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Abstract. We present a new, simple algorithmic idea for exploiting the
capability for bidirectional communication present in many modern in-
terconnects for the collective MPI operations broadcast, reduction and
scan. Our algorithms achieve up to twice the bandwidth of most previous
and commonly used algorithms. In particular, our algorithms for reduc-
tion and scan are the currently best known. Experiments on clusters
with Myrinet and InfiniBand interconnects show significant reductions
in running time for broadcast and reduction, for reduction even close to
the best possible factor of two.

1 Introduction

The Message Passing Interface (MPI) [12] offers a set of collective commu-
nication and computation operations that are eminently useful for expressing
parallel computations. It is therefore important that MPI libraries implement
these operations as efficiently as possible for the intended target architectures.
Hence, algorithms that can fully exploit the given communication capabilities are
needed. Consequently, recent years has seen a lot of activity on algorithms and
implementations for MPI collectives for different communication architectures,
see [3,8,10,13] to mention but a few.

In this paper we give new algorithms with implementations for three impor-
tant MPI collectives, namely MPI Bcast (broadcast), MPI Reduce (reduction to
root) and MPI Scan/MPI Exscan (parallel prefix). The new algorithms are able
to fully exploit bidirectional communication capabilities as offered by modern
interconnects like InfiniBand, Myrinet, Quadrics, and the NEC IXS, and thus in
contrast to many commonly used algorithms for these operations have the poten-
tial of achieving the full bandwidth offered by such interconnects. For broadcast
this has previously been achieved also by other algorithms [1,6,16], but these
are typically more complicated and do not extend to the reduction and paral-
lel prefix operations. We believe the results achieved for reduction and parallel
prefix to be the theoretically currently best known. The algorithms are still sim-
ple to implement, and have been implemented within the framework of NEC
proprietary MPI libraries.
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2 Two Pipelined Binary Trees Instead of One

To explain the new algorithm we focus on the MPI Bcast operation, and illustrate
the improvement achieved by comparing to a linear pipeline and a pipelined
binary tree. We let p denote the number of processors which are numbered from
0 to p−1, and m the size of the data to be broadcast from a given root processor
r. As in MPI Bcast we assume that all processors know p, r and m. We assume
that communication is homogeneous, one-ported, and bidirectional in the sense
that each processor can at the same time send a message to a processor and
receive a message from another, possibly different processor.

Assume first that p = 2h − 1 for some tree height h > 1. A binary tree
broadcast algorithm uses a balanced, ordered binary tree rooted at processor
r. To broadcast, the root sends its data to its left and right child processors,
and upon receiving data each processor which is not a leaf sends data to its
left and right child processors in that order. As can be seen the rightmost leaf
receives data at communication step 2h. Assuming that the time to transfer data
of size m is α + βm, the total broadcast time is 2h(α + βm). The binary tree
algorithm can be pipelined, and sending instead the m data as N blocks of size
m/N yields a broadcast time (for the rightmost leaf) of 2(h+N −1)(α+βm/N)
(even exploiting bidirectional communication: each interior processor receives
a new block from its parent at the same time as it sends a block to its right
child). Balancing the terms Nα and (h − 1)βm/N yields a best broadcast time
of 2(h−1)α+4

√
(h − 1)α

√
βm+2βm. This is roughly a factor of two from the

lower bound of min{αh, βm}.
Using instead a linear pipeline in which processor i receives a new block from

processor i − 1 and a the same time sends the previous blocks on to processor
i+1, a broadcast time (for the last processor) of (p−2)α+2

√
(h − 1)α

√
βm+βm

can be achieved. This algorithm has asymptotically optimal broadcast time βm
but at the cost of a large latency term (p − 2)α and is therefore interesting only
when m is large compared to p.

We are interested in algorithms that combine the low latency of the pipelined
binary tree and the optimal time achieved by the linear pipeline, while retaining
as far as possible the implementation simplicity of these algorithms (as well as
other properties such as low demands on bisection bandwidth, and embeddability
in non-homogeneous networks).

