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Preface

This volume consists of the proceedings of the Fifth International Conference
on Formal Modelling and Analysis of Timed Systems (FORMATS 2007). The
main goal of this series of conferences is to bring together diverse communities
of researchers that deal with the timing aspects of computing systems. Both
fundamental and practical aspects of timed systems are addressed and results
reporting new application domains are actively encouraged. Further, invited talks
that survey various aspects of this broad research domain were presented at the
conference.

FORMATS 2007 was co-located (during October 3–5) as a guest conference
at the Embedded Systems Week, which constitutes a week-long event that brings
together conferences, tutorials and workshops dealing with various aspects of em-
bedded systems research and development. Embedded Systems Week took place
this year at Salzburg, Austria during September 30 - October 5, 2007. Detailed
information about FORMATS 2007 can be found at http://www.ulb.ac.be/
di/formats07, while http://www.esweek.org provides an overview of the Em-
bedded Systems Week Event. We would like to thank the organizers of the Em-
bedded Systems Week for enabling FORMATS 2007 to be co-located at this
exciting event and for providing valuable logistics support.

This year we received 48 submissions and the Programme Committee selected
22 submissions for presentation at the conference. FORMATS 2007 used the
EasyChair conference system to manage the reviewing process. The topics dealt
with by the accepted papers cover: the theory of timed and hybrid systems,
analysis and verification techniques, case studies and novel applications. We
wish to thanks the Programme Committee members and the other reviewers for
their competent and timely review of the submissions. We also wish to sincerely
thank the three invited speakers, Franck Cassez, Joost-Pieter Katoen, and Bruce
Krogh, for accepting our invitation and providing extended abstracts of their
talks to be included in the proceedings.

As always, the Springer LNCS team provided excellent support in the prepa-
ration of this volume. Finally, our heartfelt thanks are due to Martin De Wulf,
who put in a great deal of work towards the compilation of these proceedings.

July 2007 P.S. Thiagarajan
Jean-Franc↪ois Raskin
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Abstraction of Probabilistic Systems

Joost-Pieter Katoen1,2

1 RWTH Aachen University, Software Modeling and Verification Group, Germany
2 University of Twente, Formal Methods and Tools, The Netherlands

1 Introduction

Probabilistic model checking enjoys a rapid increase of interest from different
communities. Software tools such as PRISM [13] (with about 4,000 downloads),
MRMC [12], and LiQuor [2] support the verification of Markov chains or variants
thereof that exhibit nondeterminism. They have been applied to case studies
from areas such as randomised distributed algorithms, planning and AI, security,
communication protocols, biological process modeling, and quantum computing.
Probabilistic model checking engines have been integrated in existing tool chains
for widely used formalisms such as stochastic Petri nets [6], Statemate [5], and the
stochastic process algebra PEPA [11], and are used for a probabilistic extension
of Promela [2].

The typical kind of properties that can be checked is time-bounded reach-
ability properties—“Does the probability to reach a certain set of goal states
(by avoiding bad states) within a maximal time span exceed 1

2?”—and long-run
averages—“In equilibrium, does the likelihood to leak confidential information
remain below 10−4?” Extensions for cost-based models allow for checking more
involved properties that refer to e. g., the expected cumulated cost or the in-
stantaneous cost rate of computations. Intricate combinations of numerical or
simulation techniques for Markov chains, optimisation algorithms, and tradi-
tional LTL or CTL model-checking algorithms result in simple, yet very efficient
verification procedures. Verifying time-bounded reachability properties on mod-
els of tens of millions of states usually is a matter of seconds.

Like in the traditional setting, probabilistic model checking suffers from the
state space explosion problem: the number of states grows exponentially in the
number of system components and cardinality of data domains. To combat this
problem, various techniques from traditional model checking have been adopted
such as binary decision diagrams (multi-terminal BDDs) [10], partial-order re-
duction [8] and abstract interpretation [14]. We will focus on bisimulation min-
imisation for fully probabilistic models such as discrete-time and continuous-time
Markov chains (DTMCs and CTMCs, for short), and variants thereof with costs.
They are an important class of stochastic processes that are widely used in prac-
tice to determine system performance and dependability characteristics.

We first study the comparative semantics of branching-time relations for fully
probabilistic systems. Strong and weak (bi)simulation relations are covered to-
gether with their characterisation in terms of probabilistic and continuous-time
variants of CTL, viz. the temporal logics PCTL [9] and CSL[1,3]. PCTL is a

J.-F. Raskin and P.S. Thiagarajan (Eds.): FORMATS 2007, LNCS 4763, pp. 1–3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 J.-P. Katoen

discrete-probabilistic variant of CTL in which existential and universal path
quantification have been replaced by a probabilistic path operator. CSL in-
cludes in addition means to impose time-bounds on (constrained) reachabil-
ity problems. For instance, it allows one to stipulate that the probability of
reaching a certain set of goal-states within a specified real-valued time bound,
provided that all paths to these states obey certain properties, is at least/at
most some probability value. The result of this study [4] is an overview of weak
and strong (bi)simulations relations, including connections between discrete- and
continuous-time relations.

In particular, strong probabilistic bisimulation preserves the validity of PCTL
and CSL formulas. It implies ordinary lumpability, an aggregation technique for
Markov chains that is omnipresent in performance and dependability evalua-
tion since the 1960s. Quotient Markov chains can be obtained in a fully auto-
mated way. The time complexity of quotienting is logarithmic in the number
of states, and linear in the number of transitions—as for traditional bisimu-
lation minimisation—when using splay trees (a specific kind of balanced tree)
for storing blocks [7]. Experimental results show that—as for traditional model
checking—enormous state space reductions (up to logarithmic savings) may be
obtained. In contrast to traditional model checking, in many cases, the verifi-
cation time of the original Markov chain exceeds the quotienting time plus the
verification time of the bisimulation quotient. This effect is stronger for bisimu-
lations that are tailored to the property to be checked and applies to PCTL as
well as CSL model checking.

Finally, we present a more aggressive abstraction technique for DTMCs and
CTMCs that uses a three-valued interpretation, i.e., a formula evaluates to ei-
ther true, false or indefinite. Abstract DTMCs, in fact Markov decision processes
(MDPs), are obtained by replacing transition probabilities by intervals where
lower and upper bounds act as under- and over-approximation, respectively. For
CTMCs, we resort to uniform CTMCs, i.e., CTMCs in which all states have equal
residence times and use transition probability intervals. Any CTMC can be effi-
ciently turned into a weak-bisimilar uniform CTMC. Abstraction then amounts
to just replace probabilistic transitions by intervals, and model checking can be
reduced to determining (constrained) time-bounded reachability probabilities
in continuous-time MDPs. This abstraction is conservative for affirmative and
negative verification results and allows to perform abstraction on models where
bisimulation fails.

Acknowledgement. Thanks to my co-workers on these topics: Christel Baier,
Holger Hermanns, David N. Jansen, Tim Kemna, Daniel Klink, Verena Wolf,
and Ivan S. Zapreev.
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From Analysis to Design

Bruce H. Krogh

Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213, USA

krogh@ece.cmu.edu

Abstract. Research in formal methods has emphasized analysis tech-
niques for system verification and testing. Despite the successful and
growing integration of tools using formal methods into production de-
sign flows, there is very limited use of formal methods for design per se.
This is understandable, given the considerable complexity of synthesis
relative to analysis. Direct synthesis may not be the only way formal
methods could contribute more significantly to design, however. Most
tools used for design are actually analysis tools that have been extended
in various ways to provide information useful for design, such as sen-
sitivities from numerical optimization and simulation. Using embedded
control systems as an application context, this plenary talk will review
how analysis tools, including formal methods, are currently used in the
design flow. We will then suggest research directions for strengthening
the use of formal methods for design. One approach will be illustrated
using extensions to a recently developed abstraction-based method for
verifying linear hybrid automata with a large number of continuous state
variables.

J.-F. Raskin and P.S. Thiagarajan (Eds.): FORMATS 2007, LNCS 4763, p. 4, 2007.
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Efficient On-the-Fly Algorithms for Partially

Observable Timed Games�

Franck Cassez

CNRS/IRCCyN
1 rue de la Noë

BP 92101
44321 Nantes Cedex 3, France

franck.cassez@cnrs.irccyn.fr
http://www.irccyn.fr/franck

Abstract. In this paper, we review some recent results on the efficient
synthesis of controllers for timed systems. We first recall the basics of
controller synthesis for timed games and then present an efficient on-
the-fly algorithm for reachability games and its extension to partially
observable timed games.

The material of this paper is based on two recent articles [13,14] that
introduced truly on-the-fly algorithms for the synthesis of controllers
for timed games. These results were obtained together with Alexandre
David, Emmanuel Fleury and Kim G. Larsen (Aalborg University, Den-
mark), Didier Lime (IRCCyN, France) and Jean-François Raskin (ULB,
Brussels, Belgium).

1 Introduction

The control problem (CP) for discrete event systems was first studied by Ra-
madge & Wonham in [24]. The CP is the following: “Given a finite-state model
of a plant P (open system) with controllable and uncontrollable discrete actions
and a control objective Φ, does there exist a controller f such that the plant
supervised by f (closed system) satisfies Φ?”

The dense-time version of the CP with an untimed control objective has been
investigated and solved in [23]. In this seminal paper, Maler et al. consider a plant
P given by a timed game automaton which is a standard timed automaton [4]
with its set of discrete actions partitioned into controllable and uncontrollable
actions. They give an algorithm to decide whether a controller exists or not, and
show that if one such controller exists, a witness can be effectively computed.
In [28], Wong-Toi has given a semi-algorithm to solve the CP when the plant is
defined by an extended class of timed game which is a hybrid (game) automaton.

The algorithms for computing controllers for timed games are based on back-
wards fix-point computations of the set of winning states [23,7,17]. For timed

� Work supported by the French National Research Agency ANR-06-SETI-DOTS and
by the Fonds National de la Recherche Scientifique, Belgium.

J.-F. Raskin and P.S. Thiagarajan (Eds.): FORMATS 2007, LNCS 4763, pp. 5–24, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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6 F. Cassez

game automata, they were implemented in the tool Kronos [2] at the end of
90’s but lack efficiency because they require the computation of the complete set
of winning states. Moreover the backward computation may sometimes not ter-
minate or be very expensive for some extended classes of timed game automata,
for instance if integer assignments of the form i := j + k are allowed on discrete
transitions.

In the last ten years, a lot of progress has been made in the design of efficient
tools for the analysis (model-checking) of timed systems. Tools like Kronos [12]
or Uppaal [21] have become very efficient and widely used to check properties
of timed automata but still no real efficient counterpart had been designed for
timed games.

One of the reason may be that on-the-fly algorithms have been absolutely
crucial to the success of these model-checking tools. Both reachability, safety as
well as general liveness properties of such timed models may be decided using
on-the-fly algorithms i.e. by exploring the reachable state-space in a symbolic
forward manner with the possibility of early termination. Timed automata tech-
nology has also been successfully applied to optimal scheduling problems with
on-the-fly algorithms which quickly lead to near-optimal (time- or cost-wise)
schedules [6,5,18,25,1].

Regarding timed games, in [27,3], Altisen and Tripakis have proposed a par-
tially on-the-fly method for solving timed games. However, this method involves
an extremely expensive preprocessing step in which the quotient graph of the
timed game w.r.t. time-abstracted bisimulation1 needs to be built. Once obtained
this quotient graph may be used with any on-the-fly game-solving algorithms for
untimed systems.

In a recent paper [13], we have proposed an efficient, truly on-the-fly algorithm
for the computation of winning states for (reachability) timed game automata.
Our algorithm is a symbolic extension of the on-the-fly algorithm suggested
by Liu & Smolka in [22] for linear-time model-checking of finite-state systems.
Being on-the-fly, this symbolic algorithm may terminate before having explored
the entire state-space, i.e. as soon as a winning strategy has been identified.
Also the individual steps of the algorithm are carried out efficiently by the use
of so-called zones as the underlying data structure.

This algorithm has been implemented in Uppaal-TiGA [8] which is an ex-
tension of the tool Uppaal [21]. Some recent experiments with Uppaal-TiGA

are reported in [13] and show promising results. More recently in [14], we have
extended this algorithm to deal with partially observable timed games and im-
plemented it in a prototype based on Uppaal-TiGA.

In this paper we focus on reachability timed games and present the on-the-fly
algorithms of [13,14] and conclude with some current research directions.

The plan of the paper is the following: in Section 2 we recall the basics of
timed game automata and the backwards algorithms used to compute safety
and reachability games. In Section 3 we present the efficient truly on-the-fly

1 A time-abstracted bisimulation is a binary relation on states preserving discrete
states and abstracted delay-transitions.
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algorithm for reachability games that was introduced in [13] and implemented
in Uppaal-TiGA. In Section 4 we show how it can be adapted [14] to compute
winning states for timed games under partial observation. Finally in Section 5
we give some current research directions.

2 Backward Algorithms for Solving Timed Games

Timed Game Automata (TGA) were introduced in [23] for solving control prob-
lems on timed systems. This section recalls the basic results for the controller
synthesis for TGA. For a more complete survey the reader is referred to [10].

2.1 Notations

Let X be a finite set of real-valued variables called clocks. R≥0 stands for the set
of non-negative reals. We note C(X) the set of constraints ϕ generated by the
grammar: ϕ ::= x ∼ k | x−y ∼ k | ϕ∧ϕ where k ∈ Z, x, y ∈ X and ∼∈ {<,≤,=
, >,≥}. B(X) is the subset of C(X) that uses only rectangular constraints of the
form x ∼ k. A valuation v of the variables in X is a mapping v : X → R≥0. We
let RX

≥0 be the set of valuations of the clocks in X . We write 0 for the valuation
that assigns 0 to each clock. For Y ⊆ X , we denote by v[Y ] the valuation
assigning 0 (resp. v(x)) to any x ∈ Y (resp. x ∈ X \ Y ). We denote v + δ for
δ ∈ R≥0 the valuation s.t. for all x ∈ X , (v + δ)(x) = v(x) + δ. For g ∈ C(X)
and v ∈ RX

≥0, we write v |= g if v satisfies g and [[g]] denotes the set of valuations
{v ∈ RX

≥0 | v |= g}. A zone Z is a subset of RX
≥0 s.t. [[g]]= Z for some g ∈ C(X).

2.2 Timed Automata and Simulation Graph

Definition 1 (Timed Automaton [4]). A Timed Automaton (TA) is a tuple
A = (L, �0,Act, X,E, Inv) where L is a finite set of locations, �0 ∈ L is the
initial location, Act is the set of actions, X is a finite set of real-valued clocks,
E ⊆ L × B(X) × Act × 2X × L is a finite set of transitions, Inv : L → B(X)
associates with each location its invariant.

A state of a TA is a pair (�, v) ∈ L × RX
≥0 that consists of a location and a

valuation of the clocks. From a state (�, v) ∈ L × RX
≥0 s.t. v |= Inv(�), a TA

can either let time progress or do a discrete transition. This is defined by the
transition relation −→⊆ (L × R≥0) × Act ∪ R≥0 × (L × R≥0) built as follows:

– for a ∈ Act, (�, v) a−−→ (�′, v′) if there exists a transition �
g,a,Y−−−−−→ �′ in E s.t.

v |= g, v′ = v[Y ] and v′ |= Inv(�′);
– for δ ≥ 0, (�, v) δ−−→ (�, v′) if v′ = v + δ and v, v′ ∈[[Inv(�)]].

Thus the semantics of a TA is the labeled transition system SA = (Q, q0,Act ×
R≥0,−→) where Q = L × RX

≥0, q0 = (�0,0) and the set of labels is Act ∪ R≥0.
A run of a timed automaton A is a (finite or infinite) sequence of alternating
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time and discrete transitions in SA. We use Runs((�, v), A) for the set of runs
that start in (�, v). We write Runs(A) for Runs((�0,0), A). If ρ is a finite run we
denote last(ρ) the last state of the run. An example of a timed automaton is
given in Figure 1 where [x ≤ 4] denotes the invariant of location �4.

�1

�2

�3

�4
[x ≤ 4]

Goal

�5

x ≤ 1;c1

x > 1;u1

x < 1
u2

x := 0

x ≥ 2;c2

x < 1
u3

c3

x ≤ 1;c4

Fig. 1. A Timed Game Automaton

The analysis of TA is based on the exploration of a graph, the simulation
graph, where the nodes are symbolic states. A symbolic state is a pair (�, Z)
where � ∈ L and Z is a zone of RX

≥0. Let S ⊆ Q and a ∈ Act we define the
a-successors and a-predecessors of S respectively by:

Posta(S) = {(�′, v′) | ∃(�, v) ∈ S, (�, v) a−−→ (�′, v′)}
Preda(S) = {(�, v) | ∃(�′, v′) ∈ S, (�, v) a−−→ (�′, v′)}.

The set of timed successors, S↗, of S is defined by:

S↗ = {(�, v + d) | (�, v) ∈ S∩ [[Inv(�)]], (�, v + d) ∈[[Inv(�)]], d ∈ R≥0}.

Let =⇒ be the relation defined on symbolic states by: (�, Z) a=⇒ (�′, Z ′) if
(�, g, a, Y, �′) ∈ E and Z ′ = ((Z∩ [[g ]])[Y ])↗. The simulation graph SG(A) of
A is given by the labeled transition system (Z(Q), S0,Act,=⇒), where Z(Q) is
the set of zones of Q, S0 = (({(�0,0)}↗)∩ [[Inv(�0)]] and =⇒ defined as above.
If A is bounded, i.e. all the clocks are bounded, the number of symbolic states
is finite and SG(A) is finite as well. Otherwise, a finite simulation graph that
preserves for instance reachability property can be constructed for any TA. In
this case, we can either transform the given TA into an equivalent one in which
all location-invariants insist on an upper bound on all clocks or, alternatively,
we can apply standard extrapolation w.r.t. maximal constant occurring in the
TA (which is correct up to time-abstracted bisimulation).
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2.3 Safety and Reachability Games

Definition 2 (Timed Game Automaton [23]). A Timed Game Automa-
ton (TGA) G is a timed automaton with its set of actions Act partitioned into
controllable (Actc) and uncontrollable (Actu) actions.

The automaton in Figure 1 is also a TGA: controllable actions are depicted with
plain arrows and uncontrollable ones with dashed arrows.

Given a TGA G and a set2 of states K ⊆ L × RX
≥0 the reachability control

problem consists in finding a strategy f s.t. G supervised by f enforces G to
enter a state in K. The safety control problem is the dual asking for the strategy
to constantly avoid K. By “a reachability game (G,K)” (resp. safety) we refer
to the reachability (resp. safety) control problem for G and K.

Let (G,K) be a reachability (resp. safety) game. Assume that all the states
reachable from (l, v) ∈ K are also in K. A finite or infinite run ρ = (�0, v0)

e0−→
(�1, v1)

e1−→ · · · en−→ (�n+1, vn+1) · · · in Runs(G) is winning if there is some k ≥ 0
s.t. (�k, vk) ∈ K (resp. for all k ≥ 0, (�k, vk) ∈ K). We rule out runs with an
infinite number of consecutive time transitions of duration 0. The set of winning
runs in G from (�, v) is denoted WinRuns((�, v), G).

The formal definition of the control problems is based on the definitions of
strategies and outcomes. A strategy [23] is a function that during the course
of the game constantly gives information as to what the controller should do
in order to win the game. In a given situation, the strategy could suggest the
controller to either i) “do a particular controllable action” or ii) “do nothing at
this point in time, just wait” which will be denoted by the special symbol λ.
Let G = (L, �0, Act, X,E, Inv) be a TGA and SG = (Q, q0,→) its semantics.

Definition 3 (Strategy). A strategy f over G is a partial function from the
finite runs of Runs(G) to Actc ∪ {λ} s.t. for every finite run ρ

– if f(ρ) ∈ Actc then last(ρ)
f(ρ)−−−→ (�′, v′) for some (�′, v′) and

– if f(ρ) = λ then last(ρ) δ−→ (�′, v′) for some δ > 0 and (�′, v′).

We denote Strat(G) the set of strategies over G. A strategy f is state-based
if ∀ρ, ρ′ ∈ Runs(G), last(ρ) = last(ρ′) implies that f(ρ) = f(ρ′). State-based
strategies are also called memoryless strategies in game theory [17,26].

The restricted behavior of a TGA G controlled with some strategy f is defined
by the notion of outcome [17].

Definition 4 (Outcome). Let f be a strategy over G. The (set of) outcomes
Outcome(q, f) of f from q in SG is the subset of Runs(q,G) defined inductively by:

– q ∈ Outcome(q, f),
– if ρ ∈ Outcome(q, f) then ρ′ = ρ

e−−→ q′ ∈ Outcome(q, f) if ρ′ ∈ Runs(q,G)
and one of the following three conditions hold:

2 For real computation we shall require that K is defined as a finite union of symbolic
states.
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1. e ∈ Actu,
2. e ∈ Actc and e = f(ρ),

3. e ∈ R≥0 and ∀0 ≤ e′ < e, ∃q′′ ∈ Q s.t. last(ρ) e′
−−→ q′′∧f(ρ e′

−−→ q′′) = λ.
– for an infinite run ρ, ρ ∈ Outcome(q, f) if all the finite prefixes of ρ are in

Outcome(q, f).

We assume that uncontrollable actions can only spoil the game and the con-
troller has to do some controllable action to win [7,23,18]. In other words,
an uncontrollable action cannot be forced to happen in G. Thus, a run may
end in a state where only uncontrollable actions can be taken. For reachabil-
ity games we assume w.l.o.g. that the goal is a particular location Goal i.e.
K = {(Goal, v) | v ∈ RX

≥0} as depicted on Figure 1. For safety games we have to
avoid a particular location Bad i.e. K = {(Bad, v) | v ∈ RX

≥0}.
In the sequel we focus on reachability games. A maximal run ρ is either an

infinite run (supposing no infinite sequence of delay transitions of duration 0) or
a finite run ρ that satisfies either i) last(ρ) ∈ K or ii) if ρ a−−→ then a ∈ Actu i.e.
the only possible discrete actions from last(ρ) (if any) are uncontrollable actions.
A strategy f is winning from q if all maximal runs in Outcome(q, f) are in
WinRuns(q,G). A state q in a TGA G is winning if there exists a winning strat-
egy f from q in G. We denote by W(G) the set of winning states in G and
WinStrat(q,G) the set of winning strategies from q over G.

2.4 Backward Algorithms for Solving Timed Games

Let G = (L, �0, Act, X,E, Inv) be a TGA. For timed games, the computation of
the winning set of states is based on the definition of a controllable predecessors
operator [17,23]. The controllable and uncontrollable discrete predecessors of S ⊆
Q are defined by cPred(S) =

⋃
c∈Actc Predc(S) and uPred(S) =

⋃
u∈Actu

Predu(S).
A notion of safe timed predecessors of a set S w.r.t. a set U is also needed.
Intuitively a state q is in Predt(S,U) if from q we can reach q′ ∈ S by time
elapsing and along the path from q to q′ we avoid U . This operator is formally
defined by:

Predt(S,U)={q∈Q | ∃δ ∈ R≥0 s.t. q
δ−→ q′, q′ ∈ S and Post[0,δ](q) ⊆ U} (1)

where Post[0,δ](q) = {q′ ∈ Q | ∃t ∈ [0, δ] s.t. q
t−−→ q′} and U = Q \ U . The

controllable predecessors operator π is formally defined as follows (Figure 2):

π(S) = Predt

(
S ∪ cPred(S), uPred(S)

)
(2)

Note that according to this definition, even forced uncontrollable actions (e.g.
by an invariant) are not bound to happen and cannot help to win. A controllable
action must be taken to reach a winning state and uncontrollable actions can
only spoil the game.

If S is a finite union of symbolic states, then π(S) is again a finite union of
symbolic states and π(S) is effectively computable. Assume (G,K) is a reacha-
bility game. In this case the least fix-point of S = K ∪ π(S) can be computed
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s s′st S

S

u ×

t δ − t c

Fig. 2. π(S)

by the iterative process given by W 0 = K and Wn+1 = Wn ∪ π(Wn). This
computation will converge after finitely many steps for TGA [23] and the we de-
note W ∗ the fix-point. As it is proved in [23], W ∗ = W(G). Note that W ∗ is the
maximal (complete) set of winning states of G i.e. a state is winning iff it is in
W ∗. Thus there is a winning strategy in G iff (�0,0) ∈ W ∗. Altogether this gives
a symbolic algorithm for solving reachability games. For safety games, it suffices
to take the greatest fix-point W ∗ of S = K ∩ π(S) and again W ∗ = W(G).

Another important result for reachability and safety TGA is that memoryless
strategies are sufficient to win [7,23]. This makes it possible to compute a most
permissive state-based strategy. Extracting strategies can be done using the set
of winning states W ∗ (see [9] for reachability games).

For the example of Figure 1, the set of symbolic winning states is given by:
W = {(�1, x ≤ 1), (�2, x ≤ 2), (�3, x ≤ 1), (�4, x ≤ 1), (Goal, x ≥ 0)}.

A winning strategy would consist in taking c1 immediately in all states (�1, x)
with x ≤ 1; taking c2 immediately in all states (�2, x) with x ≤ 2; taking c3
immediately in all states (�3, x) and delaying in all states (�4, x) with x < 1 until
the value of x is 1 at which point the edge c4 is taken.

3 On-the-Fly Algorithm for Reachability Games

For finite-state systems, on-the-fly model-checking algorithms has been an ac-
tive and successful research area since the end of the 80’s, with the algorithm
proposed by Liu & Smolka [22] being particularly elegant (and optimal).

In [13], we have proposed a version of this algorithm for timed games. In the
sequel we first present the on-the-fly algorithm for reachability untimed games
and then show how to design a symbolic version for timed games.

3.1 On-the-Fly Algorithm for Discrete Games

Untimed games are a restricted class of timed games with only finitely many
states Q and with only discrete actions, i.e. the set of labels in the semantics of
the game is Act. Hence (memoryless) strategies amounts to choosing a control-
lable action given the current state, i.e. f : Q −→ Actc. For (untimed) reachability
games we assume a designated location Goal and the purpose of the analysis is
to decide the existence of a strategy f where all runs contains Goal.

The on-the-fly algorithm, OTFUR, we have proposed in [13] is given in Fig. 3.
The idea for this algorithm is the following: we assume that some variables
store two sets of transitions: ToExplore store the transitions that have explored
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and ToBackPropagate store the transitions the target states of which has been
declared winning. Another variable, Passed, stores the set of states that have
already been encountered. Each encountered state q ∈ Passed has a status,
Win[q] which is either winning (1) or unknown (0). We also use a variable
Depend[q] that stores for each q, the set of explored transitions t s.t. q is a
target of t. The initial values of the variables are set by lines 2 to 6.

To perform a step of the on-the-fly algorithm OTFUR, we pick transition a
(q, α, q′) in ToExplore ∪ ToBackPropagate (line 10) and process it as follows:

– if the target state q′ is encountered for the first time (q′ �∈ Passed), we
update Passed, Depend and Win[q′] (lines 14–16). We also initialize some
counters (lines 12 and 13) c(q′) and u(q′) which have the following meaning:
at each time, c(q′) represents the number of controllable transitions that can
be taken to reach a winning state from q′ and u(s) represents the number of
uncontrollable hazardous transitions from q′ i.e. those for which we do not
know yet if they lead to a winning state. When q′ is first encountered u(q′)
is simply the number of outgoing uncontrollable transitions from q′. Finally
(lines 17 to 20), depending on the status of q′ we add the outgoing transitions
to ToExplore or just schedule the current transition for back propagation if
q′ is winning.

– in case q′ ∈ Passed, it means that either its status has been changed recently
(and we just popped a transition from ToBackPropagate) or that a new
transition leading to q′ has been chosen (from ToExplore). We thus check
whether the status of q′ is winning and if yes, we update some information
on q: lines 24 and 25 updates the counters c(q) or u(q) depending on the
type of the transition being processed (controllable or not). The state q can
be declared winning (line 27) if at least one controllable transition leads to
a winning state (c(q) ≥ 1) and all outgoing uncontrollable transitions lead
to a winning state as well (u(q) = 0). In this case the transitions leading
to q (Depend[q]) are scheduled for back propagation (line 29). Otherwise we
have just picked a new transition leading to q′ and we only update Depend[q′]
(line 31).

The correctness proof of this algorithm is given by the following theorem:

Theorem 1 ([13]). Upon termination of OTFUR on a given untimed game G
the following holds:

1. If q ∈ Passed and Win[q] = 1 then q ∈ W(G);
2. If (ToExplore ∪ ToBackPropagate) = ∅ and Win[q] = 0 then q �∈ W(G).

In addition to being on-the-fly and correct, this algorithm terminates and is
optimal in that it has linear time complexity in the size of the underlying untimed
game: it is easy to see that each edge e = (q, α, q′) will be added to ToExplore
at most once and to ToBackPropagate at most once as well, the first time q is
encountered (and added to Passed) and the second time when Win[q′] changes
winning status from 0 to 1. Notice that to obtain an algorithm running in linear
time in the size of G (i.e. |Q| + |E|) it is important that the reevaluation of the
winning status of a state q is performed using the two variables c(q) and u(q).
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1: Initialization
2: Passed ← {q0};
3: ToExplore ← {(q0, α, q′) |α ∈ Act, q α−→ q′};
4: ToBackPropagate ← ∅;
5: Win[q0] ← (q0 = Goal ? 1 : 0); // set status to 1 if q0 is Goal
6: Depend[q0] ← ∅;
7: Main
8: while ((ToExplore ∪ ToBackPropagate 	= ∅)) ∧ Win[q0] 	= 1)) do
9: // pick a transition from ToExplore or ToBackPropagate

10: e = (q, α, q′) ← pop(ToExplore) or pop(ToBackPropagate);
11: if q′ 	∈ Passed then
12: c(q′) = 0;

13: u(q′) = |{(q′ a−→ q′′, a ∈ Actu}|;
14: Passed ← Passed ∪ {q′};
15: Depend[q′] ← {(q, α, q′)};
16: Win[q′] ← (q′ = Goal ? 1 : 0);
17: if Win[q′] = 0 then
18: ToExplore ← ToExplore ∪ {(q′, α, q′′) | q′ α−→ q′′};
19: else
20: ToBackPropagate ← ToBackPropagate ∪ {e};
21: else
22: if Win[q′] = 1 then
23: // update the counters of the state q
24: if α ∈ Actc then c(q) ← c(q) + 1;
25: else u(q) ← u(q)− 1;
26: // re-evaluate the status of the state q
27: Win[q] ← (c(q) ≥ 1) ∧ (u(q) = 0);
28: if Win[q] then
29: ToBackPropagate ← ToBackPropagate ∪ Depend[q];
30: else // Win[q′] = 0
31: Depend[q′] ← Depend[q′] ∪ {e};
32: endif
33: endif
34: endwhile

Fig. 3. OTFUR: On-The-Fly Algorithm for Untimed Reachability Games

3.2 On-the-Fly Algorithm for Timed Games

We can extend algorithm OTFUR to the timed case using a zone-based forward
and on-the-fly algorithm for solving timed reachability games. The algorithm,
SOTFTR, is given in Fig. 4 and may be viewed as an interleaved combination
of forward computation of the simulation graph of the timed game automaton
together with back-propagation of information of winning states. As in the un-
timed case the algorithm is based on two sets, ToExplore and ToBackPropagate,
of symbolic edges in the simulation-graph, and a passed-list, Passed, contain-
ing all the symbolic states of the simulation-graph encountered so far by the
algorithm. The crucial point of our symbolic extension is that the winning
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1: Initialization
2: Passed ← {S0} where S0 = {(�0,0)}↗;

3: ToExplore ← {(S0, α, S′) |S′ = Postα(S0)
↗};

4: ToBackPropagate ← ∅;
5: Win[S0] ← S0 ∩ ({Goal} × RX

≥0);
6: Depend[S0] ← ∅;
7: Main
8: while ((ToExplore ∪ ToBackPropagate 	= ∅) ∧ (�0,0) 	∈	= Win[S0])) do
9: // pick a transition from ToExplore or ToBackPropagate

10: e = (S, α, S′) ← pop(ToExplore) or pop(ToBackPropagate);
11: if S′ 	∈ Passed then
12: Passed ← Passed ∪ {S′};
13: Depend[S′] ← {(S, α, S′)};
14: Win[S′] ← S′ ∩ ({Goal} × RX

≥0);
15: if Win[S′] � S′ then
16: ToExplore ← ToExplore ∪ {(S′, α, S′′) |S′′ = Postα(S

′)↗};
17: if Win[S′] 	= ∅ then
18: ToBackPropagate ← ToBackPropagate ∪ {e};
19: else
20: // If T 	∈ Passed, we assume Win[T ] = ∅
21: Good ← Win[S] ∪

�
S

c−→T
Predc(Win[T ]);

22: Bad ←
�

S
u−→T

Predu(T \ Win[T ])) ∩ S;

23: Win∗ ← Predt(Good, Bad);
24: if (Win[S] � Win∗) then
25: Waiting ← Waiting ∪ Depend[S];
26: Win[S] ← Win∗;
27: Depend[S′] ← Depend[S′] ∪ {e};
28: endif
29: endwhile

Fig. 4. SOTFTR: Symbolic On-The-Fly Algo. for Timed Reachability Games.

status of an individual symbolic state is no more 0 or 1 but is now the sub-
set Win[S] ⊆ S (union of zones) of the symbolic state S which is currently
known to be winning. The set Depend[S] indicates the set of edges (or prede-
cessors of S) which must be reevaluated (i.e. added to ToBackPropagate) when
new information about Win[S] is obtained, i.e. when Win[S] � Win∗. When-
ever a symbolic edge e = (S, α, S′) is considered with S′ ∈ Passed, the edge e
is added to the dependency set of S′ so that that possible future information
about additional winning states within S′ may also be back-propagated to S. In
Table 1, we illustrate the forward exploration and backwards propagation steps
of the algorithm.

The correctness of the symbolic on-the-fly algorithm SOTFTR is given by the
theorem:

Theorem 2 ([13]). Upon termination of the algorithm SOTFTR on a given
timed game automaton G the following holds:

1. If (�, v) ∈ Win[S] for some S ∈ Passed then (�, v) ∈ W(G);
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Table 1. Running SOTFTG

Steps ToExplore ∪ ToBackPropagate Passed Depend Win
# S S′

0 - - (S0, u1, S1), (S0, u2, S2), (S0, c1, S3) S0 - (S0, ∅)
1 S0 S3

(S0, u1, S1), (S0, u2, S2)
+ (S3, c1, S4), (S3, u3, S2)

S3 S3 
→ (S0, c1, S3) (S3, ∅)

2 S3 S4
(S0, u1, S1), (S0, u2, S2), (S3, u3, S2)
+ (S3, c2, S4)

S4 S4 
→ (S3, c2, S4) (S4, S4)

3 S3 S4
(S0, u1, S1), (S0, u2, S2), (S3, u3, S2)
+ (S0, c1, S3)

- - (S3, x ≥ 1)

4 S0 S3 (S0, u1, S1), (S0, u2, S2), (S3, u3, S2) S4 S3 
→ (S0, c1, S3) (S0, x = 1)

5 S3 S2
(S0, u1, S1), (S0, u2, S2)
+ (S2, c3, S5)

S2 S2 
→ (S3, u3, S2) (S2, ∅)

6 S2 S5
(S0, u1, S1), (S0, u2, S2)
+ (S5, c4, S3)

S5 S5 
→ (S2, c3, S2) (S5, ∅)

7 S5 S3
(S0, u1, S1), (S0, u2, S2)
+ (S2, c3, S5)

- S3 
→ (S2, c3, S2)
(S5, c4, S3)

(S5, x ≤ 1)

8 S2 S5
(S0, u1, S1), (S0, u2, S2)
+ (S3, u3, S2)

- S5 
→ (S2, c3, S2) (S2, x ≤ 1)

9 S3 S2
(S0, u1, S1), (S0, u2, S2)
+ (S0, c1, S3), (S5, c4, S3)

- - (S3, S3)

10 S0 S2 (S0, u1, S1), (S0, c1, S3), (S5, c4, S3) - S2 
→ (S3, u3, S2)
(S0, u2, S2)

(S0, x ≤ 1)

11 S5 S3 (S0, u1, S1), (S0, c1, S3) - - -
12 S0 S3 (S0, u1, S1) - - -
13 S0 S1 ∅ S1 S1 
→ (S0, u1, S1) (S1, ∅)
At step n, (S, α, S′) is the transition popped at step n + 1;
At step n, +(S, α, S′) the transition added to ToBackPropagate or ToExplore at step n;
Symbolic States: S0 = (�1, x ≥ 0),S1 = (�5, x > 1), S2 = (�3, x ≥ 0), S3 = (�2, x ≥ 0),
S4 = (Goal, x ≥ 2), S5 = (�4, x ≥ 0)

2. If ToExplore ∪ ToBackPropagate = ∅, (�, v) ∈ S \ Win[S] for some S ∈
Passed then (�, v) �∈ W(G).

Termination of the algorithm SOTFTR is guaranteed by the finiteness of the
number of symbolic states of SG(A). Moreover, each edge (S, α, T ) will be
present in the ToExplore and ToBackPropagate at most 1 + |T | times, where
|T | is the number of regions of T : (S, α, T ) will be in ToExplore the first time
that S is encountered and subsequently in ToBackPropagate each time the set
Win[T ] increases. Now, any given region may be contained in several symbolic
states of the simulation graph (due to overlap). Thus the SOTFTR algorithm
is not linear in the region-graph and hence not theoretically optimal, as an al-
gorithm with linear worst-case time-complexity could be obtained by applying
the untimed algorithm directly to the region-graph. However, this is only a the-
oretical result and it turns out that the implementation of the algorithm in
Uppaal-TiGA is very efficient.

We can optimize (space-wise) the previous algorithm. When we explore the
automaton forward, we check if any newly generated symbolic state S′ belongs
Passed. As an optimization we may instead use the classical inclusion check:
∃S′′ ∈ Passed s.t. S′ ⊆ S′′, in which case, S′ is discarded and we update
Depend[S′′] instead. Indeed, new information learned for S′′ can be new infor-
mation on S′ but not necessarily. This introduces an overhead (time-wise) in the
sense that we may back-propagate irrelevant information. On the other hand,
back-propagating only the relevant information would be unnecessarily complex
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and would void most of the memory gain introduced by the use of inclusion. In
practice, the reduction of the number of forward steps obtained by the inclusion
check pays off for large systems and is a little overhead otherwise, as shown in
our experiments. It is also possible to propagate information about losing states:
in the case of reachability games, if a state is a deadlock state and is not win-
ning, for sure it is losing. This can also speed-up the algorithm. For the example
of Figure 1, we can propagate the information that (�5, x > 1) is losing which
entails (�1, x > 1) is losing as well. Then it only remains to obtain the status of
(�1, x ≤ 1) to determine if the game is winning or not.

4 On-the-Fly Algorithm for Partially Observable Games

4.1 Partial Observability

In the previous sections we have assumed that the controller has perfect infor-
mation about the system: at any time, the controller will know precisely in what
state the system is. In general however — e.g. due to limited sensors — a con-
troller will only have imperfect (or partial) information about the state of the
environment. For instance some uncontrollable actions may be unobservable. In
the discrete case it is well known how to handle partial observability of actions
as it roughly amounts to determinize a finite state system.

However for the timed case under partial observability of events, it has been
shown in [11] that the controller synthesis problem is in general undecidable.
Fixing the resources of the controller (i.e. a maximum number of clocks and
maximum allowed constants in guards) regains decidability [11], a result which
also follows from the quotient and model construction results of [19,20].

Another line of work [16,29] recently revisited partial observability for finite
state systems. This time, the partial observability amounts to imperfect infor-
mation on the state of the system. Only a finite number of possible observations
can be made on the system configurations and this provides the sole basis for
the strategy of the controller. The framework of [16,29] is essentially turn-based.
Moreover, the controller can make an observation after each discrete transition.
It could be that it makes the same observation several times in a row, being able
to count the number of steps that have been taken by the system.

If we want to extend this work to timed systems, we need to add some more
constraints. In particular, the strategy of the controller will have to be stuttering
invariant, i.e. the strategy cannot be affected by a sequence of environment or
time steps unless changes in the observations occur. In this sense the strategy is
“triggered” by the changes of observations.

To illustrate the concepts of imperfect information and stuttering invariance
consider the timed game automaton in Figure 5 modelling a production system
for painting a box moving on a conveyor belt. The various locations indicate
the position of the box in the system: in Sensor a sensor is assumed to reveal
the presence of the box, in Sensed the box is moving along the belt towards the
painting area, in Paint the actual painting of the box takes place, in Piston the
box may be kick?’ed off the belt leading to Off; if the box is not kicked off it
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On

x ≤ 10

Sensor

x ≤ 0

Sensed

x ≤ 10

Paint

x ≤ 10

Piston

x ≤ 10

End

Off

x ≥ 8

x := 0

x ≥ 0
x ≥ 8

x := 0

x ≥ 8

x := 0

x ≥ 8

kick?

Fig. 5. Timed Game with Imperfect Information

ends in End. All phases are assumed to last between 8 and 10 seconds, except
for the phase Sensor, which is instantaneous. The uncontrollability of this timing
uncertainty is indicated by the dashed transitions between phases. The controller
should now issue a single kick?’command at the appropriate moment in order
to guarantee that the box will — regardless of the above timing uncertainty —
be kicked off the belt. However the controller has imperfect information of the
position of the box in the system. In particular, the controller cannot directly
observe whether the box is in the Sensed, Paint or in the Piston phase nor can
the value of the clock x be observed. Still equipping the controller with its own
clock y – which it may reset and test (against a finite number of predicates) –
it might be possible to synthesize a control strategy despite having only partial
information: in fact it may be deduced that the box will definitely be in the
Piston area within 20-24 seconds after being sensed. In contrast, an increased
timing uncertainty where a phase may last between 6 and 10 seconds will make
a single-kick? strategy impossible.

4.2 Observation-Based Stuttering Invariant Strategies

In the untimed setting of [16,29], each state change produces a new observation.
For instance, if a run of the system is

ρ = l0
a0−−→ l1

a1−−→ l2 · · ·
an−−→ ln+1

we make the observation Obs(ρ) = Obs(l0)Obs(l1) · · ·Obs(ln+1) where Obs is a
mapping from states to a finite set of observations. In the previous example,
even if Sensed, Paint and Piston produce the same observation, say O1, we could
deduce where the box is by counting the number of O1.

Also, if each state change produces a new observation in the untimed setting,
it cannot be a realistic assumption in the timed setting: time is continuous and
the state of the system continuously changes.

A more realistic assumption about the system under observation is that the
controller can only see changes of observations. In the previous piston example,
assume the system makes the following steps:

(On, x = 0) 8−→ (On, x = 8) −→ (Sensor, x = 0) −→ (Sensed, x = 0) · · ·
· · · 9−→ (Sensed, x = 9) −→ (Paint, x = 0)

The sequence of observations the controller makes is: On Sensor O1 if Obs(On) =
On, Obs(Sensor) = Sensor and Obs(Sensed) = Obs(Paint) = O1.
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This is why in [14] we consider stuttering-free observations. We assume we
are given a finite set of observations O = {o1, o2, · · · , ok} and a mapping Obs :
L × RX

≥0 → O (i.e. from the state space of the timed game automaton to O).
Given a run of timed game automaton

ρ = (l0, v0)
e0−−→ (l1, v1)

e1−−→ (l2, v2) · · ·
en−−→ (ln+1, vn+1) · · ·

we can define the observation of ρ by the sequence:

Obs(ρ) = Obs(l0, v0)Obs(l1, v1) · · ·Obs(ln+1, vn+1) · · ·

The stuttering-free observation of ρ is Obs∗(ρ) and is obtained from Obs(ρ) by
collapsing successive identical observations o1o1 · · · o1 into one o1. In this setting
the controller has to make a decision on what to do after a finite run ρ, according
to the stuttering-free observation of ρ. Let f be a strategy in Strat(G). f is
(observation based) stuttering invariant if for all ρ, ρ′, finite runs in Runs(G), if
Obs∗(ρ) = Obs∗(ρ′) then f(ρ) = f(ρ′).

The control problem under partial observation thus becomes: given a reach-
ability game (G,K), is there an observation based stuttering invariant strategy
to win (G,K)?

This raises an issue about the shapes of observations in timed systems: assume
for the piston game, we define two observations o1 = (On, x ≤ 3) and o2 =
(On, x > 3). Given any finite run (On, x = 0) r−→ (On, x = r) with r ≤ 10 there
is one stuttering-free observation: either o1 if r ≤ 3 or o1o2 if r > 3. Still we would
like our controller to be able to determine its strategy right after each change
of observations, i.e. the controller continuously monitors the observations and
can detect rising edges of each new observation. This implies that a first instant
exists where a change of observations occurs. To ensure this we can impose
syntactic constraints on the shape of the zones that define observations. They
must be conjunctions of constraints of the form k1 ≤ x < k2 where x is a clock
and k1, k2 ∈ N.

4.3 Playing with Stuttering Invariant Strategies

The controller has to play according to (observation based) stuttering invariant
strategies (OBSI strategies for short). Initially and whenever the current obser-
vation of the system state changes, the controller either proposes a controllable
action c ∈ Actc, or the special action λ (do nothing i.e. delay). When the con-
troller proposes c ∈ Actc, this intuitively means that he wants to play the action
c as soon as this action is enabled in the system. When he proposes λ, this means
that he does not want to play any discrete actions until the next change of ob-
servation, he is simply waiting for the next observation. Thus, in the two cases,
the controller sticks to his choice until the observation of the system changes: in
this sense he is playing with an observation based stuttering invariant strategy.
Once the controller has committed to a choice, the environment decides of the
evolution of the system until the next observation. The game can be thought of
to be a two-player game with the following rules:
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1. if the choice of the controller is a discrete action c ∈ Actc, the environment
can choose to play, as long as the observation does not change, either (i)
discrete actions in u ∈ Actu ∪ {c} or (ii) let time elapse as long as c is
not enabled. Thus it can produce sequences of discrete and time steps that
respect the (i) and (ii) with action c being urgent,

2. if the choice of the controller is the special action λ the environment can
choose to play, as long as the observation does not change, any of its discrete
actions in Actu or let time pass; it can produce sequences of discrete and time
steps respecting the previous constraints;

3. the turn is back to the controller as soon as the next observation is reached.
We have imposes special shape of constraints to ensure that a next first new
observation always exists.

The previous scheme formalizes the intuition of observation based stuttering
invariant strategies.

To solve the control problem for G under partial observation given by a finite
set O, we reduce it to a control problem on a new game G′ under full observation.

4.4 An Efficient Algorithm for Partially Observable Timed Games

The reduction we have proposed in [14] follows the idea of knowledge based subset
construction for discrete games introduced in [16,29].

Let G = (L, �0, Act, X,E, Inv) be a TGA, and Obs : L × RX
≥0 → O be an

observation map. Let K be particular location such that (G,K) is a reachability
game and there is an observation o s.t. Obs(s) = o ⇐⇒ s ∈ K i.e. the controller
can observe if the system is in a winning state. We use Obs(K) for this particular
observation. From G we build a finite discrete game G̃ the states of which are
unions of pairs of symbolic states (l, Z) (� ∈ L and Z is a zone). Moreover, we
require that each state of G̃ contains pairs (l, Z) that have the same observation.

Each set of states S of G̃ corresponds to a set of points where, in the course of
the game G, the controller can choose a new action because a new observation
has just been seen. The controller can choose either to do a c ∈ Actc or to let
time pass (λ). Once the controller has made a choice, it cannot do anything
until a new observation occurs. Given a state (l, v) ∈ S and a choice a of the
controller, we can define the tree Tree((l, v), a) of possible runs starting in (l, v):
this tree is just the unfolding of the game where we keep only the branches with
actions in Actu ∪ {a} (see Figure 6, left). In this section, we assume that every
finite run can be extended in an infinite run. Then on each infinite branch of
this tree,

1. either there is a state with an observation o′ different from Obs(l, v). In this
case we can define the first (time-wise) state with a new observation. Such an
example is depicted on Figure 6 (left): from (l, v), there is a first state with
a new observation in o1 and in o2. Because we require that our observations
have special shapes, this first state always exists.

2. or all the states have the same observation on the branch: this is depicted
by the infinite path starting from (l′, v′).
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•
(l, v) •

(l′, v′)

• •o1 o2

S, Obs(S) = o

Tree((l, v), a)

S

S1

Obs = o1

S2

Obs = o2

Sk

Obs = ok

Bad

a a a a

Fig. 6. From G to G̃

We denote Nexta(l, v) the set of first (time-wise) states with a new observation
that can be reached from (l, v) if the controller plays a. If there is an infinite
run from (l′, v′) on which all the states have the same observation, we say that
(l′, v′) is a sink state for a.

We can now define the game G̃ as follows (Figure 6, right):

– the initial state of G̃ is {(�0,0)};
– let S be a state of G̃ with an observation different from Obs(K) (not win-

ning). Let a ∈ Actc ∪ {λ}. If there is a state (l′, v′) which is a sink state for
a, we add a transition (S, a,Bad) in G̃.

– for each oi ∈ O with oi �= Obs(S), if3 Nexta(S) ∩ oi �= ∅ we add a transition
(S, a, Si) with Si = Nexta(S) ∩ oi, in G̃.

Given a state S of G̃, we let Enabled(S) be the set of actions a s.t. (S, a, S′) for
some S′. A state S of G̃ is winning if its observation is Obs(K). We let K̃ be the
set of winning states of G̃. Notice that G̃ contains only controllable actions. Still
G̃ is non-deterministic and thus it can be considered to be a two-player game:
from S, the controller chooses an action and the environment chooses the next
state among the successors of S by a. This construction of G̃ has the following
property:

Theorem 3 ([14]). The controller has a observation-based stuttering invariant
strategy in (G,K) iff there is a winning strategy in (G̃, K̃).

We can prove that (G̃, K̃) is finite and furthermore solving (G,K) amounts to solv-
ing a finite non-deterministic game. As we have an efficient algorithm, OTFUR
(Fig. 3) to solve this type of games we can solve (G,K). To obtain an efficient al-
gorithm written for (G,K) we simply have to use the Next operator to compute the
transition relation “as needed” in OFTUR. Moreover, in case a state (l, v) ∈ S is a
3 We let Nexta(S) = ∪s∈SNexta(s).
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1: Initialization
2: Passed ← {{s0}} // with s0 = (l0,0);
3: ToExplore ← {({s0}, α, W ′) |α ∈ Actc ∪ {λ}, o ∈ O, o 	= Obs(s0), W ′ =

Nextα({s0}) ∩ o ∧ W ′ 	= ∅};
4: ToBackPropagate ← ∅;
5: Win[{s0}] ← ({s0} ∈ K̃ ? 1 : 0);

6: Losing[{s0}] ← ({s0} 	∈ K̃ ∧ (ToExplore = ∅ ∨ ∀α ∈ Actc ∪ {λ}, Sinkα(s0) 	=
∅) ? 1 : 0);

7: Depend[{s0}] ← ∅;
8: Main
9: while ((ToExplore ∪ ToBackPropagate 	= ∅)) ∧ Win[{s0}] 	= 1 ∧ Losing[{s0}]

	= 1)) do
10: // pick a transition from ToExplore or ToBackPropagate
11: e = (W, α, W ′) ← pop(ToExplore) or pop(ToBackPropagate);
12: if W ′ 	∈ Passed then
13: Passed ← Passed ∪ {W ′};
14: Depend[W ′] ← {(W,α, W ′)};
15: Win[W ′] ← (W ′ ∈ K̃ ? 1 : 0);

16: Losing[W ′] ← (W ′ 	∈ K̃ ∧ Sinkα(W
′) 	= ∅ ? 1 : 0);

17: if (Losing[W ′] 	= 1) then
18: NewTrans ← {(W ′, α, W ′′) |α ∈ Σ, o ∈ O, W ′ = Nextα(W ) ∩ o

∧ W ′ 	= ∅};
19: if NewTrans = ∅ ∧ Win[W ′] = 0 then Losing[W ′] ← 1;
20: ToExplore ← ToExplore ∪ NewTrans;
21: if (Win[W ′] ∨ Losing[W ′]) then
22: ToBackPropagate ← ToBackPropagate ∪ {e};
23: else
24: Win∗ ←

�
c∈Enabled(W )

�
W

c−→W ′′ Win[W ′′] ;

25: if Win∗ then
26: ToBackPropagate ← ToBackPropagate ∪ Depend[W ];
27: Win[W ] ← 1;
28: Losing∗ ←

�
c∈Enabled(W )

�
W

c−→W ′′ Losing[W ′′] ;

29: if Losing∗ then
30: ToBackPropagate ← ToBackPropagate ∪ Depend[W ];
31: Losing[W ] ← 1;
32: if (Win[W ′] = 0 ∧ Losing[W ′] = 0) then
33: Depend[W ′] ← Depend[W ′] ∪ {e};
34: endif
35: endwhile

Fig. 7. OTFPOR: On-The-Fly Algorithm for Partially Observable Reachability

sink state for a and Obs(l, v) = Obs(S) �= Obs(K), there is a transition (S, a,Bad)
in G̃. We assume that Obs(Bad) = Bad and this observation in not winning so that
if the controller plays a from S, then he looses which is consistent as there is a infi-
nite run in G which does not encounter any state with the goal observation. In the
version of OFTUR for partially observable timed games it is even more important
to propagate backwards the information on losing states like Bad.
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The version of the efficient algorithm OTFUR (Fig. 3) for discrete game can
be adapted to deal with partially observable games: we obtain a new algorithm
OTFPOR given in Fig. 7. In this version, Sinka(S) �= ∅ stands for “there exists
some (l, v) ∈ S s.t. (l, v) is a sink state for a”.

Lines 13 to 22 consist in determining the status of the new symbolic state
W ′ and push it into ToExplore or ToBackPropagate. Lines 24 and 28 are rather
expensive as we have to compute all the symbolic successors of W to determine
its new status.

5 Conclusion and Future Work

In [13] we have proposed an efficient for the analysis of reachability timed games.
It has been implemented in the tool Uppaal-TiGA [8]. Recently in [14] we have
proposed a version of this algorithm for partially observable timed games which
is currently being implemented.

There are various directions in which this work can be extended:

– for finite state games, we can generalize our results for reachability games
to safety games or more general games with Büchi objectives for instance.
This can lead to efficient on-the-fly algorithm for finite games. Also we would
like to study particular versions of Büchi objectives, e.g. with one repeated
location as we may obtain more efficient algorithms for this case;

– for timed games, we can write a dual algorithm for safety objectives. Even
in this case this is not always satisfactory as the controller could win with
a so-called zeno strategy i.e. a strategy with which he keeps the game in
a good state by playing infinitely many discrete controllable actions in a
finite amount of time [15]. It is thus of great importance to ensure that the
controller can win in a fair way. This can be encoded by a control objective
which is a strengthened by a Büchi objective: we add a particular clock which
is reset when it hits the value 1, and the Büchi objective is to hit 1 infinitely
often which ensures time divergence. This Büchi objective can be encoded
by a single location being forced infinitely often. If we can design an efficient
algorithm for a single repeated state in the finite state case, we may be able
to obtain efficient algorithms for synthesizing non-zeno controllers for safety
timed systems.

These new efficient algorithms are going to be implemented in the tool Uppaal-

TiGA and it is expected that new useful practical results will be obtained for
real case-studies.
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Abstract. Timed automata were introduced by Alur and Dill in the
early 1990s and have since become the most prominent modelling for-
malism for real-time systems. A fundamental limit to the algorithmic
analysis of timed automata, however, results from the undecidability of
the universality problem: does a given timed automaton accept every
timed word? As a result, much research has focussed on attempting to
circumvent this difficulty, often by restricting the class of automata under
consideration, or by altering their semantics.

In this paper, we study the decidability of universality for classes
of timed automata with minimal resources. More precisely, we consider
restrictions on the number of states and clock constants, as well as the
size of the event alphabet. Our main result is that universality remains
undecidable for timed automata with a single state, over a single-event
alphabet, and using no more than three distinct clock constants.

1 Introduction

Timed automata were introduced by Alur and Dill in [3] as a natural and versatile
model for real-time systems. They have been widely studied ever since, both by
practitioners and theoreticians. A celebrated result concerning timed automata,
which originally appeared in [2] in a slightly different context, is the pspace

decidability of the language emptiness (or reachability) problem.
Unfortunately, the language inclusion problem—given two timed automata A

and B, is every timed word accepted by A also accepted by B?—is known to be
undecidable. This severely restricts the algorithmic analysis of timed automata,
both from a practical and theoretical perspective, as many interesting questions
can be phrased in terms of language inclusion. Over the past decade, several
researchers have therefore attempted to circumvent this negative result by in-
vestigating language inclusion, or closely related concepts, under various assump-
tions and restrictions. Among others, we note the use of (i) topological restric-
tions and digitization techniques: [10,6,18,15,17]; (ii) fuzzy semantics: [9,11,16,5];
(iii) determinisable subclasses of timed automata: [4,20]; (iv) timed simulation
relations and homomorphisms: [21,13,12]; and (v) restrictions on the number of
clocks: [19,7].

The undecidability of language inclusion, first established in [3], derives from
the undecidability of an even more fundamental problem, that of universality:
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does a given timed automaton accept every timed word? Research has shown the
undecidability of universality to be quite robust, although it does break down
under certain (fairly stringent) hypotheses, which we survey in Section 3.

The goal of the present paper is to study the (un)decidability of universality
for classes of timed automata with minimal resources. Here ‘resource’ refers
to quantities such as number of discrete states, number of clocks, size of the
alphabet, number or magnitude of clock constants, etc. Our main result is that
the universality problem remains undecidable for timed automata with a single
state, over a single-event alphabet, and using the clock constants 0 and 1 only.1

At a conceptual level, one can paraphrase this result as asserting the existence
of an undecidable problem for stateless and eventless real-time systems. Any
computation carried out by such a device must rely exclusively on clocks, which
can be viewed as some kind of unwieldy ‘analog’ memory. Clocks can only be
reset (to zero) and compared against the constants 0 and 1;2 moreover, they
continually increase with time, and hence are quite poor at holding information
over any given period of time.

One potential application of our work lies in establishing further decision
problems about real-time systems to be undecidable; in this respect, the absence
of any state or event structure in the formulation of our problem suggests it
should be a well-suited target for a wide variety of real-time formalisms.

This paper summarises the key ideas and constructions of [1], to which we
refer the reader for full details.

2 Timed Automata

Let X be a finite set of clocks, denoted x, y, z, etc. We define the set ΦX of
clock constraints over X via the following grammar, where k ∈ N stands for any
non-negative integer, and 
� ∈ {=, �=, <,>,≤,≥} is a comparison operator:

φ ::= true | x 
� k | φ ∧ φ | φ ∨ φ.

A timed automaton is a six-tuple (Σ,S, S0, Sf , X,Δ), where

– Σ is a finite set (alphabet) of events,
– S is a finite set of states,
– S0 ⊆ S is a set of start states,
– Sf ⊆ S is a set of accepting states,
– X is a finite set of clocks, and
– Δ ⊆ S × S × Σ × ΦX × P(X) is a finite set of transitions. A transition

(s, s′, a, φ,R) allows a jump from state s to s′, consuming event a ∈ Σ in the
process, provided the constraint φ on clocks is met. Afterwards, the clocks
in R are reset to zero, while all other clocks remain unchanged.

1 This result holds over weakly monotonic time; over strongly monotonic time, we
require the clock constants 1, 2, and 3 instead. Full details are presented in Section 3.

2 Note that we do not allow comparing clocks against each other.
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Remark 1. An important observation is that diagonal clock constraints (of the
form x−y 
� k) are not allowed in our model of timed automata. This restriction
strengthens our main single-state undecidability results, in that multiple states
cannot simply be encoded through the fractional ordering of clock values; see [22].

We will abuse notation and allow transitions to be labelled by sets of events, in
addition to individual events. A transition labelled by U ⊆ Σ simply corresponds
to |U | copies of the transition, one for each event in U .

For the remainder of this section, we assume a fixed timed automaton A =
(Σ,S, S0, Sf , X,Δ).

A clock valuation is a function ν : X → R+, where R+ stands for the non-
negative real numbers. If t ∈ R+, we let ν + t be the clock valuation such that
(ν + t)(x) = ν(x) + t for all x ∈ X .

A configuration of A is a pair (s, ν), where s ∈ S is a state and ν is a clock
valuation.

An accepting run of A is a finite alternating sequence of configurations and
delayed transitions π = (s0, ν0)

d1,θ1−→ (s1, ν1)
d2,θ2−→ . . .

dn,θn−→ (sn, νn), where di ∈
R+ and θi = (si−1, si, ai, φi, Ri) ∈ Δ, subject to the following conditions:

1. s0 ∈ S0, and for all x ∈ X , ν0(x) = 0.
2. For all 0 ≤ i ≤ n− 1, νi + di+1 satisfies φi+1.
3. For all 0 ≤ i ≤ n − 1, νi+1(x) = νi(x) + di+1 for all x ∈ X \ Ri+1, and

νi+1(x) = 0 for all x ∈ Ri+1.
4. sn ∈ Sf .

Each di is interpreted as the time delay between the firing of transitions, and
each configuration (si, νi), for i ≥ 1, records the data immediately following

transition θi. Abusing notation, we also write runs in the form (s0, ν0)
d1,a1−→

(s1, ν1)
d2,a2−→ . . .

dn,an−→ (sn, νn) to highlight the run’s events.
A timed word is a pair (σ, τ), where σ = 〈a1a2 . . . an〉 ∈ Σ∗ is a word and

τ = 〈t1t2 . . . tn〉 ∈ (R+)∗ is a non-decreasing sequence of real-valued timestamps
of the same length.

Such a timed word is accepted by A if A has some accepting run of the form
π = (s0, ν0)

d1,a1−→ (s1, ν1)
d2,a2−→ . . .

dn,an−→ (sn, νn) where, for each 1 ≤ i ≤ n,
ti = d1 + d2 + . . . + di.

Remark 2. Our timed semantics is weakly monotonic, in that it allows multiple
events to occur ‘simultaneously’, or, more precisely, with null-duration delays
between them. We will also consider an alternative semantics, termed strongly
monotonic, which requires the timestamps in timed words to be strictly increas-
ing. As it turns out, our main undecidability results remain essentially the same,
although some of the constructions have to be altered in places.

3 The Universality Problem

Consider a class of computational machines that act as language acceptors, such
as finite automata or pushdown automata. A particular machine is said to be
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universal if it accepts all possible words (over the relevant alphabet). The uni-
versality problem, for the class of machines in question, consists in determining
whether a given machine is universal or not.

The universality problem is a cornerstone of formal language theory, and
has been extensively studied in a wide array of contexts. Moreover, it is the
simplest instance of the language inclusion problem, since virtually all interesting
computational classes will comprise universal machines.

In this paper, we are interested in universality for certain restricted classes of
timed automata. This problem splits naturally into two main instances, accord-
ing to the assumption made on the monotonicity of time. A timed automaton
is said to be universal over weakly monotonic time if it accepts all timed words
(over its alphabet), and is said to be universal over strongly monotonic time if
it accepts all timed words in which the timestamps are strictly increasing.

3.1 Background

The most fundamental result concerning universality for timed automata is Alur
and Dill’s proof of undecidability in the general case (over both weakly and
strongly monotonic time) [3]. An examination of that proof reveals that univer-
sality is in fact undecidable for the class of timed automata having at most two
clocks.

Much more recently, it was discovered that universality is decidable for timed
automata having at most one clock (irrespective of the monotonicity of time) [19],
using results from the theory of well-structured transition systems [8]. Together
with Alur and Dill’s work, this completely classifies the decidability of univer-
sality as a function of the number of clocks allowed.

The paper [19] also proves that universality is decidable for timed automata
that only make use of the clock constant 0 in clock constraints. On the other hand,
[3] shows that allowing any additional clock constant leads to undecidability.

Henzinger et al. introduced the notion of digitization in [10]. Using this tech-
nique, it is possible to show that, over weakly monotonic time, universality is
decidable for open3 timed automata. Universality is however undecidable for
closed timed automata (regardless of the monotonicity of time) as well as for
open timed automata over strongly monotonic time [18].

3.2 Main Results

The primary focus of this paper is to study universality for timed automata in
which the number of states, the size of the alphabet, and the number of different
clock constants are simultaneously restricted. Our main results are as follows:

Theorem 1. Over weakly monotonic time, the universality problem is undecid-
able for timed automata with a single state, a single-event alphabet, and using
clock constants 0 and 1 only.
3 A timed automaton is open if it only uses open (strict) comparison operators in
clock constraints, i.e., {<, >, �=}.
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Theorem 2. Over strongly monotonic time, the universality problem is unde-
cidable for timed automata with a single state, a single-event alphabet, and using
clock constants 1, 2, and 3 only.

Remark 3. The above restrictions (number of states, size of alphabet, and num-
ber of clock constants) seemed to us the most natural and important ones to
consider. We note that there would be no point in restricting in addition the
number of clocks, since the total number of instances of such timed automata
would then essentially be finite, vacuously making any decision problem decid-
able.

We also note that bounding the number of transitions, even on its own, would
likewise result in a finite number of ‘distinguishable’ timed automata, and would
therefore also make decidability issues moot.

The next section is devoted to proving Theorem 1. A proof sketch of Theorem 2
is given in Section 5.

4 Universality over Weakly Monotonic Time

At a high level, Alur and Dill’s original undecidability proof runs as follows.
Take a two-counter machine M with a distinguished halting state, and produce
an encoding of its runs as timed words. In this encoding, a step or instruction
of M is carried out every time unit; the values of the counters are encoded as
repeated, non-simultaneous events, by exploiting the density of the real num-
bers to accommodate arbitrarily large numbers. One then manufactures a timed
automaton A that accepts all timed words that do not correspond to some en-
coding of a valid halting run of M. In other words, A is universal iff M does
not halt, which immediately entails the undecidability of universality.

The construction of A makes heavy use of nondeterminism. More precisely,
A accepts the encodings of all ‘runs’ that are either invalid or non-halting. The
latter is easy to detect: a run is non-halting if it doesn’t end in the distinguished
halting state of M. Invalid runs, on the other hand, exhibit at least one local
violation, e.g., the consecutive values of one of the counters are inconsistent at
some stage, or an illegal jump was made from one state to another, or the timed
word does not respect the prescribed format, etc. In each case, A uses nonde-
terminism to ‘find’ and expose the local violation, and accept the corresponding
timed word.

Our task here is to reproduce this overall approach under the stringent limi-
tations of Theorem 1. The main ingredients are as follows:

1. We show that one can construct A to be a linear safety timed automaton,
i.e., an automaton whose only loops are self-loops and all of whose states are
accepting.

2. Moreover, we can reduce the alphabet of A to a single letter by encoding
different symbols as fixed numbers of ‘simultaneous’ events.
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3. Since A is linear, it can only change control states a bounded number of
times over any run. Assume that all clocks initially have value greater than
or equal to 1 (which can be achieved by accepting any behaviour during the
first time unit). We can then reduce A to having a single state, by encoding
other states through various combinations of certain clocks having value less
than 1 and other clocks having value greater than or equal to 1.

4. Finally, the overall correctness of the construction requires that various tech-
nical conditions and invariants in addition be maintained throughout runs
of A; for example, if the delay between two consecutive events ever exceeds
1, then all subsequent behaviours should be accepted.

We now present the technical arguments in detail.

4.1 Two-Counter Machines

A two-counter machine M is a six-tuple (Q, q0, qf , C,D,Ξ), where Q is a finite
set of states, q0 ∈ Q is the initial state, qf ∈ Q is the halting state, C and D
are two counters ranging over the non-negative integers, and Ξ is the transition
relation. Both counters are initially empty, and M starts in state q0. Every state
except qf has a unique outgoing transition in Ξ associated to it. Such a transition
can either: (i) increment or decrement (if non-zero) one of the counters, and
subsequently jump to a new state; or (ii) test one of the counters for emptiness
and conditionally jump to a new state.

A configuration of M is a triple (q, c, d), where q is the current state and c,
d are the respective values of the counters. A configuration is halting if it is of
the form (qf , c, d). We assume that the transition relation is fully deterministic,
so that each non-halting configuration has a unique successor. It is well-known
that the halting problem for two-counter machines, i.e., whether a halting con-
figuration is reachable from (q0, 0, 0), is undecidable [14].

We associate to any given two-counter machine M a set of strongly monotonic
timed words L(M) that are encodings of the halting computations of M. Our
alphabet is Σ = Q ∪ {a, b} (where we assume a, b /∈ Q). If M does not halt,
then naturally we let L(M) = ∅. We otherwise note that, since M is de-
terministic, it has at most one valid halting computation, which we denote
π = 〈(s1, c1, d1)(s2, c2, d2), . . . , (sn, cn, dn)〉. We then include in L(M) all timed
words (σ, τ) that satisfy the following:

1. σ = σinitσ
′σend, where σ′ = (s1a

c1bad1)(s2a
c2bad2) . . . (sn−1a

cn−1badn−1)sn,
and σinit, σend ⊆ Σ∗. In other words, σ can be decomposed as a prefix σinit, in
which anything is allowed, followed by σ′, which is a fairly straightforward
encoding of π, and capped by a suffix σend, in which anything is allowed
once again.4 The values of the counters in configurations correspond to the
number of consecutive a’s, with b acting as a delimiter between the encodings
of the first and the second counter.

4 As we will aim to capture the complement of L(M) using a safety automaton—whose
language is therefore prefix closed—it is necessary for L(M) to be suffix closed.
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2. τ is strongly monotonic.
3. τ = τinitτ

′τend, where τinit, τ ′, and τend are sequences whose lengths respec-
tively match those of σinit, σ′, and σend. Moreover, all timestamps in τinit

are strictly less than 1.
4. The associated timestamp of each si in σ′ is i. Moreover, if the timestamp

of the first b in σ′ is 1 + tb, then the timestamp of the ith b is i + tb. An
immediate consequence is that the time delay between successive events in
σ′ is always strictly less than 1.

5. For all 1 ≤ i ≤ n − 2: (i) if ci+1 = ci, then for each a with timestamp t in
the time interval (i, i + tb), there is an a with timestamp t + 1 in the time
interval (i+1, i+1+ tb); (ii) if ci+1 = ci +1, then for each a with timestamp
t + 1 in the interval (i + 1, i+ 1 + tb), except the last one, there is an a with
timestamp t in the interval (i, i+tb); (iii) if ci+1 = ci−1, then for each a with
timestamp t in the interval (i, i + tb), except the last one, there is an a with
timestamp t + 1 in the interval (i + 1, i + 1 + tb); (iv) similar requirements
hold for the second counter.

By construction, M halts iff L(M) is not empty.

4.2 Linear Safety Timed Automata

Given a two-counter machine M = (Q, q0, qf , C,D,Ξ) as above, we sketch how
to construct a timed automaton A that accepts precisely all strongly monotonic
timed words that do not belong to L(M). We ensure that A enjoys a number of
technical properties, as follows:

1. A is linear, i.e., the only loops in its transition relation are self-loops. As a
result, A can only change control states a bounded number of times over any
run.

2. A is a safety timed automaton, i.e., all of its states are accepting.
3. As per the definition of L(M), A’s alphabet is Σ = Q ∪ {a, b}.
4. A has a unique state, which we call the sink state, from which there is

no transition to a different state. A moves into the sink state as soon as
a violation is detected; we therefore postulate a Σ-labelled self-loop on the
sink state, i.e., it accepts any behaviour.

5. A makes use of several clocks, some of which ensure that A only accepts
strongly monotonic timed words.5

Two important clocks are abs and ev . The clock abs is never reset and
therefore indicates the total amount of time elapsed since the beginning of a
run. After time 1, the clock ev is meant to be reset whenever an event occurs,
unless a violation has already been detected. More precisely, ev obeys the
following rules:
– ev is never reset while abs < 1.

5 Although the aim of the present section is to establish an undecidability result over
weakly monotonic timed words, the automata we are considering here, which act as
intermediate tools, are required to accept only strongly monotonic timed words.
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– ev is not reset on transitions leading to the sink state; in particular, the
sink state itself never resets ev .

– From every state, there is a Σ-labelled transition to the sink state
guarded by the clock constraint (abs > 1 ∧ ev ≥ 1). In other words,
once the absolute time exceeds 1, we require that events always occur
less than 1 time unit apart, otherwise we record a violation.

– ev is always reset when (abs > 1∧ev < 1), and when (abs = 1∧ev = 1),
unless the transition is headed to the sink state.

6. A accepts any behaviour before time 1; this is achieved by postulating a
Σ-labelled self-loop on initial states, guarded by abs < 1.

7. A cannot leave an initial state until at least time 1; this is achieved by
guarding all transitions leading away from an initial state by abs ≥ 1.

8. Let us call an inner state one that is neither an initial state nor the sink
state. If an inner state has a self-loop, it must be be labelled either by a or
by Σ \ {qf}.

9. After time 1, qf can only label transitions that are headed into the sink
state, i.e., once a violation has already been detected; otherwise, A would
potentially accept encodings of valid halting computations of M.

It remains to show that we can indeed construct a timed automaton A that
captures the complement of L(M) and has Properties 1–9. This is achieved as
in Alur and Dill’s proof, by amalgamating various simple automata, each of
which captures some local violation of a halting computation of M.6 Suppose,
for example, that from state q3, M is supposed to increment counter D, and
move to state q5. One possible violation of this transition could consist in failing
to increment D as per the encoding prescribed in Subsection 4.1, which requires
the insertion of an extra a before q5 in the corresponding timed word. Figure 1
depicts an automaton that captures precisely this behaviour in the case D is
originally non-empty.
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������
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������
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������
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Fig. 1. A linear safety timed automaton that captures an incrementation violation
on the second counter. In the interest of clarity, we have omitted data pertaining to
Property 5 (strong monotonicity and the treatment of clock ev).

The (numerous) other cases are equally straightforward; full details can be
found in [1].

4.3 Restricting to a Single Event

Let M = (Q, q0, qf , C,D,Ξ) be a two-counter machine. We give a way to
encode, or ‘flatten’, any strongly monotonic timed language L over alphabet
6 Note that our automata are trivially closed under union.
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Σ = Q ∪ {a, b} into a weakly monotonic timed language L̃ over the singleton
alphabet {a}.

We define a renaming relation R from Σ to (untimed) words over alphabet
{a}. This relation will be one-to-one for all events in Σ apart from qf .

We first set aRa and bRaa, i.e., the letter ‘a’ is renamed to the word ‘a’, and
the letter ‘b’ is renamed to the word ‘aa’. Next, let s1, . . . , sm be an enumeration
of Q \ {qf}. We set siRai+2, for 1 ≤ i ≤ m. Finally, for all j ≥ 1, we set
qfRam+2+j. In other words, qf renames to the words am+3, am+4, am+5, . . . .

Note that the renaming relation is total and surjective, in that every event in
Σ renames to one or more words over {a}, and every non-empty word over {a}
is the renaming of some event in Σ.

The renaming relation R lifts naturally to a renaming relation from strongly
monotonic timed words over Σ to weakly monotonic timed words over {a}.
Formally, write uRũ iff, for every event e with timestamp t in u, there are exactly
k ‘simultaneous’ events a with timestamp t in ũ, for some k such that eRak, and
vice-versa. For L a strongly monotonic timed language over Σ, we then let L̃ be
the image of L under this renaming. It is immediate that L is Σ-universal over
strongly monotonic time iff L̃ is {a}-universal over weakly monotonic time.

Let the timed automaton A be defined as in the previous subsection, i.e., the
strongly monotonic languageL(A) of A is precisely the complement of L(M) with
respect to strongly monotonic timed words. Our next task is to define a single-
event linear safety timed automaton Ã that accepts precisely the language L̃(A).

Ã can be obtained from A in a straightforward manner. Consider first an
e-labelled transition of A that is not a self-loop, with e ∈ Σ. If e �= qf , then
replace this transition by a sequence of k instantaneous a-labelled transitions,
where eRak. (Instantaneity can be enforced via a clock constraint such as ev = 0
on transitions.) If e = qf , on the other hand, Property 9 guarantees that the
transition is headed to the sink state, from which anything will be accepted,
so it likewise suffices to replace the original transition by a sequence of m + 3
instantaneous a-labelled transitions that end in the sink state.

The case of self-loops is somewhat more subtle. It is clear that we need only
handle self-loops on inner states, since any behaviour is allowed in any case in
initial states (while abs < 1) and in the sink state. Property 8, however, guar-
antees that self-loops on inner states are either labelled by a or by Σ \ {qf}. In
the first case there is clearly nothing to change. In the second case, we assume
that Ã has the use of m + 2 special clocks y1, y2, . . . , ym+2. Whenever an event
occurs, Ã resets the y-clock of lowest index that is not already zero. If all y-clocks
are zero, no transition is enabled. In this way, no more than m + 2 consecutive
‘simultaneous’ a’s are possible from any inner state, in effect preventing encod-
ings of qf from occurring. (Note that as soon as some non-null amount of time
elapses, all y-clocks automatically have non-zero values again.)

Stringing everything together, we have that M does not halt iff A is Σ-
universal over strongly monotonic time iff the single-event timed automaton Ã
is {a}-universal over weakly monotonic time. Moreover, it is immediate from our
construction that Ã also satisfies Properties 1–9, mutatis mutandis (in particular,
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Ã’s alphabet is simply {a}, and Ã accepts both weakly and strongly monotonic
timed words).

4.4 Restricting to a Single State

The final step is to transform Ã into a single-state automaton Â that accepts
precisely the same language.

We have already observed that the linearity of Ã places an upper bound on
the total number of possible changes between states in any run of the automaton.
Equivalently, the transition graph of Ã, with all self-loops removed, is simply
a directed acyclic graph, or DAG. It follows that one can enumerate the states
of Ã as s1, s2, . . . , sp so that the transition relation is monotone with respect to
this enumeration: any transition si −→ sj of Ã is such that i ≤ j.7 Note that
this entails that sp is the sink state.

Let z1, z2, . . . , zp be p new clocks for Â to use. Our rough intention is to encode
state sk by having, for every 1 ≤ i ≤ p, zi < 1 iff i ≤ k. In order to adequately
circumvent various technical difficulties (for instance, in initial states all clocks
start with value 0), we refine this correspondence as follows:

1. Initial states are associated with the clock constraint:

φinit ≡ abs < 1 ∨ (abs = 1 ∧ z1 = 1 ∧ z2 = 1 ∧ . . . ∧ zp = 1).

2. The sink state sp is associated with the clock constraint:

φsink ≡ (abs > 1 ∧ ev ≥ 1) ∨ (abs ≥ 1 ∧ z1 < 1 ∧ z2 < 1 ∧ . . . ∧ zp < 1).

3. While abs < 1, we do not reset the z-clocks. Afterwards, on any transition,
we systematically reset all z-clocks whose values are already strictly less than
1.

4. When entering any inner state sk, we ensure, for all 1 ≤ i ≤ p, that zi < 1
iff i ≤ k (which is achieved by resetting all clocks zi with i ≤ k on every
transition with target sk). It is clear that this discipline can be maintained,
thanks to the monotonicity of the transition relation with respect to the
enumeration of the states, and the fact that all z-clocks, upon leaving an
initial state, have value at least 1.
The clock constraint associated with an inner state sk is therefore:

φsk
≡ abs ≥ 1 ∧

∧
{zi < 1 | i ≤ k} ∧

∧
{zi ≥ 1 | i > k} ∧ ¬φsink.

Recall that, after the initialisation phase (i.e., after time 1), consecutive events
normally always occur strictly less than 1 time unit apart, otherwise the automa-
ton transitions to the sink state (cf. Property 5 in Subsection 4.2). It therefore
follows that, for any inner state sk, the clock constraint φsk

, which holds upon

7 Formally, such an enumeration can be obtained by topologically sorting the under-
lying transition DAG.
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entering sk, in fact holds continuously until the next transition occurs, unless
that transition is headed for the sink state.

A second important observation is that, once φsink holds, it holds forever.
Indeed, the clock ev is never reset in the sink state, so the clock constraint
ev ≥ 1, once true, never changes. On the other hand, if ev < 1, then we must
have zi < 1 for all i. Moreover, we also have zi ≤ ev for all i, since the z-clocks
all had to be reset when the sink state was first entered. It immediately follows
that if the zi’s subsequently ever reach 1, then so does ev , so that φsink does
indeed hold continuously.

The construction of Â from Ã is now straightforward. All states are merged
into one, and every transition

�������������� !s
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��"#$%&'()��������s′

of Ã is replaced by a self-loop

"#$%&'()��������
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φs∧φ, a, R′:=0
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in Â, where φs is the clock constraint associated with state s, and the new reset
set R′ comprises R together with all clocks zi that are required to be reset upon
entering s′.

It is easy to see that Â and Ã simulate each other’s behaviour almost perfectly.
The only difference is that Â can ‘silently’ transition from an initial or an inner
state into the sink state, simply through the passage of time (this occurs if clock
ev reaches 1). But in such a case, Ã’s next transition would take it to the sink
state as well, so that there would be no visible difference in terms of behaviour
(and language accepted) between the two automata.

We conclude that Â is universal over weakly monotonic time iff the two-
counter machine M does not halt. Â has a single state and a singleton alphabet;
moreover, it is straightforward to verify that the only clock constants required
in its construction are 0 and 1.

This completes the proof of Theorem 1.

5 Universality over Strongly Monotonic Time

The overall approach to proving the undecidability of universality for single-
state, single-event timed automata over strongly monotonic time is very similar
to that for the weakly monotonic case. The main difference is that we cannot
encode a plurality of events through instantaneous repetitions of a single event; in
particular, we have no good way of mimicking the delimiter b. We must therefore
alter our encoding of the halting computations of two-counter machines.
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LetM = (Q, q0, qf , C,D,Ξ) be a two-countermachine. Recall that in Section 4,
configurations ofMwere encoded over a unit-duration time interval. The essential
difference is that here we encode configurations over three time units, as follows.

Let s1, . . . , sm be an enumeration of Q \ {qf}, and consider a configuration
(s, c, d) of M. Given an integer k, we can encode this configuration over the time
interval [k, k + 3) using a single event a. More precisely:

1. We encode the state s in the interval [k, k + 1), using i occurrences of a if
s = si, and using m+j occurrences of a, for any j ≥ 1, if s = qf . In addition,
we require in both cases that the first a occur at time k.

2. We encode the value c of the first counter in the interval (k + 1, k+ 2) using
c occurrences of a.

3. We encode the value d of the second counter in the interval (k + 2, k + 3)
using d occurrences of a.

The construction of a timed languageL′(M) containing encodings of the halting
computation of M as strongly monotonic timed words can now proceed along the
same lines as before. There is an ‘initialisation’ phase during the first three time
units, followedby an encoding of the computation as successive configurations,and
finally an arbitrary suffix. The counter discipline is the same as before, ensuring
integrity by copying the contents of the counters exactly three time units apart.

Finally, a single-state, single-event linear safety timed automaton Â′ can be
constructed along the same lines as before to recognise the strongly monotonic
complement of L′(M). While not in the sink state, this automaton resets a
distinguished clock every three time units; using the constants 1, 2, and 3,8 it
can therefore correctly check timed words for violations, as judged against the
encoding described above. We leave the details of the construction to the reader.

This completes the proof sketch of Theorem 2.

6 Concluding Remarks

In this paper, we have studied the undecidability of the universality problem for
timed automata with minimal resources, and have obtained some fairly stringent
bounds: universality remains undecidable for timed automata with a single state,
over a single-event alphabet, and using no more than three distinct clock constants.

One natural question is whether we can further tighten the restriction on
clock constants. For example, it is an open problem whether the single constant
1 would suffice, over either weakly or strongly monotonic time.
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Abstract. We present a systematic translation from timed models of genetic reg-
ulatory networks into products of timed automata to which one can apply verifi-
cation tools in order learn about the possible qualitative behaviors of the network
under a whole range of uncertain delay parameters. We have developed a tool
chain starting from a high-level description of the network down to an exhaustive
analysis of its behavior. We have demonstrated the potential applicability of this
framework on several examples.

1 Introduction

The evolving domain of Systems Biology attempts to advance the quality of biological
models to become closer to models of simpler hard sciences like Physics. Given the
complexity of such models and the difficulty in obtaining experimental results for de-
termining exact model parameters, it is no big surprise that the engineering disciplines
in general, and various “semantics and verification” sub communities, are among those
who try to sell their modeling and analysis methodologies to biologists. The current
paper is no exception as it attempts to demonstrate the applicability of timed systems
for modeling and analysis of genetic regulatory networks.

We are concerned with models that cover a subset of what is going on inside a single
cell where the major actors are genes at certain levels of activation (“expression”) and
the products, typically proteins that they produce in a cell. The interaction between these
entities is often modeled by biologists using various forms of interaction diagrams that
indicate the mutual influences among these entities. At this level of abstraction one may
associate continuous variables to genes (to indicate the level of gene expression) and to
products (to indicate their concentration in the cell). Based on the corresponding inter-
action diagrams, one can, in principle, derive dynamical models that track the evolution
of these quantities over time. At this level of description, the dynamical model will be
essentially a system of nonlinear differential equations1 derived from the corresponding
chemical processes.

� This work was partially supported by the French-Israeli project Computational Modeling of
Incomplete Biological Regulatory Networks.

1 Or a hybrid automaton with nonlinear dynamics in each mode, to accommodate for discrete
modeling of changes in gene expression.
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A major problem with such models is that the parameters of the equations are very
difficult to obtain experimentally and can be known only within very large uncer-
tainty margins. Such systems can, in principle, be analyzed using novel hybrid systems
verification techniques, but although such techniques have recently matured for linear
systems [ADF+06], their adaptation to nonlinear systems is only in its infancy. An
alternative well-known modeling approach is based on discrete models where genes
can be either on or off and the values of the product concentrations are discretized
into a finite number of levels. In the extreme case when products can be only “absent”
and “present” one can obtain an abstract Boolean model with a finite automaton dy-
namics of the form we all love and appreciate. Historically a synchronous Boolean
model was first proposed by Kauffman [K69] followed by an alternative asynchro-
nous model, proposed by Thomas in a series of papers and an influential book [TD90].
The rationale for Thomas’ asynchronous model is that if two processes are active in
parallel, one producing product p1 and another producing p2, it is very unlikely that
both of them will terminate simultaneously in the “next” time step. Termination here
means that their product concentrations will cross their respective thresholds between
present and absent. The asynchronous model allows the processes to complete in any
order.

While these asynchronous networks are more faithful to reality, they ignore infor-
mation which may be known about the relative speeds of the processes, information
that can be exploited to restrict the set of possible qualitative behaviors of the automa-
ton. And indeed, recently Siebert and Bockmayr [SB06] proposed to enrich Thomas’
model with timing information and replace automata with timed automata. They have
used the tool UPPAAL to analyze such a model of a small network. In a completely
different context, Maler and Pnueli [MP95] gave a formal treatment of asynchronous
networks of Boolean gates with uncertain (bi-bounded) delays and a systematic method
for translating such networks into timed automata. This framework has been since
then the basis of numerous efforts for verification and timing analysis of such cir-
cuits [BMT99, BJMY02, BBM03]. In this paper we adapt this framework for the timed
modeling of genetic regulatory networks and provide a tool chain for translating such
networks into products of timed automata and analyzing its behaviors. The main im-
provement over [SB06] is in the systematic translation from timed gene networks to
timed automata. At this point we do not claim having discovered any new biological
result but rather demonstrate that timed models of non trivial phenomena can indeed be
analyzed by our existing timed automata tools.

The rest of the paper is organized as follows. In Section 2 we describe our mod-
eling framework based on genes, products, Boolean functions and delay operators. In
Section 3 we show how such models are transformed into timed automata and discuss
some anomalies inherent in discrete and timed modeling of continuous processes. To
make such models more faithful to reality, we extend the framework of [MP95] in Sec-
tion 4 to any finite number of concentration levels. Some experimental results on several
examples are reported in Section 5, followed by some discussion of ongoing and future
work. We assume familiarity with timed automata and present them in a quite informal
manner to facilitate their comprehension by potential users.
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2 Boolean Delay Networks

Let G = {g1, . . . , gn} be a set of “genes” viewed as Boolean variables which can
be either on or off. Let P = {p1, . . . , pn} be a set of “products” or “proteins” that
we assume to be represented by Boolean variables as well, where pi = 0 means that
the corresponding product is found in low concentration and pi = 1 indicates that its
concentration is high (absent/present in discrete parlance). We assume here that each
gene gi is responsible for the production of one product type pi. Intuitively when gi

is 1 it will tend to produce pi so that the latter, if absent, will sooner or later become
present. On the other hand if gi is off, so will become pi eventually due to degradation.
In control terms the value of gi can be seen as a reference signal for the desired value
of pi, a value that it will reach if the process is not disturbed.

The feedback in the system is based on changing the state of the genes according
to the concentration levels of the products. Among the common types of interaction
between genes and the proteins they produce we mention:

– Self-inhibition: the presence of pi turns gi off;
– A cascade of activations: when pi becomes present it turns on some gj .

More generally, we assume the value of each gi to be a Boolean function fi of p1, . . . ,
pn. We assume such a change in gene activation to be instantaneous upon the change in
(discretized) concentration, if the latter changes the value of the corresponding Boolean
function. On the other hand, the production and degradation of products is modeled as
taking some time between initiation and termination.

This difference in modeling is justified by the nature and time scales of the underly-
ing chemical processes. Producing one molecule of the product is already a very com-
plex process involving numerous reactions. Changing the state of pi from absent to
present may involve producing thousands of such molecules. Although some of this
can be done in parallel (or more accurately, with pipelining) it still may take a lot of
time. On the other hand, activating or inhibiting a gene is a relatively-simpler and faster
process where some molecule binds to some site and enables or inhibits the production
process.2

Our modeling approach is based on the premise that at every time instant t, the state
of a gene gi is determined by the values of the P -variables at time t via a Boolean
function fi. On the other hand, the influence of each pi on gi is not immediate and is
best expressed via a delay operator, a function whose output follows the input after
some delay. Figure 1 illustrates graphically the relationship between G and P using a
block-diagram formalism. The fi-boxes react immediately to a change in their inputs
and alter gi, and the latter influences pi after some delay specified by the Di-boxes.
Looking closer, each delay operator Di can be characterized by a table of the following

2 The dependence of such a binding event upon the presence level of some p is more of a
stochastic nature as the more molecules we have, more this is likely to happen. In fact, the
“real” story is more complex as the activation of a gene is not a Boolean business either, and
there are different levels of gene expression, each leading to different production rates and
delays. These rates depend on the concentration of the products via stochastics, but all this is
beyond the scope of the present paper.
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· · · fnf3f2f1

g1 g2 g3 gn

D2D1 D3 Dn
· · ·

· · ·
p1 p2 p3 pn

Fig. 1. A graphical representation of a gene network. The fi’s are arbitrary Boolean functions of
P and the Di’s are the delay operators.

form:
pi gi p′i Δ
0 0 0 −
0 1 1 [l↑, u↑]
1 0 0 [l↓, u↓]
1 1 1 −

(1)

In this table, p′i indicates the value of the product the systems “aims at” and should
eventually reach. When pi and gi agree (00 or 11) the system is in a stable state and
p′i = pi. In state 01 the product starts being produced and will become 1 if undisturbed.
The time delay for moving from absence to presence is expressed using the interval
I↑ = [l↑, u↑] to be explained in the sequel. Likewise, at state 10 the product degrades
and will become 0 within I↓ = [l↓, u↓] time. To better explain the delay operator let us
start with a deterministic delay model. Let d↑ = l↑ = u↑ and d↓ = l↓ = u↓. A typical
behavior of this operator is illustrated in Figure 2-(a) where gene gi is turned on at time
t and then pi follows and becomes present at time t + d↑. Later, at t′, gene gi is turned
off and pi completes its degradation to low level at t′ + d↓.

It is, however, unrealistic to assume exact delays given the inherent noise in bio-
logical systems and general experimental limitations. Even in the absence of those,
deterministic delays should be excluded due to the fact that discrete state 0 represents
a range of concrete concentrations and it is clear that from each of them it will take a
different amount of time to cross the threshold to reach the domain of 1. This feature
is covered by our non-deterministic delay operator which allows the response of pi to
occur anywhere in the interval [t + l, t + u], see Figure 2-(b).

We use Boolean signals3 to formalize the Di operators. A Boolean signal x is a
function from the time domain R+ to B = {0, 1} which admits a partition of R+ into

3 To avoid confusion with other meanings of “signals” in Biology, we stress that the word signal
is used here in the sense used in of signal processing, that is, a function from time to some
domain, a waveform, a temporal pattern.
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a countable set of (left-closed right-open) intervals I0, I1, . . . where each Ii is of the
form [ti, ti+1) such that if t and t′ belong to the same interval, x(t) = x(t′). We will
assume here, just for ease of notation, that all input signals start with 0, hence x is 0 in
all intervals Ij with even j, and 1 when j is odd. The set J(x) = t1, t2, . . . is called the
jump set of x, that is, the set of time points where the value of the signal changes.

Definition 1 (Delay Operator). Let x and y be two Boolean signals with J(x) =
{t1, t2, . . .} and J(y) = {s1, s2, . . .}, and let Di be a delay operator characterized by
the delay parameters l↑i , u↑

i , l↓i and u↓
i . We say that y ∈ Di(x) if for every j

sj ∈ [tj + l↑i , tj + u↑
i ] if j is odd

sj ∈ [tj + l↓i , tj + u↓
i ] if j is even

t t + l↑ t + u↑ t′ t′ + l↓ t′ + u↓

gi

pi

t t′t + d↑

gi

pi

t′ + d↓

Fig. 2. (a) Deterministic delay pi = Di(gi); (b) Non-deterministic delay pi ∈ Di(gi)

We can now define the semantics of the network (1), that is all the temporal behaviors
it may generate over the values of the G and P variables. These are all the signals
satisfying the following system of signal inclusions4 for i = 1, . . . , n:

gi = fi(p1, . . . , pn)
pi ∈ Di(gi)

(2)

3 Modeling with Timed Automata

Our translation from delay equations to timed automata is compositional as we build a
timed automaton for each equation and inclusion in (2) so that the composition of these
automata generates exactly the set of signals satisfying the equations. For each instan-
taneous relation gi = fi(p1, . . . , pn) we construct a one-state automaton over (n + 1)-
dimensional signals whose self-loop transitions are labeled by tuples (gi, p1, . . . , pn)
that satisfy the equation. The heart of our modeling approach is the automaton for the
delay operator which can be seen as the continuous-time analog of the one-bit shift
register.

The timed automaton of Figure 3-(a) realizes the delay operator p ∈ D(g). We
annotate states by the values of g and p where p stands for p = 0 and p stands for

4 If the delay was deterministic, the second line would be replaced by pi = Di(gi) and there
would be a unique solution from any given initial state.
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p = 1. At state pg the product is absent, the gene is off and the automaton may stay
in this stable state forever as long as g, which is viewed as an input for this automaton,
remains off. When g is turned on, the clock c is reset to zero and the automaton moves
to the excited state gp in which it can stay as long as c < u↑ but can leave to stable state
gp, where the gene is on and the product is present, as soon as c ≥ l↑.

The uncertainty in process duration is expressed in this automaton by the possibility
to stay at an unstable state until c = u but leave it as soon as c ≥ l. An alternative
modeling style is to move the non determinism to the triggering transition and making
the stabilizing transition deterministic as in Figure 3-(b). Here instead of being reset to
zero, the clock is set non deterministically to a value in [0, u−l] and the transition guard
is replaced with c = u. In both cases the result is the same, there are uncountably-many
behaviors (and outputs) that the automaton may exhibit in the presence of one input. We
will use the second approach in this paper as it extends more naturally from Boolean to
multi-valued domains.

(b)

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑c ≥ l↑

c ≥ l↓

c < u↓

gp gp

gp gp

c < u↑

(a)

g = 1/

c := 0

g = 0/
c := 0

c := [0, u↑ − l↑]
g = 1/

g = 0/
c := [0, u↓ − l↓]

Fig. 3. Timed automaton models for the delay operator: (a) non determinism in the stabilizing
transition; (b) non determinism in the exciting transition

Before proceeding further let us contemplate a bit on the relation between the delay
bounds and the underlying continuous process. Figure 4 illustrates hypothetical produc-
tion and decay processes to which such a timed discrete abstraction could correspond.
To simplify the discussion assume that the concentration of p grows at a fixed rate k↑

when g is turned on, and decreases with rate k↓ when g is off.5 The mapping from the
concrete domain of concentrations, the interval [0, 1] to {0, 1} is based on partitioning
the interval into p0 = [0, θ] and p1 = [θ, 1]. The delay interval D↑ should thus indicate
the minimal and maximal times it takes for a trajectory starting at any point in p0 to
cross the θ-threshold to p1. Following this reasoning we obtain

D↑ = [l↑, u↑] = [0, θ/k↑] and D↓ = [0, θ/k↓].

The zero lower bounds come from the fact that the starting point can be a point in p0

which is as close as we want to θ. Not having a positive lower bound is sometimes

5 Approximate bounds can be derived for less trivial continuous dynamics using methods similar
to those described in [HHW98, SKE00, F05].
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considered an undesirable feature in timed models as it may create zero-time oscilla-
tions between 0 and 1, also known as Zeno behaviors. However, in our context, having
a positive lower bound would exclude behaviors which are legitimate in the continuous
context as we illustrate below.

θ

p

t
u↓

Decay

p1

p0

θ

t

p

u↑

Production

p0

p1

Fig. 4. An example of a continuous process which may underly the delay

Consider, for example, the negative feedback loop of Figure 5-(a) where the pres-
ence of p turns g off and its absence turns g on. Modeling the same phenomenon as a
continuous system we will have a one-dimensional vector field like the one depicted in
Figure 5-(b) which points toward the equilibrium θ from both sides. In the real noisy
process, it is possible that the concentration will fluctuate around the equilibrium as in
Figure 5-(c), but viewed discretely this is a Zeno behavior. A positive lower bound will
prevent such behaviors and will force the system to stay, quite arbitrarily, on one side
of θ for some time. On the other hand, the continuous “inverse image” of an oscillation
between 0 and 1 includes unrealistic behaviors such as the one of Figure 5-(d) where the
system exhibits large oscillations. Our modeling strategy is to use zero lower bounds
but reduce their negative effects by moving from Boolean to multi-valued abstractions
as will be described in Section 4. The automaton obtained for the negative feedback
loop is shown in Figure 6-(a).

The alert reader might have noticed that we have not considered yet the case where
the gene is turned off before the product becomes fully present. Such a situation may
occur if the activation function of the gene depends on other products. In the automaton
model this situation corresponds to g being turned on and then turned off at state gp
before p becomes present (or the symmetric case when g is turned on at state gp). This
is modeled by the regret (or abort) transitions of the automaton of Figure 6-(b) that
go from the excited state back to a stable state. Again, if we look at the continuous
process, we cannot really know if it was aborted close to or far from the threshold, but
since, using zero lower bounds, excitations are always accompanied by assignments of
the form c := [0, u], the timed model is conservative and covers all cases.

We construct such an automaton for each inclusion pi ∈ Di(gi) and a one-state
automaton for each instantaneous relation gi = fi(p1, . . . , pn). Composing these au-
tomata we obtain a timed automaton that captures all the behaviors of the network
[MP95]. We have implemented, within the IF tool suite [BGO+04], a translator from
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θ

(b) (c)

p

θ

p0

p1

t

(d)

p

p0

p1

θ

t

(a)

g

D

p

¬p

Fig. 5. (a) a negative feedback loop; (b) the corresponding one-dimensional continuous dynamical
system; (c) a possible behavior of the underlying continuous dynamics; (d) a behavior which is
impossible in the continuous system but is valid in the abstract timed model

(a) (b)

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑

g = 0/

c = u↓

c < u↑

c < u↓

gp gp

gp gp

c = u↑

c := [0, u↑] c := [0, u↓] c := [0, u↓]
g = 1/
c := [0, u↑]

g = 1/g = 0/

Fig. 6. (a) The automaton for the negative feedback network of Figure 5-(a). The automaton
leaves states gp and gp immediately upon entrance; (b) A timed automaton model for the delay
operator with zero lower bounds and the possibility of regret transitions from gp to gp and from
gp to gp.

Boolean delay networks into timed automata which are then analyzed to produce the
reachability graph which shows all the possible qualitative behaviors of the network
when timing constraints are taken into account. These behaviors constitute a subset of
what would be possible using an untimed model.

4 Multi-valued Models

The quality of the model can be improved significantly if we refine the discrete abstrac-
tion to admit several levels of concentration. To this end we replace the abstract set
{0, 1} by a finite set {0, 1, . . . ,m − 1}, associated with a set of thresholds 0 < θ1 <
θ2 < . . . , < θm−1 < 1 so that state i corresponds to the interval pi = [θi, θi+1]. For
each direction of evolution (production and degradation) we define an upper and lower
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bound for moving between neighboring regions. To be more precise, let v
t−→ v′ de-

note the fact that the underlying continuous process may go from v to v′ in t time. Then
the delay parameters are defined as

l↑i = min{t : θi
t−→ θi+1} u↑

i = max{t : θi
t−→ θi+1}

l↓i = min{t : θi
t−→ θi−1} u↓

i = max{t : θi
t−→ θi−1}

Whenever g = 1, the product level will move from pi to pi+1 within the [l↑i , u
↑
i ] time

interval and, likewise, it will move from pi to pi−1 when g = 0. The extended delay
operator is specified as follows:

g p p′ Δ g p p′ Δ

0 0 0 − 1 0 1 [l↑0 , u
↑
0]

0 1 0 [l↓1 , u
↓
1] 1 1 2 [l↑1 , u

↑
1]

0 2 1 [l↓2 , u
↓
2] 1 2 3 [l↑2 , u

↑
2]

. . . . . . . . . . . . . . . . . . . . . . . .

0 m − 1 m− 2 [l↓m−1, u
↓
m−1] 1 m − 1 m− 1 −

(3)

The corresponding automaton is shown in Figure 7. Its upper part corresponds to
states where g = 1 and p is increasing, and the lower part to states where g = 0 and
p is decreasing. The main attractive feature of this model is that it makes a distinction
between entering a state via a vertical transition (which reverses the direction of evolu-
tion) and entering it via a horizontal transition (which is due to a monotone growth or
decay process). In the latter case we do not need to use a zero lower bound because it is
clear that the threshold was crossed from below (resp. above) and it will take some time
between li and ui to cross the next threshold in the same direction. Hence the transition
from (g, i−1) to (g, i) sets the clock to the interval [0, u↑

i − l↑i ] while the transition from
(g, i) to (g, i) sets the clock to the interval [0, u↑

i ] allowing an immediate transition from

c < u↑
0

(g, 0)

(g, 0)

g = 0/

c < u↓
1

(g, 1)

(g, 1)

c := [0, u↓
1]

g = 0/

c < u↓
2

(g, 2)

(g, 2)

c := [0, u↓
2]

g = 0/

c < u↑
1 c < u↑

2

c = u↑
0/ c = u↑

1/ c = u↑
2/

c = u↓
3/c = u↓

2/c = u↓
1

· · ·

· · ·

g = 1/
c := [0, u↑

2]
g = 1/
c := [0, u↑

1]
g = 1/
c := [0, u↑

0]

c := [0, u↓
2 − l↓2 ]c := [0, u↓

1 − l↓1 ]

c := [0, u3 ↑ −l↑3 ]c := [0, u2 ↑ −l2 ↑]c := [0, u↑
1 − l↑1 ]

Fig. 7. A timed automaton model for the multi-valued delay operator. Zeno behaviors can now
take place only among states that correspond to neighboring levels of concentration.
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there to (g, i + 1). As a result, zero time cycles can now involve only states that corre-
spond to neighboring levels of concentration, that is, (g, i), (g, i + 1), (g, i + 1), (g, i).
This way the deviation of the discrete timed model from the continuous one is reduced
and tends to zero as m tends to infinity.

To complete the adaptation of the model to the multi-valued setting we replace each
activation function of the form f : {0, 1}n → {0, 1} by a function of the form f ′ :
{0, . . . ,m − 1}n → {0, 1} and have all the ingredients for translating the network in
a timed automaton and analyzing its behaviors. Some experimental results are reported
in the next section.

5 Experimental Results

We demonstrate the potential of our modeling framework and tools on several examples.

5.1 A Cross-Inhibition Network

We first consider a simple model of the lysis/lysogeny decision in the λ bacteriophage,
a virus that infects bacteria. Following the infection, viruses can reproduce in bacteria
in two different ways: lysis and lysogeny. In the first case, the virus multiplies in the
bacterial cell and eventually kills the cell. In the second case, the genetic material of
the virus integrates into the bacterial chromosome and replicates with it. A genetic
regulatory network involving at least 5 viral genes is responsible for the choice between
lysis and lysogeny. We study here a simple model of the core of the network that has
been proposed as responsible for the lysis/lysogeny decision [TT95]. The model that we
use is similar to the model used in [SB06] in their proposal to extend Thomas’ model
with timing information.

