile technology and provides a new concept for simple ways of complex com-
munication, combining an easy-to-use interface with a comfortable delivery of
multimedia content. SHARE incorporates innovations in the area of multimodal
interaction, robust speech interfaces, interactive digital maps, in conjunction
with location-based services and intelligent information processing of multime-
dia data.

This Section discusses the Ontology Data Service of the SHARE system. More
particularly, first we present the architectural framework of SHARE-ODS, fol-
lowed by a discussion of the spatial sub-ontology and finally, we show several
operations of SHARE-ODS such as population, querying and reasoning.

3.1 Architecture

The Ontology Data Service (ODS) is responsible for the semantic indexing and
retrieval of the data in the Knowledge Base. More specifically, the various data
(geographical, temporal, multimedia, operational) required for the operation of

Management of Large Spatial Ontology Bases 107

the overall architecture, are represented as ontology instances that are intercon-
nected with semantic relations, providing an integrated view of the information
needed to support the operation. The Ontology Data Service allows the querying
of the Knowledge Base, so that the other services are able to retrieve not only
the explicitly stated knowledge but also the implicit knowledge inferred by the
reasoning engine.

The ODS operates as the back-end of the Data Server, supporting the func-
tions of front-end data services like, for example, multimedia data retrieval and
geographical annotation (Figure 2). Its main functionality is to allow the other
Services to access populate and query the Knowledge Base. The functions of the
ODS are available through a Web Service interface, so that they can be utilized
by different software modules, which are implemented in different programming
languages and situated in different network locations. In addition, the Ontol-
ogy Data Service includes internal operations (consistency check, classification),
which are responsible for detecting and correcting semantic discrepancies in the
Knowledge Base. From the above discussion it is clear that efficient management
of large ontologies is of major importance for the SHARE system.

Fig. 2. General architecture of the Ontology Data Service

3.2 The Spatial Sub-ontology

The space conceptual model was designed taking into account the relationships
that the map format provides, and its aim is to effectively model all the concepts
related with geographical objects. The space conceptual model is represented by
the spatial sub-ontology. The sub-ontology is broken down into two component
sub-ontologies. The first one comprises abstract geographical concepts, their geo-
reference, and the relationships between them. The second one includes actual
features (buildings, streets, etc). Both SAR instances and geographical features
represent their geo-references as relationships to the abstract geographical in-
stances. Geographical meta-data describe the spatial properties of each entity,
as well as the spatial relations among different entities. This information is crucial
for constructing a semantic spatial context. The client application implementing
the geographical data visualization is responsible for populating and updating
the Knowledge Base with the appropriate spatial entities by utilizing specially
predefined functions of the Web Service interface.

108 E. Dellis and G. Paliouras

3.3 Operations

The Ontology Data Service allows the population of the ontology with the inser-
tion of new instances, which are related to SaR operations, space or multimedia
objects. The population process can be divided into two phases: the population
that occurs during the initialization of the system and the population that oc-
curs during the progress of a SaR operation. During initialization, the ontology is
populated with static data (e.g. the geographical objects of the digital maps, the
roster of the fire department) and setup data (e.g. the communication groups,
the available communication devices). On the other hand, during operation time
the ontology is populated with dynamic data (e.g. event logging, formation of
new sections, moving objects).

Furthermore, the OntologyData Service allows the querying of the stored knowl-
edge. Queries are expressed in RDQL, in order to take advantage of the graph-like
structure of the ontology. More specifically, the queries can impose constraints on
the property values, as well as on the relations of instances. This way a query graph
is created which has to be matched with the actual ontology graph.

Besides population and querying, the Ontology Data Service supports two
reasoning services: Classification and Consistency Checking. More specifically,
classification is responsible for classifying an instance to the appropriate class
taking into account the knowledge incorporated in the ontology. Consistency
checking is responsible for detecting inconsistencies in the ontology knowledge.
Inconsistencies can occur when the ontology is populated with inaccurate data
or when an unacceptable situation (fact) has occurred.

4 The Proposed Framework

In this section we sketch our framework which is a hybrid approach extending
the classical R-tree by using ontologies. The main difference to the R-tree is the
additional storage of non-spatial annotation, i.e. each leaf entry is augmented
with non-spatial (thematic) information. As an application scenario, we consider
the incorporation of an R-tree inside SHARE-ODS. More specifically subsection
4.1 motivates the need for spatial query processing, subsection 4.2 presents the
process of the index construction and finally in subsection 4.3 we discuss query
processing using the SHARE Ontology Data Service.

4.1 Motivation

In this Section we define two cases, which require efficient support of spatial query
processing inside SHARE-ODS. The first case concerns spatial query processing
in a dynamically changing environment, i.e. during a SaR operation, whereas the
second case deals with static spatial entities, such as entities populated in the ini-
tialization stage. We start with two commonly used spatial query types, namely
range and nearest neighbour queries, in order to illustrate the problem.

Query 1. “Find all hospitals in a particular area (range) which are appropriate
for landing a helicopter”. First of all, during query processing only hospitals are

Management of Large Spatial Ontology Bases 109

retrieved that lies in the given area, in contrast to Description Logics systems or
spatial ontology bases (such as the current SHARE ontology) which stores spatial
related data but quantitative information can not be supported. Thereafter, a
refinement is required to ensure that the object refers to a hospital and there is
a helicopter landing facility for an emergency landing which are of appropriate
length and have sufficient fire-fighting crews and equipment. In order to find this
information, we may use TBox reasoning.

Query 2. “Find the nearest hospitals, according to my current location, which
is appropriate for landing a helicopter”. Again, during query processing we have
to check for a helicopter landing facility but for this query the objects are sorted
based on their distance to the current position. Objects that are far away are
immediately discarded while objects are refined in order to identify whether they
are hospitals with a helicopter landing facility.

Besides these two queries on static data, a user of the SHARE system may
also pose a query on the dynamic changing data. Consider as an example that
we store in the ontology the sections and sub-sections defined by the Officer
in Charge (see [1], [2] for more details). Each section (sub-section) is assigned
to a B-Level Officer and is represented as a spatial region (area). Assuming a
querying operation that requests the B-Level Officers, which are responsible for
sections: (1) “Find all B-Level Officers and corresponding sections in a particular
area.” or (2) “Find the B-Level Officer who is closest to an accident (e.g. fire)”.

The first query retrieves all B-Level Officers inside a particular range. The
second query retrieves the nearest B-Level Officer to a specific point. Unfortu-
nately, traditional ontology-based approaches are unable to answer effectively
these types of spatial queries, resulting in a high processing time. These queries
are either posed directly from an ODS client or they are part of a longer chain of
reasoning steps, involving various concepts and relations in the SHARE ontology.

4.2 Index Construction

In this sub-section we propose to support SHARE-ODS using a disk-resident
R-tree to store spatially related instances and at the same time we propose the
use of the OWL file for non-spatial instances. In this way, individual non-spatial
instances are stored in the OWL file, while spatial instances are stored in the R-
tree and as a consequence only the required instances are read from the disk and
processed in memory. The spatial information that is involved in our R-tree based
framework relates to instances (objects) of the ontology which refer to spatial
concepts. These instances are stored using the R-tree as a physical storage model.
Note that for large non-spatial sub-ontologies a back-end RDBMS may be used
to store non-spatial instances as tuples in the database. However, management
of non-spatial ontologies is beyond the scope of this paper. In the remaining of
this section we present the process of the index construction.

In our approach the R-tree is built by storing the ontological annotation of
the spatial objects. Therefore we keep in the leaves of the R-tree an identifier
(ID) which associates the object information with instances of the ontology.

110 E. Dellis and G. Paliouras

More specifically, a non-leaf node of the R-tree contains entries of the form
(child − pointer, MBR) where child − pointer is the address of a child node
in the R-tree, and MBR is the minimum bounding rectangle of all rectangles
which are entries in that child node. A leaf node contains entries of the form
(MBR, Ontology − ID) where MBR is the enclosing rectangle of that spatial
object and Ontology−ID is an identifier that refers to instances of the ontology.

We first describe how to insert a new entry in the R-tree. Given a new entry
(i.e. object), the insertion algorithm decides in which node the entry should be
inserted based on spatial criteria, such as [13], minimizing the following penalty
metrics: (i) the area, (ii) the perimeter of each MBR, (iii) the overlap between two
MBRs in the same node, and (iv) the distance between the centroid of an MBR.
As discussed in [13], minimization of these metrics decreases the probability that
an MBR intersects a query region.

During the insertion, at each level of the tree the algorithm chooses the branch
to follow in a greedy manner. Assume we insert a new object into the tree. At
the root level, the algorithm chooses the entry whose MBR needs the least en-
largement to cover the new entry. Then, at the next level, the algorithm chooses
the entry whose MBR enlargement leads to the smallest overlap increase among
the sibling entries in the node. Note that different metrics are considered at
different levels of the tree structure. If the leaf node reached the new entry is
inserted and the MBR of the parent node is tested if it covers the new entry and
if necessary it is enlarged. If the parent MBR need to enlarge this modification
is propagated to upper levels, in order to enlarge also those MBRs, if necessary.
In the leaves of the R-tree we store objects which corresponds to instances of
ontology concepts, e.g. hotel, park, house.

Let as consider that the spatial sub-ontology consists of buildings associated
with a location. Then, the R-tree corresponds to a ”map” where each building
(e.g. hospitals) is represented as a point. Other ontological information such as
type of the object (e.g. building), its height, roof type, etc. are stored in the owl
file (see Figure 3). This approach enables the efficient processing of advanced
spatial queries such as range and nearest neighbor queries based on the position
of the buildings, while also ontological constrains are evaluated.

In Figure 3, the process of distinguishing between spatial and non-spatial char-
acteristics is shown. Instances referring to the spatial sub-ontologyare additionally

Fig. 3. Storing the instances

Management of Large Spatial Ontology Bases 111

indexed by the R-tree in order to speed up the query processing, whereas instances
referring to other sub-components of the ontology (e.g. multimedia or operational
sub-ontologies) are stored only in the OWL file. Note that, this process happens
inside the Ontology Data Service and is application specific, i.e. the knowledge of
an expert is required to mark the spatial characteristics of the ontology. The on-
tological model is kept in main memory (due to its relatively small size) as it is
requested very often.

4.3 Query Processing

In this Section we discuss query processing using our proposed framework. Let
us assume that our database stores objects (instances which refer to spatial con-
cepts) at various locations. These objects have spatial attributes, such as x, y
coordinates representing the object’s location and the area it covers is repre-
sented as a minimum bounding rectangle. Apart from these spatial properties
each object has some ontological information, referring to concepts of the TBox
such as the type of the object (e.g. building), its height, roof type, etc. Our goal
is to answer queries referring to spatial and/or ontological information over this
database of objects effectively and to discard during the search process unnec-
essary objects from consideration.

Our framework can execute queries that combine both the ontology and the
R-tree in longer chains of reasoning steps. In such cases, the R-tree queries are
used to reduce the complexity of the RDQL statements. We show in more detail
this process using our hybrid approach. For this reason, we use the two query
types of the previous section.

Range and Nearest Neighbor Queries
Our R-tree based framework answers a range query q (shaded area) in Figure 1
(cf. section 2.2) as follows. We assume that the query consists of (1) spatial parts
(i.e. the query point q and a range) as well as non-spatial parts (i.e. hospitals
with helicopter landing facility). In addition we show how to process k nearest
neighbor queries enhanced with non-spatial query parts.

