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   Abstract   Bacterial biofilms are found under diverse environmental conditions, 
from sheltered and specialized environments found within mammalian hosts to the 
extremes of biological survival. The process of forming a biofilm and the eventual 
return of cells to the planktonic state involve the coordination of vast amounts of 
genetic information. Nevertheless, the prevailing evidence suggests that the overall 
progression of this cycle within a given species or strain of bacteria responds to 
environmental conditions via a finite number of key regulatory factors and path-
ways, which affect enzymatic and structural elements that are needed for biofilm 
formation and dispersal. Among the conditions that affect biofilm development are 
temperature, pH, O 

2
  levels, hydrodynamics, osmolarity, the presence of specific 

ions, nutrients, and factors derived from the biotic environment. The integration of 
these influences ultimately determines the pattern of behavior of a given bacterium 
with respect to biofilm development. This chapter will present examples of how 
environmental conditions affect biofilm development, most of which come from 
studies of species that have mammalian hosts.    
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  1  Introduction 

 In the past decade, substantial advances in the understanding of the genetic and 
physiological bases of biofilm formation have been made. Dramatic differences 
in gene expression patterns exist between planktonic and sessile cells, and 
indeed even between different stages of biofilm development (e.g., Sauer et al. 
2003). Nevertheless, the environmental and genetic factors that promote the 
transition from planktonic to sessile communities are only beginning to be 
understood in a few model organisms (reviewed by Stanley and Lazazzera 
2004). It is clear that different species and even strains of bacteria can exhibit 
unique patterns of response to the environment. What environmental conditions 
predispose various species of bacteria to initiate a given biofilm? How are the 
molecular genetic, biochemical, and structural elements that mediate biofilm 
development regulated in response to environmental conditions? The following 
sections describe some of the environmental influences on biofilm development 
in the context of the molecular genetics and biochemistry of the biofilm develop-
ment cycle (Fig.  1 ).  

   Fig. 1  A model for biofilm development. Planktonic cells ( 1 ) use motility to approach and swim 
on a surface ( 2 ). Upon interacting with the substratum by a pole, cells can become reversibly 
attached, which may allow for sampling of the environment before committing to a sessile life-
style ( 3 ). Next, cells become laterally attached to the surface, involving adhesins such as PGA or 
LapA ( 4 ). During this time, the attachment of cells begins to create a two-dimensional biofilm, 
which in  E. coli , exhibits distinct periodicity in cellular distribution ( 5 ). The biofilm grows in 
thickness as more cells are incorporated into its structure. Extracellular polysaccharides and other 
substances are produced, resulting in more firmly attached cells within an extracellular matrix. 
The architecture of the biofilm may be modified by production of surfactant and release of 
attached cells ( 6 ). In response to environmental or physiological clues, cells may be released from 
the matrix and return to a planktonic state, thus completing the developmental cycle ( 7 ). The entire 
process of biofilm development is dynamic and is influenced by numerous environmental factors 
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 2  Surface Factors and Hydrodynamic Effects 

 Virtually any material that comes into contact with fluids containing bacteria is a 
substrate for biofilm formation. The roughness, chemistry, and presence of condi-
tioning films affect attachment of bacterial cells to a surface. While rough surfaces 
are readily colonized because shear forces are diminished and surface area is 
increased in rougher surfaces (Donlan 2002), studies have indicated that nondo-
mesticated strains of at least some species seem to colonize smooth surfaces 
equally as well (Donlan and Costerton 2002). Studies have also demonstrated that 
microorganisms typically attach more rapidly to hydrophobic surfaces such as 
plastics than to hydrophilic glass or metals (reviewed by Donlan 2002). For 
instance, hydrophobic substrata promote biofilm formation by most clinical iso-
lates of  Staphylococcus epidermidis  (Cerca et al. 2005). Hydrophobic interactions 
between the cell surface and the substratum may enable the cell to overcome 
repulsive forces and attach irreversibly (Donlan 2002). A notable exception is that  
Listeria monocytogenes  forms biofilms more rapidly on hydrophilic than on 
hydrophobic surfaces (Chavant et al. 2002). 

 Submerged surfaces adsorb solutes and small particles, including bacteria 
(Geesey 2001). Studies dating back to the 1940s showed that glass surfaces adsorb 
nutrients from sea water, with consequent effects on metabolic activity associated 
with bacterial attachment (e.g., ZoBell 1943). Furthermore, the metabolic activi-
ties of bacteria associated with a surface cause temporal and spatial changes in the 
three-dimensional chemical gradients at the liquid-solid interface (Geesey 2001; 
Rani et al. 2007). When surfaces exposed to fluid environments adsorb proteins, 
coatings or conditioning films are formed that alter the surface properties and 
affect attachment of bacteria (Dunne 2002; Murga et al. 2001; Tieszer et al. 1998). 
For example, the proteinaceous conditioning films called acquired pellicles that 
develop on tooth enamel within the oral cavity are colonized within hours by 
Gram-positive cocci (Donlan and Costerton 2002; Rickard et al. 2003). The sur-
face of a central venous catheter is in direct contact with the bloodstream and 
becomes coated with platelets, plasma, and tissue proteins including albumin, 
fibrinogen, fibronectin, and laminin (see the chapter by R.M. Donlan, this volume). 
This coating acts as a conditioning film that is colonized by organisms such as  
Staphylococcus aureus , which adheres to fibronectin, fibrinogen, and laminin via 
large surface proteins known as MSCRAMMs (microbial surface components 
recognizing adhesive matrix molecules) (see the chapter by M. Otto, this volume; 
Mack et al. 2007; Patti et al. 1994). 

 Fluid flow or hydrodynamics influences biofilm structure and can have dramatic 
effects on the type of biofilm that is formed. Physical properties of biofilms such 
as cell density and strength of attachment can be affected by fluid sheer (reviewed 
by Stoodley et al. 2002 a, 2002b; van Loosdrecht et al. 2002). Furthermore, 
 biofilms grown under low flow conditions may form isotropic structures, 
whereas higher unidirectional flow may produce filamentous cells or groupings of 
cells with evidence of directionality (Stoodley et al. 1999, 2002a).  Pseudomonas  
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aeruginosa  biofilms grown under high shear were more strongly attached than 
those grown under lower shear (Stoodley et al. 2002b). Others speculate that tur-
bulent flow may enhance bacterial adhesion and biofilm formation by impinging 
cells on the surface (Donlan and Costerton 2002). In contrast, rolling of entire sta-
phylococcal microcolonies over surfaces has been observed in biofilms grown 
under turbulent flow, perhaps allowing mature biofilms to colonize new surfaces 
downstream (Hall-Stoodley and Stoodley 2005; Rupp et al. 2005). Similarly,  
Escherichia coli  attachment to mannose-coated surfaces via the type 1 fimbrial 
adhesive subunit, FimH, is shear-dependent. At low shear, the cells tended to roll 
over the surface; however, as shear was increased, they became more firmly 
attached (Anderson et al. 2007; Thomas et al. 2004). Weak rolling adhesion at low 
shear force allows for cells to spread out and colonize more surface area than under 
high shear stress, where cells remain in tight microcolonies. Thus, preferred sites 
of colonization may be those with the necessary flow to maintain a stable interac-
tion between the  bacteria and host proteins (Isberg and Barnes 2002). In a study of  
E. coli  biofilm formation under flow, fluid flow altered the spatial organization of 
cell attachment patterns (Agladze et al. 2003). While these and other studies docu-
ment the  important role of hydrodynamics in biofilm development and structure, 
little is known about the possible molecular genetic responses to fluid flow.  

