
ParaLEX: A Parallel Extension for the CPLEX
Mixed Integer Optimizer�

Yuji Shinano1 and Tetsuya Fujie2

1 Division of Systems and Information Technology, Institute of Symbiotic Science
and Technology, Tokyo University of Agriculture and Technology,

2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
yshinano@cc.tuat.ac.jp

2 School of Business Administration, University of Hyogo,
8-2-1, Gakuen-nishimachi, Nishi-ku, Kobe 651-2197, Japan

fujie@biz.u-hyogo.ac.jp

Abstract. The ILOG CPLEX Mixed Integer Optimizer is a state-of-
the-art solver for mixed integer programming. In this paper, we intro-
duce ParaLEX which realizes a master-worker parallelization specialized
for the solver on a PC cluster using MPI. To fully utilize the power of the
solver, the implementation exploits almost all functionality available in
it. Computational experiments are performed for MIPLIB instances on
a PC cluster composed of fifteen 3.4GHz pentiumD 950 (with 2G bytes
RAM) PCs (running a maximum of 30 CPLEX Mixed Integer Optimiz-
ers). The results show that ParaLEX is highly effective in accelerating
the solver for hard problem instances.

Keywords: Mixed Integer Programming, Master-Worker, Parallel
Branch-and-cut.

1 Introduction

The ILOG CPLEX Mixed Integer Optimizer [6] is one of the most successful
commercial codes for MIP (Mixed Integer Programming). MIP problem is to
optimize (minimize or maximize) a linear function subject to linear inequalities
and/or linear equalities with the restriction that some or all of the variables must
take integer values. MIP has a wide variety of industrial, business, science and
educational applications. In fact, recent remarkable progress of MIP optimizers,
including CPLEX, leads to the increased importance of MIP models. CPLEX
has continued to incorporate computational improvements into a branch-and-
cut implementation, which results an efficient and robust code. It involves both
standard and advanced techniques such as preprocessing, many kinds of cutting
planes, heuristics, and strong branching. Due to limited space, we omitted MIP-
related from this paper (see [8,11] for MIP models and algorithms). In [2], re-
cent software systems for MIP are introduced. Many researchers have developed
� This work was partially supported by MEXT in Japan through Grants-in-

Aid(18510118).

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 97–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

98 Y. Shinano and T. Fujie

parallelization frameworks of branch-and-bound and branch-and-cut algorithms,
including ALPS/BiCeOS, PICO, SYMPHONY, BCP, PUBB. See recent surveys
[3,4,9].

In this paper, we propose a master-worker parallelization of CPLEX, named
ParaLEX (Parallel extension for CPLEX MIP optimizer). The main feature of
our implementation is that it fully utilizes the power of CPLEX: The entire
search tree (or, branch-and-cut tree) produced by ParaLEX is composed of sub-
trees produced by CPLEX on master and workers. ParaLEX has a simpler struc-
ture than our previous work of a parallelization of CPLEX using the PUBB2
framework [10].

2 ParaLEX

In this section, we introduce ParaLEX briefly. We had three major goals for the
design of ParaLEX.

– Most of all the functionality of CPLEX must be available.
– Future versions of CPLEX must be “parallelizable” without any code mod-

ification needed.
– Parallel implementation must be as simple as possible.

To achieve these design goals, ParaLEX is

– composed of two types of solvers, each of which runs CPLEX with almost
full functionality,

– is implemented in C++ but the most primitive CPLEX Callable Library is
used, and

– is essentially a simple Master-Worker parallelization.

The branch-and-cut algorithm is an enumerative algorithm which repeatedly
partitions a given problem instance into several subproblems. The algorithm
therefore forms a tree called search tree or branch-and-cut tree. Subproblems
will be also referred to as nodes in the subsequent of this paper. Similarly, a
given problem instance will be also referred to as a root node. Next, we in-
troduce the notion of the ParaLEX instance which comprises a preprocessed
problem instance and global cuts applied to the root node. Preprocessing and
generation of global cuts (or, cutting planes), both of which are applied to the
root node, are quite effective in CPLEX in giving a tighter reformulation of
MIP even though they are time consuming. It is certain that, if we drop these
functionalities in parallelization, the solution time of MIP becomes greater than
that by a sequential CPLEX solver. On the other hand, if these functionalities
are performed from scratch on each PE (Processing Element), the parallelization
cannot achieve high performance in general. ParaLEX instances are introduced
based on the observation. A subproblem representation used in ParaLEX is the
difference between a node LP object in the branch callback routine of CPLEX
and the ParaLEX instance.

