

Lecture Notes in Computer Science 4757
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Franck Cappello Thomas Herault
Jack Dongarra (Eds.)

Recent Advances in
Parallel Virtual Machine
and Message Passing Interface

14th European PVM/MPI Users’ Group Meeting
Paris, France, September 30 - October 3, 2007
Proceedings

13

Volume Editors

Franck Cappello
INRIA Futurs
LRI, Bat 490 University Paris South
91405 Orsay France
E-mail: franck.cappello@lri.fr

Thomas Herault
Universite Paris Sud-XI
Laboratoire de Recherche en Informatique
Bâtiment 490
91405 Orsay France
E-mail: thomas.herault@lri.fr

Jack Dongarra
University of Tennessee
Computer Science Department
1122 Volunteer Blvd, Knoxville, TN 37996-3450, USA
E-mail: dongarra@cs.utk.edu

Library of Congress Control Number: 2007935601

CR Subject Classification (1998): D.1.3, D.2.3, F.1.2, G.1.0, B.2.1, B.2.1, C.1.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-75415-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75415-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12168712 06/3180 5 4 3 2 1 0

Preface

Thirteen years after the publication of the first MPI (message passing interface)
specification and 17 years after the first published paper on PVM (parallel virtual
machine), MPI and PVM have emerged as standard programming environments
and continue to be the development environment of choice for a large variety of
applications, hardware platforms, and usage scenarios. There are many reasons
behind this success and one of them is certainly the strength of its community.

EuroPVM/MPI is a flagship conference for this community, established as the
premier international forum for researchers, users, and vendors to present their
latest advances in MPI and PVM. EuroPVM/MPI is the forum where funda-
mental aspects of message passing, implementations, standards, benchmarking,
performance, and new techniques are presented and discussed by researchers,
developers and users from academia and industry.

EuroPVM/MPI 2007 was organized by INRIA in Paris, September 29 to
October 3, 2007. This was the 14th issue of the conference, which takes place
each year at a different European location. Previous meetings were held in Bonn
(2006), Sorrento (2005), Budapest (2004), Venice (2003), Linz (2002), Santorini
(2001), Balatonfüred (2000), Barcelona (1999), Liverpool (1998), Krakow (1997),
Munich (1996), Lyon (1995), and Rome (1994).

The main topics of the meeting were collective operations, one-sided commu-
nication, parallel applications using the message passing paradigm, MPI stan-
dard extensions or evolution, fault tolerance, formal verification of MPI pro-
cesses, MPI-I/O, performance evaluation, and hierarchical infrastructures (par-
allel computers and Grids).

For this year’s conference, the Program Committee Co-chairs invited six out-
standing researchers to present lectures on different aspects of the message pass-
ing paradigm: Tony Hey, who co-authored the first draft for the MPI standard,
presented “MPI: Past, Present and Future,” Al Geist, one of the authors of PVM,
presented “Sustained PetaScale, the Next MPI Challenge,” Satoshi Matsuoka, a
pioneer of the Grid Computing, presented “The Tsubame Cluster Experience,”
Ewing Lusk, one of the leaders of MPICH, presented “New and Old Tools and
Programming Models for High-Performance Computing,” George Bosilca, one
of the leading members of OpenMPI, presented “The X-Scale Challenge,” and
Bernd Mohr, a pioneer in performance analysis tools for Parallel Computing,
presented “To Infinity and Beyond!?”.

In addition to the conference main track, the meeting featured the sixth
edition of the special session “ParSim 2007 – Current Trends in Numerical Sim-
ulation for Parallel Engineering Environments.” The conference also included
three tutorials, one on “Using MPI-2: A Problem-Based Approach” by William
Gropp and Ewing Lusk, the second by Stephen Siegel on “Verifying Parallel
Programs with MPI-Spin,” and the third by George Bosilca and Julien Langou
on “Advanced MPI Programming.”

VI Preface

Contributions to EuroPVM/MPI 2007 and the special session ParSim were
submitted in May and June, respectively. Out of the 68 submitted full papers,
40 were selected for presentation at the conference. The task of reviewing was
carried out smoothly within very strict time limits by a large Program Commit-
tee, which included members from most of the American and European groups
involved in MPI and PVM development, as well as from significant user commu-
nities. Almost all papers received four reviews, some even five, and none fewer
than three, which provided a solid basis for the Program Chairs to make the final
selection for the conference program. The result was a well-balanced, focused,
and high-quality program. Out of the accepted 40 papers, four were selected
as outstanding contributions to EuroPVM/MPI 2007, and were presented in
special, plenary sessions:

– “Full Bandwidth Broadcast, Reduction and Scan With Only Two Trees” by
Peter Sanders, Jochen Speck and Jesper Larsson Traff

– “Process Cooperation in Multiple Message Broadcast” by Bin Jia
– “Self-Consistent MPI Performance Requirements” by Jesper Larsson Traff,

William Gropp and Rajeev Thakur
– “Test Suite for Evaluating Performance of MPI Implementations That Sup-

port MPI THREAD MULTIPLE” by Rajeev Thakur and William Gropp

An important part of EuroPVM/MPI is the technically oriented vendor ses-
sion. At EuroPVM/MPI 2007 seven significant vendors of hardware and software
for high-performance computing (Microsoft, Hewlett Packard, IBM, CISCO,
Myricom, Intel, and Voltaire) presented their latest products and developments.

Information about the conference can be found at the conference Web site:
http://pvmmpi07.lri.fr/, which will be kept available.

The proceedings were edited by Franck Cappello and Thomas Herault. The
EuroPVM/MPI 2007 logo was designed by Ala Rezmerita.

The program and general chairs would like to thank all who contributed to
making EuroPVM/MPI 2007 a fruitful and stimulating meeting, be they tech-
nical paper or poster authors, Program Committee members, external referees,
participants, or sponsors. We would like to express our gratitude to all the mem-
bers of the Program Committee and the additional reviewers, who ensured the
high quality of Euro PVM/MPI 2007 with their careful work.

Finally, we would like to thank deeply INRIA and LRI for their support and
efforts in organizing this event. In particular, we would like to thank Catherine
Girard (INRIA), Nicole Lefevre (LRI), Gaelle Dorkeld (INRIA), and Chantal
Girodon (INRIA). A special thanks to all PhD students who helped in the lo-
gistics of the conference.

October 2007 Franck Cappello
Thomas Herault

Jack Dongarra

Organization

General Chair

Jack J. Dongarra University of Tennessee, Knoxville, USA

Program Chairs

Franck Cappello INRIA
Thomas Herault Université Paris Sud-XI / INRIA

Program Committee

George Almasi IBM, USA
Ranieri Baraglia CNUCE Institute, Italy
Richard Barrett ORNL, USA
Gil Bloch Mellanox, Israel
George Bosilca Univeristy of Tennesse, USA
Hakon Bugge Scali, Norway
Franck Cappello University of Paris-Sud, France
Barbara Chapman University of Houston, USA
Brian Coghlan Trinity College Dublin, Ireland
Yiannis Cotronis University of Athens, Greece
Jose Cunha New University of Lisbon, Portugal
Marco Danelutto University of Pisa, Italy
Luiz DeRose Cray, USA
Frederic Desprez INRIA, France
Erik D’Hollander University of Ghent, Belgium
Beniamino Di Martino Second University of Naples, Italy
Jack Dongarra University of Tennessee, USA
Edgar Gabriel University of Houston, USA
Al Geist OakRidge National Laboratory, USA
Patrick Geoffray Myricom, USA
Michael Gerndt Technical University of Munich, Germany
Andrzej Goscinski Deakin University, Australia
Richard L. Graham ORNL, USA
William Gropp Argonne National Laboratory, USA
Rolf Hempel DLR - German Aerospace Center, Germany

VIII Organization

Thomas Herault Université Paris Sud / INRIA, France
Yutaka Ishikawa University of Tokyo, Japan
Rainer Keller HLRS, Germany
Stefan Lankes RWTH Aachen, Germany
Erwin Laure CERN, Switzerland
Laurent Lefevre INRIA, France
Greg Lindahl Pathscale, USA
Thomas Ludwig University of Heidelberg, Germany
Ewing Rusty Lusk Argonne National Laboratory, USA
Tomas Margalef Universitat Autonoma de Barcelona, Spain
Jean-Franois Mhaut IMAG, France
Bernd Mohr Forschungszentrum Jülich, Germany
Matthias Müller Dresden University of Technology, Germany
Raymond Namyst University of Bordeaux, France
Salvatore Orlando University of Venice, Italy
Christian Perez IRISA, France
Fabrizio Petrini PNNL, USA
Neil Pundit Sandia National Laboratories, USA
Rolf Rabenseifner HLRS, Germany
Thomas Rauber Universität Bayreuth, Germany
Casiano Rodriguez-Leon University of La Laguna, Spain
Martin Schulz Lawrence Livermore National Laboratory, USA
Jeffrey Squyres Cisco, Inc., USA
Bernard Tourancheau University of Lyon / INRIA, France
Jesper Larsson Träff C&C Research Labs, NEC Europe, Germany
Carsten Trinitis Technische Universität München, Germany
Roland Wismueller University Siegen, Germany
Felix Wolf Forschungszentrum Jülich, Germany
Joachim Worringen C&C Research Labs, NEC Europe, Germany

External Referees

Toni Cortes Universitat Politècnica de Catalunya, Spain
Pierre Lemarinier Université Paris Sud/INRIA, France

Conference Organization

Franck Cappello INRIA
Gaelle Dorkeld INRIA
Catherine Girard INRIA
Chantal Girodon INRIA
Thomas Herault Université Paris Sud-XI / INRIA

Organization IX

Sponsors

The conference would have been significantly more expensive and much less
pleasant to organize without the generous support of our industrial sponsors.
Platinum and Gold level sponsors also gave talks at the vendor session on
their latest products in parallel systems and message passing softwares. Eu-
roPVM/MPI 2007 gratefully acknowledges the contributions of the sponsors to
a successful conference.

Platinum Level Sponsors

Gold Level Sponsors

Standard Level Sponsors

Table of Contents

Invited Talks

The X-Scale Challenge . 1
George Bosilca

Sustained Petascale: The Next MPI Challenge . 3
Al Geist

MPI: Past, Present and Future . 5
Tony Hey

New and Old Tools and Programming Models for High-Performance
Computing . 7

Ewing Lusk

The TSUBAME Cluster Experience a Year Later, and Onto Petascale
TSUBAME 2.0 . 8

Satoshi Matsuoka

To Infinity and Beyond?! On Scaling Performance Measurement and
Analysis Tools for Parallel Programming . 10

Bernd Mohr

Tutorials

Using MPI-2: A Problem-Based Approach . 12
William D. Gropp and Ewing Lusk

Verifying Parallel Programs with MPI-Spin . 13
Stephen F. Siegel

Advanced MPI Programming . 15
Julien Langou and George Bosilca

Outstanding Papers

Full Bandwidth Broadcast, Reduction and Scan with Only Two
Trees . 17

Peter Sanders, Jochen Speck, and Jesper Larsson Träff

Process Cooperation in Multiple Message Broadcast 27
Bin Jia

XII Table of Contents

Self-consistent MPI Performance Requirements . 36
Jesper Larsson Träff, William Gropp, and Rajeev Thakur

Test Suite for Evaluating Performance of MPI Implementations That
Support MPI THREAD MULTIPLE . 46

Rajeev Thakur and William Gropp

Applications

An Improved Parallel XSL-FO Rendering for Personalized
Documents . 56

Luiz Gustavo Fernandes, Thiago Nunes, Mateus Raeder,
Fabio Giannetti, Alexis Cabeda, and Guilherme Bedin

An Extensible Framework for Distributed Testing of MPI
Implementations . 64

Joshua Hursey, Ethan Mallove, Jeffrey M. Squyres, and
Andrew Lumsdaine

A Virtual Test Environment for MPI Development: Quick Answers to
Many Small Questions . 73

Wolfgang Schnerring, Christian Kauhaus, and Dietmar Fey

Multithreaded Tomographic Reconstruction . 81
José Antonio Álvarez, Javier Roca, and Jose Jesús Fernández

Parallelizing Dense Linear Algebra Operations with Task Queues in
llc . 89

Antonio J. Dorta, José M. Bad́ıa, Enrique S. Quintana-Ort́ı, and
Francisco de Sande

ParaLEX: A Parallel Extension for the CPLEX Mixed Integer
Optimizer . 97

Yuji Shinano and Tetsuya Fujie

Performance Analysis and Tuning of the XNS CFD Solver on
Blue Gene/L . 107

Brian J.N. Wylie, Markus Geimer, Mike Nicolai, and Markus Probst

(Sync|Async)+ MPI Search Engines . 117
Mauricio Marin and Veronica Gil Costa

Collective Operations

A Case for Standard Non-blocking Collective Operations 125
Torsten Hoefler, Prabhanjan Kambadur, Richard L. Graham,
Galen Shipman, and Andrew Lumsdaine

Table of Contents XIII

Optimization of Collective Communications in HeteroMPI 135
Alexey Lastovetsky, Maureen O’Flynn, and Vladimir Rychkov

Fault Tolerance

Low Cost Self-healing in MPI Applications . 144
Jacques A. da Silva and Vinod E.F. Rebello

Fault Tolerant File Models for MPI-IO Parallel File Systems 153
A. Calderón, F. Garćıa-Carballeira, Florin Isailǎ,
Rainer Keller, and Alexander Schulz

Library Internals

An Evaluation of Open MPI’s Matching Transport Layer on the Cray
XT . 161

Richard L. Graham, Ron Brightwell, Brian Barrett,
George Bosilca, and Jelena Pješivac-Grbović

Improving Reactivity and Communication Overlap in MPI Using a
Generic I/O Manager . 170

François Trahay, Alexandre Denis, Olivier Aumage, and
Raymond Namyst

Investigations on InfiniBand: Efficient Network Buffer Utilization at
Scale . 178

Galen M. Shipman, Ron Brightwell, Brian Barrett,
Jeffrey M. Squyres, and Gil Bloch

Message Passing on Hierarchical Machines and Grids

Improving MPI Support for Applications on Hierarchically Distributed
Resources . 187

Raúl López and Christian Pérez

MetaLoRaS: A Re-scheduling and Prediction MetaScheduler for
Non-dedicated Multiclusters . 195

J.Ll. Lérida, F. Solsona, F. Giné, M. Hanzich, J.R. Garćıa, and
P. Hernández

Using CMT in SCTP-Based MPI to Exploit Multiple Interfaces in
Cluster Nodes . 204

Brad Penoff, Mike Tsai, Janardhan Iyengar, and Alan Wagner

MPI-I/O

Analysis of the MPI-IO Optimization Levels with the PIOViz Jumpshot
Enhancement . 213

Thomas Ludwig, Stephan Krempel, Michael Kuhn,
Julian Kunkel, and Christian Lohse

XIV Table of Contents

Extending the MPI-2 Generalized Request Interface 223
Robert Latham, William Gropp, Robert Ross, and Rajeev Thakur

Transparent Log-Based Data Storage in MPI-IO Applications 233
Dries Kimpe, Rob Ross, Stefan Vandewalle, and Stefaan Poedts

One-Sided

Analysis of Implementation Options for MPI-2 One-Sided 242
Brian W. Barrett, Galen M. Shipman, and Andrew Lumsdaine

MPI-2 One-Sided Usage and Implementation for Read Modify Write
Operations: A Case Study with HPCC . 251

Gopalakrishnan Santhanaraman, Sundeep Narravula,
Amith.R. Mamidala, and Dhabaleswar K. Panda

RDMA in the SiCortex Cluster Systems . 260
Lawrence C. Stewart, David Gingold, Jud Leonard, and
Peter Watkins

Revealing the Performance of MPI RMA Implementations 272
William D. Gropp and Rajeev Thakur

PVM and Harness

Distributed Real-Time Computing with Harness . 281
Emanuele Di Saverio, Marco Cesati, Christian Di Biagio,
Guido Pennella, and Christian Engelmann

Frequent Itemset Minning with Trie Data Structure and Parallel
Execution with PVM . 289

Levent Guner and Pinar Senkul

Tools

Retrospect: Deterministic Replay of MPI Applications for Interactive
Distributed Debugging . 297

Aurelien Bouteiller, George Bosilca, and Jack Dongarra

Extended MPICC to Generate MPI Derived Datatypes from
C Datatypes Automatically . 307

Éric Renault

Timestamp Synchronization for Event Traces of Large-Scale
Message-Passing Applications . 315

Daniel Becker, Rolf Rabenseifner, and Felix Wolf

Table of Contents XV

Verification of Message Passing Programs

Verification of Halting Properties for MPI Programs Using Nonblocking
Operations . 326

Stephen F. Siegel and George S. Avrunin

Correctness Debugging of Message Passing Programs Using Model
Verification Techniques . 335

Robert Lovas and Peter Kacsuk

Practical Model-Checking Method for Verifying Correctness of MPI
Programs . 344

Salman Pervez, Ganesh Gopalakrishnan, Robert M. Kirby,
Robert Palmer, Rajeev Thakur, and William Gropp

ParSim

6th International Special Session on Current Trends in Numerical
Simulation for Parallel Engineering Environments: New Directions and
Work-in-Progress . 354

Martin Schulz and Carsten Trinitis

Gyrokinetic Semi-lagrangian Parallel Simulation Using a Hybrid
OpenMP/MPI Programming . 356

G. Latu, N. Crouseilles, V. Grandgirard, and E. Sonnendrücker

Automatic Parallelization of Object Oriented Models Executed with
Inline Solvers . 365

H̊akan Lundvall and Peter Fritzson

3D Parallel Elastodynamic Modeling of Large Subduction
Earthquakes . 373

Eduardo Cabrera, Mario Chavez, Raúl Madariaga,
Narciso Perea, and Marco Frisenda

Posters Abstracts

Virtual Parallel Machines Through Virtualization: Impact on MPI
Executions . 381

Benjamin Quetier, Thomas Herault, Vincent Neri, and
Franck Cappello

Seshat Collects MPI Traces: Extended Abstract . 384
Rolf Riesen

Dynamic Optimization of Load Balance in MPI Broadcast 387
Takesi Soga, Kouji Kurihara, Takeshi Nanri,
Motoyoshi Kurokawa, and Kazuaki Murakami

XVI Table of Contents

An Empirical Study of Optimization in Seamless Remote MPI-I/O for
Long Latency Network . 389

Yuichi Tsujita

Multithreaded and Distributed Simulation of Large Biological Neuronal
Networks . 391

Jochen M. Eppler, Hans E. Plesser, Abigail Morrison,
Markus Diesmann, and Marc-Oliver Gewaltig

Grid Services for MPI . 393
Camille Coti, Ala Rezmerita, Thomas Herault, and Franck Cappello

Author Index . 395

The X-Scale Challenge

George Bosilca

Innovative Computing Laboratory
Electrical Engineering and Computer Science Department,

University of Tennessee, Knoxville, TN, USA
bosilca@cs.utk.edu

The last few years have seen fast changes in the high performance computing
field. Some of these changes are related to the computer hardware and architec-
ture. Multi/many core architecture have become prevalent, with architectures
more or less exotic and heterogeneous. The overall theoretical computational
power of the new generation processors increased greatly, but their programma-
bility still lacks confidence. The changes in shape of the newest architectures has
come so rapidly, that we are still deficient in terms of high performance libraries
and applications in order to take advantage of all these new features.

At same time, application requirements grow at least at the same pace. Obvi-
ously, more computations require more data in order to feed the deepest proces-
sor pipelines. More data means either a faster access to the memory, or a faster
access to the network. The access speed to all types of memory (network in-
cluded) lags behind. As a result, extracting the right performance of the current
and next generation architectures is still (and will remain for a while) a challenge.
These two fields are coming along, providing some very interesting advances over
the last few years, but not at the speed of FLOPS. Moreover, the current ap-
proach indicates a higher degree of memory hierarchies (Non Uniform Memory
Accesses) that have already become another limiting factor for the application
performance increase.

Simultaneously, increasing the size of the parallel machines triggers an increase
in fault tolerance requirements. While the fault management and recovery topic
was thoughtfully studied over the last decade, the recent changes in the number
and distribution of the processor’s cores have raised some interesting questions.
While the question of which fault tolerant approach fits best to the peta-scale
environments is still debated, few of these approaches show interesting perfor-
mances at scale or a low degree of intrusion in the application code. Eventually,
the right answer might be somewhere in between a dynamic combination of
several of these methods, strictly based on the application’s properties and the
hardware environment.

As expected, all these changes guarantee a highly dynamic (and exciting from
a research point of view) high performance field over the next years. New math-
ematical algorithms will have to emerge in order to take advantage of these
unbalanced architectures. In addition, a tight collaboration between the appli-
cations and the high performance libraries developers is/will be critical to the
future of HPC fields.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 1–2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 G. Bosilca

How MPI will adapt to fit into this conflicting environment is still an open
question. Over the last few years, MPI has been a very successful parallel pro-
gramming paradigm, partially due to its apparent simplicity to express basic
message exchange patterns and partially to the fact that it increases the pro-
ductivity of the programmers and the parallel machines. Whatever the future
of MPI will be, these two features should stay an indispensable part of its new
direction of development.

Sustained Petascale: The Next MPI Challenge

Al Geist

Oak Ridge National Laboratory,
PO Box 2008,

Oak Ridge, TN 37831-6016
gst@ornl.gov

http://www.csm.ornl.gov/ geist

Abstract. The National Science Foundation in the USA has launched
an ambitious project to have a sustained petaflop computer in production
by 2011. For applications to run at a sustained petaflop, the computer
will need to have a peak performance of nearly 20 PF and millions of
threads. This talk will address the challenges MPI must face to be used
in sustained petascale applications.

The first significant challenge for MPI will be the radical change in su-
percomputer architectures over the next few years. The architectures are
shifting from using faster processors to using multi-core processors. It is
also speculated that the processors will be heterogeneous with the cores
on a single processor having different functions. This change in architec-
ture is as disruptive to software as the shift from vector to distributed
memory supercomputers 15 years ago. That change required complete
restructuring of scientific application codes and gave rise to the message
passing programming paradigm that drove the popularity of PVM and
MPI. Similarly, will these new architectures drive the creation of a new
programming paradigm or will MPI survive? Or perhaps MPI becomes
part of a new hybrid paradigm. These questions will be addressed in this
talk.

The configuration of these sustained petascale systems will require
applications to exploit million-way parallelism and significant reductions
in the bandwidth and amount of memory available to a million cores.
Most science teams have no idea how to efficiently scale their appli-
cations to this level and those teams that have thought about it be-
lieve that MPI may not be the right approach. Several talks at this
conference describe potential features and capabilities that may allow
MPI to be more effective for the reduced bandwidth and increased par-
allelism. The talk will point out these features and their associated
talks.

The third significant challenge for MPI will be fault tolerance and
fault recovery. The amount of memory in sustained petascale systems
makes writing out checkpoints impractical. While the need to restart an
application when 900,000 CPUs are still working fine but one has failed
is an inefficient use of resources. This talk will describe the latest ideas
for fault recovery in MPI and will describe a new idea called holistic fault
tolerance that is being investigated.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 3–4, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

4 A. Geist

Finally the talk will describe productivity issues for sustained petas-
cale application performance and their implications for MPI. The pro-
ductivity of scientists and engineers is based on how easy and how
fast they can solve a new science problem. Issues such as debugging,
performance tuning, scalability, validation, and knowledge discovery all
play a part. The talk will address the challenges MPI has in these
areas.

MPI: Past, Present and Future

Tony Hey

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052-6399

Abstract. This talk will trace the origins of MPI from the early message-
passing, distributed memory, parallel computers in the 1980’s, to today’s
parallel supercomputers. In these early days, parallel computing compa-
nies implemented proprietary message-passing libraries to support dis-
tributed memory parallel programs. At the time, there was also great
instability in the market and parallel computing companies could come
and go, with their demise taking with them a great deal of effort in
parallel programs written to their specific call specifications. In January
1992, Geoffrey Fox and Ken Kennedy had initiated a community effort
called Fortran D, a precursor to High Performance Fortran and a high
level data parallel language that compiled down to a distributed memory
architecture. In the event, HPF proved an over ambitious goal: what was
clearly achievable was a message-passing standard that enabled portabil-
ity across a variety of distributed memory message-passing machines. In
Europe, there was enthusiasm for PARMACS libraries: in the US, PVM
was gaining adherents for distributed computing. For these reasons, in
November 1992 Jack Dongarra and David Walker from the USA and Rolf
Hempel and Tony Hey from Europe wrote an initial draft of the MPI
standard. After a birds of a feather session at the 1992 Supercomputing
Conference, Bill Gropp and Rusty Lusk from Argonne volunteered to cre-
ate an open source implementation of the emerging MPI standard. This
proved crucial in accelerating take up of the community-based standard,
as did support from IBM, Intel and Meiko. Because of the need for the
MPI standardization process to converge to agreement in a little over a
year, the final agreed version of MPI contains more communication calls
than most users now require. A later standardization process increased
the functionally of MPI as MPI-2.

Where are we now? It is clear that MPI provides effective portability
for data parallel distributed memory message passing programs. More-
over, such MPI programs can scale to large numbers of processors. MPI
therefore still retains its appeal for closely coupled distributed computing
and the rise of HPC clusters as a local resource has made MPI ubiqui-
tous for serious parallel programmers. However, there are two trends that
may limit the usefulness of MPI in the future. The first is the rise of the
Web and of Web Services as a paradigm for distributed, service oriented
computing. In principle, using Web Service protocols that expose func-
tionality as a service offers the prospect of building more robust software
for distributed systems. The second trend is the move towards Multi-
Core processors as semi-conductor manufacturers are finding that they

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 5–6, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

6 T. Hey

can no longer increase the clock speed as the feature size continues to
shrink. Thus, although Moore’s Law, in the sense that the feature size
will continue to shrink, will continue for perhaps a decade or more, the
accompanying increase in speed as the clock speed is increased will no
longer be possible. For this reason, 2, 4 and 8 core chips, in which the
processor is replicated several times, are already becoming commonplace.
However, this means that any significant performance increase will de-
pend entirely on the programmer’s ability to exploit parallelism in their
applications. This talk will end by reviewing these trends and examining
the applicability of MPI in the future.

New and Old Tools and Programming Models

for High-Performance Computing

Ewing Lusk

Mathematics and Computer Science Division
Argonne National Laboratory

Abstract. The computing power to be made available to applications
in the coming years continues to increase. Hardware vendors anticipate
many cores on single chips and fast networks connecting them, enabling
a bewildering array of new approaches to parallel programming whose
superiority to ”classical” approaches (MPI) remains uncertain. One cer-
tainty is that application developers will need tools that promote un-
derstanding of their parallel codes. In this talk we will review a number
of approaches to application development, from Fortran77+MPI to the
relatively exotic DARPA ”high productivity” languages, together with a
sampling of tools, both new and old, that aid programmers in application
development.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, p. 7, 2007.
c© Argonne National Laboratory 2007

The TSUBAME Cluster Experience a Year

Later, and onto Petascale TSUBAME 2.0

Satoshi Matsuoka

Global Scientific Information and Computing Center
Tokyo Institute of Technology

2-12-1 Oo-Okayama, Meguro-ku, Tokyo 152-8550, Japan
matsu@is.titech.ac.jp

http://www.gsic.titech.ac.jp

TSUBAME (Tokyo-tech Supercomputer and Ubiquitously Accessible Mass-
storage Environment) is a new supercomputer installed at Tokyo Institute of
Technology in Tokyo, Japan, on April 1st, 2006, and as of 2007 facilitating over
85 Teraflops of peak compute power with acceleration, 22 Terabytes of mem-
ory, and 1.6 Petabytes of online disk storage, ”Fat Node” as well as fast paral-
lel interconnect—architectural principles based on traditional supercomputers.
TSUBAME became the fastest and largest supercomputer in Asia in terms of
performance, memory and storage capacity etc., starting from the 38.18 Ter-
aflops performance (7th overall) for the June 2006 Top500 announcement, and
taking the fastest in Asia crown for 3 consecutive Top500s in a row (currently at
48.88 Teraflops). At the same time, being PC architecture-based, TSUBAME,
being a large collection of PC servers, allows for offering much broader services
than traditional supercomputers resulting in a much wider user base, including
incubation of novice students. We term such architectural and operational prop-
erty of TSUBAME as “Everybody’s Supercomputer”, as opposed to traditional
supercomputers with very limited number of users, thus making their financial
justifications increasingly difficult.

Tsubame is a result of collaborative effort between the univerity academia at
the Tokyo Institute of Technology, and multiple industrial partners worldwide.
The contract was awarded to NEC, who jointly with Sun Microsystems built and
installed the entire machine, and also collaboratively provide on-site engineering
to operate the machine. Other commercial partners, such as AMD (Opteron
CPUs), Voltaire (Infiniband), ClearSpeed (Accelerator), CFS (LUSTRE parallel
filesystem), Novell (SUSE Linux), provided their own products and expertise
as building blocks. It was installed in just three weeks, and when its operation
started on April 3rd, 2006

Overall, TSUBAME’s installation space is approximately 350m2 including
the service area. There are approximately 80 compute/storage/network racks,
as well as 32 CRC units for cooling, that are laid out in a customized fashion
to maximize cooling efficiency, instead of the machine itself merely being placed
as an afterthought. This allows for considerable density and much better cool-
ing efficiency compared to other machines of similar performance. TSUBAME
occupies three rooms, where room-to-room Infiniband connections are achieved

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 8–9, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.gsic.titech.ac.jp

The TSUBAME Cluster Experience a Year Later 9

via optical fiber connection, whereas uses the CX4 copper cable within a room.
The total power consumption of TSUBAME is less than a Megawatt even at
peak load, making it one of the most power- and space- efficient genera-purpose
cluster supercomputer in the 100Teraflops performance scale.

TSUBAME’s lifetime was initially designed to be 4 years, until the spring
of 2010, with possible short-term extensions realized by incremental upgrades
to maintain the competitiveness of the machine. However, eventually the life-
time will expire, and we are already beginning the plans for designing the next
generaion “TSUBAME 2.0”. Here, simply waiting for processor improvements
relying on CPU vendors would not be sufficient to meet the growing compu-
tational demands, as a result of success of ”Everybody’s Supercomputer”, in
growth of the supercomputing community itself, not just the individual needs.
Another requirement is not to increase the power or the footprint requirement
of the current machine, resulting in a considerable challenge in supercomputer
design we are researching at the current moment.

One research investment we are conducting in this regard is in the area of
acceleration technologies, which will provide vastly improved Megaflops/Watt
ratio. In fact, even currently, two-fifth of TSUBAME’s peak computing power
is provided by the ClearSpeed Advanced Accelerator PCI-X board. However,
acceleration technology is still narrowly scoped in terms of its applicability and
user base; as such, we must generalize the use of acceleration via advances in
algorithm and software technologies, as well as design a machine with right mix
of various heterogeneous resources, including general-purpose processors, and
various types of accelerators. Another factor is storage, where multi-Petabyte
storage with high bandwidth must be accommodated. Challenges are in devising
more efficient cooling, better power control, etc. There are various challenges
abound, and it will require advances in multi-disciplinary fashion to meet this
challenge. This is not a mere pursuit of FLOPS, but rather, ”pursuit of FLOPS
usable by everyone”—a challenge worthwhile taking for those of us who are
computer scientists. And the challenge will continue beyond TSUBAME 2.0 for
many years to come.

To Infinity and Beyond?!

On Scaling Performance Measurement and
Analysis Tools for Parallel Programming

Bernd Mohr

Forschungszentrum Jülich
John-von-Neumann Institute for Computing

Virtual Institute for High-Productivity Supercomputing
Jülich, Germany

b.mohr@fz-juelich.de

Extended Abstract. The number of processor cores available in high-
performance computing systems is steadily increasing. A major factor is the
current trend to use multi-core and many-core processor chip architectures. In
the latest list of the TOP500 Supercomputer Sites[1], 63% of the systems listed
have more than 1024 processor cores and the average is about 2400.

While this promises ever more compute power and memory capacity to tackle
today’s complex simulation problems, it forces application developers to greatly
enhance the scalability of their codes to be able to exploit it. This often re-
quires new algorithms, methods or parallelization schemes to be developed as
many well-known and accepted techniques stop working at these large scales.
It starts with simple things like opening a file per process to save checkpoint
information, or collecting simulation results of the whole program via a gather
operation on a single process, or previously unimportant order O(n2)-type op-
erations which quickly dominate the execution. Unfortunately many of these
performance problems only show up when executing with very high numbers of
processes and cannot be easily diagnosed or predicted from measurements at
lower numbers. Detecting and diagnosing these performance and scalability bot-
tlenecks requires sophisticated performance instrumentation, measurement and
analysis tools. Simple tools typically scale very well but the information they
provide proves to be less and less useful at these high scales.

It is clear that tool developers face exactly the same problems as application
developers when enhancing their tools to handle and support highly scalable
applications. In this talk we discuss the major limitations of currently used
state-of-the-art performance measurement, analysis and visualisation methods
and tools. We give an overview about experiments, new approaches and first
results of performance tool projects which try to overcome these limits. This
includes new scalable and enhanced result visualization methods used in the
performance analysis framework TAU[2], methods to automatically extract key
execution phases from long traces used by the Paraver toolset[3], more scal-
able client/server tool architecture like the one of VampirServer[4] for scalable
timeline visualisations, and highly-parallel automatic performance bottleneck
searches utilized by the Scalasca toolset[5].

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 10–11, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Scaling Performance Measurement and Analysis Tools 11

References

1. TOP500 Supercomputer Sites (June 2007) → http://www.top500.org/
2. Shende, S., Malony, A.D.: TAU: The TAU Parallel Performance System. Interna-

tional Journal of High Performance Computing Applications 20(2), 287–331 (2006)
3. Labarta, J., Gimenez, J., Martinez, E., Gonzales, P., Servat, H., Llort, G., Aguilar,

X.: Scalability of visualization and tracing tools. In: Proceedings Parallel Computing
(ParCo) 2005, Malaga, Spain (2005)

4. Knüpfer, A., Brunst, H., Nagel, W.E.: High Performance Trace Visualization. In:
Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-
based Processing, Lugano, Switzerland (February 2005)

5. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: Scalable Parallel Trace-Based Per-
formance Analysis. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface. LNCS,
vol. 4192, pp. 303–312. Springer, Heidelberg (2006)

http://www.top500.org/

Using MPI-2: A Problem-Based Approach

William D. Gropp and Ewing Lusk

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA
{thakur,gropp}@mcs.anl.gov

Abstract. MPI-2 introduced many new capabilities, including dynamic
process management, one-sided communication, and parallel I/O. Im-
plementations of these features are becoming widespread. This tutorial
shows how to use these features by showing all of the steps involved in de-
signing, coding, and tuning solutions to specific problems. The problems
are chosen for their practical use in applications as well as for their ability
to illustrate specific MPI-2 topics. Complete examples that illustrate the
use of MPI one-sided communication and MPI parallel I/O will be dis-
cussed and full source code will be made available to the attendees. Each
example will include a hands-on lab session; these sessions will also in-
troduce the use of performance and correctness debugging tools that are
available for the MPI environment. Guidance on tuning MPI programs
will be included, with examples and data from MPI implementations on
a variety of parallel systems, including Sun, IBM, SGI, and clusters. Ex-
amples in C, Fortran, and C++ will be included. Familiarity with basic
MPI usage will be assumed.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, p. 12, 2007.
c© Argonne National Laboratory 2007

Verifying Parallel Programs with MPI-Spin

Stephen F. Siegel�

Verified Software Laboratory
Department of Computer and Information Sciences

University of Delaware
Newark, DE 19716, USA
siegel@cis.udel.edu

http://www.cis.udel.edu/∼siegel

Standard testing and debugging techniques are notoriously ineffective when ap-
plied to parallel programs, due to the numerous sources of nondeterminism arising
from parallelism. MPI-Spin, an extension of the model checker Spin for verifying
and debugging MPI-based parallel programs, overcomes many of the limitations
associated with the standard techniques. By exploring all possible executions of
an MPI program, MPI-Spin can conclude, for example, that a program cannot
deadlock on any execution. If the program can deadlock, MPI-Spin can exhibit
a trace showing exactly how the program fails, greatly facilitating debugging.

This tutorial will serve as an introduction to MPI-Spin. Through a series
of examples and exercises, participants will learn to use MPI-Spin to check for
deadlocks, race conditions, and discrepancies in the numerical computations per-
formed by MPI programs. The only prerequisites are familiarity with C and the
basic MPI operations; no prior verification experience is required. Participants
are encouraged to download and install MPI-Spin before the tutorial, following
the instructions at http://vsl.cis.udel.edu/mpi-spin.

The tutorial is divided into four parts, each lasting approximately 45 minutes:
(1) introduction and tool demonstration, (2) language basics, (3) using MPI-

Spin, and (4) verifying correctness of numerical computations.

1. Introduction and Demonstration. The introduction will begin with a
discussion of some of the most common problems plaguing developers of MPI
programs. In addition to the issues mentioned above, issues related to perfor-
mance, such as the question of whether or not it is safe to remove a particular
barrier statement from an MPI program, will also receive attention. The limita-
tions of testing and other dynamic methods will also be explored.

The basic tasks involved in model checking will then be introduced: the con-
struction of a model of the program being verified, the formulation of one or
more properties of the model, and the use of automated algorithmic techniques
for checking that every execution of the model satisfies the property. The limita-
tions of model checking will also be discussed; these include the state explosion
problem and the problem of accurately constructing appropriate models of pro-
grams. It will be emphasized that, while modeling requires a certain degree of
� This material is based upon work supported by the National Science Foundation
under Grant No. 0541035.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 13–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.cis.udel.edu/~siegel
http://vsl.cis.udel.edu/mpi-spin

14 S.F. Siegel

skill, it is not more difficult than programming and with a little practice most
MPI programmers can become very effective modelers.

The remainder of this part of the tutorial will consist of a tool demonstration,
which will also introduce the main example used throughout the tutorial, the
diffusion program.

2. Language Basics. Some knowledge of programming languages carries over
into modeling languages, but modeling differs in several significant ways. In this
part of the tutorial, the basic syntax and semantics of the MPI-Spin input
language will be described in a progressive, methodical way. The description
will start with those syntactic elements dealing with process declaration and
management, then move on to variables and types, then expressions, and finally
the different types of statements provided by the language. Throughout, the
diffusion example will be used to illustrate the various language constructs.

3. Using MPI-Spin. This part will begin with a discussion of abstraction
and how the choice of appropriate abstractions can lead to models that are both
efficient and conservative. These notions will be defined precisely and illustrated
using diffusion and matmat, a program that computes the product of two
matrices using a master-slave pattern. In the latter example, the consequences
of using various abstractions for the variables in the program will be explored.
It will be shown that different choices are appropriate for verifying different
properties of matmat.

Once a model has been constructed, the MPI-Spin tool itself must be exe-
cuted on that model. As is the case for any complex tool (such as a compiler),
there are many options, parameters, and flags available to the user. The most
commonly used options will be described and their effects demonstrated using
the examples introduced previously.

This will be followed by a “hands-on” exercise in which MPI-Spin is used to
explore the consequences of modifications to the diffusion code.

4. Verifying Correctness of Numerical Computations. The fourth part of
the tutorial deals with a recent and exciting development in the field of model
checking for HPC: techniques using symbolic execution to verify properties of the
numerical computations carried out by parallel programs. These techniques are
supported in MPI-Spin through an abstract datatype MPI_Symbolic together
with a number of operations on that type, such as SYM_add and SYM_multiply.
The idea is to model the inputs to the program as symbolic constants xi and
the output as a vector of symbolic expressions in the xi. The output vector can
be analyzed for a number of purposes. Most importantly, it can be compared
against the symbolic output vector produced by a trusted sequential version of
the program. In this way, model checking can be used to show that for all inputs,
and for all possible executions of the parallel program on the input, the parallel
program will produce the same results as the sequential one. This technique
will be illustrated using matmat and, if time permits, a more complex example
implementing the Gaussian elimination algorithm.

Advanced MPI Programming

Julien Langou1 and George Bosilca2

1 Department of Mathematical Sciences,
University of Colorado, Denver, CO, USA

langou@math.cudenver.edu
2 Innovative Computing Laboratory,

University of Tennessee, Knoxville, TN, USA
bosilca@cs.utk.edu

MPI provides a large range of features allowing various approaches for parallel
computing. This tutorial will present interesting features from the MPI-1 stan-
dard. These features extend the user knowledge about MPI way beyond the
few basic standard functions, giving them the opportunity to implement better,
simpler and potentially faster parallel algorithms. This tutorial will cover several
features from medium level to advanced of the MPI-1 standard to enable users
to exploit fully MPI.

Identifying the bottlenecks. Once an initial version of a parallel application
exists, the first question raised is how to improve it. While a large improve-
ment might come from algorithmic modifications, there is usually a large
space of improvements that might come from a correct useage of the MPI
specification. Before starting any optimization, the user has first to identify
the portions of the application that have the greatest potential for improve-
ment. The basic approach is to use the MPI profiling layer. Unfortunately,
this layer lacks the transparency required to show the effective data transfer
over the network, missing a rich set of information about the application
behavior. PERUSE is a more suitable layer to get access to all the hidden
information available from the MPI libraries.

Optimizing memory accesses. The MPI specification introduces a number
of functions for creating MPI data-types. These data-types represent mem-
ory layouts and can be used for message exchange; both in point-to-point
or collective communications. Choosing the right data-type is a performance
critical choice as its impact on the communication performance is tremen-
dous.

Advanced point-to-point communications. While blocking communica-
tions are easier to masterize, they introduce one synchronization stage per
communication which might be harmful to the overall performance of the
application. Moving away from this blocking model, by using non-blocking
point-to-point communications, usually allows the user for a better overlap
between multiple communications leading to a shorter execution time of the
parallel application.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 15–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

16 J. Langou and G. Bosilca

Collective communications. The collective communications provides a highly
optimized variety of algorithms for global data exchange between a set of MPI
processes. These algorithms cover some of the most generic collective commu-
nications such as broadcast, barrier, etc. Some of them (i.e. those derived from
the reduce operation) can be extended using user-provided operations.

For each item in the above list, we will provide attendees with small and
comprehensible example codes that have been identified as critical part of larger
relevant application codes. Starting from these small codes, we will show how to
exploit MPI functionallities in order to improve simplicity and efficiency of the
application. The example codes and their modifications will be made available
to the attendees.

Full Bandwidth Broadcast, Reduction and Scan

with Only Two Trees

Peter Sanders1, Jochen Speck1, and Jesper Larsson Träff2

1 Universität Karlsruhe
Am Fasanengarten 5, D-76131 Karlsruhe, Germany

sanders@ira.uka.de
2 NEC Laboratories Europe, NEC Europe Ltd.

Rathausallee 10, D-53757 Sankt Augustin, Germany
traff@ccrl-nece.de

Abstract. We present a new, simple algorithmic idea for exploiting the
capability for bidirectional communication present in many modern in-
terconnects for the collective MPI operations broadcast, reduction and
scan. Our algorithms achieve up to twice the bandwidth of most previous
and commonly used algorithms. In particular, our algorithms for reduc-
tion and scan are the currently best known. Experiments on clusters
with Myrinet and InfiniBand interconnects show significant reductions
in running time for broadcast and reduction, for reduction even close to
the best possible factor of two.

1 Introduction

The Message Passing Interface (MPI) [12] offers a set of collective commu-
nication and computation operations that are eminently useful for expressing
parallel computations. It is therefore important that MPI libraries implement
these operations as efficiently as possible for the intended target architectures.
Hence, algorithms that can fully exploit the given communication capabilities are
needed. Consequently, recent years has seen a lot of activity on algorithms and
implementations for MPI collectives for different communication architectures,
see [3,8,10,13] to mention but a few.

In this paper we give new algorithms with implementations for three impor-
tant MPI collectives, namely MPI Bcast (broadcast), MPI Reduce (reduction to
root) and MPI Scan/MPI Exscan (parallel prefix). The new algorithms are able
to fully exploit bidirectional communication capabilities as offered by modern
interconnects like InfiniBand, Myrinet, Quadrics, and the NEC IXS, and thus in
contrast to many commonly used algorithms for these operations have the poten-
tial of achieving the full bandwidth offered by such interconnects. For broadcast
this has previously been achieved also by other algorithms [1,6,16], but these
are typically more complicated and do not extend to the reduction and paral-
lel prefix operations. We believe the results achieved for reduction and parallel
prefix to be the theoretically currently best known. The algorithms are still sim-
ple to implement, and have been implemented within the framework of NEC
proprietary MPI libraries.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 17–26, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 P. Sanders, J. Speck, and J.L. Träff

2 Two Pipelined Binary Trees Instead of One

To explain the new algorithm we focus on the MPI Bcast operation, and illustrate
the improvement achieved by comparing to a linear pipeline and a pipelined
binary tree. We let p denote the number of processors which are numbered from
0 to p−1, and m the size of the data to be broadcast from a given root processor
r. As in MPI Bcast we assume that all processors know p, r and m. We assume
that communication is homogeneous, one-ported, and bidirectional in the sense
that each processor can at the same time send a message to a processor and
receive a message from another, possibly different processor.

Assume first that p = 2h − 1 for some tree height h > 1. A binary tree
broadcast algorithm uses a balanced, ordered binary tree rooted at processor
r. To broadcast, the root sends its data to its left and right child processors,
and upon receiving data each processor which is not a leaf sends data to its
left and right child processors in that order. As can be seen the rightmost leaf
receives data at communication step 2h. Assuming that the time to transfer data
of size m is α + βm, the total broadcast time is 2h(α + βm). The binary tree
algorithm can be pipelined, and sending instead the m data as N blocks of size
m/N yields a broadcast time (for the rightmost leaf) of 2(h+N−1)(α+βm/N)
(even exploiting bidirectional communication: each interior processor receives
a new block from its parent at the same time as it sends a block to its right
child). Balancing the terms Nα and (h− 1)βm/N yields a best broadcast time
of 2(h−1)α+4

√
(h− 1)α

√
βm+2βm. This is roughly a factor of two from the

lower bound of min{αh, βm}.
Using instead a linear pipeline in which processor i receives a new block from

processor i − 1 and a the same time sends the previous blocks on to processor
i+1, a broadcast time (for the last processor) of (p−2)α+2

√
(h− 1)α

√
βm+βm

can be achieved. This algorithm has asymptotically optimal broadcast time βm
but at the cost of a large latency term (p− 2)α and is therefore interesting only
when m is large compared to p.

We are interested in algorithms that combine the low latency of the pipelined
binary tree and the optimal time achieved by the linear pipeline, while retaining
as far as possible the implementation simplicity of these algorithms (as well as
other properties such as low demands on bisection bandwidth, and embeddability
in non-homogeneous networks).

The problem with the pipelined binary tree algorithm is that the bidirec-
tional communication is only exploited in every second communication step for
the interior node processors and not at all for the root and leaf processors. In
particular, the leaves are only receiving blocks of data. We propose to use two
binary trees simultaneously in order to achieve a more balanced use of the com-
munication links. The two trees are constructed in such a way that the interior
nodes of one tree correspond to leaf nodes of the other. This allows us to take
full advantage of the bidirectional communication capabilities. In each commu-
nication step a processor receives a block from its parent in one of the two trees
and sends the previous block to one of its children in the tree in which it is an
interior node. To make this work efficiently, the task is to devise a construction

Full Bandwidth Broadcast, Reduction and Scan with Only Two Trees 19

of the two trees together with a schedule which determines for each time step1

from which parent a block is received and to which child the previous block is
sent so that each communication step consists in at most one send and at most
one receive operation for each processor.

For now we (w.l.o.g) assume that r = p−1 and construct the two binary trees
T1 and T2 over processors 0 . . . p− 2 as follows. Let 2h be the smallest power of
two larger or equal to p− 1 and let P = 2h − 1.

1

1

1 00

0

0

0

0 1

11

1

9876543210

0

1

1

0 0

T2

T1

Processors

Fig. 1. The two inorder binary trees T1 (top to bottom) and T2 (bottom to top) with
broadcast root r = 9 for p = 10. A 0/1 coloring is also shown.

1. Construct an inorder numbered balanced tree of size P , such that that the
leaves have even numbers 0, 2, . . . P − 2.

2. If P > p− 1 eliminate nodes starting from the highest numbered node u as
follows: if u is a leaf simply remove it; otherwise set the parent of u’s (only)
child to be the parent of u and remove u. This tree is T1.

3. Construct an inorder numbered balanced tree of size P .
4. Shift the tree one position to the left, e.g. rename node u to u− 1. Remove

the leftmost leaf −1. In this tree leaves have odd numbers 1, 3,
5. If P − 1 > p− 1 eliminate nodes from the right as in Step 2. This tree is T2.

To complete the construction for the broadcast algorithm, the roots of the two
trees are connected to the broadcast root node p − 1. An example of the con-
struction for p = 10 is shown in Figure 1. The construction obviously has the
desired property that leaves of T1 are interior nodes of T2 and vice versa.

To use the two trees for broadcast, the idea is to pipeline half the data through
T1, and the other half of the data through T2. With bidirectional communication
capabilities, the two pipelines can run concurrently, yielding a broadcast time of
2[2(h−1)α+4

√
(h− 1)α

√
βm/2+2βm/2] = 4(h−1)α+4

√
(h− 1)α

√
βm/2+

βm. This is half the time of the pipelined binary tree at the expense of only
twice the (still) logarithmic latency.
1 Note that no explicit global synchronization is necessary. Point-to-point communi-
cation suffices to implicitly synchronize the processors to the extent necessary.

20 P. Sanders, J. Speck, and J.L. Träff

The left to right order of the children is not sufficient to avoid that a node in
the same communication step receives a block from both of its parents (which
would compromise the analysis and slow down the algorithm). We need an even-
odd (0/1) coloring of the parent to child edges without such conflicts. Even (0)
edges are then used in even communication steps, odd (1) edges in odd steps.
More precisely we need the following Lemma.

Lemma 1. The edges of T1 and T2 can be colored with colors 0 and 1 such that

1. no PE is connected to its parent nodes in T1 and T2 using edges of the same
color and

2. no PE is connected to its children nodes in T1 or T2 using edges of the same
color.

Proof. Consider the bipartite graph B = ({s0, . . . , sp−1} ∪ {r1, . . . , rp−1}, E)
where {si, rj} ∈ E iff j is a successor of i in T1 or T2. This graph models the
sender role of processor i with node si and the receiver role of processor i with
node ri. By the construction of T1 and T2, B has maximum degree two, i.e., B is
a collection of paths and even cycles. Hence, the edges of B can be two-colored
by just traversing these paths and cycles.

Computing the coloring as described in the proof can be done in O(p) steps. In
the appendix we outline how (with another construction of the two trees) each
processor i can compute all relevant information (neighbors in the trees, colors
of incident edges) in time O(log p) given only p and i.

2.1 Broadcast

If the broadcast root is not r = p− 1 as in the above, we simply renumber each
processor i to instead play the role of processor (i− (r +1)) mod p. To be useful
in MPI libraries the coloring should be done at communicator construction time
so that the coloring time is amortized over all subsequent broadcast operations
on the communicator.

For broadcast the idea of using two trees to improve bandwidth was previously
introduced in [5], but the need for coloring was not realized (due to the TCP/IP
setting of this work).

2.2 Reduction

Let ⊕ denote an associative (possibly commutative) binary operation, and let
processor i have a data vector mi of size m. The reduction to root operation
MPI Reduce computes ⊕p−1

i=0 mi and stores the result at the root processor r.
Assuming r = 0 or r = p−1, the two tree construction can be used for reduction
to root by reversing the flow of data from the leaves towards the root in both
of the trees. Since the trees are inorder numbered the reduction order can be
maintained such that only associativity of ⊕ is exploited. We have the following
Theorem.

Full Bandwidth Broadcast, Reduction and Scan with Only Two Trees 21

Theorem 1. For r = 0 or r = p− 1 reduction to root of data mi (each of size
m) can be done in communication time 4(h − 1)α + 4

√
(h− 1)α

√
βm/2 + βm.

The amount of data reduced per processor is 2m.

If the operator ⊕ is commutative the result can be achieved for any root r.

2.3 Scan

The (inclusive) parallel prefix operation MPI Scan computes ⊕j
i=0mi for each

processor j. Using an inorder binary tree parallel prefixes can be computed by
first performing an up-phase in which each interior node computes a partial sum
⊕r

i=� for left- and rightmost leaves � and r, followed by a down-phase in which
prefixes of the form ⊕�−1

i=0 are sent down the tree and allow each processor to
finish computing its parallel prefix. Both phases can be pipelined, and for each
N blocks can be completed in 2h− 1 + 2(N − 1) communication steps. This is
explained in more detail in [7,11]. With the two tree construction two up-phases
and two down-phases can take place simultaneously. This halves the number of
steps for N blocks for each phase. The total number of steps required for the
parallel prefix computation is therefore 4h− 2 + 2(N − 2). This is roughly two
thirds the 4h−2+3(N−1) steps required by the doubly pipelined parallel prefix
algorithm described in [11].

Theorem 2. The parallel prefix operation on data mi can be done in communi-
cation time 2((2h−3)+2

√
(2h− 3)α

√
βm/2+βm. The amount of data reduced

per processor is (at most) 3m.

3 Experimental Results

The two tree algorithms for MPI Bcast and MPI Reduce have been implemented
within proprietaryNEC MPI implementations. Experiments comparing the band-
width achieved with the new algorithms to other, commonly used broadcast and
reduction algorithms have been conducted on a small AMD Athlon based cluster
with Myrinet 2000 interconnect, and a larger Intel Xeon based InfiniBand cluster.
Bandwidth is computed as data size m divided by the time to complete for the
slowest process. Completion time is the smallest measured time (for the slowest
process) over a small number of repetitions. We give only results for the case with
one MPI process per node, thus the number of processors p equals the number of
nodes of the cluster.

3.1 Broadcast

We compare to the following algorithms:

– Circulant graphfirst presented in [16]. This algorithm has asymptotically opti-
mal completion time, and only half the latency of the two tree algorithm pre-
sented here, but is significantly more complex and requires a more involved
precomputation than the simple coloring needed for the two tree algorithm.

22 P. Sanders, J. Speck, and J.L. Träff

– Scatter-allgather for broadcast [2] as developed in [14]. We also contrast to
the implementation of this algorithm in MVAPICH.

– Simple binomial tree as in the original MPICH implementation [4].
– Pipelined binary tree
– Linear pipeline

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

Size

Various MPI_Bcast Implementations, 28 nodes

MPI_Bcast (binomial tree)
MPI_Bcast (linear pipeline)

MPI_Bcast (pipelined binary tree)
MPI_Bcast (Scatter+Allgather)

MPI_Bcast (circulant graph)
MPI_Bcast (two tree)

Fig. 2. Broadcast algorithms on the AMD/Myrinet cluster, 28 nodes

Bandwidth results for the two systems are shown in Figure 2 and Figure 3. On
both systems the two tree algorithm asymptotically achieves the same bandwidth
as the optimal circulant graph algorithm, but can of course not compete for small
problems where the circulant graph algorithm degenerates into a binomial tree
which has only half the latency of the binary tree. Even for large m (up to
16MBytes) both algorithms fare better than the linear pipeline, although none
of the algorithms have reached their full bandwidth on the InfiniBand cluster. On
the Myrinet cluster the algorithms achieve more than 1.5 times the bandwidth
of the scatter-allgather and pipelined binary tree algorithms. For the Myrinet
cluster where we also compared to the simple binomial tree a factor 3 higher
bandwidth is achieved for 28 processors.

The two tree broadcast algorithm is a serious candidate for improving the broad-
cast bandwidth for large problems on bidirectional networks. It is arguably simpler
to implement than the optimal circulant graph algorithm [16], but have to be com-
bined with a binomial tree algorithm for small to medium sized problems. Being
a pipelined algorithm with small blocks of size Θ(

√
m) it is also well suited to im-

plementation on SMP clusters [15].

3.2 Reduction

We compare to the following algorithms:

– Improved butterfly [9]

Full Bandwidth Broadcast, Reduction and Scan with Only Two Trees 23

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

Size

Various MPI_Bcast Implementations, 150 nodes

MPI_Bcast (linear pipeline)
MPI_Bcast (Scatter+Allgather)

MPI_Bcast (circulant)
MPI_Bcast (two tree)

Fig. 3. Broadcast algorithms on the Xeon/InfiniBand cluster, 150 nodes

– Binomial tree
– Pipelined binary tree
– Linear pipeline

Bandwidth results for the two systems are shown in Figure 4 and Figure 5. The
two tree algorithm achieves about a factor 1.5 higher bandwidth than the second
best algorithm which is either the pipelined binary tree (on the Myrinet cluster)
or the butterfly (on the InfiniBand cluster). On both systems the linear pipeline
achieves an even higher bandwidth, though, but problem sizes have to be larger
than 1MByte (for p = 28 on the Myrinet cluster), or 16Mbyte (for p = 150 on
the InfiniBand cluster), respectively. For smaller problems the linear pipeline is
inferior and should not be used. On the InfiniBand cluster there is a considerable
difference of almost a factor 2 between the two implementations of the butterfly
algorithm (with the implementation of [9] being the faster). The sudden drop in
bandwidth for the butterfly algorithm on the Myrinet cluster is due to a protocol
change in the underlying point-to-point communication, but for this algorithm it
is difficult to avoid getting into the less suitable protocol domain. The pipelined
algorithms give full flexibility in the choice of block sizes and such effects can
thus better be countered.

3.3 Coloring

Table 1 compares the preprocessing times for a simple linear time implementa-
tion of two tree coloring and the O(p log p) time algorithm for computing the
block schedule required for the circulant graph algorithm from [16]. The color-
ing algorithm is always faster than the block scheduling algorithm. It is to be
expected that with the logarithmic time coloring algorithm, the speed difference
would become quite dramatic for large p. However, for currently used machine
sizes, both scheduling times are not a big issue when they are only needed once
for each communicator.

24 P. Sanders, J. Speck, and J.L. Träff

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

Size

Various MPI_Reduce Implementations, 28 nodes

MPI_Reduce (binomial tree)
MPI_Reduce (linear pipeline)

MPI_Reduce (pipelined binary tree)
MPI_Reduce (butterfly)
MPI_Reduce (two tree)

Fig. 4. Reduction algorithms on the AMD/Myrinet cluster, 28 nodes

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

on
d)

Size

Various MPI_Reduce Implementations, 150 nodes

MPI_Reduce (linear pipeline)
MPI_Reduce (MVAPICH butterfly)

MPI_Reduce (butterfly)
MPI_Reduce (two tree)

Fig. 5. Reduction algorithms on the Xeon/InfiniBand cluster, 150 nodes

Table 1. Computing times in microseconds on an AMD 2.1GHz Athlon processor for
the precomputation of double-tree coloring and block schedule

Processors Two tree 0/1-coloring Circulant graph block schedule

100 71.75 99.15
1000 443.37 1399.43
10000 13651.42 20042.28
100000 209919.33 248803.58

1000000 1990228.74 3074909.75

Full Bandwidth Broadcast, Reduction and Scan with Only Two Trees 25

4 Conclusion

We presented a new, simple algorithmic idea for broadcast, reduction and par-
allel prefix operations as found in MPI. The theoretical result and achieved per-
formance for MPI Bcast is similar to that achieved by other, recent, but more
complicated algorithms [16]. The theoretical results for reduction to root and
parallel prefix are presumably the best currently known, and the implementa-
tion of MPI Reduce show a significant improvement over several other algorithms.
We expect a similar result for the MPI Scan implementation.

References

1. Bar-Noy, A., Kipnis, S., Schieber, B.: Optimal multiple message broadcasting in
telephone-like communication systems. Discrete Applied Mathematics 100(1–2),
1–15 (2000)

2. Barnett, M., Gupta, S., Payne, D.G., Schuler, L., van de Geijn, R., Watts, J.: Build-
ing a high-performance collective communication library. In: Supercomputing’94,
pp. 107–116 (1994)

3. Chan, E.W., Heimlich, M.F., Purkayastha, A., van de Geijn, R.A.: On optimizing
collective communication. In: IEEE International Conference on Cluster Comput-
ing CLUSTER 2004, IEEE Computer Society Press, Los Alamitos (2004)

4. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
lementation of the MPI message passing interface standard. Parallel Comput-
ing 22(6), 789–828 (1996)

5. Happe, H.H., Vinter, B.: Improving TCP/IP multicasting with message segmenta-
tion. In: Communicating Process Architectures (CPA 2005) (2005)

6. Kwon, O.-H., Chwa, K.-Y.: Multiple message broadcasting in communication net-
works. Networks 26, 253–261 (1995)

7. Mayr, E.W., Plaxton, C.G.: Pipelined parallel prefix computations, and sorting on
a pipelined hypercube. Journal of Parallel and Distributed Computing17, 374–380
(1993)

8. Pjesivac-Grbovic, J., Angskun, T., Bosilca, G., Fagg, G.E., Gabriel, E., Dongarra,
J.: Performance analysis of MPI collective operations. In: International Paral-
lel and Distributed Processing Symposium (IPDPS 2005), Workshop on Perfor-
mance Modeling, Evaluation, and Optimization of Parallel and Distributed Sys-
tems (PMEO) (2005)

9. Rabenseifner, R., Träff, J.L.: More efficient reduction algorithms for message-
passing parallel systems. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J.J. (eds.) Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface. LNCS,
vol. 3241, pp. 36–46. Springer, Heidelberg (2004)

10. Ritzdorf, H., Träff, J.L.: Collective operations in NEC’s high-performance MPI
libraries. In: International Parallel and Distributed Processing Symposium (IPDPS
2006), p. 100 (2006)

11. Sanders, P., Träff, J.L.: Parallel prefix (scan) algorithms for MPI. In: Mohr, B.,
Träff, J.L., Worringen, J., Dongarra, J. (eds.) Recent Advances in Parallel Virtual
Machine and Message Passing Interface. LNCS, vol. 4192, pp. 49–57. Springer,
Heidelberg (2006)

12. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI – The Com-
plete Reference, 2nd edn. The MPI Core, vol. 1. MIT Press, Cambridge (1998)

26 P. Sanders, J. Speck, and J.L. Träff

13. Thakur, R., Gropp, W.D., Rabenseifner, R.: Improving the performance of collec-
tive operations in MPICH. International Journal on High Performance Computing
Applications 19, 49–66 (2004)

14. Träff, J.L.: A simple work-optimal broadcast algorithm for message-passing parallel
systems. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J.J. (eds.) Recent Advances
in Parallel Virtual Machine and Message Passing Interface. LNCS, vol. 3241, pp.
173–180. Springer, Heidelberg (2004)

15. Träff, J.L., Ripke, A.: An optimal broadcast algorithm adapted to SMP-clusters.
In: Di Martino, B., Kranzlmüller, D., Dongarra, J.J. (eds.) Recent Advances in
Parallel Virtual Machine and Message Passing Interface. LNCS, vol. 3666, pp. 48–
56. Springer, Heidelberg (2005)

16. Träff, J.L., Ripke, A.: Optimal broadcast for fully connected networks. In: Yang,
L.T., Rana, O.F., Di Martino, B., Dongarra, J.J. (eds.) HPCC 2005. LNCS,
vol. 3726, pp. 45–56. Springer, Heidelberg (2005)

Logarithmic Time Scheduling Algorithm

The algorithm below assumes that p is even and T2 is the mirror image of T1.
The tree construction is a straight forward recursive algorithm. In the full paper
we prove the (non obvious) correctness of the simple coloring algorithm below.