 3  Approach and Initial Attachment to the Surface 

 3.1  Motility and Chemotaxis 

 Although both motile and nonmotile species form biofilms, in motile species, the 
ability to move using flagella or pili is generally required for efficient cell-to-
surface attachment. Microscopic observations indicate that motility promotes both 
initial interaction with the surface and movement along it (O’Toole and Kolter 
1998; Pratt and Kolter 1998). However, there are reports suggesting that motility 
may only be important for biofilm formation under certain conditions (McClaine 
and Ford 2002). Motility may be needed to overcome the repulsive forces gener-
ated between cellular and abiotic surfaces and to permit favorable cell-surface 
interactions required for attachment (Geesey 2001). However, flagellar motility is 
not essential for initial adhesion and biofilm formation when the cell is equipped 
with an efficient adhesin (Jackson et al. 2002b; Prigent-Combaret et al. 2000; 
Wang et al. 2004). Furthermore, steric hindrance and/or movement caused by a 
flagellum can destabilize cellular attachments. Accordingly, motility genes are 
repressed after the bacterium attaches to the surface (Prigent-Combaret et al. 1999). 
Another example of the complex influence of environmental conditions on motility 
and biofilm development is the finding that while twitching motility via type IV pili 
appears to be needed for  P. aeruginosa  biofilm formation (O’Toole and Kolter 1998), 
overstimulation of twitching by the chelation of iron with lactoferrin, a component 
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of innate immunity, prevents this bacterium from establishing productive surface 
contacts and forming biofilm (Singh et al. 2002). 

 Surface motility is widespread among flagellated Gram-negative bacteria. When 
it involves groups of long, hyperflagellated cells, moving as an organized mass, it 
is referred to as swarming motility. In  P. aeruginosa , swarming motility is  regulated 
through Rhl quorum sensing, while swimming is not. In recent studies, Rhl-dependent 
quorum sensing and nutritional conditions determined whether a flat, uniform 
biofilm or a structured biofilm was formed (Shrout et al. 2006). In contrast to 
 motility, chemotaxis is not required for  E. coli  biofilm development in batch 
 cultures (Pratt and Kolter 1998). However, in topologically constrained 
 environments, chemotaxis may be important for assembling a quorum of cells that 
can initiate biofilm development (Park et al. 2003). 

 Expression of the genes involved in flagellum synthesis, motility, and chemotaxis 
in  E. coli  occurs in a hierarchical fashion, permitting ordered synthesis and assembly 
of the flagellum components (e.g., Macnab 2003; Soutourina and Bertin 2003). The 
master regulator FlhD 

2
 C 

2
  is a DNA-binding protein that is directly or indirectly 

required for expression of all other motility and chemotaxis genes, over 50 in total. 
These are expressed from at least 15 operons, clustered at several regions on the 
chromosome. Expression of the  flhDC  operon serves as a pivotal point for  integrating 
environmental signals (Fig.  2 ). Its expression is controlled by numerous regulators 
including H-NS, Crp, EnvZ-OmpR, CsrA, QseBC, LrhA, and RcsCDB, which sense 
environmental conditions such as osmolarity (H-NS, EnvZ-OmpR), envelope stress 
(RcsCDB), nutritional conditions (Crp), or quorum sensing (QseBC). 

 In  E. coli , high osmolarity and acetyl-phosphate levels inhibit  flhDC  expression 
and motility through the phosphorylation and subsequent binding of OmpR to the  
flhDC  promoter region (Shin and Park 1995). The synthesis of flagella is also con-
trolled by growth temperature: cells are not flagellated at 42°C, perhaps because of 
competition for the heat shock chaperones DnaK, DnaJ, and GrpE, which are needed 
for flagellum gene expression (Shi et al. 1992). Furthermore,  flhDC  and flagellum 
biosynthesis are regulated by catabolite repression, i.e., activated by the cyclic 
AMP-Crp complex, and are repressed by the nucleoid-associated protein H-NS 
(Silverman and Simon 1974; Soutourina et al. 1999). Overall, stressful  conditions 
such as high concentrations of salts, sugars, or alcohols, high temperature, both low 
and high pH, or conditions of blocked DNA replication inhibit flagellum  biosynthesis 
(Maurer et al. 2005; Shin and Park 1995; Soutourina et al. 2002). 

 The Csr (carbon storage regulator) system of  E. coli  also controls motility and 
flagellum biosynthesis. The RNA binding protein CsrA positively regulates  flhDC  
expression by binding to the untranslated leader and stabilizing this mRNA (Wei 
et al. 2001). Although much information has been obtained concerning the regula-
tory circuitry and mechanisms of this complex system (e.g., Romeo 1998; Suzuki 
et al. 2002, 2006; Weilbacher et al. 2003), the environmental signals are still some-
what obscure. At the present time, it is evident that quorum sensing via SdiA and 
environmental pH affect the expression of noncoding RNA antagonists that seques-
ter CsrA (Babitzke and Romeo 2007; Suzuki et al. 2002; Mondragon et al. 2006). 
Importantly, while CsrA activates motility, its dominant role in biofilm formation 
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is to repress expression of the polysaccharide adhesin PGA of  E. coli  K-12 (e.g., 
Wang et al. 2005) and overall it acts as a strong repressor of biofilm formation 
(Jackson et al. 2002a). 

 The temporal control of flagellum biogenesis also involves the Rcs phosphore-
lay and acetyl-phosphate (Fredericks et al. 2006). The Rcs (regulator of capsule 
synthesis) phosphorelay activates genes required for capsular biosynthesis and 
membrane proteins (Boulanger et al. 2005), while repressing genes required for 
flagellum biogenesis (Francez-Charlot et al. 2003). The Rcs regulon is thought to 
be activated by surface contact and envelope stress; however, the exact nature of 
the signal remains unknown (reviewed by Majdalani and Gottesman 2005). 

