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Preface

This volume constitutes the joint post-proceedings of the two international VLDB
workshops on Ontologies-based Techniques for DataBases and Information Sys-
tems, ODBIS 2005 and ODBIS 2006, co-located with the 31st and 32nd Inter-
national Conference on Very Large Data Bases (VLDB). It is a collection of
extended versions of papers presented at the workshops.

Ontologies are generally used to specify and communicate domain knowledge
in a generic way. While in a formal sense “ontology” means study of concepts,
one can use the word “ontology” as a concept repository about a particular area
of interest. Ontologies are very useful for structuring and defining the meaning
of the metadata terms that are currently collected inside a domain community.
They are a popular research topic in knowledge engineering, natural language
processing, intelligent information integration and multi-agent systems. Ontolo-
gies are also applied in the World Wide Web community where they provide the
conceptual underpinning for making the semantics of a metadata machine un-
derstandable. More generally, ontologies are critical for applications which want
to merge information from diverse sources. They become a major conceptual
backbone for a broad spectrum of activities dealing with databases and informa-
tion systems. In these workshops, the objectives were to present databases and
information systems research as they relate to ontologies and, more broadly, to
gain insight into ontologies as they relate to databases and information systems.
These post-proceedings are divided roughly into three sections: ontology-based
interoperability and schema matching, management of ontological bases and
links between ontologies and knowledge.

May 2007 Martine Collard
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Monica Crubézy Stanford Medical Informatics, USA
Isabel Cruz University of Illinois, USA
Rose Dieng INRIA, Sophia Antipolis, France
Peter W. Eklund University of Wollongong, Australia
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A Multi-level Matching Algorithm for Combining 
Similarity Measures in Ontology Integration  

Ahmed Alasoud, Volker Haarslev, and Nematollaah Shiri 

Computer Science & Software Engineering, Concordia University 
1455 De Maisonneuve W., Montreal, Quebec, Canada 

{ahmed_a,haarslev,shiri}@cse.concordia.ca 

Abstract. Various similarity measures have been proposed for ontology 
integration to identify and suggest possible matches of components in a semi-
automatic process. A (basic) Multi Match Algorithm (MMA) can be used to 
combine these measures effectively, thus making it easier for users in such 
applications to identify “ideal” matches found. We propose a multi-level 
extension of MMA, called MLMA, which assumes the collection of similarity 
measures are partitioned by the user, and that there is a partial order on the 
partitions, also defined by the user. We have developed a running prototype of 
the proposed multi level method and illustrate how our method yields improved 
match results compared to the basic MMA. While our objective in this study 
has been to develop tools and techniques to support the hybrid approach we 
introduced earlier for ontology integration, the ideas can be applied in 
information sharing and ontology integration applications. 

1   Introduction 

The rapid increase in the number of multiple information sources requires efficient 
and flexible frameworks for integration of these sources. Such frameworks should 
provide a way for extracting, transforming, and loading data from these sources, and 
be represented to the user in some appropriate way. There are two major approaches 
for integration of information: (1) the data warehouse (DW) or materialized approach 
and (2) virtual approach (also called mediator based). 

In the context of ontology integration, we proposed a third approach [1] which is a 
hybrid between fully materialized and fully virtual approaches. Fig. 1 shows the 
architecture of this approach. The motivation of our ongoing research on integration 
of source ontologies was to develop tools and techniques for situations in which the 
information sources are expressed as ontologies, and to support queries over these 
sources, we need to build the global ontology (which has a common vocabulary 
among the sources). This allows the query processing (QP) component in the 
integrated framework in Fig. 1 to extract information from the ontology sources. To 
support this capability and realize the architecture proposed in Fig. 1, we need to  
develop effective matching techniques to assist users in a semi-automatic process. 
This is the motivation of the current work.  

Let us review the issues faced in ontology matching, which is a fundamental 
problem in sharing information and integrating ontology sources in numerous 
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applications. We witness a continuous growth in both the number and size of 
available ontologies developed to annotate knowledge on the web through semantics 
markups to facilitate sharing and reusing by machines. This, on the other hand, has 
resulted in an increased heterogeneity in the available information. For example, the 
same entity could be given different names in different ontologies or it could be 
modeled or described in different ways. The Ontology Matching Problem (OMP) may 
then be described as follows: given ontologies O1 and O2, each of which describing a 
collection of discrete entities such as classes, properties, individuals, etc., we want to 
find the semantic correspondences that exist between the components of these 
entities. 

 

 

Fig. 1. The architecture of the hybrid framework [1] 

Very often existing matching algorithms focus on one-to-one (1:1) matching. 
These methods hardly consider several entities at the same time and correspondingly 
use several similarity measures to solve OMP. In fact, OMP is an n:m matching 
problem. In order to obtain better matching results, existing measures should be used 
simultaneously and combined in a multi-space matching framework. We have 
developed such a method using a multi match algorithm (MMA). 
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The contributions of this paper are as follows: 

1. We introduce an ontology matching approach, based on the idea of a multi-level 
match algorithm, in which each level uses different similarity measure(s). 

2.  We propose a flexible measure to compute the best possible matching state offered  
by MMA. This principle is based on the Dice coefficient adapted for our use.  

The rest of the paper is organized as follows. In Section 2 we set up the formulation 
of the framework. The description of the algorithm is introduced in Section 3. An 
illustrative scenario is given in Section 4. The experiments and results are presented 
in Section 5.  The related work is provided in Section 6. We conclude the paper with a 
summary and a discussion of future work in Section 7. 

1.1   Motivating Example  

In this section, we illustrate the ontology matching problem and introduce some 
concepts and techniques. Let us consider the following examples. Consider source 
ontology “S”, which offers different types of electronic products. For simplicity, we 
consider only two products: PCs and laptops. Fig. 2 shows this ontology. As can be 
seen, S includes the concept COMPUTERS which represents desktop and laptop 

 

 

Fig. 2. Source ontology S 

 

Fig. 3. Target ontology T 
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computers. Other concepts such as MONITOR, PROCESSOR, and PRICE, etc in this 
ontology represent technical specifications of computers. As the target ontology, we 
consider ontology “T”, shown in Fig. 3. The goal is to find the corresponding matches 
among the entities in S and T. 

There exist many methods to measure similarities between two entities, such as 
string similarity, linguistic similarity, etc. However, when we use a single matching 
measure for an input pair of ontologies, we may not be satisfied with the final match 
result. For instance, if we use a string similarity measure only, the concepts PC and 
LT in S have no matches in T. On the other hand, a string similarity measure is the 
basis for some other methods of measuring similarities between entities, and it works 
fine in some domains where a match in the entities on their syntax would most 
probably mean agreement on their semantics. 

Another example is when we use a more semantic measure such as a linguistic 
based measure. For instance, we find out that the concept PC in S is mapped to the 
concept desktop in T and as well to concept computer in T. So, this will not help the 
user to focus his/her intention. As a result, if we use both measures (string and 
linguistic), the concept computers in S will be mapped into the concept computers in 
T with a very high confidence. Consequently, the concept PC in S will be mapped to 
desktop in T, and the concept LT in S will be mapped to portable in T.    

1.2   General Description of the Framework  

We propose a multi-level search algorithm that combines different measures in one 
unified framework to improve the matching results. Further, it minimizes user 
interaction with the system and suggests a single matching result of a collection of n 
elements in S to a collection of m elements in T.   

Level 2 

Candidate results 
{e1, e2 … en}

Level 1 

O1

O2

e1
e2
.
.
.
en

O2

O1

m1   m2              mk

ML-MMA 
Level-1 

… Candidate results 

mk+1 mK+2      ml       

MLMA 
Level-2 

…

Output
{ef}

 

Fig. 4. A schematic description of the multi-level method   
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Fig. 4 illustrates the main idea of multi-level method, when there are two levels. It 
shows the different similarity measures {m1, m2,…, ml} divided into two, and applied 
at two levels.  

For instance, and to ease the presentation we use three similarity measures divided 
into two levels. The name and linguistic similarity measures have been applied in the 
first level. Then, the structural similarity measure has been applied on the candidate 
resulting states {e1, e2 … en} in the second level. As a result, our method will output 
the state which has the highest confidence. Moreover, our resulting mapping state {ef} 
is measured based on its rich structure on one hand and the greatest number of 
corresponding concepts between the source ontologies on the other hand. 

2   Formulation of the Framework 

In this section, we provide the definitions for the main components of our framework. 
These definitions give the meaning of our notations such as, what are the entities we 
are referring to, the relationship matrix that gives the basis to compute the similarity 
matrix, the matching matrix, the matching space, and in the subsection we introduce 
the structure-based similarity measure.   

We describe the mapping problem as identifying pairs of similar nodes (also called 
vertices) in the input ontologies modeled as labeled directed graphs.  The nodes in an 
input graph correspond to entities in ontologies, and the edges indicate the 
relationships between the pair of nodes they connect. The labels indicate the kind of 
relationship, e.g. “domain” or “range.” In this study, we limit ourselves to finding 
mappings for classes and relationships only.  

Definition 1 (Entity-relationships). Let S be a source ontology, T be a target 
ontology. We use ES = {s1, s2,…, sn} and ET = {t1, t2,…, tm} to denote the set of 
entities in S and T, respectively. Entity refers to classes, properties, or individuals for 
which we want to find matches in the input ontologies. We use R(rij), defined below, 
to denote the relationship between entities si  and tj. We use rij to denote a matching 
degree between si  and tj. 

Definition 2 (Relationship Matrix). This relational matrix, denoted  as R(rij), 
represents the relationship between ontologies S and T, i.e.,  rij includes indicates the 
similarity between concept si in S and concept tj in T. Using R, we define another 
relational matrix, called the similarity matrix, which captures a different relationship 
between S and T, defined as follows.  

Definition 3 (Similarity Matrix). This relational matrix, denoted L(lij), includes 
entries in [0,1], called the similarity coefficients, representing the degree of similarity 
between si and tj.  Both R and L are n×m matrices.  
 

Definition 4 (Matching Matrix). A matching matrix, denoted Map0-1, is a 0-1 matrix 

with dimension n×m and with entries rij  ∊{0,1}. If rij = 1, it means that Si and tj are 
“matchable.” They are unmatchable if rij = 0.      
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Definition 5 (Matching Space). All the possible assignments for the matching matrix 
form a matching space, also called the mapping space. Every assignment is a state in 
the matching space. The state represents a solution of ontology matching. The 
following example illustrates the above concepts and terms.  

Example 1. Let S and T be the input ontologies, and ES={s1,s2,…,sn} and ET={t1, 
t2,…,tm}be the sets of entitie. A matching matrix Map0-1 indicates the similarity 
relation between the elements of ES and ET. The number of relationship matrices 
Map0-1 is 2nxm, i.e., the matching space has 2nxm states. These matrices form the 
matching space. For instance, when Map0-1 is 2×2, the matching space would have 16 
states. Some of these mapping states are as follows, in which the rows are entities in S 
and the columns are entities in T.  E.g., the first matrix indicates no mapping. The 
third matrix below, it indicates that entity s1 is matched with t1 or t2, and s2 is matched 
with t2, etc.  

0 0 1 0 1 1 11
, , , , .

0 0 0 0 0 1 11

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

L   

2.1   Tradeoff Between Structure and Size of the Mapping States 

Many similarity measures have been introduced for a set of keywords representing a 
text. For example, the Dice coefficient, the Jaccard coefficient, the Cosine coefficient 
[21], etc. The Dice coefficient is defined as follows: 

 

(2 ) ( ) ., 1 2 1 21 2
S T T T TT T = ∩ +   

 

where │Ti│ is the number of terms in set Ti, and│T1∩ T2│is the number of common 
terms in T1 and T2. We will use this as the similarity measure in our work. 

Let O1 and O2 be a pair of ontologies represented as labeled graphs, and OMMA be 
the ontology induced by the similarity result SMMA obtained by applying the basic 
MMA match algorithm (which combines the similarity measures in a single step/level 
operation). Let Sstrc be the structural similarity measure S, calculated as follows, 
which defines the similarities between the concepts provided by OMMA and those in 
the original ontologies O1 and O2.  

 

2 ( ) ( ( ( )) ( ( )) ) .1 2S r O r O O r O Ostrc MMA MMA MMA
= +   

 

where │r(OMMA)│is the number of relationships in  ontology OMMA, and 
│r(OMMA(Oi))│is the number of relationships in the immediate neighborhood of OMMA 
in Oi. This neighborhood of OMMA consists of the relationships of Oi with at least one 
end (one of the edge’s end) belonging to OMMA. 

We view Sstrc as a complementary measure to the output of MMA, applied in the 
second level. This is justified as follows. 

• The structure similarity Sstrc is mainly based on the presence of common 
concepts between the matched ontologies induced by the states calculated by 
MMA, and  

• the similarity degree between the matched ontologies may still exist, even 
when there is no structural match in the result of MMA, i.e., when Sstrc = 0. 
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Accordingly, the combined similarity measure S is relative to SMMA, and should not 
be zero in case Sstrc = 0. We further “smooth” the effect of Sstrc as follws: 

 

( ) , (1 ) .S S x S where x SstrcMMA MMA= + ∗ = −   
 

In the combined similarity S, suppose Sstrc= 0. This then means S just depends on 
the similarity measure of MMA. On the other hand, if Sstrc = 1, the neighborhood of 
the concepts matched by MMA is the same, and consequently S will take the 
maximum value, and since 1= SMMA + x, we have that x = 1 – SMMA, representing the 
complementary part of information described in the relationships among the concepts 
in a desired state found by MMA. 

As we do not want to miss a matching state found which includes a large number 
of concepts matched, SMMA provides possible good matches in the input ontologies 
together with the similarity degrees. The extended method will determine the same 
collection of matched states, but with better differentiation among them by taking into 
account the structural measures in the second level. An extension of this two level 
method to a multi-level method is straightforward, when the user can identify which 
measures could or should be applied at which level. 

3   Structure-Based Multi Level Matching Algorithm 

Now we study various matching spaces, and show how to construct the matching 
spaces. Then, we describe an algorithm to solve OMP, using MLMA. 

3.1   The MLMA Algorithm  

There are many algorithms for matching spaces. The notion of multispace “combines” 
all desired spaces into a single unified space. By searching from space to space, the 
matching algorithm can find a reasonable solution eventually. The main idea of the 
proposed Multi-Level algorithm is shown in Fig. 5.  

The algorithm is mainly divided into three phases. In phase 1, which is the 
initialization phase, an initial assignment for the matching matrix Map is provided, as 
well as the functions of similarity to evaluate the relationship matrix.  In phase 2 of 
MMA, which is the search phase, it is an iterative refinement for the Map matrices. In 
phase 3, the resulting mapping states from MMA will be qualified based on the 
connectivity among their concepts. Then, the best possible final state will be offered 
to the user. 

The algorithm iteratively constructs matching spaces for entities of both S and T 
(see illustrative example in the next section). Then, the Map matrices will be 
evaluated according to the re/used spaces such as name and linguistic spaces, and 
finally the mapping state with the highest evaluation value will be offered to the user. 
If we only search one matching space, the algorithm behaves and computes as a single 
matcher; otherwise, it is indeed a multi-matcher. This design is useful as it provides a 
flexible and convenient way to use various relevant information about input 
ontologies, and to combine feasible mapping methods to obtain a far better matching 
result than the results obtained by each individual method.  The method can employ 
any desired search algorithm. 
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Fig. 5. The Multi-Level Match Algorithm 

3.2   Multiple Matching Spaces 

Matching spaces are distinguished by diverse similarity measures. Moreover, the 
different kinds of similarity measures between the entities of the ontologies use 
different methods to compare the similarity of two ontologies. Accordingly, we 
construct the similarity matrices and matching spaces. Furthermore, different relation 
spaces are built on the result of using different methods of measuring similarity. 
These methods can be classified as follows (see [12] for more detailed explanation). 

• String similarity. These methods are based on the hypothesis that concepts and 
property names representing semantic similarity will have similar syntactic 
features. The Levenshtein distance is the simplest implementation of string 
distance. 

• Linguistic similarity. This is an extension of string similarity measures with some 
semantics. For example, considering the synonyms based on some specific 
thesauri, e.g., WordNet.  

Given: Two ontologies S and T
Output: The mapping result between S and T 
Phase 1 Initialization 

Design an initial assignment matching matrix.  
/* For example, let Map be the zero matrix,  
or let diagonal elements in Map be equal to 1, and so 
on.*/ 
Use the similarity functions to evaluate similarity or 
relationship matrix. 

Phase 2 Search Matching Space 
    begin 
      Enter an active search space  
      /* such as the name matching space */ 
      Evaluate an intermediate matching state  
      /* more better matching results */ 
       begin 

Enter another active search space  
/* such as the linguistic matching space */   
Evaluate a better intermediate matching state 
  Begin 
    ... 

    /* various available matching spaces,         
         i.e. many feasible matching methods */ 
   end; 
    end; 
    if the intermediate matching state is not      
       the final solution 
       /* the matching result does not satisfy      
          the evaluation function */ 
   then use it as an initial solution in the     
        next iteration; 
   if the matching instance satisfies the   
             evaluation function 
    then return the final solution 
end; 
 

Phase 3 Apply the Complementary measures   
            /* Apply the structure similarity measure       
               to the output of phase 2. */ 
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• Structure-Aware. This refers to approaches that take into account the structural 
layout of the ontologies considered, e.g., graph matching. 

• Context-Aware. This is more semantically rich than structure similarity. In such 
method, a variety of relationships among concepts are considered in order to 
uniquely distinguish types of connections among the nodes in labeled directed 
graph matching. 

• Extension-Aware. Classifications of the instances reflect the semantics of 
ontology. Data mining and Information Retrieval (IR) techniques are used to 
determine the hidden correspondence between instances.  

• Intension-Aware. These techniques find correlations between relations among 
extent and intent, e.g., information flow. 

• Semantic similarity. These focus more on logical correspondences, e.g., 
satisfiability. 

4   Illustrative Scenario 

In this scenario, we describe the main idea of the MLMA. Fig. 6. shows two sample 
taxonomies for Researchers (O1) and Students (O2) of different universities.  

 

    
                                    O1                                                                 O2 

                                Fig. 6. Researchers (O1) and Students (O2) ontologies 

We have to integrate the ontolgies into a single ontology. For reducing the manual 
work involved, we use a matching algorithm to identify the matching entities, and 
then help the middleware to integrate the schemas. For ease of presentation, we use 
very simple and small taxonomies.  

As can be seen in Fig. 6, entities S1, S2, S3, and T1, T2, T3 are concepts, which are 
high-level entities in the input ontologies. 

For ease of explanation, we only use two different similarity measures to compare 
the entities in S and T, name similarity (Levenshtein distance) and linguistic similarity  
(WordNet). We thus obtain the following similarity matrices for the concepts. 
 

_

0.0 0.2 0.308

0.2 0.2 0.0 .

0.308 0.308 1.0
name conceptL

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

     
_

0.75 0.181 0.307

0.4 0.181 0.0 .

0.307 0.166 1.0
ling conceptL

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

This induces two similarity spaces: name space and linguistic space.  When an 
assignment is found for matching space, we check the similarities of entities to see 
whether they exceed a user-defined threshold, denoted as th. The choice of the 

T1  

    Student 

 T2 

     Project 
   T3 

CS-department 

works 
registeredin 

S1 

Researcher 

S2 

University 
S3 

CS-department 

works 
department
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threshold value is application dependent and should be adjusted and suitably chosen 
for each space. The automation of selecting the suitable threshold value is left for 
future investigations. We define the following evaluation function, which measures 
the threshold value for the states obtained by the first phase of the MLMA algorithm. 

 

   ( )0 1 0 1 0 1/ ( , ). ( , ) ( , ) .
1 1 1 1

n m n m
v Map L k Map i j L i j Map i j th

i j i j
− − −= ⋅ = ≥∑ ∑ ∑ ∑

= = = =
 

 

where k is the number of matched pairs.  
We now provide a brief description of the search process.  The initial state of the 

mapping matrix is a zero matrix. Then, if the search process exceeds the maximum 
iteration, the maximum similarity states (Mapmax) will be offered as the final mapping 
result. Also, we need to set the additive constraints in the search process. For this 
example, since the number of concepts in S is equal to that in T, we consider the 
ontologies S and T have been fully matched. So, the mapping states of concepts 
include 6 entries now, e1, e2, …, e6 as shown in Fig. 7. 

 
 

 

Fig. 7. Searching in the matching space    

The outputs of MMA are states e1, e2, …, e6 shown in Fig. 8, which are represented 
as labeled directed graphs, in general. 

As shown in Table 1, e1 indicates the “best” matching found. Using the formula for 
computing the threshold values for name and linguistic similarity matrices Lname_concept 
and Lling_concept above, we get values 0.4 and 0.64 for name similarity v1 and linguistic 
similarity v2, respectively.  
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Fig. 8. The states determined by MMA 

To measure Sstrc for the mapping state e1: 

• The number of common relationships between the common concepts that 
connect these concepts to other common concepts is equal 1.  

• The number of relationships in O1 with at least one end belonging to the 
common concepts is equal 2. 

• The number of relationships in O2 with at least one end belonging to the  
          common concepts is equal  2. 
 

As a result, we obtain Sstrc = ((2*1)/(2+2))=0.5. 
Table 1 shows the individual and combined similarity match results for each state 

ei. Note that if we only use the name similarity space, the mapping result would be e3. 
In the same way, if we only use the linguistic space, we would obtain e1 as the result. 
Also, using Mapname_concept, Mapling_concept, and the threshold value th we obtain SMMA . 
Consequently, the output result state e1means that we matched n concepts from the 
source ontology S to the m concepts from the target ontology T. That is, s1 matched 
with t1, s2 with t2, and s3 with t3. Accordingly, the algorithm matches the properties 
and/or instances of each matched pairs of the concepts. One could also build a logic 
based space using, say description logics [3], and employ reasoning techniques to 
decide subsumption between two concepts. 

We can also notice the recognized performance of the measure and how the SMMA 
and Sstrc similarities are combined to compute the final measure S.  The scenario 
indicates that S is always grater than or equal SMMA for our similarity measures. This 
leads to the fact that S increases the weight of those states with connected common 
concepts than the states of common concepts that are not connected. 

As a result, using S we gain the following: 

• S maintains as many as possible number of matched concepts 
• S can improve the performance of SMMA, if the ontologies that are to be 

matched are structurally similar. However, it will not affect SMMA even if there 
is no structure similarity at all in the given input ontologies. 

 
 

S1 , T3 

S2 , T2 S3 , T1 

e6  S1 , T2

S2 , T3 S3 , T1

e5  

S1 , T2 

S2 , T1 S3 , T3 

e3  

S1 , T3 

S2 , T1 S3 , T2 

e4   

S1 , T1

S2 , T3 S3 , T2

e2  
works S1 , T1 

S2 , T2 S3 , T3 

e1   
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Table 1. Individual and combined similarity match results 

Level 1  Level 2  

State Name

1v  
Concept 

2v  
SMMA 

Normalized cost 

2/)( 21 vvv +=

Sstrc ( )MMA strcS x S= + ∗S  

e1 0.4 0.64 0.52 0.5 0.77 

e2 0.103 0.305 0.204 0.0 0.204 

e3 0.466 0.527 0.497 0.0 0.497 

e4 0.272 0.291 0.282 0.0 0.282 

e5 0.169 0.163 0.166 0.0 0.166 

e6 0.269 0.265 0.267 0.0 0.267 

5   Experimentation and Results 

In our evaluation we have used three pairs of ontologies as benchmarks: (1) the MIT 
bibtex ontology1  (contains 43 named classes, 22 object properties, 24 data properties) 
and the UMBC publication ontology2 (contains 15 named classes, 5 object properties, 
27 data properties) which are publicly available, (2) computer ontologies (the first 
onltology contains 17 named classes, 11 object properties, 15 data properties, and the 
second one contains 15 named classes, 10 object properties, and 14 data properties ), 
and (3) ontologies about computer science departments; the first onltology contains 
16 named classes, 12 object properties, 10 data properties, and the second one 
contains 18 named classes, 14 object properties, and 9 data properties. We have 
created the second and third pairs of the ontologies. 

As match quality measures, we have used the following indicators: precision, 
recall, and F-measure.  Precision is a value in the [0, 1] range; the higher the value, 
the smaller is the set of wrong mappings (false positives) computed. Recall varies in 
the [0,1] range; the higher this value, the smaller is the set of correct mappings (true 
positives) not found. F-measure varies in the [0,1] range, which is a global measure of 
the matching quality. The version computed here is the harmonic mean of precision 
and recall [6]. 
                                                           
1 http://visus.mit.edu/bibtex/0.1/bibtex.owl 
2 http://ebiquity.umbc.edu/ontology/publication.owl 
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In a testing methodology, we are concerned with providing a ground for evaluating 
the quality of match results. For this, we have determined expert matches for all the 
input pairs of ontologies. The results produced by the matcher have been compared 
with these expert mappings. 

The evaluation results are shown in Fig. 9. From the point of view of the quality of 
the matching results, the proposed MLMA method clearly outperforms the other 
techniques.   
 

    
 

 

Fig. 9. Experimentation and Results  

The key point in MLMA is that it gives for each entity from the source ontology 
only one corresponding entity match from the target ontology. This enables MLMA to 
achieve in these cases high precession and recall numbers.  For instance, in the case of 
the computers ontologies, since both ontologies contain either the same names for the 
corresponding entities, or they use totally different names, we see that the string-
based techniques provided a high precision rates (no wrong mappings returned to the 
user), that is, the concept ‘Computers’ in the source ontology is mapped to the 
‘Computers’ concept in the target ontology. However, the string-based techniques 
reported a low recall rate because they failed to identify semantic mappings. For 
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example, the string-based technique missed to match the concepts (PC, Price, and 
Monitor) in the source ontology to their corresponding concepts (desktop, cost, and 
display) in the target ontology.   

The semantics-based techniques had low precision rates (some even returned 
incorrect mappings to the user). For instance, the concept Computers in the source 
ontology will also be matched with the desktop and laptop concepts in the target 
ontology. Also, the reason for the low recall rate is that it gives a large set of wrong 
mappings compared with the expert defined mappings.   

The MLMA method on the other hand benefits from existing techniques. Since 
each concept from the source ontology will be matched with only one concept from 
the target ontology, the Computers concepts from both, the source and target 
ontologies will be identified as mapped to each other. Moreover, PC, Price, and 
Monitor concepts in the source ontology will be matched to desktop, cost, and display 
concepts in the target ontology. Consequently the MLMA produces a better final 
result for its higher precision and recall rates. 

The quality comparison between the basic MMA and MLMA methods is shown in 
Fig. 10. As there are structure similarities between the first and second test pairs of 
ontologies, the MLMA increases the matching quality for their best possible final 
states. Even though the third test pairs of ontologies are structurally dissimilar, the 
MLMA maintains the matching quality of the MMA without any changes, as desired. 

 

 

Fig. 10. The quality comparison between the basic MMA and MLMA methods 

6   Related Work 

The RiMOM system [14] integrates multiple strategies such as, edit distance, 
statistical learning, and three similarity propagation based strategies. Then, RiMOM 
applies a strategy selection method in order to decide which strategy will rely more on 
it. As a result, RiMOM combines the conducted alignment using linear interpo- 
lation method. Similarity Flooding [17] and AnchorPrompt [20] compare graphs 



 A Multi-level Matching Algorithm for Combining Similarity Measures 15 

representing ontologies, and look for similarities in the graph structures. GLUE [4] 
employs machine-learning techniques to find mappings. It uses multiple learners and 
exploits information in concept instances and taxonomy structures of ontologies. 
GLUE uses a probabilistic model to combine results of different learners. The notion 
of similarity it uses is based on k-statistics which can be thought of as being defined 
over the joint probability of the concepts involved. The work proposed in [18] 
describes an ontology match enhance tool that improves existing ontology matching 
algorithms based on probabilistic inferences. 

The algorithm in [8] uses a complete proof procedure to decide subsumption or 
equivalence between classes, given initial equivalence of some classes and analysis of 
the relationships in the taxonomy. The work in [16] has a matching engine which 
contains diverse libraries that supports many match algorithms and strategies. In [16] 
they combine the match results by aggregating the results of the applied matchers on 
the given input ontologies. Then the selected result will be made using e.g. threshold 
value. In addition, a number of other systems use machine learning techniques for 
finding class similarity from instances [5]. Falcon-AO [11] has three elementary 
matchers; Linguistics matchers (V-DOC and I-sub) and structural matcher (GMO). 
The results of falcon-AO mainly derived either from the alignments generated from 
linguistic or structural matchers based on which has a higher results. Otherwise, the 
Falcon-AO results will be generated by making a combination among both linguistic 
and structural matchers with a weighting scheme. Some researchers propose similarity 
metrics between concepts in different ontologies based on their relationships to other 
concepts. For example, a similarity metric between concepts in OWL ontologies [7] is 
a weighted combination of similarities of various features in OWL concept definitions 
including their labels, domains and ranges of properties, restrictions on properties 
(such as cardinality restrictions), types of concepts, subclasses and super classes, and 
so on. Algorithms such as in [10] make use of derived graphs or alternative 
representations such as the pair wise connectivity graphs. 

There are two features which make our approach distinct from the aforementioned 
algorithms and systems. The first point is the way how the similarities are 
transformed into mappings is measured using a space search technique in order to 
deal with a many to many match problem. The second point is, in contrast to other 
approaches such as [10] our proposed similarity measure ensures that our approach 
works even in the case if there are no structure similarities in the given input 
ontologies. 

7   Conclusions and Future Work 

We proposed a new method for ontology matching that uses Multi-space search 
techniques together with a flexible measure that is based on well-known graph 
algorithm to obtain the best possible matching results. A main characteristic of our 
technique is that it combines existing matching techniques to provide a solution to a 
given ontology matching problem. Moreover, the optimal matching state has been 
considered based on its rich structure on one hand, and the number of common 
concepts of the matched ontologies on other hand. As a result, applying our mapping 
transformation and similarity measure methods will not decrease the number of 
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matching concepts (size), and will increase the similarity measure of the state that has 
high structural similarity among its concepts (structure).  We have developed running 
prototypes of both the basic MMA and the proposed MLMA, and conducted 
experiments using some benchmark ontologies. Our results indicated that the 
proposed MLMA technique provided improved match results. As a future work, we 
would like to identify optimization opportunities in our context, and study the 
scalability (quantity) using larger ontologies. 
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Abstract. Semantic Interoperability is a major issue for National Spatial data 
Infrastructures (NSDIs) and mapping across heterogeneous databases is 
essential for such interoperability. Mapping of schemas based on ontology 
mapping provides opportunities for semantic translation of schemas elements 
and hence for database queries across heterogeneous sources. Such semantics 
based mappings are usually human centered processes. This paper demonstrates 
semi-automatic mapping using semantic similarity values from an electronic 
lexicon. Lexical similarity of class names and class structures constitute 
knowledge base for mapping between two schemas. We employ semantic 
mapping based on synonym similarity matches from WordNet. We use 
heuristics based propagation of similarities using attribute mapping and 
superclass-subclass relations. The machine based similarity values are seen to 
be comparable to human generated values of mapping.  