The problem with the pipelined binary tree algorithm is that the bidirec-
tional communication is only exploited in every second communication step for
the interior node processors and not at all for the root and leaf processors. In
particular, the leaves are only receiving blocks of data. We propose to use two
binary trees simultaneously in order to achieve a more balanced use of the com-
munication links. The two trees are constructed in such a way that the interior
nodes of one tree correspond to leaf nodes of the other. This allows us to take
full advantage of the bidirectional communication capabilities. In each commu-
nication step a processor receives a block from its parent in one of the two trees
and sends the previous block to one of its children in the tree in which it is an
interior node. To make this work efficiently, the task is to devise a construction
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of the two trees together with a schedule which determines for each time step1

from which parent a block is received and to which child the previous block is
sent so that each communication step consists in at most one send and at most
one receive operation for each processor.

For now we (w.l.o.g) assume that r = p−1 and construct the two binary trees
T1 and T2 over processors 0 . . . p − 2 as follows. Let 2h be the smallest power of
two larger or equal to p − 1 and let P = 2h − 1.
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Fig. 1. The two inorder binary trees T1 (top to bottom) and T2 (bottom to top) with
broadcast root r = 9 for p = 10. A 0/1 coloring is also shown.

1. Construct an inorder numbered balanced tree of size P , such that that the
leaves have even numbers 0, 2, . . . P − 2.

2. If P > p − 1 eliminate nodes starting from the highest numbered node u as
follows: if u is a leaf simply remove it; otherwise set the parent of u’s (only)
child to be the parent of u and remove u. This tree is T1.

3. Construct an inorder numbered balanced tree of size P .
4. Shift the tree one position to the left, e.g. rename node u to u − 1. Remove

the leftmost leaf −1. In this tree leaves have odd numbers 1, 3, . . ..
5. If P − 1 > p − 1 eliminate nodes from the right as in Step 2. This tree is T2.

To complete the construction for the broadcast algorithm, the roots of the two
trees are connected to the broadcast root node p − 1. An example of the con-
struction for p = 10 is shown in Figure 1. The construction obviously has the
desired property that leaves of T1 are interior nodes of T2 and vice versa.

To use the two trees for broadcast, the idea is to pipeline half the data through
T1, and the other half of the data through T2. With bidirectional communication
capabilities, the two pipelines can run concurrently, yielding a broadcast time of
2[2(h−1)α+4

√
(h − 1)α

√
βm/2+2βm/2] = 4(h−1)α+4

√
(h − 1)α

√
βm/2+

βm. This is half the time of the pipelined binary tree at the expense of only
twice the (still) logarithmic latency.
1 Note that no explicit global synchronization is necessary. Point-to-point communi-

cation suffices to implicitly synchronize the processors to the extent necessary.
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The left to right order of the children is not sufficient to avoid that a node in
the same communication step receives a block from both of its parents (which
would compromise the analysis and slow down the algorithm). We need an even-
odd (0/1) coloring of the parent to child edges without such conflicts. Even (0)
edges are then used in even communication steps, odd (1) edges in odd steps.
More precisely we need the following Lemma.

Lemma 1. The edges of T1 and T2 can be colored with colors 0 and 1 such that

1. no PE is connected to its parent nodes in T1 and T2 using edges of the same
color and

2. no PE is connected to its children nodes in T1 or T2 using edges of the same
color.

Proof. Consider the bipartite graph B = ({s0, . . . , sp−1} ∪ {r1, . . . , rp−1}, E)
where {si, rj} ∈ E iff j is a successor of i in T1 or T2. This graph models the
sender role of processor i with node si and the receiver role of processor i with
node ri. By the construction of T1 and T2, B has maximum degree two, i.e., B is
a collection of paths and even cycles. Hence, the edges of B can be two-colored
by just traversing these paths and cycles.

Computing the coloring as described in the proof can be done in O(p) steps. In
the appendix we outline how (with another construction of the two trees) each
processor i can compute all relevant information (neighbors in the trees, colors
of incident edges) in time O(log p) given only p and i.

2.1 Broadcast

If the broadcast root is not r = p − 1 as in the above, we simply renumber each
processor i to instead play the role of processor (i− (r +1)) mod p. To be useful
in MPI libraries the coloring should be done at communicator construction time
so that the coloring time is amortized over all subsequent broadcast operations
on the communicator.