Example. (Range Query) Consider as an example that we are interested in
hospitals appropriate for landing a helicopter inside a specified region (cf. section
2.2). The R-tree is used as a filter step to prune non-qualifying objects, i.e.
buildings outside the specified region. The output of this phase has to pass
through the non-spatial ontology to determine the objects with the appropriate
roof type. Finally, the actual result is presented to the user (i.e. highlight the
buildings on the map).

More specifically, the algorithm for processing range queries using our frame-
work is as follows. The root is first retrieved and the entries (e.g., E1, E2) that
intersect the range are recursively searched. Nonintersecting entries (e.g., E4)
are skipped. The output of this phase has to pass through a refinement step that
evaluates non-spatial (e.g. thematic) query parts to determine the actual result.

112 E. Dellis and G. Paliouras

Example.(Nearest Neighbor Query) Assume we are interested in the nearest
hospital appropriate for landing a helicopter. We execute an incremental k near-
est neighbor query (with unknown k) to obtain a ranking of the nearest buildings
according to the user’s current location. This means that the first nearest neigh-
bor is retrieved and tested against the non-spatial query part, i.e. if the object
corresponds to a hospital and has the appropriate roof type. If the retrieved
object does not correspond to the specification, the second nearest neighbor is
retrieved and we continue until we have found a hospital with appropriate roof
type.

More particularly, a nearest neighbor (NN) query which retrieves the k (k ≥ 1)
data point(s) closest to a query point q with non-spatial query parts is executed
using our framework in the following way. Initially, the heap contains the entries
of the root sorted according to their distance (dist) from q. The entry in the heap
with the minimum dist is retrieved and if the entry is not an object, the entry is
expanded, i.e., it is removed from the heap and its children are added. If the entry
belongs to a leaf node, the ontology instance is accessed using the associated
ontology ID after the non-spatial query part is evaluated by the reasoner. If the
non-spatial specification holds the instance is returned as the nearest neighbor.
Else, the second nearest neighbor is retrieved i.e. the next leaf entry whose dist
is currently the minimum in the heap. We continue until we have found k object
which meets our spatial and/or non-spatial requirements.

Note that, for the above queries the R-tree is used to speed-up the query
processing. Therefore we are able to retrieve only a small fraction of the actual
dataset (ABox) and organize the spatial entities in a more appropriate way.

5 Experimental Evaluation

For the purpose of the experiments, we used SHARE-ODS [1], [2] for gener-
ating the dataset. As a scenario for the experiments we consider the buildings
described in the spatial sub-ontology. In our experiments, the dataset contains
buildings with varied cardinalities, ranging from 100 points to 10,000 points.
In the first set of experiments we study the scalability of the original SHARE-
ODS and show that this approach has serious performance shortcomings. In the
second set of experiments, we examine the query performance with the dataset
cardinality for spatial range queries and nearest neighbor queries (pre-computed
and dynamic). More specifically, we examine the performance degradation in the
case of increasing dataset cardinality and we report the running time as a func-
tion of the number of instances. In our third experiment we examine the more
complex case of combining spatial query processing with the rest ontology. We
study the influence of the R-tree on the performance and examine the scalability
with respect to the query.

All these experiments use an R-tree indexing 2-dimensional points corre-
sponding to static landmarks (e.g. buildings), which is built during the initial-
ization process. In the last experiment we examine the performance of the R-
tree in case of dynamically changing spatial information corresponding to the

Management of Large Spatial Ontology Bases 113

operational spatial sub-ontology. In this case regions are inserted in the R-tree
that corresponds to the areas that are assigned to a B-Level Officer during an
operation. For the R-tree implementation we use the XXL library [14].

5.1 Shortcomings of the Original Ontology

In this subsection we are particularly interested in the impact of the current
SHARE-ODS implementation. We examine the performance by varying the num-
ber of instances (in our case 2-dimensional points) from 100 to 1,000. Note that,
a building on a 2-dimensional map is covering a particular area. This area is
represented in SHARE-ODS as a closed line. On the other hand, a very common
approach used by almost all maps is to represent a building as a 2-dimensional
point. To support efficient query processing, a building in SHARE-ODS is ad-
ditional represented as a point characterized by the latitude and the longitude
(data properties). In the original ontology to support nearest neighbor query each
building has eight object properties corresponding to the eight closest buildings
in each direction (e.g. south, west, etc.), which in turn increases the size of the
OWL file. We report the CPU time (in msec) required for the ODS population.

Figure 4 shows the CPU time needed to load the dataset (OWL file) from the
disc. In addition we report the time for saving the OWL file to disc. For both
cases we observed a high increase in the CPU time for large datasets (above 900
instances).

5.2 Query Processing for Spatial Ontologies

In the second set of experiments we study the performance of two spatial query
types, namely range queries and nearest neighbor queries. Additionally, we dis-
tinguish between the pre-computed nearest neighbor and the dynamic case. The
former, is used for comparison using the R-tree.

In our running example, the points stored in the R-tree correspond to the
buildings represented in the spatial sub-ontology. Actually, the latitude and the
longitude that are data properties of the building are stored in the R-tree. In
the first experiment, we vary the number of buildings and we are interested to
find the buildings that lay in a particular area.

In Figure 5, we report the CPU time needed for answering a range query with
constant cardinality for different number of instances. We vary the number of
instances between 100 and 10,000. For the OWL file we observed a high increase
in the CPU time, while for the R-tree the CPU time remains almost constant.

In the following experiment we are interested to find the nearest building
based on a particular direction. As already mentioned, in the original approach
the nearest neighbors are pre-calculated and stored in the OWL file as object
properties of a building. In contrast to the original case, the R-tree supports such
nearest neighbor queries dynamically and the nearest neighbor is calculated real
time with respect to the preferred direction. In addition, we examine the dynamic
case of nearest neighbor query. We are interested to find the nearest building to
a random point on the map. This means that the query point is not necessary a

114 E. Dellis and G. Paliouras

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 200 400 600 800 1000 1200

Number of Points

T
im

e
(m

se
c)

loadOWL

saveOWL

Fig. 4. Performance shortcomings

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2000 4000 6000 8000 10000 12000

Number of Instances

C
PU

 ti
m

e
(m

se
c)

OWL R-tree

Fig. 5. Spatial Range Query

building. The original approach does not support efficiently this query since the
nearest neighbor of a random point cannot be pre-calculated and stored in the
OWL file.

Figure 6a shows the CPU time needed to answer a nearest neighbor query with
respect to the number of points inserted in the ontology. Again, for the OWL
file we observed a high increase in the CPU time, and more specifically when
the dataset cardinality exceeds a certain threshold. For the R-tree the CPU time
remains almost constant. Figure 6b depicts the CPU time needed for retrieving
the nearest neighbor from an arbitrary query point. As already mentioned, this
query cannot be pre-computed and cannot be computed efficiently when using
the OWL file. The number of building is varied between 100 and 10,000 instances
and we measure the CPU time. We observe that the required CPU time increases
very slowly with increasing number of instaces.

5.3 Combining Spatial Query Processing with the Rest of the
Ontology

In this subsection we investigate the performance of our approach under the
assumption that the query is answered using both the OWL file and the R-tree.
Such an example is the query ”Find which buildings in a particular area (range)
are appropriate for landing a helicopter”. The location of the building is a spatial

Management of Large Spatial Ontology Bases 115

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 1000 5000 10000

Number of Instances

C
PU

 ti
m

e
(m

se
c)

OWL R-tree

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000

Number of Instances

C
PU

 ti
m

e
(m

se
c)

R-tree

(a) Nearest Neighbor (pre-computed in OWL) (b) Dynamic Nearest Neighbor Query

Fig. 6. Dynamic vs. pre-computed Nearest Neighbor

attribute and kept in the R-tree. The data property of a building that indicates
if a helicopter is capable to land on a building is a non-spatial attribute and is
kept in the OWL file.

In this example the R-tree is used as a filter to simplify the RDQL statement.
In a first step, all buildings that lie in the particular area are retrieved. The
building identifier is also stored in the R-tree as a label of each point. In a
second step, the buildings are retrieved from the OWL file according to the
identifier and buildings that are not suitable for a helicopter are discarded from
the result set.

In the following experiment we compare the combined approach in contrast
to the performance of the RDQL statement of the original approach. Figure 7
illustrates the effect of the number of instances on a query that can be answered
by the OWL file and additionally by the combination of the OWL file and the
R-tree. As expected, using the combined approach is superior to the original
approach, which uses only the OWL file. Especially when the number of instances
increases, the gain of our approach increases rapidly. This is due to the fact
that the RDQL query is simplified through a filtering step using the R-tree,
which in turn decreases the time, needed for the query processing. Moreover, the
combined approach avoids the retrieving of points based on the data properties
of an object, i.e. the latitude of the point corresponding to the building, but

0

5000

10000

15000

20000

25000

30000

100 1000 5000

Number of Instances

C
PU

 ti
m

e
(m

se
c)

OWL R-tree

Fig. 7. Combined Query

116 E. Dellis and G. Paliouras

accesses the building directly by the building’s identifier. The identifier is stored
in the R-tree and therefore is able to reduce significantly the CPU time. In
order to study the effect of scalability for our point dataset, we vary the dataset
cardinality between 100 and 5,000 instances.

5.4 Querying Dynamically-Changing Spatial Information

In this experiment we simulate a rescue operation by inserting and deleting re-
gion that are assigned to a B-Level Officer (cf. section 3.1). The B-Level Officer’s
identifier is stored in the R-tree and therefore is able to reduce significantly the
CPU time.

0

50

100

150

200

250

300

100 1000 5000 10000

Number of instances

C
PU

 ti
m

e
(m

se
c)

Fig. 8. Dynamic R-tree

Figure 8 depicts the CPU time needed for retrieving the B-Level Officer of
the nearest region to an arbitrary query point. The total number of inserted
region instances is varied between 100 and 10,000. To simulate the process of
a Search and Rescue operation we randomly delete some regions and reinsert
other regions. The general performance of an R-tree is influenced by deletions
and we encounter this fact in our experiments. We observe that the required
CPU time increases very slowly when the number of instances increases rapidly.
Despite the deletions required for dynamically changing spatial information the
R-tree performs well in terms of CPU time for answering spatial queries.

6 Conclusions and Future Work

We have proposed a method for efficient management of large spatial ontologies,
which combines a typical OWL ontology with an R-tree for indexing spatial enti-
ties. The performance evaluation shows the superiority of our proposed technique
compared to the original approach, using only the OWL file. Using the proposed
approach, we are able to support efficient query processing over large spatial
ontologies and integrate it in a larger chain of reasoning steps. In addition we
present a case study for emergency teams during Search and Rescue (SaR) op-
erations showing how the SHARE Ontology Data Service can benefit from a
spatial index, which is integrated inside the SHARE system.

Management of Large Spatial Ontology Bases 117

As future work we plan to extend this work to several directions. First of all, we
indent to investigate more complex spatial query operators, such as spatial joins
combining thematic aspects within our framework. Second, the integration of
spatio-temporal indexing into ontologies, which represent both concepts of space
and time is of major importance. Finally, we aim to design an index structure
that keeps class membership information in the nodes of the tree. During query
processing nodes are discarded by testing the thematic part of the query against
the characteristics of the nodes. By separating the ontological model (TBox)
from the actual instances (ABox) we are moving towards efficient management
of very large spatial knowledge bases while at the same time query processing
would benefit from this approach.