Keywords: ontology, semantic mapping, lexical similarity, similarity 
propagation, heterogeneous databases. 

1   Introduction  

Spatial databases usually store information relating to different themes but also spatial 
information of the records. The spatial information, serves as the common geospatial 
domain for such databases serves as a central point of integrated usage of such data. 
Geographic Information Systems and more recently, Web Mapping Services (WMS) 
as promulgated by the Open Geospatial Consortium (OGC) [1], display geospatial 
data from such spatial databases. With increased possibilities of sharing of databases 
across domains and user groups based on frameworks such as geospatial web services 
and Spatial Data Infrastructures (SDIs), the need for resolving the semantic 
interoperability of data has been identified as a major requirement. National Spatial 
Data Infrastructures (NSDIs) can be considered as a typical testbed for semantic 
interoperability experiments across heterogeneous database users. 

Semantic mapping across heterogeneous data sources is reported as a major 
requirement for National Spatial Data Infrastructures [2]. Such Infrastructures serve 
as a common interaction mechanism between multiple organizations which need to 
share geospatial data for their different applications. Figure 2 shows a typical scenario 
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Fig. 1. Geospatial data usage scenario in an NSDI. The two types of data sources include 
geospatial data sources and attribute data sources. The semantics of the data source region S 
need not be same as that of the application region A. 

of data sharing in an NSDI with multiple (semantically heterogeneous) data sources 
being used. The traditional view of interoperability in an NSDI is based on mapping 
of information sources based on human based interaction and documentation. A 
strictly Top-Down approach advocating use of fixed class names can be seen as too 
rigid and impractical for actual use. On the other hand, schema mappings based on a 
bottom-up approach is difficult even if mappings can be achieved by organizations 
participating in the NSDI because  

(1) Schemas are continuously evolving  
(2) Human knowledge about semantics of the table names and attribute names are  

          often not completely expressed in the names used. Therefore mapping should  
          be seen as a probability based process.  

(3) It is not necessary that mappings exists always. In a probability based model  
           this situation is equated with zero values. On the other hand it is not possible or  
           necessary to have values for every mapping. Such cases where the mapping is  
          not done should be equated to null values of probability of mapping.  

In addition to these observations about schema mappings of databases in an NSDI we 
also observe that organizations can join or leave the Infrastructure. Depending on this, 
new mappings need to be generated at times and older mappings need to evolve.  

It is imperative that a semi-automatic process of mapping of databases need to 
evolve. Ontology based mapping has been increasingly viewed as an engineering 
solution to the problems. Based on specifications of the conceptualizations [3] as a 
more generic layer above the schema specifications, ontologies serve as an 
intermediate step to specify and resolve semantics of the contents of a database  
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system. Ontology based mapping allows us to generate schema translation rules [4]. 
Two categories of semantics can be differentiated in regard to  

           (a) Classes or schema names and  
           (b) Individuals or instances of the classes.  

While the later is by no means a trivial problem we state our approach based on 
semantics of the class or schema names. We aim to assist the generation of semantics 
based mapping for classes or schema names based on lexicon based similarity values. 
The approach is similar to the similarity flooding principle [5] but in our case, 
propagation of similarity values is somewhat restricted. It is based on heuristics such 
that class attributes and similarity values of superclasses and subclasses are reflected 
in the overall similarity values. The machine based values of similarity are compared 
to human generated values.  

1.1   Paper Outline  

This section has provided the introduction and also explains the motivation of this 
work. § 2 outlines the previous work in semantic mapping generation and describes 
the research problem at hand. Subsequently § 3 describes the generation of lexical 
similarity values and their propagation based on attribute properties of classes and 
their superclass -subclass structures.1 In § 4 we analyze the similarity values vis-à-vis 
human generated values. We also provide the outline of a mechanism to translate data 
from different sources based on the ontology mapping with a target domain in § 5. 
Some conclusions and areas for future work are identified in the end.  

1.2   Motivation  

The motivation of our research is derived from efforts to achieve schema translations 
from heterogeneous databases that participate in the NSDI. Since the objective of 
sharing of resources in the NSDI is to maximize the usage of data and applications, 
the requirement of allowing semantics based translations of queries and data is 
primary in nature. We restrict our problems based on logical steps as follows:  

(i) To identify the translations (in the form of XQuery statements), which could  
               be applied to interface semantically heterogeneous systems in the NSDI  

(ii) To generate such translations based on mappings between the ontologies of  
              the two systems  

(iii)   To semi-automate the process of mapping between the ontologies  

The last step is rather the focus of this paper. Such Mapping between ontologies is 
dependent on both the explicit semantics of the class names or attribute names and 
also the implicit semantics of subclasses and superclass relations. When we consider 
the objective of translations it is important to have a directional mapping such that all 
members of the target schema mapped to the source schema as shown in figure 2.  

                                                           
1 The term Class Structure in this paper refers to three different constituents -the attributes of the 

class, its superclasses and subclasses. 
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Ontology S1 S1 A1 Ontology A1  

 

Fig. 2. Ontology mapping between Target and Source. The different components of the Source 
ontology including layers, classes and their properties are mapped to each other. Layers can be 
considered as a group of classes. Classes can have inherited classes and so can layers. The 
relation between of layers and classes is not that of inheritance but rather that of aggregation. 

2   Generating Semantic Mapping  

Semantic Mapping can be considered as process, which generates rules for 
transformations between different data sources which do not necessarily have the 
same semantics for the same schema symbols. Schema symbols2, for our case consists 
of layer names, class names and property names. We also need to be clear that having 
different semantics for the same schema symbols also entails that sometimes  

1 Same symbols could have different meanings  
2 Different symbols could have the same meaning  
3 Some symbols in the first schema may not have corresponding symbols with the 

same meanings in second schema  
4 Some symbols in the first schema could correspond to more than one symbol in 

the second schema such that the meaning is conveyed by simple aggregation (or 
further complex functions of aggregation) of the multiple symbols in the second 
schema  

5 Some symbols in the first schema could correspond to part of a symbol in the 
second schema such that the meaning can be extracted fully from that 
corresponding symbol.  

6 Also some symbols in the first schema could correspond to multiple symbols in 
the second schema but combining aspect 4 and 5 above.  

 

Besides these we know that datatype heterogeneities (different datatype for the same 
schema component in different databases) are closely associated to the above contexts 
but we shall assume their absence for our case.  

As discussed in the introduction, we use ontology based mapping to achieve schema 
translations. Now consider the situation described in figure 1 with attribute data source 

                                                           
2 We refer to schema elements as schema symbols to stress that these symbols have certain 

meaning and conceptualizations. 
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(S) and application (A). Here we have ontologies with elements corresponding to the 
different schema symbols – layers, classes, attributes as shown in figure 2.  

We assume existing ontologies (OS1, OS2…OSM) of the data sources and the 
applications (OA1, OA2…OAN). The aim of establishing semantic interoperability is 
now reduced to provide mapping (OS1X OA1…OSM X OSN). This higher level mapping 
is different from the XQuery-like physical level specification of mapping between 
schemas because it avoids datatype and other implementation constraints. The 
challenge here is to use an ontology of the database schemas and build up explicit 
mapping. Given two ontologies OS1 and OA1 (see figure 2) a mapping OS1X OA1 is a set 
of pairs (s,a) where s and a are concept contained in OS1 and OA1 respectively. The 
mapping is complete and one-to-many. Any concept s maps to every concept in OA1w 

but with different intensities which is dependent on how similar it is to the target 
concept. When such similarities are taken into consideration while determining the 
matching we can assume the highest mapping value as 1 and lowest as 0. Thus a 
mapping is defined as a matrix of similarity values as below  

M[OSX OA] = {mS1A1, m S1A2,.. m S1An

m S2A1, m S2A2, … m S2An

……

m Sm,A1, m SmA2, … m SmAn}

such that 0 m XY 1                            

(1)

 

The values of semantic similarity are dependent on the notion of semantics which 
is employed. The similarity matrix can be used across ontologies if the notion of 
semantics is consistent.  

We discuss the previous work in the area of computing similarities for schema 
matching in the next section. Thereafter we explain the theoretical basis of our 
research problem.  

2.1   Previous Work 

Similarity based approach for schema mapping has been studied using different 
approaches. Shvaiko [6] has classified schema matching approaches and has 
discussed the heuristics based approaches both at structure and element level. The 
Similarity Flooding approach [5] as implemented in Rondo [8] utilizes a hybrid-
matching algorithm based on the ideas of similarity propagation. Schemas are 
presented as directed labeled graphs; the algorithm manipulates them in an iterative 
fix-point computation to produce mapping between the nodes of the input graphs. The 
technique starts from string-based comparison (common prefixes, suffixes tests) of 
the vertices’ labels to obtain an initial mapping which is refined within the fix-point 
computation. The basic concept behind the SF algorithm is the similarity spreading 
from similar nodes to the adjacent neighbors through propagation coefficients. From 
iteration to iteration the spreading depth and a similarity measure are increasing till  
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the fix-point is reached. The result of this step is a refined mapping which is further 
filtered to finalize the matching process.  

Cupid [9] implements a hybrid matching algorithm comprising linguistic and 
structural schema matching techniques, and computes similarity coefficients with the 
assistance of a precompiled thesaurus. Input schemas are encoded as graphs. Nodes 
represent schema elements and are traversed in a combined bottom-up and top-down 
manner. Matching algorithm consists of three phases and operates only with tree-
structures to which no-tree cases are reduced. The first phase (linguistic matching) 
computes linguistic similarity coefficients between schema element names (labels) 
based on morphological normalization, categorization, string-based techniques 
(common prefixes, suffixes tests) and a thesaurus look-up. The second phase 
(structural matching) computes structural similarity coefficients weighted by leaves 
which measure the similarity between contexts in which individual schema elements 
occur. The third phase (mapping generation) computes weighted similarity 
coefficients and generates final mappings by choosing pairs of schema elements with 
weighted similarity coefficients, which are higher than a given threshold. Both Rondo 
[8] and Cupid [9] are important to our approach because they allow propagation of 
semantic similarity, which is important to integrate the explicit and implicit semantic 
matching definitions stated previously. For a complete survey of other schema 
matching approaches see [6] and [10].  

Lexical matching in ontologies has also been studied in detail in Semantic 
integration approaches using ontologies. A survey by Noy [10] separates matching 
approaches based on  

 (i) shared upper ontologies based approaches and  
(ii) heuristics based machine learning approaches  

 

While both of the above are said to have advantages in different objective settings, the 
later is significant in the absence of a commitment to a shared upper ontology. The 
mappings in this case need to be stored as GAV or LAV similar to the approach in 
schema matching based on directional mappings [11] and with an overall objective of 
allowing query answering across heterogeneous data. The Heuristics based 
approaches are reported to employ automatic or semi-automatic techniques by 
looking at  

• concept names  
• class hierarchies  
• property definitions  
• instance definitions class descriptions (as Description Logic statements) 

While instance based approaches such as GLUE [12] can be seen as helpful to 
understand the ontology commitment of the instances, the luxury of availability of 
time and access to the data instances cannot be assumed. Giunchiglia and Shvaiko 
[13] on the other hand use WordNet as a common source for grounding. Subsequently 
mappings such as generalizations, specializations, and disjointness are determined 
using a SAT prover.  
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2.2   The Ontology Mapping Problem  

An assessment of the problems of semantic interoperability in spatial data 
infrastructures can be seen in [14] Semantic mapping is reported to work at two 
levels-(1) explicit semantics of the schema elements and (2) implicit semantics 
resulting from schema structure including class hierarchies and attribute properties. 
We divide these based on the following definitions  

Definition 1. A mapping M is defined to be reflective of explicit semantics of the 
schema elements if and only if every schema element that maps to another schema 
element, can substitute the later in the absence of any schema structure.  

In a lexicon such substitution entails that one is a synonym of the other. 

Example 1: For a mapping M [A, B] = {1, 0, 0, 1} where A={road, intersection} B = 
{street, crossing} we can say that it reflects explicit semantics of A and B if one could 
substitute ‘road’ by ‘street’ and ‘crossing’ by ‘intersection’. In WordNet [7] this 
condition would be true. Also if this criterion can be proved, the mapping can be 
termed as reflective of explicit semantics of the schema elements.  

Definition 2. A mapping M is defined to be reflective of implicit semantics 
resulting from super-class structures if and only if every element that maps to 
another element in the structure, has similar super classes and attributes (Also the 
related super classes have the same criteria with respect to its own super-classes and 
attributes)  

Example 2: For a mapping M[A, B] = {1, 0, 0, 1} where A and B have two elements 
each, let us assume one element of both A and B are sub classes of the other and 
represented in figure 3. Here only if the explicit similarity of attributes of element1 of 
A and element1 of B are higher M is reflective of implicit semantics of the super class 
structure. In this case the explicit similarity of attributes of Element 1 of A and 
Element 2 of B should be 0 and so also that of attributes of element 2 of A and 
element1 of B. In regard to the implicit semantics of super-class we can say that since 
element 2 of both A and B have similar super-classes, their own similarity value is  
 

-attribute1
-attribute2

Element1

-attribute1

Element 2

-attribute1
-attribute2

Element1

-attribute1
-attribute2
-attribute3

Element 2

Schema A Schema B

 

Fig. 3. Implicit semantics of the super class structure  
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higher than the original implicit value of similarity and explicit similarity of the 
attributes combined.  
 

Definition 3. A mapping M is defined to be reflective of implicit semantics resulting 
from sub-class structures if and only if every element that maps to another element in 
the structure, has similar sub classes and attributes. Also the related sub classes have 
the same criteria with respect to its own sub-classes and attributes.  

Example 3: For a mapping M[A, B] = {1, 0, 0, 1} where A and B have two elements 
each, let us assume one element of both A and B are sub classes of the other and 
represented in figure 4. The relation to similarity of attributes of Element1 and 
Element2 in both A and B is the same as explained in Example 2. In regard to the 
implicit semantics of sub-class we can say that since element 1 of both A and B have 
similar sub-classes, their own similarity value is higher than the original implicit 
value of similarity and explicit similarity of the attributes combined. (Note that here 
subclasses have same number of attributes although the significance of equal number 
of attributes cannot be considered as critical as is the case in Example 2)  

 

Fig. 4. Implicit semantics of the sub class structure  

Definition 4. A mapping M is defined to be reflective of complete semantics resulting 
from both schema structure and semantics of elements if and only if the mapping is 
reflective of implicit semantics of attributes, super-class and sub-class structures and 
explicit semantics of schema elements.  

Let us be clear that definition 1 does not qualify as a syntactic match of the labels of 
the schema elements. The substitutability sense implied here involves semantics and 
implied meaning of the label. This may not be clear from the label name alone and 
usually requires a more verbose description. Secondly since definition 4 can be seen 
as a combination of the other three definitions, we define our problem stepwise: to 
obtain mappings which are reflective of  

a.  Explicit semantics of the schema elements  
b.  Implicit semantics of the super-class schema structure  
c.  Implicit semantics of the sub-class schema structure  
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3   Semantic Mapping Generation  

We describe the approach of generating the semantic mapping as a three step process, 
namely (i) generating values of lexical similarity based on synonym relations (ii) 
propagating the similarity values for sub classes and similarly for superclasses (iii) 
combining the values of step (ii) to obtain the most similar classes and attributes (of 
the source ontology) for each class and attribute of the target ontology. We describe 
each step as below.  

3.1   Generating Lexical Similarity Values  

Definition 5. Lexical similarity S is a function defined between two element names x 
and y where  

S(x,y)= β(measure of the distance of the two words in a lexicon)  

Such that 0 ≤S(x, y) ≤1  

Remark 1. β is a weigthage function that we employ to sensitize our similarity 
function for optimality conditions. The measure of distance on the other hand is 
computed as the (d)-4 

where d is the number of nodes traversed in the graph of the 
lexicon (say WordNet). In case d is null or zero we assign a zero value to the measure 
of distance.  

Lexical similarities are computed as binary values between two schemas 
components based on their corresponding entries in the lexicon. We assume a 
GAV approach by computing mappings for each target ontology. In the absence of 
a corresponding entry in the lexicon or in the case where there is no lexical relation 
we assume that d is null and zero respectively. Since there are two types of lexical 
relations in which we are interested (out of the 9 discussed by Evens and Smith 
[15]) we have lexical match algorithms for synonyms, hypernyms, and hyponym. 
For synonym relations the distance between two words is either 0 or 1 depending 
on their occurrence in a WordNet synset. For our case study the target ontology is 
that of Ordnance Survey UK [16] and source is OGC transportation schema (full 
version) [1]. We list lexical similarities of class names based on synonyms in 
column 3 of table 1 below.  

3.2   Propagation of Similarities of Attributes and Superclasses  

If attributes of the target class have high similarity values with respect to certain 
attributes of the source class, such a mapping stands to be more attractive in 
comparison to any mapping where the attributes do not yield high similarity values. 
This is based on the definition of implicit semantics of superclass relations of 
definition 2 we can obtain a no penalty algorithm for computing the propagated 
similarity value as shown below.  
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For all attributes
Obtain lexical similarity matrix Ma[OSX OT] for all attributes

End For
For all classes do

Obtain lexical similarity matrix Mc[OSX OT] such that class Tqc in OT has similarity

value SpTqcm with respect to class Spc in source ontology OS

For all attributes (a1, a2,…an) of Tqc do

If
βα
βα

+
+ )()( SpTqnSpTq acm

> )( SpTqcm then

)( SpTqcm =
βα
βα

+
+ )()( SpTqnSpTq acm

End If
End For

End For

Set {ParentClassBasket} = Null

While {ParentClassBasket} < OT

For all Classes in OT such that Parent Class Tqp is in {ParentClassBasket}

If
φϕ
φϕ

+
+ )()( SpTqSpTq pmcm

> )( SpTqcm then

)( SpTqcm =
φϕ
φϕ

+
+ )()( SpTqSpTq pmcm

End If

Include Tqc as member of {ParentClassBasket}

End For
End While

 

Fig. 5. Algorithm for Propagation of similarity values of attributes and superclasses. α, β, φ, φ, 
represent weightages of propagation. 

In short this algorithm allows an increase of the similarity values if the combined 
value of similarity based on attribute similarity and thereafter, the superclass 
similarity has increased. The use of such weightages clearly shows the use of 
heuristics based measures. Table 1 below shows some values of improved similarity 
values using the propagation described above.  

3.3   Propagation of Similarities of Attributes and Subclasses  

The propagation in this case is similar but uses subclass similarity values instead of the 
superclass similarity values. Results of the propagation are shown in the table 2 below.  
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Table 1. Top class matches based on propagated values of similarity of supper classes and 
attributes 

Target Class (cTq)  Source Class (cSp ) Lexical 
Similarity 

S(x,y) 

Propagated 
Similarity 

(cmSpTq)  

OS:RoadRouteInformation  OGC:RailRoadRoute  0,6666667 0,766666667  

OS:InformationPoint  OGC:TransportationPoint  0,6052632 0,723684211  

OS:InformationPoint  OGC:TransportationPoint  0,6052632 0,723684211  

OS:RoadPartiaRouteInformation  OGC:RailRoadRoute  0,5714286 0,7  

OS:road  OGC:RailRoadPoint  0,5 0,65  

OS:road  OGC:RailRoadSegment  0,5 0,65  

OS:road  OGC:RailRoadSwitch  0,5 0,65  

OS:InformationPoint  OGC:TransportationPath  0,4166667 0,591666667  

OS:InformationPoint  OGC:TransportationPath  0,4166667 0,591666667  

OS:roadInformationMember  OGC:TransportationSegment  0,4047619 0,583333333  

OS:roadLink  OGC:RailRoadStation  0,4 0,58  

OS:roadLink  OGC:RailRoadPoint  0,4 0,58  

OS:roadLink  OGC:RailRoadSegment  0,4 0,58  

OS:roadLink  OGC:RailRoadRoute  0,4 0,58  

OS:roadNode  OGC:RailRoadStation  0,4 0,58  

OS:roadNode  OGC:RailRoadSegment  0,4 0,58  

OS:roadNode  OGC:RailRoadRoute  0,4 0,58  

OS:roadNode  OGC:RailRoadBridge  0,4 0,58  

Table 2. Top class matches based on propagated values of similarity of subclasses and attributes 

Target Class (cTq) Source Class (cSp)  Lexical 
Similarity 

S(x,y) 

Propagated 
Similarity 

(cmSpTq)  

OS:RoadRouteInformation  OGC:RailRoadRoute  0,6666667 0,766666667  

OS:InformationPoint  OGC:TransportationPoint  0,6052632 0,723684211  

OS:RoadPartiaRouteInformation  OGC:RailRoadRoute  0,5714286 0,7  

OS:road  OGC:RailRoadPoint  0,5 0,65  

OS:road  OGC:RailRoadSegment  0,5 0,65  

OS:road  OGC:RailRoadSwitch  0,5 0,65  

OS:road  OGC:RailRoadStation  0,5 0,55000001  

OS:road  OGC:RailRoadRoute  0,5 0,55000001  

OS:road  OGC:RailRoadSignal  0,5 0,53  

OS:road  OGC:RailRoadBridge  0,5 0,5  

OS:InformationPoint  OGC:TransportationPath  0,4166667 0,591666667  
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Table 2. (continued) 

OS:roadInformationMember  OGC:TransportationSegment  0,4047619 0,583333333  

OS:roadLink  OGC:RailRoadStation  0,4 0,58  

OS:roadLink  OGC:RailRoadPoint  0,4 0,58  

OS:roadLink  OGC:RailRoadSegment  0,4 0,58  
 

3.4   Most Similar Mappings  

Generation of most similar mappings is based on a simple combination of the values 
generated from 3.2 and 3.3. We use weightages (50:50 and 70:30) to obtain two sets 
of most similar mappings. The basic lexical similarity values of both these mappings 
and also the attribute similarity propagation is same. The results are shown in the 
table 3 below.  

Table 3. Top class matches based on overall similarity 

Target Class  Source Class  Overall Similarity  

(cTq ) (cSp ) (cmSpTq)  

OS:InformationPoint  OGC:TransportationPath  0,591666667  

OS:InformationPoint  OGC:TransportationPoint  0,723684211  

OS:road  OGC:RailRoadPoint  0,65  

OS:road  OGC:RailRoadSegment  0,65  

OS:road  OGC:RailRoadSwitch  0,65  

OS:roadInformationMember  OGC:TransportationSegment  0,583333333  

OS:roadLink  OGC:RailRoadPoint  0,58  

OS:roadLink  OGC:RailRoadSegment  0,58  

OS:roadLink  OGC:RailRoadStation  0,58  

4   Analysis of Machine Generated Similarity Values  

Since the objective of generating similarity values is to assist in human based 
mapping and semi-automate the process of transformations, we need to analyze the 
generated values vis-à-vis human generated values of similarity in the absence of any 
assisting tool. The purpose here is to get an overview of how good the generated 
values are and also the presence of errors (which we shall group as false positives and 
false negatives)  

4.1   Human Generated Similarity Values  

The human generated similarity values were obtained by a small experiment. A blank 
similarity matrix sheet, class-attribute list and the class diagrams of the ontologies A 
and T (Appendix) were made available to the subject. Three steps were followed  
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(i) A score of similarity (binary value) was recorded for every class name of the  
              target with respect to each class name of the target based on English meaning  
              of the words.  

(ii) Two scores of similarity (binary values) were recorded for every class name  
              of the target with respect to each class name of the target based on its  
              position in the class structure. The first score is reflective of the subclass  
              occurring in the class structure. Thus a class in the Target with same number  
              of child classes and attributes as another class in the Source will have a  
              higher score. The Second score is reflective of the superclass and hence if the  
              target ontology superclass contains same number of attributes as the source  
              ontology, it results in a higher score.  

(iii) The three scores which are recorded in the similarity matrix sheet are  
              combined to obtain the most similar class and attributes. The basis of  
              combination is not fixed but left to the judgment of the human so that if  
              he/she feels that the English meaning of the word is more important for  
              matching, the values of subclass structure and superclass structure can be  
              ignore. By default an average of the three is taken.  

4.2   Performance Parameters  

We can now compare the performance of our machine generated similarity values. 
Graph 1 shows the difference in similarity values expressed as percentages. It should 
be remembered that the granularity of the human generated values is lower. Therefore 
it is more important to decide upon thresholds for the machine generated values in 
order to compare the two. Table 4, on the other hand, summarizes the top 10 class  
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Graph 1. Percentage difference of human and machine based similarity values. We can see that 
there is higher percentage change among lower values of machine based similarity. 
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matches obtained from the human based similarity values. The numbers in italics are 
machine generated values lower than the threshold limits discussed.  

False Positives: False Positives can be identified from the faulty values of the 
machine generated values. In our case this was 12.3% at t threshold of 0.50 and 
36.9% at a threshold of 0.40. False positives were mainly seen in the cases where 
parts of the target class name existed as a part of the source class name.  

False Negatives: Table 4 below shows the top ten class matches. The lower three 
cases have low machine generated values which indicate that such matches would not 
quality for mapping between the schemas. Overall Percentage of False negatives has 
been observed to be 4% at a threshold of 0.30 although the occurrence is higher(25%) 
in the top 20 class matches based on human generated similarity values.  

Table 4. Top ten matches based on human generated similarity values  

Target Class  Source Class  Machine 
Similarity  

(cTq) (cSp ) (cmSpTq)  

OS:roadLink  RailRoadRoute  0,58  

OS:roadLink  RailRoadSegment  0,58  

OS:roadMember  RailRoadStation  0,58  

OS:road  RailRoadRoute  0,55  

OS:roadMember  RoadLinearFeatureEvent  0,533333  

OS:roadLink  TransportationPath  0,377778  

OS:ferryTerminal  TransferCluster  0,267436  

OS:roadLink  LinearFeatureEvent  0,169114  

OS:ferryTerminal  RailRoadRoute  0,168297  

5   Data Translations Based on Ontology Mappings  

Ontology mappings discussed in the previous sections are generated with a purpose to 
allow a framework to translate or extract the database records from a particular source 
database (and hence its schema elements) into that of another database (the target). 
Such a framework needs to include  

• Translation of the query originating from a certain target database in terms of 
the schema elements of the source database based on ontology mappings of 
these elements. 

• Similar translation of the results from the source into the schema elements of the 
target. 

 

Both these points can be achieved using a wrapper based mechanism based on Xpath 
statements as shown in Figure 6 below. This approach is similar to the approach  
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-

-
-

 

Fig. 6. XQuery based Wrapper generated from ontology mapping  

discussed by based on the ontology mapping and allows data to extracted from the 
source into the target. However, this framework assumes XML enabled databases.  

Geographic Markup Language (GML)[1] supported data allows the use of XQuery 
statements and a sample translation of data from one (source)database to another 
(target) database is shown below. The figure 7 shows maps rendered from the source 
data and the translated version. Since the geometric data remains unchanged in the 
ontology mapping, changes can be seen in the attribute properties of the data classes 
seen in the properties window. 

The translation is based on the following principles:  

(i) Data records belonging to a class, which maps to another class in the target 
database, are reported as members of the mapped class.  

(ii) If the class is a part of another class and the target class is constituted as a join 
or manipulation3 

of record values from the source data class.  

                                                           
3 Although manipulation could include transformation of data structures such as string to 

integer, in this case we mean manipulations, which transform the data without additional 
information such as multiplication factor or addition/deletion of a constant value. 
manipulation formula although we have not used the same. 
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Fig. 7. GML data from Source and translated version displayed along with class attributes  

6   Conclusions and Future Work  

We have seen that lexical similarities of schema element labels and descriptions can 
help in ontology mapping. Along with similarity propagation based on heuristics 
allows integration of implicit semantics of the ontology structure and hence improves 
the mapping process. The propagation of similarity is directional in nature as opposed 
previous approaches [5,8,9]. However the experiments have also shown that there are 
problems with machine based similarity assessment.  

(i) Thesemantic similarity of individual words does not always provide a good 
indicator of the semantic similarity of group words. Since class descriptions 
were used for similarity assessment this led to false positives in many cases.  

(ii) Similarly although limited word senses were evaluated based on part of speech, 
word sense disambiguation would help to reduce number of false negatives. 
Such cases explain the occurrence of high percentage change of human 
generated similarity values among lower values machine generated values  

It is also important to note that use of heuristics and threshold values is critical in 
order to use the semi-automatic mapping approach.  

These are only the initial results from our efforts to allow transformations based on 
a semi-automated approach as discussed in the motivation. The translation of data 
from the source to the target as shown in § 5 is only a step towards a broader 
framework of interoperable databases using ontologies. The whole exercise of 
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ontology mapping can be seen in the context of ontology aware database management 
systems [18] and query answering across databases.  

Comparison of human generated values helps to see the utility of the semi-
automated approach with machine based mappings. The main aspect of error prone 
and non-standard techniques followed in human based matching has not been set out 
forth in this paper and is beyond the scope of this paper. We can assume that machine 
generated values provide an advantage. Future work in this area, therefore, has to 
involve a comparison of performance in human based mapping with and without the 
assistance of machine-based values.  
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Abstract. There are many different kinds of ontologies used for different 
purposes in modern computing. A continuum exists from lightweight ontologies 
to formal ontologies. In this paper we compare and contrast the lightweight 
ontology and the formal ontology approaches to data interoperability. Both 
approaches have strengths and weaknesses, but they both lack scalability 
because of the n2 problem. We present an approach that combines their 
strengths and avoids their weaknesses. In this approach, the ontology includes 
only high level concepts; subtle differences in the interpretation of the concepts 
are captured as context descriptions outside the ontology. The resulting 
ontology is simple, thus it is easy to create. It also provides a structure for 
context descriptions. The structure can be exploited to facilitate automatic 
composition of context mappings. This mechanism leads to a scalable solution 
to semantic interoperability among disparate data sources and contexts.  

Keywords: lightweight ontology, formal ontology, context, mediation, 
scalability, semantic heterogeneity. 

1   Introduction 

Ontologies have been widely used in modern computing for purposes such as 
communication, computational inference, and knowledge organization and reuse [7]. 
For different purposes there are a variety of different ontologies, which range from a 
glossary, to a taxonomy, a database schema, or a full-fledged logic theory that 
consists of concepts, relationships, constraints, axioms, and inference machinery. As 
illustrated in [21], a variety of ontologies form a continuum from lightweight, rather 
informal, to heavyweight, and formal ontologies.  

The lightweight ontology approach and the formal ontology approach are often 
used differently and have different strengths and weaknesses. Both approaches can be 
used to support data interoperability among disparate sources. 
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Lightweight ontologies usually are taxonomies, which consist of a set of concepts 
(i.e., terms, or semantic types) and hierarchical relationships among the concepts. As 
an artifact, it is relatively easy to construct a lightweight ontology. However, such 
lightweight ontologies do not capture the detailed semantics of the concepts, which 
sometimes is documented in a data dictionary, and/or embedded in the data models 
and the data processing programs.  