The network is represented by the diagram of Figure 8. It consists of two genes, cI
and cro, that code for two repressor proteins, CI and Cro. More specifically, protein CI
represses the expression of gene cro, whereas protein Cro represses the expression of
gene cI, and at a higher concentration, the expression of its own gene. We denote the
genes cI and cro by x and y and the proteins CI and Cro by X and Y .

x y

X

Y

Fig. 8. A cross-inhibition network

In our formalism, we use Boolean variables gx and gy for the state of the genes, and
two integer variables, px ∈ {0, 1} and py ∈ {0, 1, 2} for the protein concentrations. The
use of three concentration levels for protein Y is motivated by the fact that a moderate
concentration of the protein is sufficient for the inhibition of gene x, whereas a high
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concentration is needed to inhibit its own gene y. The following activation functions
summarize this information:

px py gx gy

0 0 1 1
0 1 0 1
0 2 0 0
1 0 1 0
1 1 0 0
1 2 0 0

The timed automata Ax and Ay for this example are depicted in Figure 9. As in [SB06],
we have used the delay intervals [5, 10], but as explained in Section 3, we assumed that
some changes in protein concentration can happen instantaneously in order to guarantee
that the timed model is a conservative over approximation of a continuous process.

c < 10

gx = 1

px = 0

c < 10

gx = 1

gx = 0gx = 0

px = 0 px = 1

px = 1
c = 10

c = 10

¬fx/

c := [0, 10]c := [0, 10]

fx/ ¬fx/ fx/

gy = 1

py = 0

c < 10

gy = 0

py = 0

fy/

c := [0, 10]
¬fy/

gy = 0

py = 1

c < 10

py = 1

gy = 1

c < 10

fy/

c := [0, 10]

¬fy/

c := [0, 10]

c ≥ 5/c := 0

c ≥ 5/c := 0

c ≥ 5/

c ≥ 5/ gy = 1

gy = 0

py = 2

py = 2

c < 10

fy/
¬fy/

c := [0, 10]

Fig. 9. The automata Ax and Ay for the cross-inhibition network

We analyzed this system using the IF toolbox [BGO+04], the successor of KRONOS

[DOTY96]. The initial state of the system corresponds to the infection of a bacteria
by a bacteriophage. In this state, both proteins are absent and both genes are on. The
reachability graph generated by IF for this example is given in Figure 10-(a). Because of
the interleaving semantics and the fact that changes in gene activity follow changes of
protein concentration instantaneously, some states are left immediately upon entrance
and have no biological significance. The toolbox collapses chains of states connected
by immediate transitions into single states to obtain the automaton of Figure 10-(b).

A manual analysis of this reachability graph reveals that the system exhibits a mutual
exclusion property, in the sense that it necessarily either ends up in a state where X is
present and Y is absent (state 10), or oscillates between states where X is absent and
Y is present in either medium (state 01) or high (state 02) concentration. The mutual
exclusion property is a well-known property of cross-inhibition networks such as the one
we study. Additional interesting timing properties can be inferred from the reachability
graph. First, state 10 is the only state in which the system can remain forever and it can
be reached from initial state 00 within time included in the interval [0, 10]. Secondly,
it takes to the system between 5 and 20 time units to reach a state 02 having a high
concentration of Y . Finally, the oscillations period is between 0 and 20 time units, that
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1010
0101

cy ≤ 10

/cy := 0

0102

0002

cy ≤ 10

0101

cy ≤ 10

0001

cy ≥ 5

/cy := 0/cy := 0

1101

1100

cx = cy ≤ 10

1110 00

01

(y:=1)

10

(x:=1)

02

(y:=2)

01

(y:=1) (y:=2)

(a) (b)

Fig. 10. (a) The reachability graph generated by IF for the cross-inhibition network. State are
labeled by values of state variables (gx, gy, px, py). Two clocks cx and cy are used and the
initial state is double circled. Dotted circles represent states that are left immediately. (b) The
reachability graph after collapsing instantaneous transitions. State labels correspond to protein
concentrations (px, py) and the transitions are labeled by changes in their values.

corresponds to all the cases between damped oscillations (period arbitrary close to 0) and
sustained oscillations with maximum amplitude (period of 20 time units). It should be
noted that the reachability graph makes a distinction between two instances of state 01,
the first being reached from initial state 00 and hence having to wait at least 5 time units
to move to 02, and the second reached from 02 and hence can return to it immediately. To
summarize this example, we obtain the same qualitative results as in the untimed model
(which suggest that this particular network is robust under delay variations), plus some
additional timing information on the possible behaviors of the system.

5.2 Transcriptional Cascade in E. coli

As a second example, we study a transcriptional cascade of E. coli [HTW05] repre-
sented in Figure 11. It is made of four genes: tetR, lacI, cI, and eyfp that code respec-
tively for three repressor proteins, TetR, LacI, and CI, and the fluorescent protein EYFP.
The fluorescence of the system, due to the protein EYFP, can be measured. The system
can be controlled by the addition or removal of a small diffusible molecule, aTc, in the
growth media. More precisely, aTc binds to TetR and relieves the repression of lacI.
One can check that the fluorescence of the system at steady state will be low for low
aTc concentrations, and high for high aTc concentrations.

We have made a simple model of this system, assuming a maximal delay for protein
production of 45 minutes for all proteins. Although these delays are biologically realis-
tic they should not be considered as accurate and they are used only to demonstrate the
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TetR LacI EYFPCI

aTc

tetR lacI cI eyfp

Fig. 11. A transcriptional cascade

capabilities of our tool. Using the IF toolbox, we computed the reachability graph for
two different initial conditions, corresponding to high and low aTc concentrations. We
obtained, respectively, graphs having 17 states and 34 transitions (see Figure 12), and
19 states and 38 transitions. The computations lasted less than one second on a stan-
dard PC. In both cases, these computations indicate that the system eventually stabilizes
and always remains in a state in which the fluorescence level is consistent with what is
experimentally observed: high fluorescence in presence of aTc, and low fluorescence
in its absence. Manual analysis of these graphs revealed that the equilibrium state is
necessarily reached in less that 6 hours. This upper bound is much larger than what has
been observed experimentally [HTW05], and is due to the fact that we have used coarse
Boolean abstractions of the concentration levels. Nevertheless, proving the existence of
some upper bounds, which cannot be done using untimed models, is an important step
toward using such a cascade as a module in a synthetic network.

10000

10001

(EYFP:=1) 

10010

(CI:1) 

11000

(TetR:=1) 
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(LacI:=1) 
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(CI:=0) (EYFP:=1) (TetR:=1) (CI:=0) 

(EYFP:=0) 

Fig. 12. The reachability graph for the transcriptional cascade in the presence of aTc. State labels
correspond to (paTc, ptetR, placI , pcI , peyfp). The initial state is 10000 (aTc present and EYFP
absent) and the attractor state is 11101 (aTc present and EYFP present).

5.3 Nutritional Stress Response in E. coli

Our last example is based on a model of the nutritional stress response in E. coli which
plays a crucial role in its survival. When confronted with a nutritional stress, this crea-
ture stops growing and enters in a dormant, resistant state. We use a simplified version
of the elaborate model of this phenomenon proposed in [RJP+06]. The model consists
of six genes, six proteins, and one additional variable encoding the presence or absence
of nutrition. Since no timing information is available on this system we have arbitrarily
used [0, 45] minutes as a delay interval, just to check the feasibility of analysis.
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The reachability graph, computed using the IF toolbox in less than one second, has 69
states and 209 transitions, and admits several cycles (Figure 13). However, the manual
analysis of graphs of this size is less attractive and should be replaced with model check-
ing against higher-level temporal properties that we intend to integrate into our toolbox.
Nevertheless, this example shows that the exhaustive analysis of complex timed models
of gene networks is feasible.
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Fig. 13. The reachability graph for the nutritional stress response

6 Discussion

We have laid down some conceptual foundations for timed modeling of genetic regu-
latory network and other biological processes, provided tool support for the definition
and analysis of such models and demonstrated its effectiveness on several examples. In
particular, we have extended the framework of [MP95] from Boolean to multi-valued
domains in a clean and systematic manner which reduces the effect of Zeno behav-
iors on the quality of the model. We have tested the computational effectiveness of our
modeling approach on several non-trivial examples.

The modeling framework can be refined further to accommodate several levels of
gene activation, each with different production rates and delays. Such an extension will
require a careful examination of different ways to construct functions over bounded
integer domains using a combination of logical and arithmetical operations.

Finally let us not delude ourselves that after having provided modeling and tool
support, all that remains is to sit and wait for biologists to submit their models for
analysis. Much is still to be done in promoting this class of models among them and
in orienting their experiments to yield the information required to make these models
useful. We have reasons to believe that this information could be, to a certain extent,
easier to obtain than what is needed for meaningful continuous models, for example
from micro-array experiments with a low sampling rate. If this is the case we can hope
that timed models will find a significant niche in the discrete-to-continuous spectrum of
dynamical system models used for biological purposes.
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Abstract. We study the model-checking problem for WMTL, a cost-
extension of the linear-time timed temporal logic MTL, that is inter-
preted over weighted timed automata. We draw a complete picture of
the decidability for that problem: it is decidable only for the class of
one-clock weighted timed automata with a restricted stopwatch cost,
and any slight extension of this model leads to undecidability. We finally
give some consequences on the undecidability of linear hybrid automata.

1 Introduction

Since a couple of years, the verification technology for timed automata has
evolved in several interesting directions, to answer new challenges posed by
modern real-life systems, like the control of resource (e.g. energy) consump-
tion. In that direction, weighted (or priced) timed automata [ALP01, BFH+01]
have been designed as an extension of the timed automaton formalism, which
uses observer variables to measure the performance of executions of the sys-
tem. This model raises numerous interesting optimization problems. A number
of them have been shown decidable, including optimal cost reachability [ALP01,
BFH+01, BBBR07], optimal reachability in a multi-cost setting [LR05] or mean-
cost optimal schedules [BBL04]. Note that the first and third problems even
induce no extra complexity compared to the classical problems without opti-
mization constraints (they are PSPACE-Complete).

Unfortunately, in general, adding resource consumption information is far
from being free-of-charge! Indeed, to now, two main branches have been ex-
plored, which both lead either to negative results, or to complex algorithms.
The first branch concerns the control problems, where a controller tries to min-
imize resource consumption, whatever an environment does: computing optimal
cost is undecidable in general [BBR05], and this result holds even if the models
have no more than three clocks [BBM06]. Similarly, the model checking of WCTL,
a natural cost-extension of the branching-time logic CTL, has been investigated,
and very similar undecidability results have been obtained [BBR04, BBM06],
even when strong hypotheses are made on the cost [BBR06].

Recently, restriction of timed models to one clock has raised some inter-
est in the community, with interesting complexity or decidability results, like
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the NLOGSPACE-Completeness of reachability checking in one-clock timed au-
tomata [LMS04], or the decidability of emptiness checking in one-clock alter-
nating timed automata over finite timed words [LW05, OW05, LW07, OW07].
In the context of weighted timed systems, this restriction also leads to nice im-
provements. Indeed, optimal timed games have been proven decidable under that
restriction [BLMR06]. The same holds for the model checking of WCTL [BLM07],
which even remains PSPACE (i.e., has the same complexity as the model check-
ing of TCTL, the classical timed extension of CTL, even under the single-clock
restriction). However, not everything is decidable in this one-clock framework,
and for instance, the model checking of WCTL� is still undecidable [BLM07].

In this paper, we tackle an obvious continuation of this literature, by con-
sidering the cost extension of the linear-time logic LTL, which we call WMTL
(MTL, for “Metric Temporal Logic”, is one of the classical timed extensions
of LTL introduced by [Koy90], and WMTL can also be viewed as a weighted
extension of MTL, hence the name). Indeed, it is known since [OW05] that the
model-checking problem for MTL over timed automata accepting finite timed
words is a decidable problem, whereas it becomes undecidable for infinite timed
words [OW06]. We hence investigate the model checking problem for WMTL over
weighted timed automata recognizing finite timed words, and draw a complete
picture of the decidability results by proving that only the restriction to one-clock
weighted timed automata using a single stopwatch-cost variable1 is decidable,
and that any single extension (like having a non-stopwatch cost variable, or two
clocks, or two stopwatch cost variables) leads to undecidability. The decidability
proof relies on technics developed in [OW05, OW07] (notice however that in our
precise case, it is only valid for one-clock automata). The undecidability proofs
rely on a reduction from the halting problem of two-counter machines and push
ideas developed in [BBM06, BLM07] much further to get an undecidability re-
sult with only one clock in the model and a single cost variable. Finally, these
undecidability results have some consequences on the undecidability landscape
for linear hybrid automata.

2 Definitions

2.1 Weighted Timed Automata

In the whole paper, AP is a fixed, non-empty set of atomic propositions. In this
section, we introduce the notion of weighted timed automata [ALP01] (also called
priced timed automata [BFH+01]), which is an extension of timed automata with
a cost information (or weight) on both locations and edges. We first introduce
usual notations and definitions for timed automata.

Given a finite set X of clocks, the set of clock valuations over X (that is, of
applications v : X → R≥0) is denoted RX

≥0. Given a valuation v and a nonnegative
real τ ∈ R≥0, the valuation v + τ is defined by (v + τ)(x) = v(x) + τ for
every x ∈ X . The set G(X ) denotes the set of guards over X which are finite

1 A cost is stopwatch if it behaves like a clock that can be stopped and restarted.
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conjunctions of atomic guards of the form x ∼ n where x ∈ X is a clock, n ∈ N
is an integer constant, and ∼ is one of the symbols {<,≤,=,≥, >}. Notation
v |= g means that the valuation v satisfies the guard g (which is defined in the
natural way). A reset r ⊆ X is a subset of X indicating which clocks are to be
reset to 0; we write v′ = v[r ← 0] for the resulting valuation, i.e., v′(x) = 0 if
x ∈ r, and v′(x) = v(x) otherwise.

Definition 1. A weighted timed automaton (WTA in short) with k cost func-
tions is a tuple A = (Q,Q0, λ,X , T, (ci)1≤i≤k) such that: Q is a finite set of
locations, Q0 ⊆ Q is the set of initial locations, λ : Q → AP is the labelling func-
tion, X is a finite set of clocks, T ⊆ Q×G(X ) × 2X ×Q is a finite set of edges,
and for each 1 ≤ i ≤ k, ci : Q ∪ T → N assigns a cost to locations and edges.

For S ⊆ N, a cost ci is said to be S-sloped if ci(Q) ⊆ S. If S = {0, 1}, it is
said stopwatch. If |S| = n, we say that the cost ci is n-sloped.

The semantics of a weighted timed automaton A corresponds to the semantics
of its underlying timed automaton (i.e., forgetting about cost functions). It is
given as a transition system TA = (S, S0,→) where:

– the set of states S is Q × RX
≥0,

– the initial states are S0 = {(q0, v0) | q0 ∈ Q0 and v0(x) = 0 for every x ∈ X},
– the transition relation → is composed of delay and discrete moves:

• (delay move) (q, v) τ−→ (q, v + τ) for (q, v) ∈ S and τ ∈ R≥0,
• (discrete move) (q, v) e−→ (q′, v′) if there exists an edge e = (q

g,r−−→ q′)
in T such that v |= g and v′ = v[r ← 0].

A mixed move (q, v)
τ,e−−→ (q′, v′) corresponds to the concatenation of a delay

and a discrete moves (q, v) τ−→ (q, v + τ) e−→ (q′, v′).

A run (or execution) in A is a finite path in TA, composed of mixed moves.
Let � = (q0, v0)

τ1,e1−−−→ (q1, v1)
τ2,e2−−−→ (q2, v2) · · ·

τp,ep−−−→ (qp, vp) be a finite run
in A. For every i ≤ k, the i-th cost of �, denoted by costi(�), is defined as:

costi(�) =
∑

1≤j≤p

ci(qj−1) · τj +
∑

1≤j≤p

ci(ej)

Informally, the cost of a run is the accumulated cost of each move along that
run: delaying in some state q during d time units costs c(q) · d, and firing an
edge e costs c(e). Hence, if q is a location, c(q) gives the derivative of the cost
function for waiting in q: we thus write ċ = 6 on pictures. For discrete costs on
transitions, we write c+ = 3.

Example 1. Fig. 1 models the energy consumption of a device. Due to over-
heating, this device cannot be left on for more than half an hour: it must either be
turned to a “sleep” mode, or completely off. The model has two costs functions:
cost c represents energy consumption, while cost w measures the duration of this
device being on. The sleeping state consumes slightly more energy than the off
state, but it is cheaper and quicker to turn the machine back on. Of course, being
on consumes much more energy, but this is the only way of using the device.
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off
ẇ=0
ċ=1

on
ẇ=1
ċ=10

x≤30

sleep
ẇ=0
ċ=3

x≥10

x:=0 c+=5

x:=0
x≥5

x:=0c+=2

x:=0

Fig. 1. Measuring the uptime of a device

2.2 The Logic WMTL

The logic WMTL is a weighted extension of LTL, but can also be viewed as an
extension of MTL [Koy90], hence its name WMTL holding for “Weighted MTL”.

Let C be a set of cost functions. We define the logic WMTL over C as the set
of formulas defined inductively as:

WMTL � ϕ ::= σ | ϕ ∨ ϕ | ¬ϕ | ϕUcost∼n ϕ

where σ ∈ AP, cost is a cost-function symbol in C, ∼ ∈ {<,≤,=,≥, >}, and
n ∈ N. If there is a single cost function or if the cost function cost is clear from
the context, we simply write ϕ1 U∼n ϕ2 instead of ϕ1 Ucost∼n ϕ2.

We interpret WMTL formulas over (finite) runs of weighted timed automata
with |C| cost functions, identifying cost costi of C with the i-th cost costi of the
runs of the automaton. Let A be such a weighted timed automaton, and let
� = (q0, v0)

τ1,e1−−−→ (q1, v1)
τ2,e2−−−→ (q2, v2) · · ·

ep,τp−−−→ (qp, vp) be a finite run in A.
We write �≥i for its suffix starting from (qi, vi), and �≤i for its prefix ending in
(qi, vi). The satisfaction relation for WMTL is then defined inductively as follows:

� |= σ ⇐⇒ σ ⊆ λ(q0)
� |= ϕ1 ∨ ϕ2 ⇐⇒ � |= ϕ1 or � |= ϕ2

� |= ¬ϕ ⇐⇒ � �|= ϕ

� |= ϕ1 Ucost∼n ϕ2 ⇐⇒ ∃k > 0 s.t. �≥k |= ϕ2, ∀0 < i < k, �≥i |= ϕ1,

and cost(�≤k) ∼ n

We use classical shorthands like true def= σ ∨¬σ, false def= ¬true, X ϕ
def= falseU ϕ,

Fcost∼n ϕ
def= trueUcost∼n ϕ, and Gcost∼n ϕ

def= ¬
(
Fcost∼n ¬ϕ

)
.

Remark 2. Classically, there are two possible semantics for timed temporal log-
ics [Ras99]: the continuous semantics, where the system is observed continuously,
and the point-based semantics, where the system is observed only when the state
of the system changes. We have chosen the latter, because the model checking
problem for MTL under the continuous semantics is already undecidable [AH90].

Example 2. We continue with our previous example. Assume that the battery
has been charged for a total of 1300 cost units (for cost c). We would like to
know whether it is possible to use the device for at least two hours within a
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period of three hours. This is equivalent to the existence of a finite path in our
model satisfying the following WMTL formula:

Fc≤1300 end ∧ Fw≥120 end ∧ Ft≤180 end

where t is a special cost measuring time, i.e., ṫ equals 1 in every location, and end
characterizes the ending state of the finite path (for instance, end = ¬X true).

2.3 The Problem and Our Results

In the following, we focus on the existential model-checking problem for WMTL
over weighted timed automata, stated as: given A a weighted timed automaton
and ϕ a WMTL formula, decide whether there exists a finite run � in A starting
in an initial state and such that � |= ϕ. Since WMTL is closed under negation,
our results obviously extend to the dual problem of universal model-checking.

We prove that the model-checking problem against WMTL properties is de-
cidable for:

(1) one-clock WTAs with one stopwatch cost variable.

Any extension to that model leads to undecidability. Indeed, we prove that the
model-checking problem against WMTL properties is undecidable for:

(2) one-clock WTAs with one cost variable,
(3) one-clock WTAs with two stopwatch cost variables,
(4) two-clock WTAs with one stopwatch cost variable.

We present our results as follows. In Section 3, we explain the positive re-
sult (1) using an abstraction proposed in [OW05] for proving the decidability
of MTL model checking over timed automata. Then, in Section 4, we present
all our undecidability results, starting with the proof for result (2), and then
slightly modifying the construction for proving results (3) and (4). We conclude
with some corollaries for linear hybrid automata.

3 Decidability Result

Theorem 3. Model checking one-clock weighted timed automata with one stop-
watch cost against WMTL properties is decidable, and non-primitive recursive.

Proof. Time can be viewed as a special {1}-sloped cost. Hence, the non-primitive
recursive lower bound follows from that of MTL model checking over finite timed
words, see [OW05, OW07].

The decidability then relies on the same encoding as [OW05]. We present the
construction, but don’t give all details, especially when there is nothing new
compared with the above-mentioned papers.
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Let ϕ be a WMTL formula, and A be a single-clock weighted timed automaton
with a stopwatch cost. Classically, from formula ϕ, we construct an “equivalent”
one-variable alternating timed automaton2 Bϕ. Fig. 2 displays an example of such
an automaton, corresponding to formula G [a ⇒ (F≤3 b ∨ F≥2 c)] (see [OW05]
for more details on alternating timed automata).

�1

¬a

�2

x:=0

a�3

x:=0

a b
x≤3

c
x≥2

Fig. 2. A timed alternating automaton for formula G [a ⇒ (F≤3 b ∨ F≥2 c)]

However, note that in that case, the unique variable of the alternating automa-
ton is not a clock but a cost variable, whose rate will depend on the location
of A which is being visited. However, as for MTL, we have the property that
A |= ϕ iff there is an accepting joint execution of A and Bϕ.

In the following, we write q for a generic location of A and � for a generic
location of Bϕ. Similarly, Q denotes the set of locations of A and L the set of
locations of Bϕ.

An A/Bϕ-joint configuration is a finite subset of Q × R≥0 ∪ L × R≥0 with
exactly one element of Q × R≥0 (the current state in automaton A). The joint
behaviour of A and Bϕ is made of time evolutions and discrete steps in a natural
way. Note that, from a given joint configuration γ, the time evolution is given by
the current location qγ of A: if the cost rate in qγ is 1, then all variables behave
like clocks, i.e., grow with rate 1, and if the cost rate in qγ is 0, then all variables
in Bϕ are stopped, and only the clock of A grows with rate 1.

We encode configurations with words over the alphabet Γ = 2(Q×Reg∪L×Reg),
where Reg = {0, 1, . . . ,M} ∪ {�} (M is an integer above the maximal constant
appearing in both A and Bϕ). A state (�, c) of Bϕ will for instance be encoded
by (�, int(c)) 3 if c ≤ M , and it will be encoded by (�,�) if c > M .

Now given a joint configuration γ = {(q, x)}∪{(�i, ci) | i ∈ I}, partition γ into
a sequence of subsets γ0, γ1, . . . , γp, γ�, such that γ� = {(α, β) ∈ γ | β > M},
and if i, j �= �, for all (α, β) ∈ γi and (α′, β′) ∈ γj , frac(β) ≤ frac(β′) 4 iff i ≤ j
(so that (α, β) and (α′, β′) are in the same block γi iff β and β′ are both smaller
than or equal to M and have the same fractional part). We assume in addition
that the fractional part of elements in γ0 is 0 (even if it means that γ0 = ∅),
and that all γi for 1 ≤ i ≤ p are non-empty.

If γ is a joint configuration, we define its encoding H(γ) as the word (over Γ )
reg(γ0)reg(γ1) . . . reg(γp)reg(γ�) where reg(γi) = {(α, reg(β)) | (α, β) ∈ γi} with
reg(β) = int(β) if β ≤ M , and reg(β) = � otherwise.
2 We use the eager semantics [BMOW07] for alternating automata, where configura-
tion of the automaton always have the same sets of successors.

3 int represents the integral part.
4 frac represents the fractional part.
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Example 3. Consider the configuration

γ = {(q, 1.6)} ∪ {(�1, 5.2), (�2, 2.2), (�2, 2.6), (�3, 1.5), (�3, 4.5)}.

Assuming that the maximal constant (on both A and Bϕ) is 4, the encoding is
then

H(γ) = {(�2, 2)} · {(�3, 1)} · {(q, 1), (�2, 2)} · {(�1,�), (�3,�)}

We define a discrete transition system over encodings of A/Bϕ-joint con-
figurations: there is a transition W ⇒ W ′ if there exists γ ∈ H−1(W ) and
γ′ ∈ H−1(W ′) such that γ → γ′ (that can be either a time evolution or a
discrete step).

Lemma 4. The equivalence relation ≡ defined as γ1 ≡ γ2
def⇔ H(γ1) = H(γ2) is

a time-abstract bisimulation over joint configurations.

Proof. We assume that γ1 → γ′
1 and that γ1 ≡ γ2. We write H(γ1) = H(γ2) =

w0w1 . . . wpw� where wi �= ∅ if 1 ≤ i ≤ p. We distinguish between the different
possible cases for the transition γ1 → γ′

1.

– assume γ1 → γ′
1 is a time evolution, and the cost rate in the corresponding

location of A is 0. If γ1 = {(q1, x1)} ∪ {(�i,1, ci,1) | i ∈ I1}, then γ′
1 =

{(q1, x1 + t1)} ∪ {(�i,1, ci,1) | i ∈ I1} for some t1 ∈ R≥0. We assume in
addition that γ2 = {(q2, x2)} ∪ {(�i,2, ci,2) | i ∈ I2}.
We set γi

1 the part of configuration γ1 which corresponds to letter wi, and
we write αi

1 for the fractional part of the clock values corresponding to γi
1.

We have 0 = α0
1 < α1

1 < . . . < αp
1 < 1. We define similarly (αi

2)0≤i≤p for
configuration γ2. We then distinguish between several cases:
• either x1 + t1 > M , in which case it is sufficient to choose t2 ∈ R≥0 such

that x2 + t2 > M .
• or x1 + t1 ≤ M and frac(x1 + t1) = αi

1 for some 0 ≤ i ≤ p. In that case,
choose t2 = x1 + t1 − αi

1 + αi
2 − x2. As γ1 ≡ γ2, it is not difficult to

check that t2 ∈ R≥0. Moreover, frac(x2 + t2) = αi
2 and int(x2 + t2) =

int(x1 + t1).
• or x1 +t1 ≤ M and αi

1 < frac(x1+t1) < αi+1
1 for some 0 ≤ i ≤ p (setting

αp+1
1 = 1). As previously, in that case also, we can choose t2 ∈ R≥0 such

that αi
2 < frac(x2 + t2) < αi+1

2 and int(x2 + t2) = int(x1 + t1).
In all cases, defining γ′

2 = {(q2, x2 + t2)} ∪ {(�i,2, ci,2) | i ∈ I2}, we get that
γ2 → γ′

2 and γ′
1 ≡ γ′

2, which proves the inductive case.
– there are two other cases (time evolution with rate of all variables being 1,

and discrete step), but they are similar to the case of MTL, and we better
refer to [OW07]. �

Hence, from the previous lemma, we get:

Corollary 5. W ⇒∗ W ′ iff there exist γ ∈ H−1(W ) and γ′ ∈ H−1(W ′) such
that γ →∗ γ′.
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The set Γ = 2(Q×Reg∪L×Reg) is naturally ordered by inclusion ⊆. We extend
the classical subword relation for words over Γ as follows: Given two words
a0a1 . . . an and a′0a

′
1 . . . a′n′ in Γ ∗, we say that a0a1 . . . an � a′0a

′
1 . . . a′n′ whenever

there exists an increasing injection ι : {0, 1, . . . , n} → {0, 1, . . . , n′} such that for
every i ∈ {0, 1, . . . , n}, ai ⊆ a′ι(i). Following [AN00, Theorem 3.1], the preorder �
is a well-quasi-order.

Lemma 6. Assume that W1 � W2, and that W2 ⇒∗ W ′
2. Then, there exists

W ′
1 � W ′

2 such that W1 ⇒∗ W ′
1.

The algorithm then proceeds as follows: we start from the encoding of the initial
configuration, say W0, and then generate the tree unfolding of the implicit graph
(Γ ∗,⇒), stopping a branch when the current node is labelled by W such that
there already exists a node of the tree labelled by W ′ with W ′ � W (note that
by Lemma 6, if there is an accepting path from W , then so is there from W ′,
hence it is correct to prune the tree after node W ). Note that this tree is finitely
branching. Hence, if the computation does not terminate, then it means that
there is an infinite branch (by König lemma). This is not possible as � is a well-
quasi-order. Hence, the computation eventually terminates, and we can decide
whether there is a joint accepting computation in A and Bϕ, which implies that
we can decide whether A satisfies ϕ or not. �

Remark 7. In the case of MTL, the previous encoding can be used to prove the
decidability of model checking for timed automata with any number of clocks.
In our case, it cannot: Lemma 4 does not hold for two-clock weighted timed
automata, even with a single stopwatch cost. Consider for instance two clocks x
and z, and a cost variable cost. Assume we are in location q of the automaton
with cost rate 0 and that there is an outgoing transition labelled by the constraint
x = 1. Assume moreover that the value of z is 0, whereas the value of x is 0.2.
We consider two cases: either the value of cost is 0.5, or the value of cost is 0.9.
In both cases, the encoding5 of the joint configuration is {(q, z, 0)} · {(q, x, 0)} ·
{(cost, 0)}. However, in the first case, the encoding when firing the transition
will be {(q, x, 1)} · {(cost, 0)} · {(q, z, 0)}, whereas in the second case, it will be
{(q, x, 1)} · {(q, z, 0)} · {(cost, 0)}. Hence the relation ≡ is not a time-abstract
bisimulation.

4 Undecidability Results

4.1 One-Clock WTAs with One Cost Variable

Theorem 8. Model checking one-clock weighted timed automata with one cost
variable against WMTL properties is undecidable.

We push some ideas used in [BBM06, BLM07] further to prove this new unde-
cidability result. We reduce the halting problem for a two-counter machine M
5 We extend the encoding we have presented above to several clocks, as originally done
in [OW05].
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to that problem. The unique clock of the automaton will store both values of
the counters. If the first (resp. second) counter has value c1 (resp. c2), then the
value of the clock will be 2−c13−c2 . Our machine M has two kinds of instruc-
tions. The first kind increments one of the counter, say c, and jumps to the next
instruction:

pi : c := c + 1; goto pj. (1)

The second kind decrements one of the counter, say c, and goes to the next
instruction, except if the value of the counter was zero:

pi : if (c == 0) then goto pj else c := c− 1; goto pk. (2)

Our reduction consists in building a weighted timed automaton AM and a
WMTL formula ϕ such that the two-counter machine M halts iff AM has an
execution satisfying ϕ. Each instruction of M is encoded as a module, all the
modules are then plugged together.

Module for Instruction (1). Consider instruction (1), which increments the
first counter. To simulate this instruction, we need to be able to divide the value
of the clock by 2. The corresponding module, named Modi, is depicted on Fig. 3.6

1

A

1

B

2

C

1

D
x≤1 x=1

x:=0

+2
to Modj

module Modi

x≤1x≤1

Fig. 3. Module for incrementing c1

The following lemma is then easy to prove:

Lemma 9. Assume that there is an execution � entering module Modi with x =
x0 ≤ 1, exiting with x = x1, and such that no time elapses in A and D and the
cost between A and D equals 3. Then x1 = x0/2.

A similar result can be obtained for a module incrementing c2: it simply suffices
to replace the cost rate in C by 3 instead of 2.

Module for Instruction (2). Consider instruction (2). The simulation of this
instruction is much more involved than the previous instruction. Indeed, we first
have to check whether the value of x when entering the module is of the form 3−c2

(i.e., whether c1 = 0). This is achieved, roughly, by multiplying the value of x
by 3 until it reaches (or exceeds) 1. Depending on the result, this module will
then branch to module Modj or decrement counter c1 and go to module Modk.
The difficult point is that clock x must be re-set to its original value between
the first and the second part. We consider the module Modi depicted on Fig. 4.
6 As there is a unique cost variable, we write its rate within the location, and add a
discrete incrementation (eg +2) on edges, when the edge has a positive cost.
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Fig. 4. Module testing/decrementing c1

Lemma 10. Assume there exists an execution � entering module Modi with x =
x0 ≤ 1, exiting to module Modj with x = x1, and such that

– no time elapses in A0, C0, D, A, C′, F1 and H1;
– any visit to C0 or C′ is eventually followed (strictly) by a visit to C′ or F1;
– the cost exactly equals 3 along each part of � between A or A0 and the next

visit in D, between C0 or C′ and the next visit in C′ or F1, and between the
last visit to D and H1.

Then x1 = x0 and there exists n ∈ N s.t. x0 = 3−n.

Proof. Let � be such an execution. First, if x0 = 1 and � goes directly to mod-
ule Modj , then the result immediately follows.

Otherwise, � visits D at least once. We prove inductively that, at the k-th
visit in D, the value of x equals 3kx0 (remember that no time can elapse in D).
The first part of � between A0 and D is as follows7 (the labels on the arrows
represent the cost of the corresponding transition):

(A0, x0)
0−→ (B0, x0)

3(1−x0)−−−−−→ (B0, 1) 0−→ (C0, 0) 0−→ (C, 0) α−→ (C,α) 0−→ (D,α).

The total cost, 3(1 − x0) + α, must equal 3. Thus α = 3x0. A similar argument
shows that one turn in the loop (from D back to itself) also multiplies clock x
by 3, hence the result. Since � eventually fires the transition from D to E1, it
must be the case that x0 = 3−n for some n ∈ N.

We now prove that x1 = x0. The proof follows a similar line: we prove that
at the k-th visit to C0 or C′, the value of x is (3k − 3)x0. This clearly holds
when k = 1 (i.e., when we visit C0). Assuming that � eventually visits C′, we
consider the part of � between C0 and the first visit to C′:

(C0, 0) 0−→ (C, 0) 3x0−−→ (C, 3x0)
0−→ (D, 3x0)

0−→ (A, 3x0)
0−→ (B, 3x0)

(B, 3x0)
3(1−3x0)−−−−−−→ (B, 1) 0−→ (C, 0) β−→ (C, β) 0−→ (C′, β).

7 By contradiction, it can be proved that C′ cannot be visited along that part of �,
since the cost between C0 and C′ must be exactly 3.
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The cost of this part is 3−6x0 +β, and must equal 3. Thus β = 6x0 as required.
A similar computation (considering each part of � between two consecutive visits
to C′) proves the inductive case.

Now, consider the part from the last visit of C′ to H1:

(C′, (3n − 3)x0)
0−→ (C, (3n − 3)x0)

3x0−−→ (C, 3nx0)
0−→ (D, 3nx0)

0−→ (E1, 0)

(E1, 0)
3γ−→ (E1, γ) 0−→ (F1, γ) 0−→ (G1, 0) 3δ−→ (G1, δ)

0−→ (H1, δ).

Remember that 3nx0 = 1, which explains why the computation goes to E1

instead of E2). The cost between C′ and F1 is 3x0 + 3γ, and equals 3. Thus γ =
1−x0. Similarly, the cost between D and H1 is 3γ +3δ and must equal 3, which
proves that δ, which is precisely x1, equals x0. �

We have a similar result for a trajectory going to module Modk:

Lemma 11. Assume there exists an execution � entering module Modi with x =
x0 ≤ 1, exiting to module Modk with x = x1, and such that

– no time elapses in A0, C0, D, A, C′, F2 H2, A2 and D2;
– any visit to C0 or C′ is eventually followed (strictly) by a visit to C′ or F2;
– the cost exactly equals 3 along each part of � between A or A0 and the next

visit in D, between C0 or C′ and the next visit in C′ or F2, between D
and H2, and between H2 and D2.

Then x1 = 2x0 and for every n ∈ N, x0 �= 3−n.

Proof. The arguments of the previous proof still apply: the value of x at the k-
th visit to D is 3kx0. If x0 had been of the form 3−n, then � would not have
been able to fire the transition to E2. Also, the value of x when � visits H2 is
precisely x0. The part from H2 to D is then as follows:

(H2, x0)
0−→ (A2, x0)

0−→ (B2, x0)
2(1−x0)−−−−−→ (B2, 1) 0−→ (C2, 0) κ−→ (C2, κ) 1−→ (D2, κ).

The cost of this part is 2(1 − x0) + κ + 1, so that x1 = κ = 2x0. �

Again, these results can easily be adapted to the case of an instruction testing
and decrementing c2: it suffices to

– set the costs of states B0, B, E1, E2, G1 and G2 to 2,
– set the cost of B2 to 3,
– set the discrete cost of C2 → D2 to 0
– set the discrete costs of C → D, G1 → H1 and G2 → H2 to +1.

Global Reduction. We now explain the global reduction: the automaton AM
is obtained by plugging the modules above following the instructions of M.
There is one special module for instruction Halt, which is made of a single Halt
state. We also add a special initial state that lets 1 t.u. elapse (so that x = 1)
before entering the first module.
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The WMTL formula is built as follows: we first define an intermediary sub-
formula stating that no time can elapse in some given state. It writes zero(P ) =
G (P ⇒(P U=0 ¬P )). If the local cost in state P is not zero (which is the case in
all the states of AM), this formula forbids time elapsing in P . We then let ϕ1 be
the formula requiring that time cannot elapse in a state labelled with A, D, A0,
C0, C′, F1, F2 H1, H2, A2 and D2. It remains to express the second and third
conditions in Lemmas 9, 10 and 11. This is the role of the following formula ϕ2:

ϕ2 = G [(A ∨ A0) ⇒ (¬DU=3 D)]∧
G [(C0 ∨ C′) ⇒ (¬(C′ ∨ F1)U=3 (C′ ∨ F1))]∧

G [D ⇒ ((¬AU A) ∨ (¬(H1 ∨ H2)U=3 (H1 ∨ H2)))]∧
G [H2 ⇒ (¬D2 U=3 D2)].

The following proposition is now straightforward:

Proposition 12. The machine M halts iff there exists an execution in AM
satisfying ϕ1 ∧ ϕ2 ∧ F Halt.

Remark 13. – For the sake of simplicity, our reduction uses discrete costs, so
that our WMTL formulas only involve constraints “= 0” and “= 3” (and
the same formula ϕ2 can be used for both counters). But our undecidability
result easily extends to automata without discrete costs.

– Our reduction uses a {1, 2, 3}-sloped cost variable, but it could be achieved
with any {p, q, r}-sloped cost variable (with 0 < p < q < r, and p, q and r
are pairwise coprime) by encoding the values of the counters by the clock
value (p/q)c1 · (p/r)c2 .

– Our WMTL formula can easily be turned into a WMITL formula (whose
syntax is that of MITL [AFH96], i.e., with no punctual constraints). It suffices
to replace formulas of the form (¬p)U=n p with (¬p)U≤n p ∧ (¬p)U≥n p.

4.2 Two-Clock WTAs with One Stopwatch-Cost Variable

We now prove a similar result for WTAs with two clocks but only with a stop-
watch cost (i.e., a cost with slope 0 or 1).

Theorem 14. Model checking two-clock weighted timed automata with one stop-
watch cost against WMTL properties is undecidable.

Proof (Sketch). The proof uses the same encoding, except that states with cost 2
or 3 are replaced by sequences of states with costs 0 and 1 having the same effect.
We have two different kinds of states with cost 2 (or 3):

– those in which we stay until x = 1:

A

2

B C
x≤1 x=1

x:=0
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These states are replaced by the following submodule:

A

1

B

0

B

1

B C
x≤1

z:=0

x=1

x:=0

z=1

z:=0

x=1

x:=0

– those in which we enter with x = 0 (and exit with x ≤ 1):

A

2

B C

x:=0

x≤1

Those are replace with a slightly different sequence of states:

A

1

B

0

B

1

B C

x:=0

x≤1

z:=0

x=1

x:=0

z=1

Those transformations are easily adapted to states with cost 3. �

4.3 One-Clock WTAs with Two Stopwatch-Cost Variables

In the above constructions, each clock can be replaced with an observer variable,
i.e., with a “clock cost” that is not involved in the guards of the automaton
anymore. We briefly explain this transformation on an example, and leave the
details to the keen reader.

A

B

C

x:=0

x=1

x<1

1

A

1

x0

1

1

1 1

x<1

1

B

1

x=1

1

C

Fig. 5. Replacing a clock with an extra “clock cost”

Fig. 5 displays the transformation to be applied to the automaton. It then
suffices to enforce that no time elapses in states x0, x<1 and x=1, and that the
following formula holds:

∧

∼n∈{<1,=1}
G
[(

x0 ∧ ¬x0 U x∼n

)
⇒
(
¬x0 U(cx∼n) x∼n

)]

This precisely encodes the role of clock x in the original automaton with a clock
cost, which is in particular a stopwatch cost. Note that this transformation is
not correct in general, but it is here because our reduction never involves two
consecutive transitions with the same guard. As a consequence:

Theorem 15. – Model checking one-clock weighted timed automata with two
stopwatch costs against WMTL properties is undecidable.

– Model checking zero-clock weighted timed automata with two costs (or three
stopwatch costs) against WMTL properties is undecidable.
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4.4 Remarks on Hybrid Systems

It is worth making some remarks on the relation between our undecidability re-
sults and the undecidability of reachability in linear hybrid automata (LHA for
short; we refer to [HKPV98] for their definition). Indeed, the construction on
Fig. 5 is not surprising as MITL can capture the exact behaviour of timed au-
tomata [Ras99], and could thus be used to transfer undecidability results from
LHA to WMTL model checking: from an LHA H, we can construct a WMTL
formula ϕH such that a given location of H is reachable iff the WTA resulting
from the transformation satisfies formula ϕH.

To the best of our knowledge, the tightest undecidability results for LHA hold
either with five clocks and a single two-sloped variable [HKPV98], or with four
stopwatch variables [Fle02].

From these results and the remarks above, the model checking of WMTL
is undecidable for WTAs, either with five clocks and a single two-sloped cost
variable, or without clocks and four stopwatch costs. While the first result cannot
be compared with any of our results, the second is subsumed by Theorem 15.

On the other hand, by using similar ideas to those we have developed in this
paper, we can get noticeable undecidability results for LHA: it suffices to encode
as an LHA all the constraints mentioned in Lemmas 9, 10, 11, which can be
done rather easily using two variables and one clock. However, we can do better
and adapt the construction to get the undecidability already with one variable
and two clocks. We present this construction now, which can be interesting in
itself to understand the power of LHA. The incrementation instruction follows
rather easily from that of Fig. 3, we better present the modified construction

3 1

to Modj

2 1 to Modk

y,z:=0
x<1,y=0

x=1,y=0

x=1
x:=0

x<1,z=3
z:=0

x=1,z=
3

x:=0

y=1

x>1,z=3

x=2
x:=0

y=1
z:=0

y=1
y:=0

y=1
y:=0

y=1
y:=0

x=1
x:=0

z=2
y:=0

Fig. 6. Undecidability of LHA with two clocks (x, y) and a single hybrid variable (z)

for the test and decrementation instruction (see Fig. 6, where the derivative of
variable z, when relevant, is indicated in each location). It differs from Fig. 4
in the way the initial value of clock x is recovered at the end of the loop which
checks whether the value of clock x is of the form 3−n or not: clock y is reset
when entering the module and then computes a modulo 1, which implies that
the initial value of clock x, say x0, is recovered each time y = 1.

Corollary 16. The reachability problem for LHA, either with two clocks and a
single {p, q, r}-sloped variable (with p, q and r positive and pairwise coprime),
or with three clocks and a single stopwatch variable, is undecidable.
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Finally, note that the class of LHA with one clock and one stopwatch variable
can easily be proved decidable using the classical regions of [AD94].

References

[AD94] Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer
Science 126(2), 183–235 (1994)

[AFH96] Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality.
Journal of the ACM 43(1), 116–146 (1996)

[AH90] Alurand, R., Henzinger, T.A.: Real-time logics: Complexity and expres-
siveness. In: Proc. 5th Annual Symposium on Logic in Computer Science
(LICS’90), pp. 390–401. IEEE Computer Society Press, Los Alamitos
(1990)

[ALP01] Alur, R., Torre, S.L., Pappas, G.J.: Optimal paths in weighted timed
automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.)
HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

[AN00] Abdulla, P.A., Nylén, A.: Better is better than well: On efficient verifica-
tion of infinite-state systems. In: Proc. 15th Annual Symposium on Logic
in Computer Science (LICS’00), pp. 132–140. IEEE Computer Society
press, Los Alamitos (2000)

[BBBR07] Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.-F.: On the optimal reach-
ability problem. Formal Methods in System Design (to appear, 2007)

[BBL04] Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as pos-
sible. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp.
203–218. Springer, Heidelberg (2004)

[BBM06] Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on
weighted timed automata. Information Processing Letters 98(5), 188–194
(2006)

[BBR04] Brihaye, T., Bruyère, V., Raskin, J.-F.: Model-checking for weighted
timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004
and FTRTFT 2004. LNCS, vol. 3253, pp. 277–292. Springer, Heidelberg
(2004)

[BBR05] Brihaye, T., Bruyère, V., Raskin, J.-F.: On optimal timed strategies. In:
Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 49–
64. Springer, Heidelberg (2005)

[BBR06] Brihaye, T., Bruyère, V., Raskin, J.-F.: On model-checking timed au-
tomata with stopwatch observers. Information and Computation 204(3),
447–478 (2006)

[BFH+01] Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P.,
Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced timed
automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.)
HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

[BLM07] Bouyer, P., Larsen, K.G., Markey, N.: Model-checking one-clock priced
timed automata. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp.
108–122. Springer, Heidelberg (2007)

[BLMR06] Bouyer, P., Larsen, K.G., Markey, N., Rasmussen, J.I.: Almost optimal
strategies in one-clock priced timed automata. In: Arun-Kumar, S., Garg,
N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 345–356. Springer, Heidel-
berg (2006)



68 P. Bouyer and N. Markey

[BMOW07] Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctu-
ality. In: Proc. 21st Annual Symposium on Logic in Computer Science
(LICS’07). IEEE Computer Society Press (to appear, 2007)

[Fle02] Fleury, E.: Automates temporisés avec mises à jour. PhD thesis, École
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Abstract. Difference Bound Matrices (DBMs) are the most commonly
used data structure for model checking timed automata. Since long they
are being used in successful tools like Kronos or UPPAAL.

As DBMs represent convex polyhedra in an n-dimensional space, this
paper explores the idea of using its hypervolume as the basis for two opti-
mization techniques. One of them is very simple to implement. The other,
an improvement over the first, requires more involved programming. Each
of them saves verification time (up to 19% in our case studies), with a
modest increase of memory requirements. Their impact differs among the
different case studies but, as they can be combined, there is no need to
choose a priori.

1 Introduction

In current days timed systems are both pervasive and critical, ranging from
embedded and PDAs to plant and flight controllers. Their complexity is ever
increasing so unassisted ways of verifying them make sense. Automated methods,
however, are known to suffer from scalability problems: their time and memory
requirements grow exponentially as systems increase in size. This is why any
technique that can palliate such problems can be useful.

We focus on model checking of timed automata [1], an extension of finite au-
tomata with the possibility to model dense time. Many model checking property
validation problems can be reduced to forward reachability [2], that is, an explo-
ration of the model starting by its initial state and trying to find a state tagged
with a particular boolean property, call it p. The basic (conceptual) procedure
is straight forward: insert the initial state in the Pending queue and initialize
an empty Visited set. Then, while Pending is not empty, take its next state
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and check whether the property p holds for it. If it does, finish with a “YES”
result, otherwise, put it in Visited , compute its (timed) successors (one for each
outgoing transition). To ensure termination, before putting them in Pending , it
should be checked that they are not included in any other state from Visited .
In an untimed exploration the check would be simpler: is the same state already
present in Visited? In the timed (symbolic) framework, clocks values conform
multi-dimensional polyhedra. As such, if a new state is included in an already
explored one there is no point in revisiting it, even if it is not exactly equal. Some
more detail on the reachability procedure is presented in Fig. 1, on page 73.

From the outline of the reachability algorithm it should be clear that the
inclusion operation between polyhedra is a critical one, being responsible for an
important fraction of the total running time. As such, finding ways to speed it
up is always a good idea.

Although many optimizations have been developed (see, for example,
[3,4,5,6,7,8,9]), the inclusion checking operation, although linear in many cases,
has a worst case of O(n2) where n is the number of clocks in the system. In
this article we focus on the hypervolume of the above mentioned polyhedra. If it
could be easily computed, an O(1) check could be performed prior to the expen-
sive inclusion algorithm: if hypervolume(A) > hypervolume(B) it is impossible
for A to be included in B. Of course, if the hypervolume of A is less or equal to
B’s, then A can be included or not, and the full check needs to be performed.

Computing exact hypervolume for n-dimensional polyhedra is a known hard
problem, but luckily with the traditional data structures used for timed model
checking (Difference Bound Matrices) an approximation can be computed very
cheaply. This approximation is safe, in the sense that the observations from the
previous paragraph still hold (Theorem 1 expresses the property formally). A
related idea might be comparing the bounding box in each dimension. It has the
advantage of being less suceptible to overflow (see Section 3.2), but that would
require O(n) extra storage and comparisons, instead of O(1).

We take advantage of the hypervolume approximation in two ways: firstly, in-
clusion checks are avoided in the sense of the preceding paragraphs. Secondly, the
Visited set is ordered by (approximate) hypervolume. In this way, it is not nec-
essary to check a new state against the complete set, but only against the states
that have a bigger (approximate) hypervolume, saving an important number of
inclusion checks (see Section 4).

Neither technique increments the number of visited states. They can be used
independently and obtain interesting speedups. Some models benefit more with
one of them, and some with the other, with acceleration of up to 19% in our
experiments. They can also be combined, although the speedups are not additive,
because there is some mutual cancelation. The good news is that there is no need
to speculate on which one to use, because using both is generally as good as using
the best of them.

Further, we explain why it doesn’t makes sense to order also Pending by its
hypervolume.
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Although the idea of approximations is not new (see, for instance the convex-
hull abstraction at [10]), they generally lead to approximated answers also (i.e.,
they might state with certainty that the property is not reached, or that it might
–or not– be reached). Ours, however, gives exact answers.

The rest of the article is structured as follows: Section 2 gives the basic back-
ground on the timed automata formalism and related definitions. The following
section presents the details of the proposed techniques. In Section 4 empirical
evidence, based on known case studies from the literature, is presented. After
that, Section 5 discusses future work and concludes the article.

2 Background

Timed automata [1] are a widely used formalism to model and analyze timed sys-
tems. They are supported by several tools such as Kronos [11] or UPPAAL [12].
Their semantics are based on labeled state-transition systems and time-divergent
runs over them. Here we present their basic notions and refer the reader to [1,11]
for a complete formal presentation.

Definition 1 (Timed automaton). A timed automaton (TA) is a tuple A =
〈L,X,Σ,E, I, l0〉, where L is a finite set of locations, X is a finite set of clocks
(non-negative real variables), Σ is a set of labels, E is a finite set of edges,
I : L

tot→ ΨX is a total function associating to each location a clock constraint
called the location’s invariant, and l0 ∈ L is the initial location. Each edge in
E is a tuple 〈l, a, ψ, α, l′〉, where l ∈ L is the source location, l′ ∈ L is the
target location, a ∈ Σ is the label, ψ ∈ ΨX is the guard, α ⊆ X is the set of
clocks reset at the edge. The set of clock constraints ΨX for a set of clocks X
is defined according to the following grammar: ΨX � ψ ::= x ∼ c|ψ ∧ ψ, where
x ∈ X,∼∈ {<,≤,=, >,≥} (although invariants restrict ∼ to {<,≤}) and c ∈ IN.

Usually, a TA A has an associated mapping Pr : L �→ 2Props which assigns to
each location a subset of propositional variables from the set Props.

The parallel composition A1 ‖ A2 of TAs A1 and A2 is defined using a label-
synchronized product of automata [1,11]. At any time, the state of the system
is determined by the location and the values of clocks, which must satisfy the
location invariant. The system can evolve in two different ways: either an enabled
transition is taken, changing the location and (maybe) resetting some clocks
while the others keep their values unaltered (a discrete step), or it may let some
amount of time pass (a timed step). In the last case the system remains in the
same location and all clocks increase according to the elapsed time, while still
satisfying the location invariant.

To model a complex system, an automaton can be expressed as the parallel
composition of the automata representing each component. A location of the ob-
tained automaton, called global location or composed automata node, is a tuple
consisting of a location of each component. Similarly, a state of the automa-
ton (global state) is a global location plus the values of all clocks. Such sets of
automata are usually called a network.
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Definition 2 (Clock valuations). A valuation is a total function from the
clock set X into IR+ (i.e., the reading of each clock in a particular moment).
The valuation set over X, VX is defined as {v : X tot→ IR+}. For each v ∈ VX and
δ ∈ IR+, v+ δ stands for the valuation defined as (∀x ∈ X)(v+ δ)(x) = v(x)+ δ.

To deal with infinite state manipulation, convex sets of clock valuations are sym-
bolically represented as conjunctions of inequalities (e.g., 1 ≤ x ≤ 5 ∧ x − y > 8).
Each of these conjunction represents a convex set of points, and is referred to as a
zone. A data structure called Difference Bound Matrices (DBM) [13] is typically
used to manipulate such kind of information.

Definition 3 (Difference Bound Matrices). DBMs are (n + 1)2 matrices,
where n is the number of clocks in the system. Diagonal cells are void, but all the
others contain a tuple 〈≺, c〉 called bound, where ≺ ∈ {<,≤} and c ∈ Z∪{∞}.
If in a DBM M cell (i, j) (noted M [i, j]) contains 〈≺, c〉 it means that xi−xj ≺ c,
where xi and xj are the i-th and j-th clocks in the system (counting 0 as a special
clock, used to express xi ≺ c as xi − 0 ≺ c). The only valid use of ∞ in a cell is
to mean that the difference between two clocks is unbounded. I.e., xi − xj < ∞.

Although a zone can be represented by a DBM, we will abuse both terms using
them interchangeably when there is no confusion.

During the reachability algorithm (see Fig. 1), states are represented by a pair
(l, z) where l is a location and z a timed zone. Given a state, the successor set is
computed by the suc� operator, which is defined as follows:

suc�(l, z) = {(l′, z′)/ 〈l, a, ψ, α, l′〉 ∈ E ∧ z′ = sucτ (resetα(z ∩ ψ)) ∩ I(l′)}

Where resetα means putting the clocks in α to zero and sucτ (ψ) means replacing
the constraints of the form x ≺ c by x < ∞ while leaving the rest intact. To
avoid clutter, calls to cf , the canonical form function, are not shown. It expresses
every constraint as tight as possible (see, for instance, [14], for the details) and
should be called after intersection, reset and sucτ .

Not every constraint needs to be present for all the operations. Actually,
a reduced version of the constraint systems can be used for most operations,
thus saving memory [15]. In practice, most tools use a variation of DBMs, called
Minimal Constraint Representation, which employs that idea. As these DBMs are
sparse, they are not stored like proper matrices, but as a linked list of constraints,
in order to save space. This minimal representation sets the context of this article.

The classical algorithm for inclusion checking in such data structure is shown
in Fig. 2. It expects the first zone to be in canonical form and the second one to
be minimized, i.e., as the above mentioned Minimal Constraint Representation.
If a different representation was chosen for the DBMs, the algorithms would
change importantly.

This algorithm is easily generalized to check if a zone is included in a set of
zones (IsIncludedInSet).



Hypervolume Approximation in Timed Automata Model Checking 73

1: function ForwardReach(Property φ)
2: Visited ← ∅
3: Pending ← {(l0, z0)}
4: while Pending �= ∅ do
5: (l, z) ← next(Pending)
6: Add((l, z),Visited)
7: if (l, z) |= φ then return YES
8: end if
9: Zl ←

�
(l,z′)∈(Visited∪Pending) z′

10: for (l′, z′) ∈ suc�(l, z) do
11: if ¬ IsIncludedInSet(z′, Zl) then
12: Add((l′, z′),Pending)
13: end if
14: if ∃z′′ ∈ Pending l/ IsIncluded(z′′, z′) then
15: Delete((l′, z′′),Pending)
16: end if
17: end for
18: end while
19: return NO
20: end function

Fig. 1. Forward reachability algorithm

1: function IsIncluded(DBM z1, z2)
2: // Require: z1 is in canonical form, z2 is minimized.
3: for i = 0 to #clocks do
4: for j = 0 to #clocks do
5: if i �= j ∧ ¬(z1[i, j] ≤ z2[i, j]) then
6: return NO
7: end if
8: end for
9: end for
10: return YES
11: end function

Fig. 2. Inclusion checking algorithm

3 Using the Hypervolume

3.1 Avoiding Checks by Comparing Hypervolume Approximations

Let’s start by defining which approximation to the hypervolume we use. The
idea is to compute the hypervolume of the smallest hypercube containing the
polyhedron defined by the clocks’ values.

Definition 4 (Hypervolume approximation). z be a DBM with n clocks.
HVol(z) is defined as Π1≤i≤n(const(z[i, 0]) − |const(z[0, i])|), where const(x ≺
c) = c.
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Note that for the purpose of the hypervolume approximation there is no need to
differentiate among ≺, and that const(z[0, i]), the lower bound, is negative and thus
the need for modulus (i.e., x1 > 7 is expressed in DBMs as z[0, 1] = (<,−7)).

If z[i, 0] is < ∞, use the maximum constant against which the clock is com-
pared in the system, plus one (cf. [3]).

As can be seen from its definition, the computation of HVol(z) is linear in the
number of clocks. However, there is no need to recompute it after every operation
that manipulates the zone. It only needs to be calculated as the last step of sucτ ,
previous to the inclusion check. The overhead is mild, as the immediate previous
operation is usually the transformation of the zone to its canonical form, which
is O(n3).

The approximation is safe, as stated by Theorem 1.

Theorem 1. If HVol(z1) > HVol(z2) then z1 �⊆ z2.

Proof. Let’s assume HVol(z1) > HVol(z2) ∧ z1 ⊆ z2. As the operation IsIn-

cluded() is sound and complete w.r.t. ⊆, it means that (∀i, j) 0 ≤ i, j ≤ n,
i �= j =⇒ const(z1[i, j]) ≤ const(z2[i, j]). Then, as HVol(z1) and HVol(z2)
are both products of the same quantity of positive terms, HVol(z1) is the prod-
uct of positive numbers which are all less or equal to the corresponding ones in
HVol(z2), contradicting the possibility of HVol(z1) being greater than HVol(z2).

Although hypervolume approximation resembles the convex-hull abstraction [10],
there is a very important difference. Ours is an exact technique, meaning that
the answer to the reachability question is responded yes or no with certainty.
In convex-hull, on the other hand, zones corresponding to the same location are
joined to their convex-hull over approximation. If the property is not reached,
then the answer is precise, but if it is, then the answer is maybe.

3.2 Implementations Notes

Care must be taken when computing HVol(z) as to not overflow the capacity of
the container integer variable. Which type of integer variable to use for storing
the HVol of a zone has consequences in both memory overhead and precision.
The lower the number of bits reserved for the HVol , the sooner it will saturate,
not allowing to avoid some inclusion checks. On the other hand, if too many bits
are used, the memory overhead can be considerable. The exact hypervolume
would require O(logΠ1≤i≤n|Ci|), where Ci is the biggest constant compared
against the xi clock in the system. As with many others time-vs-memory trade
offs, experimentation should be used to find a convenient balance.

Note that the overhead depends on the implementation of DBMs. If a proper
matrix is used, a long int, which is 8 bytes on 32 bits machines, usually pro-
vides a good amount of check saving and requires little space compared to the
DBM itself. On more sophisticated representations, which leverage on Minimal
Constraint Representation [15] to use a variant of linked lists of bounds, the
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overhead can be variable. Our experimentation shows an average of 2% extra
memory. Although Section 4 shows the experimental results, let’s suppose we
are dealing with a system with ten clocks (a conservative assumption). A proper
DBM will have a hundred bounds. Being conservative, assume that the minimal
representation has approx. 30% of the bounds. For 30 bounds and 12 bits per
bound (usually enough to represent constants on the hundreds), the 360 bits can
be packed in 12 long int. For these figures, an extra long int represents less
than 9% of extra memory.

3.3 Sorting Visited

As can be seen in Fig. 1, when a new state (l, z) is found, the Visited l set (i.e., the
restriction of Visited 1 to states that have l as location) has to be fully explored,
comparing the new zone against all the ones contained in that set.

If each zone in Visited has an HVol , then it can be turned into a priority
queue, where the zones with greater HVol are checked first. Let zn be the zone
of the new state and zq be the zone of next(Visited l). HVol(zq) is bigger or equal
than HVol(z) for every z ∈ Visited l. So, if HVol(zn) is greater than HVol(zq),
then, because of Theorem 1, zn is not included neither in zq, nor in the rest of
Visited l. In consequence, there is no need to continue checking, thus reducing the
number of inclusion checks performed, as can be seen in the experimentation.

A problem of implementing the above mentioned technique with a traditional
priority queue is that iteration is done by the successive elimination of next ele-
ments, thus requiring to re-insert them afterwards. For a queue with k elements,
the total cost with, e.g., a heap, is O(k log k). The memory management involved
in removing and adding elements can make the constants considerable, import-
ing a noticeable overhead that can easily counter the gain from the inclusion
checks avoided.

To overcome this problem, we chose a van Emde Boas tree [16], which per-
mits nondestructive iteration. It is also convenient from a theoretical point of
view: visiting the first k′ elements costs O(k′ log log k). Actually van Emde Boas
trees provide all of their operations in O(log log k), at the penalty of only sup-
porting integer numbers from a fixed interval as keys. Our experience with it
was that although it can be quite difficult to implement, it provides very good
performance.

The resulting algorithm is shown in Fig. 3.
Having Visited l sorted by HVol is not only useful when the new zone is not

included. If it is, as the bigger zones are checked first, there is a good chance that
the detection occurs earlier (for instance, universal zones are always the first to
be checked, whereas in a traditional implementation of Visited l they could be
“buried” deep into the set).

It should be noted that it makes no sense to check if a new state (l′, z′) includes
one (l′, z′′) in Visited (contrary to Pending which is checked in line 14 of Fig. 1),

1 Although we use a unified storage of Visited ∪ Pending as proposed in [4], separate
indexes allows us to traverse them independently.
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1: function IsIncludedInOrdederSet(DBM z, DBM ordered set Z)
2: for all z′ ∈ Z do
3: if HVol(z) >HVol(z′) then
4: return NO
5: else if IsIncluded(z, z′) then
6: return YES
7: end if
8: end for
9: return NO
10: end function

Fig. 3. Inclusion checking algorithm (zone in ordered set of zones)

because in case it is, (l′, z′′) still can’t be removed, as it might be part of a trace
to the target state.

Section 4 shows the time and memory results for the implementation of the
above mentioned techniques in the model checker Zeus. Before that, in Sec-
tion 3.4, we explore the question of whether it is also worth sorting Pending .

3.4 Sorting Pending . Worth It?

At first sight the idea of sorting Pending by decreasing HVol sounds appeal-
ing: suppose that both z and z′ are in Pending , and that hypervolume(z) >
hypervolume(z′). As sucτ is monotonic, it makes sense to compute ẑ = sucτ (z)
before ẑ′ = sucτ (z′) because ẑ is bigger that ẑ′. Chances are that ẑ′ might be
included in ẑ, avoiding the exploration of a new zone.

An interesting aspect of sorting Pending that way is that it seems conserva-
tive. It seems that in case it didn’t improve things, they will not get worse, i.e.,
no more zones will be generated.

To test these ideas, we changed the Pending FIFO queue into a priority queue
sorted by HVol , and implemented it also as a van Emde Boas tree. Unfortunately,
results were not positive, leading to more zones found (and thus more total time
and memory) for many case studies, even ones that generated the complete state
space.

The problem is that when locations are considered into the equation, things
get more complicated than the intuition presented in previous paragraphs. Sup-
pose there are (l1, z1) and (l2, z2) in Pending (in that order), with z1 being x < 10
and z2 being x < 12. Also, assume that both l1 and l2 have a transition to l3
(which has a true invariant), but the second with an x > 5 guard while the first
imposes no restriction.

In a FIFO exploration (l1, z1) will be explored first, leading to the discovery of
(l3, z3), with z3 being x < ∞. When (l2, z2) is expanded, the new state, with zone
z′3 = 5 < x < ∞, will already be included. On the other hand, if Pending was
ordered by hypervolume, (l2, z2) would be explored first, leading to the discovery
of (l3, z′3), which in turn will be put into Pending and explored before (l1, z1).
When this state gets its turn, (l3, z3) will be generated, but the inclusion check
will fail, thus creating a new zone to be explored.
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Next section shows the experimental evidence that backs the claims made in
Sections 3.1 and 3.3.

4 Experimental Results

To validate the proposed techniques, we incorporated them into a monoprocessor
version of the Zeus distributed model checker [17] and ran a series of experiments
against well known case studies from the literature. For some of them, a reduced
version (created with ObsSlice [8], a safe model reducer) was also used and
is primed in the tables. Each of them comprises two versions: the one where
the property is reached (true) and the unreachable one (false). The difference is
usually a changed delay. The examples used are:

1. RCS5 , the Railroad Crossing System inspired in [18] with 5 trains.
2. Pipe6 , end-to-end signal propagation in a pipe-line of sporadic processes that

forward a signal emitted by a quasi periodic source, with 6 stages.
3. FDDI8 , an extension of the FDDI token Model ring protocol where the

observer monitors the time the token takes to return to a given station.
4. Conveyor6ABC , Conveyor Belt [17] (with 6 stages and 3 objects)
5. MinePump, a design of a fault-detection mechanism for a distributed mine-

drainage controller [19].

Table 1 summarizes the sizes of the examples used in this article. The exper-
iments were run on a Intel Pentium IV 3.0 GHz processor with 2 GB of RAM,
running the Linux 2.6 operating system.

Table 1. Examples sizes

Example Components Clocks Reachable locations

MinePump 10 10 1428
RCS5 8 8 1617
Conveyor6ABC 11 12 31443
FDDI8 15 23 4608

Table 2 shows the results obtained with each method independently and Ta-
ble 3 the combination of both. The first columns report the time, memory and
number of inclusion checks for the standard version, and then the time and num-
ber of inclusion checks for each optimization, with the percentage in parenthesis
(negative values for saving, positive for increase). Memory is not reported for the
first optimization because the overhead was always less than 2% (consistently
with the reasoning already mentioned in Section 3.1). The overhead of the second
comes from the van Emde Boas tree, which requires many pointers.

It should be noted that in the combined method, although not direct check is
saved by HVol , many inverse ones (see line 14 of Fig. 1) can still be avoided.



78 V. Braberman et al.

Table 2. Results obtained for each method

Example Standard With HVol Visited priority queue
Time Mem #checks Time #checks Time Mem #checks
(secs) (MB) (×106) (secs) (×106) (secs) (MB) (×106)

MinePump’ 46 7 10.5 43 8.9 43 7.8 9.2
true ( -7%) (-15%) ( -7%) (+11%) (-12%)

MinePump’ 527 19 206.0 475 173.8 465 21.2 180.6
false (-10%) (-16%) (-12%) (+12%) (-12%)

MinePump 2807 56 1124.3 2542 969.7 2444 62.1 959.3
true ( -9%) (-14%) (-13%) (+11%) (-15%)

MinePump 20580 152 4348.9 18353 3051.1 17425 163.2 3030.2
false (-11%) (-30%) (-15%) ( +7%) (-30%)

RCS5 31 7 10.2 23 5.5 28 7.7 9.1
true (-26%) (-46%) (-10%) (+10%) (-11%)

RCS5 1039 34 341.3 952 286.4 955 34.6 311.7
false ( -8%) (-16%) ( -8%) ( +2%) ( -9%)

Conveyor6ABC 1385 183 163.6 1280 104.8 1338 198.0 138.5
true ( -8%) (-36%) ( -4%) ( +8%) (-15%)

Conveyor6ABC 4142 280 998.8 3368 567.1 3600 306.4 762.7
false (-19%) (-43%) (-13%) ( +9%) (-23%)

FDDI8 488 20 0.1 488 0.1 486 21.0 0.1
true ( 0%) ( 0%) (-<1%)2 ( +5%) (-<1%)

FDDI8 7642 120 18.2 7645 18.2 7629 122.0 18.2
false (+<1%) ( 0%) (-<1%) ( +2%) (-<1%)

Table 3. Results obtained with both methods combined

Example Both methods
Time Mem #checks
(secs) (MB) (×106)

MinePump’ true 43 ( -7%) 7.8 (+11%) 8.3 (-21%)
MinePump’ false 465 (-12%) 21.2 (+12%) 181.3 (-12%)
MinePump true 2436 (-13%) 62.1 (+11%) 955.7 (-15%)
MinePump false 17388 (-16%) 163.2 ( +7%) 2348.4 (-46%)
RCS5 true 23 (-26%) 7.5 (+10%) 8.0 (-22%)
RCS5 false 926 (-11%) 34.6 ( +2%) 286.7 (-16%)
Conveyor6ABC true 1295 ( -6%) 198.0 ( +8%) 115.9 (-29%)
Conveyor6ABC false 3470 (-16%) 306.4 ( +9%) 569.3 (-43%)
FDDI8 true 487 (-<1%) 21.0 ( +5%) 0.1 (-<1%)
FDDI8 false 7652 (+<1%) 122.0 ( +2%) 18.2 (-<1%)

As can be seen in Table 2, HVol features time savings of up to 19% (not
counting RCS5 true, because it already takes a very short time and is only
presented for completeness), and sorting Visited of up to 15%. The first one has
neglectable memory overhead, while the second uses around 10-12%. There is no

2 Marginal improvements, not seen in figures because of rounding.
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direct relationship between the number of checks saved and the speedup. This is
because each case studies has different sized matrices and for each check saved,
the number of cell matrices to be compared differs.

FDDI8 is an interesting case study because, as no inclusion check could be
avoided with HVol , the difference in times measures pure overhead, showing that
the method is very light.

Table 2 also shows that different case studies benefit the most from different
techniques. If memory is a premium, clearly HVol is convenient, but if some
memory can be spent in order to obtain earlier results, then a decision should
be made among the two. Also, they can be combined. As shown in Table 3, with
the exception of FDDI8 , the combined method is never worse than the worse
of the optimizations (see for instance Conveyor6ABC ). Sometimes it is as good
as the best of them (MinePump’ , MinePump true, RCS5 true) and sometimes
better (MinePump false, RCS5 false).

Both the second and the combined method have indeed a memory overhead
that seems, in terms of percentages, on the same order of magnitude as the time
saved. However, in cases like MinePump false on Table 3, it can be seen that the
16% saving of time translates to almost one hour of almost six, at the cost of
7% more memory, which only amounts to less than 12 extra MB of RAM.

5 Conclusions and Future Work

In this article we presented two techniques that contribute to speed up forward
reachability. They are based on approximating the hypervolume of the polyhe-
dra that represents the valuations of clocks in timed automata model checking.
Although the hypervolume is approximated, both techniques give exact answers.

The first is based on avoiding inclusion checks when the approximate hypervol-
umes makes the inclusion impossible. The other, in sorting the already-visited-
states set according to the approximate hypervolumes, avoiding to traverse some
parts of it while checking for included zones. The second is only possible thanks
to a very optimized implementation of a van Emde Boas tree [16], but the first
is quite simple.

These techniques can be used independently and obtain interesting speedups.
For instance, in cases like MinePump false in Table 3 it can be seen that the
16% saving of time translates to almost one hour of almost six, at the cost of 7%
more memory, which only amounts to less than 12 extra MB of RAM. According
to our experiments, some models benefit more with one of them, and some with
the others, with acceleration of up to 19 and 15% respectively. The first one has
neglectable memory overhead, the second, a moderate one (10-12%).

They can also be combined, although the speedups are not additive, because
there is some mutual cancellation. The good news is that there is no need to
speculate on which one to use, because using both is generally as good as using
the best of them.



80 V. Braberman et al.

It should be noted that the techniques are very unobtrusive, in the sense that
they are orthogonal to many other optimizations such as [3,4,5,6,8,9], allowing
to use all of them together.

Also, we showed that applying the same ideas to the Pending queue –where
the states that remain unexplored are kept– can have negative impact. In order to
reverse that, Pending should be separated by location, and then sorted, but that
will increase the cost of adding newly discovered zones to it. Experimentation
with different data structures towards that end is a yet-to-be-explored area.

Although we chose a van Emde Boas tree to sort the Visited queue, some
less modular yet simpler implementations –based on linked lists of states, with
pointers marking insertion places– are possible. This trade-off should be revisited
to see if some of the overhead can be avoided.

To pursue further in this line of research, it would be interesting to analyze
which topological characteristics of the model influence in each method’s per-
formance. A consequence of this could be an on-the-fly detection method, that
switches between them.
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Abstract. We identify a class of timed automata, which we call counter-free
input-determined automata, which characterize the class of timed languages de-
finable by several timed temporal logics in the literature, including MTL. We
make use of this characterization to show that MTL+Past satisfies an “ultimate
stability” property with respect to periodic sequences of timed words. Our results
hold for both the pointwise and continuous semantics. Along the way we gener-
alize the result of McNaughton-Papert to show a counter-free automata charac-
terization of FO-definable finitely varying functions.

1 Introduction

A number of classes of timed automata based on “input-determined” distance opera-
tors have been proposed in the literature. These include the event-recording automata
of [AFH94, HRS98], which make use of the operators �a and 
a (which measure the
distance to the last and next a’s respectively), state-clock automata [RS99], and even-
tual timed automata [DM05, CDP06], which make use of the “eventual operator” �a

inspired by Metric Temporal Logic (MTL) [Koy90, AFH96, OW05]. In [DT04, CDP06]
these operators were abstracted into a general notion of an input-determined operator,
and the corresponding classes of timed automata called input-determined automata or
IDA’s (parameterized by a set of input-determined operators) were shown to have ro-
bust logical properties, including a monadic second-order logic characterization, and
expressively complete (with respect to the first-order fragment of the corresponding
MSO logics) timed temporal logics based on these operators. However, an important
link that remained unexplored was a characterization of the class of automata which
correspond to these temporal logics, along the lines of the classical characterization
via counter-free automata for discrete temporal logic, which follows from the work of
Kamp and McNaughton-Papert [Kam68, MP71].

In this paper our aim is to fill this gap. We identify a class of counter-free IDA’s
(again parameterized by a set of input-determined operators) that precisely characterize
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the class of timed languages definable by the timed temporal logics based on these
operators. Our class of counter-free IDA’s comprise “proper” IDA’s (which are in a
sense a determinized form of IDA’s) whose underlying graphs have no counters in the
classical sense. Our results hold for both the “pointwise” and “continuous” semantics
for timed formalisms.

For the pointwise semantics, we can simply factor through the classical results of
Kamp and McNaughton-Papert, and the translations set up in [DT04]. For the continu-
ous case we first prove an analogue of the McNaughton-Papert result for finitely varying
functions, by characterizing the first-order definable languages of finitely-varying func-
tions in terms of a counter-free fragment of a class of automata we call ST-NFA’s.
Once we have this result, we can essentially factor through the translations for continu-
ous time set up in [CDP06].

We emphasize that this general result gives us automata characterizations for several
of the timed logics proposed in the literature, including EventClockTL [HRS98], Met-
ric Interval Temporal Logic (MITL) [AFH96], and MTL [AFH96, OW05], for both the
pointwise and continuous semantics. Among other applications, such characterizations
can be useful in arguing expressiveness results for these logics.

In the final part of this paper we make use of this characterization to prove a property
of timed languages definable by MTLc+Past, namely that they must satisfy an “ultimate
stability” property with respect to a periodic sequence of timed words. Thus, given a
periodic sequence of finite timed words of the form uviw, the truth of an MTLc+Past
formula at any real time point, must eventually stabilize (i.e. become always true, or
always false) along the models in the sequence. This is a stronger result than a property
for MTL proved in [PD06], in that it holds for MTL with past operators, and furthermore
does not depend on the “duration” of the timed word v in the periodic sequence.

In the sequel we concentrate on the continuous semantics. The details for the point-
wise semantics and other arguments not included here for space reasons, can be found
in the technical report [CDP07].

2 Preliminaries

For an alphabet A, we use A∗ to denote the set of finite words over A. For a word w
in A∗, we use |w| to denote its length. The set of non-negative reals and rationals will
be denoted by R≥0 and Q≥0 respectively. We will deal with intervals of non-negative
reals, i.e. convex subsets of R≥0, and denote by IR≥0 and IQ≥0 the set of such intervals
with end-points in R≥0 ∪{∞} and Q≥0 ∪{∞} respectively. Two intervals I and J will
be called adjacent if I ∩ J = ∅ and I ∪ J is an interval.

Let A be an alphabet and let f : [0, r] → A be a function, where r ∈ R≥0. We use
dur(f) to denote the duration of f , which in this case is r. A point t ∈ (0, r) is a point
of continuity of f if there exists ε > 0 such that f is constant in the interval (t−ε, t+ε).
All other points in [0, r] are points of discontinuity of f . We say f is finitely varying if it
has only a finite number of discontinuities. We denote by FVF (A) the set of all finitely
varying functions over A.

An interval representation for a finitely varying function f : [0, r] → A is a sequence
of the form (a0, I0) · · · (an, In), with ai ∈ A and Ii ∈ IR≥0 , satisfying the conditions
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that the union of the intervals is [0, r], each Ii and Ii+1 are adjacent, and for each i,
f is constant and equal to ai in the interval Ii. We can obtain a canonical interval
representation for f by putting each point of discontinuity in a singular interval by
itself. Thus the above interval representation for f is canonical if n is even, for each
even i Ii is singular (i.e. of the form [t, t]), and for no even i such that 0 < i < n is
ai−1 = ai = ai+1.

A canonical interval representation for a function gives us a canonical way of “untim-
ing” the function: thus if (a0, I0) · · · (a2n, I2n) is the canonical interval representation
for a function f , then we define untiming(f) to be the string a0 · · · a2n in A∗. The
untiming thus captures explicitly the value of the function at its points of discontinuity
and the open intervals between them. Note that strings which represent the untiming of
a function will always be of odd length and for no even position i will the letters at po-
sitions i− 1, i, and i+ 1 be the same. We call such words canonical. A canonical word
w can be “timed” to get a function in a natural way: thus a function f is in timing(w)
if untiming(f) = w. We extend the definition of timing and untiming to languages
of functions and words in the expected way.

We now turn to some notions regarding classical automata and a variant we intro-
duce. Recall that a non-deterministic finite state automaton (NFA) over an alphabet A
is a structure A = (Q, s, δ, F ), where Q is a finite set of states, s is the initial state,
δ ⊆ Q × A × Q is the transition relation, and F ⊆ Q is the set of final states. A run of
A on a word w = a0 · · · an ∈ A∗ is a sequence of states q0, . . . , qn+1 such that q0 = s,
and (qi, ai, qi+1) ∈ δ for each i ≤ n. The run is accepting if qn+1 ∈ F . The symbolic
language accepted by A, denoted Lsym(A), is the set of words in A∗ over which A has
an accepting run. Languages accepted by NFA’s are called regular languages. We say
the NFA A is deterministic (and call it a DFA) if the transition relation δ is a function
from Q×A to Q. A well-known fact is that every regular language L has a unique (up
to isomorphism) minimal state DFA accepting it, which we refer to as AL.

A counter in an NFA A is a sequence of distinct states q0, . . . , qn with n ≥ 1, along
with a word u ∈ A∗, such that there is a path labeled u in A from qi to qi+1 (for each
i ∈ {0, . . . , n− 1}) and from qn to q0. An NFA is said to be counter-free if it does not
contain a counter. A regular language is said to be counter-free if there exists a counter-
free NFA for it. We will call a sequence of words in A∗ 〈wi〉 = w0, w1, · · · periodic
if there exist strings u, v, w in A∗ such that wi = uviw for each i. We say a language
L ⊆ A∗ is ultimately stable (with respect to periodic sequences of words) if for each
periodic sequence 〈wi〉 there exists a k ≥ 0, such that for all i ≥ k, wi ∈ L or for all
i ≥ k, wi �∈ L.

Proposition 1. Let L be a regular language over an alphabet A. Then the following
are equivalent: (1) L is counter-free, (2) AL is counter-free, (3) L is ultimately stable
with respect to periodic sequences of words. ��
Using the above proposition, it follows that counter-free regular languages are closed
under the boolean operations of union, intersection and complement.

We now define a variant of NFA’s called state-transition-labeled NFA’s or
ST-NFA′s for short, which are convenient for generating finitely varying functions.
An ST-NFA over A is a structure A = (Q, s, δ, F, l) similar to an NFA over A, except
that l : Q −→ A labels states with letters from A. The ST-NFA A accepts strings of
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the form A(AA)∗. A run of A on a string w = a0a1 · · ·a2n in A(AA)∗, is a sequence
of states q0, . . . , qn+1 satisfying q0 = s, (qi, a2i, qi+1) ∈ δ for i ∈ {0, · · · , n} and
l(qi) = a2i−1 for each i ∈ {1, . . . , n}; it is accepting if qn+1 ∈ F . We define Lsym(A)
to be the set of strings w ∈ A∗ on which A has an accepting run.

An ST-NFA A also generates functions in a natural way: we begin by taking a
transition emanating from the start state, emitting its label, and then spend time at the
resulting state emitting its label all the while, before taking a transition again; and so
on. The language of finitely-varying functions defined by an ST-NFA A is defined to
be timing(Lsym(A)), and noted F (A). For convenience we will stick to canonical
ST-NFA’s which are ST-NFA′s in which we never have an a-labelled transition be-
tween an a-labelled source and target state, for any a ∈ A. It is not difficult to see that
any ST-NFA can be converted to a canonical one whose function language is the same.
We note that for a canonical ST-NFA A, untiming(F (A)) = Lsym(A).

We now define the counter-free version of ST-NFA’s. A counter in an ST-NFA is
similar to one in an NFA, except that by the “label” of a path in the automaton we
mean the sequence of alternating state and transition labels along the path. Thus the
label of the path q0

a0→ q1
a1→ · · · qn

an→ qn+1 is l(q0)a0l(q1)a1 · · · l(qn)an. We note that
a counter-free ST-NFA can define a language (e.g. the single state, single transition
ST-NFA over {a} which defines the language a(aa)∗) which is not counter-free in
the classical sense. However, if we consider ST-NFA’s over a partitioned alphabet,
where the alphabet A is partitioned into A1 and A2 which label transitions and states
respectively, then we can show that:

Proposition 2. Let (A1, A2) be a partitioned alphabet. A regular subset of A1(A2A1)∗

is counter-free iff there exists a counter-free ST-NFA over (A1, A2) accepting it. ��

Finally, by going over to an alternating alphabet (say by renaming transition labels)
using the closure properties of classical and counter-free languages, and then coming
back, we can verify that:

Proposition 3. Each of the classes of function languages definable by ST-NFA’s and
counter-free ST-NFA’s over an alphabet A are closed under boolean operations. ��

3 Counter-Free Continuous Input-Determined Automata

We begin with some notation. We define a timed word σ over an alphabet Σ to be an
element of (Σ × R≥0)∗, such that σ = (a0, t0)(a1, t1) · · · (an, tn) and t0 < t1 <
· · · < tn. We write dur(σ) to denote the duration of σ, i.e. tn above. We denote the
set of timed words over Σ to be TΣ∗. Given timed words σ = (a0, t0) · · · (an, tn)
and σ′ = (a′0, t′0) · · · (a′k, t′k) with t′0 > 0, we define their concatenation σ · σ′ in the
standard way to be (a0, t0) · · · (an, tn)(a′0, tn + t′0) · · · (a′k, tn + t′k).

We define an input-determined operator Δ over an alphabet Σ as a partial function
from (TΣ∗ ×R≥0) to 2R≥0 , which is defined for all pairs (σ, t), where t ∈ [0, dur(σ)].
Thus an input-determined operator identifies a set of “distances” for a given timed word
and a time point in it. Given a set of input-determined operators Op, we define the set of
guards over Op, denoted by G(Op), inductively as g ::= � |ΔI | ¬g | g∨g | g∧g, where
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Δ ∈ Op and I ∈ IQ≥0 . Given a timed word σ, we define the satisfiability of a guard g

at time t ∈ [0, dur(σ)], denoted σ, t |= g, as follows: σ, t |= ΔI iff Δ(σ, t) ∩ I �= ∅,
with boolean operators treated in the expected way.

For example, the operator ΔQ which maps (σ, t) to {1} if t is rational and to {0}
otherwise, is an input-determined operator. Other examples include the eventual oper-
ator �a, inspired by MTL, which maps (σ, t) to the set of distances d such that an a
occurs at time t + d in σ; and the event-recording operator �a which maps (σ, t) to the
(empty or singleton) set of distances to the last occurrence of the event a before time t.

We call an input-determined operator Δ over Σ finitely varying if for each I ∈ IQ≥0 ,
and each σ ∈ TΣ∗, the characteristic function fσ

ΔI : [0, dur(σ)] → {0, 1} of ΔI ,
defined as fσ

ΔI (t) is 1 if σ, t |= ΔI , and 0 otherwise, is finitely varying. Of the example
operators above, �a and �a are finitely varying, while ΔQ is not.

Let Σ be an alphabet and Op be a set of input determined operators over Σ. We call
(Γ1, Γ2) a symbolic alphabet over (Σ,Op), if Γ1 is a finite subset of (Σ∪{ε})×G(Op)
and Γ2 is a finite subset of G(Op). We define the set of timed words over Σ associated
with a function f in FVF (Γ1 ∪ Γ2), denoted tw(f), as follows. If untiming(f) �∈
Γ1(Γ2Γ1)∗, then tw(f) = ∅. Otherwise, a timed word σ = (a0, t0) · · · (an, tn) is in
tw(f), provided for all t ∈ [0, dur(f)],

– If f(t) = (a, g), for some a ∈ Σ and g ∈ G(Op), then σ, t |= g, and there exists i
in {0, · · · , n}, with ti = t and ai = a.

– If f(t) = (ε, g) or g, for some g ∈ G(Op), then σ, t |= g, and there does not exist i
in {0, · · · , n} with ti = t.

Note that for any f , tw(f) is either empty or a singleton set. We extend the definition of
tw to sets of functions, as the union of the timed words corresponding to each function
in the set.

Let Σ be an alphabet and Op be a set of input-determined operators based on Σ.
A Continuous Input Determined Automaton (CIDA) A over (Σ,Op) is simply an
ST-NFA over a symbolic alphabet (Γ1, Γ2) based on (Σ,Op). As an ST-NFA A
defines a language of functions F (A). We are however more interested in the timed
language it accepts, denoted L(A), and defined to be tw(F (A)).

Here is a concrete example of a
CIDA over the set of “eventual op-
erators” Op = {�a | a ∈ Σ}.
The diagram shows a CIDA over
({a, b},Op) which recognizes the
language Lni (for “no insertions”),
which consists of timed words in
which between any two consecu-
tive a’s, there is no time point from
which there is an a or a b at a dis-
tance of one time unit in the future.

(a
,�

)
¬(�a ∈ [1, 1] ∨ �b ∈ [1, 1])

(a, �)
�

�

(ε, �), (b, �) (a, �)

(b,�
)

(a,�
)

We now define proper CIDA’s which are a time-deterministic form of CIDA’s, and
which we will use to define our counter-free CIDA’s. Let G be a finite set of atomic
guards over Op. We call (Γ1, Γ2) the proper symbolic alphabet over (Σ,Op) based
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on G, if Γ1 = (Σ ∪ {ε}) × 2G and Γ2 = 2G. We interpret h ⊆ G as a guard which
specifies precisely the guards in G that are true. Thus h is interpreted as the guard∧

g∈h g ∧
∧

g∈G−h ¬g.
We define a proper CIDA over (Σ,Op) to be an ST-NFA over a proper symbolic

alphabet based on (Σ,Op). The symbolic, function, and timed languages defined by
a proper CIDA are defined similarly to CIDA’s. We call a word γ over a symbolic
alphabet (Γ1, Γ2) fully canonical, if γ ∈ Γ1(Γ2Γ1)∗ and no subword of γ is of the form
g · (ε, g) · g. We call a proper CIDA fully canonical if its symbolic language consists
of fully canonical proper words. The class of languages defined by CIDA’s and fully
canonical proper CIDA’s coincide:

Lemma 1 ([CDP06]). CIDA’s over (Σ,Op) and fully canonical proper CIDA’s over
(Σ,Op) define the same class of timed languages. ��

The class of counter-free CIDA’s we are interested in this paper is the class of counter-
free CIDA’s over (Σ,Op), is the class of fully canonical proper CIDA’s over (Σ,Op)
whose underlying ST-NFA is counter-free. We denote this class by CFCIDA(Σ,Op).
As an example, let Σ = {a},
Op = {�a} and G = {�[1,1]

a }.
The CFCIDA over (Σ,Op) alongside
recognizes timed words comprising ex-
actly one a, which occurs in the interval
[1, 2]. In the diagram, g1 = {�[1,2]

a } and
g2 = ∅.

g2g1

g1

g2

(ε, g1)

(ε, g1)

(a, g2)

(ε, g1)

4 Counter-Free ST-NFA’s and FO-Definable Functions

In this section we show that over a partitioned alphabet (A1, A2), the class of first-
order definable languages of finitely-varying functions (for a natural FO logic we will
introduce soon) is precisely the class of function languages defined by counter-free
ST-NFA’s over (A1, A2).

For an alphabet A, the syntax of the first order logic FOc(A), is given by:

ϕ ::= Qa(x) |x < y | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ,

where a ∈ A, and x and y are variables.
We interpret a formula ϕ of the logic over a finitely varying function f in FVF (A),

along with an interpretation I with respect to f , which assigns to each variable a value
in [0, dur(f)]. For an interpretation I, we use the notation I[t/x] to denote the inter-
pretation which sends x to t and agrees with I on all other variables. Given a formula
ϕ ∈ FOc(A), f ∈ FVF (A), and an interpretation I with respect to f to the variables
in ϕ, the satisfaction relation f, I |= ϕ, is defined inductively (with boolean operators
handled in the usual way) as:

f, I |= Qa(x) iff f(I(x)) = a, wherea ∈ A.
f, I |= x < y iff I(x) < I(y).
f, I |= ∃xϕ iff ∃t ∈ [0, dur(f)] : f, I[t/x] |= ϕ.
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For a sentence ϕ (a formula without free variables) in FOc(A), the interpretation
does not play any role, and we set the language of functions defined by ϕ to be F (ϕ) =
{f ∈ FVF (A) | f |= ϕ}.

As an example, the formula ϕcont = ∃y∃z(y < x∧ x < z ∧
∨

a∈A ∀u(y < u∧ u <
z ⇒ Qa(u) ∧ Qa(x))) asserts that the point x is a point of continuity. As another
example, for the partitioned symbolic alphabet (Γ1, Γ2) based on some (Σ,Op), the
FOc(Γ1 ∪ Γ2) formula ϕfc = ∀x(ϕdisc(x) ⇒ ¬(

∨
(ε,g)∈Γ1

Q(ε,g)(x) ∧ ∃y∃z(y <

x∧ x < z ∧∀u(u �= x∧ y < u∧u < z ⇒ Qg(u))))), (where ϕdisc = ¬ϕcont ) asserts
that the untiming of the function is fully canonical.

For a partitioned alphabet (A1, A2) we call a finitely varying function f in FVF (A1∪
A2) alternating if untiming(f) ∈ A1(A2A1)∗ (thus the discontinuities are labelled by
symbols in A1 and continuities by labels in A2). Let alt -FVF (A1, A2) denote the class
of alternating finitely varying functions over (A1, A2).

Theorem 1. Let (A1, A2) be a partitioned alphabet with A = A1 ∪A2. Then the class
of FOc(A)-definable languages of alternating finitely-varying functions over (A1, A2)
is precisely the class of function languages definable by counter-free ST-NFA’s over
(A1, A2).

The rest of this section is devoted to a proof of this theorem. We recall briefly the logic
LTL and its two interpretations, one over discrete words and the other over functions.
The syntax of LTL(A) is given by:

θ ::= a | (θUθ) | (θSθ) | ¬θ | (θ ∨ θ),

where a ∈ A. The logic is interpreted over words in A∗, with the following semantics.
Given a word w = a0 · · ·an in A∗ and a position i ∈ {0, . . . , n}, we say w, i |= a iff
ai = a; and w, i |= θUη iff there exists j such that i < j ≤ n, w, j |= η and for all k
such that i < k < j, w, k |= θ. The “since” operator S is defined in a symmetric way
to U in the past, and the boolean operators in the usual way. We denote by Lsym(θ) the
set {w ∈ A∗ | w, 0 |= θ}.

The logic LTL can also be interpreted over functions as done in [Kam68]. Here we
restrict the models to finitely-varying functions in FVF (A), and we denote this logic
by LTLc(A). Given a function f ∈ FVF (A), t ∈ [0, dur(f)] and θ ∈ LTLc(A), the
satisfaction relation f, t |= θ is defined as follows:

f, t |= a iff f(t) = a.
f, t |= θUη iff ∃t′ : t < t′ ≤ dur(f), f, t′ |= η, and ∀t′′ : t < t′′ < t′, f, t′′ |= θ.
f, t |= θSη iff ∃t′ : 0 ≤ t′ < t, f, t′ |= η, ∀t′′ : t′ < t′′ < t, f, t′′ |= θ.

The boolean operators are interpreted in the expected way. We set F (θ) = {f ∈
FVF (A) | f, 0 |= θ}. As an example, the LTLc(A) formulas θcont =

∨
a∈A(a∧(aSa)∧

(aUa)) and θdisc = ¬θcont characterize the points of continuity and discontinuity re-
spectively in a function over A.
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Returning now to the
proof of Theorem 1, the
route we follow is given
schematically in the figure
below.

Kamp (e)

(a)

(b)

McN−P+Kamp (c) (d)

FOc(A)CF-ST-NFA(A1, A2)

CF-NFA(A) LTLc(A)

LTL(A)

ϕAϕ

A

B

θ

ϕA

�θ

Step (a): Let ϕ be a sentence in FOc(A). We show how to construct a counter-free
ST-NFA Aϕ over A, such that F (Aϕ) = F (ϕ).

The proof proceeds in a similar manner to the one in [CDP06]. We will represent
models of formulas with free variables in them, as functions with the interpretations
built into them. We assume an ordering on the countable set of first-order variables given
by x1, x2, · · · . For a formula ϕ with free variables among X = {xi1 , · · · , xim} (in or-
der), we represent a function f and an interpretation I as a function fX

I
: [0, dur(f)] →

A × {0, 1}m given by fX
I

(t) = (f(t), b1, · · · , bm), where bk = 1 iff I(xik
) = t. Thus

for a formula ϕ with free variables in X we have a notion of X-models of ϕ.

Proposition 4. Let ϕ be an FOc(A) formula with free variables X and let A be a
counter-free ST-NFA accepting the X-models of ϕ. Then for any set of variables X ′

which contains X , we can construct a counter-free ST-NFA A′ accepting precisely the
X ′-models of ϕ. ��

Lemma 2. Let ϕ be an FOc(A) formula and let X be the set of free variables in it. Then
we can construct a counter-free ST-NFA AX

ϕ which accepts precisely the X-models
of ϕ.

Proof. The idea of the proof is similar to the one in [CDP06], except that now we need
to also ensure that the automaton we obtain is counter-free. For a set of variables Y , let
AY

valid denote the ST-NFA which accepts all “valid” Y -models. It is easy to construct
this ST-NFA and to check that it is counter-free. We construct the counter-free ST-NFA
AX

ϕ by induction on the structure of ϕ.

1. ϕ = Qa(x): The automaton A{x}
ϕ

is: (−, 0) (−, 0)

(−, 0) (−, 0)

(a, 1)

2. ϕ = x < y: The automa-
ton A{x,y}

ϕ (assuming x oc-
curs before y in the vari-
able ordering) is:

(−, 0, 0) (−, 0, 0) (−, 0, 0)

(−, 0, 0) (−, 0, 0) (−, 0, 0)

(−, 1, 0) (−, 0, 1)

3. ϕ = ¬ψ: Let AX
ψ be the automaton for ψ, where X is the set of free variables

in ψ. Then AX
ϕ is the intersection of AX

valid with the counter-free ST-NFA that
recognizes the complement of the function language of AX

ψ (cf. Prop 3).
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4. ϕ = ψ ∨ ν: Let AX′

ψ be the counter-free ST-NFA for ψ, where X ′ is the set of free

variables in ψ, and let AX′′

ν be the counter-free ST-NFA for ν, where X ′′ is the set
of free variables in ν. Let X = X ′∪X ′′. By Prop. 4 we obtain ST-NFA’s AX

ψ and
AX

ν . Then AX
ϕ is the union of AX

ψ and AX
ν .

5. ϕ = ∃xψ: Let X ′ be the set of free variables in ψ so that X = X ′ − {x}. Let
AX′

ψ be a counter-free ST-NFA for ψ. Without loss of generality we can assume

AX′

ψ has no “useless” states (i.e. those which cannot be reached from the start
state or cannot reach a final state). Now we simply project away the component
corresponding to x in the symbols on the transitions of AX′

ψ to obtain the required
counter-free ST-NFA AX

ϕ . It is easy to see that AX
ϕ must be counter-free, since if

it had a counter, the counter must contain a transition with a 1 in the x-component
in the original ST-NFA AX′

ψ . But then by our assumption on the structure of AX′

ψ ,
it would accept non-valid X ′ models having multiple 1’s in the x-component.

From the above lemma it now follows that for a sentence ϕ ∈ FOc(A) we have a
counter-free ST-NFA Aϕ such that F (ϕ) = F (Aϕ). In particular, if we are interested
in the alternating function language of ϕ, we can conjunct ϕ with the FOc(A) formula
ϕalt = ∀x((ϕdisc ⇒

∨
a∈A1

Qa(x))∧ (ϕcont ⇒
∨

a∈A2
Qa(x))) which forces models

to be alternating. The resulting ST-NFA will also be alternating.

Steps (b) to (d) prove that we can go from an arbitrary counter-free ST-NFA A over
the partitioned alphabet (A1, A2) to an equivalent FOc(A)-sentence ϕA.

Step (b): By Prop. 2, for a counter-free ST-NFA A over (A1, A2) we can give a clas-
sical counter-free NFA B such that Lsym(A) = Lsym(B).

Step (c): For a counter-free NFA B, by the McNaughton-Papert result [MP71] we can
give an FO(A) formula ψ, where the logic FO(A) is the discrete version of FOc(A)
defined in a similar manner to LTL(A), such that Lsym(ψ) = Lsym(B). From Kamp’s
result for discrete LTL [Kam68], we have an equivalent LTL(A) formula θ such that
Lsym(ψ) = Lsym(θ).

Step (d): For a formula θ in LTL(A) we construct a formula ltl-ltlc(θ) in LTLc(A)
which is such that F (ltl -ltlc(θ)) = timing(Lsym(θ)).

We will use the abbreviation θ1Ud θ2 to mean that at a point of discontinuity “θ1Uθ2”
is true in an untimed sense, and define it to be (θ2Uθ2) ∨ (θ1U(θdisc ∧ (θ2 ∨ (θ1 ∧
(θ2Uθ2))))). Symmetrically we use θ1Sd θ2 for (θ2Sθ2) ∨ (θ1S(θdisc ∧ (θ2 ∨ (θ1 ∧
(θ2Sθ2))))).

The translation ltl -ltlc is defined as follows (we use η̂ for ltl -ltlc(η) for brevity):

ltl -ltlc(a) = a.

ltl -ltlc(¬θ1) = ¬θ̂1.

ltl -ltlc(θ1 ∨ θ2) = θ̂1 ∨ θ̂2.

ltl -ltlc(θ1Uθ2) = (θdisc ⇒ (θ̂1Ud θ̂2)) ∧
(θcont ⇒ (θcont U(θdisc ∧ (θ̂2 ∨ (θ̂1 ∧ (θ̂1Ud θ̂2)))))).

ltl -ltlc(θ1Sθ2) = (θdisc ⇒ (θ̂1Sd θ̂2)) ∧
(θcont ⇒ (θcont S(θdisc ∧ (θ̂2 ∨ (θ̂1 ∧ (θ̂1Sd θ̂2)))))).
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Lemma 3. Let θ be an LTL(A) formula. Let w be a canonical word in A∗. Let f ∈
timing(w) with a canonical interval representation (a0, I0) · · · (a2n, I2n). Then for all
i ∈ {0, · · · , 2n} and for all t ∈ Ii, we have w, i |= θ ⇐⇒ f, t |= ltl -ltlc(θ). ��

From the above lemma it follows that F (ltl -ltlc(θ)) = timing(Lsym(θ)).

Step (e): Using Kamp’s theorem [Kam68] for a given LTLc(A) formula θ̂ we can give
an equivalent FOc(A) formula ϕ such that F (θ̂) = F (ϕ).

To summarize this direction of the proof: given a counter-free ST-NFA A over
(A1, A2) by steps (b) and (c) we have an LTL(A) formula θ such that Lsym(A) =
Lsym(θ). By steps (c) and (d) we have an FOc(A) formula ϕA such that timing(Lsym

(θ)) = F (ϕA). It follows that F (A) = F (ϕA). Further, by the alternating nature of
the symbolic language of A it follows that the function models and alternating function
models of ϕA are the same.

This completes the proof of Theorem 1. ��

5 Counter-Free CIDA’s and TFOc

We can now prove the main result of this paper which is a general characterization
of timed first-order definable languages (again, for a natural first-order logic based on
input-determined operators) via counter-free CIDA’s.

We recall the definition of the continuous timed first-order logic (TFOc) based on
(Σ,Op) from [CDP06]. The syntax of the logic TFOc(Σ,Op) is given by:

ϕ ::= Qa(x) |ΔI(x) |x < y | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ,

where a ∈ Σ, Δ ∈ Op, I ∈ IQ≥0 , and x and y are first-order variables.
The logic is interpreted over timed words in TΣ∗, in a way similar to the logic

FOc. Given a formula ϕ ∈ TFOc(Σ,Op), a timed word σ = (a1, t1) · · · (an, tn) in
TΣ∗, and an interpretation I with respect to σ, which maps a first order variable x to
t ∈ [0, dur(σ)], we say σ, I |= Qa(x) iff ∃i : ai = a, and ti = I(x); σ, I |= ΔI(x) iff
Δ(σ, I(x))∩ I �= ∅; and the rest of the cases are similar to that of the logic FOc defined
in the previous section. For a sentence ϕ in TFOc(Σ,Op), the timed language defined
by ϕ, denoted L(ϕ), is defined to be {σ ∈ TΣ∗ |σ |= ϕ}.

Theorem 2. Let Σ be an alphabet and Op a set of finitely varying input-determined
operators over Σ. A timed language L ⊆ TΣ∗ is definable by a TFOc(Σ,Op) sen-
tence iff it is definable by a CFCIDA over (Σ,Op).

Proof. We first show how to go
from TFOc to CFCIDA.
The route we take is shown
in the figure alongside:

FOc(Γ )

TFOc(Σ,Op)

CFCIDA(Σ, Op)
A

�ϕ �ϕ

ϕ

tfo-fo [CDP06]

Thm. 1
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Let ϕ be a TFOc(Σ,Op) sentence. Then there is a proper symbolic alphabet (Γ1, Γ2)
over (Σ,Op) and a FOc(Γ1 ∪ Γ2) sentence ϕ̂ such that L(ϕ) = tw(F (ϕ̂)). The sym-
bolic alphabet (Γ1, Γ2) is based on the set of guards {ΔI |ΔI(x) is a subformula of ϕ}.
The formula ϕ̂ is then obtained from ϕ by replacing each Qa(x) by

∨
(a,h)∈Γ Q(a,h)(x)

and ΔI(x) by
∨

(c,h)∈Γ,ΔI∈h Q(c,h)(x)∨
∨

h∈Γ,ΔI∈h Qh(x), where Γ = Γ1 ∪ Γ2, and
taking its conjunction with ϕfcp , which is satisfied by functions whose untimings are
fully canonical proper words.

From Theorem 1, we have a counter-free ST-NFA A
�ϕ over (Γ1, Γ2) such that

F (A
�ϕ) = F (ϕ̂). By construction of ϕ̂ it follows that A

�ϕ is a fully canonical proper
CIDA over (Σ,Op), and hence a CFCIDA over (Σ,Op). Since L(A

�ϕ) = tw(F (A
�ϕ))

= tw(F (ϕ̂)) = L(ϕ), we are done.