ParaLEX: A Parallel Extension for the CPLEX Mixed Integer Optimizer 99

�� ��������

	�
�� ����������

���������

��������

	�
�� ���

��������� ����

	�
�� ����

���

��� �

��������	

���
		����	
 ���
		����	

��	 ����	
 ��
��	����
	� ���	�
��� �		� 	��		�	�
�	 ����	 ��	����	�
�� �	
�����	
��
��		
 ��
��
����

���������

����

��������� ����

��������	 ��������	

Fig. 1. Initialization phase of ParaLEX

ParaLEX is implemented as a SPMD-type MPI program1 but is composed of
the following two types of objects (solvers) depending on the rank of the process,
which we call the PE rank.

MainSolver (PE rank = 0). This solver reads an original problem instance
data, and then performs preprocessing, and generates global cuts to create
the ParaLEX instance. It not only manages the PEs on the system but also
solves nodes by applying the CPXmipopt function of CPLEX. It keeps an
incumbent solution which is the best solution found so far among all the
PEs and, at the end of computation, outputs an optimal solution.

SubtreeSolver (PE rank ≥ 1). This solver first receives the ParaLEX inst-
ance from the MainSolver. It also receives nodes from the MainSolver or
other SubtreeSolvers. The nodes received are solved by CPLEX. If an im-
proved incumbent solution is found in this solver, the solution is sent to the
MainSolver.

At first, the MainSolver starts solving the ParaLEX instance by CPLEX. When
the number of unexplored nodes in the CPLEX environment has been exceeded
the threshold value given by the ParaLEX run-time parameter, the MainSolver
starts distributing its unexplored nodes one by one to SubtreeSolvers. In our
computational experiments reported in Section 3, we set the threshold parame-
ter as min{200, 5.0/(average time to compute one node in the sequential run)}.
Figure 1 shows the initialization phase.

When ParaLEX runs with several PEs, a search tree is partitioned into several
subtrees produced by the corresponding PEs. Each subtree is maintained in the
1 The Master-Worker program can also be implemented as an MPMD-type MPI pro-

gram. However, we have been familiar with an SPMD implementation due to the
requirement of MPI-1 functionality.

100 Y. Shinano and T. Fujie

CPLEX environment of the corresponding PE (MainSolver or SubtreeSolver).
In normal running situations, communications between the MainSolver and the
SubtreeSolver and between the SubtreeSolvers are done in the branch callback
routine of CPLEX. In this callback routine, the PE from which the callback is
called sends a node to a PE if necessary. The node is then solved as a problem
instance by CPLEX. Note that the node transferred is solved twice, once in
the sender as a node and once in the receiver as a root node. In the receiver
side, however, the root node is not solved from scratch, because its LP (Linear
Programming) basis generated in the sender side is also transferred and is used
as the starting basis. Though it is solved as a root node, it may be pruned
without any branch by trying to apply extra cuts to the node. Eventually, it
may lead to reduced total computation times.

The MainSolver maintains statuses of all the PEs. Each SubtreeSolver notifies
to the MainSolver the number of unexplored nodes in the CPLEX environment
and the best bound value among these nodes as the PE status, when the number
of nodes processed from the previous notification has been exceeded the threshold
value given by the ParaLEX run-time parameter. When a PE has finished solving
an assigned node, it becomes an idle solver. If the MainSolver detects an idle
solver, it sends a subproblem-transfer request message to a PE which has an
unexplored node with the best bound value by referring to the PE statuses.
There is a delay updating the PE statuses in the MainSolver. Therefore, the
PE which receives the subproblem-transfer request may not have enough many
nodes in its CPLEX environment. In such a case, the solver rejects the request.
If the solver has more nodes than the threshold value given by the ParaLEX
run-time parameter, it accepts the request and sends a node to the destination
PE that is indicated in the request message. Note that at most one node can be
transferred in one request message. Figure 2 shows a message sequence for the
subproblem transfer.