There are two different approaches to using lightweight ontologies for intero-
perability purposes. One approach is to develop a single lightweight ontology, in 
which case all parties need to agree on the exact meaning of the concepts. The 
lightweight ontology and the agreements together form a standard that all parties 
uniformly adopt and implement. That is, a lightweight ontology is often used to sup-
port strict data standardization. However, reaching such agreements can be difficult. 
For example, a data standardization effort within the U.S. Department of Defense 
(DoD) took more than a decade only to standardize less than 2% of the data across all 
organizations of the DoD [18]. The alternative approach is to allow multiple light-
weight ontologies to co-exist, in which case mappings among the ontologies need to 
be provided. Because the semantics is not formally captured in the ontologies, efforts 
are required to identify the semantic differences and then develop (often hand-code) 
the mappings to enable pair-wise interoperability. The number of pair-wise mappings 
is n(n-1) (which is O(n2)) if there are n different ontologies, thus the amount of effort 
required increases quickly as n becomes large. This is the so called n2 problem of data 
interoperability. A survey [19] shows that approximately 70% of the costs of data 
interoperability projects are spent on identifying the semantic differences and 
developing code to reconcile them.  

In contrast, the formal ontology approach uses axioms to explicitly represent 
semantics and has inference capabilities. This approach can also support interoperability 
either via a single ontology or via mappings of multiple ontologies. The key difference 
is that the semantics of the ontological concepts and the mappings are explicitly 
captured in a formal logic theory.  

To summarize, both ontology approaches can be used to support data 
interoperability either via standardization or via mappings of multiple ontologies. The 
difficulty of reaching an agreement on a single data standard can be enormous so that 
in practice multiple standards (i.e., ontologies) co-exist even within a single 
organization. Thus, in practice ontology mappings are required to enable interoper-
ability among data sources and systems. Both ontology approaches suffer from the n2 
problem. The key difference between the two ontology approaches is that lightweight 
ontologies do not capture the semantics in the ontologies, whereas formal ontologies 
explicitly capture semantics. As artifacts, lightweight ontologies are simple and easy to 
create, whereas formal ontologies are complex and difficult to create. But the sem-
antics and the mappings of lightweight ontologies are often scattered in various data 
models and data processing programs, making maintenance extremely difficult. The 
semantics and mappings of formal ontologies are in the form of a logic theory, which 
is relatively easier to maintain. Both approaches have weaknesses that limit their 
effectiveness.  

It is desirable to have an approach that combines the strengths and avoid the 
weaknesses of the two ontological approaches. In this paper, we present such an 
approach, which is developed in the COntext INterchange (COIN) project [3, 5, 25] 
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for semantic data interoperation purposes. It uses a lightweight ontology, which 
provides the structure for organizing context descriptions to account for the subtleties 
of the concepts in the ontology. We will use the terms COIN ontology and COIN 
lightweight ontology interchangeably. COIN also implements a reasoning algorithm 
to determine and reconcile semantic differences between different data sources and 
receivers.  

The rest of the paper is organized as follows. In Section 2, we describe the COIN 
lightweight ontology approach. In Section 3, we present the scalability benefit of the 
approach. In Section 4, we discuss related work. In Section 5, we conclude and point 
out future research.  

2   COIN Lightweight Ontology  

We will use an online price comparison example to illustrate the COIN lightweight 
ontology approach.  

2.1   Online Price Comparison Example 

Numerous vendors make their pricing information available online. With web 
wrappers, such as Cameleon [2] and others [1], and the increasing adoption of XML 
and web services, one can gather price data and compare offers from different 
vendors. To perform meaningful comparisons, one has to reconcile the semantic 
differences of price data, especially when data is from vendors scattered around the 
world [22]. 

Consider a scenario where data is from 30 vendors from 10 different countries. For 
simplicity of discussion in this paper, let us assume that all vendors quote prices using 
the same schema and same Product identification, represented using the following 
first order predicate: 

 

quote(Product, Price, Date) 

but different vendors use different conventions so that the price values are interpreted 
differently depending on which vendor provides the quote. Table 1 provides a few 
examples of different interpretations of price. A base price refers to price with taxes 
and shipping & handling (S&H) excluded (e.g., price quotes from vendors 2 and 3). 

Let us assume that each vendor uses a different convention, thus we have 30 
unique conventions, which we call contexts. We can label vendor i’s context as ci. For 
 

Table 1. Interpretations of Price 

Vendor Interpretation of Price 
1 
2 
3 
… 
30 

In 1’s of USD, taxes and S&H included 
In 1’s of USD, taxes and S&H excluded 
In thousands of Korean won, taxes and S&H excluded 
… 
In millions of Turkish lira, taxes included 
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simplicity, we will assume that users normally adopt a vendor context. Or we can 
assume that the only users are the vendors, each of whom wants to compare his prices 
with all of his world-wide competitors and wants the comparison done in his own 
context. In this scenario, to allow users in all contexts to meaningfully compare 
vendor prices, it is necessary that price data from other contexts be converted to the 
user context, which would require 870 (i.e., 30*29=870) conversions. Hand-coding 
these conversions and maintaining them over time, since contexts do change (e.g., 
prices in French francs and German deutschemarks became Euros), can be costly and 
error-prone. 

2.2   COIN Lightweight Ontology 

In the example, there are a number of subtle differences in the meaning of the high 
level concept price. It is important that these subtleties are captured and the 
differences are reconciled for meaningful comparisons.  

Like the traditional lightweight ontology, the COIN ontology includes a set of 
concepts, among which there can be a hierarchy represented with an is_a relationship. 
Besides, the COIN ontology also includes attribute as a binary relationship between a 
pair of concepts. Attributes are also called roles, and correspondingly attribute names 
are called role names. For example, price can be the hasPrice attribute of product. 
Conversely, product can be the priceOf attribute of price.  To capture the subtle 
differences in meaning, the COIN lightweight ontology introduces modifier as a 
special kind of attribute. The values of modifiers are specified as context descriptions 
outside the ontology. Fig. 1 shows a graphic representation of the COIN lightweight 
ontology for the online price comparison example.  

 

  

basic

Price

currency scaleFactor
kind

ProductpriceOfDate dateOf
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Semantic type

a Attribute m Modifier

is_a

Legend

 

Fig. 1. COIN lightweight ontology for online price comparison example. It contains only high 
level concepts, the refined variants of which can be derived from the assignments of modifiers 
that belong to each high level concept. 

In this ontology, we include a modifier-free root concept basic, which is similar to 
thing as the root in many object-oriented models. We include three modifiers: kind, 
currency, and scaleFactor. Each modifier captures a particular aspect in which the 
underlying concept can have different interpretations. Contexts are described by 
assigning values to modifiers present in the ontology. In simple cases, a specific value 
is assigned to a modifier in a context. In other cases, the assignment must be specified 
by a set of rules. In either case, a context is conceptually a set of assignments of all 
modifiers and can be described by a set of <modifier, value> pairs. For example, 
contexts c2 and c3 (refer to vendors 2 and 3 in Table 1) can be described as: 
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 c2  := { <kind, basePrice>,  c3 := { <kind, basePrice>, 
  <currency, usd>,   <currency, krw>, 
  <scaleFactor, 1> }  <scaleFactor, 1000> } 
 
The language used in COIN for describing context (as well as context mappings 

and the lightweight ontology) is based on F-logic [12], an object-oriented logic. F-
logic rules are converted to Datalog for reasoning purposes. In COIN, various “user-
friendly” front-ends have been created so that developers do not directly need to use 
F-logic or Datalog. Below is example rule using the logic to assign a value to 
currency modifier in context c3: 

 

].'')([])([
|::
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where variables (e.g., X, Y) are objects, the modifier and attributes of which are 
represented by methods (which are declared in square brackets). The method value is 
similar to the value predicate in context logic of [15]; it returns the ground value of 
the object in the context specified by the parameter (which is c3 in the example).  

2.3   Characteristics of COIN Lightweight Ontology 

A COIN ontology, as shown in Fig. 1, includes only high level concepts (plus their 
relationships, such as the binary relationships of context modifiers). Thus it is simple 
and relatively easy to create and reach agreement. But the involved parties do not 
need to agree on the details of each concept. Each party can continue to use its 
preferred interpretation for each high level concept. In other words, each party can 
conceptually have its own local ontology. Fig. 2 depicts the conceptual local 
ontologies for vendors 2 and 3. To avoid clutter, we have omitted attribute names in 
the figure. 

   

basic

basePrice_1s_USD ProductDate     

basic

basePrice_1Ks_KOW ProductDate  

Fig. 2. Conceptual local ontologies for vendor 2 (left) and vendor 3 (right), derivable from 
COIN lightweight ontology shown in Fig. 1 

These local ontologies are not part of the COIN lightweight ontology, but they can 
be derived from the COIN ontology using the context descriptions. In other words, the 
COIN lightweight ontology provides a structured way to describe contexts and derive 
refined local ontologies.  

Furthermore, a more traditional global ontology that integrates all the local 
ontologies could be constructed from the COIN ontology and the accompanying 
context descriptions. A graphic representation of such a global ontology for the online 
price comparison example is given in Fig. 3, which includes two intermediate layers 
(i.e., the layers starting with BasePrice and In USD concepts, respectively). Concepts 
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in each layer remove a certain kind of ambiguity. For example, BasePrice indicates 
the kind of price, which does not include shipping and handling charges. The nodes 
below it further refine the base price concept by specifying the currency, e.g., in USD. 
Alternatively, the intermediate layers can be omitted. In this case, specialized 
concepts on the leaf level, such as basePrice_1s_USD, directly connect to the generic 
Price concept.  

 

Price

BasePrice Base+T+SH

In USD In EUR… In USD In EUR…

In 1’s In 1M’s… … In 1’s In 1M’s…

ProductpriceOfDate dateOf

…

basic

 

Fig. 3. An example fully-specified global ontology for the online price comparison example. 
Leaf nodes represents the concepts with specific semantics, e.g., the first leaf node on the left 
represent the concept of “price, not including taxes or shipping handling, in 1’s of USD”. 

Ontologies are design artifacts. Comparing the artifacts shown in Fig. 1 and Fig. 3, 
we observe that the COIN approach creates much simpler ontologies – though, for 
many purposes, they are functionally equivalent. As discussed in [13, 24], the COIN 
approach has several advantages over the formal ontology approach. First, the COIN 
ontology is usually much simpler, thus easier to manage. Although in practice it is 
unlikely that one would create an ontology to include all possible variations (e.g., 
basePrice_1M’s_USD), a COIN ontology is still much easier to create than any 
ontology similar to the one in Fig. 3 even with a smaller number of refined concepts. 
Second, related to the first point, although the COIN ontology is simple, it provides 
the means to derive all refined concepts as illustrated in Fig. 3. Third, a COIN 
ontology facilitates consensus development, because it is relatively easier to agree on 
a small set of high level concepts than to agree on every piece of detail of a large set 
of fine-grained concepts. And more importantly, the COIN ontology is much more 
adaptable to changes. For example, when a new concept “base price + S&H in 1000’s 
of South Korean Won” is needed, the fully specified ontology may need to be updated 
with insertions of new nodes. The update requires the approval of all parties who 
agreed on the initial ontology if a single ontology is used, or mappings need to be 
added to ensure its interoperability with other variants of the price concept. In 
contrast, the COIN approach can accommodate this new concept by adding new 
context descriptions without changing the ontology. As we will see later, the new 
mappings may not need to be added when they can be derived from existing 
mappings using a reasoning mechanism. 

The COIN lightweight ontology approach also has advantages over the traditional 
lightweight ontology approach. Although, similar to the traditional approach, the 
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COIN ontology does not include detailed descriptions of semantics, it does provide a 
vocabulary and the structure for describing semantics using context descriptions. As 
we will see in the next section, the context reasoning mechanism exploits the structure 
to solve the n2 problem.  

3   Scalable Interoperability with COIN Lightweight Ontology 

When data sources and data receivers are in different contexts, conversions (also 
called lifting rules or mappings) are needed to convert data from source contexts to 
the receiver context. We call the set of conversions from a context to another context 
a composite conversion. When conversions are specified pair-wise between contexts, 
it requires ~n2 composite conversions to achieve interoperability among n contexts. It 
is costly and error-prone to develop and maintain such a large number of conversions. 
Thus approaches that hand-code the ~n2 composite conversions do not scale well 
when n increases.  

The use of lightweight ontology in COIN makes it possible to avoid the above 
mentioned problem. In addition to using ontology and contexts to represent semantic 
heterogeneity, COIN also has a reasoning component to determine and reconcile 
semantic differences. We explain how COIN achieves scalability though conversion 
composition in the remainder of the section.  

3.1   Conversion Composition 

In COIN, conversions are not specified as convoluted rules pair-wise between 
contexts. Instead, they are specified for each modifier between different modifier 
values. For example, a conversion can be defined for currency modifier to convert 
values in different currencies such as by using an exchange rate function represented 
by the following predicate: 
 

olsen(CurFrom, CurTo, Day, Rate) 
 

It returns an exchange Rate from CurFrom currency to CurTo currency on a given 
Day. The function can be implemented externally as a table lookup or as a callable 
service1. We call a conversion defined for a single modifier a component conversion.  

The component conversions in COIN are also specified using F-logic. Below is an 
example component conversion for currency modifier; it is parameterized with 
context C1 and C2 and can convert between any currencies. We use olsen_ for the 
skolemized version of original olsen predicate. 
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1 In many applications using COIN, such conversion functions are implemented by using web 

wrapped services, such as the www.oanda.com currency conversion web site. 
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Once all component conversions are defined, composite conversions can be 
composed automatically using a context reasoning algorithm. Fig. 4 illustrates the 
concept of conversion composition.  

In Fig. 4, the triangle symbol on the left represents the price concept in context c3, 
i.e., base price in 1000’s of South Korean won (KRW); and the circle symbol on the 
right represents the price concept in context c2, i.e., base price in 1’s of USD. For data 
in context c3 to be viewed in context c2, they need to be appropriately converted by 
applying the appropriate composite conversion. The dashed straight arrow represents 
the application of the composite conversion that would have been implemented 
manually in other approaches. With the COIN lightweight ontology approach, the 
composite conversion can be automatically composed using the predefined 
component conversions. As shown in Fig. 4, we first apply the component conversion 
for currency modifier (represented by cvtcurrency), then apply the component 
conversion for scaleFactor modifier (represented by cvtscaleFactor). 

 

Price in 
1000’s of KRW

Price in 
1’s of USD

cvtcurrency(∆) =⌂ cvtscaleFactor(⌂)

∆ ○

Implemented manually when 
contexts are unstructured

Composed automatically 
when contexts are structured  

Fig. 4. Composite conversion composed using component conversions. Without composition, 
one would hand-code a direct conversion to convert the price in 1000’s of KRW to the price in 
1’s of USD; this conversion illustrated by the straight dashed arrow. With COIN, this 
composite conversion can be derived from the component conversions for currency (cvtcurrency) 
and scale factor (cvtscaleFactor). 

The composition algorithm, shown in Fig. 5, is quite simple. In COIN project, it is 
implemented in a query rewriting mediator using abductive constraint logic 
programming (ACLP) [10] and constraint handling rules (CHR) [4]. With the 
mediator, queries can be issued as if all data sources were in the requester’s context 
(i.e., the target context). The mediator generates mediated queries that contain the 
composite conversions. Data is converted from source contexts to the requester’s 
context when the mediated queries are executed. 

A demonstration of the query mediator is shown in Fig. 6. The source used also 
includes a Vendor column, as shown in the sample schema near the middle of the 
figure. The source context corresponds to context c3, and the requester context 
(c_c_usa2 in the figure) is equivalent to context c2 in the online price comparison 
example discussed earlier. In the demonstration, the QuoteDate field can have 
different date formats, which we did not include in the ontology discussed earlier but 
can be accommodated by adding a dateFormat modifier to Date concept in the 
ontology in Fig. 1.  
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Input: data value V, corresponding concept C in ontology,  
            source context C1, target context C2 
Output: data value V (interpretable in context C2) 
 
Find all modifiers of C 
 For each modifier mi 
  Find and compare mi’s values in C1 and C2 
  If different: V=cvtmi(V); else, V=V 
Return V 

Fig. 5. Algorithm for composing composite conversion using component conversions 

Mediated Datalog query

Mediated SQL query

src_krea
<Product, Vendor, QuoteDate, Price>

answer('V7', 'V6'):-
src_korea("iPod", 'V7', 'V5', 'V4'),
'V3' is 'V4' * 1000.0,
datexform('V5', "ISO Style -", 'V2', "American Style /"),
olsen("KRW", "USD", 'V1', 'V2'),
'V6' is 'V3' * 'V1'.

Requester context = c2

 

Fig. 6. A demonstration of conversion composition as query mediation 

The requester SQL query, shown in the upper left of the figure, need not be aware 
of any context differences. Our demonstration system allows us to step through the 
various steps of mediation individually (e.g., converting the SQL to naïve Datalog 
query, etc.). The Conflict Detection step outputs a table that summarizes the concepts 
(called Semantic Types) whose modifiers have different values in the source and 
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requester contexts. A mediated Datalog query is generated using the algorithm shown 
in Fig. 5. As can be seen, the mediated query contains the necessary conversions to 
reconcile the context differences (namely currency and scale factor differences of 
price concept, which corresponds to the Price filed in the source table, and format 
difference of the Date concept, which corresponds to the QuoteDate field). The 
mediated Datalog query can be converted an SQL query, which is shown at the 
bottom in the figure.  

3.2   Scalability Benefit  

The primary benefit of the composition capability is the small number of component 
conversions required, thus increased scalability when many data sources and contexts 
are involved in data integration applications [23, 24]. 

In the worst case, the number of component conversions required by the light-
weight ontology approach of COIN is: 
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where ni is the number of unique values that the ith modifier has to represent all 
contexts, m is the number of modifiers in the light-weight ontology.   

While the formula appears to be n2, it is fundamentally different from the approach 
that supplies comprehensive conversions between each pair of contexts. The supplied 
conversions in COIN are component conversions, which are much simpler than the 
comprehensive conversions that consider the differences of all data elements in all 
aspects between two contexts. Furthermore, as shown below, the number of 
component conversions required can be significantly smaller.  

Let us use the online price comparison example to illustrate the scalability benefit 
of the approach. With the given scenario, we can model the 30 unique contexts using 
the three modifiers in the light-weight ontology shown in Fig. 1. Suppose the number 
of unique values of each modifier is as shown in Table 2.  

Table 2. Modifier values 

Modifier Unique values 
currency 10, corresponding to 10 different currencies 
scaleFactor 3, i.e., 1, 1000, 1 million 
kind 3, i.e., base, base+tax, base+tax+S&H 

In the worst case, the light-weight ontology approach needs 102 (i.e., 90+6+6) 
component conversions. But since the conversions for currency and scaleFactor 
modifiers are parameterizable, the actual number of component conversions needed is 
further reduced to 8, which is a significant improvement from the 870 composite 
conversions required when conversions are specified pair-wise between contexts.  

The number of component conversions can be further reduced when equational 
relationships exist between contexts with different values of a modifier. Symbolic 
equation solver techniques have been developed to exploit such relationships [3]. For 
example, consider the three definitions for price: (A) base price, (B) price with tax 
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included, and (C) price with tax and shipping & handling included. With known 
equational relationships among the three price definitions, and two component 
conversions:  

 

(1) from base_price to base_price+tax (i.e., A to B) and  
(2) from base_price+tax to base_price + tax + shipping & handling (i.e., B to C) 
 

the symbolic equation solver can compute the other four conversions automatically (A 
to C and the three inverses). This technique further reduces the number of component 
conversions needed for a modifier from ni(ni-1) to (ni-1).  

In many cases, the component conversion for a modifier can be parameterized, i.e., 
the component conversion can be applied to convert for any given pair of modifier 
values. In this case, we only need to supply one component conversion for the 
modifier, regardless of the number of unique values that the modifier may have. The 
exchange rate function given earlier is such an example; with it, we only need one 
component conversion for the currency modifier. 

We use Fig. 7 to illustrate the intuition of the scalability result.  
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Fig. 7. Intuition of scalability of COIN approach. Component conversions are provided along 
the modifier axes. Composite conversions between any cubes in the space can be automatically 
composed. 

The modifiers of each ontological concept span a context space within which the 
variants of the concept exist. Each modifier defines a dimension. In the figure, we 
show the space spanned by the three modifiers of price concept. The component 
conversions required by the COIN approach are defined along the axes of the 
modifiers. With the composition capability, the COIN approach can automatically 
generate all the conversions between units (e.g., the cubes in a three-dimensional 
space, as sown in Fig. 7) in the space using the component conversions along the 
dimensions. In contrast, the approaches that suffer from the n2 problem require the 
conversions between any two units in the space to be supplied. 
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4   Related Work and Discussion 

The most commonly cited definition for ontology is given in [6], where an ontology is 
a “formal explicit specification of a share conceptualization”. But as discussed in  
[7, 20], there is not a consensus definition for ontology, and there are many types of 
ontologies, some of which use formal logic to explicitly capture the intended 
meanings, and others use a set of mutually agreed terms to provide a shared 
taxonomy. In the latter case, the intended meanings are not explicitly captured in the 
ontology, rather, they are implicitly captured in the agreement. 

The term lightweight ontology has been used very loosely in the literature. 
Generally speaking, a lightweight ontology refers to a set of concepts organized in a 
hierarchy with is_a relationships. Data dictionaries, product catalogs, and topic maps 
are often considered to be lightweight ontologies. Opposite to lightweight ontologies 
are formal ontologies, which often use formal logic to specify constraints, 
relationships, and other rules that apply to the concepts [8, 14].  

The use of ontology and contexts in the COIN approach is quite unique. The 
ontology provides the necessary structure for context descriptions; and the context 
descriptions, in turn, disambiguate the high level concepts in the ontology. The 
structure provided by the ontology also facilitates the provision of component 
conversions and the automatic composition of composite conversions necessary to 
enable semantic interoperability among contexts. The resulting solution is scalable 
because it requires significantly less manually created conversions.  

There are other approaches that use ontology or contexts to enable interoperability 
among disparate data sources [21]. It is beyond the scope of this paper to provide a 
detailed comparison of these different approaches. We only make comments on a few 
approaches to further articulate the uniqueness of the COIN approach.  

Contexts can be described without using an ontology. For example, they can be 
described using a context logic [15]. The so described contexts lack the structure like 
the one provided by the COIN ontology. As a result, a large number of conversions 
(i.e., lifting rules) are needed to enable semantic interoperability. Below is an example 
conversion rule to convert price in c3 to price in c2 by reconciling the currency and 
scale factor differences; the rule is a logic implementation of the conversion 
represented by the straight dashed line in Fig. 4: 
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Suppose there n cubes in the contextual space shown in Fig. 7, the approach 
requires n(n-1) conversion rules like the above one to enable full interoperability.  

A recent effort tries to categorize lifting rules and attempts to use the patterns 
revealed to devise general lifting rules [9]. More work is needed to show how these 
patterns help with creation of general lifting rules and how these rules can be applied 
to reason with multiple contexts. 

Ontology is used in [16], where all types of data level and schema level 
heterogeneity in multiple data sources are explicitly represented using a semantic 
conflict resolution ontology (SCROL). For example, when acres and square meters 
are used in different sources to represent the area of a parcel of land, the SCROL 
ontology will explicitly represent the semantic difference by including two sub-
concepts of area: area_in_acre, and area_in_sq_meter. A SCROL ontology 
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resembles the one in Fig. 3. The ontology needs to be updated when a new kind of 
heterogeneity is introduced, e.g., “area in square miles”. No characterization on the 
number of conversions needed is given in the paper.  

Ontology is also used in [11] to provide structured context representation for 
purposes of data interoperability in a multi-database environment. However, we are 
not certain if their ontology would constitute a lightweight ontology. Nor does the 
paper provide an assessment about the number of conversions required. 

5   Conclusion 

The COIN lightweight ontology approach to semantic interoperability has several 
advantages. The ontology is simple, thus it is easy to create. The semantics of the 
concepts is described as context descriptions outside the ontology. It can be as a 
hybrid approach where are a lightweight ontology is annotated with a logic (i.e., F-
logic) that can be in a formal ontology approach. The use of modifiers to capture 
subtle meaning differences provides the structure for describing the subtleties, and 
facilitates the provision of component conversions, with which any composite 
conversions can be composed dynamically to reconcile the semantic differences 
between the sources and the receivers of data.  

For future research, we would like to explore the applicability of the COIN approach 
in other application domains, such as context-aware web services and peer-to-peer 
information sharing. Another promising area is to apply the context represent-tation and 
reasoning techniques to Semantic Web applications. Initial work has been done [19] to 
represent COIN ontology and contexts using Semantic Web languages, such as OWL 
and RuleML. The preliminary results indicate that COIN lightweight ontology, 
structured context descriptions, and component lifting rules can be represented using 
Semantic Web languages. Future work will adapt the reasoning algorithm and evaluate 
its performance at large scales that are typical on the Semantic Web. 
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Abstract. The growth and variety of distributed information sources imply a 
need to exchange and/or to share information extracted from various and 
heterogeneous databases. The cooperation of heterogeneous information 
systems requires advanced architectures able to solve conflicts coming from 
data heterogeneity (structural and semantic heterogeneity). To resolve semantic 
conflicts relatively to evolutive domain ontologies following databases 
evolution according to the dialogue between agents, taking care of scalability 
issues, we propose a multi-agent system. These interaction protocols allowing 
ontologies evolution are currently implemented by using Java and the JADE 
(Java Agent DEvelopment framework) platform. 

Keywords: Cooperation of heterogeneous information systems, Ontology 
elicitation from databases, Ontology evolution.  

1   Introduction 

The growth and diversity of automated information systems in organizations make the 
cooperation of information from heterogeneous databases [1], [2] and/or knowledge 
bases necessary. Every cooperative architecture has to face heterogeneity problems: 
technical heterogeneity (refers to various operating systems and platforms), syntactic 
(concerns the diversity of choices regarding data models and query languages) and 
application heterogeneities. This heterogeneity refers to schema, structural (like 
generalization/specialization conflict) and semantic heterogeneities.  

In order to achieve semantic interoperability the meaning of the exchanged 
information must be understood across the different systems. Semantic heterogeneity 
is information sources dependent: semantic conflicts arise when two contexts do not 
use the same interpretation of the information. Semantic conflicts are classified as 
follows: 
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− Synonymy conflicts (two entities semantically similar could have two different 
names)  

− Homonymy conflicts (two entities semantically different could have similar 
names) 

− Confounding conflicts (two attributes could be represented by different values or 
precisions) 

− Scaling conflicts (two attributes semantically similar could be represented by 
different units). 
 

Since a few years, the use of ontologies to extract implicit knowledge is a research-
intensive approach to overcome semantic heterogeneity difficulties in the context of 
cooperation of heterogeneous information sources. 

From an other point of view an agent-based solution seems well-adapted to solve 
semantic heterogeneity problems. In a multi-agent system, it is natural to deal with 
heterogeneities and conflicts: agents communicate by interaction and negotiation 
protocols to treat these conflicts.  

In our proposal, cooperation is achieved by means of an abstract descriptive layer 
supporting advanced reconciliation processes and a multi-agent system. The metadata 
involves descriptive data objects and links constituting a knowledge base (ontology) 
rich enough to describe: various data models, and constraints, syntactic expressions of 
local available data, semantic links between local data depending on various 
application contexts. The knowledge base is integrated in a global project based on a 
multi-agent approach for heterogeneous information sources cooperation. 

Because metadata are distributed in the cooperating agents we have several 
ontologies but as they share a common description, our approach could be qualified 
‘hybrid ontology approach’ [3]. 

In first, we have briefly presented the context and the second point reminds some 
related works. In a third point, agent ontologies are defined. The fourth point focuses 
on the evolution of the agent ontologies with the interaction protocols during the 
semantic conflicts resolution. Finally, we conclude and expose some perspectives. 

2   Related Works 

Numerous projects, based on information brokering have partially dealt with the 
semantic conflicts solving. These systems use advanced technologies such as 
information mediation, agent technology or semantic representation based on 
ontologies, metadata or contexts [4]. For instance, whereas recent works emphasize 
the need for adaptive ontologies following data source evolutions [5], [6], projects 
often utilize global [7], [8], [9] and non scalable ontologies. The SIMS [7] model of 
the application domain offers a hierarchical terminological knowledge base. Each 
information source is related to one global ontology. INFOMASTER [8] also use 
single ontology approach. InfoSleuth [10] captures developments such as agent 
technology, domain ontologies and brokerage to support interoperation of data and 
services in a dynamic and open environment. InfoSleuth emphasizes on ontologies 
and brokers. Ontologies give a uniform and declarative description of semantic 
information and an ontology agent provides an overall view of ontologies. Specialized 
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broker agents semantically match information needs in order to route requests to the 
relevant resources. The InfoSleuth architecture consists of a set of  collaborating 
agents communicating by the query language KQML. Users  express queries over 
specified ontologies via applet-based user interfaces. KIF (Knowledge Interchange 
Format) and SQL are used to represent queries over ontologies. Queries are routed by 
mediation and brokerage to specialized agents for data retrieval from distributed 
sources and for integration [10]. But the exact description of ontologies integration is 
not proposed. 

In OBSERVER [11] the semantics of one information source is described by one 
separate ontology. It is not mentioned that the different ontologies share a common 
vocabulary. To compare the different ontologies, mapping rules are needed. In 
practice, to define inter-ontology mappings is not trivial.  

SCROL [12] proposes a common ontology which specifies consensual vocabulary. 
The authors argue that a common ontology and the use of a semantic data model 
provide a complete agreement within the application domains. 

COIN project [13], [14] uses a lightweight ontology coupled with powerfull 
algorithms to realise context mediation. 

The approach chosen in PICSEL project [15] is to define an information server as a 
knowledge-based mediator (called domain ontology) in which the language CARIN is 
used as the core logical formalism to describe both the domain of applications and the 
contents of the relevant information sources. 

Most recent projects propose an architecture of multi-agent system based on 
evolutive ontology in a context of e-commerce as [16]. The DASMAS project [17] 
presents a dialogue framework-based for resolving semantic interoperability in multi- 
agent systems. The approach is characterized by: several multi-agent systems with 
real world heterogeneous ontologies, the resolution of semantic differences at run-
time through an adapted protocol and the use of WordNet lexicon in the resolution 
process. An ontology is associated to one multi-agent system and WordNet permits to 
find semantically similar concepts in the heterogeneous ontologies. 

To address the problem of ontology evolution, research projects propose to build 
different versions of an ontology. 

The problems of versioning and evolution in ontologies is significantly different 
with those in the relational databases [18], [19], [20]. The authors [20] define 
ontology versioning and evolution as ‘the ability to manage ontology changes and 
their effects by creating and maintaining different variants of the ontology’. 

In ontology evolution and versioning, two techniques exist : the first keeps track of 
changes in a new version or compares ontologies and computes differences or 
mappings between them. The second proposes automatic techniques based on 
heuristics comparisons to find similarities and differences between the different 
versions. 

The OntoView system [21] helps a user to manage changes in ontologies and keeps 
the ontology versions. It compares the versions of ontologies and highlights the 
differences. It also allows the users to specify the conceptual relations between the 
different versions of concepts. 

In [22], the researchers propose a general framework for ontology evolution that 
allows tools supporting different evolution tasks to share change information and 
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leverage change information obtained by other external tools. A structural comparison 
of ontology versions is also proposed. 

SHOE [23] does not keep track of changes from one version to another. SHOE 
maintains each version of the ontology as a separate web page. The ontology designer 
copies the original ontology file, assigns it a new version number, and adds or 
removes elements as needed. 