 Recent studies implicate the ubiquitous bacterial secondary messenger c-di-GMP 
(3¢-5¢-cyclic diguanylic acid) as a central regulator of motility and biofilm  formation 
in diverse Gram-negative species. In general, this nucleotide, which is synthesized 
by GGDEF domain-containing proteins and is degraded by EAL or HD-GYP 

  Fig. 2  Regulation of  E. coli  motility. The  flhDC  operon encodes a DNA binding protein 
(FlhD 

2
 C 

2
 ) that serves as a central regulatory point to initiate the motility and chemotaxis cascade 

of gene expression, which is needed for optimal biofilm formation. Stressful conditions such as 
high concentrations of salts, sugars, or alcohols, high temperature, both low and high pH, or condi-
tions of blocked DNA replication inhibit flagellum biosynthesis. The RcsCDB phosphorelay sys-
tem, which somehow is activated by envelope stress, represses  flhDC . Acetyl-phosphate and high 
osmolarity activate the EnvZ-OmpR two component signal transduction system, which represses  
flhDC . The heat shock chaperones DnaK, DnaJ, and GrpE are needed for flagellum gene expres-
sion, but may be limiting at high temperatures. In addition,  flhDC  transcription is under catabolite 
repression and is activated by cAMP-Crp. The RNA binding protein CsrA activates  flhDC  expres-
sion by binding to the untranslated leader and stabilizing this mRNA. However, the main effect of 
CsrA on biofilm formation is to repress expression of the adhesin PGA (see Fig. 5). LrhA, a LysR-
type transcriptional regulator, represses motility as well as expression of type 1 fimbriae. In vari-
ous species, c-di-GMP, which is synthesized by GGDEF domain-containing proteins and is 
degraded by EAL domain proteins, inhibits flagellum-based motility 
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domain proteins, affects the transition from planktonic to sessile communities by 
promoting the production of adhesins and exopolysaccharides and inhibiting 
 flagellum- and pilus-based motility (reviewed in Jenal and Malone 2006; Ryan 
et al. 2006). While c-di-GMP metabolizing proteins often contain sensory domains 
(e.g., PAS, GAF, CheY-like, and REC), only a few environmental cues are known 
or suspected to influence c-di-GMP metabolism, and with the exception of  cellulose 
synthase, the mechanism of action of this nucleotide is unknown. As in the case of 
Csr regulation, c-di-GMP generally has opposite effects on biofilm formation and 
motility, consistent with the idea that while motility facilitates initiation of biofilm 
formation, it may be detrimental at later stages.  

 3.2  Surface Sensing? 

 Are bacteria able to sense contact with a surface and respond by expressing adhes-
ins? The Cpx signaling system in  E. coli  has provided some circumstantial evidence 
for surface sensing. Cpx is a two-component system composed of CpxA, a sensor 
kinase/phosphatase, and CpxR, a DNA-binding response regulator (Raivio and 
Silhavy 1997). Studies by Otto and Silhavy (2002) showed that a  cpxR  mutant 
strain forms altered cell-surface interactions in comparison with the wild type strain 
and that Cpx-regulated gene expression is enhanced by surface attachment. The 
mechanism of surface sensing is unknown and may be indirect. Studies indicate 
that the Cpx system responds to misfolded proteins in the periplasm (Danese and 
Silhavy 1998). In a microtiter plate assay for biofilm formation,  cpxA  mutants that 
apparently have lost the phosphatase activity of the CpxA protein formed biofilm 
with less biomass than wild type strains (Dorel et al. 1999). This was due to 
decreased transcription of the curlin-encoding gene  csgA  (described Sect. 3.3.1). In 
uropathogenic  E. coli , Cpx responds to misfolded pyelonephritis-associated P pilin 
subunits in the periplasm. In turn, DNA binding by CpxR, in conjunction with other 
transcription factors, induces transcription from the  papB  and  papI  promoters 
(Hung et al. 2001). Finally, transcriptome analysis in  E. coli  K-12 showed that  cpxP  
is highly expressed in biofilms and affects biofilm structure (Beloin et al. 2004). 
Whether attachment to a surface leads to denaturation of certain envelope proteins 
and mediates the proposed surface-sensing by Cpx remains to be determined.  

 3.3  Environmental Effects on Surface Attachment Proteins 

 Bacteria make extensive use of proteinaceous extracellular fimbriae or pili, which 
permit them to establish surface contacts that promote biofilm formation. Fimbriae 
are generally under complex regulatory controls, often involving multiple physio-
logical and/or environmental inputs. The following discussion presents some 
 examples in which the environmental conditions and genetic regulation of fimbriae 
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of  E. coli  and its relatives have been examined, illustrating the complexity of the reg-
ulatory networks involved in biofilm formation. 

 3.3.1  Curli 

 Proteinaceous extracellular fibers called curli were first observed in  E. coli  (Olsen 
et al. 1989) and have been shown to mediate adhesion, colonization, and biofilm 
formation in this and other species. In  Salmonella  spp., curli are also known as thin 
aggregative fimbriae (Romling et al. 1998). In  E. coli , curli promote both initial 
adhesion and cell-cell interaction (Prigent-Combaret et al. 2000). A variety of envi-
ronmental isolates of  E. coli  form biofilms according to their ability to express curli 
(Castonguay et al. 2006). Curli synthesis in  E. coli  is dependent on at least six genes 
located in the divergently transcribed  csgBA  and  csgDEFG  operons. CsgD activates 
transcription of the  csgBA  operon, which encodes CsgA, the structural subunit that 
is secreted outside of the cell, where CsgB nucleates it into a fiber (Barnhart and 
Chapman 2006). 

 Expression of curli is activated under conditions of low temperature; microaer-
ophilic conditions; low nitrogen, phosphate, and iron; low osmolarity; and slow 
growth or starvation (Gerstel et al. 2003; Maurer et al. 1998; Olsen et al. 1993a, 
1993b; reviewed in Barnhart and Chapman 2006) (Fig.  3 ). These features imply 
that curli are produced in the external environment, as opposed to in the mamma-
lian host. However, in addition to abiotic surfaces, curli mediate bacterial binding 
to extracellular matrix proteins such as fibronectin and laminin (Barnhart and 
Chapman 2006), suggesting that they may be produced in anticipation or prepara-
tion for host attachment and colonization. Other studies have indicated that within 
a biofilm, curli fimbriae may be expressed at 37°C (Kikuchi et al. 2005). Of note, 
curli are not expressed in many laboratory strains of  E. coli , due to silencing of the  
csgD  promoter (Hammar et al. 1995). 

 Curli expression responds to environmental conditions through at least three 
different phosphorelay signaling systems. The EnvZ-OmpR two-component 
 regulatory system activates  csgD  transcription and thereby promotes production 
of curli fimbriae and stable cell-surface interactions at low osmolarity (Vidal 
et al. 1998; Prigent-Combaret et al. 2001). However, in conditions of low osmo-
larity, there is a reduced level of the active response regulator, phosphorylated 
OmpR, due to the   decreased kinase/phosphatase ratio of EnvZ (Cai and Inouye 
2002). This would seem to suggest that an increase in osmolarity should result in 
higher  csgD  transcription and curli biosynthesis. However, high osmolarity has a 
negative effect on transcription of the curli genes (Prigent-Combaret et al. 2001). 
This apparent contradiction can be reconciled by the observation that the Cpx 
pathway, which represses transcription of curli, is induced by high osmolarity and 
masks OmpR activation (Prigent-Combaret et al. 2001). Whereas CpxR represses  
csgD  in high salt concentrations, the nucleoid-associated protein H-NS mediates  
csgD  repression   in high sucrose, independently of CpxR (Jubelin et al. 2005). 
Activation of the Cpx pathway by curlin accumulation also results in the repression 
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of the  csgD  and  csgB  operons (Prigent-Combaret et al. 2001). In addition, the 
RcsCDB phosphorelay system, which controls the synthesis of capsule and flag-
ella, also represses expression of curli (Vianney et al. 2005). A comprehensive 
model in which EnvZ-OmpR, Cpx, and Rcs regulate  csgD  transcription and curli 
gene expression in response to changes in osmolarity has been proposed (Jubelin 
et al. 2005). 