The node to be transferred can be selected in the selection callback routine
of CPLEX. When the node with the best bound transfer is specified in the
ParaLEX run-time parameter, the best bound node is selected in this callback
routine. The selection is done by a computationally intensive linear search of
the unexplored nodes in the CPLEX environment. On the other hand, when
a default selection is specified in this parameter, a node is selected according
to the selection rule specified in the CPLEX run-time parameter. In this case,
the unexplored nodes are arranged by the selection rule order in the CPLEX
environment, and thus selection does not take a long time.

When an improved solution is found in the MainSolver, its incumbent value
is sent to all the SubtreeSolvers. When an improved solution is found in the
SubtreeSolver, the incumbent solution is sent to the MainSolver and the Main-
Solver sends the incumbent value to all the SubtreeSolvers. Improved incumbent
solutions are detected in the incumbent callback routine of CPLEX and its no-
tification is done in the branch callback of CPLEX.

The CPXmipopt function that solves a problem instance is suspended af-
ter the number of nodes specified in the ParaLEX run-time parameter has

ParaLEX: A Parallel Extension for the CPLEX Mixed Integer Optimizer 101

�� ��������

	�
�� ����������

���������

��������

	�
�� ���

��������� ����

	�
�� ����

���

��� �

��������	

���
		����	
 ���
		����	

���������

����

��������� ����

������

�	 ��� �����������

������� ������� �������

�	 ������ ���������

�� ����������

�	 ��������� �� � � �����������

������� �������

!	"������ � ����������

Fig. 2. Message sequence for the subproblem transfer

been processed. When suspended time comes, the latest incumbent value is set
on CPLEX environment using the CPXsetdblparam function of CPLEX with
CPX PARAM CUTUP (if the problem is minimization) or with CPX PARAM CUTLO (if
the problem is maximization). After that, the suspension is resumed. Therefore,
there is a delay in the notification of the incumbent value.

3 Computational Experiments

In this section, we report our computational results. We used a PC cluster com-
posed of fifteen 3.4GHz pentiumD 950 (with 2Gbytes RAM) PCs connected
with Gigabit Ethernet, where 30 CPLEX Mixed Integer Optimizers (version
10.1) were available. The MPI library used is mpich2-1.0.5p4. Problem instances
were selected from the MIPLIB2003 library2[1] which is a standard test set to
evaluate the performance of MIP optimizers.

We first discuss the effects of the ParaLEX run-time parameters described in
Section 2.

– MIP emphasis indicator CPX PARAM MIPEMPHASIS (CPLEX) : This is a para-
meter prepared by CPLEX to tell the solver whether it should find a feasible
solution with high quality or prove the optimality. Among several options,
we selected the following ones, which are concerned with the optimality.

• CPX MIPEMPHASIS BALANCED : Balance optimality and integer feasibil-
ity (default parameter of CPLEX).

• CPX MIPEMPHASIS OPTIMALITY : Emphasizing optimality over feasibility.

2 URL: http://miplib.zib.de

102 Y. Shinano and T. Fujie

• CPX MIPEMPHASIS BESTBOUND : Emphasizing moving best bound.
– Subproblem transfer mode (ParaLEX) : This is a parameter for PEs to

transform a node.
• best bound transfer : The best bound node is selected.
• cplex default transfer : A node is selected according to the CPLEX

run-time parameter.
– CPXmipopt interval (ParaLEX) : This is a parameter for PEs to specify the

suspended time of CPXmipopt.
• fixed iter : Every time CPXmipopt terminates with the node limit of

this value to check a subproblem-request from an another PE. In this
paper, we set fixed iter = 20.

• fixed time : By a sequential run, we estimate the number of nodes
generated by CPXmipopt during the time fixed time. Then, this esti-
mated value is used for the node limit of CPXmipopt. In this paper, we
set fixed time = 1 (sec.).

Table 1 displays the parallel speedups obtained over 5 runs for the easy in-
stances fast0507 and mas74 with possible combinations of the following two pa-
rameters, the Subproblem transfer mode and the CPXmipopt interval. CPX PARAM
MIPEMPHASIS is set to CPX MIPEMPHASIS BALANCED. As the table shows, it is hard
to determine the most suitable combination of the parameter values. On the
other hand, cplex default transfer is competitive or better than best bound
transfer, which indicates that a PE which receives a transferred node should
continue the branch-and-cut search along with the parent PE (i.e., the PE which
sends the node). Hence, we selected cplex default transfer for the subsequent
computations. We observed that the effect of the CPXmipopt interval depends on
the behavior of a sequential run of CPLEX since computing time per node varies
considerably with problem instances. Hence, we decided to use fixed time.