In [24] through the notion of evolution strategy, the users guide the ontology 
evolution. They can control and customize the evolution process. [25] keeps track of 
different versions of an ontology and offers the possibility to allow branching and 
merging operations. Protegé [26] keeps track of, and records, ontology changes within 
the ontology itself. It also compares versions of the same ontology. 

On the market, Software AG [27] emerges and has developed an XML integration 
solution allowing the integration of data sources as databases, XML-files and Web 
Services. More recently, the ‘Information Integrator’ [28] proposes a single and 
coherent view of disparate information sources by using a common ontology. This 
domain ontology so-called ‘business ontology’ reinterprets the data described in the 
local data-source ontologies. This reinterpretation is a way to represent complex 
knowledge interrelating these data. This reengineering process of the data source 
contents cannot be done automatically. 

Scalability (the complexity of creation and maintaining the interoperation services 
should not increase exponentially with the number of participating local information 
sources) and extensibility (the ability to incorporate local information system changes 
without having adverse effects on other parts of the larger system) are not really 
treated in the case of multi-domain approaches. 

Therefore, cooperative architectures with a multi-domain approach have 
difficulties to deal with scalability and extensibility. Thus, they do not deal with 
adaptative ontologies.  

So, we present a proposition for semantic conflict resolution that integrates domain 
ontologies evolution. 

3   Agent Ontologies 

This work is involved in the ACSIS (Agents for the Cooperation of Secure 
Information System) project [29], [30], [31]. 

In our proposal actual information sources cooperation is based on agents 
interactions. Each local source is represented by one or several agents and the set of 
agents constitutes a multi-agent system. The scope of distributed artificial intelligence  
brings techniques to implement multi-agent architectures able to dynamically face the 
various emerging problems of information systems cooperation. The reasons for 
modelling a system using multiple cognitive agents are various, they range from agent 
cognitive capabilities to multi-agent dynamic features [32], [33]: 

− Agents are autonomous, thus they can define their own internal goals and plans, 
− they are able to deal with high level interactions through domain independent 

communication messages, 
− a multi-agent architecture can dynamically evolve according to the problem to 

solve and even during the problem resolution, 
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− agents can detect changes in their environment, modify their behaviour and update 
their internal knowledge base describing the environment, 

− they are able to cooperatively solve problems (in particular knowledge-intensive 
ones like semantic conflict resolution) through interactions and negotiation 
protocols, 

− agents allow the construction of open and scalable architectures (easy addition or 
removal of data sources). 

ACSIS architecture aims at resolving technical, syntactic, application (structural 
and semantic) heterogeneities that appear during the cooperative processes. Our 
architecture [29] comprises several levels to treat these different types of 
heterogeneities: 

− The technical heterogeneity between information sources is performed by using a 
CORBA (Common Object Request Broker Architecture) middleware. 

− The syntactic heterogeneity is resolved by Data Descriptive Objects (cf. paragraph 
3.2) ensuring the homogenization of local data or knowledge bases.  

− The structural and semantic heterogeneity is resolved during query processing by 
using multi-agent system and interaction protocols. 

Scalable domain ontologies are used to represent the agents’ knowledge corpus. 
Each agent owns its ontology. The agents and their ontologies are described as 
follows.  

3.1   The Agent Model 

An agent comprises several units (ontology unit constituted by Data Descriptive 
Objects and links between these objects), acquaintances (list of closed known agents), 
reasoning, communication, behaviour.  

The defined multi-agent system is composed of different types of agents (see 
Fig. 1).  

The Wrapper Agent (WA) ensures the participation of local data to the cooperative 
processes. Each WA is linked to a domain from a local database and DDOs (Data 
Descriptive Objects) and intra-base links form its ontology.  

The Information Agent (IA) structures the exchange between WAs during the 
processing of global queries and semantic conflict resolution. Its ontology is 
composed of the semantics links at the global level (inter-bases links). Each IA 
groups WAs according to semantic characteristics. An IA accesses to at least one, and 
potentially many information sources, and is able to collate and manipulate 
information extracted from these sources in order to answer the users and other IAs.  

Each IA is a multi-domain agent. Its ontology is formed by the inter-bases links. 
The Interface Agent insures intermediation between the user (expert or user role) 

and the other agents: 

− The User Agent manages the query, validates the results and asks the re-execution 
of the query if the results are not correct. 

− the domain Expert Agent defines some intra-base links, chooses the database type 
(relational/object) and gives a representative name of the domain. 
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Fig. 1. The different agents 

Agents exchange information by interaction protocols to solve semantic conflicts 
and to manage the evolution of domain ontologies. 

3.2   Scalable Domain Ontologies 

Models describing ontologies come from Distributed Artificial Intelligence, 
Knowledge representation or Databases [34]. Two different directions are envisaged:  

− the first is Distributed Artificial Intelligence oriented and proposes descriptive 
logic with inference tools 

− the second is Database-oriented and presents extended conceptual models so as to 
represent all the informations. 

We will adopt the ontology definition in a database/knowledge sharing approach. 
Nevertheless, we integrate some inference rules. Ontology is an explicit, partial 
specification of a conceptualization [35]. A conceptualization could be a set of 
concepts, relations, objects and constraints defining the domain semantic model. An 
ontology can be defined as a specific vocabulary and relationships used to described 
certain aspects of reality and a set of explicit assumptions regarding the intended 
meaning of the words vocabulary [36]. 

Recently, other definitions are used in the context of oriented mediation-
cooperation projects. Mena gave the following precise definition [37]: 
‘ontology is a description of the concepts and relationships that can exist for an agent 
or a community of agents. This definition is consistent with the usage of ontology as 
set-of-concept-definitions, but more general. And it is certainly a different sense of 
word than its use in philosophy. Ontology is a set of terms of interest in a particular 
information domain and the relationships among them’. 

In our approach, the ontology of each agent contains Data Descriptive Objects 
(DDO) and links between these objects [29]. The DDOs contain the description of 
data from local information sources as well as the access primitives to this data. Local 
information entities (relation, relation attribute, primary key, object type, object 
attribute…) are described so that each information source involving the cooperation 
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process is represented by a set of DDOs. The relation/object DDOs describe a class or 
a relation. There is no difference between relationship or entity in our modeling 
process, each concept is a relation DDO. The attribute DDOs include object attributes 
(it could be object attribute or reference object attribute that stores a pointer on an 
object) and relation attributes (it could be primary key, foreign key or relation 
attribute). 

The links connect DDOs, according to schematic, structural or semantic 
characteristics. 

Schematic Links between these DDOs are automatically extracted. The figure 2 
presents the relations: firm (id firm, name), office worker (id, firstname, wage, id 
firm). 

The dependence links allow connecting the attribute DDOs to a relation/object 
DDO. 

The reference links allow to connect a reference DDO and a refereed DDO. 
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Fig. 2. Reference and dependence links between DDOs 

Structural Links (generalization, specialization) are automatically extracted in the 
case of object approach or defined by a domain expert in the case of relational 
approach. 

Semantic Links connect two DDOs, according to their semantic characteristics. The 
links are defined either by a domain expert or are automatically created during the 
query processing. 

Synonymy Links describe a similar sense between two DDOs with different name 
(for example between employee DDO and office worker DDO). 

Non Synonymy Links describe a different sense between two DDOs with different 
names. 

Similarity Links describe a similar sense between two DDOs with same name.  
Homonymy Links describe a different sense between two DDOs with same name 

(name DDO and name DDO if name is the attribute of project and name is the 
attribute of employee (see Fig. 3)).  

Scale Links describe a same scale between DDOs which have a same unit 
(employee wage DDO and director wage DDO with Dollar unit).  
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Fig. 3. Ontology example 

Different Scale Links specify a unit existence between two DDOs with same name 
(employee and director wage DDOs with Dollar unit because there are US and 
Canadian dollar). 

Conflict semantic resolution is performed by the use of links and DDOs and by the 
new links detection during the query processing. The user must validate these 
detected links. Therefore, these synonymy, similarity and different scale links could 
be temporary links (detected by the system and have to be validated), permanent 
links (created by an expert, or validated) or user links (link inserted by the user). Non 
synonymy, homonymy and scale links are permanent links. An intra-base link 
connects two DDOs extracted from the same database; an inter-bases link connects 
two DDOs extracted from two different databases. 

DDOs hierarchy along with these local semantic links forms an ontology. 

4   Interaction Protocols and Ontologies Evolutions 

The interactions between agents are managed by a set of rules that forms interaction 
protocols dedicated to conflict resolution.  

In ACSIS project, interactions reuse the FIPA protocols [38]. The conflict 
resolution is performed in a dynamic way during the insertion of a new information 
source and the global query processing. The conflicts are solved relatively to the link 
exploitation. The interaction protocols allow the domain ontologies to evolve with the 
automatic detection of new links. When the detected links are validated, a semantic 
inference process also allows the ontologies evolution. 

In [39], an ontology is used to describe interaction protocols. Thanks to the global 
ontology, the agents can dynamically adapt their behavior. In ACSIS project, the 
interaction protocols cannot be changed because only the ontologies encapsulated in 
the agents evolve, not the agents. These latter transfer the informations according to 
predefined interaction protocols. 
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4.1   Insertion of a New Information Source 

The registration step begins with the creation of a WA (a Wrapper Agent is created 
for one database) and continues with the attachment to an IA (Information Agent). 

Creation Step of a WA 
The DDO hierarchy with the extracted links is encapsulated in a WA. Once created, 
each WA can automatically detect temporary intra-base similarity links relatively 
equivalence based on the DDO's name (for example, director.wage (dollar) and 
employee.wage (dollar)). If a unit is specified in the attribute DDOs, some scale 
difference links are created. For the scale, we cannot detect equivalence with the 
name of the unit because wage (dollar) and wage (dollar) could not be a scale link (for 
example, it could be US dollar or Canadian dollar). Temporary similarity and 
different scale links are created if there are not existing homonymy and scale links. 

Some similarity and scale links between attribute DDOs could be created in a 
permanent mode if specialization/ generalization links exist between the respective 
relation DDOs.  

The following example (see Fig. 3) presents the relations: project (name), 
employee (id, name, wage), director (id, name, wage). The director relation DDO 
specializes employee relation DDO. So, there are a permanent similarity and scale 
link between the wage attribute DDO (depending of director relation DDO) and the 
wage attribute DDO (depending of employee relation DDO). The expert creates only 
some intra-base links which cannot be automatically created, for example the 
homonymy links. He also specifies the database domains. 

Registration of a WA to an IA 
The Registration protocol allows the registration of a WA (when a new source 
integrates the system) and therefore increases the WA network attached to an 
Information Agent. Each WA dynamically queries to be joined to the IAs that are 
previously created. The IA, whose domain is semantically the closest, integrates this 
WA into its acquaintance network (the Contract Net Protocol allows to choose the 
WA). The IA establishes a comparison between the network's WA so as to create 
temporary inter-bases similarity and different scale links (the Fipa Query Protocol is 
used). 

When a new WA is recorded into an IA, the different DDOs are sent to the other 
WAs in order to discover new temporary inter-bases links. In our example, five 
similarity links are created:  

− firm name DDO respectively with employee name, with director name, with 
project name, 

− office worker wage respectively with employee wage DDO, with director wage 
DDO. 

Two different scale links are added: office worker wage respectively with 
employee wage DDO, with director wage DDO. 
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4.2   The Global Query Processing Protocol 

The global query processing protocol organizes the negotiation phases between the 
IAs and the WAs to resolve semantic conflicts. There are different phases in the 
global query processing protocol (principally based on the Fipa Query Protocol): 

Transmission of the Query from the User Agent to IAs and WAs 
Each Information Agent looks for its inter-bases semantic links and broadcasts the 
query to the WAs of its acquaintance network all the while taking into account its 
inter-bases links.  

Semantic evaluation 
Each WA accepts or refuses the query request relatively on knowledge of query 
elements by using synonymy intra-base links and homonymy links.  

Links of others IAs 
When the WAs of the acquaintance network don’t have sufficient knowledge to 
answer the query, the IA asks other IAs inter-bases synonymy links to modify the 
concepts of the query. The modified query is send again to its connected WAs. 
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Fig. 4. Selection of the refereed DDO with reference and dependence links 

Creation of New Temporary Intra-base Synonymy Links 
During this semantic evaluation, each WA can create temporary intra-base synonymy 
through some schematic links (like the reference links and dependence links) 
according to the following method:  
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− Item 1. For each query element, if none DDO corresponds, there is a selection of 
the refereed DDO relatively dependence and reference links, from detected DDO 
(see Fig. 4). 

− Item 2. If there is no attribute specified in the query, or if the specified attribute is 
equivalent to the attribute DDO depending of the object/relation DDO, a temporary 
intra-base synonymy link is created between the reference DDO and a virtual 
object/relation DDO (a virtual DDO is a DDO only created for the representation 
of this temporary link). If the attribute specified in the query matches with the 
attribute DDO depending of the reference DDO, a temporary intra-base similarity 
link is created between this attribute DDO and the attribute element of the query. 

In the following example (see Fig. 5), the database contains the relations: project 
(name), work (id, name) and employee (id). 

Select * from office worker 
where project.name=‘acsis’

:relation DDO

name :project

:primary key
DDO

name :name
type :string
length :10

:relation DDO

name:employee

:primary key
DDO

name : id
type : string
longueur :10

: relation DDO 

name : work

:primary key
DDO

name  : name
type : string
length :10

:primary key
DDO

name : id
type : string
length :10
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Fig. 5. Creation of a temporary intra-base synonymy link 

The query is "select * from office worker where project.name='acsis'". The office 
worker DDO does not exist in the WA’s ontology. Relatively to the reference link 
between project (existing element in the ontology) and work and, work and employee, 
the refereed employee DDO is selected. There is no attribute relevant to office worker 
indicated in the query (respect of item 2). Therefore, a temporary intra-base 
synonymy link is created between the employee DDO and an office worker virtual 
DDO. The WA replies with these temporary intra-base synonymy links and with the 
DDO names equivalent to the query elements. 

Creation of New Temporary Inter-bases Synonymy Links 
When the WAs send some temporary intra-base synonymy links to their IA, the IA 
could create some temporary inter-bases synonymy links if there is the same term in 
an other WA of its acquaintance network. For example, the office worker DDO exists 
in another WA. A temporary inter-bases synonymy link is created between the office 
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worker DDO and the employee DDO. When there is a creation of synonymy and 
similarity link, a corresponding link to validate is instantiated, and passed from the IA 
or WA to the User Agent. It allows simplifying the queries execution on the local 
databases. A sub-query comprises only the global query parts on which the IA has the 
relevant knowledge and replaces term by using temporary inter-bases synonymy 
links. The IAs then contact the WAs which contain knowledge in order to perform the 
sub-query.  

Retrieving the Results 
Each WA can accept or refuse (agree/refuse performative) to process the query. If it 
agrees, it queries its local database using temporary and permanent semantic intra-
base links and structural links, retrieves data coming from local sources via DDOs 
and sends them to its IA (inform or failure performative). 

The global query processing is presented (see Fig. 6) by using Agent UML [40]. 
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Fig. 6. Protocol for global query processing (in Agent UML) 

For example, if the query is "select * from employee where 
employee.name='smith'", with the specialization/generalization link, the following 
query "select * from director where director.name='smith'" is also executed. When 
they retrieves the results, each WA (at the local level) and each IA (at the global 
level) uses intra-base or inter-bases different scale links to translate data in the 
expected format (if conversion functions are detected in the DDOs). 
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Validation of Results 
Each IA restructures the responses obtained from its WAs and sends them to the user 
agent. At the end of the protocol, the ontologies are updated when new semantic links 
are discovered and after the validation of these links by the User Agent. If synonymy, 
similarity and different scale links are validated, they become permanent links : if 
they are not validated, they become non synonymy, homonymy and scale links. The 
User Agent can insert synonymy links if the results are not correct. Some creation of 
synonymy links could be performed by the WA or the IA: 

− An inter-base synonymy link (user type) is created if the two involved terms are 
situated in the two different WA. 

− An intra-base synonymy link (user type) is created if the two involved terms are 
situated in the same WA. An intra-base synonymy link is created using a virtual 
DDO as soon as a term is in a WA.  

 

Sub-queries (WA or IA level) are re-executed in several cases (see Fig. 7):  

− when intra-base or inter-bases links are not validated, the sub-queries are re-
executed at the WA level or the IA level, 

− when synonymy links are inserted by the user, only the modified parts of the query 
are re-executed towards the WA, the results being preserved at the level of each IA, 

− when conversion functions are inserted by the user (they are encapsulated within 
the validated links towards IAs which transmit to the WAs), the corresponding 
sub-query must be again re-executed. 
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Fig. 7. Links validation process 

4.3   Database Update 

Different problems arise with the ontology modifications: Incompatibility of instances 
and incompatibility of the related applications. In ACSIS, they are managed by the 
database administrator in respect of the local sources autonomy. 
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Further, we think to use ontology versioning to capture the evolution proposed by 
the user as long as it is not a sound and validated evolution.  

Different modifications can be performed on a database. Incompatibilities of linked 
ontologies are managed as follows. 

 

 Addition Deletion Modification 
Relation/Class Adding of the 

corresponding DDO 
Deletion of the DDO 
and updating of the 
concerned links  

- name  
- attribute adding 
- attribute deletion 

Attribute Adding of the 
corresponding DDO 

Deletion of the DDO 
and updating of the 
concerned links 

- name  

- type (modification of 
the DDO) 
- unit  

 

− Addition :  
The creation of similarity and different scale intra-base links is processed as for the 
insertion of a new database as previously explained. The new DDOs are compared 
with the other DDOs in order to create new links. 

− Deletion :  
The intra-base links are deleted but not the inter-bases links because they constitute 
global knowledge. 

− Modification of attribute, relation or class name: 
     Modification of the concerned DDO, creation of a virtual DDO in order to store the  
     old name and creation of a synonymy link between the two DDOs. 
− Modification of attribute unit :  
     Modification of the DDO and updating of the scale and different scale intra-base  
      links. 

 
The different modifications are sent to the IA and the latter sends them to its WAs. 
The creation of new links is therefore performed in a dynamic way during the 

insertion of a new information source and the global query processing. It also 
performed after the User Agent validation when links become permanent. When a 
link becomes permanent, each WA or IA could automatically create new semantic 
links in respect of semantic inferences rules [31]. Semantic inferences also contribute 
to perform the ontology evolution. 

5   Conclusion 

Semantic conflict resolution is processed by using ontology during two steps: the 
insertion of a new information sources and the global queries resolution. The real 
dialogue between agents managed by a protocol, enables agents’ ontologies to evolve. 
The scalability of the system comes from the new link detection (scalable domain 
ontology) and the ability of following the evolution of local databases (relatively to 
the DDOs level). The cooperative architecture with the interaction protocols is 
implemented by using Java and the JADE platform (Java Agent DEvelopment 
framework) [41][42]. JADE is a software framework to develop agent-based 
applications in compliance with the FIPA specifications for interoperable intelligent 
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multi-agent systems and provides a library of FIPA interaction protocols ready to be 
used. JADE provides a support for content language and ontologies allowing the 
developers manipulating information within their agents as Java objects without  
the need of any extra work. The JADE support performs the conversion between the 
information represented as a string or a sequence of bytes at ACL Message level and 
Information represented as Java objects (easy to manipulate) at agent level. In our 
platform, this support has been useful to pass links and queries objects. Currently the 
prototype runs. We have implemented the main protocols and processed some 
queries. We have proposed a solution based on an extended conceptual model 
integrating some principles coming from Distributed Artificial Intelligence like 
interaction protocols between agents and inference rules on the detected links. It is a 
mixed approach combining advantage from descriptive logics and an extended 
conceptual model. In our future works, we wish to continue to integrate tools of 
reasoning in the model of evolutive ontologies proposed in this article. 

The concept of version must be developed on the ontology to capture the 
modifications performed by the user. The ontology must be not directly modified as 
long as the modifications have not been completely validated. The user’s modification 
becomes public after its validation by a super user or an administrator. Our ontology 
versions will keep track of the different modifications (add, update, delete) in order to 
better follow the evolution and to perform the impacts on the other ontologies after 
the version validation. 
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Abstract. With the emergence of enterprise-wide information systems, 
ontologies have become by definition a valuable aid for efficient database 
schema modeling and integration, in addition to their use in other disciplines 
such as the semantic web and natural language processing. This paper presents 
another important utilization of ontologies in database schemas: schema 
evolution. Specifically, our research concentrates on a new three-layered 
approach for schema evolution.  These three layers are 1) a schema repository, 
2) a domain ontology called a requirements ontology, and 3) a multi-
representation strategy to enable powerful change management. This a priori 
approach for schema evolution, in contrast with existing a posteriori solutions, 
can be employed for any data model and for both 1) design from scratch and 
evolution and 2) redesign and evolution of the database. The paper focuses on 
the two main foundations of this approach, the requirements ontology and the 
multi-representation strategy which is based on a stamping mechanism. 

Keywords: Requirements ontology, multi-representation strategy, Schema 
Evolution. 

1   Introduction 

With the emergence of enterprise-wide information systems, the number of ontologies 
in semantic-driven data access and processing is increasing. For example, ontologies 
are crucial in semantic web and natural language processing. In addition to that, 
ontologies have become a valuable aid for efficient database schemas modeling and 
integration – they provide richer semantics than studying the schemas alone. This 
work investigates another area in which ontologies have a colossal potential of 
utilization and which is related to information systems: database schema evolution.  
Database schema evolution has an active research agenda due to its importance, cost 
to users, and the complexity of the problem. Many solutions have been proposed and 
much progress has been made in data structures, rules, constraints, schemata models 
and meta-models. We build on this work and advocate a novel approach for schema 
evolution: we predict potential changes, and integrate them into the schema for future 
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use. Since predicting the exact changes that will occur over time is impossible, we 
detect the changes that are plausible to be carried out on a schema and are important 
for the database users. Our intent is to move one step towards developing multi-
disciplinary and a priori approaches for database schema evolution, in contrast with 
existing a posteriori solutions that track changes instead of planning for them.  

Our approach relies on the use of: 1) a schema repository that stores and provides 
to the system a set of relevant schemas and their relative versions, if any.  In our case, 
the repository contains approximately 4000 schemas, 2) a requirements ontology that 
contains the changes that are plausible to be carried out on a database schema and are 
important for the database users and 3) a multi-representation strategy to aid powerful 
change management.  

1.1   Problem Description 

Having understood the overall motivation of schema evolution and our predictive 
approach, we are now ready to explain schema evolution in more detail.  Intuitively, 
schema evolution means the ability of a schema to undergo changes over time without 
any loss of the extant data. However, besides managing the changes to the schema, 
applications and data linked to it need to be adapted as well. Changes to the schema 
are divided into three categories depending on their impact on the schema [1]: 

1- Additive    : additional semantic knowledge needs to be designed on the schema 
2- Subtractive: semantic knowledge needs to be removed from the schema  
3-Descriptive: the same semantic knowledge needs to be designed on the schema in a 
different manner.  
 

In addition to the categories of changes that could occur on the schema over time, we 
need to consider the general problem of database schema evolution from two different 
sides, depending on the kind of solution we choose: 1) From the a posteriori solution 
perspective, 2) From the a priori solution perspective 
 

1) From the a posteriori solution perspective 
Historically, from this perspective, to resolve the schema evolution problem, one 
should take into consideration two major criteria, which are respectively [2]: a) the 
semantics of change, i.e. the understanding of the change that has taken place because 
of several reasons such as the new perceptions of the real world over time and 
technology development and performance strategies and b) the propagation of this 
change on the schema immediately or at a deferred time fixed by the database 
administrator. There is a posterior order in which the change must be received after by 
the schema and its components. Schema evolution is resolved either by versioning the 
original schema, by modifying it using restricted evolution primitives, by adopting 
views on the top of it or by refining it by accommodating the exceptional information 
in the database [3]. All these solutions react to changes that could occur on the 
schema. However, they are insufficient solutions, especially when the schema is 
facing complex changes. For instance, the modification approach simply modifies the 
schema to adhere to the new requirements.  This changing of the schema without 
saving past information may lead to a loss of data. The versioning approach replicates 
the schema to save both the old and the new version. This replication avoids data loss;  
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however, it creates complex navigation through the different generated versions and 
slows down the DBMS (Database Management System). The combination solution – 
a solution that incorporates both existing approaches (e.g. the work presented in [4]) – 
avoids the above problems. Unfortunately, it also is characterized by the complexity 
and the onerous mechanisms to be executed.  Hence, a new approach must be used; 
the a priori solution. 
 

2) From a priori solution perspective 
To resolve the problem of schema evolution from this perspective, one must clearly 
take into account these imperative criteria: 

• Understand the current database structure and content 
• Identify the dependencies among the current database schema, data and 

applications because the impact of one element on another needs to be 
known and accounted for before making changes on the database  

• Detect potential changes that are plausible to occur on the schema   
• Understand the potential future changes and new applications and identify 

their impacts on the current schema   
• Consider the two possible cases, related to the database, that are respectively: 

1) the case in which the initial database schema is not created yet and 2) the 
case in which the initial schema has already been created; however, it needs 
to be redesigned. 

 

Compared to the previous perspective, in the a priori solution, the order of 
applicability of the changes has been modified. The changes are incorporated before 
they really occur. There is what is called an a priori order in which the potential 
change must be received before by the schema and its components. 

1.2   Contribution and Outline of the Paper  

The contributions of this paper are as follows: 
 

1. Presentation of the predictive approach for database schema evolution, 
including the characteristics and the differences with other existing 
approaches for schema evolution 

2. Presentation of the requirements ontology, including its role, construction 
and structure 

3. Presentation of the multi-representation strategy with the two defined 
mechanisms views and stamping 

4. Presentation of examples showing how the predictive approach works and 
outlining the role of both the requirements ontology and the multi-
representation strategy. 

 

The paper comprises five main sections. Section 2 presents the articulation of the 
predictive approach. Section 3 presents 1) the role of the requirements ontology in the 
predictive approach for evolution and 2) the structure and how it is built from the 
schema repository. Section 4 describes the multi-representation strategy and how it is 
used for schema evolution. Section 5 presents a motivating example to demonstrate 
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the feasibility of the proposed approach. Section 6 is a conclusion and a summary of 
the important points dealt with in this paper and introduces perspectives on the future 
work. 

2   Predictive Approach for Schema Evolution 

The predictive approach for schema evolution is an innovative approach for schema 
evolution. In this section, we consider some of the specific characteristics that justify 
the decision of the selection of such approach.  We begin by listing them, and then 
consider each one in more depth in turn: 

• A priori solution (a) 
• Predictive analytic solution (b) 
• Proactive schema solution (c) 
• Three different stages solution (d)   
• Data modeling methodology independent solution (e) 
• Collecting data solution (f)   

 
a) A priori Approach  
In contrast with existing posterior solutions for evolution such as modification or 
versioning approaches that support the evolution at evolution time, the Predictive 
Approach prepares the database schema for future use before the changes occur. The 
basic motivations that influence our choice of a methodology that plans in advance for 
evolution are: 1) the problem of schema evolution is better understood now because 
researchers have already provided an overview of its causes and consequences, 
therefore it is now time to turn towards complex and multi-disciplinary approaches 2) 
the posteriori approaches have not been sufficient solutions for schema evolution even 
if they are considered to be standard solutions and finally 3) the a priori  approach is 
absolutely the best alternative: the key to evolution problem lies in thinking of the 
evolution from the beginning of the lifecycle of the database.  
 

b) Predictive analytic solution  
A predictive solution generally refers to data mining techniques such as classification 
to predict the value of a particular attribute based on the value of other attributes. The 
attribute to be predicted is called the dependent variable while the attributes used for 
making prediction are called the independent variables [5]. Our predictive solution 1) 
uses data-mining techniques such as Classification Based on Association Rules, and 
2) in particular, it explicitly includes a requirement analysis phase.  In the 
requirements analysis phase, besides assessing the current user requirements via the 
database user’s feedback and comments, additional requirements called potential 
future requirements are investigated using the current requirements of several 
databases. These new requirements, representing potential future needs that might 
emerge during the lifecycle of the database in the future are inspected inside a schema 
repository. In this case, the current requirements are representing the independent 
variables while the future requirements are the dependent variables. 
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c) Proactive schema solution 
Our solution takes actions to handle changes before the evolution of the database 
schema. In other words, this approach generates a scalable database schema called the 
predicted schema at design time that contains three different layers which are 
respectively: 1) Operational Layer, 2) Existing but not Operational Layer, 3) Not 
Existing but Planned Layer. In these three layers, the schema potential structural 
changes are hold at the present time for its use in the evolution time.  
 

d) Three different stages solution 
The approach holds one additional stage which is novel in database modeling design; 
in contrast existing approaches enclose just two stages: (1) design time and (2) 
evolution time. The additional third stage of the predictive approach, the before 
design time stage, is an important stage. It paves the way for the design time stage by 
conducting the preparation of the accurate data for the schema evolution from the 
schema repository.  

 

e) Data modeling methodology independent solution 
Because of the diversity of the data models used to represent a database schema, we 
have chosen to develop an approach that can be adopted by any modeling 
methodology.  

 

f) Collecting data solution 
Our solution uses the direct collection of information from different external sources 
and a consultation of schemas of existing databases. 
 

There are multiple advantages of this approach. Indeed, it contributes significantly in 
the ability of the database schema to 1) accommodate the future changes, and 2) 
facilitate the work of designers and help them save time and money on the evolution 
of their databases. Consequently, all these qualities have a positive impact on both 
database users and the organisms that employ such pre-emptive approaches. 

3   Requirements Ontology for Schema Evolution 

The requirements ontology is a domain ontology in which requirements are expressed 
with concepts (terms), relationships and constraints. It allows the system to relate the 
current schema to possible future needs.  For example, if a database designer needs to 
create a database for meetings, the requirements ontology associated to this database 
contains concepts, relationships and constraints related to meeting domain such as 
MEETING, PARTICIPANT, ROOM and  AGENDA concepts and IS, HAS relationship 
types and so on. This is illustrated in figure 1.  The requirements ontology gains its 
insights into the possible future needs of the schema through various methods; its 
construction is described further in Section 3.2.   

The requirements ontology looks like a global entity relationship model; however, 
it is richer than an entity relationship model because 1) it contains more semantics 
related to a specific domain. 2) the instances of the requirements ontology are divided 
into two categories: in addition to the instances representing the current requirements, 
the database designer needs to choose the concepts that might correspond to potential 
future requirements. Consequently, several design suggestions about the entities with 
their relationships are taken from the requirements ontology and are provided to the 
database designers. 
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Fig. 1. Presentation of a part of requirements ontology of meeting domain 

Since the system is designed to be flexible enough for many situations, and it is 
impossible to predict with 100% accuracy which requirements will be desired, the 
system includes three strategies to the database designers for the selection of those 
requirements ontology concepts and their corresponding relationships. These 
strategies are: 
 

1) Blind selection: all the concepts of the requirements ontology belonging to future 
requirements are selected without exception. 
 