Function inEdgeColor(p, i, h)
If i is the root of T1 Then Return 1
While i bitand 2h = 0 Do h++ –– compute height

i′:=
{

i− 2h if 2h+1 bitand i = 1 ∨ i + 2h > p
i + 2h otherwise

–– compute parent of i

Return inEdgeColor(p, i′, h) xor (p/2 mod 2) xor [i′ > i]

Process Cooperation in Multiple Message

Broadcast

Bin Jia

IBM Advanced Clustering Technology Team
Poughkeepsie, NY 12601

binj@us.ibm.com

Abstract. We present a process cooperation algorithm for broadcasting
m messages among n processes, m ≥ 1, n ≥ 1, in one-port fully-connected
communication systems. In this algorithm, the n processes are organized
into 2�log n� one- or two-process units. Messages are broadcast among the
units according to a basic communication schedule. Processes in each
two-process unit cooperate to carry out the basic schedule in a way that
at any step, either process has at most one message that the other has not
received. This algorithm completes the broadcast in �log n�+m−1 com-
munication steps, which is theoretically optimal. Empirical study shows
that it outperforms other widely used algorithms significantly when the
data to broadcast is large. Efficient communication schedule construc-
tion is a salient feature of this algorithm. Both the basic schedule and
the cooperation schedule are constructed in O(log n) bitwise operations
on process ranking.

Keywords: Broadcast, process cooperation, MPI collective communi-
cation, one-port fully-connected system, communication schedule.

1 Introduction

Broadcast is one of the most important communication primitives in parallel and
distributed systems. The MPI standard [11] defines a MPI BCAST interface for
single source broadcast operation, in which data available at the source process
is copied to all other processes. When the amount of data to broadcast is large,
the data is often split into multiple messages, which are pipelined individually
for better bandwidth utilization [2,12,1,3,4,13,9].

In this paper, we investigate the problem of broadcasting m messages among
n processes in one-port fully-connected communication systems, m ≥ 1, n ≥ 1.
Distances between any two processes in such a system are equal. Every process
can send a message to one process and receive a message from another process in
a single communication step. It takes the source process at minimum m−1 steps
before the last message can be sent and at least �log n	 steps are needed for the
last message to reach all processes. Therefore the lower bound on communication
steps is �log n	+m−1. A multiple message broadcast algorithm is optimal if the
number of steps it needs to complete the broadcast matches the lower bound.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 27–35, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

28 B. Jia

The communication schedule of a multiple message broadcast algorithm de-
fines which part of the data should a message contain; when to send the message;
and the source/destination processes of the message. Widely adopted algorithms
such as the pipelined chain algorithm and the pipelined binary tree algorithm have
simple communication schedules that can be easily determined on-line. Those
algorithms, however, are not optimal in the one-port fully-connected system.
Other algorithms [1,12] exploit complicated communication schedules to achieve
optimal broadcast time. Except for in special cases such as with power-of-two-
process [6,12], the schedule construction in those algorithms is so expensive that
it can only be done off-line, which hinders their incorporation in communication
libraries.

We present an optimal process cooperation algorithm with efficient com-
munication schedule construction. The algorithm includes a basic schedule for
broadcasting among power-of-two processes and a cooperation schedule. The n
processes are organized into n′ one-process or two-process units, where n′ =
2�log n�. Following the cooperation schedule, processes in each two-process unit
cooperate to carry out the basic schedule. At any step, either process has at
most one message that the other process has not received. This schedule can be
constructed efficiently on-line in only O(log n) bit operations on process ranking.
We have implemented and incorporated this algorithm in IBM Parallel Environ-
ment/MPI [5].

The rest of the paper is organized as follows. Section 2 overviews existing
multiple message broadcast algorithms. Section 3 describes the construction of
the basic schedule for power-of-two processes. Section 4 details the process coop-
eration in multiple message broadcast and its schedule construction. Correctness
proof is also given. Performance results of MPI BCAST implementation using
the process cooperation algorithm are reported and compared with other com-
monly used algorithms in Section 5. Section 6 concludes the paper and discusses
future study directions.

2 Related Work

A straightforward pipeline approach for multiple message broadcast is to arrange
the processes into a communication chain with the source at the head and
pipeline the messages along the chain. m + n− 2 steps are needed by this type
of pipelined chain algorithm to complete the broadcast since it takes a message
n − 1 steps to reach the end of the chain. The pipelined binary tree algorithm
reduces the n dependent cost to 2 × �log n	 steps by pipelining messages along
a binary tree of processes. However, it takes twice as many steps before the
source can send the last message. Total number of steps required is therefore
2 × (m + �log n	 − 1). Further tradeoff between the n dependent steps and the
m dependent steps can be made in the fractional tree algorithm [10] — a gen-
eralization of the pipelined chain and binary tree algorithms where node in the
binary tree is replaced by a chain of processes. In the scatter-allgather algo-
rithm [2], data is split into m = n messages. The messages are first scattered

Process Cooperation in Multiple Message Broadcast 29

among the processes and then each process collects the rest of the messages from
other processes through an allgather operation. Therefore it takes the scatter-
allgather algorithm 2×(n−1) steps to complete the broadcast. These algorithms
are easy to implement but not optimal.

Johnsson and Ho [6] have developed an Edge-disjoint Spanning Binomial Tree
(ESBT) algorithm for hypercube systems, which can be easily embedded into
fully-connected system. The processes are organized into log n binomial trees
each consisting of all n processes. The source sends messages to different trees
in a round robin fashion. Messages are passed along the trees in parallel and
free of edge contention. The algorithm is optimal but it only works when n is a
power-of-two.

Bar-Noy et al. [1] have sketched an optimal multiple message broadcast algo-
rithm for any number of processes as a by-product of their study on the problem
in fully-connected systems using the telephone model. The algorithm is com-
plicated when n is not a power-of-two since it is based on the more restrictive
telephone model. The focus of both their algorithm and the ESBT algorithm is
more on showing the existence of an optimal schedule but less attention is paid
to the practical implementation issue of how to construct the schedule.

Träff and Ripke [12] have recently extended the ESBT algorithm to any num-
ber of processes by allowing incomplete binomial trees and implemented the
algorithm in a MPI library. They have developed an O(n × log n) greedy algo-
rithm to construct the optimal but complex schedule. The construction is so
expensive that it can only be done off-line at MPI communicator creation and
cached with the MPI communicator object for use in MPI BCAST operation.

3 Efficient Schedule Construction for Power of Two
Processes

In this section, we describe an optimal algorithm for broadcasting m messages
among n = 2q processes. It will be used as the base for our process cooperation
algorithm. In the rest of the paper, the m messages are denoted by M0, M1, . . .
through Mm−1 and the n processes are ranked from 0 through n − 1. Without
loss of generality, let process 0 be the source process of the broadcast.

The algorithm begins with a setup phase consisting of q steps. Processes are
organized into a binomial tree rooted at process 0. Process 0 sends a distinct
message to one of its children during each step. Each of the other processes
forwards the message received from its parent to all its children. A pipeline phase
of m− 1 steps then follows. During each step, every process exchanges messages
with a partner process. Figure 1 (right) outlines the algorithm. This algorithm
works similarly to other known optimal algorithms [1,6,12]. Contribution of this
paper on this part is an efficient construction of the communication schedule,
referred to hereafter as the basic schedule.

To construct the basic schedule, r, s, t, Parent, Child and Partner in Figure 1
(right) need to be determined. Simple bit operations on process ranking are
performed for this purpose. Let (iq−1iq−2 . . . i0) be the binary representation of

30 B. Jia

100000

010 110

011

001 101

111

if i = 0 then
for j ← 0, q − 1 do

send Mj to Child(0, j)
otherwise

receive Mr from Parent(i)
for j ← 0, q − l − 2 do

send Mr to Child(i, j)
for j ← 0, m − 2 do

receive Mt from Partner(i, j);
send Ms to Partner(i, j)

Fig. 1. Left: example of process relationship, n = 8. Arrows point to children processes.
Dashed, solid and dotted lines denote partnership in pipeline step 0, 1, and 2 respec-
tively. Right: algorithm outline.

process i. r and l can be determined easily by scanning the binary representation
to locate the rightmost nonzero bit: ir and the leftmost nonzero bit: il. Also define
l = −1 for i = 0, parent and the j-th child of process i are given by:

Parent(i) = (iq−1 . . . il . . . i0) ,

Child(i, j) = (iq−1 . . . il+j+1 . . . i0) .

where 0 ≤ j ≤ q − l − 2.
Let e = (j mod q), partner process of process i during step j, 0 ≤ j ≤ m−2,

of the pipeline phase is given by: ,

Partner(i, j) = (iq−1 . . . ie . . . i0) .

Figure 1 (left) shows an example of the parent-children relationship in the setup
phase and the partnership in the pipeline phase.

For process 0, s = j +q and t = j. In fact, process 0’s receive and its partner’s
send can be replaced by no-op. To determine s and t for process i that is neither
the source nor its partner, we first build a q-element array Dis to store the
distance between each bit and the next nonzero bit to the left by scanning the
binary representation:

– let f = 1, g = 1.
– while g ≤ q − 1,

• if ig = 1, fill up a section of the array: Dis[h] = g − h for f − 1 ≤ h < g
and then let f = g + 1.

• let g = g + 1
– if iq−1 = 1, let Dis[q − 1] = r + 1. Otherwise, let Dis[h] = r + q − h for

f − 1 ≤ h ≤ q − 1.

Table 1 gives an example of the Dis array. Finally, at pipeline step j, if ie = 0,
then s = j + Dis[e], t = j; otherwise it is the other way around.

It can be seen that in the pipeline phase, the communication pattern repeats
every q steps and all processes have Mj after step j. When the schedule re-
quires a message labeled beyond m − 1 to be sent/received, message Mm−1 is

Process Cooperation in Multiple Message Broadcast 31

sent/received instead. The source injects Mm−1 during pipeline step m− 1 − q
and keeps doing the same thereafter. Therefore the broadcast completes in
log n+m−1 steps, matching the lower bound. Correctness of this basic schedule
can be proved by induction. Both the time and space complexity of building the
schedule are O(log n).

4 Process Cooperation

In this section, we extend the algorithm described in Section 3 to arbitrary
number of processes. The ides is to organize the n processes into n′ units each
having one or two processes, q = �log n� and n′ = 2q. The basic schedule is
applied to broadcast among the n′ units. Processes in each two-process unit
cooperate in: 1) sending/receiving messages to/from other units according to
the basic schedule; and 2) passing message between themselves such that at any
step, either process has at most one message that the other process has not
received. For this purpose, we construct a process cooperation schedule as an
extension to the basic schedule.

First we define a simple scheme to organize processes into units. For process
i, define:

Co(i) =

⎧
⎨

⎩

i− n′ + 1 i ≥ n′

n′ − 1 + i 0 < i ≤ n− n′

i otherwise

Rep(i) =
{

i i < n′

Co(i) otherwise

Also, the unit to which i belongs is defined as Unit(i). The first row of Table 2
shows an example of the scheme.

Process i participates in the setup phase if and only if i < n′. The setup phase
is the same as in the basic schedule. During each step of the pipeline phase, on
the other hand, Rep(i)’s binary representation is used in determining s, t, and
Partner(i, j), instead of i’s. Since Rep(i) < n′, q-bit binary representation is
still sufficient.

In a two-process unit, one process is called the output of the unit and the other
the input. The output sends a message to the partner unit and the input receives
a message from the partner unit. The input also passes a message it received
during the setup phase or previous steps of the pipeline phase to the output. In
a one-process unit, the process is both the input and the output. Process’s role
changes from step to step and its determination is the core of the cooperation
schedule.

Initial roles are assigned at the beginning of the pipeline phase: Rep(i) is the
output of Unit(i) and Co(Rep(i)) is the input. If bit (j mod q) in Rep(i)’s bi-
nary representation is equal to 1, the input and output of Unit(i) switch roles
after pipeline step j. Let Switch(i, j) be the number of nonzero bits in Rep(i)

32 B. Jia

Table 1. Example of Dis, and Switch, i = 406, n = 512

j 8 7 6 5 4 3 2 1 0

ij 1 1 0 0 1 0 1 1 0
Dis[j] 2 1 1 2 3 1 2 1 1

Switch(i, j) 5 4 3 3 3 2 2 1 0

between bit 0 and bit (j mod q), then according to the rule of role switch, the
number of role switches for process i before pipeline step j is:

u = Switch(i, q − 1)× �(j − 1)/q�+ Switch(i, (j − 1)) .

Process i’s role during step j is the same as its initial assignment if u is even. It
is the opposite if u is odd. Table 1 shows an example of the Switch function.

The input and output of the partner unit also need to be determined if the
partner unit is a two-process unit. Since there is only one bit difference between
the binary representations of Rep(i) and Partner(i, j), Partner(i, j)’s role dur-
ing pipeline step j is the same as its initial assignment if v = u + �(j − 1)/q� is
even. It is the opposite otherwise.

It can be seen that both the time and space complexity of the role determina-
tion are O(log n). With the roles determined, the pipeline phase of the process
cooperation algorithm can be described as follows:

for j ← 0, m− 2 do
output of Unit(i) sends Ms to input of Unit(Partner(i, j))
input of Unit(i) receives Mt from output of Unit(Partner(i, j))
if j > 0 and i �= Co(i) then

input of Unit(i) passes Mj−1 to the output of Unit(i)
if i �= Co(i) then

input of Unit(i) passes Mm−2 to the output of Unit(i)
output of Unit(i) passes Mm−1 to the input of Unit(i)

If a message labeled beyond m − 1 is scheduled in the above, Mm−1 is used
instead. Note that if n �= n′, an extra step is taken at the end of the pipeline
phase for the input and output to exchange Mm−2 and Mm−1. Therefore the
total number of steps needed by this algorithm is q + m = �log n	 + m − 1,
matching the lower bound on communication steps. Table 2 depicts an example
of the schedule.

The correctness of the cooperation schedule can be proved by showing that at
each pipeline step, every process has the message it needs to send according to
the schedule. Here we sketch a proof by induction on pipeline step j for process
i. The initial condition can be verified from the result of the setup phase and the
initial role assignment. Now suppose the cooperation schedule is correct before
step j = J of the pipeline phase. Without loss of generality, assume i = Rep(i)
and let e = (J mod q), f = ((J + 1) mod q). During step J, we have:

– if ie = 1, the output of Unit(i) has MJ and the input receives MJ+Dis[e]

from the partner unit. i and Co(i) switch roles after the step.

Process Cooperation in Multiple Message Broadcast 33

Table 2. Cooperation schedule, n = 6, m = 4, cooperative process units are {0},
{1, 4}, {2, 5}, {3}. The top row gives (i, Co(i), Rep(i)) tuple for each process. The
middle section shows the source and destination of each message during each step. The
right section of the table shows messages received by every process after each step.

phase step M0 M1 M2 M3 (1,4,1) (2,5,2) (3,3,3) (4,1,1) (5,2,2)

setup 0 0 → 1 M0

1 1 → 3 0 → 2 M0 M1 M0

pipeline 0 3 → 5 2 → 3 0 → 4 M0 M1 M0, M1 M2 M0

1 5 → 2 3 → 1 4 → 3 0 → 5 M0, M1 M1, M0 M0, M1, M2, M0 M0, M3

1 → 4 M2

2 1 → 4 3 → 2 5 → 3 M0, M1, M1, M0, M0, M1, M2, M0, M0, M3,
2 → 5 0 → 1 M3 M2 M2, M3 M1 M1

3 4 → 1 1 → 4 M0, M1, M1, M0, M0, M1, M2, M0, M0, M3,
2 → 5 5 → 2 M3, M2 M2, M3 M2, M3 M1, M3 M1, M2

– if ie = 0, the output of Unit(i) has MJ+Dis[e] and the input receives MJ

from the partner unit. There is no switch of roles after step J.

So before step J+1, the input of Unit(i) has MJ that it needs to send during step
J + 1. The output has MJ+Dis[e]. During step J + 1, it needs to send out MJ+1

or MJ+1+Dis[f], for if = 1 or if = 0 respectively. According to the construction
of Dis:

– if if = 0, then Dis[e] = Dis[f] + 1;
– otherwise Dis[e] = 1.

In either case, the output has the message it needs to send during step J + 1.
The correctness of the cooperation schedule follows.

5 Performance Studies

To evaluate the performance of the process cooperation algorithm, we have run
experiments of MPI BCAST implemented using the process cooperation algo-
rithm and three other widely used algorithms: binomial tree, pipelined chain
and pipelined binary tree. The experiment platform is a cluster of 32 IBM P5 [8]
nodes connected by IBM HPS switch [7]. For each of the pipelined algorithms,
we have experimented various m values and selected different m values that give
the best performance for different data size ranges.

Figure 2 compares the MPI BCAST implementations on 18 processes (left)
and 32 processes (right) respectively, running one process per node, for data
sizes up to 16MB. It can be seen that for large data sizes, the process coopera-
tion algorithm outperforms the other algorithms by large margins: as much as
50% improvement in bandwidth over the pipelined chain algorithm, 80% over
the pipelined binary tree algorithm and more than two times better than the
binomial tree algorithm. Figure 3 shows latency of 256KB (left) and 4MB (right)

34 B. Jia

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

ba
nd

w
id

th
 (

M
B

/s
)

message size (byte)

MPI_BCAST - 18 processes

pipelined chain
pipelined binary tree

binomial tree
process cooperation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

ba
nd

w
id

th
 (

M
B

/s
)

message size (byte)

MPI_BCAST - 32 processes

pipelined chain
pipelined binary tree

binomial tree
process cooperation

Fig. 2. Bandwidth comparison of MPI BCAST, on 18 (left) and 32 (right) processes,
data size up to 16MB

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35

tim
e

(u
s)

number of processes

MPI_BCAST - 256KB

pipelined chain
pipelined binary tree

binomial tree
process cooperation

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35

tim
e

(u
s)

number of processes

MPI_BCAST - 4MB

pipelined chain
pipelined binary tree

binomial tree
process cooperation

Fig. 3. Latency comparison of MPI BCAST on 2 to 32 processes, data sizes: 256KB
(left) and 4MB (right)

MPI BCAST on varying number of processes (one per node). The process coop-
eration algorithm shows the best scaling as number of processes increases.

The overall results demonstrate performance trends similar to those reported
in [12], which is expected since the communication schedules constructed by the
process cooperation algorithm and the algorithm in [12] are both optimal. The
O(log n) schedule construction of the process cooperation algorithm, however, is
more efficient than the O(n× log n) schedule construction in [12].

6 Conclusion and Future Studies

In this paper, we present a process cooperation algorithm for multiple message
broadcast. This algorithm is optimal in one-port fully-connected systems. It
provides a feasible and efficient solution to the practical implementation issue of
on-line communication schedule construction in communication libraries, such as
MPI. We have implemented and incorporated the process cooperation algorithm
in IBM Parallel Environment/MPI.

On fully-connected system, the idea of process cooperation can be extended to
multi-port communication models. We have developed new multi-port multiple

Process Cooperation in Multiple Message Broadcast 35

message broadcast algorithm that is theoretically better than known algorithms
on arbitrary number of processes. Further performance study on multi-port
broadcast will be conducted. We also plan to investigate the effectiveness of
process cooperation in communication models that are more realistic for short
messages.

References

1. Bar-Noy, A., Kipnis, S., Schieber, B.: Optimal multiple message broadcasting in
telephone-like communication systems. In: Proceedings of the 6th Symposium on
Parallel and Distributed Processing, IEEE, Los Alamitos (1996)

2. Barnett, M., Gupta, S., Payne, D., Shuler, L., van de Geijn, R., Watts, J.: In-
terprocessor collective communication library (intercom). In: Proceedings of the
Scalable High Performance Computing Conference 1994 (1994)

3. Beaumont, O., Legrand, A., Marchal, L., Robert, Y.: Pipelining broadcasts on
heterogeneous platforms. In: Proceedings of 18th IEEE International Parallel and
Distributed Processing Symposium IPDPS04, IEEE Computer Society Press, Los
Alamitos (2004)

4. Chan, E., Heimlich, M., Purkayastha, A., Van de Geijn, R.: On optimizing collective
communication. In: Proceedings of 2004 IEEE International Conference on Cluster
Computing, IEEE Computer Society Press, Los Alamitos (2004)

5. IBM PE for AIX 5L V4.3: MPI Programming Guide http://publib.boulder.
ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.pe.
doc/pebooks.html

6. Johnsson, S., Ho, C.T.: Optimum broadcasting and personalized communication
in hypercubes. IEEE Transactions on Computers 38(9), 1249–1268 (1989)

7. Johnston, F., King-Smith, B.: Ibm pseries high performance switch. Technical re-
port, IBM System and Technology Group (2006)

8. IBM System p5 UNIX servers www.ibm.com/systems/p/
9. Patarasuk, P., Faraj, A., Yuan, X.: Pipelined broadcast on ethernet swtiched clus-

ters. In: Proceedings of the 20th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), IEEE Computer Society Press, Los Alamitos
(2006)

10. Sanders, P., Sibeyn, J.F.: A bandwidth latency tradeoff for broadcast and reduc-
tion. In: Bode, A., Ludwig, T., Karl, W.C., Wismüller, R. (eds.) Euro-Par 2000.
LNCS, vol. 1900, pp. 918–926. Springer, Heidelberg (2000)

11. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI – The Com-
plete Reference, 2nd edn. The MPI Core, vol. 1. MIT Press, Cambridge (1998)

12. Träff, J., Ripke, A.: Optimal broadcast for fully connected networks. In: Yang, L.T.,
Rana, O.F., Di Martino, B., Dongarra, J.J. (eds.) HPCC 2005. LNCS, vol. 3726,
pp. 45–56. Springer, Heidelberg (2005)

13. Worringen, J.: Pipelining and overlapping for mpi collective operations. In: 28th
Annual IEEE International Conference for Local Computer Networks (LCN03),
IEEE Computer Society Press, Los Alamitos (2003)

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.pe.doc/pebooks.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.pe.doc/pebooks.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.pe.doc/pebooks.html
www.ibm.com/systems/p/

Self-consistent MPI Performance Requirements�

Jesper Larsson Träff1, William Gropp2, and Rajeev Thakur2

1 NEC Laboratories Europe, NEC Europe Ltd.
Rathausallee 10, D-53757 Sankt Augustin, Germany

traff@ccrl-nece.de
2 Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439, USA

{gropp,thakur}@mcs.anl.gov

Abstract. The MPI Standard does not make any performance guaran-
tees, but users expect (and like) MPI implementations to deliver good
performance. A common-sense expectation of performance is that an
MPI function should perform no worse than a combination of other MPI
functions that can implement the same functionality. In this paper, we
formulate some performance requirements and conditions that good MPI
implementations can be expected to fulfill by relating aspects of the MPI
standard to each other. Such a performance formulation could be used by
benchmarks and tools, such as SKaMPI and Perfbase, to automatically
verify whether a given MPI implementation fulfills basic performance re-
quirements. We present examples where some of these requirements are
not satisfied, demonstrating that there remains room for improvement
in MPI implementations.

1 Introduction

For good reasons MPI (the Message Passing Interface) [4,9] comes without a
performance model and, apart from some “advice to implementers,” without
any requirements or recommendations as to what a good implementation should
satisfy regarding performance. The main reasons are, of course, that the imple-
mentability of the MPI standard should not be restricted to systems with specific
interconnect capabilities and that implementers should be given maximum free-
dom in how to realize the various MPI constructs. The widespread use of MPI
over an extremely wide range of systems, as well as the many existing and quite
different implementations of the standard, show that this was a wise decision.

On the other hand, for the analysis and performance prediction of applica-
tions, a performance model is needed. Abstract models such as LogP [3] and

� This work was supported in part by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 36–45, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Self-consistent MPI Performance Requirements 37

BSP [13] tend to be too complex (for full applications), too limited, or too ab-
stract to have predictive power. MPI provides much more flexible (but also much
more complex) modes of communication than catered to in these models.

An alternative is to use MPI itself as a model and analyze applications in
terms of certain basic MPI primitives. This may work well for restricted usages
of MPI to, say, the MPI collectives, but full MPI is probably too large to be a
tractable model for performance analysis and prediction.

A related consideration is a hard-to-quantify desire for performance porta-
bility—the desire that an application should, in some qualitative sense, behave
the same when ported to a new system or linked with a different MPI library.
Detailed, public benchmarks of MPI constructs can help in translating the per-
formance of an application on one system and MPI library to another system
with another MPI library [8]. Accurate performance models would also facilitate
translation between systems and MPI libraries, but in their absence simple MPI-
intrinsic requirements to MPI implementations might serve to guard against the
most unpleasant surprises.

MPI has many ways of expressing the same communication (patterns), with
varying degrees of generality and freedom for the application programmer. This
kind of universality makes it possible to relate aspects of MPI to each other
also in terms of the expected performance. This is utilized already in the MPI
definition itself, where certain MPI functions are explained in a semi-formal way
in terms of other MPI functions.

The purpose of this paper is to discuss whether it is possible, sensible, and
desirable to formulate system-independent, but MPI-intrinsic performance re-
quirements that a “good” MPI implementation should fulfill. Such requirements
should not make any commitments to particular system capabilities but would
enforce a high degree of performance consistency of an MPI implementation. For
example, similar optimizations would have to be done for collective operations
that are interlinked through such performance rules. Furthermore, such rules,
even if relatively trivial, would provide a kind of “sanity check” of an MPI im-
plementation, especially if they could be checked automatically. In this paper, we
formulate a number of MPI-intrinsic performance requirements by semi-formally
relating different aspects of the MPI standard to each other, which we refer to
as self-consistent performance requirements. By their very nature the rules can
be used only to ensure consistency—a trivial, bad MPI implementation could
fulfill them as well as a carefully tuned library.

Related work includes quality of service for numerical library components
[5,6]. Because of the complexity of these components, it is not possible to provide
the sort of definitive ordering that we propose for MPI communications.

2 General Rules and Notation

We first formulate and discuss a number of general self-consistent MPI perfor-
mance requirements, presupposing reasonable familiarity with MPI. We consider
the following relationships (metarules) between MPI routines:

38 J.L. Träff, W. Gropp, and R. Thakur

1. Replacing all communication with the appropriate use of MPI Isend, MPI Ir
ecv, and MPI Wait should not reduce the communication time. In the context
of MPI-2, this can be applied even to the MPI one-sided communication
routines.

2. Subdividing messages into multiple messages should not reduce the commu-
nication time.

3. Replacing a routine with a similar routine that provides additional semantic
guarantees should not reduce the communication time.

4. For collective routines, replacing a collective routine with several routines
should not reduce the communication time. In particular, the specification
of most of the MPI collective routines includes a description in terms of
other MPI routines; each MPI collective should be at least as fast as that
description.

5. For process topologies, communicating with a communicator that imple-
ments a process topology should not be slower than using a random com-
municator.

The first of these requirements provides a formal way to derive relationships
between the MPI communication routines—write each routine in terms of an
equivalent use of MPI Isend, MPI Irecv, and MPI Wait, and then compare the
time taken. In the rest of this paper, we give more specific examples of each of
these rules.

We use the notation that

MPI A(n) � MPI B(n) (1)

means that MPI functionality A is not slower than B when evoked with parame-
ters resulting in the same amount of communication or computation n. Note that
MPI buffers are not always specified in this way. We use p to denote the number
of processes involved in a call, and MPI A{c} for A called on communicator c.
As an example

MPI Send(n) � MPI Isend(n) + MPI Wait (2)

states that an MPI Send call is possibly faster, but at least not slower than a call
to MPI Isend with the same parameters followed by an MPI Wait call. In this
case, it would probably make sense to require more strongly that

MPI Send(n) ≈ MPI Isend(n) + MPI Wait (3)

which means that the alternatives perform similarly. Quantifying the meaning
of “similarly” is naturally contentious. A strong definition would say that there
is a small confidence interval such that for any data size n, the running time of
the one construct is within the running time of the other with this confidence
interval. A somewhat weaker definition could require that the running time of
the two constructs is within a small constant factor of each other for any data
size n.

Self-consistent MPI Performance Requirements 39

3 General Communication

Rule 2 can be made more precise as follows: Splitting a communication buffer
of kn units into k buffers of n units, and communicating separately, never pays
off.

MPI A(kn) � MPI A(n) + · · ·+ MPI A(n)
︸ ︷︷ ︸

k

(4)

For an example where this rule is violated with A = Bcast, see [1, p. 68].
Similarly, splitting possibly structured data into its constituent blocks of fixed

size k should also not be faster.

MPI A(kn) � MPI A(k) + · · ·+ MPI A(k)
︸ ︷︷ ︸

n

(5)

One might be able to elaborate this requirement into a formal requirement for
the performance of user-defined MPI datatypes, but this issue would require
much care.

Note that many MPI implementations will violate Rule 2 and (4) because
of the use of eager and rendezvous message protocols. An example is shown in
Figure 1. A user with a 1500-byte message will achieve better performance on
this system by sending two 750-byte messages. This example shows one of the
implementation features that competes with performance portability—in this
case, the use of limited message buffers. To satisfy Rule 2, an MPI implementa-
tion would need a more sophisticated buffer management strategy, but in turn
this could decrease the performance of all short messages.

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

tim
e

(u
s)

Size (bytes)

Comm Perf for MPI (Processor <0,0,0,0> in a <4, 4, 2, 1> mesh) type blocking

Fig. 1. Measured performance of short messages on IBM BG/L. Note the large jump
around 1024 bytes; this is the transition from eager to rendezvous protocol in the MPI
implementation.

As an example of Rule 3, we have the following

MPI Send � MPI Ssend (6)

40 J.L. Träff, W. Gropp, and R. Thakur

Since the synchronous send routine has an additional semantic guarantee (the
routine cannot return until the matching receive has started), it should not be
faster than the regular send.

4 Collective Communication

The MPI collectives are strongly interrelated semantically, and often one col-
lective can be implemented in terms of one or more other related collectives.
A general requirement (metarule) is that a specialized collective should not be
slower than a more general collective. Thus, with good conscience, users can be
given the advice to always use the most specific collective (which is, of course,
exactly the motivation for having so many collectives in MPI).

4.1 Regular Communication Collectives

The following three rules are instances of the metarule that specialized functions
should not be slower than more general ones.

MPI Gather(n) � MPI Allgather(n) (7)
MPI Scatter(n) � MPI Allgather(n) (8)

MPI Allgather(n) � MPI Alltoall(n) (9)

The next rule implements a collective operation in terms of two others. Again
the specialized function (MPI Allgather) should not be slower.

MPI Allgather(n) � MPI Gather(n) + MPI Bcast(n) (10)

This is not as trivial as it may look. If, for instance, a linear ring algorithm
is used for the MPI Allgather, but tree-based algorithms for MPI Gather and
MPI Bcast, the relationship will not hold (at least for small n).

A less obvious requirement relates MPI Scatter to MPI Bcast. The idea is to
implement the MPI Scatter function, which scatters individual data to each of
the p processes, by a broadcast of the combined data of size pn; each process
copies out its block from the larger buffer.

MPI Scatter(n) � MPI Bcast(pn) (11)

Again this is a nontrivial requirement for small n for MPI libraries with an effi-
cient MPI Bcast implementation and forces an equally efficient implementation
of MPI Scatter.

A currently popular implementation of broadcast for large messages is by
a scatter followed by an allgather operation [2,10]. Since this is an algorithm
expressed purely in terms of collective operations, it makes sense to require that
the native broadcast operation should behave at least as well.

MPI Bcast(n) � MPI Scatter(n) + MPI Allgather(n) (12)

Self-consistent MPI Performance Requirements 41

4.2 Reduction Collectives

The second half of the next rule states that a good MPI implementation should
have an MPI Allreduce that is faster than the trivial implementation of reduc-
tion to root followed by a broadcast.

MPI Reduce(n) � MPI Allreduce(n)
� MPI Reduce(n) + MPI Bcast(n) (13)

A similar rule can be formulated for MPI Reduce scatter.

MPI Reduce(n) � MPI Reduce scatter(n)
� MPI Reduce(n) + MPI Scatterv(n) (14)

The next two rules implement MPI Reduce and MPI Allreduce in terms of
MPI Reduce scatter and are similar to the broadcast implementation of re-
quirement (12).

MPI Reduce(n) � MPI Reduce scatter(n) + MPI Gather(n) (15)
MPI Allreduce � MPI Reduce scatter(n) + MPI Allgather(n) (16)

For the reduction collectives, MPI provides a set of built-in binary operators,
as well as the possibility for users to define their own operators. A natural
requirement is that a user-defined implementation of a built-in operator should
not be faster.

MPI Reduce(MPI SUM) � MPI Reduce(user sum) (17)

A curious example where this is violated is again given in [1, p. 65]. For a
particular vendor MPI implementation, a user-defined sum operation was signif-
icantly faster than the built-in MPI SUM operation!

4.3 Irregular Communication Collectives

The irregular collectives of MPI, in which the amount of data communicated
between pairs of processes may differ, are obviously more general than their reg-
ular counterparts. It is desirable that performance be similar when an irregular
collective is used to implement the functionality of the corresponding regular
collective. Thus, we have requirements like the following.

MPI Gatherv(v) ≈ MPI Gather(n) (18)

This requires that the performance of MPI Gatherv be in the same ballpark
as the regular MPI Gather for uniform p element vectors v with v[i] = n/p.
Again this is not a trivial requirement. For instance, there are easy tree-based
algorithms for MPI Gather but not for MPI Gatherv (at least not as easy because
the irregular counts are not available on all processes), and thus performance
characteristics of the two collectives may be quite different [11]. Thus, ≈ should
be formulated carefully and leave room for some overhead.

42 J.L. Träff, W. Gropp, and R. Thakur

4.4 Constraining Implementations

In addition to the rule above that relates collective operations to other collective
operations, it would be tempting to require that a good MPI implementation
fulfill some minimal requirements regarding the performance of its collectives.
For example, the MPI standard already explains many of the collectives in terms
of send and receive operations.

MPI Gather(n) � MPI Recv(n/p) + · · ·+ MPI Recv(n/p)
︸ ︷︷ ︸

p

(19)

Extending this, one could define a set of “minimal implementations,” for ex-
ample, an MPI Bcast implementation by a simple binomial tree. Correspondingly
one could require that the collectives of an MPI library perform at least as well.
This requirement could prevent trivial implementations from fulfilling the rules,
but how far this idea could and should be taken is not clear at present.

5 Communicators and Topologies

Let c be a communicator (set of processes) of size p representing an assignment
of p processes to p processors. Let c′ be a communicator representing a different
(random) assignment to the same processors. A metarule like

MPI A{c} ≈ MPI A{c′} (20)

can be expected to hold for homogeneous systems for any MPI communication
operation A. For non-homogeneous systems, such as SMP clusters with a hier-
archical communication system, such a rule will not hold.

For some collectives, it is still reasonable to require communicator indepen-
dence (irrespective of system), for example, the following.

MPI Allgather{c} ≈ MPI Allgather{c′} (21)

This is not a trivial requirement. A linear ring or logarithmic algorithm designed
on the assumption of a homogeneous system may, when executed on a SMP
system and depending on the distribution of the MPI processes over the SMP
nodes, have communication rounds in which more than one MPI process per SMP
node communicates with processes on other nodes. The effect of the resulting
serialization of communication is shown in Figure 2.

It seems reasonable to require communicator independence for all symmet-
ric (non-rooted communication) collectives, that is, requirement (20) for A ∈
{Allgather, Alltoall, Barrier}.

MPI contains routines for defining process topologies, and these should not de-
crease performance for their preferred communication patterns. As an example of
Rule 5, using a Cartesian communicator c and then communicating to the Carte-
sian neighbors should be no slower than using an arbitrary communicator c′.

MPI Send{c} � MPI Send{c′} (22)

Self-consistent MPI Performance Requirements 43

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06

T
im

e
 (

m
ic

ro
 s

e
c
o
n
d
s
)

Size (Bytes/proc)

MPI_Allgather, 36 nodes, Linear algorithm, MPI_COMM_WORLD versus random

Linear, 8 proc/node (MPI_COMM_WORLD)
Linear, 8 proc/node (random communicator)

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06

T
im

e
 (

m
ic

ro
 s

e
c
o
n
d
s
)

Size (Bytes/proc)

MPI_Allgather, 36 nodes, New algorithm, MPI_COMM_WORLD versus random

New 8, proc/node (MPI_COMM_WORLD)
New 8, proc/node (random communicator)

Fig. 2. Left: performance of a simple, non-SMP-aware linear ring algorithm for
MPI Allgather when executed on the ordered MPI COMM WORLD communicator and on a
communicator where the processes have been randomly permuted. Right: performance
of an SMP-aware algorithm for MPI Allgather on ordered and random communicator.
The degradation for small data for the random communicator is due to specifics of the
target (vector) system; see [12].

6 One-Sided Communication

The one-sided communication model of MPI-2 is interrelated to both point-to-
point and collective communication, and a number of performance requirements
can be formulated. We give a single example. For the fence synchronization
method, the performance of a fence-put-fence should be no worse than a barrier
on the same communicator, followed by an MPI Send of the datatype and address
information, followed by another barrier:

MPI Win fence+ MPI Put(n) + MPI Win fence � (23)
MPI Barrier+ MPI Send(d) + MPI Send(n) + MPI Barrier

where d represents information about the address and datatype on the target.
Figure 3 shows an example where this requirement is violated. On an IBM SMP

system with IBM’s MPI, the performance of a simple nearest-neighbor halo ex-
change is about three times worse with one-sided communication and fence syn-
chronization comparedwith regular point-to-point communication, even when two
processors are available for each MPI process.

7 Automating the Checks

With a precise definition of the� and≈ relations, it would in principle be possible
to automate the checking that a given MPI implementation (on a given system)
fulfills a set of self-consistent performance requirements. A customizable bench-
mark such as SKaMPI [1,7,8] alreadyhas some patterns that allow the comparison

44 J.L. Träff, W. Gropp, and R. Thakur

Fig. 3. Performance of MPI Put with fence synchronization versus point-to-point com-
munication on an IBM SMP with IBM’s MPI for a simple nearest-neighbor halo ex-
change. The middle line shows the performance bound based on using barrier and send.

of alternative implementations of the same MPI functionality, similar to many of
the rules formulated above. It would be easy to incorporate a wider set of rules
into SKaMPI. By combining this with an experiments-management system such
as Perfbase [14,15], one could create a tool that automatically validates an MPI
implementation as to its intrinsic performance. (We have not done so yet.)

8 Concluding Remarks

Users often complain about the poor performance of some of the MPI functions
in MPI implementations and of the difficulty of writing code whose performance
is portable. Solving this problem requires defining performance standards that
MPI implementations are encouraged to follow. We have defined some basic,
intrinsic performance rules for MPI implementations and provided examples
where some of these rules are being violated. Further experiments might reveal
more such violations. We note that just satisfying these rules does not mean that
an implementation is good, because even a poor, low-quality implementation
can trivially do so. They must be used in conjunction with other benchmarks
and performance metrics for a comprehensive performance evaluation of MPI
implementations.

References

1. Augustin, W., Worsch, T.: Usefulness and usage of SKaMPI-bench. In: Dongarra,
J.J., Laforenza, D., Orlando, S. (eds.) Recent Advances in Parallel Virtual Machine
and Message Passing Interface. LNCS, vol. 2840, pp. 63–70. Springer, Heidelberg
(2003)

2. Barnett, M., Gupta, S., Payne, D.G., Schuler, L., van de Geijn, R., Watts, J.: Build-
ing a high-performance collective communication library. In: Supercomputing’94,
pp. 107–116 (1994)

Self-consistent MPI Performance Requirements 45

3. Culler, D.E., Karp, R.M., Patterson, D., Sahay, A., Santos, E.E., Schauser, K.E.,
Subramonian, R., von Eicken, T.: LogP: A practical model of parallel computation.
Communications of the ACM 39(11), 78–85 (1996)

4. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W.,
Snir, M.: MPI – The Complete Reference. The MPI Extensions, vol. 2. MIT Press,
Cambridge (1998)

5. McInnes, L.C., Ray, J., Armstrong, R., Dahlgren, T.L., Malony, A., Norris, B.,
Shende, S., Kenny, J.P., Steensland, J.: Computational quality of service for scien-
tific CCA applications: Composition, substitution, and reconfiguration. Technical
Report ANL/MCS-P1326-0206, Argonne National Laboratory (February 2006)

6. Norris, B., McInnes, L., Veljkovic, I.: Computational quality of service in parallel
CFD. In: Proceedings of the 17th International Conference on Parallel Computa-
tional Fluid Dynamics, University of Maryland, College Park, MD, May 24–27 (to
appear, 2006)

7. Reussner, R., Sanders, P., Prechelt, L., Müller, M.: SKaMPI: A detailed, accurate
MPI benchmark. In: Alexandrov, V.N., Dongarra, J.J. (eds.) Recent Advances in
Parallel Virtual Machine and Message Passing Interface. LNCS, vol. 1497, pp. 52–
59. Springer, Heidelberg (1998)

8. Reussner, R., Sanders, P., Träff, J.L.: SKaMPI: A comprehensive benchmark for
public benchmarking of MPI. Scientific Programming 10(1), 55–65 (2002)

9. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI – The Com-
plete Reference, 2nd edn. The MPI Core, vol. 1. MIT Press, Cambridge (1998)

10. Thakur, R., Gropp, W.D., Rabenseifner, R.: Improving the performance of collec-
tive operations in MPICH. International Journal on High Performance Computing
Applications 19, 49–66 (2004)

11. Träff, J.L.: Hierarchical gather/scatter algorithms with graceful degradation. In:
International Parallel and Distributed Processing Symposium (IPDPS 2004), p. 80
(2004)

12. Träff, J.L.: Efficient allgather for regular SMP-clusters. In: Mohr, B., Träff, J.L.,
Worringen, J., Dongarra, J. (eds.) Recent Advances in Parallel Virtual Machine
and Message Passing Interface. LNCS, vol. 4192, pp. 58–65. Springer, Heidelberg
(2006)

13. Valiant, L.G.: A bridging model for parallel computation. Communications of the
ACM 33(8), 103–111 (1990)

14. Worringen, J.: Experiment management and analysis with perfbase. In: IEEE In-
ternational Conference on Cluster Computing (2005)

15. Worringen, J.: Automated performance comparison. In: Mohr, B., Träff, J.L., Wor-
ringen, J., Dongarra, J. (eds.) Recent Advances in Parallel Virtual Machine and
Message Passing Interface. LNCS, vol. 4192, pp. 402–403. Springer, Heidelberg
(2006)

Test Suite for Evaluating Performance of MPI

Implementations That Support
MPI THREAD MULTIPLE

Rajeev Thakur and William Gropp

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA
{thakur,gropp}@mcs.anl.gov

Abstract. MPI implementations that support the highest level of
thread safety for user programs, MPI THREAD MULTIPLE, are becoming
widely available. Users often expect that different threads can execute
independently and that the MPI implementation can provide the neces-
sary level of thread safety with only a small overhead. The MPI Stan-
dard, however, requires only that no MPI call in one thread block MPI
calls in other threads; it makes no performance guarantees. Therefore,
some way of measuring an implementation’s performance is needed. In
this paper, we propose a number of performance tests that are moti-
vated by typical application scenarios. These tests cover the overhead of
providing the MPI THREAD MULTIPLE level of thread safety for user pro-
grams, the amount of concurrency in different threads making MPI calls,
the ability to overlap communication with computation, and other fea-
tures. We present performance results with this test suite on several
platforms (Linux cluster, Sun and IBM SMPs) and MPI implementa-
tions (MPICH2, Open MPI, IBM, and Sun).

1 Introduction

With thread-safe MPI implementations becoming increasingly common, users
are able to write multithreaded MPI programs that make MPI calls concur-
rently from multiple threads. Thread safety does not come for free, however,
because the implementation must protect certain data structures or parts of the
code with mutexes or critical sections. Developing a thread-safe MPI implemen-
tation is a fairly complex task, and the implementers must make several design
choices, both for correctness and for performance [2]. To simplify the task, im-
plementations often focus on correctness first and performance later (if at all).
As a result, even though an MPI implementation may support multithreading,
its performance may be far from optimized. Users, therefore, need a way to
determine how efficiently an implementation can support multiple threads. Sim-
ilarly, as implementers experiment with a potential performance optimization,
they need a way to measure the outcome. (We ourselves face this situation in
MPICH2.) To meet these needs, we have created a test suite that can shed light

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 46–55, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Test Suite for Evaluating Performance of MPI THREAD MULTIPLE 47

on the performance of an MPI implementation in the multithreaded case. We
describe the tests in the suite, the rationale behind them, and their performance
with several MPI implementations (MPICH2, Open MPI, IBM MPI, and Sun
MPI) on several platforms.

Related Work. The MPI benchmarks from Ohio State University [4] contain a
multithreaded latency test, which is a ping-pong test with one thread on the
sender side and two (or more) threads on the receiver side. A number of other
MPI benchmarks exist, such as SKaMPI [6] and the Intel MPI Benchmarks [3],
but they do not measure the performance of multithreaded MPI programs. A
good discussion of the issues in developing a thread-safe MPI implementation is
given in [2]. Other thread-safe MPI implementations are described in [1,5].

2 Overview of MPI and Threads

To understand the test suite and the rationale behind each test, one must un-
derstand the thread-safety specification in MPI. For performance reasons, MPI
defines four “levels” of thread safety and allows the user to indicate the level
desired—the idea being that the implementation need not incur the cost for a
higher level of thread safety than the user needs. The four levels of thread safety
are as follows:

1. MPI THREAD SINGLE Each process has a single thread of execution.
2. MPI THREAD FUNNELED A process may be multithreaded, but only the thread

that initialized MPI may make MPI calls.
3. MPI THREAD SERIALIZED A process may be multithreaded, but only one

thread at a time may make MPI calls.
4. MPI THREAD MULTIPLEA process may be multithreaded, and multiple threads

may simultaneously call MPI functions (with some restrictions mentioned be-
low).

An implementation is not required to support levels higher than
MPI THREAD SINGLE; that is, an implementation is not required to be thread safe.
A fully thread-compliant implementation, however, will support
MPI THREAD MULTIPLE. MPI provides a function, MPI Init thread, by which
the user can indicate the level of thread support desired, and the implemen-
tation will return the level supported. A portable program that does not call
MPI Init thread should assume that only MPI THREAD SINGLE is supported.
The tests described in this paper focus on the MPI THREAD MULTIPLE (fully mul-
tithreaded) case.

For MPI THREAD MULTIPLE, the MPI Standard specifies that when multiple
threads make MPI calls concurrently, the outcome will be as if the calls exe-
cuted sequentially in some (any) order. Also, blocking MPI calls will block only
the calling thread and will not prevent other threads from running or executing
MPI functions. MPI also says that it is the user’s responsibility to prevent races
when threads in the same application post conflicting MPI calls. For example,

48 R. Thakur and W. Gropp

Thread 0 Thread 1

MPI_Recv(src=0) MPI_Send(dest=0)MPI_Recv(src=1) MPI_Send(dest=1)

Thread 0 Thread 1

Process 0 Process 1

Fig. 1. An implementation must ensure that this example never deadlocks for any
ordering of thread execution

the user cannot call MPI Info set and MPI Info free on the same info ob-
ject concurrently from two threads of the same process; the user must ensure
that the MPI Info free is called only after MPI Info set returns on the other
thread. Similarly, the user must ensure that collective operations on the same
communicator, window, or file handle are correctly ordered among threads.

A straightforward implication of the MPI thread-safety specification is that
an implementation cannot implement thread safety by simply acquiring a lock at
the beginning of each MPI function and releasing it at the end of the function: A
blocked function that holds a lock may prevent MPI functions on other threads
from executing, a situation that in turn might prevent the occurrence of the
event that is needed for the blocked function to return. An example is shown
in Figure 1. If thread 0 happened to get scheduled first on both processes, and
MPI Recv simply acquired a lock and waited for the data to arrive, the MPI Send
on thread 1 would not be able to acquire its lock and send its data; hence, the
MPI Recv would block forever. Therefore, the implementation must release the
lock at least before blocking within the MPI Recv and then reacquire the lock if
needed after the data has arrived. (The tests described in this paper provide some
information about the fairness and granularity of how blocking MPI functions
are handled by the implementation.)

3 The Test Suite

Users of threads in MPI often have the following expectations of the performance
of threads, both those making MPI calls and those performing computation
concurrently with threads that are making MPI calls.

– The cost of thread safety, compared with lower levels of thread support, such
as MPI THREAD FUNNELED, is relatively low.

– Multiple threads making MPI calls, such as MPI Send or MPI Bcast, can
make progress simultaneously.

– A blocking MPI routine in one thread does not consume excessive CPU
resources while waiting.

Our tests are designed to test these expectations; in terms of the above categories,
they are as follows:

Cost of thread safety. One simple test tomeasure MPI THREAD MULTIPLE over-
head.

Test Suite for Evaluating Performance of MPI THREAD MULTIPLE 49

Concurrent progress. Tests to measure concurrent bandwidth by multiple
threads of a process to multiple threads of another process, as compared with
multiple processes to multiple processes. Both point-to-point and collective
operations are included.

Computation overlap. Tests to measure the overlap of communication with
computation and the ability of the application to use a thread to provide
a nonblocking version of a communication operation for which there is no
corresponding MPI call, such as nonblocking collectives or I/O operations
that involve several steps.

We describe the tests below and present performance results on the following
platforms and MPI implementations:

Linux Cluster. We used the Breadboard cluster at Argonne, in which each
node has two dual-core 2.8 GHz AMD Opteron CPUs. The nodes are con-
nected by Gigabit Ethernet. We used MPICH2 1.0.5 and Open MPI 1.2.1.

Sun Fire SMP. We used a Sun Fire SMP from the Sun cluster at the RWTH
Aachen University. The specific machine we ran on was a Sun Fire E2900
with eight dual-core UltraSPARC IV 1.2 GHz CPUs. It runs Sun’s MPI
(ClusterTools 5).

IBM SMP. We also used an IBM p655+ SMP from the DataStar cluster
at the San Diego Supercomputer Center. The machine has eight 1.7 GHz
POWER4+ CPUs and runs IBM’s MPI.

3.1 MPI THREAD MULTIPLE Overhead

Our first test measures the ping-pong latency for two cases of a single-threaded
program: initializing MPI with just MPI Init and initializing it with
MPI Init thread for MPI THREAD MULTIPLE. This test demonstrates the over-
head of ensuring thread safety for MPI THREAD MULTIPLE—typically implemented
by acquiring and releasing locks—even though no special steps are needed in
this case because the process is single threaded (but the implementation does
not know that).

Figure 2 shows the results. On the Linux cluster, with both MPICH2 and
Open MPI, the overhead of MPI THREAD MULTIPLE is less than 0.5 μs. On the
IBM SMP with IBM MPI, it is less than 0.25 μs. On the other hand, on the Sun
SMP with Sun MPI, the overhead is very high—more than 3 μs.

3.2 Concurrent Bandwidth

The second test measures the cumulative bandwidth obtained when multiple
threads of a process communicate with multiple threads of another process com-
pared with multiple processes instead of threads (see Figure 3). It demonstrates
how much thread locks affect the cumulative bandwidth; ideally, the multiprocess
and multithreaded cases should perform similarly.

Figure 4 shows the results. On the Linux cluster, the tests were run on two
nodes, with all communication happening across nodes. We ran two cases: one

50 R. Thakur and W. Gropp

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000

T
im

e
 (

m
ic

ro
s
e

c
.)

Size (bytes)

MPICH2 thread-single
MPICH2 thread-multiple
Open MPI thread-single

Open MPI thread-multiple

 2

 3

 4

 5

 6

 7

 8

 9

 0 200 400 600 800 1000

T
im

e
 (

m
ic

ro
s
e

c
.)

Size (bytes)

SUN MPI thread-single
SUN MPI thread-multiple

IBM MPI thread-single
IBM MPI thread-multiple

Fig. 2. Overhead of MPI THREAD MULTIPLE on the Linux cluster (left) and Sun and IBM
SMPs (right)

where there were as many processes/threads as the number of processors on
a node (four) and one where there were eight processes/threads running on
four processors. In both cases, there is no measurable difference in bandwidth
between threads and processes with MPICH2. With Open MPI, there is a decline
in bandwidth with threads in the oversubscribed case.

On the Sun and IBM SMPs, on the other hand, there is a substantial decline
(more than 50% in some cases) in the bandwidth when threads were used instead
of processes. Although it is harder to provide low overhead in these shared-
memory environments because the communication bandwidths are so high, we
believe a tuned implementation should be able to support concurrent threads
with a much smaller loss in performance.

T

T

T

T

T

T

T

T

P

P

P

P

P

PP

P

Fig. 3. Communication test when using multiple threads (left) versus multiple
processes (right)

3.3 Concurrent Latency

Our third test is similar to the concurrent bandwidth test except that it mea-
sures the time for individual short messages instead of concurrent bandwidth for
large messages. Figure 5 shows the results. On the Linux cluster with MPICH2,
there is a 20 μs overhead in latency when using concurrent threads instead of
processes. With Open MPI, the overhead is about 30 μs. With Sun and IBM
MPI, the latency with threads is about 10 times the latency with processes.

Test Suite for Evaluating Performance of MPI THREAD MULTIPLE 51

 0

 200

 400

 600

 800

 1000

 1200

Open MPIMPICH2

C
u

m
u

la
ti
v
e

 b
a

n
d

w
id

th
 (

M
b

it
s
/s

)

4P-4P
4T-4T
8P-8P
8T-8T

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

IBM MPISun MPI

C
u

m
u

la
ti
v
e

 b
a

n
d

w
id

th
 (

G
B

y
te

s
/s

)

4P-4P
4T-4T
8P-8P
8T-8T

Fig. 4. Concurrent bandwidth test on Linux cluster (left) and Sun and IBM SMPs
(right)

Again, although it is more difficult to provide low overhead on these machines be-
cause the basic message-passing latency is so low, a tuned implementation should
be able to do better than a factor of 10 higher latency in the threaded case.

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 0 200 400 600 800 1000

T
im

e
 (

m
ic

ro
s
e

c
.)

Size (bytes)

MPICH2 4P-4P
MPICH2 4T-4T

Open MPI 4P-4P
Open MPI 4T-4T

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000

T
im

e
 (

m
ic

ro
s
e

c
.)

Size (bytes)

Sun MPI 4P-4P
Sun MPI 4T-4T
IBM MPI 4P-4P
IBM MPI 4T-4T

Fig. 5. Concurrent latency test on Linux cluster (left) and Sun and IBM SMPs (right)

3.4 Concurrent Short-Long Messages

The fourth test is a blend of the concurrent bandwidth and concurrent latency
tests. It has two versions. In the threads version, rank 0 has two threads: one
sends a long message to rank 1, and the other sends a series of short messages
to rank 2. The second version of the test is similar except that the two senders
are processes instead of threads. This test tests the fairness of thread scheduling
and locking. If they were fair, one would expect each of the short messages to
take roughly the same amount of time.

The results are shown in Figure 6. With both MPICH2 and Open MPI, the
cost of communicating the long message is evenly distributed among a number

52 R. Thakur and W. Gropp

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 10 20 30 40 50 60 70 80 90

T
im

e
 (

m
ic

ro
s
e

c
.)

Iteration

MPICH2 (with processes)
MPICH2 (with threads)

Open MPI (with processes)
Open MPI (with threads)

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90

T
im

e
 (

m
ic

ro
s
e

c
.)

Iteration

Sun MPI (with processes)
Sun MPI (with threads)

IBM MPI (with processes)
IBM MPI (with threads)

Fig. 6. Concurrent short-long messages test on Linux cluster (left) and Sun and IBM
SMPs (right)

of short messages. A single short message is not penalized for the entire time the
long message is communicated. This result demonstrates that, in the threaded
case, locks are fairly held and released and that the thread blocked in the long-
message send does not block the other thread. With Sun and IBM MPI, however,
one sees spikes in the graphs. This behavior may be because these implementa-
tions use memory copying to communicate data, and it is harder to overlap this
memory-copy time with the memory copying on the other thread.

3.5 Computation/Communication Overlap

Our fifth test measures the ability of an implementation to overlap commu-
nication with computation and provides users an alternative way of achieving
such an overlap if the implementation does not do so. The test has two ver-
sions. The first version has an iterative loop in which a process communicates
with its four nearest neighbors by posting nonblocking sends and receives, fol-
lowed by a computation phase, followed by an MPI Waitall for the communica-
tion to complete. The second version is similar except that, before the iterative
loop, each process spawns a thread that blocks on an MPI Recv. The matching
MPI Send is called by the main thread only at the end of the program, just
before MPI Finalize. The thread thus blocks in the MPI Recv while the main
thread is in the communication-computation loop. Since the thread is executing
an MPI function, whenever it gets scheduled by the operating system, it can
cause progress to occur on the communication initiated by the main thread.
This technique effectively simulates asynchronous progress by the MPI imple-
mentation. If the total time taken by the communication-computation loop in
this case is less than that in the nonthreaded version, it indicates that the MPI
implementation on its own does not overlap communication with computation.

Figure 7 shows the results. Here, “no overlap” refers to the test without
the thread, and “overlap” refers to the test with the thread. The results with
MPICH2 demonstrate no asynchronous progress, as the overlap version of the

Test Suite for Evaluating Performance of MPI THREAD MULTIPLE 53

 0

 200

 400

 600

 800

 1000

 1200

 1400

Open MPI, progress threadOpen MPIMPICH2

T
im

e
 p

e
r

it
e

ra
ti
o

n
 (

m
ill

is
e

c
.)

6 procs, no overlap
6 procs, overlap

12 procs, no overlap
12 procs, overlap

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

IBM MPISun MPI

T
im

e
 p

e
r

it
e

ra
ti
o

n
 (

m
ill

is
e

c
.)

6 procs, no overlap
6 procs, overlap

8 procs, no overlap
8 procs, overlap

Fig. 7. Computation/communication overlap test on Linux cluster (left) and Sun and
IBM SMPs (right)

test performs better. With Open MPI, we ran two experiments. We first used
the default build; the results indicate that it performs similarly to MPICH2—no
overlap of computation and communication. Open MPI can also be optionally
built to use an extra thread internally for asynchronous progress. With this ver-
sion of the library, we see that indeed there is asynchronous progress, as the
performance is nearly the same as for the “overlap” test with the default build.
That is, the case with the implementation-created progress thread performs sim-
ilarly to the case with the user-created thread.

We note that always using an extra thread for progress has other performance
implications. For example, it can result in higher communication latencies be-
cause of the thread-switching overhead. Due to lack of space, we did not run all
the other tests with the version of Open MPI configured to use an extra thread.

The results on the Sun and IBM SMPs indicate no overlap. In fact, with eight
processes, the performance was worse with the overlap thread because of the
high overhead when using threads with these MPI implementations.

3.6 Concurrent Collectives

Our sixth test compares the performance of concurrent calls to a collective func-
tion (MPI Allreduce) issued from multiple threads to that when issued from
multiple processes. The test uses multiple communicators, and processes are
arranged such that the processes belonging to a given communicator are located
on different nodes. In other words, collective operations are issued by multiple
threads/processes on a node, with all communication taking place across nodes
(similar to Figure 3 but for collectives and using multiple nodes).

Figure 8 (left) shows the results on the Linux cluster. MPICH2 has relatively
small overhead for the threaded version, compared with Open MPI.

54 R. Thakur and W. Gropp

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

24 (4x6) processes/threads12 (4x3) processes/threads

T
im

e
 (

m
ill

is
e

c
.)

Concurrent Collectives

MPICH2, processes
MPICH2, threads

Open MPI, processes
Open MPI, threads

 35

 40

 45

 50

 55

 60

 65

 70

 75

6 SMP nodes3 SMP nodes

It
e

ra
ti
o

n
s
 p

e
r

th
re

a
d

 p
e

r
s
e

c
.

Concurrent Collectives and Computation

MPICH2 with allreduce thread
MPICH2 without allreduce thread

Open MPI with allreduce thread
Open MPI without allreduce thread

Fig. 8. Left: Concurrent collectives test on the Linux cluster (4x3 refers to 4
process/threads each on 3 nodes). Right: Concurrent collectives and computation test
on the Linux cluster.

3.7 Concurrent Collectives and Computation

Our final test evaluates the ability to use a thread to hide the latency of a
collective operation while using all available processors to perform computations.
It uses p+1 threads on a node with p processors. Threads 0–(p−1) perform some
computation iteratively. Thread p does an MPI Allreducewith its corresponding
threads on other nodes. When the allreduce completes, it sets a flag, which
stops the iterative loop on the other threads. The average number of iterations
completed on the threads is reported. This number is compared with the case
with no allreduce thread (the higher the better).

Figure 8 (right) shows the results on the Linux cluster. MPICH2 demonstrates
a better ability than Open MPI to hide the latency of the allreduce.

4 Concluding Remarks

As MPI implementations supporting MPI THREAD MULTIPLE become increasingly
available, there is a need for tests that can shed light on the performance and
overhead associated with using multiple threads. We have developed such a test
suite and presented its performance on multiple platforms and implementations.
The results indicate relatively good performance with MPICH2 and Open MPI
on Linux clusters, but poor performance with IBM and Sun MPI on IBM and
Sun SMP systems.

We plan to add more tests to the suite, such as to measure the overlap of com-
putation/communication with the MPI-2 file I/O and connect-accept features.
We will also accept contributions from others to the test suite. The test suite
will be available for download from www.mcs.anl.gov/~thakur/thread-tests.

Test Suite for Evaluating Performance of MPI THREAD MULTIPLE 55

Acknowledgments

We thank the RWTH Aachen University and the San Diego Supercomputer
Center for providing computing time on their systems. This work was supported
by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Research, Office of Science,
U.S. Department of Energy, under Contract DE-AC02-06CH11357.

References

1. Garćıa, F., Calderón, A., Carretero, J.: MiMPI: A multithread-safe implementation
of MPI. In: Margalef, T., Dongarra, J.J., Luque, E. (eds.) Recent Advances in Par-
allel Virtual Machine and Message Passing Interface. LNCS, vol. 1697, pp. 207–214.
Springer, Heidelberg (1999)

2. Gropp, W., Thakur, R.: Issues in developing a thread-safe MPI implementation.
In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) Recent Advances in
Parallel Virtual Machine and Message Passing Interface. LNCS, vol. 4192, pp. 12–
21. Springer, Heidelberg (2006)

3. Intel MPI benchmarks, http://www.intel.com
4. OSU MPI benchmarks, http://mvapich.cse.ohio-state.edu/benchmarks
5. Protopopov, B.V., Skjellum, A.: A multithreaded message passing interface (MPI)

architecture: Performance and program issues. Journal of Parallel and Distributed
Computing 61(4), 449–466 (2001)

6. Reussner, R., Sanders, P., Träff, J.L.: SKaMPI: A comprehensive benchmark for
public benchmarking of MPI. Scientific Programming 10(1), 55–65 (2002)

http://www.intel.com
http://mvapich.cse.ohio-state.edu/benchmarks

An Improved Parallel XSL-FO

Rendering for Personalized Documents

Luiz Gustavo Fernandes1, Thiago Nunes1, Mateus Raeder1,
Fabio Giannetti2, Alexis Cabeda3, and Guilherme Bedin3

1 PPGCC/PUCRS - Porto Alegre, Brazil
{gustavo,tnunes,mraeder}@inf.pucrs.br

2 HP Laboratories - Bristol, United Kingdom
fabio.giannetti@hp.com

3 HP Brazil R&D - Porto Alegre, Brazil
{alexis.cabeda,guilherme.bedin}@hp.com

Abstract. The use of personalized documents has become a helpful
practice on the digital printing area. Automatic procedures to create and
transform these documents have become necessary to deal with the grow-
ing market demand. Languages such as XSL-FO (eXtensible Stylesheet
Language-Formatting Objects) and PPML (Personalized Print Markup
Language) have been developed to facilitate the way variable content
is inserted within a document. However, these languages have brought
together an increasing computational cost of those documents render-
ing process. Considering that printing shops need to render jobs with
thousands of personalized documents within a short period of time, high
performance techniques appear as an interesting alternative to improve
this rendering process throughput. In this work, we present improve-
ments and new results of a MPI solution previously developed for the
FOP (Formatting Objects Processor) tool. FOP is the Apache project
rendering tool for personalized documents and its parallel version was
optimized in order to allow the computation in parallel of larger input
jobs composed of thousands of personalized documents.