In the converse direction,
the route we follow is:

FOc(Γ )

TFOc(Σ,Op)

CFCIDA(Σ, Op)
A ϕA

�ϕA

fo-tfo [CDP06]

Thm. 1

Let A be a CFCIDA over (Σ,Op). Thus A is a counter-free ST-NFA over a proper
alphabet (Γ1, Γ2) based on (Σ,Op), which accepts a fully canonical function lan-
guage. By Theorem 1 we have a FOc(Γ ) sentence ϕA (where Γ = Γ1 ∪ Γ2), such
that F (ϕA) = F (A). We now use the translation fo-tfo from [CDP06] which sim-
ply “unpacks” a formula ϕ in FOc(Γ ) to a formula ϕ̂ in TFOc(Σ,Op) such that
L(ϕ̂) = tw(F (ϕ)). Thus we take ϕ̂A to be fo-tfo(ϕA), and we have that L(A) =
tw(F (A)) = tw(F (ϕA)) = L(ϕ̂A). ��

6 Counter-Free Recursive CIDA’s

Our aim is now to extend the counter-free characterization of first-order definable timed
languages to “recursive” (or “hierarchical”) first-order logic and CIDA’s. This will give
us a counter-free CIDA characterization for many of the timed temporal logics defined
in the literature, including MTLc+Past and MITL.

We begin with a few preliminaries, mostly from [CDP06]. A floating timed word
over Σ is a pair (σ, t), where σ in TΣ∗ and t ∈ [0, dur(σ)]. We denote the set of
floating timed words over Σ by FTΣ∗. We will represent a floating word over Σ as
timed word over the alphabet Σ′ = (Σ ∪ {ε}) × {0, 1}. For a timed word σ′ over Σ′,
let σ denote the timed word obtained from σ′ by projecting away the {0, 1} component
from each pair and then dropping any ε’s in the resulting word. Then a timed word
σ′ over Σ′ which contains exactly one symbol from (Σ ∪ {ε}) × {1}, and whose last
symbol is from Σ×{0, 1}, represents the floating timed word (σ, t), where t is the time
of the unique action which has a 1-extension. We use fw to denote the (partial) map
which given a timed word σ′ over Σ′ returns the floating word (σ, t) represented by it,
and extend it to apply to timed languages over Σ′ in the natural way.

Let Σ be an alphabet and Op be a set of input determined operators. Given Δ ∈ Op,
we use the notation Δ′ for the operator over Σ′ with the semantics Δ′(σ′, t) = Δ(σ, t).
We use the notation Op′ to denote the set {Δ′ |Δ ∈ Op}. We now define a floating
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CIDA over (Σ,Op) to be a CIDA over (Σ′,Op′). We define the floating language of
a floating CIDA B, denoted Lfl(B), as fw (L(B)).

A recursive input-determined operator Δ over an alphabet Σ is a partial function
from (2FTΣ∗ × TΣ∗ × R≥0) to 2R≥0 , which is defined for tuples (M,σ, t) where M
is a floating language over Σ, σ ∈ TΣ∗, and t ∈ [0, dur(σ)]. Thus, given a floating
language M , we obtain an input-determined operator ΔM whose semantics is given by
ΔM (σ, t) = Δ(M,σ, t). For a floating CIDA B, we write ΔB for the operator ΔLfl(B).

We call a floating language M over Σ finitely varying, if for each timed word σ, the
characteristic function of the set pos(M,σ) = {t | (σ, t) ∈ M} is finitely varying in
[0, dur(σ)]. We say a recursive operator Δ is finitely varying if for every finitely varying
floating language M , the operator ΔM is finitely varying.

We are now ready to define the recursive version of our CIDA’s. We define the
class of recursive CIDA’s (rec-CIDA’s), and the class of recursive floating CIDA’s
(frec-CIDA’s) over an alphabet Σ and a set of recursive operators Rop based on Σ, as
the union over i ∈ N, of level-i rec-CIDA’s over (Σ,Rop) and level i frec-CIDA’s
over (Σ,Rop), which are defined inductively below:

– A level-0 rec-CIDA over (Σ,Rop) is a CIDA A over Σ that uses only the guard
�. It accepts the timed language accepted by A viewed as a CIDA – i.e. L(A). A
level-0 frec-CIDA over (Σ,Rop) is a floating CIDA B over Σ which uses only
the guard �. It accepts the floating language Lfl(B) (i.e by viewing it as a floating
CIDA over Σ).

– A level-i + 1 rec-CIDA over (Σ,Rop) is a CIDA A over Σ and finite set of
operators Op of the form ΔB, where Δ ∈ Rop and B is a level-i or less frec-CIDA
over (Σ,Rop). We require that A uses at least one operator of the form ΔB wit B
a level-i frec-CIDA. The timed language L(A) accepted by A is defined to be the
timed language accepted by A viewed as a CIDA over (Σ,Op).
A level-i+1 frec-CIDA over (Σ,Rop) is a floating CIDAB overΣ and finite set of
operators Op of the form ΔC , where Δ ∈ Rop and C is a level-i or less frec-CIDA
over (Σ,Rop). We require that B uses at least one operator of the form ΔC wit C
a level-i frec-CIDA. The floating language Lfl (B) accepted by B is defined to be
the floating language accepted by B viewed as a floating CIDA over (Σ,Op).

We now define the counter-free versions of these automata, by induction on the level
in which they occur. A level-0 rec-CIDA (respectively frec-CIDA) is counter-free if
the underlying ST-NFA is counter-free. A level-i + 1 rec-CIDA (resp. frec-CIDA)
is counter-free if it only uses operators of the form ΔB where B is a counter-free
frec-CIDA of level-i or less, and the underlying ST-NFA is counter-free.

We extend these definitions to proper rec-CIDA’s and frec-CIDA’s in the obvious
way. We define the class of counter-free rec-CIDA languages over (Σ,Rop), denoted
rec-CFIDA(Σ,Rop), to be the class of timed languages definable by counter-free fully
canonical proper rec-CIDA’s over (Σ,Rop).

We now introduce the recursive version of TFOc. Given an alphabet Σ and a set
of recursive operators Rop, the set of formulas of rec-TFOc(Σ,Rop) are defined in-
ductively as: ϕ ::= Qa(x) |ΔI

ψ(x) |x < y | ¬ϕ |ϕ ∨ ϕ | ∃xϕ, where a ∈ Σ, Δ ∈
Rop, I ∈ IQ≥0 and ψ is a rec-TFOc formula with a single free variable z. The
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rec-TFOc formulas are interpreted similar to TFOc formulas where the operator Δψ

is defined by Δψ(σ, t) = Δ(Lfl (ψ), σ, t) and Lfl(ψ) = {(σ, t) |σ, [t/z] |= ψ}. A
rec-TMSOc(Σ,Rop) sentence ϕ defines the language L(ϕ) = {σ ∈ TΣ∗ |σ |= ϕ}.

Using a similar technique to the proof of Theorem 2 we can show that rec-TFOc-
definable and rec-CFIDA-definable languages are the same:

Theorem 3. Let Σ be an alphabet and Rop be a set of finitely-varying recursive opera-
tors based on Σ. Then a timed language L⊆TΣ∗ is definable by a rec-TFOc(Σ,Rop)
sentence iff it is definable by a rec-CFIDA over (Σ,Rop). ��

We recall the definition of the recursive timed temporal logic based on (Σ,Rop) from
[CDP06], denoted rec-TLTLc(Σ,Rop). The syntax of the logic is given by

θ ::= a |ΔI
θ | (θUθ) | (θSθ) | ¬θ | (θ ∨ θ),

where a ∈ Σ, Δ ∈ Rop and I ∈ IQ≥0 . The logic is interpreted over timed words
in a manner similar to TLTLc+Past, where the operator Δθ is defined by Δθ(σ, t) =
Δ(Lfl (θ), σ, t), and Lfl (θ) = {(σ, t) |σ, t |= θ}. From [CDP06] we know that:

Theorem 4 ([CDP06]). Let Σ be an alphabet and Rop be a set of finitely-varying
recursive operators based on Σ. Then a timed language L ⊆ TΣ∗ is definable by a
rec-TFOc(Σ,Rop) sentence iff it is definable by a rec-TLTLc(Σ,Rop) formula. ��
Putting Theorems 3 and 4 together we obtain counter-free CIDA characterizations
for many timed temporal logics based on input-determined operators, proposed in the
literature. In particular we obtain a counter-free CIDA characterization for the logic
MTLc+Past (with past operators). Recall that the syntax of the logic MTLc+Past(Σ)
is:

θ ::= a | (θUIθ) | (θSIθ) | ¬θ | (θ ∨ θ),

where a ∈ Σ and I ∈ IQ≥0 . The logic is interpreted over timed words in TΣ∗, and the
modalities UI (and symmetrically SI ) is as follows:

σ, t |= θUIη iff ∃t′ ≥ t : t′ − t ∈ I, σ, t′ |= η, and∀t′′ : t < t′′ < t′, σ, t′′ |= θ.

We recall that MTLc+Past was shown to be expressively equivalent to the logic
rec-TLTLc(Σ, {�,�-}) in [CDP06], where the recursive operators � and �- are defined
as �(M,σ, t) = {t′ − t | t′ ≥ t, t ∈ pos(M,σ)} and �-(M,σ, t) = {t − t′ | t′ ≤ t, t ∈
pos(M,σ)}. Thus we have:

Theorem 5. The class of timed languages definable by rec-CFIDA(Σ, {�,�-}) and
MTLc+Past(Σ) are the same.

Restricting to non-singular intervals we obtain a similar result for the logic MITLc+Past
[AFH96].

7 Ultimate Stability of MTLc+Past

In section 6 we showed that every MTLc+Past language is recognized by a recursive
counter-free CIDA. We will now use this characterization to show the ultimate stability
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of MTLc+Past with respect to periodic sequences of timed words. In this section we
assume that Σ is an alphabet and Rop a set of finitely-varying recursive operators.

A periodic sequence of timed words 〈σi〉 is of the form uw, uvw, uv2w, · · · for
some timed words u, v and w in TΣ∗. We represent 〈σi〉 above via the triple (u, v, w).
A language of timed words L ⊆ TΣ∗ is said to be ultimately stable w.r.t. a periodic
sequence 〈σi〉 if there exists i0 ∈ N such that either ∀i ≥ i0, σi ∈ L or ∀i ≥ i0, σi /∈ L.
The language L is said to be ultimately stable if it is ultimately stable w.r.t. all periodic
sequences of timed words.

Theorem 6. Let ϕ be an MTLc+Past formula. Then L(ϕ) is ultimately stable.

The rest of this section is devoted to the proof of the above theorem. By theorem 5 we
just need to show that all languages recognized by rec-CFIDA are ultimately stable.

We first introduce the concept of middle zone: it represents the set of time points “in
the middle” of a timed word. A middle zone is a couple Z = (l, r) with l, r ∈ R.
Given a timed word w we define Z(w) = (l, dur(w) − r).

l Z(σ) r

Fig. 1. A middle zone

A floating language L ⊆ TΣ∗ × R is said to be well-behaved w.r.t. a periodic
sequence 〈σi〉 = (u, v, w) if there exist a middle zone Z and an index i0 such that the
following conditions hold:

∀i ∀i′ ≥ i ∀t ∈ Z(σi), (σi, t) ∈ L ⇔ (σi, t + dur(v)) ∈ L and

(σi, t) ∈ L ⇔ (σi′ , t) ∈ L.
(1)

∀i ≥ i0 ∀i′ ≥ i ∀t < l, (σi, t) ∈ L ⇔ (σi′ , t) ∈ L. (2)

∀i ≥ i0 ∀i′ ≥ i ∀t < r, (σi, dur(σi) − t) ∈ L ⇔ (σi′ , dur(σi′ ) − t) ∈ L. (3)

A floating language L is said to be well-behaved if it is well-behaved w.r.t. all pe-
riodic sequences. Note that a guard ΔI defines a floating language given by {(σ, t) |
σ, t |= ΔI}. We say that a floating CFCIDA (resp. a guard) is well-behaved w.r.t. a pe-
riodic sequence if its associated language is. Similarly we say that a floating CFCIDA
(resp. a guard) is well-behaved if its associated language is.

Given a proper symbolic alphabet Γ and a timed word σ we denote by γΓ
σ the unique

symbolic word γ ∈ Γ ∗ such that σ ∈ tw(γ). The proofs of the two lemmas below can
be found in [CDP07].

Lemma 4. Let G be a finite set of guards and Γ be a proper symbolic alphabet over
(Σ,Rop) based on G. Let 〈σi〉 be a periodic sequence. If for all g ∈ G, g is well-
behaved w.r.t. 〈σi〉 then there exists an integer i0 and γ1, γ2, γ3 ∈ Γ ∗ such that for all
i ≥ i0, γΓ

σi
= γ1γ

i−i0
2 γ3. �
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Note that this lemma shows that if for all g ∈ G, g is well-behaved w.r.t. 〈σi〉 then any
floating automaton based on G is well-behaved w.r.t. 〈σi〉.

Lemma 5. Let B be a proper canonical fCFIDA over (Σ,Rop) and I an interval. If B
is well-behaved, then the guards �I

B and �-IB are also well-behaved. ��

Returning to the proof of theorem 6: let L be recognized by some rec-CFIDA A and
〈σi〉 be a periodic sequence. Let Γ be the proper symbolic alphabet of A; by lemma
4 and 5 there exists an integer i0 and γ1, γ2, γ3 ∈ Γ ∗ such that for all i ≥ i0, γΓ

σi
=

γ1γ
i−i0
2 γ3. Let n be the number of states of A. γ2 cannot be a counter for A so for i

greater than i0 + n, the run of A on σi ends in the same state. Thus L is ultimately
stable w.r.t. 〈σi〉. ��

We justify here why CFCIDA’s were defined to in-
clude only fully canonical proper words. Had we al-
lowed words which are not fully canonical, CFCIDA’s
would not have been equivalent to TFOc. Alongside is
a proper CIDA which is not fully canonical but the un-
derlying ST-NFA is counter-free. It accepts the timed
language L1 consisting of timed words with even
number of a’s. This language is not ultimately stable
with respect to the periodic sequence (ε, (a, 1), ε), and
hence is not definable in MTLc+Past and therefore not
definable in TFOc({a}, {�a}).

� �

�

(a, �)

(a, �) (ε, �)

We also note that, unlike classical LTL, ultimate
stability of a rec-CIDA(�,�-) language is not a suffi-
cient condition for MTLc+Past recognizability. Con-
sider the timed language L2 consisting of timed words
ending with an a at time 1 and having even number of
b’s in the interval (0, 1). This language is recognized
by a rec-CIDA over {�}. However it can be shown to
be inexpressible in MTLc+Past and hence not recog-
nized by a rec-CFIDA over {�}. Nevertheless it is
trivially ultimately stable.

Ultimately
Stable rec-CIDA(�, �-)

L1

L2

MTL=rec-CFIDA(�, �-)

The Venn diagram alongside shows the different classes of timed languages.
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Abstract. Budgeting of resources is an often used solution for guaran-
teeing performance of lower priority tasks. In this paper, we take a formal
approach to the modeling of a deferrable server budgeting strategy, using
real-time calculus. We prove a scheduling theorem for deferrable servers,
and as a corollary show that an earlier claim of Davis and Burns, that
periodic servers dominate deferrable servers with respect to schedula-
bility, no longer holds when the context of the comparison is slightly
generalized.

1 Introduction

One of the main scheduling approaches in real-time computing systems is given
by fixed-priority preemptive scheduling (FPPS) [5,6]. The approach is founded
on a fixed-priority scheduling theory, supported by a suite of open software
standards, commercially available schedulability analysis tools and real-time op-
erating systems, and adopted by leading companies and institutions world-wide.

Scheduling a set of real-time tasks sharing a resource gives rise to the so-called
temporal interference problem, i.e. a malfunctioning task may cause other tasks
to fail to meet their time constraints. An often used solution for this problem is to
introduce resource budgets for tasks, which provide temporal protection between
tasks by guaranteeing a minimal amount of resources [8]. Those budgets are often
implemented using so-called servers that dispatch the available resources to the
tasks that are appointed to them.

In general, a server for a shared processing resource, such as a CPU, is char-
acterized by a capacity and a replenishment period [1]. The capacity is the max-
imum amount of resources (i.e. the maximum amount of processing time) that
a server can provide to its associated tasks during its replenishment period. The
replenishment period is the minimum time between replenishments of the ca-
pacity. Servers typically differ with respect to the amount and moment in time
of the replenishments and to the preservation of the remaining capacity when
none of the appointed tasks is ready to use it.

In this paper, we consider so-called deferrable servers [10], which have been
studied as implementations of resource budgets in [2,9], amongst others. We fo-
cus on [2], because its results improve on earlier work. Deferrable servers are
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c© Springer-Verlag Berlin Heidelberg 2007



Towards Budgeting in Real-Time Calculus: Deferrable Servers 99

replenished periodically, at fixed intervals of time, and have the following preser-
vation policy. When a deferrable server has access to the shared resource, its
capacity is provided if one of the tasks is ready to use it. If the tasks are not
ready to use it, the deferrable server suspends its access to the resource, pre-
serving its remaining capacity. Capacity can be preserved until the end of the
replenishment period. At the end of the server’s period any remaining capacity
is lost.

Our main contribution, is a formal model of deferrable servers using the real-
time calculus of [11]. Real-time calculus is a branch of network calculus [4], which
uses max-plus algebra for the algebraic analysis of real-time systems. Our spe-
cific interest in formalizing the behavior of deferrable servers using this calculus,
was due to a suspicion that the worst-case response time analysis of deferrable
servers in [2] becomes pessimistic, rather than exact, in a slightly generalized
context. Using our real-time calculus model, we derive a schedulability theorem
for deferrable servers with a single task. Application of this theorem for a de-
ferrable server with highest priority leads to an example showing that, in the
absence of a low-priority soft real-time task, the analysis in [2] indeed becomes
pessimistic, rather than exact. As a consequence, the applicability of deferrable
servers may be better than was suggested in [2].

This paper is structured as follows. First, in Section 2, we recapitulate the
real-time calculus theory of [11]. Next, in Section 3 we explain how to model
servers in this theory, and extend the theory with a model of a deferrable server.
Our schedulability theorem is the topic of Section 4. The consequences of our
schedulability theorem are discussed in Section 5, where we compare it with the
results of [2]. Section 6 summarizes the main contributions of the paper and
suggests directions for future research.

2 Real-Time Calculus Preliminaries

In this section, we recall part of the real-time calculus theory of [11]. The starting
point of this calculus, is to consider cumulative requests streams R(t) : R → R
(from time to amount of requested resources) and cumulative resource streams
C(t) : R → R (from time to amount of available resources) in a system. The
request stream models the total amount of requested tasks that have entered
the system at a certain time, while the resource stream models the total amount
of processing power that has been offered to a server. The total amount of tasks
that have been processed is modeled by a cumulative request stream R′(t), while
the total amount of resources that remains unused is processed by a cumulative
resource stream C′(t). For convenience we choose C(t) = R(t) = C′(t) = R′(t) =
0 whenever t < 0, reflecting that the system is turned on at t = 0.

Processing of a sequence of tasks can be depicted as in figure 1. It is obvi-
ous, that the total amount of tasks processed at time t can never exceed the
amount of tasks processed already at a time u ≤ t, plus the amount of resources
offered between u and t. Furthermore, the amount of processed tasks can never be



100 P.J.L. Cuijpers and R.J. Bril

R(t)

C(t)

C′(t)

R′(t)

Fig. 1. Basic processing in Real-time Calculus

more than the amount of requested tasks. This lower bound on the output R′ is
captured in the following formula1.

R′(t) ≤
�
R′(u) + C(t) − C(u)

�
∧ R(t).

With a little calculation we can rewrite this into:

R′(t) ≤ inf
u≤t

{R(u) + C(t) − C(u)} .

Now, if we furthermore assume that tasks may be buffered until resources
become available for it, and that a server is eager in the sense that it processes
each task as soon as resources are available for it, we can derive a lower bound
on R′(t) as well. We define t0 as the latest point before t at which the resource
buffer was empty, assuming R(0) = R′(0) for convenience to show there exists
such a point.

t0 � sup{τ ≤ t | R(τ ) = R′(τ )}

Between t0 and t, the task buffer is always non-empty, which means that all
resources that arrive are used for processing tasks. So we find the equality:

R′(t) =
�
R′(t0) + C(t) − C(t0)

�
∧ R(t).

For a right-continuous resource stream R(t) we then find R(t0) = R′(t0) (using
the definition of t0) and thus:

R′(t) = (R(t0) + C(t) − C(t0)) ∧ R(t),

≥ inf
u≤t

{R(u) + C(t) − C(u)} ∧ R(t),

= inf
u≤t

{R(u) + C(t) − C(u)} .

In conclusion, R′(t) is exactly determined by
1 In this paper, we use x ∧ y to denote the minimum of x and y, and infu{f(u)} to
denote the infimum of f(u) over u. Furthermore, x ∨ y denotes the maximum of x
and y, and supu{f(u)} denotes the supremum of f(u) over u.



Towards Budgeting in Real-Time Calculus: Deferrable Servers 101

R′(t) = inf
u≤t

{R(u) + C(t) − C(u)} .

According to [4] the same formula holds if R(t) is left-continuous, but the
proof is more complicated. The amount of resources that is left unused can be
found easily by subtracting what is used from what is delivered.

C′(t) = C(t) − R′(t),

= C(t) − inf
u≤t

{R(u) + C(t) − C(u)} ,

= sup
u≤t

{C(u) − R(u)} .

In figure 2 we have depicted an example of a task R(t) = 3 ·  t
3!∨ 0, modeling

the arrival of three requests every three time-units. This task is serviced by a
resource C(t) = 2·t∨0, which brings continuous service to a task at two resource-
units per time-unit. Note, that by definition C′(t) is flat whenever R′(t) rises,
since eager processing requires that all incoming resources are used as long as
the input buffer is non-empty. Vice versa, R′(t) is flat when C′(t) rises, for the
same reason.

2 4 6 8 10
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6

8

10

R�t�,R’�t�

2 4 6 8 10
t
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8

10

C�t�,C’�t�

Fig. 2. Requests and resources in RTC (inputs straight, outputs dashed)

3 Deferrable Server Model

In the previous section, we have shown how the processing of a single sequence
of tasks can be modeled using real-time calculus. But from a more high-level
point of view, the same equations can also be used to represent a server that
dispatches resources to a number of tasks. The input stream RS of the server
then is the sum of the input streams of the appointed tasks (whenever one of
its tasks has unfinished requests, the server must dispatch incoming resources to
it) and the output stream R′

S does not represent finished tasks, but represents
resources that have been reserved for the tasks operating under the server. This
scheme is depicted in figure 3, where the block labeled S represents a server and
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S+

C(t)

C′(t)

1R1(t) R′
1(t)

2R2(t) R′
2(t)

Fig. 3. Server modeling in real-time calculus

blocks 1 and 2 represent tasks that are dispatched to this server. So, we have
RS = R1 + R2, C1 = R′

S and C2 = C′
1.

The insight that the equations for a server and for a task are the same, albeit
with a different interpretation of the meaning of the variables, still holds when
we shift our focus to servers with a budgeting strategy. In other words, this
hierarchical way of modeling allows us to model the budgeting of a single task,
and use this model for a budgeting server as well. For a budgeting server, we
still assume that tasks are processed eagerly, and that tasks are buffered while
waiting for resources to arrive. Therefore, the previously derived upper bound
on R′(t) is still valid.

R′(t) ≤ inf
u≤t

{R(u) + C(t) − C(u)} .

But, additionally, a deferrable server periodically limits the resources it pro-
vides to a maximum capacity Q. Replenishment of the capacity takes place at
the start of each period T , which at a time t is determined (right-continuously)
by T ·

⌈
t
T − 1

⌉
. The output R′(t) of a deferrable server cannot be greater than the

output R′ (T ·
⌈

t
T − 1

⌉)
at the start of the period plus the processing capacity

Q. So, we refine the upper bound to capture this behavior.

R′(t) ≤ inf
u≤t

{R(u) + C(t) − C(u)}

∧ R′
�

T ·
�

t

T
− 1

��
+ Q

∧ R′
�

T ·
�

t

T
− 1

��
+ C(t) − C

�
T ·

�
t

T
− 1

��
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Furthermore, for t0 � sup{τ ≤ t | R(τ) = R′(τ)} ≥ 0 we find

R′(t) = R(t0) + C(t) − C(t0)

∧ R′
�

T ·
�

t

T
− 1

��
+ Q

∧ R′
�

T ·
�

t

T
− 1

��
+ C(t) − C

�
T ·

�
t

T
− 1

��
≥ inf

u≤t
{R(u) + C(t) − C(u)}

∧ R′
�

T ·
�

t

T
− 1

��
+ Q

∧ R′
�

T ·
�

t

T
− 1

��
+ C(t) − C

�
T ·

�
t

T
− 1

��
.

What results is a recursive specification for the output of the deferrable server

R′(t) = inf
u≤t

{R(u) + C(t) − C(u)}

∧ R′
�

T ·
�

t

T
− 1

��
+ Q

∧ R′
�

T ·
�

t

T
− 1

��
+ C(t) − C

�
T ·

�
t

T
− 1

��
.

To prove that this recursive specification has a unique solution for R′(t), we
rewrite it to

R′(t + T ) = inf
u≤t+T

{R(u) + C(t + T ) − C(u)}

∧ R′
�

T ·
�

t

T

��
+ Q

∧ R′
�

T ·
�

t

T

��
+ C(t + T ) − C

�
T ·

�
t

T

��
.

From this representation it is clear that, if the solution of the recursive spec-
ification is unique upto a point t, then it is unique upto t + T . Furthermore, we
find uniqueness for t < 0 where we have R′(t) = 0. So, the solution is unique
upto 0, and with induction upto n · T for any n ∈ N. We may conclude that
R′(t) is well defined, and may even solve the recursive specification to find:

R′(t) = inf
n∈N

inf
u≤t∧T · t

T
−n�

�
R(u) + C(t ∧ T ·

�
t

T
− n

�
) − C(u)

+
n−1�
m=0

Q ∧
�

C(t ∧ T ·
�

t

T
− m

�
) − C(T ·

�
t

T
− m − 1

�
)

�	
.

As before, we find C′(t) by subtracting what is used from what is delivered.
With a little calculation, we obtain:
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C′(t) = sup
n∈N

sup
u≤t∧T · t

T
−n�


C(u) − R(u) +

n−1�
m=0

�
C

�
t ∧ T ·

�
t

T
− m

��
− C

�
T ·

�
t

T
− m − 1

��
− Q

�
∨ 0

	
.

In figures 4 we have depicted an example of a task R(t) = 3 ·  t
3! ∨ 0, serviced

by a resource C(t) = 2 · t∨0, on a deferrable server with Q = 2 and T = 2. Note,
that as before, C′(t) is flat whenever R′(t) rises, and vice versa, but the pattern
is different from the normal RTC processing.
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Fig. 4. Requests and resources in a deferrable server, (inputs straight, outputs dashed)

4 Scheduling Theorem

The delay of a task entering at time t is the time between its request and its
completion. If we assume that tasks are completed in the order in which they
arrive, the delay is the earliest time τ at which R′(t+ τ) ≥ R(t). The maximum
delay Δ in the processing of a sequence of tasks is then defined by:

Δ � sup
t

inf{τ | R′(t) ≥ R(t − τ )}.

Based on this definition, and the model of a deferrable server found in the
previous section, we will now prove the following schedulability theorem. This
theorem roughly states that task with a deadline greater than the sum of the
minimum interarrival time of the task and the maximum delay between arrival
of resources (due to other servers in the network) is schedulable (i.e. makes its
deadline) provided that the tasks utilization is smaller than the utilization of
the server and smaller than the utilization of the arriving resources.

Theorem 1 (Schedulability of a deferrable server). Consider a deferrable
server with period T and capacity Q. Assume that there is an upper bound S on
the arrival time of tasks R(t) such that for all s ∈ R:
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R(s + S) − R(s)

S
≤ Q

T
.

Furthermore, assume that there is a lower bound U ≤ T on the arrival times of
resources, such that for all u ∈ R:

C(u + T ) − C(u) ≥ Q,

C(u + U) − C(u)

U
≥ R(s + S) − R(s)

S
.

Then, all relative deadlines of at least S + 2 · U are met, i.e.

Δ � sup
t

inf{τ | R′(t) ≥ R(t − τ )} ≤ S + 2 · U.

Proof. The complete proof is by algebraic manipulation of the equations of the
deferrable server model and can be found in the appendix.

In the special but in practice not uncommon case (see [1]) where the deferrable
server has highest priority, the resource stream C(t) can be considered to be
linear, i.e. C(t) = C · t. As a corollary, we then find that deadlines of at least S
are met.

Corollary 1. Consider a highest-priority deferrable server with period T and
capacity Q. Furthermore, assume that we have an upper bound S on the arrival
time of tasks R(t) and a linear resource stream C(t) = C · t, such that the
respective utilizations satisfy the following inequalities for all s ∈ R:

C ≥ Q

T
≥ R(s + S) − R(s)

S
.

Then, all relative deadlines of at least S are met, i.e.

Δ � sup
t

inf{τ | R′(t) ≥ R(t − τ )} ≤ S.

Proof. By assumption, we have for all s ∈ R that R(s+S)−R(s)
S ≤ C. From

linearity, it follows that for all U > 0 and all u ∈ R we have C(u+U)−C(u)
U = C,

so R(s+S)−R(s)
S ≤ C(u+U)−C(u)

U and C(u + T ) − C(u) ≥ Q. Using our main
theorem, we find for all U > 0, that relative deadlines greater than S + 2 ·U are
met, and hence Δ � supt inf{τ | R′(t) ≥ R(t − τ)} ≤ infU>0{S + 2 · U} = S.
Which concludes our proof.

5 Discussion

As mentioned in the introduction, our reason for making a formal model of the
deferrable server strategy, was our suspicion that the schedulability analysis in
[2] for real-time tasks under hierarchical fixed-priority preemptive scheduling and
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a deferrable server, is in general pessimistic rather than exact. In this section, we
will discuss this claim in more detail, with an apology for the necessary cluttering
in use of terminology. Throughout the paper we have used the terminology that
is usual in real-time calculus as much as possible, but in this section we must
transliterate some of the results to fit the terminology of [2].

In [2], a comparison is made between deferrable servers and periodic servers,
which only differ from each other in that a periodic server does not preserve
its remaining capacity if resources are provided but tasks are not ready to use
them, while a deferrable server does. The comparison is carried out under the
assumption that there is a lowest priority, soft real-time task present (block 2 in
figure 3), of which the interarrival time is unknown. Davis and Burns show that,
under this assumption, the worst-case schedulability of tasks is better for peri-
odic servers. However, we feel their subsequent conclusion that periodic servers
dominate deferrable servers is somewhat misleading, because the presence of the
soft real-time task severely influences the behavior of the deferrable server, while
it does not influence the behavior of the periodic server. More precisely, in the
worst case scenario, the buffer of the soft real-time task is never empty. This
causes the deferrable server to loose capacity to this task at all times, and in
effect behave in the same way as the periodic server.

Using Corollary 1, we will show that a deferrable server can indeed outper-
form a periodic server when this unknown soft real-time task is not present. The
simplest example that shows this, is a system consisting of a single budgeted
task, with a deadline equal to its period. In the remainder of this section, we
first briefly relate our terminology with the terminology used in [2], and subse-
quently transliterate and refine Corollary 1 for our example system. Next, we
recapitulate worst-case response time analysis given in [2] by presenting a ded-
icated equation for our special case. Under the aforementioned conditions, the
analysis in [2] is exact for deferrable servers, i.e. provides a necessary and suffi-
cient schedulability condition for the task. However, our corollary shows that the
analysis is pessimistic for deferrable servers, when the unknown lowest priority
task is not present or its interarrival time becomes known. This we illustrate
using the aforementioned example.

In [2], a periodic task τ is characterized by a period (or inter-arrival time) T τ ,
a worst-case computation time Cτ , and a relative deadline Dτ . We assume that
the task’s period and deadline are equal, i.e. T τ = Dτ . A server σ is characterized
by a replenishment period T σ and a capacity Cσ. Based on these notions, the
utilization U τ of the task is given by Cτ

T τ and the utilization Uσ of the server by
Cσ

T σ .
The task τ can be either bound or unbound. The task τ is bound if it has

a period that is an exact multiple of the server’s period and an arrival time
that coincides with the replenishment of the server’s capacity. Otherwise τ is
unbound. We assume an unbound task. Without loss of generality, we assume
that the server σ is replenished for the first time at time ϕσ = 0. Moreover, we
assume that τ is released for the first time at time ϕτ ≥ 0, i.e. at or after the
first replenishment of σ. With this terminology in place, we can write
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R(t) = Cτ ·
�

t − ϕτ

T τ

�
C(t) = t

Q = Cσ

S = T τ

T = T σ

For our system, we can now transliterate and refine Corollary 1.

Corollary 2. Consider a highest-priority deferrable server σ with period T σ and
capacity Cσ. Furthermore, assume that the server is associated with a periodic
task τ with period T τ and worst-case computation time Cτ , where the first release
of τ takes place at or after the first replenishment of σ. When the respective
utilizations satisfy the following inequality

Uτ ≤ Uσ ≤ 1,

the deadline Dτ = T τ of τ is met.

Note that our transliterated corollary holds for both a bound task and an un-
bound task. Furthermore, note that (2) is a necessary and sufficient (i.e. exact)
schedulability condition for both the task and the server. Finally, note that

UT ≤ Uσ ≤ 1,

is a necessary schedulability condition for a set T of independent hard real-time
tasks with utilization UT with an associated server σ with utilization Uσ

We will now derive a schedulability condition for our system from [2] starting
from an equation to determine the task’s worst-case response time. The task’s
worst-case response time WRτ is the longest possible time from its arrival to its
completion. Similarly, the server’s worst-case response time WRσ is the longest
possible time from the server being replenished to its capacity being exhausted,
given the task is ready to use all of its capacity. The task is said to be schedulable
if (and only if)

WRτ ≤ Dτ .

Similarly, the server is schedulable if (and only if) WRσ ≤ T σ.
For our system, the server is schedulable when Cσ ≤ T σ. Based on [2], we

derive for our system that WRτ is given by

WRτ = Cτ +

�
Cτ

Cσ

�
(T σ − Cσ) , (1)

which leads to the following condition for schedulability of a task with a deadline
Dτ equal to its period T τ

Cτ +

�
Cτ

Cσ

�
(T σ − Cσ) ≤ T τ . (2)

Now, as an example, we fix Cτ and T τ and plot the minimum utilization Uσ
min

of the server as a function of T σ, i.e. we plot

Uσ
min(T

σ) = min

�
Cσ

T σ
| T τ ≥ Cτ +

�
Cτ

Cσ

�
(T σ − Cσ) , Cσ ≥ 0

�
.
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Fig. 5. Minimum server utilization Uσ
min for Cτ = 2 and T τ = 5 as a function of T σ

The result for Cτ = 2 and T τ = 5 is depicted in figure 5. The horizontal line in
this figure, shows the utilization U τ = Cτ

T τ of the task.
The figure illustrates that according to [2] only for values of T σ equal to an

integral fraction of T τ , i.e. T σ = T τ

n for n ∈ N+, the minimum server utilization
Uσ

min needed for schedulability is equal to the task utilization U τ . For other
values of T σ, Uσ

min is higher than U τ . However, according to our theorem, the
server utilization Uσ may be chosen equal to the task utilization U τ when using
a deferrable server, irrespective of T σ. From this example, we conclude that the
schedulability condition expressed by (2) is sufficient but not necessary for an
unbound task with an associated deferrable server. As a result, equation (1)
is pessimistic, and the worst-case response time analysis presented in [2] for
unbound tasks with associated deferrable servers is therefore pessimistic, and
not exact, when the assumption of an unknown soft real-time lowest priority
task is dropped.

According to [2], their worst-case response time analysis is exact for both
deferrable servers and periodic servers. Based on that result, they claim that
periodic servers dominate deferrable servers with respect to schedulability of
tasks, i.e. “there are no systems . . . that can be scheduled using a set of deferrable
servers that cannot also be scheduled using an equivalent set of periodic servers”.
We have shown here, that this claim heavily relies on the assumed presence of
an unknown soft real-time lowest priority task, and that it may not hold if such
a task is not present, or if we somehow have more information on the interarrival
time of this lowest priority task.

6 Conclusive Remarks and Future Work

We presented a formal model of a deferrable server budgeting strategy [10],
using the real-time calculus of [11]. Using this model we derived a schedulability
theorem stating that a set of tasks with deadlines greater than the sum of the
minimum interarrival times of the tasks and the maximum delay between arrival
of resources (due to other servers in the network) is schedulable provided that the
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utilization of the tasks is smaller than the utilization of the server and smaller
than the utilization of the arriving resources. Application of this theorem to the
special case of a highest-priority server has led to an example where deferrable
servers outperform periodic servers in the absence of soft real-time tasks. Hence,
the claim in [2] that periodic servers outperform deferrable servers, holds in the
presence of soft real-time tasks, but not in their absence. Worst-case response
time analysis of deferrable servers therefore still requires further research.

In this paper, we used real-time calculus as an aid to prove our schedulability
theorem for deferrable servers. In particular, we have proved the schedulabil-
ity theorem using direct symbolic manipulation of our model of the deferrable
server. Another, indirect way to analyse the behaviour of real-time calculus mod-
els, is through so-called service curves [4], comparable to analysis using Fourier
and Laplace transformations in system theory. Service curve transformations
define a system in terms of upper and lower bounds on the input and output
streams rather than defining the streams exactly. Initial investigations suggest
that service curve transformations can also be found for deferrable servers, but
will probably not be tight, i.e. they will not give optimal bounds. Our attempts
to use service curve transformations to prove our schedulability theorem failed,
because the exact timing of replenishments turned out to be crucial in this proof,
and is lost during the transformations.

Finally, the treatment of budgeting servers in general does not stop with the
treatment of deferrable servers. First of all, there is a great variety of budgeting
servers already in use in practice and theory. And secondly, the use of budgeting
servers has lead to the introduction of a hierarchical approach to scheduling.
If multiple tasks are run on a single server, one may first divide the available
resources over the servers, and in a second stage schedule the tasks that run
on each server independently of what runs on the other servers. Recent theory
about the schedulability of tasks under different kinds of budgeting servers was
presented in [2,3,7,9]. In the beginning of section 3 we have shown that there
is a connection between the modeling of individual tasks and the modeling of
servers. Of course, this concept can be lifted to meta-servers, etc. But, further
analysis is still needed to obtain a truly hierarchical approach, in which we first
abstract from lower level tasks and analyse the connections between servers, and
afterwards analyse the properties of the served tasks.

Acknowledgements. We would like to thank Lothar Thiele of ETH Zürich, and
Robert I. Davis and Alan Burns of the University of York, for their valuable
feedback on our initial results and for helping us to better understand their
respective work.
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A Scheduling Theorem: Proof

To prove supt inf{τ | R′ (t) ≥ R (t − τ)} ≤ S+2 ·U , it is necessary and sufficient
to prove that R′ (t) ≥ R (t − S − 2 · U) for all t. For this, we start from our
previously obtained solution for R′ (t).

R′ (t) = inf
n∈N

inf
u≤t∧T · t

T
−n�

�
R (u) + C

�
t ∧ T ·

�
t

T
− n

��
− C (u)

+

n−1�
m=0

Q ∧
�

C

�
t ∧ T ·

�
t

T
− m

��
− C

�
T ·

�
t

T
− m − 1

���	

We split off the special cases where n = 0 and m = 0, and find:

= inf
u≤t

{R (u) + C (t) − C (u)}

∧ inf
n≥1

inf
u≤T · t

T
−n�

�
R (u) + C

�
T ·

�
t

T
− n

��
− C (u)

+ Q ∧
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C (t) − C

�
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t
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���

+
n−1�
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Q ∧
�

C

�
T ·

�
t

T
− m

��
− C

�
T ·

�
t

T
− m − 1

���	
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Again, we find two cases, depending on whether Q or C (t)−C
(
T ·
⌈

t
T − 1

⌉)
is

larger.

= inf
u≤t

{R (u) + C (t) − C (u)}

∧ inf
n≥1

inf
u≤T · t

T
−n�

�
R (u) + C

�
T ·

�
t

T
− n

��
− C (u)

+ Q +
n−1�
m=1

Q ∧
�

C

�
t ∧ T ·

�
t

T
− m

��
− C

�
T ·

�
t

T
− m − 1

���	

∧ inf
n≥1

inf
u≤T · t

T
−n�

�
R (u) + C (t) − C

�
T ·

�
t

T
− 1

��
+ C

�
T ·

�
t

T
− n

��
− C (u)

+
n−1�
m=1

Q ∧
�

C

�
T ·

�
t

T
− m

��
− C

�
T ·

�
t

T
− m − 1

���	

Take u = T ·
⌈

t
T − m− 1

⌉
in the assumption on resource arrivals to find

C
(
T ·
⌈

t
T − m

⌉)
− C

(
T ·
⌈

t
T − m − 1

⌉)
≥ Q.

= inf
u≤t

{R (u) + C (t) − C (u)}

∧ inf
n≥1

inf
u≤T · t

T
−n�

�
R (u) + C

�
T ·

�
t

T
− n

��
− C (u) + n · Q

�

∧ inf
n≥1

inf
u≤T · t

T
−n�

�
R (u) + C (t) − C

�
T ·

�
t

T
− 1

��

+ C

�
T ·

�
t

T
− n

��
− C (u) + (n − 1) · Q

�

Then, we truncate the argument of C (.) to a multiple of U with a convenient
remainder. Using monotonicity of C (t) we find:

≥ inf
u≤t

�
R (u) + C

��
t − u

U


· U + u

�
− C (u)

�

∧ inf
n≥1

inf
u≤T · t

T
−n�



R (u) + C

��
T ·

�
t
T

− n
�

− u

U

�
· U + u

�
− C (u) + n · Q

	

∧ inf
n≥1

inf
u≤T · t

T
−n�



R (u) + C

��
t − T ·

�
t
T

− 1
�

U

�
· U + T ·

�
t

T
− 1

��

− C

�
T ·

�
t

T
− 1

��
+ C

��
T ·

�
t
T

− n
�

− u

U

�
· U + u

�
− C (u) + (n − 1) · Q

	

Now, we define X as a lower bound on the utilization of R (t), and find:

inf
u

{
C (u + U) − C (u)

U

}

≥ sup
s

{
R (s + S) − R (s)

S

}

� X.
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Using X , we eliminate C (t) and Q.

≥ inf
u≤t

�
R (u) +

�
t − u

U


· U · X

�

∧ inf
n≥1

inf
u≤T · t

T
−n�



R (u) +

�
T ·

�
t
T

− n
�

− u

U

�
· U · X + n · T · X

	

∧ inf
n≥1

inf
u≤T · t

T
−n�



R (u) +

�
t − T ·

�
t
T

− 1
�

U

�
· U · X

+

�
T ·

�
t
T

− n
�

− u

U

�
· U · X + (n − 1) · T · X

	

Observe that for all x we have x ·X ≥ " x
S # ·S ·X . And since S ·X serves as an

upper bound on R (s + S) − R (s), this gives us

≥ inf
u≤t

�
R

�
u +

��
t − u

U


· U

S


· S

��

∧ inf
n≥1

inf
u≤T · t

T
−n�



R

�
u +

��
T ·

�
t
T

− n
�

− u

U

�
· U

S
+ n · T

S

�
· S

�	

∧ inf
n≥1

inf
u≤T · t

T
−n�


R

�
u +

��
t − T ·

�
t
T

− 1
�

U

�
· U

S
+

�
T ·

�
t
T

− n
�

− u

U

�
· U

S
+ (n − 1) · T

S

�
· S

�	

And using monotonicity of R (t), together with the observation that "x# · y ≥
x · y − y we find:

≥ inf
u≤t

�
R

�
u +

�
t − u

U


· U − S

��

∧ inf
n≥1

inf
u≤T · t

T
−n�



R

�
u +

�
T ·

�
t
T

− n
�

− u

U

�
· U + n · T − S

�	

∧ inf
n≥1
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u≤T · t

T
−n�


R

�
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�
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�
t
T
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�

U

�
· U +

�
T ·

�
t
T

− n
�

− u

U

�
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≥ inf
u≤t

{R (u + t − u − U − S)}

∧ inf
n≥1
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u≤T · t

T
−n�

�
R

�
u + T ·

�
t

T
− n

�
− u − U + n · T − S

��

∧ inf
n≥1

inf
u≤T · t

T
−n�
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�
R

�
u + t − T ·

�
t

T
− 1

�
− U + T ·

�
t

T
− n

�
− u − U + (n − 1) · T − S

��
= R (t − U − S)

∧ R

�
T ·

�
t

T

�
− U − S

�
∧ R (t − 2 · U − S)

= R (t − 2 · U − S)

Which concludes our proof.
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Abstract. We present a fully automatic approach for counterexample guided
abstraction refinement of real-time systems modelled in a subset of timed au-
tomata. Our approach is implemented in the MOBY/RT tool environment, which
is a CASE tool for embedded system specifications. Verification in MOBY/RT
is done by constructing abstractions of the semantics in terms of timed automata
which are fed into the model checker UPPAAL. Since the abstractions are over-
approximations, absence of abstract counterexamples implies a valid result for
the full model. Our new approach deals with the situation in which an abstract
counterexample is found by UPPAAL. The generated abstract counterexample is
used to construct either a concrete counterexample for the full model or to iden-
tify a slightly refined abstraction in which the found spurious counterexample
cannot occur anymore. Hence, the approach allows for a fully automatic abstrac-
tion refinement loop starting from the coarsest abstraction towards an abstraction
for which a valid verification result is found. Nontrivial case studies demonstrate
that this approach computes small abstractions fast without any user interaction.

1 Introduction

Embedded systems often control safety critical systems. Hence, formal methods are
mandatory to establish correctness results for such systems. Since model checking is
a technique that does the analysis without any user interaction it is widely examined
in the literature and many tools are available. However, model checking suffers from
the so called state space explosion problem, i. e., the complexity of the verification
procedure is exponential in the size of the system. Therefore, several techniques have
been invented to tackle this problem like symbolic representation and abstractions. In
most cases the requirements of embedded systems refer to the timing. Verification of
real-time systems by model checking is even more difficult because time adds another
source of complexity. As a consequence, checking a model that represents a nontrivial
real-time system always requires to find an appropriate abstraction that can be checked
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within the given resources of memory and time. If the used abstraction is an over-
approximation, then the absence of an abstract counterexample implies the absence of
concrete counterexamples. Such an abstraction is called a safe abstraction. However, if a
model checker analyses a safe abstraction and discovers a counterexample, the question
arises whether the counterexample is spurious or not, i. e., whether there is a concrete
counterpart in the full model.

Without automation, model checking by abstractions consists of several, error-prone
and time-consuming tasks. First, the user has to select a proper initial abstraction which
usually requires a deep knowledge of the system under consideration. If the model
checker finds a counter example in this abstraction, then the user has to analyse whether
it is spurious or not. If the counterexample is real, then the user is done, otherwise the
selected abstraction was too coarse. In this case the initial abstraction must be refined
so that the spurious counterexample is eliminated. These steps are repeated until there
is no abstract counterexample, or the abstract counterexample is also a counterexample
for the full system.

The approach presented in this paper automates all steps of the abstraction refine-
ment loop in the setting of real-time specifications given as PLC automata [1]. This
leads to a fully automated abstraction refinement loop as depicted in Fig. 1. This loop
starts with the coarsest possible abstraction and iterates as long as spurious counterex-
amples are found. If the model checker finds an abstract counterexample, then a coun-
terexample analyser is used to check whether it is spurious. Our analyser first constructs
a test automaton from the abstract counterexample. The composition of the full model
with the newly generated automaton is then fed into the model checker. We extended the
model checker in such a way that if the counterexample is spurious, the model checker
also reports hints why it is spurious. These hints are then used in the refinement step
in order to eliminate the abstract counterexample. The termination of this abstraction
refinement loop is guaranteed by the fact that each iteration removes at least one of
finitely many abstracted variables.

To demonstrate the potential of our approach we carried out several nontrivial case
studies, i. e., the respective full models cannot be handled within the given memory
resources. Our approach is able to handle them with only a fraction of the resources,
starting from the initial abstraction towards a refined abstraction for which a definite
answer could be found.

The remainder of the paper is structured as follows: the next section briefly intro-
duces the formalisms we work with, Section 3 shows how we check for spuriousness

Refinement

Abstraction

Counterexample
Analysis

Model Checkingverification
task

true

false

Fig. 1. Counterexample guided abstraction refinement loop
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of counterexamples. Section 4 describes our used abstraction refinement cycle and the
algorithms to provide the necessary information. Section 5 provides experimental eval-
uation of the implementation of the method within UPPAAL. In Section 6 we discuss
related work and Section 7 concludes.

2 Preliminaries

In our setting, a verification task consists of a real-time system, which is given in terms
of PLC automata, together with a temporal property to verify. To solve such a verifi-
cation task with our framework, we use MOBY/RT to compute an abstraction of the
given PLC automata. MOBY/RT is a tool for the development and analysis of PLC au-
tomata [2]. From the verification perspective the most important feature of MOBY/RT
is the generation of safe abstractions of an arbitrary set of PLC automata together with
a temporal property into the input syntax of UPPAAL 3.4. These abstractions are gener-
ated according to the entities (e. g., variables and delays) of the PLC automata the user
has chosen for abstraction.

In the following we will briefly describe PLC automata, timed automata and the
relation between these two formalisms.

2.1 PLC Automata

The formal specification language called PLC automata has been developed to enable
formal verification of real-time properties of PLC programs. A Programmable Logic
Controller (PLC) is a standardised hardware platform which is especially equipped
to simplify the design of real-time controllers in practice. It can be seen as a simple
computer with a special real-time operating system. A PLC communicates with the en-
vironment via unbuffered asynchronous input and output channels. The environment
may change the values of the inputs arbitrarily whereas the outputs are controlled by
the PLC. PLCs behave in a cyclic manner where every cycle consists of the following
three phases: first the inputs are polled, then the new output values are computed and
finally the outputs are updated. The repeated execution of this cycle is managed by the
operating system. The only part the programmer has to adapt is the computing phase.
Depending on the program and on the number of inputs and outputs there is an upper
time bound for such a cycle.

In the definition of PLC automata we consider the upper time bound for a complete
cycle and the possibility to delay the system’s reactions depending on state and input.
Figure 2 gives an example of a PLC automaton. The automaton has three locations q0,
q1, q2 and an output variable output that ranges over ok, test and alarm. It reacts to
a Boolean input variable signal. Every state has two labels shown below its name in
the picture. They define a delay time d and a constraint S on the input. The value of
d defines the minimal amount of time that the system should stay in the corresponding
state provided that, meanwhile, only input values satisfying S are polled.

A PLC automaton describes the behaviour of the system in the computation phase.
The operational behaviour is similar to a finite state machine, i. e., depending on the
polled input value the system changes both its state and its output. The behaviour is
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ct ≤ 2q0

0

q1

90, ¬signal

q2

0
signal
output := ok

¬signal
output := test

¬signal
output := alarm

Fig. 2. An example of a PLC automaton

modified in only one case: if the annotations of the current state are d and S, then a
transition is only executed when the polled input does not satisfy S or the current state
holds longer than d time units. That means a transition is disabled if the polled input
satisfies S and the current state has not exceeded the delay time d.

Thus, the PLC automaton in Fig. 2 behaves as follows: it starts in state q0 and remains
there as long as it reads only the input signal. The first time it reads ¬signal it
changes to state q1. In q1 the automaton reacts to the input value signal by changing
the state back to q0 independently of the time it stayed in state q1. If it reads ¬signal
in q1 the behaviour of the system depends on the duration it already stayed in q1. If 90
time units have elapsed it can take the transition to q2. Otherwise, no transition is fired.
In q2 the automaton remains forever. Hence, we know that the automaton changes its
output to alarm when ¬signal holds a little bit longer than 90 time units because the
cycle time (2 time units) has to be considered.

Note that PLC automata are implementable. In [3] a translation of PLC automata
into source code for PLCs is given. In [2] also a translation into C++ code (tailored to
Lego Mindstorms) has been developed. The intended logical relationship between the
execution of the code by the real-world hardware and the semantics given in the rest of
this paper is refinement. In other words: the real-world implementation cannot show a
behaviour that is not covered by the formal semantics.

2.2 UPPAAL and Timed Automata

UPPAAL1 is a modelling, simulation, and verification tool for real-time systems mod-
elled as networks of extended timed automata [4, 5]. We assume the reader is roughly
familiar with timed automata and their commonly used extensions. Therefore, we only
provide a short description of timed automata and the extensions which we use for the
construction of test automata. For more details about this tool the reader is referred to
the UPPAAL tutorial [6].

Figure 3 shows a network of three parallel timed automata P , Q and R as it is used
in UPPAAL. The system has three clocks x, y and z, three integer variables k, m and
n, binary synchronisation labels a and b and a committed location q2 (indicated by the
“c:”). The initial state of the overall system is given by the three initial locations p1,
q1 and r1 together with the initial values of the integer variables and the initial values
for the clocks. All clocks and integer values are 0 in this state. The bounded integer
variables are part of each system state, they can occur in transition guards and can be
changed with the assignment of a transition. Two edges of different automata can fire

1 See http://www.uppaal.com/
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a synchronised transition of the system if they are labelled with complementary syn-
chronisation labels (represented by “!” and “?” respectively). Suppose the system is in a
state where it is in p2 and q1 and the guards of the outgoing edges of these two locations
are enabled, then the system can take a synchronised transition, which leads to a state
where P is in p3 and Q is in q2. For an edge annotated with a synchronisation label it
is not possible to fire a transition without a synchronisation partner. Edges without syn-
chronisation label are called τ -transitions. A system state is a committed state if at least
one of the current automata locations is committed. Committed locations are a mecha-
nism to restrict the behaviour of the overall system. A committed state cannot delay and
the next transition applied to this state must involve an outgoing edge of a committed
location. For example, if the system is in a state where P is at p1, Q is at the committed
location q2 and R is at r1, then this system state is committed. The system then has to
take the edge from q2 to q3 which requires Q to synchronise with R. The location p1

is labelled with a location invariant. This restricts the duration the system can idle in
the current state. Suppose the system is in a state where P is at p1 and the value of the
clock x is 0, then the system can remain at most 11 time units before leaving this state.

P p1

x ≤ 11

p2 p3
x > 4

x := 0

x == 6, a?

m := k

Q q1 c:q2 q3

y == 13, a!

k := 42

b!

R r1 r2 r3
b?

n := k

z > 28

Fig. 3. A simple UPPAAL model

2.3 Timed Automata Semantics of PLC Automata

The semantics of PLC automata is defined in terms of timed automata [3, 1]. Due to
space limitations we can just present a sketch using the example of Fig. 2. The se-
mantics of this automaton, depicted in Fig. 4, consists of two timed automata and the
following (global) variables and clocks: z is a clock that represents the duration of the
PLC cycle, y is a clock that measures how long the system stays in q1, Out and sig
represent the variables Output resp. signal used in the PLC automaton and Psig is
a variable that represents the polled value of the input variable signal. The states of
the PLC automaton appear as a set of locations in the timed automaton. For example,
the state q0 has two representatives in the timed automaton in order to represent the in-
ternal state of the PLC within the cycle (q0/p stands for polling, q0/cu stands for com-
puting and updating). The transitions between q0/p and q0/cu implement the polling
behaviour of the PLC automaton in state q0. The polling step copies the current value
of sig to the variable Psig which is used for the subsequent computations. The outgo-
ing transitions from q0/cu represent the reactions of the PLC automaton in state q0.
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Depending on the polled value of sig the system switches to q1 or remains in q0.
Moreover, these transitions reset the z clock because the cycle has been finished. If
the automaton switches to q1 the output variable is changed appropriately and the clock
y is reset to be able to check whether 90 time units have elapsed while staying in state
q1. Since q1 is equipped with a delay the semantics needs more locations to represent
the behaviour. After polling (transition from q1/p to q1/c) the timed automaton checks
whether the delay time has passed or the delay condition is not satisfied. If this is the
case, then a transition to q1/u is enabled. Otherwise the system can switch to q1/d
(“delayed”) where the cycle is finished. Note that the semantics is nondeterministic
with respect to the timing in order to model the physical reality. To ensure progress
each state has the invariant z ≤ 2. Therefore, the timed automaton has to execute a cy-
cle within the upper bound because only transitions to qi/p reset the z clock. To model
the environment that can change the input variable sig arbitrarily a driver automaton is
added that can always toggle the input.

q0/p

q0/cu

z
>

0
P
s
i
g
:=

s
i
g

Psig
z := 0

q1/p

q1/c

q1/d

q1/u

z > 0
Psig := sig

y ≤ 90
∧¬Psig

z := 0

y > 90 ∨ Psig

q2/p

q2/cu

z > 0
Psig := sig

true
z := 0

¬Psig
z := 0, y := 0,
Out := Test

Psig

z := 0, Out := Ok

¬Psig
z := 0, Out := Alarm

for all states:
invariant z ≤ 2

l

tr
ue

s
i
g
:=

¬s
i
g

Fig. 4. Semantics of the PLC automaton from Fig. 2 in terms of timed automata

Abstractions of this semantics are generated by selecting a set of variables and
clocks. Then the abstract semantics is derived from the full semantics by removing
all assignments to the abstracted variables and clocks and replacing all constraints by
the strongest constraint that is weaker than the original and that does not contain ab-
stracted entities. For example, the guard y ≤ 90∧Psig is replaced by Psig if the clock
y is abstracted and sig is not.

3 Counterexample Analysis

In the abstraction refinement loop, when model checking a safety property of an abstract
system returns a counterexample, one has to investigate whether it is spurious or not.
One possible way of doing this is to build a linear test automaton T , in which every
location has at most one outgoing edge, from the abstract counterexample. This test
automaton is then composed with the full system F to be verified. If the last location of
the test automaton is reachable in the composed system, then we know that the abstract
counterexample is also a counterexample for the full system.
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It is desirable that the test automaton T is able to find a concretisation if there is
any and, moreover, it is mandatory that T restricts the behaviour of the full system as
much as possible. If this is not the case, the test automaton is useless because it would
make no difference to model check the full system only. We therefore construct the test
automaton so that it synchronises with the full model as often as possible. By doing
this, only a small fraction of the state space of the full model is explored. This makes
perfect sense, because we are only interested in a concretisation of the abstract trace.

A UPPAAL counterexample is a finite sequence of states that are either connected via
transitions or via delays with a certain duration. For example, for the timed automata
system given in Fig. 3 and the temporal formula E♦(p3 ∧ q3 ∧ r3), UPPAAL reports the
error trace given in Fig. 5. The trace starts with the initial state of the system and ends
with a state satisfying the given property. Each state of the trace assigns each automaton
of the system a location, each variable a value of the variable’s domain and each clock
a rational value. A test automaton built from such a trace proceeds if the full model
of the system executes a transition that enables the guard of the next transition of the
test automaton. The problem is to decide whether a step in the full model matches.
Checking the values of the variables is straight-forward. To check the clock values
is a bit tricky because a trace may also have clock valuations with rational numbers.
Below we show how this problem can be solved. Another problem is to match the
locations. The locations are not subject to abstractions. Hence, they appear in both the
full and the abstract model. However, UPPAAL does not provide any syntactic means
to refer to locations in guards. Therefore, we introduce an auxiliary integer variable for
each automaton of the system. The current value of this variable identifies uniquely the
current location of the automaton. Thus, the test automaton is able to match locations by
checking the corresponding auxiliary variable. In order to preserve the same behaviour
with respect to global time we add a clock time to the test automaton. This clock is
never reset and therefore it represents the current duration of the trace at any time. The
next three paragraphs give a detailed description on how to build a test automaton.

The first element of an abstract trace is the initial state of the abstract system. Al-
though we do not expect any differences with the full model here, we add a correspond-
ing check for reasons of completeness. We add a transition leading from the initial lo-
cation t0 of the test automaton to a new location t1. The guard of this transition checks
if the system’s variables have the right values at time point time = 0. To restrict the
full model’s behaviour t0 is a committed location.

A delay transition with duration d ∈ Q of the abstract counterexample is translated
as follows: suppose that, after the transition is made, the system is in a state which is
described by the valuation val and thatT ∈ Q is the sum of all durations that occur before
the transition. Let the most recently added location of the test automaton be tn. In this
case we add two locations tn+1 and tn+2 to the test automaton and the two transitions

tn
await(T+d)−−−−−−−→ tn+1 and tn+1

await(T+d)∧check(val)−−−−−−−−−−−−−−−→ tn+2. Here await(q) for q ∈ N
is time = q and for q ∈ Q \ N is "q# > time ∧ time <  q!. Note that by the definition
of await(q) the test automaton searches for an over-approximation of the given abstract
trace. The expression check (val) is the conjunction of tests whether all discrete variables
of val equal the valuation of the state. Note that this approach is correct because if there is
no concretisation found using this over-approximation then there is no concretisation at
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( P.p1 Q.q1 R.r1 ) x=0 y=0 z=0 k=0 m=0 n=0
Delay: 7

( P.p1 Q.q1 R.r1 ) x=7 y=7 z=7 k=0 m=0 n=0
P.p1->P.p2 x > 4, tau, x := 0

( P.p2 Q.q1 R.r1 ) x=0 y=7 z=7 k=0 m=0 n=0
Delay: 6

( P.p2 Q.q1 R.r1 ) x=6 y=13 z=13 k=0 m=0 n=0
Q.q1->Q.q2 y == 13, a!, k := 42
P.p2->P.p3 x == 6, a?, m := k

( P.p3 Q.q2 R.r1 ) x=6 y=13 z=13 k=42 m=42 n=0
Q.q2->Q.q3 1, b!, 1
R.r1->R.r2 1, b?, n := k

( P.p3 Q.q3 R.r2 ) x=6 y=13 z=13 k=42 m=42 n=42
Delay: 15.5

( P.p3 Q.q3 R.r2 ) x=21.5 y=28.5 z=28.5 k=42 m=42 n=42
R.r2->R.r3 z > 28, tau, 1

( P.p3 Q.q3 R.r3 ) x=21.5 y=28.5 z=28.5 k=42 m=42 n=42
Delay: 0.5

( P.p3 Q.q3 R.r3 ) x=22 y=29 z=29 k=42 m=42 n=42

Fig. 5. Trace reported by UPPAAL for the query E♦(p3 ∧ q3 ∧ r3) of the system from Fig. 3

all. If a concretisation is found then the concrete trace may differ from the abstract trace
with respect to the non-integer delays but it is a trace of the full model that satisfies the
reachability property. An alternative approach would be to multiply all timing constants
with the common denominator and check for equality only.

A τ -transition in the counterexample also introduces two locations in the test au-
tomaton. Suppose the last added location of the test automaton is tn and after the τ -
transition the system is in a state described by the valuation val . Let T and tn be defined
as above. Here, we add the locations tn+1 and tn+2 to the test automaton and the two

transitions tn
await(T )∧C?−−−−−−−−→ tn+1 and tn+1

await(T )∧check(val)−−−−−−−−−−−−−→ tn+2. Note that we ex-
ploit the fact that the abstract model made a τ -transition to introduce a synchronisation
of the test automaton with the full model via the channel C. By this, the test automaton
is notified as soon as the full model changed the values for the variables and the search
space is reduced. Since time is supposed to pass, the location tn cannot be committed.
However, to restrict the behaviour of the system tn+1 can be committed.

A synchronised transition of the counterexample is translated as follows: suppose
again, that the valuation val , T and tn are defined as above. In contrast to how we handle
a τ -transition, we cannot force the test automaton to participate. However, we know that
whenever MOBY/RT generates a synchronised transition this only happens directly af-
ter a τ -transition and that all synchronised transitions are leaving a committed location.

Therefore we add the location tn+1 and the transition tn
check(val)∧await(T )−−−−−−−−−−−−−→ tn+1. As

synchronised transitions can happen sequentially when more than one automaton is in
the network and the transition’s origin is a committed location we have to make location
tn committed, too.

Consider the trace generated by UPPAAL in Fig. 5 again. If we apply the above
construction rules we get the test automaton described in Fig. 6.
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t0
time=0∧k=0∧m=0∧n=0−−−−−−−−−−−−−−−−→ t1

t1
time=7−−−−→ t2

time=7∧p=q=r=1∧k=m=n=0∧x=y=z=7−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t3

t3
time=7∧C?−−−−−−−→ t4

time=7∧p=2∧q=r=1∧k=m=n=0∧x=0∧y=z=7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t5

t5
time=13−−−−−→ t6

time=13∧p=2∧q=r=1∧k=m=n=0∧x=6∧y=z=13−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t7

t7
time=13∧p=3∧q=2∧r=1∧k=m=42∧n=0∧x=6∧y=z=13−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t8

t8
time=13∧p=q=3∧r=2∧k=m=n=42∧x=6∧y=z=13−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t9

t9
28<time<29−−−−−−−−→ t10

28<time<29∧p=q=3∧r=2∧k=m=n=42∧21<x<22∧28<y,z<29−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t11

t11
28<time<29∧C?−−−−−−−−−−→ t12

28<time<29∧p=q=r=3∧k=m=n=42∧21<x<22∧28<y,z<29−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t13

Fig. 6. Test automaton for the trace in Fig. 5

4 Abstraction Refinement

When an abstract counterexample reveals to be spurious, a model checker normally
does not give any hint why this is the case. Usually, the next steps one has to do in order
to get a refined version of the current abstraction is to analyse the counterexample. Here,
one has to identify variables or clocks respectively that hinder the progress of the test
automaton. Normally, this has to be done manually and, on the one hand, is a tedious
and time consuming procedure and on the other hand requires a deep understanding of
the model to verify. We will henceforth refer to integer variables and clocks as variables
respectively.

Our approach automates the analysis of the counterexample. We did this by extend-
ing UPPAAL so that if an abstract counterexample is spurious, UPPAAL reports this and
at the same time provides a set of variables that should not be abstracted in the next
iteration of the abstraction refinement loop.

To determine a refined abstraction, we exploit the fact that our test automata are
linear. If the abstract counterexample turns out to be spurious, then there is a unique
transition in the test automaton whose starting location is reached, but not its target
location. We call the starting location of this transition the dead end location and the
transition itself we call the dead end transition. The dead end transition can either be
blocked because there is no enabled transition in the full system that can synchronise
with the test automaton, or when there is no reachable state with a valuation of the
variables that satisfies the guard of the dead end transition.

Our approach determines a minimal set of variables uhint , so that if these variables
had different values, the test automaton could take at least the dead end transition. This
is done on the fly, while UPPAAL checks if the error trace is spurious. Figure 7 sketches
UPPAAL’s verification algorithm for safety properties. The arguments of the verify func-
tion are the initial state of the system s0 and the property φ to verify. We extended this
algorithm by including the lines 13–15.

During the analysis, UPPAAL checks each outgoing transition from a location in the
current state s if it is enabled. If this is the case, the successor state s′ is computed
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1 function verify(s0, φ):
2 open = {s0}, closed = ∅
3 while open �= ∅:
4 s = open.pop()
5 if s |= φ:
6 return True
7 if s �∈ closed:
8 closed.push(s)
9 for each outgoing transition t of s:

10 if t is enabled:
11 s′ = succ(s, t)
12 open.push(s′)
13 progress(s′)
14 else:
15 analyse(s, t)
16 return False

Fig. 7. Reachability analysis

and added to the open list. In addition to the normal verification function, we now call
progress with the successor state s′ (line 13). Pseudo-code for the progress function is
given in Fig. 8. It determines the reached location of the test automaton which has cur-
rently the smallest distance to the test automaton’s last location. Remember, if the last
location of the test automaton is reachable, then the counterexample is a real counterex-
ample. After the execution of the verify function dead end is the dead end location.

1 function progress(s):
2 if dist(s(test)) < dist(dead end):
3 dead end = s(test)
4 uhint = ∅

Fig. 8. On the fly detection of the dead end location

If, during the generation of successor states, a transition t is not enabled it is passed
together with its starting state s to the analyse function (line 15). Pseudo code for this
function is shown in Figure 9. The analyse function checks if the test automaton in
s is in the current dead end location. If this is the case, then it checks if applying t
would enable the current dead end transition tdead end . If this is the case, then analyse
collects all the variables and clocks respectively that appear in unsatisfied constraints of
t’s guard. If the set of these variables u is smaller than uhint , then uhint is updated. After
the execution of the verify function uhint contains variables that hinder the execution of
the dead end transition.

After UPPAAL has checked that the counterexample is spurious, all variables that
occur in the set of unsatisfied constraints uhint are reported. These variables should not
be abstracted in the next iteration, as they hinder the progress of the test automaton.
This ensures that the revealed spurious counterexample will not be found in the next
iteration. In the following, we explain that the reported variables are likely to be helpful.
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1 function analyse(s, t):
2 if s(test) �= dead end :
3 return
4 if tdead end is synchronised:
5 if t can synchronise with tdead end :
6 u = {c ∈ inv(succ(s, t)) | c unsat constraint}∪
7 {c ∈ guard(t) | c unsat constraint}
8 if |u| ≤ |uhint| ∨ uhint = ∅:
9 uhint = u

10 else if assignment of t makes guard(tdead end ) True:
11 u = {c ∈ inv(succ(s, t)) | c unsat constraint}∪
12 {c ∈ guard(t) | c unsat constraint}
13 if |u| ≤ |uhint| ∨ uhint = ∅:
14 uhint = u

Fig. 9. On the fly extraction of least blocking variables. Used expressions: inv(s): conjunction of
s’s location invariants, s(test): the location of the test automaton in s, succ(s, t): the successor
state of s reached through t, guard(t): t’s guard, dist(l): distance from a location l of the test
automaton to the last location of the test automaton in terms of transitions.

From the construction of the test automaton we know that there are at most two
types of transitions in the test automaton: synchronised transitions and τ -transitions.
The guard of such a synchronised transition is always satisfiable because it was already
satisfied when the starting location of the transition was reached. It only checks that no
time elapses since the last transition. Depending on which part the transitions represent
from the abstract counterexample, we can distinguish three different cases.

If the dead end transition belongs to one of the transitions introduced for a delay in
the abstract counterexample, then the progress of the test automaton is blocked because
the full system cannot idle due to an unsatisfied location invariant. This is only pos-
sible if this location invariant talks about a clock that was abstracted away because in
the abstraction it is possible to take this transition. Therefore this clock should not be
abstracted in the next iteration of the abstraction refinement loop.

If the dead end transition belongs to one of the two transitions introduced for a τ -
transition in the abstract counterexample, then we know that the progress of the test
automaton stops because of a τ -transition in the full system. The reason for this is
that the clock guards of the two introduced transitions are satisfied. So the only reason
why this may block is that the guard that checks the valuation of the variables is not
satisfied. But this is only possible if there is no enabled τ -transition in the full system
whose assignments would make the guard true. As there is such a transition in the
abstraction, we again know that this must be because of an unsatisfied transition guard.
So the variables that occur in the unsatisfied constraints of this guard should not be
abstracted in the next iteration.

The last possible reason why the dead end transition is blocked is that there is no
enabled transition with an assignment that would make the guard of the dead end tran-
sition true. From the construction of the test automaton this can only be a synchronised
transition in the full system because a τ -transition in the full system always has to
synchronise with the test automaton which is not possible. As we know that there is
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a synchronised transition in the abstract system that makes the guard of the dead end
transition true, this transition would do it also in the full system. The reason why the
progress of the test automaton is stopped is that either the guard of this synchronised
transition or a location invariant of the successor state is not satisfied.

5 Experiments

To demonstrate the potential of our approach we chose the “Single-tracked Line
Segment” (SLS) case study which stems from the UniForM-project [7]. It is the spec-
ification of a control system for a single-tracked line segment for tramways. It is im-
plemented by distributed PLC automata [8]. We took three different models of the SLS
case study [8] as examples. As the safety property to verify, we chose the mutual ex-
clusion of drive permissions, i. e., the control system never gives permission to both
directions simultaneously.

The first model (M1) we checked is a manipulated system that we obtained by chang-
ing a delay time but with the assumption that everything is implemented on only one
hardware device. The full UPPAAL model we got from MOBY/RT had 9 processes, 2
clocks and 24 integer variables. Table 1 shows in the first row the resources needed to
check the full model of M1 using the standard UPPAAL verification engine. It took 310
seconds to verify that the manipulated delay time does not lead to an error if the system is
implemented on one device. In the following rows the steps of the abstraction refinement
loop are given. Each step consists of a verification run to find an abstract counterexam-
ple (left columns) and the check for spuriousness (right columns). For these runs we
use a variant of UPPAAL called UPPAAL/DMC that allows for directed model check-
ing [9,10]. Directed model checking is the application of heuristics to model checking
and was pioneered a few years ago by Edelkamp et al. [11,12], christening this research
direction directed model checking. The use of directed model checking makes sense be-
cause it can be expected that the current abstraction contains (abstract) counterexamples
and directed model checking detects counterexamples faster. Note that whenever a spu-
rious counterexample is found a refined abstraction is derived. This refined abstraction
considers more entities (at least one clock or one integer variable more than before).

For M1 it turns out that with our counterexample guided abstraction refinement we
can prove correctness of the model using an abstraction with 1 clock, 4 processes and
14 integer variables less than the full model. The required memory is about 5 % and the
summarized time consumption is approx. 3 % compared to the full model. Note that in
abstraction 3, the number of processes has changed. The reason for this is that whenever
a variable is added to the next abstraction that is triggered by the environment, then
an additional automaton is added to the system that drives this variable. These driver
automata are automatically generated by MOBY/RT.

For the next verification problem we removed the assumption about the partitioning
of the PLC automata onto hardware devices. The second experiment (M2) represents
a distributed system. Now, the manipulated delay time leads to an incorrect system.
However, it was not possible to find a counterexample in the full model within the given
memory limit of 2 GBs. This time the abstraction refinement loop had to iterate 8 times
to generate an abstraction for which a definite answer was found, i. e., a counterexample
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Table 1. Abstraction refinement results for the experiments. Abbreviations: #c: number of clocks,
# p: number of processes, # v: number of integer variables, time: runtime in seconds, mem:
memory peak in MB, trace: length of found error trace, CE: counterexample.

Model # c # p # v time mem trace # c # p # v time mem result

M1: full 2 9 24 310.0 721 verified
Abstr. #1 0 4 3 0.0 8 20 3 10 24 0.0 7 spurious CE
Abstr. #2 1 4 3 0.0 9 22 3 10 24 3.2 36 spurious CE
Abstr. #3 1 5 5 0.0 9 23 3 10 24 0.4 11 spurious CE
Abstr. #4 1 5 6 0.0 9 23 3 10 24 1.3 20 spurious CE
Abstr. #5 1 5 8 0.0 9 34 3 10 24 2.2 27 spurious CE
Abstr. #6 1 5 10 0.8 9 – verified

M2: full 3 10 25 > 1527.0 > 2048 out of memory
Abstr. #1 0 5 3 0.0 8 27 4 11 25 0.0 8 spurious CE
Abstr. #2 1 5 3 0.0 9 29 4 11 25 0.0 8 spurious CE
Abstr. #3 2 5 3 0.0 9 30 4 11 25 113.6 491 spurious CE
Abstr. #4 2 5 6 0.1 9 88 4 11 25 44.6 247 spurious CE
Abstr. #5 2 6 8 0.4 9 64 4 11 25 7.6 64 spurious CE
Abstr. #6 2 6 9 0.1 9 44 4 11 25 14.3 108 spurious CE
Abstr. #7 2 6 11 0.2 9 62 4 11 25 15.8 97 spurious CE
Abstr. #8 3 6 11 0.2 9 77 4 11 25 0.5 12 disproved

M3: full 3 10 25 > 1242.0 > 2048 out of memory
Abstr. #1 0 5 3 0.0 8 27 4 11 25 0.0 8 spurious CE
Abstr. #2 1 5 3 0.0 9 29 4 11 25 0.0 8 spurious CE
Abstr. #3 2 5 3 0.0 9 30 4 11 25 117.8 753 spurious CE
Abstr. #4 2 5 6 0.1 9 88 4 11 25 45.3 312 spurious CE
Abstr. #5 2 6 8 0.4 9 64 4 11 25 7.7 80 spurious CE
Abstr. #6 2 6 9 0.1 9 44 4 11 25 14.5 141 spurious CE
Abstr. #7 2 6 11 0.2 9 62 4 11 25 15.9 130 spurious CE
Abstr. #8 3 6 11 3.3 13 – verified

in the full model. The computed abstraction saved 4 processes and 14 integer variables.
The memory and time consumption was at most 25 % respectively 14 % compared to
the full model.

In our final experiment (M3) we reverted to the original delay time. Again, it was not
possible to check the full model within the memory limits. The abstraction refinement
loop generated the same sequence of refined abstractions and terminated after 8 itera-
tions again. But this time UPPAAL was able to verify that the final abstraction has no
counterexample.

All these experiments show that the abstraction refinement presented in this paper
is able to generate abstractions effectively for which definite verification results can
be found. The main benefits are that there is no need for human interaction at all, an
abstraction of the model is computed automatically for which a reliable verification
result can be computed and that this approach reduces significantly the resources (time
and memory). However, there is no guarantee that this approach computes a minimal
abstraction but it is obvious that it will terminate since each iteration adds at least one
of the finitely many entities of the model.
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6 Related Work

Abstraction refinement was pioneered by Clarke et al. [13] in the early 90s. Since then
many researchers have automated this process starting with the work of Balarin and
Sangiovanni-Vincentelli [14]. The term counterexample guided abstraction refinement
was coined by Clarke et al. [15]. This work deals with discrete timed systems and
ACTL∗ formulas. It has been extended to continuous-time models in [16,17]. The main
idea of these approaches is to refine the discrete state space by an appropriate replication
of states which have been involved in a spurious counterexample to avoid this trace in
the next iteration.

Alur et al. [18] have proposed a predicate abstraction based approach for a coun-
terexample guided abstraction refinement procedure applicable to hybrid systems. The
refined abstraction extends the state space by predicates describing additional infor-
mation on the continuous state space. These additional predicates are constructed by
identifying the dead-end state of a spurious trace and an analysis which polyhedron in
the continuous state space avoid a reoccurrence of the trace.

A similar approach was proposed by Segelken [19]. Here the analysis of the spurious
trace generates an automaton that is put in parallel with the model in the next iteration of
the abstraction refinement loop. This automaton represents an infeasible fragment of the
previous spurious trace. By the construction of the automaton this infeasible fragment
is avoided.

Also in the area of timed automata there are approaches for model checking by it-
erative refinement of approximations. One of these approaches was implemented in
Laroussinie’s and Larsen’s compositional model checker CMC [20]. This tool starts
with a small subset of the automata of the system. It subsequently adds automata to this
set and minimises the intermediate result.

Another abstraction refinement approach was developed by Sorea et al. [21, 22] in
which predicate abstraction was used on the level of the regions which are defined
by predicates over clocks. The approach uses symbolic counterexamples from failed
model-checking attempts. Such a symbolic counterexample represents a sequence of
sets of states, and can be seen as generalisation of a linear counterexample. To exclude
a spurious symbolic counterexamples from further iterations, new abstraction predicates
are chosen randomly from a set of predefined predicates. Except for the fact that new ab-
straction predicates are chosen randomly, this approach is, in some respect, quite similar
to what we are proposing here. The main differences are the nature of the counterexam-
ples and that new abstraction variables are selected more carefully. Unfortunately the
authors do not give any runtime results.

7 Conclusion and Future Work

We presented an approach for counterexample guided abstraction refinement for a sub-
class of timed automata. In this paper we defined how to construct test automata that
can be used to check whether a full model is able to behave as the abstract trace, i. e.,
to check whether an abstract trace is spurious or not. Moreover, we extended the model
checker UPPAAL in such a way that it executes an analysis of why a full model cannot
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execute a spurious trace. The result of this analysis is used to refine the given abstrac-
tion in a way that the spurious counterexample cannot occur anymore. This approach
enabled us to construct a closed abstraction refinement loop in which verification of
a system starts with the coarsest abstraction and with each iteration the abstraction is
refined until a result is found that holds for the full model, too.

In its current version our approach is able to refine the abstraction by adding vari-
ables or clocks. From our point of view, the most promising direction of future work
is to extend the approach such that it also refines the set of automata considered in the
abstraction. At present the set of PLC automata is fixed. However, if a system consists
of many parallel components it makes sense to start with a small subset thereof. Since
the semantics of a subset is an over-approximation this fits our approach. Then the
abstraction refinement analysis needs to be extended accordingly in a way that it can
also identify PLC automata for the abstraction refinement. Having such an extension
the abstraction refinement loop would start with the coarsest abstraction of only those
automata that manipulate variables appearing in the requirement.

In this paper we have presented and implemented an abstraction refinement method-
ology for PLC automata. However, the methodology is generally applicable to the full
range of timed automata based models expressible within UPPAAL. Here, a particularly
challenge will be the generalisation of the automated analysis of counterexamples pre-
sented in Section 4 to deal with the rich imperative language (including structured data
types, user-defined types as well as user-defined functions and procedures) provided in
UPPAAL 4.0. We envisage the need for incorporating the work of Sørensen and Trane
on slicing UPPAAL 4.0 models [23].
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Abstract. We give a generalization of a solution by Puri to the prob-
lem of checking emptiness in timed automata with drifting clocks for
the case of automata with non-closed guards. We show that non-closed
guards pose certain specific problems which cannot be handled by Puri’s
algorithm, and propose a new algorithm, based on the idea of “bound-
ary clock regions” of Alur, LaTorre and Pappas. We then give a symbolic
algorithm for solving the reachability problem. Our algorithm is based
on a symbolic construction of the “neighborhood” of a zone, and on a
procedure that, given a set of zones Z, builds the forward propagation of
the strongly connected components which can be reached from Z. This
improves a symbolic algorithm of Daws and Kordy, due to the ability to
handle sets of zones.

1 Introduction

Timed automata [AD94] are a widely accepted and powerful model of real
time systems. They are finite automata endowed with dense-time variables,
called clocks, that are used to measure time intervals separating actions. Dense
time is utilized as an abstraction, in the sense that the model is not sensitive
w.r.t. the “clock tick” in the implementation. Efficient algorithms and tools
[LPY97, BDM+98, HHWT97] have been designed and applied with succes for
the verification of safety properties of systems modeled as timed automata.

Clocks in timed automata are synchronous: letting time pass t units increases
all clocks with t. This assumption is sometimes too strong in distributed sys-
tems, in which some degree of non-synchronicity between the local clocks of
each component may be present. The rectangular automata of [HKPV98] utilize
dense variables that increase at a rate in some interval [α, β], and the subclass
of initialized rectangular automata has a decidable reachability problem. Initial-
ized rectangular automata may give a model of “inexact” timed automata with
known clock drift Δ, if the rate binding interval is always [1−Δ, 1+Δ]. Hence,
timed automata with a known clock drift have a decidable reachability problem.

In this paper, we are interested in solving the following safe implementation
problem: given a timed automaton A and some zone Z, does there exist Δ for
which no trajectory in which clocks drift with at most Δ units reaches Z? In
[Pur98], A. Puri has shown how to compute the set of states that are reachable
for any clock drift Δ. [Pur98] showed that, in the case of closed constraints, the
region automaton does not provide the complete answer, as one needs to consider
cycles in the (closed) region graph that have a nonempty intersection with regions
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that are already reachable. This result was further extended, in [DK06], where a
symbolic algorithm for constructing a “stable zone” in the region graph is given.
The stable zone is constructed for each cycle in the automaton graph that can be
reached. Both the work in [Pur98] and in [DK06] treat of automata with closed
clock constraints.

In this paper, we extend these results in two directions. First, we investigate
the extension of the technique of Puri to automata with non-closed constraints.
Secondly, we give a symbolic algorithm that constructs “sets of stable zones”
as (forward propagations of) sets of zones which lie on some cycle in the region
graph. Our technique can be applied to data structures for representing sets of
zones, like in [LPWY99].

Our extension of Puri’s technique to non-closed guards utilizes a variant of
boundary clock regions of [ATP01], to model the fact that trajectories that pass
through some region R can be arbitrarily close to some region R′ neighboring
R. Note that, as in [Pur98], we work with automata with bounded constraints;
another assumption is that discrete transitions in a run are separated by non-zero
delays.

Recently, [DDR05b, AT05] addressed a similar class of problems: given a timed
automaton A, does there exist some Δ> 0 and a Δ-drift clock implementation
of A, in which “important” properties of A be preserved? [DDR05b, DDR05a]
consider this problem in the context of verifying whether a controller C specified
as a timed-automaton can be implemented by some drifting-clock automaton.
Their approach is to model the system composed of the controller and the en-
vironment it must control as a parametric rectangular automaton in which Δ
is a parameter. The drawback of this approach is that parametric model check-
ing of timed automata with three clocks and only one parameter is known to
be undecidable [AHV93, WT97]. Hence, tools like Uppaal cannot be directly
applied to synthesize the value of Δ. The approach proposed in [DDR05a] is
to guess an initial value for Δ and check it with Uppaal; if this guess satisfies
the desired properties, then, according to the results of [DDR05b], any “faster”
implementation (with Δ′ < Δ) is also correct. This guess could be avoided by
using the techniques from [DK06] and this paper.

The rest of the paper is divided as follows: in the next section we recall the
definition and basic facts about timed automata and their drifting semantics.
Section 3 contains the construction of the boundary region automaton and its
correctness. Section 4 is devoted to the presentation of the symbolic algorithm
and to comments on the improvements of our approach w.r.t. [DK06]. We end
with a section with conclusions.

2 Timed Automata

A timed automaton. [AD94] is a tuple A = (Q,X , δ, Q0, Qf ) where Q is a finite
set of locations, X is a finite set of clocks, Q0, Qf ⊆ Q are sets of initial, resp.
final locations, and δ is a finite set of tuples called transitions, (q, C,X, q′), where
q, q′ ∈ Q, X ⊆ X , and C is a finite conjunction of simple constraints utilizing
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clocks as variables – that is, constraints of the form x ∈ I, where I is an interval
with nonnegative integer bounds. We will consider in this paper only bounded
intervals, i.e. excluding intervals of the form [2,∞[ . For each (q, C,X, r) ∈ δ, the
component C is called the guard of the transition and X is its reset component.
We consider the set of clocks is ordered as X = {x1, . . . , xn}.

In the standard semantics A can make time-passage transitions, in which all
clocks advance with the same amount of time, and discrete transitions, in which
location may change. The last are enabled when the “current clock valuation”
satisfies the guard C of a transition (q, C,X, q′), and when they are executed, the
clocks in the “reset component” X are set to zero. The notations used henceforth
are the following: for a given point v ∈ Rn

≥0 and X ⊆ X , v[X := 0] is the point
obtained by reseting all clocks in X , defined by (v[X := 0])i = vi for xi �∈ X
and (v[X := 0])i = 0 for xi ∈ X . We will also denote 0n the origin point, i.e.
(0n)i = 0 for all 1 ≤ i ≤ n.

In the drifting semantics [Pur98, DDR05b], when time advances by t, each
clock advances with some t′ ∈ [t(1−Δ), t(1+Δ)], independently of the others,
Δ > 0 denoting the maximal clock drift. The Δ-drifting semantics of A is
the timed transition system TΔ(A) = (Q, θΔ,Q0,Qf) where Q = Q×Rn

≥0,
Q0 = Q0×{0n} (all clocks are set to zero initially), Qf = Qf ×Rn

≥0 and

θΔ =
{
(q, v) t−→Δ (q, v′) | t > 0, v′i − vi ∈

[
t(1 − Δ), t(1 + Δ)

]
∀1 ≤ i ≤ n

}

∪
{
(q, v)

↓−→Δ (q′, v[X := 0]) | ∃(q, C,X, q′) ∈ δ such that v |= C
}

Here |= denotes the usual satisfiaction relation for clock constraints. Elements
of Q are called states. When the automaton A is fixed, we use TΔ for TΔ(A).

A TΔ -trajectory is a sequence of transitions τ=
(
(qi−1,vi−1)

ξi−→Δ(qi,vi)
)
1≤i≤k

in θΔ, with ξi ∈ R>0 ∪ {↓}. We denote this situation as (q0, v0)
τ�TΔ (qk, vk).

Also, we denote (q, v) �TΔ (q′, v′) when there exists a TΔ -trajectory τ such that
(q, v) τ�TΔ (q′, v′). Trajectory τ is accepting if it starts in Q0 and ends in Qf .
The set of TΔ -trajectories is denoted TrajΔ.

A run in A is a sequence ρ =
(
(qi−1, Ci, Xi, qi)

)
1≤i≤k

of transitions from
δ. A run ρ =

(
(qi−1, Ci, Xi, qi)

)
1≤i≤k

is associated with a TΔ -trajectory τ =
(
(qi−1, vi−1)

ξi−→ (qi, vi)
)
1≤i≤l

if l = 2k or l = 2k + 1 and for each 1 ≤ i ≤ k,
q2i = q2i+1 = qi, ξ2i−1 ∈ R>0, ξ2i =↓, v2i = v2i−1[Xi := 0], v2i−1 |= Ci, and also
ξ2k+1 ∈ R>0, q0 = q1 = q0.

For each Δ > 0 and state (q, v) ∈ Q, the set of TΔ -reachable states from
(q, v) is:

ReachΔ(q, v) =
{
(q′, v′) ∈ Q | (q, v) �TΔ (q′, v′)

}

The reachable states in the limit from (q, v) are:

ReachΔ→0(q, v) =
⋂

Δ>0
ReachΔ(q, v)
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By extension, for any S ⊆ Rn
≥0, we denote ReachΔ(q, S) =

⋃
v∈S ReachΔ(q, v)

and ReachΔ→0(q, S) =
⋃

v∈S ReachΔ→0(q, v).
Throughout this paper we assume that there exists a clock x which is reset

at each transition and which is checked, on each transition, to be greater than
zero. Note that this assumption implies the fact that each cycle in the timed
automaton contains a clock reset, as in [Pur98]. We also consider that A has no
self loops. Note also that the semantics of TΔ (in which time steps have non-
zero duration) also implies that time must strictly progress within each cycle,
as required in [DDMR04]. It is well-known that any timed automaton can be
transformed syntactically into an automaton satisfying these assumptions.

Regions and region reachability. A zone [Yov98] is an n-dimensional convex set
of points which can be uniquely represented by a diagonal constraint of the form
CZ =

∧
0≤i,j≤n(xi−xj ∈ Iij), where x0 = 0 and Iij are intervals with integer

bounds satisfying the following triangle inequality: ∀1≤ i, j, k≤n, Iik ⊆ Iij+Ijk.
The constraint CZ is called the normal form representation of Z.

For M ∈ N, an M -region (or simply a region, when M is understood from
the context) is a zone R for which the intervals in the normal form representation
CR are either point intervals Iij = {a} with −M ≤ a ≤ M , or open unit intervals
Iij = ]a, a + 1[ with −M ≤ a ≤ M − 1 (a ∈ N).

Remark 1. Throughout this paper MA will denote the largest constant occurring
in a constraint in A. We denote RegA the set of MA-regions.

The region automaton is then RA =
(
Q × RegA, δR,R0,Rf

)
where R0 ={

(q,0n) | q ∈ Q0

}
, Rf =

{
(q,R) | q ∈ QF

}
and

δR =
{
(q,R) t−→ (q,R′) | R �= R′, ∃v ∈ R, v′ ∈ R′, t ∈ R>0 s.t. (q, v) t−→ (q, v′)

and ∀0 < t′ < t, ∀v′′ ∈ Rn
≥0 if (q, v) t′

−→ (q, v′′), then v′′ ∈ R ∪ R′}

∪
{
(q,R)

↓−→ (q′, R′) | ∃v ∈ R, v′ ∈ R′, s.t. (q, v)
↓−→ (q′, v′)

}

t−→ denotes here the immediate time successor relation, the time successor relation
from [AD94] is denoted t−→∗. A run in RA is a sequence of transitions from δR.
Tuples (q,R) ∈ Q × RegA will be called state regions.

It is well-known [AD94] that the region automaton is a faithful representation
of the set of reachable states of T0(A): there exists a reachable final state (q, v) ∈
Qf iff there exists a reachable state region (q,R) in Q × RegA with v ∈ R.

Figure 1 gives an example of a timed automaton and its associated region
automaton. The dashed line gives the only transition between a state region of
the form (q0, R) to a state region of the form (q1, R). Note that no final region
is reachable from (q0,02) in this automaton.

For each state region R and location q ∈ Q we denote RegReachΔ(q,R) the
set of state regions (q′,R′) that can be touched by a trajectory of TΔ that starts
in (q,R), with Δ> 0 fixed; we also denote RegReachΔ→0(q,R) the set of state
regions (q′,R′) for which, for each Δ>0, there exists a trajectory in TΔ starting
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Fig. 1. The timed automaton A1 and its associated region automaton

in (q,R) that touches (q′,R′); these notations are also extended to zones Z:

RegReachΔ(q,R) =
{
(q′, R′) | ∃(q′, v) ∈ ReachΔ(q,R), v ∈ R′}

RegReachΔ→0(q,R) =
⋂

Δ>0
RegReachΔ(q,R)

RegReachΔ(q, Z) =
⋃{

RegReachΔ(q,R) | R ∈ RegA, R ⊆ Z
}

RegReachΔ→0(q, Z) =
⋃{

RegReachΔ→0(q,R) | R ∈ RegA, R ⊆ Z
}

Example 1. Consider again the timed automaton in Figure 1 and the region
R1 defined by the constraint CR1 = 0 < x < y < 1. Then, for any Δ > 0,{
(q1, v2) | (q0,02) �Δ (q1, v2)

}
∩
(
{q1} × R1

)
�= ∅, and therefore (q1, R1) ∈

RegReachΔ(q0,02). This implies that (q1, R1) ∈ RegReachΔ→0(q0,02).
Note also that, in the region automaton for A1, the state region (q1, R1) is

unreachable from (q0,02), hence RegReachΔ→0(q0,02) � RegReach0(q0,02).

Consider now the following safe implementation problem:
Problem 1. Given a zone Z and a location q ∈ Q, does there exist a clock drift
Δ for which no trajectory in TΔ reaches a state (q, v) with v ∈ Z?

Note that the safe implementation problem is not equivalent with checking
whether ReachΔ→0(q0,0n) ∩ (q, Z) �= ∅: in A1 from Figure 1, for any Δ > 0,

if (q0,02)
t−→Δ (q0, v1)

↓−→Δ (q1, v2) for some clock valuations v1, v2 ∈ [0, 1]2

then v1(y) = v2(y) ∈ [1 − Δ, 1[ and, therefore, for the region R2 defined by
CR2 = (x = 0 ∧ y = 1),

ReachΔ→0(q0,02) ∩ (q1, R2) =
⋂

Δ>0

{
(q1, v2) | (q0,02) �Δ (q1, v2), v2 ∈ R2

}

⊆
⋂

Δ>0
{q1} ×

(
([0, 1] × [1−Δ, 1[ ) ∩ R2

)
= ∅

On the other hand, Example 1 above shows that (q1, R1) ∈ RegReachΔ→0(q0,02)
and hence RegReachΔ→0(q0,02) ∩ (q1, R2) �= ∅.

More interestingly, we may also observe that

ReachΔ→0(q0,02) ∩ (q1, [0, 1]2)

⊆
⋂

Δ>0
{q1} ×

((
{0} × [1−Δ, 1[

)
∪
(
]0,

Δ+Δ2

1 − Δ
] × [1−Δ, 1]

))
= ∅
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which actually means that no state in the state region (q1, R) can be Δ-reached
for any Δ. Hence the pure study of ReachΔ→0 is insufficient for solving the safe
implementation problem.

The example with region R2 also suggests that “closing the guards” in the
given timed automata would not work. By closing the guards, we mean here the
transformation of each automaton A into a timed automaton A in which each
transition copies a transition of A, but with all constraints transformed into
non-strict. To see that this technique does not work in general, note that, in A1,
(q1, R2) ∈ Reach0(q0,0n) \ RegReachΔ→0(q0,0n).

Before ending this section, we give a useful technical property relating convex-
ity with runs in the region automaton. This property utilizes the following notion
of association between runs in the timed automaton and runs in the region au-
tomaton: a run ρ = ((qi−1, Ri−1)

ξi−→ (qi, Ri))1≤i≤k in RA is associated with a
run ρ′ =

(
(rj−1, Cj , Xj, rj)

)
1≤i≤m

in A if there are m indices j1, . . . , jm ≤ k such
that ξjl

=↓, Rjl
= Rjl−1 [X := 0] and Rjl−1 ⊆ ZCl

(1 ≤ l ≤ m), and also ξi = t
for all i �= j1, . . . , jm. In other words, ρ and ρ′ are associated iff all trajectories
subsumed by ρ are associated with ρ′.

For each bounded region R ∈ RegA, we denote by V (R) the set of vertices, or
cornerpoints that bound R. For example, for the 2-dimensional region 0 < x <
y < 1, V (R) = {(0, 0), (0, 1), (1, 1)}. Note that V (R) can be formally defined
using the “fractional part” [AD94] representation of regions.

Proposition 1. Suppose ρ1 and ρ2 are two runs in RA, with ρi starting in
(q,R′

i) and ending in (q′, R′′
i ) (i = 1, 2). Suppose that both runs are associated

with the same run ρ in A and that there exist R,R′ such that V (R) = V (R1) ∪
V (R2), V (R′) = V (R′

1) ∪ V (R′
2). Then there is a run ρ′ in RA that starts in

(q,R1), ends in (q′, R2) and is associated with ρ.

The proof of this property is based on zone convexity.

3 The Extended Boundary Region Automaton

First, let us recall here briefly Puri’s technique for constructing the set of reach-
able regions in a closed timed automaton: the Δ→ 0-reachable regions are ob-
tained by applying, alternatively, the following two procedures until a fixpoint
is reached:

1. Forward closure of a given set of regions.
2. Add cycles in the “closed region automaton”, that have a nonempty inter-

section with an already reachable region,

In the previous section, we have seen that this technique cannot be applied
as is to the closure A of the given automaton A, due to inherent peculiarities of
working with non-closed guards.

In this section, we refine Puri’s technique of searching for cycles in the re-
gion graph, by carefully defining when to consider that a (possibly open) region
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“touches” a reachable region. The right notion of “touching” is given in the
following definition:

Definition 1. A region R is t-aligned if its normal form representation CR =∧
0≤i,j≤nxi − xj ∈ Iij has the property that Ii0 is not a point interval for all i.

Equivalently, for any q ∈ Q, there exist v, v′ ∈ R with (q, v) t−→0 (q, v′) for some
t > 0.

Two regions R,R′ are neighbors if V (R)∩V (R′) �= ∅. R,R′ are t-neighbors
if both are t-aligned and either V (R′) ⊆ V (R) or V (R) ⊆ V (R′).

Example 2. For any timed automaton, the region R1 with CR1 : 0<x<y<1 is
a t-neighbor for R2, with CR2 : 0<x=y<1, while 02 is not a t-neighbor of R2.

The idea behind the computation of RegReachΔ→0 is to utilize, instead of re-
gions, pairs of regions (R,R′) with V (R) ⊇ V (R′). Such pairs are similar to the
boundary regions of [ATP01]: they model sets of trajectories that pass through
R and are “arbitrarily close” to R′. Formally we construct the boundary regions
automaton E(A) =

{
QE(A), θE(A),Qb

0,Qb
f

}
where θE(A) ⊆ QE(A) ×QE(A) and

QE(A) =
{
(q,R,R′) | q ∈ Q,R,R′ ∈ Reg, V (R) ⊇ V (R′)

}

Qb
0 =

{
(q,0n,0n)∈QE(A) | q∈Q0

}
and Qb

f =
{
(q,R,R′)∈QE(A) | q∈Qf

}

θE(A) =
{
(q,R1, R) n−→E(A) (q,R2, R) | R1, R2 are t-neighbors

}

∪
{
(q,R1, R) t1−→E(A) (q,R2, R) | R1

t−→ R2

}

∪
{
(q,R,R1)

r−→E(A) (q,R,R2) | V (R1) ⊇ V (R2)
}

∪
{
(q,R,R1)

t2−→E(A) (q,R,R2) | R1
t−→ R2

}

∪
{
(q1, R1, R

′
1)

↓−→E(A) (q2, R2, R
′
2) | (q1, R1)

↓−→ (q2, R2) ∈ δR and
if R2 = R1[X := 0] for some X ⊆ X , then R′

2 = R′
1[X := 0]

}

∪
{
(q,R1,R

′
1)

�−→E(A)(q,R2,R
′
2) |R′

1,R
′
2 are t-neighbors,((q,R′

2), (q,R
′
2))∈δ+

R
}

(δ+
R is the transitive closure of the transition relation in the region automaton.)
Elements of QE(A) will be called boundary regions. Each type of transition in

E(A) is labeled differently, due to its particular significance: transitions n−→ are
between t-neighboring boundary regions, t1−→ and t2−→ are the two types of time-
passage transitions, while r−→ represent reductions to a smaller boundary region.
The reflexive-transitive closure of θE(A) will be denoted →E(A), while subsets of
it involving only certain types of transitions are identified by their respective
symbols. For example,

t1,t2,n−−−−→E(A)=
(

t1−→E(A) ∪ t2−→E(A) ∪ n−→E(A)

)∗
.

We will say that the transition (q1, R1, R
′
1)

↓−→E(A) (q2, R2, R
′
2) is associated

with a transition τ = (q1, C,X, q2) ∈ δ if R1 ⊆ ZC and R2 = R1[X := 0].
An example is provided in Figure 2 for E(A1), where A1 is the automaton from

Figure 1. (Some of the transitions are labeled only with one of the types they
may carry.) Note that, starting from (q0,02,02), the only reachable boundary
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Fig. 2. E(A1) for the automaton in Figure 1

regions in E(A1) in which location q1 occurs are of the type (q1, R,R′) in which
CR′ : (x = 0∧ y = 1) and R �= R′. As we will see, this is consistent with the fact
that RegReachΔ→0(q0,02) �� (q1, R

′′) where CR′′ : (x = 0 ∧ y = 1).
The following property says that the third components in boundary regions

always follow the transitions of the closure A of the given timed automaton A:

Lemma 1. If (q1,R1,R
′
1)

n,t1,t2,r,↓−−−−−−−→E(A) (q2,R2,R
′
2) then ((q1,R

′
1), (q2,R

′
2))∈δ∗A.

The proof is by straightforward induction on the length of the E(A)-run.
Denote ReachE(A)(q0,0n,0n) the set of boundary regions that can be reached

from (q0,0n,0n) in E(A). The first main result of this paper is the following:

Theorem 1. Let A be a bounded timed automaton with no self loops and in
which there exists a clock x such that all transitions (q, C,X, q′) have x ∈ X and
C ∧ (x = 0) not satisfiable. Then:

RegReachΔ→0(q0,0n)=
{
(q,R) | ∃R′ ∈ RegA, (q,R,R′) ∈ ReachE(A)(q0,0n,0n)

}

The inverse inclusion is a corollary of the following technical property:

Proposition 2. Suppose (q1, R1, R
′
1) →E(A) (q2, R2, R

′
2) and denote d(v, v′) =

max |vi − v′i| (i.e. the max-distance), and also d(v,R) = min{d(v, v′) | v′ ∈ R}.
Then for all Δ>0 and 0 < η < Δ there exists ζ≤η such that for all v2 ∈ R2

for which d(v2, R
′
2) < ζ there exists v1 ∈ R1 for which d(v1, R

′
1) < η and with

(q1, v1)
t−→Δ (q2, v2) for some t ∈ R>0.

The proof is by induction on the number of transitions in E(A). There are 6 base
cases, according to the types of E(A)-transition. The case (q,R1, R

′
1)

�−→E(A)

(q,R2, R
′
2) relies on the following easy generalization of Theorem 7.3 of [Pur98]:

Lemma 2. Given R ∈ RegA and q ∈ Q with ((q,R), (q,R)) ∈ δ+
R, then for any

v, v′ ∈ R and for any Δ > 0, (q, v′) ∈ ReachΔ(q, v).
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The following straightforward corollary of Lemma 2 will be essential in the con-
struction of our symbolic algorithm:

Corollary 1. Suppose that the state regions (q1,R1) �=(q2,R2) belong to the same
strongly connected component in the region automaton, and ((q2,R2), (q3,R3))∈
δ∗R. Then for any v1 ∈ R1, v3 ∈ R3 and for any Δ > 0, (q3, v3) ∈ ReachΔ(q3, v3).

Note that the validity of this corollary relies on the fact that we only consider
bounded regions.

The proof of the direct inclusion in Theorem 1 relies on a “continuous” presen-
tation of trajectories. In the sequel, for a mapping f : A → B × C, f

2
: A → C

denotes the second projection. Also, for a real function f : I → A with I ⊆ R≥0

and J ⊆ I, f
J

is the usual restriction of f to J .

Definition 2. A continuous Δ-trajectory (Δ ∈ R≥0) is a mapping φ :
[0, α[ → Q × Rn

≥0 satisfying the following properties:

1. For each q ∈ Q, φ−1(q × Rn
≥0) is a finite union of left-closed, right-open

intervals
(
Ii
φ,q

)
1≤i≤nφ,q

, with Ii
φ,q = [αi

q, α
i+1
q [.

