Verifying Parallel Programs with MPI-Spin

Stephen F. Siegel*

Verified Software Laboratory
Department of Computer and Information Sciences
University of Delaware
Newark, DE 19716, USA
siegel@cis.udel.edu
http://www.cis.udel.edu/~siegel

Standard testing and debugging techniques are notoriously ineffective when ap-
plied to parallel programs, due to the numerous sources of nondeterminism arising
from parallelism. MPI-SPIN, an extension of the model checker SPIN for verifying
and debugging MPI-based parallel programs, overcomes many of the limitations
associated with the standard techniques. By exploring all possible executions of
an MPI program, MPI-SPIN can conclude, for example, that a program cannot
deadlock on any execution. If the program can deadlock, MPI-SPIN can exhibit
a trace showing exactly how the program fails, greatly facilitating debugging.

This tutorial will serve as an introduction to MPI-SPIN. Through a series
of examples and exercises, participants will learn to use MPI-SPIN to check for
deadlocks, race conditions, and discrepancies in the numerical computations per-
formed by MPI programs. The only prerequisites are familiarity with C and the
basic MPI operations; no prior verification experience is required. Participants
are encouraged to download and install MPI-SPIN before the tutorial, following
the instructions at http://vsl.cis.udel.edu/mpi-spin.

The tutorial is divided into four parts, each lasting approximately 45 minutes:
(1) introduction and tool demonstration, (2) language basics, (3) using MPI-
SPIN, and (4) verifying correctness of numerical computations.

1. Introduction and Demonstration. The introduction will begin with a
discussion of some of the most common problems plaguing developers of MPI
programs. In addition to the issues mentioned above, issues related to perfor-
mance, such as the question of whether or not it is safe to remove a particular
barrier statement from an MPI program, will also receive attention. The limita-
tions of testing and other dynamic methods will also be explored.

The basic tasks involved in model checking will then be introduced: the con-
struction of a model of the program being verified, the formulation of one or
more properties of the model, and the use of automated algorithmic techniques
for checking that every execution of the model satisfies the property. The limita-
tions of model checking will also be discussed; these include the state explosion
problem and the problem of accurately constructing appropriate models of pro-
grams. It will be emphasized that, while modeling requires a certain degree of

* This material is based upon work supported by the National Science Foundation
under Grant No. 0541035.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 13{14] 2007.
© Springer-Verlag Berlin Heidelberg 2007

http://www.cis.udel.edu/~siegel
http://vsl.cis.udel.edu/mpi-spin

14 S.F. Siegel

skill, it is not more difficult than programming and with a little practice most
MPI programmers can become very effective modelers.

The remainder of this part of the tutorial will consist of a tool demonstration,
which will also introduce the main example used throughout the tutorial, the
diffusion program.

2. Language Basics. Some knowledge of programming languages carries over
into modeling languages, but modeling differs in several significant ways. In this
part of the tutorial, the basic syntax and semantics of the MPI-SPIN input
language will be described in a progressive, methodical way. The description
will start with those syntactic elements dealing with process declaration and
management, then move on to variables and types, then expressions, and finally
the different types of statements provided by the language. Throughout, the
diffusion example will be used to illustrate the various language constructs.

3. Using MPI-Spin. This part will begin with a discussion of abstraction
and how the choice of appropriate abstractions can lead to models that are both
efficient and conservative. These notions will be defined precisely and illustrated
using diffusion and matmat, a program that computes the product of two
matrices using a master-slave pattern. In the latter example, the consequences
of using various abstractions for the variables in the program will be explored.
It will be shown that different choices are appropriate for verifying different
properties of matmat.

Once a model has been constructed, the MPI-SPIN tool itself must be exe-
cuted on that model. As is the case for any complex tool (such as a compiler),
there are many options, parameters, and flags available to the user. The most
commonly used options will be described and their effects demonstrated using
the examples introduced previously.

This will be followed by a “hands-on” exercise in which MPI-SPIN is used to
explore the consequences of modifications to the diffusion code.

4. Verifying Correctness of Numerical Computations. The fourth part of
the tutorial deals with a recent and exciting development in the field of model
checking for HPC: techniques using symbolic execution to verify properties of the
numerical computations carried out by parallel programs. These techniques are
supported in MPI-SPIN through an abstract datatype MPI_Symbolic together
with a number of operations on that type, such as SYM_add and SYM_multiply.
The idea is to model the inputs to the program as symbolic constants z; and
the output as a vector of symbolic expressions in the z;. The output vector can
be analyzed for a number of purposes. Most importantly, it can be compared
against the symbolic output vector produced by a trusted sequential version of
the program. In this way, model checking can be used to show that for all inputs,
and for all possible executions of the parallel program on the input, the parallel
program will produce the same results as the sequential one. This technique
will be illustrated using matmat and, if time permits, a more complex example
implementing the Gaussian elimination algorithm.

	Verifying Parallel Programs with MPI-Spin

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