 Transcription from the  csgD  promoter is also regulated by other global 
 transcription factors, including  rpoS ,  crl , and  hns  (Romling et al. 1998). The sta-
tionary phase sigma factor RpoS (s s ) directly activates transcription of the  csgBA  
promoter in response to slow growth or other stresses (Hengge-Aronis 2002). The 
small protein Crl, which is preferentially expressed at low temperature and in 
 stationary phase, interacts with the s s  subunit and apparently promotes curli pro-
duction by strengthening the association of s s  with core RNA polymerase to 
enhance transcription initiation at  csgBA  (Bougdour et al. 2004). The protein 
H-NS has both direct and indirect effects on curli, depending on the environmental 

  Fig. 3  Conditions affecting curli fimbriae in  E. coli . Curli fimbriae aid in biofilm formation in 
certain  E. coli  strains and related species, and are produced through the expression of the divergent 
operons  csgDEFG  and  csgBA . CsgD is a DNA-binding protein necessary for transcription of  
csgBA , which encodes the nucleation factor and pilin for curli fimbriae, respectively. Other Csg 
proteins are involved in pilus biogenesis. Both OmpR-P (activator) and CpxR-P (repressor) can 
simultaneously   occupy the  csgDEFG  promoter. EnvZ-OmpR promotes  csgDEFG  transcription at 
low osmolarity, while CpxA-CpxR represses this operon under envelope stress and high osmolar-
ity. H-NS has multiple effects on these pathways, one of which is to repress  csgD    in high sucrose, 
independently of CpxR. The RcsCDB phosphorelay system, which controls synthesis of capsule 
and flagella, also represses curli in response to membrane perturbations and high osmolarity. c-di-
GMP activates production of both curli and cellulose in response to uncharacterized stimuli. Low 
temperature, nitrogen, phosphorus or iron limitation, slow growth, and microaerophilic conditions 
promote curli production. RpoS, in conjunction with Crl, activates transcription of the  csgBA  pro-
moter in response to several of these conditions 



46 C. C. Goller, T. Romeo

conditions (Jubelin et al. 2005). Apparently, integration host factor (IHF), H-NS, 
and OmpR form a nucleoprotein complex with the  csgD  promoter, resulting in ele-
vated expression under microaerophilic growth conditions (Gerstel et al. 2003). 

 The regulatory nucleotide c-di-GMP (which is produced in response to com-
plex regulatory cues) activates the production of both curli and cellulose in cer-
tain  E. coli  strains and in  Salmonella enterica  serovar Typhimurium (e.g., Kader 
et al. 2006; Weber et al. 2006). Curli and cellulose together produce a strong 
biofilm matrix facilitating attachment to hydrophilic and hydrophobic surfaces 
(Zogaj et al. 2003).  

 3.3.2  Type 1 Fimbriae 

 Type 1, or mannose-sensitive, fimbriae are rigid, 7-nm-wide and approximately 
1-µm-long, rod-shaped surface structures found on the majority of  E. coli  strains 
and are widespread among the Enterobacteriaceae (Schembri et al. 2001). Type 1 
fimbriae are important in the colonization of various host tissues by  E. coli  and in 
biofilm formation on abiotic surfaces (see the chapter by J.K. Hatt and P.N. Rather, 
this volume; Pratt and Kolter 1998). The FimH adhesive protein expressed on the 
tip of type 1 fimbriae binds to glycoproteins, including natural ligands such as 
 uroplakins on urinary epithelial cells in urinary bladders and immunoglobulin A or 
mucin in intestines and lungs (e.g., Mulvey et al. 2000). A typical type 1 fimbriated 
bacterium has 200-500 peritrichously arranged fimbriae (Lowe et al. 1987). 

 Production of type 1 fimbriae requires a polycistronic operon comprising the 
seven structural genes ( fimAICDFGH ) and two monocistronic operons encoding 
the site-specific recombinases FimB and FimE. Transcription of type 1 fimbriae 
genes is phase variable due to FimB- and FimE-mediated inversion of a 314-bp 
DNA fragment that contains the promoter for the polycistronic  fim  operon 
(Klemm 1986). Within a cell population, type 1 fimbriae expression is activated 
at body temperature and is repressed by high osmolarity and low pH. These 
effects are mediated through altered switching frequency of the  fim  operon pro-
moter (e.g., Gally et al. 1993; Schwan et al. 2002). Although the environmental 
signals remain to be shown for LrhA, this transcriptional regulator represses 
motility and chemotaxis genes and represses production of type 1 fimbriae by 
altering phase variation (Blumer et al. 2005). Furthermore, the alarmone ppGpp 
(guanosine 3¢, 5¢-bispyrophosphate), which is produced in response to amino acid 
or carbon starvation, activates expression of type 1 fimbriae and biofilm forma-
tion in uropathogenic  E. coli  through its role in expression of the FimB recombi-
nase (Aberg et al. 2006). Acetyl-phosphate activates production of type 1 
fimbriae, perhaps by serving as a phosphodonor for the FimZ response regulator 
(discussed in Wolfe et al. 2003). Acetyl-phosphate accumulates at the transition 
to stationary phase in the presence of excess carbon and/or the lack of oxygen 
(Wolfe 2005). Thus, the production of type 1 fimbriae on cells is complex; it is 
governed by nutritional status and repressed by stresses such as low pH, low 
temperature, and high osmolarity.  
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 3.3.3  Antigen 43 and Related Proteins 

 Antigen 43, encoded by the  flu  locus, is an autoaggregation factor produced by many  
E. coli  strains. It was originally discovered for its ability to cause bacterial aggrega-
tion (reviewed in Klemm et al. 2006). Antigen 43 is a member of the self-associating 
autotransporter (SAAT) group of proteins consisting of a signal peptide for transfer 
across the inner membrane, a translocator domain, and a secreted passenger domain. 
SAATs, including Ag43, TibA, and AIDA (adhesin involved in diffuse adherence), 
can interact with each other to cause formation of mixed bacterial aggregates. These 
proteins are anchored directly to the outer membrane and protrude only approxi-
mately 10 nm from the surface, resulting in closer cell-cell interactions than those 
seen with curli or other fimbriae. Expression of bulky surface structures that pro-
trude beyond this distance in the bacterial envelope (e.g., type 1 pili or capsules) 
interferes sterically with Ag43-mediated aggregation (Klemm et al. 2006). 