2. For any two distinct states q, r ∈ Q, q �= r, and any two adjacent intervals
Ii
φ,q, I

j
φ,r (i.e., αi+1

q = αj
r), there exists a transition (q, C,X, r) ∈ δ which

creates the “jump” from Ii
φ,q to Ij

φ,r in the following sense: if we denote
v = lim

x↗αi+1
q

φ
2
(x) and v′ = φ

2
(αj

r), then v |= C and v′ = v[X := 0].

3. For each q ∈Q for which nφ,q > 0, for each 1≤ i≤nφ,q and each t, t′ ∈ Ii
φ,q

with t<t′, there exists u∈Bn such that φ
2
(t′) = φ

2
(t) + (t′ − t)(1 + Δu).

The continuous Δ-trajectory φ is canonical if the following property holds:

4. For each t, t′ ∈ [0, α[ , if there exists R ∈ RegA and q ∈ Q such that
φ(t), φ(t′) ∈ {q} × R and for all t′′ with t ≤ t′′ ≤ t′, φ(t′′) ∈ {q} × Rn

≥0,
then for all t ≤ t′′ ≤ t′, φ(t′′) ∈ {q} × R.

The second property holds due to the assumption which forbids taking two
discrete transitions without letting time pass. The fourth also is consistent since
we only consider automata without self loops.

Canonical continuous trajectories avoid “volutes” between t-neighbors. The
following property shows that each Δ-trajectory, which gives only “essential
points” through the behavior of a system, can be associated with a canonical
continuous trajectory, which in fact completes the Δ-trajectory with all the
intermediary points:

Proposition 3. For each Δ-trajectory τ =
(
(qi−1,vi−1)

ξi−→ (qi,vi)
)
1≤i≤k

(Δ≥0)
there exists a canonical continuous Δ-trajectory φ : [0, α[ → Q × Rn

≥0 for which
φ(0) = (q0, v0), limt↗α φ(t) = (qk, vk), and for each 1 ≤ i < k there exists αi

with αi−1 < αi such that φ(αi) = (qi, vi).
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The proof follows by easy induction on the the length k of τ .
The following property states that, if we “simulate” the behavior of a Δ-

trajectory φ with a “pseudo”-0-trajectory φ′, then the final points in the two
trajectories cannot be “too far” one from the other. In some sense, the simulating
pseudo-0-trajectory models what would happen in A, if we were to “follow” the
same run that is associated with φ, take the transitions at the same time points
but without any clock drift and without checking any guard on the transitions
(i.e. just resetting clocks).

Proposition 4. Given a canonical continuous Δ-trajectory φ : [0, α[ → Q ×
Rn

≥0, consider a mapping φ′ : [0, α[ → Q× Rn
≥0 with φ′(0) = φ(0) and satisfying

the following properties:

1. For all q ∈ Q, 1≤ i≤nφ,q, t, t
′∈Ii

φ,q with t<t′, φ′(t′) = φ′(t) + t′ − t.

2. For any two states q, r ∈ Q, q �= r and any two adjacent intervals Ii
φ,q, I

j
φ,r

(with αi+1
q = αj

r), if (q, C,X, r) is the transition for which condition 2 in
Definition 2 is met for φ, and we denote v = lim

x↗αi+1
q

φ′
2
(x) and v′ = φ′

2
(αj

r),
then v′ = v[X := 0].

Then for each t ∈ [0, α[ , d(φ
2
(t), φ′

2
(t)) ≤ tΔ.

Recall that d denotes the max-distance. The proof can be again given by induc-
tion on the number of regions through which φ passes.

Note that, by the construction in Proposition 4, there exists a unique mapping
φ′ associated to φ – we will call it the 0-approximation of φ. φ′ is not really
a 0-trajectory since in condition 2 above we may have v �|= C.

For the following lemma, we denote
t,0−−→ the union of the identity relation with

the immediate successor relation in RA. The result here is needed when showing
that regions that are “arbitrarily close” are forward-propagated through the
same types of region transitions, then we obtain also regions that are “arbitrarily
close”:

Lemma 3. Consider two tuples of regions R1, . . . , Rn, R
′
1, . . . R

′
n and two extra

regions R,R′ such that V (R) =
⋂

1≤i≤n V (Ri) and V (R′) =
⋂

1≤i≤n V (R′
i).

1. Suppose that (q,Ri)
t,0−−→ (q,R′

i) for all 1 ≤ i ≤ n and some q ∈ Q. Then

(q,R)
t,0−−→ (q,R′).

2. If (q,Ri)
↓−→ (q′, R′

i) for all 1≤ i≤n and some q, q′∈Q, then (q,R)
↓−→ (q′, R′).

The first result follows by observing how linear combinations of vertices of a
region evolve during time steps, whereas the second is straightforward.

The following technical property is needed when proving a somewhat reverse
of the previous lemma: if two regions can be reached from one another via some
(sufficiently small) time-passage transition with some drift Δ > 0, and they are
neighbors of some regions that can be reached from one another in the 0-drift
region automaton, then, altogether, the four regions form a transition in E(A):
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Proposition 5. Given Δ > 0, two regions R1 �= R2, and a (canonical) contin-
uous Δ-trajectory φ : [0, α[ → Q× Rn

≥0, suppose that φ(t) ∈ {q}× (R1 ∪R2) for
some q ∈ Q and all t ∈ [0, α[, and also that φ(0) ∈ (q,R1), limt↗α φ(t) ∈ (q,R2).
Then there exist R′

1, R
′
2 such that V (R′

1) ⊆ V (R1) and V (R′
2) ⊆ V (R2) such that

(q,R′
1)

t−→ (q,R′
2). Moreover, (q,R1, R

′
1) →E(A) (q,R2, R

′
2).

Together, Lemma 3 and Proposition 5 show how the neighborship relation be-
tween regions is related with the transition relation in the region automaton.

The final step in the proof of the direct inclusion in Theorem 1 is the following
proposition. Here, we denote T = card(θE(A)) and K = 23n+1. Also AK+2

T+2 =
(T+2)!
(T−K)! is the number of ordered tuples of 23n+1 + 2 elements from a set of
card(θE(A))+2 elements. Note that K<T for any automaton A.

Proposition 6. Take φ : [0, α[ → Q×Rn
≥0 a canonical continuous Δ-trajectory,

with Δ< 1
2(AK+2

T+2 )2+2
·
√

2
n . Denote

(
qi, Ri

)
0≤i≤mφ

the sequence of state regions

to which the points in φ belong, that is, if φ(t)∈(qi, Ri), φ(t′)∈(qi+1, Ri+1) then
∀t′′ ∈ ]t, t′[, φ(t′′) ∈ (qi, Ri) ∪ (qi+1, Ri+1). Then there exist regions (R̃i)0≤i≤mφ

such that (qi−1, Ri−1, R̃i−1) →E(A) (qi, Ri, R̃i) for all 1 ≤ i ≤ mφ.

The proof works in two steps: first, for α < 2(AK+2
T+2 )2+2, we may show that there

exist regions (R̃i)0≤i≤mφ
such that (qi−1, Ri−1, R̃i−1)

t1,t2,n,r,↓−−−−−−−→E(A) (qi, Ri, R̃i)
for all 1 ≤ i ≤ mφ. Then, for the case of α ≥ 2(AK+2

T+2 )2 + 2, we may show
that, after most 2(AK+2

T+2 )2 + 2 transitions, the trajectory must pass through the
same state region (q,R), which implies that, after the correspoding sequence

of
t1,t2,n,r,↓−−−−−−−→E(A)-transitions (as constructed in the first part), we may insert a

� transition. The whole argument is based on Lemmas 1, 3 (and some extra
technical lemmas) and Propositions 1 and 5. The details of this proof can be
found in the report [Dim06].

4 Symbolic Computation of RegReachΔ→0(Q0, 0n)

The idea behind our symbolic algorithm is to alternate forward reachability, t-
neighbor construction and cycle construction, until a fixpoint is reached. The
cycle construction takes advantage of the special form of boundary regions in
E(A) that give the possibility to obtain, symbolically, all regions that are neigh-
bors of reachable regions. Our algorithm uses triples of the form (q, Z, Z ′) where
q ∈ Q and Z,Z ′ are zones with Z ′ = Z ′ ⊆ Z. The algorithm generates triples
(q, Z, Z ′) for which, for any regions R,R′, if R ⊆ Z, R′ ⊆ Z ′ and V (R) ⊇ V (R′),
then (q0,0n,0n) →E(A) (q,R,R′). But let us introduce first some notations.

The term A-zones denotes zones Z ⊆ [0,MA]n (recall MA is the maximal
constant used in A). The set of A-zones is denoted ZA. We also say that an
A-zone Z is time passage closed if for all v ∈ Z and q ∈ Q, if (q, v) t−→ (q, v′)
then v′ ∈ Z. For any A-zone Z we denote

t−Nghbr(Z) = Z ∪
⋃

{R′ | R ⊆ Z,R ∈ RegA, R,R′ are t-neighbors}
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We also denote t−Nghbr(q, Z) = {q} × t−Nghbr(Z) for any q ∈ Q.
The following proposition gives a set of properties that characterize the

t−Nghbr operator and relate it with the boudary regions in E(A):

Proposition 7. 1. Suppose Z is an A-zone, with CZ =
∧

0≤j<i≤n xi−xj ∈ Iij .
Then t−Nghbr(Z) is defined by the constraint in normal form

Ct−Nghbr(Z) :
∧

1≤i≤n
(xi ∈Ii0)∧

∧

1≤j<i≤n

(
xi−xj ∈

(
Iij+ ]−1, 1[

)
∩[−MA,MA]

)

2. Moreover, if Z is time passage closed, then for all R1, R
′
1⊆Z with V (R1)⊇

V (R′
1), (q,R1, R

′
1)

t1,t2,r,n−−−−−→E(A) (q,R2, R
′
2) if and only if there exists (q, Z ′) ⊆

t−Nghbr(Z) for which R2, R
′
2 ⊆ Z ′ and V (R2) ⊇ V (R′

2).
3. Finally, suppose Z1, Z2 are two A-zones which are time passage closed. Then

Z2 = t−Nghbr(Z1) if and only if for any region R1 ⊆ Z1 that is t-aligned,
and for any region R2 which is a t-neighbor for R1, we have that R2 ⊆ Z2.

Given a transition τ = (q,X,C, q′) and a zone Z, the forward propagation of
(q, Z) along τ is:

Fwd(q, Z, τ) =
{
(q′, Z ′) | ∃v ∈ Z, v′ ∈ Z ′, v′′ ∈ Rn

≥0, t, t
′ ∈ R≥0 s.t.

(q, v) t−→0 (q, v′′)
↓−→0 (q′, v′′[X := 0]) t′

−→0 (q′, v′) and v′′ |= C
}

The forward propagation of (q, Z) is then

Fwd(q, Z) = μX.
(
(q, Z) ∪

⋃

τ∈δ
Fwd(X, τ)

)

It is well known [Yov98] that, for any zone Z, state q and transition τ ,

Fwd(q, Z, τ) and Fwd(q, Z) are computable symbolically if there is no diag-
onal constraint in the given automaton A (see [BLR05]) – which is the case
here.

We may then see that forward reachability and t-neighborhoodness are related
by the following property:

t−Nghbr(q, Z) =
⋃{

(q,R) | ∃(q,R1)
t−→∗(q,R2) in RA,

∃R3 ∈ RegA s.t. R3 ⊆ t−Nghbr(R1) ∩ Z,R ⊆ t−Nghbr(R2)
}

For each transition τ = (q1, C,X, q2) ∈ δ, we denote τ = (q1, C,X, q2) the
closure of τ , with C being the closure of C (in the sense that all inequalities
in C are transformed into nonstrict). Define then the forward propagation of a
triple (q, Z, Z ′) along the transition τ as:

FwBnR(q1, Z1, Z
′
1, τ) :=

{
(q2, Z2, Z

′
2) | (q2, Z

′
2) ∈ Fwd(q1, Z

′
1, τ ),

Z2 ∈ t−Nghbr(Z ′
2)
}

The following proposition shows that the forward propagations of boundary
regions can be computed symbolically, using the FwBnR operator:
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Proposition 8. Given q1 ∈ Q and Z1, Z
′
1 two A-zones which are time passage

closed and with Z1 = t−Nghbr(Z ′
1). Then (q2, R2, R

′
2) ∈ FwBnR(q1, Z1, Z

′
1, τ)

if and only if there exist (q1, R1, R
′
1) ∈ QE(A) with R1 ⊆ Z1 R′

1 ⊆ Z ′
1, and

(q3, R3, R
′
3), (q4, R4, R

′
4) ∈ QE(A) such that

(q1, R1, R
′
1)

t1,t2,n,r−−−−−→E(A) (q3, R3, R
′
3)

↓−→E(A) (q4, R4, R
′
4)

t1,t2,n,r−−−−−→ (q2, R2, R
′
2)

where the middle transition is associated with τ .
In the sequel, we will consider each set of tuplpes Z ⊆ Q × ZA as the set of

state regions belonging to Z. Hence, we abuse notation and denote Z1 = Z2 if
{(q,R) | ∃(q, Z) ∈ Z1, R ⊆ Z} = {(q,R) | ∃(q, Z) ∈ Z2, R ⊆ Z}.

For each set of triples Υ ⊆ Q×ZA ×ZA, we define FwBnR(Υ ) as the set of
triples (q, Z, Z ′) which can be reached from Υ by repeatedly applying forward
propagation steps,

FwBnR(Υ ) = μX.
(
Υ ∪

⋃

τ∈δ

⋃

(q,Z,Z′)∈X
FwBnR(q, Z, Z ′, τ)

)

This set can be computed as a fixpoint: FwBnR(Υ ) =
⋃

n∈N
Fn where F0 = Υ

and Fn+1 =
⋃

τ∈δ

⋃
(q,Z,Z′)∈Fn

FwBnR(q, Z, Z ′, τ).
On the other hand, for each set Z ⊆ Q×ZA, we define Cyc(Z) as the subset

of Z that contains only regions which lie on a cycle in RegA,

Cyc(Z) =
⋃{

(q, Z) ⊆ Z | ∀R ⊆ Z,R ∈ RA, ((q,R), (q,R)) ∈ δ+
R
}

Proposition 9. Fwd(Cyc(Z)) = Fwd
(
νX.
(
Z ∩ Fwd(X)

))
.

This result is a corollary of a property related to strongly connected components
(s.c.c.) in general graphs, that we give in the following:

Lemma 4. Consider a finite graph G = (V,E) (E ⊆ V × V , card(V ) < ∞)
in which E = E1 ∪ E2 with E1 ∩ E2 = ∅ and such that E does not contain self
loops. Denote E∗, E∗

1 and E∗
2 the reflexive-transitive closure of E, resp. E1, E2,

and for any U ⊆ V , define as usual E(U) =
{
v ∈ V | ∃u ∈ U, (u, v) ∈ E

}
and

E∗(U) = μX.(U ∪ E(X)). Also denote:

Fwd(U) =
{
v ∈ V | ∃u ∈ U, v1, v2 ∈ V, (u, v1), (v2, v) ∈ E∗

2 , (v1, v2) ∈ E1

}

SCC≥2(U) =
⋃{

W ⊆ U | W is a s.c.c. with card(W ) ≥ 2
}

Suppose that U = E∗(U) and there are no nontrivial cycles containing only edges
from E2. Then

E∗(SCC≥2(U)) = E∗
(
νX.(U ∩ Fwd(X)

)

Proof. For the left-to-right inclusion, take v ∈ SCC≥2(U), which means that
there exists a s.c.c. W ⊆ U with card(W ) ≥ 2 and v ∈ W . Note first that
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U = E∗(U) implies Fwd(E∗(W )) ⊆ U . On the other hand, due to the fact that
E2 contains no nontrivial cycles, we must have that Fwd(E∗(W )) = E∗(W ).
This means that E∗(W ) is a fixpoint for the mapping X �→ U ∩ Fwd(X), and
hence v ∈ W ⊆ νX.(U ∩ Fwd(X)) which is the greatest fixpoint.

For the reverse proof, take W with W = U ∩Fwd(W ) and pick some v ∈ W .
The fixpoint equation implies that for any k there exists a sequence of vertices
v1, . . . , vk ∈ W such that (vi, vi+1) ∈ E (1 ≤ i ≤ k) with vk+1 = v. Also
vi �= vi+1, since E contains no self loops. By finiteness of V , there exist 1 ≤
j1 < j2 − 1 ≤ k with vj1 = vj2 . It follows that there exists a s.c.c. W ′ ⊆ W with
vj1 , . . . , vj2−1 ∈ W ′ and also card(W ′) ≥ 2. But this implies that v ∈ E∗(W ′) ⊆
E∗(SCC≥2(U)). ��

Remark 2. Note that, in general, SCC≥2(U) �= νX.
(
U ∩ Fwd(X)

)
.

Proposition 9 is then an easy corollary of this lemma, if we take G as the region
graph, with E1 = t−→ and E2 =

↓−→. Note that our assumption on the given timed
automaton ensure the hypotheses in the lemma. More specifically, the existence
of the extra clock which is reset and is checked to be > 0 on each transition
implies the hypothesis on E2. not containing nontrivial cycles.

The construction of Fwd(Cyc(Z)) involves the fixpoint computation of the
inner greatest fixpoint, as the “limit” of the the sequence C0 = Z and Cn+1 =
Cn ∩ Fwd(Cn). Then, when this sequence stabilizes, we apply forward closure.

Our symbolic algorithm for computing RegReachΔ→0(q0,0n) is the following:

Algorithm 1 Construction of ReachE(A)(q0,0n,0n)

1 BReach :=
�
(q0,0n,0n)

�
; PrevBReach := ∅;

2 while BReach �= PrevBReach
3 PrevBReach := BReach;
4 BReach := FwBnR(BReach);
5 Z :=

�
(q, Z′) | ∃Z, (q, Z, Z′) ∈ BReach

�
;

6 BReach :=BReach ∪
�
(q, Z, Z′) | (q, Z′)∈Fwd(Cyc(Z)), Z=t−Nghbr(Z′)

�
;

7 end while ;
8 return BReach;

Theorem 2. Let A be a bounded timed automaton with no self loops and in
which there exists a clock x such that all transitions (q, C,X, q′) have x ∈ X
and C ∧ (x = 0) not satisfiable. Then (q,R) ∈ RegReachΔ→0(q0,0n) if and only
if, at the end of the above algorithm, there exists (q, Z, Z ′) ∈ BReach such that
R ⊆ Z.

This result is a corollary of Proposition 8 and of Theorem 1. Note also that
Corollary 1 is essential in the proof of this theorem, as it allows considering
forward propagations of strongly connected components, instead of just cycles
in the region graph.

Comparison with [DK06]. The symbolic construction in the last algorithm is
different from the one of [DK06]: in that paper, a stable zone Wσ is constructed,
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symbolically, for each cycle σ in the timed automaton. The fixpoint definition
for Wσ is Wσ = νX.(Fwd(X) ∩ Bck(X)). Hence, a preliminary analysis of the
graph of the timed automaton is needed, in which all the cycles of the graph
have to be constructed. It is well-known that the number of cycles in a graph is
superexponential in the size of the graph, hence, at least in theory, the approach
of [DK06] may lead to a superexponential time complexity.

One might also ask whether the approach from [DK06] may apply to a strongly
connected component rather than to only one cycle at a time. The answer is
negative in general, for the following reasons: first, as already [DK06] note, Wσ

is in general larger than the set of regions which lie on a cycle in the region
graph that is “induced” by σ. However, any region in Wσ is Δ-reachable (for
any Δ) from any other region due to a convexity argument regulating the Δ-
trajectories through the cycle σ. This argument no longer applies for strongly
connected components with more than one cycle. As a counterexample, in the
timed automaton in Figure 3, if we put Z =

{
(q2, R) | R ∈ RA

}
, then

W = Z ∩ νX.(Fwd(X) ∩ Bck(X)) =
{(

q2, (x ∈ [0, 3]) ∨ (x ∈ [4, 6])
)}

which is not convex (here Bck is the backward propagation of a set of zones).
And it should be clear that, from the state region (q2, x ∈ [4, 5]), no region
within the A-zone (q2, x ∈ [0, 3]) can be Δ-reached. More generally, reaching
some region within W does not give guaranty that all W is Δ-reachable.

x ∈ [4, 5]?

q1 q2 q3

x ∈ [5, 6]? x := 0

x := 0x ∈ [2, 3]?

Fig. 3. An example of a non-convex generalization of “stable sets” of [DK06].

5 Conclusions

We have presented a construction for solving the following safe implementation
problem: given a timed automaton A and some n-dimensional zone Z, does there
exist a clock drift Δ for which no trajectory in A in which clocks drifts with at
most Δ units reaches Z? The construction generalizes [Pur98], by allowing also
the handling of non-closed constraints. We also give a symbolic algorithm that
builds the set of zones that are reachable with arbitrarily small clock drifts.

Our algorithm works by constructing, symbolically, forward propagations of
strongly connected components in the region graph. Most of the constructions
in our algorithm work also with representations of sets of zones, like the clock
decision diagrams of [LPWY99]. The only construction that could raise problems
is t−Nghbr, which, as defined, can only be applied to one DBM at a time. We are
interested in finding ways to bypass this problem for constructing an algorithm
which is fully compatible with CDDs.

On the other hand, our technique of considering strongly connected compo-
nents instead of just cycles in the region graph can be easily applied to automata
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containing only closed constraints, as in [Pur98, DK06]. It is possible that, in
that setting, the above compatibility problem between t−Nghbr and CDDs be
solvable in a easier way, since in the closed constraints case, region neighbor-
hoodness means regions with nonempty intersection.

Up to the author’s knowledge, there exist no algorithms allowing the symbolic
computation of the non-trivial strongly connected components in a graph, em-
ploying only the set-based constructions that are used in reachability algorithms
for timed systems – that is, union, intersection, forward or backward propa-
gation. Symbolic algorithms with good complexity like [GPP03, BGS00] use a
“pick” function which returns a single node in the graph, and employ set differ-
ence. First, picking a region in a zone, though not an expensive operation, might
prove to be a harmful operation w.r.t. set-based structures like clock-difference
diagrams. Secondly, set difference, in our setting, amounts to DBM subtraction,
which is known not to be a “nice” operation on DBMs. Some heuristics for DBM
subtraction have been investigated in [DHLP06].
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Abstract. Real-time temporal logic reasoning about trajectories of
physical systems necessitates models of time which are continuous. How-
ever, discrete time temporal logic reasoning is computationally more ef-
ficient than continuous time. Moreover, in a number of engineering ap-
plications only discrete time models are available for analysis. In this
paper, we introduce a framework for testing MITL specifications on con-
tinuous time signals using only discrete time analysis. The motivating
idea behind our approach is that if the dynamics of the signal fulfills cer-
tain conditions and the discrete time signal robustly satisfies the MITL
specification, then the corresponding continuous time signal should also
satisfy the same MITL specification.

1 Introduction

Assume that we would like to test the transient response of an electronic circuit
to a predetermined input signal. Since analytical solutions exist only for a few
simple cases, the design, verification and validation of such systems still relies
heavily on testing the actual circuit or, more commonly, on simulations [1]. In
either case, we end up with a discrete time (or sampled) representation of the
continuous time signal that we have to analyze. On the other hand, the properties
of the system that we would like to verify are – in most of the cases – with respect
to the continuous time behavior of the system.

In particular, properties like overshoot, rise time, delay time, settling time and
other constraints on the output signal [2] can be very naturally captured using
Metric Temporal Logic (MTL) with continuous time semantics [3]. A restricted
version of MTL, namely the Metric Interval Temporal Logic (MITL) [4], has
been shown to be decidable over continuous time models even without the finite
variability assumption [5]. Recent advances on the monitoring [6] and on the
synthesis of timed automata from MITL formulas [7] make possible the verifica-
tion of real-time properties over continuous time models, however as mentioned
earlier, such a representation is hard to be obtained for systems with complex
dynamics [8].

Therefore, we must resort to approaches that test MTL specifications on timed
words, i.e., sequences of states paired with their respective time stamps. Such
testing methodologies are mainly based on formula rewriting methods [9] or mon-
itors generated from automata [10,11]. But then, one major issue is immediately
apparent. The continuous time signals and their corresponding sampled versions
do not necessarily satisfy the same MTL formula φ.
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In this paper, we derive conditions on the dynamics of the signal and on the
sampling function such that MITL reasoning over timed words can be applied to
continuous time signals. The main machinery that we employ for this purpose is
the computation of the robustness estimate [12] of a sampled signal with respect
to an MITL specification φ. In this framework, the atomic propositions in a
formula label regions in the value space of the signal. Intuitively, the robustness
estimate is the minimum distance of a point of the sampled signal to such a
region, which if it was to be entered by the sampled signal, the truth value of
φ would change. Hence, all we need to do is to guarantee that the dynamics of
the signal are such that between any two sampled points the actual continuous
time signal does not violate the aforementioned distance. The constraints on the
sampling function play another role. They guarantee that there exist enough
sampling points such that the validity of MITL formulas is maintained between
the two different semantics [13].

Our theoretical results are demonstrated through some examples that indi-
cate the range of systems that the method can be applied to. Even though our
analysis holds for signals of infinite duration, we focus our attention to signals of
finite duration. This is so, because the analysis of the asymptotic properties of
physical systems is a mature research area [8], while the analysis of the transient
properties has not received much attention.

2 Temporal Logics and Continuous Time Signals

In this section, we define signals over metric spaces and provide a brief overview
of the temporal logics that are interpreted over linear time structures. Let R
be the set of real numbers and N the set of natural numbers. We denote the
extended real number line by R = R ∪ {±∞}. In addition, we use pseudo-
arithmetic expressions to represent certain subsets of the aforementioned sets.
For example, R≥0 denotes the subset of the reals whose elements are greater
or equal to zero. We let B = {⊥,�}, where � and ⊥ are the symbols for the
boolean constants true and false respectively. Given two sets A, B, let BA define
the set of all functions from A to B. That is, for any f ∈ BA we have f : A → B.
Finally, given a set A, P(A) denotes its powerset.

2.1 Continuous Time Signals in Metric Spaces

In this paper, we use continuous time signals in order to capture the behavior
of real-time or physical systems. For example, the temperature in a room is a
signal whose domain is R≥0 and its range is R (which hopefully stays in the
[20, 25] Celsius degree range). Considering real-valued signals instead of just
Boolean values allows us to reason about how far are two points in that space.
For example, a temperature of 25◦C is closer to the temperature of 30◦C than
to 40◦C.

Formally, a continuous time signal s is a map s : R → X such that R is the
time domain and X is a metric space. When we consider bounded time signals,
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as for example in testing algorithms, then R = [0, r] ⊆ R≥0 with r > 0, otherwise
we let R = R≥0. In the following, S denotes the set of all possible signals, i.e.,
S = XR. We fix R to refer to a time domain as described above. A metric space
is a pair (X, d) such that the topology of the set X is induced by a metric d. In
this paper, we only use the notions of metric and neighborhood which we define
below.

Definition 1 (Metric). A metric on a set X is a positive function d : X×X →
R≥0, such that the three following properties hold

1. ∀x1, x2 ∈ X. d(x1, x2) = 0 ⇔ x1 = x2

2. ∀x1, x2 ∈ X. d(x1, x2) = d(x2, x1)
3. ∀x1, x2, x3 ∈ X. d(x1, x3) ≤ d(x1, x2) + d(x2, x3)

Using a metric d, we can define the distance of a point x ∈ X from a set S ⊆ X .
Intuitively, this distance is the shortest distance from x to all the points in S.
In a similar way, the depth of a point x in a set S is defined to be the shortest
distance of x from the boundary of S.

Definition 2 (Distance, Depth [14] §8). Let x ∈ X be a point, S ⊆ X be a
set and d be a metric on X. Then, we define the

– Distance from x to S to be distd(x, S) := inf{d(x, y) | y ∈ S}
– Depth of x in S to be depthd(x, S) := distd(x,X\S)

We should point out that we use the extended definition of supremum and in-
fimum. In other words, the supremum of the empty set is defined to be bottom
element of the domain, while the infimum of the empty set is defined to be the top
element of the domain. For example, when we reason over R, then sup ∅ := −∞
and inf ∅ := +∞. Also of importance is the notion of an open ball of radius ε
centered at a point x ∈ X .

Definition 3 (ε-Ball). Given a metric d, a radius ε > 0 and a point x ∈ X,
the open ε-ball centered at x is defined as Bd(x, ε) = {y ∈ X | d(x, y) < ε}.

It is easy to verify that if the distance (distd) of a point x from a set S is ε > 0,
then Bd(x, ε)∩S = ∅. And similarly, if depthd(x, S) = ε > 0, then Bd(x, ε) ⊆ S.

2.2 Metric Interval Temporal Logic over Signals

The Metric Temporal Logic (MTL) was introduced in [3] in order to reason
about the quantitative timing properties of boolean signals. A decidable, but
restricted version of MTL, namely the Metric Interval Temporal Logic (MITL),
was presented in [4]. In this section, we review the basics of the propositional
MITL over signals.

Definition 4 (Syntax of MITL in Negation Normal Form). Let C be the
set of truth degree constants, AP be the set of atomic propositions and I be a
non-empty non-singular interval of R. The set ΦC of all well-formed formulas
(wff) is inductively defined using the following rules:
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– Terms: All constants c ∈ C and propositions p, ¬p for p ∈ AP are terms.
– Formulas: if φ1 and φ2 are terms or formulas, then φ1∨φ2, φ1∧φ2, φ1 UIφ2

and φ1RIφ2 are formulas.

The atomic propositions in our case label subsets of the set X . In other words,
we define an observation map O : AP → P(X) such that for each p ∈ AP the
corresponding set is O(p) ⊆ X . In the above definition, UI is the timed until
operator and RI the timed release operator. The subscript I imposes timing
constraints on the temporal operators. The interval I can be open, half-open
or closed, bounded or unbounded, but it must be non-empty (I �= ∅) and non-
singular (I �= {t}) in order to be in spirit with the definitions in [4]. Moreover,
we define the following operations on the timing constraints I of the temporal
operators:

t + I := {t + t′ | t′ ∈ I} and t +R I := (t + I) ∩ R

for any t in R. Sometimes for clarity in the presentation, we replace I with
pseudometric expressions, e.g. U[0,1] is written as U≤1. In the case where I =
[0,+∞), we remove the subscript I from the temporal operators, i.e., we just
write U , and R.

Metric Interval Temporal Logic (MITL) formulas are interpreted over signals
s. In this paper, we define the boolean semantics of MITL formulas using a valua-
tion function 〈〈·, ·〉〉 : ΦB×P(X)AP → (S×R → B) and we write 〈〈φ,O〉〉(s, t) = �
instead of the usual notation (O−1 ◦s, t) |= φ. In this case, we say that the signal
s under observation map O satisfies the formula φ at time t. Here, ◦ denotes
function composition : (f ◦ g)(t) = f(g(t)) and O−1 : X → P(AP ) is defined as
O−1(x) := {p ∈ AP | x ∈ O(p)} for x ∈ X . For brevity, we drop O from the
notation since without loss of generality we can consider it constant through-
out this paper. From an application perspective, we are interested in checking
whether 〈〈φ〉〉(s, 0) = �. In this case, we refer to s as a model of φ and we just
write 〈〈φ〉〉(s) = � for brevity.

Before proceeding to the actual definition of the semantics, we introduce some
auxiliary notation. If (V, <) is a totally ordered set, then we define the binary
operators � : V × V → V and � : V × V → V using the supremum and infimum
functions as x � y := sup{x, y} and x � y := inf{x, y}. Also, for any V ⊆ V we
extend the above definitions as follows

⊔
V := supV and

�
V := inf V . Again,

we use the extended definition of the supremum and infimum, i.e., sup ∅ := ⊥ and
inf ∅ := �. Recall that if (V,≤) is a totally ordered set, then it is distributive, i.e.,
for all a, b, c ∈ S it is a� (b�c) = (a�b)� (a�c) and a� (b�c) = (a�b)� (a�c).
Note that the structure (B, <) is a totally ordered set with ⊥ < � and that
(B,�,�,¬) is a boolean algebra with the complementation defined as ¬� = ⊥
and ¬⊥ = �.

Definition 5 (CT Semantics of MITL). Let s ∈ S, O ∈ P(X)AP and t, t′,
t′′ ∈ R, then the continuous time semantics of any formula φ ∈ ΦB is defined by

〈〈�〉〉(s, t) := � 〈〈⊥〉〉(s, t) := ⊥
〈〈p〉〉(s, t) := K∈(s(t),O(p)) 〈〈¬p〉〉(s, t) := K∈(s(t), X\O(p))
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〈〈φ1 ∨ φ2〉〉(s, t) := 〈〈φ1〉〉(s, t) � 〈〈φ2〉〉(s, t)
〈〈φ1 ∧ φ2〉〉(s, t) := 〈〈φ1〉〉(s, t) � 〈〈φ2〉〉(s, t)

〈〈φ1 UIφ2〉〉(s, t) :=
⊔

t′∈(t+RI)

(
〈〈φ2〉〉(s, t′) �

�
t≤t′′<t′

〈〈φ1〉〉(s, t′′)
)

〈〈φ1RIφ2〉〉(s, t) :=
�

t′∈(t+RI)

(
〈〈φ2〉〉(s, t′) �

⊔

t≤t′′<t′

〈〈φ1〉〉(s, t′′)
)

In the above definition, K∈ is the characteristic function of the ∈ relation, i.e.,
K∈(a,A) = � if a ∈ A and ⊥ otherwise. Informally, the formula φ1 UIφ2 ex-
presses the property that over the signal s there exists some time in the interval
I that makes φ2 true and, furthermore, for all previous times s satisfies φ1.
Intuitively, the release operator φ1RIφ2 states that φ2 should always hold dur-
ing the time interval I, a requirement which is released when φ1 becomes true.
We can also define the temporal operators eventually �Iφ = �UIφ and always
�Iφ = ⊥RIφ.

3 Temporal Logics and Discrete Time Signals

Even though MITL is decidable over continuous time Boolean signals [5], there
do not exist efficient decision procedures as it is the case for the discrete untimed
systems [15]. Matters become even worse when we consider hybrid systems with
real time requirements and states that evolve in metric spaces. For such systems,
a discrete time representation of their continuous time behavior can provide a
valuable tool for analysis.

3.1 Sampled Signals

A sampled (or discrete time) signal can represent computer simulated trajecto-
ries of physical models or the sampling process that takes place when we digitally
monitor physical systems. In the following, we assume that a continuous time
signal s is a mathematical object that represents the behavior of a physical sys-
tem and we define a sampling function τ ∈ RN which returns the point in time
at which the i-th sample was taken. The set of all sampling functions is denoted
by T, i.e., T = RN . We fix N ⊆ N to be the set indexes for the sampled points.
In other words, the discrete time signal ŝ = s ◦ τ corresponds to the observ-
able (discretized) behavior of the physical system (see Fig. 1). Two necessary
assumptions on any sampling function are : (i) τ must be a monotonic function,
i.e., τ(i) < τ(j) for i < j and (ii) if R is unbounded then N = N. Notice that the
pair (O−1 ◦ ŝ, τ) is actually a timed state sequence, which is a widely accepted
model for reasoning about real time systems [16].

3.2 Metric Interval Temporal Logic over Sampled Signals

We proceed on to define MITL semantics over discrete time signals. Here, we
slightly deviate from the usual definition of the semantics over timed state
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Fig. 1. A continuous time signal s1(t) = sin t+sin 2t (solid line) and the corresponding
sampled signal ŝ1 (circles) generated using a constant sampling step of 0.2

sequences. We consider as a model of φ the actual continuous time signal s under
the sampling function τ . This will enable us to reason about all the continuous
time signals which have the same sampled representation in a transparent way.
Again, the MITL semantics is defined using a valuation function which now also
depends on the sampling function τ ∈ T. We write 〈〈φ〉〉τ (s, i) = � when the
signal s under sampling function τ satisfies the formula φ at sample i (as before,
the observation map O is implied). Similarly to the continuous time case, when
i = 0 and the formula evaluates to �, then we refer to s as a model of φ under
the sampling function τ and we write 〈〈φ〉〉τ (s) = �. In the definition below, we
also use the following notation : for Q ⊆ R, the preimage of Q under τ is defined
as : τ−1(Q) := {i ∈ N | τ(i) ∈ Q}. Notice that N = τ−1(R).

Definition 6 (DT Semantics of MITL). Let s ∈ S, τ ∈ T, O ∈ P(X)AP

and i, j, k ∈ N , then the discrete time semantics of any formula φ ∈ ΦB is defined
by

〈〈�〉〉τ (s, i) := � 〈〈⊥〉〉τ (s, i) := ⊥
〈〈p〉〉τ (s, i) := K∈(ŝ(i),O(p)) 〈〈¬p〉〉τ (s, i) := K∈(ŝ(i), X\O(p))

〈〈φ1 ∨ φ2〉〉τ (s, i) := 〈〈φ1〉〉τ (s, i) � 〈〈φ2〉〉τ (s, i)
〈〈φ1 ∧ φ2〉〉τ (s, i) := 〈〈φ1〉〉τ (s, i) � 〈〈φ2〉〉τ (s, i)

〈〈φ1 UIφ2〉〉τ (s, i) :=
⊔

j∈τ−1(τ(i)+RI)

(
〈〈φ2〉〉τ (s, j) �

�
i≤k<j

〈〈φ1〉〉τ (s, k)
)

〈〈φ1RIφ2〉〉τ (s, i) :=
�

j∈τ−1(τ(i)+RI)

(
〈〈φ2〉〉τ (s, j) �

⊔

i≤k<j

〈〈φ1〉〉τ (s, k)
)

4 Robustness Estimate

The main goal of this paper is to derive conditions that guarantee that a signal is
a model of an MITL formula with continuous time semantics using only discrete
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time reasoning. The main tool that we employ in order to achieve this goal is
the robustness estimate [12]. In [12], the robustness estimate was used in order
to determine neighborhoods of finite timed state sequences that satisfy the same
MTL specification. In this paper, the robustness estimate will help us determine
a critical distance-threshold that guarantees that a signal satisfies an MITL
formula with continuous time semantics.

The robustness estimate can be computed by introducing multi-valued se-
mantics for MITL formulas. In this paper, we differentiate from previous works
– see for example [17] – by providing the definition of multi-valued semantics for
MITL based on robustness considerations. Let R = (R,≤) be the real line with
the usual ordering relation. We propose multi-valued semantics for the Metric
Interval Temporal Logic where the valuation function on the predicates takes
values over the totally ordered set R according to the metric d operating on the
state space X of the signal s. For this purpose, we let the valuation function be
the depth (or the distance) of the current point of the signal s ◦ τ(i) in a set
O(p) labeled by the atomic proposition p. Intuitively, this distance represents
how robustly is the point s ◦ τ(i) within a set O(p). If this metric is zero, then
even the smallest perturbation of the point can drive it inside or outside the set
O(p), dramatically affecting membership.

For the purposes of the following discussion, we use the notation [[φ]] to denote
the robustness estimate with which the signal s satisfies the specification φ under
the sampling function τ (formally, [[φ]]τ : S×N → R and, again, the observation
map O is implied).

Definition 7 (Robustness Estimate). Let s ∈ S, τ ∈ T, c ∈ R, O ∈
P(X)AP and i, j, k ∈ N , then the robustness estimate of any formula φ ∈ ΦR∪B

with respect to s under the sampling function τ is recursively defined as follows

[[�]]τ (s, i) := +∞ [[⊥]]τ (s, i) := −∞
[[p]]τ (s, i) := depthd(ŝ(i),O(p)) [[¬p]]τ (s, i) := distd(ŝ(i),O(p))

[[c]]τ (s, i) := c

[[φ1 ∨ φ2]]τ (s, i) := [[φ1]]τ (s, i) � [[φ2]]τ (s, i)
[[φ1 ∧ φ2]]τ (s, i) := [[φ1]]τ (s, i) � [[φ2]]τ (s, i)

[[φ1 UIφ2]]τ (s, i) :=
⊔

j∈τ−1(τ(i)+I)

(
[[φ2]]τ (s, j) �

�
i≤k<j

[[φ1]]τ (s, k)
)

[[φ1RIφ2]]τ (s, i) :=
�

j∈τ−1(τ(i)+I)

(
[[φ2]]τ (s, j) �

⊔

i≤k<j

[[φ1]]τ (s, k)
)

It is easy to verify that the semantics of the negation operator give us all the
usual nice properties such as the De Morgan laws: a � b = −(−a � −b) and
a�b = −(−a�−b), involution: −(−a) = a and antisymmetry: a ≤ b iff −a ≥ −b
for a, b ∈ R.
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5 Continuous Time Satisfiability by Discrete Reasoning

To this point one question remains unanswered. What is the relationship between
〈〈φ〉〉(s) and 〈〈φ〉〉τ (s) for a given MITL formula φ, signal s and sampling function
τ? This is an important question since a sampling function τ may not just change
the satisfiability of a formula φ with respect to a signal s, but also the validity of
the formula [13]. In this section, we develop conditions for the signals in the set S
and the sampling function τ which can guarantee the equality 〈〈φ〉〉τ (s) = 〈〈φ〉〉(s).
In the following, we introduce a sequence of assumptions.

First, we need to derive conservative bounds on the divergence of the value of
signal s between two consecutive samples i and i + 1. We do that by requiring
that the state distance between any two points in time is bounded by a positive
nondecreasing function E which depends only on the time difference between
these two points.

Assumption 1. The signals in the set S satisfy the following condition:

∀t, t′ ∈ R . d(s(t), s(t′)) ≤ E(|t − t′|), (1)

where E is a positive nondecreasing function.

Such bounds can be easily derived when a signal is Lipschitz continuous.

Definition 8 (Lipschitz Continuity). Let (X, d) and (X ′, d′) be two metric
spaces. A function f : X ′ → X is called Lipschitz continuous if there exists a
constant Lf ≥ 0 such that:

∀x′
1, x

′
2 ∈ X ′.d(f(x′

1), f(x′
2)) ≤ Lfd

′(x′
1, x

′
2). (2)

The smallest constant Lf is called Lipschitz constant of the function f .

What we are actually interested in is Lipschitz continuity of a signal s with
respect to time:

∀t, t′ ∈ R . d(s(t), s(t′)) ≤ Ls|t− t′|. (3)

Any signal with bounded time derivative satisfies the above condition. Whenever
only a number of values of the signal are available to us, instead of an analytical
description, we can use methods from optimization theory in order to estimate a
Lipschitz constant for the signal [18]. Moreover, if the signal s is the solution of
an ordinary differential equation ṡ(t) = f(s(t)), where f is Lipschitz continuous
with constant Lf , then it is possible to estimate a constant Ls for eq. (3).

Example 1. Consider an autonomous linear system ṡ(t) = As(t), where A is
Hurwitz. Then, ‖ṡ(t)‖ = ‖As(t)‖ ≤ ‖A‖‖s(t)‖, where ‖·‖ is the Euclidean norm.
Consider the customary Lyapunov function for stable linear systems V (x) =
xTPx, where P is a symmetric and positive definite matrix [8]. It is easy to
see that the Lyapunov level sets {x ∈ X | V (x) ≤ c} are ellipsoids. Recall that
any signal which crosses the surface of such a set always remains in the set.
Therefore, the distance of s(t) from the origin is always bounded by the radius
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of the minimum ball that contains the ellipsoid {x ∈ X | xTPx ≤ s(0)TPs(0)}.
The matrix P determines the shape of the ellipsoids and it can be computed by
solving the Lyapunov equation : PA + ATP + I = 0. The lengths of the axis
of the ellipsoid are given by the square roots of the eigenvalues of the matrix
Pe = V (s(0))P−1 [14]. Let λmax(Pe) be the maximum eigenvalue of Pe, then
‖s(t)‖ ≤

√
λmax(Pe) for all t ∈ R. Hence, ‖ṡ(t)‖ ≤ ‖A‖

√
λmax(Pe) and the

Lipschitz constant is Ls = ‖A‖
√

λmax(Pe). In this case, the Lipschitz constant
depends on the initial condition s(0). �

Notice that the bound on the distance between two values of the signal depends
on the sampling function τ . In particular, one parameter of the sampling function
that we might wish to control is the maximum sampling step:

Δτ = sup
i∈N>0

{τ(i) − τ(i − 1)}. (4)

The sampling function τ , i.e., the maximum sampling step Δτ , must be such
that the relationship between valid formulas in continuous and sampled seman-
tics is maintained [13]. For example, it is easy to see that the formula �[1,2]p is
true for any signal s if there is no sample in the interval [1, 2]. In order to avoid
such situations, we must impose certain constraints to Δτ . But first, a slight
modification of the timing constraints of the temporal operators is required.

Similarly to [19], we strengthen MITL formulas by changing the timing re-
quirements of a given formula φ. In detail, we introduce a function H : ΦB → ΦB

that recursively operates on a formula φ and strengthens the timing constraints
as follows:

H(p) = p H(¬p) = ¬p
H(φ1 ∨ φ2) = H(φ1) ∨ H(φ2) H(φ1 ∧ φ2) = H(φ1) ∧ H(φ2)
H(φ1 UIφ2) = H(φ1)UC(I,Δτ)H(φ2) H(φ1RIφ2) = H(φ1)RE(I,Δτ)H(φ2)

where C(I, δ) = {r ∈ R | cl(Bd(r, δ)) ⊆ I} is the δ-contraction and E(I, δ) =
{r ∈ R | cl(Bd(r, δ)) ∩ I �= ∅} is the δ-expansion of the interval I. Here, cl
denotes the closure of a set. The intuition behind the function H is that a
robust specification with respect to the atomic propositions must also be robust
with respect to the timing constraints. The necessity of the robustification of
the timing requirements will become apparent in the proof of Theorem 1. For
example, in order to determine the Boolean truth value of φ2 in φ1RIφ2 for the
whole interval I in continuous time, we must also consider the first samples after
and before the interval τ(i) +R I.

Remark 1. The authors in [19] have proven that for any φ ∈ ΦB, s ∈ S, τ ∈ T
and O ∈ P (X)AP , 〈〈H(φ)〉〉τ (s, i) = � implies 〈〈φ〉〉τ (s, i) = �.

Assumption 2. The sampling functions in the set T satisfy the constraint:

Δτ < min
I∈(IH(φ)∪Iφ)

{supI − inf I}. (5)

When R is bounded, the sampling functions in the set T must also satisfy the
constraint : supR − τ(maxN) < Δτ .
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In the assumption above, Iφ denotes the set of all the timing constraints I
that appear in the temporal operators of an MITL formula φ. Notice that if there
exists a singleton interval in the set Iφ, then the above assumption cannot be
satisfied. This observation justifies the choice of MITL as a specification language
instead of MTL. It is easy to see that with respect to the initial formula φ,
Assumption 2 can be satisfied by the following constraint:

Δτ < 1/3 min
I∈Iφ

{supI − inf I}. (6)

Whenever R is a bounded time interval, we have to impose additional con-
straints on the signal and the MITL formulas. First, we require that all the
intervals in Iφ are bounded as it was initially suggested in [6]. This enables us to
compute a minimum time D(φ) that guarantees in combination with Assumption
2 that there are no subformulas whose truth value was determined by the lack
of sampling points. The computation of the minimum time D(φ) is performed
recursively:

D(p) := 0 D(¬p) := 0
D(φ1 ∨ φ2) := D(φ1) � D(φ2) D(φ1 ∧ φ2) := D(φ1) � D(φ2)
D(φ1 UIφ2) := sup I + D(φ1) �D(φ2) D(φ1RIφ2) := supI + D(φ1) � D(φ2)

In particular, we would like to avoid the case where R is a bounded domain and
t + I �⊆ R. For the shake of example, consider the formula �[3,4]p and let the
domain of the signal s be R = [0, 2]. Then, the formula �[3,4]p evaluates to �
simply because 0+[0,2][3, 4] = ∅. In order to avert such situations, we must impose
one additional constraint (when R is bounded). Namely, for a given formula φ
and signal s we let D(φ) < supR < +∞. In other words, both the domain of
the signal and all the timing constraints in the formula are bounded from above
and below. Now, assume that a temporal subformula ψ = ψ1WIk

ψ2 of φ is at a
nesting depth k, where W ∈ {U ,R}, and let {Ij}j<k be the timing constraints of
the temporal operators at lower nesting depths. Informally, the nesting depth of
a formula φ is defined to be the maximum number of nested temporal operators
and it is computed in a similar way to D where sup I is replaced by 1. Then, for
all t ∈ [0,

∑
j<k supIj ] we have t + Ik ⊆ R since

∑
j≤k sup Ij ≤ D(φ) < supR.

Therefore, t + Ik = t +R Ik.

Assumption 3. If the time domain R of the set of signals S is bounded, i.e.,
supR < +∞, then for the MITL formula φ under consideration it must be
sup I < +∞ for all I ∈ Iφ and, also, supR > D(H(φ)).

Lemma 1. Consider a formula φ ∈ ΦB and a sampling function τ ∈ T and
let the Assumptions 2 and 3 hold. Let ψ = ψ1WIk

ψ2, where W ∈ {U ,R}, be
a subformula of φ at nesting depth k and let {Ij}j<k be the timing constraints
of the temporal operators at lower nesting depths. If I = τ−1(T ) �= ∅, where
T = [0,

∑
j<k sup Ij ], then for all i ∈ I we have τ−1(τ(i) +R Ik) �= ∅.

Proof. First note that, as mentioned above, by Assumption 3 the set τ(i)+RIk is
equal to τ(i)+Ik and, hence, τ(i)+R Ik �= ∅. Now, assume that I = τ−1(T ) �= ∅.
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If both R and Ik are unbounded, then we immediately get τ−1(τ(i) + Ik) �= ∅
for any i ∈ I since otherwise N = τ−1(R) would be finite. Assume now that Ik

is bounded and that for some i ∈ I we get that τ−1(τ(i) + Ik) = ∅. In other
words, we assume that there does not exist i′ ≥ i such that τ(i′) ∈ τ(i) + Ik.
Then, the following may hold since τ(i) + Ik is an interval of R:

1. for all i′ ∈ N≥i we have τ(i′) ≺ inf(τ(i) + Ik), where ≺∈ {<,≤} depending
on the constraints of Ik. Note that this can only be the case when R is
bounded. Hence, we get that supR − τ(maxN) ( supR − inf(τ(i) + Ik) ≥
sup(τ(i)+Ik)− inf(τ(i)+Ik) ≥ supIk − inf Ik > Δτ , which a contradiction
by Assumption 2.

2. there exists i′ ∈ N≥i such that τ(i′) ≺ inf(τ(i) + Ik) and sup(τ(i) + Ik) ≺
τ(i′ + 1), where ≺∈ {<,≤} depending on the constraints of Ik. That is,
τ(i′ + 1) − τ(i′) ( sup(τ(i) + Ik) − inf(τ(i) + Ik) = sup Ik − inf Ik > Δτ ,
which is a contradiction by Assumption 2.

Since τ−1(τ(i) +R Ik) �= ∅, we also get that τ−1([0,
∑

j≤k sup Ij ]) �= ∅. ��

The above assumptions enable us to prove the following theorem which is the
main result of this paper.

Theorem 1. Consider φ ∈ ΦB, O ∈ P(X)AP , s ∈ S, τ ∈ T and let Assump-
tions 1 to 3 hold. Then, [[H(φ)]]τ (s, i) > E(Δτ) implies

∀t ∈ [τ(i) − Δτ, τ(i) + Δτ ] ∩ R . 〈〈φ〉〉(s, t) = � (7)

for any i ∈ N which satisfies the conditions of Lemma 1.

Proof. The proof of the theorem is by induction on the structure of formula φ.
Case φ = p ∈ AP : [[H(p)]]τ (s, i) > E(Δτ), i.e., depthd(ŝ(i),O(p)) > E(Δτ).

Therefore, d(ŝ(i), x) > E(Δτ) for any x ∈ X\O(p). Moreover by Assumption
1, we get that d(ŝ(i), s(t)) ≤ E(Δτ) for all t ∈ [τ(i) − Δτ, τ(i) + Δτ ] ∩ R
and d(ŝ(i), s(t)) ≤ E(Δτ) < d(ŝ(i), x). Also, since d is a metric : d(ŝ(i), x) ≤
d(ŝ(i), s(t)) + d(s(t), x). Hence, d(s(t), x) > 0. Since this holds for any x ∈
X\O(p), we conclude that depthd(s(t),O(p)) > 0 or s(t) ∈ O(p) and, thus,
〈〈p〉〉(s, t) = � for all t ∈ [τ(i) − Δτ, τ(i) + Δτ ] ∩R.

Case φ = ¬p ∈ AP : [[H(¬p)]]τ (s, i) > E(Δτ), i.e., distd(ŝ(i),O(p)) > E(Δτ).
The proof is similar to the previous case.

Cases φ = φ1 ∨ φ2 and φ = φ1 ∧ φ2: straightforward.
Case φ = φ1 UIφ2: We know that [[H(φ1)UC(I,Δτ)H(φ2)]]τ (s, i) > E(Δτ). By

Lemma 1 and the definition of until : there exists a j ∈ τ−1(τ(i) +R C(I, Δτ))
such that [[H(φ2)]]τ (s, j) > E(Δτ) and for all k such that i ≤ k < j we have
[[H(φ1)]]τ (s, k) > E(Δτ). By the induction hypothesis, we get that 〈〈φ2〉〉(s, t) = �
for all t ∈ [τ(j) − Δτ, τ(j) + Δτ ] ∩ R and 〈〈φ1〉〉(s, t) = � for all t ∈ [τ(k) −
Δτ, τ(k) + Δτ ] ∩ R and for all k ∈ [i, j). We set t′ = τ(j). Note that for all t ∈
[τ(i)−Δτ, τ(i)+Δτ ]∩R we have t′ ∈ t+RI since τ(j) ∈ τ(i)+RC(I, Δτ). Also,
since τ(j) ≤ τ(j−1)+Δτ we get that for all t′′ ∈ [t, t′) we have 〈〈φ1〉〉(s, t′′) = �.
Hence, we conclude that 〈〈φ1 UIφ2〉〉(s, t) = � for all t ∈ [τ(i)−Δτ, τ(i)+Δτ ]∩R.
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Case φ = φ1RIφ2: We know that [[H(φ1)RE(I,Δτ)H(φ2)]]τ (s, i) > E(Δτ).
By Lemma 1 and the definition of release : for all j ∈ τ−1(τ(i) +R E(I, Δτ))
we have [[H(φ2)]]τ (s, j) > E(Δτ) or there exists k such that i ≤ k < j and
[[H(φ1)]]τ (s, k) > E(Δτ). By the induction hypothesis, we get that for all j ∈
τ−1(τ(i) +R E(I, Δτ)) we have 〈〈φ2〉〉(s, t) = � for all t ∈ [τ(j) − Δτ, τ(j) +
Δτ ] ∩ R and 〈〈φ1〉〉(s, t) = � for all t ∈ [τ(k) − Δτ, τ(k) + Δτ ] ∩ R. Let jm =
min τ−1(τ(i) +R E(I, Δτ)) and jM = max τ−1(τ(i) +R E(I, Δτ)). For all t′ ∈
[τ(jm) − Δτ, τ(jM ) + Δτ ] we have 〈〈φ2〉〉(s, t′) = �. But, for all t ∈ [τ(i) −
Δτ, τ(i) + Δτ ] ∩ R we have t +R I ⊆ τ(i) +R E(I, Δτ). Hence, for all t ∈
[τ(i) − Δτ, τ(i) + Δτ ] ∩ R, for all t′ ∈ t +R I, we have 〈〈φ2〉〉(s, t′) = � or there
exists some t′′ ∈ [t, t′) such that 〈〈φ1〉〉(s, t′′) = �. Hence, 〈〈φ1RIφ2〉〉(s, t) = �
for all t ∈ [τ(i) − Δτ, τ(i) + Δτ ] ∩ R. ��
We should remark that the conclusion (7) of Theorem 1 does not imply that the
continuous time Boolean signal O−1◦s satisfies the finite variability property as it
is defined in [5]. It only states that there exists some time interval in R of length
at least 2Δτ such that the Boolean truth value of some atomic propositions
remains constant.

Corollary 1. Consider φ ∈ ΦB, O ∈ P(X)AP , s ∈ S, τ ∈ T and let Assump-
tions 1–3 hold. Then, [[H(φ)]]τ (s) > E(Δτ) implies 〈〈φ〉〉(s) = �.

If the condition [[H(φ)]]τ (s) > E(Δτ) fails, then in general we cannot infer any-
thing about the relationship of the two semantics. Two strategies in order to
guarantee the above condition would be (i) to reduce the size of the sampling
step Δτ or (ii) to devise an on-line monitoring procedure that can adjust real-
time the sampling step according to the robustness estimate of a signal with
respect to an MITL formula φ.

6 Examples

In this section, we demonstrate the proposed methodology with some examples.
The discrete time signals under consideration could be the result of sampling a
physical signal or a simulated one. The latter is meaningful in cases where we
would like to use fewer sampled points for temporal logic testing, while simulating
the actual trajectory with finer integration step. The robustness estimate is
computed using the algorithm that was presented in [12].

Example 2. Assume that we are given a discrete representation of a signal ŝ1

(Fig. 1) which has constant sampling step of magnitude 0.2, i.e., Δτ1 = 0.2. We
are also provided with the constraint E1(t) = 3t (notice that |ṡ1(t)| ≤ | cos t| +
2| cos 2t| ≤ 1 + 2 = 3 for all t ∈ R, therefore s1 is Lipschitz continuous with
Ls1 = 3). We would like to test whether the underlying continuous time signal s1

satisfies the specification φ1 = �[0,9π/2](p11 → �[π,2π]p12), with O(p11) = R≥1.5

and O(p12) = R≤−1. Notice that the sampling function τ1 satisfies the constraints
of the Assumptions 2 and 3. Using the computational procedure proposed in [12],
we compute a robustness estimate of [[H(φ1)]]τ1(s1) = 0.7428, while E1(Δτ1) =
0.6. Therefore, by Corollary 1 we conclude that 〈〈φ1〉〉(s1) = �. �
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Fig. 2. The sampled signal ŝ2 generated by sampling the continuous time signal s2(t) =
sin(t) + sin(2t) + w(t), where |w(t)| ≤ 0.1, with constant sampling period 0.5. In this
case, it is |s2(t1) − s2(t2)| ≤ Ls1 |t1 − t2| + |w(t1)| + |w(t2)|. Thus, E2(t) = Ls1 t + 0.2.

The next example manifests a very intuitive attribute of the framework, namely,
that the more robust a signal is with respect to the MITL specification the larger
the sampling period can be.

Example 3. Consider the discrete time signal ŝ2 in Fig. 2. The MITL specifi-
cation is φ2 = �[0,4π]p21 ∧ �[3π,4π]p22 with O(p21) = [−4, 4] and O(p22) = R≤0.
In this case, we compute a robustness estimate of [[H(φ2)]]τ2(s2) = 1.7372, while
E2(Δτ2) = 1.7 where Δτ2 = 0.5. Therefore, we conclude that 〈〈φ2〉〉(s2) = �. �

In the following example, we utilize our framework in order to test trajecto-
ries of nonlinear systems. More specifically, we consider linear feedback systems
with saturation. Such systems have nonlinearities that model sensor/actuator
constraints (for example see [8, §10]).

Example 4 (Example 10.5 in [8]). Consider the following linear dynamical
system with nonlinear feedback

ẋ(t) = Ax(t) − b sat(cx(t)), s3(t) = cx(t) (8)

where the saturation function sat is defined as

sat(y) =

⎧
⎪⎨

⎪⎩

−1 for y < −1
y for |y| ≤ 1
1 for y > 1

and A, b, c are the matrices

A =
[
0 1
1 0

]

, b =
[
0
1

]

, c =
[
2 1
]
.

First note that the origin x = [0 0]T is an equilibrium point of the system and
that the system is absolutely stable with a finite domain (also note that A is
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Fig. 3. The output signal s3 of Example 4

not Hurwitz). An estimate of the region of attraction of the origin is the set
Ω = {x ∈ R2 | V (x) ≤ 0.34}, where V (x) = xTPx and

P =
[
0.4946 0.4834
0.4834 1.0774

]

(see Example 10.5 in [8] for details). For any initial condition x(0) ∈ Ω, we
know that x(t) ∈ {x ∈ R2 | V (x) ≤ V (x(0))} for all t ∈ R. Thus, ‖x(t)‖ ≤√

λmax(V (x(0))P−1) =
√

λmax(Pe) for all t ∈ R. Moreover,

‖ẋ(t)‖ ≤ ‖A‖‖x(t)‖ + ‖b‖ ≤ ‖A‖
√

λmax(Pe) + ‖b‖ = Lx

and, thus, we have |s3(t) − s3(t′)| ≤ ‖c‖‖x(t) − x(t′)‖ ≤ ‖c‖Lx|t − t′| for any
t, t′ ∈ R, i.e., E3(t) = ‖c‖Lxt. Assume, now, that we would like to verify that the
signal enters an acceptable stability region within 6 to 8 sec, that is, the MITL
formula is φ3 = �[6,8]�[0,10]p31 with O(p31) = [−0.25, 0.25]. The initial condition
is x(0) = [−1 0.6]T ∈ Ω. The system (8) is integrated with a maximum step-size
of 0.001 using the MATLAB ode45 solver. The observable discrete time signal ŝ3

has maximum step-size Δτ3 = 0.045. The robustness estimate is [[H(φ3)]]τ3(s3) =
0.2372, while E3(Δτ3) = 0.2182. Therefore, we conclude that 〈〈φ3〉〉(s3) = �. Note
that in this example, we assume that the simulation is accurate and, hence, we
ignore the possible simulation error. The incorporation of the simulation error
into E3 will be part of future research. �

7 Conclusions and Discussion

We have developed a framework that enables continuous time reasoning using
discrete time methods. The target application is on continuous time signals gen-
erated by physical systems with real-time constraints. Our solution utilizes the
notion of robustness of MTL specifications [12] and provides conditions on the
signal dynamics and the sampling function.

We should point out that the idea of continuous time verification by discrete
reasoning is not new. In [20], the authors show that if a formula has the finite
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variability property, then its validity in discrete time implies validity in contin-
uous time. This result enables the application of verification rules for discrete
time semantics to continuous time problems. The work that is the most related to
ours appears in [21]. There, the authors give conditions that enable the uniform
treatment of both discrete and continuous time semantics within the temporal
logic TRIO (they also note that their results should be easily transferable to
MTL). Despite the apparent differences (for example, we do not assume finite
variability and we use analog clocks in our discrete time logic) between [21] and
our work, the two papers are in fact complementary. We actually provide con-
crete and practical conditions on the signals such that what is defined as “closure
under inverse sampling” in [21] holds.

In the current framework, we require a global bound E(Δτ) on the deviation of
the signal between two samples. This might be too conservative for applications
with variable sampling step. One important modification to this theory will be
to use local bounds E(τ(i)− τ(i−1)) in coordination with an on-line monitoring
algorithm. Related to the previous modification is the extension of the present
methodology to hybrid systems [22]. Currently, hybrid systems can be handled
by taking as bound E the most conservative bound Ec of all control locations
c of the hybrid automaton. Finally, as it is well known, the Lipschitz constant
might be a very conservative estimate on the deviation of the signal between two
points in time. In future work, we plan to use approximate metrics [23] in order
to obtain better bounds.
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Abstract. The basic modal operator bounded until of Metric Tempo-
ral Logic (MTL) comes in several variants. In particular it can be strict
(when it does not constrain the current instant) or not, and matching
(when it requires its two arguments to eventually hold together) or not.
This paper compares the relative expressiveness of the resulting MTL
variants over dense time. We prove that the expressiveness is not af-
fected by the variations when considering non-Zeno interpretations and
arbitrary nesting of temporal operators. On the contrary, the expres-
siveness changes for flat (i.e., without nesting) formulas, or when Zeno
interpretations are allowed.

1 Introduction

In the last few decades, the formal description and analysis of real-time systems
has become an increasingly important research topic. This has resulted, among
other things, in the development of several formal notations for the description
of real-time properties and systems. In particular, a significant number of ex-
tensions of classical temporal logics to deal with metric (quantitative) time has
been introduced and used (see e.g., [3]). Among them, Metric Temporal Logic
(MTL) [23,4] is one of the most popular. An appealing feature of MTL is its
being a straightforward extension of well-known Linear Temporal Logic (LTL),
a classical temporal logic. In MTL, an interval parameter is added to LTL’s
modal operators (such as the until operator); the interval specifies a range of
distances over which the arguments of the modality must hold, thus allowing the
expression of real-time properties.

When MTL formulas are interpreted over discrete time domains (e.g., N,Z),
the well-known results and techniques about the expressiveness of LTL can of-
ten be “lifted” to the real-time case [4]. On the contrary, when MTL formu-
las are interpreted over dense time domains (e.g., R) additional difficulties and
complications are commonly encountered, which require novel techniques (e.g.,
[20,21,5,11,29,28,6]). Another aspect where the use of MTL (and temporal log-
ics in general) over metric dense-time models shows a substantial difference with
respect to discrete time is in the robustness of the language expressiveness with
respect to changes in its (syntactic) definitions or in the choice of the underlying
interpretation structures. In other words, it is often the case that apparently
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minimal changes in the definition of the basic modal operators, or in the choice
of the interpretation structures (e.g., timed words rather than timed interval
sequences), of the logics yield substantial differences in the resulting expressive-
ness. Also, these differences are usually more difficult to predict and assess than
in the discrete-time case. One significant example is the use of a “natural” ex-
tension such as the introduction of past operators: it is well-known that adding
them does not change the expressive power over discrete time [12] (while it in-
creases the succinctness [25]), but it does over dense time both for LTL [18,22],
and for MTL [5,29] (Alur and Henzinger [2] were the first to analyze this issue
for a metric MTL subset known as MITL).

This paper contributes to enriching the emerging picture about the expres-
siveness of MTL and its common variants. The reference interpretation structure
is the behavior, that is generic mappings that associate with every instant of time
the propositions that are true at that instant. When behaviors are restricted to
be non-Zeno [19] (also called finitely variable [30,20]) they are an equivalent way
of expressing the well-known timed interval sequences. We consider two basic lan-
guage features to be varied in MTL definitions: strictness and matchingness. The
basic until operator U(φ1, φ2) is called strict (in its first argument) if it does not
constrain its first argument φ1 to hold at the current instant (i.e., it constraints
strictly the future); on the other hand the same operator is called matching if
it requires the second argument φ2 to hold together with the first argument φ1

at some instant in the future (see Section 2 for precise definitions). The most
common definition uses an until operator that is strict and non-matching; it is
simple to realize that this does not restrict the expressiveness as the matching
and non-strict untils are easily expressible in terms of strict non-matching un-
tils. However, some applications dealing with MTL or closely related languages
are based on the matching (e.g., [26,27]) or non-strict (e.g., [15]) variants, or
both. Therefore it is interesting to analyze if these syntactic restrictions imply
restrictions in the expressiveness of the language; this is done in Section 3.

Another dimension that we consider in our analysis is the restriction to flat
MTL formulas, i.e., formulas that do not nest temporal operators. These have
also been used, among others, in some previous work of ours [15], as well as in
several works with classical (qualitative) temporal logic (see related works). It
is an easy guess that flat MTL is less expressive than its full “nesting” counter-
part; in this paper (Section 4) we prove this intuition and then we analyze how
the relationships between the various (non-)matching and (non-)strict variants
change when restricted to flat formulas. In order to do so, we develop techniques
to handle two different definitions in the satisfaction semantics of formulas: ini-
tial satisfiability — where the truth of a formula is evaluated only at some
initial time (i.e., 0) — and global satisfiability — where the truth of a formula
is evaluated at all time instants. While the two semantics are easily reconcilable
when nesting is allowed, passing from the initial semantics to the global one
with flat formulas is more challenging. We consider also the less common global
satisfiability semantics because the expressiveness of the flat fragment is non-
trivial under such semantics (in fact, it corresponds to an implicit nesting of a
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qualitative temporal operator), and most common real-time properties such as
bounded response and bounded invariance [23] can be easily expressed.

Finally, in Section 5, we also consider what happens to (relative) expressive-
ness if Zeno behaviors are allowed. In particular, we show that some equivalences
between MTL variations that hold over non-Zeno behaviors are no more valid
with Zeno behaviors. In this sense, allowing Zeno behaviors weakens the robust-
ness of MTL expressiveness with respect to definitions, and it renders the picture
more complicated and less intuitive.

For lack of space, we have omitted several proofs and details from this version
of the paper; the interested reader can find them in [17].

Related works. As mentioned above, in recent years several works have analyzed
the expressiveness of different MTL variants over dense time. Let us recall briefly
the main results of a significant subset thereof.

Bouyer et al. [5] compare the expressiveness of MTL with that of TPTL
(another real-time temporal logic) and they are the first to prove the conjecture
that the latter is strictly more expressive than the former, over both timed words
and timed interval sequences. As a corollary of their results, they show that past
operators increase the expressiveness of MTL.

Since the work of Alur and Henzinger [4] it is known that (full) MTL is un-
decidable over dense-time models. This shortcoming has been long attributed
to the possibility of expressing punctual (i.e., exact) timing constraints; in fact
Alur et al. [1] have shown that MITL, a MTL subset where punctual intervals
are disallowed, is decidable. However, punctuality does not always entail unde-
cidability. In fact, Ouaknine and Worrel [28] have been the first to prove that
MTL is decidable over finite timed words, albeit with non-primitive recursive
complexity; their proofs rely on automata-based techniques, and in particular
on the notion of timed automata with alternation. On the other hand, they
show that several significant fragments of MTL are still undecidable over infi-
nite timed words. In the same vein, Bouyer et al. [6] have identified significant
MTL fragments that are instead decidable (with primitive complexity) even if
one allows the expression of punctual timing constraints.

D’Souza and Prabhakar [11] compare the expressiveness of MTL over the two
interpretation structures of timed words and timed interval sequences (more pre-
cisely, a specialization of the latter called “continuous” semantics). Building upon
Ouaknine and Worrel’s decidability results for MTL [28], they show that MTL
is strictly more expressive over timed interval sequences than it is over timed
words. The same authors [29] analyze a significant number of MTL variations,
namely those obtained by adding past operators or by considering qualitative
operators rather than metric ones, over both timed words and timed interval se-
quences, both in their finite and infinite forms. Still the same authors [10] have
shown how to rewrite MTL formulas in flat form, and without past operators,
by introducing additional propositions (a similar flattening has been shown for
another temporal logic in [14]). While these latter results do not pertain directly
to the expressiveness of the language (because of the new propositions that are
introduced) they help assessing the decidability of MTL variations.
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In previous work [16] we proved the equivalence between the strict and non-
strict non-matching variants of MTL over non-Zeno behaviors and with arbitrar-
ily nested formulas. Section 3 uses techniques similar to those in [16] to prove
new equivalence results.

These results, which we do not report with further details for the lack of
space, show how relative expressiveness relations are much more complicated
over dense time than they are over discrete time. In fact, some authors (e.g.,
[20,3]) have suggested that these additional difficulties are an indication that
the “right” semantic model for dense time has not been found yet. In particular,
Hirshfeld and Rabinovich [20,21] have made a strong point that most approaches
to the definition of temporal logics for real-time and to their semantics depart
from the “classical” approach to temporal logic and are too ad hoc, which results
in unnecessary complexity and lack of robustness. While we agree with several
of their remarks, we must also acknowledge that MTL (and other similar logics)
has become a popular notation, and it has been used in several works. As a
consequence, it is important to assess precisely the expressiveness of the language
and of its common variants because of the impact on the scope of those works,
even if focusing on different languages might have opened the door to more
straightforward approaches.

Finally, let us mention that several works dealing with classical (qualitative)
temporal logic considered variants in the definition of the basic modalities, and
their impact on expressiveness and complexity. For instance, Demri and Schnoe-
belen [9] thoroughly investigate the complexity of LTL without nesting, or with
a bounded nesting depth. Also, several works have given a very detailed char-
acterization of how the expressiveness of LTL varies with the number of nested
modalities [13,32,24]; and several other works, such as [8,7], have used and char-
acterized flat fragments where nesting is only allowed in the second argument
of any until formula. Reynolds [31] has proved that, over dense time, LTL with
strict until is strictly more expressive than LTL with a variant of non-strict until
which includes the current instant. Note that Reynold’s non-strict until has a
different (weaker) semantics than the one we consider in this paper, because of
the restriction to include the current instant. In other words, according to the
notation that we introduce in Section 2, [31] compares the strict Ũ(0,+∞) to the
non-strict U[0,+∞); as a consequence, Reynold’s result is orthogonal to ours.

2 MTL and Its Variants

MTL is built out of the single modal operator bounded until1 through propo-
sitional composition. Formulas are built according to the grammar: φ ::= p |
ŨI(φ1, φ2) | ¬φ | φ1 ∧ φ2 where I is an interval 〈l, u〉 of the reals such that
0 ≤ l ≤ u ≤ +∞, l ∈ Q, u ∈ Q ∪ {+∞}, and p ∈ P is some atomic proposition
from a finite set P .

The tilde in ŨI denotes that the until is strict, as it will be apparent in the
definition of its semantics; ŨI is also meant to be non-matching. We denote the
1 In this paper we consider MTL with future operators only.
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set of formulas generated by the grammar above as M̃TL, which is therefore
strict non-matching.

We define formally the semantics of M̃TL over generic Boolean behaviors.
Given a time domain T and a finite set of atomic propositions P , a Boolean
behavior over P is a mapping b : T → 2P from the time domain to subsets of
P : for every time instant t ∈ T, b maps t to the set of propositions b(t) that are
true at t. We denote the set of all mappings for a given set P as BP , or simply
as B. In practice, in this paper we take T to be the reals R, but all our results
hold also for R≥0,Q,Q≥0 as time domains.2

The semantics of M̃TL formulas is given through a satisfaction relation |=T:
given a behavior b ∈ B, an instant t ∈ T (sometimes called “current instant”)
and an M̃TL formula φ, the satisfaction relation is defined inductively as follows.
b(t) |=T p iff p ∈ b(t)
b(t) |=T ŨI(φ1, φ2) iff there exists d ∈ I such that b(t + d) |=T φ2

and, for all u ∈ (0, d) it is b(t + u) |=T φ1

b(t) |=T ¬φ iff b(t) �|=T φ
b(t) |=T φ1 ∧ φ2 iff b(t) |=T φ1 and b(t) |=T φ2

From these definitions, we introduce initial satisfiability and global satisfiabil-
ity as follows: a formula φ is initially satisfiable over a behavior b iff b(0) |=T φ;
a formula φ is globally satisfiable over a behavior b iff ∀t ∈ T : b(t) |=T φ, and
we write b |=T φ. The initial and global satisfiability relations allow one to iden-
tify a formula φ with the set of behaviors [[φ]]T that satisfy it according to each
semantics; hence we introduce the notation [[φ]]0T = {b ∈ B | b(0) |=T φ} and
[[φ]]T = {b ∈ B | b |=T φ}.

From the basic strict operator we define syntactically some variants : the non-
strict non-matching until UI , the strict matching until Ũ↓

I , and the non-strict
matching until U↓

I ; they are defined in Table 1. Also, we define the follow-
ing derived modal operators:3 R̃↓

I(φ1, φ2) ≡ ¬Ũ↓
I(¬φ1,¬φ2), ♦̃I(φ) ≡ ŨI(�, φ),

�̃I(φ) ≡ ¬♦̃I(¬φ), ©(φ) ≡ U(0,+∞)(φ,�), and ©̃(φ) ≡ Ũ(0,+∞)(φ,�); derived
propositional connectives (such as ⇒,∨,⇔) are defined as usual. For derived
operators we use the same notational conventions: a ∼ denotes strictness and a
↓ denotes matchingness. Accordingly, we denote by MTL the set of non-strict

non-matching formulas (i.e., those using only the UI operator), by M̃TL
↓

the set
of strict matching formulas (i.e., those using only the Ũ↓

I operator), and by MTL↓

the set of non-strict matching formulas (i.e., those using only the U↓
I operator).

Note that the ♦̃ operator (and correspondingly the �̃ operator as well) can
be equivalently expressed with any of the until variants introduced beforehand,
i.e., ♦̃I(φ) ≡ ŨI(�, φ) ≡ UI(�, φ) ≡ Ũ↓

I(�, φ) ≡ U↓
I(�, φ). Therefore, in the

following we drop the tilde and write ♦I (resp. �I) in place of ♦̃I (resp. �̃I).

2 Even if we deal only with future operators, bi-infinite time domains R and Q are
considered as they match “more naturally” the global satisfiability semantics.

3 For clarity, let us give explicitly the semantics of the �R↓
I operator: b(t) |=T

�R↓
I(φ1, φ2)

iff for all d ∈ I it is: b(t + d) |=T φ2 or b(t + u) |=R φ1 for some u ∈ (0, d].
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Table 1. Until operator variants

Operator ≡ Definition

UI(φ1, φ2) ≡ if 0 �∈ I : φ1 ∧ �UI(φ1, φ2) else: φ2 ∨ (φ1 ∧ �UI(φ1, φ2))
�U↓

I(φ1, φ2) ≡ if 0 �∈ I : �UI(φ1, φ2 ∧ φ1) else: φ2 ∨ (�UI(φ1, φ2 ∧ φ1))

U↓
I(φ1, φ2) ≡ φ1 ∧ �UI(φ1, φ2 ∧ φ1) ≡ UI(φ1, φ2 ∧ φ1)

According to the semantics, all formulas of some MTL variant identify a set
of sets of behaviors which characterize the expressive power of that variant. We

overload the notation and also denote by M̃TL, MTL, M̃TL
↓
, and MTL↓ the set

of sets of behaviors identified by all strict non-matching, non-strict matching,
strict matching, and non-strict non-matching formulas, respectively. It will be
clear from the context whether we are referring to a set of formulas or to the
corresponding set of sets of behaviors, and whether we are considering the initial
or global satisfiability semantics.

For every formula φ, we define its granularity ρ as the reciprocal of the product
of all denominators of non-null finite interval bounds appearing in φ; and its
nesting depth (also called temporal height) k as the maximum number of nested
modalities in φ. A formula is called flat if it does not nest modal operators, and
nesting otherwise. Given a set of formulas F , the subset of all its flat formulas is
denoted by $F (for instance flat non-strict non-matching formulas are denoted
as $MTL).

Since the non-strict and matching variants have been defined in terms of
M̃TL — and their definitions do not nest temporal operators — it is clear that

the following relations hold: MTL↓ ⊆ MTL ⊆ M̃TL, MTL↓ ⊆ M̃TL
↓
⊆ M̃TL,

$MTL↓ ⊆ $MTL ⊆ $M̃TL, and $MTL↓ ⊆ $M̃TL
↓
⊆ $M̃TL.

Non-Zenoness. Behaviors over dense time are often subject to the non-Zenoness
(also called finite variability [20,30]) requirement [19]. A behavior b ∈ B is called
non-Zeno if the truth value of any atomic proposition p ∈ P changes in b only
finitely many times over any bounded interval of time. In [16] we proved that
strict ©̃ operator can be expressed with non-strict © operator over non-Zeno
behaviors as ©̃(φ) ≡ ©(φ) ∨ (¬φ ∧ ¬©(¬φ)).

3 Nesting MTL over Non-zeno Behaviors

This section shows that the four MTL variants: M̃TL, MTL, M̃TL
↓
, and MTL↓ all

have the same expressive power over non-Zeno behaviors, for both the initial and
global satisfiability semantics. In fact, we provide a set of equivalences according
to which one can replace each occurrence of strict until in terms of non-strict
until , and each occurrence of non-matching until in terms of matching until . This

shows that MTL = M̃TL = M̃TL
↓

= MTL↓. Note that the result holds regardless
of whether the global or initial satisfiability relation in considered.
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3.1 Non-strict as Expressive as Strict

In [16] we have shown that MTL = M̃TL; more precisely, the following equiva-
lences have been proved, for a > 0 (and b > 0 in (4)).

Ũ(a,b〉(φ1, φ2) ≡ ♦(a,b〉(φ2) ∧ �(0,a]

(
U(0,+∞)(φ1, φ2)

)
(1)

Ũ[a,b〉(φ1, φ2) ≡ Ũ(a,b〉(φ1, φ2) ∨
(
�(0,a)(φ1) ∧ ♦=a(φ2)

)
(2)

Ũ(0,b〉(φ1, φ2) ≡ ♦(0,b〉(φ2) ∧ ©̃
(
U(0,+∞)(φ1, φ2)

)
(3)

Ũ[0,b〉(φ1, φ2) ≡ Ũ(0,b〉(φ1, φ2) ∨ φ2 (4)

Ũ[0,0](φ1, φ2) ≡ φ2 (5)

(1–5) provide a means to replace each occurrence of strict until with non-
strict untils only. Also, if we replace each occurrence of formula φ2 in (1–5) with
φ2 ∧ φ1 — except for (4) which requires a slightly different treatment, which is

however routine — we also have a proof that M̃TL
↓

= MTL↓, according to the
definition of the matching variants of the until operators.

3.2 Matching as Expressive as Non-matching

This section provides a set of equivalences to replace each occurrence of a strict
non-matching operator with a formula that contains only strict matching opera-

tors; this shows that M̃TL = M̃TL
↓
. To this end, let us first prove the following

equivalence.

Ũ(0,b〉(φ1, φ2) ≡ Ũ↓
(0,b〉(φ1, φ2)

∨ (♦(0,b〉(φ2) ∧ ©̃(φ1) ∧ R̃↓
(0,b〉(φ2,©(φ1))

(6)

Proof (of Formula 6). Let us start with the ⇐ direction, and let t be the current
instant. If b(t) |=R Ũ↓

(0,b〉(φ1, φ2) clearly also b(t) |=R Ũ(0,b〉(φ1, φ2) a fortiori.

So let us assume that Ũ↓
(0,b〉(φ1, φ2) is false at t; note that this subsumes that

b(t) |=R ¬©̃(φ2 ∧ φ1).
Let us remark that we can assume that ©̃(¬φ2) holds at t, because ©̃(φ1)

and ¬©̃(φ2 ∧ φ1) both hold. Therefore, it is well-defined u, the smallest instant
in (t, t+ b〉 such that b(u) |=R φ2 ∨©̃(φ2). Note that this implies that φ2 is false
throughout (t, u〉, with the interval right-open iff φ2 holds at u.

Let us first consider the case b(u) |=R φ2. Let v be a generic instant in (t, u);
recall that φ2 is false throughout (t, u) ⊃ (t, v]. Therefore it must be b(v) |=R
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©(φ1) for b(t) |=R R̃↓
(0,b〉(φ2,©(φ1)) to be true. So, φ1 holds throughout (t, u)

and φ2 holds at u, which means that b(t) |=R Ũ(0,b〉(φ1, φ2).

Let us now consider the other case b(u) |=R ¬φ2 ∧ ©̃(φ2). Let v be a generic
instant in (t, u]; recall that φ2 is false throughout (t, u] ⊇ (t, v]. From b(t) |=R

R̃↓
(0,b〉(φ2,©(φ1)) it must be b(v) |=R ©(φ1). Overall, φ1 holds throughout (t, u+

ε] for some ε > 0, as in particular b(t + u) |=R ©(φ1). Clearly, this subsumes
b(t) |=R Ũ(0,b〉(φ1, φ2).

For brevity, we omit the simpler ⇒ direction (see [17] for details). ��
The case for a > 0 can be handled simply by relying on the previous equivalence.
In fact, the following equivalence is easily seen to hold.

Ũ(a,b〉(φ1, φ2) ≡ Ũ↓
(a,b〉(φ1, φ2)

∨
(
�(0,a](φ1) ∧ ♦=a

(
Ũ(0,b−a〉(φ1, φ2)

)) (7)

The cases for left-closed intervals are also derivable straightforwardly as:

Ũ[0,b〉(φ1, φ2) ≡ φ2 ∨ Ũ(0,b〉(φ1, φ2) (8)

and

Ũ[a,b〉(φ1, φ2) ≡
(
♦=a(φ2) ∧ �(0,a)(φ1)

)
∨ Ũ(a,b〉(φ1, φ2) (9)

Finally, let us note that the ©(φ) operator can be expressed equivalently with
strict matching operators as φ ∧ Ũ↓

(0,+∞)(φ,�). In fact, ©(φ) at x means that
φ holds over an interval [x, x + ε) for some ε > 0; therefore, φ also holds over
a closed interval such as [x, x + ε/2], as required by φ ∧ Ũ↓

(0,+∞)(φ,�), and vice
versa.

All in all (6–9) provide a means to replace every occurrence of strict non-
matching until with a formula that contains only strict matching untils. This

shows that M̃TL = M̃TL
↓
, completing our set of equivalences for non-Zeno

behaviors.

4 Flat MTL

Section 3 has shown the equivalence of all (non-)strict and (non-)matching MTL
variants for non-Zeno behaviors. It is apparent, however, that the equivalences
between the various until variants introduce nesting of temporal operators, that
is they change flat formulas into nesting ones. This section shows that this is
inevitable, as the relative expressiveness relations change if we consider flat for-
mulas only. More precisely, we prove that both non-strictness and matchingness
lessen the expressive power of MTL flat formulas, so that the strict non-matching
variant is shown to be the most expressive. We also show that, as one would ex-
pect, even this most expressive flat variant is less expressive than any nesting
variant. All separation results are proved under both the initial satisfiability and
the global satisfiability semantics.
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4.1 Non-strict Less Expressive Than Strict

This section shows that $MTL ⊂ $M̃TL; let us outline the technique used to
prove this fact. We provide a strict flat formula α ∈ $M̃TL and we prove that it
has no equivalent non-strict flat formula. The proof goes adversarially: assume
β ∈ $MTL is a non-strict flat formula equivalent to α, and let ρ be the granularity
of β. From ρ we build two behaviors bρ

� and bρ
⊥ such that any $MTL formula

of granularity ρ (and β in particular) cannot distinguish between them, i.e., it
is either satisfied by both or by none. On the contrary, α is satisfied by bρ

�
but not by bρ

⊥, for all ρ. This shows that no equivalent non-strict flat formula
can exist, and thus $M̃TL �⊆ $MTL. From $MTL ⊆ $M̃TL we conclude that
$MTL ⊂ $M̃TL.

As in all separation results, the details of the proofs are rather involved;
this is even more the case when considering the global satisfiability semantics;
throughout we will try to provide some intuition referring to [17] for all the
lower-level details.

Let us define the following families of behaviors over {p}. For any given ρ > 0,
let bρ

� and bρ
⊥ be defined as follows: p ∈ bρ

�(t) iff t ≤ 0 or t ≥ ρ/4; and p ∈ bρ
⊥(t)

iff t ≤ 0 or t > ρ/4. Similarly, for any given ρ > 0, cρ
⊥ is defined as follows:

p ∈ cρ
⊥(t) iff p ∈ bρ

⊥(t) and t �= 0. Note that bρ
�(t) = bρ

⊥(t) for all t �= ρ/4,
and that bρ

⊥(t) = cρ
⊥(t) for all t �= 0. Let us also define the sets of behaviors

B� =
⋃

ρ∈Q>0
bρ
� and B⊥ =

⋃
ρ∈R>0

bρ
⊥. The behaviors bρ

�, bρ
⊥, cρ

⊥ are pictured in
Figure 1.

Initial satisfiability. Let us first assume the initial satisfiability semantics; we
show that no $MTL formula φ with granularity ρ distinguishes initially between
bρ
� and bρ

⊥. To this end, we prove the following.

Lemma 1. For any $MTL formula φ of granularity ρ, it is bρ
�(0) |=R φ iff

bρ
⊥(0) |=R φ.

0

cρ
⊥

bρ
⊥

bρ
�

ρ/4 ρ/2 3ρ/4

Fig. 1. The behaviors bρ
�, bρ

⊥, cρ
⊥
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Proof. The proof is by induction on the structure of φ. Let us consider just a
few most relevant cases (the others are in [17]): assume φ = UI(β1, β2), with
I = 〈l, u〉 and: (1) l = k1ρ for some k1 ∈ N; and (2) u = k2ρ or u = +∞, for
some k1 ≤ k2 ∈ N. Note that we can assume 0 �∈ I without loss of generality, as
U[0,u〉(β1, β2) ≡ β2 ∨ U(0,u〉(β1, β2). We also assume that I is non-empty; this is
also without loss of generality. We then consider all cases for β1, β2; in particular:

– If β1 ≡ � and β2 is one of p or ¬p, we have φ ≡ ♦I(β2).
If l = 0, then u > l, which entails u ≥ ρ. Any interval of the form 〈0, ρ〉
encompasses both instants where p holds and instants where ¬p holds. Thus,
bρ
�(0) |=R φ and bρ

⊥(0) |=R φ in this case.
If l > 0 then l ≥ ρ. Then, whatever u ≥ l is, it is clear that p holds throughout
the non-empty interval 〈l, u〉. Therefore, if β2 ≡ p we have bρ

�(0) |=R φ and
bρ
⊥(0) |=R φ; otherwise β2 ≡ ¬p, and bρ

�(0) �|=R φ and bρ
⊥(0) �|=R φ.

– If β1 ≡ p or β1 ≡ ¬p, then φ does not hold unless ©(β1) holds (still because
0 �∈ I). Since the value of p changes from 0 to its immediate future, it is
bρ
�(0) �|=R φ and bρ

⊥(0) �|=R φ. ��

Lemma 1 leads straightforwardly to the desired separation result.

Theorem 1. Under the initial satisfiability semantics, $MTL ⊂ $M̃TL.

Proof. Let us show that the $M̃TL formula Σ = Ũ(0,+∞)(¬p, p) has no equivalent
$MTL formula. Σ can distinguish initially between the families of behaviors
B�,B⊥, as for any b ∈ B�, b′ ∈ B⊥, it is b(0) |=R Σ and b′(0) �|=R Σ. Let us
assume that σ is an $MTL formula of granularity ρ equivalent to Σ. However,
from Lemma 1 it follows that bρ

�(0) |=R σ iff bρ
⊥(0) |=R σ. Therefore, σ is not

equivalent to Σ. ��

Global satisfiability. Let us now prove an analogous of Theorem 1 for the global
satisfiability semantics.

Lemma 2. For any $MTL formula φ of granularity ρ and any instant t < 0, it
is: bρ

�(t) |=R φ iff bρ
⊥(t) |=R φ, or bρ

⊥(t) |=R φ iff cρ
⊥(t) |=R φ.

Proof. The proof is by induction on the structure of φ; throughout, t is any fixed
instant less than 0. Let us just outline a few significant cases; all details are in
[17].

For the base case, if φ = UI(β1, β2) with β1, β2 ∈ {p,¬p,�,⊥} one can verify
that it is bρ

� |=R φ iff bρ
⊥ |=R φ iff cρ

⊥ |=R φ, unless: (a) bρ
� �|=R φ iff bρ

⊥ |=R φ
iff cρ

⊥ |=R φ and t + kρ = ρ/4 or t + kρ = 0 for some positive integer k; or (b)
bρ
� |=R φ iff bρ

⊥ |=R φ iff cρ
⊥ �|=R φ and t + hρ = 0 for some positive integer h.

Therefore, consider the inductive case φ = φ1∧φ2; in particular let us focus on
the “crucial” case bρ

�(t) �|=R φi iff bρ
⊥(t) |=R φi iff cρ

⊥(t) |=R φi and t + kρ = ρ/4
for some i, and bρ

�(t) |=R φj iff bρ
⊥(t) |=R φj iff cρ

⊥(t) �|=R φj and t + hρ = 0
for j �= i. This case, however, is not possible as t + kρ = ρ/4 = ρ/4 + t + hρ
implies (k − h)ρ = ρ/4 which is impossible as k and h are integers. To give



On the Expressiveness of MTL Variants over Dense Time 173

some intuition, this is due to the granularity: in other words, from the same t we
cannot reference both 0 and ρ/4, since they are less than ρ time instants apart.
Finally also note that this restriction can be “lifted” to the conjunction itself,
to go with the inductive hypothesis. ��

Through Lemma 2 we can extend Theorem 1 to the global satisfiability semantics.

Theorem 2. Under the global satisfiability semantics, $MTL ⊂ $M̃TL.

Proof. Let us show that the $M̃TL formula Ω = Ũ(0,+∞)(¬p, p)∨©(¬p)∨©̃(p)
has no equivalent $MTL formula. It is simple to check that, for all b ∈ B�, b′ ∈ B⊥
it is b |=R Ω and b′ �|=R Ω; more precisely, it is b′(0) �|=R Ω and, for all t > 0,
b′(t) |=R Ω. Also, for all b′′ ∈

⋃
ρ cρ

⊥, it is b′′ |=R Ω.
Now the proof goes by reductio ad absurdum. Let ω be an $MTL formula of

granularity ρ equivalent to Ω. Thus it must be bρ
� |=R ω, bρ

⊥ �|=R ω, and cρ
⊥ |=R ω.

So, there exists a t such that bρ
⊥(t) �|=R ω. Let us show that no such t can exist.

Lemma 1 mandates that bρ
⊥(0) |=R ω, so it must be t �= 0.

If t > 0, recall that cρ
⊥ |=R ω. This subsumes that cρ

⊥(u) |=R ω for all u > 0,
and thus in particular at t. However, note that cρ

⊥(x) = bρ
⊥(x) for all x > 0;

since ω is a future formula, its truth value to the future of 0 cannot change when
just one past instant has changed and the future has not changed. So it must be
bρ
⊥(t) |=R ω: a contradiction.

Let us now assume t < 0. From Lemma 2 for formula ω, it is either (1)
bρ
�(t) |=R ω iff bρ

⊥(t) |=R ω; or (2) bρ
⊥(t) |=R ω iff cρ

⊥(t) |=R ω. However, bρ
�(t) |=R

ω and bρ
⊥(t) �|=R ω, so (1) is false and (2) must be true. Hence, it must be

cρ
⊥(t) �|=R ω. But this implies cρ

⊥ �|=R ω, whereas it should be cρ
⊥ |=R ω since ω is

supposed equivalent to Ω: a contradiction again. ��

4.2 Matching Less Expressive Than Non-matching

This section provides an indirect simple proof that $M̃TL
↓
⊂ $M̃TL. To this end

we first show the equivalence of non-strict and strict flat matching MTL when
restricted to a unary set of propositions.

Lemma 3. Over a unary set of propositions P : |P| = 1, $MTL↓ = $M̃TL
↓
.

Proof (sketch). We can show that any $M̃TL
↓

formula φ = Ũ↓
I(β1, β2) has an

equivalent $MTL↓ formula for unary alphabet, as when β1 = ¬β2 φ is trivially
false, according to the semantics of Section 2. ��

As a corollary of Lemma 3 we can separate $M̃TL
↓

and $M̃TL (over general set
of propositions).

Theorem 3. $M̃TL
↓
⊂ $M̃TL.
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Proof. Recall that $MTL↓ ⊆ $MTL. Let us first assume a unary alphabet;

from Lemma 3 it is $M̃TL
↓

= $MTL↓. Since Theorems 1 and 2 are based on
counterexamples over unary alphabet, it is also $MTL ⊂ $M̃TL. All in all:

$M̃TL
↓

= $MTL↓ ⊆ $MTL ⊂ $M̃TL, hence $M̃TL
↓

⊂ $M̃TL over unary al-
phabet, which implies the same holds over generic alphabet. ��

4.3 Non-strict Matching Less Expressive Than Matching

Section 4.1 shows that strict flat MTL is strictly more expressive than its non-
strict flat counterpart, when both of them are in their non-matching version.
If we consider the matching versions of strict and non-strict operators, one can

prove that the same holds, that is $MTL↓ ⊂ $M̃TL
↓
.

Lemma 3 entails that any separation proofs for $MTL↓ and $M̃TL
↓

must
consider behaviors over alphabets of size at least two. In fact, it is possible to
use a technique similar to that of Section 4.1, but with behaviors over alphabet
of size two. For details we refer to [17].

Theorem 4. Under the initial and global satisfiability semantics, $MTL↓ ⊂
$M̃TL

↓
.

4.4 Non-strict Matching Less Expressive Than Non-strict

Section 4.2 shows that flat non-matching MTL is strictly more expressive than
its matching flat counterpart, when both of them are in their strict version.
The same relation holds if we consider the non-strict versions of matching and
non-matching operators, that is we can prove that $MTL↓ ⊂ $MTL. The proof
technique is again is similar to the one in the previous Section 4.3, and it is
based on behaviors over a binary set of propositions; see [17] for details.

Theorem 5. Under the initial and global satisfiability semantics, $MTL↓ ⊂
$MTL.

4.5 Flat Less Expressive Than Nesting

Through a technique similar to that used in Section 4.1 it is also possible to
show that $M̃TL ⊂ MTL. For the lack of space we refer to [17] for all details.

Theorem 6. Under the initial and global satisfiability semantics, $M̃TL ⊂ MTL.

5 Nesting MTL over Zeno Behaviors

This section re-considers some of the expressiveness results for nesting formulas
of Section 3 when Zeno behaviors are allowed as interpretation structures, and
in particular it shows that the equivalence between MTL and M̃TL does not
hold if we allow Zeno behaviors.
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5.1 Non-strict Less Expressive Than Strict

Let us first show that MTL ⊂ M̃TL over generic behaviors. To this end, we
define behaviors bδ, b

Z
δ over P = {p}, for all δ > 0. bδ is defined as: p ∈ bδ(t)

iff t = kδ/2 for some k ∈ Z. bZδ is defined as: p ∈ bZδ (t) iff t = (k + 2−n)δ, for
some k ∈ Z, n ∈ N. Clearly, for all t ∈ T, p ∈ bδ(t) implies p ∈ bZδ (t); moreover,
notice that bZδ has Zeno behavior to the right of any instant kδ.

Through the usual case analysis on the structure of formulas, we can prove
that the behavior of any MTL formula over bδ and bZδ is very simple, as it
coincides with one of p,¬p,�,⊥ (see [17] for all details).

Lemma 4. The truth value of any MTL formulas φ of granularity δ coincides
with one of p,¬p,�,⊥ over both bδ and bZδ .

An immediate consequence of the previous lemma is that, at any instant where
the values bδ(t) and bZδ (t) coincide, the truth values of any formula φ also coin-
cide.

Corollary 1. For any MTL formula φ of granularity δ, and all k ∈ Z: bδ(kδ) |=R

φ iff bZδ (kδ) |=R φ.

Finally, we prove the desired separation result as follows.

Theorem 7. If Zeno behaviors are allowed, MTL ⊂ M̃TL.

Proof. Let us consider the two families of behaviors: N = {bδ | δ ∈ Q>0} and
Z = {bZδ | δ ∈ Q>0}.

First, let us consider initial satisfiability. The M̃TL formula Σ = ©̃(¬p) sep-
arates initially the two families N and Z, as b(0) |=R Σ for all b ∈ N and
b′(0) �|=R Σ for all b′ ∈ Z.

On the contrary, let φ be any MTL formula, and let δ be its granularity.
Then, N � bδ(0) |=R φ iff Z � bZδ (0) |=R φ by Corollary 1, so no MTL formula
separates initially the two families. This implies that the M̃TL formula Σ has
no initially equivalent formula in MTL.

Now, let us consider global satisfiability. The M̃TL formula Σ′ = p ⇒ ©̃(¬p)
separates globally the two families N and Z, as b(t) |=R Σ′ for all t ∈ T and for
all b ∈ N , and b′(t) �|=R Σ′ for some t = kδ, and for all b′ ∈ Z.

On the contrary, let φ be any MTL formula, and let δ be its granularity. For
the sake of contradiction, assume that b(t) |=R φ for all t ∈ T and for all b ∈ N ,
and that b′(t) �|=R φ for some t, and for all b′ ∈ Z. Now, in particular, bδ |=R φ;
a fortiori, bδ(0) |=R φ′ where φ′ = �[0,+∞)(φ). Similarly, it must be bZδ �|=R φ.
A little reasoning should convince us that this implies bZδ (0) �|=R φ′. In fact,
bZδ �|=R φ means that there exists a t ∈ T such that bZδ (t) �|=R φ. t may be greater
than, equal to, or less than 0. However, bZδ is periodic with period δ; this implies
that bZδ (t) |=R α iff bZδ (t+kδ) |=R α, for all formulas α, t ∈ T, k ∈ Z. Therefore,
if there exists a t ∈ T such that bZδ (t) �|=R φ, then also there exists a t′ ≥ 0 such
that bZδ (t′) �|=R φ. The last formula implies that bZδ (0) �|=R φ′.
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Now, notice that the formula φ′ is of the same granularity as φ, that is δ.
Moreover, bδ(0) |=R φ′ and bZδ (0) �|=R φ′. This contradicts Corollary 1; therefore
φ does not globally separate the two families of behaviors. Since φ is generic, the
M̃TL formula Σ′ has no globally equivalent formula in MTL. ��

Finally, if we reconsider all the theorems of the current section, and the corre-
sponding proofs, we notice that they still stand for the matching variants of the
non-strict and strict until . In other words, the same proofs provide a separation

between MTL↓ and M̃TL
↓
.

5.2 Matching as Expressive as Non-matching

A careful reconsideration of the proofs of (6–9) shows that the equivalences
hold even when Zeno behaviors are allowed; essentially, Zeno behaviors can be
explicitly dealt with in the proof.4 In summary, we have a proof that M̃TL =

M̃TL
↓

even if Zeno behaviors are allowed. As an example, let us sketch a bit of
the proof of (6) for Zeno behaviors.

Proof (of (6) for Zeno behaviors). For the ⇐ direction, let us consider the case:
b(t) |=R ¬©̃(φ2 ∧ φ1) and b(t) |=R ©̃(φ1), i.e., φ1 holds over an interval (t, t+ ε)
for some ε > 0. If φ2 has Zeno behavior to the right of t, it changes truth value
infinitely many times over min(ε, b). Hence, there exists a 0 < ν < min(ε, b) such
that b(t + ν) |=R φ2; so b(t) |=R Ũ(0,b〉(φ1, φ2) a fortiori. The other cases are
done similarly (see [17]). ��

Furthermore, it is possible to adapt (6–9) to use non-strict operators only. In
practice, (7–9) hold if we just replace strict operators with the corresponding
non-strict ones; on the other hand, (6) should be modified as:

U(0,b〉(φ1, φ2) ≡ U↓
(0,b〉(φ1, φ2) ∨ (♦(0,b〉(φ2) ∧ ©(φ1) ∧ R↓

(0,b〉(φ2 ∧ ¬φ1,©(φ1))
(10)

All the resulting new equivalences using only non-strict operators can be
shown to hold for Zeno, as well as non-Zeno, behaviors (see [17]). Hence, we
have a proof that MTL = MTL↓ over generic behaviors.

6 Summary and Discussion

Figure 2 displays the relative expressiveness relations for non-Zeno behaviors
(left) and Zeno behaviors (right). Note that the separation proofs for the flat
fragments used only non-Zeno behaviors, therefore they imply the separation of
the corresponding classes for generic (i.e., including Zeno) behaviors as well. On

the other hand, the problem of the relative expressiveness of $MTL and $M̃TL
↓

is currently open (over both Zeno and non-Zeno behaviors).
4 We are grateful to anonymous referee #4, whose detailed comments prompted us to
realize this fact.
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⋂
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Fig. 2. Expressiveness over non-Zeno (left) and Zeno (right) behaviors

Tackling this open question about MTL relative expressiveness, and consid-
ering other variations such as the use of past operators, belongs to future work.

Acknowledgements. We thank the anonymous referees, especially #4, for their
scrupulous and relevant observations that contributed to improve our work.
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Abstract. Quantitative model checking computes the probability val-
ues of a given property quantifying over all possible schedulers. It turns
out that maximum and minimum probabilities calculated in such a way
are overestimations on models of distributed systems in which compo-
nents are loosely coupled and share little information with each other
(and hence arbitrary schedulers may result too powerful). Therefore, we
focus on the quantitative model checking problem restricted to distrib-
uted schedulers that are obtained only as a combination of local sched-
ulers (i.e. the schedulers of each component) and show that this problem
is undecidable. In fact, we show that there is no algorithm that can com-
pute an approximation to the maximum probability of reaching a state
within a given bound when restricted to distributed schedulers.

1 Introduction

The model of Markov decision processes (MDP) [14] is a well-known formalism to
study systems in which both probabilistic and nondeterministic choices interact.
They are used in such diverse fields as operation research, ecology, economics,
and computer science. In particular, MDPs (specially composition oriented ver-
sions like probabilistic automata [15] or probabilistic modules [7]) are useful to
model and analyze concurrent systems such as distributed systems, and serve as
the input model to succesful quantitative model checkers such as PRISM [9].