For broadcast the idea of using two trees to improve bandwidth was previously
introduced in [5], but the need for coloring was not realized (due to the TCP/IP
setting of this work).

2.2 Reduction

Let ⊕ denote an associative (possibly commutative) binary operation, and let
processor i have a data vector mi of size m. The reduction to root operation
MPI Reduce computes ⊕p−1

i=0 mi and stores the result at the root processor r.
Assuming r = 0 or r = p−1, the two tree construction can be used for reduction
to root by reversing the flow of data from the leaves towards the root in both
of the trees. Since the trees are inorder numbered the reduction order can be
maintained such that only associativity of ⊕ is exploited. We have the following
Theorem.
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Theorem 1. For r = 0 or r = p − 1 reduction to root of data mi (each of size
m) can be done in communication time 4(h − 1)α + 4

√
(h − 1)α

√
βm/2 + βm.

The amount of data reduced per processor is 2m.

If the operator ⊕ is commutative the result can be achieved for any root r.

2.3 Scan

The (inclusive) parallel prefix operation MPI Scan computes ⊕j
i=0mi for each

processor j. Using an inorder binary tree parallel prefixes can be computed by
first performing an up-phase in which each interior node computes a partial sum
⊕r

i=� for left- and rightmost leaves � and r, followed by a down-phase in which
prefixes of the form ⊕�−1

i=0 are sent down the tree and allow each processor to
finish computing its parallel prefix. Both phases can be pipelined, and for each
N blocks can be completed in 2h − 1 + 2(N − 1) communication steps. This is
explained in more detail in [7,11]. With the two tree construction two up-phases
and two down-phases can take place simultaneously. This halves the number of
steps for N blocks for each phase. The total number of steps required for the
parallel prefix computation is therefore 4h − 2 + 2(N − 2). This is roughly two
thirds the 4h−2+3(N −1) steps required by the doubly pipelined parallel prefix
algorithm described in [11].

Theorem 2. The parallel prefix operation on data mi can be done in communi-
cation time 2((2h−3)+2

√
(2h − 3)α

√
βm/2+βm. The amount of data reduced

per processor is (at most) 3m.

3 Experimental Results

The two tree algorithms for MPI Bcast and MPI Reduce have been implemented
within proprietaryNEC MPI implementations. Experiments comparing the band-
width achieved with the new algorithms to other, commonly used broadcast and
reduction algorithms have been conducted on a small AMD Athlon based cluster
with Myrinet 2000 interconnect, and a larger Intel Xeon based InfiniBand cluster.
Bandwidth is computed as data size m divided by the time to complete for the
slowest process. Completion time is the smallest measured time (for the slowest
process) over a small number of repetitions. We give only results for the case with
one MPI process per node, thus the number of processors p equals the number of
nodes of the cluster.

3.1 Broadcast

We compare to the following algorithms:

– Circulant graphfirst presented in [16]. This algorithm has asymptotically opti-
mal completion time, and only half the latency of the two tree algorithm pre-
sented here, but is significantly more complex and requires a more involved
precomputation than the simple coloring needed for the two tree algorithm.
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– Scatter-allgather for broadcast [2] as developed in [14]. We also contrast to
the implementation of this algorithm in MVAPICH.

– Simple binomial tree as in the original MPICH implementation [4].
– Pipelined binary tree
– Linear pipeline
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Fig. 2. Broadcast algorithms on the AMD/Myrinet cluster, 28 nodes

Bandwidth results for the two systems are shown in Figure 2 and Figure 3. On
both systems the two tree algorithm asymptotically achieves the same bandwidth
as the optimal circulant graph algorithm, but can of course not compete for small
problems where the circulant graph algorithm degenerates into a binomial tree
which has only half the latency of the binary tree. Even for large m (up to
16MBytes) both algorithms fare better than the linear pipeline, although none
of the algorithms have reached their full bandwidth on the InfiniBand cluster. On
the Myrinet cluster the algorithms achieve more than 1.5 times the bandwidth
of the scatter-allgather and pipelined binary tree algorithms. For the Myrinet
cluster where we also compared to the simple binomial tree a factor 3 higher
bandwidth is achieved for 28 processors.