Acknowledgments

The authors wish to acknowledge the support of the EC-funded project SHARE
(contract no. FP6-IST-004218) to the work reported in this paper.

References

1. Konstantopoulos, S., Paliouras, G., Chantzinotas, S.: Share-ods: An ontology data
service for search and rescue operations. In: Antoniou, G., Potamias, G., Spyropou-
los, C., Plexousakis, D. (eds.) SETN 2006. LNCS (LNAI), vol. 3955, pp. 525–528.
Springer, Heidelberg (2006)

2. Konstantopoulos, S., Paliouras, G., Chantzinotas, S.: Share-ods: An ontology data
service for search and rescue operations. In: Technical Report DEMO-2006-1,
NCSR ’Demokritos’, Athens (2006)

3. Stoffel, K., Taylor, M.G., Hendler, J.A.: Efficient management of very large ontolo-
gies. In: American Association for Artificial Intelligence Conference (AAAI), pp.
442–447 (1997)

4. Raffaeta, A., Turini, F., Renso, C.: Enhancing giss for spatio-temporal reasoning.
In: ACM International Symposium on Geographic Information Systems (ACM-
GIS), pp. 42–48. ACM Press, New York (2002)

5. Motik, B., Sattler, U.: Practical dl reasoning over large aboxes with kaon2. In: Sub-
mitted for publication (2006), http://www.fzi.de/ipe/eng/publikationen.php

6. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: ACM
SIGMOD International Conference on Management of Data (SIGMOD), pp. 47–57.
ACM Press, New York (1984)

7. Agarwal, P.: Ontological considerations in giscience. International Journal of Geo-
graphical Information Science 19(5), 501–536 (2005)

8. Fonseca, F.T., Egenhofer, M.J., Agouris, P., Câmara, G.: Using ontologies for inte-
grated geographical information systems. Transactions in Geographic Information
Systems 6(3) (2002)

9. Egenhofer, M.J.: Toward the semantic geospatial web. In: ACM International Sym-
posium on Geographic Information Systems (ACM-GIS), pp. 1–4. ACM Press, New
York (2002)

10. Wessel, M., Möller, R.: A flexible dl-based architecture for deductive information
systems. In: IJCAR Workshop on Empirically Successful Computerized Reasoning
(ESCoR), pp. 92–111 (2006)

http://www.fzi.de/ipe/eng/publikationen.php

118 E. Dellis and G. Paliouras

11. Gaede, V., Günther, O.: Multidimensional access methods. ACM Computing Sur-
veys 30(2), 170–231 (1998)

12. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans-
actions on Database Systems 24(2), 265–318 (1999)

13. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The r*-tree: An efficient and
robust access method for points and rectangles. In: ACM SIGMOD International
Conference on Management of Data (SIGMOD), pp. 322–331. ACM Press, New
York (1990)

14. den Bercken, J.V., Blohsfeld, B., Dittrich, J.P., Krämer, J., Schäfer, T., Schneider,
M., Seeger, B.: Xxl - a library approach to supporting efficient implementations of
advanced database queries. In: International Conference on Very Large Data Bases
(VLDB), pp. 39–48 (2001)

Knowledge Extraction Using a Conceptual
Information System (ExCIS)

Laurent Brisson

Laboratoire I3S - Université de Nice, 06903 Sophia-Antipolis, France
brisson@i3s.unice.fr

Abstract. It is a well known fact that the data mining process can
generate thousands of patterns from data. Various measures exist for
evaluating and ranking these discovered patterns but often they don’t
consider user subjective interest. We propose an ontology-based data-
mining methodology called ExCIS (Extraction using a Conceptual Infor-
mation System) for integrating expert prior knowledge in a data-mining
process. Its originality is to build a specific Conceptual Information Sys-
tem related to the application domain in order to improve datasets prepa-
ration and results interpretation. This paper focus on our ontological
choices and an interestingness measure IMAK which evaluates patterns
considering expert knowledge.

1 Introduction

One important challenge in data mining is to extract interesting knowledge
and useful information for expert users. Numerous works focused on indexes
that measure the interestingness of a mined pattern [5,9]. They generally distin-
guished objective and subjective interest. Silberschatz and Tuzhilin [14] proposed
a method to define unexpectedness and actionability via belief systems while Liu
[9] developed a method that use user expectations.

In most data mining projects, prior knowledge is implicit or is not organized
as a structured conceptual system. ExCIS is dedicated to data mining situations
where the expert knowledge is crucial for the interpretation of mined patterns.
In this approach, an application ontology is built by analyzing existing databases
with collaboration of expert users who play a central role. The main objective in
ExCIS is to propose a framework in which the extraction process makes use of
a well-formed conceptual information system (CIS) for improving the quality of
mined knowledge. We consider the paradigm of CIS as defined by Stumme [18]:
a relationnal database together with conceptual hierarchies. The CIS provides
an useful structure for further mining tasks.

An ontology is a logical theory accounting for the intended meaning of a formal
vocabulary, i.e. its ontological commitment to a particular conceptualization
of the world [4]. Extracting ontological structures from data is very similar to
processes of retrieving a conceptual schema from legacy databases [6]. They are
based on the assumption that sufficient knowledge is stored in databases in order
to construct the ontology.. They generally apply a matching between ontological

M. Collard (Ed.): ODBIS 2005/2006, LNCS 4623, pp. 119–134, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

120 L. Brisson

concepts and relational tables such that the ontology extracted is very close to
the conceptual database schema.

In ExCIS, the ontology provides a conceptual representation of the application
domain by analyzing the existing operational databases. ExCIS main character-
istics are:

– Prior knowledge conceptualization: the CIS is specially designed for data
mining tasks

– Adaptation of the CRISP-DM [2] methodology with CIS based preparation
of data sets to be mined, CIS based post processing of mined knowledge in
order to extract surprising and/or actionable knowledge and an incremental
evolution of the expert knowledge stored in the CIS.

Our project deals with data from the ‘family’ branch of the French national
health care system. The issue we address is to improve relationships between
beneficiaries and the CAF organism. In this case study, we had two sources of
information: a database storing data on beneficiaries and expert users aware of
the business processes, behaviors and habits in the organism.

The topic of this paper is the use of ontologies for data mining. Our goal
is to enhance data mining tasks and to extract interesting patterns according
user’s knowledge. The novelty of ExCIS methodology lies in the creation of a
CIS in order to compare knowledge and extracted patterns. We use an ontology
based approach for unexpected and actionable patterns extraction while works
on interestingness measures deals with templates [9] or beliefs [14]. Furthermore,
using user’s knowledge in actionable patterns extraction differs from Piatetsky-
Shapiro [13] or Silberschatz [15] approaches.

The paper is organized as follows. Section 2 presents related works. Section
3 gives an overview of the ExCIS approach. Section 4 describes the underlying
conceptual structures of the ontology. In Section 5, we give a detailed description
of CIS construction. Section 6 focus on knowledge database construction and
interesting patterns extraction. Section 7 presents experiments results. Section
8 concludes the paper.

2 Related Works

2.1 Interestingness Measures

Numerous works focused on indexes that measure the interestingness of a mined
pattern [5,9,10]. They generally distinguished objective and subjective interest.
Among these indexes there are quantitative measures of objective interesting-
ness such as confidence, coverage, lift, success rate while unexpectedness and
actionability are proposed for subjective criteria. Since our work deals with user
interestingness, we focus this state of the art on the former. According to the
actionability criteria, a model is interesting if the user can start some action
depending on it [15]. On the other hand, unexpected models are considered in-
teresting since they contradict user expectations which depend on his beliefs.

Knowledge Extraction Using a Conceptual Information System (ExCIS) 121

User expectations is a method developed by Liu [9]. The first approach neither
dealt with unexpectedness nor actionability. User had to specify a set of patterns
according to his previous knowledge and intuitive feelings. Patterns had to be
expressed in the same way that mined patterns. Then Liu defined a fuzzy al-
gorithm which matches these patterns. In order to find actionable patterns, the
user has to specify all actions that he could take. Then, for each action he spec-
ifies the situation under which he is likely to run the action. Finally, the system
matches each discovered pattern against the patterns specified by the user using
a fuzzy matching technique.

Silberschatz and Tuzhilin [14] proposed a method to define unexpectedness
via belief systems. In this approach, there are two kinds of beliefs: soft beliefs
that the user is willing to change if new patterns are discovered and hard beliefs
which are constraints that cannot be changed with new discovered knowledge.
Consequently this approach assumes that we can believe in some statements only
partially. That’s why some degree or confidence factor is assigned to each belief.
A pattern is said to be interesting relatively to some belief system if it ‘affects’
this system, and the more it ‘affects’ it, the more interesting it is. However,
interestingness of a pattern depends also on the kind of belief.

2.2 Databases and Ontologies

Ontologies provide a formal support to express beliefs and prior knowledge on
a domain. Domain ontologies are not always available; they have to be built
specially by querying expert users or by analyzing existing data. Extracting
ontological structures from data is very similar to the process of retrieving a
conceptual schema from legacy databases. Different methods [7,6,17] were pro-
posed. They are based on the assumption that sufficient knowledge is stored in
databases for producing an intelligent guide for ontology construction. They gen-
erally apply a matching between ontological concepts and relational tables such
that the ontology extracted is very close to the conceptual database schema.

2.3 Ontologies and Data Mining

For the last ten years, ontologies have been extensively used for knowledge rep-
resentation and analysis mainly in two domains: Bioinformatics and web con-
tent management. Biological knowledge is nowadays most often represented in
‘bio-ontologies’ that are formal representations of knowledge areas in which the
essential terms are combined with structuring rules that describe relationships
between the terms. Bio-ontologies are constructed according to textual descrip-
tions of biological activities. One of the most popular bio-ontology is Gene On-
tology1 that contains more than 18 thousands terms. It describes the molecular
function of a gene product, the biological process in which the gene product
participates, and the cellular component where the gene product can be found.
Results of data mining processes can then be linked to structured knowledge

1 http://www.geneontology.org/

122 L. Brisson

within bio-ontologies in order to explicit discovered knowledge, for instance to
identify biological functions of genes within a cluster. Interesting surveys of on-
tologies usage for bio-informatics can be found in [1,16]. A successful project of
data mining application using bio-ontologies is described in [19].

In the domain of web content management, OWL (Ontology Web Language)2
is a Semantic Web standard that provides a framework for the management, the
integration, the sharing and the reuse of data on the Web. Semantic Web aims at
the sharing and processing of web data by automated tools as well as by people. It
can be used to explicitly represent the meaning of terms in vocabularies and the
relationships between those terms, i.e. an ontology. Web ontologies can be used to
enrich and explain extracted patterns in many knowledge discovery applications
to web such as web usage profiling [3] for instance.

3 Overview of the ExCIS Approach

ExCIS integrates prior knowledge all along the mining process: the first step
structures and organizes the knowledge in the CIS and further steps exploit it
and enrich it too.

Fig. 1. ExCIS Process

Figure 1 describes ExCIS process from attribute selection to extraction of
interesting patterns. Figure 2 describe information flow in ExCIS approach. On
each arrow a number refers to a subprocess in figure 1. In this paper, section 4
describe subprocesses 1 to 3 while section 6 describe subprocess 8.

The global ExCIS process presented in theses figures shows:

– The CIS construction where:
• The ontology is extracted by analyzing original databases and by inter-

acting with expert users.