2) Case based selection:  This selection mechanism allows the inclusion of concepts 
that are particularly likely to be needed in the future. In particular, the concepts that 
satisfy one of the following cases are selected. This is a way to find out the important 
concepts that have already pre-established links among them 
Case 2.a: a concept belonging to future requirements which is situated between two 
concepts of current requirements. This is illustrated in figure 2. 

 

Fig. 2. Case of future concept between current concepts 

Case 2.b:  a concept that is a final node (part i) or belongs to the end of a branch in the 
requirements ontology (part ii) is selected. This is illustrated in figure 3 and 4. 

- (i) A final node  
A final node is a concept in the requirements ontology which has only one 

relationship with another concept of the requirements ontology. For example in figure 3,  
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the concept Ref_Order_Status, belonging to the category future requirements, 
has only one relationship in the whole requirements ontology which is with the 
concept Order that is its direct ancestor. An ancestor is a node from which starts the 
selection of the nodes of the requirements ontology. 

Order Ref_Order_Status

Has
Current requirements
Future requirements

Order_items
Descriptive

 

Fig. 3. Case of a concept as a final node 

- (ii) An end of a branch 
A branch is a sequence of concepts linked together with one or several links 

however one concept of this succession has only one relationship with another 
concept of the sequence in the whole requirements ontology. This is illustrated in 
figure 4 in which the concept Product_description is a concept of the sequence that 
has only one relationship with the concept Product. 

 

Fig. 4. Case of concepts as an end of a branch 

Case 2.c: the concepts that form a clique of a graph in the requirements ontology are 
selected. This is illustrated in figure 5. 

 

Fig. 5. Case of a clique graph    
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3) Change perspective selection: the concepts are selected according to their change 
perspectives. A change perspective is a special graph that shows the potential changes 
of each concept belonging to the ontology. It is built using several data mining 
techniques such as classical association rules and classification based on association 
rules[5]. The requirements ontology contains three different types of change 
perspectives with specific roles which are respectively: informative, descriptive and 
predictive.  

To illustrate this point, we consider the following example that represents the 
modelling of a simple case of scientific meeting in which the requirement is to 
determine the people participating to a conference. At the ontological level, for the 
concept “Meeting”, the change perspectives, illustrated in figure 6, show the potential 
changes related to it and the other concepts that might be implied at the evolution 
time. 

 

Fig. 6. Change perspectives for the concept meeting 

3.1   Requirements Ontology Role 

There are two ways in which the requirements ontology is used in the predictive 
approach for evolution. These two primary functions are 1) design and evolution and 
2) redesign and evolution.   

1) Design and evolution  
In case the initial database schema is not created yet, the ontology fulfils several 
tasks, as presented in [6] and [7]: it generates a design “from” scratch using the 
defined terms and relationships as a representative model of the domain. It suggests 
possible missing entities and relationships in the case just a part or selected parts of it 
is/are considered by the database designer. The requirements ontology offers 
additional features; it includes terms, relationships and constraints that might 
represent potential future requirements and identifies in advance their dependencies 
with terms and relationships representing current requirements. Consequently, it 
facilitates the work of database designer when changes should be made on the 
schema.   
 

2) Redesign and evolution  
In case the initial schema has already been created and now needs to be redesigned, 
then the ontology fulfils other important tasks as presented in [6] and [7]. For  
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example, it is used to check for missing entities or relationships or inconsistencies in 
an existing or partial design because the data model produced in the redesign process, 
called a reverse engineered (RE) data model [8], cannot be considered as a conceptual 
schema. The RE model converts all the logical schema tables to entities without 
making distinction between data tables and the other tables of the schema whose 
function is to join tables. This model is not a logical schema because some important 
schema information is lost during the conversion process, such as in the case of 
foreign keys.  

In the following, we portray the three categories of changes presented previously, 
which are 1) the additive evolution, 2) the subtractive evolution and 3) the descriptive 
evolution and how the requirements ontology proceeds in each case. 
 

1) Additive Evolution 
There are two types of additive changes:  simple and complex.  For the simple 
additive change, the database administrator can use the functionalities of the DBMS 
(Database Management Systems) to add for example a table or an attribute. In 
contrast, for the complex additive change adding an element perturbs the dependency 
between existing elements and causes damaging effects on existing applications. 
Consequently, the logical schema is in inconsistent state and the associated 
applications do not work anymore.  

In Section 5.1, we illustrate through a detailed example why complex additive 
evolution must be handled specially and show how the predictive approach offers a 
better solution than existing posteriori solutions. 
 
2) Subtractive Evolution 
Subtractive evolution occurs when elements in the schema are no longer required. 
However, deleting an element on existing schema is not always obvious, leading to 
two types of subtractive changes: simple and complex. For the simple subtractive 
change, the database administrator can use the functionalities of the DBMS (Database 
Management Systems) to delete the no longer required elements. Whereas for the 
complex subtractive evolution, the DBMS does not offer any functions for it and the 
changes have direct and critical consequences on the schema and applications.  

In Section 5.2, we illustrate through a detailed example why complex subtractive 
evolution must be handled specially and show how the predictive approach offers a 
better solution than existing posteriori solutions. 

 

3) Descriptive Evolution  
Descriptive evolution is made for convenience or efficiency. It is the hardest to handle 
in traditional database systems because it implies more than one risky modification 
operation on the schema. The consequences of the changes on the schema are also 
critical, such as data loss. 

In Section 5.3, we illustrate through an example why complex descriptive 
evolution must be handled specially and show how the predictive approach offers a 
better solution than existing posteriori solutions. The lack of space in this paper does 
not allow us to explain in detail the example. 
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3.2   Requirements Ontology Construction 

The requirements ontology is developed using both a schema repository in which the 
main concepts are extracted and WordNet ontology [9] for extracting their 
corresponding synonyms and antonyms. The requirements ontology consists of two 
kinds of partitions, the ones representing current requirements called Current sub-
domains and the ones corresponding to potential future requirements called Future 
sub-domains.  

The process of the requirements ontology creation is iterative and complex some 
how compared to existing approaches.  It consists on four main phases: knowledge 
acquisition, Data mining and informal conceptualisation, Evaluation for Refinement 
or Revision and Formal Conceptualization  

1 -Knowledge acquisition and pre-processing: consists of schemas collection and 
preparation   

2 -Data mining algorithms and informal conceptualization: in which concepts and 
relationships are extracted from schema data sets repository in an unsupervised way 
and used as output for the informal conceptualization of the ontology from scratch. 

3 -Evaluation for Refinement or Revision:  means to test the validity of the 
concepts belonging to the taxonomy and to decide to keep or reject them using 
qualitative and quantitative methods. 

4 -Formal Conceptualization:  consists in building formally the requirements 
ontology using OWL and description logic.   

These phases are not very developed in this paper because they necessitate a 
considerable space. 

The schema repository contains many different schemas that model a specific 
domain. These schemas and their related versions may be of different types, such as 
ER, relational, object and object-relational schemas. The XML databases can be 
included as well as the ontological schemas expressed in OWL technology [10]. The 
schema repository has a dual role in building the requirements ontology [11]: (1) the 
repository serves in the data-mining process to identify and analyze trends on 
different kinds of schemas collected. (2) The repository contains selected concepts 
and relationships to be included in the requirements ontology. 

3.3   Requirements Ontology Structure  

The structure of this ontology includes: a) Concepts, b) Relationships, c) constraints 
d) Current versus Future Labels, and described in more detail below: 
 

a) Concepts (Terms) Description:  
Each term has one or several attributes with one or several values and one or several 
synonyms and antonyms.  
 
b) Relationships Description   
Relations are between two concepts. There are six kinds of relations: (1) hierarchic – 
identified by the label “kind-of”, which expresses the specialization of one concept  
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regarding another and inherits attributes from this super concept; (2) composition – 
identified by the label “has”, which expresses that a concept is a part of another 
concept; (3) descriptive – when it is possible to define several types of relations and is 
identified by a verb form; (4) reflexive – allows self-loops in which an arc whose 
endpoints are the same concept.  

We consider the previous example of meeting domain to show some relationships 
among concepts: kind-of (meeting, conference) is a hierarchic relationship, has 
(meeting, utterances) is a composition relationship, lives (Person, Country), originates 
(Person, Country) and represents (Person, Country) are descriptive relationships and 
finally invites (Person, Person) is a reflexive relationship. 

 

c) Constraints 
Similar to the work presented in [6] and [7], we use four types of constraints which 
are respectively: 1) pre-requisite constraint, 2) mutually inclusive constraint, 3) 
mutual exclusive constraint and 4) temporal constraint. 
 

d) Current versus future labels  
The requirements ontology is a labeled graph: special labels are added and exploited 
in order to indicate whether a concept, respectively a relationship belongs to current 
or future requirements. A concept respectively, a relationship belongs to either current 
requirements or future requirements but not to both at the same time. This is main 
structure characteristic that distinguishes the requirements ontology from the 
remaining domain ontologies.   
 

e) Change perspectives 

4   Multi-representation Strategy for the Predictive Approach 

In the predictive approach, the predicted schema is semi-automatically generated from 
the requirements ontology. At the conceptual level, the predicted schema is 
represented either 1) with the multi-representation strategy or 2) without the 
representation strategy. In this paper, we stress the use of the multi-representation 
strategy as follows:  

4.1   Definition of the Multi-representation Strategy  

The multi-representation strategy is well-known in the object-modeling field, as 
well as in the spatial databases. In [12], the multi-representation strategy based on 
stamping in geographic databases is presented. On the other hand, in the object 
modeling, the multi-representation is called semantic object views.  It allows to 
make the object visible for certain applications and to hide it to others using the 
views mechanism. In this work, we focus on the multi-presentation based on 
stamping.  

4.2   The Predicted Schema at the Conceptual Level 

This strategy consists in using stamps at the conceptual level in order to have different 
representations for the modeling of the same universe of discourse i.e. the modeling  
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of the same real-world. A stamp S is defined as a vector S=<s1, s2, Sn> where each s¡  
represents the ¡ representation of the real-world. For example, in the following simple 
example, we have defined a stamp S =<S1, S2> in which, according to the element S1 
of the stamp S, the conceptual schema contains the entities E1, E1’ and the 
relationships A1’. However, according to the element S2 of the stamp S, the 
conceptual schema contains the entities E1 and E2 and one relationship A1. This is 
illustrated in figure 7. 

 

Fig. 7. A Simple Example using Multi-Representation Based on Stamping 

The stamping mechanism is not a simple mechanism as it may appear. For 
example, in the case of successive evolutions on the database schema, the stamp 
components and the constraints on the stamps should be studied carefully in order to 
avoid any potential contradiction among them.  

5   Motivating Examples 

In this section, we present examples of schema changes to illustrate how the 
predictive approach for evolution discussed in this paper works. The examples portray 
the three categories of changes presented previously, which are 1) the additive 
evolution, 2) the subtractive evolution and 3) the descriptive evolution. 

5.1   Additive Evolution 

A case of complex additive change is illustrated in the side 1 of the figure 8 in which 
the addition of the entity E’1 creates problems for existing applications. At the time 
T= t0, we have a schema with two entities E1 and E2 and an association between 
them A1 as presented in figure 8. At the time T=t1, the evolution time, a schema has 
been modified and complex additive changes occur:  an Entity E’1 and two 
associations A’1 and A2 are added. The association A1 between the entities E1 and 
E2 is consequently deleted to avoid a redundancy which is itself a problem and 
information on schema is lost.  The way to resolve such a problem with the predictive 
consists in: 

1 - At the ontological level: the database designer examines whether the requirements 
ontology reveals the existence of concepts/relationships that belong to the category of 
future requirements and represent potential simple and complex additive changes.   
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2- At the conceptual level, the database designer incorporates these concepts/ 
relationships using the multi- representation strategy based on stamping mechanism. 
The resulted conceptual schema represents consequently two universes of discourse 
(real-world). This is illustrated in the side 2 of the figure 8. 

 

Fig. 8. Additive Evolution on an Example with both Classical and Predictive approaches 
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Fig. 9. An example of travel with both classical and predictive approaches 
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A case of complex and simple additive changes on the schema is illustrated in 
figure 9 where we consider the example that represents the modeling of a simple case  
of travel, in which the requirement is to determine the clients traveling around the 
world. In a classical design approach, the initial conceptual schema S0 contains four 
entities which are Client, Travel, City and Transport Company. However, in the 
predictive approach, the schema S1 that has been proposed by the requirements 
ontology contains six entities. The two additional entities Insurance and Carrier 
represent two potential future changes on the schema that belong to simple and 
complex additive changes respectively.  

5.2   Subtractive Evolution 

A case of complex subtractive change is illustrated in the side 1 of the figure 10 in 
which the deletion of the entity E2 creates problems for the existing applications that 
need such entity. The whole process to resolve such problem is illustrated in the side 
2 of the figure 10.                                                                                                       
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Fig. 10. Presentation of subtractive evolution on a simple example with both Classical and 
Predictive approaches  

5.3   Descriptive Evolution  

This is illustrated in the side 1 of the figure 11. Similarly to the previous, we follow 
the same steps for the resolution of this problem according to the predictive approach. 
The whole process is illustrated in the side 2 of the figure 11. 
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Fig. 11. Presentation of Descriptive evolution on a simple example with both Classical and 
Predictive approaches  

6   Conclusion and Future Work 

In this paper, we have presented another area where ontologies have a huge potential 
benefit to information systems: database schema evolution. The approach we propose 
belongs to a new tendency called the tendency of a priori approaches. It implies the 
investigation of potential future requirements besides the current requirements during 
the standard requirements analysis phase of schema design or redesign and their 
inclusion into the conceptual schema. Those requirements are determined with the 
help of a domain ontology called “a requirements ontology” using data mining 
techniques and schema repository. The advantages of this approach include: 1) new 
perspectives in the way requirements are inspected and integrated into the schema, 2) 
two categories of database designers were taken into consideration, the category of 
those who design a schema from scratch and the category of those who redesign the 
schema from existing schemas using reverse engineering and dependency graphs, 3) 
the reinforcement of the conceptual schemas, 4) and finally the compatibility of the 
approach with any data model.  

Prediction in schema evolution means to envision the potential changes that could 
occur over time on the schema. However, prediction does not work all the time; i.e. it 
is not always possible to detect the changes that are plausible to occur on a database 
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schema and are important for the database users because of the complex perception of 
the real world. Therefore, the predictive approach operates according to three main 
scenarios which are respectively: 

 

1- Scenario 1: Avoid redesign because better designed schema ready for evolution 
The first scenario involves the case in which the predicted schema of the database does 
not need to be evolved or in other words, the schema has already evolved because the 
required changes are already built-in and the database designer or the database 
administrator does not have to adjust the schema for them at the evolution time. 

 
2- Scenario 2: Redesign slightly because already planned so easier 
The second scenario involves the case in which the predicted schema needs to evolve. 
However this evolution is straightforward to realize because the required changes 
have already been planned and therefore need just to be added in the database schema. 
Consequently, in the evolution time, the schema is redesigned slightly.  

 

3- Scenario 3: Redesign from scratch  
The third scenario concerns the case in which the anticipated changes are not accurate 
for the evolution of the database scheme because somehow the potential detected 
future changes are not appropriate and sufficient. Consequently, in the evolution time, 
the database schema needs absolutely to be redesigned from scratch in order to 
include all the adequate changes that have occurred on it over time. This scenario 
raises the problem that prediction is not feasible each time and it therefore implies 1) 
Maybe more work since the requirements ontology needs to be updated because it 
does not contain the needed information. 2) However, Updating the requirements 
ontology may help for other future schemas redesign and evolution. For example, a 
case in which the government legislation means radical changes in the way tax is paid 
on investment interest involves changes to the investment file. 

Another problem of this approach is that the effectiveness of this approach for 
evolution is limited by the amount and the quality of the knowledge accumulated 
inside the requirements ontology. Therefore, we have taken into consideration the 
problem of the evolution of the requirements ontology as well. For this purpose, we 
have adopted the multi-representation strategy based on stamping mechanism. In [13] 
a multi-representation solution for ontologies is presented. This solution develops a 
language based on description logic (DL) [14] to implement the stamping mechanism. 
Unfortunately, this new approach is not without problems.  

Future work will proceed in both theoretical and practical directions. The theory 
will focus on extending the idea behind the requirements ontology and the stamping 
mechanism. The practical work consists in testing this approach significantly through 
several case studies with the use of a prototype that is under development.  
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Abstract. OLAP (On-Line Analytical Processing) operations, such as roll-up or 
drill-down, depend on data warehouse dimension hierarchies in order to 
aggregate information at different levels of detail and support the decision-
making process required by final users. This is why it is crucial to capture 
adequate hierarchies in the requirement analysis stage. However, operational 
data could not be enough for supplying information to construct every level of 
these hierarchies. In this paper, we apply knowledge given by relationships 
among concepts from WordNet to overcome this problem. Therefore, richer 
dimension hierarchies will be specified in the data warehouse, and OLAP tools 
will be able to show proper information to improve decision-making process. 
Decision makers thus will be able to achieve their information needs for 
analysis. Finally, we will show the benefits of our approach by providing a case 
study in which a poor hierarchy is enriched with new levels of aggregation. 

Keywords: Data warehouse, dimension hierarchies, WordNet. 

1   Introduction 

According to Inmon’s definition [8], a data warehouse (DW) is "a subject ori- 
ented, integrated, non-volatile, and time variant collection of data in support  
of management’s decision". It is widely accepted that DWs are based on 
multidimensional (MD) modeling which structures information into facts and 
dimensions. A fact contains useful measures of a business process (sales, deliveries, 
etc.), whereas a dimension represents the context for analyzing a fact (product, 
customer, time, etc.) by means of hierarchically organized dimension attributes [26]. 
These dimension hierarchies are of paramount importance in OLAP (On-Line 
Analytical Processing) tools. These tools are commonly used to support the decision-
making process, by allowing users to analyze the large amount of data stored in the 
DW. In this analysis, operations such as roll-up or drill-down are used to aggregate or 
disaggregate data, depending on levels of aggregation which must be explicitly 
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specified by organizing the members of a given dimension into hierarchies 
[2,9,12,15,21,22,26]. Thus, hierarchies must be properly defined for analyzing data 
stored in DW according to user requirements in order to improve the decision-making 
process. In fact, the richer a hierarchy is defined, the more meaningful users’ queries 
will be answered and the better decisions will be made. 

Lately, we have been defining an approach [12,30], based on the UML (Unified 
Modeling Language) [20] and the i* notation [31] for the development of DWs from 
user requirements and data sources. Within this approach, once user requirements are 
correctly captured, we obtain the corresponding MD conceptual schema (i.e. required 
MD schema). The required MD schema is then conformed to the operational sources 
that will populate the DW by using a set of multidimensional normal forms in order to 
assure certain desirable properties, such as faithfulness, completeness or avoidance of 
redundancies [32]. Nevertheless, in this conformation process, we found that the 
required MD schema could not be totally specified as many MD elements do not have 
their counterpart on the operational data sources and only a reduced version of this 
schema was obtained: the conformed MD schema [41]. One of the major constraints 
in this conformed MD schema is the fact that the levels of aggregation of the 
dimension hierarchies are restricted by the available data sources, and then the 
required levels of aggregation could not be specified in the schema. 

 

Fig. 1. Using WordNet to enrich the conformed MD schema 

Consequently, data sources may not be enough to obtain required hierarchies and 
DW users can only analyze data by using conformed hierarchies1. Therefore, the final 
DW will not completely satisfy final user requirements. Thus, in this paper we present 
an approach to enrich conformed dimension hierarchies by adding new levels of 
aggregation in order to obtain the required hierarchies, even although available data 
sources are not enough to provide the required MD elements. DW users will thus 
satisfy their analysis needs. To accomplish this, we propose the use of semantic 
relations among concepts provided by WordNet [16]. The initial hypothesis is that 
both DWs and WordNet present hierarchical structures: dimension hierarchies in 

                                                           
1 We regard required hierarchies to be those obtained from end user requirements (i.e. they are 

part of the required MD schema); while conformed hierarchies are those that conform to the 
data provided by operational sources (i.e. they are part of the conformed MD schema). 
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DWs show the relationships between value domains from different dimension 
attributes [1,2,12,15,21,22,23] (set by levels of aggregation), while WordNet presents 
hierarchical semantic relations between concepts, such as hypernymy/hyponymy or 
meronymy/holonymy [16,17]. Therefore, our approach is based on using these 
WordNet relations to add new levels to conformed dimension hierarchies in order to 
obtain the required hierarchies. Figure 1 summarizes this scenario. 

The benefit of our proposal is clear: using knowledge provided by WordNet to 
ameliorate the development of DWs, since the quality of dimension hierarchies is 
improved by means of adding new hierarchy aggregation levels, which allow DW 
users to achieve their analysis information needs and, in this way, to better support the 
decision-making process. 

The remainder of this paper is structured as follows. Section 2 presents an overview 
of works about the development of DWs and the use of WordNet and ontologies in the 
development of information systems. Section 3 describes our approach for modeling 
DWs and their dimension hierarchies based on UML. Section 4 overviews WordNet. 
Section 5 defines our approach for enriching dimension hierarchies using WordNet. In 
section 6, a case study is presented. Finally, we point out our conclusions and sketch 
some future work in Section 7. 

2   Related Work 

It is widely accepted that the development of DWs must be based on the conceptual 
modeling of the main MD properties. Therefore, in this section, we focus on briefly 
describing the most relevant approaches for the conceptual modeling of DWs and, 
more generally, the use of ontologies and WordNet in conceptual modeling. 

2.1   Conceptual Modeling of DWs 

Various approaches for the conceptual design of DW systems have been proposed in 
the last few years. In this section, we present a brief discussion about some of the 
most well-known approaches.  

In [11], different case studies of data marts (DM) are presented. The DW design is 
based on the use of the star schema and its different variations (snowflake and fact 
constellation). Moreover, the BUS matrix architecture is proposed to build a corporate 
DW by integrating the design of several DMs. Although we consider this work as a 
fundamental reference in the MD field, we miss a formal approach for dealing, in an 
integrated way, with both user requirements and data sources in the development of 
DWs. 

In [37], authors propose the Dimensional-Fact Model (DFM), a particular notation 
for the DW conceptual design. Moreover, they also propose how to derive a DW 
schema from the data sources described by Entity-Relationship (ER) schemas. From 
our point of view, this proposal assumes that ER schemas contain all the required 
information for build a DW which provides data in a suitable way for achieving user 
analysis needs. Unfortunately, some important terms and data could be missing from 
the data sources and some external sources could be needed. 
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In [38], authors present the Multidimensional Model, a logical model for OLAP 
systems, and show how it can be used in the design of MD databases. Authors also 
propose a general design method, aimed at building a MD schema starting from an 
operational database described by an ER schema. Although the design steps are 
described in a logic and coherent way, the DW design is only based on the operational 
data sources, what we consider insufficient because some user analysis needs could 
not be accomplished unless other data sources are used. 

In [39], the building of star schemas (and its different variations) from the 
conceptual schemas of the operational data sources is proposed. Once again, it is 
highly supposed that the required information for constructing the DW comes only 
from the available data sources. 

Every of the above-described approaches present the following main drawback: 
they consider the available data sources enough for specifying a DW which provides 
proper information to allows decision makers to achieve their analysis needs. 
However, decision makers could improve their analysis needs if other sources are 
considered. This must be taken into account in early stages of the development 
process, i.e. conceptual modeling of the DWs.  

2.2   Ontologies and WordNet in Conceptual Modeling 

Traditionally, WordNet has been used to improve natural language processing 
systems. It has supported several kinds of tasks, such as information retrieval and 
extraction, document structuring and categorization, etc. A comprehensive review of 
applications related to WordNet can be found in [19]. 

On the other hand, ontologies have been successfully used for conceptual 
modeling. In [33], authors apply named entity recognition and ontologies to database 
prototyping process and sample data. 

In [34], authors present a framework for supporting the generation and analysis of 
conceptual database designs through the use of ontologies. This paper demonstrates 
how the use of domain knowledge stored in the form of an ontology can be useful to 
assist in the generation of more complete and consistent database designs, both for 
design generation and design verification. 

In [35], authors present experiments designed to assess the extent to which a 
natural language processing tool improves the quality of conceptual models, 
specifically object-oriented ones. 

The work presented in [36] proposes a UML profile for ontology representation 
and conceptual modeling. Authors point out that a conceptual modeling language 
should be founded on formal upper-level ontologies to be able to model reality. They 
show the relevance of the tools proposed by applying them to solve recurrent 
problems in the practice of conceptual modeling. 

Within multidimensional environments, ontologies have been specially used for 
data integration. The work presented in [10] uses linguistic knowledge provided by 
ontologies during the process of data cleaning in multisource information systems to 
solve terminological conflicts between data instances. In this work, authors advocate 
the use of WordNet. In [27], authors present an ontology-based method to find 
suitable data from different sources and to semantically integrate them into one OLAP 
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cube. A review of the use of ontologies for data integration can be found in [29]. For a 
more general review, we refer reader to [3]. 

Finally, we would like to point out that although several works [2,9,15] have paid 
attention to the importance of dimension hierarchies in DWs, to the best of our 
knowledge, our contribution is the first work about employing ontologies for 
improving the design of dimension hierarchies in DWs. 

3   Using UML for Data Warehouse Modeling 

Multidimensional databases, OLAP applications, and DWs provide companies with 
many years of historical information for the decision-making process. It is widely 
accepted that these systems are based on multidimensional (MD) modeling which 
structures information into facts and dimensions. A fact contains interesting measures 
(fact attributes) of a business process (sales, deliveries, etc.), whereas a dimension 
represents the context for analyzing a fact (product, customer, time, etc.) by means of 
dimension attributes hierarchically organized. A set of fact measures is based on a set 
of dimensions that determine the granularity adopted for representing facts. 

In this paper, we follow our object oriented approach for the development of 
conceptual models of DWs [12]. This approach has been specified by means of a 
UML profile that contains the necessary stereotypes in order to successfully represent 
the MD properties in a UML class diagram [20]. In this diagram, the information is 
clearly organized into facts and dimensions represented by means of fact classes and 
dimension classes respectively (see Table 1).  

Fact classes are defined as composite classes in shared aggregation relationships of 
n dimension classes. The minimum cardinality in the role of the dimension classes is 
1 to indicate that all the facts must always be related to all the dimensions. The 
relations “many-to-many” between a fact and a specific dimension are specified by 
means of the cardinality 1...* in the role of the corresponding dimension class. A fact 
is composed of measures or fact attributes. By default, all measures in the fact class 
are considered to be additive. For non-additive measures, additive rules are defined as 
constraints and are included in the fact class. Furthermore, derived measures can also 
be explicitly represented (indicated by /) and their derivation rules are placed between 
braces near the fact class. 

Regarding dimensions, there are two kinds of hierarchies: classification 
hierarchies, represented by association relationships, and categorization hierarchies, 
represented by means of generalization relationships. 

Classification hierarchies defined on certain dimension attributes are crucial 
because the subsequent data analysis will be addressed by these hierarchies. A 
dimension attribute may also be aggregated (related) to more than one hierarchy, and 
therefore multiple classification hierarchies and alternative path hierarchies are also 
relevant. For this reason, a common way of representing and considering dimensions 
with their classification hierarchies is using Directed Acyclic Graphs (DAG). 
Nevertheless, classification hierarchies are not so simple in most of the cases. The 
concepts of “strictness” and “completeness” are important, not only for conceptual 
purposes, but also for further steps of MD modeling. “Strictness” means that an object 
of a lower level of hierarchy belongs to only one of a higher level, e.g. a city is only 
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related to one state. “Completeness” means that all members belong to one higher 
class object and that object consists only of those members. For example, suppose we 
say that the classification hierarchy between the state and the city levels is 
“complete”. In this case, a state is formed by all cities recorded and all the cities that 
form the state are recorded. In our MD conceptual model, each level of a 
classification hierarchy is specified by a base class (see Table 1). An association of 
base classes specifies the relationship between two levels of a classification hierarchy. 
The only prerequisite is that these classes must define a DAG rooted in the dimension 
class. 

Lastly, categorization hierarchies are useful when OLAP scenarios become very 
large as the number of dimensions increases significantly. This fact may lead to 
extremely sparse dimensions and data cubes. In this way, there are attributes that are 
normally valid for all elements within a dimension while others are only valid for a 
subset of elements. For example, attributes number of passengers and number of 
airbags would only be valid for cars and will be “null” for vans. In our MD 
conceptual model, categorization hierarchies are considered by means of the 
generalization/specialization relationships of UML. 

Table 1. Class stereotypes of our UML profile to be used in this paper 

Stereotype Description Icon 

Fact class Represent facts consisting of measures  

Dimension class Represent dimensions consisting of hierarchy levels  

Base class Represent dimension hierarchy levels and their attributes  
 
Once the structure of the MD model has been defined, final users require fulfilling 

a set of initial analysis requirements as a starting point for the subsequent analysis 
phase. From these initial requirements, users can apply a set of operations (OLAP 
operations) to the MD view of data for further analysis. OLAP operations related to 
dimension hierarchies are usually as following: roll-up (increasing the level of 
aggregation) and drill-down (decreasing the level of aggregation) along one or more 
classification hierarchies. 

4   WordNet 

WordNet [16] is a linguistic resource that provides lexical information about words 
and their senses. Furthermore, WordNet also provides a variety of semantic relations 
which are defined between concepts [17], so it can be used like an ontology. Syntactic 
category of each word determines its potential semantic relationships. In this paper, 
we focus on noun semantic relations (since dimension attributes are usually nouns) 
namely: 
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• Synonymy: it is a symmetric relation between word forms. It is a similar 
relationship: synonymy indicates that two concepts have a similar meaning. 
For example: pipe and tube are synonyms. 

• Antonymy: it is also a symmetric relation between word forms. It is an 
opposite relationship: antonymy indicates that two concepts have an opposite 
meaning. For example: hell and heaven are antonyms. 

• Hyponymy/Hypernymy: they represent transitive relations between concepts. 
It is a subtype/supertype relationship. Giving two concepts X and Y, it is 
expressed as X is-a-kind-of Y, where X is a more specific concept 
(hyponym) and Y is a more generic concept (hypernym). An example: cake 
is-a-kind-of baked goods. In Fig. 2, an example of a more comprehensive 
hypernym hierarchy is given: chocolate cake is-a-kind-of cake, which is-a-
kind-of baked goods, which is-a-kind-of food. 

• Meronymy/Holonymy: they are complex semantic relations, such as 
components parts, substantive parts, and member parts. They are whole-part 
relationships. Giving two concepts X and Y, it is expressed as X is-a-part-of 
Y, where X is a concept that represents a part (meronym) of whole concept 
Y (holonym). For example: wheel is-a-part-of car. 

 

Fig. 2. Hypernym hierarchy for chocolate cake 

These semantic relations allow us to organize concepts into hierarchical structures 
(an example of a hypernym hierarchy is shown in Fig. 2). In particular we are 
interested in hypernymy (“is-a-kind-of” or generalization) and meronymy (“is-a-part-
of” or aggregation) relations between nouns; since, they are the most useful 
relationships in a dimension hierarchy [1,2,12,15,22]. 

To sum up, in our approach, WordNet is used because it provides concepts from 
many domains, and it presents relations between these concepts which are easy to 
understand and use. Furthermore, it can be easily extended to other languages, apart 
from English, by means of EuroWordNet [28]. 