1 Introduction

Due to the growing demand for personalized documents, printing high data vol-
ume is becoming a common practice among print shops. Most of the digital
publishing production environments use digital presses in parallel to maximize
the overall document production (jobs). In such an environment, all activities
related to the document preparation need to be executed in a constrained time
slot, since jobs are completed in a sequential order. The main step on the doc-
ument preparation is the rendering phase, which is usually quite expensive and
in case of thousands of documents it easily becomes the bottleneck of the whole
process. Nowadays, modern digital presses are used in parallel, increasing the
overall printing speed significantly. In this context, it can become very difficult
to feed all the presses with the necessary rendered documents throughput to
make the most of their printing speed.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 56–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Improved Parallel XSL-FO Rendering for Personalized Documents 57

Similarly to the concept of using presses in parallel to achieve better perfor-
mance and quickly consume jobs, researches have been carried out to propose a
parallelization of the rendering engines. Previous results [1] show that the pro-
posed solution can match the presses speed at the rendering stage, but only
for jobs with at maximum 2,000 documents (which have the same structure of
test cases described at table 1). The aim of the present work is to optimize this
previous parallel solution in such a way it could be used to larger input jobs. A
final constraint must be observed: the proposed solution must be restricted to
execute over a small set of processors. That is necessary once print shops (which
are the target users) do not intend to invest on very expensive and complex
parallel platforms.

The remainder of this paper is organized as follows: Section 2 presents in
details the research context of rendering personalized documents. Section 3 de-
scribes the improvements added to the previous parallel solution. An analysis
for experimental results of a test cases set is reported on Section 4. Finally, some
concluding remarks and future works are discussed in Section 5.

2 Rendering Personalized Documents

The combination of PPML (Personalized Print Markup Language) [2] and XSL-
FO (eXtensible Stylesheet Language-Formatting Objects) [3] has been employed
to represent document templates with a high degree of flexibility, reusability and
printing optimization. The main advantage of this combination is the expressibil-
ity of invariant portions of the template as re-usable objects and variable parts
as XSL-FO fragments. Once the variable data is merged into the template, var-
ious document instances are formed. The final step is to compose or render the
XSL-FO parts into a Page Description Language (PDL). Before describing the
processing environment, it is relevant to highlight the most important aspects
of these XML (eXtensible Markup Language) [4] formats: PPML and XSL-FO.

PPML is a standard language for digital print built from XML developed
by PODi (Print on Demand Initiative) [5] which is a consortium of leading
companies in digital printing. PPML has been designed to improve the rendering
process of the content of documents using traditional printing languages. It is
a hierarchical language that contains documents, pages and objects, which are
classified as reusable or disposable. The reusable content represents the concept
where data, which is used on many pages, can be sent to the printer once and
accessed as many times as needed from the printer’s memory. This concept
allows high graphical content to be rendered once as well and to be accessed by
sending layout instructions instead of re-sending the whole graphic every time
it is printed [6].

The variable data is merged and formatted inside the PPML object element
using XSL-FO. The containing PPML element is named “copy-hole”, which is a
defined area in the PPML code that can contain the variable data expressed in
XSL-FO, or a non variable content such as images. XSL-FO (also abbreviated
as FO - from Formatting Objects) is a W3C [7] standard introduced to format

58 L.G. Fernandes et al.

XML content for paginated media. It ideally works in conjunction with XSL-T
(eXtensible Styleshee Language - Transformations) [8] to map XML content into
formatted content. Once the XSL-FO is completed with the formatted content,
its rendering engine executes the composition step to lay out the content in-
side the pages and obtain the final composed document. The rendering process
in our environment is carried out by Apache’s rendering engine named FOP
(Formatting Objects Processor) [9].

FOP is one of the most common processors in the market not only because
it is an open source application, but also because it provides a variety of output
formats and it is flexible and easily extendable. It is a Java application that
reads formatting objects and renders to different output formats such as PDF
(Portable Document Format), plain text, Post Script, SVG (Scalable Vector
Graphics), among others. The rendering process is typically composed of three
distinctive steps:

1. Generation of a formatting object tree and properties resolution;
2. Generation of an area tree representing the document having as leafs text

elements or images;
3. Converting or mapping the area tree to the output format.

The advantages of this approach are related to the complete independence
between the XSL-FO representation of the document and the internal area tree
construction. Using this approach makes it possible to map the area tree to a
different set of PDLs.

3 Improving Parallel FOP

The parallel implementation for Apache’s rendering tool (FOP) discussed on this
section was first proposed in [1]. It was designed aiming to speed up the perfor-
mance of the sequential tool increasing its capacity to feed properly large presses
with rendered documents. The basic restriction of this research was the necessity
to avoid the use of parallel programming models oriented to very expensive (but
not frequently used) platforms because the target users (print shops) do not
want to invest on expensive hardware. Typically, useful parallel versions for this
tool should run distributed over a small number of processors connected by a
fast network. Therefore, the natural choice was a cluster with a message passing
programming model. Considering that the original FOP tool was developed in
Java for portability reasons, its parallel version should keep this feature match-
ing Java with MPI (Message Passing Interface) [10]. This was achieved through
the mpiJava [11] implementation.

After the analysis of the original work, two possible optimization points were
detected: (i) the distribution of data among the rendering modules,
and (ii) the generation of the final document. These two factors acting
together have limited the scalability of the proposed parallel version, not allowing
performance benefits in the rendering process of input jobs with more than 2,000
documents. At this point, it is important to mention that there is a multitude of

An Improved Parallel XSL-FO Rendering for Personalized Documents 59

possible configurations of documents that can be represented matching PPML
and XSL-FO. Therefore, in order to provide a standard to allow comparisons,
documents in the context of this work have a set of characteristics that will be
presented to readers in the next section.

A detailed description of the original parallel FOP tool will not be discussed
here. Readers interested in more details should read [1]. The improvements pro-
posed in this paper will be discussed during the explanation of the new parallel
architecture of the FOP tool showed in Fig. 1.

Fig. 1. New parallel FOP architecture

The improved parallel architecture is composed of four modules as follows:
PPMLParser, PPMLReceiver, Broker and FOP. The PPMLParser is responsi-
ble for parsing the input PPML document, separating variable content to be
rendered (XSL-FO) from invariant parts of the document. Considering that the
parallel FOP tool is supposed to deal with jobs containing thousands of docu-
ments, the parse procedure takes thus a long time. Therefore, it is interesting to
provide a way for the rendering modules (called FOPs) to carry out the XSL-FO
formatting in parallel with the parsing. This is possible due to the module called
Broker. The Broker implements a queue, which contains buffers fulfilled with
XSL-FOs found at the input documents, and works in a producer/consumer
model using threads. Buffers are generated by the PPMLParser and consumed
by the FOPs modules.

The first optimization is related to the distribution of the communication
buffers. In the first parallel version of the FOP tool, the Broker started to dis-
tribute buffers with XSL-FOs to FOPs modules as soon as it received the first
buffer from the PPMLParser. Besides, the buffers had a fixed size, not taking
into account the number of FOP modules running. In the new parallel version,
this procedure was optimized by two modifications: (i) the Broker now waits for
having at least one buffer per FOP module queued to start the distribution, and

60 L.G. Fernandes et al.

(ii) the size of the buffers is now calculated considering the amount of FOP mod-
ules running. The first optimization avoids the Broker receiving new requests for
more work from a FOP module before all FOP modules have work to do. The
second modification introduces bigger buffers as the number of available FOP
modules grows, which allows the Broker to deal with all FOP modules without
making them wait due to concurrent messages. Both modifications help to im-
prove the Broker scalability, increasing the lack of time between the reception
of buffers with rendered content from the FOP modules.

FOP modules remain idle until they receive a XSL-FO buffer and start to
render its content. When the render is completed, each FOP module sends back
to the Broker the result indicating that it is now free to receive more work. FOP
modules could send results directly to the PPML Receiver, but this operation
would double the number of messages sent by each FOP module: one for the
Broker, indicating that it has completed its work and another for the PPMLRe-
ceiver with the results. Obviously, this is not interesting because FOP modules
should remain rendering as long as possible.

Once the Broker receives rendered buffers from FOP modules, it then sends
the results to the PPMLReceiver. Before, this operation along with the XSL-FOs
buffers management created an overhead for the Broker. Now, the Broker can
easily deal with all these operations without being the bottleneck of the system,
because it is not interrupted frequently to manage the XSL-FO buffers.

In the original parallel version, the PPMLReceiver put the rendered FOs in
the output file each time a new buffer with results arrived. However, with a
larger number of FOP modules running, the PPMLReceiver was overloaded.
This fact did not affect the FOP modules, because the communication with
the PPMLReceiver was asynchronous. Nevertheless, at the end of all rendering
process, a large queue of rendered FOs was formed in the PPMLReceiver waiting
to be inserted into the output file. The second optimization improves this
procedure. In fact, now the PPMLParser gives an identification for each XSL-
FO extracted from the input file. The identification helps the PPMLReceiver
to avoid a sequential seek in the output file. Plus, while waiting for results
and mainly in parallel with the Broker initialization, the PPMLReceiver reads
and parses a copy of the input file, storing all the static content in a temporary
structure in memory. Each time a buffer with rendered FOs arrives, the operation
now consists of locating the right position of the identified FO in memory. As the
temporary structure is filled, it is flushed to the output file in parts. This simple
procedure saves time and does not require any special component for performing
I/O operations in parallel.

4 Experimental Results

The experiments performed to test the improvements proposed in this paper have
been carried out in the same environment using the same input data according
to the following description. An analysis of the obtained results is done at the
end of this section.

An Improved Parallel XSL-FO Rendering for Personalized Documents 61

4.1 Platform

The software platform adopted to implement the solution proposed is composed
of the Java Standard Development Kit (J2SDK, version 1.4.2) plus the stan-
dard Message Passing Interface (MPI) [10] to provide communication among
processes. More specifically, we choose the mpich implementation (version 1.2.6)
along with mpiJava [11] (version 1.2.5) which is an object-oriented Java interface
to the standard MPI. The experiments were carried out over processors running
Linux. The target hardware platform is a multi-computer composed of 14 AMD
Opteron 2.4 Ghz nodes, each one with 8GB RAM and connected through a 1
Gb network.

4.2 Input Data

PPML files may appear in a large variety of layouts presenting different number
of pages, XSL-FOs and amount of content to be rendered. The size in bytes of a
PPML file content is directly related to the computational cost of its rendering.
The test cases presented in this section have their layouts as close as possible to
the input files used in [1]. However, all test cases used in this work are composed
of 20,000 documents. The amount of documents was substantially increased in
order to take advantage of the higher computational power offered by the hard-
ware platform aiming to stress the scalability of the improved parallel FOP. The
characteristics of these input files are summarized in Tab. 1.

Table 1. Summary of the test cases

File Label Pages XSL-FOs Size (Mb) Sequential Time (s)
Earth 2 6 160 2,800.77

Fire 2 4 105 2,283.25

Wind 2 8 273 6,285.98

The first input PPML file (Fire) is the smallest test case. The amount of the
variable content to be rendered is around 105 MB and each of its documents has
2 pages: the first page has only one XSL-FO and the second has 3 XSL-FOs. The
second test case (Earth) is also composed of 2 pages, each one of them with 3
XSL-FOs. This file has 160 MB of variable content to be rendered. Finally, the
last input file (Wind) also has 2 pages configured as follows: the first one has
3 XSL-FOs and the second one 5 XSL-FOs. It is the largest PPML file, having
273 MB of variable content.

4.3 Results Analysis

The results presented in this section were obtained through a mean of 10 execu-
tions discarding the lowest and the highest times. This procedure is required in
order to minimize the influence of environment fluctuations in the final results.

Comparing the sequential times in Tab. 1 with the results in Fig. 2, one
can observe the performance gains achieved by the improved parallel FOP. It

62 L.G. Fernandes et al.

is important to notice that the parallel FOP needs at least 4 processors to
be executed, one for each module described in Sec. 3. That is the reason why
there are no execution times for configurations with 2 and 3 processors. The
execution with 5 processors means that there were 2 FOP modules running,
6 processors means 3 FOP modules and so on. As expected, the 4 processors
execution has a better performance than the sequential version, even though
it has just one process rendering. This happens because there are now time
intersections between the parse of the input file, the rendering process and the
writing of the output file.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 3 4 5 6 7 8 9 10 11 12 13 14

tim
e

(s
ec

)

number of processors

Execution Time

Earth 20,000 documents
Fire 20,000 documents

Wind 20,000 documents

number of processors
4 5 6 7 8 9 10 11 12 13

Earth
T 941.51 625.56 507.99 460.46 417.81 389.51 376.61 354.58 345.49 338.73
S 2.98 4.78 5.51 6.08 6.70 7.19 7.44 7.89 8.11 8.27

Fire
T 639.98 476.02 385.88 336.37 302.66 282.90 276.43 260.75 258.26 251.95
S 3.57 4.79 5.92 6.78 7.54 8.07 8.26 8.75 8.84 9.06

Wind
T 2,013.39 1,307.33 1,092.30 969.71 902.99 836.94 805.70 776.85 748.33 735.11
S 3.12 4.81 5.75 6.48 6.96 7.51 7.80 8.09 8.40 8.55

Fig. 2. Results: execution time (T, in seconds) and speedup (S)

5 Conclusions

The results presented in this work indicate that it is possible to achieve promising
results rendering XSL-FO personalized documents using the message passing
paradigm over a multi-computer. In this improved parallel version of the one
introduced by the authors in a previous work [1], the FOP tool was optimized
to allow the rendering of larger input jobs (20,000 documents). In the largest
input case, it was possible to decrease the execution time from 6,285.98 to 735.11
seconds over 13 processors without using a prohibitive cost hardware platform.

An Improved Parallel XSL-FO Rendering for Personalized Documents 63

Despite the results obtained so far, it is the authors’ opinion that there are still
others improvements which can be added to the parallel FOP in order to achieve
higher performance gains. One potential research line is to forward the analysis of
the PPML template content in order to previously identify characteristics of the
input documents. In this scenario, a smarter version of the parallel FOP would
be capable to take advantage of this information to automatically configure itself
aiming the best possible performance.

References

1. Giannetti, F., Fernandes, L.G., Timmers, R., Nunes, T., Raeder, M., Castro, M.:
High performance XSL-FO rendering for variable data printing. In: ACM Sympo-
sium on Applied Computing, Dijon, France, pp. 811–817. ACM Press, New York
(2006)

2. Davis, P., de Bronkart, D.: PPML (Personalized Print Markup Language). In: Pro-
ceedings of the XML Europe 2000, Paris, France, International Digital Enterprise
Alliance (2000)

3. XSL-FO: The Extensible Stylesheet Language Family. section XSL Formatting
Objects April 26th, 2007 Extracted from
http://www.w3.org/Style/{X}{S}{L}

4. XML: Extensible Markup Language April 26th, 2007 Extracted from
http://www.w3.org/{X}{M}{L}

5. PODi: Print on Demand Initiative April 26th, 2007 Extracted from
http://www.podi.org/

6. Bosschere, D.D.: Book ticket files & imposition templates for variable data printing
fundamentals for PPML. In: Proceedings of the XML Europe 2000, Paris, France,
International Digital Enterprise Alliance (2000)

7. W3C: The World Wide Web Consortium April 26th, 2007 Extracted from
http://www.w3.org/

8. XSL-T: XSL-Transformations section References April 26th, 2007 Extracted from
http://www.w3.org/TR/1999/REC-xslt-19991116

9. FOP: Formatting Objects Processor April 26th, 2007 Extracted from
http://xml.apache.org/fop/

10. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: the complete
reference. MIT Press, Cambridge (1996)

11. mpiJava: The mpiJava Home Page April 26th, 2007 Extracted from
http://www.hpjava.org/mpiJava.html

http://www.w3.org/Style/{X}{S}{L}
http://www.w3.org/{X}{M}{L}
http://www.podi.org/
http://www.w3.org/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://xml.apache.org/fop/
http://www.hpjava.org/mpiJava.html

An Extensible Framework for Distributed

Testing of MPI Implementations

Joshua Hursey1, Ethan Mallove2, Jeffrey M. Squyres3,
and Andrew Lumsdaine1

1 Indiana University Open Systems Laboratory Bloomington, IN USA
{jjhursey,lums}@osl.iu.edu

2 Sun Microsystems, Inc. Burlington, MA USA
ethan.mallove@sun.com

3 Cisco, Inc. San Jose, CA USA
jsquyres@cisco.com

Abstract. Complex code bases require continual testing to ensure that
both new development and routine maintenance do not create unin-
tended side effects. Automation of regression testing is a common mech-
anism to ensure consistency, accuracy, and repeatability of results. The
MPI Testing Tool (MTT) is a flexible framework specifically designed for
testing MPI implementations across multiple organizations and environ-
ments. The MTT offers a unique combination of features not available
in any individual testing framework, including a built-in multiplicative
effect for creating and running tests, historical correctness and perfor-
mance analysis, and support for multiple cluster resource managers.

1 Introduction

High quality MPI implementations are software packages so large and complex
that automated testing is required to effectively develop and maintain them.
Performance is just as important as correctness in MPI implementations, and
therefore must be an integral part of the regression testing assessment. However,
the number of individual tests taken in combination with portability require-
ments, scalability needs, and runtime parameters generates an enormous set of
testing dimensions. The resulting testing space is so large that no single orga-
nization can fully test an MPI implementation. Therefore, a testing framework
suitable for MPI implementations must be able to combine testing results from
multiple organizations to generate a complete view of the testing coverage.

Many MPI test suites and benchmarks already exist that can verify the cor-
rectness and performance of an MPI implementation. Additionally, MPI imple-
mentation projects tend to have their own internal collection of tests. However,
running a large set of tests manually on a regular basis is problematic; human
error and changing underlying environments will cause repeatability issues.

A good method for regression testing in large software projects is to incor-
porate automated testing and reporting, run on a regular basis. Abstractly, a
testing framework is required to: obtain and build the software to test; obtain

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 64–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Extensible Framework for Distributed Testing of MPI Implementations 65

and build individual tests; run all tests variations; and report both detailed and
aggregated testing results. Additionally, since the High Performance Computing
(HPC) community produces open source implementations of MPI that include
contributions from many different organizations, MPI implementation testing
methodology and technology must also:

– Be freely available to minimize the deployment cost.
– Easily incorporate thousands of existing MPI tests.
– Support simultaneous distributed testing across multiple sites, including op-

erating behind organizational security boundaries (e.g., firewalls).
– Support on-demand reporting, specialization, and email reports.
– Support execution of parallel tests, and therefore also support a variety of

cluster resource managers.

We have therefore created the MPI Testing Tool (MTT), an MPI implemen-
tation-agnostic testing tool to satisfy these needs, and have prototyped its use
in the Open MPI project [1].

The rest of this paper is organized as follows: related work is presented in
Section 2. Section 3 describes the MPI Testing Tool (MTT) in more detail.
Section 4 presents MTT experiences with the Open MPI project. Finally, we
present conclusions and a selection of future work items in Section 5.

2 Related Work

There is a large field of research surrounding optimal testing techniques, but
only a few of those ideas seem to have any impact on the software engineering
process used to develop and maintain large software systems [2,3]. To maintain
the high quality of large software systems, continual regression testing is required.
Onoma et al. [4] describe vital components of an effective software testing suite.
The MTT is designed to satisfy these requirements for MPI implementations.

TET [5] is a widely adopted tool among hundreds of free and open source
testing frameworks. However, TET does not provide mechanisms for obtaining
the software to be tested, therefore requiring an additional layer of software to
determine whether new versions are available to prevent duplicate testing results.
TET also has a crude reporting mechanism which requires searching through flat
file logs for test results. Although logs can be exported to a database for historical
data mining, no front-end is provided for querying the test results.

Perfbase [6] presents a front-end to a SQL database for storing historical
performance data. Perfbase does not provide a framework for obtaining, building,
and testing software, but rather focuses on archiving and querying test results.
Although the first generation of MTT used Perfbase as a back-end data store,
MTT evolved its own data store mechanisms due to inflexibility of Perfbase’s
storage and retrieval model.

DejaGNU [7] is a testing framework from which testing harnesses and suites
can be derived. Similar to TET, no rich reporting mechanisms are provided, and
native support for parallelism is not included. DejaGNU also requires individu-
alized test suite scripts for each test conducted.

66 J. Hursey et al.

Many other testing harnesses are available, including Kitware’s Dart system,
the Boost C++ regression testing system, Mozilla Tinderbox and Testopia, and
the buildbot project. However, none of the products and projects surveyed met
the full set of requirements needed for testing MPI implementations in a distrib-
uted, scalable fashion.

3 The MPI Testing Tool (MTT)

The MTT was created to solve many of the issues cited above.
At its core, the MTT is a testing engine that executes the following phases:

1. MPI Get: Obtain MPI implementations. Implementations are obtained
from the Internet (via HTTP/S, FTP, Subversion), local copies (e.g., tarball
or directory), or by reference to a working installation.

2. MPI Install: Specify how to build/install MPI implementations.
3. Test Get: Obtain test suite source codes, similar to the MPI Get phase.
4. Test Build: Compile test suites against all successfully installed MPI im-

plementations.
5. Test Run: Run individual tests in each successfully built test suite.

The MPI Install, Test Build, and Test Run phase results are stored in a central
database (or other user specified mechanism). All MTT tests will generate one
of four possible results: pass, fail, timeout, or skip. Each test defines specific
criteria indicating success. For example, an MPI implementation must compile
and install successfully to qualify as “pass.” A test is “failed” if the test completes
but the “pass” criteria is not met. A test is killed and declared a “timeout” if
its execution did not finish within the allotted time period. A test is declared
“skip” if it elects not to run. For example, an InfiniBand-specific test may opt
to be skipped if there are no InfiniBand networks available.

Phases are templates which allow multiple executions of each step based on
parametrization. Later phases are combined with all successful invocations of
prior phase invocations, creating a natural multiplicative effect.

– M : MPI implementations
– I: MPI installations, each of which are applied against all M MPI imple-

mentations.
– Nt: Individual tests, grouped by test suite (t), each of which is compiled

against all (M × I) MPI installations.
– Rt: Run parameters specified for tests, each of which is applied against (M×

I ×Nt) tests.

Fig. 1 shows the general sequence of the phases as well as their relationships
to each other and the natural multiplicative effect. The figure shows one MPI
implementation that is installed two different ways (e.g., with two different com-
piler suites). Each installation is then used to build two tests; each test is run

An Extensible Framework for Distributed Testing of MPI Implementations 67

Reporter
MPI Get MPI Install Test Get Test Build Test Run

MPI #1

Reporter

Netpipe
Intel Tests

Configuration #2
Configuration #1

Fig. 1. MTT phase relationship diagram. Phases labeled with “Reporter” contain tests
that are saved to a back-end data store such as a database.

two different ways. Hence, the total number of reported tests will follow the
equation:

num MPI installs + num test builds + num test runs

(M × I) + (M × I ×Nt) + (M × I ×Nt ×Rt)

Therefore Fig. 1 shows a total of 14 tests (2 MPI installs + 4 test builds + 8
test runs). While the multiplicative effect is a deliberate design decision, users
must be careful to not create test sets that incur prohibitively long run times.

3.1 Configuration

The MTT test engine is configured by an INI-style text file specified on the
command line. In the INI file format, sections are denoted with strings inside
brackets and parameters are specified as key = value pairs. Fig. 2 shows a
sample fragment of an MTT INI configuration file.

A typical configuration file contains a global parameters section, one or more
MPI Details sections, and one or more sections for each of the execution phases.

The global parameters section is used to specify testing parameters and user
preferences across an entire run of the MTT. MPI Details sections specify how to
run executables for a specific MPI. For example, these sections contain nuances
such as whether mpirun or mpiexec should be used, what command line options
to use, etc. Each execution phase will also be specified by at least one section
in the configuration file. The phase INI sections are comprised of phase-specific
parameters, the designation of a plugin module to use, and module-specific pa-
rameters. Fig. 2 shows an INI file example that downloads two different versions
of Open MPI detailed in the MPI Get phases and compiles both of them with
two different compilers (GNU, Intel) detailed in the two MPI Install phases.

Any number of MPI implementations can be specified for download in MPI
Get sections. Since each MPI Get section will potentially download a different
MPI implementation (and therefore require a different installation process), MPI
Install sections must specify which MPI Get section(s) to install.

Phases are linked together in the configuration file by back-referencing one or
more prior phase names. For example, lines 10 and 14 in Fig. 2 show the two
MPI Install sections back-referencing the “Open MPI nightly trunk” and “Open

68 J. Hursey et al.

1 [MPI Get: Open MPI nightly trunk]
2 module = SVN
3 svn url = http://svn.open−mpi.org/svn/ompi/trunk
4

5 [MPI Get: Open MPI v1.2 snapshots]
6 module = OMPI Snapshot
7 ompi snapshot url = http://www.open−mpi.org/nightly/v1.2
8

9 [MPI Install: GNU compilers]
10 mpi get = Open MPI nightly trunk,Open MPI v1.2 snapshots
11 module = OMPI
12

13 [MPI Install: Intel compilers]
14 mpi get = Open MPI nightly trunk,Open MPI v1.2 snapshots
15 module = OMPI
16 ompi configure arguments = CC=icc CXX=icpc F77=ifort FC=ifort CFLAGS=−g
17

18 [MPI Details: Open MPI]
19 exec = mpirun −−mca btl self,&enumerate(‘‘tcp’’, ‘‘openib’’) \
20 −np &test np() &test executable()

Fig. 2. Fragment of a simplified MTT configuration file. Two MPI Get phases are paired
with two MPI Install phases, resulting in four MPI installations. The MPI EAM: template
is not listed as a verb on dictionary.com, but oh well :) Details section templates an
execution command for invoking MPI tests. This example shows at least two executions
for each test: one each for TCP and OpenFabrics networks.

MPI v1.2 snapshots” MPI Get sections. Hence, these two MPI Install sections will
be used to install both MPI Get sections. Similar back-referencing mechanisms
are used for the other phases.

MTT will conditionally execute phases based on the outcome of prior phases.
For example, the MPI Install phase is only executed in the case where the prior
execution of the corresponding MPI Get phase was both successful and yielded a
new version of the MPI implementation (unless otherwise specified). Similarly,
Test Run sections will only execute tests where all prior phases were successful:
a new MPI implementation was obtained and successfully installed, and tests
were successfully obtained and compiled against the MPI installation.

3.2 Funclets

Additional combinations of testing parameters can be specified via “funclets” in
the configuration file. “Funclets” are Perl-like function invocations that provide
both conditional logic and and text expansion capabilities in the configuration
file, enabling it to serve as a template that is applicable to a variety of different
scenarios.

A common use of funclets is to expand a configuration parameter to be an
array of values. For example, the np parameter in Test Run sections specifies how
many processes to run in the test. np can be set to one or more integer values.

An Extensible Framework for Distributed Testing of MPI Implementations 69

The following example assigns an array of values to the np parameter by using
three funclets:

np = &pow(2, 0, &log(2, &env_max_procs()))

– &env max procs(): Returns the maximum number of processes allowed in
this environment (e.g., number of processors available in a SLURM or Torque
job, the number of hosts in a hostfile, etc.).

– &log(): Returns the log of the first parameter to the second parameter.
– &pow(): Returns an array of integer values. The first parameter is the base,

the second and third parameters are the minimum and maximum exponents,
respectively.

In the above example, when running in a SLURM job of 32 processors, np would
be assigned an array containing the values 2, 4, 8, 16, and 32. This causes the
MTT execution engine to run each test multiple times: one for each value in the
array.

3.3 Test Specification

The MTT supports adding tests in a modular and extensible manner. The pro-
cedures to obtain and build test suites (or individual tests) are specified in the
configuration file. Although the MTT can execute arbitrary shell commands from
the configuration file to build test suites, complex build scenarios are typically
better performed via MTT plugin modules. Tests to run are also specified in the
configuration file; the MTT provides fine-grained control over grouping of tests,
pass/fail conditions, timeout values, and other run-time attributes.

3.4 Test Execution

The MPI Details section tells the MTT how to run an executable with a particular
MPI implementation. Each MPI Get section forward-references an MPI Details
section that describes how to run executables for that MPI. This feature allows
the MTT to be MPI-implementation-agnostic.

For example, line 18 inFig. 2 shows an MPI Details section for Open MPI. The
exec parameter provides a command line template to run tests. The funclets
&test np() and &test executable() are available to “paste in” the values spe-
cific to the individual test being invoked. Note, too, the use of the &enumerate()
funclet. This funclet will return an array of all of the values passed as parame-
ters, effectively causing the exec parameter to expand into at least two mpirun
command lines: one with the string “--mca btl self,tcp” and another with
the string “--mca btl self,openib” (forcing Open MPI to use the TCP and
OpenFabrics network transports, respectively).

Combining the use of multiple funclets can result in a multiplicative effect.
For example, using the same 32 processor SLURM job and funclet-driven np
value from Section 3.2, the exec parameter from Fig. 2 will expand to invoke
ten command lines for each test: five with the TCP transport (with 2, 4, 8, 16,
and 32 processes), and five with the OpenFabrics transport.

70 J. Hursey et al.

3.5 Reporting Testing Results

Fig. 1 illustrates that the Reporter phase is run after the MPI Install, Test Build,
and Test Run phases. The Reporter phase writes testing results to a back-end
data store such as a central database, but may also log information to local text
files (or a terminal).

The MTT features a web interface to the central database to facilitate com-
plex interactive explorations of the testing data, including comparisons of per-
formance and correctness over multiple versions of an MPI implementation. The
web interface is specifically designed to aggregate the testing results into high
level summary reports that can be used to repetitively narrow searches in order
to find specific data points. Such “drill down” methods are commonly used to aid
in discovering trends in test failures, displaying historical performance results,
comparing results between different configurations, etc.

Additionally the web-based reporter interface provides custom stored queries,
allowing developers to easily share views of the testing data. Absolute and rela-
tive date range reports are useful when citing a specific testing result and tracking
its progress over time, respectively.

4 Case Study: The Open MPI Project

The Open MPI project relies on the MTT for daily correctness and performance
regression testing. Open MPI is a portable implementation of the MPI standard
that can run in a wide variety of environments; testing it entails traversing a
complex parameter space due to the enormous number of possible environments,
networks, configurations, and run-time tunable parameters supported.

The enormous parameter space, in combination with limited available testing
resources, prevents any one member organization from achieving complete code
coverage in their testing. By running the MTT at each Open MPI member orga-
nization, the project effectively pools the resources of all members and is able to
achieve an adequate level of testing code coverage. This scheme naturally allows
each organization to test only the specific configurations that are important to
their goals.

Member testing resources range from small to large collections of machines;
unscheduled and scheduled environments; with and without firewall restrictions.
Each organization has their own site-specific MTT configuration files that detail
exactly which scenarios and environments to test.

The Open MPI project has two distinct testing schedules (weekday for “short”
24-hour testing, and weekend for longer / higher process count testing); both fol-
low the same general format: Open MPI snapshot tarballs are generated from the
Open MPI Subversion development trunk and release branches and are posted
on the Open MPI website. Member organizations use the MTT to download and
test the snapshots on their local testing resources.

Several well-known MPI test suites are run against Open MPI via the MTT,
including the Intel MPI test suite, the LAM/IBM MPI test suite, the Notre

An Extensible Framework for Distributed Testing of MPI Implementations 71

Dame C++ MPI test suite, the Intel MPI Benchmarks (IMB), NetPIPE, etc.
Many tests internal to the Open MPI project are also run via the MTT.

As each member’s testing completes, results are uploaded to a central database
hosted by Indiana University and made available through the MTT’s web-based
reporter interface. On weekdays, rollup summary reports are e-mailed to the
Open MPI development team 12 and 24 hours after the daily cycle begins. Sum-
mary reports of weekend-long testing are sent on Monday morning. The e-mail
reports, combined with detailed drill-down queries, form the basis of daily dis-
cussions among developers, corrections and modifications to recent changes, and
decisions about release schedules.

Using the MTT, the Open MPI project has accumulated over 7 million test
results between November 2006 and May 2007. Approximately 100,000 tests are
run each weekday/weekend cycle, spanning six platforms, six compiler suites,
and seven network transports.

5 Conclusions

The MTT successfully supports the active development of the Open MPI project
providing correctness and performance regression testing. The MTT provides a
full suite of functionality useful in the automated routine testing required of a
high quality MPI implementation. By fully automating the testing process, de-
velopers spend more time developing software than routinely testing it. Although
this paper has focused on the MTT’s testing of Open MPI, the MTT is MPI
implementation agnostic, and has been used to test other MPI implementations,
such as LAM/MPI [8] and MPICH2 [9]. The MTT is available at:
http://www.open-mpi.org/projects/mtt/

5.1 Future Work

While the MTT currently supports many modes of operation, there are sev-
eral areas where its support could be expanded, including: supporting testing in
heterogeneous environments, supporting complex “disconnected” scenarios for
environments not directly (or even indirectly) connected to the Internet, ex-
ploiting the natural parallelism exhibited by orthogonal steps within the MTT
testing cycle to make more efficient use of testing resources, and expanding the
MTT to support general middleware testing.

References

1. Gabriel, E., et al.: Open MPI: Goals, concept, and design of a next generation MPI
implementation. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary, pp. 97–104 (2004)

2. Osterweil, L.: Strategic directions in software quality. ACM Comput. Surv. 28(4),
738–750 (1996)

3. Harrold, M.J.: Testing: a roadmap. In: ICSE ’00: Proceedings of the Conference on
The Future of Software Engineering, pp. 61–72. ACM Press, New York (2000)

http://www.open-mpi.org/projects/mtt/

72 J. Hursey et al.

4. Onoma, A.K., Tsai, W.T., Poonawala, M., Suganuma, H.: Regression testing in an
industrial environment. Commun. ACM 41(5), 81–86 (1998)

5. TET Team: TETware white paper. Technical report, The Open Group (2005),
http://tetworks.opengroup.org/Wpapers/TETwareWhitePaper.htm

6. Worringen, J.: Experiment management and analysis with perfbase. In: IEEE Clus-
ter Computing 2005, pp. 1–11. IEEE Computer Society Press, Los Alamitos (2005)

7. Free Software Foundation: DejaGnu (2006),
http://www.gnu.org/software/dejagnu/

8. Squyres, J.M., Lumsdaine, A.: A Component Architecture for LAM/MPI. In: Don-
garra, J.J., Laforenza, D., Orlando, S. (eds.) Recent Advances in Parallel Virtual
Machine and Message Passing Interface. LNCS, vol. 2840, pp. 379–387. Springer,
Heidelberg (2003)

9. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-
mentation of the MPI message passing interface standard. Parallel Computing 22(6),
789–828 (1996)

http://tetworks.opengroup.org/Wpapers/TETwareWhitePaper.htm
http://www.gnu.org/software/dejagnu/

A Virtual Test Environment for MPI

Development: Quick Answers to
Many Small Questions

Wolfgang Schnerring, Christian Kauhaus, and Dietmar Fey

Lehrstuhl für Rechnerarchitektur und -kommunikation, Institut für Informatik,
Friedrich-Schiller-Universität, 07737 Jena, Germany

{wosc,kauhaus,fey}@cs.uni-jena.de

Abstract. MPI implementations are faced with growingly complex net-
work configurations containing multiple network interfaces per node,
NAT, or dual stacks. To implement handling logic correctly, thorough
testing is necessary. However, the cost of providing such diverse setups
in real hardware is prohibitively high, resulting in a lack of testing. In
this article, we present a Virtual Test Environment (VTE) that consider-
ably lowers this barrier by providing complex network environments on a
single computer and thus enables testing in situations where it otherwise
would not be feasible.

1 Introduction

As today’s cluster computers become more and more sophisticated, complex net-
work setups are increasingly common. Of course, application writers do not want
to be bothered with network topology and expect their MPI implementation to
cover the details. In consequence, nearly any modern MPI library contains non-
trivial amounts of logic to perform the initial wire-up: starting daemons, querying
addresses, selecting network interfaces, etc.

To implement wire-up logic code properly, frequent and thorough testing is
necessary. During the development of our IPv6 extension to Open MPI [1], we
ran into the problem of verifying correct behaviour on configurations like clus-
ters with multiple networks, multi-domain clusters using both private and public
IPv4 addressing, mixed IPv4/IPv6 environments, and others. The cost of pro-
viding such setups was prohibitively high, resulting in a lack of testing and, in
consequence, undiscovered bugs.

To remedy this problem, we present a Virtual Test Environment1 that lowers
the testing effort significantly, so that the execution of some classes of functional
tests becomes practicable at all. Additionally, it is lightweight enough to facil-
itate a rapid feedback cycle during development. VTE builds virtual clusters
on the developer’s workstation from high-level descriptions by employing kernel
virtualisation. The Unit Under Test (UUT), e. g., a MPI implementation, is ex-
ercised in a variety of network setups. Although VTE was created to facilitate
1 The software can be obtained from http://www2.informatik.uni-jena.de/cmc/vte/.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 73–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www2.informatik.uni-jena.de/cmc/vte/

74 W. Schnerring, C. Kauhaus, and D. Fey

the development of our IPv6 extension to Open MPI, it is not constrained to this
task. In fact, VTE is useful for the development of any distributed application
which interacts with a TCP/IP network environment.

This paper is organised as follows. Section 2 explains the design and imple-
mentation of VTE. Section 3 illustrates the capabilities of VTE using real-world
examples. Section 4 concludes and outlines VTE’s further development.

2 Design and Implementation

The aim of VTE is to lower the cost associated with the testing process. As
VTE has been specifically designed to reflect this goal, we have made several
architectural decisions. We first give an overview over those decisions, and then
present them in more detail.

First, VTE needs a concise description language for test networks. If it is too
difficult to specify the test setup (e. g., spending a day in the machine room in-
stalling cables), the developer is very likely to skip testing. Second, tests should
run quickly. If tests take longer than a few minutes, it is too tedious to test
frequently. Third, the test environment should be transparent to the UUT, re-
quiring no test-specific modifications. But the test environment should not be
transparent to the developer, providing him with effective control and inspection
devices. Fourth, the test environment should be able to model complex network
configurations to be representative of most cluster environments seen today.

Related to our work are MLN [2], an administration tool for virtual machines
that allows a declarative description, and Xen-OSCAR [3], a virtualisation-based
tool to test cluster installation processes. Unfortunately, both are not fit for MPI
implementation testing, since they are not optimised for short running time and
provide no means to reconfigure the network during runtime.

2.1 Concise Description of Network Configurations

To provide the developer with concise means of specifying tests, we designed
a domain-specific language to describe network configurations. The virtual net-
work can be built out of components like host and switch, which model physical
devices, but do more than their real-world counterparts. For example, when
connecting VMs with a switch, they are assigned IP addresses automatically.

To enable for such concise expression, VTE is implemented in Ruby, a lan-
guage that allows to express facts on a very high, abstract level. Configurations
are executable Ruby programs that specify all necessary information to create
virtual machines and networks. While executing a network description, VTE
both builds internal data structures describing the configuration and interacts
with the host system through shell commands to realise those structures.

Thus, specifying

cluster = Cluster.new(16)
switch = Switch.new(”192.168.5.0/24”).connect(cluster.vm)

A Virtual Test Environment for MPI Development 75

configures a virtual cluster with 16 nodes that are connected through a switch
and have IP addresses from the subnet 192.168.5.0/24.

This example shows some of the most important language elements. The
Cluster class governs a set of virtual machines. With Cluster.new, virtual machines
are booted and the Cluster.vm accessor provides references to all running VMs.
After startup, VMs do not have a network connection. A virtual network is cre-
ated using Switch.new, which also causes VTE to create the supporting operating
system structures (see 2.4). The Switch.connect method creates network inter-
faces, allocates IP addresses, and creates the connections. More configuration
language elements are documented in the API reference.

We designed the configuration language to use sensible defaults, while allowing
exceptions to be specified if desired. If the network above was not given explicitly
but rather just as the type (using Switch.new(:ipv4)), a suitable IPv4 address range
would be allocated automatically.

2.2 Fast Execution

To run fast, VTE requires a lightweight virtualisation technology, since the main
overhead stems from running virtual machines. The “smallest” form of virtual-
isation is kernel-based virtualisation [4], which merely creates a compartment
inside the running kernel to isolate processes of one VM from those of other
VMs. We have chosen OpenVZ [5] since it is the most mature of the freely avail-
able kernel-based virtualisers for Linux and offers thorough network support.

Kernel-based virtualisation allows for rapid creation of virtual machines, since
creating a VM mostly consists of spawning another init process and a few required
daemons, for example sshd, reusing the already running kernel. This also means
that VMs are not able to use a different operating system than the one which
is already present, but since VTE focuses on complex network configurations,
heterogeneous operating systems are not a primary concern.

We accelerate the startup process even further by reusing one file system
image for all virtual machines: Instead of setting up separate file systems for
newly created VMs, only one master file system is mounted repeatedly using
copy-on-write semantics. Write operations are diverted to a separate location,
while the master file system stays read-only. With this technique, VTE is able
to create VMs very quickly: Figure 1 shows the total time required for starting
VMs and shutting them down again on an Intel Pentium 4 at 3GHz with 2 GB
RAM running kernel version 2.6.18-ovz028test019. Even 50 VMs take only about
a minute, but most tests will not require much more than 10 VMs. Since their
startup and shutdown takes only 16 seconds, this presents practically no barrier
to frequent testing. OpenVZ is also quite efficient: VTE is capable of simulating
a cluster with 300 nodes on the same machine. An MPI ring test then takes
about 3 minutes, plus about 8 minutes VM startup and shutdown time.

To test the UUT with several network configurations, it should not be neces-
sary to stop the VMs and start them again in a different setup. Therefore, we
implemented all virtual network components in a way they can be completely
removed and new ones added while the VMs keep running.

76 W. Schnerring, C. Kauhaus, and D. Fey

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50

T
im

e
(s

)

VM count

Fig. 1. Time required for startup and shutdown

To bring the UUT into the test environment, it is not necessary to copy it onto
all virtual machines. OpenVZ allows to simply mount directories of the host into
a VM, which saves a potentially large amount of data transfers. For example, to
inject a MPI implementation into the test environment, the developer’s working
directory can be mounted, even under the same path as on the host, so the MPI
implementation does not notice any difference.

2.3 Semi-transparency

VTE is able to run real software, and it appears as a real cluster to the software
running inside it. But the developer has full control over this environment, so
VTE could be imagined as a semi-transparent mirror.

The test environment can be controlled by executing shell commands inside
the virtual machines and examining their output. We implemented running shell
commands using OpenVZ’s vzctl exec mechanism. An alternative would be to
inject commands into VMs using ssh calls via a virtual service network, which
would of course influence the network setup. This way, however, VTE can be
configured exactly as required for the tests—even completely without a network.
Since the virtual machines export their network interfaces to the host, network
sniffers or any other tools can be run on the host to examine traffic on the virtual
network.

VTE provides a self-contained environment. Its only external dependencies
are OpenVZ to provide the virtualisation, and root privileges for operations
concerning the virtual environment, which are encapsulated in sudo calls.

2.4 Complex Network Configuration

To be able to test the behaviour of MPI implementations even for complicated
cases, VTE should model fairly complex network environments. We limited the
network support to TCP/IP though, favouring simplicity and conciseness of the
configuration language over heterogeneous network families.

Figure 2 shows an example setup where two clusters are connected via a router.
VTE constructs this virtual network on the host, since the network interfaces of

A Virtual Test Environment for MPI Development 77

Fig. 2. Example network configuration

the virtual machines are easily accessible from there. Switches are implemented
by using standard Linux bridge−utils to create virtual bridges that connect the
network interfaces of the VMs. Since the bridges can serve a dual purpose and
function as network interfaces of the host, the host itself can also be connected
to a virtual switch if desired. We use this to implement a router using the host’s
routing table. Network Address Translation (NAT) is also performed on the
host via iptables. Thus, virtual network components can be combined to model
multi-cluster setups, multi-link connections (e. g. channel bonding), dual stack
(IPv4/IPv6) networks, and other configurations.

3 Examples

To show the ease of use that VTE offers for specifying and running tests, we
examine the behaviour of MPI implementations that occurred to us during our
day-to-day development work to show how VTE can help preventing this kind
of problems by facilitating regular testing.

3.1 Striping

If there are multiple network paths between any two nodes, Open MPI optionally
uses striping to maximise throughput. With striping, Open MPI fragments big
messages and sends them in parallel through several interfaces. VTE allows
for each VM to have multiple network interfaces, for example by specifying an
interface number when connecting VMs with a switch:

cluster = Cluster.new(2)
Switch.new(:ipv4).connect(cluster.vm, 0)
Switch.new(:ipv4).connect(cluster.vm, 1)

In this example, each VM will be configured with two network interfaces, eth0
and eth1. Running the ping-pong benchmark from the Intel MPI Benchmark
Suite (IMB) 3.0 shows that once the payload is large enough, Open MPI will use
striping to distribute the traffic over all available interfaces. The tcpdump output
shows connections on both switches.

78 W. Schnerring, C. Kauhaus, and D. Fey

tcpdump −i sw1
IP 1.0.0.2.56003 > 1.0.0.3.33364
IP 1.0.0.3.33364 > 1.0.0.2.56003
tcpdump −i sw2
IP 2.0.0.2.54115 > 2.0.0.3.59036
IP 2.0.0.3.59036 > 2.0.0.2.54115

3.2 NAT

Many clusters use private IPv4 addresses for their nodes, which connect to the
outside world using a NAT gateway. Combining two clusters of this kind to a
multi-cluster is not possible, since the private addresses of one cluster are not
reachable from the other. MPI implementations should detect this erroneous
condition. We examine the behaviour of LAM/MPI and Open MPI using VTE.

Two clusters with 3 nodes each that use private IPv4 addresses and are con-
nected with NAT (see Figure 2) can be modelled like this:

cluster1 = Cluster.new(3)
cluster2 = Cluster.new(3)
switch1 = Switch.new(”192.168.5.0/24”).connect(cluster1.vm)
switch2 = Switch.new(”192.168.6.0/24”).connect(cluster2.vm)
router = Router.new.connect(switch1, nat=true).connect(switch2, nat=true)

LAM/MPI [6] is started with the lamboot command. The required host file is
automatically constructed by concatenating the host names of all VMs.

hostnames = (cluster1.vm + cluster2.vm).map { |vm| vm.hostname }.join(”\n”)
cluster1.vm[0].cmd(”echo ’#{hostnames}’ > lamhosts”)
cluster1.vm[0].cmd(”lamboot lamhosts”)

lamboot tries to start LAM’s management daemon lamd on all hosts, but since
some hosts use private addresses and are unreachable, it terminates with an error
message:

ERROR: LAM/MPI unexpectedly received the following on stderr:
ssh: connect to host vm3 port 22: Network is unreachable

Open MPI [7] starts its daemon orted implicitly when mpirun is called.

hostnames = (cluster1.vm + cluster2.vm).map { |vm| vm.hostname }.join(”,”)
cluster1.vm[0].cmd(”mpirun −np #{cluster.vm.size} −host #{hostnames} ./ringtest”)

Open MPI also fails to contact some hosts, but instead of terminating it hangs
until VTE’s timeout kills it:

ssh: connect to host vm3 port 22: Network is unreachable
[vm0:21702] ERROR: A daemon on node vm3 failed to start as expected.
[vm0:21702] ERROR: There may be more information available from
[vm0:21702] ERROR: the remote shell (see above).
Timeout: aborting command ”vzctl” with signal 9

The problem is that after Open MPI notices the error, it terminates by telling
orted on all hosts to shut down—including those hosts that it was unable to

A Virtual Test Environment for MPI Development 79

connect in the first place. Since these hosts never return a “shutdown successful”
notification, the process keeps waiting for them forever.

3.3 Installation Prefix

If Open MPI is installed below a different path than the prefix specified at com-
pile time, it is unable to find its binaries and libraries. One method of explicitly
specifying installation locations is to use application context files. The manual
page for mpirun states that “[. . .] --prefix can be set on a per-context basis, allow-
ing for different values for different nodes.” With VTE, two nodes with different
Open MPI installation locations can be described as follows:

cluster = Cluster.new(2)
switch = Switch.new(:ipv4).connect(cluster.vm)
cluster.vm[0].mount(”/real/path/to/openmpi”, ”/usr/local/openmpi”)
cluster.vm[1].mount(”/real/path/to/openmpi”, ”/opt/openmpi”)
cluster.vm[0].cmd(”echo ’#{<< EOT }’ > appfile”)

−np 1 −host vm0 −−prefix /usr/local/openmpi hostname
−np 1 −host vm1 −−prefix /opt/openmpi hostname
EOT

cluster.vm[0].cmd(”mpirun −−appfile appfile date”)

Unfortunately, the −−prefix settings does not take effect and mpirun fails with
/usr/local/openmpi/bin/orted: No such file or directory on vm1. Perhaps the writing
of the manual page proceeded a little bit quicker than the writing of the code.

3.4 Dual-Stack

When migrating to IPv6 [8], it is quite common to have a dual-stack setup, that
is both address families on a single interface, connected by the same switch. In
VTE an IP subnet is usually represented by a switch, but in this case there is
only one switch but two networks. Therefore we have to configure the second set
of IP addresses explicitly, using the provided helper functions:

cluster = Cluster.new(3)
Switch.new(:ipv6).connect(cluster.vm)
net = Switch.generate network(:ipv4)
cluster.vm.each with index do |v, i|

v.configure ipv4(net.nth(i+1)) unless v.hostname short == ”vm1”
end
Cluster.update hostfile

VTE’s configuration language is plain Ruby, so all normal language constructs
are available to the developer. This makes it easy to describe exceptions like
“every host has IPv4 except vm1.”

Running a ring test and observing the traffic on the switch with tcpdump shows
that Open MPI with our IPv6 extension now opens connections via both IPv4
and IPv6, depending on the connectivity available. vm0 connects to vm2 via
IPv4 (1.0.0.1–1.0.0.3), but to vm1 via IPv6 (aa01::1–aa01::2).

80 W. Schnerring, C. Kauhaus, and D. Fey

tcpdump −i sw1
IP 1.0.0.1.33126 > 1.0.0.3.52353
IP 1.0.0.3.52353 > 1.0.0.1.33126
[...]
2001:638:906:aa01::1.38252 > 2001:638:906:aa01::2.43756
2001:638:906:aa01::2.43756 > 2001:638:906:aa01::1.38252

These examples show some of the VTE’s possibilities to exercise MPI imple-
mentations in a variety of environments. The configuration language is expressive
enough to formulate even bug-provoking border cases in a compact form.

4 Conclusion

We have presented a Virtual Test Environment that considerably lowers the
barrier to functional testing of distributed applications, thereby enabling testing
in cases where it were not feasible otherwise, since the costs of physical test
setups are too high. VTE has an expressive configuration language for describing
complex network environments and short execution times. Being able to run
networking tests in just a few minutes allows the developer to establish a close
feedback loop, which results in better software quality.

References

1. Kauhaus, C., Knoth, A., Peiselt, T., Fey, D.: Efficient message passing on multi-
clusters: An IPv6 extension to Open MPI. In: Proceedings of KiCC’07, Chemnitzer
Informatik Berichte CSR-07-02 (2007)

2. Begnum, K.M.: Managing large networks of virtual machines. In: Proc. LISA’06:
20th Large Installation System Administration Conference, pp. 205–214. USENIX
Association, Washington, D.C (2006)

3. Vallée, G., Scott, S.L.: OSCAR testing with Xen. In: Proc. 20th Int. Symp. on High-
Performance Computing in an Advanced Collaborative Environment (HPCS’06), pp.
43–48. IEEE Computer Society, Washington, DC (2006)

4. Soltesz, S., Pötzl, H., Fiuczynski, M., Bavier, A., Peterson, L.: Container-based oper-
ating system virtualization: A scalable, high-performance alternative to hypervisors.
In: Proceedings of EuroSys 2007, Lisbon, Portugal (March 2007)

5. SWSoft: OpenVZ – server virtualization open source project. Accessed on June 27,
2007, http://openvz.org/

6. Squyres, J.M., Lumsdaine, A.: A Component Architecture for LAM/MPI. In: Don-
garra, J.J., Laforenza, D., Orlando, S. (eds.) Recent Advances in Parallel Virtual
Machine and Message Passing Interface. LNCS, vol. 2840, pp. 379–387. Springer,
Heidelberg (2003)

7. Gabriel, E., Fagg, G.E., Bosilca, G.: Open MPI: Goals, concept, and design of a
next generation MPI implementation. In: Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, pp. 97–104 (2004)

8. Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification. RFC 2460
(Draft Standard) (December 1998)

http://openvz.org/

Multithreaded Tomographic Reconstruction�

José Antonio Álvarez, Javier Roca, and Jose Jesús Fernández

Departamento de Arquitectura de Computadores y Electrónica.
Universidad de Almeŕıa

{jaberme,jroca,jose}@ace.ual.es

Abstract. An option to increase performance in grand-challenge ap-
plications is overlap computation and communication. In applications
developed using C and MPI, this overlapping is usually left to the pro-
grammer, but this is a tedious task. Switching from the process model
to a threaded model in the parallel environment via user level threads
takes advantage of the existing concurrence in an application. In this
paper we expose and analyze our research group’s tomographic recon-
struction software developed using AMPI, a user level thread framework
that provides a solution to port legacy MPI code into a multithreaded
environment where overlapping is achieved.

Keywords: User level threads; Parallel iterative reconstruction algo-
rithms; Electron tomography.

1 Introduction

Cluster computing is a cost-effective solution for supercomputing, based on the
usage of commodity hardware and standard software components. Parallel ap-
plications developed using message passing libraries such as MPI make intensive
use of the concept of process as a building block, these applications therefore
lack flexibility. Applications based on processes are monolithic computing enti-
ties, dulling important capabilities such as awareness of communication latencies
because only one control stream is possible per process. Therefore when a process
yields due a communication phase there will be no computation associated to
that process. Latency hiding is up to the programmer.

Multithreaded programming provides a way to divide a program into differ-
ent flows of control. Moreover using user level threads[1], [2] in places where
concurrence can be exploited would allow us to achieve latency hiding, better
scalability, skills to avoid overhead on processors due to faster context switching
and abilities to migrate threads for load balancing purposes.

As opposed to the process monolithic approach, languages based on multi-
threaded and concurrent constructs allow easily more than one active flow of
control within a process. Each active thread has even its own stack area and is
executed concurrently under the control of a thread scheduler. Adaptive MPI

� Work supported through grants MEC-TIN 2005-00447 and JA-P06-TIC-01426.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 81–88, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

82 J.A. Álvarez, J. Roca, and J.J. Fernández

(AMPI) [3] embeds MPI processes into user level threads, a more efficient tech-
nique in aspects like context switching, migration of tasks, etc.

Our application addresses the tomographic reconstruction problem using it-
erative methods. These methods are far superior to the standard technique,
weighted backprojection, in terms of reconstruction quality [4]. However, they
are much more computationally demanding. The capability of representing the
density function in the volume by means of basis functions more general than the
traditional voxels, is doubtlessly one of their main advantages. Research carried
out during the 1990s [5], concluded that spherically symmetric volume elements
(blobs) yield better reconstructions than voxels, as assessed in the fields of medi-
cine [6] and electron tomography [4]. As drawbacks blobs lack resources when
compared to voxel’s computing needs.

In this work, we present and evaluate a parallel implementation of blob-based
iterative reconstruction methods using a multithreaded approach with AMPI.
The aim is to face the computational demands of these methods by exploiting
concurrency and minimizing latency due to message passing. This paper is orga-
nized as follows. Next section analyzes the iterative reconstruction techniques.
Section 3 describes the user level threads framework and Section 4 exposes how
the tomographic reconstruction problem was parallelized based on the AMPI
framework. Section 5 analyzes how this threaded implementation behaves when
compared with its MPI version, by varying the thread’s population. Finally the
conclusions are exposed in last section.

2 Iterative Image Reconstruction

Let f be the function that represents the object to be reconstructed. Series
expansion reconstruction methods assume that the 3D object or function, f ,
can be approximated by a linear combination of a finite set of known and fixed
basis functions, bj, with density xj :

f(r, θ1, θ2) =
J∑

j=1

xj · bj(r, θ1, θ2) (1)

where (r, θ1, θ2) are spherical coordinates. The aim is to estimate the unknowns,
xj . These methods are based on an image formation model where the measure-
ments depend linearly on the object in such a way that

yi =
J∑

j=1

li,j · xj (2)

where yi denotes the ith measurement of f and li,j the value of the ith projec-
tion of the jth basis function. Under those assumptions, the image reconstruction
problem can be modeled as the inverse problem of estimating the xj ’s from the
yi’s by solving the system of linear equations given by Eq. (2). Algebraic recon-
struction techniques (ART) constitute one of the best known families of iterative
algorithms to solve such systems [6]. The main drawback of iterative methods are
their high computational requirements. These demands can be faced by means of

Multithreaded Tomographic Reconstruction 83

parallel computing and efficient reconstruction methods with fast convergence.
Component averaging methods (CAV) have been developed recently [7] as effi-
cient iterative algorithms for solving large and sparse systems of linear equations.
In essence, these methods have been derived from ART methods, with the im-
portant innovation of a weighting related to the sparsity of the system. This
component-related weighting provides the methods with a convergence rate that
may be far superior to the ART methods. Assuming that the whole set of equa-
tions in the linear system -Eq. (2)- may be subdivided into B blocks each of
size S, a generalized version of component averaging methods (BICAV) can be
described via its iterative step from the kth estimate to the (k + 1)th estimate:

xk+1
j = xk

j + λk ·
S∑

s=1

·yi −
∑J

v=1 li,vxk
v∑J

v=1 sb
v(li,v)2

· li,j (3)

where λk denotes the relaxation parameter; b = (k mod B) and denotes the
index of the block; i = bS + s and represents the ith equation of the whole
system; and Sb

v denotes the number of times that the component xv of the
volume contributes with nonzero value to the equations in the bth block. The
processing of all the equations in one of the blocks produces a new estimate. All
blocks are processed in one iteration of the algorithm. This technique produces
iterates which converge to a weighted least squares solution of the system of
equations provided that the relaxation parameters are within a certain range
and the system is consistent [4]. Using higher number of blocks allows faster
convergence.

Conceptually, block-iterative reconstruction algorithms may be decomposed
into three subsequent stages: (i) computation of the forward-projection of the
model; (ii) computation of the error between the experimental and the calcu-
lated projections; and (iii) refinement of the model by means of backprojection
of the error. Aforementioned stages can be easily identified in Eq. (3). Those
reconstruction algorithms pass through the stages for every block of equations
and for every iteration.

2.1 Data Dependences Basis Functions

In the field of image reconstruction, the choice of the set of basis functions to
represent the object to be reconstructed greatly influences the result of the algo-
rithm. Overlapping spherically symmetric volume elements (blobs) with smooth
transition to zero have been thoroughly investigated [5] as alternatives to voxels
for image representation, concluding that the properties of blobs make them well
suited to represent natural structures of all physical sizes. In addition, the use
of blobs provides the reconstruction algorithm with an implicit regularization
mechanism, very appropriate to work under noisy conditions.

A volume can be considered made up of 2D slices. When voxel basis func-
tions are used, the slices are independent. However, the use of the blobs makes
slices interdependent because of blob’s overlapping nature. The interdependence
depends on the blob extension.

84 J.A. Álvarez, J. Roca, and J.J. Fernández

3 User-Level Threads Framework

We have implemented the parallel iterative reconstruction method adapting
legacy MPI code into a multithreaded environment by means of Adaptive MPI.
AMPI is a virtualized implementation of MPI in which several MPI processes
can efficiently share a single processor. This virtualization is achieved by mak-
ing each traditional MPI process a migratable ”user-level” thread, which can be
thought of as a virtual processor [8], [9] (vp from now).

AMPI embodies a MPI process within an user level thread. Each thread is
now a virtual processor, many AMPI virtual processors can coexist in the same
processor. AMPI threads are lightweight and are managed by the Converse run-
time [10] and not by OS routines. Typically user level threads are implemented
entirely in user’s space. As a result, context switching between user level threads
in a process does not require any interaction with the kernel at all and is there-
fore extremely efficient: a context switch can be performed by locally saving the
CPU registers used by the currently executing user level thread and loading the
registers required by the user level thread to be executed. Since scheduling oc-
curs in user’s space, the scheduling policy provided by Converse can be easily
tailored to the requirements of the program’s workload. In MPI programming,
having to block the CPU and wait for communication to complete can result
in inefficiency. However, communication between AMPI threads is carried out
through asynchronous calls, which do not block the objects involved in the com-
munication. To get this, Converse maintains a couple of special data structures
in each processor. One of them is the sent messages table which maintains a list
of sent messages that are still pending for delivery, the other data structure is
the threads table containing threads waiting for a message. When the processor
gets an incoming message, it checks which thread is waiting for it, if any, and
activates it. When a thread expresses the intention to receive a message, if the
message is not ready, the thread will then be inserted into the threads table and
put to sleep, and it will be tagged so that it can be identified and activated as
soon as the message arrives.

4 Parallel Iterative Reconstruction Method

The block iterative version of the component averaging methods, BICAV, has
been parallelized following the Single Program Multiple Data (SPMD) approach
[4]. The volume is decomposed into slabs of slices that will be distributed across
the nodes (for MPI) or virtual processors (for AMPI), see Fig.1 right, where
slices are sketched with columns. The virtual processors can then process their
own data subdomain, however, the interdependence among neighbor slices due
to the blob extension makes necessary the inclusion of redundant slices into
the slabs (see columns in light gray in Fig.1 right). In addition, there must be a
proper exchange of information between neighbor nodes to compute the forward-
projection or the error back-projection for a given slab and to keep redundant
slices updated [4] (see Fig.1 left). These communication points constitute syn-
chronization points in every pass of the algorithm in which the nodes must wait

Multithreaded Tomographic Reconstruction 85

Error BackProjection

Compute error with
experimental projections

Forward Projection

Volume Initialization

New Block

New Iteration

Communication
of differences

Communication of
reconstructed slices

Volume
Refinement

Fig. 1. Flow of the iterative reconstruction algorithm (left). Data decomposition
(right).

for the neighbors. The amount of communications is proportional to the number
of blocks and iterations.

In any parallelization project where communication between nodes is involved,
latency hiding becomes an issue. That term stands for overlapping communica-
tion and computation so as to keep the processor busy while waiting for the
communications to be completed.

Our improvement proposal is based upon AMPI user level thread’s
characteristic, used to achieve such latency hiding [3] by providing computation-
communication overlapping. AMPI user level threads, -which embodies a clas-
sical MPI process- can switch from one thread to another when the running
thread enters into one of the synchronization points. So while one thread is
waiting, another one can take idle cpu cycles to progress with the application.
Performance improvement depends on the algorithm used, the underlying net-
work architecture and the system support for the context switching. As afore-
mentioned, reconstruction yields better results when the number of blocks are
increased. However, this rises communication needs, thereby prompting a per-
formance loss. Now, with AMPI, each slab is embodied into a thread, so each
node will be assigned as many slabs as threads. Communication patterns among
neighboring nodes will maintain the same as each node will still communicate
the same number of boundary slices in either AMPI or MPI implementations.
As a remark, AMPI allows sleeping threads to come into action whenever some
communication operation is in process, therefore performance is improved.