2 http://www.w3.org/TR/owl-ref/

Knowledge Extraction Using a Conceptual Information System (ExCIS) 123

• The knowledge base, set of factual informations, is obtained in a first
step from dialogs with expert users.

• The new generic Mining Oriented Database (MODB) is built. It contains
data cleaned and prepared using domain knowledge.

– The pre-processing step where specific datasets may be built for specific
mining tasks.

– The standard mining step which extracts patterns from these datasets.
– The post-processing step where discovered patterns may be interpreted

and/or filtered according to both prior knowledge stored in the CIS and
individual user attempt.

Fig. 2. Information flow

In this paper we call “patterns” a set of itemsets. Technicaly, we use the
CLOSE algorithm [12] to extract association rules (one itemset for antecedent
and another one for consequent).

The MODB is said to be generic since it will be used as a kind of basic
data repository from which any task-specific dataset may be generated. We
call MODB a relationnal database whose attributes and values are concepts
of the ontology we defined. The underlying idea in the CIS is to build structures
which will provide more flexibility not only for pre-processing the data to be
mined, but for filtering and interpreting discovered patterns in a post-processing
step. Hierarchical structures and generalization/specialization links between on-
tological concepts play a central role to allow reducing the volume of extracted
patterns and to provide a tool for interpreting results obtained by clustering
algorithms.

For numerical or categorical data, they provide different granularity levels
which are useful in the pre-processing and the post-processing steps.

124 L. Brisson

4 Conceptual Structures of the Ontology

4.1 Ontology

In ExCIS the ontology is an essential means both for improving data mining
processes and for interpreting data mining results. It’s an application ontology
as defined by Guarino [4], ie. an ontology which describe concepts depending
both on a particular domain (family branch of the french health care system in
our application) and task (data mining in ExCIS methodology). The ontology is
defined by a set of concepts and relationships among them which are discovered
by analyzing existing data. It provides support both in the pre-processing step for
building the MODB and in the post-processing steps for refining mined results.

Generalization/specialization relationships between ontological concepts pro-
vide valuable information since they may be used intensively for reducing and
interpreting results. For instance, a set of dependency rules may be reduced by
generalization on attributes or by generalization on values. Thus the guidelines
in the ontology construction are:

– To distinguish attribute-concept (a data property) and value-concept (a
value of a data property).

– To establish matching between source attributes and attribute-concepts and
a matching between source values and value-concepts.

– To define concept hierarchies between concepts.

This ontology does not contain any instances since values are organized in hierar-
chies and considered as concepts. The MODB is a relational database whose role
is to store the most fine-grain data elicited from the original database. MODB
attributes are those which are identified as relevant for the data mining task and
MODB tuples are composed of the most fine-grain values.

4.2 Ontology Relationships

A relationship is an oriented link between two concepts. In ExCIS there are two
different kinds of concepts (see figure 3) and we distinguish relationships between
concepts of the same hierarchy and concepts of different hierarchies.

Relationships from an attribute-concept toward a value-concept are forbidden
since the relationship “is value of” has no meaning in this situation. There exist
five different relationships between concepts (see Table 1). Numbers in this table
refer to relationships in figure 4(a), 4(b) and 5. Among all the relationships, we
can set up 3 different categories:

Relationships between value-concepts. Generalization or specialization re-
lationships between value-concepts (see relationship 5 figure 5) are useful in
order to generalize patterns during the post-processing step. Furthermore, rela-
tionships between two value concepts of the same hierarchy are essential since
they allow to select data granularity in datasets generated from the MODB (see
relationship 3 figure 4).

Knowledge Extraction Using a Conceptual Information System (ExCIS) 125

Fig. 3. Representation of concept and relationship

Table 1. Concept relationships

Concept Within the same hierarchy Between different hierarchies
Attribute Value Attribute Value

Attribute 1 genls
Value 2 valueOf 3 genls 4 valueOf 5 relationWith

Relationships between attribute-concepts. Generalization or specializa-
tion relationships between attribute-concepts are useful in order to generalize
models during the post-processing step.

Relationships between two concrete attribute-concepts of the same hierarchy
are specific because they have to be checked during datasets generation: indeed
these attributes cannot be in the same dataset to avoid redundancy.

ExCIS method forbids relationships between attribute-concepts of different
hierarchies because attribute-concepts which are semantically close have to be
located together in the same hierarchy (see relationship 1 figures 4,5).

Relationships between value-concepts and attribute-concepts. These
relationships are essential in order to build data or to provide different semantic
views during the post-processing step. For instance, “98001” is both a “Home
Location” and a “Zip Code” (see relationships 2,4 figure 5). If concepts are se-
mantically close they must be in the same hierarchy and if they are slightly
different they can be into two different hierarchies.

5 Conceptual Information System Construction

ExCIS differs from CRISP-DM mainly in the data preparation step. In this
step CRISP-DM describes 5 tasks: select, clean, construct, integrate and format
data. Selection and format are identical in both methods but in ExCIS cleaning,
construction and integration are improved in order to elicitate the ontological
concepts and to build the MODB.

Let A the set of source database attributes, C the set of ontology concepts
and Cz the set of concepts associated to an attribute z ∈ A. C is defined by⋃

z∈A Cz.

126 L. Brisson

(a) Allowances related concepts (b) Children related concepts

Fig. 4. Concept Hierarchies

5.1 Scope Definition and Source Attribute Selection

First steps of ExCIS method are related to the Business Understanding and
the Data Understanding steps of CRISP DM method. They need an important
interaction with expert users.

1. Determine objectives: in our case study, objectives are to improve "rela-
tionships with beneficiaries".

2. Define themes: analysis of data allow to gather them into semantic sets
called themes. For example we create 3 themes: Allowance beneficiaries pro-
files, contacts (by phone, by mail, in the agency, . . .) and events (holidays,
school starts, birth, wedding, . . .).

3. For each theme select a set of source attributes with experts users.

5.2 Data Analysis and Attribute-Concept Elicitation

4. For each selected attribute z:

5. Examine name and description in order to:
– Associate n concepts to the attribute.
– Into C, clean homonyms (different concepts with same name), synonyms

(same concepts with different names like age and date of birth) and
useless attributes according the objectives.

6. Examine values (distribution, missing values, duplicates values, . . .) in
order to:

– Refine Cz (add or delete concepts) according to information collected in
step 6.

Knowledge Extraction Using a Conceptual Information System (ExCIS) 127

Fig. 5. Location related concepts

– Clean again homonyms, synonyms and useless attributes. For example
by analyzing values we realized that ‘allowances’ was in fact 2 homonyms
concepts. Thus we created the ‘allowance amount’ concept and the ‘al-
lowance beneficiary’ concept.

7. For each concept associated to z create the method which generates value-
concepts.

In the step 7, if the attribute-concept doesn’t exist we have to create a 4 fields
record table. These fields are the attribute associated to the concept, the name
of the attribute table in source database, the attribute domain value and the
reference to the procedure which may generate value-concepts. There is only one
procedure for record in the table. A domain value can be a distinct value or a
regular expression and is the input of the procedure. Procedure output provides
references to value-concepts. The procedure might be an SQL request (SELECT
or specific computation) or an external program (script, shell, C, . . .). However,
if the attribute-concept already exists we just have to add a record in the table
and create a new procedure.

5.3 Value-Concept Elicitation

At this point, all of the methods to generate value-concepts are created.

8. Give a name to each value-concept.
9. Clean homonyms and synonyms among value-concepts.

5.4 Ontology Structuration

10. Identify generalization relationships among value-concepts (see figure 4(a)).

128 L. Brisson

11. If necessary, add new concepts to structure the ontology. For instance ‘Lo-
cation’ concept in figure 5.

12. Create relationships between value-concepts of different hierarchies (see
relation 4 figure 5).

5.5 Generation of the Mining Oriented Database

13. Generate the database by using procedures defined in step 7.

In this final step a program reads the tables created for each attribute-concept
and calls the procedures in order to generate the MODB.

6 Interesting Patterns Extraction According Prior
Knowledge

6.1 Knowledge Properties

We chose to express knowledge like “if ... then ...” rules in order to simplify
comparison with extracted association rules. Each knowledge have some essential
properties to select the most interesting association rules:

– Source: user defined knowledge or association rule selected as “new knowl-
edge”

– Confidence level: 5 different values are available to describe knowledge con-
fidence according a domain expert. These values are range of confidence
value: 0-20%, 20-40%, 40-60%, 60-80% and 80-100%. We call confidence the
probability the consequence of a knowledge occurs when the condition holds.

– Certainty:
• Triviality: cannot be contradicted
• Standard knowledge: domain knowledge usually true
• Hypothesis: knowledge the user want to check

This is an example of knowledge:

Knowledge 1
Objective=‘To be paid’ ∧ Allowance=‘Housing Allowance’ ∧ Distance=‘0km’ →
Contact=‘At the agency’

– Source: user-defined
– Confidence level: 60-80%
– Certainty: Hypothesis

6.2 Ruled-Based Knowledge Base

Knowledge, like interestingness, differs from people and changes over time.
That’s why our knowledge base is divided into several sets. A main set de-
fines high level and consensual knowledge while subsets allow to define user’s
knowledge. Since knowledge may differs between experts, the main objective of
this knowledge base is to provide the expert some personalized models according
his current knowledge.

Knowledge Extraction Using a Conceptual Information System (ExCIS) 129

6.3 Interesting Patterns Extraction

Interestingness definitions. In [14] Silberschatz presents a classification of
measures of interestingness and identifies two major reasons why a pattern is
interesting from the subjective (user-oriented) point of view:

– Unexpectedness: a pattern is interesting if it is surprising to the user
– actionability: a pattern is interesting if the user can do something with it to

his or her advantage

Therefore a pattern can be said to be interesting if it is both unexpected and
actionable. This is clearly a highly subjective view of the patterns as actionability
is dependent not only on the problem domain but also on the user’s objectives
at a given point in time [11].

Although unexpected patterns are interesting it’s necessary to consider ac-
tionable expected patterns. In our approach we deal with actionability using
knowledge certainty property:

– If a pattern match a trivial knowledge it isn’t actionable since actions con-
cerning trivial knowledge are most likely known

– Since user knowledge define his main points of interest, a pattern matching
standard knowledge could be actionable

– If a pattern matches a hypothesis, it is highly actionable

Patterns and knowledge comparison. In this paper we compare patterns
and knowledge considering generalization relationships between them. In future
works, we will introduce a distance measure which will consider both differences
and generalization relation between patterns and knowledge. Liu introduce such
a distance measure in [9] to deal with general impressions.

We propose an interestingness measure IMAK (Interestingness Measure Ac-
cording Knowledge) which consider:

– actionnalibity, using certainty knowledge property
– unexpectedness, using generalization relationships between patterns and

knowledge.

At the moment, we don’t use a distance measure so we cannot consider pat-
terns that differ partialy from knowledge if there is no generalization relationship
between them. However these patterns are interesting and need further treat-
ments. Patterns that are totaly different from knowledge can’t be evaluated by
IMAK measure but they could be interesting since they’re unexpected.