5   Using WordNet to Enrich Dimension Hierarchies 

Dimension hierarchies in DWs show the relationships between domains of  
values from different dimension attributes (set in levels of aggregation). As  
above-described, WordNet also presents hierarchy relationships between con- 
cepts, such as hypernymy/hyponymy and meronymy/holonymy. Thereby, we will use 
this hierarchical organization of WordNet to automatically complete dimension 
hierarchies. 
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We focus on the dimension hierarchy definition provided by [12], described in 
section 3. Since UML is used for designing a DW, hierarchies are modeled by using 
UML relationships. Particularly for classification hierarchies we use associations 
(including aggregations) between levels and generalizations for categoriza- 
tion hierarchies. For generalization we will use hypernymy/hyponymy relation- 
ship provided by WordNet. Association relationship from UML is more general,  
since it only specifies that two elements are connected. Thus, we will use 
hypernymy/hyponymy or meronymy/holonymy relationships from WordNet 
depending on the domain of dimension attributes: if an association is considered as an 
aggregation then we use meronymy/holonymy, else we use hypernymy/hyponymy.  
For example, in the case of the hierarchy city-state-country, we will use 
meronymy/holonymy relationship due to the fact that city is a part of state and state is 
a part of country (e.g. Boston is a part of Massachusetts and Massachusetts is a part of 
USA). However, if the hierarchy is product-family-class, hypernymy/hyponymy 
relationships will be used, because of every product is a kind of family and every 
family is a kind of class (e.g. cake is a kind of baked good and baked good is a kind of 
food). 

For the sake of clarity when explaining our proposal, from now on, we assume that 
only strict hierarchies are taken into account. So, non-strict hierarchies are not 
considered. It can be assumed because of WordNet restrictions regarding 
relationships, since there is usually only one hypernym for each word sense [4,16]. 

Our approach consists of grouping word senses whose hypernyms/meronyms  
are equal, into a new set of word senses. This new set corresponds to a level  
of a dimension hierarchy. Each set of senses is described by its common 
hypernym/meronym. In order to create another level in a hierarchy, grouping again 
into hypernym/meronym senses (by its common upper concept) is required until the 
needed level of aggregation is achieved. Before starting, word senses must be 
disambiguated to obtain the right sense for each one. For disambiguation we have 
based on specification marks WSD (Word Sense Disambiguation) algorithm from 
[18], since it offers good results when every word for disambiguating belongs to the 
same domain2.  

 

Fig. 3. Overview of our approach 

Following, we explain the main steps of our approach (an overview is shown in 
Fig. 3): 

 
Prerequisite 1. A dimension attribute (denoted as D) is chosen from a conformed 
hierarchy. The dimension hierarchy will be enriched starting from this attribute. 
                                                           
2 We assume that every possible value of a certain dimension attribute belongs to the same 

domain. For example, all possible values of the attribute city will be names of cities. 
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Prerequisite 2. A level of aggregation (called a) is specified. This is the number of 
aggregation levels required to properly analyze data from the DW. 

 

Prerequisite 3. Create a variable t. This variable increments its value when a new 
level of aggregation is created. It must be initialized: t=0.  
 

Step 1. Extract all values (without repeating any value) from chosen dimension 
attribute. These values are nouns and they constitute the input (or context) for 
specification marks WSD algorithm: 

W={w1, w2, ..., wn}; where wi denotes every value of the selected dimension  
attribute 

 

Step 2. For each word in W, we have to obtain its correct senses from WordNet using 
specification mark WSD. Here si represents the correct sense for context value wi. 

S={s1, s2, ..., sn}; where si is the sense of wi  
 

Step 3. For each sense in S, we obtain one hypernym/meronym (only the lowest one) 
as hi. 

Hsi={hi} ∀si∈S, hi is the lowest hypernym/meronym of si 

The set of every hypernym/meronym senses obtaining from every Hsi without 
repeating is also formed: 

H={h1, h2, ..., hn} 
 

Step 4. A new hierarchy level is created and every hypernym/meronym sense from 
Hsi is added as instance. 

 

Step 5. Take new input values as all hypernym/meronym senses: S=H. 
 

Stop condition. t=t+1. If the required level of aggregation is reached (t=a) or S has 
only one element (all input attributes already have a common hypernym/ meronym), 
then the maximum level of aggregation has been reached for these input values. 
Otherwise, go to step 3. 

In Fig. 3, every step of our approach is illustrated. From a conformed dimension 
hierarchy in a MD model which not accomplishes user requirements because it does 
not have enough levels of aggregation, a dimension attribute is chosen and all its 
values form the context for specification marks WSD algorithm in order to obtain 
right senses for each value of dimension attributes. Afterwards, iterations start to 
obtain hypernyms/meronyms of values, a new level of the dimension hierarchy is 
created, and values are mapped into this new level of the hierarchy. Iterations are 
repeated until the required dimension hierarchy, with every needed level of 
aggregation, is obtained. 

6   Case Study 

In this section, we will show the benefits of our approach by providing a little case 
study in which a conformed hierarchy is enriched with new levels of aggregation. Our 
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case study consists of a retail sales business composed of several grocery stores 
spread over several regions. In each store several products are sold. This business 
process deals with analyzing which products have been sold in which stores on what 
date. The store manager needs to further study these sales, analyzing them by means 
of several levels of aggregation (e.g. user needs to analyze the sales aggregating by 
classes of product), which must be specified in the required dimension hierarchy (see 
Fig. 4). However, only name of the product is available in the operational sources (see 
Table 2), so after the conformation process, the conformed hierarchy only consists of 
one level: product (see Fig. 5). 

 

Fig. 4. Required MD schema (according to user requirements) 

Conformed dimension hierarchies are shown in Fig. 5. We can see that product 
dimension has not enough levels to accomplish user requirements. Since user 
requirements are not achieved by this conformed hierarchy, we apply the approach 
above-described to introduce new levels in the dimension hierarchy and enrich it. 
Conformed hierarchy consists of an aggregation level, named product (see Fig. 5). 
However, decision makers need to aggregate data in three more levels (according to 
the required hierarchy in Fig. 4): a lower level called subtype, an intermediate level 
called type and a higher level called class (see figure 4). Three new levels have to be 
added to the conformed hierarchy in order to enrich it, thus obtaining the required 
one. We consider that the user knows the semantic of each level, so levels will be 
denoted as level 1, level 2, and level 3. 
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Fig. 5. Conformed MD schema 

Now, every step to obtain the required hierarchy from the conformed one is 
described: 

 

Prerequisite 1. Dimension attribute product is chosen (see Table 2). 
 

Prerequisite 2. Three new levels of aggregation are required, so a=3. 
 

Prerequisite 3. t=0. 

Table 2. Some of data stored in the operational data sources 

Quantity Product Date 
2 Bourbon 17/01/2002
3 Merlot 01/02/2002
2 Chardonnay 03/02/2002
2 Cabernet 10/01/2002
1 Scotch 09/02/2002

 
Step 1. Input values are the following: 

W={bourbon, merlot, chardonnay, cabernet, scotch} 
 

Step 2. For each word in the input, its correct senses using specification marks WSD 
are the following: 

S={s1, s2, s3, s4, s5}={bourbon#2, merlot#2, chardonnay#2, cabernet#1, scotch#1} 
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Step 3. Hypernyms for each sense of S are obtained from WordNet (only the lowest 
hypernym for each sense). Fig. 6 shows an example of hypernym path of the concept 
bourbon with sense #2. 

H bourbon#2={whisky#1}, Hmerlot#2={red wine#1}, 
Hchardonnay#2={white wine#1}, Hcabernet#1={red wine#1}, 

H scotch#2={whisky#1} 
H={whisky#1, red wine#1, white wine#1} 

 

Fig. 6. Hypernym path of the concept bourbon from our case study 

Step 4. Level 1 is added (see Table 3). 

Table 3. First created hierarchy level and its mapped values 

Product Level 1 
Bourbon Whisky 
Merlot Red wine 

Chardonnay White wine
Cabernet Red wine 
Scotch  Whisky 

 
Step 5. Definition of new values for S: 

S=H={whisky#1, red wine#1, white wine#1} 
 

Stop condition. t=1. t<a, then go to step 3. 
 

Step 3. Hypernyms for each sense of S are obtained: 

Hwhisky#1={liquor#1}, Hred wine#1={wine#1}, 
Hwhite wine#1={wine#1} 

H= {liquor#1, wine#1} 
 

Step 4. Level 2 is added (see Table 4). 
 

Step 5. S=H={liquor#1, wine#1}. 
 

Stop condition. t=2. t<a then go to step 3. 
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Step 3. Hypernyms for each sense of S are obtained  

Hliquor#1={alcohol#1}, Hwine#1={alcohol#1} 
H={alcohol#1} 

 

Step 4. Level 3 is added (see Table 5). 
 

Step 5. S=H={alcohol#1}. 
 

Stop condition. t=3=a then stop. 

Table 4. First and second levels created and its values 

Product Level 1 Level 2
Bourbon Whisky Liquor
Merlot Red wine Wine 

Chardonnay White wine Wine 
Cabernet Red wine Wine 
Scotch  Whisky Liquor

Table 5. Hierarchy levels created by our approach and its values 

Product Level 1 Level 2 Level 3
Bourbon Whisky Liquor Alcohol
Merlot Red wine Wine Alcohol

Chardonnay White wine Wine Alcohol
Cabernet Red wine Wine Alcohol
Scotch  Whisky Liquor Alcohol

 

 

Fig. 7. Instances before and after applying our approach 

After applying our approach, an enriched hierarchy is obtained (see Fig. 4 and 
Table 5) which accomplishes user requirements: analyzing quantity of product sold 
aggregating by several hierarchy levels (subtype, type, and class of product), despite 
only one level of aggregation (product) was available in the operational data sources. 
Then, our approach was applied starting with a conformed hierarchy (see Fig. 5 and 
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Table 2) only with one level of aggregation (product) and the required hierarchy has 
been obtained by adding the following aggregation levels: subtype, type, and class of 
product). This enriched hierarchy is shown in Fig. 4, while its instances can be both 
observed in Table 5 and Fig. 7. 
 

 

Fig. 8. An example of using WordNet in our overall proposal for the development of DWs 

Fig. 8 shows an example (based on our case study) about how WordNet is applied 
within our overall proposal for the development of DWs: a user requirement states 
that a quantity of sold product must be analyzed according to several aggregation 
levels (subtype, type, and class of product). Therefore, a hierarchy is specified 
according to this requirement (i.e. required hierarchy). However, only the name of the 
product is available from the data sources. Thus, when the required hierarchy is 
conformed to these sources, the resulting conformed hierarchy does not have enough 
aggregation levels to satisfy user needs. WordNet is then applied to enrich this 
conformed hierarchy and obtain the required hierarchy according to the above-
described approach. 

7   Conclusion and Future Work 

Dimension hierarchies are of paramount importance in OLAP tools to support the 
decision making process, since they allow the analysis of data at different levels of 
detail (i.e. levels of aggregation). Then, obtaining the required dimension hierarchies 
captured from decision makers in the requirement analysis stage is crucial for 
specifying a successful DW. However, when required hierarchies are conformed to 
operational sources, we found that these sources may not provide enough data to 
construct every level of required hierarchies, meaning that only conformed hierarchies 
can be obtained. Therefore, user requirements are not satisfied, as conformed 
hierarchies may not deliver the expected information to support the decision-making 
process. In this paper, we have proposed the application of WordNet to obtain the 
required hierarchies. The advantage of our proposal is clear: the enrichment of 
conformed hierarchies by adding new aggregation levels in order to satisfy the 
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required hierarchies. These required hierarchies allow DW users to satisfy their 
information analysis needs, since they better support the decision-making process. 

In spite of using WordNet, we have to point out that it presents several ontological 
problems [4] which must be overcome in a next future. For instance, WordNet does 
not have enough relations, such as attribution (“is-an-attribute-of”) [24], which could 
be used to enrich every level of the hierarchy by adding several possible attributes 
(i.e. for city, attributes like population or area could be added). Some kind of formal 
specification of WordNet (like OntoWordNet [5]) could be used to solve these 
ontological problems. 

Just as the work presented in [25], we can study a methodology for creating and 
managing domain ontologies to properly apply them in our approach. 

Finally, we can use WordNet within DWs systems to overcome dimension update 
problems [7] or to resolve integration problems [10] and inaccuracy problems 
regarding summarizability [6,40]. 
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Abstract. In this paper we propose a method for efficient management
of large spatial ontologies. Current spatial ontologies are usually repre-
sented using an ontology language, such as OWL and stored as OWL
files. However, we have observed some shortcomings using this approach
especially in the efficiency of spatial query processing. This fact moti-
vated the development of a hybrid approach that uses an R-tree as a
spatial index structure. In this way we are able to support efficient query
processing over large spatial ontologies, maintaining the benefits of on-
tological reasoning. We present a case study for emergency teams during
Search and Rescue (SaR) operations showing how an Ontology Data
Service (SHARE-ODS) can benefit from a spatial index. Performance
evaluation shows the superiority of our proposed technique compared to
the original approach. To the best of our knowledge, this is the first at-
tempt to address the problem of efficient management of large spatial
ontology bases.

Keywords: Spatial Databases, Ontologies, Knowledge Bases.

1 Introduction

The SHARE project1 develops a Push-To-Share (PTS) advanced mobile ser-
vice that provides communication support for emergency teams during Search
and Rescue (SaR) operations. SaR operations are conducted by fire-brigade,
rescue and medical units, operating under a complex unified command-and-
communications structure. The SHARE Ontology Data Service (SHARE-ODS)
[1], [2] which supports the PTS service, combines multimedia semantic modeling
and spatio-temporal modeling in a unified ontology. A model for the semantic
indexing of multimedia objects in the context of SaR processes and activities
is also proposed in [1], [2]. This model unifies the various aspects of a SaR
operation, while allowing the semantic cross-checking of possibly-unreliable in-
formation automatically extracted from multimedia objects.

Ontologies represent concepts, relations among them and instances. Com-
monly, an ontology consists of a relatively small conceptual part (TBox in
Description Logic terminology) and a much larger instance base (ABox in De-
scription Logic terminology), or a dense combination of concepts, relations and
1 http://www.ist-share.org/
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instances [3]. Like most ontologies, the SHARE ontology (TBox and ABox) is
stored as an external xml file (OWL-file) to disk. This approach, however, is
inefficient for very large spatial ontologies that require loading the entire OWL
file from disk into main memory for further processing.

In the context of non-spatial ontologies there have been approaches [4], [5] to
distinguish the ontological model from the actual instances, which make use of a
relational database system (RDBMS). In this way individual instances are stored
as tuples in the database, and as a consequence only the required instances are
read from the database and processed in memory. Despite the obvious gains
from this approach, in SHARE ODS, we have observed significance performance
problems in the spatial sub-ontology. This is due to the lack of efficient spatial
query processing. The most important reason is that relational storage modelling
is inefficient when dealing with space. Early attempts in this area focused on
creating spatial database models and query languages, as well as on devising
logic representations and algebras for reasoning about space. The emergence
of the Semantic Web vision and related technologies, such as ontologies and
semantic web services, has put Spatial Knowledge Representation under a whole
new perspective.

To illustrate the problem, consider a large spatial ontology base storing ob-
jects (instances) at various locations. These objects have spatial attributes, such
as x, y coordinates representing the object’s location and the area it covers is rep-
resented as a minimum bounding rectangle. Apart from these spatial properties,
each object refers to a concept of the ontology (TBox taxonomy) and consists of
non-spatial aspects, such as the type of the object (e.g. building, hotel), height
of the building, roof type, etc. Our goal is to answer queries that combine spatial
with non-spatial (thematic) aspects over this database of objects effectively and
to discard during the search process unnecessary objects from consideration.

In this paper, we focus on supporting the querying and management of large
spatial ontologies. We propose to store the instances of the spatial sub-ontology
using a spatial index structure (e.g. R-tree [6]). In this way we are able to sup-
port efficient query processing over large spatial ontologies. In addition, we are
able to combine spatial query processing with reasoning mechanisms to speed up
the process of inferring new knowledge. Our contributions can be summarized as
follows. First, we address the problem of management of large spatial ontologies
and we propose a hybrid approach that uses a spatial index structure (R-tree) as
the underlying storage model. Second, a case-study using the SHARE system is
presented showing how a spatial ontology can benefit from a spatial index struc-
ture. In addition, we present a series of experiments showing the performance
gains.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 presents the SHARE Ontology Data Service and motivates the need for
spatial indexing. In Section 4 we show how we can index large spatial ontologies
supporting efficient spatial query processing and present a case study using the
SHARE system. The experimental results are presented in Section 5. Finally,
Section 6 concludes the paper with directions for further work.
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2 Background

The power of Geographical Information Systems (GIS) which integrate ontolo-
gies describing thematic aspects of entities has yet to be fully explored. An infor-
mation system which can use ontology to capture spatial as well as non-spatial
aspects has enormous potential in many application areas, such as national secu-
rity and emergency response. A fast access to such ontology-enriched data, the
volume of which is usually extremely large, requires the use of indexes, which can
handle queries related to the location of the objects. In the remaining of this sec-
tion we provide some background information related to ontology management
and spatial query processing.

2.1 Ontology Management

In the context of non-spatial ontologies, an early attempt in [3] describes an
environment for supporting very large ontologies. The system was created to
manage ontologies of essentially unlimited size. The architecture of the system
uses a relational database system as the storage model and describes different
approaches to ontology management. In [5], the authors discuss DL reasoning
over large ontologies (ABoxes) and present the KAON2. The system can decide
knowledge base and concept satisfiability, compute the subsumption hierarchy,
and answer conjunctive queries in which all variables are distinguished. The
architecture of KAON2 is presented where the ontology API provides ontology
manipulation services, such as adding and retrieving ontology axioms. The API
fully supports OWL and the Semantic Web Rule Language (SWRL) at the
syntactic level. ABox assertions are stored in a relational database (RDBMS).
By mapping ontology entities to database tables, KAON2 is able to query the
database on the fly during reasoning.

In the spatial domain, the majority of the work so far was related to the
evolution of spatial databases, whose primary objective was to store spatial in-
formation and evolving geometries. Application of ontologies in GIS focuses on
practical problems of defining a common vocabulary to describe the geospatial do-
main which can facilitate interoperability and limit data integration problems [7],
[8]. On the Web, this use of ontology for better search and integration of geospatial
data and applications is embodied in the Geospatial Semantic Web [9]. A system
which provides Geographical Information Systems (GISs) with enhanced capabil-
ities for supporting spatio-temporal reasoning is presented in [4].

Simultaneous to our study, Wessel and Moller [10] examine various methods
to solve the map representation problem. However, their focus is on Description
Logics reasoning using qualitative spatial information. Similar to our work the
authors propose the use of an exterior component (called SBox, typically an
R-tree [6]) combined with the rest of the ontology to answer spatio-thematic
queries. Their hybrid approach uses both components in an interactive fashion.
In addition they examine the materialization of spatial relationships and pro-
pose a graph structure (called RCC graph). Moreover, the authors decide not
to represent the geometry of the map at all, but just exhaustively represent
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certain selected qualitative spatial aspects of the map, using a predefined qual-
itative spatial description vocabulary. This approach has essential drawbacks.
Even though it is easy to compute such an ABox from the explicit geometry of
a map, the resulting ABox is very large. Nevertheless, the size of the generated
ABoxes may become a serious problem if bigger maps are considered. Typical
maps gives rise to over 29 million role membership assertions! Since the RCC
network is explicitly encoded in the ABox, the number of required role assertions
is quadratic in the number of map objects. In addition, most spatial aspects can-
not be handled in that way. For example, distance relations are very important
for map queries, such as range queries and for that reason query processing is
not efficient.

2.2 Spatial Query Processing

The problem of spatial indexing has motivated several research efforts. In this
regard, the R-tree [6] is one of the most popular spatial index structures. For
a comprehensive study on spatial index structures, see [11]. Each spatial data
object in the R-tree is represented by a Minimum Bounding Rectangle (MBR).
Leaf nodes in the R-tree contain entries of the form (oid, rect) where oid is a
pointer to the object in the database and rect is the MBR of the object. Non-
leaf nodes contain entries of the form (ptr, rect) where ptr is a pointer to a child
node in the R-tree and rect is the MBR that covers all the MBRs in the child
node.

For the following examples we use the R-tree of Figure 1, which indexes a set of
points {a, b, ..., k}, assuming a capacity of three entries per node. Points that are
close in space (e.g., a and b) are clustered in the same leaf node (N3), represented
as a minimum bounding rectangle (MBR). Nodes are then recursively grouped
together following the same principle until the top level, which consists of a
single root. See [6] for more details on the R-tree construction.

R-trees (like most spatial access methods) were motivated by the need
to efficiently process range queries, where the range usually corresponds to a
rectangular window or a circular area around a query point. The R-tree answers
the range query q (shaded area) in Figure 1 as follows. The root is first retrieved
and the entries (e.g., E1, E2) that intersect the range are recursively searched
because they may contain qualifying points. Nonintersecting entries (e.g., E4)

 
Fig. 1. Spatial Queries on R-trees
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are skipped. Notice that for non-point data (e.g., lines, polygons), the R-tree
provides just a filter step to prune non-qualifying objects. The output of this
phase has to pass through a refinement step that examines the object represen-
tation to determine the actual result. The concept of filter and refinement steps
applies to all spatial queries on non-point objects.

Besides range queries the nearest neighbor (NN) query retrieves the k (k ≥ 1)
data point(s) closest to a query point q. The R-tree NN algorithm proposed in
[12] keeps a heap with the entries of the nodes visited so far. Initially, the heap
contains the entries of the root sorted according to their minimum distance
(mindist) from q. The entry with the minimum mindist in the heap (E2 in
Figure 1) is expanded, i.e., it is removed from the heap and its children (E5, E6
and E7) are added together with their mindist. The next entry visited is E1
(its mindist is currently the minimum in the heap), followed by E3, where the
actual 1-NN result (a) is found. The algorithm terminates, because the mindist
of all entries in the heap is greater than the distance of a. The algorithm can be
easily extended for the retrieval of k nearest neighbors (k-NN). Furthermore, it
is optimal (it visits only the nodes necessary for obtaining the nearest neighbors)
and incremental, i.e., it reports neighbors in ascending order of their distance to
the query point, and can be applied when the number of nearest neighbors to
be retrieved is unknown in advance.

3 The SHARE Ontology Data Service

The basis for our work is the SHARE Ontology Data Service (SHARE-ODS)
[1]. SHARE-ODS combines multimedia semantic modeling and spatio-temporal
modeling in a unified ontology. The main objective of the project SHARE is to
develop a new type of advanced mobile service, called Push-To-Share, to support
“mobile content sharing” by the participants of field operational teams, such as
fire rescue forces. Push-To-Share is an innovative extension of the Push-To-Talk
mobile technology and provides a new concept for simple ways of complex com-
munication, combining an easy-to-use interface with a comfortable delivery of
multimedia content. SHARE incorporates innovations in the area of multimodal
interaction, robust speech interfaces, interactive digital maps, in conjunction
with location-based services and intelligent information processing of multime-
dia data.

This Section discusses the Ontology Data Service of the SHARE system. More
particularly, first we present the architectural framework of SHARE-ODS, fol-
lowed by a discussion of the spatial sub-ontology and finally, we show several
operations of SHARE-ODS such as population, querying and reasoning.

3.1 Architecture

The Ontology Data Service (ODS) is responsible for the semantic indexing and
retrieval of the data in the Knowledge Base. More specifically, the various data
(geographical, temporal, multimedia, operational) required for the operation of
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the overall architecture, are represented as ontology instances that are intercon-
nected with semantic relations, providing an integrated view of the information
needed to support the operation. The Ontology Data Service allows the querying
of the Knowledge Base, so that the other services are able to retrieve not only
the explicitly stated knowledge but also the implicit knowledge inferred by the
reasoning engine.

The ODS operates as the back-end of the Data Server, supporting the func-
tions of front-end data services like, for example, multimedia data retrieval and
geographical annotation (Figure 2). Its main functionality is to allow the other
Services to access populate and query the Knowledge Base. The functions of the
ODS are available through a Web Service interface, so that they can be utilized
by different software modules, which are implemented in different programming
languages and situated in different network locations. In addition, the Ontol-
ogy Data Service includes internal operations (consistency check, classification),
which are responsible for detecting and correcting semantic discrepancies in the
Knowledge Base. From the above discussion it is clear that efficient management
of large ontologies is of major importance for the SHARE system.

 

Fig. 2. General architecture of the Ontology Data Service

3.2 The Spatial Sub-ontology

The space conceptual model was designed taking into account the relationships
that the map format provides, and its aim is to effectively model all the concepts
related with geographical objects. The space conceptual model is represented by
the spatial sub-ontology. The sub-ontology is broken down into two component
sub-ontologies. The first one comprises abstract geographical concepts, their geo-
reference, and the relationships between them. The second one includes actual
features (buildings, streets, etc). Both SAR instances and geographical features
represent their geo-references as relationships to the abstract geographical in-
stances. Geographical meta-data describe the spatial properties of each entity,
as well as the spatial relations among different entities. This information is crucial
for constructing a semantic spatial context. The client application implementing
the geographical data visualization is responsible for populating and updating
the Knowledge Base with the appropriate spatial entities by utilizing specially
predefined functions of the Web Service interface.
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3.3 Operations

The Ontology Data Service allows the population of the ontology with the inser-
tion of new instances, which are related to SaR operations, space or multimedia
objects. The population process can be divided into two phases: the population
that occurs during the initialization of the system and the population that oc-
curs during the progress of a SaR operation. During initialization, the ontology is
populated with static data (e.g. the geographical objects of the digital maps, the
roster of the fire department) and setup data (e.g. the communication groups,
the available communication devices). On the other hand, during operation time
the ontology is populated with dynamic data (e.g. event logging, formation of
new sections, moving objects).

Furthermore, the OntologyData Service allows the querying of the stored knowl-
edge. Queries are expressed in RDQL, in order to take advantage of the graph-like
structure of the ontology. More specifically, the queries can impose constraints on
the property values, as well as on the relations of instances. This way a query graph
is created which has to be matched with the actual ontology graph.

Besides population and querying, the Ontology Data Service supports two
reasoning services: Classification and Consistency Checking. More specifically,
classification is responsible for classifying an instance to the appropriate class
taking into account the knowledge incorporated in the ontology. Consistency
checking is responsible for detecting inconsistencies in the ontology knowledge.
Inconsistencies can occur when the ontology is populated with inaccurate data
or when an unacceptable situation (fact) has occurred.

4 The Proposed Framework

In this section we sketch our framework which is a hybrid approach extending
the classical R-tree by using ontologies. The main difference to the R-tree is the
additional storage of non-spatial annotation, i.e. each leaf entry is augmented
with non-spatial (thematic) information. As an application scenario, we consider
the incorporation of an R-tree inside SHARE-ODS. More specifically subsection
4.1 motivates the need for spatial query processing, subsection 4.2 presents the
process of the index construction and finally in subsection 4.3 we discuss query
processing using the SHARE Ontology Data Service.

4.1 Motivation

In this Section we define two cases, which require efficient support of spatial query
processing inside SHARE-ODS. The first case concerns spatial query processing
in a dynamically changing environment, i.e. during a SaR operation, whereas the
second case deals with static spatial entities, such as entities populated in the ini-
tialization stage. We start with two commonly used spatial query types, namely
range and nearest neighbour queries, in order to illustrate the problem.

Query 1. “Find all hospitals in a particular area (range) which are appropriate
for landing a helicopter”. First of all, during query processing only hospitals are
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retrieved that lies in the given area, in contrast to Description Logics systems or
spatial ontology bases (such as the current SHARE ontology) which stores spatial
related data but quantitative information can not be supported. Thereafter, a
refinement is required to ensure that the object refers to a hospital and there is
a helicopter landing facility for an emergency landing which are of appropriate
length and have sufficient fire-fighting crews and equipment. In order to find this
information, we may use TBox reasoning.

Query 2. “Find the nearest hospitals, according to my current location, which
is appropriate for landing a helicopter”. Again, during query processing we have
to check for a helicopter landing facility but for this query the objects are sorted
based on their distance to the current position. Objects that are far away are
immediately discarded while objects are refined in order to identify whether they
are hospitals with a helicopter landing facility.

Besides these two queries on static data, a user of the SHARE system may
also pose a query on the dynamic changing data. Consider as an example that
we store in the ontology the sections and sub-sections defined by the Officer
in Charge (see [1], [2] for more details). Each section (sub-section) is assigned
to a B-Level Officer and is represented as a spatial region (area). Assuming a
querying operation that requests the B-Level Officers, which are responsible for
sections: (1) “Find all B-Level Officers and corresponding sections in a particular
area.” or (2) “Find the B-Level Officer who is closest to an accident (e.g. fire)”.

The first query retrieves all B-Level Officers inside a particular range. The
second query retrieves the nearest B-Level Officer to a specific point. Unfortu-
nately, traditional ontology-based approaches are unable to answer effectively
these types of spatial queries, resulting in a high processing time. These queries
are either posed directly from an ODS client or they are part of a longer chain of
reasoning steps, involving various concepts and relations in the SHARE ontology.

4.2 Index Construction

In this sub-section we propose to support SHARE-ODS using a disk-resident
R-tree to store spatially related instances and at the same time we propose the
use of the OWL file for non-spatial instances. In this way, individual non-spatial
instances are stored in the OWL file, while spatial instances are stored in the R-
tree and as a consequence only the required instances are read from the disk and
processed in memory. The spatial information that is involved in our R-tree based
framework relates to instances (objects) of the ontology which refer to spatial
concepts. These instances are stored using the R-tree as a physical storage model.
Note that for large non-spatial sub-ontologies a back-end RDBMS may be used
to store non-spatial instances as tuples in the database. However, management
of non-spatial ontologies is beyond the scope of this paper. In the remaining of
this section we present the process of the index construction.

In our approach the R-tree is built by storing the ontological annotation of
the spatial objects. Therefore we keep in the leaves of the R-tree an identifier
(ID) which associates the object information with instances of the ontology.
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More specifically, a non-leaf node of the R-tree contains entries of the form
(child − pointer, MBR) where child − pointer is the address of a child node
in the R-tree, and MBR is the minimum bounding rectangle of all rectangles
which are entries in that child node. A leaf node contains entries of the form
(MBR, Ontology − ID) where MBR is the enclosing rectangle of that spatial
object and Ontology−ID is an identifier that refers to instances of the ontology.

We first describe how to insert a new entry in the R-tree. Given a new entry
(i.e. object), the insertion algorithm decides in which node the entry should be
inserted based on spatial criteria, such as [13], minimizing the following penalty
metrics: (i) the area, (ii) the perimeter of each MBR, (iii) the overlap between two
MBRs in the same node, and (iv) the distance between the centroid of an MBR.
As discussed in [13], minimization of these metrics decreases the probability that
an MBR intersects a query region.