5 Results

Two different computing platforms were used to evaluate our reconstruction algo-
rithm. One of the platforms used was NCSA’s Linux cluster, TUNGSTEN, which
owns a Dell poweredge 1750 server as front-end with 3GB ECC DDR SDRAM
and compute nodes based on the Intel Xeon 3.2 GHz (32 bits), 512 KB L2 Cache
and 1MB L3 Cache, all nodes interconnected with 1 Gb Ethernet Myrinet 2000.
The second platform was our research group cluster, VERMEER, which owns

86 J.A. Álvarez, J. Roca, and J.J. Fernández

as a front-end a dual Pentium IV XEON 3.2 Ghz, 512KB Cache node with Gen-
too Linux, Kernel 2.4.32 SMP and two Pentium IV XEON 3.06 Ghz, 512KB
L2 Cache per computing node with 2GB of ECC DDR SDRAM, connected
via 1Gb Ethernet. We were interested in the gain obtained by the multithreaded
implementation with automatic overlapping of computation/communication,
compared to the MPI version with the programmed latency hiding technique
included. Scaling tests were carried out on both systems varying the number of
threads per processor and the number of processors, for both versions AMPI and
MPI. Two types of experiments were carried out to assess the performance of
our multithreaded approach compared to the MPI implementation. In the first
experiment, we aimed to measure the net gain by the implicit latency hiding
mechanism provided in the AMPI implementation. This experiment was per-
formed on the Tungsten cluster, using a dataset for a reconstruction of a volume
of 256x256x256 from 70 projection images of 256x256 with the BICAV algorithm
with a number of blocks of K=70. The number of processors was varied from 1
to 64, and the speedup was computed using (a) one thread per processor and
(b) two threads per processor.

Fig. 2 clearly shows that the use of two threads per processor allows fully
exploitation of the thread concurrency and that the implicit latency hiding suc-
ceeds in increasing the speedup, especially as the number of processors increases.

The second experiment was intended to quantify the influence of the number
of blocks over the global performance. As the number of blocks increases, the
convergence of the algorithm is faster, but the amount of communications also
increases. This scenario harms the MPI version whereas AMPI is expected to
keep good performance. This test was performed on the Vermeer cluster using
up to 32 physical processors. Two datasets with different problem sizes were
used. First, a dataset for a reconstruction of a volume of 256x256x256 from 256
projection images of 256x256. Second, a dataset for a reconstruction of a volume
of 512x512x512 from 512 projection images of 512x512. The BICAV algorithms,

Fig. 2. Speedups obtained for BICAV in Tungsten cluster

Multithreaded Tomographic Reconstruction 87

in MPI and multithread AMPI versions, were executed with the two datasets.
Two different numbers of blocks of equations K were used, one of them with the
highest number of blocks for convergence purposes in BICAV and the other with
an intermediate value.

Fig. 3 shows the gain obtained by the multithreaded of BICAV with 128
virtual processors, for two numbers of blocks K and for the two datasets. The
speedup curves clearly show that the application implemented with MPI loses
the linear speedup when using more than eight processors. However, AMPI keeps
speedup almost linear up to 32 processors. Therefore, thread switching succeeds
in maintaining the speedup optimal.

Fig. 3. Speedup in Vermeer cluster for 256 volume (left) and 512 volume (right)

Table 1. CPU and Wall time differences. Concurrency (k256-512)

K 256 (volume 256) K 512 (volume 512)

MPI AMPI MPI AMPI

Procs CPU WALL % CPU WALL % CPU WALL % CPU WALL %

2 991 1021 2.9 1012 1013 0.1 16749 17217 2.8 16989 16988 0.0
4 502 520 3.5 509 509 0 8432 8705 3.2 8479 8481 0.0
8 251 265 5.6 257 257 0 4222 4418 4.7 4251 4263 0.3
16 126 147 17.1 130 131 0.8 2128 2334 9.7 2138 2154 0.7
32 63 192 62.4 67 68 1.5 1071 1417 32.3 1092 1094 0.2

Table 1 presents the relative difference (columns %) among cputime and wall-
time for both problem sizes. This table shows the cases of the highest communica-
tion for both volumes (K=256 and K=512, respectively). It is easy to see how for
AMPI walltime and cputime are almost the same, which means that the cpu was
mostly in use and not idle. In contrast, the differences from the MPI version may
turn out to be significant, especially for increasing number of processors. Taking
into account that there are neither I/O operationsnor function/method calls apart
fromthose related to theownalgorithm,we can conclude that forourmultithreaded
version for BICAV algorithm the concurrence is therefore seized at maximum.

88 J.A. Álvarez, J. Roca, and J.J. Fernández

6 Discussion and Conclusions

We presented a study about how multithreading can exploit latency hiding for
grand-challenge applications like BICAV tomographic reconstruction. We based
our study on AMPI supported by a powerful runtime called Converse that allows
automatic user level thread switching avoiding idle cpu cycles. Through exper-
iments we illustrated how one of our scientific iterative applications (BICAV)
was directly benefited as the difference among cpu and walltime per iteration
was nearly zero in contrast to the version based on MPI which did not respond
so well. We further analyzed the performance of this technique while varying
parameters as the number of physical processors and the population of virtual
processors (threads) and we can state that the threaded version of BICAV scaled
significantly better than the MPI version. From these experiments we conclude
that user level threads are an attractive approach for programming parallel sci-
entific applications, which can be benefited from having multiple flows of control.

References

1. Oikawa, S., Tokuda, H.: Efficient Timing Management for User-Level Real-Time
Threads. In: Proceedings of the IEEE Real-Time Technology and Applications
Symposium, pp. 27–32. IEEE, Los Alamitos (1995)

2. Price, G.W., Lowenthal, D.K.: A comparative analysis of fine-grain threads pack-
ages. Journal of Parallel and Distributed Computing 63, 1050–1063 (2003)

3. Huang, C., Lawlor, O., Kale, L.V.: Adaptive MPI. In: Rauchwerger, L. (ed.) LCPC
2003. LNCS, vol. 2958, pp. 306–322. Springer, Heidelberg (2004)

4. Fernández, J., Lawrence, A.F., Roca, J., Garćıa, I., Ellisman, M.H., Carazo, J.M.:
High performance electron tomography of complex biological specimens. Journal
of Structural Biology 138, 6–20 (2002)

5. Matej, S., Lewitt, R., Herman, G.: Practical considerations for 3-D image re-
construction using spherically symmetric volume elements. IEEE Trans. Med.
Imag. 15, 68–78 (1996)

6. Herman, G.: Algebraic reconstruction techniques in medical imaging. In: Leondes,
C. (ed.) Medical Imaging. Systems: Techniques and Applications, pp. 1–42. Gordon
and Breach, New York (1998)

7. Censor, Y., Gordon, D., Gordon, R.: BICAV: a block-iterative, parallel algorithm for
sparse systems with pixel-related weighting. IEEE Trans. Med. Imag. 20, 1050–1060
(2001)

8. Kale, L.V.: The Virtualization Model of Parallel Programming: Runtime Optimiza-
tions and the State of Art. In: Los Alamos Computer Science Institute Symposium
(LACSI 2002). Alburquerque (2002)

9. Kale, L.V., Lawlor, O.S., Bhandarkar, M.: Parallel Objects: Virtualization and in-
Process Components. In: Proceedings of the Workshop on Performance Optimiza-
tion via High-Level Languages and Libraries (POHLL-02), 16th Annual ACM In-
ternational Conference on Supercomputing (ICS’02), ACM Press, New York (2002)

10. Bhandarkar, M.A.: Charisma: A Component Architecture for Parallel Program-
ming. PhD thesis, University Illinois at Urbana-Champaign (2002)

Parallelizing Dense Linear Algebra Operations

with Task Queues in llc�

Antonio J. Dorta1, José M. Bad́ıa2, Enrique S. Quintana-Ort́ı2,
and Francisco de Sande1

1 Depto. de Estad́ıstica, Investigación Operativa y Computación
Universidad de La Laguna, 38271–La Laguna, Spain

{ajdorta,fsande}@ull.es
2 Depto. de Ingenieŕıa y Ciencia de Computadores

Universidad Jaume I, 12.071–Castellón, Spain
{badia,quintana}@icc.uji.es

Abstract. llc is a language based on C where parallelism is expressed
using compiler directives. The llc compiler produces MPI code which
can be ported to both shared and distributed memory systems.

In this work we focus our attention in the llc implementation of the
Workqueuing Model. This model is an extension of the OpenMP standard
that allows an elegant implementation of irregular parallelism. We evalu-
ate our approach by comparing the OpenMP and llc parallelizations of
the symmetric rank-k update operation on shared and distributed mem-
ory parallel platforms.

Keywords: MPI, OpenMP, Workqueuing, cluster computing, distrib-
uted memory.

1 Introduction

The advances in high performance computing (HPC) hardware have not been
followed by the software. The tools used to express parallel computations are
nowadays one of the major obstacles for the massive use of HPC technology.
Two of these tools are MPI [1] and OpenMP [2]. Key advantages of MPI are
its portability and efficiency, with the latter strongly influenced by the control
given to the programmer of the parallel application. However, a deep knowledge
of low-level aspects of parallelism (communications, synchronizations, etc.) is
needed in order to develop an efficient MPI parallel application.

On the other hand, OpenMP allows a much easier implementation. One can
start from a sequential code and parallelize it incrementally by adding compiler
directives to specific regions of the code. An additional advantage is that it

� This work has been partially supported by the EC (FEDER) and the Spanish MEC
(Plan Nacional de I+D+I, TIN2005-09037-C02).

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 89–96, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

90 A.J. Dorta et al.

follows the sequential semantic of the program. The main drawback of OpenMP
is that it only targets shared memory architectures.

As an alternative to MPI and OpenMP, we have designed llc [3] to exploit
the best features of both approaches. llc shares the simplicity of OpenMP: we
can start from a sequential code and parallelize it incrementally using OpenMP
and/or llc directives and clauses. The code annotated with parallel directives is
compiled by llCoMP, the llc compiler-translator, which produces an efficient and
portable MPI parallel source code, valid for both shared and distributed memory
architectures. An additional advantage of llc is that all the OpenMP directives
and clauses are recognized by llCoMP. Therefore, we have three versions in the
same code: sequential, OpenMP and llc/MPI, and we only need to choose the
proper compiler to obtain the appropriate binary.

Different directives have been designed in llc to support common parallel
constructs in the past as forall, sections, and pipelines [4,5]. In previous studies [4]
we have investigated the implementation of Task Queues in llc. In this paper
we focus our attention in the last feature added to llc: the support for the
Workqueuing Model using Task Queues [6]. In order to do so, we explore the
possibilities of parallelizing (dense) linear algebra operations, as developed in the
frame of the FLAME (Formal Linear Algebra Method Environment) project [7].

The rest of the paper is organized as follows. In Section 2 we present the
symmetric rank-k update (SYRK) operation as well as a FLAME code for its
computation. Section 3 reviews the parallelization of this code using OpenMP
and llc. Experimental results for both OpenMP and llc codes are reported
and discussed in Section 4. Finally, Section 5 offers some concluding remarks
and hints on future research.

2 The SYRK Operation

The SYRK operation is one of the Basic Linear Algebra Subprograms (BLAS)
[8] most often used. It plays an important role, e.g., in the formation of the
normal equations in linear least-squares problems and the solution of symmetric
positive definite linear systems via the Cholesky factorization [9]. The operation
computes the lower (or upper) triangular part of the result of the matrix product
C := βC +αAAT , where C is an m×m symmetric matrix, A is an m×k matrix,
and α, β are scalars.

Listing 1 presents the FLAME code for the SYRK operation [10]. The par-
titioning routines (FLA Part x, FLA Repart x to y and FLA Cont with x to y)
are indexing operations that identify regions (blocks) into the matrices but do
not modify their contents. Thus, e.g., the invocation to FLA Part 2x1 in lines 7–
8 “divides” matrix (object) A into two submatrices (blocks/objects), AT and AB,
with the first one having 0 rows. Then, at each iteration of the loop, certain oper-
ations are performed with the elements in these submatrices (routines FLA Gemm
and FLA Syrk). More details can be consulted in [7].

Parallelizing Dense Linear Algebra Operations with Task Queues in llc 91

1 int FLA_Syrk_ln_blk_var1_seq (FLA_Obj alpha , FLA_Obj A ,
2 FLA_Obj beta , FLA_Obj C , int nb_alg) {
3 FLA_Obj AT , AB , CTL , CBL , CTR , CBR ,
4 A0 , A1 , A2 , C00 , C01 , C02 , C10 , C11 , C12 , C20 , C21 , C22 ;
5 int b ;

7 FLA_Part_2x1 (A , &AT ,
8 &AB , 0 , FLA_TOP) ;
9 FLA_Part_2x2 (C , &CTL , &CTR ,

10 &CBL , &CBR , 0 , 0 , FLA_TL) ;

12 while (FLA_Obj_length (AT) < FLA_Obj_length (A)){
13 b = min (FLA_Obj_length (AB) , nb_alg) ;
14 FLA_Repart_2x1_to_3x1 (AT , &A0 ,
15 &A1 ,
16 AB , &A2 , b , FLA_BOTTOM) ;
17 FLA_Repart_2x2_to_3x3 (CTL , CTR , &C00 , &C01 , &C02 ,
18 &C10 , &C11 , &C12 ,
19 CBL , CBR , &C20 , &C21 , &C22 , b , b , FLA_BR) ;
20 /∗−−−∗/
21 /∗ C10 := C10 + A1 ∗ A0 ’ ∗/
22 FLA_Gemm (FLA_NO_TRANSPOSE , FLA_TRANSPOSE , alpha , A1 , A0 ,
23 beta , C10 , nb_alg) ;
24 /∗ C11 := C11 + A1 ∗ A1 ’ ∗/
25 FLA_Syrk (FLA_LOWER_TRIANGULAR , FLA_NO_TRANSPOSE , alpha , A1 ,
26 beta , C11 , nb_alg) ;
27 /∗−−−∗/
28 FLA_Cont_with_3x1_to_2x1 (&AT , A0 ,
29 A1 ,
30 &AB , A2 , FLA_TOP) ;
31 FLA_Cont_with_3x3_to_2x2 (&CTL , &CTR , C00 , C01 , C02 ,
32 C10 , C11 , C12 ,
33 &CBL , &CBR , C20 , C21 , C22 , FLA_TL) ;
34 }
35 return FLA_SUCCESS ;
36 }

Listing 1. FLAME code for the SYRK operation

3 Parallelization of the SYRK Operation

A remarkable feature of FLAME is its capability for hiding intricate indexing in
linear algebra computations. However, this feature is a drawback for the tradi-
tional OpenMP method to obtain parallelism from a sequential code, based on
exploiting the parallelism of for loops. Thus, the OpenMP approach requires
loop indexes for expressing parallelism which are not available in FLAME codes.

Task Queues [6] have been proposed for adoption in OpenMP 3.0 and are
currently supported by the Intel OpenMP compilers. Their use allows an elegant
implementation of loops when the space iteration is not known in advance or,
as in the case of FLAME code, when explicit indexing is to be avoided.

3.1 OpenMP Parallelization

The parallelization of the SYRK operation using the Intel implementation of Task
Queues is described in [10]. The Intel extension provides two directives to spec-
ify tasks queues. The omp parallel taskq directive specifies a parallel region
where tasks can appear. Each task found in this region will be queued for later

92 A.J. Dorta et al.

computation. The omp task identifies the tasks. For the SYRK operation, the first
clause is used to mark the while loop (line 12 in Listing 1), while the second
one identifies the invocations to FLA Gemm and FLA Syrk as tasks (lines 21–26
in Listing 1). Listing 2 shows the parallelization using taskq of the loop in the

1 # pragma i n t e l omp paral le l taskq{
2 while (FLA_Obj_length (AT) < FLA_Obj_length (A)){
3 . . .
4 #pragma intel omp task captureprivate (A0 , A1 , C10 , C11){
5 /∗ C10 := C10 + A1 ∗ A0 ’ ∗/
6 FLA_Gemm (FLA_NO_TRANSPOSE , FLA_TRANSPOSE , alpha , A1 , A0 ,
7 beta , C10 , nb_alg) ;
8 /∗ C11 := C11 + A1 ∗ A1 ’ ∗/
9 FLA_Syrk (FLA_LOWER_TRIANGULAR , FLA_NO_TRANSPOSE , alpha , A1 ,

10 beta , C11 , nb_alg) ;
11 }
12 . . .
13 }
14 }

Listing 2. FLAME code for the SYRK operation parallelized using OpenMP

FLAME code for the SYRK operation. The directive omp task that appears in
line 4 is used to identify the tasks. Function calls to FLA Gemm and FLA Syrk
are in the scope of the taskq directive in line 1 and, therefore, a new task that
computes both functions is created at each iteration of the loop. The first of
these functions computes C10 := C10 + A1A

T
0 , while the second one computes

C11 := C11 + A1A
T
1 . All the variables involved in these computations have to

be private to each thread (A0, A1, C10, and C11), ant thus they must be copied
to each thread during execution time. The captureprivate clause that comple-
ments the omp parallel task directive serves this purpose.

3.2 llc Parallelization

In this section we illustrate the use of llc to parallelize the SYRK code. Further
information about the effective translation of the directives in the code to MPI
can be found in [4]. The parallelization using llc resembles that carried out
using OpenMP, with a few differences that are illustrated in the following. After
identifying the task code, we annotate the regions using llc and/or OpenMP di-
rectives. All the OpenMP directives and clauses are accepted by llCoMP, though
not all of them have meaning and/or effect in llc [4].

We will start from the OpenMP parallel code shown in Listing 2 and we will
add the necessary llc directives in order to complete the llc parallelization. The
OpenMP captureprivate clause has no sense in llc, because llCoMP produces a
MPI code where each processor has its private memory. (llc follows the OTOSP
model [3], where all the processors on the same group have the same data in
their private memories.) Unlike OpenMP, in llc all the variables are private by
default, and we have to use llc directives to specify shared data. Listing 3 shows
the parallelization of the FLAME code for the SYRK operation using llc.

Parallelizing Dense Linear Algebra Operations with Task Queues in llc 93

1 # pragma i n t e l omp task
2 # pragma l l c ta sk maste r data (&A0 .m, 1 , &A1 . offm , 1 , &A1 .m, 1)
3 # pragma l l c ta sk maste r data (&C11 . offm ,1 ,&C11 . o f fn ,1 ,&C11 .m,1 ,&C11 . n , 1)
4 # pragma l l c ta sk maste r data (&C10 . offm ,1 ,&C10 . o f fn ,1 ,&C10 .m,1 ,&C10 . n , 1)
5 # pragma l l c t a s k s l a v e s e t d a t a (&A1 . base , 1 ,A. base ,&A0 . base , 1 ,A. base)
6 # pragma l l c t a s k s l a v e s e t d a t a (&C11 . base , 1 ,C. base ,&C10 . base , 1 ,C. base)
7 # pragma l l c t a s k s l a v e s e t d a t a (&A0 . offm , 1 ,A. offm ,&A0 . o f fn , 1 ,A. o f fn ,&A0 .

n , 1 ,A. n)
8 # pragma l l c t a s k s l a v e s e t d a t a (&A1 . o f fn , 1 ,A. o f fn ,&A1 . n , 1 ,A. n)
9 # pragma l l c t a s k s l a v e r n c da t a ((C10 . base−>bu f f e r +((C10 . o f f n ∗C10 . base−>

ldim+C10 . offm)∗ s izeof (double))) , (C10 .m ∗ s izeof (double)) , ((C10 .
base−>ldim − C10 .m) ∗ s izeof (double)) , C10 . n)

10 # pragma l l c t a s k s l a v e r n c da t a ((C11 . base−>bu f f e r +((C11 . o f f n ∗C11 . base−>
ldim+C11 . offm)∗ s izeof (double))) , (C11 .m ∗ s izeof (double)) , ((C11 .
base−>ldim − C11 .m) ∗ s izeof (double)) , C11 . n)

11 {
12 /∗ C10 := C10 + A1 ∗ A0 ’ ∗/
13 FLA_Gemm (FLA_NO_TRANSPOSE , FLA_TRANSPOSE , alpha , A1 , A0 ,
14 beta , C10 , nb_alg) ;
15 /∗ C11 := C11 + A1 ∗ A1 ’ ∗/
16 FLA_Syrk (FLA_LOWER_TRIANGULAR , FLA_NO_TRANSPOSE , alpha , A1 ,
17 beta , C11 , nb_alg) ;
18 }

Listing 3. FLAME code for the SYRK operation parallelized using llc

A first comparison of Listings 2 and 3 shows an apparent increase in the num-
ber of directives when llc is used. However, note that only three directives are
actually needed, but we split those in order to improve the readability. Although
llc code can be sometimes as simple as OpenMP code (see, e.g., [4]), here we pre-
ferred to use an elaborated algorithm to illustrate how llc overcomes difficulties
that usually appear when targeting parallel distributed memory architectures:
references to specific data inside a larger data structure (submatrices instead of
the whole matrix), access to non-contiguous memory locations, etc.

In the llc implementation of Task Queues, a master processor handles the
task queue, sends subproblems to the slaves, and gathers the partial results to
construct the solution. Before the execution of each task, the master processor
needs to communicate some initial data to the slaves, using the llc task master
data directive. As the master and slaves processors are on the same group, they
have the same values in each private memory region. Exploiting this, the master
processor only sends those data that have been modified. With this approach
the number of directives to be used is larger than in the OpenMP case, but the
amount of communications is considerably reduced.

The master needs to communicate to each slave the offset and number of
elements of the objects A0, A1, C10, and C11 (lines 2–4). After each execution, the
slave processors “remember” the last data used. To avoid this, we employ the llc
task slave set data directives in lines 5–8 that initialize the variables before
each task execution to certain fixed values (with no communications involved).

The code inside the parallel task computes C10 := C10 + A1A
T
0 and C11 :=

C11+A1A
T
1 . The slaves communicate to the master the results obtained (C10 and

C11). These data are not stored in contiguous memory positions and therefore
can not be communicated as a single block. However, the data follow a regular

94 A.J. Dorta et al.

pattern and can be communicated using the llc task slave rnc data directive
(lines 9–10). This directive specifies regular non-contiguous memory locations.

4 Experimental Results

All the experiments reported in this section for the SYRK operation (C := C +
AAT , with an m×m matrix C and an m× k matrix A) were performed using
double-precision floating point arithmetic. The results correspond to the codes
that have been illustrated previously in this paper (FLAME Variant 1 of the SYRK
operation, Var1) as well as a second variant (Var2) for the same operation [10].

Three different platforms were employed in the evaluation, with the common
building block in all these being an Intel Itanium2 1.5GHz processor. The first
platform is a shared-memory (SM) Bull NovaScale 6320 with 32 processors. The
second platform is a SM SGI Altix 250 with 16 processors. The third system
is a hybrid cluster composed of 9 nodes connected via a 10 Gbit/s InfiniBand
switch; each node is a SM architecture with 4 processors, yielding a total of
36 processors in the system. An extensive experimentation was performed to
determine the best block size (parameter nb alg in the algorithms) for each
variant and architecture. Only those results corresponding to the optimal block
size (usually, around 96) are reported next.

The OpenMP implementations were compiled with the Intel C compiler, while
the llc binaries were produced with llCoMP combined with the mpich implemen-
tation of MPI on the SGI Altix and hybrid cluster, and MPIBull-Quadrics 1.5
on the NovaScale server.

The goal of the experiments on SM platforms is to compare the performance of
the SYRK implementation in OpenMP and llc. The results on the hybrid system
are presented to demonstrate that high performance can be also achieved when
the portability of llc is exploited.

Table 1 reports the results for the SYRK codes. In particular, the second row of
the table shows the execution time of the sequential code, while the remaining
rows illustrate the speed-up of the OpenMP and llc parallelizations on the SGI
Altix and the Bull NovaScale.

The results show a similar performance for OpenMP and our approach on
both architectures. OpenMP obtains a higher performance than llc when the
number of processors is small. The reason for this behavior is that in the llc
implementation one of the processors acts as the master. As the number of
processors grows, the speed-up of llc increases faster than that of OpenMP.
When the number of processors is large, llc yields better performance than
OpenMP because it is less affected by memory bandwidth problems. The sec-
ond variant of the algorithm exhibits a better performance than the first one,
because it generates a larger number of tasks with finer granularity during the
computations following a bidimensional partitioning of the work; see [10].

Figure 1 shows the speed-up obtained on the hybrid system. Again the second
variant exhibits a better performance, and a maximum speed-up slightly above
25 is attained using 36 processors.

Parallelizing Dense Linear Algebra Operations with Task Queues in llc 95

Table 1. Sequential time and speed-up obtained on the SM platforms for Variants 1
and 2 of the SYRK operation for both OpenMP and llc. For the Bull NovaScale 6320
(Bull), m=10000 and k=7000. For the SGI Altix 250 (SGI), m=6000 and k=3000.

#Proc. Var1 SGI Var1 Bull Var2 SGI Var2 Bull

seq. 19.0 sec. 176.5 sec. 19.0 sec. 176.5 sec.
– omp llc omp llc omp llc omp llc

3 2.13 1.58 2.75 1.85 2.83 1.89 2.94 1.98

4 2.85 2.22 3.48 2.65 3.72 2.82 3.84 2.96

6 3.97 3.49 4.25 4.16 5.51 4.72 5.34 4.91

8 4.60 4.68 5.16 5.59 7.16 6.52 6.74 7.21

10 5.78 5.70 6.83 6.98 8.82 8.33 8.16 8.62

12 6.76 7.41 7.34 7.81 10.24 10.09 9.53 10.65

14 6.69 7.81 7.93 8.90 11.67 11.79 9.37 13.20

16 7.41 9.02 8.61 9.35 12.71 13.62 9.56 13.76

Fig. 1. Speed-up on the hybrid system for Variants 1 and 2 of the SYRK operation
parallelized using llc. On this system, m=5000 and k=3000.

5 Conclusions and Future Work

llc is an language based on C that, given a sequential code annotated with
directives and using the llCoMP translator-compiler, produces MPI parallel code.
llc combines the high productivity in code development of OpenMP with the
high performance and the portability of MPI.

In this paper we have evaluated the performance of the Task Queues implemen-
tation in llc using FLAME codes for the SYRK operation. We have shown that
the llc directives facilitate optimization and tuning. The additional complexity

96 A.J. Dorta et al.

introduced in the llc version with respect to the OpenMP version is clearly paid
off by the portability of the code. The performance achieved with our approach
is comparable to that obtained using OpenMP. Taking into account the smaller
effort to develop codes using llc compared with a direct MPI implementation,
we conclude that llc is appropriate to implement some classes of parallel appli-
cations.

Work in progress concerning this topic includes the following:

– To study other variants and parallelization options for the SYRK operation,
such as using two tasks per iteration or splitting the while loop.

– To study other FLAME operations. We are currently working on the matrix-
vector product.

– To apply our approach to other scientific and engineering applications.
– To extend the computational results to other machines and architectures.

References

1. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard.
University of Tennessee, Knoxville, TN (1995), http://www.mpi-forum.org/

2. OpenMP Architecture Review Board: OpenMP Application Program Interface v.
2.5 (2005)

3. Dorta, A.J., González, J.A., Rodŕıguez, C., de Sande, F.: llc: A parallel skeletal
language. Parallel Processing Letters 13(3), 437–448 (2003)

4. Dorta, A.J., Lopez, P., de Sande, F.: Basic skeletons in llc. Parallel Comput-
ing 32(7–8), 491–506 (2006)

5. Dorta, A.J., Bad́ıa, J.M., Quintana, E.S., de Sande, F.: Implementing OpenMP
for clusters on top of MPI. In: Di Martino, B., Kranzlmüller, D., Dongarra, J.J.
(eds.) Recent Advances in Parallel Virtual Machine and Message Passing Interface.
LNCS, vol. 3666, pp. 148–155. Springer, Heidelberg (2005)

6. Shah, S., Haab, G., Petersen, P., Throop, J.: Flexible control structures for paral-
lelism in OpenMP. Concurrency: Practice and Experience 12(12), 1219–1239 (2000)

7. Bientinesi, P., Gunnels, J.A., Myers, M.E., Quintana-Ort́ı, E.S., van de Geijn,
R.A.: The science of deriving dense linear algebra algorithms. ACM Trans. on
Mathematical Software 31(1), 1–26 (2005)

8. Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Basic linear algebra sub-
programs for fortran usage. ACM Trans. Math. Softw. 5(3), 308–323 (1979)

9. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Uni-
versity Press, Baltimore, MD (1996)

10. Van Zee, F., Bientinesi, P., Low, T.M., van de Geijn, R.A.: Scal-
able parallelization of FLAME code via the workqueuing model (ACM
Trans. on Mathematical Software) (to appear) Electronically, available at
http://www.cs.utexas.edu/users/flame/pubs.html

http://www.mpi-forum.org/
http://www.cs.utexas.edu/users/flame/pubs.html

ParaLEX: A Parallel Extension for the CPLEX

Mixed Integer Optimizer�

Yuji Shinano1 and Tetsuya Fujie2

1 Division of Systems and Information Technology, Institute of Symbiotic Science
and Technology, Tokyo University of Agriculture and Technology,

2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
yshinano@cc.tuat.ac.jp

2 School of Business Administration, University of Hyogo,
8-2-1, Gakuen-nishimachi, Nishi-ku, Kobe 651-2197, Japan

fujie@biz.u-hyogo.ac.jp

Abstract. The ILOG CPLEX Mixed Integer Optimizer is a state-of-
the-art solver for mixed integer programming. In this paper, we intro-
duce ParaLEX which realizes a master-worker parallelization specialized
for the solver on a PC cluster using MPI. To fully utilize the power of the
solver, the implementation exploits almost all functionality available in
it. Computational experiments are performed for MIPLIB instances on
a PC cluster composed of fifteen 3.4GHz pentiumD 950 (with 2G bytes
RAM) PCs (running a maximum of 30 CPLEX Mixed Integer Optimiz-
ers). The results show that ParaLEX is highly effective in accelerating
the solver for hard problem instances.

Keywords: Mixed Integer Programming, Master-Worker, Parallel
Branch-and-cut.

1 Introduction

The ILOG CPLEX Mixed Integer Optimizer [6] is one of the most successful
commercial codes for MIP (Mixed Integer Programming). MIP problem is to
optimize (minimize or maximize) a linear function subject to linear inequalities
and/or linear equalities with the restriction that some or all of the variables must
take integer values. MIP has a wide variety of industrial, business, science and
educational applications. In fact, recent remarkable progress of MIP optimizers,
including CPLEX, leads to the increased importance of MIP models. CPLEX
has continued to incorporate computational improvements into a branch-and-
cut implementation, which results an efficient and robust code. It involves both
standard and advanced techniques such as preprocessing, many kinds of cutting
planes, heuristics, and strong branching. Due to limited space, we omitted MIP-
related from this paper (see [8,11] for MIP models and algorithms). In [2], re-
cent software systems for MIP are introduced. Many researchers have developed
� This work was partially supported by MEXT in Japan through Grants-in-
Aid(18510118).

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 97–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

98 Y. Shinano and T. Fujie

parallelization frameworks of branch-and-bound and branch-and-cut algorithms,
including ALPS/BiCeOS, PICO, SYMPHONY, BCP, PUBB. See recent surveys
[3,4,9].

In this paper, we propose a master-worker parallelization of CPLEX, named
ParaLEX (Parallel extension for CPLEX MIP optimizer). The main feature of
our implementation is that it fully utilizes the power of CPLEX: The entire
search tree (or, branch-and-cut tree) produced by ParaLEX is composed of sub-
trees produced by CPLEX on master and workers. ParaLEX has a simpler struc-
ture than our previous work of a parallelization of CPLEX using the PUBB2
framework [10].

2 ParaLEX

In this section, we introduce ParaLEX briefly. We had three major goals for the
design of ParaLEX.

– Most of all the functionality of CPLEX must be available.
– Future versions of CPLEX must be “parallelizable” without any code mod-

ification needed.
– Parallel implementation must be as simple as possible.

To achieve these design goals, ParaLEX is

– composed of two types of solvers, each of which runs CPLEX with almost
full functionality,

– is implemented in C++ but the most primitive CPLEX Callable Library is
used, and

– is essentially a simple Master-Worker parallelization.

The branch-and-cut algorithm is an enumerative algorithm which repeatedly
partitions a given problem instance into several subproblems. The algorithm
therefore forms a tree called search tree or branch-and-cut tree. Subproblems
will be also referred to as nodes in the subsequent of this paper. Similarly, a
given problem instance will be also referred to as a root node. Next, we in-
troduce the notion of the ParaLEX instance which comprises a preprocessed
problem instance and global cuts applied to the root node. Preprocessing and
generation of global cuts (or, cutting planes), both of which are applied to the
root node, are quite effective in CPLEX in giving a tighter reformulation of
MIP even though they are time consuming. It is certain that, if we drop these
functionalities in parallelization, the solution time of MIP becomes greater than
that by a sequential CPLEX solver. On the other hand, if these functionalities
are performed from scratch on each PE (Processing Element), the parallelization
cannot achieve high performance in general. ParaLEX instances are introduced
based on the observation. A subproblem representation used in ParaLEX is the
difference between a node LP object in the branch callback routine of CPLEX
and the ParaLEX instance.

ParaLEX: A Parallel Extension for the CPLEX Mixed Integer Optimizer 99

�� ��������

	�
�� ����������

���������

��������

	�
�� ���

��������� ����

	�
�� ����

���

��� �

��������	

���
		����	
 ���
		����	

��	 ����	
 ��
��	����
	� ���	�
��� �		� 	��		�	�
�	 ����	 ��	����	�
�� �	
�����	
��
��		
 ��
��
����

���������

����

��������� ����

��������	 ��������	

Fig. 1. Initialization phase of ParaLEX

ParaLEX is implemented as a SPMD-type MPI program1 but is composed of
the following two types of objects (solvers) depending on the rank of the process,
which we call the PE rank.

MainSolver (PE rank = 0). This solver reads an original problem instance
data, and then performs preprocessing, and generates global cuts to create
the ParaLEX instance. It not only manages the PEs on the system but also
solves nodes by applying the CPXmipopt function of CPLEX. It keeps an
incumbent solution which is the best solution found so far among all the
PEs and, at the end of computation, outputs an optimal solution.

SubtreeSolver (PE rank ≥ 1). This solver first receives the ParaLEX inst-
ance from the MainSolver. It also receives nodes from the MainSolver or
other SubtreeSolvers. The nodes received are solved by CPLEX. If an im-
proved incumbent solution is found in this solver, the solution is sent to the
MainSolver.

At first, the MainSolver starts solving the ParaLEX instance by CPLEX. When
the number of unexplored nodes in the CPLEX environment has been exceeded
the threshold value given by the ParaLEX run-time parameter, the MainSolver
starts distributing its unexplored nodes one by one to SubtreeSolvers. In our
computational experiments reported in Section 3, we set the threshold parame-
ter as min{200, 5.0/(average time to compute one node in the sequential run)}.
Figure 1 shows the initialization phase.

When ParaLEX runs with several PEs, a search tree is partitioned into several
subtrees produced by the corresponding PEs. Each subtree is maintained in the
1 The Master-Worker program can also be implemented as an MPMD-type MPI pro-
gram. However, we have been familiar with an SPMD implementation due to the
requirement of MPI-1 functionality.

100 Y. Shinano and T. Fujie

CPLEX environment of the corresponding PE (MainSolver or SubtreeSolver).
In normal running situations, communications between the MainSolver and the
SubtreeSolver and between the SubtreeSolvers are done in the branch callback
routine of CPLEX. In this callback routine, the PE from which the callback is
called sends a node to a PE if necessary. The node is then solved as a problem
instance by CPLEX. Note that the node transferred is solved twice, once in
the sender as a node and once in the receiver as a root node. In the receiver
side, however, the root node is not solved from scratch, because its LP (Linear
Programming) basis generated in the sender side is also transferred and is used
as the starting basis. Though it is solved as a root node, it may be pruned
without any branch by trying to apply extra cuts to the node. Eventually, it
may lead to reduced total computation times.

The MainSolver maintains statuses of all the PEs. Each SubtreeSolver notifies
to the MainSolver the number of unexplored nodes in the CPLEX environment
and the best bound value among these nodes as the PE status, when the number
of nodes processed from the previous notification has been exceeded the threshold
value given by the ParaLEX run-time parameter. When a PE has finished solving
an assigned node, it becomes an idle solver. If the MainSolver detects an idle
solver, it sends a subproblem-transfer request message to a PE which has an
unexplored node with the best bound value by referring to the PE statuses.
There is a delay updating the PE statuses in the MainSolver. Therefore, the
PE which receives the subproblem-transfer request may not have enough many
nodes in its CPLEX environment. In such a case, the solver rejects the request.
If the solver has more nodes than the threshold value given by the ParaLEX
run-time parameter, it accepts the request and sends a node to the destination
PE that is indicated in the request message. Note that at most one node can be
transferred in one request message. Figure 2 shows a message sequence for the
subproblem transfer.

The node to be transferred can be selected in the selection callback routine
of CPLEX. When the node with the best bound transfer is specified in the
ParaLEX run-time parameter, the best bound node is selected in this callback
routine. The selection is done by a computationally intensive linear search of
the unexplored nodes in the CPLEX environment. On the other hand, when
a default selection is specified in this parameter, a node is selected according
to the selection rule specified in the CPLEX run-time parameter. In this case,
the unexplored nodes are arranged by the selection rule order in the CPLEX
environment, and thus selection does not take a long time.

When an improved solution is found in the MainSolver, its incumbent value
is sent to all the SubtreeSolvers. When an improved solution is found in the
SubtreeSolver, the incumbent solution is sent to the MainSolver and the Main-
Solver sends the incumbent value to all the SubtreeSolvers. Improved incumbent
solutions are detected in the incumbent callback routine of CPLEX and its no-
tification is done in the branch callback of CPLEX.

The CPXmipopt function that solves a problem instance is suspended af-
ter the number of nodes specified in the ParaLEX run-time parameter has

ParaLEX: A Parallel Extension for the CPLEX Mixed Integer Optimizer 101

�� ��������

	�
�� ����������

���������

��������

	�
�� ���

��������� ����

	�
�� ����

���

��� �

��������	

���
		����	
 ���
		����	

���������

����

��������� ����

������

�	 ��� �����������

������� ������� �������

�	 ������ ���������

�� ����������

�	 ��������� �� � � �����������

������� �������

!	"������ � ����������

Fig. 2. Message sequence for the subproblem transfer

been processed. When suspended time comes, the latest incumbent value is set
on CPLEX environment using the CPXsetdblparam function of CPLEX with
CPX PARAM CUTUP (if the problem is minimization) or with CPX PARAM CUTLO (if
the problem is maximization). After that, the suspension is resumed. Therefore,
there is a delay in the notification of the incumbent value.

3 Computational Experiments

In this section, we report our computational results. We used a PC cluster com-
posed of fifteen 3.4GHz pentiumD 950 (with 2Gbytes RAM) PCs connected
with Gigabit Ethernet, where 30 CPLEX Mixed Integer Optimizers (version
10.1) were available. The MPI library used is mpich2-1.0.5p4. Problem instances
were selected from the MIPLIB2003 library2[1] which is a standard test set to
evaluate the performance of MIP optimizers.

We first discuss the effects of the ParaLEX run-time parameters described in
Section 2.

– MIP emphasis indicator CPX PARAM MIPEMPHASIS (CPLEX) : This is a para-
meter prepared by CPLEX to tell the solver whether it should find a feasible
solution with high quality or prove the optimality. Among several options,
we selected the following ones, which are concerned with the optimality.
• CPX MIPEMPHASIS BALANCED : Balance optimality and integer feasibil-

ity (default parameter of CPLEX).
• CPX MIPEMPHASIS OPTIMALITY : Emphasizing optimality over feasibility.

2 URL: http://miplib.zib.de

102 Y. Shinano and T. Fujie

• CPX MIPEMPHASIS BESTBOUND : Emphasizing moving best bound.
– Subproblem transfer mode (ParaLEX) : This is a parameter for PEs to

transform a node.
• best bound transfer : The best bound node is selected.
• cplex default transfer : A node is selected according to the CPLEX

run-time parameter.
– CPXmipopt interval (ParaLEX) : This is a parameter for PEs to specify the

suspended time of CPXmipopt.
• fixed iter : Every time CPXmipopt terminates with the node limit of

this value to check a subproblem-request from an another PE. In this
paper, we set fixed iter = 20.

• fixed time : By a sequential run, we estimate the number of nodes
generated by CPXmipopt during the time fixed time. Then, this esti-
mated value is used for the node limit of CPXmipopt. In this paper, we
set fixed time = 1 (sec.).

Table 1 displays the parallel speedups obtained over 5 runs for the easy in-
stances fast0507 and mas74 with possible combinations of the following two pa-
rameters, the Subproblem transfer mode and the CPXmipopt interval. CPX PARAM
MIPEMPHASIS is set to CPX MIPEMPHASIS BALANCED. As the table shows, it is hard
to determine the most suitable combination of the parameter values. On the
other hand, cplex default transfer is competitive or better than best bound
transfer, which indicates that a PE which receives a transferred node should
continue the branch-and-cut search along with the parent PE (i.e., the PE which
sends the node). Hence, we selected cplex default transfer for the subsequent
computations. We observed that the effect of the CPXmipopt interval depends on
the behavior of a sequential run of CPLEX since computing time per node varies
considerably with problem instances. Hence, we decided to use fixed time.

Table 2 shows the results for the CPX PARAM MIPEMPHASIS parameter. The
results are obtained over 5 runs except that the noswot instance is examined
over 1 run. We note that the computing time of sequential run varies with this
parameter, and the most suitable parameter-choice also varies with the problem
instance. From the table, we see that superlinear speedup results are obtained
for several problem instances. In particular, noteworthy speedup is obtained
for the noswot instance. We observed that superlinear speedup occurs when a
good feasible solution is hardly obtained by CPLEX. In this case, a parallel
search could find a good feasible solution faster than a sequential search. Since
fast finding of a good feasible solution can lead to pruning of many unexplored
nodes, the parallel search could generate a smaller search tree than the sequential
search. Therefore, computation is performed to a smaller number of nodes by
many PEs and, as a result, the superlinear speedup is obtained. We also observe
that high speedup results are obtained for CPX MIPEMPHASIS OPTIMALITY.

Finally, we report the results for hard problem instances with 30 PEs. We
continue to use the parameters cplex default transfer and fixed time.
CPX PARAM MIPEMPHASIS was determined by an observation of the behavior of
upper and lower bounds within several hours from the beginning and by the
information in the MIPLIB 2003 website.

ParaLEX: A Parallel Extension for the CPLEX Mixed Integer Optimizer 103

Table 1. Parallel speedups for easy instances (CPX MIPEMPHASIS BALANCED)

of PEs
2 3 5 10 20 30

fast0507, best bound transfer, fixed iter : 880.61 sec. (sequential)

ave. 0.45 1.16 1.38 1.98 2.96 3.07
min. 0.45 1.13 1.37 1.97 2.93 3.04
max. 0.45 1.21 1.39 1.99 3.00 3.13

fast0507, best bound transfer, fixed time : 880.61 sec. (sequential)

ave. 0.99 1.04 1.33 3.07 3.56 3.71
min. 0.99 1.03 1.30 3.03 3.51 3.68
max. 0.99 1.05 1.42 3.21 3.63 3.78

fast0507, cplex default transfer, fixed iter : 880.61 sec. (sequential)

ave. 0.87 1.11 0.61 2.36 3.39 3.15
min. 0.76 1.10 0.61 2.30 3.37 3.13
max. 0.96 1.12 0.61 2.52 3.43 3.15

fast0507, cplex default transfer, fixed time : 880.61 sec. (sequential)

ave. 1.23 1.15 1.36 1.56 2.41 2.71
min. 1.23 1.04 1.31 1.51 2.11 2.65
max. 1.24 1.36 1.44 1.72 2.92 2.75

mas74, best bound transfer, fixed iter : 1292.99 sec. (sequential)

ave. 0.04 0.06 0.28 1.39 1.84 0.50
min. 0.03 0.05 0.21 1.29 1.19 0.34
max. 0.06 0.06 0.33 1.64 4.36 0.64

mas74, best bound transfer, fixed time : 1292.99 sec. (sequential)

ave. 0.12 0.04 0.25 1.40 3.21 0.35
min. 0.11 0.04 0.24 1.32 1.59 0.30
max. 0.12 0.04 0.27 1.45 5.40 0.39

mas74, cplex default transfer, fixed iter : 1292.99 sec. (sequential)

ave. 0.57 0.51 1.09 1.38 5.21 8.36
min. 0.46 0.34 0.84 1.11 4.43 7.14
max. 0.67 0.86 1.38 2.26 6.32 10.77

mas74, cplex default transfer, fixed time : 1292.99 sec. (sequential)

ave. 0.82 0.91 1.34 1.90 4.66 10.01
min. 0.80 0.78 1.22 1.79 4.39 8.62
max. 0.85 1.09 1.49 2.08 5.11 13.98

– a1c1s1 : 142960.36 (sec.) with CPX MIPEMPHASIS BESTBOUND
– arki001 : 3924.87 (sec.) with CPX MIPEMPHASIS OPTIMALITY
– glass4 : 2001.50 (sec.) with CPX MIPEMPHASIS BALANCED
– roll3000 : 173.73 (sec.) with CPX MIPEMPHASIS BESTBOUND
– atlanta-ip : 2512451.70 (sec.) with CPX MIPEMPHASIS BALANCED

These problem instances have been solved to optimality recently [5,7], and they
are still hard to be solved with sequential and default solver strategies. Actu-
ally, the roll3000 instances cannot be solved sequentially within 230464.65 sec.
with CPX MIPEMPHASIS BESTBOUND. 2213435 nodes remain unexplored. Hence,

104 Y. Shinano and T. Fujie

Table 2. Parallel speedups for easy instances (cplex default transfer, fixed time)

of PEs
2 3 5 10 20 30

fast0507, CPX MIPEMPHASIS BALANCED : 880.61 sec. (sequential)

ave. 1.23 1.15 1.36 1.56 2.41 2.71
min. 1.23 1.04 1.31 1.51 2.11 2.65
max. 1.24 1.36 1.44 1.72 2.92 2.75

fast0507, CPX MIPEMPHASIS OPTIMALITY : 10704.98 sec. (sequential)

ave. 9.70 14.19 14.93 15.53 15.52 15.53
min. 9.63 13.73 14.71 15.50 15.49 15.50
max. 9.77 14.65 15.15 15.56 15.53 15.56

fast0507, CPX MIPEMPHASIS BESTBOUND : 15860.45 sec. (sequential)

ave. 0.47 0.63 0.72 0.71 2.03 2.48
min. 0.44 0.48 0.72 0.68 2.01 2.45
max. 0.65 0.69 0.73 0.74 2.07 2.52

mas74, CPX MIPEMPHASIS BALANCED : 1292.99 sec. (sequential)

ave. 0.82 0.91 1.34 1.90 4.66 10.01
min. 0.80 0.78 1.22 1.79 4.39 8.62
max. 0.85 1.09 1.49 2.08 5.11 13.98

mas74, CPX MIPEMPHASIS OPTIMALITY : 1759.18 sec. (sequential)

ave. 1.48 1.52 1.47 2.14 7.48 11.23
min. 1.40 1.46 1.41 1.91 6.86 10.07
max. 1.56 1.64 1.62 2.27 7.86 13.09

mas74, CPX MIPEMPHASIS BESTBOUND : 3674.92 sec. (sequential)

ave. 1.02 0.96 0.94 1.02 1.01 1.04
min. 1.01 0.95 0.81 0.97 0.97 0.91
max. 1.03 0.98 1.04 1.06 1.05 1.21

harp2, CPX MIPEMPHASIS BALANCED : 5586.38 sec. (sequential)

ave. 8.93 5.15 8.28 8.98 13.96 24.94
min. 5.34 3.24 5.90 3.15 8.58 17.67
max. 13.70 22.00 13.55 35.23 24.76 40.86

harp2, CPX MIPEMPHASIS OPTIMALITY : 2014.80 sec. (sequential)

ave. 2.16 1.87 2.53 2.47 4.15 24.16
min. 1.53 1.10 2.05 1.61 2.49 20.61
max. 3.34 2.71 4.34 6.16 7.34 32.02

harp2, CPX MIPEMPHASIS BESTBOUND : 2974.34 sec. (sequential)

ave. 1.43 2.62 3.10 2.71 4.70 8.22
min. 1.24 1.88 2.12 1.78 3.11 4.03
max. 1.59 3.41 6.95 5.67 8.17 18.64

noswot, CPX MIPEMPHASIS OPTIMALITY : 38075.95 sec. (sequential)

− − − 27.01 119.61 276.03

noswot, CPX MIPEMPHASIS BESTBOUND : 193373.54 sec. (sequential)

− − − 10.58 17.44 71.02

ParaLEX: A Parallel Extension for the CPLEX Mixed Integer Optimizer 105

 10600

 10800

 11000

 11200

 11400

 11600

 11800

 12000

 0 18000 36000 54000 72000 90000 108000 126000 144000

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

time (sec.)

Fig. 3. Upper and lower bounds for the a1c1s1 instance

we have a superlinear speedup result for this problem instance. We remark that
R. Miyashiro reports that the roll3000 instance were solved in about half a day
with CPX MIPEMPHASIS BESTBOUND (see the MIPLIB2003 website). However, the
computing environment is different: He used a 32-bit PC while we used a 64-
bit machine, and the mipgap tolerances he used are different from ours (private
communication).

In Figure 3, we draw upper and lower bounds as functions of time for the
a1c1s1 instance.

4 Concluding Remarks

The development of ParaLEX is still in its preliminary stages. In the initial de-
sign of ParaLEX, we intended to transfer nodes to the SubtreeSolvers only from
the MainSolver or via the MainSolver to simplify the communication mecha-
nism. However, this did not work well in many cases. Hence, we modified the
transfer sequence as described in this paper. It is still a simple concept, but
its implementation becomes complicated. We aim to reconsider the mechanism
using what was learned in this development.

ParaLEX was originally developed by using CPLEX 9.0, but it could be com-
piled with CPLEX 10.1 without any modification of the codes related to the
CPLEX Callable Library. Using CPLEX 9.0, ParaLEX solved the rout instance
about 66 times faster than the cplex command of the version did. However,
CPLEX 10.1 can solve the instance about 22 times faster than CPLEX 9.0. We
observed that ParaLEX with CPLEX 10.1 is not so attractive for the rout in-
stance. To solve MIP problems faster, algorithmic improvements may be more
significant than that by using parallelization. On the other hand, it is still quite
hard to find a good feasible solution for some problem instances. If fast finding

106 Y. Shinano and T. Fujie

of a good feasible solution becomes possible by using new heuristic algorithms
or different search strategies, this could lead to a tremendous speedups.

However, ParaLEX is still very attractive to solve much harder instances for
CPLEX 10.1. The significance of our approach is that ParaLEX has a potential to
accelerate the latest version of CPLEX using parallelization. The parallel search
itself is a method to obtain a good feasible solution faster than the sequential
search. This is a reason why ParaLEX achieved superlinear speedups for several
problem instances. Moreover, by only using the latest version with parallelization
(note that we did not use any special structure of problem instances), several
of today’s hardest instances of MIPLIB were solved to optimality. Therefore,
ParaLEX is highly effective to solve hard problem instances.

References

1. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34, 361–372
(2006)

2. Atamtürk, A., Martin, W.P., Savelsbergh, M.W.P.: Integer-Programming Software
Systems. Ann. Oper. Res. 140, 67–124 (2005)

3. Bader, D.A., Hart, W.E., Phillips, C.A.: Parallel Algorithm Design for Branch
and Bound. In: Greenberg, H.J. (ed.) Tutorials on Emerging Methodologies and
Applications in Operations Research, ch. 5, Kluwer Academic Press, Dordrecht
(2004)

4. Crainic, T., Le Cun, B., Roucairol, C.: Parallel Branch-and-Bound Algorithms.
In: Talbi, E. (ed.) Parallel Combinatorial Optimization, ch. 1, Wiley, Chichester
(2006)

5. Ferris, M.: GAMS: Condor and the grid: Solving hard optimization problems in
parallel. Industrial and Systems Engineering, Lehigh University (2006)

6. ILOG CPLEX 10.1 User’s Manual, ILOG, Inc. (2006)
7. Laundy, R., Perregaard, M., Tavares, G., Tipi, H., Vazacopoulos, A.: Solving Hard

Mixed Integer Programming Problems with Xpress-MP: A MIPLIB 2003 Case
Study. Rutcor Research Report 2-2007, Rutgers University (2007)

8. Nemhauser, G.L., Wolsey, L.A.: Integer Programming and Combinatorial Opti-
mization. John Wiley & Sons, New York (1988)

9. Ralphs, T.K.: Parallel Branch and Cut. In: Talbi, E. (ed.) Parallel Combinatorial
Optimization, ch. 3, Wiley, Chichester (2006)

10. Shinano, Y., Fujie, T., Kounoike, Y.: Effectiveness of Parallelizing the ILOG-
CPLEX Mixed Integer Optimizer in the PUBB2 Framework. In: Kosch, H.,
Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 451–
460. Springer, Heidelberg (2003)

11. Wolsey, L.A.: Integer Programming. John Wiley & Sons, New York (1998)

Performance Analysis and Tuning

of the XNS CFD Solver on BlueGene/L

Brian J.N. Wylie1, Markus Geimer1, Mike Nicolai2,
and Markus Probst2

1 John von Neumann Institute for Computing (NIC),
Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany

{b.wylie,m.geimer}@fz-juelich.de
2 Chair for Computational Analysis of Technical Systems (CATS),

Centre for Computational Engineering Science (CCES),
RWTH Aachen University, D-52074 Aachen, Germany

{nicolai,probst}@cats.rwth-aachen.de

Abstract. The xns computational fluid dynamics code was successfully
running on BlueGene/L, however, its scalability was unsatisfactory until
the first Jülich BlueGene/L Scaling Workshop provided an opportunity
for the application developers and performance analysts to start working
together. Investigation of solver performance pin-pointed a communica-
tion bottleneck that appeared with approximately 900 processes, and
subsequent remediation allowed the application to continue scaling with
a four-fold simulation performance improvement at 4,096 processes. This
experience also validated the scalasca performance analysis toolset,
when working with a complex application at large scale, and helped
direct the development of more comprehensive analyses. Performance
properties have now been incorporated to automatically quantify point-
to-point synchronisation time and wait states in scan operations, both
of which were significant for xns on BlueGene/L.

Keywords: performance analyses, scalability, application tuning.

1 Introduction

xns is an academic computational fluid dynamics (cfd) code for effective simu-
lations of unsteady fluid flows, including micro-structured liquids, in situations
involving significant deformations of the computational domain. Simulations
are based on finite-element techniques using stabilised formulations, unstruc-
tured three-dimensional meshes and iterative solution strategies [1]. Main and
novel areas of xns are: simulation of flows in the presence of rapidly trans-
lating or rotating boundaries, using the shear-slip mesh update method (ss-
mum); simulation of flows of micro-structured (in particular viscoelastic) liquids;
and simulation of free-surface flows, using a space-time discretisation and stag-
gered elevation-deformation-flow (edf) approach. The parallel implementation
is based on message-passing communication libraries, exploits mesh-partitioning
techniques, and is portable across a wide range of computer architectures.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 107–116, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

108 B.J.N. Wylie et al.

The xns code, consisting of more than 32,000 lines of Fortran90 in 66 files,
uses the ewd substrate library which fully encapsulates the use of blas and
communication libraries, which is another 12,000 lines of mixed Fortran and
C within 39 files. Although the mpi version of xns was already ported and
running on BlueGene/L, scalability at that point was only acceptable up to 900
processes.

During early December of 2006, John von Neumann Institute for Comput-
ing (nic) hosted the first Jülich Blue Gene/L Scaling Workshop [2], provid-
ing selected applicants an opportunity to scale their codes on the full Jülicher
Blue Gene/L system (jubl) with local nic, ibm and Blue Gene Consortium sup-
port. jubl is configured with 8,192 dual-core 700MHz PowerPC 440 compute
nodes (each with 512MB of memory), 288 I/O nodes, and additional service and
login nodes. A pair of the xns application developers were thereby teamed with
local performance analysts to investigate and resolve the application’s scalability
bottlenecks using the analysis tools available on the system.

(a) Haemodynamic flow pressure distribution. (b) Partitioned finite-element mesh.

Fig. 1. DeBakey axial ventricular assist blood pump simulated with xns

Performance on BlueGene/L was studied with a test-case consisting of a 3-
dimensional space-time simulation of the MicroMed DeBakey axial ventricular
assist blood pump (shown in Figure 1). Very high resolution simulation is re-
quired to accurately predict shear-stress levels and flow stagnation areas in an
unsteady flow in such a complex geometry. The mesh for the pump consisted
of 3,714,611 elements (connecting 1,261,386 nodes) which were divided by the
metis graph partitioner into element sets which form contiguous subdomains
that are assigned to processes.

With each set of elements assigned to a single process, the nodes are then
distributed in such a way that most nodes which are interior to a subdomain are
assigned to the process which holds elements of the same subdomain. Nodes at
a subdomain boundary are assigned to all processes sharing that boundary. The
formation of element-level components of the system of equations proceeds fully
in parallel, with all data related to a given element residing in the same pro-
cess. Solution of that system of equations takes place within a gmres iterative
solver, and it is here that the bulk of inter-process communication occurs, with

Performance Analysis and Tuning of XNS on BG/L 109

×

×

×

×
ewdgather1 ewdgather2

ewdscatter2 ewdscatter1

node-level partition-level element-level

(a) Distributed vector-matrix multiplication. (b) Interface between different levels.

Fig. 2. Distributed sparse vector-matrix multiplications of global state vectors and par-
titioned matrices require data transfers taking the form of scatter and gather between
node, partition and element levels

the element-based structures (stiffness matrices and local residuals) interacting
with node-based structures (global residuals and increments). Figure 2(a) shows
the required movement of data from element-level to node-level taking the form
of a scatter and the reverse movement from node-level to element-level taking
the form of a gather. These operations have two stages (Figure 2(b)): one lo-
cal to the subdomain (and free of communication) and another at the surface
of the subdomains (where communication is required). Four Newton-Raphson
iterations are typically carried out in the solver per simulation timestep.

Time-consuming initialisation and data checkpointing (which are also highly
variable due to file I/O) are excluded from measured performance reported
by xns in simulation time-steps per hour, originally peaking at around 130
timesteps/hour (Figure 3(a)). From comparison of simulation rates (and later
analyses) for various numbers of timesteps, it could be determined that the first
timestep’s performance was representative of that of larger numbers of timesteps,
allowing analysis to concentrate on simulations consisting of a single timestep.

2 XNS Execution Analysis

In addition to internal timing and reporting of the simulation timestep rate, as
charted in Figure 3(a), the xns code includes a breakdown of the performance of
its primary components, namely formation of matrix left and right hand sides,
gmres solver, matrix-vector product, gather and scatter operations, etc. From
a graph of these reported component costs, summarised in Figure 3(b), it was
clear that the primarily computational components scaled well to larger numbers
of processes, however, the gather and scatter operations used to transfer values
between the node, partition and element levels became increasingly expensive.
This behaviour is common to distributed-memory parallelisations of fixed-size
problems, where the computational work per partition diminishes while the cost

110 B.J.N. Wylie et al.

128 256 512 1024 2048 4096
Processes

0

100

200

300

400

500

T
im

es
te

ps
/h

ou
r

Original
Revised

128 256 512 1024 2048 4096
Processes

1

10

100

T
im

e
(s

ec
)

Total
Computation
Gather/Scatter

(a) Overall simulation performance. (b) Breakdown by solver component.

Fig. 3. Comparison of original and subsequently revised xns solver performance with
DeBakey axial pump on various partition sizes of jubl BlueGene/L. (a) Originally
unacceptable large-scale performance is improved significantly to perform over 460
timesteps/hour. (b) Breakdown of the solver component costs/timestep shows good
scalability of the primarily computational components and significant improvement to
Gather/Scatter scalability (original: solid lines, revised: dashed lines).

of exchanging data across partition boundaries grows with increasing numbers
of processors. Understanding and optimising the communication, particularly at
large processor counts, is therefore essential for effective scaling.

2.1 Profile Generation and Analysis

Several mpi profiling tools were available on jubl, working in similar fashion
and providing broadly equivalent analyses. [3,4] For example, after re-linking the
xns code with an instrumented library implementing the standard pmpi profiling
interface, mpi operation characteristics were accumulated for each process during
a run of the instrumented xns executable, and these profiles were collated and
presented in an analysis report upon execution completion.

From such analyses of xns, the total time in mpi communication could be
seen growing to ultimately dominate simulations, and the bulk of this time was
due to rapidly growing numbers of MPI Sendrecv operations within the core
simulation timestep/iteration loop ewdgather1i and ewdscatter2i routines.
(MPI Sendrecv provides an optimised combination of MPI Send and MPI Recv.)

Closer examination of the profile summaries showed that each process rank
makes the same number of MPI Sendrecv calls in these functions, and the asso-
ciated times are also very similar. Furthermore, message sizes vary considerably,
with some messages of zero bytes: i.e., without message data communication.
Since these operations are employed to exchange boundary elements between
partitions, they could be expected to vary from process to process, however, it
appeared that an exchange was done for every possible combination.

Performance Analysis and Tuning of XNS on BG/L 111

Although a zero-sized point-to-point message transfer can be useful for loose
pairwise synchronisation (or coordination), it can also indicate unnecessary mes-
sage traffic when there is no actual data to transfer. Unfortunately, the available
profiling tools were unable to determine what proportion of MPI Sendrecv op-
erations consisted of zero-sized messages and their associated cost. This investi-
gation could be pursued, however, via traces of the communication routines.

In addition, the profiles showed that a considerable amount of time was spent
in calls to MPI Scan, however, to determine whether this prefix reduction oper-
ation incurs any wait states would also require more elaborate trace analysis.

2.2 Trace Collection and Analysis

Several trace collection libraries and analysis tools were also available on jubl,
generally exclusively for tracing mpi operations. An early release (v0.5) of the
scalasca toolset [5] had been installed for the workshop, offering tracing of mpi

operations, application functions and user-specified annotations. Of particular
note, execution traces from each process are unified and analysed in parallel, fol-
lowing the measurement and using the same computer partition. Although it had
already demonstrated scalable trace collection and analysis of short benchmarks,
this was an opportunity to apply it to a complex application code.

The sheer number of mpi communication operations employed by xns each
timestep was itself a significant test of scalasca, quickly filling trace buffers
during measurement and requiring efficient internal event management during
analysis/replay. Trace measurement was therefore reduced to a single simulation
timestep, and analysis similarly focused to avoid the uninteresting initialisation
phase (which includes file I/O that is highly variable from run to run).

Initial scalasca tracing simply involved re-linking the xns code with a mea-
surement tracing library. In this configuration, without additional instrumenta-
tion of user functions/regions, only mpi operations were traced and subsequently
analysed. Traces that can be completely stored in memory avoid highly per-
turbative trace buffer flushing to file during measurement, and specification of
appropriately-sized trace buffers was facilitated by the memory (maximum heap)
usage reported by the profiling tools: fortunately, xns memory requirements
diminish with increasing numbers of processes, allowing most of the available
compute node memory to be used for trace buffers.