Consequently IMAK is useful in order to evaluate interestingness of patterns
which are comparable to prior knowledge. This measure describe four levels of
interest:

– none: uninteresting information
– low: confirmation of standard knowledge

130 L. Brisson

Table 2. IMAK values when pattern and knowledge have similar confidence level

Knowledge Certainty → Triviality Standard knowledge Hypothesis
↓ Pattern is ...
more general low medium high
identic none low medium
more specific none low medium

Table 3. IMAK values when a pattern have the best confidence level

Knowledge Certainty → Triviality Standard knowledge Hypothesis
↓ Pattern is ...
more general medium high high
identic none low medium
more specific none medium high

– medium: new information about a standard knowledge/confirmation of a
hypothesis

– high: new information about a hypothesis

Tables 2, 3 and 4 show IMAK value according generalization relationship
between a pattern and a knowledge, certainty of the knowledge and comparison
of confidence level between pattern and knwoledge.

Let’s consider the knowledge rule 1, and the two following extracted rules:

Extracted rule 1
Objective=‘To be paid’ ∧ Allowance=‘Housing Allowance’ → Contact=‘At the
agency’ [confidence=20%]

Extracted rule 2
Objective=‘To be paid’ ∧ Allowance=‘Housing Allowance’ ∧ Distance=‘Less
Than30km’ → Contact=‘At the agency’ [confidence=95%]

Rule 1 is a generalisation of the knowledge (see Section 1). But its confi-
dence is lower than knowledge confidence level. Consequently IMAK value is
“low” since the knowledge certainty is “hypothesis” (ref table 4 column 3 line 1).
Rule 2 is also a generalisation of the knowledge. Its confidence is better than
than knowledge confidence level. Consequently IMAK value is “high” since the
knowledge certainty is “hypothesis” (ref table 3 column 3 line 1).

Table 4. IMAK values when knowledge have the best confidence level

Knowledge Certainty → Triviality Standard knowledge Hypothesis
↓ Pattern is ...
more general none none low
identic none low medium
more specific none none low

Knowledge Extraction Using a Conceptual Information System (ExCIS) 131

Now let’s consider the rule:

Extracted rule 3
Objective=‘To be paid’ ∧ Allowance=‘Student Housing Allowance’ ∧ Distance=
‘0km’ → Contact=‘At the agency’ [confidence=75%]

Rule 3 is more specific than knowledge and its confidence is similar. Conse-
quently IMAK value is “medium” since the knowledge certainty is “hypothesis”
(ref table 2 column 3 line 3).

7 Experiments Results

Our approach is based on a toolset, called KEOPS, which allows to manage data
preparation process, mining tasks and visualization step. KEOPS main feature
is to use expert’s prior knowledge all along the data mining process. Further-
more, KEOPS simplifies several complex tasks during the knowledge extraction
process. We applied this approach on data of the ‘family’ branch of the french
national health care system.

In order to evaluate our results we compare extracted models to prior knowl-
edge according to their support, confidence and lift values. That’s why we define
confidence gain, support gain and lift gain in order to visualize statistical infor-
mation on figures 6, 7 and 8 :

Definition 1 (Measure Gain). Let R be an extracted rules and let C be a
knowledge. We call a measure gain, the difference between the measure evaluation
on R and C :

MeasureGain(R, C) = measure(R) − measure(C)

IMAK measure allows us to select the most interesting extracted rules according
knowledge. Figure 6 shows relative confidence of these rules. On X-axis there are
68 knowledge rules expressed by experts and on Y-axis, for each rule, there is a
vertical bar where :

– the upper point shows relative confidence maximum value for rules compared
with the knowledge

– the medium point shows relative confidence mean value of all rules compared
with the knowledge

– the bottom point shows relative confidence minimum value for rules com-
pared with the knowledge

We may observe that generally for each knowledge there exists an extracted
rule with a better confidence value. Furthermore, extracted rules confidence
mean value is often better than knowledge confidence value.

Figure 7 shows relative support of the most interesting extracted rules accord-
ing IMAK measure. Legend of figure 7 is similar to figure 6 one. We may observe
that generally relative support value is lower than 0. Consequently, extracted

132 L. Brisson

Fig. 6. Relative confidence between knowledge and associated extracted rules

Fig. 7. Relative support between knowledge and associated extracted rules

Knowledge Extraction Using a Conceptual Information System (ExCIS) 133

Fig. 8. Niveaux de lift relatif entre les connaissances et leurs règles associées

rules support is lower than knowledge support: these rules are infrequent cases.
While some of them have also good confidence and lift, IMAK method catches
some rare cases.

Figure 7 shows relative lift of the most interesting extracted rules according
IMAK measure. Legend of figure 6 is similar to figure 6 one. We may observe that
lift value of knowledge and extracted rules is similar. It’s important to notice
that expert knowledge has always a lift value greater than 1.

We presented a method which allows to select interesting rules according prior
knowledge. Moreover we demonstrate that we extract rare rules (low support val-
ues) with good confidence and lift value. Consequently, our approach optimizes
statistic criteria and provides some new and interesting knowledge.

8 Conclusion

We gave a global presentation of the new methodology ExCIS for the integration
of prior knowledge in a data mining process. This paper shows how a Conceptual
Information System (CIS) can improve data-mining results. We presented CIS
ontological structures, and we discussed choices for identifying ontology concepts
and relations by analyzing existing operational data. Finaly we presented IMAK,
an interestingness measure, which evaluate an extracted pattern according to
user knowledge. In further works, we’ll improve IMAK with distance measure
between pattern and knowledge, and we’ll add to ExCIS approach mechanisms

134 L. Brisson

in order to generalize patterns (process 7 figure 1) before comparison with knowl-
edge and to browse results after this comparison (process 9 figure 1).

References
1. Bard, J.B., Rhee, S.Y.: Ontologies in Biology: Design, Applications and Future

Challenges. Nature Review Genetics 5(3), 213–222 (2004)
2. Chapman, P., al.: CRISP-DM - Step by step data mining guide CRoss Industry

Standard Process for Data Mining, http://www.crisp-dm.org/
3. Dai,H.,Mobasher,B.:UsingOntologies toDiscoverDomain-levelWebUsageProfiles.

In: Proceedings 2nd ECML/PKDD Semantic Web Mining workshop (August 2002)
4. Guarino, N.: Formal Ontology and Information Systems. In: Proceedings of

FOIS’98, pp. 3–15 (June 1998)
5. Hilderman, R.J., Hamilton, H.J.: Evaluation of Interestingness Measures for Rank-

ing Discovered Knowledge. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD
2001. LNCS (LNAI), vol. 2035, pp. 247–259. Springer, Heidelberg (2001)

6. Johannesson, P.: A Method for Transforming Relational Schemas into Conceptual
Schemas. In: Rusinkiewicz, M. (ed.) Proceedings 10th ICDE conference, pp. 115–
122. IEEE Press, New York (1994)

7. Kashyap, V.: Design and Creation of Ontologies for Environmental Information
Retrieval. In: Proceedings 12th workshop on Knowledge Acquisition, Modelling
and Management (October 1999)

8. Liu, B., Hsu, W., Chen, S.: Using General Impressions to Analyze Discovered
Classification Rules. In: Proceedings 3rd KDD conference, pp. 31–36 (August 1997)

9. Liu, B., Hsu, W., Mun, L.-F., Lee, H.-Y.: Finding Interesting Patterns using User
Expectations. Knowledge and Data Engineering 11(6), 817–832 (1999)

10. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM
Comput. Surv. 38(3) (2006)

11. Mcgarry, K.: A Survey of Interestingness Measures for Knowledge Discovery. The
knowledge engineering review, 1–24 (2005)

12. Pasquier, N., Taouil, R., Bastide, Y., Stumme, G., Lakhal, L.: Generating a Con-
densed Representation for Association Rules. Journal of Intelligent Information Sys-
tems. In: Kerschberg, L., Ras, Z., Zemankova, M. (eds.) Kluwer Academic Publishers

13. Piatetsky-Shapiro, G., Matheus, C.: The Interestingness of Deviations. In: Pro-
ceedings of the AAAI-94 workshop on Knowledge Discovery in Databases (1994)

14. Silberschatz, A., Tuzhilin, A.: On Subjective Measures of Interestingness in Knowl-
edge Discovery. In: Proceedings 1st KDD conference, pp. 275–281 (August 1995)

15. Silberschatz, A., Tuzhilin, A.: What Makes Patterns Interesting in Knowledge Dis-
covery Systems. IEEE Transaction On Knowledge And Data Engineering 8(6),
970–974 (1996)

16. Stevens, R., Goble, C.A., Bechhofer, S.: Ontology-based Knowledge Representation
for Bioinformatics. Brief Bioinformatics 1(4), 398–414 (2000)

17. Stojanovic, L., Stojanovic, N., Volz, R.: Migrating Data-intensive Web Sites into
the Semantic Web. In: Proceedings 17th ACM Symposium on Applied Computing,
pp. 1100–1107. ACM Press, New York (2002)

18. Stumme, G.: Conceptual On-Line Analytical Processing. In: Tanaka, K., Ghan-
deharizadeh, S., Kambayashi, Y. (eds.) Information Organization and Databases,
ch. 14, pp. 191–203. Kluwer Academic Publishers, Dordrecht (2000)

19. Tiffin, N., Kelso, J.F., Powell, A.R., Pan, H., Bajic, V.B., Hide, W.A.: Integra-
tion of Text- and Data-Mining using Ontologies Successfully Selects Disease Gene
Candidates. Nucleic Acids Research 33(5), 1544–1552 (2005)

http://www.crisp-dm.org/

The Semantic Desktop: A Semantic Personal

Information Management System Based on RDF
and Topic Maps

Edgar R. Weippl, Markus Klemen, Stefan Fenz, Andreas Ekelhart,
and A Min Tjoa

Vienna University of Technology, A-1040 Vienna, Austria
weippl@securityresearch.at

http://www.securityresearch.at

Abstract. Desktop search tools are becoming more popular; they al-
low full text searches using inverted indexes. Yet, the amount of locally
stored data that they have to deal with is increasing rapidly. A different
approach is to analyze the semantic relationships among collected data
and thus preprocess the data semantically. The goal is to allow searches
based on relationships among various objects rather than focusing on ob-
jects’ names. This would allow for searches far more sophisticated than
those based on full text analysis. We introduce a database architecture
based on an existing software prototype that is capable of meeting the
various demands of a semantic information manager. This architecture
is also capable of storing and querying RDF and RDF schemata. More-
over, RDF is used as a key part of the technology. Therefore, in this sce-
nario, RDF is used not only to enrich the Web with machine-processable
semantics, but also to incorporate it into a kind of Semantic Desktop
Search Engine. In this paper, we describe the underlying technology of
this research project.

1 Introduction

More and more data is accumulating on personal computers these days. People
store their journals, time managers, contact data, photos, and other documents
on their computers. Despite all efforts, thus far no search tool has been created
that allows searches based on semantic connections. What is interesting is that
most current approaches focus on enriching the World Wide Web semantically.
Our approach focuses in on the domain of a single user who stores and retrieves
data on one or more computer systems using semantic enrichment.

Although it is accordingly situated somewhere between RDF-based or Topic
Map-based Semantic Web projects, such as, Sesame [8] and and personal lifetime
data storage projects, such as, MyLifeBits [13] or SemanticLife [3]the approach
and underlying architecture differ fundamentally from either of these concepts.

For retrieval, our approach focuses on the relationships among various local
data-objects (such as, photos, e-mails, graphics, and text files) and events (open-
ing a text file, receiving a phone call, sending an e-mail) rather than relying on

M. Collard (Ed.): ODBIS 2005/2006, LNCS 4623, pp. 135–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

136 E.R. Weippl et al.

the names of these objects. Our intent is to allow for more human-like retrieval
processes by adding semantic metadata to the data collections. For example,
instead of finding a text file based on its name, a semantic search would allow a
context-aware query, for instance, I don’t know the filename but I know I created
it when I was talking to Jim on the phone about a week ago.