During the insertion, at each level of the tree the algorithm chooses the branch
to follow in a greedy manner. Assume we insert a new object into the tree. At
the root level, the algorithm chooses the entry whose MBR needs the least en-
largement to cover the new entry. Then, at the next level, the algorithm chooses
the entry whose MBR enlargement leads to the smallest overlap increase among
the sibling entries in the node. Note that different metrics are considered at
different levels of the tree structure. If the leaf node reached the new entry is
inserted and the MBR of the parent node is tested if it covers the new entry and
if necessary it is enlarged. If the parent MBR need to enlarge this modification
is propagated to upper levels, in order to enlarge also those MBRs, if necessary.
In the leaves of the R-tree we store objects which corresponds to instances of
ontology concepts, e.g. hotel, park, house.

Let as consider that the spatial sub-ontology consists of buildings associated
with a location. Then, the R-tree corresponds to a ”map” where each building
(e.g. hospitals) is represented as a point. Other ontological information such as
type of the object (e.g. building), its height, roof type, etc. are stored in the owl
file (see Figure 3). This approach enables the efficient processing of advanced
spatial queries such as range and nearest neighbor queries based on the position
of the buildings, while also ontological constrains are evaluated.

In Figure 3, the process of distinguishing between spatial and non-spatial char-
acteristics is shown. Instances referring to the spatial sub-ontologyare additionally

Fig. 3. Storing the instances
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indexed by the R-tree in order to speed up the query processing, whereas instances
referring to other sub-components of the ontology (e.g. multimedia or operational
sub-ontologies) are stored only in the OWL file. Note that, this process happens
inside the Ontology Data Service and is application specific, i.e. the knowledge of
an expert is required to mark the spatial characteristics of the ontology. The on-
tological model is kept in main memory (due to its relatively small size) as it is
requested very often.

4.3 Query Processing

In this Section we discuss query processing using our proposed framework. Let
us assume that our database stores objects (instances which refer to spatial con-
cepts) at various locations. These objects have spatial attributes, such as x, y
coordinates representing the object’s location and the area it covers is repre-
sented as a minimum bounding rectangle. Apart from these spatial properties
each object has some ontological information, referring to concepts of the TBox
such as the type of the object (e.g. building), its height, roof type, etc. Our goal
is to answer queries referring to spatial and/or ontological information over this
database of objects effectively and to discard during the search process unnec-
essary objects from consideration.

Our framework can execute queries that combine both the ontology and the
R-tree in longer chains of reasoning steps. In such cases, the R-tree queries are
used to reduce the complexity of the RDQL statements. We show in more detail
this process using our hybrid approach. For this reason, we use the two query
types of the previous section.

Range and Nearest Neighbor Queries
Our R-tree based framework answers a range query q (shaded area) in Figure 1
(cf. section 2.2) as follows. We assume that the query consists of (1) spatial parts
(i.e. the query point q and a range) as well as non-spatial parts (i.e. hospitals
with helicopter landing facility). In addition we show how to process k nearest
neighbor queries enhanced with non-spatial query parts.

Example. (Range Query) Consider as an example that we are interested in
hospitals appropriate for landing a helicopter inside a specified region (cf. section
2.2). The R-tree is used as a filter step to prune non-qualifying objects, i.e.
buildings outside the specified region. The output of this phase has to pass
through the non-spatial ontology to determine the objects with the appropriate
roof type. Finally, the actual result is presented to the user (i.e. highlight the
buildings on the map).

More specifically, the algorithm for processing range queries using our frame-
work is as follows. The root is first retrieved and the entries (e.g., E1, E2) that
intersect the range are recursively searched. Nonintersecting entries (e.g., E4)
are skipped. The output of this phase has to pass through a refinement step that
evaluates non-spatial (e.g. thematic) query parts to determine the actual result.
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Example.(Nearest Neighbor Query) Assume we are interested in the nearest
hospital appropriate for landing a helicopter. We execute an incremental k near-
est neighbor query (with unknown k) to obtain a ranking of the nearest buildings
according to the user’s current location. This means that the first nearest neigh-
bor is retrieved and tested against the non-spatial query part, i.e. if the object
corresponds to a hospital and has the appropriate roof type. If the retrieved
object does not correspond to the specification, the second nearest neighbor is
retrieved and we continue until we have found a hospital with appropriate roof
type.

More particularly, a nearest neighbor (NN) query which retrieves the k (k ≥ 1)
data point(s) closest to a query point q with non-spatial query parts is executed
using our framework in the following way. Initially, the heap contains the entries
of the root sorted according to their distance (dist) from q. The entry in the heap
with the minimum dist is retrieved and if the entry is not an object, the entry is
expanded, i.e., it is removed from the heap and its children are added. If the entry
belongs to a leaf node, the ontology instance is accessed using the associated
ontology ID after the non-spatial query part is evaluated by the reasoner. If the
non-spatial specification holds the instance is returned as the nearest neighbor.
Else, the second nearest neighbor is retrieved i.e. the next leaf entry whose dist
is currently the minimum in the heap. We continue until we have found k object
which meets our spatial and/or non-spatial requirements.

Note that, for the above queries the R-tree is used to speed-up the query
processing. Therefore we are able to retrieve only a small fraction of the actual
dataset (ABox) and organize the spatial entities in a more appropriate way.

5 Experimental Evaluation

For the purpose of the experiments, we used SHARE-ODS [1], [2] for gener-
ating the dataset. As a scenario for the experiments we consider the buildings
described in the spatial sub-ontology. In our experiments, the dataset contains
buildings with varied cardinalities, ranging from 100 points to 10,000 points.
In the first set of experiments we study the scalability of the original SHARE-
ODS and show that this approach has serious performance shortcomings. In the
second set of experiments, we examine the query performance with the dataset
cardinality for spatial range queries and nearest neighbor queries (pre-computed
and dynamic). More specifically, we examine the performance degradation in the
case of increasing dataset cardinality and we report the running time as a func-
tion of the number of instances. In our third experiment we examine the more
complex case of combining spatial query processing with the rest ontology. We
study the influence of the R-tree on the performance and examine the scalability
with respect to the query.

All these experiments use an R-tree indexing 2-dimensional points corre-
sponding to static landmarks (e.g. buildings), which is built during the initial-
ization process. In the last experiment we examine the performance of the R-
tree in case of dynamically changing spatial information corresponding to the
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operational spatial sub-ontology. In this case regions are inserted in the R-tree
that corresponds to the areas that are assigned to a B-Level Officer during an
operation. For the R-tree implementation we use the XXL library [14].

5.1 Shortcomings of the Original Ontology

In this subsection we are particularly interested in the impact of the current
SHARE-ODS implementation. We examine the performance by varying the num-
ber of instances (in our case 2-dimensional points) from 100 to 1,000. Note that,
a building on a 2-dimensional map is covering a particular area. This area is
represented in SHARE-ODS as a closed line. On the other hand, a very common
approach used by almost all maps is to represent a building as a 2-dimensional
point. To support efficient query processing, a building in SHARE-ODS is ad-
ditional represented as a point characterized by the latitude and the longitude
(data properties). In the original ontology to support nearest neighbor query each
building has eight object properties corresponding to the eight closest buildings
in each direction (e.g. south, west, etc.), which in turn increases the size of the
OWL file. We report the CPU time (in msec) required for the ODS population.

Figure 4 shows the CPU time needed to load the dataset (OWL file) from the
disc. In addition we report the time for saving the OWL file to disc. For both
cases we observed a high increase in the CPU time for large datasets (above 900
instances).

5.2 Query Processing for Spatial Ontologies

In the second set of experiments we study the performance of two spatial query
types, namely range queries and nearest neighbor queries. Additionally, we dis-
tinguish between the pre-computed nearest neighbor and the dynamic case. The
former, is used for comparison using the R-tree.

In our running example, the points stored in the R-tree correspond to the
buildings represented in the spatial sub-ontology. Actually, the latitude and the
longitude that are data properties of the building are stored in the R-tree. In
the first experiment, we vary the number of buildings and we are interested to
find the buildings that lay in a particular area.

In Figure 5, we report the CPU time needed for answering a range query with
constant cardinality for different number of instances. We vary the number of
instances between 100 and 10,000. For the OWL file we observed a high increase
in the CPU time, while for the R-tree the CPU time remains almost constant.

In the following experiment we are interested to find the nearest building
based on a particular direction. As already mentioned, in the original approach
the nearest neighbors are pre-calculated and stored in the OWL file as object
properties of a building. In contrast to the original case, the R-tree supports such
nearest neighbor queries dynamically and the nearest neighbor is calculated real
time with respect to the preferred direction. In addition, we examine the dynamic
case of nearest neighbor query. We are interested to find the nearest building to
a random point on the map. This means that the query point is not necessary a
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Fig. 5. Spatial Range Query

building. The original approach does not support efficiently this query since the
nearest neighbor of a random point cannot be pre-calculated and stored in the
OWL file.

Figure 6a shows the CPU time needed to answer a nearest neighbor query with
respect to the number of points inserted in the ontology. Again, for the OWL
file we observed a high increase in the CPU time, and more specifically when
the dataset cardinality exceeds a certain threshold. For the R-tree the CPU time
remains almost constant. Figure 6b depicts the CPU time needed for retrieving
the nearest neighbor from an arbitrary query point. As already mentioned, this
query cannot be pre-computed and cannot be computed efficiently when using
the OWL file. The number of building is varied between 100 and 10,000 instances
and we measure the CPU time. We observe that the required CPU time increases
very slowly with increasing number of instaces.

5.3 Combining Spatial Query Processing with the Rest of the
Ontology

In this subsection we investigate the performance of our approach under the
assumption that the query is answered using both the OWL file and the R-tree.
Such an example is the query ”Find which buildings in a particular area (range)
are appropriate for landing a helicopter”. The location of the building is a spatial
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Fig. 6. Dynamic vs. pre-computed Nearest Neighbor

attribute and kept in the R-tree. The data property of a building that indicates
if a helicopter is capable to land on a building is a non-spatial attribute and is
kept in the OWL file.

In this example the R-tree is used as a filter to simplify the RDQL statement.
In a first step, all buildings that lie in the particular area are retrieved. The
building identifier is also stored in the R-tree as a label of each point. In a
second step, the buildings are retrieved from the OWL file according to the
identifier and buildings that are not suitable for a helicopter are discarded from
the result set.

In the following experiment we compare the combined approach in contrast
to the performance of the RDQL statement of the original approach. Figure 7
illustrates the effect of the number of instances on a query that can be answered
by the OWL file and additionally by the combination of the OWL file and the
R-tree. As expected, using the combined approach is superior to the original
approach, which uses only the OWL file. Especially when the number of instances
increases, the gain of our approach increases rapidly. This is due to the fact
that the RDQL query is simplified through a filtering step using the R-tree,
which in turn decreases the time, needed for the query processing. Moreover, the
combined approach avoids the retrieving of points based on the data properties
of an object, i.e. the latitude of the point corresponding to the building, but
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accesses the building directly by the building’s identifier. The identifier is stored
in the R-tree and therefore is able to reduce significantly the CPU time. In
order to study the effect of scalability for our point dataset, we vary the dataset
cardinality between 100 and 5,000 instances.

5.4 Querying Dynamically-Changing Spatial Information

In this experiment we simulate a rescue operation by inserting and deleting re-
gion that are assigned to a B-Level Officer (cf. section 3.1). The B-Level Officer’s
identifier is stored in the R-tree and therefore is able to reduce significantly the
CPU time.
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Figure 8 depicts the CPU time needed for retrieving the B-Level Officer of
the nearest region to an arbitrary query point. The total number of inserted
region instances is varied between 100 and 10,000. To simulate the process of
a Search and Rescue operation we randomly delete some regions and reinsert
other regions. The general performance of an R-tree is influenced by deletions
and we encounter this fact in our experiments. We observe that the required
CPU time increases very slowly when the number of instances increases rapidly.
Despite the deletions required for dynamically changing spatial information the
R-tree performs well in terms of CPU time for answering spatial queries.

6 Conclusions and Future Work

We have proposed a method for efficient management of large spatial ontologies,
which combines a typical OWL ontology with an R-tree for indexing spatial enti-
ties. The performance evaluation shows the superiority of our proposed technique
compared to the original approach, using only the OWL file. Using the proposed
approach, we are able to support efficient query processing over large spatial
ontologies and integrate it in a larger chain of reasoning steps. In addition we
present a case study for emergency teams during Search and Rescue (SaR) op-
erations showing how the SHARE Ontology Data Service can benefit from a
spatial index, which is integrated inside the SHARE system.
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As future work we plan to extend this work to several directions. First of all, we
indent to investigate more complex spatial query operators, such as spatial joins
combining thematic aspects within our framework. Second, the integration of
spatio-temporal indexing into ontologies, which represent both concepts of space
and time is of major importance. Finally, we aim to design an index structure
that keeps class membership information in the nodes of the tree. During query
processing nodes are discarded by testing the thematic part of the query against
the characteristics of the nodes. By separating the ontological model (TBox)
from the actual instances (ABox) we are moving towards efficient management
of very large spatial knowledge bases while at the same time query processing
would benefit from this approach.
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Abstract. It is a well known fact that the data mining process can
generate thousands of patterns from data. Various measures exist for
evaluating and ranking these discovered patterns but often they don’t
consider user subjective interest. We propose an ontology-based data-
mining methodology called ExCIS (Extraction using a Conceptual Infor-
mation System) for integrating expert prior knowledge in a data-mining
process. Its originality is to build a specific Conceptual Information Sys-
tem related to the application domain in order to improve datasets prepa-
ration and results interpretation. This paper focus on our ontological
choices and an interestingness measure IMAK which evaluates patterns
considering expert knowledge.

1 Introduction

One important challenge in data mining is to extract interesting knowledge
and useful information for expert users. Numerous works focused on indexes
that measure the interestingness of a mined pattern [5,9]. They generally distin-
guished objective and subjective interest. Silberschatz and Tuzhilin [14] proposed
a method to define unexpectedness and actionability via belief systems while Liu
[9] developed a method that use user expectations.

In most data mining projects, prior knowledge is implicit or is not organized
as a structured conceptual system. ExCIS is dedicated to data mining situations
where the expert knowledge is crucial for the interpretation of mined patterns.
In this approach, an application ontology is built by analyzing existing databases
with collaboration of expert users who play a central role. The main objective in
ExCIS is to propose a framework in which the extraction process makes use of
a well-formed conceptual information system (CIS) for improving the quality of
mined knowledge. We consider the paradigm of CIS as defined by Stumme [18]:
a relationnal database together with conceptual hierarchies. The CIS provides
an useful structure for further mining tasks.

An ontology is a logical theory accounting for the intended meaning of a formal
vocabulary, i.e. its ontological commitment to a particular conceptualization
of the world [4]. Extracting ontological structures from data is very similar to
processes of retrieving a conceptual schema from legacy databases [6]. They are
based on the assumption that sufficient knowledge is stored in databases in order
to construct the ontology.. They generally apply a matching between ontological
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concepts and relational tables such that the ontology extracted is very close to
the conceptual database schema.

In ExCIS, the ontology provides a conceptual representation of the application
domain by analyzing the existing operational databases. ExCIS main character-
istics are:

– Prior knowledge conceptualization: the CIS is specially designed for data
mining tasks

– Adaptation of the CRISP-DM [2] methodology with CIS based preparation
of data sets to be mined, CIS based post processing of mined knowledge in
order to extract surprising and/or actionable knowledge and an incremental
evolution of the expert knowledge stored in the CIS.

Our project deals with data from the ‘family’ branch of the French national
health care system. The issue we address is to improve relationships between
beneficiaries and the CAF organism. In this case study, we had two sources of
information: a database storing data on beneficiaries and expert users aware of
the business processes, behaviors and habits in the organism.

The topic of this paper is the use of ontologies for data mining. Our goal
is to enhance data mining tasks and to extract interesting patterns according
user’s knowledge. The novelty of ExCIS methodology lies in the creation of a
CIS in order to compare knowledge and extracted patterns. We use an ontology
based approach for unexpected and actionable patterns extraction while works
on interestingness measures deals with templates [9] or beliefs [14]. Furthermore,
using user’s knowledge in actionable patterns extraction differs from Piatetsky-
Shapiro [13] or Silberschatz [15] approaches.

The paper is organized as follows. Section 2 presents related works. Section
3 gives an overview of the ExCIS approach. Section 4 describes the underlying
conceptual structures of the ontology. In Section 5, we give a detailed description
of CIS construction. Section 6 focus on knowledge database construction and
interesting patterns extraction. Section 7 presents experiments results. Section
8 concludes the paper.

2 Related Works

2.1 Interestingness Measures

Numerous works focused on indexes that measure the interestingness of a mined
pattern [5,9,10]. They generally distinguished objective and subjective interest.
Among these indexes there are quantitative measures of objective interesting-
ness such as confidence, coverage, lift, success rate while unexpectedness and
actionability are proposed for subjective criteria. Since our work deals with user
interestingness, we focus this state of the art on the former. According to the
actionability criteria, a model is interesting if the user can start some action
depending on it [15]. On the other hand, unexpected models are considered in-
teresting since they contradict user expectations which depend on his beliefs.
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User expectations is a method developed by Liu [9]. The first approach neither
dealt with unexpectedness nor actionability. User had to specify a set of patterns
according to his previous knowledge and intuitive feelings. Patterns had to be
expressed in the same way that mined patterns. Then Liu defined a fuzzy al-
gorithm which matches these patterns. In order to find actionable patterns, the
user has to specify all actions that he could take. Then, for each action he spec-
ifies the situation under which he is likely to run the action. Finally, the system
matches each discovered pattern against the patterns specified by the user using
a fuzzy matching technique.

Silberschatz and Tuzhilin [14] proposed a method to define unexpectedness
via belief systems. In this approach, there are two kinds of beliefs: soft beliefs
that the user is willing to change if new patterns are discovered and hard beliefs
which are constraints that cannot be changed with new discovered knowledge.
Consequently this approach assumes that we can believe in some statements only
partially. That’s why some degree or confidence factor is assigned to each belief.
A pattern is said to be interesting relatively to some belief system if it ‘affects’
this system, and the more it ‘affects’ it, the more interesting it is. However,
interestingness of a pattern depends also on the kind of belief.

2.2 Databases and Ontologies

Ontologies provide a formal support to express beliefs and prior knowledge on
a domain. Domain ontologies are not always available; they have to be built
specially by querying expert users or by analyzing existing data. Extracting
ontological structures from data is very similar to the process of retrieving a
conceptual schema from legacy databases. Different methods [7,6,17] were pro-
posed. They are based on the assumption that sufficient knowledge is stored in
databases for producing an intelligent guide for ontology construction. They gen-
erally apply a matching between ontological concepts and relational tables such
that the ontology extracted is very close to the conceptual database schema.

2.3 Ontologies and Data Mining

For the last ten years, ontologies have been extensively used for knowledge rep-
resentation and analysis mainly in two domains: Bioinformatics and web con-
tent management. Biological knowledge is nowadays most often represented in
‘bio-ontologies’ that are formal representations of knowledge areas in which the
essential terms are combined with structuring rules that describe relationships
between the terms. Bio-ontologies are constructed according to textual descrip-
tions of biological activities. One of the most popular bio-ontology is Gene On-
tology1 that contains more than 18 thousands terms. It describes the molecular
function of a gene product, the biological process in which the gene product
participates, and the cellular component where the gene product can be found.
Results of data mining processes can then be linked to structured knowledge

1 http://www.geneontology.org/
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within bio-ontologies in order to explicit discovered knowledge, for instance to
identify biological functions of genes within a cluster. Interesting surveys of on-
tologies usage for bio-informatics can be found in [1,16]. A successful project of
data mining application using bio-ontologies is described in [19].

In the domain of web content management, OWL (Ontology Web Language)2
is a Semantic Web standard that provides a framework for the management, the
integration, the sharing and the reuse of data on the Web. Semantic Web aims at
the sharing and processing of web data by automated tools as well as by people. It
can be used to explicitly represent the meaning of terms in vocabularies and the
relationships between those terms, i.e. an ontology. Web ontologies can be used to
enrich and explain extracted patterns in many knowledge discovery applications
to web such as web usage profiling [3] for instance.

3 Overview of the ExCIS Approach

ExCIS integrates prior knowledge all along the mining process: the first step
structures and organizes the knowledge in the CIS and further steps exploit it
and enrich it too.

Fig. 1. ExCIS Process

Figure 1 describes ExCIS process from attribute selection to extraction of
interesting patterns. Figure 2 describe information flow in ExCIS approach. On
each arrow a number refers to a subprocess in figure 1. In this paper, section 4
describe subprocesses 1 to 3 while section 6 describe subprocess 8.

The global ExCIS process presented in theses figures shows:

– The CIS construction where:
• The ontology is extracted by analyzing original databases and by inter-

acting with expert users.

2 http://www.w3.org/TR/owl-ref/
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• The knowledge base, set of factual informations, is obtained in a first
step from dialogs with expert users.

• The new generic Mining Oriented Database (MODB) is built. It contains
data cleaned and prepared using domain knowledge.

– The pre-processing step where specific datasets may be built for specific
mining tasks.

– The standard mining step which extracts patterns from these datasets.
– The post-processing step where discovered patterns may be interpreted

and/or filtered according to both prior knowledge stored in the CIS and
individual user attempt.

Fig. 2. Information flow

In this paper we call “patterns” a set of itemsets. Technicaly, we use the
CLOSE algorithm [12] to extract association rules (one itemset for antecedent
and another one for consequent).

The MODB is said to be generic since it will be used as a kind of basic
data repository from which any task-specific dataset may be generated. We
call MODB a relationnal database whose attributes and values are concepts
of the ontology we defined. The underlying idea in the CIS is to build structures
which will provide more flexibility not only for pre-processing the data to be
mined, but for filtering and interpreting discovered patterns in a post-processing
step. Hierarchical structures and generalization/specialization links between on-
tological concepts play a central role to allow reducing the volume of extracted
patterns and to provide a tool for interpreting results obtained by clustering
algorithms.

For numerical or categorical data, they provide different granularity levels
which are useful in the pre-processing and the post-processing steps.
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4 Conceptual Structures of the Ontology

4.1 Ontology

In ExCIS the ontology is an essential means both for improving data mining
processes and for interpreting data mining results. It’s an application ontology
as defined by Guarino [4], ie. an ontology which describe concepts depending
both on a particular domain (family branch of the french health care system in
our application) and task (data mining in ExCIS methodology). The ontology is
defined by a set of concepts and relationships among them which are discovered
by analyzing existing data. It provides support both in the pre-processing step for
building the MODB and in the post-processing steps for refining mined results.

Generalization/specialization relationships between ontological concepts pro-
vide valuable information since they may be used intensively for reducing and
interpreting results. For instance, a set of dependency rules may be reduced by
generalization on attributes or by generalization on values. Thus the guidelines
in the ontology construction are:

– To distinguish attribute-concept (a data property) and value-concept (a
value of a data property).

– To establish matching between source attributes and attribute-concepts and
a matching between source values and value-concepts.

– To define concept hierarchies between concepts.

This ontology does not contain any instances since values are organized in hierar-
chies and considered as concepts. The MODB is a relational database whose role
is to store the most fine-grain data elicited from the original database. MODB
attributes are those which are identified as relevant for the data mining task and
MODB tuples are composed of the most fine-grain values.

4.2 Ontology Relationships

A relationship is an oriented link between two concepts. In ExCIS there are two
different kinds of concepts (see figure 3) and we distinguish relationships between
concepts of the same hierarchy and concepts of different hierarchies.

Relationships from an attribute-concept toward a value-concept are forbidden
since the relationship “is value of” has no meaning in this situation. There exist
five different relationships between concepts (see Table 1). Numbers in this table
refer to relationships in figure 4(a), 4(b) and 5. Among all the relationships, we
can set up 3 different categories:

Relationships between value-concepts. Generalization or specialization re-
lationships between value-concepts (see relationship 5 figure 5) are useful in
order to generalize patterns during the post-processing step. Furthermore, rela-
tionships between two value concepts of the same hierarchy are essential since
they allow to select data granularity in datasets generated from the MODB (see
relationship 3 figure 4).
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Fig. 3. Representation of concept and relationship

Table 1. Concept relationships

Concept Within the same hierarchy Between different hierarchies
Attribute Value Attribute Value

Attribute 1 genls
Value 2 valueOf 3 genls 4 valueOf 5 relationWith

Relationships between attribute-concepts. Generalization or specializa-
tion relationships between attribute-concepts are useful in order to generalize
models during the post-processing step.

Relationships between two concrete attribute-concepts of the same hierarchy
are specific because they have to be checked during datasets generation: indeed
these attributes cannot be in the same dataset to avoid redundancy.

ExCIS method forbids relationships between attribute-concepts of different
hierarchies because attribute-concepts which are semantically close have to be
located together in the same hierarchy (see relationship 1 figures 4,5).

Relationships between value-concepts and attribute-concepts. These
relationships are essential in order to build data or to provide different semantic
views during the post-processing step. For instance, “98001” is both a “Home
Location” and a “Zip Code” (see relationships 2,4 figure 5). If concepts are se-
mantically close they must be in the same hierarchy and if they are slightly
different they can be into two different hierarchies.

5 Conceptual Information System Construction

ExCIS differs from CRISP-DM mainly in the data preparation step. In this
step CRISP-DM describes 5 tasks: select, clean, construct, integrate and format
data. Selection and format are identical in both methods but in ExCIS cleaning,
construction and integration are improved in order to elicitate the ontological
concepts and to build the MODB.

Let A the set of source database attributes, C the set of ontology concepts
and Cz the set of concepts associated to an attribute z ∈ A. C is defined by⋃

z∈A Cz.
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(a) Allowances related concepts (b) Children related concepts

Fig. 4. Concept Hierarchies

5.1 Scope Definition and Source Attribute Selection

First steps of ExCIS method are related to the Business Understanding and
the Data Understanding steps of CRISP DM method. They need an important
interaction with expert users.

1. Determine objectives: in our case study, objectives are to improve "rela-
tionships with beneficiaries".

2. Define themes: analysis of data allow to gather them into semantic sets
called themes. For example we create 3 themes: Allowance beneficiaries pro-
files, contacts (by phone, by mail, in the agency, . . . ) and events (holidays,
school starts, birth, wedding, . . . ).

3. For each theme select a set of source attributes with experts users.

5.2 Data Analysis and Attribute-Concept Elicitation

4. For each selected attribute z:

5. Examine name and description in order to:
– Associate n concepts to the attribute.
– Into C, clean homonyms (different concepts with same name), synonyms

(same concepts with different names like age and date of birth) and
useless attributes according the objectives.

6. Examine values (distribution, missing values, duplicates values, . . . ) in
order to:

– Refine Cz (add or delete concepts) according to information collected in
step 6.
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Fig. 5. Location related concepts

– Clean again homonyms, synonyms and useless attributes. For example
by analyzing values we realized that ‘allowances’ was in fact 2 homonyms
concepts. Thus we created the ‘allowance amount’ concept and the ‘al-
lowance beneficiary’ concept.

7. For each concept associated to z create the method which generates value-
concepts.

In the step 7, if the attribute-concept doesn’t exist we have to create a 4 fields
record table. These fields are the attribute associated to the concept, the name
of the attribute table in source database, the attribute domain value and the
reference to the procedure which may generate value-concepts. There is only one
procedure for record in the table. A domain value can be a distinct value or a
regular expression and is the input of the procedure. Procedure output provides
references to value-concepts. The procedure might be an SQL request (SELECT
or specific computation) or an external program (script, shell, C, . . . ). However,
if the attribute-concept already exists we just have to add a record in the table
and create a new procedure.

5.3 Value-Concept Elicitation

At this point, all of the methods to generate value-concepts are created.

8. Give a name to each value-concept.
9. Clean homonyms and synonyms among value-concepts.

5.4 Ontology Structuration

10. Identify generalization relationships among value-concepts (see figure 4(a)).
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11. If necessary, add new concepts to structure the ontology. For instance ‘Lo-
cation’ concept in figure 5.

12. Create relationships between value-concepts of different hierarchies (see
relation 4 figure 5).

5.5 Generation of the Mining Oriented Database

13. Generate the database by using procedures defined in step 7.

In this final step a program reads the tables created for each attribute-concept
and calls the procedures in order to generate the MODB.

6 Interesting Patterns Extraction According Prior
Knowledge

6.1 Knowledge Properties

We chose to express knowledge like “if ... then ...” rules in order to simplify
comparison with extracted association rules. Each knowledge have some essential
properties to select the most interesting association rules:

– Source: user defined knowledge or association rule selected as “new knowl-
edge”

– Confidence level: 5 different values are available to describe knowledge con-
fidence according a domain expert. These values are range of confidence
value: 0-20%, 20-40%, 40-60%, 60-80% and 80-100%. We call confidence the
probability the consequence of a knowledge occurs when the condition holds.

– Certainty:
• Triviality: cannot be contradicted
• Standard knowledge: domain knowledge usually true
• Hypothesis: knowledge the user want to check

This is an example of knowledge:

Knowledge 1
Objective=‘To be paid’ ∧ Allowance=‘Housing Allowance’ ∧ Distance=‘0km’ →
Contact=‘At the agency’

– Source: user-defined
– Confidence level: 60-80%
– Certainty: Hypothesis

6.2 Ruled-Based Knowledge Base

Knowledge, like interestingness, differs from people and changes over time.
That’s why our knowledge base is divided into several sets. A main set de-
fines high level and consensual knowledge while subsets allow to define user’s
knowledge. Since knowledge may differs between experts, the main objective of
this knowledge base is to provide the expert some personalized models according
his current knowledge.
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6.3 Interesting Patterns Extraction

Interestingness definitions. In [14] Silberschatz presents a classification of
measures of interestingness and identifies two major reasons why a pattern is
interesting from the subjective (user-oriented) point of view:

– Unexpectedness: a pattern is interesting if it is surprising to the user
– actionability: a pattern is interesting if the user can do something with it to

his or her advantage

Therefore a pattern can be said to be interesting if it is both unexpected and
actionable. This is clearly a highly subjective view of the patterns as actionability
is dependent not only on the problem domain but also on the user’s objectives
at a given point in time [11].

Although unexpected patterns are interesting it’s necessary to consider ac-
tionable expected patterns. In our approach we deal with actionability using
knowledge certainty property:

– If a pattern match a trivial knowledge it isn’t actionable since actions con-
cerning trivial knowledge are most likely known

– Since user knowledge define his main points of interest, a pattern matching
standard knowledge could be actionable

– If a pattern matches a hypothesis, it is highly actionable

Patterns and knowledge comparison. In this paper we compare patterns
and knowledge considering generalization relationships between them. In future
works, we will introduce a distance measure which will consider both differences
and generalization relation between patterns and knowledge. Liu introduce such
a distance measure in [9] to deal with general impressions.

We propose an interestingness measure IMAK (Interestingness Measure Ac-
cording Knowledge) which consider:

– actionnalibity, using certainty knowledge property
– unexpectedness, using generalization relationships between patterns and

knowledge.

At the moment, we don’t use a distance measure so we cannot consider pat-
terns that differ partialy from knowledge if there is no generalization relationship
between them. However these patterns are interesting and need further treat-
ments. Patterns that are totaly different from knowledge can’t be evaluated by
IMAK measure but they could be interesting since they’re unexpected.