Automatic function instrumentation is a feature of the ibm xl compilers which
scalasca can use to track the call-path context of mpi operations and mea-
sure the time spent in non-communication functions. Unfortunately, when all
functions are instrumented, measurements are often compromised by frequent
calls to small functions that have a negligible contribution on overall perfor-
mance but disproportionate impact on trace size and measurement perturbation.
When the entire xns application (including the ewd library) was instrumented
in this fashion, ten such routines were identified that produced more events than
MPI Sendrecv. These routines were then specified for exclusion from measure-
ment, resulting in traces where 94% of traced events were mpi operations (and
more than 92% were MPI Sendrecv).

112 B.J.N. Wylie et al.

The resulting trace analysis revealed a rich call-tree, however, navigation and
analysis were encumbered by the complexity of the key nodes, often consisting of
more than twenty branches at several depths. (Only subroutine names are used to
distinguish successor call-paths, such that calls from different locations within
a routine are aggregated.) It was therefore helpful to incorporate user-region
annotation instrumentation in the xns hypo routine to distinguish initialisation,
simulation timestep and solver iteration loops, and finalisation phases.

Trace measurement and analysis of the instrumented original xns code for a
single simulation timestep at a range of scales confirmed the analysis provided by
the mpi profilers. With 2,048 processes, the main xns simulation timestep loop
was dilated by 15% during trace collection (compared to the uninstrumented ver-
sion), producing over 23,000 million traced events which were then automatically
analysed in 18 minutes.

Figure 5 (back) shows how the scalasca analysis report explorer highlit the
most time-consuming call-paths to the MPI Sendrecv operations in the
ewdscatter2 and ewdgather1 routines of the timestep loop and presented
the individual process times with the hardware topology of Blue Gene/L: mpi

communication times were very balanced across processes, as evident from the
3.4% variation and uniform colouring.

As message size is logged as an attribute with each message in the trace,
the number of zero-sized messages could also be determined and was found
to grow rapidly with the number of processes employed (where partitions are
correspondingly smaller and have fewer connections).

scalasca trace analysis was therefore customised to generate a report of the
number of bytes received and receiving times for each sender/receiver combina-
tion and communication distribution maps were produced (e.g., Figure 4(a)).
This analysis for 1,024 processes revealed that 96% of pairs had no data to
exchange, and the trend makes this progressively worse for larger process con-
figurations. Statistical analysis of the transfer data for non-zero-sized messages
(Figure 4(b)) determined that on average each receiver rank takes 1.49 seconds
to receive 9.6MB in 27,000 messages from 42 separate senders, however, there
is a huge variation with maximal values typically three times the mean and 25
seconds receiving time for the rank that takes the longest.

Initial scalasca analyses didn’t distinguish communication and synchroni-
sation times for point-to-point messages, reporting only Point-to-point commu-
nication time. Incorporating a new metric for (pure) Point-to-point synchroni-
sation time, for sends and receives of zero-sized messages, quantifies the very
significant cost of these potentially redundant operations (Figure 5 (back)). For
individual sends and receives, this was straightforward, however, the dual-nature
of MPI Sendrecv provides cases where only one of its send and receive parts are
zero-sized and it is not possible to separate the respective costs of each part
without mpi internal events [6]. After experimentation with various alternatives,
it was found that only situations where the bytes sent and received are both
zero could be reliably accounted as Point-to-point synchronisation time. Even
though this underestimates the actual synchronisation cost, it ensures that the

Performance Analysis and Tuning of XNS on BG/L 113

0 128 256 384 512 640 768 896 1024
Rank sorted by value

0

25

50

75

100

125

150

175

200

225

250

T
ot

al

Senders: 42.0 ± 27.9 [3−114]
Messages received (k): 26.9 ± 17.9 [2− 73]
Bytes received (100k): 95.9 ± 23.9 [61−215]
Receiving time (0.1s): 14.9 ± 21.4 [∗−250]

(a) Communication time map (b) Receiver statistics

Fig. 4. Message analysis by sender/receiver for ewdscatter with 1,024 mpi processes.
(a) The map is a matrix of message transfer times for each sender/receiver combina-
tion, coloured with a logarithmic scale: white implies no message transfer. (b) Message
statistics aggregated per receiver for number of senders, messages, bytes transfered and
receiving times (and then sorted by total value) highlight the considerable variation.

associated communication cost remains consistent when redundant zero-sized
operations are eliminated.

Furthermore, the solver time-step loop requires around 1,500 seconds of Col-
lective communication time, 53% of which is due to 11 global MPI Scan opera-
tions, and almost all of it (789s) is isolated to a single MPI Scan in updateien.
Quantifying the time a scan operation on process rank n had to wait before all
of its communication partners (ranks 0, . . . , n−1) also entered the MPI Scan,
another extension to the trace analysis was the implementation of a new Early
Scan pattern. As seen in Figure 5, the aggregate Early Scan time is negligible
for xns, indicating that each MPI Scan is called when the processes are well bal-
anced. Further investigation of the traces determined that no rank ever exited
the MPI Scan before all had entered, and this generally results in longer waits for
lower process ranks. Such a collective synchronisation on exit appears to be an
unnecessary artifact of the mpi implementation on Blue Gene/L. While it would
be desirable to define a Scan Completion pattern just for the cost of delayed
exits from MPI Scan, this requires a measure of the local scan processing time,
which could only be estimated in the absence of explicit mpi internal events (e.g.,
via extensions to [6]). For impacted applications various remedies could be pur-
sued: the entire mpi library or simply the implementation of MPI Scan could be
exchanged, or the application could try to adapt to the behaviour of the library
MPI Scan by redistributing or rescheduling parts of its preceding computation
accordingly.

114 B.J.N. Wylie et al.

Fig. 5. scalasca performance analysis reports for original (back) and revised (front)
versions of the xns simulation on jubl BlueGene/L with 2,048 processes. A metric cho-
sen from the metrics hierarchy (left panes) is shown for call-paths of the solver time-step
loop (central panes) and its distribution per process for the selected ewdscatter2 bot-
tleneck (right panes): navigation to the most significant metric values is aided by boxes
colour-coded according to each pane’s specified mode and range scale (bottom). In each
tree, collapsed nodes present inclusive metrics while expanded nodes present exclusive
metrics. 47,352s of Point-to-point synchronization time (45.8% in ewdscatter2 and
43.5% in ewdgather1) is reduced to only 742s (in routines which were not modified)
by switching from MPI Sendrecv to separate MPI Send and MPI Recv operations where
zero-sized transfers are eliminated. Point-to-point communication time, particularly
Late Sender situations, and Wait at Barrier are both significantly increased due to
resulting communication load imbalance, manifest in the variation by process rank,
however, overall communication time is substantially improved in the solver.

Performance Analysis and Tuning of XNS on BG/L 115

3 Modification of ewdgather and ewdscatter

The insights provided by the preceding analyses of xns suggested splitting the
MPI Sendrecv operations used within the ewdgather1 and ewdscatter2 rou-
tines into separate MPI Send and MPI Recv operations which are only called
when actual message data needs to be transfered. Since a static partitioning
of the mesh is employed, the number of elements linking each partition is also
known in advance (by potential senders and receivers), and when there are no
links there is no data to transfer.

The graph comparing original and revised xns simulation timestep rates in
Figure 3(a) shows that below 1,024 processes, elimination of these zero-sized
messages had little effect on the performance, which could be expected since
the communication matrix remains relatively dense at this scale. Performance
improved dramatically for larger configurations though, resulting in a more than
four-fold overall performance improvement with 4,096 processes to over 460
timesteps/hour. Further scalability is also promising, however, lack of suitably
partitioned datasets for larger numbers of processes has unfortunately prevented
pursuing this investigation to date.

Elimination of zero-sized messages reduced the size of trace files collected
from the new version and similarly improved trace analysis performance. Com-
paring analyses from the original and modified versions (Figure 5) shows the
significant improvement in mpi communication time and the contributions from
ewdgather1 and ewdscatter2. Point-to-point synchronisation time decreased
more than 98%, for a substantial overall performance improvement, however,
the new versions of these functions show significant imbalance by process. This
manifests in increased time in other parts of the solver, particularly Wait at Bar-
rier and Late Sender situations for Point-to-point communication (i.e., where
the receiver was blocked waiting for a sender to initiate a message transfer).

Further modifications of xns to use asynchronous (non-blocking) message
transfers within ewdscatter2 and ewdgather1 were investigated, but showed
no additional performance improvement. This may be due to the small amount
of computation available for overlap with communication within these routines.
Although there is potentially more computation in the rest of the iteration loop,
Figure 3(b) shows that it diminishes rapidly as the number of processes increase.

4 Conclusion

The first Jülich BlueGene/L Scaling Workshop was a catalyst for successful
collaborations between application and analysis tools developers. Analysis of
the execution performance of the xns application with more than one thousand
processes was crucial in the location of adverse characteristics that developed at
scale in some critical communication routines. Straightforward modification of
these routines significantly improved xns simulation performance, and enabled
scaling to processor configurations four times larger than previously practical.

Further optimisations with potentially significant performance benefits are
currently being evaluated, such as improved mesh partitioning and mapping

116 B.J.N. Wylie et al.

of mesh partitions onto the BlueGene/L topology. Communication distribution
maps summarising message transfers between sender/receiver combinations will
be important for this purpose, and provision of these by the scalasca toolset
is being investigated.

While the scalasca toolset demonstrated that it could automatically quan-
tify and help isolate common performance problems in large-scale complex appli-
cations, various aspects could be identified for improvement. Automated trace
analysis was subsequently extended to quantify inefficiencies in MPI Scan and
MPI Sendrecv, the latter being found to be responsible for costly and unneces-
sary point-to-point synchronisations. Synchronisation and communication costs
are currently based on heuristics that ensure analysis consistency, yet which
might be determined more accurately in future.

The profiling tools available on BlueGene/L were a convenient starting point
for performance analysis, however, they provided limited insight into synchroni-
sation costs and imbalance. Message statistics for communication and synchro-
nisation operations can be calculated from trace analysis or accumulated during
measurement, and these capabilities are now being incorporated in the scalasca

toolset. By integrating runtime summarisation and tracing capabilities, conve-
nience of use is being pursued particularly for measurement configuration and
selective event tracing.

The open-source scalasca toolset is freely available for download [7].

Acknowledgements. We would like to thank the sponsors, organisers and
co-participants of the Jülich BlueGene/L Scaling Workshop for the valuable
opportunity to benefit from their assistance, advice and productive atmosphere.
We also thank the reviewers for their constructive suggestions.

References

1. Behr, M., Arora, D., Coronado, O., Pasquali, M.: Models and finite element tech-
niques for blood flow simulation. Int’l J. Computational Fluid Dynamics 20, 175–181
(2006)

2. Frings, W., Hermanns, M.-A., Mohr, B., Orth, B. (eds): Jülich Blue Gene/L
Scaling Workshop (December 2006) Forschungszentrum Jülich ZAM-IB-2007-01
http://www.fz-juelich.de/zam/bgl-sws06/

3. IBM Advanced Computing Technology Center: High Performance Computing
Toolkit, http://www.research.ibm.com/actc/

4. Vetter, J., Chambreau, C.: mpiP — lightweight, scalable MPI profiling (2005)
http://www.llnl.gov/CASC/mpip/

5. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: Scalable parallel trace-based per-
formance analysis. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface. LNCS,
vol. 4192, pp. 303–312. Springer, Heidelberg (2006)

6. Jones, T., et al.: MPI peruse: A performance revealing extensions interface to MPI.
http://www.mpi-peruse.org/

7. Forschungszentrum Jülich GmbH: scalasca: Scalable performance analysis of large-
scale parallel applications. http://www.scalasca.org/

http://www.fz-juelich.de/zam/bgl-sws06/
http://www.research.ibm.com/actc/
http://www.llnl.gov/CASC/mpip/
http://www.mpi-peruse.org/
http://www.scalasca.org/

(Sync|Async)+ MPI Search Engines

Mauricio Marin1 and Veronica Gil Costa2

1 Yahoo! Research, Santiago, University of Chile
2 DCC, University of San Luis, Argentina

Abstract. We propose a parallel MPI search engine that is capable
of automatically switching between asynchronous message passing and
bulk-synchronous message passing modes of operation. When the
observed query traffic is small or moderate the standard multiple mana-
gers/workers thread based model of message passing is applied for
processing the queries. However, when the query traffic increases a round-
robin based approach is applied in order to prevent from unstable behav-
ior coming from queries demanding the use of a large amount of resources
in computation, communication and disk accesses. This is achieved by
(i) a suitable object-oriented multi-threaded MPI software design and
(ii) an “atomic” organization of the query processing which allows the
use of a novel control strategy that decides the proper mode of operation.

1 Introduction

The distributed inverted file is a well-known index data structure for support-
ing fast searches on Search Engines dealing with very large text collections
[1,2,3,4,5,7,8]. An inverted file is composed of a vocabulary table and a set of
posting lists. The vocabulary table contains the set of relevant terms found in
the collection. Each of these terms is associated with a posting list which con-
tains the document identifiers where the term appears in the collection along
with additional data used for ranking purposes. To solve a query, it is necessary
to get the set of documents associated with the query terms and then perform
a ranking of these documents in order to select the top K documents as the
query answer. In this paper we assume posting list items composed of pairs of
document identifier and frequency in which the associated term appears in the
given document.

The approach used by well-known Web Search Engines to the parallelization of
inverted files is pragmatic, namely they use the document partitioned approach.
Documents are evenly distributed on P processors and an independent inverted
file is constructed for each of the P sets of documents. The disadvantage is that
each user query has to be sent to the P processors which leads this strategy to
a poor O(P) scalability. Apart from the communication cost, sending a copy of
every query to each processor increases overheads associated with large number
of threads and disk operations that have to be scheduled. It can also present
imbalance at posting lists level (this increases disk access and interprocessor
communication costs). The advantage is that document partitioned indexes are

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 117–124, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

118 M. Marin and V.G. Costa

easy to maintain since insertion of new documents can be done locally and
this locality is extremely convenient for the posting list intersection operations
required to solve the queries (they come for free in terms of communication
costs).

Another competing approach is the term partitioned index in which a sin-
gle inverted file is constructed from the whole text collection to then distribute
evenly the terms with their respective posting lists onto the processors. However,
the term partitioned inverted file destroys the possibility of computing intersec-
tions for free in terms of communication cost and thereby one is compelled to use
strategies such as smart distribution of terms onto processors to increase local-
ity for most frequent terms (which can be detrimental for overall load balance)
and caching. However, it is not necessary to broadcast queries to all processors.
Nevertheless, the load balance is sensitive to queries referring to particular terms
with high frequency and posting lists of differing sizes. In addition index con-
struction and maintenance is much more costly in communication. However, this
strategy is able to achieve O(1) scalability.

Most implementations of distributed inverted files reported so far are based on
the message passing approach to parallel computing in which we can find combi-
nations of multithreaded and computation/communication overlapped systems.
The typical case is to have in each of the P processing nodes a set of threads
dedicated to receive queries and communicate with other nodes (threads) in or-
der to produce an answer in the form of the top K documents that satisfy the
query. However, it is known that threads can be potential sources of overheads
and can produce unpredictable outcomes in terms of running time. Still another
source of unpredictable behavior can be the accesses to disk used to retrieve
the posting lists. Some queries can demand the retrieval of very large lists from
secondary memory involving hundreds of disk blocks.

In that context the principle behind the findings reported in this paper can be
explained by analogy with the classic round-robin strategy for dealing with a set
of jobs competing to receive service from a processor. Under this strategy every
job is given the same quantum of CPU so that jobs requiring large amounts of
processing cannot monopolize the use of the CPU. This scheme can be seen as
bulk-synchronous in the sense that jobs are allowed to perform a set of operations
during their quantum. In our setting we define quantums in computation, disk
accesses and communication given by respective “atoms” of size K where K is
the number of documents to be presented to the user. We use a relaxed form of
bulk-synchronous parallel computation [9] to process those atoms in parallel in a
controlled (synchronous) manner with atoms large enough to properly amortize
computation, disk and communication overheads.

For instance, for a moderate query traffic q = 32 and using a BSP library
built on top of MPI (BSPonMPI http://bsponmpi.sourceforge.net/) we found
this bulk-synchronous way of query processing quite efficient with respect to
message passing realizations in MPI and PVM. See figure 1 that shows results for
two text collections indexed using the document (D) and term (T) partitioned
indexes. Notice that the technical details of the experiments reported in this

(Sync|Async)+ MPI Search Engines 119

 120

 140

 160

 180

 200

 220

 240

TDTDTDTDTDTD

R
u
n
n
i
n
g

T
i
m
e

(
s
e
c
)

Distributed Inverted Files

2 GB 12 GB

BSP MPI PVM BSP MPI PVMq= 32

 P

32

16
 8

 4

Fig. 1. Comparing BSP, MPI and PVM for inverted files under moderate query traffic

 140

 160

 180

 200

 220

 240

 260

 280

TB2TB1TDBDTB2TB1TDBD

R
u
n
n
i
n
g

T
i
m
e

(
s
e
c
s
)

Distributed Inverted Files

q= 32

P= 4
8
16

32

MPI BSP

Fig. 2. Comparing BSP with a semi-synchronous MPI realization in which each proces-
sors waits to receive at least one message from all other processors before continuing
query processing

paper are given in the Appendix. Also larger number of processors P implies
larger running times because we inject in each processor a constant number
of queries. This because the inter-processor communication cost is always an
increasing function of P for any architecture. These results shows that our real-
izations of inverted files scale up efficiently because in each curve we duplicate
the number of processors and running times increase modestly as O(log P).

However, we also observed that with a semi-synchronous MPI realization we
were able to achieve similar performance to BSP. In this case we force every
MPI processor to wait for P messages (one per processor) before delivering
them to their target threads. The results are in figure 2 which shows other alter-
native implementations of inverted files where DB and TB represent bucketing
strategies devised for improving load balance and T a bad (but in use) idea for

120 M. Marin and V.G. Costa

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

GFEDCBAGFEDCBAGFEDCBAGFEDCBA

R
un

ni
ng

 T
im

e

Query Traffic

SYNC ASYNC

Doc PartitionTerm Partition

P= 32

16

8
4

A ==> q=1
B ==> q=8
C ==> q=16
D ==> q=32
E ==> q=64
F ==> q=128
G ==> q=256

Doc PartitionTerm Partition

Fig. 3. Comparing MPI under bulk-synchronous (SYNC) and asynchronous (ASYNC)
modes of operation for the term and document partitioned inverted files under different
query traffics of q queries per processor per unit time for 32, 16, 8 and 4 processors

implementing the term partitioned index. These results are evidence that in
practice for this application of parallel computing it is not necessary to barrier
synchronize all of the processors, it suffices to synchronize locally at processor
level from messages arriving from the other processors.

Nevertheless the situation was quite different when we considered cases of
low traffic of queries. The figure 3 shows results for two MPI realizations of the
inverted files, namely an asynchronous message passing multi-threaded (Async)
version and a non-threaded semi-bulk-synchronous MPI (Sync) realizations (de-
tails in the next section). This clearly makes a case for a hybrid implementation
which is the discussion of this paper.

In the remainder of this paper we describe our proposal to make possible
this hybrid form of parallel query processing using MPI. The rule to decide
between one or another mode of operation is based on the simulation of a BSP
computer. This simulation is performed on-the-fly as queries are received and
send to processing.

2 Round-Robin Query Processing

In this section we describe our algorithm for query processing and method for
deciding between asynchronous and synchronous modes of operation. The paral-
lel processing of queries is basically composed of a phase in which it is necessary

(Sync|Async)+ MPI Search Engines 121

to fetch parts of all of the posting lists associated with each term present in the
query, and perform a ranking of documents in order to produce the results. After
this, additional processing is required to produce the answer to the user. At the
parallel server side, queries arrive from a receptionist machine that we call the
broker. The broker machine is in charge of routing the queries to the cluster’s
processors and receiving the respective answers. It decides to which processor to
route a given query by using a load balancing heuristic. The particular heuristic
depends on the approach used to partition the inverted file. Overall the broker
tends to evenly distribute the queries on all processors.

The processor in which a given query arrives is called the ranker for that query
since it is in this processor where the associated document ranking is performed.
Every query is processed using two major steps: the first one consists on fetching
a K-sized piece of every posting list involved in the query and sending them to
the ranker processor. In the second step, the ranker performs the actual ranking
of documents and, if necessary, it asks for additional K-sized pieces of the posting
lists in order to produce the K best ranked documents that are passed to the
broker as the query results. We call this iterations. Thus the ranking process
can take one or more iterations to finish. In every iteration a new piece of K
pairs (doc id, frequency) from posting lists are sent to the ranker for every term
involved in the query. In this scheme, the ranking of two or more queries can
take place in parallel at different processors together with the fetching of K-sized
pieces of posting lists associated with other queries.

We use the vectorial method for performing the ranking of documents along
with the filtering technique proposed in [6]. Consequently, the posting lists are
kept sorted by frequency in descending order. Once the ranker for a query receives
all the required pieces of posting lists, they are merged into a single list and
passed throughout the filters. If it happens that the document with the least
frequency in one of the arrived pieces of posting lists passes the filter, then it
is necessary to perform a new iteration for this term and all others in the same
situation. We also provide support for performing the intersection of posting
lists for boolean AND queries. In this case the ranking is performed over the
documents that contain all the terms present in the query.

The synchronous search engine is implemented on top of the BSP model of
parallel computing [9] as follows. In BSP the computation is organized as a
sequence of supersteps. During a superstep, the processors may perform compu-
tations on local data and/or send messages to other processors. The messages
are available for processing at their destinations by the next superstep, and each
superstep is ended with the barrier synchronization of the processors. The un-
derlying communication library ensures that all messages are available at their
destinations before starting the next superstep.

Thus at the beginning of each superstep the processors get into their input
message queues both new queries placed there by the broker and messages with
pieces of posting lists related to the processing of queries which arrived at previ-
ous supersteps. The processing of a given query can take two or more supersteps
to be completed. All messages are sent at the end of every superstep and thereby

122 M. Marin and V.G. Costa

they are sent to their destinations packed into one message per destination to
reduce communication overheads.

Query processing is divided in “atoms” of size K, where K is the number
of documents presented to the user as part of the query answer. These atoms
are scheduled in a round-robin manner across supersteps and processors. The
asynchronous tasks are given K sized quantums of processor time, communi-
cation network and disk accesses. These quantums are granted during super-
steps, namely they are processed in a bulk-synchronous manner. As all atoms
are equally sized then the net effect is that no particular task can restrain oth-
ers from using the resources. During query processing, under an observed query
traffic of Q = q P queries per unit time with q per processor per superstep, the
round-robin principle is applied as follows. Once Q new queries are evenly in-
jected onto the P processors, their processing is started in iterations as described
above. At the end of the next superstep some queries, say n queries, all requiring
a single iteration, will finish their processing and thereby at the following super-
step n new queries can start their processing. Queries requiring more iterations
will continue consuming resources during a few more supersteps.

In each processor we maintain several threads which are in charge of processing
the K-sized atoms. We use LAM-MPI so we put one thread to perform the inter-
processors message passing. This thread acts as a scheduler and message router
for the main threads in charge of solving the queries. We use the non-blocking
message passing communication primitives. We organized our C++ code into a
set of objects, among them we have the object called “processor” which is the
entry point to all the index methods and ranking. The crucial point here is that
all threads have access to this object and concurrency conflicts are avoided by
keeping in thread’s local memory the context of each queries they are in charge
of. When the search engine switches to bulk-synchronous operation all threads
are put to sleep on condition variables and the main thread takes control of
processing sequentially the different stages of queries during supersteps.

When the search engine is operating in the asynchronous mode it simulates
the operation of a BSP machine. This is effected every Nq completed queries
per processor as follows. During the interval of Nq queries each processor of the
asynchronous machine registers the total number of iterations required by each
query being solved. The simulation of a BSP computer for the same period can
be made by assuming that q new queries are received in each superstep and
processor. For this period of Δ units of time, the observed value of q can be
estimated in a very precise manner by using the G/G/∞ queuing model. Let
S be the sum of the differences [DepartureTime - ArrivalTime] of queries, that
is the sum of the intervals of time elapsed between the arrival of the queries
and the end of their complete processing. Then the average q for the period is
given by S/Δ. This because the number of active servers in a G/G/∞ system
is defined as the ratio of the arrival rate of events to the service rate of events
(λ/μ). If n queries are received by the processor during the interval Δ, then the
arrival rate is λ = n/Δ and the service rate is μ = n/S.

(Sync|Async)+ MPI Search Engines 123

1.0

1.0

1.0

 0

P=4

P=32

P=4

P=32

 50 100 150 200 250 300 350 400

Supersteps

Query

Ranking

Snd+Rcv

Comm

List

Fetching

 Term partitioned index

1.0

1.0

1.0

P=4

P=32

P=4

P=32

 0 50 100 150 200 250 300 350 400

Supersteps

Query

Ranking

Snd+Rcv

Comm

List

Fetching

 Term partitioned index

Fig. 4. Predicted SYNC efficiencies in disk accesses, communication and query ranking.
Figure [left] is a case in which the query traffic is very low (q = 1) and figure [right] is
a case of high traffic (q = 128). These extreme cases explains the performance of the
SYNC term partitioned index in figure 3.

In addition the processors maintain the number of “atoms” of each type
processed during the interval of running time. The efficiency metric is used to
determine when to switch from one mode of operation to the another. For a
metric x this is defined as the ration average(x)/maximum(x) both values taken
over all processors and averaging across supersteps. The search engine switches
to bulk-synchronous mode when efficiencies in ranking, communication and list-
fetching are over 80%. Below that the asynchronous message passing mode is
used. We have found that this simulation is accurate as a predictor of perfor-
mance. For instance, this simulation predicts the efficiencies shown in figure 4
which are consequent with the bad and good performances observed in figure 3
for the term partitioned index for the same experiments in both cases.

3 Conclusions

We have presented a method and a MPI-based implementation to allow a search
engine to dynamically switch its mode of parallel processing between asynchro-
nous and bulk-synchronous message passing. This is achieved by dividing the
tasks involved in the processing of queries into K-sized single-units and in-
terleaving their execution across processors, network communication and disk-
accesses. The glue between the two modes of operation is the simulation of a
bulk-synchronous parallel computer. Our experiments show that this simulation
is quite accurate and independent of the actual mode of operation of the search
engine, be it under low or high traffic of queries.

References

1. Badue, C., Baeza-Yates, R., Ribeiro, B., Ziviani, N.: Distributed query processing
using partitioned inverted files. In: Eighth Symposium on String Processing and
Information Retrieval (SPIRE’01), pp. 10–20 (2001)

124 M. Marin and V.G. Costa

2. Cacheda, F., Plachouras, V., Ounis, I.: Performance analysis of distributed archi-
tectures to index one terabyte of text. In: McDonald, S., Tait, J. (eds.) Proc. ECIR
European Conf. on IR Research, Sunderland, UK, pp. 395–408 (2004)

3. Jeong, B.S., Omiecinski, E.: Inverted file partitioning schemes in multiple disk sys-
tems. IEEE Transactions on Parallel and Distributed Systems 16, 142–153 (1995)

4. MacFarlane, A.A., McCann, J.A., Robertson, S.E.: Parallel search using partitioned
inverted files. In: 7th International Symposium on String Processing and Information
Retrieval, pp. 209–220. IEEE CS Press, Los Alamitos (2000)

5. Moffat, W., Webber, J., Zobel, B.-Y.R.: A pipelined architecture for distributed text
query evaluation. Information Retrieval (2006)

6. Persin, M., Zobel, J., Sacks-Davis, R.: Filtered document retrival with frequency-
sorted indexes. Journal of the American Society for Information Science 47(10),
749–764 (1996)

7. Ribeiro-Neto, B.A., Barbosa, R.A.: Query performance for tightly coupled distrib-
uted digital libraries. In: Third ACM Conference on Digital Libraries, pp. 182–190.
ACM Press, New York (1998)

8. Stanfill, C.: Partitioned posting files: a parallel inverted file structure for information
retrieval. In: 13th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Brussels, Belgium, pp. 413–428. ACM Press,
New York (1990)

9. Valiant, L.: A bridging model for parallel computation. Comm. ACM 33, 103–111
(1990)

Appendix

We use two text databases, a 2GB and 12GB samples of the Chilean Web taken
from the www.todocl.cl search engine. The text is in Spanish. Using this collec-
tion we generated a 1.5GB index structure with 1,408,447 terms. Queries were
selected at random from a set of 127,000 queries taken from the todocl log. The
experiments were performed on a cluster with dual processors (2.8 GHz) that
use NFS mounted directories. In every run we process 10,000 queries in each
processor. That is the total number of queries processed in each experiment re-
ported in this paper is 10,000 P . For our collection the values of the filters Cins

and Cadd of the filtering method described in [6] were both set to 0.1 and we set
K to 1020. On average, the processing of every query finished with 0.6K results
after 1.5 iterations. Before measuring running times and to avoid any interfer-
ence with the file system, we load into main memory all the files associated with
queries and the inverted file.

A Case for Standard Non-blocking Collective

Operations

Torsten Hoefler1,4, Prabhanjan Kambadur1, Richard L. Graham2,
Galen Shipman3, and Andrew Lumsdaine1

1 Open Systems Lab, Indiana University, Bloomington IN 47405, USA,
{htor,pkambadu,lums}@cs.indiana.edu

2 National Center for Computational Sciences, Oak Ridge National Laboratory, Oak
Ridge TN 37831, USA,
rlgraham@ornl.gov

3 Advanced Computing Laboratory, Los Alamos National Laboratory, Los Alamos,
NM 87545, USA,
LA-UR-07-3159

gshipman@lanl.gov
4 Chemnitz University of Technology, 09107 Chemnitz, Germany,

htor@cs.tu-chemnitz.de

Abstract. In this paper we make the case for adding standard non-
blocking collective operations to the MPI standard. The non-blocking
point-to-point and blocking collective operations currently defined by
MPI provide important performance and abstraction benefits. To allow
these benefits to be simultaneously realized, we present an application
programming interface for non-blocking collective operations in MPI. Mi-
crobenchmark and application-based performance results demonstrate
that non-blocking collective operations offer not only improved conve-
nience, but improved performance as well, when compared to manual
use of threads with blocking collectives.

1 Introduction

Although non-blocking collective operations are notably absent from the MPI
standard, recent work has shown that such operations can be beneficial, both
in terms of performance and abstraction. Non-blocking operations allow com-
munication and computation to be overlapped and thus to leverage hardware
parallelism for the asynchronous (and/or network-offloaded) message transmis-
sion. Several studies have shown that the performance of parallel applications
can be significantly enhanced with overlapping techniques (e.g., cf. [1,2]). Simi-
larly, collective operations offer a high-level interface to the user, insulating the
user from implementation details and giving MPI implementers the freedom to
optimize their implementations for specific architectures.

In this paper, we advocate for standardizing non-blocking collective opera-
tions. As with non-blocking point-to-point operations and blocking collective
operations, the performance and abstraction benefits of non-blocking collective

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 125–134, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

126 T. Hoefler et al.

operations can only be realized if these operations are represented with a pro-
cedural abstraction (i.e., with an API). Although a portable library on top of
MPI could be used to provide non-blocking collective functionality to the HPC
community, standardization of these operations is essential to enabling their
widespread adoption. In general, vendors will only tune operations that are in
the standard and users will only use features that are in the standard.

It has been suggested that non-blocking collective functionality is not needed
explicitly as part of MPI because a threaded MPI library could be used with
collective communication taking place in a separate thread. However, there are
several drawbacks to this approach. First, it requires language and operating
system support for spawning and managing threads, which is not possible on
some operating systems—in particular on operating systems such as Catamount
designed for HPC systems. Second, programmers must then explicitly manage
thread and synchronization issues for purposes of communication even though
these issues could and should be hidden from them (e.g., handled by an MPI
library). Third, the required presence of threads and the corresponding synchro-
nization mechanisms imposes the higher cost of thread-safety on all commu-
nication operations, whether overlap is obtained or not (cf. [3]). Finally, this
approach provides an asymmetric treatment of collective communications with
respect to point-to-point communications (which do support asynchronous com-
munications).

Non-blocking collective operations provide some performance benefits that
may only be seen at scale. The scalability of large scientific application codes
is often dependent on the scalability of the collective operations used. At large
scale, system noise affects the performance of collective communications more
than it affects the performance of point-to-point operations. because of the or-
dered communications patterns use by collective communications algorithms. To
continue to scale the size of HPC systems to peta-scale and above, we need com-
munication paradigms that will admit effective use of the hardware resources
available on modern HPC systems. Implementing collective operations so that
they do not depend on the the main CPU is one important means of reducing
the effects of system noise on application scalability.

1.1 Related Work

Several efforts have studied the benefits of overlapping computation with com-
munications, with mixed results. Some studies have shown that non-blocking col-
lective operations improve performance, and in other cases a bit of performance
degradation was observed. Danalis et.al. [2] obtained performance improvement
by replacing calls to MPI blocking collectives with calls to non-blocking MPI
point-to-point operations. Kale et al. [4] analyzed the applicability of a non-
blocking personalized exchange to a small set of applications. Studies such as [1,5]
mention that non-blocking collective operations would be beneficial but do not
quantify these benefits. IBM extended the standard MPI interface to include
non-blocking collectives in their parallel environment (PE), but have dropped
support for this non-standard functionality in the latest release of this PE. Due

A Case for Standard Non-blocking Collective Operations 127

to its channel semantics, MPI/RT [6] defines all operations, including collective
operations, in a non-blocking manner. Hoefler et. al. [7,8] have shown that non-
blocking collective operations can be used to improve the performance of paral-
lel applications. Finally, several studies of the use of non-blocking collectives to
optimize three-dimensional FFTs have been done [5,9,10,11]. The results of ap-
plying these non-blocking communication algorithms (replacing MPI All-To-All
communications) were inconclusive. In some cases the non-blocking collectives
improved performance, and in others performance degraded a bit.

The remainder of the paper is structured as follows. Section 2 describes our
proposed application programming interface followed by a discussion of different
implementation options in Section 3. Microbenchmarks of two fundamentally
different implementations are presented in Section 4. Section 5 presents a case
study of the applicability of non-blocking collective operations to the problem
of a parallel three-dimensional Fourier Transformation.

2 Application Programming Interface

We propose an API for the non-blocking collectives that is very similar to
that of the blocking collectives and the former proprietary IBM extension. We
use a naming scheme similar to the one used for the non-blocking point-to-
point API (e.g., MPI Ibarrier instead of MPI Barrier). In addition, request objects
(MPI Request) are used for a completion handle. The proposed interfaces to all
collective operations are defined in detail in [12]. For example, a non-blocking
barrier would look like:

1 MPI_Ibarrier(comm, request);
...
/* computation, other MPI communications */
...
MPI_Wait(request, status);

Our interface relaxes the strict MPI convention that only one col-
lective operation can be active on any given communicator. We extend
this so that we can have a huge number (system specific, indicated by
MPI ICOLL MAX OUTSTANDING, cf. [12]) of parallel non-blocking collectives
and a single blocking collective outstanding at any given communicator. Our
interface does not introduce collective tags to stay close to the traditional syn-
tax of collective operations. The order of issuing a given collective operation
defines how the collective-communications traffic matches up across communi-
cators. Similar to point-to-point communications, progress for these non-blocking
collective operations depends on both underlying system hardware and software
capabilities to support asynchronous communications, as well implementation of
these collectives by the MPI library. In some cases MPI Test or MPI Wait may
need to be called to progress these non-blocking collective operations. This may
be particularly true for collective operations that transform user data, such as
MPI Allreduce.

128 T. Hoefler et al.

NBC_Test(1)

Main Thread

NBC_Func1

NBC_Wait(2)
NBC_Wait(1)

Thread1 Thread2 Threadn

MPI_Func1
Set Flag1

MPI_Func2
Set Flag2

NBC_Func2

Fig. 1. Execution of NBC calls in separate threads

3 Advice to Implementors

There are two different ways to implement support for non-blocking collective
operations. The first way is to process the blocking collective operation in a
separate thread and the second way is to implement it on top of non-blocking
point-to-point operations. We will evaluate both implementations in the follow-
ing. We use a library approach, e.g., both variants are implemented in a library
with a standardized interface which is defined in [12]. This enables us to run
identical applications and benchmarks with both versions. The following section
discusses our implementation based on threads.

3.1 Implementation with Threads

The threaded implementation, based on the pthread interface, is able to spawn
a user-defined number of communication threads to perform blocking collective
operations. It operates using a task-queue model, where every thread has its
own task queue. Whenever a non-blocking collective function is called, a work
packet (containing the function number and all arguments) is placed into the
work queue of the next thread in a round robin scheme.

The worker threads could either poll their work queue or use condition signals
to be notified. Condition signals may introduce additional latency while constant
polling increases the CPU overhead. We will analyze only the condition wait
method in the next section because experiments with the polling method showed
that it is worse in all regards. Since there must be at least one worker thread
per MPI job, at most half of the processing cores is available to compute unless
the system is oversubscribed.

Whenever a worker thread finds a work packet in its queue (either during busy
waiting or after being signaled), the thread starts the corresponding collective
MPI operation and sets a flag after its completion. All asynchronous operations
have to be started on separate communicators (mandated by the MPI standard).
Thus, every communicator is duplicated on its first use with any non-blocking

A Case for Standard Non-blocking Collective Operations 129

collective and cached for later calls. Communicator duplication is a blocking
collective operation in itself and causes matching problems when it’s run with
threads (cf. [3]). The communicator duplication has to be done in the user thread
to avoid any race conditions, which makes the first call to a non-blocking collec-
tive operation with every communicator block. All subsequent calls are executed
truly non-blocking.

When the user calls NBC Test, the completion flag is simply checked and the
appropriate return code generated. A call to NBC Wait waits on a condition
variable.

3.2 Implementation with Non-blocking Point-to-Point

The point-to-point message based implementation is available in LibNBC.
LibNBC is written in ANSI C using MPI-1 functionality exclusively to ensure
highest portability. The full implementation is open source and available for
public download on the LibNBC website [13]. The detailed implementation doc-
umentation is provided in [14], and the most important issues are discussed in
the following.

The central part of LibNBC is the collective schedule. A schedule consists
of the operations that have to be performed to accomplish the collective task
(e.g., an MPI Isend, MPI Irecv). The collective algorithm is implemented like in
the blocking case, based on point-to-point messages. But instead of performing
all operations immediately, they are saved in the collective schedule together
with their dependencies. However, the internal interface to add new algorithms
is nearly identical to the MPI interface. A detailed documentation about the ad-
dition of new collective algorithms and the internal and external programming
interfaces of LibNBC is available in [14]. The current implementation is opti-
mized for InfiniBandTM and implements different algorithms for most collective
operations (cf. [15]).

All communications require an extra communicator to prevent collisions with
the user program. This communicator is duplicated from the original one in the
first NBC call with a new communicator and cached for subsequent calls. This
makes the first call blocking, as in the threaded implementation described in the
previous section.

4 Microbenchmarking the Implementations

We developed a micro-benchmark to assess the performance and overlap poten-
tial of both implementations of non-blocking collective operations. This bench-
mark uses the interface described in [12]. For a given collective operation, it
measures the time to perform the blocking MPI collective, the non-blocking
collective in a blocking way (without overlap) and the non-blocking collective
interleaved with busy loops to measure the potential computation and commu-
nications overlap. A detailed description of the benchmark is available in [8]. In
addition, the benchmark measures the communication overhead of blocking and

130 T. Hoefler et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

F
re

ed
 C

P
U

 T
im

e
(s

ha
re

)

Datasize (kiB)

MPI/NB (1 proc)
NBC/NB (1 proc)
MPI/NB (2 procs)

NBC/NB (2 procs)
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 50 100 150 200 250 300

O
ve

rh
ea

d
(u

s)

Datasize (kiB)

NBC/BL (1 proc)
NBC/NB (1 proc)

NBC/BL (2 procs)
NBC/NB (2 procs)

Fig. 2. Left: Share of the freed CPU time with the non-blocking MPI and NBC alltoall
operation with regards to the blocking MPI implementation. Right: Blocking and non-
blocking NBC Ialltoall overhead for different CPU configurations. Measured with 128
processes in 64 and 128 nodes respectively.

non-blocking collective operations. Overhead is defined as the time the calling
thread spends in communications related routines, i.e., the time the thread can’t
spend doing other work. The communication overhead of blocking operations is
the amount of time to finish the collective operation, as the collective call does
not complete until the collective operation had completed locally. Non-blocking
operations allow for overlap of the communication latency and the overhead
has the potential to be less than the time to complete the given collective, and
providing the calling thread compute cycles. The communication overhead of
non-blocking operations is highly implementation, network, and communications
stack dependent. We could not run these thread-based tests on the Cray XT4,
as it does not provide thread support.

Using both implementations and the benchmark results, four different times
are measured:

– Blocking MPI collective in the user thread (MPI/BL)
– Blocking MPI collective in a separate communications thread to emulate

non-blocking behavior (MPI/NB)
– Non-blocking NBC operation without overlap, i.e., the initiation is directly

followed by a wait (NBC/BL)
– Non-blocking NBC operation with maximum overlap, i.e., computing at least

as long as an NBC/BL operation takes (NBC/NB)

We benchmarked both implementations with Open MPI 1.2.1 [16] on the
Coyote cluster system at Los Alamos National Labs, a 1290 node AMD Opteron
cluster with an SDR InfiniBand network. Each node has two single core 2.6 GHz
AMD Opteron processors, 8 GBytes of RAM and a single SDR InfiniBand HCA.
The cluster is segmented into 4 separate scalable units of 258 nodes. The largest
job size that can run on this cluster is therefore 516 processors.

Figure 2 shows the results of the microbenchmark for different CPU configu-
rations of 128 processes running on Coyote. The threaded MPI implementation

A Case for Standard Non-blocking Collective Operations 131

allows nearly full overlap (frees nearly 100% CPU) as long as the system is not
oversubscribed, i.e., every communication thread runs on a separate core. How-
ever, this implementation fails to achieve any overlap (it shows even negative
impact) if all cores are used for computation. The implementation based on
non-blocking point-to-point (LibNBC) allows decent overlap in all cases, even if
all cores are used for computation.

5 Case Study: Three-Dimensional FFT

Parallel multi-dimensional Fast Fourier Transformations (FFTs) are used as
compute kernels in many different applications, such as quantum mechanical
or molecular dynamic calculations. In this paper we also study the application
of non-blocking collective operations to optimize a three-dimensional FFT to
demonstrate the benefit of overlapping computation with communication for
this important kernel. This operation is used at least once per application com-
putational step.

The three-dimensional FFT can be split into three one-dimensional FFTs
performed along all data points. We use FFTW to perform the 1d-FFTs and
distribute the data block-wise (blocks of xy-planes) so that the x and y dimen-
sions can be transformed without redistributing the data between processors.
The z transformation requires a data redistribution among all nodes which is
efficiently implemented by an MPI Alltoall function.

A pipeline scheme is used for the communication. As soon as the first data
elements (i.e., planes) are ready, the communication of them is started in a
non-blocking way with NBC Ialltoall. This enables the communication of those
elements to overlap with the computation of all following elements. As soon as
the last element is computed and its communication is started, all outstanding
collective operations are completed with NBC Wait (i.e., the last operation has
no overlap potential).

We benchmark the strong scaling of a full transformation of a 10243 point FFT
box (9603 for 32 processes due to memory limitations) on the the Cray XT4,
Jaguar, at the National Center for Computational Sciences, Oak Ridge National
Laboratory. This cluster is made up of a total of 11,508 dual socket 2.6 GHz
dual-core AMD Opteron chips, and the network is a 3-D torus with the Cray-
designed SeaStar [17] communication processor and network router designed to
offload network communication from the main processor. The compute nodes run
the Catamount lightweight micro-kernel. All communications use the Portals 3.3
communications interface [18]. The Catamount system does not support threads
and can thus not run the threaded implementation. An unreleased development
version of Open MPI [16] was used to perform these measurements, as Open MPI
1.2.1 does not provide Portals communications support. However, using the NIC-
supported overlap with LibNBC results in a better overall system usage and an
up to 14.2% higher parallel efficiency of the FFT on 128 processes.

Another benchmark on the Coyote system (cf. 4), shown on Fig. 4, shows
results for runs of the 10243 FFT box transformation on 128 processes with

132 T. Hoefler et al.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

F
F

T
 T

im
e

(s
)

32 procs 64 procs 128 procs

MPI/BL
NBC/NB

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(s

)

32 procs 64 procs 128 procs

MPI/BL
NBC/NB

Fig. 3. Left: Blocking and non-blocking FFT times for different process counts on the
XT4 system. Right: Communication overhead.

 0

 1

 2

 3

 4

 5

 6

 7

F
F

T
 T

im
e

(s
)

1 ppn 2 ppn

MPI/BL
MPI/NB

NBC/NB

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(s

)

1ppn 2ppn

MPI/BL
MPI/NB

NBC/NB

Fig. 4. Left: Blocking and non-blocking FFT times for different node configurations
of 128 processes on the Coyote system (using 128 or 64 nodes respectively). Right:
Communication overhead.

either 1 process per node (1ppn) or two processes per node (2ppn). This effec-
tively compares the efficiency of the MPI approach (perform the non-blocking
collectives in a separate thread) with the LibNBC approach (use non-blocking
point-to-point communication). We clearly see the the LibNBC approach is su-
perior on this system. As soon as all available CPUs are used for computation,
the threaded approach even slows the execution down (cf. Section 4). Our con-
clusion is that with the currently limited number of CPU cores, it does not pay
off to invest half of the cores to process asynchronous collectives with the MPI
approach; they should rather be used to perform useful computation. Thus, we
suggest the usage of non-blocking point-to-point as in LibNBC.

6 Conclusions

As modern computing and communication hardware is becoming more powerful,
it is providing more opportunities for delegation of communication operations

A Case for Standard Non-blocking Collective Operations 133

and hiding of communication costs. MPI has long supported asynchronous point-
to-point operations to take advantage of these capabilities. It is clearly time for
the standard to support non-blocking functionality for collective operations.

The interface we propose is a straightforward extension of the current MPI
collective operations and we have implemented a prototype of these extensions
in a library using MPI point-to-point operations. We note however, that im-
plementing non-blocking collective operations as a separate library in this way
requires implementing (potentially quite similar) collective algorithms in two
different places (the blocking and non-blocking cases). Having those operations
standardized in MPI would enable a single shared infrastructure inside the MPI
library. In addition, communicator duplication is necessary in both implementa-
tions and can not be done in a non-blocking way without user interaction.

Our results with a microbenchmark and an application clearly show the per-
formance advantages of non-blocking collectives. In the case of an all-to-all com-
munication, we are able to overlap up to 99% of the communication with user
computation on our systems. The application of a pipelined computation/com-
munication scheme to a 3d-FFT shows application performance gains for a 128
process job of up to 14.2% on a Cray XT4 and 13.7% on an InfiniBand-based
cluster system. In particular, we show that using the MPI-2 threaded model for a
real-world problem to perform non-blocking collective operations is clearly sub-
optimal to an implementation based on non-blocking point-to-point operations.

Acknowledgements

Pro Siobhan. The authors want to thank Laura Hopkins from Indiana University
for editorial comments and helpful discussions. This work was supported by a
grant from the Lilly Endowment and National Science Foundation grant EIA-
0202048. This research was funded in part by a gift from the Silicon Valley
Community Foundation, on behalf of the Cisco Collaborative Research Initiative
of Cisco Systems. This research was also sponsored in part by the Mathematical,
Information, and Computational Sciences Division, Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under Contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC.

References

1. Brightwell, R., Riesen, R., Underwood, K.D.: Analyzing the impact of overlap,
offload, and independent progress for message passing interface applications. Int.
J. High Perform. Comput. Appl. 19(2), 103–117 (2005)

2. Danalis, A., Kim, K.Y., Pollock, L., Swany, M.: Transformations to parallel codes
for communication-computation overlap. In: SC 2005, p. 58. IEEE Computer So-
ciety, Washington, DC, USA (2005)

3. Gropp, W.D., Thakur, R.: Issues in developing a thread-safe mpi implementation.
In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) Recent Advances in
Parallel Virtual Machine and Message Passing Interface. LNCS, vol. 4192, pp. 12–
21. Springer, Heidelberg (2006)

134 T. Hoefler et al.

4. Kale, L.V., Kumar, S., Vardarajan, K.: A Framework for Collective Personalized
Communication. In: Proceedings of IPDPS’03, Nice, France (April 2003)

5. Dubey, A., Tessera, D.: Redistribution strategies for portable parallel FFT: a case
study. Concurrency and Computation: Practice and Experience 13(3), 209–220
(2001)

6. Kanevsky, A., Skjellum, A., Rounbehler, A.: MPI/RT - an emerging standard for
high-performance real-time systems. HICSS (3), 157–166 (1998)

7. Hoefler, T., Gottschling, P., Rehm, W., Lumsdaine, A.: Optimizing a Conjugate
Gradient Solver with Non-Blocking Collective Operations. In: Mohr, B., Träff, J.L.,
Worringen, J., Dongarra, J. (eds.) Recent Advances in Parallel Virtual Machine
and Message Passing Interface. LNCS, vol. 4192, pp. 374–382. Springer, Heidelberg
(2006)

8. Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and performance analysis
of non-blocking collective operations for mpi. In: Submitted to Supercomputing’07
(2007)

9. Adelmann, A., Bonelli, A., Ueberhuber, W.P.P.C.W.: Communication efficiency of
parallel 3d ffts. In: Daydé, M., Dongarra, J.J., Hernández, V., Palma, J.M.L.M.
(eds.) VECPAR 2004. LNCS, vol. 3402, pp. 901–907. Springer, Heidelberg (2005)

10. Calvin, C., Desprez, F.: Minimizing communication overhead using pipelining for
multidimensional fft on distributed memory machines (1993)

11. Goedecker, S., Boulet, M., Deutsch, T.: An efficient 3-dim FFT for plane wave
electronic structure calculations on massively parallel machines composed of mul-
tiprocessor nodes. Computer Physics Communications 154, 105–110 (2003)

12. Hoefler, T., Squyres, J., Bosilca, G., Fagg, G., Lumsdaine, A., Rehm, W.: Non-
Blocking Collective Operations for MPI-2. Technical report, Open Systems Lab,
Indiana University (08, 2006)

13. LibNBC (2006), http://www.unixer.de/NBC
14. Hoefler, T., Lumsdaine, A.: Design, Implementation, and Usage of LibNBC. Tech-

nical report, Open Systems Lab, Indiana University (08 2006)
15. Vadhiyar, S.S., Fagg, G.E., Dongarra, J.: Automatically tuned collective commu-

nications. In: Supercomputing ’00: Proceedings of the 2000 ACM/IEEE conference
on Supercomputing (CDROM), p. 3. IEEE Computer Society, Washington, DC,
USA (2000)

16. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel,
D.J., Graham, R.L., Woodall, T.S.: Open MPI: Goals, Concept, and Design of a
Next Generation MPI Implementation. In: Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary (September 2004)

17. Alverson, R.: Red storm. Invited Talk, Hot Chips 15 (2003)
18. Brightwell, R., Hudson, T., Maccabe, A.B., Riesen, R.: The portals 3.0 message

passing interface. Technical Report SAND99-2959, Sandia National Laboratories
(1999)

http://www.unixer.de/NBC

Optimization of Collective Communications

in HeteroMPI

Alexey Lastovetsky, Maureen O’Flynn, and Vladimir Rychkov

School of Computer Science and Informatics, University College Dublin,
Belfield, Dublin 4, Ireland

{Alexey.Lastovetsky,Maureen.OFlynn}@ucd.ie
http://hcl.ucd.ie

Abstract. HeteroMPI is an extension of MPI designed for high perfor-
mance computing on heterogeneous networks of computers. The recent
new feature of HeteroMPI is the optimized version of collective commu-
nications. The optimization is based on a novel performance communi-
cation model of switch-based computational clusters. In particular, the
model reflects significant non-deterministic and non-linear escalations of
the execution time of many-to-one collective operations for medium-sized
messages. The paper outlines this communication model and describes
how HeteroMPI uses this model to optimize one-to-many (scatter-like)
and many-to-one (gather-like) communications. We also demonstrate
that HeteroMPI collective communications outperform their native coun-
terparts for various MPI implementations and cluster platforms.

Keywords: MPI, HeteroMPI, heterogeneous cluster, switched network,
message passing, collective communications, scatter, gather.

1 Introduction

MPI [1] is the most widely used programming tool for parallel computing on
distributed-memory computer systems. It can be used on both homogeneous
and heterogeneous clusters, but it does not provide specific support for devel-
opment of high performance parallel applications for heterogeneous networks of
computers (HNOC).

HeteroMPI [2] is an extension of MPI designed for high performance com-
puting on HNOCs. It supports optimal distribution of computations among the
processors of a HNOC by taking into account heterogeneity of processors, net-
work topology and computational costs of algorithm. The main idea of Het-
eroMPI is to automate the creation of a group of processes that will execute the
heterogeneous algorithm faster than any other group. It is achieved by specify-
ing the performance model of the parallel algorithm and by optimal mapping of
the algorithm onto the HNOC, which is seen by the HeteroMPI programming
system as a multilevel hierarchy of interconnected sets of heterogeneous mul-
tiprocessors. HeteroMPI is implemented on top of MPI, therefore it can work
on top of any MPI implementation. HeteroMPI introduces a small number of

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 135–143, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://hcl.ucd.ie

136 A. Lastovetsky M. O’Flynn, and V. Rychkov

additional functions for group management and data partitioning. All standard
MPI operations are inherited, so that the existing MPI programs can be easily
transformed into HeteroMPI.

HeteroMPI inherits all MPI communication operations and solely relies on
their native implementation. At the same time, our recent research on the per-
formance of MPI collective communications on heterogeneous clusters based on
switched networks [3] shows that MPI implementations of scattering and gath-
ering are often very far from optimal. In particular, we observed very signifi-
cant escalations of the execution time of many-to-one MPI communications for
medium-sized messages. The escalations are non-deterministic but form regular
levels. We also observed a leap in the execution time of one-to-many communi-
cations for large messages. Based on the observations, we suggested a commu-
nication performance model of one-to-many and many-to-one MPI operations
reflecting these phenomena [3], which is applicable to both heterogeneous and
homogeneous clusters. The paper presents a new feature of HeteroMPI, which
is the optimized version of collective communication operations. The design of
these optimized operations is based on the new communication model and can
be summarized as follows:

– Upon installation, HeteroMPI computes the parameters of the model.
– Each optimized collective operation is implemented by a sequence of calls

to native MPI operations. The code uses parameters of the communication
model.

This high-level model-based approach to optimization of MPI communications
is easily and uniformly applied to any combination of MPI implementation and
cluster platform. It does not need to retreat to the lower layers of the communi-
cation stack and tweak them in order to improve the performance of MPI-based
communication operations. This is particularly important for heterogeneous plat-
forms where the users typically have neither authority nor knowledge for making
changes in hardware or basic software settings.

The paper is structured as follows. Section 2 outlines the related work. Section
3 briefly introduces the communication model. Section 4 describes the implemen-
tation of the optimized collective operations in HeteroMPI. Section 5 presents
experimental results, demonstrating that HeteroMPI collective communications
outperform their native counterparts for different MPI implementations and clus-
ters platforms.

2 Related Work

Vadhiyar et al. [4] developed automatically tuned collective communication al-
gorithms. They measured the performance of different algorithms of collective
communications for different message sizes and numbers of processes and then
used the best algorithm. Thakur et al. [5] used a simple linear cost model of a
point-to-point single communication in selection of algorithms for a particular
collective communication operation. Pjesivac-Grbovic et al. [6] applied differ-
ent point-to-point models to the algorithms of collective operations, compared

Optimization of Collective Communications in HeteroMPI 137

the predictions with measurements and implemented the optimized versions of
collective operations based on the decision functions that switch between dif-
ferent algorithms, topologies, and message segment sizes. Kielmann et al. [7]
optimized MPI collective communication for clustered wide-area environments
by minimizing communication over slow wide-area links. There were some works
on improving particular MPI operations [8,9].

All works on the optimization of collective operations are based on determin-
istic linear communication models. Implementation of the optimized versions of
collective operations in HeteroMPI uses the performance model that takes into
account non-deterministic escalations of the execution time of many-to-one MPI
communications for medium-sized messages and the leap in the execution time
of one-to-many communications for large messages.

3 The Performance Model of MPI Communications

This section briefly introduces the new performance model of MPI communica-
tions [3], which reflects the phenomena observed for collective communications
on clusters based on switched networks. The basis of the model is a LogP-like
[11] model of point-to-point communications for heterogeneous clusters [10]. The
parameters of the point-to-point model represent the heterogeneity of processors
and are also used in construction of the models of collective communications.
Apart from the point-to-point parameters, the models of collective communi-
cations use parameters reflecting the observed non-deterministic and non-linear
behavior of MPI collective operations.

Like any other point-to-point communication model, except for PLogP
our model is linear, representing the communication time by a linear function
of the message size. The execution time of sending a message of M bytes from
processor i to processor j on heterogeneous cluster is estimated by Ci + Mti +
Cj +Mtj + M

βij
, where Ci, Cj are the fixed processing delays; ti, tj are the delays

of processing of a byte; βij is the transmission rate. Different parameters for
nodal delays reflect heterogeneity of the processors. For networks with a single
switch, it is realistic to assume βij = βji.

There are two components in the models of one-to-many and many-to-one
communications. The first one is built upon the model of point-to-point com-
munications by representing each collective communication, MPI Scatter or
MPI Gather, by a straightforward combination of point-to-point communica-
tions

if (rank==root) {
memcpy(recvbuf, sendbuf, recvcount);
for (i=1; i<n; i++) {
if (scatter)
MPI_Isend(sendbuf+sendcount*i, sendcount, i);

if (gather)
MPI_Irecv(recvbuf+recvcount*i, recvcount, i);

}

138 A. Lastovetsky M. O’Flynn, and V. Rychkov

MPI_Waitall(n-1);
}
else {
if (scatter)
MPI_Recv(recvbuf, recvcount, root);

if (gather)
MPI_Send(sendbuf, sendcount, root);

}

This approach obviously results in a linear predictive model, which is quite
accurate for relatively small message sizes but does not reflect the observed
phenomena of non-deterministic and non-linear escalations of the execution time
of many-to-one communications for medium-sized messages and the significant
leap in the execution time of one-to-many communications for large messages.
The second component in the collective communication models addresses the
issues.

(a) (b)

Fig. 1. The execution time of collective communications against the message size: (a)
one-to-many and (b) many-to-one

Fig. 1 shows the typical behavior of one-to-many and many-to-one communi-
cations on a switch-based cluster, given the operations are implemented via the
described straightforward combination of point-to-point communications. One
can see a distinctive leap in the execution time for the one-to-many operation
as well as non-deterministic and non-linear escalations of the execution time of
the many-to-one operation for medium-sized messages. These phenomena were
observed on the MPI implementations over TCP communication layer but not
over Myrinet-MX. So, they may be caused by some TCP features. At the same
time, we have not had a chance to experiment with a reasonably large Myrinet-
based cluster and, therefore, cannot guarantee that MPI over Myrinet-MX does
not have such irregularities.

The one-to-many model [10,3] reflects the leap in the execution time and
categorizes the small and large messages. Parameter S is a message size thresh-
old, separating small and large messages. It is different for different combina-
tions of clusters and MPI implementations. The estimated time of scattering

Optimization of Collective Communications in HeteroMPI 139

messages of size M from node 0 to nodes 1, 2, ..., n is given by C0 + t0×n×M +

max
1≤i≤n

{
Ci + tiM + M

β0i

}
, if M < S or C0 + t0×n×M +

n∑

i=1

(Ci + tiM + M
β0i

), if

M ≥ S, where C0, t0, Ci, ti are the fixed and variable processing delays on the
source node and destinations. The one-to-many model displays parallel commu-
nication for small messages and a serialized communication for large messages.

The many-to-one model [3] differentiates small, medium and large mes-
sages by introducing parameters M1 and M2. For small messages, M < M1, the
execution time has a linear response to the increase of message size. Thus, the ex-
ecution time for the many-to-one communication involving n processors (n ≤ N ,
where N is the cluster size) is estimated by n(C0+toM)+ max

1<i≤n

{
Ci + tiM + M

β0i

}

+ κ1M , where κ1 is a fitting parameter for correction of the slope. For large
messages, M > M2, the execution time resumes a linear predictability for in-
creasing message size. Hence, this part of the model has the same design but a
different slope of linearity and greater value due to overheads: n(C0 + t0M) +
n∑

i=1

(Ci + tiM + M
β0i

) + κ2M . The additional parameter κ2 is a fitting constant

for correction of the slope. For medium messages, M1 ≤ M ≤ M2, we observed a
small number of discrete levels of escalation, remaining constant as the message
size increases. The model describes the probability of escalation to each of the
levels as a function of message size and the number of processors involved in the
operation. If no escalation occurs, the linear model used for small massages will
accurately predict the execution time.

The presented model accurately describes the performance of many-to-one and
one-to-many operations for all combinations of MPI implementations and cluster
platforms, which we used in our experiments, if the collective operations were im-
plemented via point-to-point MPI operations (as described by the pseudo-code
above). For LAM [12] and Open MPI [13], MPI Scatter and MPI Gather display
exactly the same performance pattern as their straightforwardly implemented
counterparts. Therefore, such MPI implementations need no further extension
of the communication model in order to describe native collective communication
operations. At the same time, for some MPI implementations (mainly, some ver-
sions of MPICH [14]), the native collective communications perform differently
(better or worse) than their straightforward counterparts. To deal with such
MPI implementations, HeteroMPI uses an extended communication model, ad-
ditionally including a separate model for each native collective operation. Due
to space limitations, we do not include in the paper considerations related to
this extended model.

In implementation of the optimized scatter and gather collective operations,
we use the message size thresholds S, M1 and M2 to fragment the messages
and to avoid the message sizes for which the irregularities are observed. These
parameters are found experimentally for a parallel platform. The building of the
analytical part of the communication model is out of the scope of this paper. We
do not describe the communication experiments and the measurement techniques
required to find the rest of parameters.

140 A. Lastovetsky M. O’Flynn, and V. Rychkov

4 Optimization of Collective Operations in HeteroMPI

This section describes the implementation of two newly introduced HeteroMPI
operations, HMPI Scatter and HMPI Gather, which are optimized versions of
native MPI Scatter and MPI Gather respectively. The implementation uses the
communication performance model presented in Section 3 in order to avoid the
MPI Gather time escalations and the MPI Scatter leap in the execution time.
More precisely, only the message size thresholds S, M1 and M2 are used in the
implementation. These parameters are computed by the HeteroMPI program-
ming system upon its installation on the parallel platform. In the implementa-
tion, neither point-to-point nor low-level communications are used, but only the
native MPI counterparts.

The implementation of HMPI Gather re-invokes the native MPI Gather for
small and large messages. The gathering of medium-sized messages, M1 ≤ M ≤
M2, is implemented by an equivalent sequence of m MPI Gather operations with
messages of the size that fits into the range of small messages: M

m < M1 and
M

m−1 ≥M1. Small-sized gatherings are synchronized by barriers, which removes
communication congestions on the receiving node. The barriers are marked bold
in the pseudo code:

if (M1<=M<=M2) {
find m such that M/m<M1 and M/(m-1)>=M1;
for (i=0; i<m; i++) {
MPI_Barrier(comm);
MPI_Gather(sendbuf + i*M/m, M/m);

}
}
else MPI_Gather(sendbuf, M);

Note. If MPI Barrier is removed from the code, the resulting implementation
will behave exactly as the native MPI Gather. It means that this synchronization
is essential for preventing communication congestions on the receiving side.