Our prototype collects raw data from multiple sources such as the operating
system’s file events or user events from Microsoft Outlook via agents. At the file-
system level, we receive data identifying the applications that have accessed (read
or written) a particular file. The user can select which applications or directories
to monitor, typically these are local office applications and user document folders.
For instance, we can store the information that Word.exe has saved a specific file
document.doc on the disk at a certain time and date. From Microsoft Outlook
we can gather information on emails, contacts, and calendar items. We also store
information on the specific computer used (to differentiate between laptops and
workstations) and the user ID. Planned are additional data collectors that can
integrate incoming and outgoing telephone calls (via CTI or serial printer ports)
as well as facsimiles, GPS data, and EXIF1 metadata from digital camera images.

Based on the vast amounts of data accumulated, a semantic enrichment en-
gine (SEE) is implemented that uses the data and derives information from it
to build semantic databases for human users. Clearly, the usefulness of the sys-
tem as a whole depends on the quality, speed, and versatility of the semantic
databases and on the capabilities of the semantic enrichment engine. In this pa-
per, we will focus on the underlying database schema and propose a database
architecture that provides the foundation for semantic analysis. There are certain
requirements for such a database:

– Flexibility: A database for semantic storage must be highly flexible. It must
be able to store heterogeneous data from various sources including e-mail
systems, file systems, date books, telephones, and GPS modules. Defining
new relationships between existing entities will be a common task.

– Compliance: The database should be compliant to emerging Semantic Web
standards such as RDF or Topic Maps.

– Backwards compatibility: All enhancements to the database must be back-
wards compatible. Modification of the database schema should occur only
rarely.

– Speed: The database must perform well at high speeds due to the high volume
of processed data.

– Scalability: The database design should allow for up-scaling of the database
with no significant performance loss.

More specifically, our contribution:

– provides an overview of the architecture of our Semantic Desktop Project
prototype

– proposes an intuitive and efficient method for storing arbitrary relationships
(Section 3.2).

1 http://www.exif.org/

http://www.exif.org/

The Semantic Desktop 137

– shows that our database schema is well suited to store both RDF Metadata
and Topic Maps (Section 3.3).

– explains why it is more efficient in comparison with other approaches
(Section 4).

2 The Problem

An increasing capacity for data storage enables people to save virtually their
whole life digitally in various file formats or databases-photos, videos, e-mails,
address databases, etc. Available personal programs to store and manage these
files usually offer searches either via file system hierarchies or via keywords or full
text search (in cases where the file contains text data). Filesystem hierarchies not
well suited since it is often not possible to make precise attributions to a single,
specific folder [11]. Keywords are commonly either based on the file name or must
be typed in manually. Manual keyword input is cumbersome, time consuming,
and subject to the Production Paradox [10]—people will simply not do it since
they see no immediate advantage. Fulltext-engines, on the other hand, are useful
for text-based documents only. Integrating photos and music into full-text-based
systems is difficult and an area of ongoing research.

Apart from that, people tend to forget names of specific objects. It is often
easier to remember the context of a situation in which a specific file was created,
modified, or viewed, especially with reference to a timeline (“I remember I just
got an e-mail from Mike when I was working on that document”).Semantic
enrichment of automated data-gathering processes is a useful tool to complement
this human, relational way of thinking, rather than thinking in keywords or tags.

3 The Semantic Desktop Project

At the first phase, Blackman should help the user to scan the computer, queried
by Blackman query language (see [12]), for certain data files and an important
part for this task is the integration of Microsoft Outlook 2003 and the collection
of data hosted there. A big part of information, a user is producing, is located
at the e-mail-client and so Blackman works in a first try with Microsoft Outlook
2003, to extract the following elements:

– e-mails
– calendar entries
– contact entries

The extracted data will be saved at database to make a future query- and rule-
creation possible. Due to the modular structure of Blackman it is not difficult
to integrate further watchers for additional e-mail-clients produced by other
vendors than Microsoft. The second part of the Blackman project should monitor
the file system and network activity to gather as much user data as possible. An
example: If the user is opening a file, Blackman should recognize this, to create

138 E.R. Weippl et al.

an entry of this event at database. This action will be represented by an event
which could be enriched with some information like time, location and certain
other circumstances at which the file was opened.

In a next step a ‘Semantic enrichment engine’ should make the collected data
useful to the user. The engine should implement certain ontologies which can be
used, to enrich collected data semantically, for purposes like ‘Personal organiza-
tion’, ‘Security’, ‘Visualization’ or any other usage where data of user’s behavior
is needed.

So how could this data be used to make the organization of user’s life much
easier?

At this phase of Blackman it is necessary that the user is planning his day,
is administering his contacts and is storing his e-mails with Microsoft Outlook
2003. With this precondition Blackman is able to reconstruct what and when
the user is doing something, to reconstruct users daily life.

The following listing describes a few sample use-cases to make the ideas above
more understandable:

– When the user is participating at a meeting from 10:00 to 12:00 and is
working at a certain document for a defined duration it is highly possible
that this document has something to do with the meeting. If there is a
meeting next week with the same participants and a similar topic, Blackman
should collect automatically all relevant documents and make them available
to the user before the meeting starts. This would be a use-case for a specific
business usage.

– In many companies it is normal that documents, even confidential doc-
uments, are sent by e-mail to the desired recipient(s). This could be a
security approach for Blackman; the semantic enrichment engine could be im-
plemented in a way that it ‘knows’ which documents are confidential. There
are several ways how Blackman could classify a document automatically as
confidential. One possible approach would be that Blackman is looking, when
user receives a document, in the address book entries for sender’s position
within the company. Blackman also looks on the list of recipients which can
be found in the header of any e-mail. If, for instance, user’s department chief
is the sender and the mail was sent only to one person it is highly possible
that this document is confidential. From this point Blackman ‘knows’ that
this document is confidential and monitors every action which has something
to do with the, as confidential classified, document. At another day the user
wants to forward this document unintended to all co-workers, due to analysis
of e-mail header and content Blackman will recognize that, and fires up an
alarm.

A different security approach would be the detection of abnormal user ac-
tivity. Blackman records almost every action taken at users machine. If, for
instance, due to a evil worm, abnormal outgoing network traffic is generated,
Blackman could block and alert this traffic, to ensure users data integrity
and security. Therefore Blackman could be implemented in a specific way,
to provide similar functions as a ‘Intrusion Prevention System’.

The Semantic Desktop 139

– If Blackman is installed organization wide it is possible to track document
changes to enable the creation of a work flow visualization. Not only the
work flow within the organization is tracked, due to e-mail monitoring also
contacts to external actors are recognized by Blackman and could be merged
with the internal work flow. The creator or owner of a document could see
what is happening with ‘his’ document and who sends it to whom.

The surveillance of network- and e-mail traffic enables Blackman also to
build up a visualization of social networks.

Recapitulating, Blackman should help the user to organize his data, which
could be realized by recording his daily life behavior. Based on automatically or
manually created rules the collected data will be enhanced with semantic data
to provide, through Blackman, a practical benefit to the user. The whole data
gathering process is happening in background, to ensure that the user has not
to ‘fight’ with an additional system on this machine.

The Semantic Desktop project goes far beyond typical full-text analysis search
engines by automatically enriching collected data with semantic context that can
be used for retrieving it more easily than without this context.

Our prototype was developed in DotNet and Java, and consists of five major
development components:

1. Request Handler: The Request Handler consists of various modules to process
external data sources. It is explained in more detail in Section 3.1.

2. Semantic Storage: Storing semi-structured, highly interconnected data re-
quires data models that take these characteristics of semantic environments
into consideration. In this paper, we thoroughly explain how our approach
satisfies those requirements.

3. Semantic Enrichment: Semantic Enrichment is crucial for the usability of a
semantic information management system.

4. Querying Interface: The Querying Interface is another critical element. We
develop an interface that is compatible with OWL while still providing easy
and secure access to the specific needs of a personal desktop information
system.

5. Client Application: Currently, we have a prototype client in use written
in DotNet. A Java-based Webclient is planned after the DotNet client is
released and sufficiently stable.

In this paper, we will focus on the Semantic Storage development area. We
introduce an improved database schema and provide examples for how concepts
and relationships are stored among the databases. We then show (Sections 3.3
and 3.4) how both RDF and Topic Maps can be stored efficiently.

3.1 Request Handler

We distinguish four types of data input channels: (1) Native Data Pipes (2)
XML-based data exchange (3) SOAP request broker (4) HTTP request broker

140 E.R. Weippl et al.

Fig. 1. System architecture: data is collected from various sources and stored in the
raw data collection. Subsequently, the semantic enrichment engine (SEE) analyzes the
data based on ontology guidelines and RDF or Topic Map based rules and adds links
between recorded data items.

Native Data Pipes: Currently we have three data pipes. (1) Outlook Data
Pipes for Microsoft Exchange Server, to access calendar entries, contacts, and e-
mails; (2) an OS File Data Pipe, which is hooked directly into the I/O system of
Windows 2000/XP/2003; and (3) a Network Traffic Data Pipe, which monitors
network traffic for both URL requests and for tracking visited websites.

XML-Based Data Exchange: We use this module for research studies com-
paring Unix-based semantic data collection with the Windows-based variants.
The idea behind this is to develop universally valid semantic statements, which
may be used in both Windows-based and Unix-based environments. We are cur-
rently collecting data for semantic analysis on both Windows and Unix machines
and we expect interesting results within the next half year.

SOAP Request Broker and HTTP Request Broker: Both modules are
in the early stages but will facilitate the networking of various client machines
to build a unified personal information management system. This will be an
important part of the project since more and more users are working on more
than one computer and therefore could profit from a system that would allow
the interconnection of these devices.

The Semantic Desktop 141

3.2 Semantic Storage

Our prototype, first described in [17], is based on an architecture that uses
relational databases. Tables are not linked to others directly with foreign keys or
by using n : m intermediary tables, but instead, via a single, generic association
table referred to as the link table.

In the classical schema, adding an n : m relationship between two tables
requires creating a new intermediate table to resolve the n : m relationship into
a 1 : n and a 1 : m relationship. Our approach is to merge these intermediate
tables into one link table that stores all relationships centrally.

The advantages of our approach are:

1. In contrast to classical E-R approaches, any relationship can be added with-
out schema modifications. This allows for easy performance of operations
within transactions.

2. Tables and indices can be clustered to improve the speed of join operations
with the central link table. In the classical model, multiple n : m relationships
exist, therefore, cluster optimizations are far more difficult and less efficient.

3. Our approach permits retrieval of relationships from the link table without
accessing the data dictionary. Since the data dictionary is vendor specific,
the classical approach requires modifying the application for each database
system.

4. If n entities exist and n : m relationships are to be established between all
entities, the number of additional tables is O(n2), whereas our approach is
O(1). Of course this applies only to new relationships, not to new tables.

Detailed explanations on the advantages can be found in [17].

Fig. 2. The database schema to store the information as given in Table ref1

142 E.R. Weippl et al.

Fig. 3. Reification

Figure 2 shows a simple database schema. Table 1 contains the SQL state-
ments of the following example. A new file type, Document (.doc), is created
with OpenOffice. An optional description is added and a relationship between
the two topics is established (steps 1–4). In the same way, occurrences can be
linked to topics.