Consequently IMAK is useful in order to evaluate interestingness of patterns
which are comparable to prior knowledge. This measure describe four levels of
interest:

– none: uninteresting information
– low: confirmation of standard knowledge
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Table 2. IMAK values when pattern and knowledge have similar confidence level

Knowledge Certainty → Triviality Standard knowledge Hypothesis
↓ Pattern is ...
more general low medium high
identic none low medium
more specific none low medium

Table 3. IMAK values when a pattern have the best confidence level

Knowledge Certainty → Triviality Standard knowledge Hypothesis
↓ Pattern is ...
more general medium high high
identic none low medium
more specific none medium high

– medium: new information about a standard knowledge/confirmation of a
hypothesis

– high: new information about a hypothesis

Tables 2, 3 and 4 show IMAK value according generalization relationship
between a pattern and a knowledge, certainty of the knowledge and comparison
of confidence level between pattern and knwoledge.

Let’s consider the knowledge rule 1, and the two following extracted rules:

Extracted rule 1
Objective=‘To be paid’ ∧ Allowance=‘Housing Allowance’ → Contact=‘At the
agency’ [confidence=20%]

Extracted rule 2
Objective=‘To be paid’ ∧ Allowance=‘Housing Allowance’ ∧ Distance=‘Less
Than30km’ → Contact=‘At the agency’ [confidence=95%]

Rule 1 is a generalisation of the knowledge (see Section 1). But its confi-
dence is lower than knowledge confidence level. Consequently IMAK value is
“low” since the knowledge certainty is “hypothesis” (ref table 4 column 3 line 1).
Rule 2 is also a generalisation of the knowledge. Its confidence is better than
than knowledge confidence level. Consequently IMAK value is “high” since the
knowledge certainty is “hypothesis” (ref table 3 column 3 line 1).

Table 4. IMAK values when knowledge have the best confidence level

Knowledge Certainty → Triviality Standard knowledge Hypothesis
↓ Pattern is ...
more general none none low
identic none low medium
more specific none none low
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Now let’s consider the rule:

Extracted rule 3
Objective=‘To be paid’ ∧ Allowance=‘Student Housing Allowance’ ∧ Distance=
‘0km’ → Contact=‘At the agency’ [ confidence=75%]

Rule 3 is more specific than knowledge and its confidence is similar. Conse-
quently IMAK value is “medium” since the knowledge certainty is “hypothesis”
(ref table 2 column 3 line 3).

7 Experiments Results

Our approach is based on a toolset, called KEOPS, which allows to manage data
preparation process, mining tasks and visualization step. KEOPS main feature
is to use expert’s prior knowledge all along the data mining process. Further-
more, KEOPS simplifies several complex tasks during the knowledge extraction
process. We applied this approach on data of the ‘family’ branch of the french
national health care system.

In order to evaluate our results we compare extracted models to prior knowl-
edge according to their support, confidence and lift values. That’s why we define
confidence gain, support gain and lift gain in order to visualize statistical infor-
mation on figures 6, 7 and 8 :

Definition 1 (Measure Gain). Let R be an extracted rules and let C be a
knowledge. We call a measure gain, the difference between the measure evaluation
on R and C :

MeasureGain(R, C) = measure(R) − measure(C)

IMAK measure allows us to select the most interesting extracted rules according
knowledge. Figure 6 shows relative confidence of these rules. On X-axis there are
68 knowledge rules expressed by experts and on Y-axis, for each rule, there is a
vertical bar where :

– the upper point shows relative confidence maximum value for rules compared
with the knowledge

– the medium point shows relative confidence mean value of all rules compared
with the knowledge

– the bottom point shows relative confidence minimum value for rules com-
pared with the knowledge

We may observe that generally for each knowledge there exists an extracted
rule with a better confidence value. Furthermore, extracted rules confidence
mean value is often better than knowledge confidence value.

Figure 7 shows relative support of the most interesting extracted rules accord-
ing IMAK measure. Legend of figure 7 is similar to figure 6 one. We may observe
that generally relative support value is lower than 0. Consequently, extracted
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Fig. 6. Relative confidence between knowledge and associated extracted rules

Fig. 7. Relative support between knowledge and associated extracted rules
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Fig. 8. Niveaux de lift relatif entre les connaissances et leurs règles associées

rules support is lower than knowledge support: these rules are infrequent cases.
While some of them have also good confidence and lift, IMAK method catches
some rare cases.

Figure 7 shows relative lift of the most interesting extracted rules according
IMAK measure. Legend of figure 6 is similar to figure 6 one. We may observe that
lift value of knowledge and extracted rules is similar. It’s important to notice
that expert knowledge has always a lift value greater than 1.

We presented a method which allows to select interesting rules according prior
knowledge. Moreover we demonstrate that we extract rare rules (low support val-
ues) with good confidence and lift value. Consequently, our approach optimizes
statistic criteria and provides some new and interesting knowledge.

8 Conclusion

We gave a global presentation of the new methodology ExCIS for the integration
of prior knowledge in a data mining process. This paper shows how a Conceptual
Information System (CIS) can improve data-mining results. We presented CIS
ontological structures, and we discussed choices for identifying ontology concepts
and relations by analyzing existing operational data. Finaly we presented IMAK,
an interestingness measure, which evaluate an extracted pattern according to
user knowledge. In further works, we’ll improve IMAK with distance measure
between pattern and knowledge, and we’ll add to ExCIS approach mechanisms
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in order to generalize patterns (process 7 figure 1) before comparison with knowl-
edge and to browse results after this comparison (process 9 figure 1).
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Abstract. Desktop search tools are becoming more popular; they al-
low full text searches using inverted indexes. Yet, the amount of locally
stored data that they have to deal with is increasing rapidly. A different
approach is to analyze the semantic relationships among collected data
and thus preprocess the data semantically. The goal is to allow searches
based on relationships among various objects rather than focusing on ob-
jects’ names. This would allow for searches far more sophisticated than
those based on full text analysis. We introduce a database architecture
based on an existing software prototype that is capable of meeting the
various demands of a semantic information manager. This architecture
is also capable of storing and querying RDF and RDF schemata. More-
over, RDF is used as a key part of the technology. Therefore, in this sce-
nario, RDF is used not only to enrich the Web with machine-processable
semantics, but also to incorporate it into a kind of Semantic Desktop
Search Engine. In this paper, we describe the underlying technology of
this research project.

1 Introduction

More and more data is accumulating on personal computers these days. People
store their journals, time managers, contact data, photos, and other documents
on their computers. Despite all efforts, thus far no search tool has been created
that allows searches based on semantic connections. What is interesting is that
most current approaches focus on enriching the World Wide Web semantically.
Our approach focuses in on the domain of a single user who stores and retrieves
data on one or more computer systems using semantic enrichment.

Although it is accordingly situated somewhere between RDF-based or Topic
Map-based Semantic Web projects, such as, Sesame [8] and and personal lifetime
data storage projects, such as, MyLifeBits [13] or SemanticLife [3]the approach
and underlying architecture differ fundamentally from either of these concepts.

For retrieval, our approach focuses on the relationships among various local
data-objects (such as, photos, e-mails, graphics, and text files) and events (open-
ing a text file, receiving a phone call, sending an e-mail) rather than relying on

M. Collard (Ed.): ODBIS 2005/2006, LNCS 4623, pp. 135–151, 2007.
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the names of these objects. Our intent is to allow for more human-like retrieval
processes by adding semantic metadata to the data collections. For example,
instead of finding a text file based on its name, a semantic search would allow a
context-aware query, for instance, I don’t know the filename but I know I created
it when I was talking to Jim on the phone about a week ago.

Our prototype collects raw data from multiple sources such as the operating
system’s file events or user events from Microsoft Outlook via agents. At the file-
system level, we receive data identifying the applications that have accessed (read
or written) a particular file. The user can select which applications or directories
to monitor, typically these are local office applications and user document folders.
For instance, we can store the information that Word.exe has saved a specific file
document.doc on the disk at a certain time and date. From Microsoft Outlook
we can gather information on emails, contacts, and calendar items. We also store
information on the specific computer used (to differentiate between laptops and
workstations) and the user ID. Planned are additional data collectors that can
integrate incoming and outgoing telephone calls (via CTI or serial printer ports)
as well as facsimiles, GPS data, and EXIF1 metadata from digital camera images.

Based on the vast amounts of data accumulated, a semantic enrichment en-
gine (SEE) is implemented that uses the data and derives information from it
to build semantic databases for human users. Clearly, the usefulness of the sys-
tem as a whole depends on the quality, speed, and versatility of the semantic
databases and on the capabilities of the semantic enrichment engine. In this pa-
per, we will focus on the underlying database schema and propose a database
architecture that provides the foundation for semantic analysis. There are certain
requirements for such a database:

– Flexibility: A database for semantic storage must be highly flexible. It must
be able to store heterogeneous data from various sources including e-mail
systems, file systems, date books, telephones, and GPS modules. Defining
new relationships between existing entities will be a common task.

– Compliance: The database should be compliant to emerging Semantic Web
standards such as RDF or Topic Maps.

– Backwards compatibility: All enhancements to the database must be back-
wards compatible. Modification of the database schema should occur only
rarely.

– Speed: The database must perform well at high speeds due to the high volume
of processed data.

– Scalability: The database design should allow for up-scaling of the database
with no significant performance loss.

More specifically, our contribution:

– provides an overview of the architecture of our Semantic Desktop Project
prototype

– proposes an intuitive and efficient method for storing arbitrary relationships
(Section 3.2).

1 http://www.exif.org/

http://www.exif.org/
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– shows that our database schema is well suited to store both RDF Metadata
and Topic Maps (Section 3.3).

– explains why it is more efficient in comparison with other approaches
(Section 4).

2 The Problem

An increasing capacity for data storage enables people to save virtually their
whole life digitally in various file formats or databases-photos, videos, e-mails,
address databases, etc. Available personal programs to store and manage these
files usually offer searches either via file system hierarchies or via keywords or full
text search (in cases where the file contains text data). Filesystem hierarchies not
well suited since it is often not possible to make precise attributions to a single,
specific folder [11]. Keywords are commonly either based on the file name or must
be typed in manually. Manual keyword input is cumbersome, time consuming,
and subject to the Production Paradox [10]—people will simply not do it since
they see no immediate advantage. Fulltext-engines, on the other hand, are useful
for text-based documents only. Integrating photos and music into full-text-based
systems is difficult and an area of ongoing research.

Apart from that, people tend to forget names of specific objects. It is often
easier to remember the context of a situation in which a specific file was created,
modified, or viewed, especially with reference to a timeline (“I remember I just
got an e-mail from Mike when I was working on that document”).Semantic
enrichment of automated data-gathering processes is a useful tool to complement
this human, relational way of thinking, rather than thinking in keywords or tags.

3 The Semantic Desktop Project

At the first phase, Blackman should help the user to scan the computer, queried
by Blackman query language (see [12]), for certain data files and an important
part for this task is the integration of Microsoft Outlook 2003 and the collection
of data hosted there. A big part of information, a user is producing, is located
at the e-mail-client and so Blackman works in a first try with Microsoft Outlook
2003, to extract the following elements:

– e-mails
– calendar entries
– contact entries

The extracted data will be saved at database to make a future query- and rule-
creation possible. Due to the modular structure of Blackman it is not difficult
to integrate further watchers for additional e-mail-clients produced by other
vendors than Microsoft. The second part of the Blackman project should monitor
the file system and network activity to gather as much user data as possible. An
example: If the user is opening a file, Blackman should recognize this, to create
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an entry of this event at database. This action will be represented by an event
which could be enriched with some information like time, location and certain
other circumstances at which the file was opened.

In a next step a ‘Semantic enrichment engine’ should make the collected data
useful to the user. The engine should implement certain ontologies which can be
used, to enrich collected data semantically, for purposes like ‘Personal organiza-
tion’, ‘Security’, ‘Visualization’ or any other usage where data of user’s behavior
is needed.

So how could this data be used to make the organization of user’s life much
easier?

At this phase of Blackman it is necessary that the user is planning his day,
is administering his contacts and is storing his e-mails with Microsoft Outlook
2003. With this precondition Blackman is able to reconstruct what and when
the user is doing something, to reconstruct users daily life.

The following listing describes a few sample use-cases to make the ideas above
more understandable:

– When the user is participating at a meeting from 10:00 to 12:00 and is
working at a certain document for a defined duration it is highly possible
that this document has something to do with the meeting. If there is a
meeting next week with the same participants and a similar topic, Blackman
should collect automatically all relevant documents and make them available
to the user before the meeting starts. This would be a use-case for a specific
business usage.

– In many companies it is normal that documents, even confidential doc-
uments, are sent by e-mail to the desired recipient(s). This could be a
security approach for Blackman; the semantic enrichment engine could be im-
plemented in a way that it ‘knows’ which documents are confidential. There
are several ways how Blackman could classify a document automatically as
confidential. One possible approach would be that Blackman is looking, when
user receives a document, in the address book entries for sender’s position
within the company. Blackman also looks on the list of recipients which can
be found in the header of any e-mail. If, for instance, user’s department chief
is the sender and the mail was sent only to one person it is highly possible
that this document is confidential. From this point Blackman ‘knows’ that
this document is confidential and monitors every action which has something
to do with the, as confidential classified, document. At another day the user
wants to forward this document unintended to all co-workers, due to analysis
of e-mail header and content Blackman will recognize that, and fires up an
alarm.

A different security approach would be the detection of abnormal user ac-
tivity. Blackman records almost every action taken at users machine. If, for
instance, due to a evil worm, abnormal outgoing network traffic is generated,
Blackman could block and alert this traffic, to ensure users data integrity
and security. Therefore Blackman could be implemented in a specific way,
to provide similar functions as a ‘Intrusion Prevention System’.
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– If Blackman is installed organization wide it is possible to track document
changes to enable the creation of a work flow visualization. Not only the
work flow within the organization is tracked, due to e-mail monitoring also
contacts to external actors are recognized by Blackman and could be merged
with the internal work flow. The creator or owner of a document could see
what is happening with ‘his’ document and who sends it to whom.

The surveillance of network- and e-mail traffic enables Blackman also to
build up a visualization of social networks.

Recapitulating, Blackman should help the user to organize his data, which
could be realized by recording his daily life behavior. Based on automatically or
manually created rules the collected data will be enhanced with semantic data
to provide, through Blackman, a practical benefit to the user. The whole data
gathering process is happening in background, to ensure that the user has not
to ‘fight’ with an additional system on this machine.

The Semantic Desktop project goes far beyond typical full-text analysis search
engines by automatically enriching collected data with semantic context that can
be used for retrieving it more easily than without this context.

Our prototype was developed in DotNet and Java, and consists of five major
development components:

1. Request Handler: The Request Handler consists of various modules to process
external data sources. It is explained in more detail in Section 3.1.

2. Semantic Storage: Storing semi-structured, highly interconnected data re-
quires data models that take these characteristics of semantic environments
into consideration. In this paper, we thoroughly explain how our approach
satisfies those requirements.

3. Semantic Enrichment: Semantic Enrichment is crucial for the usability of a
semantic information management system.

4. Querying Interface: The Querying Interface is another critical element. We
develop an interface that is compatible with OWL while still providing easy
and secure access to the specific needs of a personal desktop information
system.

5. Client Application: Currently, we have a prototype client in use written
in DotNet. A Java-based Webclient is planned after the DotNet client is
released and sufficiently stable.

In this paper, we will focus on the Semantic Storage development area. We
introduce an improved database schema and provide examples for how concepts
and relationships are stored among the databases. We then show (Sections 3.3
and 3.4) how both RDF and Topic Maps can be stored efficiently.

3.1 Request Handler

We distinguish four types of data input channels: (1) Native Data Pipes (2)
XML-based data exchange (3) SOAP request broker (4) HTTP request broker
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Fig. 1. System architecture: data is collected from various sources and stored in the
raw data collection. Subsequently, the semantic enrichment engine (SEE) analyzes the
data based on ontology guidelines and RDF or Topic Map based rules and adds links
between recorded data items.

Native Data Pipes: Currently we have three data pipes. (1) Outlook Data
Pipes for Microsoft Exchange Server, to access calendar entries, contacts, and e-
mails; (2) an OS File Data Pipe, which is hooked directly into the I/O system of
Windows 2000/XP/2003; and (3) a Network Traffic Data Pipe, which monitors
network traffic for both URL requests and for tracking visited websites.

XML-Based Data Exchange: We use this module for research studies com-
paring Unix-based semantic data collection with the Windows-based variants.
The idea behind this is to develop universally valid semantic statements, which
may be used in both Windows-based and Unix-based environments. We are cur-
rently collecting data for semantic analysis on both Windows and Unix machines
and we expect interesting results within the next half year.

SOAP Request Broker and HTTP Request Broker: Both modules are
in the early stages but will facilitate the networking of various client machines
to build a unified personal information management system. This will be an
important part of the project since more and more users are working on more
than one computer and therefore could profit from a system that would allow
the interconnection of these devices.
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3.2 Semantic Storage

Our prototype, first described in [17], is based on an architecture that uses
relational databases. Tables are not linked to others directly with foreign keys or
by using n : m intermediary tables, but instead, via a single, generic association
table referred to as the link table.

In the classical schema, adding an n : m relationship between two tables
requires creating a new intermediate table to resolve the n : m relationship into
a 1 : n and a 1 : m relationship. Our approach is to merge these intermediate
tables into one link table that stores all relationships centrally.

The advantages of our approach are:

1. In contrast to classical E-R approaches, any relationship can be added with-
out schema modifications. This allows for easy performance of operations
within transactions.

2. Tables and indices can be clustered to improve the speed of join operations
with the central link table. In the classical model, multiple n : m relationships
exist, therefore, cluster optimizations are far more difficult and less efficient.

3. Our approach permits retrieval of relationships from the link table without
accessing the data dictionary. Since the data dictionary is vendor specific,
the classical approach requires modifying the application for each database
system.

4. If n entities exist and n : m relationships are to be established between all
entities, the number of additional tables is O(n2), whereas our approach is
O(1). Of course this applies only to new relationships, not to new tables.

Detailed explanations on the advantages can be found in [17].

Fig. 2. The database schema to store the information as given in Table ref1
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Fig. 3. Reification

Figure 2 shows a simple database schema. Table 1 contains the SQL state-
ments of the following example. A new file type, Document (.doc), is created
with OpenOffice. An optional description is added and a relationship between
the two topics is established (steps 1–4). In the same way, occurrences can be
linked to topics.

Reification is an important process for a semantic system. It is highly probable
that a semantic analysis module will initiate reification while processing collected
raw data. Steps 5-10 in Table 1 show how reification (Figure 3) can be easily
implemented using our schema.

Table 1. A relationship between a document and an application is stored (steps 1–4).
An example for a reification is given in the following steps.

Step SQL Command

1 INSERT INTO file VALUES (1, ‘Document (.doc)’)

2 INSERT INTO application VALUES (10, ‘OpenOffice’)

3 INSERT INTO description VALUES (90, ‘save as operation’)

4 INSERT INTO link VALUES (111, 1, ‘file’, 10, ‘application’,

‘assocrl’, ‘1’, 90)

5 INSERT INTO event VALUES (42, ‘save as’)

6 INSERT INTO link VALUES (112, 1, ‘file’, 42, ‘event’, ‘assocrl’,

‘1’, 91)

7 INSERT INTO link VALUES (113, 42, ‘event’, 10, ‘application’,

‘assocrl’, ‘1’, 91)

8 DELETE FROM link WHERE linkGUID=111

9 DELETE FROM description WHERE descriptionID=90

10 INSERT INTO description VALUES (91, ‘reification’)
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Our concept differs from to other approaches (Section 4) by using separate
tables to store different types of entities but one central link table for all rela-
tionships. The data-centric approach, which we also refer to as the “classical”
method, uses one table for each n : m relationship. The structure-centric ap-
proach stores everything in one table (such as an RDF triple store).

The advantage of our approach as compared to the data-centric approach is
that we require fewer changes of the database schema during normal database
operations. Adding a new type of relationship—a very common operation in se-
mantic systems-requires no schema modification. The structure-centric approach
has the same advantage but suffers from a different drawback. Since everything
is stored in a single (or very few) tables, this table will quickly become very
large and thus be slower to access. Numerous self-joins, which will be required,
also have a negative impact on performance. Moreover, only general purpose
database indexes (B-trees) can be used. Our approach, in contrast, permits
defining Bitmap and Function-based Indexes2 that are extremely efficient in
some cases and completely useless in all other cases.

3.3 Storing Topic Maps

Even though the structure-based approach is slower during retrieval, it may make
sense to implement it in a very dynamic environment where new entities, new rela-
tionships, and even new types of relationships are created frequently. These char-
acteristics typically apply to semantic environments such as RDF or Topic Maps.
Modifying the aforementioned link-based architecture, we show that the relational
storage model as proposed by [19] can be optimized in several ways helping to im-
prove the performance and reduce the complexity of the database schema.

First and foremost, we can reduce the number of tables used without the loss
of data or metadata (Figures 4 and 5). By using qualifiers in the link table we
can combine tables such as basename, sortname, dispname and topname into one
table called name. The qualifier attribute in the link table contains information
on whether the name is used as basename, sortname, etc.

Following the XTM standard3 we also no longer need the table facet. The link
that connects topics and associations stores the association role as qualifier,
rather than in a separate table. In the same way we can avoid separate tables
for fvalue, locationstype, nonconforming and cassign.

Since ‘everything’ is a topic we do not need to explicitly store this information
in a table. Instead, we propose creating a view that contains all the information
(create view ... as select from ... UNION selection from ...).

The main difference between RDF and Topic Maps that is relevant to storing
information is that RDF only supports relationships between two entities-RDF
uses nodes and arches to build graphs of concepts and relationships between
them. This makes storage much easier and the simplest approach is to store
RDF triples in the form (s, p, o) (subject, predicate, and object) [2].

2 Using an Oracle database.
3 http://www.topicmaps.org/xtm/1.0/

http://www.topicmaps.org/xtm/1.0/
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Fig. 4. Storing Topic Maps in an RDBMS [19]

3.4 Storing RDF

However, RDF can be stored similarly to Topic Maps by using either the “pure”
link-based approach (Section 3.2) or modifying it in a way that is analogous to
what we showed for Topic Maps. All four major differences between RDF and
Topic Maps can be handled by the link-based approach:
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Fig. 5. By storing all relationships in the link table together with a qualifier, fewer
tables (compare to Figure 4) are needed but all advantages as described in [19] are
retained

1. In RDF, relationships can only be established between two resources whereas
Topic Maps support relationships among any number of topics. The link
table supports an arbitrary number of links.

2. In RDF, relationships are directed and only valid for one direction. In most
cases this requires creating a redundant second and inverse relationship. In
the link table, an attribute is used to store the direction.

3. In contrast to Topic Maps, RDF does not support scopes, which makes
it difficult to create large ontologies by combining existing smaller ones.
If scopes are required, a table (scope) needs to be added. By linking the
appropriate scope via the link table, scopes can be handled easily.

4. In RDF, reification is necessary if additional information must be attached to
a relationship at a later time. This is not necessary for Topic Maps since ev-
erything is already reified. As shown previously, reification can be performed
efficiently with our database schema.

Figure 6 shows how RDF data as described in [8] can be stored in our database
structure. For efficiency and design considerations, we use five entities: Domain,
Range, Resources, Property, and Class. All other entities described by [8] can
be mapped by appropriate links and qualifiers in the link table.

Rather than using a table subPropertyOf (Figure 7) we qualify the recursive
relation of property accordingly. Literals and labels are mapped to descrip-
tions, the type to the qualifier of the link table and namespaces are implicitly
defined in the description. Range is a qualifier of domain; subClassOf is mapped
to class with a qualified recursive relation. The link table corresponds to the
triples.
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Fig. 6. Our database schema can store RDF (such as shown in Figure 7) independently
of Topic Maps in the same schema

Fig. 7. The original RDF storage schema as proposed by [8]



The Semantic Desktop 147

4 Evaluation of Other Storage Concepts

In this section we look briefly at three systems that store personal information
and strive to provide semantically enriched retrieval capabilities. For more details
please refer to [18]. We then look at existing solutions (data-centric approach
and structure-centric approach) to organizing a semantic data store.

4.1 Storing Personal Digital Information

Vanevar Bush’s vision of the Memex [9]—a paper cited nearly universally when
writing about semantically enriched information storage-provides the base for
projects, such as, Microsoft’s MyLifeBits [13] or the SemanticLIFE project [3]
build. The authors aim to create a personal digital storage that records all of an
individual’s documents, emails, photos, videos, etc.

MyLifeBits focuses on storing digital content in a database; unlike Semanti-
cLIFE its primary aim is not a semantic enrichment of the stored data. Instead,
MyLifeBits relies on future improvement of search engines and desktop search
solutions. The focus of SemanticLIFE is to build ontologies and discover rela-
tionships between existing data items.

Haystack [1] is a platform to visualize and maintain ontologies. The system is
designed to flexibly define interactions and relationships between objects. Focus
lies on the quality of the retrieval process and not on storing data.

While both systems inherently address issues of storing ontologies, they do
not focus on an efficient storage concept. MyLifeBits assumes that the MSSQL
Server will provide all the needed functions without providing details on the
database schema used.

4.2 Data-Centric Approach

One approach also known as a data-centric approach is often mentioned in the
context of mapping XML documents to relational databases [15,5,6,16]. In terms
of ontologies, the process can be described as follows:

The first step is to identify the types of concepts and their properties that
are to be stored in the ontology. Then, these types of concepts are mapped
to corresponding tables in a traditional RDBMS, with the previously identified
properties being the fields of the tables. Finally, the instances of the classes can
be inserted into the tables as rows, with one row representing one instance of
a concept. This procedure is the same for subjects, relationships, and all other
data model entities defined by the respective standard.

In addition, several ‘auxiliary’ tables are needed to keep track of whether
a certain table maps to a subject or to a relationship, etc. This leads to a
situation in which the database is actually split into two ‘virtual layers’: the
virtual ‘schema layer’ consists of the auxiliary tables that keep track of all classes
in the ontology, whereas the virtual ‘data layer’ contains the tables created as
instance containers for specific classes.
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Such a data-centric approach was, for instance, originally followed by the
Sesame ontology framework [7,8] in conjunction with a PostgreSQL database.
Figure 8 shows the setup of the Sesame data centric object-relational mapping.

There are two advantages that can be exploited with the data-centric ap-
proach. First, query answering as well as inserting, removing, and updating
instances of classes is extremely inexpensive and straightforward, as there is
virtually no difference to traditionally designed databases. All manipulations
concerning instances are, in effect, nothing more than executions of the data
manipulation commands that are natively provided by all RDBMS.

Fig. 8. Data-centric approach of Sesame [7]

Second, some RDBMS, such as, PostgreSQL, offer built-in object-relational
features that can be used directly for modeling class-subclass relationships, etc.
PostgreSQL databases offer, for instance, the possibility to create subtables that
are connected to their parent tables through transitive relationships. This enables
creating a table for a certain class and corresponding subtables (for subclasses
of that class). The same is true for properties and subproperties, accordingly.
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The main drawback of the data-centric approach is that changes to the class
hierarchy in an ontology are extremely expensive, as they require creating new
entities in the database. For every new class (and also subclass) that is to be
inserted into the ontology, a respective table has to be created, even if only a
small number of instances are present. This means that changes to the class
hierarchy always require the performance of data definition commands, which
are expensive in almost any RDBMS.

4.3 Structure-Centric Approach

The second approach is also known as structure-centric and is equally popular
among Topic Map and RDF implementations. As is the case with the data-centric
approach, persistency is provided by a traditional RDBMS, but usually without
requiring object-relational features. In contrast to the first approach, the key
idea here is to map the finite number of data model concepts to corresponding
structures (tables) in the relational database. Again, the process has also been
described for XML documents [15,5,6,16], but additionally, has been specifically
implemented for both Topic Map and RDF applications.

As shown in detail in Section 3.3, the Topic Map data model offers a small
number of built-in concepts, such as, Topic, Association, Occurrence, Scope,
etc., whose properties are well defined. In contrast to the actual classes and
instances they represent, the number and design of these built-in concepts are
static (as they are standardized). Therefore, it is a straightforward task to create
corresponding structures in a RDBMS and map the concepts to these structures
in such a way that in the end there is one table for all topics, one table for all
associations, etc. Various examples of this implementation for Topic Maps exist,
e.g., [14,19].

With respect to RDF, the data model basically consists of statements only,
with each statement including a subject, an object, and a predicate. This means
that for a naive approach, only one single table (with three corresponding text
fields containing the respective URIs or literals) is needed to express a complete
RDF graph. Due to the layout of their tables, databases configured this way are
therefore commonly referred to as triple stores. They are certainly a very elegant
solution for ontology persistence and are probably one of the main reasons that
RDF/OWL has gained significant popularity among ontology developers. Also,
many variations and improvements over the naive approach are available, mainly
for achieving high levels of scalability.

The first advantage of the structure-centric approach is its ability to allow
for inexpensive, frequent changes of instance data as well as of schema informa-
tion (class hierarchies). Since all assertions, including hierarchical relations, are
broken down to the level of single statements, it is not necessary to make any
artificial distinction between ‘schema layer’ and ‘data layer.’ This not only allows
for the representation of frequently changing ontology hierarchies, but also for
efficient incremental incorporation of large datasets, since no structural changes
of the underlying database schema are required.
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The second advantage of structure-centric ontology representation is com-
monly reported for dedicated triple stores, but also applies to Topic Map rep-
resentations. Due to the fixed, rather simple architecture of the database, scal-
ability optimizations are easy to apply, enabling the efficient storage of millions
of concepts and relationships.

One main disadvantage of the structure-centric approach (in the case of RDF
triple stores) is encountered when retrieving statements for answering ontology
queries. In order to evaluate a condition that does not directly address the URIs
or literals of the statements to be retrieved, the table containing the statement
triples has to perform one or more self-joins, an operation that is expensive for
large datasets [15,4]. Such large datasets must be seen as occurring frequently, as an
ontology’s entire information is stored within a single triple table. It is, therefore,
common for such a table to contain millions of triples, and these triples must be
compared to one another, often several times, depending on the nature of the query
to be answered.Althoughvarious optimization efforts attempt to limit the negative
effects of storing triples in a single table, in general, a lower level of performance in
answering queries is to be expected as compared to the object-relational approach.

5 Conclusion

The Semantic Desktop Project aims at bringing the potential of RDF, Topic
Maps, and Semantic Technologies to users’ desktops. The goal is to develop a
semantic personal information management system based on standards, such
as, RDF, XTM and DAML+OIL/OWL, which assists users by automatically
enriching collected data with semantic metadata.

Some important milestones are already in beta-testing, allowing performance
tests and research regarding the querying of semantic statements. In this paper,
we presented the current status of the project and proposed our improved method
for storing ontologies in a relational database, which allows changes of hierarchies
and relationships between tables to be added easily without schema modification.

The advantages of our approach are:

1. The modifications require no data-definition language (DDL) statements
that cannot be executed within a transaction.

2. Tables and indices can be clustered to improve the speed of joins with the
central link table.

3. Our approach is vendor-independent as no metadata on relationships need
to be retrieved from the data dictionary.

In addition, we showed that Topic Maps and RDF can be stored efficiently using
our database schema.
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