The implementation of HMPI Scatter uses parameter S of one-to-many com-
munication model. For small messages, M < S, the native MPI Scatter is re-
invoked. The scattering of large messages is implemented by an equivalent se-
quence of MPI Scatter operations with messages of the size less then S: M

m < S

and M
m−1 ≥ S. The pseudo code of the optimized scatter is as follows:

if (M>=S) {
find m such that M/m<S and M/(m-1)>=S;
for (i=0; i<m; i++)
MPI_Scatter(recvbuf + i*M/m, M/m);

}
else MPI_Scatter(recvbuf, M);

Optimization of Collective Communications in HeteroMPI 141

As the presented approach does not use the communication parameters reflect-
ing the heterogeneity of the processors, it can be applied to both homogeneous
and heterogeneous switch-based clusters.

5 Experiments

To compare the performance of the optimized HeteroMPI collective operations
with their native MPI counterparts, we experimented with various MPI imple-
mentations and different clusters. Here we present the results for the following
two platforms:

– LAM-Ethernet: 11 x Xeon 2.8/3.4/3.6, 2 x P4 3.2/3.4, 1 x Celeron 2.9, 2
x AMD Opteron 1.8, Gigabit Ethernet, LAM 7.1.3,

– OpenMPI-Myrinet: 64 x Intel EM64T, Myrinet, Open MPI 1.2.2 over
TCP.

(a) (b)

(c) (d)

Fig. 2. Performance of (a) MPI Gather, (b) HMPI Gather, (c) MPI Scatter, (d)
HMPI Scatter on 16-nodes heterogeneous cluster LAM-Ethernet

Fig. 2 shows the results for the heterogeneous LAM-Ethernet cluster, with all
nodes in use. The message size thresholds for this platform are M1 = 5KB,
M2 = 64KB, S = 64KB. Similar results are obtained on the 64-node ho-
mogeneous OpenMPI-Myrinet cluster (Fig. 3). For this platform, M1 = 5KB,
M2 = 64KB, S = 64KB. The results show that the optimized HeteroMPI
versions outperform their native MPI counterparts, avoiding the escalations and

142 A. Lastovetsky M. O’Flynn, and V. Rychkov

(a) (b)

(c) (d)

Fig. 3. Performance of (a) MPI Gather, (b) HMPI Gather, (c) MPI Scatter, (d)
HMPI Scatter on 64-nodes OpenMPI-Myrinet cluster

restoring the linear dependency of the communication execution time on message
size. On all platforms we observed S = M2.

The communication execution time was measured on the root node. The bar-
rier was used to ensure that all processes have finished the scatter-like opera-
tions. The communication experiments for each message size in a series were
carried out only once. The repeated measurements gave similar results. To avoid
the pipeline effect in a series of the experiments for different message sizes, the
barriers were included between collective operations.

6 Conclusion

The paper introduced a new feature of HeteroMPI, which is the optimized
versions of MPI collective communications for switched-based computational
clusters. The optimized collective operations were implemented on top of the cor-
responding MPI functions and based on the communication performance model.
We also presented experimental results demonstrating that the optimized func-
tions outperformed the native ones.

The proposed approach to optimization of MPI communications is based on
the use of a high-level communication performance model. Therefore, it can be
easily and uniformly applied to any combination of MPI implementation and
cluster platform. It needs no retreat to the lower layers of the communication
stack for tweaking them in order to improve the performance of MPI-based

Optimization of Collective Communications in HeteroMPI 143

communication operations. This is particularly advantageous for heterogeneous
platforms where the users typically have neither the authority nor the knowledge
for changing hardware and basic software settings.

Acknowledgments. The work was supported by the Science Foundation Ire-
land (SFI). We are grateful to the Innovative Computing Laboratory, University
of Tennessee, for providing with computing clusters.

References

1. Dongarra, J., Huss-Lederman, S., Otto, S., Snir, M., Walker, D.: MPI: The Com-
plete Reference. The MIT Press, Cambridge (1996)

2. Lastovetsky, A., Reddy, R.: HeteroMPI: Towards a message-passing library for
heterogeneous networks of computers. J. of Parallel and Distr. Comp. 66, 197–220
(2006)

3. Lastovetsky, A., O’Flynn, M.: A Performance Model of Many-to-One Collective
Communications for Parallel Computing. In: Proc. of IPDPS 2007, Long Beach,
CA (2007)

4. Vadhiyar, S.S., Fagg, G.E., Dongarra, J.: Automatically tuned collective commu-
nications. In: Proc. of Supercomputing 99, Portland, OR (1999)

5. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of Collective Communica-
tion Operations in MPICH. Int. J. of High Perf. Comp. App. 19, 49–66 (2005)

6. Pjesivac-Grbovic, J., Angskun, T., Bosilca, G., Fagg, G.E., Gabriel, E., Dongarra,
J.J.: Performance Analysis of MPI Collective Operations. In: Proc. of IPDPS 2005,
Denver, CO (2005)

7. Kielmann, T., Hofman, R.F.H., Bal, H., Plaat, A., Bhoedjang, R.A.F.: MagPIe:
MPI’s collective communication operations for clustered wide area systems. In:
Proc. of PPoPP 1999, pp. 131–140. ACM Press, New York (1999)

8. Iannello, G.: Efficient algorithms for the reduce-scatter operation in LogGP. IEEE
Transactions on Parallel and Distr. Systems 8(9), 970–982 (1997)

9. Benson, G.D., Chu, C-W., Huang, Q., Caglar, S.G.: A comparison of MPICH
allgather algorithms on switched networks. In: Dongarra, J.J., Laforenza, D., Or-
lando, S. (eds.) Recent Advances in Parallel Virtual Machine and Message Passing
Interface. LNCS, vol. 2840, pp. 335–343. Springer, Heidelberg (2003)

10. Lastovetsky, A., Mkwawa, I., O’Flynn, M.: An Accurate Communication Model of
a Heterogeneous Cluster Based on a Switch-Enabled Ethernet Network. In: Proc.
of ICPADS 2006, Minneapolis, MN, pp. 15–20 (2006)

11. Culler, D., Karp, R., Patterson, R., Sahay, A., Schauser, K.E., Santos, R.S.E., von
Eicken, T.: LogP: Towards a realistic model of parallel computation. In: Proc. of
the 4th ACM SIGPLAN, ACM Press, New York (1993)

12. LAM/MPI User’s Guide, http://www.lam-mpi.org/
13. Open MPI Publications http://www.open-mpi.org/
14. MPICH/MPICH-2 User’s Guide, http://www-unix.mcs.anl.gov/mpi/

http://www.lam-mpi.org/
http://www.open-mpi.org/
http://www-unix.mcs.anl.gov/mpi/

Low Cost Self-healing in MPI Applications

Jacques A. da Silva and Vinod E. F. Rebello

Instituto de Computação, Universidade Federal Fluminense, Brazil
{jacques, vinod}@ic.uff.br

Abstract. Writing applications capable of executing efficiently in Grids
is extremely difficult and tedious for inexperienced users. The distributed
resources are typically heterogeneous, non-dedicated, and are offered
without any performance or availability guarantees. Systems capable of
adapting the execution of an application to the dynamic characteristics
of the Grid are essential. This work describes the strategy used to be-
stow the self-healing property on autonomic EasyGrid MPI applications
to withstand process and resource failures. This paper highlights both
the difficulties and the low cost solution adopted to offer fault tolerance
in applications based on the standard Grid installation of LAM/MPI.

Keywords: Fault tolerance, Autonomic MPI, Grid middleware.

1 Introduction

Computational Grids aim to aggregate significant numbers of geographically dis-
tributed resources to provide sufficient (and low cost) computational power to an
ever growing variety of applications. Given the scale and shared nature of Grids,
they are especially vulnerable to execution and communication failures. Many
e-science applications require to run for days or weeks at a time which is becom-
ing significantly longer than the mean time between failures of many grid envi-
ronments. The inability to tolerate faults not only degrades performance since
applications will have to be restarted, but wastes valuable computing power.

Given the characteristics of parallel applications and the dynamism and het-
erogeneity of Grids, the need for systems capable of adapting the execution of
applications to the environment is clear. Autonomic computing [1] focuses on the
design of systems and applications that regulate themselves. Initially four general
properties, together with four enabling attributes, were defined as requirements
for these self-managing systems: self-configuring, self-healing, self-optimizing,
self-protecting, self-awareness, environment-awareness, self-monitoring and self-
adjusting [2]. The development of mechanisms to enable these systems and ap-
plications relies on autonomic elements i.e., embedded self-contained modules
responsible for implementing their functions and behaving in accordance with
the context and policies defined or deployed at run time. Although self-healing
(the ability to detect and recover from faults and continue executing correctly)
appears to be identical to fault tolerance, its efficient implementation is de-
pendent on an effective integration with other self-* mechanisms, in particular
self-monitoring, self-adjusting and self-optimization.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 144–152, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Low Cost Self-healing in MPI Applications 145

The EasyGrid Application Management System (AMS) transforms cluster-
based MPI applications (designed for homogeneous, stable environments) into
autonomic ones capable executing robustly and efficiently in Grids [3]. The Easy-
Grid AMS is an application-specific application-level middleware that is embed-
ded into the user’s MPI program at compile time, thus creating a self-contained
autonomic MPI application. This paper describes and evaluates the integrated
self-healing mechanism adopted by the AMS to permit EasyGrid MPI appli-
cations to complete their execution in Grids even in the face of failures. The
EasyGrid AMS adopts the “one MPI process per application task” grid execu-
tion model [4] and therefore is based on MPI implementations which support
dynamic process creation such as LAM/MPI. For reasons of deployability, no
modifications are made standard distribution or installation of LAM/MPI and
no further software, other than the Globus ToolKit 2.x, is required for execu-
tion of autonomic EasyGrid MPI applications in a Grid. We assume that while
MPI provides a reliable message delivery service, processes and/or resources can
fail at any time. The objective is to efficiently integrate low cost fault tolerance
and scheduling strategies into MPI programs, appropriate for the proposed grid
execution model, in a way that is transparent to the programmer.

2 Concepts and Related Work

Normally, fault tolerance mechanisms have 4 stages: fault detection is the process
of recognizing that an error has occurred; fault location then involves identify-
ing the location of the component of the system that caused the error; fault
containment aims to prevent a possible propagation of the fault to the rest of
the system by isolating the faulty component; and fault recovery is the process
of restoring the operational status of the system to a previous fault-free consis-
tent state. To avoid having to re-execute the entire application, fault recovery is
generally based on checkpointing, message logging or a combination of both [5].
Checkpointing techniques periodically save the execution state of the processes.
If a failure is detected, all processes are rolled back to a previous checkpoint
and restarted. Checkpointing techniques can be both complex (since the parallel
application needs to be rolled back to a consistent state) and expensive (since
fault free storage is required and which, if not distributed, can be subject to
congestion when writing and retrieving checkpoints). Message-logging, on the
other hand, aims to restart the failed process only. Although the other processes
are not rolled back, all messages sent previously to the process that failed must
be resent. The drawback is the cost associated with keeping a copy of all mes-
sages sent and managing communication to and from the replacement process.
Checkpointing may be used in conjunction to reduce the size of the message log.

MPI was initially designed for homogeneous, fault-free, static environments
such as dedicated computing clusters. With computing systems become larger,
these characteristics are changing and researchers have begun, in particular, to
explore diverse approaches to offer fault-tolerance in MPI. Of course, the strate-
gies proposed are confined by the execution model adopted by the application.

146 J.A. da Silva and V.E.F. Rebello

MPI applications are typically designed to execute long running processes, one
per processor [6]. In dynamic heterogeneous environments like Grids, this one
process per processor (1PProc) execution model becomes inappropriate since
the granularity of each process tend to require adjustments. The fact that re-
sources maybe heterogeneous, shared with local jobs, and fault-prone not only
makes this model inefficient but also makes managing the execution of applica-
tions extremely complex. A one process per task (1PTask) execution model has
been proposed where programs consist of a larger number (determined by the
parallelism of the application and not the number of resources) of shorter-lived
processes [4]. For this model, we propose to adopt a fault tolerance strategy
based solely on message logging. The benefits gained from avoiding the need to
implement sophisticated checkpointing schemes and maintain long message logs,
can outweigh the cost of managing an increased number of processes.

The MPICH-V [7] is a fault-tolerant version of MPICH that implements un-
coordinated checkpointing and logging of messages to allow aborted or failed
processes to be substituted. All comunications first pass through Channel Mem-
ories (executing on remote persistent resources) for logging and thus incurs an
overhead for message delivery. MPI-FT [8] uses one of two logging strategies for
recovery. Communications can take place via a central observer process. Should a
process fail, messages are redirected to a replacement. Alternatively, each process
is responsible for keeping a copy of all messages it sent. In the case of failure,
the observer indicates to whom messages should be resent. FT-MPI [9] does not
checkpoint or log messages. Instead it extends the functionality of the commu-
nicators to provide information which will permit an application to take the
appropriate corrective action. The drawback is the lack of transparency for the
programmer.

A library EGAMSmpi.h has been developed to substitute mpi.h, which acti-
vates EasyGrid AMS management mechanisms through the code wrapping of
MPI functions called by the application. This functionality is included into the
user’s program at compile time, without the need of changes to the source code.
Furthermore, the EasyGrid AMS offers more than just self-healing. Fault toler-
ance has been integrated with mechanisms which support the other autonomic
self-* properties to provide an effective low instrusion self-management system.

3 EasyGrid Application Management System

Parallel MPI applications are transformed into adaptive, fault tolerance, and self-
scheduling programs capable of harnessing available Grid resources efficiently by
coupling each of them with an application-specific middleware in the form of an
application management system (AMS). The AMS controls the execution of
the MPI application processes through a distributed hierarchy of management
processes. This hierarchical structure is composed by three management levels.
At the top, a single Global Manager (GM) is responsible for supervising the sites
in the Grid where the application’s processes are running (or will be able to ex-
ecute). The next level is composed of Site Manager (SM) processes that manage

Low Cost Self-healing in MPI Applications 147

the execution at individual sites. Finally, at the lowest level, Host Managers
(HM), one for each resource, take on the responsibility for scheduling, creating
and executing the application processes allocated to their respective host.

Each management process is designed following a layered subsumption archi-
tecture. The functionality of each layer depends on the management process’
level in the hierarchy. This hierarchical structure allows the application to adapt
independently to environmental changes, since each management process can
adopt differing dynamic policies. The process management layer is responsible
for the dynamic creation of MPI processes, both of the application and manage-
ment ones, and for the redirection of messages between processes. The applica-
tion’s self-monitoring layer collects system data and provides status information
for re-scheduling the application processes and recovering from process failures.

Although, the EasyGrid AMS adopts the 1PTask execution model, not all
application processes are created at start up. All of the MPI processes (except
GM), including those of the application, are created dynamically according to
the hierarchical management structure - each child with a unique communicator.
Since the original application processes can no longer communicate directly with
each other, the HMs, SMs and GM must take on the job of routing messages
between application processes in the same host, same site, and between sites,
respectively. Messages must also be stored for processes that have yet to be cre-
ated. For fault tolerance, we extend the life time of each process’ input message
log until that process successfully completes. The SM’s are also responsible for
the eventual communication between the HMs and the GM, re-directing not
only application messages, but also AMS messages (e.g. error and monitoring).
Note that the management processes need to route messages dynamically since
destination processes may have been reallocated by the self-optimizing dynamic
scheduler in response to self-healing (process failures) or changes in the compute
power available from resources.

4 Fault Tolerance in the EasyGrid AMS

The AMS’s management of processes permits the recovery from process and
processor failures without need to interrupt the execution of the application. The
AMS can tolerate failures in all processes except the GM. Since the AMS offers
application-level fault tolerance (FT) over standard LAM/MPI, the GM must
either have FT support provided by the system which started the application
or be created on a persistent resource (the existence of which is a common
requisite of existing FT strategies). The AMS uses distinct inter-communicators
between each pair of processes (for both management and application processes)
so that faults can easily located and isolated. This leaves fault detection and
fault recovery to be addressed.

The AMS fault tolerance subsystem detects faults through communication
errors in the monitoring subsystem, i.e. when messages are being sent to or re-
ceived from the application processes by the HM and between the management

148 J.A. da Silva and V.E.F. Rebello

processes. Both the error type and the identification of the process that cause
the fault are obtained since error handlers are associated with communicators.

However, detecting MPI process failures is tricky, especially since non-blocking
MPI calls are local operations and do not always identify that a remote process
has died even with error handlers set to MPI_ERRORS_RETURN. Furthermore, since
the order, size and arrival times of messages are unknown, the management
processes use such calls to minimise intrusion. Another issue that has been ob-
served is that the sending of two consecutive messages using the eager protocol
(i.e. for message sizes between 52105 and 65536 bytes) to a failed process can
cause the sender to die. For this reason, the fault tolerance mechanisms devel-
oped were required to test the state of the remote process prior to the sending
of a message.

We use the term hardware failure to refer to a non-recoverable fault in a re-
source (including shutdown) or the failure of the lamd daemon (the recreation of
a new daemon is not possible with the Globus module of LAM/MPI). A software
failure occurs when a management or application process fails. Since the resource
continues to be available, the application should recover to take advantage of it.
We proposed a distributed but unified approach to simultaneously detect both
hardware and software faults in MPI applications based on LAM/MPI.

4.1 Fault Tolerance for Application Processes

The responsibility to detect and recover from failures that occur in the ap-
plication processes lies with the HM that created the process. The technique
employed for detecting such failures was presented in [3]. The AMS implements
message logs to hold the input messages of each application process until that
process executes successfully. The allocated HM logs messages chronologically.
This scheme assume that processes are deterministic, i.e. the same inputs always
produce the same output. If the elapsed time since the last monitoring message
received from a local process v exceeds a predetermined threshold, a signal 0 is
sent to test the communicator using the MPIL_Signal call. Should the function
return an error, a fault is detected and the communicator between the manager
and process is freed to prevent a possible propagation of the fault. The HM
scheduling subsystem is instructed to create a new process v′ to substitute v.
All messages for v′ will be recovered from the v’s message log held locally by the
HM. Note that the resending of messages by v′ that were delivered sucessfully
prior to the failure are discarded by the HM that created v′.

4.2 Fault Tolerance for Host Managers

The SM is responsible for guaranteeing fault tolerance with respect to failures
on other resources at its site. The SM’s fault tolerance mechanism must interact
with its scheduler to redistribute application processes among the other HM’s in
the case of hardware failures. Adopting the previous technique is not an option
because the function MPIL_Signal becomes blocked when a remote daemon has
died. This would cause the SM to stall when a HM becomes unreachable.

Low Cost Self-healing in MPI Applications 149

The solution adopted uses threads to execute a system call with the command
mpitask to test the HMs. The command mpitask can be used to monitor MPI
processes in the LAM environment. Although the command mpitask also blocks
if a remote daemon has died, the thread can be cancelled and MPI functions
will continue functioning normally. Peculiarly however, if the command mpitask
is killed 8 times, the lamd daemon on the resource executing the SM loses its
connectivity with the other daemons. To prevent this, the command lamshrink
is used to remove the faulty node from the LAM universe.

As mentioned earlier, a process may die if it sends two messages to a process
which has already died. Therefore, the AMS verifies the status of each destination
process prior to communicating. However to hide this overhead, the status of a
process is only requested after each communication and verified just before the
next communication to that process. Even though a failure may occur after
the test but before the communication, this will be detected before the second
message is sent. The mechanism to detect faults consists of creating a thread to
test if the daemon and the HM on the remote node are alive. A variable shared
between this thread and the main thread (the SM) receives the result of the
mpitask call. If this result is not available when the SM needs to send another
message, the SM will continue testing the variable after a series of exponentially
increasing timeouts. If the thread is not blocked, i.e. mpitask completed, then the
remote daemon is alive. The shared variable will identify if a fault has occurred
in the HM. After a final timeout, if thread is still blocked, then the SM assumes
that the daemon on the remote host has died and the SM executes lamshrink. In
the case where the HM dies but daemon remains alive, the SM will recreate the
HM and restore its previous state. The SM keeps a message log for all application
processes currently scheduled in its site. When created, the HM receives a list of
application processes and the messages they received previously. If the daemon
has died, the resource is no longer considered usable and the application processes
that were allocated to that resource are redistributed. This operation is carried
out by the dynamic scheduler and does not involve process migration.

4.3 Fault Tolerance in Site Managers

GM is the responsible for guaranteeing fault tolerance in the SMs and scheduling
tasks between the sites [3]. The fault detection and recovery scheme is identical
to that used by the SMs. The GM is the only process that possesses information
on all of the application processes. However, due to the use of distinct inter-
communicators, when a SM dies, the HMs created by this SM become orphans.
When a HM detects that its parent SM has died, it terminates the execution
of its application processes and exits, thus freeing the resource. A recreated SM
initiates its execution by recreating the HMs at its site. Here we assume that if
a SM’s resource suffers a hardware failure, the site is inaccessible and all appli-
cation processes at that site must be redistributed amongst the remaining sites.
A future version of the AMS will look at first attempting to find an alternative
resource to host the SM before moving processes off site.

150 J.A. da Silva and V.E.F. Rebello

5 Computational Experiments

This section describes the experiments carried out to examine the EasyGrid
AMS’s ability to efficiently complete the execution of its application even in the
presence of resource or process failures. Our focus is on determining the perfor-
mance overheads associated with implementing an autonomic application based
on the globus-enabled LAM/MPI. For the performance analysis, we consider a
synthetic application representative of Bag-of-Task, Master-Worker, Parameter
Sweep and SPMD applications – a class commonly executed on grids. In this test
application (TApp), each process receives and sends a message to an application
master process. This allows us to investigate how granularity and communica-
tions affect the performance of the EasyGrid AMS with respect to fault tolerance
(FT). The experiments were carried out in a semi-controlled three-site grid envi-
ronment interconnected by Gigabit and fast Ethernet switches. All the available
resources run Linux Fedora Core 2, Globus Toolkit 2.4 and LAM/MPI 7.0.6.
Sites 1, 2 and 3 are composed of Pentium IV 2.6 GHz processors with 512Mb
RAM, where Site 1 contains 13 processors and Sites 2 and 3 have 7 and 5 proces-
sors, respectively. While the experiments were carried out with exclusive access
to the computing resources, being connected on a public network meant that
application performance could have been affected by external network traffic.

The first issue to be addressed is the overhead of the EasyGrid AMS imple-
mentation of TApp (executing under the 1PProc execution model) in compari-
son with a traditional LAM/MPI equivalent executing under the 1PTask model.
Table 1 presents the percentage overhead (O) for the EasyGrid AMS TApp ap-
plication with 500, 1000, 2000, 4000 and 8000 processes (P) and granularities
(G) of 5, 10, 20, and 40 seconds. In the master-worker LAM/MPI version, the
master process distributes units of workload equivalent to that of a process P
to 24 worker processes on demand. While as expected the results show that the
AMS execution is slightly slower than that of pure LAM/MPI for a homogeneous
environment, this scenario is reversed in shared heterogenous Grids [4].

Next we look more closely at the degree of intrusion caused by the self-healing
mechanism itself. The columns labelled Case 1 and Case 2 in Table 2 refer to the
average execution times, in seconds, of TApp with two versions of the EasyGrid
AMS (without and with the FT code (i.e., EasyGrid AMS of Table 1), respec-
tively) in a fault free environment. The column adjacent to Case 2 presents the
percentage overhead (O) for the AMS with fault tolerance. For a given number of

Table 1. Average execution times for the LAM/MPI and AMS implementations of
the TApp application with varying numbers of processes and granularities

Granularity 5s Granularity 10s Granularity 20s Granularity 40s
P LAM AMS O(%) LAM AMS O(%) LAM AMS O(%) LAM AMS O(%)

500 105.25 127.18 20.84 209.79 231.22 10.22 418.88 454.00 8.39 836.99 897.55 7.24
1000 209.59 229.31 9.41 418.49 440.51 5.26 836.17 878.86 5.11 1671.58 1748.57 4.61
2000 418.47 449.80 7.49 836.16 863.18 3.23 1678.49 1719.37 2.44 3342.40 3429.97 2.62
4000 831.25 892.33 7.35 1661.70 1710.47 2.93 3322.64 3411.79 2.68 6644.59 6814.09 2.55
8000 1661.69 1833.19 10.32 3322.50 3411.71 2.69 6690.61 6791.23 1.50 13287.94 13561.43 2.06

Low Cost Self-healing in MPI Applications 151

Table 2. Average execution times for the TApp applications with varying numbers of
processes and granularities under differing scenarios: Case 1 - AMS without FT code;
Case 2 - AMS with FT executed without failures; Case 3 - Hardware failures on 6 HM
machines; Case 4 - Software failures in 6 HM processes; Case 5 - Hardware failure in
Site 1’s SM machine; Case 6 - Software failure in the SM process. One resource executes
the GM and application master process, the remaining 24 resources each execute a HM
and the application processes P. One resource at each site also executes a SM process.

G P Case 1 Case 2 O(%) Case 3 O(%) Case 4 O(%) Case 5 O(%) Case 6 O(%)
500 107.96 127.18 17.80 168.48 35.89 131.89 22.16 189.52 19.21 135.65 25.65
1000 215.71 229.31 6.31 295.24 19.12 255.29 18.35 350.22 10.18 257.06 19.17

5 2000 425.20 449.80 5.78 550.08 11.67 456.73 7.42 672.68 6.34 474.47 11.59
4000 846.04 892.33 5.47 1034.97 5.28 905.42 7.02 1325.32 5.35 910.41 7.61
8000 1686.79 1833.19 8.68 2063.06 5.34 1872.60 11.02 2654.99 5.63 2056.87 21.94
500 218.16 231.22 5.99 291.89 17.19 241.83 10.85 372.59 16.77 248.62 13.96
1000 426.99 440.51 3.17 539.13 9.25 454.53 6.45 691.11 9.10 469.29 9.91

10 2000 846.35 863.18 1.99 1020.59 3.81 879.47 3.91 1327.94 5.13 883.06 4.34
4000 1689.58 1710.47 1.24 1997.45 1.66 1726.39 2.18 2604.79 3.58 1729.75 2.38
8000 3372.26 3411.71 1.17 3982.15 1.69 3426.19 1.60 5120.59 1.88 3428.95 1.68
500 439.27 454.00 3.35 544.16 8.91 473.91 7.88 705.20 10.25 482.46 9.83
1000 853.37 878.86 2.99 1029.30 4.32 898.02 5.23 1369.80 8.14 906.49 6.22

20 2000 1695.52 1719.37 1.41 2024.58 2.89 1746.47 3.00 2600.77 2.89 1763.39 4.00
4000 3380.69 3411.79 0.92 3993.79 1.61 3436.36 1.65 5129.99 1.98 3445.70 1.92
8000 6744.91 6791.23 0.69 7945.10 1.44 6819.75 1.11 10169.30 1.16 6821.11 1.13
500 871.62 897.55 2.97 1047.49 5.19 919.78 5.52 1380.10 8.17 951.87 9.21
1000 1722.36 1748.57 1.52 2053.40 3.64 1777.21 3.18 2736.37 7.68 1806.06 4.86

40 2000 3383.75 3429.97 1.37 4025.92 2.39 3480.69 2.86 5190.76 2.75 3496.43 3.33
4000 6754.70 6814.09 0.88 7963.06 1.35 6861.38 1.58 10239.25 1.81 6883.20 1.90
8000 13486.71 13561.43 0.55 15748.25 0.54 13594.67 0.80 20659.57 2.77 13622.61 1.01

processes, the FT monitoring overhead falls as the process granularity increases
since the execution is longer but the number of messages remains the same.
However for a given granularity, as the number of processes in the application
is increased so the overhead also decreases instead of remaining constant as one
would expect. This due to the AMS’s ability to reallocate application processes
to overcome load imbalances caused by the FT subsystem.

Two aspects need to be evaluated with regard to the degree of intrusion when
recovering from fail-stop faults. The cost of redistributing processes among other
management processes when a hardware fault occurs and the cost of recreating
the management and/or application processes in the case of software faults.
While in Case 3, 25% (6) of the resources which run HMs fail, in Case 4, 25%
of the HM processes fail (the lamd daemons remain active permitting HMs to
be recreated). In Cases 5 and 6, the previous scenarios are repeated but this
time the SM in charge of half (12) of the computational resources suffers a
hardware and software fault respectively. The faults occur approximately at the
midpoint of the application’s corresponding Case 2 execution. The overheads
are relative to Case 1 and, in Cases 3 and 5, take into consideration the loss in
available computing power. With exception of the executions of TApp for 500 5s
processes, the overheads for recovery are extremely small given the comparison
to the equivalent program without FT code. As before, these overheads shrink to
less than 1% as the number of processes and granularity increases. An interesting
observation can be made with respect to the execution model. In Case 1, the

152 J.A. da Silva and V.E.F. Rebello

best execution times for a given total workload were achieved by programs with
process granularities of 5s. In the remaining Cases, the best times are generally
still achieved by the programs with small granularies (10s), even though the
smallest FT overheads were obtained for larger granularities. The reason is the
performance tradeoffs between the scheduling and fault tolerance mechanisms.

6 Conclusions and Future Work

The EasyGrid Application Management System is a middleware tailored to
transparently grid-enable MPI applications. This paper discussed our experi-
ence with standard LAM/MPI and presented a low intrusion application-level
strategy for implementing self-healing in autonomic MPI applications based on
the EasyGrid AMS. Fault tolerance strategy is integrated with the AMS func-
tions and takes advantage of the 1PTask execution model. The combination of
a distributed message log (shared with process managers which hold messages
for application processes that have yet to be created) and the re-start of failed
processes can be effective. Evaluations are currently being carried out with AMS
specific implementations (with support for commonly used collective communi-
cations) for real large scale scientific applications.

References

1. IBM Research: Autonomic computing. http://www.research.ibm.com/autonomic
2. Sterritt, R., Parashar, M., Tianfield, H., Unland, R.: A concise introduction to

autonomic computing. Advanced Engineering Informatics 19(3), 181–187 (2005)
3. Nascimento, A.P., Sena, A.C., da Silva, J.A., Vianna, D.Q.C., Boeres, C., Rebello,

V.: Managing the execution of large scale MPI applications on computational grids.
In: Proc. of the 17th Symposium on Computer Architecture and High Performance
Computing, Rio de Janeiro, Brazil, pp. 69–76. IEEE Computer Society Press, Los
Alamitos (2005)

4. Sena, A.C., Nascimento, A.P., da Silva, J.A., Vianna, D.Q.C., Boeres, C., Rebello,
V.: On the advantages of an alternative MPI execution model for grids. In: Pro-
ceedings of the 7th IEEE International Symposium on Cluster Computing and the
Grid, Rio de Janeiro, Brazil, IEEE Computer Society Press, Los Alamitos (2007)

5. Elnozahy, M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–408 (2002)

6. Foster, I.: Designing and Programming Parallel Programs. Addison-Wesley, Reading
(1995)

7. Bosilca, G., Bouteiller, A., Cappello, F., Djilali, S., Fedak, G., Germain, C., Herault,
T., Lemarinier, P., Lodygensky, O., Magniette, F., Neri, V., Selikhov, A.: MPICH-
V: toward a scalable fault tolerant MPI for volatile nodes. In: Supercomputing
’02: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, pp. 1–18.
IEEE Computer Society Press, Los Alamitos (2002)

8. Louca, S., Neophytou, N., Lachanas, A., Evripidou, P.: MPI-FT: Portable fault
tolerance scheme for MPI. Parallel Processing Letters 10(4), 371–382 (2000)

9. Fagg, G.E., Dongarra, J.: Building and using a fault tolerant MPI implementation.
Int. J. High Performance Applications and Supercomputing 18(3), 353–361 (2004)

http://www.research.ibm.com/autonomic

Fault Tolerant File Models for MPI-IO Parallel File
Systems

A. Calderón1, F. Garcı́a-Carballeira1, Florin Isailǎ1,
Rainer Keller2, and Alexander Schulz2

1 Computer Architecture Group, Computer Science Department
Universidad Carlos III de Madrid, Leganés, Madrid, Spain

acaldero@arcos.inf.uc3m.es
2 High Performance Computing Center Stuttgart (HLRS),

Universität Stuttgart, 70550 Stuttgart, Germany
keller@hlrs.de

Abstract. Parallelism in file systems is obtained by using several independent
server nodes supporting one or more secondary storage devices. This approach
increases the performance and scalability of the system, but a fault in one single
node can make the whole system fail. In order to avoid this problem, data must be
stored using some kind of redundant technique, so that it can be recovered in case
of failure. Fault tolerance can be provided in I/O systems by using replication
or RAID based schemes. However, most of the current systems apply the same
technique of fault tolerant at disk or file system level.

This paper1 describes how fault tolerance support can be used by MPI appli-
cations based on PVFS version 2 [1], a well-know parallel file system for clusters.
This support can be applied to other parallel file systems with many benefits: fault
tolerance at file level, flexible definition of new fault tolerance scheme, and dy-
namic reconfiguration of the fault tolerance policy.

Keywords: Parallel File System, clusters, fault-tolerance, data declustering, reli-
ability.

1 Introduction

For many parallel (and non-parallel) applications the performance of parallel I/O sub-
system is critical. This is especially due to the fact that improvements in the CPU [2]
performance are considerable larger than those of I/O components. The main improve-
ment of the I/O subsystem performance comes from parallelism. However, on the other
hand, the parallel I/O also is becoming critical for reliability reasons.

As it can be seen in the top 500 supercomputer list [3], the 72,2 % of current super-
computers are clusters. A large number of nodes with commercial off-the-shelf (COTS)
hardware and software is used in order to build a supercomputer at a low cost. This ap-
proach improves the system performance and scalability, but increases the probability

1 This work has been was carried out under the HPC-EUROPA project (RII3-CT-2003-506079),
with the support of the European Community - Research Infrastructure Action under the FP6
”Structuring the European Research Area” Programme. This work has also been partially sup-
ported by the Spanish Ministry of Science and Technology under the TIC2004-02156 contract.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 153–160, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

154 A. Calderón et al.

of a single component failure. Parallel applications may scale, but are also very sensitive
to errors: if a single node fails, the entire parallel application may fail as well.

For example, for systems like Blue Gene the main time to fail (MTTF) is less than
20 hours [4]. However, a parallel application typically is running for a longer period of
time. Consequently, a fault tolerant mechanism is strongly needed. The most common
solution is checkpointing [4]. However, the efficiency and correctness of checkpointing
depends on the performance and reliability of the I/O subsystem (if the storage sys-
tem fails, the checkpointing mechanism fails, too). Additionally, not all applications
implement checkpointing.

Existing solutions for reliability are based on RAID [5] techniques, and on replica-
tion (one or more copies) at node level. Parallel file systems manage the fault tolerant
support transparently to the user. In the current solutions, only the administrator can
change the configuration of the parallel file system in a system-wide manner.

The main goal of our work is to give the applications the possibility of customizing
the employed fault tolerant scheme. This includes the ability to define the fault tolerant
policy per file rather than per file system. The user may choose to use or not the fault
tolerant mechanism, may set up the number of I/O nodes involved, or may even imple-
ment a specialized fault-tolerant policy that matches best the application needs (in terms
of reliability, in terms of performance by trying to match the application access patterns
for example, etc.). This approach addresses the lack of any fault tolerance protection of
the local disks of the compute nodes.

This article presents how these new ideas have been applied to PVFSv2 and can be
used through MPI-IO [6]. We leverage our experience of implementing fault tolerant
support in the Expand parallel file system [7]. This work presents how the fault tolerant
support has been added into PVFSv2, and how MPI users could define a more flexible
data block distribution (for data and for redundant information, too). Even more, it is
possible to use the compute node to store data. If a compute node fails, the data stored
on its local disk could be recovered.

The rest of this article is organized as follow. The Section 2 describes the modified
architecture of PVFSv2. Section 3 shows the initial evaluation performed over the first
prototype. Finally, section 5 summarizes and overviews the potential future work.

2 The Proposed PVFS Version 2 Architecture

The parallel applications run on compute nodes and send I/O requests though the
PVFSv2 client library or kernel module. Other PVFSv2 components are the metadata
and I/O servers that run on a multi-role server (one PVFSv2 server can act as an I/O
node, as a metadata node or both).

The PVFS data distribution indicates how the user file data is distributed among
PVFS I/O servers. The distribution maps the logical offset of the user file to the physi-
cal offset in the subfile on the PVFS I/O server. The associated distribution for a file, the
name of the distribution and the services to be implemented are indicated on file cre-
ation, as a parameter of the PVFS sys create function. By default, PVFS uses a round-
robin distribution of files over several I/O nodes. Each I/O node store the corresponding
data in a subfile.

Fault Tolerant File Models for MPI-IO Parallel File Systems 155

Compute

nodes

CN1

CNn

N

e

t

w

o

r

k

CN0

PVFS2 Server

…

I/O
Nodes

…

Metadata

Nodes

PVFS2 Server

PVFS2 Server

…

BMI Flows

Job Interface

System Interface

ROMIO

BMI

Job Interface

State Machines

Server

Trove

Storage HWInterconnection Network

Flows

Client

PVFSlib Ker. drv.

F.T. Manager

Fig. 1. PVFSv2 architecture: components and layers

At this moment, the fault tolerance has been implemented for data and no for meta-
data. Although there could be several metadata nodes, they are employed for load bal-
ancing purpose and not for fault tolerance.

Figure 1 shows the main layers and their main subcomponents. The novelty is a
Fault-Tolerance (FT) Manager that is in charge of enforcing the fault tolerance policy.
Our code intercepts the PVFSv2 requests, so that if the request is for a non-fault tolerant
parallel file the existing PVFSv2 code is called. Otherwise, for a parallel file with fault
tolerant support (or parallel files without the PVFSv2 default data block distribution),
the F.T. manager module offers the new functionality by using the existing PVFSv2
code and some new algorithms.

In order to implement the fault tolerant support, we introduce a new PVFS data
distribution, complementary to the default round-robin distribution of files. The data
access services are provided by the F.T. Manager. Additionally, some extra attributes
for describing the fault tolerant support were introduced. They are stored together with
the regular attributes of PVFS.

The main attributes for describing the fault tolerant support are:

– stripe-size: size of the block used as unit of storage per server.
– server-count: number of PVFS servers over which the file is stored.
– server-status-list: list containing the status information of the servers used by this

file.
– file redundancy scheme:

• Ld vector: a list of tuples with the data blocks distribution. For each tuple
(x, y), · · ·, x is the server identifier and y is the subfile offset.

• Lr vector: a list of tuples with the redundant blocks distribution. It is in the
same format as the Ld vector.

• Ldr vector: a list of triples describing the relationship between a data block and
its associated redundant block(s). In the form of (x, y, m), · · ·, where x is the

156 A. Calderón et al.

server identification, y is the offset and m is the redundant method used. By
now two methods are used: copy (letter ’C’) and parity (letter ’P’).

• Lrd vector: a list of triples with the relationship between a redundant block and
its associated data block(s). It has the same format as the Ldr vector.

Server

0

Server

1

Server

2

1

4

P0-1P2-3P4-5

0 2

3 5

L = { (0,0), (1,0), (2,0), (0,1), (1,1), (2,1) }

L = { (2,0), (1,0), (0,0) }

L = { (2,0,P), (2,0,P), (1,0,P), (1,0,P), (0,0,P), (0,0,P) }

L = { { (0,0,P), (1,0,P) },

{ (0,0,P), (2,1,P) }, { (1,1,P), (2,1,P) } }

d

r

d->r

r->d

Server

0

Server

1

Server

2

1 0 10

L = { (0,0), (1,0) }

L = { (2,0), (3,0) }

L = { (2,0,C), (3,0,C) }

L = { {(0,0,C) , (1,0,C)}

d

r

d->r

r->d

} { }

Server

3

Fig. 2. Example of RAID 5 with outer redundant (left) and RAID 1 (right)

For fault tolerant parallel files, the former four vectors are necessary. For parallel files
without the default PVFSv2 data block distribution, only the first vector is sufficient.
As an example, Figure 2 shows a RAID 5 distribution, where the parity information
is stored in different subfiles than user data information. In this way, the redundant
information can be added or removed without rewriting the full parallel file. As the
example shows, the distribution is a pattern that it is repeated throughout the file.

The F.T. manager module implements the algorithms needed to manage the normal
behavior (without any fault) and the degradated mode (after a fault). In both cases,
normal and degradated, the open, creat, close, read and write operations must take the
most appropiate actions in order to work properly. If a fault is repaired, the F.T. manager
module also takes care of the data recovery actions in order to update the modifications
that have been done during the period of time the server has been down (roll-forward).

2.1 The Integration in MPI-IO: A Case of Study with PVFS Version 2

In MPI, a hint allows users to provide special information about a file An MPI hint is
a variable-value pair. We propose the use of one variable in order to associate a file
redundancy scheme to an MPI file. This hint will be passed to the PVFSv2 API, so that
the redundancy scheme could be applied. Although we propose the use of PVFS, the
mechanism could be used for other parallel file systems as well.

Figure 1.1 shows how this MPI hint is used to define a new redundancy scheme and
how this is associated to a file. In this example the error checking has been omitted for
clarity.

Put in simple way, the idea is to provide some extra functionality that let users select
the most appropriate scheme from general properties (number of failures to be tolerated,
useful space for data, etc.)

Fault Tolerant File Models for MPI-IO Parallel File Systems 157

Listing 1.1 Example of how to use MPI Info set to define a fault tolerant scheme

MPI_File fh ;
MPI_Info info ;

...
MPI_Info_set(

info,
"SCHEME-SET-R5O",
"R50 4
Ld 12 0,0, 1,0, 2,0, 3,0,

0,1, 1,1, 2,1, 3,1,
0,2, 1,2, 2,2, 3,2

Lr 4 3,0, 2,0, 1,0, 0,0
Ldr 12 3,0,0, 3,0, 0, 3,0,0, 2,0,0,

2,0,0, 2,0, 0, 1,0,0, 1,0,0,
1,0,0, 0,0, 0, 0,0,0, 0,0,0

Lrd 4 9,0,0, 6,0, 0, 3,0,0, 0,0,0"
) ;

...
MPI_File_open(MPI_COMM_WORLD, ’’pvfs2:/pool01/f07.dat’’,MPI_MODE_RDWR, info, &fh);

3 Evaluation

The evaluation platform was the Cacau supercomputer (see Figure 3). It has 200 dual
Intel Xeon EM64T processors. a Peak Performance of 2.5 TFlops. All nodes are in-
terconnected by an Infiniband network (1000 MB/sec.) and a Gigabyte network. Each
node has 1, 2 and 6 GB of RAM. During the evaluation, nodes with 1 GB were used.
Each node may access a scratch directory of 58GB. A global shared scratch of 960GB
and a global shared home directory. justify why there are a global shared scratch

• 2 x iXenon

• 6 GB

• 2 x iXenon

• 1 GB

• 2 x iXenon

• 2 GB

• 2 x iXenon

• 6 GB

master noco001 –

noco162

noco163 –

noco204

noco205 –

noco206

206 x NEC Express 5800 120Re-1

eth0 (Gigabit)

ipoib0 (infiniband)

/scratch

58GB

/scratch

58GB

/scratch

58GB

/scratch

58GB

/mscratch 960GB

/home 960GB/50MB per User

Fig. 3. The CACAU configuration on the evaluation

PVFSv2 is customizable by the user and can be installed on-demand, without ad-
ministrator privileges. By using this capability we can build a dynamic fault tolerant
partition over the local scratches of the individual nodes. In our experiments we have
used Open MPI 1.1.1 [8].

158 A. Calderón et al.

3.1 The Evaluation Process: Benchmarking and Configuration

In a parallel file system, the larger the number of distributed components, the higher is
the potential aggregate performance, but also the higher the probability of a fault of a
single node. The key aspect to be evaluated is the impact of fault tolerant support on the
performance of the parallel file system.

We use a simple benchmark: one process that writes (and reads) 2 GB of data to a
single file over a PVFSv2 partition with 2, 4, and 8 servers, and varying the access size
(from 8KByte to 1MByte). Three redundancy schemes have been compared: RAID 0
(the classic cyclic block distribution without fault tolerant support, that is the baseline),
RAID 1 (as shown on the right part of Figure 2 for 4 servers) and RAID 5 (as shown on
the left part of Figure 2 for 4 servers).

Bandwidth reading a file (2 servers)

0

10

20

30

40

50

60

70

80

1 MB 512 KB 256 KB 128 KB 64 KB 32 KB 16 KB 8 KB

access size

b
a

n
d

w
it

h
(M

B
/s

e
c

)

RAID_1

RAID_5

RAID_0

Bandwidth writing a file (2 servers)

0

5

10

15

20

25

30

1 MB 512 KB 256 KB 128 KB 64 KB 32 KB 16 KB 8 KB

access size

b
a

n
d

w
it

h
(M

B
/s

e
c

)

RAID_1

RAID_5

RAID_0

Fig. 4. Bandwidth while reading (left) and writing (right) with a PVFSv2 partition of 2 I/O nodes

Bandwidth reading a file (4 servers)

0

10

20

30

40

50

60

70

1 MB 512 KB 256 KB 128 KB 64 KB 32 KB 16 KB 8 KB

access size

b
a

n
d

w
it

h
(M

B
/s

e
c

)

RAID_1

RAID_5

RAID_0

Bandwidth writing a file (4 servers)

0

5

10

15

20

25

30

35

40

45

1 MB 512 KB 256 KB 128 KB 64 KB 32 KB 16 KB 8 KB

access size

b
a

n
d

w
it

h
(M

B
/s

e
c

)

RAID_1

RAID_5

RAID_0

Fig. 5. Bandwidth while reading (left) and writing (right) with a PVFSv2 partition of 4 I/O nodes

Figures 4, 5, and 6 show the obtained results. The main conclusions drawn from the
analysis of these results are the following:

– The performance is poor in fault tolerant schemes while updating the file because
both data and redundant information must be updated

– In general, when the number of servers increases, the performance is better (more
throughput)

Fault Tolerant File Models for MPI-IO Parallel File Systems 159

Bandwidth reading a file (8 servers)

0

10

20

30

40

50

60

70

1 MB 512 KB 256 KB 128 KB 64 KB 32 KB 16 KB 8 KB

access size

b
a

n
d

w
it

h
(M

B
/s

e
c

)

RAID_1

RAID_5

RAID_0

Bandwidth writing a file (8 servers)

0

5

10

15

20

25

30

35

40

45

50

1 MB 512 KB 256 KB 128 KB 64 KB 32 KB 16 KB 8 KB

access size

b
a

n
d

w
it

h
(M

B
/s

e
c

)

RAID_1

RAID_5

RAID_0

Fig. 6. Bandwidth while reading (left) and writing (right) with a PVFSv2 partition of 8 I/O nodes

– RAID 5 works in a transactional way at block level, so that when the number of
servers increases, then the performance is almost the same.

The replication based solution scales better (RAID 1) for writing because several
updates of blocks can be done in parallel first, then the system can update the replicated
blocks. The RAID 5 was implemented in a conservative transactional way, by modify-
ing one by one first the original block and if successful, the parity. The full parallelism
could be potentially achieved from writes of independent parity groups. This is one of
our future work plans.

4 Related Work

A well know solution to provide fault tolerant support to PVFS by using a RAID 10
scheme is CEFT-PVFS [9]. This solution is limited to only one redundancy scheme, and
for all files in the partition. Another interesting approach is Clusterfile [10]. It doesn’t
offer fault tolerant support but introduce a configurable layout per file in the parallel file
system. The most useful RAID schemes (specially for hard disk) is not limited to the
RAID 0, RAID 1, and RAID 5. An example of combination of ideas beyond traditional
RAID schemes is RAID-x [11]. This (and other schemes) could be also used in parallel
file systems at file level.

The Expand parallel file system [7] was the first parallel file system in which flexible
redundant schemes could be used at file level.

5 Conclusions and Future Work

In this paper we have presented a new mechanism for defining redundancy schemes for
files in MPI-IO. Each redundancy scheme may be applied at file level and relays on the
underlaying parallel file system support. This support was implemented in a prototype
version in PVFSv2.

Our main future work plans include: adding fault tolerance to metadata servers, opti-
mize the RAID 5 algorithm (the initial implementation has not parallelism in large block
updates), more evaluation of redundancy schemes under various environment settings,
integrate the support for fault tolerance into other parallel file systems.

160 A. Calderón et al.

References

1. Miller, N., Latham, R., Ross, R., Carns, P.: improving cluster performance with pvfs2. Clus-
terWorld Magazine 2(4) (2004)

2. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8) (1965)
3. 500, T.: The top 500 supercomputer list (2006)
4. da Lu, C.: Scalable diskless checkpointing for large parallel systems. University ofIllinois at

Urbana-Champaign (2005)
5. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpensive disks

(RAID). In: Boral, H., Larson, P.A. (eds.) Proceedings of 1988 SIGMOD International Con-
ference on Management of Data, Chicago, IL, pp. 109–116 (1988)

6. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with high perfor-
mance. In: Proceedings of the 1999 IOPADS, pp. 23–32 (1999)

7. Calderon, A., Garcia-Carballeira, F., Carretero, J., Perez, J.M., Sanchez, L.M.: A fault toler-
ant mpi-io implementation using the expand parallel file system. In: PDP ’05: Proceedings
of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing
(PDP’05, pp. 274–281. IEEE Computer Society Press, Washington, DC, USA (2005)

8. Gabriel, E., Graham, R.L., Castain, R.H., Daniel, D.J., Woodall, T.S., Sukalski, M.W., Fagg,
G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V., Kambadur, P., Barett,
B., Lumsdaine, A.: Open MPI: Goals, concept, and design of a next generation MPI. In: Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface: 11th European
PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 19-22, 2004, Springer
Verlag, Heidelberg (2004)

9. Zhu, Y., Jiang, H., Qin, X., Feng, D., Swanson, D.R.: Improved read performance in a cost-
effective, fault-tolerant parallel virtual file system (CEFT-PVFS). In: Workshop on Paral-
lel I/O in Cluster Computing and Computational Grids, Tokyo, IEEE Computer Society
Press (May 2003) 730–735 Organized at the IEEE/ACM International Symposium on Cluster
Computing and the Grid (2003)

10. Isaila, F., Tichy, W.F.: Clusterfile: A flexible physical layout parallel file system. Concurrency
and Computation: Practice and Experience 15(7-8), 653–679 (2003)

11. Hwang, K., Jin, H., Ho, R.: RAID-x: A new distributed disk array for I/O-centric cluster
computing. In: Proceedings of the Ninth IEEE International Symposium on High Perfor-
mance Distributed Computing, Pittsburgh, PA, pp. 279–287. IEEE Computer Society Press,
Los Alamitos (2000)

An Evaluation of Open MPI’s Matching

Transport Layer on the Cray XT

Richard L. Graham1, Ron Brightwell2, Brian Barrett3,
George Bosilca4, and Jelena Pješivac-Grbović4

1 Oak Ridge National Laboratory�

Oak Ridge, TN USA
rlgraham@ornl.gov

2 Sandia National Laboratories��,
Albuquerque, NM USA
rbbrigh@sandia.gov

3 Los Alamos National Laboratory� � �

Los Alamos, NM USA
bbarrett@lanl.gov

4 The University of Tennessee,
Knoxville, TN USA

{bosilca,pjesa}@cs.utk.edu

Abstract. Open MPI was initially designed to support a wide variety
of high-performance networks and network programming interfaces. Re-
cently, Open MPI was enhanced to support networks that have full sup-
port for MPI matching semantics. Previous Open MPI efforts focused
on networks that require the MPI library to manage message matching,
which is sub-optimal for some networks that inherently support match-
ing. We describes a new matching transport layer in Open MPI, present
results of micro-benchmarks and several applications on the Cray XT
platform, and compare performance of the new and the existing trans-
port layers, as well as the vendor-supplied implementation of MPI.

1 Introduction

The Open MPI implementation of MPI is the result of an active international
open-source collaboration between industry, research laboratories, and academia.
In a short time, Open MPI has evolved into a robust, scalable, high-performance
implementation for a wide variety of architectures and interconnects. It is

� Research sponsored by the Mathematical, Information, and Computational Sci-
ences Division, Office of Advanced Scientific Computing Research, U.S. Depart-
ment of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

�� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

� � � Los Alamos National Laboratory is operated by Los Alamos National Security,
LLC, for the National Nuclear Security Administration of the U.S. Department of
Energy under contract DE-AC52-06NA25396.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 161–169, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

162 R.L. Graham et al.

currently being run in production on several of the largest production com-
puting systems in the world. Much of the current effort in developing Open MPI
has targeted networks and network programming interfaces that do not support
MPI matching semantics. These networks depend on the MPI implementation
to perform message selection inside the MPI library. As such, existing transport
layers in Open MPI were designed to provide this fundamental capability. Unfor-
tunately, these transport layers have been shown to be sub-optimal in some cases
for networks that support MPI matching semantics, mostly due to redundant
functionality.

Recently, a new transport layer has been developed that is designed specif-
ically for networks that provide MPI matching semantics. This new transport
layer eliminates much of the overhead of previous transport layers and exploits
the capabilities of the underlying network layer to its fullest. This paper de-
scribes this new matching transport layer and its implementation on the Cray
XT platform. We compare and contrast features of the new transport with the
existing non-matching transport layer. Performance results from several micro-
benchmarks demonstrate the capabilities of the new transport layer, and we also
show results from several real-world applications. We also include performance
results for the native vendor-supplied MPI implementation.

The rest of this paper is organized as follows. Section 2 presents an overview
of the Open MPI implementation for the Cray XT platform, the Cray MPI
implementation, and the test platform for experiments presented in this paper.
Results for microbenchmarks and applications are presented in Sections 3 and
4, respectively. Relevant conclusions are presented in Section 5.

2 Background

The Cray XT4 platform utilizes the Portals [1] interface for scalable, high per-
formance communication. Portals provides a number of features not common
to high performance networks, particularly rich receive matching capable of im-
plementing the MPI message matching rules. Initial work with Open MPI on
the XT4 treated Portals like traditional commodity networks [2]. Recent work
extends Open MPI to take advantage of Portals’ rich feature set.

2.1 Open MPI Point-to-Point Architecture

Open MPI implements point-to-point MPI semantics utilizing a component
interface, the Point-To-Point Management Layer (PML) [3]. The PML is re-
sponsible for implementing all MPI point-to-point semantics, including message
buffering, message matching, and scheduling message transfers. The general ar-
chitecture is shown in Figure 1. At run-time, one PML component will be selected
and used for all point-to-point communication. Three PMLs are currently avail-
able: OB1, DR, and CM.1 The PMLs can be grouped into two categories based
based on responsibility for data transfer and message matching: OB1 and DR or
CM.
1 PML names are internal code names and do not have any meaning.

An Evaluation of Open MPI’s Matching Transport Layer on the Cray XT 163

MPI

PML - OB1/DR

BML - R2
BTL -
GM

MPool-
GM

Rcache

BTL -
OpenIB

MPool-
 OpenIB

Rcache

PML - CM

MTL- MX
(Myrinet)

MTL- PSM
(QLogic)

MTL-
Portals

Fig. 1. Open MPI’s Layered Architecture

OB1 and DR. OB1 and DR implement message matching and data transfer
scheduling within the MPI layer, utilizing the BTL interface for data transfer.
OB1 provides high performance communication on a variety of HPC networks
and is capable of utilizing remote direct memory access (RDMA) features pro-
vided by the underlying network. DR is focused on data integrity and only utilizes
send/receive semantics for message transfer. Both PMLs share the lower level
Byte Transfer Layer (BTL), which is the layer that handles the data transfer,
the supporting Byte Management Layer (BML), Memory Pool (MPool), and the
Registration Cache (Rcache) frameworks. While these are illustrated and defined
as layers, critical send/receive paths bypass the BML, which is used primarily
during initialization and BTL selection.

When using OB1 and the Portals BTL, short messages are sent eagerly and
long messages are sent using a rendezvous protocol. Eager message transfer in-
volves a copy into BTL-specific buffers at the sender and a copy out of BTL-
specific buffers at the receiver. For long messages, a Portals RDMA get is issued
to complete data transfer directly into the application receive buffer. User-level
flow control ensures messages are not dropped, even for large numbers of unex-
pected sends.

CM. The CM PML provides request management and handling of buffered
sends, relying on the MTL framework to provide message matching and data
transfer. The MTL is designed specifically for networks such as Portals or Myrinet
MX, which are capable of implementing message matching inside the commu-
nication library. Unlike OB1, which supports multiple simultaneous BTLs, only
one MTL may be utilized per application.

The Portals MTL utilizes a design similar to that described in [1]. The Portals
MTL sends all data eagerly, directly from application buffers. If a receive has been
pre-posted, the data is delivered directly to the user buffer. Unexpected short
message, less than 32K currently, are buffered in MTL level buffers. Unexpected
long messages are truncated, and after a match is made Portal’s RDMA get func-
tionality completes the data transfer. With the exception of unexpected receives,
messages are matching by the Portals library. The Portals MTL is designed to
provide optimal performance for applications that pre-post their receives.

OB1 and CM fundamentally differ in the handling of long messages. The OB1
protocol uses a rendezvous protocol with an eager limit of 32K bytes. On the

164 R.L. Graham et al.

receive side the memory descriptors are configured to buffer this data if messages
are unexpected. For large messages, the OB1 protocol attempts to keep network
congestion down, so sends only a header used for matching purposes. Once the
match is made, the Portals get method is used to deliver the user’s data in a
zero copy mode, if the MPI data type is contiguous, directly to the destination.
This mode of point-to-point communications is very useful when an application
run uses a lot of large unexpected messages, i.e. when the message is sent to the
destination, before the receive side has posted a matching receive.

CM does not specify a protocol for long messages, leaving such decisions to
the MTL. The Portals MTL procotol is agressive on sending data. Both the short
and the long protocol send all user data at once. If there is a matching receive
posted, the data is delivered directly to the user destination. In the absence
of such a posted receive, short messages, i.e. messages shorter than 32K bytes,
are buffered by the receive Portals memory descriptor. However, all he data
associated with long messages is dropped, and a Portals get request is performed
after the match is made to obtain the data. This protocol is aimed at providing
the highest bandwidth possible for the application.

2.2 Cray MPI

Cray MPI is derived from MPICH-2 [4], and supports the full MPI-2 standard,
with the exception of MPI process spawning. This is the MPI implementation
shipped with the Cray Message Passing Toolkit. The communication protocol
used by Cray MPI is generally similar to that of the Portals MTL, although there
are significant differences regarding the handling of event queue polling.

2.3 Application Codes

Four applications, VH-1, GTC, the Parallel Ocean Program (POP), and S3D,
were used to compare the protocols available on the Cray XT platform. VH-1 [5]
is a multidimensional ideal compressible hydrodynamics code. The Gyrokinetic
Toroidal Code [6] (GTC) uses first-principles kinetic simulation of the electrosta-
tic ion temperature gradient (ITG) turbulence in a reactor-scale fusion plasma
to study turbulent transport in burning plasmas. POP [7] is the ocean model
component of the Community Climate System Model, which is used to provide
input to the Intergovernmental Panel on Climate Change assessment. S3D [8]
is used for direct numerical simulations of turbulent combustion by solving the
reactive Navier-Stokes equations on a rectilinear grid.

2.4 Test Platforms

Application performance results were gathered on Jaguar, a Cray XT4 system
at Oak Ridge National Laboratory. Jaguar is composed of 11,508 dual-socket
2.6 GHz dual-core AMD Opterons, and the network is a 3-D torus with the
Cray SeaStar 2.1 [9] network. Micro-benchmark results were gathered on Red
Storm, a Cray XT3+ system at Sandia National Laboratories. Red Storm con-
tains 13,272 single-socket dual-core 2.4 GHz AMD Opteron chips, a SeaStar

An Evaluation of Open MPI’s Matching Transport Layer on the Cray XT 165

2.1 network, which is torus in only one direction. The major difference between
these two systems is the speed of the processor, and the communication micro-
benchmarks can be scaled appropriately. For both systems, compute nodes run
the Catamount lightweight kernel, and all network communications use the Por-
tals 3.3 programming interface [10].

For the application results, the default Cray MPI installation, XT/MPT ver-
sion 1.5.31 with default settings, is used for the benchmark runs. The trunk
version of Open MPI (1.3 pre-release) is used for these runs, with data collected
using both the Portal ports of the CM and OB1 PMLs. Open MPI’s tuned collec-
tives are used for collective operations. To minimize differences in timings due
to processor allocations, all runs for a given application and processor count are
sequentially run within a single resource allocation.

3 Micro-Benchmark Performance

We use several communication micro-benchmarks to compare the performance
of the two MPI implementations. We first compare latency and bandwidth per-
formance using the NetPIPE [11] benchmark. Figure 2(a) shows half round-trip
ping-pong latency results. The Cray implementation has the lowest zero-length
latency at 4.78 μs, followed by 4.91 μs and 6.16 μs respectively for Open MPI’s
CM and OB1. Figure 2(b) plots bandwidth performance. Results shows that be-
yond a message length of 100 bytes, Open MPI’s CM bandwidth is higher than
that of Cray MPI’s, but eventually the curves join as the asymptotic peak band-
width is reached. However, Cray MPI’s bandwidth curve is consistently higher
than that of Open MPI’s OB1 protocol. Note also that Open MPI’s transition
from the short-message protocol to the long-message protocol produces a much
smoother curve than Cray MPI’s.

Next, we measure CPU availability for sending and receiving using the San-
dia overhead benchmark [12]. This benchmark measures the percentage of the
processor that is available to the application process while sending and

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100 1000 10000

La
te

nc
y

(u
s)

Message Size (Bytes)

Open MPI - CM
Open MPI - OB1

Cray MPI

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

B
an

dW
id

th
 (

M
B

yt
e/

S
ec

)

Datasize (KBytes)

Open MPI - CM
Open MPI - OB1

Cray MPI

(a) (b)

Fig. 2. NetPIPE (a) latency and (b) bandwidth performance

166 R.L. Graham et al.

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06 1e+07

C
P

U
 A

va
ila

bi
lit

y
(%

)

Message Size (bytes)

Open MPI - OB1
Open MPI - CM

Cray MPI
 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06 1e+07

C
P

U
 A

va
ila

bi
lit

y
(%

)

Message Size (bytes)

Open MPI - OB1
Open MPI - CM

Cray MPI

(a) (b)

Fig. 3. SMB send availability (a) and receive availability (b)

receiving messages. Figure 3(a) shows send-side CPU availability, while Fig-
ure 3(b) shows receive-side CPU availability. On the send side, Cray MPI has a
very slight advantage for very small messages sizes. However, for message sizes
between 1 KB and 10 KB, the OB1 transport has a slight advantage over the
other two. This is likely due to memory copies in Cray MPI and CM that re-
duce latency at the expense of CPU availability. Results for receive availability
are much different. The CM transport has a slight advantage at small message
sizes, but is able to maintain high availability for very large messages. The eager
protocol messages in CM allow for nearly complete overlap of computation and
communication. The other two curves show a rapid decrease in availability at
the point where the eager protocol switches to a rendezvous protocol. Cray re-
cently modified their implementation to use a rendezvous protocol by default, in
spite of previous results that demonstrated high receive-side availability similar
to CM.