Reification is an important process for a semantic system. It is highly probable
that a semantic analysis module will initiate reification while processing collected
raw data. Steps 5-10 in Table 1 show how reification (Figure 3) can be easily
implemented using our schema.

Table 1. A relationship between a document and an application is stored (steps 1–4).
An example for a reification is given in the following steps.

Step SQL Command

1 INSERT INTO file VALUES (1, ‘Document (.doc)’)

2 INSERT INTO application VALUES (10, ‘OpenOffice’)

3 INSERT INTO description VALUES (90, ‘save as operation’)

4 INSERT INTO link VALUES (111, 1, ‘file’, 10, ‘application’,

‘assocrl’, ‘1’, 90)

5 INSERT INTO event VALUES (42, ‘save as’)

6 INSERT INTO link VALUES (112, 1, ‘file’, 42, ‘event’, ‘assocrl’,

‘1’, 91)

7 INSERT INTO link VALUES (113, 42, ‘event’, 10, ‘application’,

‘assocrl’, ‘1’, 91)

8 DELETE FROM link WHERE linkGUID=111

9 DELETE FROM description WHERE descriptionID=90

10 INSERT INTO description VALUES (91, ‘reification’)

The Semantic Desktop 143

Our concept differs from to other approaches (Section 4) by using separate
tables to store different types of entities but one central link table for all rela-
tionships. The data-centric approach, which we also refer to as the “classical”
method, uses one table for each n : m relationship. The structure-centric ap-
proach stores everything in one table (such as an RDF triple store).

The advantage of our approach as compared to the data-centric approach is
that we require fewer changes of the database schema during normal database
operations. Adding a new type of relationship—a very common operation in se-
mantic systems-requires no schema modification. The structure-centric approach
has the same advantage but suffers from a different drawback. Since everything
is stored in a single (or very few) tables, this table will quickly become very
large and thus be slower to access. Numerous self-joins, which will be required,
also have a negative impact on performance. Moreover, only general purpose
database indexes (B-trees) can be used. Our approach, in contrast, permits
defining Bitmap and Function-based Indexes2 that are extremely efficient in
some cases and completely useless in all other cases.

3.3 Storing Topic Maps

Even though the structure-based approach is slower during retrieval, it may make
sense to implement it in a very dynamic environment where new entities, new rela-
tionships, and even new types of relationships are created frequently. These char-
acteristics typically apply to semantic environments such as RDF or Topic Maps.
Modifying the aforementioned link-based architecture, we show that the relational
storage model as proposed by [19] can be optimized in several ways helping to im-
prove the performance and reduce the complexity of the database schema.

First and foremost, we can reduce the number of tables used without the loss
of data or metadata (Figures 4 and 5). By using qualifiers in the link table we
can combine tables such as basename, sortname, dispname and topname into one
table called name. The qualifier attribute in the link table contains information
on whether the name is used as basename, sortname, etc.

Following the XTM standard3 we also no longer need the table facet. The link
that connects topics and associations stores the association role as qualifier,
rather than in a separate table. In the same way we can avoid separate tables
for fvalue, locationstype, nonconforming and cassign.

Since ‘everything’ is a topic we do not need to explicitly store this information
in a table. Instead, we propose creating a view that contains all the information
(create view ... as select from ... UNION selection from ...).

The main difference between RDF and Topic Maps that is relevant to storing
information is that RDF only supports relationships between two entities-RDF
uses nodes and arches to build graphs of concepts and relationships between
them. This makes storage much easier and the simplest approach is to store
RDF triples in the form (s, p, o) (subject, predicate, and object) [2].

2 Using an Oracle database.
3 http://www.topicmaps.org/xtm/1.0/

http://www.topicmaps.org/xtm/1.0/

144 E.R. Weippl et al.

Fig. 4. Storing Topic Maps in an RDBMS [19]

3.4 Storing RDF

However, RDF can be stored similarly to Topic Maps by using either the “pure”
link-based approach (Section 3.2) or modifying it in a way that is analogous to
what we showed for Topic Maps. All four major differences between RDF and
Topic Maps can be handled by the link-based approach:

The Semantic Desktop 145

Fig. 5. By storing all relationships in the link table together with a qualifier, fewer
tables (compare to Figure 4) are needed but all advantages as described in [19] are
retained

1. In RDF, relationships can only be established between two resources whereas
Topic Maps support relationships among any number of topics. The link
table supports an arbitrary number of links.

2. In RDF, relationships are directed and only valid for one direction. In most
cases this requires creating a redundant second and inverse relationship. In
the link table, an attribute is used to store the direction.

3. In contrast to Topic Maps, RDF does not support scopes, which makes
it difficult to create large ontologies by combining existing smaller ones.
If scopes are required, a table (scope) needs to be added. By linking the
appropriate scope via the link table, scopes can be handled easily.

4. In RDF, reification is necessary if additional information must be attached to
a relationship at a later time. This is not necessary for Topic Maps since ev-
erything is already reified. As shown previously, reification can be performed
efficiently with our database schema.

Figure 6 shows how RDF data as described in [8] can be stored in our database
structure. For efficiency and design considerations, we use five entities: Domain,
Range, Resources, Property, and Class. All other entities described by [8] can
be mapped by appropriate links and qualifiers in the link table.

Rather than using a table subPropertyOf (Figure 7) we qualify the recursive
relation of property accordingly. Literals and labels are mapped to descrip-
tions, the type to the qualifier of the link table and namespaces are implicitly
defined in the description. Range is a qualifier of domain; subClassOf is mapped
to class with a qualified recursive relation. The link table corresponds to the
triples.

146 E.R. Weippl et al.

Fig. 6. Our database schema can store RDF (such as shown in Figure 7) independently
of Topic Maps in the same schema

Fig. 7. The original RDF storage schema as proposed by [8]

The Semantic Desktop 147

4 Evaluation of Other Storage Concepts

In this section we look briefly at three systems that store personal information
and strive to provide semantically enriched retrieval capabilities. For more details
please refer to [18]. We then look at existing solutions (data-centric approach
and structure-centric approach) to organizing a semantic data store.

4.1 Storing Personal Digital Information

Vanevar Bush’s vision of the Memex [9]—a paper cited nearly universally when
writing about semantically enriched information storage-provides the base for
projects, such as, Microsoft’s MyLifeBits [13] or the SemanticLIFE project [3]
build. The authors aim to create a personal digital storage that records all of an
individual’s documents, emails, photos, videos, etc.

MyLifeBits focuses on storing digital content in a database; unlike Semanti-
cLIFE its primary aim is not a semantic enrichment of the stored data. Instead,
MyLifeBits relies on future improvement of search engines and desktop search
solutions. The focus of SemanticLIFE is to build ontologies and discover rela-
tionships between existing data items.

Haystack [1] is a platform to visualize and maintain ontologies. The system is
designed to flexibly define interactions and relationships between objects. Focus
lies on the quality of the retrieval process and not on storing data.

While both systems inherently address issues of storing ontologies, they do
not focus on an efficient storage concept. MyLifeBits assumes that the MSSQL
Server will provide all the needed functions without providing details on the
database schema used.

4.2 Data-Centric Approach

One approach also known as a data-centric approach is often mentioned in the
context of mapping XML documents to relational databases [15,5,6,16]. In terms
of ontologies, the process can be described as follows:

The first step is to identify the types of concepts and their properties that
are to be stored in the ontology. Then, these types of concepts are mapped
to corresponding tables in a traditional RDBMS, with the previously identified
properties being the fields of the tables. Finally, the instances of the classes can
be inserted into the tables as rows, with one row representing one instance of
a concept. This procedure is the same for subjects, relationships, and all other
data model entities defined by the respective standard.

In addition, several ‘auxiliary’ tables are needed to keep track of whether
a certain table maps to a subject or to a relationship, etc. This leads to a
situation in which the database is actually split into two ‘virtual layers’: the
virtual ‘schema layer’ consists of the auxiliary tables that keep track of all classes
in the ontology, whereas the virtual ‘data layer’ contains the tables created as
instance containers for specific classes.

148 E.R. Weippl et al.

Such a data-centric approach was, for instance, originally followed by the
Sesame ontology framework [7,8] in conjunction with a PostgreSQL database.
Figure 8 shows the setup of the Sesame data centric object-relational mapping.

There are two advantages that can be exploited with the data-centric ap-
proach. First, query answering as well as inserting, removing, and updating
instances of classes is extremely inexpensive and straightforward, as there is
virtually no difference to traditionally designed databases. All manipulations
concerning instances are, in effect, nothing more than executions of the data
manipulation commands that are natively provided by all RDBMS.

Fig. 8. Data-centric approach of Sesame [7]

Second, some RDBMS, such as, PostgreSQL, offer built-in object-relational
features that can be used directly for modeling class-subclass relationships, etc.
PostgreSQL databases offer, for instance, the possibility to create subtables that
are connected to their parent tables through transitive relationships. This enables
creating a table for a certain class and corresponding subtables (for subclasses
of that class). The same is true for properties and subproperties, accordingly.

The Semantic Desktop 149

The main drawback of the data-centric approach is that changes to the class
hierarchy in an ontology are extremely expensive, as they require creating new
entities in the database. For every new class (and also subclass) that is to be
inserted into the ontology, a respective table has to be created, even if only a
small number of instances are present. This means that changes to the class
hierarchy always require the performance of data definition commands, which
are expensive in almost any RDBMS.

4.3 Structure-Centric Approach

The second approach is also known as structure-centric and is equally popular
among Topic Map and RDF implementations. As is the case with the data-centric
approach, persistency is provided by a traditional RDBMS, but usually without
requiring object-relational features. In contrast to the first approach, the key
idea here is to map the finite number of data model concepts to corresponding
structures (tables) in the relational database. Again, the process has also been
described for XML documents [15,5,6,16], but additionally, has been specifically
implemented for both Topic Map and RDF applications.

As shown in detail in Section 3.3, the Topic Map data model offers a small
number of built-in concepts, such as, Topic, Association, Occurrence, Scope,
etc., whose properties are well defined. In contrast to the actual classes and
instances they represent, the number and design of these built-in concepts are
static (as they are standardized). Therefore, it is a straightforward task to create
corresponding structures in a RDBMS and map the concepts to these structures
in such a way that in the end there is one table for all topics, one table for all
associations, etc. Various examples of this implementation for Topic Maps exist,
e.g., [14,19].

With respect to RDF, the data model basically consists of statements only,
with each statement including a subject, an object, and a predicate. This means
that for a naive approach, only one single table (with three corresponding text
fields containing the respective URIs or literals) is needed to express a complete
RDF graph. Due to the layout of their tables, databases configured this way are
therefore commonly referred to as triple stores. They are certainly a very elegant
solution for ontology persistence and are probably one of the main reasons that
RDF/OWL has gained significant popularity among ontology developers. Also,
many variations and improvements over the naive approach are available, mainly
for achieving high levels of scalability.

The first advantage of the structure-centric approach is its ability to allow
for inexpensive, frequent changes of instance data as well as of schema informa-
tion (class hierarchies). Since all assertions, including hierarchical relations, are
broken down to the level of single statements, it is not necessary to make any
artificial distinction between ‘schema layer’ and ‘data layer.’ This not only allows
for the representation of frequently changing ontology hierarchies, but also for
efficient incremental incorporation of large datasets, since no structural changes
of the underlying database schema are required.