Analysis techniques for MDPs require to consider the resolution of all nonde-
terministic choices in order to obtain the desired result. For instance, one may
like to use PRISM to find out which is the best probability value of reaching a
goal under any possible resolution of the nondeterminism (a concrete instance
being “the probability of reaching an error state is below the bound 0.01”). The
resolution of such nondeterminism is given by the so called schedulers (called
also adversaries or policies, see [14,1,15,5,17]). A scheduler is a function mapping
traces to transitions or moves (or, in the more general case, traces to distribu-
tions on moves). Given the nondeterministic moves available at some state, the
� Supported by the CONICET/CNRS Cooperation project “Métodos para la Verifi-
cación de Programas Concurrentes con aspectos Aleatorios y Temporizados”, AN-
PCyT project PICT 26135 and CONICET project PIP 6391. The first author was
partially supported by the LSIS, UMR CNRS 6168, France.

J.-F. Raskin and P.S. Thiagarajan (Eds.): FORMATS 2007, LNCS 4763, pp. 179–194, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



180 S. Giro and P.R. D’Argenio

G

initT initG(a)

1/21/2

headsT tailsT headsG tailsG

T

T

initT initG(b)

1/2 1/2

headsG tailsGheadsT tailsT

G

Fig. 1. T tosses a coin and G has to guess

scheduler chooses the move to perform based on the history until the actual
state. Then, by quantifying over all the possible schedulers, we obtain maximal
and minimal probabilities for (sets of) traces. Quantitative model checkers such
as [9,10,4] are based on the technique introduced in [1], in which calculations are
performed considering the set of all possible schedulers.

While this approach arises naturally, and it captures the intuitive notion of
considering all the possible combinations of choices, this arbitrary type of sched-
ulers may yield unexpected results. Consider the following example: a man tosses
a coin and another one has to guess heads or tails. Fig. 1(a) depicts the models
of these men in terms of MDPs. Man T , who tosses the coin, has only one move
which represents the toss of the coin: with probability 1/2 moves to state headsT

and with probability 1/2 moves to state tailsT . Instead, man G has two nonde-
terministic moves each one representing his choice: headsG or tailsG. An almighty
scheduler for this system may let G guess the correct answer with probability
1 according to the following sequence: first, it lets T toss the coin, and then it
chooses for G the left move if T tossed a head or the right move if T tossed a
tail. Therefore, the maximum probability of guessing obtained by quantifying
over these almighty schedulers is 1, even if T is a smart player that always hides
the outcome until G reveals his choice. In this example, in which T and G do not
share all information, we would like that the maximum probability of guessing
(i.e., of reaching any of the states (headsT , headsG) or (tailsT , tailsG)) is 1/2.
This observation is fundamental in distributed systems in which components are
loosely coupled and share little information with each other. (We remark that a
similar example is obtained under a synchronous point of view where G performs
an idling move when T tosses the coin, and T idles when G performs his choice.
See Fig. 1(b).)

This phenomenon has been first observed in [15] from the point of view of
compositionality and studied in [6,7,3,2,19] in many different settings, but none
of them aims for automatic analysis or verification with the exception of [6], in
which temporal properties are quantified over a very limited set of schedulers
(the so-called partial-information policies).

Therefore we focus on the question of model checking but, rather than con-
sidering all schedulers to calculate maximum and minimum probabilities, we
decide to consider the model checking problem under the subset of distributed
schedulers that are obtained by composing local schedulers (i.e. the schedulers
of each component). Notice that the “almighty” scheduler of the example would
not be a valid scheduler in this new setting since the choice of G depends only on
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information which is external to (and not observable by) G. Distributed sched-
ulers has been studied in [7] in a synchronous setting and in [3] in an asynchro-
nous setting, and are related to the partial-information policies of [6].

The contribution of this paper is to show that the quantitative model checking
problem, including pCTL and LTL model checking, restricted to distributed
schedulers (called schedulers for modules in the rest of the paper) is undecidable.
We prove that there is no algorithm to compute the maximum probability of
reaching a set of states using only distributed schedulers. Moreover, we show
that it is not even possible to compute an approximation of such a value within
a given bound. We focus our proof on the synchronous setting of [7] but later
show that it also applies to [3] and [6]. Since the model considered here can be
encoded in the input language of model checkers such as PRISM or Rapture,
our result equally applies to this setting. In other words, the probabilities usually
returned by these model checkers overapproximate the ones possible in the more
realistic interpretation of distributed schedulers, and there is no way to compute
or approximate these values. The proof of undecidability is based on a result
of [12] stating that it is undecidable to find an approximation to the maximum
probability of accepting a word in a probabilistic finite-state automaton.

Organization of the paper. Next section recalls the model of [7] appropriately
simplified to meet our needs. Section 3 presents the tools we use to prove unde-
cidability, including the result of [12] and its relation to our setting. The main
proof of undecidability is given in Sec. 4 together with some lemmas which are
interesting on their own. In Sec. 5 we also show that our result extends to the
models of [3] and [6], discuss other related works. Sec. 6 concludes the paper.

2 Modules and Schedulers

In this section we recall the model of [7] which gives the formal framework to
prove our undecidability result. [7] introduces (probabilistic) modules to describe
open probabilistic systems. Modules can be composed forming more complex
modules (though we will not focus on this). On the other hand, modules are
built out of atoms. Each atom groups the behavior that needs to be scheduled
together. Hence, modules can be used to model a distributed system, and atoms
can be used to model components in these distributed systems.

Each atom controls a set of variables in an exclusive manner and is allowed
to read a set of variables that it may not control. That is, each variable can
be modified at any time by only one atom but read by many. The change of
values of variables is done randomly according to moves and they can take place
whenever indicated by a transition. Thus an atom is a set of transitions that can
only read the variables that the atom may read and can only change (according
to some move) the variables that the atom controls. In what follows we give the
formalization of these concepts.

Definition 1 (States and moves). Let X be a set of variables. An X-state s
is a function mapping each variable in X to a value. An X-move a is a proba-
bility distribution on X-states. Given scalars {δi} and X-moves {ai} such that
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∑
i δi = 1 and δi ≥ 0, we write

∑
i δiai for the X-move resulting from the convex

combination, i.e., (
∑

i δiai) (s) =
∑

i δiai(s).

In the rest of the paper, we assume that the set of variables is finite as well as
the set of their possible values.

Definition 2 (Transitions and convex closures). Let X and Y be two sets
of variables. A probabilistic transition (s, a) from X to Y consists of an X-state
s and a Y -move a. Given a set S of transitions, the convex closure of S (denoted
by ConvexClosure(S)) is the least set containing all the transitions (s,

∑
i δiai)

for all (s, ai) ∈ S and δi as in Def. 1.

Definition 3 (Atoms). A probabilistic X-atom A consists of a set readX(A) ⊆
X of read variables, a set ctrX(A) ⊆ X of controlled variables and a finite set
Transitions(A) of transitions from readX(A) to ctrX(A).

Atoms in [7] have two sets of transitions: one like ours and another one for
initialization. In order to simplify the model, we dropped this second set and
consider a unique initial state provided by the module.

Since our result does not require a framework as general as the original, we
exclude external and private variables out of our definitions. It is easy to see
that the definition of modules below agree with that of [7] when restricted to
have only interface variables.

Definition 4 (Modules). A probabilistic X-module P has an initial state and
a finite set Atoms(P ). We write Var(P ) for X. The initial state Init(P ) is a
Var(P )-state. Atoms(P ) is a finite set of Var(P )-atoms such that (1) Var(P ) =⋃

A∈Atoms(P ) ctrX(A) and (2) ∀A,A′ ∈ Atoms(P ) • ctrX(A) ∩ ctrX(A′) = ∅.

The semantics of a deterministic probabilistic system (i.e., Markov chains) is
given by a probability distribution on traces (called bundle in this context).
Nondeterministic probabilistic models –such as modules– exhibit different proba-
bilistic behavior depending on how nondeterministic choices are resolved. Hence,
the semantics of a module is given by a set of bundles. Each bundle of this set
responds to a different way of resolving nondeterminism. The resolution of non-
determinism is done by a scheduler. A scheduler is a function that maps traces
to distribution on possible moves. Such moves are convex combinations of the
available moves at the end of the trace.

Definition 5 (Traces and bundles). Let n be a positive integer. An X-trace
σ of length n is a sequence of X-states with n elements. We write σ(i) for the
i-th element of σ and last(σ) for the last element of σ. In addition, we write
len(σ) for the length of the sequence, and σ↓n (if n ≤ len(σ)) for the n-th prefix,
i.e., the sequence of length n in which (σ↓n) (i) = σ(i) for all 1 ≤ i ≤ n. We
denote the prefix order by σ � σ′ if σ = σ′↓len(σ).

An X-bundle of length n is a probability distribution on X-traces of length
n. The unique X-bundle of length 1, which assigns the probability 1 to the trace
consisting only of the initial state is called the initial bundle.
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Definition 6 (Schedulers). Let X and Y be two sets of variables, and s a
starting Y -state. A scheduler η from X to Y is a function mapping every X-
trace to a probability distribution on Y -states. If η is a scheduler from X to
X, then the 1-outcome of η is the bundle b1 assigning 1 to the trace s. In
addition, for all positive integers i > 1, the i-outcome of η is an inductively
defined X−bundle bi of length i: the bundle bi is the extension of the bundle bi−1

such that bi(σ) = bi−1(σ↓i−1) · (η(σ↓i−1))(σ(i)) for all X−traces of length i. We
collect the set of i-outcomes of η (i ≥ 1) in the set Outcome(η) of X−bundles.
To simplify notation, we write Outcome(η)(σ) for blen(σ)(σ).

Schedulers are the machinery to resolve nondeterminism. They do so by assigning
probabilities to the different available moves at each point of an execution (i.e.,
a trace). In our framework, this is done by choosing a move which is a convex
combination of the available moves. A scheduler can be deterministic (or non-
probabilistic) in the sense that it assigns probability 1 to a single available move.
In other words, a deterministic scheduler chooses a single move from the available
ones at each point of the execution. In particular, we are interested on the
scheduling within a single component, that is, within an atom.

Definition 7 (Schedulers for an atom). Consider a probabilistic X−atom
A. The set atomΣ(A) of atom schedulers for A contains all schedulers η from
readX(A) to ctrX(A) such that (σ(n), η(σ)) ∈ ConvexClosure(Transitions(A))
for all readX(A)-traces σ of length n ≥ 1. Let atomΣd(A) be set of determin-
istic schedulers for A, i.e., the subset of atomΣ(A) such that (σ(n), η(σ)) ∈
Transitions(A).

Schedulers for atoms can observe all possible executions and all the (observed)
state space. On the contrary, we are not interested in any arbitrary scheduler
for a module. In a distributed setting each component schedules its own moves
disregarding any behavior that does not affect its own state space. Hence, a
global scheduler can only be obtained by the combination of the schedulers
of each component. Similarly, we consider that a scheduler for a module only
makes sense if it comes from the composition of schedulers of each of its atoms.
Schedulers for a module are obtained by taking the product of schedulers for
atoms as defined in the following.

Definition 8 (Projection and Product). Let X and X ′ ⊆ X be two sets
of variables. The X ′-projection of an X-state s is the X ′-state s[X ′] such that
(s[X ′]) (x) = s(x) for all variables x ∈ X ′. The X ′-projection of a trace σ is an
X ′-trace σ[X ′] in which σ[X ′] (i) = σ(i)[X ′] for 1 ≤ i ≤ len(σ).

Let X1 and X2 be two disjoint sets of variables. The product of an X1-state s1

and an X2-state s2 is the X1 ∪X2-state s1 × s2 such that (s1 × s2) (x1) = s1(x1)
for all x1 ∈ X1 and (s1 × s2) (x2) = s2(x2) for all x2 ∈ X2. The product of
an X1-move a1 and an X2-move a2 is the X1 ∪ X2-move a1 × a2 such that
(a1 × a2) (s) = a1(s[X1]).a2(s[X2]).

Definition 9 (Product of schedulers). If η1 is a scheduler from X1 to Y1,
and η2 is a scheduler from X2 to Y2, such that Y1 ∩ Y2 = ∅, then the product
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is the scheduler η1 × η2 from X1 ∪ X2 to Y1 ∪ Y2 such that (η1 × η2)(σ) =
η1(σ[X1]) × η2(σ[X2]) for all X1 ∪ X2-traces σ. If Σ1 and Σ2 are two sets of
schedulers, then Σ1 × Σ2 = {η1 × η2|η1 ∈ Σ1 and η2 ∈ Σ2}.

Since we restrict to modules without external variables, our definition of sched-
uler for a module is simpler than that of [7]. It is easy to see that the definition
of schedulers below agree with that in [7] when restricted to our setting.

Definition 10 (Schedulers for a module). Consider a probabilistic module
P . The set modΣ(P ) of module schedulers for P contains all the schedulers
from Var(P ) to Var(P ) having Init(P ) as starting state which can be written
as a product of schedulers for the atoms, i.e.: modΣ(P ) = {

∏
A∈Atoms(P ) ηA |

ηA ∈ atomΣ(A)}. Let modΣd(P ) be the set of deterministic schedulers for the
module, i.e., modΣd(P ) = {

∏
A∈Atoms(P ) ηA | ηA ∈ atomΣd(A)}.

Each scheduler defines a probability space on the set of infinite traces as stated
below.

Definition 11 (Extensions and probability of traces). For each finite
trace σ of length n, we define the set of extensions [σ] to be set of infinite
traces such that for every ρ ∈ [σ], ρ(n′) = σ(n′) for all 1 ≤ n′ ≤ n.

Let be P a probabilistic module whose variables are Var(P ), and let η ∈
modΣ(P ) be a scheduler for P . The probability Prη([σ]) of a set of extensions
is Outcome(η)(σ). This probability can be extended in the standard way to the
least σ-algebra over the set of infinite traces containing the extensions (see [11]).

Given the setting in the previous definition, one can talk of the probability
Prη(reach(U)) of reaching the set of states U under η. Such probability is given
by Prη({ρ | ∃n • ρ(n) ∈ U}).

In the following, we define several shorthands and notations that will be con-
venient for the rest of the paper.

Let enA(s) be the set of enabled moves in a Y -state s of an X-atom A with
X ⊆ Y ; that is, the set {a | (s[readX(A)] , a) ∈ Transitions(A)}.

A scheduler η for an X-atom A is a function from readX(A)-traces to distri-
butions on ctrX(A) such that (last(σ), η(σ)) ∈ ConvexClosure(Transitions(A)).
That is, η(σ) =

∑
a∈enA(s) δaa, where

∑
a∈enA(s) δa = 1. Hence, η can be alter-

natively seen as a function ηf : ctrX(A)-moves × readX(A)-traces → [0, 1], s.t.
ηf (a, σ) = δa for all a ∈ enA(s), and 0 otherwise. Conversely, if ηf (a, σ) > 0 ⇒
a ∈ enA(last(σ)) and

∑
a∈enA(last(σ)) ηf (a, σ) = 1, for all trace σ, ηf defines a

scheduler η s.t. η(σ) =
∑

a∈enA(s) ηf (a, σ) a. We will use η and ηf interchange-
ably according to our convenience.

If η is a scheduler for the module P , we will call ηA to the scheduler for the
atom A of P such that η = ηA ×

∏
A′∈Atoms(P )\{A} ηA′ . If η is deterministic and

Atoms(P ) = A1, . . . , An we ambiguously denote by η(σ) the n-tuple of moves
(a1, . . . , an) such that η(σ)(a1, . . . , an) = 1. Notice that ηAi(σ) = ai = πi(η(σ))
for all 1 ≤ i ≤ n.
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3 The Setting for the Proof of Undecidability

In this section we present the foundations for the proof of undecidability. We
recall the result in [12] stating that it is undecidable to find an approximation
to the maximum probability of accepting a word in a probabilistic finite-state
automaton (PFA), and present a translation of PFAs into probabilistic modules.
This setting is used in Sec. 4 to prove that it is not possible to determine the
maximum probability of reaching a given set of states in a module. The maximum
reachability problem is formally stated as follows:

Definition 12 (Maximum Reachability Problem). Let P be a module, let
U be a set of Var(P )-states, and let reach(U) = {ρ | ∃n • ρ(n) ∈ U} be the set of
all infinite traces that pass through some state in U . The maximum reachability
problem is to determine supη∈modΣ(P ) Prη(reach(U)).

In the following, we assume that any trace that reaches some state in U remains
in U with probability 1. It is a standard assumption in reachability analysis
of Markov decision processes in general to make target states absorbing (see
e.g. [14,1,12]). The assumption in our setting is formally stated as follows.

Assumption 1 (States in U are absorbing). Given an instance of the max-
imum reachability problem, we assume that the elements in U are absorbing, in
the sense that ∀s ∈ U • Prη([σ s]) = Prη(

⊎
s′∈U [σ s s′]) for all η.

The proof presented in the next section is based on the reduction of the prob-
abilistic finite-state automata (PFA) maximum acceptance problem [12] to the
maximum reachability problem on a module. Since this problem is undecidable,
this reduction implies the undecidability of the maximum reachability problem.

A PFA is a quintuple (Q,Σ, l, qi, qf ) where Q is a finite set of states with
qi, qf ∈ Q being the initial and accepting state respectively, Σ is the input
alphabet, and l : Σ × Q → (Q → [0, 1]) is the transition function s.t. l(α, q) is a
distribution for all α ∈ Σ and q ∈ Q. Notice that l is a total function. As in [12],
we assume that qf is absorbing, i.e. l(α, qf )(qf ) = 1 for all α ∈ Σ.

In the following, we present the translation of PFA into modules and directly
define the probability of accepting a word in the translated model. We do so to
avoid introducing a probabilistic theory on traces for a slightly different setting.

A PFA is encoded in a module PPFA with two variables and two atoms.
Variable st pfa takes values in Q recording the current state in the PFA. Variable
symbol takes values in Σ∪{initial} and is used to indicate the next input issued
to the PFA. In particular, initial is introduced for technical matters and only
used in the first transition of the module to indicate that no selection has being
issued yet. Atom A encodes the transition function l. Therefore it can read both
variables, but can only control st pfa. It is atom B the one that controls variable
symbol and the one that introduces the nondeterminism in the selection of the
input. Notice that A is completely deterministic (in the sense that, at every
state, the value of symbol uniquely determines the next transition to execute).
Since B takes the role of the environment selecting inputs, it cannot read (nor
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symbol = initial
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Fig. 2. From PFA to probabilistic modules

control) variable st pfa. Hence, a word w over Σ is equivalent to the deterministic
scheduler for B that chooses the symbols in the word.

The definition of PPFA is formalized in the following.

Definition 13 (PPFA and the probability of accepting a word). Let X =
{st pfa, symbol}. Let A be an X-atom with readX(A) = X and ctrX(A) =
{st pfa}, such that (1) en(s) = {al,s} for all s such that s(symbol) �= initial,
where al,s(s′) = l(s(symbol), s(st pfa))(s′(st pfa)) for all {st pfa}-state s′, and
(2) en(s) = {as} for all s such that s(symbol) = initial, where as(s) = 1. Let
B be an X-atom with readX(B) = ctrX(B) = {symbol}, and for all state s
and symbol α it contains transition (s, aα), where aα(symbol = α) = 1. PPFA is
defined as the module containing atoms A and B above and having initial state
si such that si(st pfa) = qi and si(symbol) = initial.

Let U = {s | s(st pfa) = qf} be the set of accepting states. Then, the probabil-
ity Pr(accepting w) of accepting an infinite word w = w1w2 · · · of symbols from
Σ is PrηA×ηB (reach(U)), where ηB(σ) = awlen(σ)−1 (if len(σ) > 1), ηB(s) = as

and ηA is the only possible deterministic scheduler for A.

Atom A is deterministic, since it has exactly one enabled move at every state.
Hence there exists only one possible scheduler for A (the scheduler choosing
the only possible move). In addition, it is also worth noting that, although we
are dealing with infinite words, our criterion for acceptance is to pass through
the accepting state using the word (i.e., a word is accepted iff a finite prefix
reaches the accepting state). Figure 2 shows a simple PFA and its corresponding
probabilistic module. In this figure, symbol = α indicates that the transition
needs the value of the variable symbol to be α. In addition, symbol ← α indicates
that the transition sets the value of the variable symbol to α.

Stated in terms of Def. 13, Corollary 3.4 in [12] states the following:

Lemma 1 (Corollary 3.4 in [12]). For any fixed 0 < ε < 1, the following
problem is undecidable: Given a module PPFA as in Def. 13 such that either

1. PPFA accepts some word with probability greater than 1 − ε, or
2. PPFA accepts no word with probability greater then ε;

decide whether case 1 holds.

[12] points out that, as a consequence of Lemma 1, the approximation of the
maximum acceptance probability is also undecidable. This statement is formal-
ized in the following corollary.
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Corollary 1 (Approximation of the maximum acceptance probability
is undecidable). Given PPFA as in Def. 13 and δ > 0, the following problem
is undecidable: find r such that |r − supw Pr(accept w)| < δ.

4 Undecidability of the Reachability Problem for
Modules

In this section, we prove the undecidability of the maximum reachability prob-
lem. Recall that the maximum reachability problem is to find the supremum over
the set of all the schedulers for a given module. First of all, we show that infinite
words can be seen as deterministic schedulers (Lemma 2). So, the problem of
finding the supremum over the set of words is equivalent to the problem of find-
ing the supremum over the set of deterministic schedulers. Next, we prove that
the supremum quantifying over deterministic schedulers equals the supremum
quantifying over all schedulers (Lemma 4) using the fact that, given a scheduler
and a number N , a deterministic scheduler can be found which yields a larger
probability until the N -th step (Lemma 3).

In the following, we prove not only the undecidability of the maximum reach-
ability problem on modules, but also that the value of the maximum reachability
probability cannot be approximated, i.e. given a certain threshold δ, there is no
algorithm returning r such that |r − supη∈modΣ(P ) Prη(reach(U))| < δ.

The following lemma states that each word in the PFA can be seen as a
deterministic scheduler in PPFA and vice versa.

Lemma 2 (Words and schedulers). Given PPFA as in Def. 13, each word
w corresponds to a deterministic scheduler η and vice versa, in the sense that
Pr(accepting w) = Prη(reach(U)).

Proof. By definition, Pr(accepting w) = PrηA×ηB (reach(U)), with ηA and ηB as
in Def. 13.

Conversely, let η be a deterministic scheduler for PPFA. Then η = ηA × ηB for
some ηA (which is unique) and ηB. Note that, for any n > 0, there is exactly
one {symbol}-trace σn having probability greater than 0 and len(σn) = n which
is defined by ηB. This is due to the fact that B has no probabilistic transitions
and A cannot change the variable symbol. Then, take w = w1 · w2 · · · to be the
word defined by wn = last(σn+1). (σ1 is ignored since variable symbol has the
value initial in the first state.) ��

As a consequence of Lemma 2 and Corollary 1 the computation of the maximum
reachability probability restricted to deterministic schedulers –i.e. the compu-
tation of supη∈modΣd(P ) Prη(reach(U))– is an undecidable problem in general
since it is undecidable for the particular case of modules obtained from PFA as
in Def. 13. However, this fact does not guarantee that the problem is also unde-
cidable when all module schedulers (not only deterministic ones) are considered
(in fact, the problem is decidable for arbitrary global schedulers [1,5]). Our main
contribution is to show that the problem is undecidable even if schedulers are
not restricted to be deterministic.
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The following lemma states that given a scheduler and a bound N , there is a
deterministic scheduler that yields a larger probability of reaching U within the
first N steps.

Lemma 3. Given a scheduler η and N ∈ N there exists a deterministic sched-
uler ηd such that Prηd(reachN (U)) ≥ Prη(reachN (U)), where Prη(reachN (U))
denotes the probability of reaching U before the N -th step.

Proof. Given an atom A∗, a readX(A∗)-trace σ∗ such that len(σ∗) ≤ N and a
scheduler η =

∏
A∈Atoms(P )\{A∗} ηA × ηA∗ , we find a scheduler det(η, σ∗) such

that det(η, σ∗) coincides with η except for the choice corresponding to the trace
σ∗ in the atom A∗, in which det(η, σ∗) deterministically chooses a single action.
Formally, det(η, σ∗) can be expressed in terms of η as follows: det(η, σ∗) =∏

A∈Atoms(P )\{A∗} ηA × η′A∗ , with η′A∗(σ∗, a∗) = 1 for some a∗ and η′A∗(σ, a) =
ηA∗(σ, a) for all σ �= σ∗. In addition, in the construction of det(η, σ∗) we choose
a∗ such that Prdet(η,σ∗)(reachN (U)) ≥ Prη(reachN (U)). The core of the proof is
to find such an a∗. Once obtained det(η, σ∗) for a trace σ∗, the final deterministic
scheduler is calculated by repeating this process for all the local traces with
length less than or equal to N .

In the following, let k = len(σ∗) and define rN = {σ| len(σ) = N∧σ(N) ∈ U},
rN,σ∗ = rN ∩ {σ|σ↓k[readX(A∗)] = σ∗} and rN,¬σ∗ = rN \ rN,σ∗ .

Note that, because of Assumption 1, Prη(reachN (U)) = Prη(
⊎

σ∈rN
[σ]), since

Prη(
⊎

s′
i∈U [σss′1 · · · s′N−(len(σ)+1)]) = Prη([σs]) for all s ∈ U .

Now, we start the calculations to find a∗.

Prη(reachN (U)) = Prη(
⊎

σ∈rN
[σ]) {Explanation above}

=
∑

σ∈rN
Prη([σ]) {Pr is a measure}

=
∑

σ∈rN,σ∗ Prη([σ]) +
∑

σ∈rN,¬σ∗ Prη([σ]) {Commutativity}

Next, we examine the first summand. In the following calculation, let Pσ,i,A =∑
a∈enA(σ(i)) ηA(σ↓i[readX(A)] , a) a(σ(i + 1)).

∑
σ∈rN,σ∗ Prη([σ])

= {Definition 11}
∑

σ∈rN,σ∗

∏N−1
i=1

∏
A∈Atoms(P )

∑
a∈enA(σ(i)) ηA(σ↓i[readX(A)] , a) a(σ(i + 1))

= {Arithmetics}∑
σ∈rN,σ∗ Prη([σ↓k])

(∑
a∈enA∗ (σ(k)) ηA∗(σ↓k[readX(A∗)] , a) a(σ(k + 1))

)

∏
A∈Atoms(P )\{A∗} Pσ,k,A

∏N−1
i=k+1

∏
A∈Atoms(P ) Pσ,i,A

= {σ↓k[readX(A∗)] = σ∗ (since σ ∈ rN,σ∗), arithmetics}∑
a∈enA∗ (σ∗(k)) ηA∗(σ∗, a)

∑
σ∈rN,σ∗ Prη([σ↓k]) a(σ(k + 1))

∏
A∈Atoms(P )\{A∗} Pσ,k,A

∏N−1
i=k+1

∏
A∈Atoms(P ) Pσ,i,A
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Let a∗ = argmaxa∈enA∗(σ(k))

∑
σ∈rN,σ∗ Prη([σ↓k]) a(σ(k + 1))

∏
A∈Atoms(P )\{A∗} Pσ,k,A

∏N−1
i=k+1

∏
A∈Atoms(P ) Pσ,i,A .

Then, since
∑

a∈enA∗ (σ(k)) ηA∗(σ∗, a) = 1, we have

∑
σ∈rN,σ∗ Prη([σ]) ≤

∑
σ∈rN,σ∗ Prη([σ↓k]) a∗(σ(k + 1))

∏
A∈Atoms(P )\{A∗} Pσ,i,A

∏N−1
i=k+1

∏
A∈Atoms(P ) Pσ,i,A

=
∑

σ∈rN,σ∗ Prη′
([σ]) ,

where η′ is the scheduler that coincides with η except for trace σ∗, in which the
scheduler for the atom A∗ chooses a∗.

Since this change does not affect the extensions in rN,¬σ∗ , we have that
Prη′

(rN (U)) ≥ Prη(rN (U)). Thus, we define det(η, σ∗) = η′.
Given a sequence of local traces σ1 · · ·σn (possibly belonging to different

atoms), we extend the definition of det in order to handle finite sequences of
traces as follows: det(η, σ1 · · ·σn) = det(det(η, σn) , σ1 · · ·σn−1).

Now, we can define a scheduler ηN being deterministic “until the N -th step”
by considering the sequence σ1 · · ·σM comprising all local traces whose length
is less or equal than N and computing det(η, σ1 · · ·σM ).

Since the choices after the N -th step do not affect the value of Pr(reachN (U)),
we construct the desired scheduler by taking ηN and modifying it to determin-
istically choose any move after the N -th step. ��

Using the previous lemma, we prove that the maximum probability of reaching
U is the same regardless whether it is quantified over all schedulers or only over
deterministic schedulers.

Lemma 4. supη∈modΣd(P ) Prη(reach(U)) = supη∈modΣ(P ) Prη(reach(U))

Proof. Let r = supη∈modΣ(P ) Prη(reach(U)). We prove that for every ε, there
exists a deterministic scheduler ηε such that r−Prηε(reach(U)) < ε, thus proving
the lemma.

Given ε > 0, there exists a scheduler η such that r − Prη(reach(U)) < ε/2.
Note that we can write reach(U) as

⊎
{n∈N0}

⊎
{σ′|∀i •σ(i) �∈U∧len(σ′)=n}

⊎
{s∈U} [σ′ · s] .

Then, since Pr is a measure

Prη(reach(U)) =
∑

{n∈N0}
∑

{σ′|∀i •σ(i) �∈U∧len(σ′)=n}
∑

{s∈U} Prη([σ′ · s]) .

So, there exists N such that

Prη(reach(U)) −
∑N

n=0

∑
{σ′|∀i •σ(i) �∈U∧len(σ′)=n}

∑
{s∈U} Prη([σ′ · s]) < ε/2 .
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By virtue of Lemma 3, we know that there exists a deterministic sched-
uler ηd such that Prηd(reachN (U)) ≥ Prη(reachN (U)). Then, Prηd(reach(U)) ≥
Prη(reach(U)) − ε/2. This result yields,

r − Prηd(reach(U)) = r − Prη(reach(U)) + Prη(reach(U)) − Prηd(reach(U))
< ε/2 + ε/2 = ε . ��

Though Lemma 4 is the basis for our undecidability result, it has a value of its
own: it states that, for any probabilistic module P and reachability target U ,
it suffices to consider only deterministic schedulers to calculate the maximum
probability of reaching some state in U . Lemma 4 yields to our main result:

Theorem 1 (Approximation of the maximum reachability problem is
undecidable). Given a probabilistic module P , a set U of states and δ > 0, there
is no algorithm that computes r such that |r− supη∈modΣ(P ) Prη(reach(U))| < δ.

Proof. Suppose, towards a contradiction, that the problem is decidable. Take an
instance of PPFA as in Def. 13. Then, using Lemmas 4 and 2, we can compute r
such that

δ > |r − supη∈modΣ(P ) Prη(reach(U))| = |r − supη∈modΣd(P ) Prη(reach(U))|
= |r − supw Pr(accept w)|

thus contradicting Corollary 1. ��

Often reachability properties are only of interest if they are compared to a proba-
bility value (e.g. the maximum probability of an error is smaller than 0.01). This
kind of problems are also undecidable. If this were not the case, a procedure
to calculate an approximation to the maximum reachability probability can be
easily constructed using bisection (see, e.g., [13]). This result is formally stated
in the following corollary.

Corollary 2. Let & denote some operator in {≤,≥, <,>,=}. There is no algo-
rithm that returns yes if supη Prη(reach(U)) & q or returns no, otherwise, for a
given module P and number q.

Moreover, there exists no algorithm that, given a module P , a number q and a
threshold ε returns yes if r & q for some r such that |r− supη Prη(reach(U))| < ε
or returns no, otherwise.

5 Impact and Related Work

Undecidability is frequent in problems involving control and partial information
(e.g. [18]). Since a scheduler can be seen as a controller which enables appropriate
moves, control is closely related to scheduling. This fact gave us a clue about the
result presented in this paper. In [18], a finite state automaton can execute an
action only if a set of infinite-state controllers allows it. The state of a controller
(and, hence, the actions it allows to execute) is updated each time an action
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observed by the controller happens. Although schedulers can be seen as infinite-
state automata —since the language obtained by taking the (distributions on)
moves prescribed by the scheduler is not restricted— we could not prove our
result using the results in [18] by simply taking the controllers to be schedulers.
Moreover, global schedulers are also infinite state automata, and the problem for
these schedulers is decidable (see [5]). These facts suggest that the tractability
of this problem is likely to vary from a formalism to another, although the
formalisms under consideration may seem to be similar at first sight.

Unfortunately, our result also holds for Switched Probabilistic Input/Output
Automata (Switched PIOA) [3,2] and for the schema of partial information pre-
sented in [6].

In the Switched PIOA formalism, the different components have input and
output local schedulers, and a token is used in order to decide the next compo-
nent to execute. The interleaving between different components is not resolved
by the schedulers, since the way in which the token is passed is specified by the
components. If a component has the token, its local output scheduler chooses
a transition from a generative structure. Otherwise, its local input scheduler
chooses a transition from a reactive structure, thus “reacting” to actions per-
formed by the other components. (For definitions of reactive and generative
structures see e.g. [8,16].)

The probabilistic finite-state automata in [12] can be seen as components
having only reactive structures. In addition, the input scheduler for these com-
ponents is uniquely determined, since each symbol uniquely determines the prob-
ability distribution for the next state. This fact allows to prove undecidability
by composing the PFA (seen as a component of the Switched PIOA) with an
automaton having only one state which chooses the next action to perform using
generative structures (which are Dirac distributions for the sole state of the com-
ponent). This component has the token during all the course of the execution.
So, while this latter component chooses any action, the former component reacts
to this choice as the PFA would do. Hence, these two components can simulate
a probabilistic module as the one described in Def. 13. Note that we are working
with a very strict subset of the Switched PIOA: there are no nondeterministic
choices for the inputs, all generative structures are Dirac distributions and the
token is owned by the same component during all the course of the execution. It
is also worth noting that schedulers as presented in [3,2] are always deterministic
because they can choose any transition in a generative or reactive structure, but
they cannot choose convex combinations of these transitions. Thus, Lemma 4,
and hence Lemma 3, are not needed for Switched PIOA as presented originally,
and undecidability can be proved almost directly using Corollary 3.4 in [12].
Our result indicates that the problem remains undecidable even if we extend
Switched PIOA with nondeterministic schedulers.

Though composition in [6] is not an issue, it presents schedulers for Markov
decision processes which can observe partial portions of the states. The goal
is to obtain better bounds for the probability of temporal properties. Markov
decision process are defined using a set of actions in such a way that each pair
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(s, a) determines the probability distribution for the next state. The schedulers
are restricted as follows: given an equivalence relation ∼ over the set of states
(s ∼ s′ denoting that the scheduler cannot distinguish s and s′), the relation
σ ∼ σ′ over traces is defined to hold iff len(σ) = len(σ′) and for all i, σ(i) ∼ σ′(i).
Then, a partial-information scheduler is required to satisfy η(σ, a) = η(σ′, a)
if σ ∼ σ′. Note that, by taking ∼ such that s ∼ s′ for all s, the scheduler
must decide the next action to perform based solely on the amount of actions
chosen before. Then, using such a relation ∼, a scheduler in [6] is equivalent to
a scheduler for the atom B as Def. 13, and hence the problem of finding the
maximum reachability probability is equivalent to the problem of finding the
maximum reachability probability for a module as in Def. 13.

We remark that [6] defines a model checking algorithm, but it calculates the
supremum corresponding to Markovian partial-information policies, i.e., to the
subset of partial-information policies restricted to choose (distributions on) ac-
tions by reading only the (corresponding portion of the) current state rather
than the full past history. Quantitative model checking on MDP was originally
introduced in [1,5] but for arbitrary schedulers. In particular, [5] proves that the
maximum reachability problem under arbitrary global schedulers has an equiva-
lent solution under deterministic global schedulers (in fact, they are also Markov-
ian in the sense that only depend on the last state and not of the full trace, see
Theorem 3.5 in [5]). Though this result is similar to Lemma 4, the proof of [5]
has no connection to ours. In fact, the construction of the deterministic scheduler
in [5] is also the proof that the problem for the general case is decidable.

6 Conclusion

We have argued that usual quantitative model checkers yields overestimations
of the extremum probabilities in distributed programs and proposed to address
model checking under the restriction of schedulers that are compatible with the
expected behaviour of distributed systems. We showed that it is undecidable
to compute the maximum probability of reaching a state when restricted to
distributed schedulers, hence making the proposal unfeasible in its generality.
Morever, we showed that such value cannot even be aproximated.

On proving undecidability, we needed to prove additional lemmas. In particu-
lar, we believe that the result of Lemma 4 has to be remarked, but mostly, that
its proof technique, including the constructive proof of Lemma 3, is of relevance
and can be reused in searching similar results.

The combination of our undecidability result and the NP-hardness result of [6]
is not encouraging on seeking algorithms for model checking under distributed
or partial-information schedulers. Yet, the observation that arbitrary schedulers
yield overestimations of probability values remains valid. The question then is
whether it is possible to find a proper subset of schedulers (surely including all
distributed schedulers) that yields a tighter approximation of extremum proba-
bilities while keeping tractability of the model checking problem.

Another question is to which extent the calculation (or approximation) of
the minimum probability of reaching a state is also undecidable. Though this
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is the dual problem to that in Def. 12, we could not obtain a straightforward
dualization of our proof.
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celent sparring during the development of these ideas, and Holger Hermanns for
his most valuable feedback.
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Abstract. Zeno runs, where infinitely many actions occur in finite time,
may inadvertently arise in timed automata specifications. Zeno runs may
compromise the reliability of formal verification, and few model-checkers
provide the means to deal with them: this usually takes the form of live-
ness checks, which are computationally expensive. As an alternative, we
describe here an efficient static analysis to assert absence of Zeno runs on
Uppaal networks; this is based on Tripakis’s strong non-Zenoness prop-
erty, and identifies all loops in the automata graphs where Zeno runs may
possibly occur. If such unsafe loops are found, we show how to derive
an abstract network that over-approximates the loop behaviour. Then,
liveness checks may assert absence of Zeno runs in the original network,
by exploring the reduced state space of the abstract network. Experi-
ments show that this combined approach may be much more efficient
than running liveness checks on the original network.

Keywords: Zeno Runs, Timed Automata, Model-checking, Uppaal.

1 Introduction

Timed automata [1] are often used to specify timed systems, as they provide a
graphic notation that is easy to use, and can be automatically verified [2,3,4].
However, specifications may exhibit so-called Zeno runs, which are executions
where actions occur infinitely often in a finite period of time. Knowing whether
Zeno runs occur increases our confidence on the specification at hand. Zeno runs
are unintended (real processes cannot execute infinitely fast); in general, the
verification of correctness properties cannot be trusted in specifications where
Zeno runs may occur. For example, liveness properties are usually meaningless
unless time-divergence is assumed. In addition, Zeno runs may conceal deadlocks
and thus compromise safety properties. In most timed automata models, the
semantics of urgency allow states (so-called timelocks) where time-divergent runs
are no longer possible. Typically, as progress depends on delays, a timelock
will have a global effect and make part of the state space unreachable. Hence,
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systems may be deemed safe, but unfound erroneous states may arise lately in
implementations. A common class of timelocks involve (action) deadlocks (e.g.,
due to mismatched blocking synchronisation). Usually, such timelocks may be
found by checking deadlock-freedom; however, if a Zeno run is possible when the
timelock occurs (e.g., due to some time-unconstrained loop), no deadlock will
occur and the timelock will remain unnoticed.

Certain classes of timelocks can be avoided in a number of formal notations,
including timed automata. For instance, in process algebras with asap [5], only
internal actions can be made urgent, preventing timelocks that arise due to
mismatched synchronisation. The same is achieved in Timed I/O Automata
[6], Discrete Timed Automata [7], and Timed Automata with Deadlines [8,9],
where construction ensures that either actions or delays are always possible.
However, Zeno runs cannot be prevented by construction, as a suitable semantics
would be too restrictive for the specifier. In Kronos [2] and Red [4], timelock-
freedom can be verified as a liveness property. Kronos, Red and Profounder [10]
verify properties only over time-divergent runs, i.e. algorithms must identify and
discard Zeno runs in the process. Instead, more efficient algorithms may be used
whenever absence of Zeno runs can be guaranteed in advance. Uppaal [3] does
not distinguish time-divergent from Zeno runs during verification, but a liveness
property can be verified to ensure that all runs are time-divergent. However,
liveness checks can be very time-consuming (for instance, on-the-fly verification
does not help, as the whole state space must be explored to confirm that Zeno
runs cannot occur).

In [11,12], we refined Tripakis’s strong non-Zenoness property [13] in a number
of ways, which permitted an efficient check for absence of Zeno runs in simple
timed automata models. Here we offer a more precise analysis of synchronisation
and its effects on Zeno runs, and take into account Uppaal features such as non-
zero clock updates, broadcast synchronisation and parametric templates. This
results in a tool that is precise enough to assert absence of Zeno runs for a
larger class of specifications than previously possible. When absence of Zeno runs
cannot be inferred from the syntax of clock constraints and synchronisation, the
analysis is inconclusive but returns all loops where Zeno runs may possibly occur.
To benefit from this diagnosis, and avoid running liveness checks on the whole
state space of the original network, we show how to obtain an abstract network
that reduces the set of relevant behaviours to (an over-approximation of) those of
unsafe loops. Then, by exploring the abstract network, liveness checks may assert
absence of Zeno runs in the original network more efficiently. Experiments show
that our analysis based on strong non-Zenoness, possibly followed by a liveness
check on the abstract network, may be much more efficient than running liveness
checks on the original network.

This paper is organised as follows. Section 2 introduces the timed automata
model, and discusses timelocks and Zeno runs. Section 3 presents the static
analysis based on strong non-Zenoness. Section 4 defines abstract networks. In
Section 5 we present our tool and experimental results. We conclude the paper
in Section 6, with suggestions for further research.
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2 Timed Automata

Many extensions of Alur and Dill’s model [1] have been proposed in the literature,
and implemented in model-checkers. Uppaal’s specification language, which we
focus on in this paper, provides many features which facilitate the description
of complex networks. Here we offer a brief account of the model (we refer to [3],
and Uppaal’s help files, for a more detailed presentation).

Uppaal automata are finite state machines (locations and edges), augmented
with global (shared) clock and data variables, and synchronisation primitives.
Concurrent systems are represented by networks of communicating automata.
Concurrency is modeled by interleaving, and communication is achieved by syn-
chronisation on channels and shared variables. Clocks range in the non-negative
reals, and advance synchronously at the same rate (but may be updated inde-
pendently). Edges denote instantaneous actions, and delays are possible only
in locations. Clock and data variables can be used to constrain the execution
of automata. Locations may be annotated with invariants, which constrain the
allowed delays. Edges may be annotated with guards (enabling conditions), syn-
chronisation labels (to distinguish observable from internal actions), and variable
updates. Binary channels are blocking: matching input and output actions may
only occur in pairs (a?/a!). More elaborate specifications can be obtained with
the following features.

Variables. Available types include clocks, channels, bounded integers and
Booleans, and arrays and record types can be defined over these types. Common
arithmetic operators (and user-defined C-like functions) may be used in expres-
sions. Clock constraints are (in)equalities between clocks (and clock differences)
and integer expressions. Clocks can be assigned non-negative integer expressions.

Urgent and Committed locations. Urgent and committed locations disallow
delays, forcing the immediate execution of enabled actions as soon as they are
entered. In addition, committed locations restrict interleaving: only components
that are currently in committed locations may execute enabled actions.

Urgent and Broadcast Channels. Synchronisation on urgent channels is
binary, blocking, and must occur as soon as matching actions are enabled. Syn-
chronisation on broadcast channels matches one output action with multiple
input actions, and is non-blocking on the output side: input actions block until
the output action is enabled, but the output action may be executed even if no
input actions are enabled.

Templates and Selections. Parametric templates and selections provide a
concise specification of similar components. A template provides an automaton
and a number of parameters (bounded data variables), which can be read in the
automaton’s expressions (e.g., guards). Parameters are instantiated, generating
multiple processes with the same control structure (the template’s automaton).
A selection denotes non-deterministic bindings between an identifier and values
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in a given range. Selections annotate edges, which may use the identifiers in
guards, synchronisation labels and updates. Every binding results in a different
(instantiated) edge between the same two locations.

By way of example, Fig. 1 shows an Uppaal network to control access to
a bridge for a number of trains (this model is a demo included with Uppaal’s
distributions; a similar model is explained in [3]). Incoming trains are represented
by a Train template (left), access to the bridge is controlled by a Gate template
(right). The Train template declares a local clock x, and an integer parameter id
of type id t= [0..N − 1], where N (a global constant) is the maximum number
of incoming trains the gate controller may handle. For a simple example of the
use of constraints and synchronisation, consider the edge Cross → Safe. The
invariant x<=5, and guard x>=3, constrain the action to occur when x ∈ [3, 5]
(with the action being urgent when x = 5). Channel leave is binary, hence
Cross → Safe and Occ → Free must occur simultaneously. To simulate and
verify this network, Uppaal instantiates id to create N different Train processes,
controlled by a single Gate process. This is modeled with arrays of channels
(leave, appr, stop and go) and multi-transitions in Gate: the selection e:id t
makes e (a train identifier) range in [0..N − 1], providing a matching action
for every Train process. The variables e, len (and an array list, not shown
in the figure), and the functions front(), enqueue(), dequeue(), and tail(),
manipulate a queue of approaching trains, some of which may be stopped (stop!)
and later restarted (go!) to avoid collisions (e.g., the committed location, marked
with C, ensures that the last approaching train is immediately stopped if a new
train starts approaching the bridge).

Safe

Stop

Cross
x<=5

Appr
x<=20

Start
x<=15

x>=10
x=0

x<=10
stop[id]?

x>=3 leave[id]!

appr[id]!
x=0

x>=7
x=0

go[id]?
x=0

Occ

Free

e : id_t
appr[e]?
enqueue(e)

e : id_t
e == front()
leave[e]?
dequeue()

stop[tail()]!

len > 0
go[front()]!

e : id_t
len == 0
appr[e]?
enqueue(e)

Fig. 1. An Uppaal network for a Train-Gate controller

2.1 Syntax and Semantics

We define a timed automata model which considers the main constructs of Up-
paal’s specification language. For the sake of simplicity, we omit an explicit
formalisation of array and record types, functions, templates and selections.

Timed Automaton. Let C be a set of clocks, which range on the non-negative
reals (R+0), and D be a set of data variables, which range in bounded domains
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(e.g., Booleans and bounded integers). Let V = C ∪ D, and Const(V) be the
set of constraints (boolean expressions) on V . Clock constraints are terms of
the form x ∼ e or x − y ∼ e, where x, y ∈ C, ∼ ∈ {<,>,=,≤,≥} and e is
an integer expression. We assume the usual set of arithmetic, Boolean and rela-
tional operators over data variables. Guards are conjunctions of clock constraints
and boolean expressions not containing clocks. Invariants follow the syntax of
guards but disallow lower bounds in clock constraints. Let G(V) ⊆ Const(V)
and I(V) ⊆ Const(V) denote the sets of guards and invariants on V , resp. Up-
dates are (comma-separated) sequences of assignments of the form var := e,
where var ∈ V and e is an expression. If var is a clock, then e must be a
non-negative integer expression. Let U(V) denote the set of updates on V . Syn-
chronisation is defined over a set Ch of channels, some of which may denote
urgent or broadcast channels. Let UCh ⊆ Ch and BCh ⊆ Ch denote all urgent
and broadcast channels in Ch. Following restrictions in Uppaal, we require that
edges labeled with urgent channels are not guarded with clock constraints. For
any a ∈ Ch, observable actions may be labeled either with a? (input, or receiving
actions) or a! (output, or emitting actions). Internal actions are labeled with ε.
Let Act = {a?, a! | a ∈ Ch} ∪ {ε} denote the set of all synchronisation labels.

A timed automaton is a tuple A = (L, l0,Lab, E, I,V). L is the set of locations,
some of which may be tagged either as urgent or committed. Let ULocs ⊆ L,
CLocs ⊆ L, and NULocs = L \ (ULocs ∪ CLocs) denote the subsets of urgent,
committed and non-urgent locations in L (ULocs ∩ CLocs = ∅). l0 ∈ L is the
initial location, Lab ⊆ Act is the set of synchronisation labels, E ⊆ L × Lab ×
G(V) × U(V) × L is the set of edges, I : NULocs → I(V) maps non-urgent
locations to invariants, and V is a set of variables. Edges (l, a, g, u, l′) ∈ E are
also denoted l a,g,u−−−−→ l′, where a is the label, g is the guard and u is the update.

Semantics of a Network. A valuation maps clocks to non-negative reals, and
data variables to corresponding domains. Let V(V) denote all possible valuations
over V , and let |= denote constraint satisfiability over valuations. For any v ∈
V(V), and δ ∈ R+, v + δ ∈ V(V) is defined s.t. ∀x ∈ C. (v + δ)(x) = v(x) + δ
and ∀ d ∈ D. (v + δ)(d) = v(d). Let u ∈ U(V) denote the sequence var1 :=
e1, . . . , varm := em, and v1 ∈ V(V). We define vi+1 ∈ V(V), 1 ≤ i ≤ m s.t.
vi+1(var i) = [[e]](vi) and vi+1(var ) = vi(var ) for any var ∈ V \ {var i} ([[e]]v
denotes the value of expression e in v). Then, we define u(v1) = vm+1.

A network is a collection of automata |A = |〈A1, ... , An〉, where
Ai = (Li, li,0,Labi, Ei, Ii,Vi). The set of global (i.e., shared) variables of the
network is given by

⋃
1≤i�=j≤n(Vi ∩ Vj); all other variables are considered local

to components. A location vector is denoted l̄ = 〈l1, . . . , ln〉, where li ∈ Li.
We use l̄[l′i/li] to denote that li in l̄ is replaced by l′i. For any set of indices J ,
we use l̄[(l′j/lj)j∈J ] to denote the replacement of lj by l′j in l̄, for each j ∈ J .
For J = {j0, . . . , jm} and j0 < j1 < . . . < jm, we use uJ to denote the se-
quential execution of updates uj0 , . . . , ujm . Let V =

⋃n
i=1 Vi, I =

∧n
i=1 Ii, and

CLocs =
⋃n

i=1 CLocsi, where CLocsi ⊆ Li is the set of committed locations of
Ai. We use CLocs(l̄) to denote the committed locations in l̄.
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The semantics of |A are given by a timed transition system (S, s0, {ε}∪R+, T ),
where S ⊆ L × V(V) is the set of reachable states (denoted s = 〈l̄, v〉); s0 =
〈l̄0, v0〉 is the initial state (l̄0 = 〈l1,0, . . . , ln,0〉, ∀ var ∈ V . v0(var ) = 0); and
T ⊆ S × {ε} ∪ R+ × S is the transition relation. Action transitions are denoted
s

ε=⇒ s′; delay transitions are denoted s
δ=⇒ s′ (δ ∈ R+). We will use s

ε=⇒ to
denote any action transition from s. Transitions are computed:

1. (from internal actions) 〈l̄, v〉 ε=⇒〈l̄[l′i/li], ui(v)〉,
for any li

ε,gi,ui−−−−−→ l′i ∈ Ti s.t. v |= gi, ui(v) |= I(l̄[l′i/li]), and li ∈ CLocsi or
CLocs(l̄) = ∅.

2. (from actions emitting on broadcast channels) 〈l̄, v〉 ε=⇒〈l̄[l′i/li], ui(v)〉,
for any li

b!,gi,ui−−−−−→ l′i ∈ Ti s.t. b ∈ BCh, v |= gi, ui(v) |= I(l̄[l′i/li]), there is
no lj

b?,gj ,uj−−−−−−→ l′j ∈ Tj (j �= i) s.t. v |= gj , and li ∈ CLocsi or CLocs(l̄) = ∅.
3. (from binary synchronisation) 〈l̄, v〉 ε=⇒〈l̄[l′i/li, l′j/lj], uj(ui(v))〉,

for any li
a!,gi,ui−−−−−−→ l′i ∈ Ti and lj

a?,gj ,uj−−−−−−→ l′j ∈ Tj (j �= i) s.t. a /∈ BCh ,
v |= gi ∧ gj , uj(ui(v)) |= I(l̄[l′i/li, l

′
j/lj]), and {li, lj} ∩ CLocs(l̄) �= ∅ or

CLocs(l̄) = ∅.
4. (from broadcast synchronisation) 〈l̄, v〉 ε=⇒〈l̄[l′i/li, (l′j/lj)j∈J ], uJ(ui(v))〉,

for any li
b!,gi,ui−−−−−→ l′i ∈ Ti s.t. b ∈ BCh, J ⊆ [1..n] \ {i} is the maximal set of

indices s.t. for any j ∈ J there is a lj
b?,gj ,uj−−−−−−→ l′j ∈ Tj , where v |= gi ∧

∧
j gj ,

uJ(ui(v)) |= I(l̄[l′i/li, (l
′
j/lj)j∈J ), and ({li} ∪ {lj | j ∈ J}) ∩ CLocs(l̄) �= ∅ or

CLocs(l̄) = ∅.
5. (from delays) 〈l̄, v〉 δ=⇒〈l̄, v + δ〉,

for any δ ∈ R+ s.t. (v+δ) |= I(l̄), CLocs(l̄)∪ULocs(l̄) = ∅, and no transition
〈l̄, v + δ′〉 ε=⇒ (δ′ < δ) can be computed from synchronisation over urgent
channels (either by rules 2,3 or 4).

Runs, Zeno Runs and Timelocks. A run is a path in the timed transition
system, ρ � s1

γ1==⇒ s2
γ2==⇒ . . ., where si ∈ S, γi ∈ {ε} ∪ R+, s.t. ρ ends in

some state sn ∈ S (if ρ is finite). A run ρ is time-divergent if the sum of all
delays occurring in ρ is infinite. A Zeno run performs infinitely many actions in
finite time. A timelock is a state where time-divergent runs are not possible. Ab-
sence of Zeno runs does not guarantee timelock-freedom, or vice versa. However,
both absence of Zeno runs and deadlocks suffice to guarantee timelock-freedom
(detailed presentations of timelocks and Zeno runs can be found in [9,11,12]).

Figure 2 illustrates the occurrence of timelocks and Zeno runs. Assume that
all loops belong to different components, and that all clock values are initially
zero. Consider the network Net1. If L1 → L2 does not occur early enough, the
loop at L3 will not have the chance to synchronise. Eventually, the invariant y<=1
will prevent further delays and the entire network will block: a time-actionlock
has occurred. A Zeno-timelock, where the only possible infinite runs are Zeno
runs, occurs if the loop in L3 synchronises with L2 → L1: Eventually, the network
will reach a state where the invariant z<=3 prevents further delays, but a Zeno
run is induced by synchronisation between the loops in L3 and L4 (z is never
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reset). Note that, in any case, the loop in T cannot iterate more than three times.
In contrast, in Net2, the loop in L1 exhibits Zeno runs but delays are always
possible in other runs; the loop in T may always iterate (once per time unit).
However, Zeno runs make Net2 unfair to T: if the loop in L1 would not be able
to iterate arbitrarily fast, fairness would be guaranteed by the invariant t<=1.

T

t<=1

Net2     L1

T

t<=1

L4

z<=3

L3

y<=1

L2Net1     L1

t==1
t=0

t==1
t=0

z>=2
a?

a!
y=0

x==1a?

x=0

Fig. 2. Timelocks, Zeno runs, and test automata

Verifying Time-Divergence in Uppaal. In Uppaal, both absence of time-
locks and Zeno runs can be characterised by a liveness formula, defined over an
extended network augmented with a test automaton [14]. Figure 2 illustrates the
approach, where the loop in T represents the test automaton. Uppaal leads-to
operator [3], -->, can be used to define the formula λU � t==0 --> t==1, which
is satisfiable when any (t==0)-state is eventually followed by a (t==1)-state in
every run. Equivalently, λU is satisfiable if all runs in the original network are
time-divergent. For instance, λU is not satisfiable in Net1 in Fig. 2 (and, perhaps
against our intuition, neither is it satisfiable in Net2).

Test automata, and corresponding λU properties, give us a simple, robust way
to verify time-divergence. However, this approach has a number of disadvantages.
Liveness verification is computationally expensive in general (it requires a form
of nested reachability analysis), and in the case of λU , it is likely to suffer from
state-explosion (absence of Zeno runs cannot be confirmed unless the whole state
space has been explored, i.e., on-the-fly verification will not give any benefits).
Unfortunately, Uppaal also disallows symmetry reduction [15] for leads-to for-
mulas. A further limitation of λU is that, in networks with timelocks, it will fail
to hold even if Zeno runs do not occur. This may be problematic whenever time-
locks are intentionally introduced. For instance, “sink” committed locations were
used to enforce global termination in the protocol of [16], which is nonetheless
free from Zeno runs (see our notes on the lipsync case study, in Sect. 5).

3 Strong Non-zenoness

Strong non-Zenoness [13] is a static property of loops (defined as cycles in the
automaton’s graph), which suffices to guarantee absence of Zeno runs. A loop
is strongly non-Zeno (SNZ) if, from the syntax of guards and updates, a clock
can be inferred to be bounded from below (x ≥ n, n ≥ 1) and reset (x := 0)
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in the loop. A network is free from Zeno runs if all loops are SNZ [13] (strong
non-Zenoness guarantees cumulative n-delays between loop iterations).

In [11,12], we obtained weaker conditions to guarantee absence of Zeno runs
in a network: (a) it suffices to consider loops that correspond to elementary cy-
cles (i.e., cycles with exactly one repeating location), and (b) Zeno runs cannot
occur if all NSNZ loops have at least one observable action, which cannot be
matched against any other NSNZ loop (blocking synchronisation with any SNZ
loop guarantees time-divergence). Our analysis in [11,12] was able to assert ab-
sence of Zeno runs for a larger class of specifications (w.r.t. [13]), but it assumes
a simple timed automata model. In what follows, we show that the analysis is not
sound when Uppaal extensions such as non-zero clock assignments and broad-
cast channels are considered, and that synchronisation can be better exploited
to improve precision. On the other hand, the analysis is insensitive to urgent and
committed locations and urgent channels (urgent actions cannot make a SNZ
loop iterate faster than its witness clock permits), and it presents advantages
when parameters and selections are ignored. These issues are taking into account
to define a more comprehensive analysis on Uppaal networks (Sect. 3.1).

Non-zero Clock Assignments. If a clock x is assigned a non-zero value in a
loop, then Zeno runs may occur even if x is a witness for strong non-Zenoness.
For instance, in Fig. 3, a Zeno run may occur in lp1 if x=4 occurs immediately
after x=0. On the other hand, x is a SNZ witness for lp2: x=4 has no effect
on x>3 because x=0 occurs after it. Similarly, x is a witness for lp3: time must
necessarily pass to enable x>3 after x=1 has occurred. In general, we must ensure
that no conflicting updates may occur between an update and a lower bound,
also taking into account that the SNZ witness may be a shared variable.

lp3lp2lp1

x>3 x=1

x=0

x=4 x>3

x=0

x>3 x=4

x=0

Fig. 3. Non-zero clock updates

Broadcast Channels. Due to non-blocking semantics, a NSNZ loop that emits
on a broadcast channel may complete its iterations even if the receivers are not
enabled. Thus, in general, synchronisation between NSNZ and SNZ loops may
not be free from Zeno runs. For instance, in Fig. 4 (where b is a broadcast
channel and a is binary channel), Zeno runs may occur between lp1 and lp2.
Zeno runs cannot occur between lp3 and lp4 (input actions are always blocking),
or between lp5, lp6 and lp7 (a SNZ loop is matched on a binary channel).

Synchronisation of Multiple Loops. Whenever two NSNZ loops have at least
a pair of matching observable actions, the analysis in [12] is unable to guarantee
absence of Zeno runs. However, the occurrence of Zeno runs may nonetheless
be prevented if the NSNZ loops need a SNZ loop to complete their iterations.
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lp7

lp6lp5

lp4

lp3

lp2

lp1

x>1
a?

x=0

b?

b!

a!

x>1
b!

x=0

b?

x>1
b?

x=0

b!

Fig. 4. Broadcast channels

This suggests that a more precise analysis can be obtained, which finds groups
of NSNZ loops that may not need to match with SNZ loops to complete their
iterations (and thus, to exhibit Zeno runs).

Templates and Selections. In many cases, the analysis of strong non-Zenoness
will benefit from parametric templates and selections: SNZ witnesses may be
computed directly from the template’s structure, regardless of the actual para-
meter values and selection bindings. Consider again the network of Fig. 1. All
loops in Train are SNZ due to guards and updates on x, i.e., parameters and
selection bindings can be ignored. Loops in Gate are NSNZ, but they may syn-
chronise only with loops in Train, on binary channels. Thus, the network is free
from Zeno runs. Furthermore, strong non-Zenoness was guaranteed regardless
of actual parameter values, which allows us to infer that the network is safe for
any number of trains. In contrast, λU may only assert absence of Zeno runs for
a fixed number of trains (with limitations in scalability).

3.1 Strong Non-zenoness for Uppaal Networks

Let A be a timed automaton (Sect. 2.1). A loop is an elementary cycle in A;
i.e., a sequence 〈l0

a1,g1,r1−−−−−→ l1 · · · ln−1
an,gn,rn−−−−−−→ ln〉, where l0 = ln and li �= lj for

all 0 ≤ i �= j < n. An observable loop is one that contains observable actions
(otherwise, it is an internal loop). We say that a run covers a loop when it visits
all its edges infinitely often. For any clock constraint φ and guard g, φ ∈ g
denotes that φ can be inferred from g. For any clock x, m ∈ N, and update
u, x := m ∈ u denotes that the value of x is m after all assignments in u are
sequentially executed. Let e be an edge in lp with guard g, a clock x occurring in
g, and n ∈ N, n > 0. We use x�n ∈ g to denote either x , n ∈ g (,∈ {=, >,≥}),
or x − y , n ∈ g (,∈ {>,≥}); we use x≥n if x − y = n ∈ g. We say that x�n

(,∈ {=, >,≥}) is the lower bound for x in g if x�n ∈ g and there is no n′ > n
s.t. x�n′ ∈ g. A refined strong non-Zenoness property can be defined as follows.

Definition 1. (SNZ loop) A loop lp is strongly non-Zeno (SNZ) if there is a
clock x and two edges e1, e2 in lp, where u is the update in e1 and g is the guard
in e2, x := m ∈ u, x�n is the lower bound for x in g, m < n, and there is no
x := m′, m′ ≥ n, in any update in the loop in the path from e1 to e2. We refer
to x as a (SNZ) witness of lp.
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Definition 2. (Safe loop) A loop lp is safe if (a) lp is a SNZ loop, and (b) lp
has a local witness, or every loop that may update any witness of lp is a SNZ
loop with a local witness.

Proposition 1. If lp is a safe loop, any run that covers lp is time-divergent.

Proof. By definition, a SNZ witness clock x guarantees time-divergence for any
run that covers lp, unless x is externally updated infinitely often, and with delay
δ < 1 between updates. Such conflicting updates cannot happen if lp is safe. ��

Definition 3. (Synchronisation Group) Let ULsync be the set of all unsafe
observable loops in a network |A. A synchronisation group (or sync group, for
short) is a maximal, non-empty set S ⊆ ULsync, s.t. for any lp ∈ S, and any
observable action in lp that synchronises on a binary channel or emits on a
broadcast channel, there is a matching action in some lp′ ∈ S.

For example, for the network shown in Fig. 5, the analysis returns only the group
{lp3, lp4}: the loops lp2 and lp3 cannot synchronise together (not without lp1,
which is a safe loop and therefore not considered for grouping).

lp4lp3lp2lp1

c?

b!
c!

b?
b!

a?x==1
c?

x=0
a!

Fig. 5. Synchronisation Groups

Proposition 2. If a Zeno run occurs which covers an observable loop lp, then
there is at least one sync group S s.t. lp ∈ S.

Proof. Any Zeno run contains a suffix ρ that only visits edges of a set UL of
unsafe loops, infinitely often [12]. Let lp ∈ UL be an observable loop. There is
some UL′ ⊆ UL, lp ∈ UL′, composed entirely by observable loops that synchro-
nise together (otherwise, ρ could not cover lp). Necessarily, for any observable
action with synchronisation label lb in any loop in UL′, there is a loop in UL′

with a matching action (if lb = a? or lb = a!, where a is a binary channel, or
lb = b?, where b is a broadcast channel). By definition, every loop in UL′ must
be part of a sync group. ��

Note that, synchronisations that are subject to Zeno runs will be identified by
sync groups (i.e., the analysis is conservative), but a sync group may represent
synchronisations that are not possible at run-time (e.g., due to the ordering of
observable actions in a loop or unreachable valuations).

Proposition 3. If all internal loops in a network are safe, and no sync groups
can be formed, the network is free from Zeno runs.
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Proof. Follows from Props. 1 and 2. ��
Implementation Notes. Templates are largely regarded as component au-
tomata, in the sense of Sec. 2.1. Lower bounds and clock assignments are in-
ferred from the syntax of guards and updates, whenever constant values can be
directly computed (in general, witnesses may not be extracted where variables,
parameters, functions or selection identifiers occur). For any array of channels, a
say, we assume that a[ei]! and a[ej]? match, unless ei and ej can be resolved
to different constant values. Sync groups may include unsafe loops in parametric
templates, whose observable actions match other actions in the loop or other
loops in the template (albeit rare in practice, this is permitted in Uppaal).

4 Helping Liveness Checks

In some networks, data constraints prevent Zeno runs from occurring, even
though unsafe loops may be found. Moreover, any Zeno run has a suffix that
visits edges of unsafe loops only, and does so infinitely often [12]. Therefore, live-
ness checks could in principle assert absence of Zeno runs by exploring solely the
behaviour of unsafe loops. In particular, our aim is to reduce the state space that
Uppaal needs to explore to verify the λU property (Sect. 2). Given a network |A,
and a set of unsafe loops UL found by static analysis (Sect. 3), an abstract net-
work α(|A,UL) can be obtained that contains just the loops in UL. In addition,
α(|A,UL) provides the necessary valuations that allow the loops in UL to behave
as they do in |A, such that, if a liveness check ensures the absence of Zeno runs in
α(|A,UL), then this also holds for |A. Our aim is to offer an static abstraction,
hence, the valuations that can be reached in |A at the loops’ entry locations
may have to be over-approximated. A consequence of this over-approximation is
that liveness checks will be sufficient-only: Zeno runs may be found in α(|A,UL)
which do not occur in |A. Hence, the precision of the abstraction depends on
how accurately we can approximate the relevant valuations at entry locations.

For example, Fig. 6(left) shows a template for processes running the Fischer’s
mutex protocol. Declarations are as follows: x is a local clock, pid and k are
integer parameters (pid, k > 0), and id is a global integer variable. The only
unsafe loop (a NSNZ loop) is 〈req → wait → req〉, and it is free from Zeno runs.
This loop may complete iterations only after id = 0, but this may not occur
arbitrarily fast (the update occurs only in the SNZ loops of competing processes).
The abstract network (Fig. 6, right) needs to consider only the NSNZ loop, and
provides initial valuations so the loop may behave as in the original network. The
liveness check may now work on a reduced state space, where the loop cannot
complete a single iteration (thus, the abstract network is free from Zeno runs,
and so is the original network). Section 5 shows that the abstract network allows
a more efficient check (see entries for fischer and fischerABS in Table 1).

4.1 Abstract Network

Let |A = 〈A1, . . . , An〉 be a network, s.t. UL �= ∅ is the set of unsafe loops
in |A. Let UL1, . . . ,ULm be a partition of UL w.r.t. network components, i.e.
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cs wait

req
x<=k

start

id==0
x=0id=0

x>k and id==pid

x<=k
x=0,
id=pid

id==0
x=0

wait

req
x<=k

new

id==0
x=0

x<=k
x=0,
id=pid

id==0
x=0

Fig. 6. A process template in Fischer’s protocol: original (left) and abstract (right)

UL =
⋃m

j=1 ULj and all loops in ULj (1 ≤ j ≤ m) belong to the same component
Ai (1 ≤ i ≤ n) (we define |A(ULj) = Ai). For any loop lp ∈ UL, L(lp) is the
set of locations, E(lp) is the set of edges, Lab(lp) is the set of labels, and V(lp)
is the set of variables occurring in lp. Let Entry(lp) be the set of locations of lp
that are either a component’s initial location, or have at least one ingoing edge
that is not part of any lp′ ∈ UL. From every ULj , we will define a component of
the abstract network that includes all loops in ULj , and provides the necessary
valuations so that loops in ULj may be entered and behave as they do in |A.

A variable is read in lp if it occurs in a guard, invariant or rhs-expression of
an assignment in lp. A variables is set in lp if it occurs in the lhs-expression of
an assignment in lp. A variable is used in lp if it occurs in a guard or invariant in
lp, or it occurs in the rhs-expression of an assignment in lp, whose lhs-expression
involves a variable that is used in lp′ ∈ UL. Let R(lp, l) ⊆ V(lp) be the set of
variables that are used in lp, and are read before they are set (or just read) in
any edge of lp, in the path starting at l ∈ Entry(lp). R(lp, l) denotes a group
of variables which may cause Zeno runs, if lp is entered at l; for such variables,
the valuations that are reachable in |A should also be reachable in the abstract
network. On the other hand, whenever lp is entered at l, the values of variables
that are not in R(lp, l) are irrelevant to the occurrence of Zeno runs, and the
abstract network may simply provide default initial values.

For each lp ∈ ULj , let Clocks(lp) be the set of clocks that occur in lp, and
Clocks(ULj) =

⋃
lp∈ULj

Clocks(lp), where |Clocks(ULj)| = k. Let NewL(ULj) =
{loc0, . . . , lock} be a set of new (non-urgent) locations. We define a set of edges,

ResE (ULj) = {(loci, ε, true, x := 0, loci+1) | 0 ≤ i < k, x ∈ Clocks(ULj)}

which allows loops in UL to be entered with valuations where two or more clocks
differ (otherwise, all clocks will have the same value when loops are entered,
possibly missing valuations that are reachable in |A and are the cause for Zeno
runs). We also assume that a set of edges InitE (lp) can be defined, which connect
lock with every l ∈ Entry(lp). For every variable in R(lp, l), edges in EntryE (lp)
must provide an over-approximation of the valuations that are reachable at l
in |A. We do not prescribe here the guards and updates that will define such
edges: approximations should be informed by the syntax of the network at hand,
both to obtain a static abstraction and to provide accurate valuations (as much
as possible). For instance, in Uppaal, selections may be used to assign a range
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of values to data variables (ranges may represent, in the worst case, the entire
domain), and extrapolation will implicitly generate reachable clock valuations
(Uppaal compute the possible delays at each location vector, during verification).

From ULj with |A(ULj) = (L, l0,Lab, E, I,V), we derive a component of the
abstract network, α(ULj) = (L′, loc0,Lab′, E′, I ′,V ′), where

– L′ = NewL(ULj) ∪
⋃

lp∈ULj
L(lp)

– Lab ′ = {ε} ∪
⋃

lp∈ULj
Lab(lp)

– E′ = ResE (ULj) ∪
⋃

lp∈ULj
(E(lp) ∪ EntryE (lp))

– I ′ = I/L′ ∪ {(l, true) | l ∈ NewL(ULj)} (I/L′ denotes I restricted to L′)
– V ′ =

⋃
lp∈ULj

V(lp)

Finally, the abstract network is given by α(|A,UL) = 〈α(UL1), . . . , α(ULm)〉.

Proposition 4. |A is free from Zeno runs if α(|A,UL) is free from Zeno runs.

Proof. For any lp ∈ UL, l ∈ Entry(lp), and var ∈ R(lp, l), every valuation
that is reachable in |A at l is also reachable in α(|A,UL). These valuations are
over-approximated either by edges in ResE (ULj) or EntryE (lp), or generated
by clock extrapolation. On the other hand, if lp is entered at l, then the values
of any var ∈ V \ R(lp, l) may not be related in α(|A,UL) and |A; however, the
iterations of any lp ∈ UL will not depend on such initial values. Consider now
a Zeno run ρ in |A s.t. (a) ρ only visits edges of a set of loops UL′ ⊆ UL, and
does so infinitely often; and (b) any variable that does not occur in UL′ has a
constant value along ρ (we can prove that if a Zeno run occurs in |A, then ρ
is a suffix of that run [12]). Let ρ′ be the Zeno run that is the projection of ρ
onto UL. Let s = 〈l̄, v〉 be any state of ρ′. Necessarily, for any variable var in
UL, either (a) v(var ) is the value at some entry location l of some lp ∈ UL, or
v(var ) can be derived from a valuation reachable at l by visiting a sequence of
edges in UL′, or (b) the value of var is irrelevant to iterations of loops in UL′.
By construction of the abstract network, we can infer the occurrence of a Zeno
run in α(|A,UL), which is similar to ρ′ except possibly for the value of any var
that never prevents iterations or enforces δ ≥ 1 delays. ��

Implementation Notes. In certain cases, it may be necessary to convert urgent
or committed locations to non-urgent locations, to avoid spurious timelocks in
the abstract network. This over-approximates the valuations reachable at the
location in question and, therefore, does not compromise the conservative nature
of our abstraction.

5 Experimental Results

Our ZenoChecker tool (ZC) implements the analysis of Sect. 3.1 over Uppaal
networks. ZC runs a cycle detection algorithm [17], checks strong non-Zenoness,
and identifies sync groups. All unsafe internal loops, and observable loops in any
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sync group, are grouped by template and returned as an Uppaal network. The
network is free from Zeno runs if no such loops are found.

Table 1 compares the analysis performed by ZC, with verification of λU in
Uppaal (Sect. 2). Very efficient tests were obtained either from ZC alone, or
from λU verified on abstract networks (when ZC found unsafe loops). For gbox,
train-gate-q and fischer, the returned unsafe loops readily revealed that
Zeno runs could not occur (we have included the abstraction just for compari-
son purposes). Uppaal found a timelock in lipsync, hence it could not inform
on the occurrence of Zeno runs. It turns out that the timelock is intentional in
lipsync [16], and ZC was able to confirm that the network is free from Zeno
runs. In the abstract networks obtained for train-gate-q, fischer, yahalom
[18] and zeroconf [19], committed and urgent locations were made non-urgent,
and a number of unsafe loops were removed before λU was verified (it was ev-
ident that the removed loops could not contribute to the occurrence of Zeno
runs). A timelock was found in yahalom, and yahalomABS was used to refine
the analysis and show that Zeno runs could also occur. Zeno runs were found
both yahalomABS and zeroconfABS; as the abstractions are conservative, this

Table 1. Checking absence of Zeno runs. Performance figures are rounded up, and were
obtained with memtime (www.uppaal.com), running on 2 Pentium 3, 1.4GHz processors,
1GB RAM, Debian Linux 2.6.8. Uppaal’s verifyta executed with default options. ZC:
our tool; λU : liveness check in Uppaal; ⊥: aborted (out of time); - = not applicable;
?: inconclusive (N = number of NSNZ loops found by ZC); �: free from Zeno runs; P:
parameter value; *ABS: abstract network. For fddi and csmacd-u, all instances were
modeled by different, non-parametric templates (e.g., csmacd-u32 denotes the csma/cd
protocol with 32 competing stations).

Network Time (sec) RSS (MB) VSize (MB) Result
ZC λU ZC λU ZC λU ZC λU

gbox 1 11644 16 25 256 68 ? (7) sat
gboxABS - 1 - 1 - 2 - sat
lipsync 1 1 16 3 256 53 � not sat(?)
train-gate(P=8) 1 1496 16 715 256 762 � sat
bocdp 890 ⊥ 21 ⊥ 260 ⊥ � sat
fddi(32/4) 2 ⊥ 18 ⊥ 255 ⊥ � sat
csmacd 1 5204 15 16 255 60 � sat
watersystem 1 1897 16 41 256 82 � sat
train-gate-q(P=8) 1 2361 15 949 256 1335 ? (1) sat
train-gate-qABS(P=8) - 1 - 1 - 1 - sat
fischer(P=6) 1 ⊥ 14 ⊥ 256 ⊥ ? (1) sat
fischerABS(P=6) - 3665 - 17 - 63 - sat
csmacd-u32 1 1 18 54 256 5 ? (97) not sat
bmp 1 1 15 1 256 1 ? (4) not sat
yahalom 1 1 15 1 255 2 ? (13) not sat(?)
yahalomABS - 1 - 1 - 2 - not sat
zeroconf 1 1676 16 274 256 315 ? (15) not sat
zeroconfABS - 1 - 1 - 1 - not sat(?)
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required close examination of the networks to ensure that the Zeno runs were
not spurious.

6 Conclusions

We discussed an efficient analysis of Zeno runs on timed automata (based on
Tripakis’ strong non-Zenoness property), tailored to Uppaal’s rich specification
language. This is implemented in a tool, which accepts Uppaal networks and finds
all possible loops where Zeno runs may occur. The analysis is static and thus
conservative; if no unsafe loops are found the network is free from Zeno runs,
but this may be the case even if unsafe loops are found. A good tradeoff be-
tween precision and efficiency is achieved thanks to a refined definition of strong
non-Zenoness, and a comprehensive examination of synchronisation scenarios. In
general, whenever the static analysis is inconclusive, absence of Zeno runs must
be verified through liveness properties. This verification, however, can hardly
avoid state-explosion. We improved this case with an abstraction that reduces
the original network to (an approximation of) the behaviours of unsafe loops. In
this way, a liveness check may be spared much of the state space where Zeno runs
cannot occur. Positive experimental evidence was obtained, which showed that
the combined approach of static analysis and abstraction may be much more effi-
cient than direct liveness verification, and yet precise enough to assert absence of
Zeno runs. As future work, our tool could be extended to infer absence of Zeno
runs from expressions where parameters and data variables occur, given that
data domains are bounded in Uppaal. In addition, as the analysis is insensitive
to urgent behaviour, it could be adapted easily to deal with Timed Automata
with Deadlines [8,9] (where absence of Zeno runs imply timelock-freedom).

Acknowledgments. We are grateful to the researchers who made the bench-
mark models available, and to the reviewers for their insightful comments.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126,
183–235 (1994)

2. Yovine, S.: Kronos: A verification tool for real-time systems. International Journal
of Software Tools for Technology Transfer 1(1-2), 123–133 (1997)

3. Berhmann, G., David, A., Larsen, K.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems. LNCS,
vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

4. Wang, F.: Model-checking distributed real-time systems with states, events, and
multiple fairness assumptions. In: Rattray, C., Maharaj, S., Shankland, C. (eds.)
AMAST 2004. LNCS, vol. 3116, pp. 553–568. Springer, Heidelberg (2004)

5. Regan, T.: Multimedia in temporal LOTOS: A lip synchronisation algorithm. In:
PSTV XIII, 13th Protocol Spec. Testing & Verification, North-Holland, Amster-
dam (1993)
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Abstract. We describe a partial order reduction technique for a real-
time component model. Components are described as timed automata
with data ports, which can be composed in static structures of unidi-
rectional control and data flow. Compositions can be encapsulated as
components and used in other compositions to form hierarchical models.
The proposed partial order reduction technique uses a local time seman-
tics for timed automata, in which time may progress independently in
parallel automata which are resynchronized when needed. To increase
the number of independent transitions and to reduce the problem of
re-synchronizing parallel automata we propose, and show how, to use in-
formation derived from the composition structure of an analyzed model.
Based on these ideas, we present a reachability analysis algorithm that
uses an ample set construction to select which symbolic transitions to
explore. The algorithm has been implemented as a prototype extension
of the real-time model-checker Uppaal. We report from experiments
with the tool that indicate that the technique can achieve substantial
reduction in the time and memory needed to analyze a real-time system
described in the studied component model.

1 Introduction

Component-based development has been successfully used for desktop and e-
business applications, and it is currently being introduced in many embedded
systems. The resource constrained nature of these systems has motivated the
development of specific component models [1,14,16,21] and formal frameworks,
e.g. [8,9,11].

In general, a component based system is a composition of components, where
a component is an open system that accepts input from its environment and
produces output. The internal behaviour of a component can be described by a
composition, thereby forming a hierarchy of compositions. Components interact
with their environment through ports, according to interfaces defined for the
ports. Figure 1 shows three components A, B and C. The two components A
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A

B

C

Output port
Input port
Triggering input port

p1

p2

p3

p4

p5

p6

Fig. 1. An example of composition where components A, B and C are composed by
connecting port p1 to p3, and p2 to p4

and B each have an output port, while component C has three input ports and an
output port. Components can be composed into more complex functional units
with well defined interfaces. A horizontal composition is a set of components
with their ports connected, as in Fig. 1. The connections define how components
can interact within a composition. A vertical composition is a component with
its internal behaviour defined by a horizontal composition.

We use a model for components and composition based on the SAVE1 com-
ponent model [1,5], and designed for vehicle applications with analysability and
safety in mind. The component model is similar to IEC 1131 [16] and Rubus [16].
In our model a component is either idle or executing, and data is transferred
from a component when its execution has finished. Some input ports are called
trigger ports, and are used to trigger the transition of a component’s state from
idle to executing. Control flow is specified by means of trigger ports: when one
component becomes idle, it can trigger other components so that they become
executing. As timeliness is an important property for many embedded systems,
we model the execution of components as timed automata [2].

Model checking is an well-established and popular approach for analysis of
models, although it is inherently complex and suffers from the so-called state-
space explosion problem [13]. Partial order reduction [10,20,18,7] has been sug-
gested as a technique to reduce the state-space explosion caused by parallelism.
The idea is to explore representative traces — a property preserving subset of
the full model based on independence of transitions. In this paper we present a
partial order reduction technique for real-time systems, which is guided by the
structure the component based system being analyzed. As in [3,17] we use local
time semantics to increase independence. For timed automata the implicit syn-
chronization of global time restricts independence of actions. For our component
model we note that the separation of communication from internal computa-
tions makes internal transitions independent of actions in other components. We
also note that we have extensive information on how components communicate,
which is useful for our ample set construction. To increase independence fur-
ther we relax the synchronization, so that we abstract from the exact time of

1 SAVE is a project supported by Swedish Foundation for Strategic Research. See
http://www.mrtc.mdh.se/SAVE/ for more information.
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non-triggering write operations while preserving the order of writes. We present
an algorithm for partial order reduction that takes advantage of these ideas, and
provide some experimental results from a prototype implementation. The exper-
iments indicate that that our component model is well suited for partial order
reduction, and they show good additional reductions when the further relaxed
synchronization is used.

Related work includes partial order reduction techniques for timed systems,
in particular the local time semantics for timed automata first introduced by
Bengtsson et. al., [3]. They also apply the partial order reduction in reachability
analysis of timed automata. This work is extended to Timed LTL model-checking
by Minea in [17]. We adopt the local time semantics to develop a reachability
analysis algorithm for a component model and study how the particular se-
mantics and the static structure of the model can be used to improve previous
results. A more recent approach to symbolic model checking of timed automata
based on partial order semantics is presented by Lugiez et. al., in [15]. It relies
on constraints over event occurrences, instead of clock constraints. In [19], Salah
et. al., show that the union of zones reached by interleavings of the same set of
transitions is convex. Concurrent semantics for networks of timed automata are
investigated in [6,4], by a symbolic unfolding into petri nets with read arcs (to
support urgency and invariants).

The rest of this paper is organized as follows: the component model is de-
scribed in Section 2. In Section 3 we describes our approach to partial order
reduction, and in Section 4 we give an algorithm for checking reachability and
presents results from an experiment. Section 5 concludes the paper.

2 The Component Model

We introduce timed behaviours to model the execution of components as timed
automata, and go on to define syntax and semantics for our component model.

Example 1 (Running Example). Figure 1 shows a horizontal composition of com-
ponents A, B and C. Assume A is a timer, C a controller, and B a component
generating setpoint for the controller. The timer A is connected to the input
trigger port p3 to periodically activate C. The port p5 is used to read sensor in-
put, which is compared to the setpoint when the controller computes its output
to the actuator, port p6.

2.1 Timed Behaviour

We define a timed behaviour as a timed automaton, extended with data variables
and a final location such that no edges are leading out from this location. For
a timed behaviour we have two sets of variables, the set VC of clock variables,
and VD of data variables. The domain of variables in VC is the non-negative real
numbers R≥0, and for variables in VD the domain is a bounded set of integers
INT. We denote by P(VC) the power-set of VC, i.e. the set of all subsets of VC.
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l0
y ≤ T

y = T
y := 0

l1 y ≤ J

lf
(a)

z := 0

l0 z ≤ Max

z ≥ Min

a := 1 − a

lf

(b)

Fig. 2. Timed behaviours: (a) a timer with period T and jitter J, (b) a computation
updating data variable a after between Min and Max time units

A term t is generated by the grammar t ::= m | y | t1⊗t2, where m is a natural
number, y ∈ VD is a data variable, ⊗ ∈ {+,−,×, /}, and t1, t2 are terms. Let U
be the set of variable updates, each in the form y := t for a data variable y ∈ VD

and a term t. An atomic clock constraint is of the form y ∼ m, for y ∈ VC, m a
natural number, and ∼∈ {<,≤,=,≥, >}. Similarly, an atomic data constraint
is of the form t1 ∼ t2, with terms t1 and t2. We denote by conj(VD, VC) the set of
conjunctions of atomic constraints. For g ∈ conj(VD, VC) we have gD ∈ conj(VD)
the atomic data constraints of g, and gC ∈ conj(VC) the atomic clock constraints
of g.

A timed behaviour is a timed automaton B = 〈N, l0, lf , VD, VC, r0, rf , E, I〉,
where N is a set of locations, l0 is the initial location, lf is the final location, VD

and VC are sets of variables, r0 ⊆ VC and rf ⊆ VC are sets of clocks (initial and
final resets), E is a set of edges so that E ⊆ N × conj(VD, VC)×U ×P(VC)×N ,
and I maps each location l in N \ {lf} to its invariant I(l), a conjunction of
upper bounds on clocks (y ≤ m or y < m). We write l

g,e,r−→ l′ iff 〈l, g, e, r, l′〉 ∈ E
to denote an edge from location l to l′ with a guard g, variable update e, and
reset clocks r ⊆ VC.

2.2 Component

A component in our setting is defined by its interface and a timed behaviour.
The interface of a component consists of data ports and trigger ports, where con-
nected data ports define data flow between components, and connected trigger
ports define control flow. The ports are either input or output. An input data
port has an associated data variable holding the current data item for this port.

A component is initially idle, and it remains in this state until all input
trigger ports have been activated, at which point it is triggered and switches
to the executing state. The internal computation of a component starts with a
read phase, where all the input data ports are stored internally. The internal
copies of input data are used together with internal state variables during the
execute phase, where the internal behaviour of the component is executed. When
the execute phase is over the write phase writes output to the output data
ports. Finally, the input trigger ports are reset and all outgoing trigger ports are
activated, after which the component returns to the idle state.
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Each component C is a tuple 〈Pin, Pout, Ptrig,B, π〉, where Pin is a set of input
ports, Pout is a set of output ports, Ptrig ⊆ Pin are the trigger input ports, B is
the timed behaviour, and π : P �→ VD is a mapping from ports to variables. We
denote by P the set of ports Pin ∪ Pout of a component.

Example 2. Component A of Example 1 has no input ports so it is spontaneously
triggered. Figure 2 (a) shows the timed behaviour BA of A, with period T = 10
and jitter J = 1. When A is triggered the read phase leads to the initial location
l0. The automaton uses a clock y to ensure that lf is reached every T time units,
with a non-deterministic offset J. Reaching the final location lf starts the write
phase, after which A is spontaneously triggered again. Figure 2 (b) shows the
timed behaviour BB of component B, with response time between Min = 5 and
Max = 20. The clock z is used to ensure that lf is reached after between Min
and Max time units. The setpoint value a is updated to 1−a. The port mapping
πB for B is such that πB(p2) = a, meaning that a is copied to p2 in the write
phase.

Semantics. In order to define a state of a component we first introduce clock
and data valuations. For a set of clocks VC a clock valuation is a map u : VC �→
R≥0. Similarly, for a set of data variables VD and ports P a data valuation is a
map v : (VD ∪ P ) �→ INT. Operations on valuations are:

u′ = [r := 0]u iff u′(y) = 0 for clocks y ∈ r, and
u′(y′) = u(y′) for y′ �∈ r.

v′ = [y := t]v iff v′(y) = v(t) for y, and
v′(y′) = v(y′) for y′ �= y.

u′ = u ⊕ δ iff δ ∈ R≥0 and u′(y) = u(y) + δ for any clock y.

We introduce the idle location l⊥ �∈ N , and denote by N⊥ the set N ∪ {l⊥}.
A state of a component is a tuple 〈l, v, u〉, where l is a location in N⊥, v is a data
valuation, and u is a clock valuation. We introduce values active and inactive
for trigger ports, and define a component as triggered for a data valuation v,
triggered(v), iff for each p ∈ Ptrig we have v(p) = active. A function input(v) is
used to copy values from input ports to corresponding internal variables, simi-
larly output(v) copies internal variables to output ports, and idle(v) inactivates
trigger inputs:

input(v) = [y := p | p ∈ Pin, y = π(p)]v
output(v) = [p := y | p ∈ Pout, y = π(p)]v
idle(v) = [p := inactive | p ∈ Ptrig]v

The transition rules for a component C are:

– delay transition: 〈l, v, u〉 δ−→ 〈l, v, u ⊕ δ〉 if δ ∈ R≥0, u ⊕ δ |= I(l),
l �= lf , and if l = l⊥ then ¬triggered(v).

– internal transition: 〈l, v, u〉 τ−→ 〈l′, v′, u′〉 along an edge l
g,e,r−→ l′ with e in the

form y := t if v |= gD, u |= gC, u′ |= I(l′), v′ = [y := t]v, and u′ = [r := 0]u.
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– read transition: 〈l⊥, v, u〉 r−→ 〈l0, input(v), [r0 := 0]u〉 if triggered(v).
– write transition: 〈lf , v, u〉 w−→ 〈l⊥, idle(output(v)), [rf := 0]u〉.

We use the following restriction on the internal behaviour of components to
avoid spurious local time traces:

Definition 1 (Time Divergence). We require for a timed behaviour that time
diverges, i.e. that there is no time-stop due to invariants, and within any finite
time bound only a finite number of transitions can be taken (non-zenoness).

2.3 Composition

A composition is a set of interconnected components, also known as a horizontal
composition. We define a composition as a tuple 〈P x

in, P
x
out, C,X〉, where P x

in and
P x

out are external ports connecting the composition to its environment, C is a set
of components and X is a set of connections. A connection x = 〈p, p′〉 connects
port p ∈ (P i

out∪P x
in) to port p′ ∈ (P j

in∪P x
out) for Ci and Cj in C. We do not allow

conflicting connections, i.e. connecting output ports of the same component with
the same port.

Example 3. The composition of Fig. 1 has an external input port p5 for sensor
input, an external output port p6 for actuation, three components A, B and C,
and two connections 〈p1, p3〉 and 〈p2, p4〉.

Semantics. A state of a composition is a triple 〈l, v, u〉, where l is a location
vector, v is a data valuation and u is a clock valuation. For a state s we denote
by s[i] the state 〈l[i], v[i], u[i]〉 of a component Ci ∈ C. The local valuations v[i]
and u[i] for a component Ci are such that v[i](y) = v(y) for y ∈ (P i ∪ V i

D), and
u[i](y) = u(y) for y ∈ V i

C. In addition to the local valuations, the data valuation
v also maps external ports P x to their values. The transfer of data and triggering
introduced by writing to ports Q:

writedata(Q, v) = [p′ := p | 〈p, p′〉 ∈ X , p ∈ Q, p′ ∈ P x
out ∪ P j

in \ P j
trig]v

writetrig(Q, v) = [p′ := active | 〈p, p′〉 ∈ X , p ∈ Q, p′ ∈ P j
trig]v

The transition rules for a composition are then:

– delay transition: s δ−→ s′ if s[i] δ−→ s′[i] for each component Ci ∈ C.

– internal transition: s τ i

−→ s′ in the behaviour of Ci if
s[i] τ−→ s′[i], and s[j] = s′[j] for j �= i.

– read transition: s ri

−→ s′ if s[i] r−→ s′[i] and s′[j] = s[j] for j �= i.

– write transition: s
wi

−→ s′ where either Ci ∈ C for internal component Ci

writing to ports Q = P i
out or i = Q for external write to ports Q ⊆ P x

in if
• internal state of writer is updated: s[i] w−→ s1[i] if Ci ∈ C,

s1[j] = s[j] for j �= i (for external writes s1 = s), and
• data or triggering is transferred from ports Q:

s′ = 〈l1, v′, u1〉 with v′ = writetrig(Q,writedata(Q, v1)).
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2.4 Composite Component

In our component model [1,5] we introduce composite components to support hi-
erarchical composition, by allowing the behaviour of a component to be described
by a composition. As any other component, a composite component is defined
by its interface (ports) and its timed behaviour. Unlike other components the
behaviour of a composite component is described as an internal composition.
This is sometimes referred to as vertical composition. Composite components
can be constructed from compositions that are time divergent (Definition 1).
We also require that internal components have at least one input trigger port,
to avoid spontaneous triggering.

For a composite component C, an internal transition is either an internal,
read or write transition of some internal component. The read operation of C
correspond to a write to the external input ports of the internal composition.
Component C can write when all internal components are idle. The port values
are already updated by internal writes, so the write operation only need to
inactivate input trigger ports.

3 Partial Order Reduction

The idea of partial order reduction is to explore representative sequences of
independent transitions, instead of examining all possible sequences. However,
the implicit synchronization of global time restricts independence for transi-
tions of timed automata. As in [3,17] we use local time semantics to increase
independence. It essentially allow us to analyse components of a composition in
isolation, and then synchronize the components to a shared state whenever one
writes to the others. To increase independence further than [3,17] we relax the
synchronization, so that we abstract from the exact time of non-triggering write
operations.

3.1 Representatives and Local Time Traces

To describe the concept of representative traces, we first need a notion of in-
dependent transitions. Two transitions are considered independent if they can
be reordered within a trace without affecting the final state of the trace, or the
validity of the trace. We denote by enabled(σ) the set of transitions that can
immediately follow a finite trace σ, and define independent transitions as in [17]:

Definition 2. Two transitions α1 and α2 are independent iff for any trace σ
such that α1, α2 ∈ enabled(σ):

– Enabledness: α2 ∈ enabled(σα1) and α1 ∈ enabled(σα2).
– Commutativity: Any state reachable by the trace σα1α2 can also be reached

by the trace σα2α1.

Independence is a sufficient condition for reordering transitions within a trace
so that the same state is reached, however it is not a sufficient condition for
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reordering of transitions during reachability analysis. There could for example
be a transition α3 in enabled(σα1) which is not in enabled(σα2), which we
would miss if we only considered the trace σα2α1. For analysis of a composition
we need a strategy to make sure that some representative trace is explored for
each possible trace of the full state graph. We examine conditions for reordering
further in Sect. 4.1.

Independence can be concluded from the structure of a composition, us-
ing a set active(α) of components that participate in a transition α such that
active(αi) = {Ci} for α ∈ {τ, δ, r} and active(wi) = {Ci} ∪ {Cj | 〈p, p′〉 ∈ X , p ∈
P i

out, p
′ ∈ P j

in}. We then restate a theorem found in e.g. [3,17], i.e. that two local
time actions are independent if no automata participate in both actions:

Theorem 1. active(α1) ∩ active(α2) = ∅ ⇒ independent(α1, α2)

Proof. See [17]. ��

We reduce the independence relation further (for internal transitions) in
Sect. 3.2, where we introduce local time semantics. We say that two transitions α1

and α2 are dependent, and write dependent(α1, α2), whenever independent(α1,
α2) cannot be concluded from the structure of a composition. The dependency
relation is thus a safe approximation of transitions that are not independent.

We define a local time trace to be a representative of some timed trace. A
trace σ is a representative of a trace σ′ iff independent transitions of σ can be
reordered to construct σ′. A timed trace (as defined in [2]) is a pair 〈σ, t〉 such
that σ(i) is the ith transition of the trace, t(i) is the time of this transition, and
the timepoints t(i) are monotonic, i.e. i ≤ j implies t(i) ≤ t(j). Local time traces
are then defined as:

Definition 3. A local time trace is a trace 〈σ, t〉 such that dependent transitions
are monotonic, i.e. for any σ(i) and σ(j) that are dependent we have i ≤ j
implies t(i) ≤ t(j).

3.2 Local Time Semantics

To keep track of the local time within components we introduce a reference
clock ci ∈ V i

C for each component Ci ∈ C. We define a local delay transition for
component Ci, where other components do not need to delay correspondingly.

We relax the synchronization of our local time semantics compared to [3]
by completing the internal computation of a component before synchronizing
with other components. This can be done since values written to input ports
of a component are not used during its internal computation. We run internal
computations ahead implicitly in the rule for a write operation wi of Ci by
requiring that any Cj such that dependent(wi, wj) is either idle (l[j] = lj⊥) or
finished (l[j] = ljf ).

Time is synchronized so that the local time in all components dependent on
a write operation is ensured to be later than the local time of the writer, i.e.



Partial Order Reduction for Verification of Real-Time Components 219

ci ≤ cj for a writer Ci and any Cj such that dependent(wi, wj). This is to make
traces of the local time semantics be local time traces, according to Definition 3.
The set of components that are triggered by a write, given a location vector l
and data valuation v, is:

trig(l, v) = {Cj | l[j] = lj⊥ ∧ triggeredj(v[j])}
The clock synchronization constraint synci(l, v) also preserves the exact time of
triggering by requiring that ci = cj for triggered components Cj :

synci(l, v) =

⎛

⎝
∧

Cj∈trig(l,v)

ci = cj

⎞

⎠ ∧

⎛

⎝
∧

dependent(wi,wj)

ci ≤ cj

⎞

⎠

We use compositions to describe component based systems. We define local
time transitions s −→t s′ for a composition using the corresponding rules for
transitions s −→ s′:

– delay transition: s δi

−→t s′ if s[i] δ−→ s′[i] and s′[j] = s[j] for j �= i.

– internal transition: s τ i

−→t s′ if s
τ i

−→ s′.
– read transition: s ri

−→t s′ if s
ri

−→ s′.
– write transition: s wi

−→t s′ for s = 〈l, v, u〉 if s
wi

−→ s′, u |= synci(l, v), and
either l[j] = lj⊥ or l[j] = ljf for Cj such that dependent(wi, wj).

Lemma 1 shows that internal transitions in the local time semantics are in-
dependent of write transitions. This independence makes our model suited for
partial order reduction, and enables the weak synchronization (otherwise we
would need ci = cj also for non-triggering participants, instead we use ci ≤ cj

to preserve order of write operations).

Lemma 1. For the local time semantics we have:

– independent(αi
1, α

j
2) if i �= j and α1, α2 in {τ, δ}

– independent(wi, αj) if i �= j and α in {τ, δ}
– independent(wi, rj) if Cj �∈ active(wi)
– independent(wi, wj) if active(wi) ∩ active(wj) = ∅

Proof. by Theorem 1, and for independent(wi, τ j) we note that wi is not enabled
if τ j is enabled for Cj ∈ active(wi), similarly for δj . ��
Theorem 2 (Correctness of Local Time Semantics). Assume local time
states s0 and sf = 〈lf , vf , uf〉, global time states s′0 and s′f = 〈l′f , v′f , u′

f〉, and a
component Ck. Let s0 = s′0 except for reference clocks which are zero in s0 but
not included in s′0.

– (Soundness) whenever s0 −→∗
t sf then s′0 −→∗ s′f so that lf [k] = l′f [k],

vf [k](y) = v′f [k](y) for y ∈ V k
D (i.e. not for y ∈ P k), and uf [k] = u′

f [k].
– (Completeness) whenever s′0 −→∗ s′f then s0 −→∗

t sf so that lf [k] = l′f [k],
vf [k](y) = v′f [k](y) for y ∈ V k

D (i.e. not for y ∈ P k), and uf [k] = u′
f [k].

Proof. Soundness is shown by induction over a local time trace, and completeness
by construction of the corresponding local time trace (see [12]). ��
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3.3 Symbolic Local Time Semantics

We define a zone Z as a set of clock valuations, and use symbolic states 〈l, v, Z〉 to
represent all states 〈l, v, u〉 such that u ∈ Z. For a zone Z and a clock constraint
g we define conjunction Z ∧ g as the set of valuations u ∈ Z such that u |= g,
reset r(Z) as u′ such that u′ = [r := 0]u for u ∈ Z, and symbolic local delay Z↑i

as u′ such that for u ∈ Z, δ ∈ R≥0 we have u′[i] = u[i] ⊕ δ and u′[j] = u[j] for
i �= j.

The initial symbolic state is 〈l0, v0, Z0〉, where Z0 = ({u0})↑ ∧ I(l0) incorpo-
rates an initial delay in all components from a zone with a single solution u0. To
improve the presentation we incorporate the semantics of a component into the
transition rules for a composition:

– internal transition: 〈l, v, Z〉 τ i

=⇒t 〈[li′/li]l, v′, Z ′〉 along an edge li
g,e,r−→ li

′ with
e in the form y := t if v |= gD, v′ = [y := t]v, and
if li

′ = lif then Z ′ = r(Z ∧ gC), otherwise Z ′ = (r(Z ∧ gC))↑i ∧ Ii(li′).

– read transition: 〈l, v, Z〉 ri

=⇒t 〈[li0/li⊥]l, v′, Z ′〉 if l[i] = li⊥ and triggeredi(v[i]),
with v′[i] = input(v[i]), v′[j] = v[j] for j �= i, and
if li0 = lif then Z ′ = ri

0(Z), otherwise Z ′ = (ri
0(Z))↑i ∧ Ii(li0).

– write transition: 〈l, v, Z〉 wi

=⇒t 〈[li⊥/lif ]l, v′, Z ′〉 where either Ci ∈ C writing
to ports Q = P i

out, or i = Q for external write to Q ⊆ P x
in, if l[i] = lif and:

• l[j] = lj⊥ or l[j] = ljf for Cj such that dependent(wi, wj),
• v1[i] = idle(output(v[i])) if Ci ∈ C, v1[j] = v[j] for j �= i,
• v′ = writetrig(Q,writedata(Q, v1)), and
• if triggeredi(v′[i]) then Z ′ = ri

f (Z ∧ synci(l, v)), otherwise
Z ′ = (ri

f (Z ∧ synci(l, v)))↑i.

For global time semantics a zone can be represented as a conjunction of clock
difference constraints. Constraints on two clocks are preserved by global time
delay because both clocks grow equally, but for local time we need a different
zone representation that is preserved by local time delay. Local time zones can
be efficiently represented [3,17] as difference constraints on reference clocks ci

and timestamps ty for the latest reset of a clock y.

Example 4. We explore a symbolic trace of the composition in Fig. 1. In the
initial state 〈[lA⊥, lB⊥, lC⊥], v0, Z0〉 both A and B can read, since they have no trigger
input ports (and so all their triggers are trivially active). If A reads first (rA)
we get to a state 〈[lA0 , lB⊥, lC⊥], v0, Z1〉 with Z1 = Z↑A

0 ∧ (y ≤ 10). We continue the
trace with rB to 〈[lA0 , lB0 , lC⊥], v0, Z2〉 with Z2 = rz(Z1)↑B ∧ (z ≤ 20) for rz = {z}.
From this state internal transitions τA and τB are enabled. By τB we get to a
state 〈[lA0 , lBf , lC⊥], v3, Z3〉 with v3 = [a := 1]v0 and Z3 = Z2∧(z ≥ 5). Component
B cannot write from this state, because wB depends on wA and A is neither idle
or in its final location, so we take τA to the state 〈[lA1 , lBf , lC⊥], v3, Z4〉 with Z4 =
ry(Z3 ∧ y = 10)↑A ∧ y ≤ 1 for ry = {y}. Another τA leads to 〈[lAf , lBf , lC⊥], v3, Z4〉.
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From this state both A and B can write, A when 10 ≤ cA ≤ 11 and B when
5 ≤ cB ≤ 20, but it cannot be determined if C will get data from B before being
triggered by A.

Theorem 3 (Correctness of Symbolic Local Time Semantics). Assume
location vectors l0, lf , variable valuations v0, vf , clock valuations u0, uf , and
local time zones Z0, Zf .

– (Soundness) whenever 〈l0, v0, Z0〉 =⇒∗
t 〈lf , vf , Zf 〉 then for any uf ∈ Zf

〈l0, v0, u0〉 −→∗
t 〈lf , vf , uf〉.

– (Completeness) whenever 〈l0, v0, u0〉 −→∗
t 〈lf , vf , uf〉 then

〈l0, v0, Z0〉 =⇒∗
t 〈lf , vf , Zf 〉 so that uf ∈ Zf .

Proof. Symbolic transition rules are constructed from local time semantics and
definitions of zone operations. Preservation of zone representation is shown
in [17]. See [12]. ��

4 Reachability Analysis

We perform reachability analysis by exploring a subset of enabled transitions
from each explored state, in order to reach a target location denoted lk� for a
component Ck. In the analysis we use the symbolic local time semantics, to get
the independence introduced in our local time semantics and to get a finite state
space.