 Ag43 expression undergoes phase variation controlled by OxyR and Dam 
(deoxyadenosine methylase). The cellular redox sensor OxyR represses Ag43 
expression by binding to the  flu  promoter, while Dam activates Ag43 expression by 
methylating DNA that overlaps the OxyR binding (Wallecha et al. 2002; see the 
chapter by C. Beloin et al., this volume). OxyR plays an important role in sensing 
peroxides encountered during oxidative stress, although its oxidation state may not 
influence  flu  regulation (Wallecha et al. 2003). It activates protective   measures, such 
as enzymes that detoxify reactive   oxygen compounds or repair damage caused by 
them. Furthermore, Ag43-mediated cell aggregation confers protection   from hydro-
gen peroxide killing (Schembri et al. 2003a). Ag43 and other SAAT proteins, includ-
ing   AIDA-I and TibA, also impair bacterial motility (Ulett et al. 2006). Several 
studies have indicated that Ag43 is induced specifically during biofilm growth, and 
its expression enhances  E. coli  biofilm formation (discussed in Klemm et al. 2004; 
Schembri et al. 2003b). In urinary track infections, Ag43 is expressed by  E. coli  cells 
that form biofilm-like structures within bladder cells (Anderson et al. 2003). 

 Finally, environmental pH affects antigen 43-mediated cellular aggregation, 
which occurs more rapidly as the pH decreases from 10 to 4 (Klemm et al. 2004). 
This strong effect of pH on cellular aggregation has been proposed to facilitate more 
rapid transit and thus improved survival in the stomach (Klemm et al. 2006).    

 4   Conversion from Temporary to Permanent Attachment: 
A Regulated Process? 

 During normal biofilm development, some species of bacteria bind to a surface 
reversibly or temporarily, followed by irreversible or permanent attachment. This 
phenomenon was first reported in the 1940s (reviewed in Stoodley et al. 2002a). 
Genes affecting this transition and biofilm development have been studied in  
P. aeruginosa  and  Pseudomonas fluorescens  (Caiazza and O’Toole 2004; Hinsa 
et al. 2003) as well as in  E. coli  (Agladze et al. 2005). In these species, temporarily 
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attached cells interact with a surface by a cell pole, whereas permanently attached 
cells are associated via the lateral cell surface. Mutants of  P. fluorescens  that failed 
to produce a large adhesive protein (LapA) and  E. coli  mutants that fail to produce 
a polysaccharide adhesin (PGA, described below) were similarly defective in the 
conversion from temporary to permanent attachment (Agladze et al. 2005; Hinsa et al. 
2003). In  E. coli , the kinetics of this transition process was monitored with an assay 
developed for this purpose (Agladze et al. 2005). 

 Conversion from temporary to permanent attachment has been proposed to be a 
regulated process, perhaps allowing the cell to sample its local environment before 
committing to a sessile lifestyle (Caiazza and O’Toole 2004). Furthermore, because 
cell attachment in both monolayers and more mature biofilms of  E. coli  exhibit dis-
tinct, nonrandom spatial organization, it has been suggested that proximity to neigh-
boring cells might govern the conversion to permanent attachment (Agladze et al. 
2003; 2005).  E. coli  mutants lacking the polysaccharide adhesin PGA exhibited 
aperiodic cell distribution and no apparent cell-cell adhesion. In theory, formation of 
such patterns could be guided by a reaction-diffusion or Turing process (e.g., Maini 
et al. 2006), based on the sensing of a bacterially synthesized inhibitor of attach-
ment. Validation of such hypotheses will require an understanding of the putative 
signals in the local environment that are being recognized, the putative signal trans-
duction pathways through which this information flows, and a better appreciation of 
the biochemistry of temporary and permanent attachment processes.  

 5  Environmental Effects on Matrix Polysaccharides 

 A hallmark of prototypical biofilms is that they are composed of cells embedded 
within a complex matrix (reviewed in Branda et al. 2005; Sutherland 2001 a, 
2001b). While polypeptides, nucleic acids, lipids, and a host of small molecules are 
often present in biofilm matrices, polysaccharide, which may include multiple dif-
ferent polymers, is often the main component (e.g., Morikawa et al. 2006; Schooling 
and Beveridge 2006; Steinberger and Holden 2005; Whitchurch et al. 2002). Due 
to their roles in cellular interactions with surfaces and their direct exposure to cells 
of the immune system, matrix polysaccharides have become topics of considerable 
interest. However, an understanding of these polymers is limited, even for the best 
studied biofilms. Certain polysaccharides influence biofilm architecture, ion selec-
tivity, resistance to desiccation, and other properties, but probably do not function 
as biofilm adhesins per se. Acidic polysaccharides, such as alginate of  P. aerugi-
nosa , colanic acid and K antigens of  E. coli , and capsular polysaccharides of  
Pantoea stewartii  and  Xanthomonas campestris  may be considered in this class; 
they are not essential for biofilm formation and may even be inhibitory under 
 certain conditions (Crossman and Dow 2004; Hanna et al. 2003; Schembri et al. 
2004; Stapper et al. 2004; von Bodman et al. 2003; Wozniak et al. 2003). In 
 contrast, other polysaccharides serve as adhesins that assist cell-surface and/or  cell-
cell attachment. The conditions and regulatory factors that promote the  synthesis of 
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the latter  polysaccharides drive biofilm formation. Polymers that fall into the latter 
category tend to be basic or neutral, and include b-1,6- N -acetyl- D -glucosamine 
polymers of staphylococci,  E. coli ,  Yersinia pestis ,  Bordetella  species,  Actinobacilli , 
and  P. fluorescens  (Heilmann et al. 1996a, 1996b; Itoh et al. 2005; Litran et al. 
2002; Maira-Wang et al. 2004; Parise et al. 2007; Kaplan et al. 2004), Psl and Pel 
of  P. aeruginosa  (Friedman et al. 2004; Jackson et al. 2004; Vasseur et al. 2005), 
cellulose, which is produced by many eubacteria (reviewed in Lasa 2006), and the 
extracellular  D -glucans of  Streptococcus mutans  (Munro et al. 1995). Some exam-
ples that illustrate the complex regulation of poly-b-1,6- N -acetyl- D -glucosamine 
polymers in Gram-positive and -negative bacteria follow. 

 Poly-b-1,6- N -acetyl- D -glucosamine was discovered in  S. epidermidis  (Heilmann 
et al. 1996 a, 1996b; see the chapter by M. Otto, this volume) and later was found 
to serve as a biofilm adhesin in Gram-negative bacteria (Wang et al. 2004). This 
polymer is referred to as PIA (polysaccharide intercellular adhesin) or PNAG in  
S. epidermidis  and  S. aureus , respectively. Production of PIA/PNAG is dependent 
on the  ica  operon ( icaADBC ), which is regulated by a divergently transcribed gene 
( icaR ) that encodes a transcriptional repressor, which responds to various environ-
mental conditions (Conlon et al. 2002; Fig.  4 ). 

 Expression of the  icaADBC  operon is increased during growth in nutrient-rich 
or iron-limiting conditions and is induced by stressful   stimuli such as heat, ethanol, 
and high concentrations   of salt which increase  ica  expression and PIA production 
(Vuong et al. 2005 and references therein). The latter stressors are known to repress 
tricarboxylic acid (TCA) cycle   activity, and the TCA cycle inhibitor   fluorocitrate 
increases PIA production (Vuong et al. 2005). Furthermore, anaerobic conditions 
induce PIA production (Cramton et al. 2001). Subinhibitory concentrations of tet-
racycline   and the semisynthetic streptogramin antibiotic quinupristin-dalfopristin  

 enhance  icaADBC  expression nine- to 11-fold (Rachid et al. 2000). Ethanol induc-
tion of PIA synthesis is  icaR -dependent (Conlon et al. 2002). Interestingly, glucose 
addition causes repression of  icaADBC , but enhances PIA production, possibly via 
its precursor-product relationship with PIA (Dobinsky et al. 2003). 