Table 2 shows the results for the CPX PARAM MIPEMPHASIS parameter. The
results are obtained over 5 runs except that the noswot instance is examined
over 1 run. We note that the computing time of sequential run varies with this
parameter, and the most suitable parameter-choice also varies with the problem
instance. From the table, we see that superlinear speedup results are obtained
for several problem instances. In particular, noteworthy speedup is obtained
for the noswot instance. We observed that superlinear speedup occurs when a
good feasible solution is hardly obtained by CPLEX. In this case, a parallel
search could find a good feasible solution faster than a sequential search. Since
fast finding of a good feasible solution can lead to pruning of many unexplored
nodes, the parallel search could generate a smaller search tree than the sequential
search. Therefore, computation is performed to a smaller number of nodes by
many PEs and, as a result, the superlinear speedup is obtained. We also observe
that high speedup results are obtained for CPX MIPEMPHASIS OPTIMALITY.

Finally, we report the results for hard problem instances with 30 PEs. We
continue to use the parameters cplex default transfer and fixed time.
CPX PARAM MIPEMPHASIS was determined by an observation of the behavior of
upper and lower bounds within several hours from the beginning and by the
information in the MIPLIB 2003 website.

ParaLEX: A Parallel Extension for the CPLEX Mixed Integer Optimizer 103

Table 1. Parallel speedups for easy instances (CPX MIPEMPHASIS BALANCED)

of PEs
2 3 5 10 20 30

fast0507, best bound transfer, fixed iter : 880.61 sec. (sequential)
ave. 0.45 1.16 1.38 1.98 2.96 3.07
min. 0.45 1.13 1.37 1.97 2.93 3.04
max. 0.45 1.21 1.39 1.99 3.00 3.13
fast0507, best bound transfer, fixed time : 880.61 sec. (sequential)
ave. 0.99 1.04 1.33 3.07 3.56 3.71
min. 0.99 1.03 1.30 3.03 3.51 3.68
max. 0.99 1.05 1.42 3.21 3.63 3.78
fast0507, cplex default transfer, fixed iter : 880.61 sec. (sequential)
ave. 0.87 1.11 0.61 2.36 3.39 3.15
min. 0.76 1.10 0.61 2.30 3.37 3.13
max. 0.96 1.12 0.61 2.52 3.43 3.15
fast0507, cplex default transfer, fixed time : 880.61 sec. (sequential)
ave. 1.23 1.15 1.36 1.56 2.41 2.71
min. 1.23 1.04 1.31 1.51 2.11 2.65
max. 1.24 1.36 1.44 1.72 2.92 2.75
mas74, best bound transfer, fixed iter : 1292.99 sec. (sequential)
ave. 0.04 0.06 0.28 1.39 1.84 0.50
min. 0.03 0.05 0.21 1.29 1.19 0.34
max. 0.06 0.06 0.33 1.64 4.36 0.64
mas74, best bound transfer, fixed time : 1292.99 sec. (sequential)
ave. 0.12 0.04 0.25 1.40 3.21 0.35
min. 0.11 0.04 0.24 1.32 1.59 0.30
max. 0.12 0.04 0.27 1.45 5.40 0.39
mas74, cplex default transfer, fixed iter : 1292.99 sec. (sequential)
ave. 0.57 0.51 1.09 1.38 5.21 8.36
min. 0.46 0.34 0.84 1.11 4.43 7.14
max. 0.67 0.86 1.38 2.26 6.32 10.77
mas74, cplex default transfer, fixed time : 1292.99 sec. (sequential)
ave. 0.82 0.91 1.34 1.90 4.66 10.01
min. 0.80 0.78 1.22 1.79 4.39 8.62
max. 0.85 1.09 1.49 2.08 5.11 13.98

– a1c1s1 : 142960.36 (sec.) with CPX MIPEMPHASIS BESTBOUND
– arki001 : 3924.87 (sec.) with CPX MIPEMPHASIS OPTIMALITY
– glass4 : 2001.50 (sec.) with CPX MIPEMPHASIS BALANCED
– roll3000 : 173.73 (sec.) with CPX MIPEMPHASIS BESTBOUND
– atlanta-ip : 2512451.70 (sec.) with CPX MIPEMPHASIS BALANCED