4.1 The Ample Set Method

An ample set [18] is a subset of the enabled transitions that is sufficient to
explore when model checking. The ample set method reduces a state graph G to
a subgraph R such that correctness of model checking is preserved, i.e. checking
R gives the same result as checking G. In general we need to select an ample set
so that the checked property is preserved, i.e. a property holds in a representative
trace σ in R iff the same property holds in all traces σ′ in G represented by σ,
and so that all traces in G have a representative in R.

For local reachability we note first that we only need to consider traces of G
that can actually reach the target location. We also note that local reachability
in a component Ck is preserved by representative traces, since the reordering
of independent transitions does not affect which local states are reachable. The
following describes how we can construct an ample set:

Definition 4 (Ample Set Construction). From the static structure of a com-
position we compute Pk the enabled transitions that can give progress in Ck, i.e.
transitions of Ck or of some Cj producing data or triggering to Ck (possibly via
other components). From Pk we define the ample set as follows:

– The ample set is empty iff Pk is empty, otherwise some α0 ∈ Pk is in the
ample set. This must hold for each valuation of a zone, as discussed in [17].
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– If α is in the ample set, α′ is enabled, and dependent(α, α′) then α′ must
also be in the ample set.

– If α is in the ample set, α′ is not enabled, dependent(α, α′), and there is a
transition α′′ that can lead to α′ ∈ Pk before α is taken, then α′′ must also
be in the ample set. This can be determined from the static structure of a
composition.

– For a local cycle, at least one transition in Pk and outside of the cycle is in
the ample set.

Theorem 4. For any trace σ in G reaching the target location, the subgraph R
induced by the ample set construction in Definition 4 contains a representative
of an extension σρ in G.

Proof. By a construction similar to that in [7], with simplifications for local
reachability, and cycle closing due partly to construction of Pk (see [12]). ��

As mentioned in [18] constructing an optimal ample set with respect to state
space reduction is NP hard, so we suggest a heuristic. The construction in De-
finition 4 starts from a transition α0 in Pk, according to the first rule. Once a
transition has been selected the other rules are used to find the least fixpoint,
which is an ample set. To reduce the size of the ample set we select α0 as an
internal transition τ i, if possible. Otherwise select αi with minimal upper bound
on the reference clock of component Ci. This reduces the possibility for other
components to interfere with the execution of αi. We also prefer read operations
over writes when selecting α0.

4.2 Model Checking Algorithm

An algorithm for symbolic reachability analysis based on the symbolic local time
semantics and ample set construction is shown in Fig. 3. It is a standard reach-
ability algorithm, with the exception that the ample transitions are explored
instead of all enabled transitions. The normalisation max(Z) is used to ensure
termination, as the symbolic semantics is not finite. In [3] it is shown that there
is a finite partitioning of the state space, and [17] suggests a method for con-
structing max(Z). Efficient representations of local time zones are also discussed
in [3,17].

We expect the algorithm to perform well: the partial order reduction is a
subset of the symbolic local time semantics, by exploring only the ample set: a
subset of enabled transitions. The local time semantics is sound (Theorem 2)
with respect to the global time semantics. The partitioning of the state space
induced by max(Z) is however incomparable with the normalisation of global
time zones, so we cannot conclude any strict improvements. For timed automata
with local time semantics [3,17] soundness is shown only for synchronized states,
and in general for a local time state there might not exist a corresponding syn-
chronized state. This means that some local time traces lead outside the global
time semantics, giving a larger state graph to search. The components of our
model are time divergent, can always accept input, and never require input to
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PASSED := ∅
WAITING := {〈l0, v0, Z0〉}
repeat for some 〈l, v, Z〉 ∈ WAITING

WAITING := WAITING \ {〈l, v, Z〉}
if l[k] = lk� then return “REACHABLE”
else if max(Z) �⊆ Z′ for all 〈l, v, Z′〉 ∈ PASSED then

PASSED := PASSED ∪ 〈l, v,max(Z)〉
SUCC := {〈l′, v′, Z′〉 | 〈l, v, Z〉 α

=⇒t 〈l′, v′, Z′〉, α ∈ ample(l, v, Z)}
WAITING := WAITING ∪ SUCC

until WAITING = ∅
return “NOT REACHABLE”

Fig. 3. An algorithm for symbolic reachability analysis, exploring a selected subset of
enabled transitions from each state until component Ck reaches lk�

be available. Because of this components can always catch up, which is why we
can show soundness for local states.

Example 5. A symbolic trace is described in Example 4. The local traces for
A and B are rAτAτA and rBτB, respectively. For global time semantics there
are six possible interleavings, although probably more interesting nine states are
passed. When searching for a location in C using the ample set construction
in Definition 4 we select either rA and rB first. The selected component will
reach its final location before the other components read operation is selected.
Even though we have not specified which transition to select only one trace
is explored, because rA and rB are independent. The trace explored using the
ample set construction passes through six states, instead of the nine for global
time semantics.

4.3 Experimental Results

We have developed a prototype implementation of our method as an extension
of the Uppaal tool2. Figure 4 illustrates the synthetic benchmarks we use to
evaluate our implementation (similar to the benchmarks of Salah et.al. [19]).
A synthetic benchmark NxM is a grid of components in N columns and M
rows. Each component Cn,m is connected to Cn,m+1 and to Cn+1,m+1. The
components in the first row are triggered once, and the timed behaviour of each
component is a delay by at least 4 time units. As target component Ck for
our ample set construction we use CN,M (i.e. C5,3 for Fig. 4). Table 1 shows
the computation time and number of explored states for global time semantics
(Section 2), local time with strict synchronization (using constraints ci = cj also
for wi, wj dependent) and local time semantics (Section 3). The prototype does
not implement the normalisation step max(Z). Normalisation is not required for
the benchmark models, and is turned off in the global time implementation. We
note that the algorithms with partial order reduction performs much better than
2 See the web site www.uppaal.com for more information.
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C1,1 C2,1 C3,1 C4,1 C5,1

C1,2 C2,2 C3,2 C4,2 C5,2

C1,3 C2,3 C3,3 C4,3 C5,3

Fig. 4. The synthetic benchmark 5x3 (with N=5 columns, M=3 rows)

Table 1. Benchmark results: we use ⊥ to denote that the experiment did not terminate
in 30 minutes

Method 3x2 3x3 3x4 4x3 4x4

global 264/0.16s 499/0.22s 838/0.31s 2553/0.65s 4778/1.6s
strict 19/0.14s 105/0.19s 443/0.47s 105/0.26s 990/1.7s
local 19/0.14s 65/0.18s 275/0.43s 93/0.25s 336/1.0s

4x5 5x4 5x5 6x5 6x6

global 8146/3.8s 26108/12s 48096/36s 481318/11m16s ⊥
strict 7549/21s 990/3.5s 15892/33s 15892/2m59s ⊥
local 2380/10s 598/2.8s 2156/20s 4316/1m08s 15101/7m36s

the algorithm without partial order reduction, and that weak synchronization
performs better than the strict. We also note that global cover more states per
second, this is because of the overheads when synchronizing components and
constructing ample sets.

5 Conclusion

In this paper, we have applied and improved existing symbolic partial order re-
duction techniques for timed automata to develop an efficient model-checking
technique for real-time components. The behavior of components are internally
described as timed automata that can be hierarchical in the sense that a compo-
nent can be described as a composition of components. To compose components
explicit data and control flow is modeled, a property that is exploited in order to
increase the independence between components, and thus to reduce the growth
of the state-space caused by interleavings. We give a concrete and symbolic lo-
cal time semantics for the component model, as well as a symbolic reachability
analysis algorithm that uses an ample set construction to select symbolic transi-
tions to explore. We also describe a heuristics that can be used for accelerating
the analysis of local reachability properties (e.g., reachability of a location in a
single component).
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Our experiments suggest that our technique can achieve substantial reduc-
tion in the time and space needed to analyze a real-time system described in
the studied component model. As future work we plan to further evaluate the
reduction in a case study for the component model. We will also complete our
implementation of the proposed reachability analysis and evaluate the achieved
reduction with respect to existing techniques, such as the event zones of [15].
We also plan to further enrich the component model with more complex inter-
action structures, and support for modeling of other non-functional properties
than real-time.
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Abstract. We present a complete tool chain for automatic controller
synthesis using Uppaal Tiga and Simulink. The tool chain is explored
using an industrial case study for climate control in a pig stable. The
problem is modeled as a game, and we use Uppaal Tiga to automatically
synthesize safe strategies that are transformed for input to Simulink,
which is used to run simulations on the controller and generate code
that can be executed in an actual pig stable provided by industrial part-
ner Skov A/S. The model allows for guiding the synthesis process and
generate different strategies that are compared through simulations.

1 Introduction

Inevitable parts in a traditional control design cycle are modelling, simulations
and synthesis. Modelling often results in non-linear continuous models needing
linearization and/or model order reduction in order to be applicable for control,
while simulation can implement both original and linearized models. For control
synthesis standard linear controllers are verified by design, but the control engi-
neer still needs to perform the step of translating a mathematical description of
the controller into an executable application that can be run on an embedded
platform. Additionally, in the setting of hybrid models controller synthesis itself
is a highly non-trivial task.

In this paper, we present a prototype for model-based framework for optimal
control using the recently developed controller synthesis tool Uppaal Tiga [3,2]
in combination with Simulink [10] and Real-Time Workshop [12] providing a
complete tool chain for modeling, synthesis, simulation and automatic generation
of production code (see Fig. 1). The framework requires that two models of the
control problem are provided: An abstract model in terms of a timed game and
a complete, dynamic model in terms of a (non-linear) hybrid system. Given
the abstract (timed game) model together with logically formulated control and
guiding objectives, Uppaal Tiga automatically synthesizes a strategy which
is directly compiled into an S-function1 representation of the controller. Now
1 S-function is a term used in Simulink for executable content that can be embedded
into Simulink components. S-functions support multiple languages such as C and
Matlab.
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using Simulink together with the concrete (dynamic) model, simulation results
for additional quantitative aspects of the synthesized controller can be obtained.
Alternatively, given interface code for the specific actuators and sensors, Real-
Time Workshop allows for the generation of production code implementing the
synthesized controller. The glue used to tie Uppaal Tiga together with Simulink
has been hand-coded for the purpose of this paper. For an of the shelf tool chain,
this glue need to be implemented into Uppaal Tiga making S-functions an
output format.

UPPAAL

TIGA

Abstract
model

Control and
guiding obj.

Strategy

Parser Simulink

Nonlinear
hybrid model

Quantitative
measures

Simulink
results

Simulink
RTW

Executable

Interface
code

S-function

Fig. 1. Illustration of tool chain for model based control

The framework is presented through an industrial case study carried out in
collaboration with the company Skov A/S specializing in climate control systems
used for modern intensive animal production. For such systems it is of extreme
importance that the climate control work properly, since a failure can result in
the death of entire batches of animals and in turn loss of revenue for the farmer.
In this context a properly functioning control system should additionally provide
a comfortable environment for the animals.

In [9,8], a dynamic model for a pig stable that is both nonlinear and hybrid and
a verified stable temperature controller has been presented. The control design
of said papers is unique and does not apply standard control design techniques.
We show in this paper that our framework allows for automatic generation of
the controller presented in [9,8], and moreover that our framework makes it
straight forward to obtain and implement extended controllers, e.g. by including
humidity control. For a thorough discussion of the control engineering issues
with controller synthesis for the climate controller, we refer to [9,8].

The model of the climate controller is constructed in an ad-hoc manner and
the paper does not provide methodology for abstracting non-linear hybrid mod-
els to timed automata models. The model serves two different purposes, namely,
to illustrate the tool chain for deriving production code from models and provide
the area of automatic controller synthesis of real-time systems with an indus-
trial scale case study. Furthermore, the constructed model does not include clock
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variables, hence, it does not need the features timed games. However, the cli-
mate problem needs a real-time controller and other models using clocks could
be constructed, and for that we reason present the work in terms of timed au-
tomata. Also, the advanced modelling features of Uppaal Tiga (e.g. functions
and selections) make it an attractive choice for modelling games, even if these
do not use clock variables.

In Section 2 we describe a dynamic, zone-based climate model for the evolution
of temperature in a pig stable. In Section 3 we briefly describe Uppaal Tiga

together with the notions of timed game, control objective and strategies. Section
4 is the main section giving a detailed description of how the climate controller is
modelled and synthesized with Uppaal Tiga. Numerical results are presented
in Section 5, and conclusions are given in Section 6.

2 Climate Model

. . . . . .Zone 1 Zone 2 Zone N

Fig. 2. N zones

In this section, we introduce the dynamic climate
model describing the evolution of temperature in
a pig stable. The presented model is zone based,
a concept where the pig stable is divided into
distinct climatic zones, and where the zones in-
teract by exchanging air flow. The idea is illus-
trated in Fig. 2 where a stable is partitioned into N subareas, and where the
zones exchange air flow.

Though it would be relevant to model temperature, humidity, CO2 and am-
monia concentration we initially limit ourselves to modeling only temperature,
in order to illustrate the zone concept. It would though be easy to include
the disregarded climate parameters since the mixing dynamics are, roughly,
identical.

Assumption 1. Climatic interdependence between zones is assumed solely
through internal air flow.

Zone i − 1 Zone i Zone i + 1

Qin
i

Qfan
i

[Qi,i+1]+

[Qi,i+1]−

[Qi−1,i]+

[Qi−1,i]−

Fig. 3. Illustration of flows for zone i

With assumption 1 we thus neglect
radiation and diffusion etc. between
zones, claiming they are negligible
compared to the effect from having in-
ternal air flow. Besides internal air flow
a zone interact with the ambient en-
vironment by activating a ventilator
in an exhaust pipe and consequently
opening a screen to let fresh air into
the building. Air flowing from outside
into the ith zone is denoted Qin

i [m3/s],
from inside to outside Qfan

i [m3/s]. Air
flowing from zone i to i + 1 is denoted
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Qi,i+1 [m3/s] (air flow is defined positive from a lower index to a higher index).
A stationary flow balance for each zone i is found:

Qi−1,i + Qin
i = Qi,i+1 + Qfan

i (1)

where by definition Q0,1 = QN,N+1 = 0.
The flow balance is illustrated in Fig. 3 using the following definitions: [x]+ �

max(0, x), [x]− � min(0, x). In accordance with [4,1] and taking into account
the flows leaving/entering the ith zone, the following model for temperature
evolution is easily obtained.

dTi

dt
Vi = T ambQin

i − TiQ
fan
i + [Qi−1,i]+Ti−1 − [Qi−1,i]−Ti

− [Qi,i+1]+Ti + [Qi,i+1]−Ti+1 +
ut

i + W t
i

ρaircair

(2)

where Vi [m3] is the zone volume, T amb [̊ C] is the ambient temperature, Qin
i ,

Qfan
i is the inflow and outflow respectively. cair [J/(kg̊ C)] is the specific heat

capacity of air, ρair [kg/m3] is the air density. ut
i [J/s] is the controlled heating

and W t
i [J/s] is heat production from the pigs. For the actuator signals maximum

values exists Qfan
i ∈ [0, Qfan,M

i ], Qin
i ∈ [0, Qin,M

i ], ut
i ∈ [0, ut,M

i ]. The disturbance
is not known but bounded W t

i ∈ [W t,m
i ,W t,M

i ].
In [9] a temperature controller for the model in (2) is presented. The pre-

sented controller is a multi-zone controller, i.e., it consists of N individual (yet
identical) controllers. The controller is event-based, and only changes its control
action when certain boundaries are met or a neighboring zone changes its control
action. The controller in [9] is designed to solve a two player game theoretic prob-
lem following [7] at each time a state has changed or a change in coordinating
variables take place. Each controller maintains a set of coordinating variables δi

that holds information about the controllers willingness to exchange air flow with
the neighboring zones, and only if two neighboring zones agree to the exchange,
air will flow between the zones. The game theoretic view of the control problem
for an arbitrary zone enables the same generated controller to be implemented
in all zones of a N -zone stable. The correctness of this is explicitly proved in [9].

The control actions available to controller is the heating ut
i, opening of the

inlets Qin
i and turning on the ventilators Qin

i . The controller has two “modes”
heating up and cooling down, and an initial mode set to either one. We remark
specifically that opening of the inlet is not enough to force air into the zone. This
being a physical system air has to be removed either by operating the ventilator
or by having a neighboring zone extract air. The controller operation in zone i is
as follows: When heating up ventilation is closed and heating is turned on. If in
addition a neighbor zone has warmer air than in the current zone, the controller
will inform the neighboring zone’s controller that it would like to receive the
warmer air. Only if the two zones agree to exchange air will the controller in
zone i turn on its ventilation fan extracting warm air from one of the neighbor
zones. When cooling down, the heating is turned off, the inlets opened and
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Critical

Low

High

1<=x && x<=2

h1?
x=0

3<=x && x<=4

x=0

h1? x=0

Critical

Low

High

1<=y && y<=2

h2?
y=0

3<=y && y<=4

y=0

h2? y=0

z>=1
h1!

z=0

z>=1 h2! z=0T1 T2

C

Fig. 4. Two Tank Temperature Control Problem

the ventilation fan is turned on. The controller will in addition inform the two
neighbor zones, that it would like to “give away” air thus forcing more fresh air
into the zone.

3 Timed Games, Control Objectives and Strategies

Uppaal Tiga is a tool for solving control problems modeled as (networks of)
timed game automata [3]. As an example consider the control problem in Fig. 4,
where a central controller C is to maintain the temperature of two tanks, T1 and
T2 above some critical minimum level, say 5̊ C. Each tank is modelled as a timed
game automaton with location High indicating that the temperature in the tank
is between 80̊ C and 100̊ C. Similarly, the Low locations indicate a temperature
between 10̊ C and 15̊ C and the Critical locations that temperature is below
5̊ C. The controller C has the possibility for heating either tank thus lifting (or
maintaining) its temperature to the High level; the act of heating is modelled as
synchronizations on the channels h1 and h2. The guards z ≥ 1 on the clock z of
the controller enforces that heating actions of C are seperated by at least 1 time-
unit. The dashed edges in the two tanks represent uncontrollable transitions for
lowering the temperature (from High to Low and from Low to Critical) in a
tank in case no heating action of the controller has taken place for a certain time
period; e.g. the guard 3 ≤ x ∧ x ≤ 4 indicates that the temperature in T1 may
drop from High to Low at any moment between 3 and 4 time-units since the last
heating of the tank.

Control purposes are formulated as “control: P”, where P is a TCTL formula
specifying either a safety property, (A[]ϕ) or a liveness property (A<>ϕ). Given
a control purpose, “control: P”, the search engine of Uppaal Tiga will pro-
vide a strategy (if any such exists) for the controller under which the behaviour
of the model will satisfy P. Here a strategy is a function that in any given state
of the game informs the controller what to do either in terms of “performing a
controllable action” or to “delay”. In our tank example of Fig. 4 the control pur-
pose may be formulated as “control: A[] not(T1.Critical or T2.Critical)”.
Endeed there is a strategy guaranteeing the safety property involved (i.e., the
Critical temperature level is avoided in both tanks). In the case when the two
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tanks are both having a Low temperature level the strategy provided by Uppaal

Tiga requests the controller to heat T2 whenever (2 < y∧1 < z∧y ≤ x)∨((2 <
x ∧ 1 < z) ∧ (y < 1 ∨ x < y)). In case (2 < y ∧ 1 < z ∧ x < 1) the strategy
suggest to heat T1. Interestingly, it may be shown (as discovered by Uppaal

Tiga), that for slower controllers (e.g. replacing the guards z ≥ 1 by z ≥ 2) no
strategy exists which will ensure our control purpose.

Uppaal Tiga is integrated in the Uppaal 4.0 framework permitting the use
of discrete (shared or global) variables over simple or structured types (arrays
and recods) including user-defined types. Functions can be declared using C-like
syntax and used in guards and update statements. Edges have an additional
select statement as a shorthand notation for all edges that satisfy the statement.

4 Modelling

In this section, we give a detailed description of the adhoc method in which the
climate controller has been modelled in Uppaal Tiga. We divide the description
into a model section and a property section with guiding. Note that some of the
Uppaal Tiga code snipplets could be given a mathematical description; we have
chosen the code in order to allow for the precise reconstrution of our method.

4.1 The Models

The compound model consists of three kinds of automata, the neighbor au-
tomaton, an auxilliary automaton, and controller automaton. Each of these are
described in turn in the following.

Neighbor Automaton. The neighbor model is an automaton with just uncon-
trollable transitions that can change the observable variables of the neighboring
zone. The template for the neighbor automaton is depicted in Fig. 5 and is in-
stantiated with a parameter id which can take the values 0 and 1 to indicate
the left and right neighbor.

state_changed!

temp[id] = !temp[id],
check_hotness_integrity()

c : choice_t
state_changed!
n[id] = c

Fig. 5. Neighbor Au-
tomaton

Each neighbor has a variable temp that discretizes
the temperature information of the neighbor to either
HOTTER or COLDER than the control zone. Furthermore,
there is a variable n that holds the values of the inter-
action variables of the neighbor. The variable n, which
can take any of the values WANT, HAVE and NEITHER
(encoded as the type choice t), is used to indicate
whether the neighbor wants air flow from the control
zone, wants to deliver air flow to the control zone, or
does not want to exchange air flow with the control
zone.

To switch the temperature of a neighboring zone, the environment can take
the uncontrollable transition at the top of Fig. 5. The call to the fucntion
check hotness integrity() on the transition is explained below. The bottom
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transition uses special Uppaal Tiga syntax for select statements. This is short-
hand notation for the three cases where c takes on any of the values of choice t,
i.e., the environment can set the control variables of the neighbor to any kind of
desired interaction. Whenever the environment changes an observable variable
it synchronizes over the channel state changed with the controller, to allow the
controller to change the control strategy. This way we keep a strictly alternat-
ing game where the controller reacts every time an observable variable changes
value.

temp[0] == temp[1]

state_changed!
hottest = !hottest

state_changed!
objective = !objective

Fig. 6. Auxiliary Au-
tomaton

Auxiliary Automaton. To manage the other observ-
able variables, we introduce an auxiliary automaton
that allows the environment to change these variables.
The auxiliary automaton is depicted in Fig. 6.

The final two observable variables that can change
are, first, the variable objective which determine
whether the control zone should HEATUP or COOLDOWN
(bottom transition of the automaton). The second vari-
able is a result of the discretization of the temperature
information. The control zone needs information about
which neighbor has hotter air. This is encoded using
the Boolean observable variable hottest where value 0 indicates the left neigh-
bor is hotter and vice versa for value 1. The environment can change the value of
hottest on the top transition only when either both zones are either colder or
hotter, otherwise the value can become inconsistent with the temperatures of the
neighbors. The function call check hotness integrity is used by the neighbor
automaton whenever the temperature changes to guarantee that hottest is left
in a consistent state.

Init

Decide

Decided
reset_variables()

c0 : choice_t, c1 : choice_t, 
heat : intbool_t, in : intbool_t,
out : intbool_t
flow_balance(c0,c1,in,out)

c[0] = c0,
c[1] = c1,
heater = heat,
inlet = in,
outlet = out,
temp_derivative = 
   compute_temperature(c0,c1,in,out,heat),
obj_val = obj_func(c0,c1,in,out,heat)

state_changed?

Fig. 7. Controller Automaton

Controller Automaton.
The controller automaton syn-
chronizes with the auxil-
iary automaton and neighbor
automata over the channel
state changed whenever an
observable variable changes
values. Upon synchronization,
the controller enters the com-
mitted state Decide and the
setting of the control variables
is determined on the transi-
tion exiting Decide. The controller automaton is depicted in Fig. 7

The controller automaton determines the value of five control variables: Two
variables for the interaction with the neighbors (c[0] and c[1]) and one vari-
able for each of the heater, inlet and outlet (the latter three are all Boolean
variables). The selection statement on the transition from Decide to Decided
guarantees that all possible settings are considered. The guard statement
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flow balance guarantees that no inconsistent control state wrt. air flow is con-
sidered, i.e., whenever air is flowing out of a zone, air is flowing into the zone (see
Algorithm 1) and vice versa. After updating the control variables the combined
impact of the control variables and the observable variables on the temperature
of the control zone is computed using the function compute temperature. We
refer to obj func later, when we talk about guiding.

Upon entering the committed location Decided the transition back to Init is
taken immediately which resets all the control variables. This is merely a step to
minimize the state space since, as we shall see, the effect of the control decision
is only important in Decided.

Algorithm 1. Procedure to guarantee that the flow balance is satisfied.
proc flow balance(c0,c1,in,out) : bool

1: bool o = out || (n[0]==WANT && c0==HAVE) || (n[1]==WANT && c1==HAVE)
2: bool i = in || (n[0]==HAVE && c0==WANT) || (n[1]==HAVE && c1==WANT)
3: return o == i

Discretization of the Temperature Derivative. Since the model is dis-
cretized such that the controller does not know the exact temperature of the
neighboring zones, this needs to be reflected in the computed temperature
derivative.

Heater: 5

Inlet: -7

Hotter neighbor
- hottest: 2
- coldest: 1

Colder neighbor
- hottest: 1
- coldest: 2

We choose to let the different control parameters con-
tribute to the temperature derivative according to the ta-
ble to the right. The values for the airflows correspond to
opening the outlet fan and getting air only from the spe-
cific source. Given that the fan capacities are fixed, getting
air from multiple sources will share the capacity. E.g., get-
ting air from both (hotter) neighbors would yield a con-
tribution of 1 from the hottest and 0.5 from the coldest,
resulting in a total contribution of 1.5. Furthermore, having multiple sources of
outflow increases the inflow contribution proportionally, e.g., allowing the inlet
to give a total contribution of -21 by opening the outlet and providing air for
both neighbors.

Computing the Temperature Derivative. As we saw above, the fans have a
fixed capacity that might be shared among the different sources of outflow. Since
this can result in a non-integral contribution and Uppaal Tiga only handles
integers, we need to multiply these contributions with an apropriate factor to
guarantee integral values. Since a single source of outflow can be shared among
up to three sources of inflow, we choose a constant OUT CONTRIBUTION=6 to
denote the available contribution per outflow source as this can be integrally
shared among the potential inflow sources. This has the added effect that we
need to multiply the heater contribution by six as well, to keep the proportions.

The function for computing the temperature derivative is listed in Algo-
rithm 2. Lines 1 and 2 compute the contributors to air flow in and out of the



Guided Controller Synthesis for Climate Controller Using Uppaal Tiga 235

zone. For outflow, this, in order, corresponds to 1) is the outlet open, 2) is air
flowing from the control zone to the left zone, and 3) similarly for the right zone.
The computation is analogous for air flowing into the control zone.

The value of amp computed in line 3 is the contribution for each inflow given
the total outflow. Now, the return statement computes the total effect of the
control decision by using the table above and the amplifier for each inflow con-
tribution. Note that the heat contribution is also amplified to keep the the pro-
portions defined above.

The final two negative parts of the contribution are used to indicate that giving
air away cools the zone. These are used as incentives to let the controller offer air
when it wants to cool. The reason is that when the controller is used in all zones
we can imagine the situation when one zone needs to cool and a neighbor want
the air to heat up. In the control situation when neither are interacting, one
of the zones need to intiate the cooperation, and this is accomplished with the
given incentives. Note that these values are negligible in the overall contribution.

Algorithm 2. Algorithm for computing the temperature derivative.
proc compute temperature(c0,c1,in,out,heat) : int

1: int outflow = out + (c0==HAVE && n[0]==WANT)+(c1==HAVE && n[1]==WANT)
2: int inflow = in + (c0==WANT && n[0]==HAVE)+(c1==WANT && n[1]==HAVE)
3: int amp = (outflow * OUT CONTRIBUTION) / inflow
4: return OUT CONTRIBUTION*5*heat

+ amp*(c0==WANT && n[0]==HAVE ? (temp[0]? (!hottest? 2:1) : ( hottest? -2:-1)) : 0)
+ amp*(c1==WANT && n[1]==HAVE ? (temp[1]? ( hottest? 2:1) : (!hottest? -2:-1)) : 0)
+ amp*(in ? -7 : 0)
- (c0==HAVE) - (c1==HAVE)

4.2 The Property

In order to synthesize the controller, we need to specify the property that the
resulting controller should synthesize. An immediate choice would be2:

φ ≡ control : A[] Controller.Decided imply (objective ? 1 : -1)*temp derivative > 0 (3)

In other words, invariantly whenever the controller enters Decided, the value
of temp derivative should be greater than zero when heating is the objective
and less than zero when the objective is cooling. However, this property would
be satisfied by the simple controller that never interacts with the neighbors and
turn on the heater when the objective is heating and opens the inlet and outlet
when the objective is cooling.

Guiding. With the property above we can determine whether we can satisfy
the main objective or not. Now, we define an objective function called obj func
that will guide the controller synthesis process while also satisfying the property

2 Recall that we switched the sign of the temperature derivative when the objective
is to cool down.
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above3. Given an appropriate objective function, the following property can be
used to guide the controller synthesis process4:

φ ≡ control : A[] ZC.Decided imply forall (c0 : choice t) forall (c1 : choice t)

forall (in : intbool t) forall (out : intbool t) forall (heat : intbool t)

flow balance(c0,c1,in,out) imply obj val >= obj func(c0,c1,in,out,heat)

In plain words, the property states that it should hold invariantly that when-
ever the controller makes a decision and enters the location Decided, then for
all other possible controller choices that satisfy the flow balance, the computed
objective function is smaller or equal to the choice made. In short, the controller
always chooses a configuration of the control variables that maximizes obj func
among all valid choices.

The simplest objective function is to use compute temperature, but to com-
pensate for the sign depending of the objective as (3) above. This guiding proc-
cess will produce a controller that maximizes (minimizes) the temperature deriv-
ative for every control decision. An alternate strategy is to define the objective
function over some sort of energy consumption by, e.g., penelizing turning on
the heater or fan, thus, optimizing towards energy optimality.

4.3 Controlling Humidity

As mentioned in [9], the climate controller should, ideally, be extended with
the ability to control the humidity in the stable as well. However, the approach
outlined in [9] makes this extension a tedious strategy, since the increase in
oberservable variables creates exponentially more configurations.

Changing our model to accommodate for humidity as well, requires a slight
modification to the models along the lines of how the temperature was modelled.
Furthermore, the objective function needs to represent the effect of temperature
and humidity with a simple value. Note, that neither the controller automaton
nor the property changes, as the set of controllable variables remains unchanged.

To discretize the humidity readings of the neighboring zones, analogously to
the temperature representation, we introduce a Boolean humid variable for each
zone and a morehumid variable to determine which of the neighbors have air with
the highest humidity. Obviously, there are constraints on consistent variable
assignments for the three variables in the same way as for the temperature
variables.

To incorporate the variables in the model, we need an extra uncontrollable
transition in the neighbor automaton, that can change the value of the respective
humid variable. This is followed by a consistency check on the morehumid vari-
able. Moreover, we add two extra uncontrollable transitions to the auxiliary au-
tomaton, one to change the more humid variable, and one to change the objective
3 To satisfy both properties we use conjunction, but do not include the conjuction to
simplify properties.

4 Note we use guiding in the sense that the function determines which of a number of
valid controllers to choose, but the synthesis process itself is not guided in order to
find controllers.
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with respect to humidity which is encoded in the variable decrease humidity.
These are all the changes needed to the automata.

We incorporate humidity information in the objective function in a similar
fashion the temperature model with the exception that humidity only has an
upper limit, so the objective is either to decrease the humidity or ignore the
humidity. Thus, when decrease humidity has value false, the humidity con-
tributes nothing to the objective function. Otherwise, the contribution is given
as in Algorithm 3 where a postive value indicates a decrease in humidity. In the
algorithm, amp is computed as for the temperature contribution. The positive
contributions are from opening the inlet (contribution of 5) and getting less hu-
mid air (contribution of 2 for the least humid air and 1 for the most humid).
Receiving more humid air from a neighboring zones contributes negatively. Fi-
nally, we encourage a zone to interact, if a neighboring zone has less humid air,
even if the zone does not want to interact (first two parts of the sum).

Algorithm 3. Humidity contribution to the objective function
1: return (!humid[0] && c0 == WANT ? 1 : 0) + (!humid[1] && c1 == WANT ? 1 : 0)

+ amp*(c0==WANT && n[0]==HAVE ? (humid[0] ? (!morehumid?-2:-1):( morehumid?2:1)) :0)
+ amp*(c1==WANT && n[1]==HAVE ? (humid[1] ? ( morehumid?-2:-1):(!morehumid?2:1)) :0)
+ amp*(5*in)

The objective function is constructed with a weight parameter between the
temperature derivative and the humidity parameter with changing the sign of
the temperature as above. The weighing can be altered to generate different
controllers, which later can be compared in some appropriate fashion as discussed
in Section 5.

5 Results

In this section, we present some numerical results where the controller generated
by Uppaal Tiga has been simulated in Simulink using realistic values for the
model (2).

The Tool Chain. According to Fig. 1, to generate production code for the
climate controller of the pig stable, we need to transform the output format
of Uppaal Tiga to input for Simulink. Simulink allows input of so-called S-
functions which are user provided C-code that can be used within the Simulink
model. We have build a script which takes Uppaal Tiga strategies as input
and delivers S-functions as output. The Simulink model with the S-function
can be used to either run simulations of the pig stable, or generate Comedi
compliant production code through Real-Time Workshop. The code generation
is realized through a Comedi library for Simulink [5]. Code generation with Real-
Time Workshop allows for a multitude of targets, thus, the specific target of this
application in unimportant.
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Numerical Results. We have synthesized two types of controllers using the
models described above. One controlling only the temperature, and one control-
ling both temperature and humidity. In the first experiment, we synthesized a
controller for temperature only as explained in Section 4. Due to limited space,
we choose not to include the graphs for the experiments, as the synthesized con-
troller is identical to that of, [9,8]. As in [9,8], the controller behaves well under
simulation and keeps the zone temperatures within the given bounds.
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Fig. 8. Active time for heaters and fans for different controllers. The number (x/y)
indicate an objective function using x percent temerature contribution and y percent
humidity contribution.

In order to illustrate the guiding specification in Uppaal Tiga a number of
different controllers are simulated in Simulink. A weight is put on the objec-
tive function guiding towards temperature or humidity control. The simulation
scenario is as follows: The stable is partitioned into 3 zones, and the thermal
boundary is set to [18 20] and for humidity [9 10] for all three zones. The initial
conditions are set to T1 = 19, T2 = 18 and T3 = 17, H1 = H2 = H3 = 11. All the
conducted experiments stear the state to the defined boundaries in finite time,
but initially some states are steared away from the boundary. In order to quan-
tify and compare the different controllers the total time when the heat or fan are
on is recorded. The result is illustrated in Fig. 8. The results show, that the con-
trollers can be divided up into two catagories, one from 0% to 40% temperature
guided, and one from 45% to 100%. The controllers in the latter category use
less heat and fan capacity than the controllers in the former catagory, indicating
that the former are preferred controllers. However, Fig. 9 shows how the temper-
ature and humidity are controlled for controllers in both catagories. As it can be
seen, the controller with more heat and fan activation (25/75) reaches a stable
state faster than the controller with less activity of heaters and fans.5 Thus, the
5 Simulation results for all controllers can be found at the project website, [11].
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Fig. 9. Simulation results for temperature and humidity when guiding towards a) 75%
temperature and 25% humidity and b) vice versa

choice between the controllers is not immediately clear, but the quatifications
can be used by the control engineers to make an informed choice.

Note that we have not tested the code in the actual pig stable. However,
for the temperature controller we can rely on the results provided in [6], the
the generated controller is identical to that of [9,8]. These results show that
the controller does not have identical quantitative properties to the simulation,
though, the qualitative properties are identical. I.e. the experiments show that
the temperature oscillates as in the simulation, however, the temperature in
the real stable under/overshoots the limits. This is mainly caused by the fact
that the zones are not thermically isolated in the sense that air will interchange
between zones, even when the zones do not what to interchange air.

For the humidity controller we do not have any experimental data to rely on,
but this will be investigated in the future.

6 Conclusions and Future Work

In this paper, we have presented a complete tool chain for automatic con-
troller synthesis from timed game automata models to production code. For the
livestock production case study, the controller synthesis process has enabled,
through guiding, to synthesize an identical controller do that of [9,8]. The con-
troller in [9,8] was synthesized in a tedious manual way, which indicates the
importance of a simple automated process. Note that the notion of time was not
necessary in modelling our controller, however, we choose Uppaal Tiga because
the tool was available and one the only ones of it’s kind.

Furthermore, the model was easily extended to include humidity, which was
left as a matter to explore in [9,8], but never pursued due to the heavy time re-
quirement of the added exponential complexity. With an appropriately defined
weighted objective function, Uppaal Tiga was used to synthesize a controller
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capable of regulating temperature as well as humidity in a matter of seconds. A
number of controllers were synthesized with variying weights between tempera-
ture and humidity, and all were able to reach stable temperature and humidity
conditions in Simulink simulations. Simulink was further used to track the heat
and fan activity for the different controllers, in order to allow for comparison of
different controllers. This can be a very effective strategy for differentiating con-
trollers and choosing an appropriate one among a number of controllers satisfying
the conditions. As future work, we want to continue conducting experiments in
the real life pig stable provided by Skov A/S in order to evaluate the different
controllers capacity of controlling temperature as well as humidity in a real life
setting.
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Abstract. Lazy linear hybrid automata (LLHA) model the discrete
time behavior of control systems containing finite-precision sensors and
actuators interacting with their environment under bounded inertial de-
lays. In this paper, we present a symbolic technique for reachability anal-
ysis of lazy linear hybrid automata. The model permits invariants and
guards to be nonlinear predicates but requires flow values to be con-
stants. Assuming finite precision, flows represented by uniform linear
predicates can be reduced to those containing values from a finite set
of constants. We present an abstraction hierarchy for LLHA. Our veri-
fication technique is based on bounded model checking and k-induction
for reachability analysis at different levels of the abstraction hierarchy
within an abstraction-refinement framework. The counterexamples ob-
tained during BMC are used to construct refinements in each iteration.
Our technique is practical and compares favorably with state-of-the-art
tools, as demonstrated on examples that include the Air Traffic Alert
and Collision Avoidance System (TCAS).

1 Introduction

A hybrid system is a dynamical system which exhibits both discrete and con-
tinuous behavior. Hybrid automata [4] have proved to be useful mathematical
structures for modeling systems comprising discrete transition systems interact-
ing with continuous dynamical systems. However, it is clear that in any imple-
mentation of a hybrid automaton, the state of the dynamical system reported to
the discrete controller is digitized with finite precision by sensors, and the output
signals of the controller transmitted to its actuators are also of finite precision.
Further, the controller can only observe continuous state variables at discrete
time points. Hence, it is somewhat unrealistic to assume that the controller can
interact with its environment continuously and with infinite precision.

The inherent discrete nature of a controller of a hybrid system has led to recent
efforts [17,2,3,1] towards studying the discrete time behavior of hybrid systems.
A similar argument in favor of focusing on discrete time behavior is presented
by Henzinger and Kopke [12]. Lazy linear hybrid automata (LLHA) [2,3] model
the discrete time behavior of hybrid systems having finite precision and bounded
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delays in actuation and sensing. Further, their definition of LLHA allows nonlin-
ear invariants and guards. However, the discrete behavior in this model depends
on the sampling frequency of the controller as well as the precision of variables,
and hence, the discretized representations are very large and any enumerative
analysis would not be feasible for systems of appreciable size.

In this paper, we present a symbolic technique for reachability analysis of lazy
linear hybrid automata. We make the following novel contributions:

1. On the theoretical side, we present an abstraction hierarchy for LLHA that
can be used for reachability analysis within a counterexample-guided
abstraction-refinement framework.

2. We give an implementation of a symbolic model checker for LLHA based
on bounded model checking and k-induction that operates at any level of
abstraction.

3. We demonstrate the scalability of our methods in comparison to other state-
of-the-art tools on examples such as Automated Highway Control System
(AHS) and the Air Traffic Alert and Collision Avoidance System (TCAS).

Related Work. PHAver (Polyhedral Hybrid Automaton Verifyer) [11] is a
tool for verifying safety properties of hybrid systems. It uses on-the-fly over-
approximation to handle affine flows by iterative partitioning of the state space.
PHAver considers a continuous time model unlike the discrete time semantics
of LLHA. Our work is much more closer to the HYSDEL tool [17]. The discrete
hybrid automata underlying the HYSDEL tool is formed by the connection of a
finite state machine with a switched affine system through an interface. Our work
is similar to HYSDEL in its considering an inertial interface between the digital
and the continuous components of the hybrid system. Unlike our symbolic ap-
proach, HYSDEL uses numerical simulation for analysis. Further, our technique
allows guards and invariants that use any computable function. HSolver [18,8]
also allows general constraints over variables as invariants and guards. It uses
interval arithmetic to check whether trajectories can move over the boundaries
in a rectangular grid. Our technique uses SAT-based decision procedures for
finite-precision arithmetic to do a symbolic analysis instead of an enumerative
analysis. Another closely related tool is HybridSAL [21,20], which constructs
discrete finite state abstractions for hybrid systems using predicate abstraction.
The tool uses decision procedures and the SAL explicit state model checker. Our
approach performs abstraction over the domain of variables, and uses symbolic
model checking based on bit-vector decision procedures.

The examples used in this paper have been well-studied; for details on previous
case studies, we refer the reader to the relevant references on TCAS [16,15] and
AHS [9,14].

2 Lazy Linear Hybrid Automata

Definition 1. A finite precision lazy linear hybrid automaton(LLHA) [3] is a
tuple (X,V, init, f low, inv,E, jump,D, ε, B, P ). The components of LLHA are
as follows:
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– Variables : A finite ordered set X = {x1, x2, . . . , xn} of continuous variables.
– Control modes : A finite set V of control modes.
– Initial conditions : A labeling function init that assigns an initial condition

to each control mode v ∈ V . The initial condition is a predicate over the
variables in X.

– Flow: The possible values of rate of change of any variable in a control mode
form a finite set of constant values. Let the set representing the legal flow
values for variable xi be denoted by Ẋi. The predicate flow(v) ≡ (ẋ1 ∈
Ẋ1) ∧ (ẋ2 ∈ Ẋ2) . . . ∧ (ẋn ∈ Ẋn) represents legal flows at location v ∈ V .

– Invariant condition : A labeling function inv that assigns an invariant condi-
tion to each control mode v ∈ V . The invariant condition inv(v) is a convex
predicate over the variables in X.

– Control switches : A set E of edges (v, v′) from a source mode v ∈ V to a tar-
get mode v′ ∈ V . A function “update(v,v′)” associates a variable assignment
to each control switch (v, v′).

– Jump conditions : A labeling function jump that assigns a jump condition
to each control switch e ∈ E. A jump condition from the control mode v to
v′, ψ(v,v′) is a predicate over the variables in X.

– Delay parameters : D = {g, δg, h, δh} is the set of delay parameters such that
0 ≤ g ≤ g + δg < h ≤ h + δh ≤ P , where h denotes the sensing delay, g
denotes the actuation delay and P is the sampling interval of the controller.

– Precision : εi is the precision of measurement of variable xi.
– Range : Bi = [Bimin , Bimax ] is the range of the variable xi.
– Period P represents the time period associated with the discrete controller i.e.

control mode switches take place at times T0, T1, T2, . . . where Tk+1 = Tk +P .

The lazy semantics of hybrid automata [2,3] means that if a control mode
switch took place at time Tk, then the delay in actuating a change in flow lies
between [Tk + g, Tk + g + δg]. Similarly, a control decision made at time Tk+1 is
based on the values of variables read by the controller at some time in the interval
[Tk+h, Tk+h+δh]. The parameters δg and δh represent the bounded uncertainty
in actuation and sensing delay respectively. Since the sampling frequency of any
implementation of a hybrid automata is always finite, this model focuses on the
discrete time behavior of the hybrid automata.

The precision εi depends on the accuracy of the sensors measuring xi from
the continuous dynamical system. Guards and state invariants are evaluated on
the values of the xi variables that have been rounded using the value of εi. The
parameter B reflects the range of values which can be taken by a state variable
associated with a fixed width register. Unlike the conventional definition of linear
hybrid automata [12], invariants and guards in LLHA can be nonlinear.

The flows in linear hybrid automata are represented using convex linear
predicates over only the rates of change of variables (also called uniform lin-
ear predicates [13]). Under the assumption of finite precision, such flows can
be considered as set of constant values of rate of change of different continuous
variables. Thus, LLHA can be used for representing hybrid systems with convex
linear flows. (This point is further discussed in the Appendix.) Note that the
above model is same as the one formulated by Agrawal and Thiagarajan [2,3].
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Definition 2. A configuration of a hybrid automaton, with n continuous vari-
ables, is a n+1-tuple, c = (s, x1, x2, . . . , xn) where s ∈ V is the control mode,
x1, x2, . . . , xn is the valuation of the continuous variables of the hybrid automa-
ton.

The semantics of a hybrid automaton describes its evolution in terms of change
in configuration. We use the notation c+α to denote the configuration in which
continuous state variables are incremented by α. Also, we extend the order rela-
tion on the continuous variables to configurations. We say that c ≤ c′ if we know
that xi ≤ x′

i for each xi in c and the corresponding x′
i in c′.

We define a symbolic collection of configurations as a state of the hybrid au-
tomaton and describe the evolution of the hybrid automaton in terms of change
in its state. This definition is used in Section 4 to present the bounded model
checking algorithm.

Definition 3. A state of the hybrid automaton is a pair (v, φ) consisting of a
control mode v ∈ V and a predicate φ over the variables X. We identify that the
state of a hybrid automaton can change in two ways - flow or jump.

– flow: The changed state of a hybrid automata due to flow at control mode v

for time T is (v, φT ), where
φT = ∃X1∃Ẋ {(φ ∧ inv(v))[X ← X1] ∧ X = X1 + ẊT ∧ (Ẋ |= flow(v)) ∧
inv(v)}.

– jump: If (v, φ) is state of a system, and (v, v′) is a control switch such that
φ |= jump(v, v′), then the state of the system can change to (v′, φ′) such that
if update(v,v′) was the update function over Y ⊆ X,

φ′ = ∃Y1{(φ ∧ inv(v) ∧ ψ(v,v′))[Y ← Y1] ∧ Y = update(v,v′)(Y1)},
where update(v,v′) is the update function over Y ⊆ X.

A state s2 = (v, φ2) is reachable from s1 = (u, φ1) if and only if there is a
sequence of flow or jump transitions from s1 to s2.

3 Hierarchical Abstraction

We detail the theory underlying our hierarchical abstraction technique below.
For brevity, proofs of some theorems have been omitted.

Agrawal and Thiagarajan [2,3] use two fundamental quantities in their anal-
ysis. The fundamental time interval is Δ = G.C.D of {P, g, δg, h, δh}. The corre-
sponding abstraction quantum is Γ = G.C.D of

⋃

i

{εi/2, Bmin
i , Bmax

i , V in
i , ẋiΔ}.

Abstraction. We begin with basic definitions on how abstraction is performed.
For ease of presentation, all variables are abstracted in the same way; the theory
can be easily extended to a non-uniform abstraction.

Definition 4. QΠ is a surjection over the continuous variables using abstrac-
tion quantum Π = 2kΓ for some integer k. That is,
QΠ : R → R, and QΠ(xi) = kiΠ iff xi = kiΠ+πi, where ki ∈ Z and 0 ≤ πi < Π.
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Abstract Configuration: A configuration cd = (sd, xd
1, x

d
2, . . . , x

d
n) is a

Π-abstraction of a concrete configuration c = (s, x1, x2, . . . , xn) iff sd = s and
xd

i = QΠ(xi).

Abstract Transition: Transitions are abstracted by abstracting jump and flow
conditions. This must be done in order to ensure that transitions that are fea-
sible in the concrete LLHA continue to be feasible in the abstract transition
system, at the possible cost of introducing additional (spurious) behaviors.

1. The intuition behind the following definition of abstract guards and invariants
is to relax the atomic constraints so that if Φ(x1, x2, . . . , xn) denotes a state
invariant or guard, then the corresponding abstracted invariant or guard is
Φa(x1, x2, . . . , xn) such that Φ(x1, x2, . . . , xn) =⇒ Φa(x1, x2, . . . , xn).

2. The set of flow values are abstracted to overapproximate the reachable con-
figurations. If the flow value in a set Ẋ is ẋ, it is abstracted by including
flow values ẋa and ẋb in its place, where ẋa ≤ ẋ ≤ ẋb (details given below).

We first describe how invariants and guards are abstracted, and then describe
the over-approximation of flow.
Abstraction of invariants and guards. Invariants or guards can be expressed as
a Boolean combination of atomic predicates in negation normal form (NNF),
where each predicate is of the form f(x1, x2 . . . , xn) ≤ b where b ∈ Q. If Φ is an
invariant or guard, then Φ = fbool(c1, c2, . . . , cn) where the constraint ci is fi ≤ bi

and where fbool represents an NNF Boolean combination of its arguments.
Each predicate in the invariant or guard can be abstracted using the mono-

tonicity of f with respect to each variable xi, that is, fxi = δf
δxi

is of the same sign
over the range of interest. In particular, all polynomials which are linear in each
variable, are always monotonic with respect to each variable.

In order to define abstract state invariants and guards, we first describe how
to construct abstract inequalities using the above observation about invariants
and guards. Without loss of generality, let us assume that f(x1, x2 . . . , xn) ≤ b
is an inequality whose partial derivative fxi with respect to each variable xi

is of the same sign over the range of interest [QΠ(xi), QΠ(xi + Π)]. Then, its
(conservative) abstraction is the relaxed inequality c′i defined below:

c′i ≡ f(k1, k2 . . . , kn) ≤ b′

where b′ = QΠ(b + Π) and ki = QΠ(xi) if fxi ≥ 0
= QΠ(xi + Π) if fxi < 0

This abstraction rounds up or down each variable to the nearest multiple of Π
depending on whether the function f decreases or increases with increase in the
variable. The constant b is always rounded up. All assignments to the variables
which satisfied the earlier constraint also satisfy the relaxed constraint. Hence,
this is an overapproximation of the original constraint.

If Φ(x1, x2, . . . , xn) = fbool(f1 ≤ b1, . . . , fn ≤ bn) is the invariant or guard, the
abstract state invariant or guard is defined as Φa(k1, k2, . . . , kn) = fbool(c′1, c

′
2,

. . . , c′n) where the relaxed inequalities c′i are obtained from fi ≤ bi as described
above.
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Thus, this relaxation results into an upper approximation of the behavior of
the hybrid automaton.
Abstraction of flow conditions. If ẋ is a rate of change allowed by flow(s) for
some location s, then the following two rates of change represent its abstrac-
tion "( ẋ

Π )#Π and  ( ẋ
Π )!Π . Figures 1(a) and 1(b) illustrate how flow conditions

are abstracted. The abstraction of flow with 2Γ leads to an overapproximation of
the dynamics of the LLHA: originally ẋ ∈ {3, 4, 5, 6}, but in the 2Γ -abstraction
ẋ ∈ {2, 4, 6, 8}.
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Fig. 1. Illustration of flow abstraction

Definition 5. A k-abstraction (k ≥ 1) of a lazy linear hybrid automaton is
an abstraction of LLHA obtained using the above explained abstraction of con-
figurations and transitions such that Π = 2kΓ . The 0-abstraction is called the
Γ -transition system as the quantization is done with respect to Γ .

We define a partial order relation / between transition systems below.

Definition 6. Let TS and TS′ be two transition systems such that every state
of TS is mapped to some state of TS′. If every state of TS reachable from some
initial state of TS has its corresponding state in TS′ also reachable from an
initial state of TS′, then TS / TS′.

Prior Results. Our model of LLHA is the same as that of Agrawal and Thi-
agarajan [3], who initially consider a model with constant flow rate and linear
invariants, and later extend the result to invariants and guards which are any
“reasonable computable function”. The main result of theirs which we utilize is
summarized in Theorem 1.

Theorem 1. Let a configuration of hybrid automata be c = (s, x1, x2, . . . , xn)
and its Γ -abstract configuration be cd = (s,QΓ (x1), QΓ (x2), . . . , QΓ (xn)). A con-
figuration c′ is reachable from c iff QΓ (c′) = c′d where c′d is reachable from cd

in Γ -transition system.
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Let xmax and xmin be the maximum and minimum values that can be attained
by any continuous variable and m be the number of control modes. The state
space size of the Γ -transition system is O(m422n(xmax−xmin

Γ )3n) [3], that is,
exponential in the number of continuous variables. This huge state space makes
it impractical to do any enumerative reachability analysis.

Our Results. The main result is that the k-abstraction of LLHA simulates the
original LLHA. Further, for increasing values of k, we obtain coarser overapprox-
imations of the LLHA which form a hierarchy of sound abstractions. Figure 2
illustrates the meaning of Theorem 2.

Theorem 2. Let a configuration of hybrid automata be c = (s, x1, x2, . . . , xn)
and its abstraction be cd = (s,QΠ(x1), QΠ(x2), . . . , QΠ(xn)), where Π = 2kΓ .
If a configuration

c′ is reachable from c in time T = lΔ and QΠ(c′) = c′d, then c′d is
reachable from cd in the k-abstraction.

Proof. For configuration c = (s, x1, x2, . . . , xn), let ẋ1, ẋ2 . . . , ẋn be the rates of
change of continuous variables satisfying flow(s) and ̂̇x1, ̂̇x2, . . . , x̂n be the rates
of change of continuous variables satisfying flow(ŝ) where ŝ is a predecessor
state of s, that is, (ŝ, s) ∈ E. Let c′ be a configuration reachable from c. In case
of change due to reset of variables at jump, the above theorem follows due to
the adjustment to guards and invariants. We prove the above theorem for the
case where the change is effected due to flow evolution.

Since, the relation ≤ for configurations is defined in terms of the ordering of
individual variable, we consider an arbitrary variable in the rest of the proof
below. If xi is the value of the variable in c and x′

i is the value in c′ after time
T such that the flow rate switched after an actuation delay of t, then
x′

i = xi + ̂̇xit + ẋi(T − t)
Using the definition of Γ and Δ,
xi = (m2k + n)Γ + γi, ̂̇xiΔ = (2kp′ + q′)Γ , and ẋiΔ = (2kp + q)Γ ,
where 0 ≤ n < 2k, 0 ≤ γi < Γ , 0 ≤ q′ < 2k, 0 ≤ q < 2k.

So, x′
i = (m2k + n)Γ + γi + (2kp′ + q′) Γ

Δ t + (2kp + q) Γ
Δ(lΔ− t)

= (m2k + n)Γ + γi + (2k(p′ − p) + (q′ − q)) Γ
Δ t + (2kp + q)lΓ

Thus, x′
i = (m + pl)2kΓ + (n + ql)Γ + γi + (2k(p′ − p) + (q′ − q)) Γ

Δ t.
Since 0 ≤ t < T in the above equation and 2kΓ = Π , x′

i lies in the interval
– [(m + pl)Π, (m + (p′ + 1)l + 1)Π) if ẋi ≥ ̂̇xi

– [(m + p′l)Π, (m + (p + 1)l + 1)Π) if ̂̇xi ≥ ẋi

So, QΠ(x′
i) lies in the interval

– [(m + pl)Π, (m + (p′ + 1)l)Π ] if ẋi ≥ ̂̇xi

– [(m + p′l)Π, (m + (p + 1)l)Π ] if ̂̇xi ≥ ẋi

The value of ith variable in any configuration c′d reachable from cd in the
k-abstraction, x′d

i lies in
– [(m + pl)Π, (m + (p′ + 1)l)Π ] if ẋi ≥ ̂̇xi

– [(m + p′l)Π, (m + (p + 1)l)Π ] if ̂̇xi ≥ ẋi
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c

k−abstraction

next(cd) : Succesors of cd in k-abstractioncd

k-abstraction(next(c)) ⊆ next(cd)

next(c) : Succesors of c in Γ transition system

Fig. 2. Simulation by k-abstraction

Thus, for any x′
i, there exists x′d

i such that x′d
i = QΠ(x′

i). Using the same
argument for each variable independently, the theorem immediately follows. ��

Using reasoning exactly similar to the one used in Theorem 2, we can prove the
hierarchy of k-abstractions presented below.

Lemma 1. Let a configuration of k-abstraction be
c = (s,QΠ(x1), QΠ(x2), . . . , QΠ(xn)), where Π = 2kΓ .
Its abstraction in k̃-abstraction, where k̃ ≥ k

c̃ = (s,Q
�Π(x1), Q �Π(x2), . . . , Q �Π(xn)) where Π̃ = 2�kΓ .

If a configuration c′ is reachable from c in k-abstraction, then
– QΠ′(c′) = c̃′ where Π ′ = 2�k−kΓ

– c̃′ is reachable from c̃ in k̃-abstraction.

The Hierarchy Theorem 3 follows from Lemma 1 and Theorem 1.

Theorem 3. k-abstraction / k′-abstraction if 0 ≤ k < k′. Thus, k-abstractions,
where k ≥ 0, form an hierarchical abstractions of the lazy linear hybrid automata.
Further, 0-abstraction is the Γ -abstract transition system which bisimulates the
original lazy linear hybrid automaton.

Theorem 3 provides a framework for use of progressive abstraction of lazy lin-
ear hybrid automata to develop a sound and complete abstraction-refinement
paradigm for reachability analysis of LLHA. Theorem 4 presents the relative
reduction in state space size with k.

Theorem 4. Let Sk be the state space size of k-abstraction and S′
k of

k′-abstraction where k′ > k. Then log2(S′
k/Sk) = 3n(k − k′) where n is the

number of continuous variables.

4 Model Checking k-Abstractions of LLHA

Our implementation of a symbolic verifier of LLHA is based on three techniques:
bounded model checking, “k-induction”, and an overall counterexample-guided
abstraction-refinement [7] framework. We describe each of these below.

We first present a symbolic representation of k-abstraction of the hybrid au-
tomata as stated in Definition 5. The continuous variables X = (x1, x2, . . . , xn)
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are symbolically represented with integer variables K = (k1, k2, . . . , kn) with the
intended mapping being QΠ(xi) = kiΠ , where Π = 2kΓ .

In the discussion below, we use the three components - guards (Ψij), invariants
(invi) and the flow conditions flow(i) of the k-abstraction to define a symbolic
transition relation TR. This is then used to describe the bounded model checking
and inductive verification techniques.

Bounded model checking: We describe how the BMC formula is constructed,
starting with a useful definition.

Definition 7. A frame (F ) is a tuple (K, t1, t2, t, l) where K = (k1, k2 . . . kn)
represent the variables; t1 is the sensing delay; t2 is the actuation delay t2; t is
the time before transition to next frame; l denotes the control mode.

The initial state of the hybrid automata is the predicate Init(F0) ≡ (l = vstart)∧
φ0(K), where vstart denotes the initial control mode and φ0 the initial predicate
over continuous variables.

The transition TR is defined as a predicate over the previous frame (Fm−1)
and the present frame (Fm). It is a disjunction of all possible state switches (Gij)
and flow evolutions (Ei).

TR(Fm−1, Fm) ≡
�

(i,j)∈E

Gij(Fm−1, Fm) ∨
�

i∈V

Ei(Fm−1, Fm)

The switch predicates Gij and the time evolution predicates Ei are defined in
terms of three other quantities: Ii is a predicate that tests satisfiability of state
invariant invi at control mode i, predicate gij tests satisfiability of guard ψij ,
and ehi deals with time evolution in control mode i with predecessor mode h.

Let us consider two functions - compensated for sensing delay (csd) and com-
pensated for actuation delay (cad). These map a set of valuations of the contin-
uous variables (K) to a set of possible corresponding valuations obtained after
compensating for sensing and actuation delay respectively.

csd(K, i, t1) = {(k1 − k̇1t1, . . . , kn − k̇nt1) | (k̇1, k̇2, . . . k̇n) |= flow(i)}.
cad(K, h, i, t2, t) = {(k1 + (k̇1h − k̇1i)t2 + k̇1it, . . . , kn + (k̇nh − k̇ni)t2 + k̇nit)

| (k̇1h, k̇2h, . . . k̇nh) |= flow(h) and (k̇1i, k̇2i, . . . k̇ni) |= flow(i)}.

Let the current frame be Fm = (Km, tm1 , tm2 , tm, lm) and the previous frame
be Fm−1 = (Km−1, tm−1

1 , tm−1
2 , tm−1, lm−1).

Ii(Fm) ≡ (i = lm) ∧ ∃K′[K′ ∈ csd(Km, lm, tm
1 ) ∧ invi(K

′)]

ehi(Fm−1, Fm) ≡ (i = lm−1 ∧ i = lm) ∧ Km ∈ cad(Km−1, h, i, tm−1
2 , tm)

gij(Fm−1, Fm) ≡ (i = lm−1 ∧ j = lm) ∧ ∃K′[K′ ∈ csd(Km−1, lm−1, tm−1
1 ) ∧ ψij(K

′)]

Note that the existential quantification over K ′ in the above identities simply
reduces to a disjunction over possible flow values (see the description of cad and
csd functions).
The switch and evolution predicates can now be defined as follows:

Gij(Fm−1, Fm) ≡ Ii(Fm−1)∧ Ij(Fm)∧gij(Fm−1, Fm)∧ [Km = updateij(Km−1)]
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Ei(Fm−1, Fm) ≡ Ii(Fm−1) ∧ Ii(Fm) ∧ [
∨

h∈pred(i)

ehi(Fm−1, Fm)]

where pred(i) denotes the set of predecessor locations of i.

This completes the definition of the transition predicate.
Let the state to be checked for reachability be (sr, φr). If reachability analysis

is used to check safety properties, then (Sr, φr) would be the error state violating
the safety property, Then, the predicate unsafe(F ) ≡ (l = sr∧φr(K)) represents
the error state, that is the target state for reachability analysis.

If d is the number of steps to which we want to check the k-abstraction for
reachability of (sr, φr), we need to check for the satisfiability of

BMCd ≡ Init(F0) ∧
d∧

n=1

(TR(Fn−1, Fn)) ∧ unsafe(Fd).

If BMCd is satisfied, then the target state (sr, φr(K)) is reachable in
k-abstraction and the frames F0, F1, . . . , Fd gives a trace from the start state
to the target state.

Further, it is sufficient to do BMC for p steps to prove that a target state
is not reachable where p is the diameter of the transition system. If BMCj

is unsatisfiable for all j ≤ p, then the target state can not be reached in the
transition system. Since the number of reachable states of the transition system
provides an over-estimate of the diameter, it is sufficient (though unrealistic) to
do BMC for number of steps equal to the state space size of the k-abstraction.

Induction: We now describe an induction procedure to guarantee the unreach-
ability of a state in a model. This can be used to prove the satisfaction of a
safety property which can be expressed as a reachability query.

If N steps of BMC are found to be not satisfiable, that is, BMCN is unsat-
isfiable, then we test the satisfiability of

¬unsafe(F0) ∧
N+1∧

k=1

(TR(Fk−1, Fk)) ∧ unsafe(FN+1).

If the above is unsatisfiable, no further bounded model checking is required
and all the states of the model are guaranteed to satisfy the property. Based on
this, we present below a BMC algorithm along with use of induction to check
for safety properties in a LLHA. We define the following predicates to be used
in the algorithm.

N j(Fj) ≡ Init(F0) ∧
j∧

k=1

TR(Fk−1, Fk) and Sj+1(Fj+1) ≡ ¬unsafe(F0)∧
∧j+1

k=1

TR(Fk−1, Fk)

If at any step of the BMC, we find that N j(Fj) is not satisfiable, it means
that there does not exist a path of length j or more, and hence we can terminate
with the output that the model satisfies the safety property.
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Emit path
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NOT REACHABLE

Emit induction proof
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SAT (INDj)

SAT (BMCj)

SAT (N j(Fj))
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j + +

(a) INDBMC module

START

Run INDBMC on the abstraction

REACHABLE
emit path

NOT REACHABLE

NOT REACHABLE
emit induction proof or 
all paths exhausted

emit induction proof or 
all paths exhausted

Y
N

Not reachable

Not Reachable

Reachable

Reachable

REACHABLE
emit path

PRESENT

NOT PRESENT

      STOP

Run INDBMC on the 0-abstraction

Generate initial k0-abstraction

Use binary seach to find suitable k-abstraction

refuting p.

Set the current abstraction to k-abstraction

k == 0

Check path p in 0-abstraction using BMC

(b) Iterative refinement

Fig. 3. Symbolic reachability analysis based on BMC and induction

The bounded model checking predicate and the induction step predicate are
BMCj ≡ N j(Fj) ∧ unsafe(Fj) and INDj ≡ Sj+1(Fj+1) ∧ unsafe(Fj+1).

The sub-routine INDBMC is presented in Figure (a). The technique is sound
and complete due to the results of the preceding section; we present a detailed
discussion of the abstraction-refinement framework in the next section.

Counterexample guided refinement of k-abstractions: We now describe
an automated CEGAR [7] technique presented in Figure (b) which exploits the
linear abstraction hierarchy presented in section 3. An initial coarse abstraction
can be arbitrary chosen as k0-abstraction depending on the size of the state space.
In case the target state is not reachable in k0-abstraction, the target state is also
not reachable in the LLHA by Theorem 2. In case the target state is reachable in
LLHA, then BMC will yield a path p0 from the initial state to the target state in
the k0-abstraction. This needs to be validated with respect to the 0-abstraction.
If the abstract path p0 found in k0-abstraction is present in 0-abstraction, then
the target state is reachable in the LLHA too. If it is not present in 0-abstraction,
then we select a more finer refinement ki-abstraction which refutes the abstract
spurious path. The same technique is repeated for progressively finer abstractions
until the target states is shown to be unreachable or a valid path to the target sate
is found. The key components of this technique are counter-example validation
technique and automated refinement step. The path obtained at any iteration
is a satisfying assignment to BMCj , it can be validated on 0-abstraction by
doing a BMC on BMCj to identify the first spurious transition. If BMCj has a
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satisfying assignment for 0-abstraction too, then the path is valid. The hierarchy
of abstractions allows the use of binary search to find the smallest value of l
such that the l-abstraction refutes the path identified in the coarser abstraction.
The complete technique for reachability analysis of LLHA based on iterative
refinement and bounded model checking is presented as a flowchart in Figure ??.
The soundness of this technique is ensured by Theorem 2 and 1. Since, we start
with some initial k0-abstraction and every step involves a progress in refinement,
we take at most k0 iterations before terminating. For the iteration considering
k-abstraction, MAXSTEPS would be the diameter of the k-abstraction. In
worst case, this algorithm needs to consider 0-abstraction which can have a very
large diameter and the BMC of this transition system can be unrealistic, but
the completeness of our technique is guaranteed.

Theorem 5. The iterative abstraction refinement technique presented in Figure
(b) is sound and complete.

5 Experimental Results

In this section, we present the results of experiments on two case studies. 1 All
experiments were performed on a workstation with Intel Xeon 3.06 GHz pro-
cessors and 4GB RAM. UCLID bit-vector decision procedure [5] was used with
MiniSat as the underlying SAT engine. Any other bit-vector decision procedure
could alternatively be used as the verification engine in our technique.

Automated Highway Control System
AHS (Figure (a)) is an arbiter which ensures that there is no collision between
cars running on a highway by imposing legal speed ranges. This example has
being widely used in literature [9,14]. We use the description by Jha et al [14]
and extend it to handle inertial delays. The number of cars is used as a parameter
to scale the example.

A set of legal parameter values is:
(All distance measures are in km, time is in hr and all speeds are in km/hr)
α = .002, α′ = .0005, a = 10, rl = 20, b = 30, c = 40, d = 50, e = 60, ru = 70, f = 100

ε = 10−5, g = 10−3, h = 5 × 10−4, δg = 5 × 10−4, δh = 5 × 10−5 and P = .01.

Correspondingly, quantization factors are Δ = 5 × 10−5 and Γ = 5 × 10−5.

The safety property to be verified was that the control mode is never the “er-
ror” mode. Figure (b) compares the runtime of our technique and that of Phaver
on this example for different number of cars. It shows that our approach is more
scalable than Phaver. Our technique could handle large instances with 150 cars in
less than 2 minutes while Phaver took more than 10 hours to analyze model with
15 cars. For this example, we did not do any abstraction. Γ -abstraction for AHS
with even large number of cars could be easily handled by our BMC+induction
technique and did not necessitate any abstraction-refinement iteration as shown
by the runtime plot in Figure (b). Further, the bulk of the run-time taken by
1 A complete set of UCLID, Phaver or HSolver modules as well as data pertaining to
run-time and memory requirements can be obtained from the first author’s webpage.
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Fig. 4. Automated Highway Control System with 4 vehicles

our technique is used up in building the model. The time taken to solve the cor-
responding SAT problems for BMC and Induction are a very small percentage
of total run time.

Air Traffic Alert and Collision Avoidance System
TCAS is a predictive warning system used for avoiding collision of aircrafts using a
sequence of preventive and corrective resolution advisories. The model for TCAS
resolution used here is similar to the one used by Pappas et al [16]. We make a
few changes to the model to make it more realistic. The TCAS specification [6]
uses expected time to collision for detecting collision threats and not distance be-
tween aircrafts used in Pappas et al example [16]. The max in the constraint avoids
division by zero. The k/xr term ensures that slow approaches are avoided by trig-
gering threat if xr is small. This makes the problem harder since these invariants
are non-linear. Hence, LHA tools like Phaver can not be used for this example.We
allow the input for speed of aircrafts to be an interval. It is realistic to expect the
speed of aircrafts to be in a range rather than assuming them to be a constant
input. We also allow inertial delays in actuation and sensing.

The parameters used in the experiment were taken from the specifications
in TCAS 2, Version 7 documentation [10] and TCAS-201 simulator [19] speci-
fications. The time-zone considered for advisory is 30 − 120 seconds (tnear and
tfar, respectively). The distance d is taken to be 15 nautical miles (that is, 27.78
kms.). The range of speed for aircraft is allowed to range between 100 knots to
510 knots (nearly 200 km/hr to 1000 km/hr). It may be noted that the maximum
speed of Airbus 380 is Mach 0.88 (nearly 505 knots). The LLHA parameters used
in our example are 128μs ≤ g, h ≤ 256μs and ε = 2−15 nautical miles [19].

Phaver cannot handle this example due to non-linear invariants and guards.
We modeled TCAS example using same LLHA parameter values in HSolver [8].
It did not terminate in 180 minutes with any answer. This further stresses
the hardness of this example and underlines the significance of our technique’s
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COMMON DYNAMICS

    RIGHT
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LEFT
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d/(v2 × sin(Δφ)) ≤ t

∧

(xr − k/xr)/max(ε, ẋr) ≤ tnear

(yr − k/yr)/max(ε, ẏr) ≤ tnear

∧

(xr − k/xr)/max(ε, ẋr) > tfar

∨
(yr − k/yr)/max(ε, ẏr) > tfar

(xr − k/xr)/max(ε, ẋr) ≥ tnear

(yr − k/yr)/max(ε, ẏr) ≥ tnear

∧

d/(v1 × sin(Δφ)) ≥ t

d/(v2 × sin(Δφ)) ≥ t

∨

(xr − k/xr)/max(ε, ẋr) ≤ tfar

∧
(yr − k/yr)/max(ε, ẏr) ≤ tfar

x′
r = xrcosΔφ + yrsinΔφ

y′
r = −xrsinΔφ + yrcosΔφ

t ≤ 0

t′ = 0

x′
r = xrcosΔφ − yrsinΔφ

y′
r = xrsinΔφ + yrcosΔφ

t′ = t

y′
r = −xrsinΔφ + yrcosΔφ

t′ = 0

x′
r = xrcosΔφ + yrsinΔφ

t′ = t

x′
r = xrcosΔφ − yrsinΔφ

y′
r = xrsinΔφ + yrcosΔφ

t ≥ 0

ẋr = −v1 + v2 ∗ cosφr

ẏr = v2 ∗ sinφr
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ṫ = 0

ṫ = 0

ṫ = 1

ṫ = −1

d/(v1 × sin(Δφ)) ≤ t

Fig. 5. Air Traffic Alert and Collision Avoidance System
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Fig. 6. Plot comparing runtimes of our technique for different levels of abstraction

scalability. Figure 6 depicts how the run-time of our tool and state space size
vary for different levels of abstraction (the x-axis gives the value of k for k-
abstraction). There is an initial increase due to addition of extra flows but for
larger abstractions, the time taken is much less compared to the actual model.
Since no refinement is needed for any value of k, the points in the graph rep-
resent run-time for only a particular abstraction level. The analysis of the 16-
abstraction of the original model allows us to conclude in less than 20 seconds
that the model is safe, about 10 times faster than analyzing the original model
(0-abstraction).
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Appendix

Constant Differential Inclusion. We provide an intuitive explanation of how
constant differential inclusion of uniform linear predicates [13] are used in lit-
erature to model linear flows for reachability analysis. Such a transformation is
sufficient for determining reachability as we do not reason about the time taken
to reach a configuration.

This is illustrated in Figure 7. The convex polygon represents the rate of
change of variables (x, y) such that is (rx, ry) is a permitted flow, then (rxt, ryt)
lies in the interior of the convex polygon, where t is one time unit.. The polygon
is convex as we only consider convex linear flows. Also, the polygon is constant
and does not change with change in configurations (x, y) as the flow condition is
uniform and does not depend on (x, y). The configurations (x, y) reachable in k
time units would be (x0 + k(rxt), y0 + k(ryt)), where (x0, y0) is initial configura-
tion, (rxt, ryt) is a point in the convex polygon. Thus, the two rays with (x0, y0)
as origin and touching the angular extremes of the convex polygon represent
the possible reachable configurations. If we form a rectangle using the vertices
of the polygon that touch the rays, the set of configurations reachable for flow
values lying in the rectangle is same as the previously reachable sets. The bound
constraints arising from the rectangle can be, thus, used in place of the uniform
linear predicate for the purpose of reachability analysis.
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Fig. 7. The flows given as uniform convex linear predicates can be represented using
constant differential inclusion for the purpose of reachability
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Abstract. Resource limited DRE (Distributed Real-time Embedded)
systems can benefit greatly from dynamic adaptation of system param-
eters. We propose a novel approach that employs iterative tuning us-
ing light-weight, on-the-fly formal verification with feedback for dynamic
adaptation. One objective of this approach is to enable system design-
ers to analyze designs in order to study design tradeoffs across multiple
layers (for example, application, middleware, operating system) and pre-
dict the possible property violations as the system evolves dynamically
over time. Specifically, an executable formal specification is developed
for each layer of the distributed system under consideration. The formal
specification is then analyzed using statistical model checking and statis-
tical quantitative analysis, to determine the impact of various resource
management policies for achieving desired end-to-end timing/QoS prop-
erties. Finally, integration of formal analysis with dynamic behavior from
system execution will result in a feedback loop that enables model refine-
ment and further optimization of policies and parameters. We demon-
strate the applicability of this approach to the adaptive provisioning of
resource-limited distributed real-time systems using a multi-mode mul-
timedia case study.
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1 Introduction

Next generation mobile embedded applications are highly networked, and in-
volve end-to-end interactions among multiple layers (application, middleware,
network, OS, hardware architecture) in a distributed environment. Timing plays
a critical role in QoS-aware system design for a large class of such distributed
applications. Firstly, timing can impact application semantics. Multimedia ap-
plications have soft real-time needs often stated using parameters such as jitter,
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synchronization skews and bounded end-to-end delays. Secondly, there are sev-
eral sources of unpredictability and timing violations in a distributed network;
this introduces nondeterminism in timing. The ability to compensate on-the-fly
for timing violations at different levels is of paramount importance. Thirdly, sev-
eral system level optimizations for effective utilization of distributed resources
can interfere with the timing properties of executing applications. Finally, many
applications have flexible QoS needs that dictate how tolerant they are to de-
lays and errors — the lack of stringent timing needs can be exploited for better
end-to-end resource utilization.

The dual goals of ensuring adequate application QoS (expressed as timeliness,
reliability, and accuracy) and optimizing resource utilization at all levels of the
system presents significant challenges. In this context, our preliminary study
[1] demonstrated the need for integration of formal methods with experimen-
tally based cross-layer optimization methods [2,3]. Systematic analysis based on
well-defined models ensures that corner-cases are covered and allows bounds for
critical performance parameters to be determined. Recently, we proposed prob-
abilistic formal methods to provide analysis of given cross-layered optimization
policies with quantifiable confidence [4].

To leverage these prior efforts, we propose an iterative tuning approach for
DRE systems that couples two important facets:

1. a light-weight, on-the-fly formal verification system that can be used dynam-
ically to evaluate the impact of different resource management policies for
achieving end-to-end timing/QoS properties, and

2. a system realization that enables feedback of additional information on dy-
namic system execution behaviors to enhance our light-weight formal mod-
eling and analysis.

The integration of formal analysis combined with observed system execution be-
havior permits better analysis of both cross-layer and end-to-end timing/QoS
properties for highly distributed systems that employ resource constrained de-
vices.

This paper contains the following contributions:

– We present a generic framework to address iterative system tuning of distri-
buted embedded systems by integrating two synergistic approaches: on-the-
fly formal verification and learning from system realization. The light-weight
formal verificationprovides degrees of confidence in the feasible solutions satis-
fying multidimensional constraints. System realization enables dynamic adap-
tation by refining the model of the system and the environment.

– Our work is validated and tested in the context of distributed mobile multi-
media applications that have wide consumer applicability, execute in highly
dynamic changing environments and present interesting opportunities for
tradeoff analysis and enforcement.

The rest of this paper is organized as follows: we start by motivating our
approach. Next, we present the overview of our framework, followed by a de-
scription of our case study (multi-mode multimedia communication system). In
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Section 5, we explain our approach in depth. Specifically, we describe the mod-
eling and specification of our case study. We then introduce our probabilistic
formal analysis, followed by discussion of the feedback loop with our system re-
alization. Our implementation and experimental results show the applicability
of our framework to the distributed real-time multimedia communication do-
main. The last section summarizes our approach and discusses future research
directions.

2 Supporting Adaptation Under Timing Constraints

Timing can affect, and be affected by several system and resource parameters
such as storage/buffer, CPU, network topology and communication characteris-
tics as follows.

– Power/Timing Tradeoffs: Power optimization strategies have a significant
implication on the timing properties at different levels of the system. For
instance, dynamic voltage scaling techniques within the operating system
dictate slowdown of the CPU while lengthening the execution time, which
results in possible deadline misses.

– Quality/Timing Tradeoffs: A change in the quality of communicated infor-
mation represents changes in the execution time, communication time and
buffering needs; for instance, lower quality video requires less decoding effort
and time.

– Buffering/Timing Tradeoffs: The presence of a buffer in the datapath of
the streaming information can relax the timing needs at various layers. For
instance, larger buffers at the end device imply that timing constraints on
receiving new data can be less stringent at the cost of memory usage. This
in turn can translate into longer sleep durations (low-power operation) for
power-intensive communication components. Buffering can also be used to
compensate for noise, and hence delays, in the communication networks.

– Error Resilience/Timing Tradeoffs: Error resilience needs are often posed
by applications to dictate fidelity requirements. In streaming applications,
errors are often introduced in the communication process due to the presence
of the network noise. Avoiding these errors typically involves strategies that
retransmit information, encode and check for integrity of data transfer —
all of which have significant implications on the overall timing behavior of
the system.

This problem will be much more complex if we consider that the system and
environment may keep evolving, requiring dynamic adaptation. Given a cur-
rent configuration and a set of changes (e.g., new application/task; parameters
for existing tasks such as framerate/resolution/synchronization; device residual
power level; network delay/jitter, etc.), we need to perform dynamic adaptation
(re-determine the policy, followed by bound/sensitivity analysis on the impact
of the selected policy) since all the changes are critically related to timing.

In this context, we propose a unified framework for iterative and proactive sys-
tem tuning to support adaptations. Initially, our framework performs property



260 M. Kim et al.

Middleware
e.g., mobility, network status monitor

Application (proactive PBPAIR)
e.g., algorithm parameter

Hardware (enabling technology)
e.g., uP DVS, NIC shutdown

Operating voltage
NIC power control

Execution profile
(slack time)

User satisfaction
(Video quality feedback)

Mobility 
Network status

Residual energy

Video encoding info.
(workload variation)

Formal Executable Specification
System Specification: 
layered modeling with
cross-layer adaptation

Observer/Property Checker:
extract properties/values from
executable specification

Controller

Formal Verification

System Realization

Pre-testing

Model Learning

Policy/Parameter Selection

Monitoring & Analysis

Device Model:
hardware features

Environment Model:
mobility, network status

Task/OS Model:
application, scheduling

Control
(i.e., selected
policy/parameter)

Control
(i.e., selected
policy/parameter)

Observables
(i.e., properties,
values)

Simulated execution
(i.e., dynamic system
execution behavior)

feedback

control

OS (power management policy)
e.g., Always-on, Greedy, Cluster, DVS

A.

B.

C.

Fig. 1. The Iterative System Tuning

checking and quantitative analysis among candidate policy/parameter settings
via formal executable specifications followed by probabilistic formal analysis. In
our framework, the iterative tuning allows model refinement from up-to-date and
continuous observations of system execution behavior. Furthermore, this can be
used to improve adaptation by verifying given system properties or by relaxing
constraints. A priori information, as forecasted by the system realization, enables
proactive control.

3 A Framework for Iterative/Proactive System Tuning

Figure 1 presents the overall flow of our approach. We take three major steps:
(1) formal modeling, (2) probabilistic formal analysis, and (3) model refinement
and proactive control. In Figure 1, the Box A represents the formal model-
ing. The core of our formal modeling approach is to develop formal executable
models of system components at each layer of interest. These models express
functionality, timing, and other resource considerations at the appropriate level
of detail and using appropriate interaction mechanisms (clock ticks, synchronous
or asynchronous messages). Models of different layers are analyzed in isolation
and composed to form cross-layer specifications. The use of Maude as a reasoning
tool will be discussed in more detail in Section 5.1.

One advantage of formal executable models is that they can be subjected to
a wide range of formal analysis, including: single execution scenarios, search for
executions leading to states of interest, and model-checking to understand prop-
erties of execution paths. The Box B in Figure 1 shows the evaluation phase
of given specifications to generate statistics of monitored properties and val-
ues. Specifically, we have developed new analysis techniques (statistical model-
checking and statistical quantitative analysis) that combine statistical and formal
methods, and applied them to a case study treating the videophone mode of a
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multi-mode multimedia terminal [4]. Section 5.2 introduces a brief review of our
probabilistic formal methods.

Using such models and analysis, tools can be developed to achieve adaptive re-
finement of an end-to-end system specification into appropriate policy/parameter
settings. We propose an iterative tuning strategy that combines formal meth-
ods (verification) with dynamic system execution behavior (obtained by either
simulation or implementation). The execution behavior from system realization
(Box C in Figure 1) is fed back into the formal modeling to refine the executable
specification (model refinement). In addition, we can assure the quality of a new
policy/parameter constructed by the controller. In Figure 1, Pre-testing on a
system realization can lead to improvements because typically the formal model
can not cover all the possible implementation details of a real system (proactive
control). We will explain iterative tuning and proactive control in Section 5.2
and 5.3 in more detail.

4 Case Study: Multi-mode Multimedia Terminal

Although we intend our approach to be widely applicable, we begin by devel-
oping and evaluating formal specification models in the context of distributed
multimedia applications.

Figure 2 shows an example of a multi-mode multimedia terminal (MMMT)
system [5] that we are using as a research vehicle. The figure depicts a hierarchi-
cal composition of tasks within the MMMT system. At the top level, three types
of hierarchical tasks are defined to specify each mode of operation: soft real-time
(a videophone, a VoD player, an MP3 player), event-driven (email client), and
time-critical emergency messaging (SMS-Short Message Services). Three other
tasks are also specified at the top level for user interface, connection handling,
and task execution control. In addition, each mode of operation consists of mul-
tiple tasks as shown in the figure. This type of application requires frequent task
set changes based on user input and/or node/network conditions (e.g., residual
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power level, packet drop rate, noise level, etc.). As an example, a high-end video-
phone mode would be able to better meet its timing constraints at maximum
CPU performance while receiving packets via a reliable channel. However, if the
residual power level dropped or packet loss rate increased significantly, then we
might need to save energy by reducing QoS or suspending some tasks. A user also
can explicitly change modes and assign different priorities for each task/mode.

As you see from the layered view of a device in Figure 1, the resource man-
agement policies that are used in the different layers include: a specific video
encoding/decoding algorithm at the application layer; network monitoring at
the middleware layer; and DPM (Dynamic Power Management) and/or DVS
(Dynamic Voltage Scaling)1 at the OS layer [6]. Network traffic shaping and/or
trans-coding at the middleware layer can be also utilized. Each policy has param-
eters that can be used to fine-tune the behavior. In addition, there are hardware
parameters that can be set.

For instance, we consider proactive PBPAIR (Probability-Based Power-Aware
Intra Refresh) [7] as an application layer policy. The PBPAIR scheme inserts
intra-coding (i.e., coding without reference to any other frame) to enhance the
robustness of the encoded bitstream at the cost of compression efficiency. Intra-
coding improves error resilience, but it also contributes to reducing encoding en-
ergy consumption since it does not require motion estimation2 (which is the most
power consuming operation in a predictive video compression algorithm). The ad-
ditional proactive feature means that we have a priori information on the user’s
mobility (e.g., current zone, speed and trajectory, etc.) and network situation
(e.g., packet loss rate, delay, etc.) that later will be used for selection among poli-
cies and related parameter tuning before the user enters a new zone. If PBPAIR
is selected as an application layer policy, then algorithm-specific parameters such
as Intra threshold value must be chosen for appropriate execution. Note that the
parameter selection at one layer affects other layers. For example, PBPAIR in-
creases intra-coding by lowering the Intra threshold parameter when there is high
network packet loss (monitored at middleware layer), which impacts the DVS de-
cision at OS layer since the execution profile of the application is changed.

5 Iterative Tuning by Formal Verification Combined with
System Realization

Our approach combines

– Modeling, specification and reasoning about cross-layer and end-
to-end properties: We propose a novel approach based on concurrent

1 DPM puts a device into a low power/performance state to save energy when the
device is not serving any request during a suitably long time-period determined by
the shutdown and wake-up overhead of the device. DVS aims at saving energy by
scaling down the supply voltage and frequency when the system is not fully loaded.

2 In predictive coding, motion estimation eliminates the temporal redundancy due to
high correlation between consecutive frames by examining the movement of objects
in an image sequence to try to obtain vectors representing the estimated motion.
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rewriting logic to formally specify and reason about end-to-end timing/QoS
issues across layers and study their inter-relationships.

– Design of policies and mechanisms for addressing tradeoffs based
on the cross-layer analysis: Our work examines the impact of various
resource management techniques on end-to-end timing/QoS properties and
enables informed selection of resource management policies along with rules
for instantiation of parameters that derive the policies.

– Model refinement and proactive control: We enhance our light-weight
formal modeling and analysis by integrating it with observations of system
execution behavior to achieve adaptive reasoning and proactive control by
providing more precise information on current execution and future state.

In the following subsections, we explain each component; formal executable
specification (Section 5.1), controller (Section 5.2), and system realization (Sec-
tion 5.3) of our proposed framework (Figure 1) in depth beginning with our
modeling effort.

5.1 Modeling Effort

Our formal modeling approach utilizes Maude [8] to formally specify the envi-
ronmental changes as well as the policies/parameter settings that can be made
at each of these levels in isolation and for the combined layers. Maude is a spec-
ification language based on rewriting logic with supporting analysis tools. The
Maude system has been used in the specification and analysis of a wide range of
logics, languages, architectures and distributed systems [9,10].

Rewriting logic [11] is a simple logic well-suited for distributed system spec-
ification. The state space of a distributed system is formally specified as an
algebraic data type by giving a set of sorts (types), operations, and equations.
The dynamics of such a distributed system is then specified by rewrite rules of
the form

t → t′ if c

where t, t′ are terms (patterns) that describe the local, concurrent transitions
possible in the system, and c is a condition constraining the application of the
rule. Specifically, when a part of the distributed state matches the pattern t,
and satisfies c, then this part can change to a new local state t′. Rewriting
logic specifications are executable, as proofs in rewriting logic are carried out by
applying rewrite rules which can also be viewed as steps of a computation.

The Maude system is based on a very efficient rewriting engine, support-
ing use of executable models as prototypes. It also provides the capability to
search the state space reachable from some initial state by the application of
rewrite rules. This can be used to find reachable states satisfying a user-defined
property. The system also includes an efficient model-checker for checking prop-
erties expressed in linear temporal logic. The Maude system, its documenta-
tion, and related papers and applications are available from the Maude website
http://maude.cs.uiuc.edu.

 http://maude.cs.uiuc.edu
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*** Property checker
op batteryExpires : Configuration → Bool .
eq batteryExpires(< CPU : HW | residualEnergy : F, atts > C:Configuration)

= (if (F ≤ 0.0) then true else false fi) .

*** Observer
msg Obs : Bool → Msg .
msg EnergyConsumption : Float → Msg .
msg BatteryExpires : Bool → Msg .

rl [cpuObs] :
< CPU : HW | consumedEnergy : F, policy : P, atts >
⇒
EnergyConsumption(F)
BatteryExpires(batteryExpires(< CPU : HW | consumedEnergy : F, atts >)) .

Fig. 3. Maude Specification: Property Checker and Observer

In the object-oriented specification style supported by Maude, the system
state (configuration) is typically represented as a multiset of objects and mes-
sages. Passage of time is modeled by functions that update the configuration
appropriately, for example decrementing timers or decreasing remaining power.
Rules can either be instantaneous or tick rules of the form

C → delta(C, T ) in time T if T ≤ mte(C)

where C is a term representing the system configuration. This tick rule advances
time non-deterministically, according to a chosen time sampling strategy, by a
time T less than or equal to mte(C), the maximal time allowed to elapse in
one step, in configuration C, and alters the system state, C, using the function
delta3. Both delta and mte are user-defined to capture how time passes in a
particular model.

In Maude syntax, objects have the general form

< ObjectName : ClassName | Attribute1 : V alue1, ..., Attributen : V aluen >

where ObjectName is an object identifier, ClassName is a class identifier, and
each Attribute : Value pair specifies attribute identifier and its value.

At the end of each execution, we examine the final configuration of a Maude
specification that has several objects and messages. From those objects and
messages, we need to extract meaningful data — observables. Observables can
be properties or values. For example, to check whether the battery expires or
not at the end of the execution, we need to check the residualEnergy attribute
in CPU object at hardware layer. If the value for the residualEnergy attribute is
positive, then the battery is not empty. Otherwise, the batteryExpires property
returns true meaning the system used up the battery. We encode the check of
properties into the model so that the result contains true or false depending on
whether a property holds or not. On the other hand, if we want to have the energy
consumption rather than the answer for property hold, we can utilize the observer
3 The idea of a tick rule is taken from Real-Time Maude [12].
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such as the one shown in Figure 3. The observer replaces each object with suitable
messages that have data values for the observables. Furthermore, we use the
Maude API, a foreign language interface to embed the Maude rewriting engine
into larger applications, to extract observables from the Maude execution and
to generate statistics of results.

5.2 Adaptation by Statistical Evaluation and Reinforcement

Once we extract observables from runs of a formal executable specification, the
controller performs formal verification and pre-testing as illustrated in Figure
1. For verification purposes, we use probabilistic formal methods. The controller
also interacts with a system realization to pre-test selected policies/parameters,
and to obtain information on dynamic system behavior to improve the formal
model. These two techniques are summarized below.

Probabilistic Formal Methods. To evaluate feasible design points, we adapt
and improve two statistical evaluation methods — statistical model checking and
statistical quantitative analysis [4]. For statistical model checking, probabilistic
properties such as “Probability that a system can survive with given residual
energy in t time units is more than θ %” are examined. Those formulae are
essentially a restricted version of Continuous Stochastic Logic (CSL) [13] without
nesting. Indeed we found no need for nested formulae or an exact numerical
solution for our application domain. Therefore, we use statistical model checking
to verify such probabilistic properties, more precisely hypothesis testing based
on Monte-Carlo simulation results.

For statistical quantitative analysis, we estimate the expected value of certain
observables such as “Average energy consumption in t time units within confi-
dence interval (δ) and error bound (α)”. Statistical evaluation can be performed
with a large quantity of data that follows a normal distribution, and hence al-
lows the estimation of the expected value and our confidence. To determine the
mathematical soundness of the approximation, we perform a Jarque-Bera (JB)
normality test [14]. More importantly, we generate traces on demand to reduce
the evaluation time since it is linearly proportional to the trace generation time
(i.e., Monte-Carlo simulation time with a different seed). Detailed explanation
on statistical theory background and our implementation can be found in [4].

Model Refinement. Within our framework, there are at least two roles for
feedback from observation of system execution behavior: it can be used to im-
prove the model (to make it more accurately match the real environment), and
it can also be used to directly improve the policy using optimization or learning
methods. In this particular work, we only consider the former case, that is model
refinement using the information from dynamic system behavior.

For instance, the formal specification initially models the execution times of
the tasks as a normal (Gaussian) distribution with the average of (BCET+WCET )

2
and the boundary value of 3×δ, where δ represents the standard deviation, based
on profiled best case execution time (BCET) and worst case execution time
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(WCET) from sample runs. This model is refined in turn by replacing BCET
and WCET with observations from dynamic system execution (either by system
realization in 5.3 or real implementation), in order to more realistically reflect
the actual executions characterizing the system in practice such as data depen-
dent execution times. In our framework, the controller (written in Java) uses a
Java/Maude foreign language interface to execute/update Maude specifications
and to extract the results for analysis.

5.3 System Realization

As we briefly mentioned in Section 3, the integration of formal analysis with a
system realization (as illustrated in Figure 1) will result in a feedback loop that
includes the formal models, simulation, and monitoring of running systems for
analysis of the system behavior and for optimizing the choice of policies and
parameters. Specifically, the system realization takes policies/parameters and
returns the dynamic system execution behavior at each layer as seen in Figure
4. For instance, if the controller selects PBPAIR (with appropriate Intra Th
parameter) as the application layer policy and DVS as the OS layer policy, the
system realization executes using the appropriate settings and reports profiled
information such as consumed energy, timing/QoS aspects.

For this purpose, we define a collection of library routines and their argu-
ments that can be used to implement a system realization [15]. At the applica-
tion layer, we need to create a task set for a chosen mode. As an example, video
phone mode has four tasks; video encoder/decoder and audio encoder/decoder,
each with its own parameters (e.g., PBPAIR has Intra Th parameter.). Besides,
the input/output data structure is task specific. For instance, an H.263 encoder
with PBPAIR policy takes the Intra Th parameter, the network packet loss rate
(precisely, this information will be provided as middleware layer input), and raw
video sequences as inputs to generate a bitstream robustly encoded against net-
work transmission errors. In addition, there are encoder QoS related parameters
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(e.g., quantization value, IP ratio, frame-rate, buffer size). As a result, applica-
tion profile data such as QoS (PSNR(Peak Signal to Noise Ratio), frame drops)
and timing (deadline misses, BCET, WCET) aspects should be reported.

The most two important observations from our system realization are timing
(BCET, WCET) and network related information. The framework uses timing
information to refine the model and network related information to generate
proactive control. Therefore, in the experiments, we will demonstrate how the
framework can achieve iterative system tuning for proactive control using those
two pieces of feedback from system execution behavior.

6 Experimental Results

6.1 Evaluation Platform

Using formal executable specifications in Maude, we model PBPAIR as an ap-
plication layer policy as well as two power management schemes — Greedy and
Cluster — as OS layer policies. In the Greedy scheme, the power manager shuts
down whenever the device is idle, while the Cluster scheme tries to aggregate
idle periods to maximize energy efficiency. A subset of the MMMT system —
video encoder and decoder for videophone mode — is modeled with the work-
load variation of a PBPAIR encoder [7] and an H.263 decoder [16]. The network
zone information is assumed to be given and the hardware implementation is
from [17,18].

For the system realization, we use the Simics [19] full system simulation plat-
form, capable of simulating target systems that include real network connection
and run operating systems and workloads. Specifically, we use the Simics model
of a PowerPC-based Ebony card [17] with a PPC440GP processor [18] that boots
Linux 2.4. The execution profile from the Simics environment is reported and
used to the formal specification via a real network (port forwarding feature in
Simics). As explained in Section 5.2, execution profile from the system realization
is fed back into the formal model to enhance the solution quality.

6.2 Model Refinement

Modeling with formal executable specifications, rather than implementing simu-
lators of distributed systems under consideration, enables us to carry out formal
analysis (e.g., statistical model checking and quantitative analysis). However,
there exist opportunities to improve the formal model to adapt to the system
dynamics. For this purpose, we allow model refinement from observed system
execution behavior by equipping the controller with a loop to experiment with
the system realization.

Figure 5 illustrates model refinement based on the dynamic system execution
behavior from a system realization. The formal specification initially models the
execution times of each task as a function of BCET and WCET from samples,
and performs verification/evaluation of the given policies based on that model
shown as phase1 in the Figure 5(a). The Maude traces followed by statistical



268 M. Kim et al.

Optimization for zone 1

A user resides in zone 1

System
Realization

Formal
Analysis

Device

Controller

phase 2

phase 3phase 1 phase 3phase 1

Optimization for zone 2

A user resides in zone 2

event 1 event 2 event 3

event 4event 2

event 5

t0 t1 t2 t3 t4 t5 t6 t7

phase 2

event 1 : mobility update 
start formal analysis

event 2 : done initial formal analysis 
event 3 : observations from 

system realization 
start model refinement

event 4 : done iterative tuning
event 5 : proactive control 
phase 1 : initial formal analysis
phase 2 : running system realization
phase 3 : enhanced formal analysis 

by model refinement
* time (phase 2) >> time (phase 1 & 3 )
zone 1 : zone with a% packet loss rate
zone 2 : zone with b% packet loss rate 

event 1 : mobility update 
start formal analysis

event 2 al analysis: done initial forma
event 3 m : observations from

system realization system realizatio
start model refinement

event 4 ning: done iterative tun
event 5 l : proactive control
phaseh 1 : initial formal analysisi iti l f l
phase 2 : running system realization

hphase 3 : enhanced formal analysis: enhanced formal
by model refinementby model refinem

* time (phase 2) >> time (phase 1 & 3)
zonezone 11 : zone with a% packet loss rate: zone with a% packe
zone 2 et loss rate : zone with b% packe

event 1 : mobility update 
start formal analysis

event 2 : done initial formal analysis 
event 3 : observations from 

system realization 
start model refinement

event 4 : done iterative tuning
event 5 : proactive control 
phase 1 : initial formal analysis
phase 2 : running system realization
phase 3 : enhanced formal analysis 

by model refinement
* time (phase 2) >> time (phase 1 & 3 )
zone 1 : zone with a% packet loss rate
zone 2 : zone with b% packet loss rate 

event 0

time

(a) Test Scenario

0

10

20

30

40

50

60

70

80

90

100

Formal Analysis System Realization

A   B   C   D

R
el

at
iv

e 
E

ne
rg

y 
C

on
su

m
pt

io
n 

C
om

pa
re

d 
w

ith
 A

lw
ay

s-
on

 (
%

)

A   B   C   D A   B   C   D A   B   C   D A   B   C   D A   B   C   D A   B   C   D

iterative tuning for 
zone 1 (10% PLR (Packet Loss Rate))

phase 1 phase 2&3 phase 1 phase 2&3 phase 1 phase 2&3

iterative tuning for 
zone 2 (20% PLR)

iterative tuning for 
zone 3 (5% PLR)

time

update
[bcet, wcet]

adjust
distribution

update
[bcet, wcet]

update
[bcet, wcet]

S1 S3

S5

S6

S7

S8

S9

S10

S11

S12

A: Greedy + PBPAIR B: Greedy + NO
C: Cluster + PBPAIR D: Cluster + NOS2 S4

(b) Test Result

Fig. 5. Experimental Results: Model Refinement and Proactive Control

quantitative analysis provide the initial estimations up to time t1 in Figure 5(a).
Since obtaining execution behavior from the system realization usually takes
much longer time than formal analysis (e.g., in our case, it is of the order of
hundreds times slower than formal analysis), it is beneficial to find the best policy
by formal analysis first. At time t2, the system realization starts generation of
the BCET and WCET that reflect the actual executions as described as event3
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Fig. 6. Dynamic Execution Behavior of PBPAIR

in Figure 5(a). Then, the formal model is refined by updating BCET and WCET
to enhance the analysis results as shown between t2 and t3 (phase3).

Let us take an example. At time t0, the formal specification models PBPAIR
execution with [BCET, WCET] as [109 msec, 202 msec]4, and provides the anal-
ysis results s1 to s4 for four different policy/parameter selections (A,B,C,D) in
Figure 5(b), respectively. Since our system realization reports dynamic execution
of PBPAIR as shown in Figure 6, we can refine [BCET, WCET] to be [66 msec,
125 msec] that leads to formal analysis results s5 to s8 in Figure 5(b). Further-
more, we adjust the parameter of the frame encoding time distribution model
in the formal specification since many frame encoding times are close to BCET
as shown in Figure 6. Instead of simply providing simulated [BCET, WCET] as
the parameter of the normal distribution model explained in Section 5.2, we use
the actual average execution time observed from the system realization. Formal
analysis results s9 to s12 in Figure 5(b) show a better approximation (i.e., closer
to the estimation based on dynamic execution behavior from system realization)
due to this adjustment.

It should be pointed out that phase1 (initial formal analysis) and phase3 (en-
hanced formal analysis) takes much less time than phase2 (running a system
realization). The goodness of a policy/parameter selection, however, remains
same through phase1 to phase3. This indicates that on-the-fly, light-weight for-
mal verification can be effectively used in adaptation by rapidly narrowing down
the search space of potential policies and parameters. Furthermore, the qual-
ity of adaptation can be improved by combining formal analysis with observed
system execution behavior.

6.3 Proactive Control

As we mentioned in Section 4, we exploit a priori information on a user’s mobility
(e.g., current zone, speed, and trajectory, etc.) and network situation (e.g., packet
loss rate, delay, etc.) to select among policies and related parameter tuning before
the user enters a new zone. The mobility information is used to identify the

4 These profiled values are from [7] for various video inputs.
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network situation in the current zone and to anticipate the next zone based on a
user’s speed and trajectory. Ideally, we need prediction techniques like time series
analysis [20] to model the future trends in network traffic with some defined level
of confidence (event0 in Figure 5(a)). This is, however, beyond the scope of this
paper. Currently, we assume that the next zone information is forecast by the
system realization (event1).

Figure 5 also illustrates proactive control initiated by network status update.
At time t0, the middleware layer is informed about the next zone information
that a user will reach, zone1 with 10% packet loss rate at time t4. Our framework
performs the iterative tuning process — formal execution followed by statistical
analysis (phase1) with subsequent model refining (phase2 and phase3) — for
the next zone. As a result, our framework can generate controls (event5) to
the device before the user enters the new zone (any time between t3 and t4).
Similarly, at time t5 the formal model is informed that a user will be in a zone
with 20% packet loss rate at time t7. By the time t6, our framework can provide
proactive controls for zone2.

7 Related Work

The authors of [21] explore probabilistic model checking (PMC) in solving the
DPM problem. They obtain the optimal DPM policy by formulating the opti-
mization problem as a discrete time Markov chain (DTMC) model and solve it
using an equation solver (e.g., MAPLE [22]). Once a policy has been constructed,
its performance is validated using a probabilistic model checking (PMC) tool
PRISM [23]. Even though PMC enables experimenting with the effectiveness
of a selected DPM algorithm in a quantitative way, the challenge still remains
to determine how to actually implement a good power manager that considers
complex system dynamics since their work is essentially a validation process for
a specific policy using an equation solver. Besides, their analysis of stochastic
systems is carried out using numerical solution techniques that are far more
memory intensive. On the other hand, our approach is to start with an exe-
cutable formal model specifying a space of possible behaviors and analyze these
possible behaviors using light-weight statistical techniques.

Model-predictive control approaches [24,25] also attempt to address power
management issues. In [24], the authors propose predictive learning to shutdown
a device by exhaustively searching over a limited look-ahead horizon. In [25], a
closed loop feedback control based on queuing theory is presented to optimize
CPU frequency. Their solution quality depends on the future events forecasted
by a mathematical model (e.g., filter). The applicability of these approaches,
however, is limited to systems having a small number of control inputs with
synthetic workloads.

The authors of [26] propose an incremental methodology to analyze the ef-
fect of a simple time-out based DPM scheme. They start with the functional
model without timing and perform a noninterference check for behavior. Then,
they extend it to a Markovian model (i.e., the execution time of each action is
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modeled as an exponential function) and the effect of DPM is evaluated by stan-
dard numerical techniques. Lastly, they extend it to a general model by using
profiled information from real-world measurements and simulate it to compare
the result with that of Markovian model. Our framework can be seen as a gener-
alization of their work. First, since we use Maude formal executable specifications
that can have any distribution in timing by controlling the tick rule, our formal
model corresponds with their general model (a Markovian model can be treated
as a specific distribution in the general model). Their mathematical soundness is
only guaranteed when the model follows exponential timing. More importantly,
our primary focus is on-line adaptation based on abstract formal models com-
plemented by a system realization, not the validation at design time.