For our last communication micro-benchmark, we examine message rate us-
ing a modified version of the Ohio State University streaming bandwidth bench-
mark. This benchmark measures the number of messages per second that can

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 10 100 1000 10000

R
at

e
(M

es
sa

ge
s/

s/
10

00
)

Message Size (bytes)

Open MPI - OB1
Open MPI - CM

Cray MPI

Fig. 4. Small message rate

An Evaluation of Open MPI’s Matching Transport Layer on the Cray XT 167

be processed by streaming messages. In Figure 4 we can see that CM has an
advantage over Cray MPI for message sizes up to about 32 bytes, at which point
the curves almost converge. Performance of the CM transport drops significantly
at 2048 bytes. The OB1 message rate is nearly half of the other implementations,
due to both protocol overhead and rate limiting to ensure message reliability.

4 Application Performance

We compare the performance of VH-1, GTC, POP, and S3D, at medium process
count. Figure 5 shows overall application run-time for these codes, with data
for VH-1 and POP collected at 256 processes, and for GTC and S3D at 1024
processes. Overall, Open MPI CM PML slightly out-performs Cray MPI, and the
CM PML consistently outperforming the OB1 PML.

VH-1 was run using 256 MPI processes, with the CM run-times being about
0.4% faster than the Cray MPI run-times, and about 0.3% faster than the OB1
runs. For the GTC runs at 1024 processes, the Cray MPI application run-times
are about 4% faster than the Open MPI CM runs, and 15% than the OB1 runs.
Running POP at 256 processes, Open MPI CM outperforms Cray MPI by about
3%, and outperforms CM by 18%. Finally, at 1024 processes, Open MPI’s CM
outperforms Cray MPI by 12%, and it outperforms OB1 by 3%.

 100

 1000

A
pp

lic
at

io
n

W
al

l C
lo

ck
 T

im
e

(s
ec

)

VH-1 256p GTC 1024p POP 256p S3D 1024p

Open MPI - CM
Open MPI - OB1

Cray MPI

Fig. 5. Application Wall Clock Run-Time(sec)

Table 1 lists the fraction of run-time spent inside the MPI library, along with
the most time consuming MPI functions. The data was collected using mpiP [13],
with the CM PML. The average amount of time spent in MPI routines differs
considerably from application to application, with 6.1% of GTC’s run time at
1024 processes being spent in the MPI library, to 65.7% of POP’s run-time at
being spent in the MPI library. 7.9% of S3D’s run-time and 16.9% of VH-1’s
run-time are spent in the MPI library. For applications other than S3D—which
uses collectives sparingly—collective communications dominate the MPI traffic
at large processor counts. POP spends 40.8% of the run-time performing small
(8 byte) reduction operations. The collective communications used by Open MPI

168 R.L. Graham et al.

Table 1. Application Communications Profile with Open MPI’s CM Point-To-Point
communications

App # Procs Ave MPI Time Message Profile Top MPI Routines
% min,max # short # long #dropped

% total % total % long %Tot time %Tot time %Tot time
% min,max

VH-1 256 16.9% 240 3000 890 Alltoall Allreduce
15.5, 24.7 7.4 92.6 29.6 15.9 1.0

9.1, 51.7
GTC 1024 6.1% 6524 8404 2130 Allreduce Sendrecv Bcast

2.9, 13.9 43.7 56.3 25.3 4.6 1.3 0.1
7.6, 56.0

POP 256 65.7% 5472986 5648 789 Allreduce Waitall Isend
60.6, 70.5 99.9 0.1 13.3 40.8 14.4 5.5

1.8, 93.5
S3D 1024 7.9% 946 225015 104020 Wait Allreduce Barrier

5.5, 9.1 0.4 99.6 46.2 7.2 0.3 0.2
25.1, 96.0

use PML level communications for data exchange, and as such the performance of
the Point-To-Point communications is one of the factors contributing to overall
collective performance.

In addition, Table 1 lists the breakdown of Point-To-Point traffic for the ap-
plications. We categorize the data based the communication protocol used; ei-
ther the short-message protocol used at or below 32K byte cutoff length or the
long-message protocol. On average, S3D’s, VH-1’s, and GTC’s Point-To-Point
communications are dominated by long messages, with 99.6% of S3D’s messages,
92.6% of VH-1’s messages, and 56.3% of GTC’s messages being long-messages.
46.2%, 29.6%, and 25.3% of the long-messages sent by these respective applica-
tions are dropped, and retransmitted once a match is made. While additional
time is consumed retreiving the long-message data after the match is made,
there does not appear to be a strong correlation between the fraction of long-
messages being retransmitted and the overall application performance relative
to the CM PML. POP communications are dominated by short-messages, and
the long-message protocol is largely irrelevant to its performance in the current
set of runs.

5 Conclusions

This paper compares the performance of the Point-To-Point performance of
Open MPI’s new CM PML with the OB1 PML and with Cray MPI utilizing the
Portals communications library. Both micro-benchmarks and full application
benchmarks are used. The CM PML is designed to make optimal use of Portals
capabilities for providing good application performance at large scale. It provides
message injection rates that are comparable to those of Cray MPI and consis-
tently better than those obtained with the OB1 PML. It is superior to both Cray
MPI and OB1 with respect to CPU availability, allowing nearly all of the CPU to
be available during large message transfers on both the sender and the receiver.
CM also has good latency and bandwidth performance curves, comparable with
Cray MPI, but superior to the OB1 implementation. With regard to application
performance, CM gives slightly better overall performance when compared with
Cray MPI, and consistently better performance with respect to OB1.

An Evaluation of Open MPI’s Matching Transport Layer on the Cray XT 169

References

[1] Brightwell, R., Maccabe, A.B.R.R.: Design, implementation, and performance of
mpi on portals 3.0. International Journal of High Performance Computing Appli-
cations 17(1) (2003)

[2] Barrett, B.W., Brightwell, R., Squyres, J.M., Lumsdaine, A.: Implementation of
open mpi on the cray xt3. In: 46th CUG Conference, CUG Summit 2006 (2006)

[3] Graham, R.L., Barrett, B.W., Shipman, G.M., Woodall, T.S., Bosilca, G.: Open
mpi: A high performance, flexible implementation of mpi point-to-point commu-
nications. Parallel Processing Letters 17(1), 79–88 (2007)

[4] ArgonneNationalLab.: MPICH2. (http://www-unix.mcs.anl.gov/mpi/mpich2/)
[5] Blondin, J.M., Lufkin, E.A.: The piecewise-parabolic method in curvilinear coor-

dinates. The Astorphysical Journal 88, 589–594 (1993)
[6] Lin, Z., Hahm, T.S., Lee, W.W., Tang, W.M., White, R.B.: Turbulent transport

reduction by zonal flows: Massively parallel simulations. Science 281, 1835 (1998)
[7] Dukowicz, J.K., Smith, R., Malone, R.: A reformulation and implementation of

the bryan-cox-semter ocean model on the connection machine. J. Atmospheric
and Oceanic Tech. 10, 195–208 (1993)

[8] Hawkes, E., Sankaran, R., Sutherland, J., Chen, J.: Direct numerical simulation of
turbulent combustion: Fundamental insights towards predictive models. Journal
of Physics: Conference Series 16, 65–79 (2005)

[9] Alverson, R.: Red storm. Invited Talk, Hot Chips 15 (2003)
[10] Riesen, R., Brightwell, R., Pedretti, K., Maccabe, A.B., Hudson, T.: The Portals

3.3 Message Passing Interface - Revision 2.1. Technical Report SAND20006-0420,
Sandia National Laboratory (2006)

[11] Snell, Q., Mikler, A., Gustafson, J.: In: IASTED International Conference on
Intelligent Information Management and Systems (1996)

[12] Doerfler, D., Brightwell, R.: Measuring MPI send and receive overhead and ap-
plication availability in high performance network interfaces. In: 13th European
PVM/MPI Users’ Group Meeting, Bonn, Germany (2006)

[13] mpiP: Lightweight, Scalable MPI Profiling http://mpip.sourceforge.net

http://www-unix.mcs.anl.gov/mpi/mpich2/
http://mpip.sourceforge.net

Improving Reactivity and Communication

Overlap in MPI Using a Generic I/O Manager

François Trahay, Alexandre Denis, Olivier Aumage, and Raymond Namyst

INRIA, LaBRI, Université Bordeaux 1
351, cours de la Libération
F-33405 TALENCE, France

{trahay,denis,aumage,namyst}@labri.fr

Abstract. MPI applications may waste thousands of CPU cycles if they
do not efficiently overlap communications and computation. In this pa-
per, we present a generic and portable I/O manager that is able to make
communication progress asynchronously using tasklets. It chooses auto-
matically the most appropriate communication method, depending on
the context: multi-threaded application or not, SMP machine or not. We
have implemented and evaluated our I/O manager with Mad-MPI, our
own MPI implementation, and compared it to other existing MPI im-
plementations regarding the ability to efficiently overlap communication
and computation.

Keywords: Polling, Interrupt, Thread, Scheduler, High-Speed Network.

1 Introduction

Asynchronism is becoming ubiquitous in modern communication runtimes. This
evolution is the combined result of multiple factors. Firstly, communication sub-
systems implement increasingly complex optimizations in order to make better
use of networking hardware. As we have shown in [1], such optimizations re-
quire online analysis of the communication schemes and hence require the de-
synchronization of the communication request submission from its processing.
Moreover, providing rich functionality such as communication flow multiplexing
or transparent multi-method, heterogeneous networking implies that the runtime
system should again take an active part in-between the communication request
submit and processing. And finally, overlapping communication with computa-
tion and being reactive actually do matter more now than it has ever done [2,3].
The latency of network transactions is in the order of magnitude of several
thousands CPU cycles at least. Everything must therefore be done to avoid in-
dependent computations to be blocked by an ongoing network transaction. This
is even more true with the increasingly dense SMP, multicore, SMT (also known
as Intel’s Hyperthreading) architectures where many computing units share a
few NICs.

Since portability is one of the most important requirements for communication
runtime systems, the usual approach to implement asynchronous processing is

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 170–177, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improving Reactivity and Communication Overlap in MPI 171

to use threads (such as Posix threads). Popular communication runtimes indeed
are starting to make use of threads internally and also allow applications to be
multithreaded as it can be seen with both MPICH-2 [4], and Open MPI [5,6].
Low level communication libraries such as Quadrics’ Elan [7] and Myricom’s
MX [8] also make use of multithreading. Such an introduction of threads inside
communication subsystems is not going without troubles however. The fact that
multithreading is still usually optional with these runtimes is symptomatic of
the difficulty to get the benefits of multithreading in the context of networking
without suffering from the potential drawbacks.

In this paper, we analyze the two fundamental approaches of integrating mul-
tithreading and communications —interrupts and polling. We study their respec-
tive benefits and their potential drawbacks, and we discuss the importance of the
cooperation between the asynchronous event management code and the thread
scheduling code in order to avoid such disadvantages. We then introduce our
proposal for symbiotically combining both approaches inside a new generic net-
work I/O event manager. The paper is organized as follows. Section 2 exposes
the problem of integrating threads and communications. Section 3 introduces
our proposal for a new asynchronous event management model and gives details
about our implementation. We evaluate this implementation in Section 4 and
Section 5 concludes and gives an insight of ongoing and future work.

2 Integrating Threads and Communication: The
Problems of Network I/O Events Management

The detection of network I/O events can be achieved by two main strategies. The
most common approach consists in using the active waiting: a polling function
is called repeatedly until a network I/O event is detected. The polling function
is usually inexpensive, but repeating this operation thousands of times may be
prohibitive. The other method for detecting communication events is the passive
waiting which is based on blocking calls. In that case, the NIC informs the
operating system that a network I/O event has occurred by using an interrupt,
making this method much more reactive than polling. However this operation
involves interrupt handlers and context switches which are rather costly.

The best method to use depends on the application, but in both cases, some
behaviors may lead to suboptimal performance. When using interrupt-based
methods, priority issues may occur: the thread that is waiting for the commu-
nication event may be scheduled with some delay. This is the case when, for
example, it has been computing for a long period before it blocks, lowering its
priority. Moreover, the system has to support methods to detect the network I/O
events. For instance, in a pure user-level scheduler, interrupt-driven blocking calls
are prohibited (unless a specific OS extension like the Scheduler Activations [9]
is used).

Using polling methods can also be problematic: if the system is overloaded
(i.e. there are more running threads than available CPUs), the polling thread
may scarcely be scheduled, thus increasing the reaction time. Moreover, some

172 F. Trahay et al.

asynchronous communication operations need a regular polling in order to
progress. For instance, a rendez-vous requires a regular polling so that the pre-
liminary phase makes progress. As it is shown in [2], some applications would
significantly improve their execution time by efficiently overlapping communica-
tion and computation, which requires to poll communication events regularly.

3 An I/O Manager Model

To resolve these kinds of problems, we propose an I/O manager that provides the
communication runtime systems with a network event detection service. Thus,
communication libraries themselves become independent of the multithread is-
sues and related hardware issues such as the number of CPUs. Thereby, they
can focus their efforts on communication optimizations and other functionali-
ties. By working closely with a specific thread scheduler, the I/O manager can
be viewed as a progression engine able to schedule a communicating thread when
needed or to dynamically adapt the polling frequency to maximize the reactiv-
ity/overhead ratio. The I/O manager handles both polling and interrupt-based
methods, switching from one method to another depending on the context.

The implementation of our I/O manager called PIOMan (PM2 I/O Manager)
relies on a two-level thread scheduler [10] which was slightly modified to interact
with the I/O manager when necessary. The use of a two-level scheduler allows
to precisely control thread scheduling at the user level, with almost no explicit
(and expensive) interaction with the OS. This way, we can dynamically favour
the scheduling of a thread requiring a high reactivity to communication events
during a fixed period. PIOMan is available as three main versions: no-thread,
mono (user-level threads) or SMP (user threads on top of kernel threads).

3.1 Overview of the I/O Manager

The mechanism of our I/O manager is described through an example shown in
Figure 1: the application first registers a callback function for each event type to
detect. When the application starts a communication, it can submit the requests
to poll (1) and wait for them or simply continue its computation. Periodically,
the thread scheduler calls the I/O manager (2) in order to poll the network by
calling the callback functions (3).

We propose to manage the communication events in a dedicated controller
linked to the thread scheduler for several reasons. Firstly, centralizing avoids
the concurrency issues encountered when several threads try to poll the same
network. Since the I/O manager has a global view of the pending requests, it can
poll each request one after another. Moreover, the manager has the opportunity
to aggregate multiple requests. If several threads are waiting for messages on a
single network interface, it can be interesting to aggregate these requests when
polling.

Secondly, the thread scheduler has the opportunity to preempt a comput-
ing task and call the I/O manager in order to detect a potential network I/O
completion and thus make the communication progress. This is useful when the

Improving Reactivity and Communication Overlap in MPI 173

Thread SchedulerI/O Manager

Communication Library

NIC

2

3

1

mx_test

poll()

wait_event()

polling callback()

submit_request()

Fig. 1. Example of interaction between the I/O manager and the MPI library

CPUCPU

LWP

CPU

LWP

low−priority,
spare kernel thread

t2 t3

LWP

kernel thread
blocked

LWP

t1 t2 t3 t1

LWP

t2 t3t1

(a) Regular execution (b) Preventing a blocking syscall (c) Rescuing ready threads

Fig. 2. Low priority, spare kernel-level threads are used to schedule remaining appli-
cation threads in case a blocking syscall occurs during an I/O critical operation

application performs asynchronous operations that require some processing once
the communication ends. For example, in a rendez-vous protocol, the receiver has
to post a receiving request to synchronize with the sender. Once both sides are
synchronized, the transfer can start: one side receives the data that the other side
sends. In that case, the progression offered by the I/O manager and the thread
scheduler allows to completely overlap the communication with computation.

3.2 Passive Waiting: Interrupts

Passive monitoring through blocking system calls is tricky to implement in a
two-level scheduler. Indeed, during regular execution of application threads, our
scheduler binds exactly one kernel thread (also called LightWeight process –
LWP) per processor (Fig. 2-a), so that the scheduling of threads can be entirely
performed at the user-level. A blocking system call could therefore prevent a
whole subset of user-level threads to run. To avoid this and keep reactivity low,
we proceed as follows.

Before executing a (potentially blocking) I/O system call, the client thread
first wakes up a spare kernel thread (Fig. 2-b) to shepherd the remaining ready
threads on the underlying processor. Since this kernel thread runs at a very low

174 F. Trahay et al.

priority, it will not be scheduled until the previous kernel thread blocks. Thus,
if the system call completes without blocking, the I/O client will continue its
execution with a very high priority, as requested. At the end of the I/O section,
the spare kernel thread simply returns to the “sleep” state. On the opposite, if
the call blocks, the original kernel thread yields the CPU to the spare one (Fig. 2-
c). Upon I/O completion, the NIC interrupt handler will wake up the original
kernel thread that will, in turn, immediately continue the execution of the client
thread. This way, the reactivity of the client thread is optimal.

Note that no modification to the underlying operating system is required, as
opposed to solutions such as Scheduler Activations [9,11].

3.3 Active Waiting: Polling

In implementing active polling, our system carefully cooperates with the thread
scheduler to avoid busy waiting and unnecessary context switches. Applications
register new types of I/O events with some polling trigger(s) (at every context
switch, after a period of time, when a CPU gets idle, etc.) The thread scheduler
then invokes the I/O manager accordingly. However, these invocations occur in a
restricted context with some classes of actions being prohibited (synchronization
primitives, typically). Thus, they are similar to interrupt handlers within an
operating system.

Most of the I/O manager code is consequently run outside the restricted con-
text in the form of tasklets [12]. Tasklets have been introduced in operating
systems to defer treatments that cannot be performed within an interrupt han-
dler. They run as soon as possible (they have a very high priority) when the
scheduler reaches a point where it is safe to run tasklets. They have additional
properties. Firstly, tasklets of the same type run under mutual exclusion, which
simplifies the I/O manager code and even makes it more efficient. Secondly, the
execution of tasklets can be enforced on a particular processor, which allows to
maximize cache affinity by running tasklets on the same processor as their client
thread.

3.4 Handling of Both Interrupts and Polling

Most of the network interfaces (MX/Myrinet, Infiniband Verbs, TCP sockets)
provide both polling and interrupt-based functions to detect network I/O events.
To ensure a good reactivity, our I/O manager uses one method or the other de-
pending on the context: number of running threads and available CPUs. This
kind of strategy has already been developed in Panda [13], but ours also takes
into account the upper layer’s preference: the communication library or the ap-
plication has full knowledge of the request completion time. A smarter approach
could also take into account the history of requests or their priorities. A similar
method was developed in polling watchdog[14] but it required a specific kernel
support.

Improving Reactivity and Communication Overlap in MPI 175

Table 1. Benchmark program for MPI asynchronous progression

Sender Receiver

get_time(t1);
MPI_Send(...);
get_time(t2);

MPI_IRecv(...);
compute();

/* approx. 50ms. computation */
MPI_Wait(...);

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

1MB32KB1KB32

S
e

n
d

in
g

 t
im

e
 (

μ
s
)

Data size (Bytes)

OpenMPI
MPICH

MadMPI, no PIOMan
MadMPI + PIOMan/mono

MadMPI + PIOMan/SMP interrupt
MadMPI + PIOMan/SMP polling

no computation (reference)

Fig. 3. MPI_Send time with MX

4 Evaluation

We have evaluated the implementation of our I/O manager using the New-
Madeleine [1] communication library and its built-in MPI implementation called
Mad-MPI. The point-to-point nonblocking posting (isend, irecv) and comple-
tion (wait, test) operations of Mad-MPI are directly mapped to the equiv-
alent operations of NewMadeleine. We performed benchmarks that evaluate
the MPI asynchronous operation progression in background (communication/
computation overlap) and benchmarks that evaluate the overhead of PIOMan.
All these experiments have been carried out on a set of two dual-core 1.8 GHz
Opteron boxes interconnected through Myri-10G NICs with the MX1.2.1 driver
providing a latency of 2.3μs.

MPI asynchronous progression of communications. To evaluate the MPI asyn-
chronous progression, we use the benchmark program listed on Table 1. This
program attempts to overlap communication and computation on the receiver
side. We record the time spent in sending and we compare the results to a ref-
erence obtained with Mad-MPI.

Figure 3 shows the sending time (time spent in MPI_Send) we measured over
MX/Myrinet with Mad-MPI, OpenMPI 1.2.1, and MPICH/MX 1.2.7. We mea-
sured similar results over other network types (Infiniband and TCP). For small

176 F. Trahay et al.

Table 2. PIOMan’s average overhead

no thread mono SMP

polling 0.038 μs 0.085 μs 0.142μs
interrupt - - 1.68 μs

messages, all implementations show a sending time close to the network latency.
For larger messages, when a rendez-vous is performed, we observe three different
behaviors:

no asynchronous progress – OpenMPI and plain Mad-MPI do not support
background progress of rendez-vous handshake. Therefore, the sender is
blocked until the receiver reaches the MPI_Wait. MPICH makes the hand-
shake progress thanks to the MX progression thread but in the current im-
plementation, the notification of the transfer is not overlapped.

coarse grained interleaved progress – PIOMan/mono tasklets are sched-
uled upon timer interrupt, every 10ms. We observe that the delay to com-
plete the rendez-vous is now bounded by 10ms instead of the full computa-
tion time.

full overlap – PIOMan/SMP is able to schedule tasklets on another LWP, thus
we get a full overlap of communication and computation. We observe on the
figure that the rendez-vous performance does not suffer from the computa-
tion on the receiver side.

We conclude that PIOMan is able to actually overlap MPI communication
and computation while OpenMPI, MPICH, and plain Mad-MPI were not able
to make communication progress asynchronously.

Overhead evaluation. We have evaluated the overhead of the I/O manager with
empty polling and blocking functions. The results are shown in Table 2. The
polling overhead differs from one version to the other. This is due to the cost
of synchronization being different over each version. The interrupt overhead has
only been evaluated on the SMP version since only this version implements the
mechanism. We observe that the overhead is negligible for polling. On the other
hand, the cost of blocking calls (interrupts) is quite high due to the awakening of
the sleeping LWP and the communication between LWPs. However, interrupts
are supposed to be used when the CPU is doing computation, where the delay
would have been several order of magnitude higher without interrupts.

5 Conclusions and Future Work

Overlapping MPI communications and computation do matter if we do not want
to waste thousands of CPU cycles. However, making communications progress
efficiently is not so simple as adding a communication thread. In this paper, we
have proposed a generic and portable communication events manager that is able
to actually overlap communication and computation. This I/O manager is able to

Improving Reactivity and Communication Overlap in MPI 177

handle both active polling and interrupts and integrates gracefully with our mul-
tithreading scheduler. We obtained effective communication/computation over-
lapping with our I/O manager, as opposed to other widespread MPIs.

In the near future, we plan to use PIOMan inside other MPI implementations
such as MPICH-2 or communication frameworks like PadicoTM. We also intend
to make a more efficient use of NUMA architectures by trying to execute polling
tasklets on the most suitable CPU given the architecture topology.

References

1. Aumage, O., Brunet, E., Furmento, N., Namyst, R.: Newmadeleine: a fast commu-
nication scheduling engine for high performance networks. In: CAC 2007: Workshop
on Communication Architecture for Clusters, held in conjunction with IPDPS 2007
(2007)

2. Sancho, J.C., et al.: Quantifying the potential benefit of overlapping communication
and computation in large-scale scientific applications. In: SC 2006, IEEE Computer
Society, Los Alamitos (2006)

3. Doerfler, D., Brightwell, R.: Measuring MPI send and receive overhead and ap-
plication availability in high performance network interfaces. In: Euro PVM/MPI,
pp. 331–338 (2006)

4. ANL, MCS Division (2007), MPICH-2 Home Page
http://www.mcs.anl.gov/mpi/mpich/

5. The Open MPI Project: Open MPI: Open Source High Performance Computing
(2007), http://www.open-mpi.org/

6. Graham, R.L., et al.: Open MPI: A high-performance, heterogeneous MPI. In:
Proceedings, Fifth International Workshop on Algorithms, Models and Tools for
Parallel Computing on Heterogeneous Networks, Barcelona, Spain (2006)

7. Quadrics Ltd.: Elan Programming Manual (2003), http://www.quadrics.com/
8. Myricom Inc.: Myrinet EXpress (MX): A High Performance, Low-level, Message-

Passing Interface for Myrinet (2003), http://www.myri.com/scs/.
9. Anderson, T.E., Bershad, B.N., Lazowska, E.D., Levy, H.M.: Scheduler activations:

effective kernel support for the user-level management of parallelism. ACM Trans.
Comput. Syst. 10(1), 53–79 (1992)

10. Runtime Team, LaBRI-Inria Futurs: Marcel: A POSIX-compliant thread library
for hierarchical multiprocessor machines (2007),
http://runtime.futurs.inria.fr/marcel/

11. Danjean, V., Namyst, R., Russell, R.: Integrating kernel activations in a multi-
threaded runtime system on Linux. In: Parallel and Distributed Processing. Proc.
4th Workshop on Runtime Systems for Parallel Programming (RTSPP ’00) (2000)

12. Russel, P.: Unreliable guide to hacking the linux kernel (2000)
13. Langendoen, K., Romein, J., Bhoedjang, R., Bal, H.: Integrating polling, interrupts,

and thread management. frontiers 00, 13 (1996)
14. Maquelin, O., et al.: Polling watchdog: combining polling and interrupts for effi-

cient message handling. In: ISCA ’96: Proceedings of the 23rd annual international
symposium on Computer architecture (1996)

http://www.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/
http://www.quadrics.com/
http://www.myri.com/scs/
http://runtime.futurs.inria.fr/marcel/

Investigations on InfiniBand: Efficient Network

Buffer Utilization at Scale

Galen M. Shipman1, Ron Brightwell2, Brian Barrett1,
Jeffrey M. Squyres3, and Gil Bloch4

1 Los Alamos National Laboratory�, Los Alamos, NM USA,
LA-UR-07-3198

{gshipman,bbarrett}@lanl.gov
2 Sandia National Laboratories��, Albuquerque, NM USA

rbbrigh@sandia.gov
3 Cisco, Inc., San Jose, CA USA

jsquyres@cisco.com
4 Mellanox Technologies, Santa Clara, CA USA

gil@mellanox.com

Abstract. The default messaging model for the OpenFabrics “Verbs”
API is to consume receive buffers in order—regardless of the actual in-
coming message size—leading to inefficient registered memory usage. For
example, many small messages can consume large amounts of registered
memory. This paper introduces a new transport protocol in Open MPI
implemented using the existing OpenFabrics Verbs API that exhibits effi-
cient registered memory utilization. Several real-world applications were
run at scale with the new protocol; results show that global network re-
source utilization efficiency increases, allowing increased scalability—and
larger problem sizes—on clusters which can increase application perfor-
mance in some cases.

1 Introduction

The recent emergence of near-commodity clusters with thousands of nodes con-
nected with InfiniBand (IB) has increased the need for examining scalability
issues with MPI implementations for IB. Several of these issues were originally
discussed in detail for the predecessor to IB [1], and several possible approaches
to overcoming some of the more obvious scalability limitations were proposed.
This study examines the scalability, performance, and complexity issues of the
message buffering for implementations of MPI over IB.

The semantics of IB Verbs place a number of constraints on receive buffers.
Receive buffers are consumed in FIFO order, and the buffer at the head of
� Los Alamos National Laboratory is operated by Los Alamos National Security, LLC,
for the National Nuclear Security Administration of the U.S. Department of Energy
under contract DE-AC52-06NA25396.

�� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 178–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Investigations on InfiniBand 179

the queue must be large enough to hold the next incoming message. If there is
no receive buffer at the head of the queue or if the receive buffer is not large
enough, this will trigger a network-level protocol that can significantly degrade
communication performance. Because of these constraints, MPI implementations
must be careful to insure that a sufficient number of receive buffers of sufficient
size are always available to match incoming messages.

Several other details can complicate the issue. Most operating systems require
message buffers to be registered so that they may be mapped to physical pages.
Since this operation is time consuming, it is desirable to register memory only
when absolutely needed and to use registered memory as efficiently as possible.
MPI implementations that are single-threaded may only be able to replenish
message buffers when the application makes an MPI library call. Finally, the use
of receive buffers is highly dependent on application message passing patterns.

This paper describes a new protocol that is more efficient at using receive
buffers and can potentially avoid some of the flow control protocols that are
needed to insure that receive buffers of the appropriate size are always avail-
able. We begin by measuring the efficiency of receive buffer utilization for the
current Open MPI implementation for IB. We then propose a new strategy that
can significantly increase the efficiency of receive buffer utilization, make more
efficient use of registered memory, and potentially reduce the need for MPI-level
flow control messages.

The rest of this paper is organized as follows. The next section provides a brief
discussion of previous work in this area. Section 3 describes the new protocol,
while Section 4 provides details of the test platform and analyzes results for
several application benchmarks and applications. We conclude in Section 5 with
a summary of relevant results and offer some possible avenues of future work in
Section 5.1.

2 Background

The complexity of managing multiple sets of buffers across multiple connections
was discussed in [1], and a mechanism for sharing a single pool of buffers across
multiple connections was proposed. In the absence of such a shared buffer pool for
IB, MPI implementations were left to develop user-level flow control strategies
to insure that message buffer space was not exhausted [2].

Eventually, a shared buffer pool mechanism was implemented for IB in the
form of a shared receive queue (SRQ), and has been shown to be effective in
reducing memory usage [3, 4]. However, the IB SRQ still does not eliminate
the need for user-level and network-level flow control required to insure the
shared buffer pool is not depleted [5]. The shared buffer pool approach was also
implemented for MPI on the Portals data movement layer, but using fixed sized
buffers was shown to have poor memory efficiency in practice, so an alternative
strategy was developed [6]. In Section 3, we propose a similar strategy that can
be used to improve memory efficiency for MPI over IB as well.

180 G.M. Shipman et al.

3 Protocol Description

IB does not natively support receive buffer pools similar to [6], but it is possible
to emulate the behavior with buckets of receive buffers of different sizes, with
each bucket using a single shared receive queue (SRQ). We call this emulation
the “Bucket SRQ,” or B-SRQ.

B-SRQ begins by allocating a set of per-peer receive buffers. These per-peer
buffers are for “tiny” messages (128 bytes plus space for header information)
and are regulated by a simple flow control protocol to ensure that tiny messages
always have a receive buffer available.1 The “tiny” size of 128 bytes was choosen
as an optimization to ensure that global operations on a single MPI DOUBLE ele-
ment would always fall into the per-peer buffer path. The 128-byte packet size
also ensures that other control messages (such as rendezvous protocol acknowl-
edgments) use the per-peer allocated resources path as well.

B-SRQ then allocates a large “slab” of registered memory for receive buffers.
The slab is divided up into N buckets; bucket Bi is Si bytes long and contains
a set of individual receive buffers, each of size Ri bytes (where Ri �= Rj for
i, j ∈ [0, N − 1] and i �= j). Bucket Bn contains Sn

Rn
buffers. Each bucket is

associated with a unique queue pair (QP) and a unique SRQ. This design point is
a result of current IB network adapter limitations; only a single receive queue can
be associated with a QP. The QP effectively acts as the sender-side addressing
mechanism of the corresponding SRQ bucket on the receiver.2 Other networks
such as Myrinet GM [7] allow the sender to specify a particular receive buffer
on the send side through a single logical connection and as such would allow for
a similar protocol as that used in B-SRQ. Quadrics Elan [8] uses multiple pools
of buffers to handle unexpected messages, although the specific details of this
protocol have never been published.

In our prototype implementation, Si = Sj for i �= j, and Ri = 28+i, for
i ∈ [0, 7]. That is, the slab was divided equally between eight buckets, and
individual receive buffers were powers of two sizes ranging from 28 to 215. Fig. 1
illustrates the receive buffer allocation strategy.

Send buffers are allocated using a similar technique, except that free lists are
used which grow on demand (up to a configurable limit). When a MPI message
is scheduled for delivery, a send buffer is dequeued from the free list; the smallest
available send buffer that is large enough to hold the message is returned.

4 Results

Two protocols are analyzed and compared: Open MPI v1.2’s default protocol
for short messages and Open MPI v1.2’s default protocol modified to use B-SRQ
for short messages (denoted “v1.2bsrq”).
1 The flow control protocol, while outside the scope of this paper, ensures that the
receiver never issues a “receiver not ready” (or RNR-NAK) error, which can degrade
application performance.

2 Open MPI uses different protocols for long messages. Therefore, the maximum B-
SRQ bucket size is effectively the largest “short” message that Open MPI will handle.

Investigations on InfiniBand 181

Fig. 1. Open MPI’s B-SRQ receive resources

The default protocol for short messages in Open MPI v1.2 uses a credit-based
flow-control algorithm to send messages to fixed-sized buffers on the receiver.
When the sender exhausts its credits, messages are queued until the receiver
returns credits (via an ACK message) to the sender. The sender is then free
to resume sending. By default, SRQ is not used in Open MPI v1.2 because of
a slight latency performance penalty; SRQ may be more efficient in terms of
resource utilization, but it can be slightly slower than normal receive queues in
some network adapters [3, 4].

Open MPI v1.2bsrq implements the protocol described in Section 3. It has
the following advantages over Open MPI v1.2’s default protocol:

– Receiver buffer utilization is more efficient.
– More receive buffers can be be posted in the same amount of memory.
– No flow control protocol overhead for messages using the SRQ QPs.3

4.1 Experimental Setup

The Coyote cluster at Los Alamos National Laboratory was used to test the
B-SRQ protocol. Coyote is a 1,290 node AMD Opteron cluster divided into 258-
node sub-clusters. Each sub-cluster is an “island” of IB connectivity; nodes are
fully connected via IB within the sub-cluster but are physically disjoint from
IB in other sub-clusters. Each node has two single-core 2.6 GHz AMD Opteron
processors, 8 GB of RAM, and a single-port Mellanox Sinai/Infinihost III SDR
IB adapter (firmware revision 1.0.800). The largest MPI job that can be run
utilizing the IB network is therefore 516 processors.

Both versions of Open MPI (v1.2 and v1.2bsrq) were used to run the NAS
Parallel Benchmarks (NPBs) and two Los Alamos-developed applications. Wall-
clock execution time was measured to compare overall application performance
with and without B-SRQ. Instrumentation was added to both Open MPI versions
3 Without pre-negotiating a fixed number of SRQ receive buffers for each peer, there is
no way for senders to know when receive buffers have been exhausted in an SRQ [3].

182 G.M. Shipman et al.

SP

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

Pe
rc

en
til

e

InfiniBand Receive Size (Bytes)

BT
CG
MG

 0

Avg Rank Efficiency
Min Rank Efficiency

Max Rank Efficiency

 40%

 80%

 100%

BT B−SRQ

BT Default

CG B−SRQ

CG Default

MG B−SRQ

MG Default

SP B−SRQ

SP Default

R
ec

ei
ve

 B
uf

fe
r

E
ff

ic
ie

nc
y

 0%

 20%

 60%

(a) (b)

 B−SRQ
 Default

 100

 300

 400

 500

 600

BT CG MG SP

T
im

e
in

 s
ec

on
ds

 0

 200

(c)

Fig. 2. NAS Parallel Benchmark Class D results on 256 nodes for (a) message size, (b)
buffer efficiency, and (c) wall-clock execution time

to measure the effectiveness and efficiency of B-SRQ by logging send and receive
buffer utilization, defined as message size

buffer size . Performance results used the non-
instrumented versions.

Buffer utilization of 100% is ideal, meaning that the buffer is exactly the same
size as the data that it contains. Since IB is a resource-constrained network,
the buffer utilization of an application can have a direct impact on its overall
performance. For example, if receive buffer utilization is poor and the incoming
message rate is high, available receive buffers can be exhausted, resulting in an
RNR-NAK (and therefore performance degradation) [3, 4].

The frequency of message sizes received via IB was also recorded. Note that
IB-level message sizes may be different than MPI-level message sizes as Open
MPI may segment an MPI-level message, use RDMA for messages, and send
control messages over IB. This data is presented in percentile graphs, showing
the percentage of receives at or below a given size (in bytes).

4.2 NAS Parallel Benchmarks

Results using D sized problems with the NPBs are shown in Figure 2(a). The
benchmarks utilize a high percentage of small messages at the IB level, with
the notable exception of MG, which uses some medium-sized messages at the
IB level. Some of these benchmarks do send larger messages as well, triggering
a different message passing protocol in Open MPI that utilizes both rendezvous
techniques and RDMA [9]. Long messages effectively avoid the use of dedicated
receive buffers delivering data directly into the application’s receive buffer.

Investigations on InfiniBand 183

InfiniBand Receive Size (Bytes)

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

Pe
rc

en
til

e

 0

Min Rank Efficiency

Max Rank Efficiency
Avg Rank Efficiency

 40%

 80%

 100%

16 B_SRQ

16 Deault

64 B−SRQ

64 Default

256 B−SRQ

256 Default

R
ec

ei
ve

 B
uf

fe
r

E
ff

ic
ie

nc
y

 0%

 20%

 60%

(a) (b)

 B−SRQ
 Default

 10.00

 30.00

 40.00

 50.00

 60.00

16 64 256

T
im

e
in

 s
ec

on
ds

 0.00

 20.00

(c)

Fig. 3. SAGE results for (a) message size at 256 processes, (b) buffer efficiency at
varying process count, and (c) wall-clock execution time at varying process count

Figure 2(b) shows that Open MPI’s v1.2 protocol exhibits poor receive buffer
utilization due to the fact that receive buffers are fixed at 4 KB and 32 KB. These
buffer sizes provide good performance but poor buffer utilization. The B-SRQ pro-
tocol in v1.2bsrq provides good receive buffer utilization for the NPB benchmarks,
with increases in efficiency of over 50% for the MG benchmark. Overall B-SRQ per-
formance decreases slightly, shown in Figure 2(c). Measurements of class B and C
benchmarks at 256 processes do not exhibit this performance degradation which
is currently being investigated in conjunction with several IB vendors.

4.3 Los Alamos Applications

Two Los Alamos National Laboratory applications were used to evaluate B-SRQ.
The first, SAGE, is an adaptive grid Eulerian hydrocode that uses adaptive mesh
refinement. SAGE is typically run on thousands of processors and has weak
scaling characteristics. Message sizes vary, typically in the tens to hundreds of
kilobytes. Figure 3(a) shows that most IB level messages received were less than
128 bytes with larger messages using our RDMA protocol. Figure 3(b) illustrates
poor memory utilization in Open MPI v1.2 when run at 256 processors. The new
protocol exhibits much better receive buffer utilization, as smaller buffers are
used to handle the data received. As with the NPBs, there is a slight performance
impact, but it is very minimal at 256 processors, as illustrated in Figure 3(c).

The second application evaluated was SWEEP. SWEEP uses a pipelined wave-
front communication pattern. Messages are small and communication in the
wavefront is limited to spatial neighbors on a cube. The wavefront direction and

184 G.M. Shipman et al.

InfiniBand Receive Size (Bytes)

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

Pe
rc

en
til

e

 0

Min Rank Efficiency

Max Rank Efficiency
Avg Rank Efficiency

 40%

 80%

 100%

16 B−SRQ

16 Default

64 B−SRQ

64 Default

256 B−SRQ

256 Default

R
ec

ei
ve

 B
uf

fe
r

E
ff

ic
ie

nc
y

 0%

 20%

 60%

(a) (b)

 B−SRQ
 Default

 0.20

 0.60

 0.80

 1.00

 1.20

16 64 256

T
im

e
in

 s
ec

on
ds

 0.00

 0.40

(c)

Fig. 4. SWEEP results for (a) message size at 256 processes, (b) buffer efficiency at
varying process count, and (c) wall-clock execution time at varying process count.

starting point is not fixed; it can change during the run to start from any cor-
ner on the cube. Receive buffer size is highly regular as shown in Figure 4(a).
Figure 4(b) shows that receive buffer efficiency is improved by the B-SRQ algo-
rithm, although to a lesser extent than in other applications. Figure 4(c) shows
that performance was dramatically increased by the use of the B-SRQ protocol.
This performance increase is due to the B-SRQ protocol providing a much larger
number of receive resources to any one peer (receive resources are shared). The
v1.2 protocol provides a much smaller number of receive resources to any one
peer (defaulting to 8). This small number of receive resources prevents SWEEP’s
high message rate from keeping the IB network full. The B-SRQ protocol allows
SWEEP to have many more outstanding send/receives as a larger number of
receive resources are available to a rank’s 3-D neighbors and thereby increasing
performance. This performance increase could also be realized using v1.2’s per
peer allocation policy but would require allocation of a larger number of per
peer resources to each process. B-SRQprovides good performance without such
application specific tuning while conserving receive resources.

5 Conclusions

Evaluation of application communication over Open MPI revealed that the size of
data received at the IB level, while often quite small, can vary substantially from
application to application. Using a single pool of fixed-sized receive buffers may
therefore result in inefficient receive buffer utilization. Receive buffer depletion

Investigations on InfiniBand 185

negatively impacts performance, particularly at large scale. Earlier work focused
on complex receiver-side depletion detection and recovery, or avoiding depletion
altogether by tuning receive buffer sizes and counts on a per-application (and
sometimes per-run) basis.

The B-SRQ protocol focuses on avoiding resource depletion by more efficient
receive buffer utilization. Experimental results are promising; by better match-
ing receive buffer sizes with the size of received data, application runs were
constrained to an overall receive buffer memory footprint of less than 25 MB.
Additionally, receive queues were never depleted and no application-specific tun-
ing of receive buffer resources was required.

5.1 Future Work

While the B-SRQ protocol results in better receive buffer utilization, other receive
buffer allocation methods are possible. For example, buffer sizes in increasing
powers of two may not be optimal. Through measurements collected via Open
MPI v1.2bsrq, we will explore receive buffer allocation policies and their potential
impact on overall receive buffer utilization.

Recent announcements by IB vendors indicate that network adapters will soon
support the ability to associate a single QP with multiple SRQs by specifying
the SRQ for delivery on the send side. The ConnectX IB HCA (an InfiniBand
Host Channel Adapter recently announced by Mellanox) extends the InfiniBand
specification and defines a new Transport Service called SRC (Scalable Reliable
Connection). SRC transport service separates the transport context from the
Receive Work Queue and allows association of multiple receive-queues to a single
connection. Using SRQ Transport Service, the sender indicates the destination
receive queue when posting a send request to allow de-multiplexing in the remote
receiver. Using the new paradigm, an efficient BSRQ can be implemented using a
single connection context and a single send queue to send data to different remote
SRQs. When posting a work request the sender will indicate the appropriate
destination SRQ according to message size (and priority).

References

[1] Brightwell, R., Maccabe, A.B.: Scalability limitations of VIA-based technologies in
supporting MPI. In: Proceedings of the Fourth MPI Devlopers’ and Users’ Confer-
ence (2000)

[2] Liu, J., Panda, D.K.: Implementing efficient and scalable flow control schemes in
mpi over infiniband. In: Workshop on Communication Architecture for Clusters
(CAC 04) (2004)

[3] Shipman, G.M., Woodall, T.S., Graham, R.L., Maccabe, A.B., Bridges, P.G.: Infini-
band scalability in Open MPI. In: International Parallel and Distributed Processing
Symposium (IPDPS’06) (2006)

[4] Sur, S., Chai, L., Jin, H.W., Panda, D.K.: Shared receive queue based scalable MPI
design for InfiniBand clusters. In: International Parallel and Distributed Processing
Symposium (IPDPS’06) (2006)

186 G.M. Shipman et al.

[5] Sur, S., Koop, M.J., Panda, D.K.: High-performance and scalable MPI over In-
finiBand with reduced memory usage: An in-depth performance analysis. In:
ACM/IEEE International Conference on High-Performance Computing, Network-
ing, Storage, and Analysis (SC’06) (2006)

[6] Brightwell, R., Maccabe, A.B., Riesen, R.: Design, implementation, and perfor-
mance of MPI on Portals 3.0. International Journal of High Performance Comput-
ing Applications 17(1) (2003)

[7] Myrinet: Myrinet GM http://www.myri.com/scs/documentation.html
[8] Quadrics: Quadrics elan programming manual v5.2 (2005), http://www.quadrics.

com/
[9] Shipman, G.M., Woodall, T.S., Bosilca, G., Graham, R.L., Maccabe, A.B.: High

performance RDMA protocols in HPC. In: Proceedings, 13th European PVM/MPI
Users’ Group Meeting, Bonn, Germany, Springer, Heidelberg (2006)

http://www.myri.com/scs/documentation.html
http://www.quadrics.com/
http://www.quadrics.com/

Improving MPI Support for Applications on
Hierarchically Distributed Resources

Raúl López and Christian Pérez

IRISA/INRIA, Campus de Beaulieu, 35042 Rennes cedex, France
{Raul.Lopez,Christian.Perez}@inria.fr

Abstract. Programming non-embarrassingly parallel scientific computing appli-
cations such as those involving the numerical resolution of system of PDEs using
mesh based methods for grid computing environments is a complex and important
issue. This work contributes to this goal by proposing some MPI extensions to let
programmers deal with the hierarchical nature of the grid infrastructure thanks to
a tree representation of the processes as well as the corresponding extension of
collective and point-to-point operations. It leads in particular to support N × M
communications with transparent data redistribution.

Keywords: MPI, Grids, tree structure, hierarchical communication, data redistri-
bution.

1 Introduction and Motivation

Grid computing is currently the subject of a lot of research activities worldwide. It is
particularly well suited to compute intensive, embarrassingly parallel scientific com-
puting applications. The situation is less clear for non-embarrassingly parallel scientific
computing applications such as those involving the numerical resolution of systems
of PDEs (partial differential equations) using mesh based (finite difference, finite vol-
ume or finite element) methods. In most cases, grid-enabled numerical simulation tools
are essentially a direct porting of parallel software previously developed for homoge-
neous machines, thanks to the availability of appropriate MPI implementations such as
MPICH-G2[1]. However, these grid-enabled simulation software rarely take into ac-
count important architectural issues characterizing computational grids, such as het-
erogeneity both of processing nodes and interconnection networks, which have a great
impact on performance. Moreover, they are quite difficult to program. Considering that
a computational grid can be seen as a hierarchical architecture, the objective of the
present work is to improve the support of MPI based scientific computing applications
on hierarchically distributed resources. An extended API is proposed to deal with the
hierarchical structure of resources with respect to the dynamic discovery of the hier-
archical resource properties and to the generalization of point-to-point and collective
communications to this hierarchical structure.

This work is taking place in the context of the DISC project1 which targets to demon-
strate that a computational grid can be used as a high performance computing platform

1 Project number ANR-05-CIGC-005 funded by the French ANR under the framework of the
2005 program Calcul Intensif et Grilles de Calcul.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 187–194, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

188 R. López and C. Pérez

for non-embarrassingly parallel scientific computing applications. Though DISC fo-
cuses on component models, this paper aims at showing that advanced concepts may
also be applied to MPI.

The remainder of this paper is divided as follows. Section 2 introduces a class of
motivating application and Section 3 presents the related works. The proposed MPI
extensions are dealt with in Section 4 while Section 5 concludes the paper.

2 Motivating Application and Infrastructure

2.1 Motivating Application

The targeted scientific computing applications take the form of three-dimensional fi-
nite element software for the simulation of electromagnetic wave propagation (com-
putational electromagnetism - CEM) and compressible fluid flow (computational fluid
dynamics - CFD). The traditional way of designing scalable parallel software for the
numerical resolution of systems of PDEs is to adopt a SPMD programming model that
combines an appropriate partitioning of the computational mesh (or the algebraic sys-
tems of equations resulting from the time and space discretization of the systems of
PDEs defining the problem) and a message passing programming model while porta-
bility is maximized through the use of the Message Passing Interface (MPI). It is clear
that such an approach does not directly transpose to computational grids despite the
fact that appropriate, interoperable, implementations of MPI have been developed (e.g.
MPICH-G2[1] in the Globus Toolkit[2]). By this, we mean that computational grids
raise a number of issues that are rarely faced with when porting a scientific comput-
ing application relying on programming models and numerical algorithms devised for
classical parallel systems. The most important of these issues with regards to parallel
performances is heterogeneity (both of processing nodes and interconnection networks
which impacts computation and communication performances). This heterogeneity is-
sue is particularly challenging for unstructured mesh based CEM and CFD solvers
because of two major issues. First, they involve iterative solution methods and time
stepping schemes that are mostly synchronous thus requiring high performance net-
works to achieve scalability for a large number of processing nodes. Second, most if
not all of the algorithms used for the partitioning of computational meshes (or algebraic
systems of equations) do not take into account the variation of the characteristics of
processing nodes and interconnection networks.

2.2 Infrastructure

A grid computing platform such as the Grid’5000 experimental test-bed can be viewed
as a (at least) three level architecture: the highest level consists of a small number (<
10) of clusters with between a few hundreds and some thousand nodes. These clusters
are interconnected by a wide area network (WAN) which, in the case of Grid’5000
takes the form of dedicated 10 Gb/s links provided by Renater. The intermediate level
is materialized by the system area network (SAN) connecting the nodes of a given
cluster. This level is characterized by the fact that the SAN may differ from one cluster
to the other (Gigabit Ethernet, Myrinet, Infiniband, etc.). The lowest level is used to

Improving MPI Support for Applications on Hierarchically Distributed Resources 189

represent the architecture of a node, single versus multiple-processor systems, single
versus multiple-core systems and memory structure (SMP, Hypertransport, etc.).

2.3 Discussion

In the context of mesh based numerical methods for systems of PDEs, one possible
alternative to the standard parallelization strategy consists in adopting a multi-level
partitioning of the computational mesh. Hence, we can assume that the higher level
partitioning is guided by the total number of clusters while the lower level partitioning
is performed locally (and concurrently) on each cluster based on the local numbers of
processing nodes. Considering the case of two-level partitioning, two types of artificial
interfaces are defined: intra-level interfaces refer to the intersection between neighbor-
ing subdomains which belong to the same first-level partition while inter-level inter-
faces denote interfaces between two neighboring subdomains which belong to different
first-level subdomains. Then, the parallelization can proceed along two strategies.

A first strategy is to use a flat (or single-level) parallelization essentially exploiting
the lower level partitioning and where the intra- and inter-level interfaces are treated in
the same way. A second strategy consists in using a hierarchical approach where a dis-
tinction is made in the treatment of intra- and inter-level interfaces. In this case, we can
proceed in two steps: (1) the exchange of information takes place between neighboring
subdomains and in the higher level partitioning through inter-level interfaces, which
involves a N × M redistribution operation; (2) within each higher level subdomain,
the exchange of information takes place between neighboring subdomains in the lower
level partitioning through the intra-level interfaces.

3 Related Works

As far as we know, the related works can be divided in two categories. First, several
efforts such as MPICH-G2 [1], OpenMPI [3], or GridMPI [4], have been done to pro-
vide efficient implementations of the flat MPI model on hierarchical infrastructures.
The idea is to make use of hierarchy-aware algorithms and of a careful utilization of the
networks for implementing collective communications.

In these works, the MPI runtime is aware of the hierarchy of resources but not the
programmers. As this is a limiting factor for hierarchical applications like those pre-
sented in Section 2, there has been a proposal to extend the MPI model: MPICH-G2
provides an extended MPI with two attributes associated with every communicator to
let the application discover the actual topology. The depths define the available levels
of communication for each process, noting that MPICH-G2 defines 4 levels (WAN-
TCP, LAN-TCP, intra-machine TCP, and native MPI). The colors are a mechanism that
determines whether two processes can communicate at a given level. While such a
mechanism helps the programmers in managing the resource topology, it suffers sev-
eral limitations: there is a hard coded number of levels so that some situations cannot
be taken into account, like NUMA node2. Moreover, a communication infrastructure is
associated with each level while application developers care more about network per-
formance parameters like latency or bandwidth.

2 Communication performance within a NUMA node is not the same as through a network.

190 R. López and C. Pérez

A second set of works deals with N ×M communications such as InterComm [5]
or PaCO++ [6]. Their goal is to relieve programmers from complex, error prone and
resource dependent operations that involve data redistribution among processes. These
works study how to easily express data distributions for programmers so as to auto-
matically compute an efficient communication schedule with respect to the underlying
network properties. They appear to be a complement to MPI, as they take into account
communications from parallel subroutine to parallel subroutine, that is to say that they
can be observed as the parallel extension of MPI point to point communications. Note
that there are not yet standard APIs to describe data distributions, though there have
been some standardization efforts to provide a common interface like DRI [7].

4 Improving MPI Support for Hierarchical Resources

Relying on hierarchical resources has become a major goal in the message passing par-
adigm as it has been exposed. However, the support given to users by existing frame-
works does not always match their needs, as long as program control, data-flow and
infrastructure’s attributes are independently handled. This section presents an extension
to the MPI API to improve such a situation.

4.1 Point-to-Point and Collective Communications

MPI modifications proposed here intend to bring together the advantages from the
message passing paradigm and the hierarchical view of a computing system by the
programmer. Those modifications are based on the utilization of a simple tree model,
where processes are the leafs of the tree while nodes are just an abstraction of groups
of processes (organized according to their topology). More precisely this tree can be
observed as the hierarchical organization of resources at run-time. Figure 1 shows an
example of such structure together with the hierarchically partitioned data used by an
application.

Hierarchical identification system. We propose to introduce an alternate rank definition,
called hrank to denote its hierarchical nature. It consists of an array of identifiers that
represents the tree nodes in the different levels to which the process belongs from the root
to the bottom of the tree. This representation intrinsically involves the tree organization
and easily identifies the resource grouping. In Figure 1, each node of the tree has been
associated with its hrank. For example, the process of MPI rank 6 has 0.1.1 as hrank.

Navigation of the tree structure. The programmer is given a set of functions to ex-
plore the tree structure and the characteristics of nodes and leafs. This allows him/her
to take fine grain decisions regarding which resource carries out each computing task
or how data are partitioned. The tree structure can be browsed thanks to functions
like HMPI_GET_PARENT(hrank), HMPI_GET_SONS(hrank), HMPI_GET_
SIBLINGS(hrank), or HMPI_GET_LEVEL(hrank). Such functions return either
an hrank or an array of hranks.

Moreover, the programmer can also get access to some dynamic properties of the
physical links between nodes and leafs. For example, the extended API may provide the

Improving MPI Support for Applications on Hierarchically Distributed Resources 191

A0 A1

A10

A11

A01

A00
A03

A04
A02

A00 A01 A02 A03 A04 A11A10

A0 A1

A

0.1.00.0.30.0.20.0.10.0.0

0.0 0.1

0.0.4 0.1.1

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����L=1

DATA: MATRIX A

0 1 2 3 4 5 6

L=0

L=2

RANKMPI

hrank

0

REPRESENTATION OF PROCESSES

Fig. 1. Left: Representation of processes derived from the structure of resources, last row indi-
cates the rank in a standard MPI communicator. Right: Data hierarchical partitioning. Dashed
rectangles on the left show the association of data to resources.

functions HMPI_GET_LATENCY(hrank1, hrank2) or HMPI_GET_BANDWITH
(hrank1, hrank2) to obtained the current values.

Collective communications in the hierarchical model. The collective operations are
slightly modified to take advantage of the existing hierarchy. Concretely a new parame-
ter is added to indicate the group of processes involved in the operation. Such a para-
meter is the hrank of the node defining the subtree where to execute the collective op-
eration. With respect to Figure 1, the call HMPI_REDUCE (sendbuf, recvbuf,
count, datatype, operation, root, HMPI_COMM_WORLD, 0.1) per-
forms a reduction involving all processes belonging to the subtree whose root is the
node 0.1, that is to say the reduction is restricted to the two last processes (0.1.0 and
0.1.1).

Point to point communications in the hierarchical model. Elementary point to point
operations – those involving a single sender and a single receiver – keep their semantics
and only the way a process is identified changes by the usage of hranks instead of ranks.
These operations are called HMPI_SEND, HMPI_RECV, etc. In Figure 1, a former
MPI_SEND from process ranked 1 to process ranked 5 is equivalent to HMPI_SEND to
0.1.0 called by the process with hrank 0.0.1.

Nonetheless the most interesting feature is that this hierarchical representation en-
ables using MPI communications at a higher level. For instance, suppose that in Fig-
ure 1, 0.0 sends some data to 0.1. In other words, the processes 0.0.x (x ∈ {0, 4})
call HMPI_SEND with 0.1 as destination. Symmetrically, processes 0.1.x (x ∈
{0, 1}) invoke HMPI_RECV with 0.0 as source. It involves a N ×M (here a 5 × 2)
communication and data distribution issues become transparent for programmers. The
required data distribution support is discussed in the next section.

Communications between any two levels are also possible. A tree node in level 1, as
for instance 0.1, can send data to a tree node in level 2 as for example 0.1.0. It will
likely result in some 0.0.x (x ∈ {0..4}) processes actually sending data to 0.1.0

192 R. López and C. Pérez

4.2 Data Distribution Issues

The communication semantics introduced above involves integrating the data model
within the message passing framework and results in hiding complexity to program-
mers. Until now programmers were either obliged to care explicitly about schedul-
ing the multiple low level communications or relying on a support library such as
InterComm[8] or KeLP[9]. Our goal is to allow a user to invoke a parallel send/receive
operation through the tree structure with a high level view and disregarding distribution
details. This facility entails making some modifications to the existing environment and
how it manages information.

Support for managing distributed data. We propose to extend the MPI data type with
data distribution information, using an API to configure this distribution. The MPI data
type is to be improved with the distribution’s precise description, including distribution
type (blocks, regions, etc.), topology, partitioning information, overlapping areas, etc.
Depending on the distribution type, these parameters are subject to modification. The
lack of a generic API for setting up the environment with any given distribution leads
us to propose different sets of functions specialized in each particular one.

Concretely, in the DISC context, descriptors need to store properties of multidimen-
sional arrays that are hierarchically partitioned in blocks. Neighboring blocks share an
overlapping area to exchange data between processes. In order to describe these aspects
two new properties are added to MPI data types: Data Region and Interface Region.
Data region contains the distribution’s dimensions, size and topological characteristics,
and may be a subregion contained within a larger one. In this last case, data structures
of both are linked. An operation is also provided to set the mapping of data regions to
resources (ie to hrank) so as to make the environment aware of the global distribution.
Interface region enables the description of overlapping areas and, hence, describe the
behavior of a parallel send/receive of the given distribution. These interface regions can
be described as IN or OUT depending if they are aimed at receiving neighbor’s data or
at sending contained data to a neighbor. Therefore, the complete description of the dis-
tribution is made through a sequence of calls to the mentioned operations. It generates
a set of descriptors linked in a tree shape – as a result of the hierarchical partitioning.

As the framework is then aware of the data distribution and how it is assigned to
computing resources, it is able to compute the schedule of the various messages needed
to fulfill the hierarchical send/receive operations.

If we deepen in this reasoning a new collective operation update(buf, data_
descriptor, hrank} can be define at the top of this rich information context.
Such an operation generates the needed communications to update the overlapping ar-
eas. This mechanism strongly simplifies the application programming and makes the
code much more legible.

4.3 A Simple Example

Let assume a numerical method has to be applied over a 2D matrix, where data ex-
changes concern overlapping areas highlighted on Figure 1. Each process sends the
part of this area included in the matrix region it manages to the processes managing the
neighbor region and receives the other part of the overlapping area. An iteration of the

Improving MPI Support for Applications on Hierarchically Distributed Resources 193

algorithm’s main loop consists of a computing sequence followed by one of these data
exchanges and a reduction operation.

As we dispose of a number of resources organized as a hierarchy, we divide hi-
erarchically the matrix relying on the structure and characteristics discovered with the
functions presented above. Hence, we provide the framework the necessary information
regarding the region partitioning (size), the partition-hrank association and the overlap-
ping areas (beginning, size, hrank that handles the neighbor region, etc) for each level.
Once this description has been set, the step’s data exchange is done through a call to
update (pointer_to_data, data_descriptor) that updates the overlap-
ping areas in each process. Except for the extra work of describing data to the frame-
work, no difficulty is added to the programmer’s task, while we get in return a simple
way to automate a complex send/receive schedule.

4.4 Implementation Issues

On the one hand, the required modifications intend to render the hierarchy of resources
visible and easily manageable by application programmers. The necessary changes to
prior MPI are related to adequately treating the hierarchy of resources and its associ-
ated hranks, which requires rich information about resource organization and proper-
ties. We should rely, thus, on the services provided by Information Systems specialized
in Grid infrastructures that enable us to obtain information needed for managing the
proposed environment. For instance, latency and bandwidth may be retrieved from a
Network Weather Service [10].

On the other hand, the framework must be able to handle the data that application
programmer exchange between processes in a collective way. The work to be done has
mostly to do with data distribution issues which has been widely researched as in the
InterComm project or in our team’s related project PaCO++. Hence, the community has
a solid experience on this field.

5 Conclusion

Large scale computing resources are found more and more often organized as hier-
archies of heterogeneous machines. MPI implementations has been improved a lot to
provide efficient implementation of collective operations on such infrastructures.

However, some parallel applications, dealing with huge arrays and originally de-
signed for a flat message passing model, appear less performing when tested on hierar-
chically distributed resources. They may be geared up in such execution environment
by adapting hierarchical data partitioning, and the communications this implies. For this
reason, the hierarchy of resources is to be made accessible and easy to manage within
the applications, whereas handling of data distributions is to be supported by the same
environment to enhance more efficient communications and code reusability. This is
why we propose an MPI extension described in this paper.

The proposed extension allows programming data exchanges and collective opera-
tions within the various available levels of a grid environment in an easy way that results
directly from the mapping of the resource structure. The complex issue of computing

194 R. López and C. Pérez

message exchanges is left to the runtime as well as the responsibilities of computing
an efficient message schedule. From the experience of collective operation implemen-
tation, the runtime has enough information to achieve it.

The list of function described in this paper is not an exhaustive list. Other functions,
like conversion between hierarchical representation and standard MPI communicators
are probably needed.

A simple PDE application relying on such an API has been implemented as well as
the needed API for this application. While experiments are still to be done, such an API
has shows us that it greatly simplifies the management of message exchanges. Such
a simplification is gained at the price of requiring a complex hierarchical data parti-
tioning. Libraries are needed to hide this task because it is quite complex to program.
Moreover, an extension mechanism should be added in MPI so as to be able to integrate
various data redistributions.

Last, we plan to finish the experiments as well as evaluate the benefits of having such
concepts in MPI compared to provide them at the level of component models.