These problem instances have been solved to optimality recently [5,7], and they
are still hard to be solved with sequential and default solver strategies. Actu-
ally, the roll3000 instances cannot be solved sequentially within 230464.65 sec.
with CPX MIPEMPHASIS BESTBOUND. 2213435 nodes remain unexplored. Hence,

104 Y. Shinano and T. Fujie

Table 2. Parallel speedups for easy instances (cplex default transfer, fixed time)

of PEs
2 3 5 10 20 30

fast0507, CPX MIPEMPHASIS BALANCED : 880.61 sec. (sequential)
ave. 1.23 1.15 1.36 1.56 2.41 2.71
min. 1.23 1.04 1.31 1.51 2.11 2.65
max. 1.24 1.36 1.44 1.72 2.92 2.75
fast0507, CPX MIPEMPHASIS OPTIMALITY : 10704.98 sec. (sequential)
ave. 9.70 14.19 14.93 15.53 15.52 15.53
min. 9.63 13.73 14.71 15.50 15.49 15.50
max. 9.77 14.65 15.15 15.56 15.53 15.56
fast0507, CPX MIPEMPHASIS BESTBOUND : 15860.45 sec. (sequential)
ave. 0.47 0.63 0.72 0.71 2.03 2.48
min. 0.44 0.48 0.72 0.68 2.01 2.45
max. 0.65 0.69 0.73 0.74 2.07 2.52
mas74, CPX MIPEMPHASIS BALANCED : 1292.99 sec. (sequential)
ave. 0.82 0.91 1.34 1.90 4.66 10.01
min. 0.80 0.78 1.22 1.79 4.39 8.62
max. 0.85 1.09 1.49 2.08 5.11 13.98
mas74, CPX MIPEMPHASIS OPTIMALITY : 1759.18 sec. (sequential)
ave. 1.48 1.52 1.47 2.14 7.48 11.23
min. 1.40 1.46 1.41 1.91 6.86 10.07
max. 1.56 1.64 1.62 2.27 7.86 13.09
mas74, CPX MIPEMPHASIS BESTBOUND : 3674.92 sec. (sequential)
ave. 1.02 0.96 0.94 1.02 1.01 1.04
min. 1.01 0.95 0.81 0.97 0.97 0.91
max. 1.03 0.98 1.04 1.06 1.05 1.21
harp2, CPX MIPEMPHASIS BALANCED : 5586.38 sec. (sequential)
ave. 8.93 5.15 8.28 8.98 13.96 24.94
min. 5.34 3.24 5.90 3.15 8.58 17.67
max. 13.70 22.00 13.55 35.23 24.76 40.86
harp2, CPX MIPEMPHASIS OPTIMALITY : 2014.80 sec. (sequential)
ave. 2.16 1.87 2.53 2.47 4.15 24.16
min. 1.53 1.10 2.05 1.61 2.49 20.61
max. 3.34 2.71 4.34 6.16 7.34 32.02
harp2, CPX MIPEMPHASIS BESTBOUND : 2974.34 sec. (sequential)
ave. 1.43 2.62 3.10 2.71 4.70 8.22
min. 1.24 1.88 2.12 1.78 3.11 4.03
max. 1.59 3.41 6.95 5.67 8.17 18.64
noswot, CPX MIPEMPHASIS OPTIMALITY : 38075.95 sec. (sequential)

− − − 27.01 119.61 276.03
noswot, CPX MIPEMPHASIS BESTBOUND : 193373.54 sec. (sequential)

− − − 10.58 17.44 71.02

ParaLEX: A Parallel Extension for the CPLEX Mixed Integer Optimizer 105

 10600

 10800

 11000

 11200

 11400

 11600

 11800

 12000

 0 18000 36000 54000 72000 90000 108000 126000 144000

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

time (sec.)

Fig. 3. Upper and lower bounds for the a1c1s1 instance

we have a superlinear speedup result for this problem instance. We remark that
R. Miyashiro reports that the roll3000 instance were solved in about half a day
with CPX MIPEMPHASIS BESTBOUND (see the MIPLIB2003 website). However, the
computing environment is different: He used a 32-bit PC while we used a 64-
bit machine, and the mipgap tolerances he used are different from ours (private
communication).