150 E.R. Weippl et al.

The second advantage of structure-centric ontology representation is com-
monly reported for dedicated triple stores, but also applies to Topic Map rep-
resentations. Due to the fixed, rather simple architecture of the database, scal-
ability optimizations are easy to apply, enabling the efficient storage of millions
of concepts and relationships.

One main disadvantage of the structure-centric approach (in the case of RDF
triple stores) is encountered when retrieving statements for answering ontology
queries. In order to evaluate a condition that does not directly address the URIs
or literals of the statements to be retrieved, the table containing the statement
triples has to perform one or more self-joins, an operation that is expensive for
large datasets [15,4]. Such large datasets must be seen as occurring frequently, as an
ontology’s entire information is stored within a single triple table. It is, therefore,
common for such a table to contain millions of triples, and these triples must be
compared to one another, often several times, depending on the nature of the query
to be answered.Althoughvarious optimization efforts attempt to limit the negative
effects of storing triples in a single table, in general, a lower level of performance in
answering queries is to be expected as compared to the object-relational approach.

5 Conclusion

The Semantic Desktop Project aims at bringing the potential of RDF, Topic
Maps, and Semantic Technologies to users’ desktops. The goal is to develop a
semantic personal information management system based on standards, such
as, RDF, XTM and DAML+OIL/OWL, which assists users by automatically
enriching collected data with semantic metadata.

Some important milestones are already in beta-testing, allowing performance
tests and research regarding the querying of semantic statements. In this paper,
we presented the current status of the project and proposed our improved method
for storing ontologies in a relational database, which allows changes of hierarchies
and relationships between tables to be added easily without schema modification.

The advantages of our approach are:

1. The modifications require no data-definition language (DDL) statements
that cannot be executed within a transaction.

2. Tables and indices can be clustered to improve the speed of joins with the
central link table.

3. Our approach is vendor-independent as no metadata on relationships need
to be retrieved from the data dictionary.

In addition, we showed that Topic Maps and RDF can be stored efficiently using
our database schema.

Acknowledgements

This work was performed at the Research Center Secure Business Austria funded
by the Federal Ministry of Economics and Labor of the Republic of Austria
(BMWA) and the federal province of Vienna.

The Semantic Desktop 151

References

1. Adar, E., Karger, D., Stein, L.A.: Haystack: Per-user information environments. In:
Proceedings of the Conference on Information and Knowledge Management (1999)

2. Agrawal, R., Somani, A., Xu, Y.: Storage and querying of e-commerce data. In:
Proceedings of VLDB 2001, Rome, Italy (2001),
http://www.vldb.org/conf/2001/P149.pdf

3. Ahmed, M., Hanh, H.H, Karim, S., Khusro, S., Lanzenberger, M., Latif, K., Elka,
M., Mustofa, K., Tinh, N.H, Rauber, A., Schatten, A., Tho, N.M, Tjoa, A.M.:
Semanticlife — a framework for managing information of a human lifetime. In:
Proceedings of the 6th International Conference on Information Integration and
Web-based Applications and Services (IIWAS) (September 2004)

4. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D.: On storing vo-
luminous RDF descriptions: The case of web portal catalogs. In: ICSFORTH. Pro-
ceedings of the 4th International Workshop on the the Web and Databases (2001)

5. Bourret, R.: Xml-dbms, http://www.rpbourret.com/xmldbms/readme.htm
6. Bourret, R.: Mapping dtds to databases. Technical report, XML.com (2001),

http://www.xml.com/lpt/a/2001/05/09/dtdtodbs.html
7. Broekstra, J., Kampman, A., van Harmelen, F.: Semantics for the WWW. In:

Sesame: An Architecture for Storing and Querying RDF Data and Schema Infor-
mation. MIT Press, Cambridge (2001),
http://www.cs.vu.nl/∼frankh/postscript/MIT01.pdf

8. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In: Horrocks, I., Hendler, J. (eds.) ISWC
2002. LNCS, vol. 2342. Springer, Heidelberg (2002)

9. Bush, V.: As we may think. The Atlantic Monthly 176(7), 101–108 (1945)
10. Carroll, J.M., Rosson, M.B.: Paradox of the active user. ch. 5, pp. 80–111. Bradford

Books/MIT Press (1987)
11. Dourish, P., Edwards, W.K., LaMarca, A., Lamping, J., Petersen, K., Salisbury,

M., Terry, D.B., Thornton, J.: Extending document management systems with
user-specific active properties. ACM Trans. Inf. Syst. 18(2), 140–170 (2000)

12. Ekelhart, A.: The blackman project: Collecting and querying semi-structured data
for the ‘semantic desktop’. Masterthesis, University of Technology Vienna, Vienna
(2005)

13. Gemmel, J., Bell, G., Lueder, R., Drucker, S., Wong, C.: Mylifebits: Fulfilling the
memex vision. In: ACM Multimedia ’02, pp. 235–238. ACM Press, New York (2002)

14. Kiyakov, A.K., Simov IV, K., Dimitrov, M.: Ontomap: Ontologies for lexical se-
mantics. Technical report, OntoText Lab, Sirma AI EOOD (2001),
http://www.ontotext.com/publications/ranlp01.pdf

15. Kuckelberg, A., Krieger, R.: Efficient structure oriented storage of xml documents
using ordbms. Technical report, RWTH Aachen (2003)

16. Mittermeier: Naiv nativ. iX 42(8) (2003)
17. Weippl, E.R., Klemen, M., Linnert, M., Fenz, S., Goluch, G., Tjoa, A M.: Semantic

storage: A report on performance and flexibility. In: Andersen, K.V., Debenham, J.,
Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 586–595. Springer, Heidelberg
(2005)

18. Weippl, E.R., Klemen, M.D., Raffeiner, S.: The Semantic Web for Knowlege and
Data Management: Technologies and Practices. In: Improving Storage Concepts
for Semantic Models and Ontologies. Idea Group, USA (2007)

19. Widhalm, R., Mück, T.: Topic Maps: Semantische Suche im Internet. Springer,
Heidelberg (2002)

http://www.vldb.org/conf/2001/P149.pdf
http://www.rpbourret.com/xmldbms/readme.htm
http://www.xml.com/lpt/a/2001/05/09/dtdtodbs.html
http://www.cs.vu.nl/~frankh/postscript/MIT01.pdf
http://www.ontotext.com/publications/ranlp01.pdf

Author Index

Alasoud, Ahmed 1

Boulanger, Danielle 51
Bounif, Hassina 68
Brisson, Laurent 119

Dellis, Evangelos 102

Ekelhart, Andreas 135

Fenz, Stefan 135

Haarslev, Volker 1

Klemen, Markus 135

Madnick, Stuart E. 37
Mazón, Jose-Norberto 85

Paliouras, Georgios 102
Piattini, Mario 85
Pottinger, Rachel 68

Sarda, N.L 18
Séguran, Magali 51
Sen, Sumit 18
Serrano, Manuel 85
Shiri, Nematollaah 1
Somavarapu, Suman 18
Spaccapietra, Stefano 68

Talens, Guilaine 51
Tjoa, A Min 135
Trujillo, Juan 85

Weippl, Edgar R. 135

Zhu, Hongwei 37

	Title Page
	Preface
	Table of Contents
	A Multi-level Matching Algorithm for Combining Similarity Measures in Ontology Integration
	Introduction
	Motivating Example
	General Description of the Framework

	Formulation of the Framework
	Tradeoff Between Structure and Size of the Mapping States

	Structure-Based Multi Level Matching Algorithm
	The MLMA Algorithm
	Multiple Matching Spaces

	Illustrative Scenario
	Experimentation and Results
	Related Work
	Conclusions and Future Work
	References

	Class Structures and Lexical Similarities of Class Names for Ontology Matching
	Introduction
	Paper Outline
	Motivation

	Generating Semantic Mapping
	Previous Work
	The Ontology Mapping Problem

	Semantic Mapping Generation
	Generating Lexical Similarity Values
	Propagation of Similarities of Attributes and Superclasses
	Propagation of Similarities of Attributes and Subclasses
	Most Similar Mappings

	Analysis of Machine Generated Similarity Values
	Human Generated Similarity Values
	Performance Parameters

	Data Translations Based on Ontology Mappings
	Conclusions and Future Work
	References

	Scalable Interoperability Through the Use of COIN Lightweight Ontology
	Introduction
	COIN Lightweight Ontology
	Online Price Comparison Example
	COIN Lightweight Ontology
	Characteristics of COIN Lightweight Ontology

	Scalable Interoperability with COIN Lightweight Ontology
	Conversion Composition
	Scalability Benefit

	Related Work and Discussion
	Conclusion
	References

	Domain Ontologies Evolutions to Solve Semantic Conflicts
	Introduction
	Related Works
	Agent Ontologies
	The Agent Model
	Scalable Domain Ontologies

	Interaction Protocols and Ontologies Evolutions
	Insertion of a New Information Source
	The Global Query Processing Protocol
	Database Update

	Conclusion
	References

	Requirements Ontology and Multi-representation Strategy for Database Schema Evolution
	Introduction
	Problem Description
	Contribution and Outline of the Paper

	Predictive Approach for Schema Evolution
	Requirements Ontology for Schema Evolution
	Requirements Ontology Role
	Requirements Ontology Construction
	Requirements Ontology Structure

	Multi-representation Strategy for the Predictive Approach
	Definition of the Multi-representation Strategy
	The Predicted Schema at the Conceptual Level

	Motivating Examples
	Additive Evolution
	Subtractive Evolution
	Descriptive Evolution

	Conclusion and Future Work
	References

	Improving the Development of Data Warehouses by Enriching Dimension Hierarchies with WordNet
	Introduction
	Related Work
	Conceptual Modeling of DWs
	Ontologies and WordNet in Conceptual Modeling

	Using UML for Data Warehouse Modeling
	WordNet
	Using WordNet to Enrich Dimension Hierarchies
	Case Study
	Conclusion and Future Work
	References

	Management of Large Spatial Ontology Bases
	Introduction
	Background
	Ontology Management
	Spatial Query Processing

	The SHARE Ontology Data Service
	Architecture
	The Spatial Sub-ontology
	Operations

	The Proposed Framework
	Motivation
	Index Construction
	Query Processing

	Experimental Evaluation
	Shortcomings of the Original Ontology
	Query Processing for Spatial Ontologies
	Combining Spatial Query Processing with the Rest of the Ontology
	Querying Dynamically-Changing Spatial Information

	Conclusions and Future Work
	References

	Knowledge Extraction Using a Conceptual Information System (ExCIS)
	Introduction
	Related Works
	Interestingness Measures
	Databases and Ontologies
	Ontologies and Data Mining

	Overview of the ExCIS Approach
	Conceptual Structures of the Ontology
	Ontology
	Ontology Relationships

	Conceptual Information System Construction
	Scope Definition and Source Attribute Selection
	Data Analysis and Attribute-Concept Elicitation
	Value-Concept Elicitation
	Ontology Structuration
	Generation of the Mining Oriented Database

	Interesting Patterns Extraction According Prior Knowledge
	Knowledge Properties
	Ruled-Based Knowledge Base
	Interesting Patterns Extraction

	Experiments Results
	Conclusion
	References

	The Semantic Desktop: A Semantic Personal Information Management System Based on RDF and Topic Maps
	Introduction
	TheProblem
	The Semantic Desktop Project
	Request Handler
	Semantic Storage
	Storing Topic Maps
	Storing RDF

	Evaluation of Other Storage Concepts
	Storing Personal Digital Information
	Data-Centric Approach
	Structure-Centric Approach

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