 SarA is a global regulatory DNA-binding protein involved in expression of a 
variety of staphylococcal virulence genes. Transcription of  icaADBC,  which is 
essential for biofilm development in  S. aureus , is activated by SarA binding (Tormo 
et al. 2005; Valle et al. 2003). In turn,  sarA  is activated by the stress response sigma 
factor, s B , which modulates responses to environmental stress and energy depletion. 
It is important to note that SarA, but not s B , is essential for biofilm development by  
S. aureus  (Valle et al. 2003), suggesting that there are other means of activating  sarA  
expression. s B  also represses, possibly indirectly,  icaR  expression (Tormo et al. 
2005), indicative of the complex interactions within this regulatory system. 

 The bacterial LuxS-dependent quorum-sensing systems are found in diverse 
species, and may permit bacteria to assess the overall microbial density of the envi-
ronment (Schauder and Bassler 2001; Xavier and Bassler 2003). Biofilm formation 
in a  luxS  mutant   strain of  S. epidermidis  was considerably enhanced, suggesting 
that the reaction product of the LuxS protein, autoinducer 2 (AI-2), represses  
icaADBC  (Xu et al. 2006). Of note, quorum-sensing systems generally promote the 
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expression of factors required for biofilm formation (Kirisits and Parsek 2006; 
Kong et al. 2006, Spoering and Gilmore 2006); although another example of 
quorum-sensing inhibition of biofilm formation is found in  Vibrio cholerae  
(Hammer and Bassler 2003). A well-studied quorum-sensing system of  S. epidermidis  
and  S. aureus ,  agr  (accessory gene regulator), also inhibits biofilm formation, 
but does not affect PIA levels (Vuong et al. 2003). 

 The IS256 insertion element is able to integrate into and inactivate or excise 
from  icaADBC  or genes that affect  ica  expression (e.g.,  sarA ), thus constituting 

  Fig. 4  Environmental influences on staphylococcal polysaccharide intercellular adhesin (PIA). 
The b-1,6-GlcNAc polymer PIA or PNAG, is required for cell-cell adhesion and biofilm formation 
in  S. epidermidis  and  S. aureus.  Production of PIA depends on  icaADBC  and is repressed by the 
divergently transcribed  icaR  gene.  icaABCD  expression is increased by growth in nutrient-replete, 
iron-limiting, anaerobic, and stress-inducing   conditions. Several of these environmental   conditions 
repress tricarboxylic acid (TCA) cycle activity. Subinhibitory concentrations of certain antibiotics 
also   enhance  icaADBC  expression. IS256 causes phase variation by integrating into and excising 
from  icaADBC  or genes that affect its expression. The global regulator SarA activates transcrip-
tion of  icaA  and is essential for biofilm development in  S. aureus . In turn,  sarA  is activated by the 
general stress sigma factor s B , which also represses  icaR  and IS256 transposition. Glucose appar-
ently represses  icaADBC  expression, but nevertheless enhances PIA production via a possible 
product-precursor relationship. The  agr  quorum sensing system negatively regulates biofilm 
development 
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a phase-variable mode of regulation (Conlon et al. 2004; Ziebuhr et al. 1999). 
Transposition of IS256, but not transcription of the transposase, is repressed by s B  
(Valle et al. 2007). Valle and colleagues believe that environmental stress 
 conditions activate s B  and decrease the generation of biofilm-negative variants, in 
line with evidence indicating that NaCl and other stressors induce  ica -dependent 
biofilm formation. The authors of this study also speculate that the IS256 element 
may modulate biofilm dispersal by affecting the proportion of biofilm-negative 
variants in a biofilm. 

 In  E. coli , an understanding of biofilm regulation preceded the discovery of the  
pgaABCD  structural genes, which in turn led to the identification of novel 
 regulatory genes for biofilm formation (Fig.  5 ). An initial observation was that the 
global regulatory gene  csrA  of  E. coli  dramatically represses biofilm formation 
(Romeo et al. 1993), a phenotype that could not be explained by any previously 
known adhesin (Jackson et al. 2002a). A genetic screen for factors that cause hyper-
biofilm formation in the  csrA  mutant led to discovery of the  pgaABCD  locus, which 
encodes gene products similar to the glycosyltransferase IcaA (PgaC) (Gerke et al. 1998) 

  Fig. 5  Regulation of the biofilm adhesin PGA in  E. coli . Poly-b-1,6- N -acetyl-glucosamine ( PGA ) 
synthesis is regulated at several levels. NhaR binds to the  pgaABCD  promoter and activates tran-
scription in response to high pH or high sodium ion concentrations. CsrA protein binds to six sites 
in the leader of the  pgaABCD  transcript, which blocks ribosome binding and accelerates the turno-
ver of this mRNA. Expression of  csrA  is activated as cultures approach the stationary phase, by 
unknown mechanism(s). In addition, CsrA is sequestered by the noncoding RNAs CsrB and CsrC. 
Transcription of these RNAs requires the BarA-UvrY two-component signal-transduction system, 
and CsrA itself. The signal for this system is not known, although BarA-UvrY signaling is blocked 
at low pH. SdiA activates  uvrY  transcription upon binding to  N -acyl-homoserine lactones ( HSL ).  
E. coli  does not produce HSL. Therefore,  csrB  and  csrC  transcription should be enhanced in the 
presence of Gram-negative species that produce such quorum-sensing compounds. CsrB and CsrC 
RNAs are degraded by a pathway involving a possible sensory protein, CsrD, and RNase E  
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and the  N -deacetylase IcaB (PgaB) (Vuong et al. 2004). The mechanism of CsrA in 
this regulation is to bind to the  pgaABCD  mRNA leader at six sites, including sites 
that overlap the Shine-Dalgarno sequence and initiation codon, and thereby prevent 
ribosome binding (Wang et al. 2005). Translational repression likely results in the 
observed destabilization of this transcript by CsrA. Transcription of the  pgaABCD  
operon is activated by the binding of the LysR family protein NhaR to the sole pro-
moter of this operon in response to high pH or high Na +  (Goller et al. 2006). The 
biosynthesis of PGA is also regulated by c-di-GMP (Suzuki et al. 2006; A. Pannuri, 
C. Goller, and T. Romeo; Y. Itoh and T. Romeo, unpublished studies) and is 
increased at low temperature (Wang et al. 2005; unpublished data). The latter find-
ings are reminiscent of regulation in the homologous  hmsHFRS  system of  Y. pestis  
(Bobrov et al. 2005; Perry et al. 2004; Simm et al. 2005). 