8 Conclusions and Future Work

This paper presents a unified framework to develop formal analytical methods for
understanding cross-layer and end-to-end timing issues in highly distributed sys-
tems that incorporate resource limited devices, and to integrate these methods
into the design and adaptation processes for such systems. We propose itera-
tive/proactive system tuning for DRE systems and apply them in a case study
treating the videophone mode of a multi-mode multimedia terminal. The in-
tegration of formal analysis with the observation of system execution behavior
results in a feedback loop that includes the formal models, simulation, and mon-
itoring of running systems for analysis of system behavior and optimizing choice
of policies and parameters. The underlying formal executable models are mod-
erately simple to develop, and the analyses seem feasible. The experiments on a
fairly complex case study demonstrate the capability of our framework — formal
verification combining with observation from system realization — to dynamic
tuning of DRE systems.

Ongoing and future work in this project includes:
– considering of a richer class of timed properties
– policy improvement via learning
– modeling and analysis of cross-cutting concerns (e.g., reliability, security)
– carrying out a large scale demonstration with heterogeneous applications

(mission critical, multimedia) on multiple devices in a distributed network.
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Abstract. In this paper, we study schedulability analysis problems for
multi-processor real-time systems. Assume a set of real-time tasks whose
execution times and deadlines are known. We use timed automata to
describe the non-deterministic arrival times of tasks. The schedulability
problem is to check whether the released task instances can be executed
within their given deadlines on a multi-processor platform where each
processor has a task queue to buffer task instances scheduled to run
on the processor. On the positive side, we show that the problem is
decidable for systems with non-preemptive schedulers or tasks with fixed
execution times. A surprising negative result is that for multi-processor
systems with variable task execution times and a preemptive scheduler,
the schedulability analysis problem is undecidable, which is still an open
problem in the single-processor setting.

1 Introduction

Real-time systems are often designed as a collection of real-time tasks and a
scheduling strategy implemented as a scheduler. Each of the tasks may have a set
of task parameters such as release rate (or release pattern), best and worst-case
execution times on the target hardware, priority, deadline, etc. In the operation
of a system, the tasks will be released according to the pre-designed release
rates, and the released task instances are scheduled to execute on a processor by
the scheduler. Here the scheduler, namely the scheduling strategy, is the critical
component for the correct functioning of a system. It makes the decision about
in which order the released task instances should be executed, based on the task
parameters and the current system state.

An important design problem is to analyze whether all the task instances
can be executed within the given deadlines, which is essentially to estimate
the worst-case response times of the tasks. This is the so-called schedulability
analysis based on (1) the task release patterns, (2) the task parameters and (3)
the scheduling policy, all of which are from the system design phase. The source
of complexity in solving the analysis problem is in dealing with task releases
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and preemptions. A newly released task instance may preempt a running task,
which influences the response time for the preempted task. Classic solutions,
e.g., Rate-Monotonic Analysis often assume deterministic task release patterns
such as periodic tasks [LL73] or deterministic patterns with fixed type of non-
determinism such as jitters [But97] and offsets [RC01]. A challenge is to solve the
schedulability analysis problem for systems with dynamic and non-deterministic
task releases and preemptions. In recent years, in a series of work, we have used
timed automata [AD94] to model task release patterns and solved the problem
for a large class of single-processor systems [FKPY07, FMPY06].

In [FKPY07], timed automata are extended with asynchronous tasks. Each
location of a timed automaton may be associated with a task. As soon as the
automaton visits a location, an instance of the associated task is released and
put (scheduled) into a task queue for execution. Compared with classic task
models studied in the literature on scheduling, extended timed automata provide
a much more expressive model which, in fact, inherits the full expressive power of
timed automata for modeling of dynamic and non-deterministic task releases and
preemptions. In our previous work, the classic notion of schedulability analysis
has been extended to the automata model, and it is shown that for a large class
of systems, the problem can be solved automatically using algorithmic methods.
However, the study has been restricted to the single-processor setting.

In this paper, we study the schedulability analysis problem of the extended
automata model in the multi-processor setting. Basic scheduling algorithms
for multi-processor systems can be found in, e.g., [BB06]. For recent work on
schedulability analysis for multi-processor systems and further references, see
[ABJ01, BCL05]. We assume that a system has a fixed number of processors
available. Each processor is associated a task queue, where the released tasks
wait to be processed. A scheduling policy (modeled as a function) decides for
a newly released task instance into which queue and at which position in the
queue it will be inserted. However, task migration is not allowed, that is, once
a task instance is assigned to a processor, it will remain in the associated queue
until it finishes.

On the positive side, we show that the problem is decidable as for the single-
processor case if

1. the scheduler runs a non-preemptive scheduling strategy, or
2. the tasks have fixed execution times, that is, the best and worst-case execu-

tion times coincide.

It is an open problem, whether for the class of systems with variable task
execution times and a preemptive scheduler, the schedulability problem is de-
cidable in the single-processor setting. This problem becomes undecidable when
the scheduling policy has at least two processors with their task queues avail-
able. More precisely, as a main technical result of this paper, we show that the
schedulability problem is undecidable for multi-processor systems if

1. the scheduler runs a preemptive scheduling strategy, and
2. the tasks have variable execution times ranging over an interval between the

best and worst-case execution times.
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2 Preliminaries

In this section, we introduce the concept of task automata (timed automata
extended with tasks) developed in [FKPY07], and the multi-processor schedula-
bility problem.

2.1 Task Automata

Let C be a finite set of clocks. A function ν : C → R≥0 is called a clock valuation
while the set of all clock valuations over the clocks C is denoted by V(C). With
ν[r] we denote the clock valuation which is equal to ν, except that all clocks in
r ⊆ C are reset to zero. B(C) is the set of clock guards g, which are conjunctions
of expressions of the form x1 � N and x1−x2 � N with x1, x2 ∈ C, N ∈ N≥0 and
� ∈ {<,≤, >,≥}. If g contains only x1 � N expressions, we say it is diagonal-
free. A valuation ν satisfies a guard g (written ν |= g) if for all expressions
x1 � N and x1 − x2 � N in g it holds that ν(x1) � N and ν(x1) − ν(x2) � N ,
respectively.

Tasks and task queues. We define a task type as a tuple (P,B,W,D) written
P (B,W,D), where P is the task name (unique for each task type), B,W ∈ N≥0

the best and worst case computation times (with B ≤ W and W ≥ 1), and
D ∈ N≥1 the relative deadline. Note that D is a relative deadline meaning that
whenever an instance of P is released, it should be computed within D time units.
A task instance Pi(bi, wi, di) of type Pi(Bi,Wi, Di) is a released copy of this task
type with bi, wi, di ∈ R being the remaining computation times and deadline.
A task queue q is a list [P1(b1, w1, d1), . . . , Pn(bn, wn, dn)] of task instances (of
possibly the same type). By a discrete part of a queue [P1(b1, w1, d1), . . . , Pn(bn,
wn, dn)] we mean the list of the corresponding task names [P1, . . . , Pn] (the
information about the remaining computation times and deadline is projected
out). Let P be the finite set of task types and QP be the set of queues over this
task type set.

To talk about computation and resource consumption, we shall use a function
Run : QP×R≥0 �→ QP which given a real number t and a task queue q returns the
task queue after t time units of execution on a processor. The result of Run(q, t)
for t ≤ w1 and q = [P (b1, w1, d1), Q(b2, w2, d2), . . . , R(bn, wn, dn)] is defined as
q′ = [P (b1−t, w1−t, d1−t), Q(b2, w2, d2−t), . . . , R(bn, wn, dn−t)]. For example,
let q = [Q(2, 3, 5), P (4, 7, 10)]. Then Run(q, 3) = [Q(−1, 0, 2), P (4, 7, 7)] in which
the first task has been executed for 3 time units. For an empty queue, denoted
by [], Run([], t) = [].

Definition 1. A task automaton over actions Act, clocks C, and task types P
is a tuple 〈N, l0, E, I,M, xdone〉 where

– N is a finite set of locations,
– l0 ∈ N is the initial location,
– E ⊆ N × B(C) ×Act× 2C × N is the set of edges,
– I : N → B(C) is a function assigning a clock constraint to each location

which is called location invariant,



Multi-processor Schedulability Analysis of Preemptive Real-Time Tasks 277

– M : N ↪→ P is a partial function assigning locations with task types,1 and
– xdone ∈ C is the clock which is reset whenever a task finishes.

We write l
g a r−→ l′ for 〈l, g, a, r, l′〉 ∈ E.

Semantics. An important part of the operational semantics is the scheduling
function, which decides into which queue and at which position a newly released
task should be inserted. For the sake of presentation, we first introduce the
scheduling function Sch : P × QP → QP for the single-processor case. Given
a task instance and a task queue, it returns the task queue with the task in-
stance inserted and the order of the other task instances preserved. Depending
on whether the scheduler is preemptive or non-preemptive, the function may
insert new tasks as the first element or not. Since we want this function to be
encodable in timed automata, the definition has the following important condi-
tion.

Definition 2. Sch : P × QP → QP is a scheduling function, if for each task
type P (B,W,D) and discrete part [P1, . . . , Pn] of a queue there can be effectively
constructed a diagonal-free timed automaton with

– Clocks yb
1, y

w
1 , yd

1 , . . . , y
b
n, y

w
n , yd

n,
– n + 2 locations l0, l1, . . . , ln+1, and
– n + 1 edges from l0 to li for 1 ≤ i ≤ n + 1,

such that Sch(P (B,W,D), [P1(b1, w1, d1), . . . , Pn(bn, wn, dn)]) inserts P (B,
W, D) into the queue at the m-th position if and only if lm is the only location
reachable from (l0, ν) where ν(yb

i ) = bi, ν(yw
i ) = wi, ν(yd

i ) = di for all 1 ≤ i ≤ n.

This definition generalizes the notion of a scheduling policy. Most of the standard
scheduling policies such as EDF (Earliest Deadline First), FPS (Fixed Priority
Scheduling), FIFO, etc. satisfy this condition, but also ad hoc policies such as
combinations of the standard ones are included. Therefore, the results hold for
a very general class of scheduling policies.

In the multi-processor case, the scheduling function takes k queues and a task
type as an input and returns the queues with the new task instance inserted at
some position in one of the queues. It can use the information from all the queues
for its decision. Each timed automaton corresponding to a scheduling policy then
contains clocks for all the instances in all the queues. To simplify the notation,
we assume that for k queues q1, . . . , qk with discrete parts q̃1, . . . , q̃k, all the task
instances are indexed by one index i ranging from 1 to

∑
1≤j≤k |q̃j |, where |q̃j |

denotes the number of the task instances in the queue qj . E.g., the index of the
first task instance in q2 is |q̃1| + 1. Also, all possible positions where a new task
can be inserted are indexed by one index ranging from 1 to

∑
1≤j≤k |q̃j |+k. E.g.,

the |q̃1|+2-th position denotes the first (head) position of the second queue (the
first task instance in q2 after insertion). By bi, wi and di we denote as before the
continuous queue information for the task instance pi.
1 Note that M is a partial function meaning that some of the locations may have no
tasks.
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Definition 3. (Multi-processor Scheduler) Let k ∈ N be the number of proces-
sors. Then Schk : P × (QP)k → (QP)k is a multi-processor scheduling function,
if for each task type P (B,W,D) and discrete parts of queues q̃1, . . . , q̃k, there
can be effectively constructed a diagonal-free timed automaton with

– Clocks yb
1, y

w
1 , yd

1 , . . . , y
b
K , yw

K , yd
K where K =

∑
1≤j≤k |q̃j |,

– K + k + 1 locations l0, l1, . . . , lK+k and
– K + k edges from l0 to lj for 1 ≤ j ≤ K + k,

such that the function Sch(P (B,W,D), q1, . . . , qk) inserts P (B,W,D) at the
m-th position if and only if lm is the only location reachable from (l0, ν) where
ν(yb

i ) = bi, ν(yw
i ) = wi, ν(yd

i ) = di for all 1 ≤ i ≤ K + k.

Note that this definition does not allow for moving tasks between processors
after they got assigned to one processor at the moment when they are released,
that is, we do not allow task migration. This restriction is necessary for our
decidability proofs.

A task automaton may – just as a timed automaton – perform event and
delay transitions, and additionally task finishing transitions. An event transition
corresponds to the arrival of a new task, and a delay transition corresponds to
active tasks being executed while the others are waiting, or just processor idling
in case some queue is empty. Transitions of the third type remove finished tasks
from the queues and reset the clock xdone, giving thus a feedback to the automa-
ton (xdone can be checked in the guards). We give now the formal definition of
the operational semantics for a system with k processors as a labeled transition
system (LTS), where S := N ×V(C)× (QP)k is the state space, thus incorporat-
ing the queues into the state information. Let ν0 be a clock valuation assigning
all clocks the value 0, and Σ := Act∪R≥0 ∪{fin} a set of labels (for events, time
pass values and task finishing).

Definition 4. Given a scheduling strategy Schk over k processors, the semantics
of a task automaton A = 〈N, l0, E, I,M, xdone〉 is a labeled transition system
�ASchk

� = 〈S, s0, Σ, T 〉 with s0 = (l0, ν0, []) and T the set of transitions defined
by the following rules:

– (l, ν, q1, . . . , qk) a−→Schk
(l′, ν[r], Schk(M(l′), q1, . . . , qk)) if l

g a r−→ l′, ν |= g, and
ν[r] |= I(l′),

– (l, ν, q1, . . . , qk) t−→Schk
(l, ν+t,Run(q1, t), . . . ,Run(qk, t)) if t ∈ R≥0, (ν+t) |=

I(l), and for all i with qi = P (b, w, d) :: q′i it holds that t ≤ w, and
– (l, ν, q1, . . . , P (b, w, d) :: qi, . . . , qk) fin−→Schk

(l, ν[xdone], q1, . . . , qi, . . . , qk) if b ≤
0 ≤ w and ν[xdone] |= I(l),

where P (b, w, d) :: q denotes the queue with the task instance P (b, w, d) on the
first position and q being the (possibly empty) tail.

Finally, we can also define the main question this work deals with, namely
whether a task automaton models schedulable sequences of task releases. As
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all deadlines in our model are hard, we say that a task automaton is schedulable
for a given scheduling strategy if no matter how does the (non-deterministic)
computation evolve, all deadlines are met. We use qerr to denote queues con-
taining a task instance P (b, w, d) with d < 0.

Definition 5. (Schedulability) A task automaton A with initial state (l0, ν0,
[], . . . , []) is unschedulable with Schk if (l0, ν0, [], . . . , []) −→∗

Schk
(l, ν, q1, . . . , qerr,

. . . , qk) for some l and ν. Otherwise, we say that A is schedulable with Schk.

We call a queue unschedulable if it will inevitably lead to a deadline miss provided
that all tasks take their worst case computation times. Otherwise, a queue is said
to be schedulable. The important observation for schedulable queues is that their
length is bounded:

Lemma 1 ([FKPY07]). Given a finite task type set P, one can effectively
construct a natural number BP such that |q| ≤ BP for all schedulable queues q.

2.2 Decidability for Task Automata

A system, modeled by a task automaton and a scheduling function, can have the
following three properties:

Preemption: The scheduler may insert a newly released task to the head of
a non-empty queue, thus preempting the currently running task (a non-
preemptive scheduler may insert tasks only at other positions).

Variable task execution times: There can be task types Pi(Bi, Wi, Di) such
that Bi < Wi, meaning that the task may non-deterministically finish exe-
cution at any time within the interval [Bi,Wi].

Feedback: The precise finishing time of a task may influence the new task
releases (by means of using xdone in guards and invariants).

Note that the more of these properties are dropped for a task automaton, the
easier the schedulability analysis problem becomes.

In [FKPY07], the schedulability problem is studied for single-processor sys-
tems. It is shown that (even with only one processor) schedulability becomes
undecidable if a task automaton has all three properties. In turn, it has also
been shown that if there is no preemption, the problem becomes decidable. The
same holds if there is no variable execution time. The open question remains,
whether schedulability is decidable if xdone is not used in the guards and invari-
ants for creating feedback. This last variant has also been proven decidable for
certain types of schedulers in [FKPY07], but there is no result for the general
case.

We study these questions for multi-processor scheduling. Since single-proces-
sor systems are just a special case of multi-processor systems, the negative result,
namely that the schedulability becomes undecidable if a task automaton has all
three properties, transfers to our setting. We show that the problem remains
decidable for the following classes:
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1. A non-preemptive scheduler (but possibly variable execution time and feed-
back) or

2. Fixed execution time tasks (B = W for all task types, but possibly a pre-
emptive scheduler and feedback).

On the other hand, we show that the schedulability analysis problem becomes
undecidable for the third case:

3. No feedback (but possibly a preemptive scheduler and variable execution
time).

3 Decidable Cases of Multi-processor Scheduling

In this section, we show that the multi-processor schedulability problem is de-
cidable for the first two cases. The proof is done by reduction of this problem
to the reachability problem for timed automata. For a given number of proces-
sors, a task automaton, and a multi-processor scheduling policy, we construct a
timed automaton with an error location such that the system is unschedulable
if and only if the error location is reachable. Our construction is based on the
construction for the single-processor case from [FKPY07] and [EWY99].

3.1 Fixed Computation Time

First, we handle the case where all tasks have fixed computation time (but the
scheduler can be preemptive and there can be feedback from the scheduler back
to the automaton).

Theorem 1. The problem of checking whether a task automaton A with fixed
computation times of tasks together with a multi-processor scheduler Schk is
schedulable, is decidable.

Proof (Sketch). The given task automaton A is transformed into a standard
timed automaton E(A) by taking the underlaying timed automaton of A, remov-
ing the labels and adding new labels releaseP on edges where A would release
an instance of task type P . Because of Definition 2 and Lemma 1, the whole
scheduling strategy for schedulable queues can be encoded as a timed automa-
ton E(Schk) (the scheduler automaton) as follows. The continuous part of the
queues, namely the best/worst case computation times and remaining relative
deadlines, are encoded in clocks. There are two clocks xc

i and xd
i for each task

instance pi in the queues, which measure how long this task instance has been
computed and how long it has been released. The discrete parts of the queues
(the order of the task instances) are encoded in locations of E(Schk). Since the
queue length of schedulable queues is bounded (Lemma 1) and the number of
the queues is fixed, there are only finitely many locations needed. Once a queue
becomes unschedulable, E(Schk) will enter a dedicated error location. The edges
and their guards correspond to the comparisons which the scheduling function
uses for its decisions.
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The values of bi, wi and di for each task instance pi in the queue can be
expressed using the clocks xc

i and xd
i , which is ensured by the construction in

the following way. Whenever a new instance pi of type Pj is released (event
releasePj ), the clock xd

i is reset. Before a task instance pi is put to the head of
its queue (which models the beginning of the task execution), the values bi, wi

and di from the queue can be expressed as Bj , Wj and Dj − xd
i , respectively.

The clock xc
i is not used at all.

As soon as the task instance pi is scheduled for execution for the first time,
the clock xc

i is reset, keeping track of its computation progress. For a running
task instance pi, the values bi, wi and di from its queue can be expressed as
Bj − xc

i , Wj − xc
i and Dj − xd

i , respectively. Therefore, this task instance may
finish whenever ”Bj ≤ xc

i ≤ Wj”holds. To model task finishing, E(Schk) removes
pi from its queue and resets xdone. Whenever a constraint ”xd

i > Dj” is met for
a released task instance pi, an error location ”unschedulable” is entered.

Because of the preemption, tasks waiting in the queues may have already been
executed for some time, but they are stopped now. Since it is not possible to stop
their xc

i clocks, the time for which a preempted task pi was already computed is
represented not just by its xc

i clock, but by a difference xc
i − xc

j . Here, pj is the
task which directly preempted pi.

When a running task pm finishes, all xc
i of the preempted tasks pi are updated

by subtracting xc
m, i.e., the computation time which was needed by pm. In gen-

eral, the reachability for timed automata with such updates is undecidable, but
because of the fixed computation time property, xc

m = Bj = Wj is a constant nat-
ural number (assume that the type of pm is Pj). Therefore, clocks in the resulting
timed automaton E(Schk) (and in the product automaton E(Schk) ‖ E(A)) are
updated only by subtractions of integers. There is also a bound on the values
of the clocks which are subtracted (the deadline), which makes the reachability
problem for this type of automata (Timed Automaton with Bounded Subtraction)
decidable, as proven in [FKPY07].

The product automaton E(Schk) ‖ E(A) described above is a timed automa-
ton with bounded subtraction for which it holds that the ”unschedulable” error
state is reachable if and only if A is unschedulable with scheduling strategy Schk.

The proof of this fact for the multi-processor case is the same as for the
single-processor case in [FKPY07], with the difference that there can be several
tasks running at the same timepoint. Therefore, it is necessary to check that
Condition C3 from the proof in [FKPY07], i.e., correctness of the invariant bi =
Bm − (xc

i − xc
j), also holds here.

But from the fact that the scheduling function cannot move tasks from one
queue to another one (here we need the assumption that the task migration is not
allowed) it follows that whenever a task instance pi of type Pm is preempted by
another instance pj of type Pn, it will stay preempted (i.e., not being computed)
until pj finishes. Moreover, for pj it holds that bj = Bn = Wn at the timepoint
when it preempts pi. This together implies the correctness of C3 and thus also
of the updates at the end of preemption. ��
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Note that here, the diagonal-freeness in guards of the scheduler (see Definition
2) is important, because it is necessary to use clock differences to express the
computation time of tasks. (A comparison of a clock difference to a constant
is already a diagonal constraint which cannot be further extended by another
clock.)

3.2 Non-preemptive Scheduler

In this case, tasks are not allowed to preempt other already running tasks, which
makes handling the computation time of all tasks in the queues easier. Therefore,
even variable computation times of tasks can be allowed.

Theorem 2. The problem of checking whether a task automaton together with
a non-preemptive multi-processor scheduler is schedulable, is decidable.

Proof (Sketch). Here, the same construction as above is used, i.e., two au-
tomata E(A) and E(Schk) are created. Again, E(Schk) keeps track of computa-
tion progress and time pass since the release in clocks xc

i and xd
i for each released

task pi.
As in the previous case, whenever a new instance pi of type Pj is released

(event releasePj ), the clock xd
i is reset. Before a task instance pi is put to the

head of a queue, the values bi, wi and di from the queue can be expressed as Bj ,
Wj and Dj − xd

i , respectively. The clock xc
i is not used at all.

As soon as the task instance pi is scheduled for execution, the clock xc
i is

reset, keeping track of the computation progress of the task. For a running task
instance pi, the values bi, wi and di from its queue can be expressed as Bi − xc

i ,
Wi − xc

i and Di − xd
i , respectively.

Because the scheduler is non-preemptive and the scheduling function cannot
move tasks from one queue to another one, only the running task in each queue
has already started its computation. The tasks which are not at the head of some
queue did not start their computations yet. For this reason, we do not need to
use xc

i of the waiting tasks to compute bi and wi. ��

Note that for this result, the definition of the scheduling function (Definition 2)
does not have to be that restrictive in the sense that also diagonal constraints
can be allowed for the decisions in the scheduling function. The reason is that the
computation time and deadline values in the queues are encoded into (at most)
one clock each. The possibility of using diagonal constraints in the scheduler’s
decisions makes (for the non-preemptive case) encoding even of the Least Slack
First [But97] scheduling policy possible.

4 Undecidability

In this section we show, that the schedulability problem is undecidable for multi-
processor systems with at least two scheduling queues. This holds even if the
precise task finishing times cannot influence releases of new tasks.
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Theorem 3. The problem of checking whether a task automaton without feed-
back using a k-multi-processor scheduler is schedulable, is undecidable for k ≥ 2.

To develop the proof, we first sketch a construction used in [FKPY07] for the
single-processor case, where the automaton was allowed to use task feedback.
We then extend the result to the multi-processor case, even if no task feedback
is involved.

4.1 Undecidability on Single-Processor Using Feedback

The undecidability proof for the general single-processor schedulability problem
is done by a reduction from the halting problem for two-counter machines. A two-
counter machine consists of a finite state control unit and two unbounded non-
negative integer counters. The three possible instructions are counter-increment,
counter-decrement and conditional branching (checking whether a counter value
is zero). After each step, the machine state is changed deterministically. One
of the states is a dedicated halt state. It is known, that the problem whether
this halt state is reachable (the halting problem for two-counter machines) is
undecidable.

The idea is, given a two-counter machine M , to construct a task automaton
AM and a scheduling policy such that a dedicated halt location in AM is reach-
able if and only if the halt state of M is reachable. It will be ensured that no
task can miss its deadline as long as the halt location is not visited. In turn,
the queue can unboundedly grow in the halt location, making tasks miss their
deadlines. The result of these two properties is that AM will be unschedulable if
and only if M can reach its halt state.

For each state of M ’s control unit there is one corresponding location li in
AM . These locations are connected depending on the operation which M would
execute at the corresponding state (increment, decrement, branching), through
auxiliary locations ”executing” this instruction.

To encode the counters into clock values, an N -wrapping construction from
[HKPV98] is used. All clocks x stay within the interval [0, N ] for a constant N by
resetting each clock x as soon as x = N (wrapping reset). For a dedicated system
clock xsys these are the only resets (which makes xsys periodic). In this way,
wrapping values for all other clocks can be defined as their values at the (periodic)
times where xsys = 0. Thus, between any two consecutive non-wrapping resets of
the clock x (i.e., resets when x < N holds), its wrapping value does not change.

Using this construction, the value v of a counter C can be kept as the wrapping
value 21−v of a clock xC . Therefore, this wrapping value of xC is always smaller
than or equal to 2. The conditional branching is done by directly comparing the
value of xC to 2, and the increment (decrement) operation is implemented as
dividing (multiplying) the wrapping value of xC by 2.

For the implementation of the decrement, i.e., the doubling of the value of
xC , a task Q with fixed computation time is released at a non-deterministically
chosen time and a clock xCnew is reset at the same time. This task is then
preempted by a task P of higher priority with variable execution time. P is
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released when xC is reset to zero by a wrapping edge. A guard with xdone = 0
is used to check if its execution time is equal to the wrapping value of xC , i.e.,
if it finishes when xsys is reset. This preemption is repeated, and by using the
xdone = 0 guard again afterwards to check that Q finishes when xsys is reset,
the wrapping value of xCnew is forced to be the double of the wrapping value
of xC . The response time of Q is a constant time (its computation time) plus
two times the wrapping value of xC – because of the two preemptions from P . If
any step in the construction fails (some non-deterministic choice was wrong), the
automaton enters a sink location where no task is released. Figure 1 illustrates
a successful run of the whole decrement procedure.

e2 e4 e5 e6 e7e3

Q(8, 8, 100)

P (0, 1, 50)

xsys

e1

4

0

xsysxsys xC xC xsysxCnewxCnew

xCnew

xC xC

Fig. 1. Time chart of the doubling procedure using the N-wrapping construction

An increment for C needs to halve the wrapping value of the clock xC . To
achieve this, the wanted new value is simply guessed in a clock xCnew and then
checked using the above decrement procedure. Only if the double of xCnew is
xC , the computation will continue.

During all three operations, all used tasks meet their deadline (using a fixed
priority scheduler) and therefore the automaton is schedulable as long as it ex-
ecutes these instructions. A special location lhalt is used to represent the halt
state of M . This location releases the task Q and it has an unguarded selfloop.
Therefore, if AM reaches lhalt, it will be able to release an unbounded amount
of task instances at the same timepoint, making the system unschedulable.

Lemma 2 ([FKPY07]). For a given two-counter machine M , the constructed
task automaton AM is unschedulable with the fixed priority scheduler if and only
if M halts.

Note that the construction uses all three properties (preemption, variable exe-
cution time, and feedback) given in Section 2.

4.2 Undecidability on Multi-processor Without Feedback

We extend this result to the multi-processor case for the systems with preemptive
schedulers and variable computation time of tasks, but the finishing time of a
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task is never tested in the guards and invariants of a task automaton, that is,
task feedback is not allowed (xdone is never used in guards and invariants). To
achieve the same effect as with the task feedback, we develop two mechanisms
based on the status of task queues and the multi-processor scheduling policy.
First, we describe how the constraints xdone = 0 can be replaced by certain task
releases so that the system is still able to detect whether the task in question
finished at the right time. Secondly, a construction will be given to store this
information in a task queue.

Both mechanisms will ensure that the demand for the task feedback in the con-
struction is removed. There is no branching upon the fact whether xdone = 0,
the automaton continues its computation even if some non-deterministic choice
of the system is wrong. It stores the information about the fact whether all non-
deterministic choices have been correct so far and only if this is true then a queue
can become unschedulable after entering the location lhalt. However, to store this
information, at least one additional processor with its own queue is needed.

Checking the precise finishing time. The construction of AM for a given
two-counter machine M is exactly the same as before, but we change three
aspects. Note that we are now in the multi-processor scenario with at least two
queues q1 and q2. The tasks P and Q used in the construction above will be
scheduled to q1, P always preempts Q.

To check the finishing times of P and Q, two tasks TP
chk1 and TP

chk2 for P (TQ
chk1

and TQ
chk2 for Q) are released at the same timepoint (when we expect P or Q to

finish). From now on, we will talk only about checking of the correct finishing
time of the task P . All mechanisms are analogous for the task Q. The scheduler
then detects, if the task P finishes (is removed from the queue) between both
task releases. Future decisions of the scheduler (like scheduling tasks in the halt
location in an schedulable or unschedulable order) can be based on this. The
construction works in detail as follows.

First, at each position where an edge contains the guard xdone = 0 for synchro-
nizing on the finishing of a task P , remove the guard and add two additional
locations l1 and l2. The first one releases TP

chk1, the second one TP
chk2. Both

released instances will be scheduled to the queue q2. The original edge which
contained xdone = 0 will go to l1. The edges from l1 to l2 and from l2 to the old
location will contain guards ensuring that the automaton does not delay in l1
and l2. The whole fragment is depicted in Figure 2.

Secondly, the scheduler can use the task releases of TP
chk1 and TP

chk2 to check if
P stayed in the queue until that timepoint, but not longer. If P is in the queue
at the release of the first ”checking task” TP

chk1 and if it is not in the queue
when the second ”checking task” TP

chk2 is released, the scheduler knows that it
has finished at the correct timepoint. If it is not the case, then the automaton
cannot guarantee that P has finished at the correct timepoint and thus it cannot
guarantee that the simulation of the two-counter machine is correct.

Using the queue as a memory cell. The remaining problem is to remem-
ber the information that all finishing times were correct so far. Note, that it is
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xdone = 0

x = 0

x = 0other
guards/resets

l1

T P
chk1

T P
chk2

l2

x := 0

other
guards/resets

Fig. 2. Replacing the check for xdone = 0 with two additional locations l1 and l2 and
an additional clock x

impossible to send this information back to the automaton and that the schedul-
ing function is stateless. However, we now describe how the second queue q2 can
be used to remember this.

Except for TP
chk1 and TP

chk2, there will be also tasks of an additional type Tmark

released by the automaton and put into q2 in such a way that the utilization
of the second processor is 100%. Directly before (and at the same time of) the
release of TP

chk1, an instance of Tmark is released and put to the end of q2. If
the following release of TP

chk1 detects an early finishing (P is not in the queue
q1), the scheduler puts TP

chk1 directly after Tmark in q2, otherwise directly before
Tmark. The same holds for TP

chk2, if the scheduler detects a late task finishing (P
is still in q1). In this way, the fact that M has been simulated correctly so far is
equivalent to the fact that the last task in q2 is of type Tmark. Such a successful
scenario is described in Figure 3.

tail

T P
chk2 Tmark... released T P

chk2 Tmark Tmark...

q1

q2

P Q

T P
chk2 Tmark T P

chk1 Tmark

...

...released finishes
PT P

chk1

T P
chk2 Tmark T P

chk1 Tmark... released

T P
chk2

T P
chk1 T P

chk2 Tmark...

q1

q2

Q ...

q2

q1 Q ...

Correct finishing time:

head

q1

q2

P Q ... Tmark q1

q2

P Q ...

Fig. 3. Releases of tasks T P
chk1, T P

chk2, and Tmark detect that the finishing time of P is
correct
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In case that this checking discovered that the simulation was not correct (the
last task in q2 is not Tmark as the result of the checking procedure), we want to
remember this information for the rest of the computation. We encode it by the
fact that after any further checking, the last task in q2 will not be Tmark. In the
following, we explain how this information gets propagated from one checking
to another.

All task types TP
chk1, T

P
chk2 and Tmark have fixed computation times. Since the

checking times for each instruction are known in advance, it is possible to adjust
these computation times so that the processor is never idle, but also no deadline
is missed. Therefore, when new tasks TP

chk1, T
P
chk2 and Tmark arrive to the queue,

the task instance from the previous checking which was scheduled as last is still
in the queue. The scheduler can then take into consideration whether it is Tmark.
If it is the case, the scheduler inserts the new tasks into q2 as described above.
Otherwise, the scheduler just makes sure that the last task is not Tmark again,
keeping this fact invariantly true until the end of the computation. Therefore, AM

does not cheat during the whole computation (all task instances finish when we
wanted them to finish) if and only if all checks with TP

chk1 and TP
chk2 invocations

are successful which is equivalent to the fact that the last task in q2 is Tmark.
The last thing which is changed from the single-processor case with feedback

is the halt location. Here, instead of a selfloop releasing unboundedly many task
instances, two tasks R1(1, 1, 1) and R2(1, 1, 2) are released at the same time, and
then the automaton enters a sink location where no tasks are released anymore,
as depicted in Figure 4.

x = 0lhalt lhalt

P R1
R2

x := 0

Fig. 4. The new encoding of the halt state

The scheduler puts both instances to the head of the same queue and lets
R2 be computed first, making R1 miss its deadline, if and only if AM simulated
M correctly, i.e., the last task in q2 is Tmark. In this way, the automaton AM

will only be unschedulable, if it can reach the location lhalt without cheating at
the task finishing transitions. The following lemma states the correctness of the
construction.

Lemma 3. For a given two-counter machine M , the task automaton AM is not
schedulable with the constructed multi-processor scheduler if and only if M halts.

Proof (Sketch). If the two-counter machine M reaches the halt state then AM

can simulate the same instructions leading to the halt location. During the whole
(correct) simulation, the executions of P and Q always finish at the correct
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timepoint, i.e., when xsys is reset (and when xdone was reset in the construction
with the feedback). This keeps the wrapping values of the clocks xC and xD

correctly encoding the values of the counters C and D, respectively, and q2 is in
a ”not cheated” state all the time (the last task in q2 is Tmark). When AM then
enters its halt location, R1 and R2 will be executed in the order which makes
the queue unschedulable.

If M does not reach its halt state then AM has to cheat to reach its halt
location, which means that the following holds for the task instances of P and
Q. There is an instance of P or Q which does not finish at the time when
xsys is reset. Consequently, this cheating of AM is detected by the scheduler
through releases of TP

chk1 and TP
chk2. From this timepoint on, the last task in q2

will not be Tmark. This means that AM can only reach the halt location with q2

expressing that a task finished at a wrong time, making the scheduler execute R1

before R2, which means that both of them meet their deadlines. Provided that
during the run up to this point all tasks met their deadlines (which is ensured
by construction), the automaton AM is schedulable. Also, no tasks miss their
deadlines along runs of AM which do not reach the halt location. ��

5 Conclusion

Task automata, an extended version of timed automata with computation tasks,
may serve as a general model for real-time systems with non-uniformly recurring
tasks. In our previous work, the classic notion of schedulability has been extended
to this model by possibility of specifying various scheduling policies by means of
(a restricted class of) timed automata. The model includes many features such as
variable computation time of tasks and preemptive schedulers. The decidability
of the schedulability problem has been studied for various subclasses. However,
all the results were shown only for the single-processor setting.

In this paper, we have defined this problem for the multi-processor systems
by extending the definition of the scheduling policies. We have shown that the
schedulability problem stays decidable in the multi-processor setting for the
classes of task automata with a non-preemptive scheduling strategy or with
fixed computation times of tasks. On the negative side, the problem turns out to
be undecidable for preemptive multi-processor schedulers when the computation
times of tasks may vary within an interval. It is still an open question, whether
this problem is decidable in the single-processor setting. As a future work, we
will try to close this decidability gap.
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Abstract. Interactive Multimedia Documents (IMDs) are expected to satisfy 
temporal consistency properties in order to ensure that their synchronization 
constraints (temporal, logical and causal) can be respected during their presen-
tation. If an inconsistent situation can not be detected previously, the presenta-
tion of the document can be lead to undesirable deadlocks (global or partial). In 
particular, the flexibility of high level authoring models (such as SMIL 2.0) for 
the edition of complex IMDs can lead authors, in certain cases, to specify in-
consistent documents. For this reason, it is necessary to apply a methodology 
that provides the formal modelling for the dynamic behavior of the document, 
consistency checking, and the scheduling of the presentation taking into account 
the temporal non-determinism of these documents. This paper presents the main 
results of the development of a formal methodology which is based on the For-
mal Description Technique RT-LOTOS, and which has been successfully ap-
plied to support the design of complex SMIL 2.0 documents. 

1   Introduction 

The definition of Interactive Multimedia Documents (IMDs) is related to the coordi-
nated presentation of different types of information (text, images, audio, video, etc.) 
possibly associated with user interactions. The quality of the presentation of these 
documents depends upon the global consistency of their temporal synchronization 
constraints. An IMD is considered consistent when all of its synchronization con-
straints can be respected during the presentation. Otherwise, if a synchronization 
constraint can not be respected, the presentation of the document can lead to a dead-
lock situation. Unfortunately, little has been done in order to propose an integrated 
solution for the verification of consistency properties, and scheduling of IMDs [1], 
[2], [3], [4], [5]. 
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Over the last few years, the consortium W3C proposed the language Synchronized 
Multimedia Integrated Language (SMIL) in order to provide the integration of Inter-
active Multimedia Documents on the web. SMIL has been largely applied for the 
design and presentation of these documents [6], [7], [8]. The second version of SMIL 
[9] was proposed not only to overcome the limitations of the first version of this lan-
guage, but also to extend the functionalities of SMIL with the addition of animation, 
transition effects, etc. One important feature of SMIL 2.0 is its temporal model which 
was much more flexible allowing the author to specify synchronization constraints 
between any media object of a document. Although, the temporal model of SMIL 2.0 
was much more expressive, it could lead authors to describe synchronization con-
straints that cannot be resolved consistently at document presentation time. For this 
reason, a formal methodology is necessary to support the design of SMIL 2.0 docu-
ments. 

This paper presents the main results of the development of a methodology for the 
design, consistency analysis, scheduling and presentation of IMDs. This methodology 
presents a solid formal basis, the Formal Description Technique Real Time LOTOS 
(and its simulation/verification environment RTL – RT-LOTOS Laboratory which 
was developed at LAAS-CNRS [10]). The choice for RT-LOTOS was motivated by 
our research group´s solid previous experience with it and with the set of available 
tools (RTL). Besides, RT-LOTOS enables the complete management of the temporal 
non-determinism (e.g., related to the unknown instant of the end of presentation of a 
remote continuous media object, or to the occurrence of a user interaction) inherent to 
IMDs during their presentation. This paper also presents how this methodology was 
successfully applied to support the design of SMIL 2.0 documents enabling their 
consistent presentation on the web. 

This paper is structured as follows: Section 2 presents a global view of the applied 
formal design methodology and briefly presents some characteristics of RT-LOTOS. 
Section 3 characterizes temporal inconsistencies and introduces a simple IMD to 
illustrate the presentation of the formal methodology throughout the paper. Section 4 
introduces the approach proposed for the automatic translation from a SMIL 2.0 
document into an RT-LOTOS specification. Section 5 presents the verification of 
IMDs. Section 6 outlines the main aspects about the scheduling of IMDs. Section 7 
introduces the presentation of consistent SMIL 2.0 documents. Section 8 presents 
some related works. Finally, section 9 presents some conclusions of this work. 

2   The RT-LOTOS Based Formal Design Methodology  

The proposed methodology provides a framework for the design (specification, verifi-
cation and presentation) of complex Interactive Multimedia Documents. Relying on 
the Formal Description Technique RT-LOTOS, and its associated simulation/ verifi-
cation environment RTL, it yields three main contributions: it allows to define a for-
mal semantics of the high-level document authoring model (SMIL 2.0), describing 
without any ambiguity the behavior of the document presentation; it allows to check 
consistency properties on the RT-LOTOS formal specification derived from the au-
thoring model, using standard verification techniques (reachability analysis and model 
checking); it allows to generate automatically a scheduling automaton from the  
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underlying reachability graph, providing an easy way to automatically correct the 
document temporal structure by removing undesirable temporal inconsistencies.  

This methodology is illustrated in Figure 1. Following the classical approach, a 
SMIL 2.0 document can be presented directly by a SMIL player, such as GRiNS [11], 
RealPlayer [12] or X-SMILES [13], among others. However, these tools do not  
provide the automatic detection and diagnosis of potential temporal inconsistencies. 
Contrarily, the RT-LOTOS based methodology represents a means to provide the 
complete diagnostic, correction and presentation of SMIL 2.0 documents. This  meth-
odology consists of the following phases: (1) edition of the IMD using SMIL 2.0 as 
the high-level authoring model, (2) automatic translation of logical and temporal 
structure of the document into an RT-LOTOS formal specification (the non-temporal 
components of the document are translated automatically into a contextual informa-
tion description which is used as a support for its presentation), (3) derivation of a 
minimal reachability graph from the RT-LOTOS specification through the RTL tool 
[14], (4) verification of consistency properties by means of reachability analysis, and 
scheduling of the document presentation if there are valid (consistent) solutions for it 
by means of an operational scheduling graph, the TLSA [16].  

SMIL 2.0 Players

SMIL 2.0
Document

TLSA Player

Consistent
SMIL 2.0
Document

RT-LOTOS
Specification

Contextual 
Information

Scheduling Graph 
(TLSA)
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(3)

(4)

(5)
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(5)

(6)

Minimal 
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Fig. 1. Formal design methodology of SMIL 2.0 documents 

Further on, two approaches are possible for presenting the resulting consistent 
document. Either a new consistent SMIL 2.0 document is generated from the TLSA, 
and the presentation may then be carried out using SMIL 2.0 players (6); or the pres-
entation is carried out based on the TLSA and on the contextual information using a 
dedicated tool, the TLSA Player. The main results of the development of this formal 
methodology for the design of SMIL 2.0 documents are discussed on this paper.  
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3   Temporal Inconsistencies 

Describing synchronization constraints in a complex IMD at authoring time can be an 
error-prone task, and some inconsistent scenarios can be created. Many reasons may 
potentially lead to temporal inconsistencies when an author uses a high-level and 
flexible authoring model, for instance: inconsistencies between the expected duration 
of the nodes and the logic of the synchronization links enforcing their termination, 
conflicting synchronization links, bad timing of the links, etc. In general, temporal 
inconsistencies are mostly the consequence of the occurrence of non-deterministic 
events (their occurrence can not be determined previously). These events can be [15]: 

 Internal non-deterministic events which are related to the controlled adjustment 
of the presentation duration of a media (related to admissible QoS adjustments 
for the media), as well as to incomplete timing constraints;  

 External non-deterministic events are related to the occurrence of external events, 
such as user interactions on anchors, network delays and processing results from 
data-base queries, scientific simulations, and so on. 

Temporal inconsistencies may be the consequence of either internal or external 
non-determinism, or even both. The formal methodology presented in this paper can 
be applied to support the design of complex IMDs, although, in order to illustrate the 
application of this methodology for the verification of temporal inconsistencies in 
SMIL 2.0 documents a simple interactive multimedia scenario is applied and pre-
sented in Figure 2(a). An overview of the SMIL 2.0 document describing this scenario 
is presented in Figure 2(b). 

The scenario describes the parallel presentation of an interactive image (interac-
tiveButton) with the sequential composition of an exclusive presentation of two audio 
objects (audio1 and audio2) followed by a video object (video). In this case, all the 
components of an exclusive presentation will be presented, however, never simulta-
neously, according to the semantics of this operator as described in [9]. The presenta-
tion duration of objects audio1, audio2, video and interactiveButton are respectively 
[0,5] seconds, [0,5] seconds, indefinite1 and [0,20] seconds, and the following syn-
chronization constraints are considered: (i) the presentation of the exclusive composi-
tion of audio1 and audio2, and interactiveButton must start simultaneously, (ii) the 
presentation of video and interactiveButton must end simultaneously, (iii) if a user 
interaction (activateEvent) occurs during the presentation, the scenario is interrupted 
and then immediately restarted. 

In this scenario, an inconsistency (desynchronization) can be produced whenever 
the presentation of video continues after the end of presentation of interactiveButton 
(Indeed, the author of the IMD mis-specified the previous synchronization constraints 
in SMIL by determining that the presentation of video can only be interrupted by the 
occurrence of a user interaction over interactiveButton, as described by the underlined 
synchronization constraint depicted in Figure 2b). This is clearly, an unexpected and 
undesired situation to the author of the document which can be easily detected in a 
small scenario, but could represent a drawback in a complex IMD. In this case, we 
 

                                                           
1 An indefinite duration characterizes the presentation of an object inside the interval [0,+∞] 
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<par id=‘Par01’ …>
<seq id=‘Seq01’ …>

<excl id=‘Excl01’ ..>
<audio id=‘audio1’ max=‘5s’ ../>
<audio  id=‘audio2’ max=‘5s’ ../>

</excl>
<video id=‘video’

end=‘interactiveButton.activateEvent’ ..../>
</seq>
<a href=‘#Par01’ ...>

<image id=‘interactiveButton’ max=‘20s’ ../>
</a>

</par>

start interactiveButton [0,20]

video [0,+∞)

audio2  [0,5]

audio1  [0,5]

end

(a) (b)

<par id=‘Par01’ …>
<seq id=‘Seq01’ …>

<excl id=‘Excl01’ ..>
<audio id=‘audio1’ max=‘5s’ ../>
<audio  id=‘audio2’ max=‘5s’ ../>

</excl>
<video id=‘video’

end=‘interactiveButton.activateEvent’ ..../>
</seq>
<a href=‘#Par01’ ...>

<image id=‘interactiveButton’ max=‘20s’ ../>
</a>

</par>

start interactiveButton [0,20]

video [0,+∞)

audio2  [0,5]

audio1  [0,5]

end

(a) (b)  

Fig. 2. Illustration of an interactive multimedia scenario 

should note that the correct specification of the SMIL document depicted in Figure 
2(b) would be <video id=”video” end=”interactiveButton.endEvent” …/>. The 
attribute end (in bold) states that the presentation of video always will be interrupted 
by the end of presentation of interactiveButton avoiding the occurrence of an unat-
tended behaviour. 

The main issues related to the application of the RT-LOTOS based design method-
ology to SMIL 2.0 documents are addressed in the next sections. 

4   Translating SMIL 2.0 Documents into RT-LOTOS Specifications 

The translation approach between SMIL and RT-LOTOS is based on the definition of 
intermediate structures representing all the components of the document and their 
temporal dynamics. This approach is structured into two main phases. In the first 
phase, two data structures - the temporal tree and the synchronization arcs - are de-
rived from the SMIL document. The temporal tree describes hierarchically all the 
components of the document (media objects, containers like par - parallel composi-
tion - or seq - sequential composition - or excl - exclusive composition -, anchors, 
etc.) and their temporal characteristics. The synchronization arcs describe the causal 
relations among the components; they are expressed by condition-action relations. A 
condition is related to the occurrence (possibly associated with a time constraint) of 
either the beginning or the end of a component presentation, or a user interaction. An 
action is related to the execution of the beginning or the end of a component. In this 
phase a Contextual Information File (CIF) is also automatically generated from the 
SMIL document. The CIF describes the elements and attributes of each media object 
related to the spatial synchronization (height, length, etc.), content (url), presentation 
(volume) and the attributes describing the exclusive presentation of the components, 
animation, etc. 

In the second phase, two additional data structures, called ProcRTL and the syn-
chronization points, are derived from the previous data structures in order to auto-
matically generate the RT-LOTOS processes. ProcRTL describes the structure of each 
RT-LOTOS process (process Id, behavior type referring to a library of predefined 
processes, observable gates, hidden gates, sub-processes, etc.). Synchronization points 
define the synchronization relations to be applied when composing the RT-LOTOS 
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processes. Due to space limitation we can not present examples with the RT-LOTOS 
specification associated with scenario of Figure 2. 

This approach supports the complete mapping between SMIL 2.0 and RT-LOTOS 
and is effective to describe all the components and their temporal/logical behavior of 
complex IMDs. Once the RT-LOTOS specification related to the previous SMIL 
document is generated, some verification techniques can be applied in order to detect 
potential inconsistencies situation on the document’s temporal structure. 

5   Verification of Temporal Consistency of IMDs  

The main goal of verifying the temporal consistencies of an IMD are: (i) to determine 
if the document can be presented correctly (if there are potential errors on the  
temporal structure of the document or not), (ii) if there are errors on the document, to 
identify which non-deterministic events are associated with these errors, and, (iii) to 
provide a proper diagnostic to the author so that he is able to correct the document. 

For this purpose, some consistency properties were identified and they are further 
verified on the reachability graph that is automatically derived (by means of the RTL 
environment) from the RT-LOTOS specification related to the document. The reach-
ability graph derived from the RT-LOTOS associated with the scenario presented in 
Figure 2 is depicted in Figure 3. 

A reachability graph is a labelled transition system where each node (also called a 
class) of this graph corresponds to a control state and a clock region, and each arc 
corresponds to a labelled action. This labelled action can be the beginning (start) and 
end (end) of presentation of the document as a whole, the beginning (e.g., sInterac-
tiveButton, sVideo, excl_sAudio1_sAudio2) and end (e.g., eInteractiveButton_eVideo, 
excl_eAudio1_eAudio2) of the presentation of media objects, user interactions (acti-
vateEvent), the progression of time (t), and some actions that are applied to support 
the presentation and hypermedia navigation (triggerlink, linkExec, presentDoc and 
endRequest). These actions are represented in the graph within an “i()” tag, such as 
i(sVideo), since they are specified in RT-LOTOS as internal actions to the global 
behaviour of the document. 

The basic idea of verifying the temporal consistency in a minimal reachability 
graph is to analyze the reachability of the action characterizing the end of presentation 
of the document (action end). Thus, considering that the reachability graph describes 
all the possible behaviors of the document, there are some paths that starting from the 
initial node of the reachability graph lead to the occurrence of the action end. These 
paths are called consistent paths. Contrarily, there can be some other paths that never 
will lead to the occurrence of the action end. These paths are called inconsistent 
paths. Based on the definition of consistent and inconsistent paths, the notion of con-
sistency can be introduced for further verification using the reachability graph: 

 
Definition 1: a document is potentially consistent if there is at least one consistent 
path on the reachability graph. 
 
Definition 2: a document is consistent if all the paths of the reachability graph are 
consistent. 
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Fig. 3. Reachability graph associated with the scenario depicted in Figure 2 

Definition 3: a document is inconsistent if there is no consistent path on the reach-
ability graph. In other words, if all the paths of the graph are inconsistent. In this case, 
the document can not be presented and both its logical and temporal structures have to 
be reconsidered at authoring level. 

 
For instance, by the verification of the consistency properties on the reachability 
graph associated with the previous IMD, the presentation of the document can be 
considered as potential consistent because some paths of this graph lead to the occur-
rence of the action end characterizing the end of presentation of the document. In this 
case, there are also some inconsistent paths on the reachability graph: (i) the inconsis-
tent path that crosses the state 9-(0.5 0.5) which is related to the occurrence of an 
external non-deterministic event (a user interaction) during the exclusive presentation 
of audio1 and audio2, and; (ii) the inconsistent paths that cross the states 11-(0.5 0.5) 
and 14-(20.5 20.5) that are related to the occurrence of an internal non-deterministic 
event (progression of time) since the presentation of video exceeds the global duration 
of the document presentation (20s). These inconsistent situations obviously do not 
respect the synchronization constraints of the document.  
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Note that each consistent path of the reachability graph corresponds to a potential 
scheduling solution for the document presentation. The purpose of scheduling the 
document presentation is to ensure that the document presentation follows a consis-
tent path, and that, in the presence of several consistent paths, it follows the best con-
sistent path with respect to some criteria. Thus, scheduling of the document can be 
carried out based on the results of the verification of consistency. The scheduling of 
an IMD is further discussed on the next section. 

6   Scheduling the Presentation of Interactive Multimedia 
Documents 

The reachability graph expresses all the possible behaviors for the presentation of the 
document (either consistent or inconsistent). However, this graph can not be applied 
for scheduling the presentation of a document since it does not provide clearly the 
temporal information related to the occurrence of each action. For this reason, to pro-
vide the scheduling of an IMD based on the results of the verification of consistency, 
all the inconsistent paths (generated either by internal or external non-deterministic 
events) must be discarded from the reachability graph to generate a consistent reach-
ability graph. This consistent reachability graph provides the controllability of the 
document presentation determining all the valid temporal intervals inside which the 
presentation of the document will always be consistent.  

Two issues have then to be addressed: (i) How to represent in a more compact and 
operational way all the consistent paths of the reachability graph. This point deals 
with the synthesis of a scheduling automaton (called a TLSA) from the consistent 
reachability graph (addressed in section 6.1), and; (ii) How to select among the con-
sistent paths, the one which is the best with respect to some criteria. This point deals 
with the scheduling of an IMD based on a TLSA (addressed in section 6.2). 

6.1   TLSA 

A TLSA (Timed Labelled Scheduling Automata) features some specific characteris-
tics, which differentiate it from traditional timed automata.  

A TLSA has as many clocks as the number of states defined in the automaton. 
These clocks are called timers in order to distinguish them from the traditional clocks. 
Each timer measures the time spent by the automaton in the associated control state. 
No explicit function defines when a timer must be initialized. The timer associated 
with a control state is reset when the automaton enters this state, and its current value 
is frozen when the automaton leaves it (for this reason, the TLSA is considered as a 
single clock model, since, for any control state, there is only one active timer). Two 
temporal conditions are associated with each TLSA transition: 

 A firing window (indicated as W), which defines the temporal interval inside 
which the transition can be triggered. It is represented as an inequality to be satis-
fied by the timer associated with the current control state; 

 An enabling condition (indicated as K), which defines the temporal constraints 
to be satisfied in order to trigger the transition. It is represented as a conjunction 
of inequalities to be satisfied by a subset of timers, with exception of the timer 
associated with the current control state.   
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Fig. 4. TLSA associated with the scenario depicted in Figure 2 

Intuitively, W characterizes the time during which the system can remain in the 
current control state. The enabling condition is related only to previous timers and 
thus characterizes the enabled transitions according to the behavior of the system. The 
formal semantics of the TLSA was defined in [16], and the algorithms for deriving 
automatically a TLSA from a consistent reachability graph were developed in [17].  

The TLSA was proposed as a scheduling graph which allows the temporal format-
ting (the definition of valid temporal intervals for the presentation) of the document. 
However, some scheduling policies are needed in order to allow the orchestration of 
the document based on the TLSA. These scheduling policies are introduced in next 
section [18]. 

6.2   Scheduling an Interactive Multimedia Document Based on the TLSA 

The TLSA allows the scheduling of an IMD based on timers which measure the time 
the system "spent" in each state of the automaton and which is also used to determine 
the triggering condition of a transition. Moreover, each transition of the TLSA is 
associated with the actions that can be handled by the presentation system such as 
starting or ending a presentation, announcing the occurrence of a user interaction, etc. 
Thus, the scheduling of an IMD using a TLSA can be carried out based on the defini-
tion of some important issues, such as handling active and passive actions. 

An action is called active (represented by !) if its occurrence does not depend on its 
environment (e.g., the end of presentation of an image decided by the presentation 
system). Thus, active actions may be related to start and end actions of all media  
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objects (e.g., video, audio, text, image, etc.). These actions can be generated as soon 
as the scheduler decides when to trigger them based on their associated temporal 
firing window (W) specified in the TLSA. 

An action is called passive (represented by ?) if its occurrence does depend on the 
environment of the presentation system (e.g., a user interaction, or the end of the 
presentation of a remote continuous media). The occurrence of passive actions cannot 
be predicted, but can be controlled within their valid temporal firing window in the 
TLSA. Thus, the scheduler waits until the environment triggers these actions and 
ensures that they are triggered inside their temporal firing window. 

The notion of active and passive actions enables to determine scheduling policies 
for the execution of all the actions for the presentation of a document. Let thus W = 
[min,max] be the firing window associated with transition t, τ the firing time of transi-
tion t, and a the action labeling transition t. 

 If  a is active (e.g., !sInteractiveButton), then τ = min. In this case, this action 
is executed as soon as possible by the scheduler. 

  if a is passive (e.g., ?excl_eAudio1_Audio2), then τ ∈ [min, max]. In this 
case, the scheduler waits for the occurrence of the action, and ensures it takes 
place within the temporal interval [min, max]. In certain cases (e.g., related to 
the end of presentation of remote continuous media), the scheduler (imple-
mented by the Player) may force at τ = max the execution of a passive action 
or the firing of an exception action.. 

The TLSA associated with the scenario of Figure 2 is presented in Figure 4. Each 
node of this TLSA represents a control state and each transition is described by a 
firing window (W) and an action (active or passive). For instance, when the scheduler 
enter the state 7, it has two execution possibilities within [0,10] seconds, (i) waiting 
for a user interaction to take place (passive action), before following the transition 7-
9, or (ii) waiting for the end of the exclusive presentation of Audio1 and Audio2 (also 
a passive action), before following the transition 7-8. If none of these events take 
place after 10 seconds, the scheduler forces the end of the exclusive presentation. 
With the definition of the scheduling policies with the active and passive actions, the 
presentation of an IMD can be carried out. 

7   Presenting Consistent IMDs  

A prototype for the presentation of IMDs, called TLSA Player, was implemented 
based on the scheduling policies presented previously. The TLSA Player relies on the 
TLSA and on the contextual information for supporting the presentation of complex 
and consistent IMDs. The TLSA Player was implemented using JAVA (jdk 1.2) [19] 
and JMF 2.0 [20]. Figure 5 illustrates a snapshot of the TLSA Player. 

The main advantage of using the TLSA for controlling the presentation of a docu-
ment is that it provides the definition of the temporal intervals inside which the execu-
tion of this document will always be consistent. This is the main reason why the 
TLSA is the basis for the proposal of the approach for the presentation of an IMD 
where indeed all of its execution solutions are consistent. 
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Fig. 5. Snapshot of the TLSA Player 

The implementation of the TLSA Player allowed the presentation of complex In-
teractive Multimedia Documents based on the verification and scheduling techniques 
using the reachability graph and TLSA. This tool represents a straightforward solution 
in order to present consistent complex IMDs and to validate the proposed formal 
methodology for the design of IMDs. 

8   Related Works 

The design of IMDs has been addressed in the literature by different approaches in 
order to deal with issues such as temporal structure modeling, temporal flexibility, 
consistency checking, scheduling, and presentation based on optimization techniques.  

The logical and temporal behaviors of a document can be usually described using 
an internal structure which enables to set up techniques for consistency checking and 
scheduling. A current solution for consistency checking consists in using a temporal 
graph (such as a directed acyclic graph) and specific algorithms (such as shortest path 
solution, or based on linear programming) to determine valid solutions for the presen-
tation of a document. Some approaches which carry out consistency checking on 
multimedia documents are:  constraint-based graphs (CHIMP [21], MADEUS [22], 
ISIS [23], IMAP [24], MPGS [25], using directed graphs [26], and using Temporal 
Access Control operators [3]), based on transition systems (TOCPN [27]), and based 
on the state of the components of document (FLIPS [28]). Further on, the presentation 
of these documents can be scheduled using different approaches as well, such as: 
timeline (GRiNS [29]), linear programming (Firefly [30]), constraint-based graphs 
(Tiempo [31], MAVA [32], and directed graphs [26]), transition systems (Dynamic 
Extended Finit State Machines - DEFSMs [33]), and partial order associated with 
linear programming and constraint-based graphs [34]. 

During scheduling and presentation of the document, some optimization techniques 
can also be used in order to avoid the degradation of the quality of the presentation. 
These techniques propose either alternatives execution planning so that different  
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configurations of the scenario are presented according to the resources available of 
the system and to the QoS parameters [31], or the adoption of a predictive solution in 
order to pre-fetch in memory the media objects that must be presented [35]. 

Some efforts have been made for analyzing consistency properties during the de-
sign of IMDs. However, few has been done for the formal modeling, verification and 
scheduling of consistent SMIL documents [36], [37], [38], [18]. In general, the works 
presented in [36, 37] propose a formal semantics for SMIL documents, but do not 
introduce any verification or scheduling approaches. The work presented in [38] pro-
posed the verification of the main sources of inconsistencies in a SMIL 2.0 document; 
however this work did not propose an appropriate automatic integrated verification 
and scheduling approach for consistent solutions to an IMD. 

In general, most of the approaches in the literature do not provide an integrated so-
lution (e.g., verification, scheduling, controllability and optimization techniques) for 
supporting the design of complex IMDs. Contrarily, the methodology based on the 
Formal Description Technique RT-LOTOS offers an integrated and reliable frame-
work, and relies on a transition system derived from the RT-LOTOS specification for 
further consistency checking, scheduling and presentation of consistent IMDs. The 
main advantages of this methodology based on RT-LOTOS are: (i) it offers a great 
authoring flexibility since it can be easily adaptable to any high-level authoring 
model; (ii) it allows for the verification, scheduling and managing the temporal non-
determinism during the presentation of the document (run-time controllability), and; 
(iii) it also applies an optimization technique for the predictive pre-fetching of media 
objects during the presentation of a document [18]. In particular, this methodology 
was successfully applied to support the formal design of SMIL 2.0 documents. 

9   Conclusions 

This paper presented the main contributions of methodology developed to support the 
formal design of Interactive Multimedia Documents (IMDs) based on the Formal 
Description Technique (FDT) RT-LOTOS. The main advantages of this methodology 
are (i) that it is not dependent upon a particular high level authoring model and (ii) 
that the FDT RT-LOTOS is used implicitly for the author of the document (what 
makes the approach more accessible and intuitive). Thus, the author designs his 
document using the high level language (or the paradigm) of his preference, and then 
the temporal and logical behavior of his document is translated into an RT-LOTOS 
specification. The compositional characteristic of the RT-LOTOS specifications en-
ables to model complex temporal scenarios by the successive composition of simpler 
behaviors. Since RT-LOTOS has a formal semantics, it is also possible to carry out 
the verification of properties of temporal consistency, and to carry out the scheduling 
of the document based on a timed automata model (TLSA) derived from the subjacent 
RT-LOTOS specification. To illustrate the utilization of this methodology, the lan-
guage SMIL 2.0 was adopted for the modeling of complex Interactive Multimedia 
Documents. 
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Abstract. In this paper we describe AMT, a tool for monitoring temporal prop-
erties of continuous signals. We first introduce STL/PSL, a specification for-
malism based on the industrial standard language PSL and the real-time tem-
poral logic MITL, extended with constructs that allow describing behaviors of
real-valued variables. The tool automatically builds property observers from an
STL/PSL specification and checks, in an offline or incremental fashion, whether
simulation traces satisfy the property. The AMT tool is validated through a Flash
memory case-study.

1 Introduction

The algorithmic verification field has been centered around the decision procedures for
model-checking temporal logic formulae. Temporal logic [MP95] is a rigorous speci-
fication formalism used to describe desired behaviors of the system. A number of ef-
ficient algorithms for translating temporal logic formulae into corresponding automata
have been developed [VW86, SB00, GPVW95, GO01], resulting in the success of log-
ics such as LTL and CTL and their common integration into main verification tools.
The temporal logic-based formalisms were adopted by the hardware industry with the
standard PSL [HFE04] specification language.

In order to reason about timed systems, a number of real-time formalisms have
been proposed, either as extensions of temporal logics (MTL [Koy90],MITL [AFH96],
TCTL [Y97]) or regular expressions (timed regular expressions [ACM02]). However,
unlike in the untimed case, there is no simple correspondence between these logics and
timed automata [AD94] used in the timed verification tools.

The verification in the continuous domain was made possible with the advent of
hybrid automata [MMP92] as a model for describing systems that have continuous dy-
namics with switches, and the algorithms for exploring their state-space. Although a
lot of progress has been done recently [ADF+06], the scalability still remains a ma-
jor issue for the exhaustive verification of hybrid systems, due to the explosion of the
state space. Moreover, property-based verification of hybrid systems is only at its be-
ginning [FGP06].

Hence, the preferred validation method for continuous systems remains simulation/
testing. However, it has been noted that the specification element of verification can be
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exported to the simulation through property monitors. The essence of this approach is
the automatic construction of an observer from the formula in the form of a program
that can be interfaced with the simulator and alert the user if the property is violated by a
simulation trace. This process is much more reliable and efficient than visual (graphical
or textual) inspection of simulation traces, or manual construction of property monitors.

This procedure is called lightweight verification, where the property monitor checks
whether a finite set of traces satisfy the property specification. In the framework of
software runtime verification, temporal logic has been used as the specification lan-
guage in a number of monitoring tools, including Temporal Rover (TR) [Dru00], FoCs
[ABG+00], Java PathExplorer (JPaX) [HR01] and MaCS [KLS+02]. The extensions
of temporal logics that deal with richer properties were also considered in monitoring
tools such as LOLA [DSS+05].

In [MN04], we have introduced STL, a language for relating temporal behaviour of
continuous signals via their static abstractions and a procedure for offline monitoring
of specifications written in STL against continuous input traces. This paper extends the
STL logic with an analog layer in which one can apply operations on continuous signals
directly, as well as the finitary interpretation of the temporal operators in the spirit of
PSL. The resulting logic is called STL/PSL. The original offline monitoring algorithm is
extended to an incremental (semi-online) version. The main contribution of this paper
is the implementation of a stand-alone Analog Monitoring Tool (AMT) which integrates
results presented in [MN04] and this paper. Finally, a case-study on the behaviour of a
FLASH memory cell is conducted in order to validate the performance of the tool.

The rest of the document is organized as follows: in Section 2, we introduce the
STL/PSL logic along with its semantic domain. Section 3 discusses the offline property
checking algorithm from [MN04] and presents its incremental extension. The AMT tool
is presented in Section 4 and Section 5 describes the Flash memory case-study. Finally,
in Section 6 we conclude with a discussion on the achievements and future work.

2 Signals and Their Temporal Logic

The specification of properties of continuous signals requires an adaptation of the se-
mantic domain and the underlying logic.

2.1 Signals

Let the time domain T be the set R≥0 of non-negative real numbers. A finite length
signal ξ over an abstract domain D is a partial function ξ : T → D whose domain of
definition is I = [0, r), r ∈ Q>0. We say that the length of the signal ξ is r, and denote
this fact by |ξ| = r. We use the notation ξ[t] = ⊥ when t ≥ |ξ|. In this paper, we
restrict our attention to two particular types of signals, Boolean signals ξb with D = B,
and continuous signals ξa with D = R.

We first present some signal properties that are independent of the signal domain.
The restriction of a signal ξ to length d is defined as

ξ′ = 〈ξ〉d iff ξ′[t] =
{

ξ[t] if t < d
⊥ otherwise
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The concatenation ξ = ξ1 · ξ2 of two signals ξ1 and ξ2 defined over the intervals
[0, r1) and [0, r2) is a signal over [0, r1 + r2) defined as

ξ[t] =
{

ξ1[t] if t < r1

ξ2[t − r1] otherwise

The d-suffix of a signal ξ is the signal ξ′ = d\ξ obtained from ξ by removing the
prefix 〈ξ〉d from ξ, that is,

ξ′[t] = ξ[t + d] for every t ∈ [0, |ξ| − d)

The Minkowski sum and difference of two sets P1 and P2 are defined as

P1 ⊕ P2 = {x1 + x2 : x1 ∈ P1, x2 ∈ P2}
P1 0 P2 = {x1 − x2 : x1 ∈ P1, x2 ∈ P2}.

Signals can also be combined and separated using the standard operations of pairing
and projection defined as

ξ1 || ξ2 = ξ12 if ∀t ξ12[t] = (ξ1[t], ξ2[t])
ξ1 = π1(ξ12) ξ2 = π2(ξ12)

In particular, πp(ξ) will denote the projection of the signal ξ on the dimension with
domain B that corresponds to the proposition p (and likewise πs(ξ) denotes projec-
tion of the signal ξ on the dimension with domain R corresponding to the continuous
variable s).

Non-Zeno Boolean signals of finite length admit a finite representation called inter-
val covering defined as a sequence of intervals I0 · I1 · . . . · Ik such that the value of
ξb is constant in every interval, ξb(Ii) = ¬ξb(Ii+1) for all i ∈ [0, k − 1],

⋃k
i=0 Ii = I

and Ii ∩ Ij = ∅ for every i �= j. An interval I is said to be positive if ξb(I) = T and
negative otherwise. An interval covering I is said to be consistent with a signal ξb if
ξb[t] = ξb[t′] for every t, t′ belonging to the same interval Ii. We denote by Iξb

the
minimal interval covering consistent with a finite variability signal ξb.

Unlike Boolean signals, continuous signals do not admit an exact finite represen-
tation. However, numerical simulators usually produce a finite collection of sampling
pairs (t, ξa[t]) with t ranging over some interval [0, r) ⊆ T. This finite representation is
in contrast to continuous signals defined as ideal mathematical objects consisting of an
uncountable number of pairs (t, ξa[t]) for all t ∈ [0, r). We adopt the approach of repre-
senting continuous signals of finite length by using a finite set of sampling points. The
signal value at the missing time instants t ∈ (ti, ti+1) corresponds to the interpolation
between sample points (ti, ξa[ti]) and (ti+1, ξa[ti+1]).

2.2 STL/PSL Specification Language

In this section we describe the STL/PSL logic, as an extension of MITL [AFH96] and
STL [MN04] logics. We use a layered approach in the fashion of PSL [HFE04], with
the analog layer allowing to reason about continuous signals and the temporal layer
relating the temporal behavior of different input traces. The “communication” between
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the two layers is done via static abstractions that partition the continuous state space
according to the satisfaction of some inequality constraints on the continuous variables.

Since STL/PSL is targeted for specifying properties to be used for lightweight veri-
fication over finite traces, we adopt the finitary interpretation used in PSL, by defining
strong and weak forms of the temporal operators. The strong form of an operator re-
quires the terminating condition to occur before the end of the signal, while the weak
form makes no such requirements. In PSL for example, until! and until represent
the strong and the weak forms of the until operator, respectively.

The analog layer of STL/PSL is defined by the following grammar:

φ :== s | shift(φ,k) | φ1 & φ2 | φ & c | abs(φ)

where s belongs to a set S = {s1, s2, . . . , sn} of continuous variables, & ∈ {+,-,*},
c ∈ Q and k ∈ Q+. Note that the analog operators defined above are the ones currently
supported by the AMT tool, but can be easily extended to new ones.

The semantics of the analog layer of STL/PSL is defined as an application of the
analog operators to the input signal ξ:

s[t] = πs(ξ)[t]
shift(φ,k)[t] = φ[t + k]
(φ1 & φ2)[t] = φ1[t] & φ2[t]
(φ & c)[t] = φ[t] & c

abs(ϕ)[t] =
{

φ[t] if φ[t] ≥ 0
−φ[t] otherwise

The temporal layer of STL/PSL is defined as follows:

ϕ :== p | φ ◦ c | not ϕ | ϕ1 or ϕ2 | eventually! ϕ |
eventually![a:b] ϕ | eventually[a:b] ϕ |

ϕ1 until! ϕ2 | ϕ1 until![a:b] ϕ2

where p belongs to a set P = {p1, p2, . . . , pn} of propositional variables, a,b,c ∈ Q
and ◦ ∈ {>,>=,<,<=}. Note that we include explicitly in the syntax weak and strong
versions of eventually operators1.

The satisfaction relation (ξ, t) |= ϕ, indicating that signal ξ satisfies ϕ at time t is
defined inductively as follows:

(ξ, t) |= p iff πp(ξ)[t] = T
(ξ, t) |= φ ◦ c iff φ[t] ◦ c
(ξ, t) |= not ϕ iff (ξ, t) �|= ϕ
(ξ, t) |= ϕ1 or ϕ2 iff (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2

(ξ, t) |= eventually! ϕ iff ∃t′ ≥ t st t′ < |ξ| and (ξ, t′) |= ϕ
(ξ, t) |= eventually![a:b] ϕ iff ∃t′ ∈ t ⊕ [a, b] st t′ < |ξ| and (ξ, t′) |= ϕ

1 Untimed eventually exists only in its strong form. Weak eventually is trivially satisfied by any
finite trace ξ.
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(ξ, t) |= eventually[a:b] ϕ iff ∃t′ ∈ t ⊕ [a, b] st t′ ≥ |ξ| or (ξ, t′) |= ϕ
(ξ, t) |= ϕ1 until! ϕ2 iff ∃t′ ≥ t st t′ < |ξ| and (ξ, t′) |= ϕ2 and

∀t′′ ∈ [t, t′] (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1 until![a:b] ϕ2 iff ∃t′ ∈ t ⊕ [a, b] st t′ < |ξ| and (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′] (ξ, t′′) |= ϕ1

An STL/PSL specification ϕprop is an STL/PSL temporal formula. The signal ξ sat-
isfies the specification ϕprop, denoted by ξ |= ϕprop, iff (ξ, 0) |= ϕprop. Note that our
definition of the semantics of the until and timed until operators differs slightly from
their conventional definition since it requires a time instant t where both (ξ, t) |= ϕ2 and
(ξ, t) |= ϕ1. From the basic STL/PSL operators, one can define standard Boolean and
temporal operators, namely always and weak until, as well as weak and strong forms of
timed always operators.

A large part of analog design is based on comparing waveforms (signals) with some
reference signal that specify a desired behavior. These notions are formalized using a
distance function (metric) which quantifies numerically the resemblance of two signals.
Mathematically speaking, a metric space is a pair (X, d) such that X is the domain
and d : X × X → R+ is a function satisfying: d(x, x) = 0; d(x, y) = d(y, x)
and d(x, y) + d(y, z) ≥ d(x, z). There are many ways to define distance functions
on waveforms, by taking the maximum of the pointwise distance at every time t, sum-
ming/integrating over the pointwise distance, etc. Once such a distance d is defined,
it can be used to define distance-based logical operators of the form d(ξ, ξ′) < c for
some positive constant c. Below we define three such operators, the first is based on
the maximal pointwise distance while the two others are based on the metric defined in
[KC06a] which “tolerates” large pointwise deviations between the two signals if they
last for a time shorter than t and occur at most once every T-t units. As one can see
these operators constitute a syntactic sugar as they can be expressed in STL/PSL.

distance(φ1, φ2,c) = abs(φ1-φ2) <= c
distance(φ1, φ2,c,t,T) = abs(φ1-φ2) > c -> eventually![<=t]

always[<=T-t](abs (φ1-φ2) <= c)
distance(ϕ1, ϕ2,t,T) = (ϕ1 xor ϕ2)-> eventually![<=t]

always[<=T-t] (ϕ1 iff ϕ2)

3 Checking STL/PSL Properties

In this section we describe two algorithms for checking STL/PSL properties. Both al-
gorithms are based on a process that we call marking, namely determining truth value
of each subformula at every time instant t. The marking is a doubly-recursive process
going from the atomic propositions upward to the top formula, and, due to the nature
of future temporal logic, from truth values at time t to truth values at time t′ ≤ t. The
marking process terminates when the value of the top formula at time 0 is determined.

Offline marking: This procedure assumes that the multi-dimensional input signal ξ is
already available, and the marking procedure is applied to the entire signal, propa-
gating backward at once the values of subformulae, up to obtaining the truth value
of the main formula.
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Incremental marking: The incremental procedure updates the marking each time a
new segment of the input signal is observed. It is useful in detecting early violation
of an STL/PSL property and can be applied in parallel with the simulation process.
It can also be used for monitoring real, rather than simulated systems.

The offline marking procedure takes as arguments a temporal STL/PSL specification
ϕprop and the input signal ξ that we treat as a global data structure and do not pass it
explicitly as an argument to the procedure. The algorithm computes, from the bottom-
up, a signal χψ(ξ) for each subformula ψ of ϕprop.2 If ψ is a temporal STL/PSL formula
ϕ, χϕ(ξ) is called the satisfaction signal. This signal satisfies χϕ(ξ)[t] = 1 iff (ξ, t) |=
ϕ. If ψ is a formula φ from the analog layer of STL/PSL, χφ(ξ) is the result of applying
the operator φ to the (continuous) signal ξ. Whenever the identity of ξ is clear from the
context, we will use the shorthand notation χψ.

The algorithm is decomposed into two methods OFFLINE-T and OFFLINE-A as
shown in Algorithm 1, computing the χψ corresponding to the formula ψ from the
temporal and the analog layer of STL/PSL, respectively. The top level formula ϕprop is
monitored by invoking OFFLINE-T(ϕprop).

Algorithm 1. OFFLINE-T and OFFLINE-A
input : STL/PSL Temporal Formula ϕ and signal ξ

switch ϕ do
case p

χϕ := πp(ξ);
end
case φ ◦ c

OFFLINE-A (φ);
χϕ := COMBINE(◦c, χφ);

end
case OP1(ϕ1)

OFFLINE-T (ϕ1);
χϕ := COMBINE(OP1, χϕ1 ));

end
case OP2(ϕ1, ϕ2)

OFFLINE-T (ϕ1, ϕ2);
χϕ := COMBINE(OP2, χϕ1 , χϕ2 ));

end
end

input : STL/PSL Analog Formula φ and signal ξ

switch φ do
case s

χφ := πs(ξ);
end
case OP1(φ1)

OFFLINE-A(φ1);
χφ := COMBINE(OP1, χφ1 );

end
case OP2(φ1, φ2)

OFFLINE-A(φ1, φ2);
χφ := COMBINE(OP2, χφ1 , χφ2 );

end
end

Most of the work is done in the COMBINE procedure which takes one or two signals
(possibly of different length) and computes from them a new signal based on the specific
operation. The approach is based on [MN04] with some extensions to deal with both
strong and weak operators. We illustrate the procedure on few representative operations:

χϕ := COMBINE(or, χϕ1 , χϕ2) For the disjunction we first construct a refined inter-
val covering I = {I1, . . . , Ik} for χϕ1 ||χϕ2 so that the mutual values of both sig-
nals become uniform in every interval. Then we compute the disjunction interval-
wise, that is, ϕ(Ii) = ϕ1(Ii) ∨ ϕ2(Ii). Finally we merge adjacent intervals having
the same Boolean value to obtain the minimal interval covering Iχϕ .

2 The notation ψ is used whenever it is not important whether ψ is a temporal or an analog layer
formula.
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χϕ := COMBINE(eventually![a,b], χϕ1) For every positive interval I ∈ χϕ1

we compute its back shifting I 0 [a, b]∩T and insert it to χϕ. Overlapping positive
intervals in χϕ are merged to obtain a minimal consistent interval covering. In the
process, all the negative intervals shorter than b − a disappear.3

χφ := COMBINE(&, χφ1 , χφ2) For the pointwise arithmetic operations on continuous
signals χφ1 and χφ2 , we first take the union of their sampling points and extend
each signal to the new points by interpolation. The signal χφ1�φ2 is computed by
applying the pointwise arithmetic operation to each pair of corresponding sampling
points. An example of the arithmetic operation is shown in Figure 1.

(a) (b)

χφ1

χφ2

χφ1−φ2

Fig. 1. Combining φ = φ1 − φ2: (a) Input signals χφ1 and χφ2 sampled at different rates; (b)
Refinement of χφ1 and χφ2 and computation of χφ1−φ2

Incremental marking is performed using a kind of piecewise-online procedure in-
voked each time a new segment of ξ, denoted by Δξ, is observed. For each subformula
ψ the algorithm stores its already-computed associated signal partitioned into a con-
catenation of two signals χψ · Δψ with χψ consisting of values already propagated to
the super-formula of ψ, and Δψ , consisting of values that have already been computed
but which have not yet propagated to the super-formula and can still influence it.

Initially all signals are empty. Each time a new segment Δξ is read, a recursive
procedure similar to the offline one is invoked, which updates every χψ and Δψ from
the bottom up. The difference with respect to the offline algorithm is that only segments
of the signal that has not been propagated upwards participate in the update of their
super-formulae. This may result in a considerable saving when the signal is very long.

As an illustration consider ψ = OP(ψ1, ψ2) and the corresponding truth signals of
Figure 2-(a). Before the update we always have |χψ · Δψ| = |χψ1 | = |χψ2 |: the parts
Δψ1 and Δψ2 that may still affect ψ are those that start at the point from which the
value of χψ is still unknown. We apply COMBINE procedure on Δψ1 and Δψ2 to obtain
a new (possibly empty) segment αψ of Δψ. This segment is appended to Δψ in order
to be propagated upwards, but before that we need to shift the borderline between χψ1

3 Another way to see it is as shifting the negative intervals by [b, a].
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χψ Δψ

χψ1

χψ2

Δψ

χψ1 Δψ1

χψ2 Δψ2

Δψ1

χψ

Δψ2

αψ

(a) (b)

Fig. 2. A step in an incremental update: (a) A new segment αψ for ψ is computed from Δψ1

and Δψ2 ; (b) αψ is appended to Δψ and the endpoints of χψ1 and χψ1 are shifted forward
accordingly

and Δψ1 (as well as between χψ2 and Δψ2 ) in order to reflect the update of Δψ. The
procedure is detailed in Algorithm 2.

Note that if χϕprop becomes determined for time 0, the incremental procedure can be
stopped. The finitary interpretation of temporal operators is used only if χϕprop has not
been determined after the end of simulation.

4 Overview of the AMT Tool

AMT is a stand-alone tool with a graphical user interface which implements the above
algorithms with respect to sampled continuous signal inputs. AMT was written in C++
for GNU/Debian Linux x86 machines. The user interface is based on the library QT4,
while QWT5 was used for visualizing plots.

The main window of the application is partitioned into five frames that allow the user
to manage STL/PSL properties and input signals, evaluate the correctness of the simula-
tion traces with respect to a specification and finally visualize the results. The property
edit frame contains a text editor for writing, importing and exporting STL/PSL specifi-
cations, which are then translated into an internal data structure based on the parse-tree
of the formula stored in the property list frame. An STL/PSL specification is imported
into the property evaluation frame for its monitoring with respect to a set of input
simulation traces, in either offline or incremental modes. The static import of the input
traces is done via the signal list frame. The imported input signals, as well as signals
associated to the subformulae of a specification can be visualized by the user from the
signal plots frame. A screenshot of the main window is shown in Figure 3.

4.1 Property Management

The specifications in AMT are written in a simple editor with syntax highlighting for
the extended STL/PSL language described below. An STL/PSL specification is then

4 http://www.trolltech.com
5 http://qwt.sourceforge.net
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Algorithm 2. INCREMENTAL-T and INCREMENTAL-A
input : STL/PSL Temporal Formula ϕ and increment

Δξ

switch ϕ do
case p

Δϕ := Δϕ · πp(Δξ);
end
case φ ◦ c

INCREMENTAL-A (φ);
αϕ := COMBINE(◦c, χφ);
d := |αϕ| ;
Δϕ := Δϕ · αϕ ;
χφ := χφ · 〈Δφ〉d ;
Δφ := d\Δφ ;

end
case OP1(ϕ1)

INCREMENTAL-T (ϕ1);
αϕ := COMBINE(OP1, χϕ1 ));
d := |αϕ| ;
Δϕ := Δϕ · αϕ ;
χϕ1 := χϕ1 · 〈Δϕ1 〉d ;
Δϕ1 := d\Δϕ1 ;

end
case OP2(ϕ1, ϕ2)

INCREMENTAL-T (ϕ1, ϕ2);
αϕ := COMBINE(OP2, χϕ1 , χϕ2 ));
d := |αϕ| ;
Δϕ := Δϕ · αϕ ;
χϕ1 := χϕ1 · 〈Δϕ1 〉d ;
Δϕ1 := d\Δϕ1 ;
χϕ2 := χϕ2 · 〈Δϕ2 〉d ;
Δϕ2 := d\Δϕ2

end
end

input : STL/PSL Analog Formula φ and increment Δξ

switch φ do
case s

Δφ := Δφ · πs(Δξ);
end
case OP1(φ1)

INCREMENTAL-A (φ1);
αφ := COMBINE(OP1, χφ1 );
d := |αφ| ;
Δφ := Δφ · αφ ;
χφ1 := χφ1 · 〈Δφ1 〉d ;
Δφ1 := d\Δφ1 ;

end
case OP2(φ1, φ2)

INCREMENTAL-A (φ1);
INCREMENTAL-A (φ2);
αφ := COMBINE(OP2, χφ1 , χφ2 );
d := |αφ| ;
Δφ := Δφ · αφ ;
χφ1 := χφ1 · 〈Δφ1 〉d ;
Δφ1 := d\Δφ1 ;
χφ2 := χφ2 · 〈Δφ2 〉d ;
Δφ2 := d\Δφ2 ;

end
end

transformed into a structure adapted for the monitoring purpose, following the parse-
tree of the formula. The user can hold more than one specification that is ready for
evaluation in the property list frame.

Property Format. AMT tool extends the STL/PSL language described in Section 2.2
with additional constructs that simplify the process of property specification. Each top-
level STL/PSL property is declared as an assertion, and a number of assertions can be
grouped into a single logical unit in order to monitor them together at once. We also
add a definition directive which allows the user to declare a formula and give it a name,
and then refer to it as a variable within the assertions. The extended STL/PSL is defined
with the following production rules

stl_psl_prop :==
vprop NAME {

{ define_directive } { assert_directive }
}

define_directive :==
define b:NAME := stl_psl_property
| define a:NAME := analog_expression
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Fig. 3. AMT Main Window

assert_directive :==
NAME assert : stl_psl_property

where stl psl property and analog expression correspond to ϕ and φ from
Section 2.2, respectively.

Property Evaluation. The correctness of an STL/PSL specification with respect to
input traces is monitored through the property evaluation frame. The frame shows the
set of assertions in a tree view, following the parse structure of the formula. The user
can choose between offline and incremental evaluation of the specification.

In the offline case, the input signals are fetched from the signal list frame and the
assertions are checked with respect to them. If one or more signals are missing, the
monitoring procedure still tries to evaluate the property, but without guaranteeing a
conclusive result.

For the incremental procedure, AMT acts as a server that waits for a connection from
a simulator. Once the connection is established, the simulator sends input segments
incrementally. The monitor alternates between reception of new input segments and
incremental evaluation of the assertions. The user can configure the timeout value that
defines the period between two consecutive evaluations. In between two such periods,
the monitor accumulates input received from the simulator. There are three manners to
end the incremental monitoring procedure: 1) All assertions become determined and
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AMT stops the evaluation and closes the connection with the simulator; 2) The special
termination packet is received from the simulator and 3) The user explicitly stops the
procedure via the GUI.

AMT shows visually the evaluation result of an assertion, choosing a different color
scheme for undetermined, correct and incorrect assertions. Each subformula of the
specification has an associated signal with it, which can be visualized within the signal
plots frame. The visualization of the associated signals can be used for understanding
why an assertion holds/fails. During the incremental evaluation, all the signals within
the signal plots frame are updated in real-time as new results are computed. The user
can switch off the accumulation of intermediate results for better memory performance,
thus discarding signals as soon as they are not needed anymore for the evaluation of
super-formulae. In that case, the only output of the tool is the final answer.

4.2 Signal Management

The signals in AMT can be either continuous or Boolean. Signals are input traces that
can be imported into the tool in an offline or incremental fashion. But signals are also
associated to each subformula of an STL/PSL specification. The user can visualize them
from the signal plots frame.

Offline Signal Input. Signals can be statically loaded from the signal list frame. Two
file formats are currently supported by AMT:

out. The output format of the Nanosim simulations. The current and voltage signals
are loaded, while logical signals are ignored.

vcd. The subset of Value Change Dump file format including real and 2-valued Boolean
signals, commonly used for dumping simulations.

Incremental Signal Input. Signals can be imported incrementally to AMT, via a sim-
ple TCP/IP protocol. A simulator that produces input signals needs to connect to AMT

during the incremental evaluation and send packets containing signal updates to the
tool. The packets can be either Boolean or continuous signal updates, or a special ter-
mination packet, informing the tool that the simulation is over.

5 A FLASH Memory Case Study

The subject of the case study is the “Tricky” technology FLASH memory test chip in
0.13us process developed in ST Microelectronics Italy. The FLASH memory presents
an advantage for the analog case study, in that it is a digital system whose logical be-
havior is implemented at the analog level. Hence, it is a good link between the analog
and the digital world.

For the lightweight verification, the system under test is seen as a black box, and
we do not need to know further details about the underneath chip architecture. The
memory cell can be in one of the programming, reading or erasing modes. The correct
functioning of the chip at the analog level in a given mode is determined by the behavior
of a number of signals extracted during the simulation:
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bl: matrix bit line terminal (cell drain) pw: matrix p-well terminal (cell bulk)
wl: matrix word line (cell gate) s: matrix source terminal (cell source)
vt: threshold voltage of cell id: drain current of cell

The memory cell was simulated in the programming and the erasing modes for the
case study, with the simulation time being 5000 us and 30000 us respectively. Four
STL/PSL properties were written to describe the correct behavior of the cell in the
programming mode and one property in the erasing mode. The AMT monitoring was
done on a Pentium 4 HT 2.4GHz machine with 2Gb of memory. All the properties were
found to be correct with respect to the input traces.

A detailed description of the properties and the monitoring results can be found
in [NMF+06]. As an example, we consider the erasing property. The informal descrip-
tion of the property first defines the erasing condition, which is characterized by the
wordline signal wl being lower than −6 and p-well pw above 5. Whenever the erasing
condition holds, the pointwise distance between the source s and p-well pw voltages
has to be smaller than 0.1 and the value of pw should not be greater than 0.83 from the
value of bitline bl. The corresponding STL/PSL specification is:

vprop erasing {
define b:erasing_cond :=
a:wl <= -6 and a:pw > 5;

erasing assert:
always (b:erasing_cond ->

(distance (a:s,a:pw,0.1)
and (a:bl-a:pw)>-0.83));

}

Figure 4 shows some of the representative signals of the erasing property. We can
mainly see that, whenever the erasing condition in Figure 4 (e) holds (denoted between
two dashed lines), the pointwise distance between s and pw remains smaller than 0.1
(Figure 4 (h)) and the difference between bl and pw stays above the −0.83 threshold.

5.1 Tool Evaluation

The time and space requirements of AMT were studied with both offline and incremen-
tal algorithms. The complexity of the algorithm used in AMT is shown to be O(k ·m)
in [MN04] where k is the number of sub-formulae and m is the number of intervals.

Table 1 shows the size of the input signals (number of intervals). We can see that the
erasing mode simulation generated 10 times larger inputs from the programming mode
simulation. Table 2 shows the evaluation results for the offline procedure of the tool.
Monitoring the properties for the programming mode required less than half a second.
Only the erasing property took more than 2 seconds, as it was tested against a larger
simulation trace. We can also see that the evaluation time is linear in the number of
intervals generated by the procedure and can deduce that the procedure evaluates about
1.000.000 intervals per second.
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(a)

(c)

(b)

(d)

(e)

(f)

(g)

(h)

Fig. 4. Erasing Property: (a) pw; (b) s; (c) wl; (d) bl; (e) erasing cond; (f) bl-pw; (g) bl-pw>=-
0.83; (h) distance(s,pw,0.1)

Table 1. Input Size

pgm sim erase sim
name # intervals # intervals

wl 34829 283624
pw 25478 283037
s 33433 282507
bl 32471 139511
id 375 n/a

Table 2. Offline Algorithm Evaluation

property time (s) # intervals

programming1 0.14 99715
programming2 0.42 405907
p-well 0.12 89071
decay 0.50 594709
erasing 2.35 2968578

The execution times of the incremental algorithm are less meaningful because the
procedure works in parallel with the simulator which, in most cases, is much more com-
putationally demanding. In fact, one major attraction of the incremental procedure is the
ability to detect property violation in the middle of the simulation and save simulation
time. Another advantage of the incremental algorithm is its reduced space requirement
as we can discard parts of the simulation after they have been fully used. Table 3
compares the memory consumptions of the offline and incremental procedures. For the
former we take the total number of intervals generated by the tool while for the latter we
take the maximal number of intervals kept simultaneously in memory. We can see that
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Table 3. Offline/Incremental Space Requirement Comparison

Offline Incremental
Property t = total # intervals m = max # active intervals m/t * 100

programming1 99715 65700 65.9
programming2 594709 242528 40.8
p-well 89071 8 0.01
decay 594709 279782 47.1

this ratio varies a lot from one property to another, going from 0.01% up to 70%. The
general observation is that pointwise operators require less memory in the incremental
mode, while properties involving the nesting of untimed temporal properties often fail
to discard their inputs until the end of the simulation.

6 Conclusions

The main contribution of this paper is the implementation of the AMT tool that mon-
itors temporal properties of continuous and mixed signals. The specification language
for describing desired behaviors of continuous signals supported by the tool is STL/PSL,
a subset of PSL, properly extended to express sequential properties of such signals. The
monitoring algorithms used by AMT are the offline marking procedure from [MN04]
and its incremental extension described in this paper. The tool is integrated with numer-
ical simulators by supporting some standard input formats for continuous simulations
and by direct communication between the two using a simple protocol built on top of
TCP/IP.

AMT was validated through a FLASH memory case-study. The results show that the
tool can be effectively used in both its offline and incremental modes. A number of in-
teresting properties concerning transient behavior of continuous signals were described
in STL/PSL. Combinations of operators from the analog and temporal layers allow ex-
pressing properties such as ramp detection in an input trace, conditional distance-based
comparisons between a reference and an input signal, or a stabilization of an input sig-
nal around an arbitrary value. The main class of properties that cannot be expressed in
STL/PSL are those dealing with the frequency spectrum of signals. A typical English
specification of such a property would be ”At least 60% of the energy power spectrum
of a signal is within its frequency band between 300 and 1500Hz”. We hope to introduce
such properties into future versions of the tool.
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Abstract. We present a method and tool (and implementation) for automatic
proofs of region stability for hybrid systems. The formal basis of our approach is
the new notion of snapshot sequences. We use snapshot sequences for a charac-
terization of region stability. Our abstraction-based algorithm checks the condi-
tions in this characterization. A number of experiments demonstrate the practical
potential of our approach.

1 Introduction

The problem that we consider in this paper is to show that every trajectory of a given
hybrid system stabilizes w.r.t. a given region. This means that every trajectory eventu-
ally comes to a point where it lies within the region and never goes out again. Before
this point the trajectory can run either inside or outside of the region; i.e., it can reach
and leave the region any number of times.

Verification of stability has been so far out of reach for automatic methods. In this
paper we propose a new method and tool for the automatic proof of region stability
of hybrid systems, to our knowledge for the first time. We have implemented the tool
and applied it to a number of benchmarks. Our experiments include the fully automatic
stability proof for the break curve behavior of a train system (a previously unsolved
benchmark of the AVACS project, www.avacs.org).

Our method and tool is possible thanks to a new characterization of region stability.
The characterization exploits the fact that region stability is equivalent to the finiteness
(NOT boundedness!) of the time that a trajectory can spend outside of the given re-
gion. We characterize this finiteness of time in terms of the finiteness of certain state
sequences, sequences that we call snapshot sequences.

We distinguish three specific kinds of snapshot sequences. For each kind, we com-
pute the constraint that implicitly represents the corresponding set of sequences. This
computation is based on a novel source-to-source transformation for hybrid systems.
The reachability relation of the transformed hybrid system is the binary reachability
relation between snapshots of the original system. We compute an overapproximation
of the unary reachability relation of the transformed hybrid system. Here we can use
existing methods for reachability analysis for hybrid systems, e.g. [12]. Our approach
leverages the abstraction techniques of these methods. Our approach scales with the per-
formance of these abstraction techniques. We present an implementation of our method
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and tool and use it to demonstrate the practical potential of our method on several
benchmarks.

2 Preliminaries

We follow the standard terminology and notation for hybrid systems, states and trajec-
tories.

A hybrid system is a tuple (fixed from now on)

A = (L,V ,(jump�,�′)�,�′∈L ,(flow�)�∈L ,(inv�)�∈L ,(init�)�∈L)

consisting of the following components:

1. a finite set L of locations.
2. a finite set V of real-valued variables.
3. a family (jump�,�′)�,�′∈L of formulas over V and V ′ representing the possible jumps

from location � to location �′.
4. a family (flow�)�∈L of formulas over V and V̇ specifying the continuous variable

update in location �. We use V̇ = {ẋ1, ẋ2, . . .} for the set of dotted variables. A
variable ẋ represents the first derivative of x with respect to time, i.e. ẋ = dx/dt.

5. a family (inv�)�∈L of formulas over V representing the invariant condition in loca-
tion �.

6. a family (init�)�∈L of formulas over V representing the initial states of the system.

A state s is a pair (�,ν) consisting of a location � of L and a valuation ν of all
variables over the set V . A set of states is also called a region. In the remainder of
this paper we restrict ourselves to interval regions, i.e. to regions ϕ that are given by
ϕ ≡ x ∈ [xmin,xmax] , where x is a continuous variable of the hybrid system and xmin

and xmax are constants (including ±∞) with xmin < xmax.

A trajectory τ of a hybrid system A is a function mapping time points t in R+ to
states in Σ such that the following conditions hold:

1. If τ(0) has location �, then τ(0) must satisfy the initial condition of that location.

τ(0) |= init�

2. If the real-valued component ν of τ is differentiable at t, and both τ(t) and the
left-limit of τ at t, limt′→t− τ(t ′) , have the same location �, then the pair (ν, ν̇) of
variable valuation and valuation of the first derivatives satisfies the invariant and
the flow condition of location �.

(ν, ν̇) |= inv�∧flow�

3. If the left-limit of τ at t has location � and τ(t) has a different location �′, then
the real-valued component of the left-limit of τ at t and τ(t) must satisfy the jump
condition from location � to location �′.

( lim
t′→t−

τ(t ′) , τ(t) ) |= jump�,�′
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Definition 1 (Region stability [19]). A hybrid system is stable with respect to a region
ϕ if for every trajectory τ there exists a point of time t0 such that from then on, the
trajectory is always in the region ϕ.

∀τ ∃t0 ∀t ≥ t0 : τ(t) ∈ ϕ

Region stability is essentially what is called practical stability in [16].

3 Examples

We next present our benchmarks which are typical instances of the verification problem.
The formal description of the hybrid systems can be found in [20]. Each of the next
eight benchmarks is to illustrate a particular aspect of the verification problem. The
other three benchmarks describe three well-known scenarios.

Example 1. Our first example is a hybrid system with one location and one continuous
variable x. Initially the value of x is greater than 0; the flow condition is given by ẋ =
−1. The region with respect to which we want to prove stability is given by x ≤ 0.
Intuitively it is clear that all trajectories of the system must end up in the region ϕ (since
the value of x is strictly monotonically decreasing by −1). For every single trajectory the
amount of time that the trajectory can spend outside of the region ϕ is finite. However,
the time that a trajectory can spend outside of ϕ is unbounded.

Example 2: A simple heating system. In our second example we consider a well-known
heating system for a room. Either the heater is off and the temperature x falls or the
heater is on and the temperature rises. This system is not stable in the classical sense
(w.r.t. an equilibrium point). We want to show stability w.r.t. the region x ∈ [65,82].

Example 3: A more complex heating system. Our next example is a modification of
the heating system that we have seen in the last example. The modified heating system
consists of three continuous variables xp, xe and t; xp stands for the temperature of
the room and xe for the temperature of an internal engine. The internal engine may
overheat and switch off the heater temporarily, even though the desired temperature for
the room (given by xp ∈ [65,82] ) is not yet reached. This means that, starting from
low, the temperature will not increase strictly monotonically but it will also decrease
during some periods of time. A side effect of this behavior is that a trajectory can reach
the desired region but leaves it again for some time before it stabilizes.

Example 4: A bouncing ball. This example is a modification of the well-known bounc-
ing ball. A ball (thought of as a point-mass) is thrown horizontally against a wall. The
distance between the wall and the thrower is denoted by xt , the distance between the
wall and the ball is denoted by xb. We assume that the ball has a constant speed and
does not lose any energy with a bounce. As soon as the thrower has thrown the ball he
moves towards the wall until the ball returns to him; then he throws the ball again.

Each execution of the hybrid system that models this scenario is a Zeno execution,
this means a solution of the system having infinitely many discrete jumps in finite time.
Nevertheless we can show that the thrower can come arbitrarily close to the wall, i.e.
we can prove stability of the system w.r.t. the region xt ≤ ε for every ε > 0.
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Example 5: An one-tank water system. In the following example we consider a one-
tank water system with a constant inflow of water. The volume of water in the tank is
denoted by x. The tank has a pipe such that water can also flow out of the tank again.
The pipe can be opened for at most 8 seconds; after that the pipe must be closed again
for 10 seconds. We want to know whether the tank can be drained, no matter what the
initial volume of water is; i.e. we must check whether the system is stable w.r.t. x <= 0.

As in Example 1, the time that a trajectory of this system can spend outside of the
desired region is unbounded. Furthermore we prove in this example stability w.r.t. the
equilibrium point x = 0. (Since the invariants of the system assure that x ≥ 0, stability
w.r.t. x ≤ 0 implies stability w.r.t. the equilibrium point x = 0.)

Example 6: A distance controller. The next example is a model of a distance controller.
We consider two cars driving one after another. The leading car has a constant speed
v1 = 50. The second car is governed by a controller that continuously senses the distance
x between the two cars. If the distance is greater than a given value the second car speeds
up; if the distance is smaller than a second value it slows down. The second car has a
maximum speed of 70 and a minimum speed of 0. The goal is to prove that the distance
x between the two cars is always > 0.

Example 7: A two-tank water system. Now we consider a two-tank water system con-
sisting of two tanks one upon the other. The variables x1 and x2 denote the volumes of
water in the upper tank 1 and the lower tank 2. Water flows constantly out of the system
from the lower tank. The system can switch on or off the inflow of water into the upper
tank, and the flow of water from the upper to the lower tank; but both tanks must not
overflow. The objective is to keep the water volume of the lower tank above 6, i.e. we
are interested in stability w.r.t. the region x2 > 6.

Example 8: Train brakes. In our next example we consider the braking behavior of a
train, see Fig. 1. Initially the train is moving with a constant speed v. Eventually it starts
braking, either with one break (if the speed is ≤ 200) or with two brakes (if the speed is
> 200). There is a time delay between ordering the brake application and reaching the
full brake effort. The braking capacity of the train depends on the speed. At a speed of
200 the second brake is released again. We want to prove stability of the system w.r.t.
v ≤ 0, i.e. we want to show that the train can always stop.

Three more examples. Each of the previous benchmarks illuminates a particular facet
of verifying region stability. The following benchmarks do not illustrate a new angle on
stability but they describe three well-known (realistic) scenarios.

1. RLC circuit: we analyze a series RLC circuit consisting of one resistor, one inductor
and one capacitor.

2. Damped oscillation of a pendulum: we show that the amplitude of the oscillation
will always go towards 0.

3. The energy of an exothermic chemical reaction: we prove that the energy of an
exothermic chemical process tends to 0.



324 A. Podelski and S. Wagner

v>0

0≤a≤10
��

*+ ,-

./ 01

�1
v̇ = a
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ȧ = −2
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Fig. 1. Train brakes

Experimental Results. We have implemented the algorithm described in the next sec-
tions (5.1 and 5.2) and applied it to the examples listed above, see Fig. 2. To our knowl-
edge these experiments are the first automatic proofs for the stability of those hybrid
systems.

4 Snapshot Sequences

In this section we give a characterization of region stability that serves as a basis for
our algorithm. For reasons of space we have to omit a lot of formal details. A technical
report [20] allows a sceptical reader to access the correctness of our results.

Our characterization exploits the fact that region stability is equivalent to the finite-
ness (NOT boundedness) of the time that a trajectory can spend outside of the given
region. We will characterize this finiteness of time in terms of the finiteness of certain
sequences of states.

Definition 2 (Snapshot sequence.). Given a hybrid system A and a region ϕ, a snap-
shot sequence s0,s1,s2, . . . is a sequence of states such that (i) all states of the sequence
lie on the same trajectory τ of A, (ii) all states are not in the region ϕ, and (iii) all pairs
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System # Variables # Locations Run Time

Example 1 2 1 0.191s
Simple heater 3 2 0.490s
Complex heater 3 2 1.920s
Bouncing ball 3 2 4.209s
One tank system 3 3 1.813s
Distance controller 3 4 1.186s
Two tank system 3 4 16.545s
Train brake 3 6 2.589s
RLC circuit 2 2 0.449s
Pendulum 2 2 0.264s
Exothermic reaction 2 3 0.428s

Fig. 2. Experimental results (on a Pentium M 1,7GHz processor running Debian Linux 2.6.7)
yielding fully automatic stability proofs of the hybrid systems

of consecutive states have a minimum time distance δ, where δ is an arbitrary but fixed
constant greater than 0.