The two tree broadcast algorithm is a serious candidate for improving the broad-
cast bandwidth for large problems on bidirectional networks. It is arguably simpler
to implement than the optimal circulant graph algorithm [16], but have to be com-
bined with a binomial tree algorithm for small to medium sized problems. Being
a pipelined algorithm with small blocks of size Θ(

√
m) it is also well suited to im-

plementation on SMP clusters [15].

3.2 Reduction

We compare to the following algorithms:

– Improved butterfly [9]
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Fig. 3. Broadcast algorithms on the Xeon/InfiniBand cluster, 150 nodes

– Binomial tree
– Pipelined binary tree
– Linear pipeline

Bandwidth results for the two systems are shown in Figure 4 and Figure 5. The
two tree algorithm achieves about a factor 1.5 higher bandwidth than the second
best algorithm which is either the pipelined binary tree (on the Myrinet cluster)
or the butterfly (on the InfiniBand cluster). On both systems the linear pipeline
achieves an even higher bandwidth, though, but problem sizes have to be larger
than 1MByte (for p = 28 on the Myrinet cluster), or 16Mbyte (for p = 150 on
the InfiniBand cluster), respectively. For smaller problems the linear pipeline is
inferior and should not be used. On the InfiniBand cluster there is a considerable
difference of almost a factor 2 between the two implementations of the butterfly
algorithm (with the implementation of [9] being the faster). The sudden drop in
bandwidth for the butterfly algorithm on the Myrinet cluster is due to a protocol
change in the underlying point-to-point communication, but for this algorithm it
is difficult to avoid getting into the less suitable protocol domain. The pipelined
algorithms give full flexibility in the choice of block sizes and such effects can
thus better be countered.

3.3 Coloring

Table 1 compares the preprocessing times for a simple linear time implementa-
tion of two tree coloring and the O(p log p) time algorithm for computing the
block schedule required for the circulant graph algorithm from [16]. The color-
ing algorithm is always faster than the block scheduling algorithm. It is to be
expected that with the logarithmic time coloring algorithm, the speed difference
would become quite dramatic for large p. However, for currently used machine
sizes, both scheduling times are not a big issue when they are only needed once
for each communicator.
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Fig. 4. Reduction algorithms on the AMD/Myrinet cluster, 28 nodes

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

Size

Various MPI_Reduce Implementations, 150 nodes

MPI_Reduce (linear pipeline)
MPI_Reduce (MVAPICH butterfly)

MPI_Reduce (butterfly)
MPI_Reduce (two tree)

Fig. 5. Reduction algorithms on the Xeon/InfiniBand cluster, 150 nodes

Table 1. Computing times in microseconds on an AMD 2.1GHz Athlon processor for
the precomputation of double-tree coloring and block schedule

Processors Two tree 0/1-coloring Circulant graph block schedule
100 71.75 99.15

1000 443.37 1399.43
10000 13651.42 20042.28

100000 209919.33 248803.58
1000000 1990228.74 3074909.75



Full Bandwidth Broadcast, Reduction and Scan with Only Two Trees 25

4 Conclusion

We presented a new, simple algorithmic idea for broadcast, reduction and par-
allel prefix operations as found in MPI. The theoretical result and achieved per-
formance for MPI Bcast is similar to that achieved by other, recent, but more
complicated algorithms [16]. The theoretical results for reduction to root and
parallel prefix are presumably the best currently known, and the implementa-
tion of MPI Reduce show a significant improvement over several other algorithms.
We expect a similar result for the MPI Scan implementation.
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Logarithmic Time Scheduling Algorithm

The algorithm below assumes that p is even and T2 is the mirror image of T1.
The tree construction is a straight forward recursive algorithm. In the full paper
we prove the (non obvious) correctness of the simple coloring algorithm below.

Function inEdgeColor(p, i, h)
If i is the root of T1 Then Return 1
While i bitand 2h = 0 Do h++ –– compute height

i′:=
{

i − 2h if 2h+1 bitand i = 1 ∨ i + 2h > p
i + 2h otherwise

–– compute parent of i

Return inEdgeColor(p, i′, h) xor (p/2 mod 2) xor [i′ > i]
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