 The  hmsHFRS  operon and      hmsT  are required for  Y. pestis  biofilm formation in 
the gut of the flea vector and are important in the transmission of plague (see the 
chapter by Hinnebusch and Erickson) .  Hms-dependent biofilm formation is optimal 
at low temperature. The levels   of HmsH, HmsR, and HmsT proteins are lower at 
37°C   than at 26°C, and temperature-dependent degradation of HmsH, HmsR, and 
HmsT proteins seems to be responsible for the Hms -  phenotype at 37°C (Perry 
et al. 2004). Additionally, biofilm formation is stimulated by HmsT, a protein that 
synthesizes c-di-GMP, and is inhibited by HmsP, which likely degrades c-di-GMP 
(Bobrov et al. 2005).  

 6  Conditions and Factors Mediating Biofilm Dispersal 

 No doubt, there are times when it is advantageous for cells to be able to escape from 
a biofilm. Entrapment within the biofilm environment limits bacterial growth (e.g., 
Rani et al. 2007). Furthermore, the transcriptome of mature biofilm, on average, has 
been suggested to be more similar to that of stationary phase cells than of exponen-
tially growing cultures, although many changes in gene expression appear to be 
 biofilm-specific (Beloin et al. 2004; Sauer et al. 2002; Waite et al. 2005). In addition, 
the biofilm matrix may prevent or at least deter cells from fleeing deleterious condi-
tions. Dispersal processes are of interest because of their potential to promote spread 
of bacteria in the environment and because of the possibility to exploit these processes 
to combat detrimental biofilms. Release of cells or clumps of cells from biofilm can 
be accomplished by constitutive low level sloughing as well as active dispersion in 
which a substantial proportion of the population synchronously exits the biofilm. 
Several different cellular patterns of biofilm dispersal or escape have been documented 
under microscopic examination (reviewed by Hall-Stoodley and Stoodley 2005). In 
addition, the dissolution of cell attachments by surfactant production in  Bacillus 
subtilis ,  P. aeruginosa  and  S. epidermidis  may help to shape biofilm  architecture 
(Boles et al. 2005; Branda et al. 2001; Davey et al. 2003; Vuong et al. 2003). 

 Environmental conditions that influence biofilm dispersal include nutrient avail-
ability, oxygen levels, pH, and specific compounds (Gjermansen et al. 2005; 
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Jackson et al. 2002a; Sauer et al. 2004; Thormann et al. 2005; Table  1 ). Changes in 
nutrient availability are a well-recognized determinant of dispersal. This is not 
 surprising, given the importance of nutrient acquisition to bacterial survival. For 
example, early studies revealed that introduction of a rich medium to a tightly-
aggregated  Acinetobacter  biofilm that had been grown under low nutrient 
 conditions led to a more open, widely dispersed cell arrangement (James et al. 
1995). Although the molecular genetics of biofilm dispersal has lagged behind that 
of formation, recent breakthroughs have paved the way for understanding the 
 dispersal process, from the detection of environmental cues to signal transduction 
circuitry to the biochemical activities responsible for dispersal. 

 Biofilm dispersion in  P. aeruginosa  is perhaps the most studied and best 
 understood process. Sauer and coworkers examined the proteome of this bacterium 
during active dispersion and found expression patterns that more closely resembled 
those of planktonic cells than biofilm cells (Sauer et al. 2002). Specific carbon 
nutrients, including succinate and glutamate, were found to trigger immediate 
large-scale release of cells (Sauer et al. 2004). Genes for motility, ribosomal 
 proteins, and phage Pf1 were induced in the dispersed cells, while cells remaining 
attached contained elevated transcripts for pilus production and anaerobic nitrogen 
respiration. The latter activity indicates that insufficient oxygen was available for 
complete aerobic metabolism of the added carbon substrate in this biofilm. 

   Table 1  Molecular genetics of biofilm dispersal processes in Gram-negative bacteria 

  Environmental  Signal   
Organism cue transduction Output Reference

 P. aeruginosa  Carbon nutrients BdlA,  Adhesins? Morgan
   c-di-GMP   et al. 2006

 P. aeruginosa  Nitric oxide ? Phage induction, Barraud
    other?  et al. 2006

 P. aeruginosa  Quorum sensing ? Phage  Purevdorj-
  ( las/rhl )   induction  Gage et al. 
     2005

 P. putida  Carbon starvation c-di-GMP? LapA protein? Gjermansen 
   Polysaccharide?  et al. 2005, 
     2006  

 X. campestris  Quorum sensing Rpf signal  b–1,4- Dow et al. 
   pathway  Mannanase 2003

 S. oneidensis  Anaerobic  c-di-GMP? Polysaccharide? Thormann 
  conditions    et al. 2005, 
     2006

 E. coli  Quorum  Csr system PGA, other? Jackson Wang
  sensing, other?    et al. 2002a;
     et al. 2004,
     2005

 A. actinomycete  ? ? PGA hydrolase  Itoh et al.   2005;
 mcommitans     (dispersin B)  Kaplan et al.
     2003, 2004
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 The above observations support the recent discovery that trace amounts of nitric 
oxide (NO) or a metabolite thereof mediates dispersal (Barraud et al. 2006). This 
product of anaerobic respiration facilitated the seeding dispersal of cells from 
mature biofilm. In this phage Pf1-dependent process, mature biofilm structures 
appear to liquefy internally, involving both cell death and release of viable cells, 
and leaving behind hollow, shell-like structures. In addition, exposure to NO dis-
persed immature biofilms without causing cell death. The normal resistance of bio-
film cells to certain antibacterial agents reverted back to the planktonic, sensitive 
phenotype during this dispersion process. Sauer and coworkers recently identified 
a gene encoding an apparent chemotaxis protein, BdlA, which is crucial for nutrient 
dispersal of  P. aeruginosa  (Morgan et al. 2006). A mutant lacking this protein also 
exhibited increased adherence and increased c-di-GMP levels. The latter observa-
tion is consistent with a rapidly expanding role of this nucleotide in stimulating 
bacterial exopolysaccharide synthesis and enhancing adherence properties of cells 
(reviewed in Jenal and Malone 2006; Romling and Amikam 2006), and the correla-
tion of degradation of this nucleotide with biofilm dispersal (e.g., Gjermansen et al. 
2006; Morgan et al. 2006 Thormann et al. 2006). It is tempting to suggest that BldA 
might regulate c-di-GMP levels in response to, perhaps even by binding to NO. 
This is consistent with the observations that (1) nutrient-induced dispersal leads to 
increased anaerobic respiration and (2) the BdlA protein structure includes a PAS 
domain, which is typically involved in signal detection. Another consideration is 
that lung infections of cystic fibrosis patients by  P. aeruginosa  become anaerobic. 
How these observations might apply to this host environment is still an open ques-
tion (discussed in Romeo 2006). 

 There are parallels in other species that suggest dispersal processes that are 
related, though not identical, to those of  P. aeruginosa .  Shewanella oneidensis  bio-
film disperses rapidly under anoxic conditions and is likewise induced by an 
increase in c-di-GMP levels and possibly mediated via effects on exopolysaccha-
ride production (Thormann et al. 2006). Is it possible that the cue for this process 
might not be the decrease of oxygen, but rather the production of NO or another 
product of anaerobic respiration?  Pseudomonas putida  responds to carbon starva-
tion by inducing dispersal in a process that might involve c-di-GMP regulation, 
exopolysaccharide and a large proteinaceous adhesin that has also been studied in  
P. fluorescens  (Gjermansen et al. 2005; 2006; Hinsa et al. 2003; 2006). 