(i) ∃τ ∀ i ∃ti : si = τ(ti) ,
(ii) ∀ i : si �∈ ϕ ,
(iii) ∃δ > 0 ∀ i : ti+1 − ti ≥ δ .

We now define the three kinds of snapshot sequences. In Section 5 we explain how
one can compute an effective representation of the set of snapshot sequences for each
of the three kinds: 1. snapshot sequences on monotonic flows, 2. snapshot sequences of
extremal-points, and 3. snapshot sequences of entry points.

1. Snapshot sequences on monotonic flows. To illustrate the first kind of snapshot se-
quences we consider a (strictly) monotonic trajectory of a linear hybrid systems with
one location and one continuous variable x.

A monotonic trajectory that is stable can never leave the region ϕ again after it has
reached it once. Or the other way round: a monotonic trajectory that is not stable either
never reaches the region or reaches the region but leaves it again for good. In both cases
the amount of time that the (unstable) trajectory spends outside of the given region
is infinite. This means if we consider an arbitrary time-divergent discretization (by a
constant time step δ > 0 ) of a monotonic trajectory then only finitely many states of
the discretization are outside the region ϕ if and only if the trajectory is stable.

Snapshot sequences arising by equidistant discretizations of a monotonic trajectory
without jumps are the first kind of snapshot sequences we are interested in.

2. Sequences of extremal-points. For non-monotonic trajectories it is not the case that
the finiteness of states of any arbitrary discretization outside of the region ϕ is equivalent
to the stability of the trajectory. If we consider for example the trajectory in Fig. 3 and
we disretize it by 2π then all states of the discretization are in the region ϕ although the
trajectory is not stable.
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Fig. 3. Sample trajectory of a hybrid system with one location, one continuous variable x and flow
ẋ(t) = sin(t). The trajectory violates stability w.r.t. the grey region ϕ ≡ x ∈ [−0.5,1.1].

It does also not suffice to consider the equidistant discretizations of each monotonic
part of the trajectory separately: in the example of Fig. 3 all of them are finite outside
of the region ϕ (independent of the discretization width δ); but the trajectory consists
of infinitely many monotonic parts.

A trajectory changes its monotonicity behavior (i.e. its direction) during a continuous
flow at the so-called extremal-points. We make the following observation for hybrid
systems with one location: if a trajectory has only finitely many extremal-points outside
of the region ϕ (this means the trajectory consists only of finitely many monotonic parts
outside of ϕ) and if all monotonic parts are finite outside of ϕ then the trajectory is
stable w.r.t. ϕ.

Sequences of extremal-points are the second kind of snapshot sequences we are in-
terested in.

3. Sequences of entry-points. Now we consider a (non-stable) trajectory of a a hybrid
system with two locations and one variable x, see Fig 4. In one location the value of x
is increasing, in the other location the value of x is decreasing.

0
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1.2

x
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t

Fig. 4. A sample trajectory of a hybrid system with two locations. The system is not stable w.r.t.
the grey region ϕ ≡ x ∈ [0.4,1].

This scenario and the last one (Fig. 3) are quite similar. For the same reasons as we
have seen there we must again assure that the trajectory consists of only finitely many
monotonic parts outside of the region ϕ in order to prove stability. The trajectory in
Fig. 4 changes its monotonicity behavior during discrete jumps. We call states just after
a discrete jump entry-points.

Sequences of entry-points are the third kind of snapshot sequences we are
interested in.

We can now formulate the three conditions that together characterize region stability
of hybrid systems.
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Condition 1 There is no infinite snapshot sequence such that
(i) no entry-point lies between two states of the sequence and
(ii) no extremal-point lies between two states of the sequence.

Condition 2 There is no infinite snapshot sequence such that
all states of the sequence are extremal-points.

Condition 3 There is no infinite snapshot sequence such that
all states of the sequence are entry-points.

Theorem 1. Condition 1, Condition 2, and Condition 3 together are sufficient and nec-
essary for region stability of a hybrid system A w.r.t. an interval region ϕ.

Proof. (Sketch.)

if-direction: We assume a hybrid system A and an interval region ϕ ≡ x ∈ [xmin,xmax] .
Furthermore we assume that the Conditions 1, 2, and 3 hold, but A has a non-
stabilizing trajectory τ.
By Condition 3 there must be a time point t1 such that from then on no more entry-
point lies on τ outside of ϕ. Similarly, by Condition 2 there is a time point t2 such
that from t2 on no more extremal-point w.r.t. x lies on τ outside of ϕ. W.l.o.g. we
assume t2 > t1.
Either all states after t2 lie outside of ϕ. Or there is a state on τ after t2 that lies
inside of the region ϕ. Since τ is a non-stabilizing trajectory it will leave ϕ again
afterwards, say at t3. No more entry-point and no more extremal-point will occur
outside of ϕ, hence the trajectory τ will move away from the region ϕ forever after
t3.
In other words, after t3 the computation of the system proceeds in one location, say
�, and the flow is monotonic. But this means that the sequence

τ(t3), τ(t3 + δ), τ(t3 + 2δ), . . .

(for any arbitrary δ > 0 ) is an infinite snapshot sequence on the same flow without
entry- and extremal-points in between, a contradiction to Condition 1.

only if-direction: The only if-direction follows from the fact that “stability with re-
spect to ϕ” implies that all possible snapshot sequences are finite. �

We can extend our result to n-dimensional regions, i.e. to regions ϕ that can be ex-
pressed as cartesian products of intervals.

ϕ ≡ (x1, . . . ,xn) ∈ [xmin
1 ,xmax

1 ]× . . .× [xmin
n ,xmax

n ] ,

We call such regions box regions. The idea is to prove that the hybrid system is stable
w.r.t. each single one-dimensional component ϕi of the cartesian product,

ϕi ≡ xi ∈ [xmin
i ,xmax

i ] , i = 1 . . .n .

The following lemma shows that this yields stability w.r.t. the n-dimensional region ϕ.
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Lemma 1. A hybrid system A is stable w.r.t. an n-dimensional box region ϕ if and only
if A is stable w.r.t. each interval region ϕi.

Proof. if-direction: Assume that A is stable with respect to to each one-dimensional
region ϕi, formally

∀ i ∀τ ∃ti
0 ∀t ≥ ti

0 : τ(t) ∈ ϕi .

We take the maximum over all time points ti
0 and call it t0.

t0 = max
i=1...n

ti
0

This means that from the time point t0 on the trajectory τ is in all one-dimensional
regions ϕi and hence in the n-dimensional box region ϕ, which implies that A is
stable with respect to ϕ.

only if-direction: Assume that A is stable with respect to n-dimensional box region ϕ,
i.e.

∀τ ∃t0 ∀t ≥ t0 : τ(t) ∈ ϕ .

Especially this means that from t0 on the trajectory τ is in all one-dimensional
interval regions ϕi.

∀τ ∃t0 ∀t ≥ t0 : τ(t) ∈ ϕ1 ∧ . . . τ(t) ∈ ϕn .

Thus A is stable with respect to each interval region ϕi. �

5 Algorithm

Fig. 5 shows the control flow graph of the overall algorithm. The input is a hybrid sys-
tem A and a region ϕ. The first step of the algorithm is the computation of a transformed
hybrid system such that the reachability relation of the transformed hybrid system is
the binary reachability relation between snapshots of the original system. The second
step is the computation of the reachability relation of the transformed hybrid system.
We have implemented this step using PHAVer, a tool for (unary) reachability analy-
sis [12]. The last step of the algorithm is to check whether all relations in the output
of PHAVer are well-founded. (Well-founded means that there is no infinite sequence of
states s1,s2,s3, . . . such that each pair of consecutive states (si,si+1) satisfies the rela-
tion.) Our implementation uses RankFinder for the well-foundedness test [21,17]. The
output of the algorithm is a Yes / Don’t know answer.

OUTPUT

Yes / Don’t know  Hybrid System 
  and Region 

New Hybrid
System

Set of Binary
Reachability

Reachability

Transformation Analysis

System

Relations

INPUT

Test

Well−foundedness

Fig. 5. Control flow graph of the overall algorithm. Our implementation calls PHAVer for the
reachability analysis and RankFinder for the well-foundedness test.
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5.1 System Transformation

The goal of this section is to show how one can compute an effective representation of
the set of snapshot sequences for each of the three kinds (see Section 4). In order to
check finiteness of snapshot sequences we give an implicit representation of the set of
these sequences by constraints that denote binary relations. (A binary relation represents
the set of all sequences such that each pair of consecutive elements lies in the relation).

We distinguish three different kinds of snapshot sequences; for each kind we com-
pute the constraint that implicitly represents the corresponding set of sequences. For
each of the three cases the algorithm to compute the constraints is based on the syntactic
transformation of the original hybrid system into another one such that the reachability
relation of the transformed hybrid system is the binary reachability relation between
snapshots of the original system; an overapproximation of the unary reachability re-
lation of the transformed hybrid system is computed by using dedicated abstraction
techniques that have been developed for safety proofs of hybrid systems (see e.g. [12]).

We will now use an example to explain how we compute a set of relations that to-
gether represent all possible snapshot sequences (possibly more, since we use an over-
approximation).

Snapshot sequences on monotonic flows. We describe informally how one can compute
the representation for all snapshot sequences on a monotonic flow. The transformation
for the computation of the other kinds of snapshot sequences is similar.

We consider a hybrid system with one location � and one continuous variable x (see
Fig. 6). The flow condition is given by

ẋ = sin(x) .

We want to know whether the system is stable w.r.t. the region ϕ ≡ x ∈ [−1,1].

��
*+ ,-

./ 01

�
ẋ = sin(x)

Fig. 6. Hybrid system with one location and one continuous variable

Fig. 7 shows the system transformation for the computation of snapshot sequences
on monotonically increasing parts of a trajectory. (The transformed system for the
decreasing parts is quite similar; the only difference is that the guard sin(x) > 0 and
the invariant sin(x′) > 0 are replaced by sin(x) < 0 and sin(x′) < 0 .)

The transformed system AT has two continuous variables, namely the original vari-
able x and its copy x′. Initially the values of x and x′ are the same. In the location �0 the
continuous flows of the two variables are identical, each of which corresponding to the
flow of the original system.

flowT
�0(x,x′, ẋ, ẋ′) ≡ flow�(x, ẋ) ∧ flow�(x′, ẋ′)

This means that one can view a state (s,s′) of the transformed system in �0 as a pair of
identical states of the original system.
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Fig. 7. Transformed system for the computation of snapshot sequences on a monotonic flow

The transformed system can jump from the location �0 to the location �1 only if the
first derivative of x is > 0 (meaning that the values of x are monotonically increasing)
and if the value of x is not in the region ϕ (i.e. either if x > 1 or if x < −1).

jumpT
�0,�1(x,x′) ≡ sin(x) > 0 ∧ x /∈ ϕ

Until the discrete jump the values of x and x′ are identical. After the jump only x′

continues evolving as before whereas x is fixed from now on (in the location �1 the flow
of x is constantly 0). The values of x′ are monotonically increasing according to the
invariant condition sin(x′) > 0 of �1.

invT
�1(x,x′) ≡ inv�(x,x′) ∧ sin(x′) > 0

flowT
�1(x,x′, ẋ, ẋ′) ≡ ẋ = 0 ∧ flow�(x′, ẋ′)

This means that in �1 one can view a state (s,s′) of the transformed system as a pair of
states on a monotonically increasing part of a trajectory of the original system, where
the first state s is not in the region ϕ.

To make sure that the value of x′ is also not in ϕ the transformed system can jump
to the third location �end only if x′ > 1 or if x′ < −1. Additionally the jump condition
ensures that the transformed system must spend time δ in the location �1.

jumpT
�1,�end

(x,x′) ≡ x′ /∈ ϕ ∧ Δt = δ

In �end the values of both variables x and x′ are fixed. A state (s,s′) of the transformed
system in �end can be viewed as a pair of states on a monotonically increasing part of a
trajectory of the original system where both states are not in ϕ and have a time distance
δ. (The constant δ > 0 is the discretization width of the trajectory.)

Altogether this means that the reachability relation of the transformed hybrid system
in �end is the binary reachability relation between snapshots of the original system that
arise by equidistant discretizations of a monotonically increasing part of a trajectory
outside of the region ϕ.

Formal Description of the System Transformation Given a hybrid system

A =
(
L,V ,(flow�),(jump�,�′),(inv�),(init�)

)

for which we want to prove stability w.r.t. the interval region

ϕ ≡ x ∈ [xmin,xmax] ;

the transformed system AT is given by:
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1. Locations: Each location �i of the original system corresponds to five locations
�0

i , . . . , �
4
i in the transformed system. We refer to the set of all locations from �k

1 to
�k

m as Lk,
Lk = {�k

1, . . . , �
k
m} , k ∈ {0,1,2,3,4} .

In addition, the transformed system has two locations �init and �end. Altogether, the
set LT of locations of the transformed system consists of the following components:

LT = {�init} ∪ L0 ∪ L1 ∪ L2 ∪ L3 ∪ L4 ∪ {�end}

2. Variables: The set V T of variables of the transformed system contains all variables
of V , their primed versions, and an additional variable called flag.

V T = V ∪ {flag} ∪ V ′

3. Flow constraints: First, in the locations �init and �end the flow of all continuous
variables is 0.

flowT
�init

(x1, . . . ,t
′, ẋ1, . . . , ṫ

′) ≡
�

x∈V T

ẋ = 0

flowT
�end

(x1, . . . ,t
′, ẋ1, . . . , ṫ

′) ≡
�

x∈V T

ẋ = 0

In each location �0
i of L0, the flow of the variables x1, . . . ,t in the transformed

system is the same as the flow of x1, . . . ,t in the original system; each variable
x′1, . . . ,t

′ behaves exactly like its unprimed version, that is the flow of x′1, . . . ,t
′ is

equal to the flow of the original system after replacing the variables x1, . . . ,t by
their primed versions x′1, . . . ,t

′.

flowT
�0

i
(x1, . . . ,t

′, ẋ1, . . . , ṫ
′) ≡ flow�i(x1, . . . , ṫ) ∧ ˙flag = 0

∧ flow�i(x
′
1, . . . , ṫ

′)

In each location of L1 ∪ . . .∪L4 the values of the variables x1, . . . ,t are fixed, i.e.
the flow of them is constantly 0. The variables x′1, . . . ,t

′ keep on evolving as before.

flowT
�k

i
(x1, . . . ,t

′, ẋ1, . . . , ṫ
′) ≡ (

�

x∈V ∪{flag}
ẋ = 0) ∧ flow�i(x

′
1, . . . , ṫ

′) ,

k ∈ {1, . . . ,4}

4. Jump constraints: A jump is possible from the location �init to a location �0
i of L0

if the initial condition of the location �i of the original system A is fulfilled for the
variables (x1, . . . ,t).

jumpT
�init,�

0
i
(x1, . . . ,t

′) ≡ init�i(x1, . . . ,t)

The second kind of jumps are jumps between two locations of L0 and between
two locations of L4, respectively. The condition for a jump between the location
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�0
i and the location �0

j for the variables (x1, . . . ,t,x′1, . . . ,t
′) corresponds to the jump

condition between the locations �i and � j of the original system A for the vari-
ables (x1, . . . ,t). Similarly a jump condition between the locations �4

i and �4
j of the

transformed system corresponds to the jump condition from location �i to � j of the
original system after replacing the variables x1, . . . ,t by their primed versions.

jumpT
�0

i ,�
0
j
(x1, . . . ,t

′) ≡ jump�i,� j
(x1, . . . ,t)

jumpT
�4

i ,�
4
j
(x1, . . . ,t

′) ≡ jump�i,� j
(x′1, . . . ,t

′)

To compute sequences on monotonic flows we allow jumps from �0
i ∈ L0 to �1

i ∈ L1

(and to �2
i ∈ L2, respectively) if the first derivative of x is greater than 0 (and less

than 0, respectively) and if x does not lie in ϕ.

jumpT
�0

i ,�
1
i
(x1, . . . ,t

′) ≡ ẋ > 0 ∧ ¬ϕ

jumpT
�0

i ,�
2
i
(x1, . . . ,t

′) ≡ ẋ < 0 ∧ ¬ϕ

Similarly the transformed system can take a jump from a location �0
i ∈ L0 to a

location �3
i ∈ L3 if the first derivative of x is 0 and if x does not lie in ϕ.

jumpT
�0

i ,�
3
i
(x1, . . . ,t

′) ≡ ẋ = 0 ∧ ¬ϕ

A jump from �1
i to �end (and from �2

i to �end, respectively) is possible if the first
derivative of x′ is greater than 0 (and less than 0, respectively), if x′ does not lie in
ϕ, and if the system has spend time δ in the location �1

i (and in �2
i , respectively).

jumpT
�1

i ,�end
(x1, . . . ,t

′) ≡ ẋ′ > 0 ∧ ¬ϕ ∧ t ′ − t = δ

jumpT
�2

i ,�end
(x1, . . . ,t

′) ≡ ẋ′ < 0 ∧ ¬ϕ ∧ t ′ − t = δ

Similarly the transformed system can jump from from �3
i to �end if the system has

spend time δ in the location �3
i , if the first derivative of x′ is 0, and if x′ is not in ϕ.

jumpT
�3

i ,�end
(x1, . . . ,t

′) ≡ ẋ′ = 0 ∧ ¬ϕ ∧ t ′ − t ≥ δ

For the computation of pairs of entry-points of the original system we need a jump
from a location �0

i ∈ L0 to a location �4
j ∈ L4 whenever the jump condition between

the locations �i and � j of the original system A is possible but only if x is not in the
region ϕ. During the jump the value of flag is set to the index j of the target location.

jumpT
�0

i ,�
4
j
(x1, . . . ,t

′) ≡ jump�i,� j
(x1, . . . ,t) ∧ ¬ϕ ∧ flag := j

The transformed system can jump from �4
i ∈ L4 to �end if x is not in ϕ, the value of

flag is j, and the jump condition from �i to � j of the original system A holds for the
primed variables. Additionally we must guarantee the discretization width δ (for
δ > 0 constant).

jumpT
�4

i ,�end
(x1, . . . ,t

′) ≡
�

� j∈L

(
jump�i,� j

(x′1, . . . ,t
′) ∧ ¬ϕ

∧ flag = j ∧ t ′ − t ≥ δ
)
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5. Invariant conditions: For the locations �init and �end the invariant condition is true.

invT
�init

(x1, . . . ,t
′) ≡ true

invT
�end

(x1, . . . ,t
′) ≡ true

For a location �0
i in L0 the invariant condition over x1, . . . ,t,x′1, . . . ,t

′ is the same as
the invariant condition of the original system A for �i over x1, . . . ,t.

invT
�0

i
(x1, . . . ,t

′) ≡ inv�i(x1, . . . ,t)

For a location �1
i ∈ L1 (and �2

i ∈ L2, respectively) the invariant condition over
x1, . . . ,t,x′1, . . . ,t

′ corresponds to the invariant condition of the original system A
for �i over x′1, . . . ,t

′ in addition to the condition ẋ > 0 (and ẋ < 0, respectively).

invT
�1(x1, . . . ,t

′) ≡ inv�(x′1, . . . ,t
′) ∧ ẋ > 0

invT
�2(x1, . . . ,t

′) ≡ inv�(x′1, . . . ,t
′) ∧ ẋ < 0

For a location �3
i ∈ L3 or �4

i ∈ L4 the invariant condition over x1, . . . ,t,x′1, . . . ,t
′ is

the same as the invariant condition of the original system A for �i over x′1, . . . ,t
′

invT
�3

i
(x1, . . . ,t

′) ≡ inv�i(x
′
1, . . . ,t

′)

invT
�4

i
(x1, . . . ,t

′) ≡ inv�i(x
′
1, . . . ,t

′)

6. Initial conditions: Initially, each variable xi has the same value as x′i, the value of t
is equal to the value of t ′, and the value of flag is set to 0; the system starts at time
point t = 0 in the location �init.

initT
�init

≡
�

x∈V

x = x′ ∧ t = 0 ∧ flag = 0

initT
� ≡ false ∀ � �= �init

5.2 Reachability Analysis and Well-Foundedness Tests

Now we are given a transformed hybrid system such that the reachability relation of the
transformed hybrid system is the binary reachability relation between snapshots of the
original system. Our implementation uses PHAVer [12] for the reachability analysis of
the transformed system. The output of PHAVer is a set of constraints, given by a dis-
junction of conjunctions of linear inequalities. The constraints denote binary relations
of the original hybrid system.

We check for each single relation that it is well-founded. Well-founded means that
there is no infinite sequence of states s1,s2,s3, . . . such that each pair of consecutive
states (si,si+1) satisfies the relation. For the well-foundedness tests our implementation
uses RankFinder [21,17]. It is indeed sufficient to prove well-foundedness for each
relation separately to show that all snapshot sequences (for each kind) are finite outside
of the region ϕ, which means that the original hybrid system is stable w.r.t. the region
ϕ [18].

We have implemented the algorithm described above and applied it on the bench-
marks listed in Section 3. The results can be found in Fig. 2.
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6 Related Work

There are many proof rules for a wide variety of notions of stability. They are all based
on Lyapunov theory [2,3,14,15,16]. The automation of these proof rules works by the
synthesis of Lyapunov functions, usually by a range of sophisticated arithmetic con-
straint solving methods, see e.g. [4,5].

Existing tools for verifying region stability fall into two classes: (1) tools that ab-
stract hybrid systems into finite state models and apply model checkers to this abstrac-
tion [11]; and (2) tools that use unary reachability to check that after a given time point
t all states outside of the stable region are unreachable [13]. The first class suffers from
the fact that abstraction to finite state models is intrinsically inappropriate for systems
with finite but unboundedly long trajectories outside of the region (in a finite state sys-
tem where all executions have finite length, the executions must have bounded length);
the second class also only works if all computations have bounded length outside of the
region. They fail to prove stability e.g. for the first example in Section 3 (a system with
one location where the flow condition is given by ẋ = −1 and the region ϕ is given by
x ≤ 0).

The algorithm presented in [19] checks a condition related to region stability, namely
strong attraction. Strong attraction implies but is not implied by region stability. The
algorithm in [19] was not implemented. It would not make sense to apply the algorithm
to the benchmarks in Section 3 since in all cases except four (examples 1, 2, 5, and 6)
region stability but not strong attraction holds.

Our source-to-source transformation described in Section 5.1 is inspired by the by
now classical technique of seeding for computing the binary reachability relation (orig-
inally for imperative programs), see e.g. [7,19,1,10]. The originality of the source-to-
source transformation in Section 5.1 lies in the fact that the binary reachability relation
generates the three specific kinds of snapshot sequences.

7 Conclusion

We have addressed a verification problem that has previously been out of reach for
automatic methods. We have presented a method and tool (and implementation) for au-
tomatic proofs of region stability for hybrid systems. The formal basis of our approach
is the new notion of snapshot sequences. This notion yields a characterization of region
stability which can be tested effectively. We have demonstrated the practical potential
of our approach by a number of experiments.

In the present version, the implementation of our tool applies a linear constraint
solver [21,17] to check the well-foundedness of the binary relation between snapshots;
this is appropriate since the PHAVer tool computes an overapproximation of the binary
relation in the form of linear constraints. For future work, we plan to investigate the
usefulness of well-foundedness checks by non-linear constraint solvers [9] in a different
version of our tool.
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Abstract. Jackson queueing networks (JQNs) are a very general class of
queueing networks that find their application in a variety of settings. The
state space of the continuous-time Markov chain (CTMC) that underlies
such a JQN, is highly structured, however, of infinite size in as many
dimensions as there are queues. We present CSL model checking algo-
rithms for labeled JQNs. To do so, we rely on well-known product-form
results for the steady-state probabilities in (stable) JQNs. The transient
probabilities are computed using an uniformization-based approach. We
develop a new notion of property independence that allows us to define
model checking algorithms for labeled JQNs.

1 Introduction

Queueing networks have been used for about half a century now, for modeling
and analyzing a wide variety of phenomena in computer, communication and
logistics systems. Seminal work on queueing networks was done by Jackson in
the 1950s [11,12]; in which he developed an important theorem that characterizes
the steady-state (long-run) probabilities to reside in certain states in a restricted
class of queueing networks (see the next section).

However, there are many phenomena in the above classes of systems that can-
not be studied well using these long-run probabilities. In communication system
models, the following situations reflect such cases: (i) what is the probability
that starting from an initial empty system, within t time-units, at least ki pack-
ets are buffered at queue i? (ii) what is the probability that starting from an
overload situation, e.g., characterized by at least L packets at each queue, within
t time-units, a low load situation, e.g., characterized by at most l << L packets
at each queue is reached again?

Clearly, the above sketched scenarios require more than just long-run probabil-
ities. Since logics like CSL have been shown to be extremely helpful in specifying
similar properties for finite CTMCs [2,3], we also pursue a CSL model checking
procedure for the CTMCs that underlie so-called Jackson queueing networks
� The work presented in this paper has been performed in the context of the MC=MC
project (612.000.311), financed by the Netherlands Organization for Scientific Re-
search (NWO). The authors thank Lucia Cloth for fruitful discussions on the topic.
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(JQNs). As we know from [3], for CSL model checking of CTMCs, we need to
be able to compute both steady-state and transient state probabilities for all
states, and for all possible starting states. The key issue lies in the fact that the
CTMC underlying a JQN is infinite in as many dimensions as there are queues
in the JQN. For the steady-state probabilities we can rely on the seminal work
of Jackson, however, for the transient state probabilities, no results are readily
available. Inspired by our recent work on CSL model checking for quasi-birth-
death processes (QBDs), which form a different class of infinite-state CTMCs
[15], we use an uniformization-based approach to compute just those transient
state probabilities in JQNs that are needed to verify the validity of CSL prop-
erties. The highly structured state space allows us to conclude the validity of
CSL properties for groups of states on the basis of the validity for a so-called
representative state in such a group. This reduces the infinite number of state
probabilities to be computed to a finite number.

We are not aware of any other work that addresses the model checking problem
solved in this paper. However, there is related work on model checking infinite
state systems, such as, e.g., Boucherie product processes [4], probabilistic lossy
channel systems [18], regular model checking [1], recursive Markov chains [8]
and probabilistic pushdown automata [5], as well as on transient analysis of
queueing networks [14,10] and on transient analysis of infinite-state systems with
uniformization [19,6]. None of this work, however, addresses the model checking
questions that we address.

The rest of this paper is organized as follows. We introduce JQNs in Section 2
and discuss the form of the underlying state space and transition relation in
detail in Section 3. We briefly rehearse the logic CSL in Section 4, before we
discuss the model checking algorithms for all the CSL operators in Section 5.
Note that we restrict ourselves to the time interval [0, t] for the time-bounded
until operator. Finally, Section 6 presents some conclusions. A running example
to illustrate the key concepts and procedures is provided throughout the paper.

2 Jackson Queueing Networks

Jackson queueing networks (JQNs) consist of a number of interconnected queue-
ing stations, numbered 1, . . . , n. At each individual queueing station i, jobs arrive
with a negative exponential inter-arrival time distribution with rate λi, and the
job service requirements are also negative exponentially distributed, however,
with rate μi. There is a single server at each queueing station1 Jobs arriving at
a queue are served in first come first served (FCFS) order. Jobs arriving when
the server is busy, are queued in an unbounded buffer. Each queue in a JQN be-
haves, in essence, as a simple so-called M |M |1 queue. We assume a never empty
source from which customers originate and arrive at the JQN, and into which
they disappear after having received their service. This environment is indexed
0 and the overall arrival process from the environment is a Poisson process with
rate λ.
1 This can be alleviated easily to m-servers.
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A finite routing matrix R ∈ R(n+1)×(n+1) contains the routing probabili-
ties from queue i to queue j with i, j ∈ {0, 1, · · · , n}: ri,j ∈ [0, 1]. Note that∑n

j=0 ri,j = 1 for all i. In case ri,j = 0 there is no routing from queue i to queue
j and in case ri,j = 1, j is the only output for queue i. The routing probability
ri,0 gives the probability that a job actually leaves the queueing network after
completion at queue i and the routing probability r0,j gives the probability that
an arriving customer is routed to queue j. Note that r0,0 = 0 by definition and
that we do allow for self loops (e.g., ri,i > 0 is allowed). A state in a JQN can
be defined as s = (s1, s2, · · · , sn), where si ≥ 0 represents the number of cus-
tomers in queue i. A more precise discussion of the state space S is postponed
to Section 3. For model checking purposes, we also need a state labeling. This
leads us to the following definition.

Definition 1 (Jackson queueing networks)
A labeled Jackson queueing network LJQN J of order n (with n ∈ N+) is
a tuple (λ, μ,R, L) with arrival rate λ, a vector of size n of service rates μ, a
routing matrix R ∈ R(n+1)×(n+1) and a labeling function L that assigns a set of
valid atomic propositions from a fixed and finite set AP of atomic propositions
to each state s = (s1, s2, . . . , sn). �

Restriction 1
In the following we will restrict ourselves to atomic propositions of the form
∧n

i=1(si
<
≥mi) for mi ∈ N. This restricts the formulas we are able to check.

Example 1
In Figure 1(a) we present a LJQN with two queues that will serve as running
example. The external arrival rate is λ, the vector of service rates is given as

μ =
(
μ1

μ2

)

and the routing matrix is R =

⎛

⎝
0 r0,1 r0,2

r1,0 0 r1,2

r2,0 r2,1 0

⎞

⎠. The labeling L will

be introduced later.

Definition 2 (Traffic equations)
The overall flow of jobs through each queue j is given as: λj = λr0,j+

∑n
i=1 λiri,j ,

for j = 1, . . . , n. These equations are called (first-order) traffic equations. �

Definition 3 (Utilization)
The utilization per queue i is defined as ρi = λi

μi
. �

Restriction 2
In case all ρi = λi

μi
< 1, the QN is said to be stable. That is the number of

arriving jobs per unit time is smaller than the amount of jobs that each queue
can handle per unit time. This guarantees that the queue will not build up
infinitely. In the following we restrict ourselves to stable LJQNs, to be able to
compute steady-state probabilities.
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The long-run probability that s customers are presently in a single M |M |1 queue,
that is, the so-called steady-state probability, for a single stable M |M |1 queue
(with ρ = λ

μ < 1) is: Pr{S = s} = (1 − ρ)ρs, where S is the random variable
indicating the number of customers in the queue [13]. In [11,12], Jackson proved
the following theorem:

Theorem 1 (Jackson)
The overall steady-state probability distribution under restriction 2 (stability)
is the product of the per-queue steady-state probability distributions, where the
queues can be regarded as if operating independently from each other:

Pr{S = s} =
n∏

i=1

(1 − ρi)ρsi

i , s = (s1, . . . , sn) ∈ S. (1)
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(a) two queues with feedback (b) underlying state-space

Fig. 1. JQN with two queues

3 State Space, Transitions, Independence and Paths

This section addresses in detail the underlying state space of a LJQN. In Sec-
tion 3.1 the underlying infinite state structured Markov chain is described. Sec-
tion 3.2 explains how the infinite state space can be structured using atomic
propositions and a new notion of independence is introduced. In Section 3.3 we
define paths and transient as well as steady-state probabilities on LJQNs.

3.1 Infinite State Structured Markov Chain

The underlying state space of a LJQN J of order n is a highly structured labeled
infinite-state continuous-time Markov chain with state space S = Nn that is
infinite in n dimensions. Every state s ∈ S can be represented as an n-tuple
s = (s1, s2, · · · , sn), with si ≥ 0. The labeling function L : S → 2AP on the
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state space then assigns from the set AP of atomic propositions the set of valid
atomic propositions to each state. The state ŝ = (0, . . . , 0) is called origin. As
the number of customers in queue i is restricted to si ≥ 0, for all i ∈ {1, . . . , n},
the underlying state-space is limited towards the origin in every dimension. An
n dimensional state space S is bounded by n so-called boundary hyperplanes of
dimension n − 1. Note that these boundary hyperplanes consist of an infinite
number of states for n ≥ 2. State changes may occur due to an arrival at queue
i from the environment or a departure to the environment from queue i, or by
routing of a customer from queue i to queue j for 1 ≤ i, j ≤ n. By adding a state
change vector to the source state, the destination state is defined: an arrival at
queue i is denoted by the vector ai, a departure from queue i is denoted by the
vector di, and a job routing from queue i to queue j is denoted as vector f i,j ,
with:

ai =

�
aj = 1 i = j,

aj = 0 j �= i.
di =

�
dj = −1 j = i,

dj = 0 j �= i.
f i,j =

���
��

fk = −1 k = i,

fk = 1 k = j,

fk = 0 otherwise.

Note that an arrival is always possible, the new state is then defined as s′ = s+ai.
A departure or a job routing from queue i is only possible, when there is at least
one customer in queue i; in this case the new state s′ is computed as: s′ = s+di

or s′ = s + f i,j , respectively.

Definition 4 (Generator function)
The rate for a state change from a state s to another state s′ within the infinite
state space S is given by the generator function G(s, s′) : S×S → R+, for s �= s′,
as follows:

cause restriction state change G(s, s′)

arrival none s′ = s + ai λ · r0,i

departure si > 0 s′ = s + di μi · ri,0

routing si > 0 s′ = s + f i,j μi · ri,j

and G(s, s′) = 0 for s �= s′ in all other cases. G(s, s) is defined as the negative
sum over all possible outgoing rates from s, that is

G(s, s) = −
(

λ +
n∑

i=1

μi · 1si>0

)

,

where the indicator function 1si>0 returns 1 if si > 0, and 0 otherwise. �

Example 2
Figure 1(b) shows the underlying state space of the LJQN from Example 1 that
is infinite in two dimensions. Arrivals occur in both dimensions with rate λ · r0,1

and λ · r0,2, departures happen from both dimensions with rates μ1 · r1,0 and
μ2 · r2,0, respectively, and jobs are routed from queue 1 to queue 2 with rate
μ1 · r1,2 and from queue 2 to queue 1 with rate μ2 · r2,1.
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3.2 Independence of Atomic Propositions

Recall that we restrict ourselves to atomic propositions of the form
∧n

i=1(si
<
≥mi)

for mi ∈ N. Due to this restriction, the validity of an atomic proposition does not
change anymore for si ≥ mi onwards for dimension i. Hence, we can define the
so-called independence vector m = (m1, . . . ,mn) and call the atomic proposition
independent as of m. For the set of states {s ∈ S | ∀i(si ≥ mi)} the validity of
the atomic proposition remains the same.

The state space can be partitioned into a finite set of boundary states Sb and
a finite number of infinite representative sets of states (denoted Sr) such that
the validity of an atomic proposition ap ∈ AP does not change any more in this
set. We choose a representative state r for each of these infinite sets Sr such
that for all s ∈ Sr the labeling does not change: L(r) = L(s), for all s ∈ Sr. In
general, in an n-dimensional LJQN, there are n types of representative sets that
account for 1 up to n infinite dimensions. A representative set is called infinite in
dimension i if and only if ri = mi, and restricted in dimension i otherwise. In case
a representative state r is infinite in k dimensions it represents a k dimensional
set Sr, such that

s ∈ Sr ⇔
{
si ≥ ri iff ri = mi,

si = ri otherwise.

Hence, a state s belongs to Sr when it takes the same value as r in the restricted
dimensions and any value ≥ ri in the infinite dimensions. For atomic proposi-
tions, the origin ŝ represents the finite set of boundary states that is defined as
Sb = {s ∈ S | si < mi, ∀i ∈ {1, . . . , n}}. The finite union of all representative
states is called representative front and defined as R(m) = {r ∈ S | ∃i : (ri =
mi)∧ (∀j �= i : (rj ≤ mj))}. Note that S = Sb ∪

⋃
r∈R(m) Sr. For atomic proposi-

tions the representative front can be made smaller, however, for model checking
CSL properties in general we need the full representative front as defined above.

Example 3
Suppose we define the atomic proposition ap1 = (s1 ≥ 2)∧(s2 ≥ 3) for the LJQN
from Example 1; the white states in Figure 2(a) then depict those states where
ap1 is valid. The representative front for ap1 is formed by the states in the grey
polygon: (0, 3) accounts for the states (0, j), with j ≥ 3, and (1, 3) represents
the states (1, j) with j ≥ 3. For i ≥ 2, (2, 0) represents (i, 0), (2, 1) represents
(i, 1) and (2, 2) represents (i, 2), respectively. These five representative states
all account for a one dimensional set of states. The representative state (2, 3)
accounts for the two-dimensional set of states S(2,3) = {s ∈ S | s1 > 2∧ s2 > 3}.
The black states belong the the boundary set Sb with representative (0, 0).

Example 4
Figure 2(b) shows the representative front for the atomic proposition ap2 =
(s1 < 3) ∧ (s2 < 3) ∧ (s3 < 3) in a LJQN of dimension three. The atomic
proposition is valid in the black states only (of the 27 only 9 are visible). All the
remaining depicted states are representative states. We have different types of
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representative states: the white ones represent a set of states that is infinite in
one dimension, the grey ones represent a set that is infinite in two dimensions
and the light grey one (3, 3, 3) represents a set that is infinite in three dimensions.
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(a) 2-dim. state space (b) 3-dim state space

Fig. 2. Representative front of states for independent atomic propositions

3.3 Paths and Probabilities

In what follows, we first present the notion of path, before we define steady-state
and transient state probabilities.

Definition 5 (Paths)
An infinite path σ is a sequence s0

t0−→ s1
t1−→ s2

t2−→ . . . with, for i ∈ N, si ∈ S
and ti ∈ R>0 such that G(si, si+1) > 0 for all i. A finite path σ of length

l + 1 is a sequence s0
t0−→ s1

t1−→ . . . sl−1
tl−1−−−→ sl such that sl is absorbing2, and

G(si, si+1) > 0 for all i < l. For an infinite path σ, σ[i] = si denotes for i ∈ N
the (i+1)st state of path σ. The time spent in state si is denoted by δ(σ, i) = ti.
Moreover, with i the smallest index with t ≤

∑i
j=0 tj , let σ@t = σ[i] be the

state occupied at time t. For finite paths σ with length l + 1, σ[i] and δ(σ, i) are
defined in the way described above for i < l only and δ(σ, l) = σ[l] = ∞ and
δ@t = sl for t >

∑l−1
j=0 tj . PathJ (s) is the set of all finite and infinite paths in

the LJQN J that start in state s and PathJ includes all (finite and infinite)
paths of the LJQN J . �

As for finite CTMCs, a probability measure on paths can now be defined de-
pending on the starting state [3]. Starting from there, two different types of state
probabilities can be distinguished.

2 A state s is called absorbing if for all s′ the rate G(s, s′) = 0.
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The transient state probability is a time-dependent measure that considers
the LJQN at a given time instant t. The probability to be in state s′ at time
instant t, given initial state s, is denoted as VJ (s, s′, t) = Pr{σ ∈ PathJ (s) |
σ@0 = s ∧ σ@t = s′}. The transient probabilities are characterized by a lin-
ear system of differential equations of infinite size. Let V(t) be the matrix of
transient state probabilities at time t for all possible starting states s and for all
possible goal states s′ (we omit the superscript J for brevity here), then we have
V′(t) = V(t) · G, given V(0) = I. An efficient method to compute the transient
probabilities will be discussed in Section 5.4.

The steady-state probabilities to be in state s′, given initial state s, are
defined as πJ (s, s′) = limt→∞ VJ (s, s′, t), and indicate the probabilities to be
in some state s′ “in the long run”. If steady-state is reached, the above mentioned
derivatives V′(t) will approach zero. As we require stable queues the underlying
state space of the LJQN is ergodic and, the initial state does not influence the
steady-state probabilities (we therefore write π(s′) instead of π(s, s′) for brevity).
In the context of LJQNs the steady-state probabilities per state can be computed
using the product-form of Theorem 1.

4 The logic CSL

We use the logic CSL [3] to express properties for LJQNs. The syntax and
semantics are the same as for finite CTMCs, with the only difference that we
now interpret the formulas over states and paths in LJQNs. Let p ∈ [0, 1] be a
real number, 
� ∈ {≤, <,>,≥} a comparison operator, t1, t2 ∈ R+ real numbers
and AP a set of atomic propositions with ap ∈ AP . CSL state formulas Φ are
defined by

Φ ::= tt | ap | ¬Φ | Φ ∧ Φ | S��p(Φ) | P��p(φ),

where φ is a path formula constructed by

φ ::= X [t1,t2]Φ | Φ U [t1,t2]Ψ.

For a CSL state formula Φ and a LJQN J , the satisfaction set Sat(Φ) contains
all states of J that fulfill Φ and is computed with a recursive descent procedure
over the parse tree of Φ, as for CTL [7]. Satisfaction is stated in terms of a
satisfaction relation |=. The relation |= for states and CSL state formulas is
defined as:

s |= tt for all s ∈ S, s |= Φ ∧ Ψ iff s |= Φ and s |= Ψ,
s |= ap iff ap ∈ L(s), s |= S��p(Φ) iff πJ (s, Sat(Φ)) 
� p,
s |= ¬Φ iff s �|= Φ, s |= P��p(φ) iff ProbJ (s, φ) 
� p,

where πJ (s, Sat(Φ)) =
∑

s′∈Sat(Φ) π
J (s, s′), and ProbJ (s, φ) describes the prob-

ability measure of all paths σ ∈ Path(s) that satisfy φ when starting in state
s, that is, ProbJ (s, φ) = Pr{σ ∈ PathJ (s) | σ |= φ}. The steady-state operator
S��p(Φ) denotes that the steady-state probability for Φ-states meets the bound p.
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P��p(φ) asserts that the probability measure of the paths satisfying φ meets the
bound p. The next operator X [t1,t2]Φ states that a transition to a Φ-state is made
between t1 and t2. The until operator Φ U [t1,t2]Ψ asserts that Ψ is satisfied at
some time instant in between [t1, t2] and that at all preceding time instants Φ
holds. The relation |= for paths and CSL path formulas is defined as:

σ |= X [t1,t2]Φ iff σ[1] is defined and σ[1] |= Φ and t1 ≤ δ(σ, 0) ≤ t2,

σ |= Φ U [t1,t2]Ψ iff ∃t(t1 ≤ t ≤ t2) (σ@t |= Ψ ∧ (∀t′ ∈ [0, t)(σ@t′ |= Φ))).

From [15] we know that CSL formulas are not level independent on QBDs in
general, even if the atomic propositions are level independent. However, their
validity does not change arbitrarily between levels. In the following we will show
that for CSL formulas on LJQNs we can also find a state from which the validity
of the CSL formula does not change anymore.

Definition 6 (Independence of CSL formulas)
Let J be a LJQN of order n. A CSL state formula Φ is independent as of m
if and only if there exists a finite representative front R(m) = {r ∈ S | ∃i(ri =
mi) ∧ (∀j �= i(rj ≤ mj))} such that for all r ∈ R(m) and for all s ∈ Sr it holds
that r |= Φ ⇔ s |= Φ. �

The following propositions states, under the assumption of independent atomic
propositions as of m, that such a finite representative front R(m′) exists for any
CSL state formula. We will justify this proposition inductively over the structure
of the logic in Section 5.

Proposition 1
Let J be a LJQN of order n with independent atomic propositions as of m and
let Φ be a CSL state formula other than P��p(Φ U [t1,t2]Ψ). Then there exists
a finite representative front R(m′) such that the validity of Φ does not change
within each subset Sr for r ∈ R(m′) in J . For the until operator P��p(Φ UIΨ) we
assume that for no state s the probability measure is exactly equal to p. Under
this assumption, there exists a vector m′, such that P��p(Φ UIΨ) is independent
as of m′ in J . �

For a CSL formula that is independent as of m, the satisfaction set can be con-
sidered as the union of the boundary satisfaction set SatSb(Φ) = Sb ∩Sat(Φ) and
the representative satisfaction front SatR(m)(Φ) = R(m) ∩ Sat(Φ). The repre-
sentative state r ∈ R(m) then represent the remaining infinite state space.

5 Model Checking Algorithms

In this section we present model checking algorithms for CSL. In Section 5.1 we
explain how independence changes when applying logical operators. We explain
how to model check the steady-state operator in Section 5.2, the next operator
in 5.3 and the until operator in Section 5.4, including a discussion on how to
compute transient probabilities in LJQNs.
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5.1 Logical Operators

The model checking procedure for logical operators is the same as for finite
CTMCs. The only thing we need to take care of is how independence changes.
Negating a CSL formula does not change its independence. For a CSL formula
Φ that is independent as of m the negation ¬Φ is also independent as of m.
However, combining a CSL formula Φ that is independent as of mΦ with a CSL
formula Ψ that is independent as of mΨ with conjunction, changes independence
depending on the structure of Φ and Ψ . In any case, we can state that Φ ∧ Ψ
is independent as of m = max{mΦ,mΨ}, where we choose the maximum of mΦ

i

and mΨ
i in every dimension i. Note that this new independence vector m might

be too pessimistic, depending on the structure of Φ and Ψ .

5.2 Steady-State Operator

Theorem 1 states the steady-state probabilities in a JQN. A state s satisfies
S��p(Φ) if the sum of the steady-state probabilities of all Φ-states reachable
from s meets the bound p. Since a JQN is by definition ergodic, the steady-state
probabilities are independent of the starting state. It follows that either all states
satisfy a steady-state formula or none of the states does, which implies that a
steady-state formula is always independent as of m = (0, . . . , 0). We sum the
steady state probabilities of all states that satisfy Φ by summing over all states
s ∈ Sr for r |= Φ and over all states from Sb that satisfy Φ:

s |= S��p(Φ) ⇔
∑

s∈Sb,

s∈Sat(Φ)

p(s) +
∑

r∈R(m),
r∈Sat(Φ)

∑

s∈Sr

p(s) 
� p (2)

We obtain Sat(S��p(Φ)) = S, if the accumulated steady-state probability meets
the bound p otherwise Sat(S��p(Φ)) = ∅. In case the representative state r ∈
Sat(Φ), all states s ∈ Sr are in Sat(Φ). The accumulated steady-state probability
for all states s ∈ Sr is given by the following expression:

∑

s∈Sr

p(s) =
n∏

i=1

Ω(i), with Ω(i) =

{
(1 − ρi)ρri

i for ri �= mi,

ρmi

i for ri = mi.
(3)

In this expression we distinguish between the finite and the infinite dimensions
of a representative state r. In a finite dimension i we multiply with (1 − ρi)ρri

i

and in an infinite dimension i we multiply with ρmi

i .

Proof 1 (Accumulated steady-state probability)
Applying Jackson’s Theorem, the accumulated steady-state probability is given
by

∑

s∈Sr

p(s) =
∑

s∈Sr

(
n∏

i=1

(1 − ρi)ρsi

i

)

. (4)

Recall that

s ∈ Sr ⇔
{
si ≥ ri iff ri = mi,

si = ri otherwise.
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According to Jackson’s Theorem we can consider the dimensions independently
from each other. Hence, for every dimension i = 1, . . . , n, a state s ∈ Sr may
take all values j ≥ mi in case ri = mi and the value ri in case ri �= mi . Thus,

∑

s∈Sr

p(s) =
n∏

i=1

Ω(i), with Ω(i) =

{
(1 − ρi)ρri

i for ri �= mi,
∑∞

j=mi
(1 − ρi)ρ

j
i for ri = mi.

(5)

The infinite sum can be rewritten
∞∑

j=mi

(1 − ρi)ρ
j
i = (1 − ρi)

∞∑

j=mi

ρj
i = (1 − ρi)

ρmi

i

1 − ρi
= ρmi

i

and replaced to match (3):

Ω(i) =

{
(1 − ρi)ρri

i for ri �= mi,

ρmi

i for ri = mi.

�

Example 5
We want to check the CSL formula S��p((s1 ≥ 2) ∧ (s2 ≥ 3)). Recall from
Example 3 that all states r ∈ R((2, 3)) = {(0, 3), (1, 3), (2, 0), (2, 1), (2, 3)} satisfy
ap1 = (s1 ≥ 2) ∧ (s2 ≥ 3) and the boundary states do not satisfy ap1. Using
(2) and (3) and accumulating the probabilities for all representative states r ∈
R((2, 3)) we obtain

s |= S��p((s1 ≥ 2) ∧ (s2 ≥ 3)) ⇔
(
(1 − ρ1)ρ3

2 + (1 − ρ1)ρ1ρ
3
2 + ρ2

1(1 − ρ2) + ρ2
1(1 − ρ2)ρ2 + ρ2

1ρ
3
2

)

� p.

(6)

5.3 Time-Bounded Next Operator

The time-bounded next operator for LJQNs is computed just as for QBDs [15].
Recall that a state s satisfies P��p(X [t1,t2]Φ) if the one-step probability to reach
a state that fulfills Φ within a time t ∈ [t1, t2], outgoing from s meets the bound
p. The possibly infinite summation over all Φ-states can be truncated by only
considering those Φ-states that can be reached in one step from s. We define the
set of states that is reachable in one step from state s as Bs = {s′ ∈ S|G(s, s′) >
0}. Note that Bs is always finite. We then have:

s |= P��p(X [t1,t2]Φ) ⇔ Pr{σ ∈ Path(s) | σ |= X [t1,t2]Φ} 
� p

⇔

⎛

⎜
⎝
(
eG(s,s)·t1 − eG(s,s)·t2

)
·

∑

s′∈Sat(Φ)∩Bs
s �=s′

G(s, s′)
−G(s, s)

⎞

⎟
⎠ 
� p,

(7)

where eG(s,s)·t1 −eG(s,s)·t2 is the probability of residing in s for a time t ∈ [t1, t2],
and G(s,s′)

−G(s,s) specifies the probability to step from state s to state s′, provided a
step takes place.
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Now, let the inner formula Φ be independent as of m. Hence, the validity of
Φ might be different for all states s ∈ Sb. Therefore, the representative states
r ∈ R(m) may satisfy P��p(X [t1,t2]Φ), whereas the remaining states s ∈ Sr do
not necessarily satisfy P��p(X [t1,t2]Φ), since Sb is reachable in one step. How-
ever, from m + 1 (with 1 = (1, 1, . . . , 1, 1)) onwards, with one step only states
with equivalent Φ validity can be reached. Thus, in case the inner formula Φ is
independent as of m, P��p(X [t1,t2]Φ) is independent as of m + 1. For the con-
struction of the satisfaction set of such a formula we have to compute explicitly
the satisfying states in Sb. SatR(m+1)(P��p(X [t1,t2]Φ)) then provides the validity
of P��p(X [t1,t2]Φ) for the remaining infinite state space S \ Sb.

5.4 Until Operator for I = [0, t]

For model checking P��p(Φ UIΨ) we adopt the general approach for finite CTMCs
[3] and QBDs [15]. Recall that the CSL path formula ϕ = Φ UIΨ is valid if a
Ψ -state is reached on a path during the time interval [t1, t2] via only Φ-states.
We restrict ourselves to intervals of the form I = [0, t]. The future behavior of
the LJQN is then irrelevant for the validity of ϕ, as soon as a Ψ -state is reached.
Thus all Ψ -states can be made absorbing without affecting the satisfaction set
of formula ϕ. On the other hand, as soon as a (¬Φ∧¬Ψ)-state is reached, ϕ will
be invalid, regardless of the future evolution.

As a result of the above consideration, we may switch from checking the LJQN
J to checking a new, derived, LJQN, denoted as J [Ψ ][¬Φ ∧ ¬Ψ ] = J [¬Φ ∨ Ψ ],
where all states in the underlying Markov chain that satisfy the formula in square
brackets are made absorbing. The generator function G̃(s, s′) for J [¬Φ ∨ Ψ ] is
then defined as

G̃(s, s′) =

{
G(s, s′), s � ¬Φ ∨ Ψ,

0, otherwise,
(8)

for s �= s′. G̃(s, s) is adapted accordingly. Model checking a formula involv-
ing the until operator then reduces to calculating the transient probabilities
πJ [¬Φ∨Ψ ](s, s′, t) for all Ψ -states s′. Exploiting the structure of LJQNs yields

s |= P��p(Φ U [0,t]Ψ) ⇔ ProbJ (s, Φ U [0,t]Ψ) 
� p

⇔

⎛

⎝
∑

s′∈SatSb(Ψ)

πJ [¬Φ∨Ψ ](s, s′, t) +
∞∑

i=0

∑

s′∈SatR(m+i)(Ψ)

πJ [¬Φ∨Ψ ](s, s′, t)

⎞

⎠ 
� p.

(9)

The transient probabilities are accumulated for the Ψ states in Sb and for
the Ψ states in the representative front R(m + i) for i ∈ N. Note that these
representative fronts are situated in layers around Sb and cover the infinite state
space S \ Sb for i ∈ N.

In [15] we have shown how transient probabilities can be computed for QBDs
using uniformization [9] by considering only a finite fraction of the infinite state
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space. As standard property of uniformization, the finite time bound t is trans-
formed to a finite number of steps l [9]. To do the same for LJQNs, first the
probability function P(s, s′) (or for P̃) for the embedded DTMC is defined as
P(s, s′) = G(s,s′)

ν for s �= s′ and P(s, s) = G(s,s)
ν + 1. The uniformization con-

stant ν must be at least equal to the maximum of the negative rates G(s, s); for
LJQNs, the value ν = λ +

∑n
i=1 μi suffices. For an allowed maximal numerical

error ε, uniformization requires a finite number l of steps (state changes) to be
taken into account in order to compute the transient probabilities; l can be com-
puted a priori, given ε, ν and t. Summarizing, we have obtained the following
result:

If ¬Φ ∨ Ψ is independent as of m then using uniformization with l steps, we
obtain the same transient probabilities for states s ∈ Sr, with r ∈ R(m+l), since
from all states s ∈ Sr, only corresponding states can be reached when taking l
steps in the LJQN.

q
u
eu

e
2

queue 1

m + l

m

Example 6
The figure to the left shows the finite fraction of
the infinite state space that is needed to com-
pute the validity of P��p(Φ UIΨ). Starting from
every representative state r ∈ R(m + l), still
l steps can be undertaken in every direction
without reaching the boundary set Sb. The to-
tal amount of states we have to consider equals
(m1 + l) · (m2 + l), from which m1 +m2 + 2l− 1
are representative states.

For all states s ∈ S, we add the computed transient probabilities to reach any
Ψ -state and check whether the accumulated probability meets the bound p. We
define the accumulated probability for up to l steps in the uniformized Markov
chain as:

π̃(l) =
∑

s′∈SatSb(Ψ)

πJ [¬Φ∨Ψ ](s, s′, t) +
l−1∑

i=0

∑

s′∈SatR(m+i)(Ψ)

πJ [¬Φ∨Ψ ](s, s′, t) (10)

Note that the above expression, for l → ∞, equals the exact probability that
is to be compared with p in (9). Once the accumulated probabilities are calcu-
lated, similar inequalities as presented in [15], can be used to decide the validity
of P��p(Φ UIΨ) on LJQNs. The accumulated probability is always an underesti-
mation of the actual probability. The value of the maximum error ε accumulated
for all states and depending on the number of steps l decreases as l increases.
Thus, we obtain the following implications:

(a) π̃(l)(s, Sat(Ψ), t) > p ⇒ π(s, Sat(Ψ), t) > p
(b) π̃(l)(s, Sat(Ψ), t) < p− ε ⇒ π(s, Sat(Ψ), t) < p

If one of these inequalities (a) or (b) holds, we can decide that the bound <
p or > p is met. For the bounds ≤ p and ≥ p, similar implications can be
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given. If π̃(s, Sat(Ψ), t) ∈ [p, p − ε], we cannot decide whether π(s, Sat(Ψ), t)
meets the bound p. In this case, increasing l resolves the problem. However, note
that in case p = π(s, Sat(ψ), t) we cannot decide and iteration does not stop.
As already mentioned, for all representative states r ∈ R(m + l) the transient
probabilities for all s ∈ Sr computed with l steps will be the same. Thus, if we can
decide whether the bound p is met (case (a) or (b) above), we can be sure that
P��p(Φ U [0,t]Ψ) is independent as of m+l. In that case, we check for all states s ≤
m+ l whether the accumulated transient probability of reaching a Ψ -state meets
the bound p. The states s ∈ Sb that satisfy P��p(Φ U [0,t]Ψ) form the boundary
satisfaction set SatSb and the representative states that satisfy P��p(Φ U [0,t]Ψ)
form the representative satisfaction set SatR(m+l)(P��p(Φ U [0,t]Ψ)).

For model checking the until operator we need to consider
∏n

i=1(mi + 2l)
states in total, depending on the number of steps l considered, the dimension
n of the LJQN, and the independence vector m of the inner formula. Hence,∏n

i=1(mi + 1) −
∏n

i=1 mi representative states suffice to represent the infinite
states space S \ Sb.

In [16] we presented a method to efficiently compute the transient probabil-
ities in QBDs and check the until operator with a so-called dynamic stopping
criterion. This method can also be applied to LJQNs. When iteratively comput-
ing the approximation π̃(l)(s, Sat(Ψ), t) and regularly checking whether either
(a) or (b) holds for all starting states, the number of considered steps with
uniformization is minimized. It is expected that such an approach will lead to
similar efficiency improvements.

6 Conclusions

In this paper we presented model checking algorithms for checking CSL prop-
erties for a very general class of queueing networks, namely for labeled Jackson
queueing networks. The underlying state space of such LJQNs is a highly struc-
tured CTMC that is, of infinite size in as many dimensions as there are queues.
We introduce a new notion of property independence on LJQNs that is needed
for model checking. Steady-state probabilities are computed in (stable) LJQNs
with well-known product-form results and transient probabilities are computed
with an adaption of our uniformization-based approach. We provided a running
example throughout the paper to illustrate our approach.

Note that the model checking procedure for LJQN as introduced in this paper,
and the model checking procedure for QBDs [15], in their simplest setting, i.e.,
the case that the model is a simple M|M|1 queue (which is both a QBD and a
LJQN), are in essence the same.

At various points, the presented algorithms can be made more efficient. For
instance, applying a dynamic stopping criterion (as in [16]) when model checking
the until operator in LJQNs might considerably decrease the number of states
that has to be taken into account. To do so, we need to develop efficient data
structures to store the step-wise computed probabilities.
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The complexity for checking the steady-state operator is linear in the number
of queues and the complexity for checking the until operator is given by matrix
vector multiplications of matrices that are exponential in the number of queues.

We restricted ourselves to atomic propositions of the form
∧n

i=1(si
<
≥mi) for

mi ∈ N; this facilitates the determination of the independence vector m. For
model checking other properties like the balance of queues or a general threshold,
the notion of property independence needs to be (and can be) generalized.

Finally, we developed the model checking algorithm for the until operator with
time-bound in [0, t], however, other time intervals can be handled similarly as for
finite state CTMCs or QBDs [3,17]. In further work, we will introduce rewards
to allow for CSRL model checking. Furthermore, we also consider addressing
networks of QBDs. However, to the best of our knowledge, there is no method
available to compute steady-state probabilities on such multi-dimensional QBDs,
hence, we will have to do without the steady-state operator.
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Abstract. A model automaton is simulated by a specification automa-
ton if every externally observable transition by the model can also be
matched by the specification. In this work, we establish a new formula-
tion of simulation from a model TA to a specification TA. The new formu-
lation allows us to develop a simulation-checking algorithm, in greatest
fixpoint style, with zones. We also present a technique to construct an
under-approximation of the set of state-pairs to be removed in a fixpoint
iteration. The technique does not sacrifice the exactness of our algorithm
and could enhance the performance of simulation-checking. Finally, we
report the performance of an implementation of our algorithms.

Keywords: simulation, implementation, refinement, equivalence, bisim-
ulation, bisimilarity, dense-time, real-time, embedded, model-checking,
timed automata, verification, events.

1 Introduction

In the last two decades, the technology of dense-time system model-checking [1]
has been well-received by the academia, realized with many tools [7,19,15], and
used for the verification of several industrial projects [5]. With model-checking,
we represent the model as an automaton and the specification as a temporal logic
formula and want to check whether the model satisfies the specification. How-
ever, in many applications, engineers may instead envision their specifications
as automata (state-transition systems). There are two approaches for checking
model automata against specification ones. The first is the language inclusion
problem which checks if all runs of a model are also those of the specification.
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It was proved in [3] that when both the model and specification are represented
as timed automata (TA) [3], the language inclusion problem is undecidable. The
second is called the simulation-checking problem that checks if every externally
observable transition that can be made by the model at an instant can also
be matched by the specification at the same instant. It was proved that the
simulation-checking problem of TAs is in EXPTIME [14]. However, to our knowl-
edge, so far, there has not been an efficient tool that algorithmically checks the
simulation between two TAs. In contrast, the model-checking problem of TAs
can be efficiently solved with zones1 [7, 11, 15, 19]. In this work, we present a
new formulation of simulation between two TAs which enables us to design a
simulation-checking algorithm with zones.

We denote the model automaton as A1 and the specification as A2. Given a
state μ of A1, a state ν of A2, and a δ ∈ R≥0 (the set of non-negative reals), if A1

can make a transition at δ time units from μ and A2 cannot match the transition
at δ time units from ν, then δ is called a refuting time from μ to ν. Intuitively,
a simulation is a relation between a state μ of A1 and a state ν of A2 such that
there is no refuting time from μ to ν. A simulation is constructed by starting
from an initial image of the simulation and using the greatest fixpoint algorithm
to iteratively remove state-pairs with a refuting time from the image. After we
can remove no more state-pairs, the final image is a simulation. We let C1

2 be the
biggest timing constant used in either A1 or A2. Our observation is that in the
traditional formulation of simulation between TAs [4, 12, 14], in one iteration,
we allow for the removal of state-pairs with any refuting time. But zones do not
support the precise recording of any state-pair with unbounded refuting times.
With our new formulation, in each iteration, a state-pair is removed if there is
a refuting time in [0, C1

2 ] for the pair. The removal of state-pairs with the tra-
ditional formulation can then be achieved with removals in successive iterations
with our new formulation. Based this new formulation, we have developed our
algorithm I for the symbolic simulation-checking with zones.

Algorithm I may suffer from low performance since we may need many great-
est fixpoint iterations to remove some state-pairs with only large refuting times
> C1

2 . We thus present algorithm II which uses an under-approximation tech-
nique to conservatively remove state-pairs with refuting times > C1

2 in each
iteration. The good thing of algorithm II is that it does not sacrifise the ex-
actness of the greatest fixpoint construction and sometimes may run faster. We
have implemented our algorithms with TCTL model-checker RED, version 7,
and report their performance against several benchmarks.

We have the following presentation plan. Section 2 is for related work. Sec-
tion 3 presents the definition of TAs. Section 4 presents the traditional formula-
tion of simulation between two TAs. Section 5 establishes our new formulation for
simulation between TAs and presents algorithm I. Section 6 presents algorithm
II. Section 7 reports our implementation and experiment.

1 A zone is a conjunction of atomic propositions and constraints like either x − y ≤ c
or x − y < c where x, y are either zero or clocks and c is an integer constant.
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2 Related Work

In the literature, “is simulated by,” “implements,” and “refines” are used in-
terchangeably and means the same thing. “Equivalence” means “bisimulation.”
Cerans showed that the bisimulation-checking problem of timed processes is de-
cidable [8]. TaşIran et al showed that the simulation-checking problem of TAs is
in EXPTIME [14]. They also proposed an algorithm to check whether a location
homomorphism between a model TA and a specification TA preserves timed be-
haviors. The ideas were implemented in Timed COSPAN. However, there is no
general strategy to efficiently construct such homomorphisms.

Henzinger et al presented an algorithm that computes the time-abstract sim-
ulation that does not preserve timed properties [10].

Nakata also discussed how to do symbolic bisimulation checking with integer-
time labeled transition systems [13]. Beyer has implemented a refinement-checking
algorithm for TAs with integer-time semantics [6].

Lin and Wang presented a sound proof system for the equivalence of TAs with
dense-time semantics [12]. Usually, the proofs may need human guidance.

Cleaveland and Steffen proposed to convert the equivalence-checking problem
to the model-checking problem [9]. Aceto et al discussed how to construct such
a modal logic formula that completely characterizes a TA [4]. However, the
formula they constructed is not for TAs with timed invariance constraints. In
comparison, our algorithms can handle TAs with timed invariance constraints.
Moreover, their characteristic formulas fall in the realm of linear-hybrid automata
(LHA). In general, the model-checking problem of LHAs is undecidable [2] and is
usually handled with high-complexity manipulation of convex polyhedra [2, 16].

3 Timed Automata with Events

Let N be the set of non-negative integers and R≥0 the set of non-negative reals.
Also ‘iff’ means “if and only if.” Given a set P of atomic propositions and a set
X of clocks, we use B(P,X) as the set of all Boolean combinations of atoms of
the forms p and x ∼ c, where p ∈ P , x ∈ X ∪ {0}, ‘∼’ is one of ≤, <,=, >,≥,
and c is an integer constant. An element in B(P,X) is called a state predicate.

A valuation of a set Y (domain) is a mapping from Y to a codomain. A partial
valuation may be undefined for some elements in the domain. If a valuation ν
is undefined for y, we denote ν(y) = �. When it is not said specifically, a
valuation means a total valuation that assigns a value to every element in the
domain. Given two (partial) valuations ν and ν′, νν′ is the composition of ν
and ν′ defined in the following way: for all y, if ν′(y) is defined, νν′(y) = ν′(y);
otherwise νν′(y) = ν(y). Given a value v in the domain of a variable x, [x ← v]
denotes the partial mapping that maps x to v and everything else to �.

Definition 1. Timed automaton with events (TA) A TA A is a tuple
〈Σ,X,G,L, I,H,E, ε, τ, π〉 with the following restrictions. Σ is a finite set of
event names. X is a finite set of clocks. G is a finite set of global atomic proposi-
tions. G and Σ represent the sets of external observables of a TA. L is a finite set
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x1 > 3

p := 0; x1 := 0;

p := 0; x1 := 0;
x1 > 3

receive

send

p := 1; x1 := 0;

x2 > 3

p := 0; x2 := 0;

p := 0; x2 := 0; send
x2 > 3

receive

send

p := 1; x2 := 0;

(a) A1 with H1 :

�
(p = 0 ∧ x1 < 5)

∨(p = 1 ∧ x1 < 10)

�
(b) A2 with H2 :

�
(p = 0 ∧ x2 < 5)

∨(p = 1 ∧ x2 < 5)

�

Fig. 1. Two example TAs

of local atomic propositions such that G ∩ L = ∅. I ∈ B(G ∪ L,X) is the initial
condition. H ∈ B(G∪L,X) is the invariance condition. E is a finite set of transi-
tion rules. ε : E �→ 2Σ labels each rule with a set of events. τ : E �→ B(G∪L,X)
defines the triggering condition of each rule execution. For each e ∈ E, π(e) is
a partial valuation from X to {0} and from G ∪ L to {true, false} that defines
the assignments to clocks and proposition variables of each rule execution. If
π(e)(y) is undefined, it means variable y stays unchanged in the transition. For
convenience, we assume that for every TA, there is a null transition ⊥ such that
ε(⊥) = ∅, τ(⊥) = true, and π(⊥) is undefined on everything. 	

Example 1. We have the transition diagrams of two example TAs in figure 1.
They share events send and receive and global proposition p. They respectively
have local clocks x1 and x2. A1 has two transitions while A2 has four. We stack
the events, triggering conditions, and the assignments made at each transition.
The initial conditions are labeled by the arcs without a source. 	

Definition 2. States of a TA A state of a TA A = 〈Σ,X,G,L, I,H,E, ε, τ, π〉
is a total valuation from X to R≥0 and G∪L to {true, false}. Let VA denote the
set of states of A. For any state ν and δ ∈ R≥0, ν + δ is a valuation identical to
ν except that for every x ∈ X , (ν + δ)(x) = ν(x) + δ. 	

A valuation ν satisfies a state-predicate η, in symbols ν |= η, if the state-
predicate evaluates to true when all its variables are interpreted according to
ν. Given two states ν, ν′ and a transition e of a TA A, we say A transits with e
from ν to ν′, in symbols ν

e−→ ν′, if ν |= τ(e), νπ(e) = ν′, and ν′ |= H .

Definition 3. Runs Given a TA A = 〈Σ,X,G,L, I,H,E, ε, τ, π〉, a run of A is
an infinite sequence of state-time pairs (ν0, t0)(ν1, t1) . . . (νk, tk) . . . . . . with the
following three restrictions. (1) t0t1 . . . tk . . . . . . is a monotonically non-decreasing
real-number sequence. (2) For all k ≥ 0, for all δ ∈ [0, tk+1 − tk], νk + δ |= H .
(3) For all k ≥ 0, there is an e ∈ E such that νk + tk+1 − tk

e−→ νk+1.
A run segment is a finite prefix of a run. Given a transition set E′ ⊆ E, an E′-

segment is a run segment (ν0, t0)(ν1, t1) . . . (νn, tn) such that for each k ∈ [0, n),
there is an e ∈ E′ with νk + tk+1 − tk

e−→ νk+1. 	
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4 Simulation

Suppose Ai = 〈Σ,Xi, G, Li, Ii, Hi, Ei, εi, τi, πi〉, 1 ≤ i ≤ 2. Two transitions
e1 ∈ E1 and e2 ∈ E2 are compatible if ε1(e1) = ε2(e2) and ∀p ∈ G(π1(p) = π2(p)).
Given an e1 ∈ E1, we let E

(e1)
2 = {e2 | e2 ∈ E2; e2 is compatible with e1.}.

An E
(⊥)
2 -segment (ν0, t0) . . . (νk, tk) of A2 is called a pre-matching segment for

μ, e1, δ, and binary relation Q ⊆ VA1 × VA2 iff tk − t0 = δ, (μ + tk − t0, ν) ∈ Q,
and for every h ∈ [0, k) and t′ ∈ [0, th+1 − th], (μ + th − t0 + t′, νh + t′) ∈ Q.

Definition 4. Simulation Assume that Ai = 〈Σ,Xi, G, Li, Ii, Hi, Ei, εi, τi, πi〉,
1 ≤ i ≤ 2, L1 ∩ L2 = ∅, and X1 ∩ X2 = ∅. A simulation from A1 to A2 is a
binary relation Q ⊆ VA1 × VA2 with the following two restrictions on all its
element (μ0, ν0). (1) μ0 and ν0 agree on valuation of variables in G. (2) For
every δ ∈ R≥0 and transition e1 of E1, if μ0 + δ |= τ1(e1), (μ0 + δ)π1(e1) |= H1,
and ∀δ̂ ∈ [0, δ](μ0 + δ̂ |= H1) are all true, then there are an e2 ∈ E

(e1)
2 and

a pre-matching segment (ν0, t0) . . . (νn, tn) of A2, for μ, e1, δ, and Q such that
νn |= τ2(e2), νnπ2(e2) |= H2, and ((μ0 + tn − t0)π1(e1), νnπ2(e2)) ∈ Q.

Given a simulation Q from A1 to A2, we denote A1 /Q A2 if for every state
μ |= I1, there is a ν |= I2 with (μ, ν) ∈ Q. If ∃Q(A1 /Q A2), we say A1 is
simulated by A2, in symbols A1 / A2. 	
Note that we require a pair (μ, ν) in a simulation must agree on the valuations of
variables in G. Thus for all g ∈ G, μ(g) = ν(g) = μν(g). With this observation,
from now on, we represent (μ, ν) as valuation μν. With this representation, we
can conveniently reason with constraints on pairs in a simulation.

There can be many simulations between two TAs. In general, we are interested
at the maximal simulation2 which properly contains other simulations. From now
on, we assume that the simulations in discussion are always maximal.

Example 2. In example 1, A1 is not simulated by A2 since A1 can make a tran-
sition after 5 time units in state q = 1 while A2 cannot. 	
In the following, we discuss the traditional formulation of simulation between
TAs [14]. Given an e1 ∈ E1 and a μ ∈ VA1 , we let playδ

e1
(μ) denote the condition

that A1 can do transition e1 at time δ from state μ. Formally speaking,

playδ
e1

(μ) def= μ + δ |= τ1(e1) ∧ (μ + δ)π1(e1) |= H1 ∧ ¬∃0 ≤ δ′ ≤ δ(μ + δ′ |= ¬H1)

Given a μ ∈ VA1 , a ν, a ν′ ∈ VA2 , a δ ∈ R≥0, and a Q ⊆ VA1 × VA2 , we
let pre-matchδ

2(μ, ν, ν′, Q) denote the condition that there exists a pre-matching
segment (ν0, t0) . . . (νk, tk) such that ν0 = ν, νk = ν′, and tk − t0 = δ. Given an
e1 ∈ E1, a state-pair μν ∈ VA1 ×VA2 , and a state-pair subset Q ⊆ VA1 ×VA2 , we
let matchδ

e1
(μ, ν,Q) denote the condition that A2 can match e1 at time δ from

state ν with respect to Q. Note that matchδ
e1

(μ, ν,Q) is a predicate on state-pairs
and values of δ. Formally speaking,
2 We assume that for every state-pair μν in the maximal simulation, μ |= H1 and

ν |= H2.
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matchδ
e1(μ, ν, Q)

def
= ∃ν′ ∈ VA2

�
� pre-matchδ

2(μ, ν, ν′, Q)

∧∃e2 ∈ E
(e1)
2

�
ν′ |= τ2(e2) ∧ ν′π2(e2) |= H2

∧((μ + δ)π1(e1))(ν
′π2(e2)) ∈ Q

�
�
�

Note that if playδ
e1

(μ) ∧ ¬matchδ
e1

(μ, ν,Q) is true, then δ is a refuting time from
μ to ν in Q. Given an interval D with lower-bound and upper-bound in N, we let
not simD

e1
(μ, ν,Q) def= ∃δ ∈ D(playδ

e1
(μ) ∧ ¬matchδ

e1
(μ, ν,Q)). A simulation can

be concisely reformulated with the following lemma.

Lemma 1. Assume that Ai = 〈Σ,Xi, G, Li, Ii, Hi, Ei, εi, τi, πi〉, 1 ≤ i ≤ 2,
L1 ∩ L2 = ∅, and X1 ∩ X2 = ∅. Q is a simulation from A1 to A2 iff Q = {μν |
μ |= H1, ν |= H2,¬∃e1 ∈ E1(not simR

≥0

e1
(μ, ν,Q))}. 	

Lemma 1 implies that we can implement a simulation-checking procedure in the
traditional greatest fixpoint style. That is, we first let Q := VA1 × VA2 ; and
then iteratively remove set {μν | ∃e1 ∈ E1(not simR

≥0

e1
(μ, ν,Q))} from Q until a

fixpoint is reached.

5 Algorithm I for Simulation Checking

We plan to present the section as follows. Subsection 5.1 reformulates simula-
tion between TAs. Subsection 5.2 discusses how to use zones to characterize
state-pairs and δ values. Subsection 5.3 explains the basic procedures that we
need. Subsections 5.4 and 5.5 present predicates respectively for playδ

e1
(μ) and

matchδ
e1

(μ, ν,Q) with δ ∈ [0, C1
2 ]. Subsection 5.6 constructs a predicate for our

new formulation and presents our first algorithm for simulation-checking.

5.1 A New Formulation for Simulation

Suppose we are given an e1 ∈ E1, a δ ∈ R≥0, a run ρ = (ν0, t0) . . . (νk, tk) . . . of
A2, a k ≥ 0, and a t ∈ [0, tk+1 − tk]. We say tk − t0 + t is a disrupting time in ρ
for μ, e1, δ, and Q iff tk − t0 + t < δ and (μ + tk + t − t0)(νk + t) �∈ Q. A run
with a disrupting time for μ, e1, δ, and Q is called a disrupted run for μ, e1, δ,
and Q. We define minTδ

e1
(μ, ρ,Q) as the smallest disrupting time in ρ for μ, e1,

δ, and Q. We let maxminTδ
e1

(μ, ν,Q) be defined as follows.

maxminTδ
e1

(μ, ν,Q) = max
{

minTδ
e1

(μ, ρ,Q)
∣
∣
∣
∣
ρ is a disrupted run from ν
of A2 for μ, e1, δ, and Q

}

.

If there is neither a disrupting time < δ in ρ nor a state at δ time units from
the starting state of ρ to execute a transition matching e1, then we call ρ a
futile run for μ, e1, δ, and Q. It is easy to see that if given a μν ∈ Q such that
playδ

e1
(μ)∧¬matchδ

e1
(μ, ν,Q) is true, then we know all runs of A2 starting from ν

must be either disrupted or futile for μ, e1, δ, and Q. Here we have the following
central lemma of the work.

Lemma 2. [Central Lemma] Suppose we are given a Q ⊆ VA1 ×VA2 , an e1 ∈
E1, and a δ ∈ R≥0. If there is a μν ∈ Q such that playδ

e1
(μ)∧¬matchδ

e1
(μ, ν,Q)
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is true, then for each t ∈ [0, δ], there is a μ̄ν̄ ∈ Q such that either playt
e1

(μ̄) ∧
¬matcht

e1
(μ̄, ν̄, Q) or playt

⊥(μ̄) ∧ ¬matcht
⊥(μ̄, ν̄, Q) is true.

Proof : There are two cases to analyze. In the first case, we assume that there
is a futile run ρ = (ν0, t0) . . . (νk, tk) . . . for μ, e1, δ, and Q. Then there is a k ≥ 0
and a t′ ∈ [0, tk+1 − tk] such that δ − (tk + t′ − t0) = t in ρ. Since all runs from
ν are either disrupted or futile for μ, e1, δ, and Q, we can prove that all runs
from νk + t′ are also either disrupted or futile for μ, e1, t, and Q. Thus μ+ δ− t
is a candidate for μ̄ while νk + t′ is for ν̄. Thus this case is proven.

In the second case, we assume that all runs of A2 from ν are disrupted for
μ, e1, δ, and Q. If t > maxminTδ

e1
(μ, ν,Q), according to the definition of sim-

ulation, playt
⊥(μ) ∧ ¬matcht

⊥(μ, ν,Q) is also true. Then the lemma is proven
with μ = μ̄ and ν = ν̄. If t ≤ minTδ

e1
(μ, ρ,Q) = maxminTδ

e1
(μ, ν,Q), we

let ρ = (ν0, t0) . . . (νk, tk) . . . of A2 be a disrupted run for μ, e1, δ, and Q
such that ν0 = ν and minTδ

e1
(μ, ρ,Q) = maxminTδ

e1
(μ, ν,Q). Let νk + t′ with

t′ ∈ [0, tk+1 − tk] be the state in ρ that causes the disrupting. Since time
is continuous, we can find an h ∈ [0, k] and a t′′ ∈ [0, th+1 − th] such that
th − t0 + t′′ + t ≥ tk − t0 + t′. Then with an argument similar to the one in the
first case, we can prove the case with μ̄ = μ + th − t0 + t′′ and ν̄ = νh + t′′. 	
Lemma 2 implies the following lemma for a new formulation of simulation.

Lemma 3. Suppose that Ai = 〈Σ,Xi, G, Li, Ii, Hi, Ei, εi, τi, πi〉, 1 ≤ i ≤ 2,
L1 ∩ L2 = ∅, and X1 ∩ X2 = ∅. Q is a simulation from A1 to A2 iff Q = {μν |
μ |= H1, ν |= H2,¬∃e1 ∈ E1∃δ ∈ [0, C1

2 ](playδ
e1

(μ) ∧ ¬matchδ
e1

(μ, ν,Q))}. 	

5.2 Representation with Zones

A zone-predicate ζ of a set P of atomic propositions, a set X of clocks, and a
c ∈ N is constructed inductively with the following rules.

ζ ::= p | x − y ∼ d | ¬ζ1 | ζ1 ∧ ζ2

Here p ∈ P , x, y ∈ X ∪ {0}, ‘∼’ ∈ {≤, <,=, �=, >,≥}, and d is an integer in
[−c, c]. Let Zc(P,X) be the set of zone-predicates that can be constructed of P ,
X , and c. A zone-predicate is conjunctive if the only Boolean operator it can have
is ∧. A state-space that can be characterized with a conjunctive zone-predicate
is called a zone. A region of P , X , and c is a smallest zone that cannot properly
contain other non-empty zones characterizable in Zc(P,X). A valuation satisfies
a zone-predicate if the zone-predicate is evaluated true when all its variables are
interpreted according to the valuation.

Given two state-pairs μν and μ′ν′ in VA1 × VA2 , we denote μν ≡ μ′ν′ iff μν
and μ′ν′ are in the same region in ZC1

2
(G ∪ L1 ∪ L2, X1 ∪ X2). Here we restate

theorem 10 about simulation-checking with zones in [14].

Theorem 1. Given the maximal simulation Q from A1 to A2 and two state-
pairs μν ≡ μ′ν′ in VA1 × VA2 , μν ∈ Q iff μ′ν′ ∈ Q. 	
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Lemma 3 and theorem 1 motivate us to represent not sim[0,C1
2 ]

e1 (μ, ν,Q)} with
zones. In the formulation of not simD

e1
(μ, ν,Q), we use a variable δ to measure

the value of refuting times. One difficulty to use zones to represent this variable
δ is that its values decrement with time progress while the values of clocks
increment. The increment rates of clocks are uniform and exactly the same as
the decrement rate of δ. To overcome this difficulty, we introduce an auxiliary
clock ‘Ωδ’ for the description of constraints on δ. The value of clock Ωδ always
equals C1

2 − δ. Its values are in (−∞, C1
2 ] with the same increment rate as other

clocks. A valuation (state-pair or state) with Ωδ = C1
2 can be at the moment

that a transition is made by A1 and a matching transition from A2 is expected.
In this section, we only consider those valuations γ with γ(Ωδ) ∈ [0, C1

2 ]. Clock
Ωδ is neither used nor initialized in A1 and A2. Given two valuations μ and
ν, if μ(Ωδ) = ν(Ωδ), then we know they have the same timing distance to the
moment when A1 makes transition e1 and A2 is expected to match.

Example 3. Given G = {a}, X1 = {x1}, L1 = {b1}, X2 = {x2}, L2 = {b2}, we
may have the following zone-predicate for a fixpoint image.

Q ≡ (a ∧ b1 ∧ ¬b2 ∧ 0 ≤ x1 ∧ 3 < x2 ≤ 5 ∧ x2 − x1 ≤ 5 ∧Ωδ ≤ 5)
∨ (¬a ∧ 2 ≤ x1 < 9 ∧ 1 < x2 ∧ x1 − x2 < 8 ∧ −Ωδ ≤ −1 ∧ Ωδ ≤ 2) 	

5.3 Basic Procedures

The existential quantification of a formula η on a variable y is ∃y(η). For zone-
predicates, efficient implementation has been discussed in [11, 15, 16]. We use
EXQ(η,X ′) to denote an implementation of the existential quantification that
eliminates clock variables in X ′ from η.

Example 4. For the Q in example 3,

∃a(Q) ≡ (b1 ∧ ¬b2 ∧ 0 ≤ x1 ∧ 3 < x2 ≤ 5 ∧ x2 − x1 ≤ 5)
∨ (2 ≤ x1 < 9 ∧ 1 < x2 ∧ x1 − x2 < 8)

and ∃x1(Q) ≡ (a ∧ b1 ∧ ¬b2 ∧ 3 < x2 ≤ 5) ∨ (¬a ∧ 1 < x2 < 6). 	
Given two zone-predicates ζ, ζ′, Tbck(ζ′, ζ) computes the precondition of ζ
through a time-progress through states that satisfy ζ′. According to [11], we
have Tbck(ζ1, ζ2)

def= ∃t (t ≥ 0 ∧ ζ2 + t ∧ ¬∃t′((¬ζ1) + t′ ∧ 0 ≤ t′ ∧ t′ ≤ t)).
Given a partial assignment Π of G ∪ L1 ∪ L2 ∪ X1 ∪ X2, we let ηΠ be the

precondition to η before the assignment. If Π is defined on y1, . . . , yn, then
ηΠ

def= (
∧

x is a clock defined in Π. x ≥ 0)∧∃y1 . . .∃yn(η∧
∧

1≤i≤n yi = Π(yi)). Given

an e1 ∈ E1 and an e2 ∈ E
(e1)
2 , the weakest precondition to η through discrete

transition pair (e1, e2) can be represented as

Xbck(e1,e2)(η) def= τ1(e1) ∧ τ2(e2) ∧ (η(π1(e1)π2(e2))).



360 F. Wang

5.4 Construction of Play[0,C1
2 ]

e1
with Zones

We let Play[0,C1
2 ]

e1

def= −Ωδ ≤ 0∧Ωδ ≤ C1
2 ∧Tbck

(
H1, Xbck(e1,⊥)(H1) ∧ Ωδ = C1

2

)
.

Here Tbck
(
H1, Xbck(e1,⊥)(H1) ∧Ωδ = C1

2

)
is the standard representation of the

weakest timed precondition with transition (e1,⊥) [11,15]. The following lemma
shows the correctness of Play[0,C1

2 ]
e1 .

Lemma 4. Given a state μ ∈ VA1 and a real number t ∈ [0, C1
2 ], playt

e1
(μ) iff

μ[Ωδ ← C1
2 − t] |= Play

[0,C1
2 ]

e1 . 	

5.5 Construction of Match[0,C1
2 ]

e1
(Q) with Zones

With procedures Xbck(e1,e2)(), Tbck(), and symbolic characterizations for ν′

and Q, a symbolic characterization of pre-matcht
2(μ, ν, ν

′, Q), denoted Rbck
[0,C1

2 ]

E
(⊥)
2

(η1, η2), can be constructed with backward reachability analysis [11, 15] within
C1

2 time units. Again, we use clock Ωδ to measure the length of the reachability
run-segments. Computationally, Rbck[0,C1

2 ]

E
(⊥)
2

(η1, η2) is the following least fixpoint:

lfpY.
(

Ωδ = C1
2 ∧ η2 ∨ Tbck

((
Ωδ ≤ C1

2

∧0 ≤ Ωδ ∧ η1

)

,
∨

e2∈E
(⊥)
2

Xbck(⊥,e2)(Y )
))

.

We have the following lemma.

Lemma 5. Given a zone-predicate Q for a Q ⊆ VA1 × VA2 , a μν ∈ Q, a zone-
predicate fν′ for states ν′ ∈ VA2 , and a t ∈ [0, C1

2 ], pre-matcht
2(μ, ν, ν

′, Q) is true
iff μν[Ωδ ← C1

2 − t] |= Rbck
[0,C1

2 ]

E
(⊥)
2

(Q, fν′). 	

Specifically, the quantified ν′ is for the precondition of all transitions in E2

that match e1. Given a zone-predicate Q, the zone-predicate for ν′, i.e. fν′ , is∨
e2∈E

(e1)
2

Xbck(e1,e2)(Q). Note that to make sure that A1 and A2 observe the
same behavior with e1 and e2 respectively, we construct the precondition of
both e1 and e2 out of Q. Now with the formulation of fν′

2
, we let

Match
[0,C1

2 ]
e1 (Q) def= Rbck

[0,C1
2 ]

E
(⊥)
2

(
Q,
∨

e2∈E
(e1)
2

Xbck(e1,e2)(Q)
)
.

We can establish the following lemma.

Lemma 6. Given a zone-predicate Q for a Q ⊆ VA1 × VA2 , a μν ∈ Q, and a
t ∈ [0, C1

2 ], matcht
e1

(μ, ν,Q) is true iff μν[Ωδ ← C1
2 − t] |= Match

[0,C1
2 ]

e1 (Q). 	

5.6 Algorithm I

Given a zone-predicate Q for a Q ⊆ VA1 ×VA2 , we have the following shorthand.

Not sim
[0,C1

2 ]
e1 (Q) def= EXQ

(
Play

[0,C1
2 ]

e1 ∧ ¬Match[0,C1
2 ]

e1 (Q), {Ωδ}
)
.

Based on lemmas 4 and 6, we can establish the following lemma.
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Lemma 7. Given a zone-predicate Q for a Q ⊆ VA1 × VA2 , an e1 ∈ E1, and a

μν ∈ S, not sim[0,C1
2 ]

e1
(μ, ν,Q) is true iff μν |= Not sim

[0,C1
2 ]

e1 (Q). 	

With lemma 7 and theorem 1, we now present our algorithm for simulation
checking. We start from Q = H1 ∧ H2. Then we iteratively delete zones in
Not sim

[0,C1
2 ]

e1 (Q) for each e1 ∈ E1 from Q until a fixpoint is reached.

Sim Check[0,C1
2 ](A1, A2) /* Ai = 〈Σ, Xi, G, Li, Ii, Hi, Ei, εi, τi, πi〉, 1 ≤ i ≤ 2 */ {

let Q := H1 ∧H2; Q′ := false;
while (Q �= Q′), do {

Q′ := Q;
for each e1 ∈ E1,

Q := Q∧ ¬Not sim
[0,C1

2 ]
e1 (Q); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A)

if (I1 �= EXQ(I1 ∧ I2 ∧ Q, L2 ∪ X2)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(B)
print “A1 does not implement A2.” and return false.

}
print “A1 implements A2.” and return true.

}

In statement (B), we check whether all initial states of A1 is paired with some
initial states of A2 in Q. The statement employs a technique called early decision
of greatest fixpoint (EDGF) [18] and could significantly reduce the computation
time of greatest fixpoint evaluation when no simulation exists. The following
lemma establishes the correctness of our algorithm.

Lemma 8. Sim Check[0,C1
2 ](A1, A2) halts. It returns true iff A1 / A2.

Proof sketch: It halts since the number of zones (up to timing constant C1
2 )

is finite and the while-loop iteratively removes zones from the greatest fixpoint
image. The second sentence is true with the following reasons. Theorem 1 and
lemma 7 show the correctness of the implementation of not sim[0,C1

2 ]
e1 (μ, ν,Q) for

μν |= Not sim
[0,C1

2 ]
e1 (Q). At each iteration of the while-loop, we remove some

zones violating the simulation from the greatest fixpoint image. Thus it is clear
that when the while-loop halts, there is no zones in the image violating the
simulation and we should return true. When we find some initial states of A1

are not in the image at statement (B), we should return false since the initial
states will not be in the image which is non-increasing in the iterations. 	

6 Algorithm II with an Under-Approximation of

not sim(C1
2 ,∞)

e1
(Q)

Assume that we have a set Q ⊆ VA1 ×VA2 at an iteration of the greatest fixpoint
loop in procedure Sim Check[0,C1

2 ](A1, A2). If this is not the last iteration, some
state-pairs will be eliminated from Q in this iteration. To make sure that the
result greatest fixpoint is maximal, it is curcial that no state-pairs in the maximal
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greatest fixpont are eliminated from Q. This implies that if we only eliminate
an under-approximation of not sim(C1

2 ,∞)
e1 (Q) in each iteration, then we not only

maintain the correctness of the greatest fixpoint calculation but also may have
a faster greatest fixpoint calculation. Thus, we propose the following under-
approximation of not sim(C1

2 ,∞)
e1 (μ, ν,Q).

under not sim(C1
2 ,∞)

e1
(μ, ν,Q)

def=μν ∈ Q ∧ ∀δ ∈ (C1
2 ,∞)(playδ

e1
(μ) ∧ ¬matchδ

e1
(μ, ν,Q))

≡μν ∈ Q ∧ (∀δ ∈ (C1
2 ,∞)(playδ

e1
(μ))) ∧ ¬∃δ ∈ (C1

2 ,∞)(matchδ
e1

(μ, ν,Q))

The following lemma shows why it is an under-approximation.

Lemma 9. Given a Q ⊆ VA1 × VA2 , a e1 ∈ E1, and a μν ∈ Q, if
under not sim(C1

2 ,∞)
e1

(μ, ν,Q) is true, then not sim(C1
2 ,∞)

e1
(μ, ν,Q) is true. 	

In the following, we present techniques for the construction of characterizations
for the components in this under-approximation.

6.1 Construction of UPlay(C
1
2 ,∞)

e1
(Q) with Zones

The following lemma helps us to characterize playδ
e1

(μ) with zone-predicates.

Lemma 10. Given a state μ ∈ VA1 and a t ∈ (C1
2 ,∞), playt

e1
(μ) is true iff for

every t′ ∈ (C1
2 ,∞), playt′

e1
(μ) is true.

Proof : Zone-predicates are with inequalities like x − x′ ∼ d where |d| ≤ C1
2 .

Thus for any t, t′ ∈ (C1
2 ,∞), μ + t |= x − x′ ∼ d iff μ + t′ |= x − x′ ∼ d. 	

Since (C1
2 ,∞) is non-empty, lemma 10 implies that for any μ ∈ VA1 , the truth

values of ∀δ ∈ (C1
2 ,∞)(playδ

e1
(μ)) and ∃δ ∈ (C1

2 ,∞)(playδ
e1

(μ)) are the same.

We let UPlay(C1
2 ,∞)

e1 denote the following zone-predicate.

UPlay
(C1

2 ,∞)
e1

def= EXQ
(
Ωδ < 0 ∧ Tbck

(
H1, Xbck(e1,⊥)(H1) ∧ Ωδ = C1

2

)
, {Ωδ}

)

Then we have the following lemma.

Lemma 11. Given a μ ∈ VA1 , ∀δ ∈ (C1
2 ,∞)

(
playδ

e1
(μ)
)

is true iff μ |=

UPlay
(C1

2 ,∞)
e1 . 	

6.2 Construction of OMatch(C
1
2 ,∞)

e1
(Q) with Zones

There are several observations that we can make for the evaluation of
∃δ ∈ (C1

2 ,∞)(matchδ
e1

(μ, ν,Q)). First, for a state-pair μν such that t > C1
2 and

matcht
e1

(μ, ν,Q) is true, then for all state-pairs μ′ν′ that can forwardly reach μν
through a pre-matching segment for μ′, e1, t′, and Q, we also know t′+t ≥ t > C1

2 .
Second, according to the discussion in the previous section, for those state-pairs
μν with δ ≤ C1

2 and matchδ
e1

(μ, ν,Q) true for some Q, we can use zone-predicates
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to characterize the relation between μν, δ, and Q for the calculation of back-
ward reachability. We use the following two zone-predicate variables to record
the information we need for the evaluation of ∃δ ∈ (C1

2 ,∞)(matchδ
e1

(μ, ν,Q)).
Π : for the recording of those state-pairs μν and time t ≤ C1

2 such that there
is a pre-matching segment of t time units from μν[Ωδ ← C1

2 − t] to some
μ̄ν̄[Ωδ ← C1

2 ] in Ωδ = C1
2 ∧
∨

e2∈E
(e1)
2

Xbck(e1,e2)(Q).
Δ : for the recording of those state-pairs μν which are backwardly reachable

from a state-pair in Ωδ = C1
2 ∧
∨

e2∈E
(e1)
2

Xbck(e1,e2)(Q) through a finite run

segment of length > C1
2 .

The precondition of state-pairs in Δ will also be characterized in Δ eventually.
The precondition of state-pairs in Π may end up in either Π or Δ. Moreover,
the precondition calculation of Δ does not involve variable δ and clock Ωδ in
this approximation. With these observations, we present the following algorithm
that works on Δ and Π to calculate ∃δ ∈ (C1

2 ,∞)(matchδ
e1

(μ, ν,Q)).

OMatch
(C1

2 ,∞)
e1 (Q) {

Π := Ωδ = C1
2 ∧
∨

e2∈E
(e1)
2

Xbck(e1,e2)(Q);
Δ := false; Π ′ := false; Δ′ := false; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (C)
while Π �= Π ′ ∨ Δ �= Δ′, do {

Δ′ := Δ; Π ′ := Π ;
Δ := Δ ∨ Tbck(Δ, Xbck(e1,⊥)(Δ)); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D)
Γ := Tbck(Q, Xbck(e1,⊥)(Π)); Π := Π ∨ (Ωδ ≥ 0 ∧ Γ ); . . . . . . . . . . . . . . . (E)
Δ := Δ ∨ EXQ(Ωδ < 0 ∧ Γ, {Ωδ}); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (F)

}
return Δ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (G)

}

Note that the only changes that we can make to Π and Δ are at statements
(D), (E), and (F). Every time when we change Π at statement (E), we make sure
that the δ values in Π are in [0, C1

2 ] through conjunction with constraint Ωδ ≥ 0.
Statement (D) calculates the timed weakest precondition from all state-pairs
already in Δ with δ values already in (C1

2 ,∞). Thus it can only add predicates
with δ values in (C1

2 ,∞). When statement (F) calculates the timed weakest
precondition from all state-pairs already in Π , we make sure that all δ values
added to Δ are in (C1

2 ,∞) through conjunction with constraint Ωδ < 0.
The following lemma shows the correctness of OMatch(C1

2 ,∞)
e1 (Q).

Lemma 12. At statement (G) of procedure OMatch(C1
2 ,∞)

e1 (Q), for all μν ∈ VA1×
VA2 , μν |= Δ iff μν |= ∃δ ∈ (C1

2 ,∞)(matchδ
e1

(μ, ν,Q)). 	

6.3 Algorithm II

Given a zone-predicate Q, we define

UNot sim
(C1

2 ,∞)
e1 (Q) def= UPlay

(C1
2 ,∞)

e1 ∧ ¬OMatch(C1
2 ,∞)

e1 (Q)
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Lemma 13. Given a zone-predicate Q for a Q ⊆ VA1 × VA2 , for any μν ∈
VA1 × VA2 , if μν |= UNot sim

(C1
2 ,∞)

e1 (Q), then not sim(C1
2 ,∞)

e1
(μ, ν,Q) is true.

Proof sketch: The sketch is exactly the same as the one for lemma 8. 	

Lemma 13 implies that we may use UNot sim
(C1

2 ,∞)
e1 (Q) to speed up the fixpoint

calculation without hurting the precision of the algorithm. With the lemma,
we can present our algorithm II, Sim Check(A1, A2), for simulation-checking. It
is identical to Sim Check[0,C1

2 ](A1, A2) except that we substitute the following
statement (A’) for statement (A).

Q := Q ∧
(
¬Not sim

[0,C1
2 ]

e1 (Q)
)
∧
(
¬UNot sim

(C1
2 ,∞)

e1 (Q)
)
; . . . . . . . . (A’)

In procedure OMatch
(C1

2 ,∞)
e1 (Q), at statement (E), the final value of Π is ex-

actly Match
[0,C1

2 ]
e1 (Q). Thus we can share the evaluation of Π while evaluating

Not sim
[0,C1

2 ]
e1 (Q) and UNot sim

(C1
2 ,∞)

e1 (Q) in statement (A’).

6.4 Complexity of Our Algorithm

The complexity of our algorithm relies on the implementation of the basic ma-
nipulation procedures of zones. Like in [11], we argue that we can implement
the zones as sets of regions [1]. In such an implementation, basic operations like
subsumption, intersection, union, complement, time progression, and variable
quantification can all be done in EXPTIME.

Lemma 14. Proper implementations of algorithms I and II can run in EXP-
TIME. 	

7 Implementation and Experiments

We want to check how our techniques work in practice. Moreover, we also want
to see how the new formulation in lemma 2 performs in the experiment and
how the two algorithms compare with each other. We have implemented the
techniques discussed in this manuscript in RED 7.0, a model-checker for TAs and
parametric safety analysis for LHAs based on CRD and HRD-technology [15,16].
The state-spaces are explored in a symbolic on-the-fly style.

The TAs to RED are described as a set of communicating TAs, each repre-
senting a process. Several process transitions can be combined through CSP-style
synchronization events to form a global transition [17]. In our implementation,
users can specify a particular process as A1 and another as A2 and check whether
A1 is simulated by A2 in the environment of the remaining processes. Thus the
simulation checked by RED is an extension of the traditional one. This exten-
sion seems natural for real-world applications since embedded systems usually
have to be verified with respect to certain environments.

Now, a global transition for A1 is a pair 〈e1, e0〉 such that e1 is a process
transition of A1 and e0 is a process transition from the environment processes.
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Similarly, a global transition for A2 is also a pair 〈e2, e0〉 such that e2 is a process
transition of A2 and e0 is a process transition from the environment processes.
The simulation checked by RED only differs from the traditional one in the
definition of transition compatibility between A1 and A2. That is, if 〈e1, e0〉 and
〈e2, e

′
0〉 are compatible, then not only the event labels and writing values to

global variables of e1 and e2 must be the same, but also e0 = e′0. However, this
simulation extension is actually reducible to the traditional simulation. The re-
duction is to assign a unique event symbol to each transition of the environment.
Then we compare the combined event symbol of e1 and e0 with that of e2 and e0

for the compatibility of transitions for A1 and A2. This simulation extension can
sometimes be checked more efficiently than the traditional one since we do not
have to duplicate the environment process states in representing the simulation.

To our knowledge, there is no other tool that supports fully automatic simula-
tion checking for TAs as ours. So we only experimented with our two algorithms.
We used the following three parameterized benchmarks from the literature.
1. Fischer’s timed mutual exclusion algorithm [15]: The algorithm relies on a

global lock and a local clock per process to control access to the critical
section. Two timing constants used are 10 and 19.

2. CSMA/CD [19]: This is the Ethernet bus arbitration protocol with collision-
and-retry. The timing constants used are 26, 52, and 808.

3. Timed consumer/producer: There is a buffer, some producers, and some con-
sumers. The producers periodically write data to the buffer if it is empty.
The consumers periodically wipe out data, if any, in the buffer. The timing
constants used are 5, 10, 15, and 20.

For each benchmark, two versions are used, one with a simulation and one with-
out. For the versions with a simulation, A1 and A2 are identical. For the version
without, A1 and A2 differ in only one process transition or invariance condition.
For example, for the Fischer’s benchmark, the difference is that the triggering
condition of a transition to the critical section of A2 is mistaken. The perfor-
mance data is reported in table 1. The CPU time used, the total memory con-
sumption for the data-structures in state-space representations, and the total
number of fixpoint iterations are reported. As can be seen, the performance of
algorithms I and II are roughly the same. Especially, algorithm II did not use
fewer iterations to calculate the fixpoints. This could implies that our new for-
mulation of simulation between TAs might actually not hurt the performance in
practice.

We have also specifically designed the following fourth benchmark to investi-
gate in what situations, the speed-up technique of algorithm II may prevail.
4. Periodical samplers: Two sensors periodically send in sampling signals with

periods p1 and p2 respectively. When the sampling signals from the two
processes happen at the same instant, the operating system needs to do
some extra work and may disrupt the service.

The benchmark was designed so that the initial state-pairs can only be rejected
through a pre-matching segment of p1 · p2 time units. As can be seen from
the table, for the version with a simulation, algorithm II always uses only 3
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Table 1. Performance data of scalability w.r.t. various strategies

Algorithm I Algorithm II
benchmarks versions m time memory iter’n time memory iter’n

Fischer’s Simulation 4 31.6s 347k 8 31.3s 320k 8
mutual exists. 5 98.3s 731k 8 92.3s 664k 8
exclusion 6 304s 1518k 8 281s 1319k 8
(m No 4 9.87s 251k 3 11.7s 250k 3
processes simulation 5 31.5s 475k 3 28.0s 475k 3
) exists. 6 86.0s 957k 3 86.7s 955k 3

CSMA/CD Simulation 1 0.099s 41k 2 0.098s 41k 2
(1 bus+ exists. 2 0.80s 177k 2 0.80s 177k 2
m senders 3 122s 3509k 7 125s 3503k 7
) No 1 0.103s 41k 2 0.085s 41k 2

simulation 2 1.50s 202k 2 2.03s 203k 2
exists. 3 21.7s 2089k 2 25.7s 2089k 2

Consumer & Simulation 3 0.26s 57k 2 0.30s 57k 2
producer exists. 4 0.79s 65k 2 0.43s 65k 2
(1 buffer 5 1.21s 76k 2 0.53s 75k 2
+1 producer No 3 0.65s 70k 4 0.99s 70k 4
+m consumers simulation 4 0.93s 77k 4 1.35s 775k 4
) exists. 5 1.17s 83k 4 1.16s 83k 4

Periodical Simulation 11/13 22.0s 4670k 14 5.86s 2451k 3
sampler exists. 13/17 56.9s 5989k 16 12.7s 3192k 3
(1 process 17/19 125s 17846k 20 22.4s 8444k 3
with periods No 11/13 21.1s 4664k 12 5.43s 2452k 1
p1 and p2 simulation 13/17 55.2s 5978k 14 13.0s 3194k 1
) exists. 17/19 125s 17842k 18 20.5s 8448k 1

Data collected on a Pentium 4 1.7GHz with 380MB memory running LINUX; s: sec-
onds; k: kilobytes of memory in data-structure; iter’n: the number of iterations.

iterations to reach the fixpoints. On the other hand, the numbers of iterations of
algorithm I roughly grow with the values of the periods. The same pattern can be
observed in the data for the version without a simulation. As a result, algorithm
I runs exponentially slower than algorithm II. In general, the verification tasks
for multi-process systems with several exact periods with large least common
multiple could incur complexity difference between algorithms I and II.

8 Concluding Remarks

In this work, we discuss how to implement a symbolic simulation-checker for
TAs with zones. Our implementation and experiment shows the promise that our
algorithm could be useful in practice in the future. A straightforward adaptation
to our techniques can be used to check bisimulation (equivalence) between TAs.
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Lucángeli Obes, Jorge 69

Maler, Oded 38, 304
Markey, Nicolas 53

Nickovic, Dejan 304

Olivero, Alfredo 69
Ouaknine, Joël 25
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