In Figure 3, we draw upper and lower bounds as functions of time for the
a1c1s1 instance.

4 Concluding Remarks

The development of ParaLEX is still in its preliminary stages. In the initial de-
sign of ParaLEX, we intended to transfer nodes to the SubtreeSolvers only from
the MainSolver or via the MainSolver to simplify the communication mecha-
nism. However, this did not work well in many cases. Hence, we modified the
transfer sequence as described in this paper. It is still a simple concept, but
its implementation becomes complicated. We aim to reconsider the mechanism
using what was learned in this development.

ParaLEX was originally developed by using CPLEX 9.0, but it could be com-
piled with CPLEX 10.1 without any modification of the codes related to the
CPLEX Callable Library. Using CPLEX 9.0, ParaLEX solved the rout instance
about 66 times faster than the cplex command of the version did. However,
CPLEX 10.1 can solve the instance about 22 times faster than CPLEX 9.0. We
observed that ParaLEX with CPLEX 10.1 is not so attractive for the rout in-
stance. To solve MIP problems faster, algorithmic improvements may be more
significant than that by using parallelization. On the other hand, it is still quite
hard to find a good feasible solution for some problem instances. If fast finding

106 Y. Shinano and T. Fujie

of a good feasible solution becomes possible by using new heuristic algorithms
or different search strategies, this could lead to a tremendous speedups.

However, ParaLEX is still very attractive to solve much harder instances for
CPLEX 10.1. The significance of our approach is that ParaLEX has a potential to
accelerate the latest version of CPLEX using parallelization. The parallel search
itself is a method to obtain a good feasible solution faster than the sequential
search. This is a reason why ParaLEX achieved superlinear speedups for several
problem instances. Moreover, by only using the latest version with parallelization
(note that we did not use any special structure of problem instances), several
of today’s hardest instances of MIPLIB were solved to optimality. Therefore,
ParaLEX is highly effective to solve hard problem instances.

References

1. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34, 361–372
(2006)

2. Atamtürk, A., Martin, W.P., Savelsbergh, M.W.P.: Integer-Programming Software
Systems. Ann. Oper. Res. 140, 67–124 (2005)

3. Bader, D.A., Hart, W.E., Phillips, C.A.: Parallel Algorithm Design for Branch
and Bound. In: Greenberg, H.J. (ed.) Tutorials on Emerging Methodologies and
Applications in Operations Research, ch. 5, Kluwer Academic Press, Dordrecht
(2004)

4. Crainic, T., Le Cun, B., Roucairol, C.: Parallel Branch-and-Bound Algorithms.
In: Talbi, E. (ed.) Parallel Combinatorial Optimization, ch. 1, Wiley, Chichester
(2006)

5. Ferris, M.: GAMS: Condor and the grid: Solving hard optimization problems in
parallel. Industrial and Systems Engineering, Lehigh University (2006)

6. ILOG CPLEX 10.1 User’s Manual, ILOG, Inc. (2006)
7. Laundy, R., Perregaard, M., Tavares, G., Tipi, H., Vazacopoulos, A.: Solving Hard

Mixed Integer Programming Problems with Xpress-MP: A MIPLIB 2003 Case
Study. Rutcor Research Report 2-2007, Rutgers University (2007)

8. Nemhauser, G.L., Wolsey, L.A.: Integer Programming and Combinatorial Opti-
mization. John Wiley & Sons, New York (1988)

9. Ralphs, T.K.: Parallel Branch and Cut. In: Talbi, E. (ed.) Parallel Combinatorial
Optimization, ch. 3, Wiley, Chichester (2006)

10. Shinano, Y., Fujie, T., Kounoike, Y.: Effectiveness of Parallelizing the ILOG-
CPLEX Mixed Integer Optimizer in the PUBB2 Framework. In: Kosch, H.,
Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 451–
460. Springer, Heidelberg (2003)

11. Wolsey, L.A.: Integer Programming. John Wiley & Sons, New York (1998)

	ParaLEX: A Parallel Extension for the CPLEX Mixed Integer Optimizer
	Introduction
	ParaLEX
	Computational Experiments
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