 Studies in  E. coli  suggest that CsrA may facilitate dispersal (Jackson et al. 
2002a). This RNA-binding protein, alternatively referred to as RsmA (repressor of 
stationary phase metabolites) in some species, posttranscriptionally represses pro-
duction of the biofilm polysaccharide adhesin b-1,6- N -acetyl- D -glucosamine, or 
PGA, with dramatic effects on biofilm formation (Wang et al. 2005). The mecha-
nism of CsrA in biofilm dispersal remains unknown, but could be based on inhibi-
tion of PGA synthesis if this polysaccharide is continuously removed by turnover 
or sloughing. The relatively slow rate of biofilm release (a few hours) that occurs 
in response to  csrA  induction suggests that the way in which CsrA affects dispersal 
may be different than in the preceding examples. CsrA activity is governed to a 
large extent by noncoding regulatory RNAs that sequester this protein, e.g., CsrB, 
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CsrC in  E. coli  (Gudapaty et al. 2001; Liu et al. 1997; Suzuki et al. 2002; Weilbacher 
et al. 2003). Thus, CsrA activity should increase as CsrB and CsrC synthesis 
decreases or their turnover increases. The environmental control of Csr RNAs is not 
well defined in any species. However, it typically involves transcriptional activation 
via BarA-UvrY or homologous two-component signal transduction systems, such 
as BarA-SirA, ExpS-ExpA, GacS-GacA, or VarS-VarA, and is connected to 
quorum-sensing pathways (Lenz et al. 2005; Suzuki et al. 2002; reviewed in 
Babitzke and Romeo 2007). Furthermore, while quorum-sensing systems often 
promote biofilm formation, they can activate biofilm dispersal in some species 
(e.g., Dow et al. 2003; Hammer and Bassler 2003; Yarwood et al. 2004).  

 7  Mixed Species Biofilms 

 The natural environments that most bacteria inhabit are typically complex and 
dynamic. Unfortunately, this complexity is not fully appreciated when growing 
organisms in monocultures under laboratory conditions. Biofilm communities asso-
ciated with the plant rhizosphere (Ramey et al. 2004), intestinal mucosa (Eckburg 
et al. 2005), oral cavity and gingival crevices (Kroes et al. 1999; Kolenbrander 
2000), and many other natural sites are inhabited by numerous different species in 
close proximity. Such environments are rich in biological stimuli to be processed 
by bacterial cells and used to direct biofilm development in response to changing 
conditions. 

 Studies using species-specific probes and microscopy have revealed complex 
spatial organization of species in natural biofilm communities (e.g., Bottari et al. 
2006). Furthermore, co-culture experiments have demonstrated the importance of 
competition for nutrients and commensal metabolic networks in the dynamics of 
mixed-species biofilms (e.g., Christensen et al. 2002). Thus, spatial and metabolic 
interactions between species contribute to the organization of multispecies bio-
films, and the production of a dynamic local environment (Battin et al. 2007; 
Tolker-Nielsen and Molin 2000). The distribution of cells and biomass in complex 
biofilms is influenced by the physiology of the organisms present, which in turn 
leads to the development of local nutrient gradients. Furthermore, mixed species 
biofilms can evolve rapidly and lead to stable interactions between species when 
driven by selective pressure for co-metabolism (Hansen et al. 2007). In the latter 
model system, a commensalistic relationship was established between  Acinetobacter  
sp. strain C6 and  P. putida  KT2440 when the latter species evolved the ability to 
adhere and form biofilm close to  Acinetobacter  microcolonies, and thereby capture 
the metabolite benzoate. 

 Mutualistic relationships can also occur in mixed-species biofilms. For example, 
biofilm formation by  E. coli  PHL565 was synergistically enhanced by growth in mixed 
culture with  P. putida  MT2 (Castonguay et al. 2006). Particularly striking mutualistic 
effects on biofilm formation have been shown for species that inhabit dental plaque 
(e.g., Palmer et al. 2001). Conjugative plasmids have been demonstrated to induce 
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bacterial biofilm development in co-culture experiments (e.g., Ghigo 2001), and 
biofilm formation increases the chance for lateral gene transfer and thus the risk for 
interspecies gene transfer and the consequent spread of virulence factors and antibiotic 
resistance (e.g., Weigel et al., 2007). In fact, many examples of synergistic induction 
of biofilm formation were observed when a large collection of nondomesticated  
E. coli  strains were individually cocultivated with a laboratory strain or with each 
other. This was most often precipitated by conjugal transfer of natural plasmids 
carried by the isolates. 

 Quorum sensing can have somewhat unpredictable effects on biofilm formation 
(Merritt et al. 2003; Schauder and Bassler 2001; Waters and Bassler, 2005; Bassler 
and Losick 2006). While many quorum-sensing systems are relatively species-
specific, the autoinducer-2 based (or LuxS-dependent) quorum-sensing system is 
widespread among eubacteria and may serve as a universal language for these 
organisms. Despite its profound implications, the impact of interspecies communi-
cation on biofilm development is presently not well understood.  

 8  Conclusions and Outlook 

 Recent advances in our understanding of the biofilm development cycle have indi-
cated that in most cases, it is a dynamic process in which common environmental 
factors such as nutritional conditions, temperature, oxygen tension and osmolarity 
have strong influences. We have begun to understand the factors and pathways that 
respond to environmental cues and regulate the surface transformations that drive 
the biofilm development cycle. The distinctive conditions that govern biofilm 
development for a given species can provide important clues to its natural ecology 
and life cycle and vice-versa. Many surprises lay in store, and the rules for biofilm 
development seem to be made to be broken. For example, the minimalist bacterium  
Mycoplasma pulmonis  lacks any two component signal transduction system or rec-
ognizable global regulator. Nevertheless, it is able to modulate biofilm formation 
through slipped-strand mispairing of the gene for an adhesive surface protein 
(Simmons et al. 2007). 

 At the present time, there are many unanswered or partially answered questions 
concerning the influence of the bacterial environment on biofilm development:  

  1. Which steps in development are most important for regulation and how are these 
steps regulated? The transition from reversible to irreversible attachment would 
seem to be an important site for regulation to occur, but this remains to be 
shown. 

 2. While a variety of environmental influences on biofilm are now known in a few 
model organisms, information on their relative importance and integration is 
lacking. 

 3. Systematic analysis of gene expression by array studies has provided much 
information concerning gene expression patterns during biofilm development. 
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How are these genes regulated and which of these genes are critical for the 
development process? 

 4. How does the presence of other microorganisms and growth in association with 
eukaryotic hosts influence biofilm formation by a given species? This is a com-
plex biological question that likely differs for each species of interest. 
Nevertheless, it is critical for the development of new therapeutic strategies and 
other applications.    
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