References

1. Karonis, N.T., Toonon, B., Foster, I.: MPICH-G2: a Grid-enabled implementation of the
Message Passing Interface. J. Parallel. Distrib. Comput. 63, 551–563 (2003)

2. Foster, I., Kesselman, C.: Globus: a metacomputing infrastructure toolkit. Int. J. Supercom-
put. Appl. 11, 115–128 (1997)

3. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay,
V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L.,
Woodall, T.S.: Open MPI: Goals, concept, and design of a next generation MPI implementa-
tion. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary,
pp. 97–104 (2004)

4. Matsuda, M., Kudoh, T., Kodama, Y., Takano, R., Ishikawa, Y.: Efficient mpi collective op-
erations for clusters in long-and-fast networks. In: IEEE International Conference on Cluster
Computing, pp. 1–9. IEEE Computer Society Press, Los Alamitos (2006)

5. Bertrand, F., Bramley, R., Sussman, A., Bernholdt, D.E., Kohl, J.A., Larson, J.W., Damevski,
K.B.: Data redistribution and remote method invocation in parallel component architectures.
In: IPDPS ’05: Proceedings of the 19th IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS’05) - Papers, IEEE Computer Society Press, Washington, DC, USA
(2005)

6. Pérez, C., Priol, T., Ribes, A.: A parallel corba component model for numerical code cou-
pling. The International Journal of High Performance Computing Applications (IJHPCA) 17,
417–429 (2003)

7. Forum, S.D.R.D.: Document for the data reorganization interface (dri-1.0) (2002),
http://www.data-re.org

8. Lee, J.Y., Sussman, A.: Efficient communication between parallel programs with intercomm
(2004)

9. Fink, S.S.K., Baden, S.: Efficient runtime support for irregular block-structured applications.
J. Parallel. Distrib. Comput. 50(1), 61–82 (1998)

10. Wolski, R., Spring, N., Hayes, J.: The network weather service: A distributed resource per-
formance forecasting service for metacomputing. Journal of Future Generation Computing
Systems 15, 757–768 (1999)

http://www.data-re.org

MetaLoRaS: A Re-scheduling and Prediction
MetaScheduler for Non-dedicated Multiclusters

J. Ll. Lérida1, F. Solsona1, F. Giné1, M. Hanzich2, J.R. García2, and P. Hernández2

1 Departamento de Informática e Ingeniería Industrial, Universitat de Lleida, Spain
{jlerida,francesc,sisco}@diei.udl.es

2 Departamento de Arquitectura y Sistemas Operativos, Universitat Autònoma de Barcelona,
Spain

{mauricio,jrgarcia}@aomail.uab.es, {porfidio.hernandez}@uab.cat

Abstract. Recently, Multicluster environments have become more important in
the high-performance computing world. However, less attention has been paid
to non-dedicated Multiclusters. We are developing MetaLoRaS, an efficient two-
level MetaScheduler for non-dedicated environments, which assigns PVM and
MPI applications according to an estimation of the turnaround time in each par-
ticular cluster.

The main MetaScheduler goal is to minimize the average job turnaround time
in a non-dedicated environment. The efficiency of MetaLoRaS depends on the
prediction accuracy of the system and its ability to take decisions according to
changes in local workload.

In this paper we present different Metascheduling techniques that take the
dynamics of the local workload into account and compare their effects on system
performance. We evaluate the prediction accuracy in relation to the low-level
queues sizes. Finally, we analyze the relationship between prediction accuracy
and system performance.

1 Introduction

We are interested in making use of the wasted computational resources of non-dedicated
and heterogeneous Multiclusters to execute parallel applications efficiently. A Multi-
cluster system has a network topology made up of interconnected clusters, limited to a
campus- or organization-wide network.

In a Multicluster, the CPU power of the nodes and bandwidth of the interconnection
networks are well known. The workload is more stable and can be more precisely es-
timated than in grid environments. Due to this, Multiclusters can make more accurate
predictions of the execution of parallel applications.

Our research interest is in the design of Metaschedulers for Multiclusters. In [7] we
presented MetaLoRaS, an efficient Metascheduler made up of a queuing system with
two-level hierarchical architecture for non-dedicated Multiclusters. The most impor-
tant contribution was the effective cluster selection mechanism, based on the estima-
tion of the job turnaround time. Parallel applications are assigned to clusters where the
minimum estimated turnaround time is obtained. The conclusions presented by Epema

 This work was supported by the MEyC-Spain under contract TIN 2004-03388.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 195–203, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

196 J.Ll. Lérida et al.

and Santoso (in [2] and [9]), corroborate the good selection of the hierarchical model.
Epema also showed that the inclusion of schedulers in each cluster guarantees the scala-
bility of the system. Their inclusion was also justified by the efficiency of the scheduling
of single-component jobs, the most widely representative kind of user jobs.

The performance of MetaLoRaS was compared with traditional schedulers based on
Best Fit, Round Robin, or some variant on these ([13,9,8,2]). Although the MetaLo-
RaS model obtained good results, it was shown that the estimation accuracy basically
depends on the queue lengths in the Cluster systems.

In this paper we present a new proposal, consisting of reducing length of the bot-
tom queues, the ones associated with each cluster. A study of the most suitable con-
figuration depending on the use of the resources and the dynamics of the workload
is also performed. By limiting the queues, opportunities arise for new metascheduling
mechanisms and favor the proposal of policies with re-scheduling of the jobs. The re-
scheduling mechanism provides the system with the ability to adjust scheduling de-
cisions to changes in the local workload, which can vary rapidly and continuously in
non-dedicated Multiclusters.

The most efficient prediction systems presented in the literature are usually based
on advanced resource reservations (such as Nimrod/g and Ursala [3,11]), which try to
find time intervals reserved for the execution of distributed applications. Snell showed
in [11] how jobs requiring a dedicated start time fragment the scheduler’s time space
as well as its node space, making it more difficult to assign jobs to idle resources.
Consequently, the resources may go unused and cannot be applied to our system.

There are some works on Multicluster rescheduling. A hierarchical space-sharing
scheduling with load redistribution between clusters was presented in [1]. In [12] and
[8] the distribution of each job to the least loaded clusters in a redundant way was
proposed. Although these environments balance very well and improve the system uti-
lization, their implementation requires too many control mechanisms and they do not
provide any estimation of the parallel applications execution.

In summary, although the related environments can give acceptable performance,
they are not envisaged to provide efficient parallel job performance with high prediction
accuracy in a non-dedicated Multicluster, the most important aim of this work.

The remainder of this paper is set out as follows. In Section 2, the Multicluster Sche-
duling system (MetaLoRaS) is presented. The efficiency measurements of MetaLoRaS
are performed in Section 3. Finally, the main conclusions and future work are explained
in Section 4.

2 MetaLoRaS

In [7] we proposed a Multicluster architecture. The jobs arriving in the Multicluster en-
ter the Upper-level Queue, awaiting scheduling by the Metascheduler named MetaLo-
RaS. Next, the Metascheduler assigns the job to the cluster with the minimum estimate
of turnaround time by sending the job to the Low-level queue in the selected cluster.
The estimation is obtained by each local cluster or Low-level scheduler, named LoRaS
(Long Range Scheduler). LoRaS [4], is an space-sharing scheduler, with an efficient
turnaround predictor [5], that deals with PVM and MPI parallel applications.

MetaLoRaS: A Re-scheduling and Prediction MetaScheduler 197

Fig. 1. Multicluster architecture

The MetaLoRaS scheduler has two main issues to resolve: deviations in prediction
accuracy and low performance in situations with dynamic local workload, due to the
static scheduling.

The deviations in the prediction accuracy arise for two main reasons. MetaLoRaS
assigns the jobs to the Cluster with the minimum estimate of turnaround time. To obtain
this estimation, each LoRaS (Low-level scheduler) calculates by simulation the remain-
ing execution time of all jobs in its waiting queue, taking into account the use of the
resources and the local activity. In this process, the estimation deviation increases with
the length of the queues. Furthermore, the estimations do not consider future job ar-
rivals, so it also grows by increasing the number of works that enter the system after
each estimation. The last case is outwith the scope of this article, and will be dealt with
in a later work.

The other main issue is the static scheduling. MetaLoRaS scheduling does not take
changes in the system state into account. This means that if the amount of resources or
computing power available varies, the jobs cannot be rescheduled. The static nature of
the assignments means the system is not sensitive to state changes due to variations in
the local workload.

To solve both problems, we propose limiting the number of jobs in the waiting
queues of each LoRaS front-end, i.e. their associated Low-level queues. This will im-
prove the effectiveness of the LoRaS predictors, which depend on the number of waiting
jobs in their respective Low-level queues.

Once the queues of the local clusters had been limited, we implemented four new job
Metascheduling policies. The aim of these new techniques is to detect the most suitable
assignments of jobs in the Multicluster. This depends basically on the computing re-
source requirements and the dynamics of the local activity.

The proposed new policies are the combination of blocking and non-blocking with
rescheduling features provided by our MetaScheduler. According to this, the 4 proposed
policies are Blocking (B), Non-Blocking (NB), Blocking with Re-Scheduling (B.RS)

198 J.Ll. Lérida et al.

and Non-Blocking with Re-Scheduling (NB.RS). Algorithm 1 shows the main steps
that MetaLoRaS performs in scheduling jobs. In this algorithm, we select the blocking
feature by setting the variable Blocking, and if not, the non-blocking feature. Next, the
different algorithm features are explained separately.

2.1 Blocking

The Blocking (B) feature takes the job to be dispatched from the Upper-level queue in a
FCFS way (line 2). The jobs arriving in the system will have to wait for all the previous
jobs to be dispatched. This feature requests the estimation of the turnaround time of
the job from each Cluster (line 6). When the Low-level queue of the selected Cluster is
full, the job is blocked (line 10) in the Upper-level queue until a job in the Low-level
queue has been executed. When the Low-level queue is unblocked, MetaLoRaS assigns
the job according to the previous estimation (line 4). This feature performs a single
estimation per job on the arrival of the job at the top of the Upper-level queue.

Algorithm 1. MetaLoRaS Algorithm
Require:

MCluster: List of clusters with their Low-level queue not full. MCluster = {Ci, i = 1..n},
where n is the number of Clusters making up the Multicluster.
UpperLQueue: List of the waiting jobs in the Upper-level queue. U pperLQueue = {Ji, i =
1..k}, where k is the number of jobs in the Upper-level Queue.

1: While (U pperLQueue �= {φ} and MCluster �= {φ}) do
2: Select the first job from U pperLQueue.
3: If (J has a previous estimation of the turnaround time) then
4: C = Cluster selected in the previous estimation of the job J.
5: else
6: Select Cluster C = Ci ∈MCluster, with minimum estimated turnaround time for job J
7: end if
8: If (number of jobs in Low-level Queue of Cluster C is equal to its Low-level Queue limit)

then
9: if (Blocking)

10: Block J in the Upper-level queue until the unblocking of Low-level queue of C
11: else /* non-blocking */
12: U pperLQueue = U pperLQueue−J. Delete the job of the Available jobs list.
13: MCluster = MCluster−C. Delete the Cluster of the Available Clusters list.
14: end if
15: Continue /* Go to the begin of the while loop*/
16: end if
17: Dispatch the job J into Cluster C
18: U pperLQueue = U pperLQueue−J
19: end while

2.2 Non-blocking

The Non-Blocking (NB) feature tries to reduce the waiting time of the jobs in the Upper-
level queue introduced by the B feature. We want to minimize the negative effects on

MetaLoRaS: A Re-scheduling and Prediction MetaScheduler 199

the application and system performance. The main steps of the NB feature are shown in
Algorithm 1, between lines 11 to 14.

The idea is to advance the jobs that are waiting in the Upper-level queue, while there
is a job at the top of the queue waiting for a blocked Cluster. The main aim is that when
a job is assigned to a blocked cluster, the rest of the jobs waiting in the queue will not
be delayed whenever there are available clusters. Thus, we aim to improve performance
by reducing the waiting times.

This technique is similar to the backfilling introduced by Feitelson in [10]. Although
there are proposals based on traditional backfilling applied to Multicluster systems
([14], [6]), they have only been applied in reservation systems. No solutions for non-
dedicated environments and hierarchical queues system are proposed in these works.

When a job J is blocked waiting for an unblocked cluster, the job is eliminated (line
12) from the list of waiting jobs (UpperLQueue). Also, the selected cluster C is elimi-
nated (line 13) from the available clusters list (MCluster) and then the Metascheduler
goes through the UpperLQueue list searching for the next job to be scheduled. This
is performed while there are clusters in the MCluster list and jobs waiting in the Up-
peLQueue list. When all the clusters are blocked, the jobs in the Upper-level queue will
remain waiting to be scheduled. As some clusters is unblocked the available clusters list
(MCluster) is updated.

2.3 Re-scheduling

One of the most important issues of the above policies is their static assignment. The
estimation of a job is only performed once, when the job arrive at the top of the Upper-
level queue. Thus, when MetaLoRaS takes decisions, the state of the cluster may have
varied since the estimation was obtained, thus producing bad assignments.

The Re-Scheduling (RS) feature tries to solve this problem. When a blocked job in
the Upper-Level queue is unblocked, the MetaLoRaS requests a new estimation of the
turnaround time when it detects changes in the Multicluster state with regard to the
last estimation of the job. This can cause a new assignament (job scheduling change or
re-scheduling) of the job.

We can apply Re-scheduling to both the Blocking and the Non-Blocking features. In
doing so, only line 3 of Algorithm 1 must be replaced with the following line:

3: If (J has a previous estimation of the turnaround time and the Multicluster state has not
changed with regard to the previous estimation) then

The main advantage of this feature is that without introducing a great estimation cost, it
is possible to deal with dynamic local workload changes, and improve the performance
of the system with respect to the previously presented static policies.

3 Experimentation

The whole system was evaluated in a Multicluster made up of 3 identical non-dedicated
clusters. Each cluster was made up of eight 3-GHz uniprocessor workstations with 1GB
of RAM and 2048 KB of cache, interconnected by a 1-Gigabit network.

200 J.Ll. Lérida et al.

In order to carry out the experimentation process, the local and parallel workloads
need to be defined. The local workload is represented by a synthetic benchmark (named
local_bench) that can emulate the usage of 3 different resources: CPU, Memory and
Network traffic. The use of these resources was parameterized in a real way. According
to the values obtained by collecting the user activity in an open laboratory over a number
of weeks, local_bench was modeled to use 15% CPU, 35% Memory and a 0,5KB/sec
LAN, in each node where it is executed.

The parallel workload was a mixture of PVM and MPI applications, with a total of
60 NAS parallel jobs (CG, IS, MG, BT), with a size of 2, 4 or 8 tasks (class A and B),
which reached the system under a Poisson distribution. These jobs were merged so that
the entire parallel workload had a balanced requirement for computation and communi-
cation. Throughout the experimentation, the maximum number of simultaneous parallel
jobs in execution per node was 4.

The performance was also measured by using static and dynamic local workloads.
The static workload assigns user jobs to a percentage of Multicluster nodes (0, 25, 50, 75
or 100%) throughout the execution of the parallel workload. However, in the dynamic
case the nodes that are loaded vary arbitrarily.

In the experiment, we were interested in knowing the effect of the Low-level queue
size on the application performance and the benefits of the new Re-scheduling tech-
niques based on the state of the Multicluster. In order to do this, a comparison was
done between different techniques with different Low-level queue sizes. The Low-level
queue size was varied in the range from 1 to unlimited (UL). The techniques evalu-
ated were Blocking (B), Non-Blocking (NB), and Blocking and Non-Blocking with
Re-Scheduling (B.RS and NB.RS respectively).

In order to be able to evaluate the results two different metrics, Turnaround Time and
Prediction Deviation, were used. The Turnaround Time is the waiting plus the execution
time of one job, while Prediction deviation is a percentage that reflects the difference
between the real turnaround time and its estimation.

3.1 Prediction Deviation Analysis

Figure 2 shows the Prediction Deviation for the overall policies when the limit of the
cluster queues varied. As we can see, with dynamic load the Prediction Deviation grows
more quickly with the length of the Low-level queues than in the static case. This fact
means that prediction deviation increase with variability in the local workload.

Moreover, prediction accuracy depends on the length of the Low-level queues. This
is because the accumulated error in prediction increases with the number of jobs in the
Low-level queues. The rescheduling property favors prediction accuracy because the
recent state of the cluster is considered. Rescheduling policies obtained an average gain
of 4% in comparison with the non-rescheduling ones.

3.2 Performance Analysis

Figure 3 shows the performance of the overall policies. In general, the increase length
of the queues favors application performance because it reduces the waiting time in the
Upper-level queue enormously. The rescheduling techniques obtained the best results,

MetaLoRaS: A Re-scheduling and Prediction MetaScheduler 201

 26

 28

 30

 32

 34

 36

 38

 40

UL4321

%
D

ev
ia

tio
n

Low−level Queue Size

Prediction Deviation (Dynamic Load)

B
NB
B.RS
NB.RS 26

 28

 30

 32

 34

 36

 38

 40

UL4321

%
D

ev
ia

tio
n

Low−level Queue Size

Prediction Deviation (Static Load)

B
NB
B.RS
NB.RS

Fig. 2. Prediction Deviation

 200

 300

 400

 500

 600

 700

 800

UL4321

S
ec

on
ds

Low−level Queue Size

Turnaround Time (Dynamic Load)

B
NB
B.RS
NB.RS

 200

 250

 300

 350

 400

 450

 500

UL4321

S
ec

on
ds

Low−level Queue Size

Turnaround Time (Static Load)

B
NB
B.RS
NB.RS

Fig. 3. Average Turnaround Time

because as happened in the deviation case, the system state is more realistic, and even
more so in the specific case of the dynamic load. In this case the best performance is
obtained by the NB.RS technique with an average gain of 13% compared with the B.RS.

In general, the blocking policies gave worse performance results than the non-
blocking ones because the waiting time spent blocked in the Upper-level queue low-
ered the system and application performance.

As can be seen in Figures 2 and 3 there is an optimal prediction and performance
length of the Low-level queues. In our case, this value is 3. This value coincided with
the mean Low-level occupancy. This value depends on the computing power of the
component clusters and the inter-arrival rate of the jobs.

For values above the optimum, both prediction and performance results tend to stay
stable. For long Low-level queue sizes, the waiting time in the Upper-Level queue is
zero, then neither the Re-Scheduling nor Blocking Metascheduling techniques have
any effect, so that the results of prediction deviation and performance are independent
of the Low-level queue size.

4 Conclusions and Future Work

This paper presents new Metascheduling techniques for non-dedicated Multicluster en-
vironments that deal with changes in local workload. One of the most important aims
of this work is to provide the possibility of defining the most suitable configuration for
a Multicluster based on the parallel user needs: accuracy in the prediction and perfor-
mance improvement.

202 J.Ll. Lérida et al.

The results show that there is a direct relationship between the Low-level queue sizes,
prediction accuracy and performance. In general, Re-scheduling policies obtained the
best performance and prediction accuracy, and more specifically in the dynamic load,
the most representative one in non-dedicated Multiclusters. Re-Scheduling policies ob-
tained a performance gain with respect to the Non-Rescheduling of 20%, and a predic-
tion accuracy gain of 4%.

In the future work, we will investigate an analytical model to obtain the optimal
value of the Low-level queue sizes by simulating the MetaLoRaS queuing system. In
doing so, inter-arrival job times and service times of the clusters must be related with
the prediction accuracy. Performance comparison will also be made with the traditional
(one-level) backfilling policy.

References

1. Abawajy, J., Dandamudi, S.: Parallel Job Scheduling on Multicluster Computing Systems.
In: Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’03)
(2003)

2. Bucur, A., Epema, D.: Local versus Global Schedulers with Processor Co-allocation in Mul-
ticluster Systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002.
LNCS, vol. 2537, pp. 184–204. Springer, Heidelberg (2002)

3. Buyya, R., Abramson, D., Giddy, J.: Nimrod/g: An architecture for a resource management
and scheduling system in a global computational grid. In: The 4th International Conference
on High Performance Computing in Asia-Pacific Region (HPC Asia 2000) (2000)

4. Hanzich, M., Giné, F., Hernández, P., Solsona, F., Luque, E.: Time Sharing Scheduling
Aproach for PVM Non-Dedicated Clusters. In: Di Martino, B., Kranzlmüller, D., Don-
garra, J.J. (eds.) Recent Advances in Parallel Virtual Machine and Message Passing Interface.
LNCS, vol. 3666, pp. 379–387. Springer, Heidelberg (2005)

5. Hanzich, M., Giné, F., Hernández, P., Solsona, F., Luque, E.: Using On-The-Fly Simulation
For Estimating the Turnaround Time on Non-Dedicated Clusters EuroPar 2006. In: Lecture
Notes in Computer Science (2006)

6. Lawson, B.G., Smirni, E.: Multiple-Queue Backfilling Scheduling with Priorities and Reser-
vations for Parallel Systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2002. LNCS, vol. 2537, pp. 72–87. Springer, Heidelberg (2002)

7. Ll Lérida, J., Solsona, F., Giné, F., Hanzich, M., Hernández, P., Luque, E.: MetaLoRaS: A
Predictable MetaScheduler for Non-Dedicated Multiclusters. In: Guo, M., Yang, L.T., Di
Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330, pp. 630–
641. Springer, Heidelberg (2006)

8. Sabin, G., Kettimuthu, R., Rajan, A., Sadayappan, P.: Scheduling of Parallel Jobs in a Het-
erogeneous Multi-site Environment. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.
(eds.) JSSPP 2003. LNCS, vol. 2862, pp. 87–104. Springer, Heidelberg (2003)

9. Santoso, J., van Albada, G.D., Nazief, B.A., Sloot, P.M.: Hierarchical Job Scheduling for
Clusters of Workstations. In: Proceedings of the sixth annual conference of the Advanced
School for Computing and Imaging (ASCI 2000), pp. 99–105 (2000)

10. Shmueli, E., Feitelson, D.G.: Backlling with lookahead to optimize the performance of paral-
lel job scheduling. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 228–251. Springer, Heidelberg (2003)

11. Snell, Q., Clement, M., Jackson, D., Gregory, C.: The Performance Impact of Advance Reser-
vation Meta-scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPDPS-WS 2000 and JSSPP
2000. LNCS, vol. 1911, Springer, Heidelberg (2000)

MetaLoRaS: A Re-scheduling and Prediction MetaScheduler 203

12. Subramani, V., Kettimuthu, R., Srinivasan, S., Sadayappan, P.: Distributed Job Scheduling
on Computational Grids using Multiple Simultaneous Requests. In: Proceedings of the 11th

IEEE International Symposium on High Performance Distributed Computing (2002)
13. Xu, M.: Effective Metacomputing using LSF MultiCluster ccgrid. In: 1st International Sym-

posium on Cluster Computing and the Grid, p. 100 (2001)
14. Yue, J.: Global Backfilling Scheduling in Multiclusters. In: Manandhar, S., Austin, J., Desai,

U., Oyanagi, Y., Talukder, A.K. (eds.) AACC 2004. LNCS, vol. 3285, pp. 232–239. Springer,
Heidelberg (2004)

Using CMT in SCTP-Based MPI to Exploit

Multiple Interfaces in Cluster Nodes

Brad Penoff1, Mike Tsai1, Janardhan Iyengar2, and Alan Wagner1

1 University of British Columbia, Vancouver, BC, Canada
{penoff,myct,wagner}@cs.ubc.ca

2 Computer Science, Connecticut College, New London, CT, USA
iyengar@conncoll.edu

Abstract. Many existing clusters use inexpensive Gigabit Ethernet and
often have multiple interfaces cards to improve bandwidth and enhance
fault tolerance. We investigate the use of Concurrent Multipath Trans-
fer (CMT), an extension to the Stream Control Transmission Protocol
(SCTP), to take advantage of multiple network interfaces for use with
MPI programs. We evaluate the performance of our system with micro-
benchmarks and MPI collective routines. We also compare our method,
which employs CMT at the transport layer in the operating system ker-
nel, to existing systems that support multi-railing in the middleware.
We discuss performance with respect to bandwidth, latency, congestion
control and fault tolerance.

1 Introduction

Clusters are widely used in high performance computing, often with more money
invested in processors and memory than in the network. As a result, many clus-
ters use inexpensive commodity Gigabit Ethernet (GbE) rather than relatively
expensive fast interconnects1. The low cost of GbE cards and switches makes it
feasible to equip cluster nodes with more than one interface cards, each interface
configured to be on a separate network. Multiple network connections in such
an environment can be used to improve performance, especially for parallel jobs
which may require more high-bandwidth, low-latency communication and higher
reliability than most serial jobs.

We investigate the use of Concurrent Multipath Transfer (CMT) [2,3], an ex-
tension to the Stream Control Transmission Protocol (SCTP) [4,5,6], to take
advantage of multiple network connections. SCTP is an IETF-standardized, re-
liable, and TCP-friendly transport protocol, that was initially proposed for tele-
phony signaling applications. It has since evolved into a more general transport
protocol for applications that have traditionally used TCP for their requirements
of reliability and ordered delivery. SCTP uses the standard sockets library and

1 In the latest rankings of the Top 500 supercomputers, 211 of the systems use GbE
as the internal network [1].

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 204–212, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Using CMT in SCTP-Based MPI 205

an application can interface with SCTP just as with TCP. We have recently re-
leased SCTP-based middleware in MPICH2 (ch3:sctp) that enables MPI-based
parallel programs to use SCTP’s features [7].

SCTP introduces several new features at the transport layer such as mul-
tihoming and multistreaming that make it interesting for use in clusters. Of
particular relevance to this research, SCTP’s multihoming feature allows multi-
ple network interfaces to be used within a single transport layer association—a
TCP connection can bind to only one interface at each endpoint. In standard
SCTP, only a single path is used for data transfers; the alternative paths are only
used as backups if the primary path fails. CMT is a recent proposed extension to
SCTP that aggregates, at the transport layer, available bandwidth of multiple
independent end-to-end paths between such multihomed hosts [3].

Our work is related to projects such as NewMadeleine [8], MVAPICH [9],
and Open MPI [10] that support multihomed or multi-railed systems in the
middleware. However, these projects focus on low latency network architectures
such as Infiniband, and not just IP networks. NewMadeleine and Open MPI
both support heterogeneous networks; CMT can be used to combine all IP in-
terfaces, which in turn can be used in combination with these heterogeneous
network solutions. MuniCluster [11] and RI2N/UDP [12] support multi-railing
for IP networks at the application layer, and use UDP at the transport layer.
Our approach is significantly different in that CMT supports multihoming (or
multi-railing) at the transport layer2, as part of the kernel, rather than at the
application layer in user-space.

The remainder of the paper is organized as follows. In Section 2, we pro-
vide a brief overview of relevant SCTP and CMT features. We then discuss
our approach, in comparison with other projects, with respect to configuration,
scheduling, congestion control, and fault tolerance. In Section 3, we describe our
experiments to evaluate CMT in a cluster for MPI programs, and discuss the
performance results. We give our conclusions in Section 4.

2 Issues Related to Using SCTP and CMT in a Cluster

An example of a generic cluster configuration that can benefit from our ap-
proach is shown in Figure 1. This cluster has two nodes, each equipped with
three Ethernet interfaces. On a node, each interface is connected to one of three
IP networks through an Ethernet switch—two interfaces are connected to in-
ternal cluster networks, and the third interface is connected to a public and/or
management network. In such a configuration, the internal networks can be used
in parallel to improve cluster communication in several ways. A system that uses
these separate networks simultaneously must also account for possibly varying
and different bandwidths and/or delays of the different networks.

In this section, we discuss how SCTP and CMT enable this communication.
To compare our approach to existing approaches, we discuss points that any
2 We also investigated channel bonding, but did not observe any performance advan-
tage in our setup.

206 B. Penoff et al.

. . .

Private network Public network
192.168.1.0/24

192.168.2.0/24

{192.168.1.8,
192.168.2.8,

142.103.211.8} {192.168.1.16,
192.168.2.16,

142.103.211.16}

142.103.0.0/16

Fig. 1. Example Configuration

multi-railing solution must consider: configuration, scheduling, congestion con-
trol and fault tolerance.

2.1 Configuration

An SCTP association between two endpoints can bind to multiple IP addresses
(i.e., interfaces) and a port at each endpoint. For example, in Figure 1, it is pos-
sible to bind ({192.168.1.8, 192.168.2.8}:5000) at one endpoint of an association
to ({192.168.1.16, 192.168.2.16}:4321) at the other endpoint. By default, SCTP
binds to all the interfaces at each endpoint, but the special sctp bindx() API
call can be used to restrict the association to a subset of the interfaces at each
endpoint (i.e., the private network ones). We provide this configuration informa-
tion to the MPI middleware in a configuration file that is loaded at run-time.
This is the only interface configuration information needed by the system. Unlike
related projects, the bandwidth and latency characteristics of the network are
not provided statically but determined dynamically and adaptively as part of
the transport protocol (see Section 2.3).

A final issue with respect to configuration is routing. CMT and SCTP deter-
mine only which destination address to send data to; at the transport layer, CMT
and SCTP do not determine routes through the network. Routing is done by the
routing component of the network layer using the kernel’s routing/forwarding
tables, and this component determines the local interface to use to get to a spec-
ified destination. For example, in Figure 1, the routing table at the host with the
public address 142.103.211.8 must be configured so that the local outgoing in-
terface 192.168.1.8 (and neither 192.168.2.8 nor 142.103.211.8) is used when the
destination address for an outgoing packet is 192.168.1.16. This kind of routing
configuration is straightforward and well understood by system administrators,
who perform similar nominal configurations for all IP hosts on the network.

2.2 Scheduling

In our SCTP-based MPI middleware, MPI messages are split into one or more
SCTP data chunks at the transport layer—data chunks are the smallest atomic
schedulable unit in SCTP—which are then packed into a transport layer segment

Using CMT in SCTP-Based MPI 207

and sent out the primary link, in the case of standard SCTP. However, CMT
maintains a congestion window (cwnd) for each network path and distributes data
segments across multiple paths using the corresponding cwnds, which control and
reflect the currently allowed sending rate on their corresponding paths. CMT
thus distributes load according to the network paths’ bandwidths—a network
path with higher available bandwidth carries more load.

CMT’s scheduling results in a greedy scheduling of data segments to inter-
faces, which is similar to previous approaches. The main difference is that be-
cause CMT schedules data chunks, both short and long MPI messages are sent
concurrently over multiple paths, which gives more flexibility in scheduling at a
finer granularity than message-level granularity. A disadvantage of our approach
is that it is difficult within CMT’s scope to identify MPI message boundaries,
making it difficult to schedule messages based on message size. For instance,
CMT may have difficulty scheduling a small MPI message on the shorter delay
path to minimize latency.

2.3 Congestion Control

Most of the existing work on multi-railing assumes dedicated resources on well-
provisioned networks and do not consider the effect of congestion on network
performance, using specialized protocols that lack congestion control. However,
congestion is more likely in clusters with commodity Ethernet switches, espe-
cially for the bursty traffic in MPI programs. The problem of congestion is exac-
erbated in larger networks with multiple layers of switches and mixes of parallel
and sequential jobs executing concurrently. In the face of congestion, senders
must throttle their sending rate and avoid persistent network degradation.

SCTP, like TCP, uses congestion control mechanisms to minimize loss and
retransmissions and to ensure that application flows are given a fair share of
the network bandwidth. SCTP dynamically tracks a cwnd per destination ad-
dress, which determines the current sending rate of the sender (recall that the
source address is chosen by the routing component of the network layer). CMT
extends SCTP’s mechanisms to enable correct congestion control when sending
data concurrently over multiple paths. Our system thus differs significantly from
the previous approaches in that CMT is dynamic, not static, and will correctly
adjust its sending rate to changing traffic characteristics in the network. CMT
congestion control mechanisms ensure that (i) when a new flow enters the net-
work, existing flows curb their cwnds so that each flow gets a fair share of the
network bandwidth, (ii) when flows leave the network, continuing flows adapt
and use the spare network bandwidth, and (iii) CMT can be used over network
paths with differing bandwidths/latencies.

2.4 Fault Tolerance

Fault tolerance is an important issue in commodity cluster environments, where
network failure due to switches or software (mis)configuration does occur. SCTP
has a mechanism for automatic failover in the case of link or path failure. Similar

208 B. Penoff et al.

mechanisms have been implemented in MPI middleware [13], but these are un-
necessary for SCTP-based middleware. SCTP uses special control chunks which
act as heartbeat probes to test network reachability. Heartbeat frequency is user-
controllable, and can be tuned according to expectations for a given network.
However, at the currently recommended setting [14], it takes approximately 15
seconds to failover—a long time for an MPI application. Since CMT sends data to
all destinations concurrently, a CMT sender has more information about all net-
work paths, and can leverage this information to detect network failures sooner.
CMT is thus able to reduce network path failure detection time to one sec-
ond [15]. This improvement with CMT is significant, and future research will
investigate if this time can be further reduced for cluster environments.

3 Performance

The goal of our evaluation was to see that CMT could take advantage of the
available bandwidth, scheduling within the transport protocol. The focus of
the evaluation was on bandwidth intensive MPI benchmarks. The hope was to
demonstrate results comparable to MPI implementations that schedule within
the middleware.

Test Setup. The potential benefits of using CMT with MPI were evaluated
on four3 3.2 GHz Pentium-4 processors in an IBM eServer x306 cluster, where
each node had three GbE interfaces. The two private interfaces were on separate
VLANs connected to a common Baystack 5510 48T switch, and the third (public)
interface was connected to a separate switch, similar to the setup shown in
Figure 1. We tested with an MTU size of 1500 bytes and with jumbo frames of
size 9000 bytes.

For the tests with SCTP and CMT we used MPICH2 v1.0.5, which contains
our SCTP-based MPI channel (ch3:sctp). We tested MPICH2 with and with-
out CMT enabled and compared it to TCP from the same release of MPICH2
(ch3:sock). We also tested Open MPI v1.2.1, which supports message striping
across multiple IP interfaces [16]. Open MPI was ran with one and two TCP
Byte-Transfer-Layer (BTL) modules to provide a comparison between using one
interface versus two interfaces4.

All SCTP tests were based on an SCTP-capable stack5 in FreeBSD 6.2. For
all tests we used a socket buffer size of 233 Kbytes, the default size used by
ch3:sctp, and we set the MPI rendezvous threshold for MPI to 64 Kbytes,
matching ch3:sctp and Open MPI’s default.

3 We did not have the opportunity to test our implementation in a large cluster.
Since SCTP was designed as a standard TCP-like transport protocol, we expect its
scalability to be similar to that of TCP.

4 Our network paths were not identical so Open MPI had the network characteristics
set in the mca-params.conf file.

5 A patched version of the stack (http://www.sctp.org) was used. SCTP will be a
standard part of FreeBSD 7– as a kernel option.

Using CMT in SCTP-Based MPI 209

Microbenchmark Performance. The most important test was to determine
whether MPI with CMT was able to exploit the available bandwidth from mul-
tiple interfaces. We used the OSU MPI microbenchmarks [17] to test bandwidth
and latency with varying message sizes. We tested with MTUs of 1500 and 9000
bytes and found that using a 9000 byte MTU improved bandwidth utilization
for both TCP and SCTP. Figure 2 reports our results with MTU 9000.

4 64 1K 16K 256K 4M
0

400

800

1200

1600

2000

Message Size (Bytes)

M
bp

s

MPICH2−SCTP
MPICH2−SCTP−CMT
MPICH2−TCP
OMPI−2BTL
OMPI−1BTL

Fig. 2. OSU Bandwidth Test comparing MPICH2 with and without CMT and Open
MPI with one and two TCP BTLs

As shown in Figure 2, MPICH2-ch3:sctp with CMT starts to take advan-
tage of the additional bandwidth when the message size exceeds 2 Kbytes. At
a message size of 1 Mbyte, MPICH2-ch3:sctp with CMT is almost achieving
twice the bandwidth (1.7 versus 0.98 Gbps) in comparison to using one interface,
and it is outperforming Open MPI (1.56 Gbps) which is scheduling messages in
user-space across two interfaces within its middleware. All single path configu-
rations are approximately the same, with a maximum of 0.98 Gbps; however for
configurations using two networks, Open MPI is the best for message sizes 512
to 2048 bytes but once message size exceeds 4 Kbytes MPICH2-ch3:sctp with
CMT is the best performing.

In the case of the OSU latency benchmark (figure not shown), ch3:sctp
without CMT was between ch3:sock, which had the lowest latency at 77μsec (for
zero-byte message), and Open MPI (one TCP BTL), which was consistently 20%
higher than ch3:sock (for message size up to 1 Kbytes). Large message latency
was more or less the same across all of these middleware configurations that used
a single interface. When using two interfaces, CMT increased message latency
by approximately 2.5% over ch3:sctp for small messages, but this increase was

210 B. Penoff et al.

smaller than the 10% increase we found with Open MPI with two TCP BTLs
compared to Open MPI with one TCP BTL. We note that CMT is currently
optimized for bandwidth only, and we have not yet explored the possibility of
optimizing CMT for both bandwidth and latency.

The third component of performance that we investigated was CPU utiliza-
tion. For any transport protocol there are trade-offs between bandwidth and
the associated CPU overhead due to protocol processing, interrupts, and sys-
tem calls. CPU overhead is important since it reduces the CPU cycles available
to the application and reduces the potential for overlapping computation with
communication. We used iperf, a standard Unix tool for testing bandwidth, to-
gether with iostat to investigate CPU utilization differences. CPU utilization
for TCP and SCTP with an MTU of 1500 bytes were similar. However, with
CMT, the CPU was a limiting factor in our ability to fully utilize the band-
width of both GbE interfaces. For an MTU of 9000 bytes, the CPU was still
saturated, yet CMT was able to achieve bandwidths similar to those obtained
from the OSU bandwidth benchmark because more data could be processed
with each interrupt. We conclude from our investigation that there is an added
cost to protocol processing for CMT. Part of this cost may be due to the cost
of processing selective acknowledgement (SACK) blocks at the transport layer
receiver, which is higher in CMT. SACK processing overhead is actively being
considered by developers in the SCTP community, and continued work should
reduce this overhead.

Collective Benchmarks. The benchmarks in the previous section tested the
effect of CMT and MPI point-to-point messaging on raw communication perfor-
mance. We were interested in testing CMT’s effect on more complex MPI calls
like the collectives since they are also commonly used in MPI programs. The
Intel MPI Benchmark suite 2.3 was used in our experiments. We tested several
of the collective routines, but for brevity, we focus on the MPI Alltoall four
process results here since the results obtained for the other collectives showed
similar benefits.

The results are summarized in Figure 3; only the multi-rail MPI results are
shown (i.e., ch3:sctp with CMT and Open MPI with two TCP BTLs). La-
tency in the Alltoall test is always lower with CMT, except for message sizes
of 64 Kbytes and 128 Kbytes. For large messages, CMT can have a consider-
able advantage over two TCP BTLs (e.g. 42% for 1 MByte messages). Although
not pictured here, we note that without multi-railing, MPICH2 (both ch3:sctp
and ch3:sock) is generally within 10-15% of Open MPI with one BTL. Multi-
railing starts to show an advantage for message sizes greater than 8 Kbytes. We
attribute the performance improvement of MPICH2-ch3:sctp with CMT over
Open MPI with two TCP BTLs (up to 42%) to the advantages of scheduling
data in the transport layer rather than in the middleware. We are currently
implementing an SCTP BTL module for Open MPI that will be able to use
CMT as an alternative for striping, and we hope to obtain similar performance
improvements in Open MPI for multiple interfaces.

Using CMT in SCTP-Based MPI 211

256K 512K 1M 2M 4M
10000

100000

200000

300000

Message Size (Bytes)

1 4 16 64 256 1K 4K
100

200

300

400

T
im

e
(u

s)

MPICH2−SCTP−CMT
OMPI−TCP−2BTL

8K 16K 32K 64K 128K
0

5000

10000

Fig. 3. Pallas Alltoall n=4 Benchmark MTU 1500

4 Conclusions

We have investigated a novel approach that uses multiple network interfaces on
cluster nodes to improve the performance of MPI programs. Unlike systems that
support multi-railing in the middleware, our approach uses CMT, an extension
to SCTP, that supports multi-railing at the transport layer in the kernel. CMT
dynamically adapts to changing network conditions, and therefore simplifies the
network configuration process. We showed that CMT is able take advantage of
the additional bandwidth of an additional interface, and compares well with
Open MPI’s load balancing scheme. Experiments with MPI collectives demon-
strate the possible advantages in scheduling messages at the transport layer
(using CMT) versus scheduling messages in the middleware (using Open MPI).

CMT shows promise for bandwidth intensive applications. Future work will
investigate optimization of CMT scheduling for lower latency and CMT refine-
ments for fault tolerance. We expect that our research will lead to an easy-to-use
system for efficiently using multiple interfaces in clusters with low-cost commod-
ity networking.

Acknowledgments. We wish to thank Randall Stewart and Michael Tüxen
for their extensive help with the experiments.

References

1. University of Mannheim, University of Tennessee, NERSC/LBNL: Top 500 Com-
puter Sites (2007), http://www.top500.org/

2. Iyengar, J.: End-to-end Concurrent Multipath Transfer Using Transport Layer
Multihoming. PhD thesis, Computer Science Dept. University of Delaware (2006)

http://www.top500.org/

212 B. Penoff et al.

3. Iyengar, J., Amer, P., Stewart, R.: Concurrent Multipath Transfer Using SCTP
Multihoming Over Independent End-to-End Paths. IEEE/ACM Transactions on
Networking 14(5), 951–964 (2006)

4. Stewart, R.R., Xie, Q.: Stream Control Transmission Protocol (SCTP): A Refer-
ence Guide. Addison-Wesley Longman Publishing Co. Inc. Reading (2002)

5. Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H., Taylor, T., Ry-
tina, I.M.K., Zhang, L., Paxson, V.: The Stream Control Transmission Protocol
(SCTP) (2000) Available from http://www.ietf.org/rfc/rfc2960.txt

6. Stewart, R., Arias-Rodriguez, I., Poon, K., Caro, A., Tuexen, M.: Stream Control
Transmission Protocol (SCTP) Specification Errata and Issues (2006), Available
from http://www.ietf.org/rfc/rfc4460.txt

7. Kamal, H., Penoff, B., Wagner, A.: SCTP versus TCP for MPI. In: Supercomputing
’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, IEEE
Computer Society, Washington, DC, USA (2005)

8. Aumage, O., Brunet, E., Mercier, G., Namyst, R.: High-Performance Multi-Rail
Support with the NewMadeleine Communication Library. In: The Sixteenth Inter-
national Heterogeneity in Computing Workshop (HCW 2007), workshop held in
conjunction with IPDPS 2007 (2007)

9. Liu, J., Vishnu, A., Panda, D.K.: Building Multirail InfiniBand Clusters: MPI-
Level Design and Performance Evaluation. In: SC ’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing, p. 33. IEEE Computer Society, Wash-
ington, DC, USA (2004)

10. Gabriel, E., et al.: Open MPI: Goals, concept and design of a next generation MPI
implementation. In: Proc. 11th EuroPVM/MPI, Budapest, Hungary (2004)

11. Mohamed, N., Al-Jaroodi, J., Jiang, H., Swanson, D.R.: High-performance message
striping over reliable transport protocols. The Journal of Supercomputing 38(3),
261–278 (2006)

12. Okamoto, T., Miura, S., Boku, T., Sato, M., Takahashi, D.: RI2N/UDP: High
bandwidth and fault-tolerant network for PC-cluster based on multi-link Ethernet.
In: 21st International Parallel and Distributed Processing Symposium (IPDPS’07),
Long Beach, California, Workshop on Communication Architecture for Clusters
(2007)

13. Vishnu, A., Gupta, P., Mamidala, A.R., Panda, D.K.: Scalable systems software -
a software based approach for providing network fault tolerance in clusters with
uDAPL interface: MPI level design and performance evaluation. In: SC, p. 85
(2006)

14. Caro, A.: End-to-End Fault Tolerance Using Transport Layer Multihoming. PhD
thesis, Computer Science Dept. University of Delaware (2005)

15. Natarajan, P., Iyengar, J., Amer, P.D., Stewart, R.: Concurrent multipath trans-
fer using transport layer multihoming: Performance under network failures. In:
MILCOM, Washington, DC, USA (2006)

16. Woodall, T., et al.: Open MPI’s TEG point-to-point communications method-
ology: Comparison to existing implementations. In: Proc. 11th EuroPVM/MPI,
Budapest, Hungary, pp. 105–111 (2004)

17. Ohio State University: OSU MPI Benchmarks (2007)
http://mvapich.cse.ohio-state.edu

http://www.ietf.org/rfc/rfc2960.txt
http://www.ietf.org/rfc/rfc4460.txt
http://mvapich.cse.ohio-state.edu

Analysis of the MPI-IO Optimization Levels

with the PIOViz Jumpshot Enhancement

Thomas Ludwig, Stephan Krempel, Michael Kuhn, Julian Kunkel,
and Christian Lohse

Ruprecht-Karls-Universität Heidelberg
Im Neuenheimer Feld 348, 69120 Heidelberg, Germany

t.ludwig@computer.org
http://pvs.informatik.uni-heidelberg.de/

Abstract. With MPI-IO we see various alternatives for programming
file I/O. The overall program performance depends on many different
factors. A new trace analysis environment provides deeper insight into
the client/server behavior and visualizes events of both process types.
We investigate the influence of making independent vs. collective calls
together with access to contiguous and non-contiguous data regions in
our MPI-IO program. Combined client and server traces exhibit reasons
for observed I/O performance.

Keywords: Parallel I/O, MPI-IO, Performance Visualization, Trace-
Based Tools.

1 Introduction

More and more applications in the field of high performance computing require
also high performance file input/output [8]. Some use POSIX I/O with sequential
programs and many others already perform parallel I/O from within parallel pro-
grams. They deploy MPI for message passing and MPI-IO for the file operations.
MPI-IO, which is an integral part of the MPI-2 standard definition, provides
many options to actually program the I/O operations. Most implementations of
MPI use ROMIO or some derivative of ROMIO to handle the I/O part of the
parallel programs. ROMIO includes complex optimization algorithms, namely
data sieving and the two-phase protocol.

Currently application programmers run their parallel programs that include
I/O, they get some performance values in the form of overall program comple-
tion time and other than that have no insight into why the I/O was fast or
slow. They have no information on how the performance values depend on I/O
server activities being triggered by their client I/O calls and transformed by the
middleware layers, i.e. ROMIO and the parallel file system.

This is where we started our project of the Parallel I/O Visualizer PIOViz.
It enhances existing tools in the MPICH2 source code distribution [10] and is
provided for the PVFS I/O infrastructure [17]. Using PIOViz we evaluated the
performance characteristics of a set of MPI-IO options.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 213–222, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

214 T. Ludwig et al.

The remainder of this paper is structured as follows: Section 2 will describe
related work and the state-of-the-art. Section 3 will explain the concepts of
PIOViz followed by section 4 that gives details on the test scenario. Section 5
will discuss results.

2 Related Work and State-of-the-Art

With parallel computing we find two classes of tool concepts which are used for
different purposes: First there are on-line tools. They use a monitoring system
to get data out of the running application and/or instrument this application.
Data is immediately used for several purposes: we can either display them (e.g.
with a performance analyzer) or use them for controlling the application (e.g.
with a load balancer). Usually data is not stored. A well known representative
of this class is Paradyn [12,9]. Second, we have off-line tools. They present data
after program completion (or with a considerable delay during program run). In
order to do so the monitoring systems and instrumentations write event traces
to files that are used afterwards as data base. Representatives are TAU [15,14],
the Intel Trace Analyzer [3], Vampir [4], and Jumpshot [13]. Our work is for the
family of trace-based tools, in particular for performance analysis. So we will
concentrate on these aspects here.

With performance analysis tools (on- and off-line) there was considerable
progress in the last recent years. In particular we see a focus towards automatic
detection of bottlenecks. The working group Apart (Automatic Performance
Analysis: Real Tools) [1] has investigated this issue in depth and several tool
enhancements were developed over the years. Visualization gets more sophisti-
cated and several tools allow to compare traces from different program runs. We
see also other sources of information being integrated into the trace: e.g. TAU
enters events from performance counters provided by the operating system.

What was still missing are two things: An explicit tracing and visualization
of the I/O system’s behavior and a correlation of program events and system
events. We refer to these features as multi-source tracing and semantical trace
merging. Our project PIOViz (Parallel I/O Visualizer) fills in this gap [7]. It is a
set of tools to be used together with the MPE/Jumpshot environment provided
by MPICH2 and with the PVFS environment.

3 PIOViz Concepts

The PIOViz project goal can be described as follows: In order to have a com-
bined view onto client and server activities we must be able to get traces during
program runtime from both of them. In order to see the server activities in-
duced by MPI-IO calls we must related the two traces. Visually this will be done
by adding arrows between the events of clients and servers. Technically we will
merge the two traces before arrow integration. In order to visualize client and
server traces at the same time we must have an appropriate tool.

Analysis of the MPI-IO Optimization Levels 215

Figure 1 shows the block structure of our concept. MPI client processes which
are linked to the PVFS client library get already traced by the MPICH2/MPE
environment. We now need to have traces for the servers, too. We will use a
similar approach as for the clients (described below). In both case we get at
first clog2 node local traces that are merged to slog2 traces for all clients and
all servers respectively. Note that the timelines in the two trace files are already
synchronized by the MPE environment. These two traces now get merged and
visualized concurrently in the Jumpshot tool. The list of issues to be covered in
order to visualize this double trace with arrows comprises the following points:

– Generate a single trace from the server processes.
– Forward information from the clients to the servers that allow to find corre-

sponding MPI-IO and Trove calls later on.
– Merge the two traces from all clients and all servers. Timelines are adjusted

such that clock shift is compensated.
– Add arrow elements to the combined trace.
– Distribute client and server activities over time lines in the visualizer.

The implementation of our enhancements takes places at various locations:
We need to instrument the PVFS server code and add own code to the client
library [18]. For the two slog2 trace files we have several tools implemented
to manipulate them. As Jumpshot just visualizes time lines without knowing
anything about their meaning and context we could even live without any mod-
ifications of this tool. However, for better adaptation to our project goals we
slightly enhance the GUI. Details on the concepts can be found in [7,5,11,19].

4 Test Scenario

In this section we will discuss the hardware and software environment for our
investigations. Further we make assumptions about the expected overall I/O
performance to be observed with parallel MPI-IO programs.

Trace
clog2 slog2

Trace

Trace
clog2 slog2

Trace

slog2
Trace

MPI−IO

LAN Jumpshot

slog2tools

clog2TOslog2MPE

PVFS2
Server

PVFS2
Server

PVFS2
Server

MPI

PVFS2
Client

MPI

PVFS2
Client

Visualization

Fig. 1. Architecture of the PIOViz tool environment

216 T. Ludwig et al.

This research is conducted on a small cluster consisting of ten nodes, where
one node serves as a master. We use the worker nodes for our tests and specify
a configuration with four client processes and four I/O server processes being
located on different nodes. The nodes have two Xeon processors with one giga-
byte of main memory and a gigabit network link. Disks attached to the nodes
have a read/write performance of approximately 40MByte/s. All nodes are in-
terconnected via a switch in a star topology, where the switch has a maximum
throughput of 380MByte/s.

The MPI client processes read and write adjustable amounts of data from
and to the I/O servers. The data is transferred either via ten iterative calls, each
accessing a contiguous data region or via one single call that accesses a non-
contiguous data region with ten data segments being separated by nine holes.

We evaluate the four different levels of access provided to the clients by MPI.
They offer varying potential to the underlying software components to optimize
the file I/O. In particular ROMIO plays an important role here (for details on
ROMIO see [16]). We distinguish the following levels of access complexity:

– level 0: the clients perform ten individual (non-collective) calls accessing one
contiguous data region each.

– level 1: the clients do the same as with level 0 but invoke ten collective calls.
– level 2: the clients perform one single individual call accessing one non-

contiguous data region
– level 3: the clients do the same as with level 2 but invoke a collective call.

For a detailed discussion of these levels and the appropriate source code see
an MPI-2 User’s Guide (e.g. [2]).

So what do we expect to see? Level 0 offers no meta information to the under-
lying software components, in particular to ROMIO. No optimization can take
place. Level 1 could perhaps benefit from the fact that it is a collective call.
The library is aware of all the processes which are taking part in this particular
call and thus could manage things differently. With level 2, which makes access
to non-contiguous data regions, ROMIO could apply data sieving mechanisms.
Level 3 finally could benefit from the two-phase protocol of ROMIO. With read-
ing, clients just fetch a defined amout of contiguous data and send parts of it
via low-level message passing to those clients that need to have this data. Thus,
we would expect increasing performance with increasing I/O operation levels.

For these four levels we ran experiments with varying data volumes. Let us at
first discuss the effects that we expect to see with respect to overall performance,
i.e. completion times of these operations.

The crucial question is: Where is the bottleneck? We can identify different
components to become bottlenecks in our scenario under various configurations:
Disks have limited read/write throughput, the network links to and from clients
and servers have limited throughput and the same is true for the network switch.
For simplicity we assume that CPU and the other components of the node’s
motherboard, which link network interfaces to disk subsystems, do not impose
further limitations. Servers and clients in our experiments always run on disjoint

Analysis of the MPI-IO Optimization Levels 217

nodes. There is a non-neglectable CPU usage but no interference between these
processes. All listed hardware components have also latency time when accessing
them. A detailed modelling of bottlenecks can be found in [6].

With respect to different volumes of data we observe the following: As long as
the amount of data is low, i.e. up to single megabytes, the overall performance is
dominated by the latencies of the participating components. There will be perfect
caching of data in the server nodes and disk performance will not play any role
here. With an increasing amount of data, where the volume is not yet in the
range of the size of the nodes’ physical main memory, the overall performance is
determined by the maximum network and switch throughput. Disk performance
does still not play any role as the data gets cached in the operating system’s
I/O buffer in main memory. With data volumes exceeding the I/O buffer we
will finally enforce physical I/O operations and physical I/O might become the
bottlenecks of the chosen configuration. The Linux kernel applies a write-behind
strategy, which defers physical write operations. This boosts performance for an
amount of data exceeding the cache.

In the following we will present an experiment with medium data volume; thus,
we will basically evaluate the performance of clients and servers on which the
limitations of the disk subsystem have no further influence on the experiment.
Each client transfers a total amount of 50MByte to the parallel file system
(either in a single non-contiguous call or ten contiguous calls). This results in
200MByte being transferred through the switch from clients to servers. With
a maximum throughput of 380MByte/s we expect a minimum transfer time of
0.53 s. As the Gigabit Ethernet links transfer approximately 120MByte/s this
would result in 0.42 s for the 50MByte data transfer. Thus, the bottleneck here
will be the switch, not the individual links.

In the next section we will discuss the results for this experiment.

5 Discussion of Results

Figures 2–5 visualize the traces obtained by four experiments. They show client
and server activities and the cooperation between these processes. We give the
traces for write operations — reading exposed an almost identical behavior with
respect to performance.

The figures are screen dumps of Jumpshot’s main window. The four upper
lines (numbered from “0” to “3”) visualize the client processes. This is the result
obtained using the MPE environment included in MPICH2 and with the shipped
Jumpshot. All further time-lines are added by our PIOViz environment and
visualize the PVFS servers’ behavior. Line “100” refers to the PVFS metadata
server. There is only activity when the experiment starts and stops. As the
traces here do not show the file open and file close operations there is hardly
any communication with the metadata server.

Lines “101” to “104” are the timelines of the four data server processes. A
detailed description of the observed behavior is beyond the scope of the paper,
but let us make some comments: The green blocks refer to job events in the

218 T. Ludwig et al.

Fig. 2. 4 clients write 50MBytes each to 4 servers with non-collective calls and con-
tiguous data regions

Fig. 3. 4 clients write 50MBytes each to 4 servers with collective calls and contiguous
data regions

Analysis of the MPI-IO Optimization Levels 219

Fig. 4. 4 clients write 50MBytes each to 4 servers with non-collective calls and non-
contiguous data regions

Fig. 5. 4 clients write 50MBytes each to 4 servers with collective calls and non-
contiguous data regions

220 T. Ludwig et al.

corresponding PVFS software layer. Jobs are responsible for managing the exe-
cution of operations in lower layers (network and persistency layer). The brown
segments refer to Trove write operations. Trove is the PVFS software layer that
performs the actual disk transfer. Thus, Trove events are related to disk activ-
ity (Unfortunately not necessarily directly related, as buffering activities of the
other layers might take place, too). There might be an interlaced execution of
individual Trove activities resulting in overlapping Trove events on the timelines.
We integrated a mechanisms into our environment that allows to expand a single
timeline to a set of timelines without overlapping events between different clients
(marked by the folder sign left to the process number; not expanded in these
screen dumps here).

Further, arrows from client events to server events are incorporated. This is
the most important part of PIOViz as it allows to see the causal relation between
activities in client and server processes. This contributes to a better understand-
ing of performance related issues in this complex client-server environment.

Remember that with the standard Jumpshot environment from MPICH2 you
would get in each of the four traces just the four upper lines from the client
processes. They would definitely not give any insight into what is going on in
our environment.

Before going into details with the traces let us have a look at the completion
times of the different I/O operations. Table 1 shows the measured values for
reading and writing and the tested four MPI-IO levels. Reading and writing
essentially behaved identically for this experiment (which is slightly different for
other experiments). Here we will discuss writing in detail.

With level 0 in fig. 2 we measure a completion time of 0.72 s for the write op-
eration. A lower bound induced by the network would be 0.53 s. The trace shows
clearly the ten MPI file write operations that trigger activity in the servers. A
more detailed analysis would show that each write operation transfers 5 MByte
of data. Due to the RAID-0 striping concept of PVFS each server receives
1.25MBytes. It uses five Trove write calls to transfer them to the local disks
(default transfer size is 256KByte).

The trace for level 1 in fig. 3 shows a higher completion time where we ex-
pected to see a shorter one. Looking at the arrows starting from the write calls
at the MPI level we can understand the effect: With level 1 we have a global
synchronization after each write call. Thus, the next write call starts well syn-
chronized but also later, because here we always have to wait for the slowest I/O
server. With level 0 there is no synchronization and slight differences in single
operations are compensated statistically. The server trace of level 1 shows small

Table 1. Completion times of I/O operations with four different concepts of MPI-IO

level 0 level 1 level 2 level 3
individual collective individual collective
contiguous contiguous non-contiguous non-contiguous

write 0.72 s 0.97 s 0.62 s 1.59 s
read 0.77 s 0.94 s 0.54 s 1.57 s

Analysis of the MPI-IO Optimization Levels 221

gaps between the Job events, indicating server inactivity during certain periods
of time.

Level 2 (refer to fig. 4), which is a non-collective call to a non-contiguous data
region has the best overall performance. We see on the left one single cooperation
between clients and servers; this is when writing starts. Each client transfers a
piece of the data to the appropriate servers. No data sieving takes place in
this experiment. As sieving does not trigger events we cannot comment on this
at the moment. The completion time is about 100ms shorter than with level
0. Considering the fact that we now save nine MPI calls with their respective
additional latencies this might explain the measured time difference (9 calls to
4 servers each with a round-trip time of about 2ms would last about 72ms).

Level 3 in fig. 5 finally, although expected to be the most appropriate for
optimizations, yields the worst results. Looking at the trace we see different
things: First, the clients show one single call only, where you cannot detect any
details. Second, the servers exhibit a cyclic behavior of inactivity followed by a
well synchronized block of write events. This is due to the two-phase optimization
protocol in ROMIO. It first exchanges data to be written between processes such
that they have a contiguous chunk of data (phase one). It uses low level message
passing calls for this purpose. We cannot see them in forms of events at the
client level as there is no instrumentation available in the library for these calls.
However, the inactivity at the servers reveals it. The data is now written by the
clients as a contiguous chunk to disk (phase two). As ROMIO uses by default an
internal 4MByte buffer and each client transfers 50MByte we see 13 blocks of
write operations at each server. The last block writes 2 MByte to disk, all others
4MByte. This inefficiency is caused by a combination of buffer size, data access
pattern, and network speed. Further investigations have to be conducted here.

6 Conclusion and Future Work

The PIOViz environment supports the combined tracing of MPI client processes
and PVFS I/O server processes. Traces are merged together, adjusted with re-
spect to timing information, and annotated to present causal relations between
client and server activities.

We conducted experiments with MPI-IO programs to analyse the effects of
different programming concepts onto overall performance of these parallel I/O
programs. We investigated individual and collective MPI calls accessing con-
tiguous and non-contiguous data regions. The resulting four levels of I/O are
handled differently by optimization algorithms in the ROMIO layer.

The traces of our PIOViz environment show many details about the client-
server cooperation that are not at all visible with the regular Jumpshot tool.
Many performance issues can now be well explained and understood. This new
knowledge will lead to better I/O optimization mechanisms in the future.

Our next steps in this project will be to integrate also performance counter
values into the traces and thus get even more insight into CPU, disk, and network

222 T. Ludwig et al.

performance issues. The tools will also be applied to real applications to support
the tuning of their I/O concepts.

References

1. APART (Homepage), http://www.kfa-juelich.de/apart/
2. Gropp, W., Lusk, E., Thakur, R.: Using MPI-2 — Advanced Features of the

Message-Passing Interface. The MIT Press, Cambridge (1999)
3. Intel Trace Analyzer & Collector (Home page), http://www.intel.com/cd/

software/products/asmo-na/eng/cluster/tanalyzer/
4. Vampir (Home page), http://www.vampir.eu/
5. Krempel, S.: Tracing Connections Between MPI Calls and Resulting PVFS2 Disk

Operations, Bachelor’s Thesis, Ruprecht-Karls-Universität Heidelberg, Germany
(2006)

6. Kunkel, J., Ludwig, T.: Performance Evaluation of the PVFS2 Architecture. In:
Proceedings of the PDP, Naples, Italy (2007)

7. Ludwig, T., et al.: Tracing the MPI-IO Calls’ Disk Accesses. In: European
PVM/MPI User’s Group Meeting, Bonn, Germany, pp. 322–330. Springer, Berlin
(2006)

8. Ludwig, T.: Research Trends in High Performance Parallel Input/Output for Clus-
ter Environments. In: Proceedings of the 4th International Scientific and Practical
Conference on Programming UkrPROG’2004, National Academy of Sciences of
Ukraine, Kiev, Ukraine pp. 274–281 (2004)

9. Miller, B.P., et al.: The Paradyn Parallel Performance Measurement Tool. IEEE
Computer. Special issue on performance evaluation tools for parallel and distrib-
uted computer systems 28(11), 37–46 (1995)

10. MPICH2 home page (Home page).
http://www-unix.mcs.anl.gov/mpi/mpich2/index.htm

11. Panse, F.: Extended Tracing Capabilities and Optimization of the PVFS2 Event
Logging Management, Diploma Thesis, Ruprecht-Karls-Universität Heidelberg,
Germany (2006)

12. Paradyn Parallel Performance Tools (Home page),
http://www.paradyn.org/index.html

13. Performance Visualization for Parallel Programs (Home page),
http://www-unix.mcs.anl.gov/perfvis/

14. Shende, S., Malony, A.: The Tau Parallel Performance System. International Jour-
nal of High Performance Computing Applications 20, 287–311 (2006)

15. TAU – Tuning and Analysis Utilities (Home page),
http://www.cs.uoregon.edu/research/tau/

16. Thakur, R., Lusk, E., Gropp, W.: Users Guide for ROMIO: A High-Performance,
Portable MPI-IO Implementation. Technical Memorandum ANL/MCS-TM-234,
Mathematics and Computer Science Division, Argonne National Laboratory, Re-
vised (July 1998)

17. The Parallel Virtual File System – Version 2 (Home page),
http://www.pvfs.org/pvfs2/

18. The PVFS2 Development Team: PVFS2 Internal Documentation included in the
source code package (2006)

19. Withanage, D.: Performance Visualization for the PVFS2 Environment, Bachelor’s
Thesis, Ruprecht-Karls-Universität Heidelberg, Germany (November 2005)

http://www.kfa-juelich.de/apart/
http://www.intel.com/cd/software/products/asmo-na/eng/cluster/tanalyzer/
http://www.intel.com/cd/software/products/asmo-na/eng/cluster/tanalyzer/
http://www.vampir.eu/
http://www-unix.mcs.anl.gov/mpi/mpich2/index.htm
http://www.paradyn.org/index.html
http://www-unix.mcs.anl.gov/perfvis/
http://www.cs.uoregon.edu/research/tau/
http://www.pvfs.org/pvfs2/

Extending the MPI-2 Generalized Request

Interface

Robert Latham, William Gropp, Robert Ross, and Rajeev Thakur

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA
{robl,gropp,rross,thakur}@mcs.anl.gov

Abstract. The MPI-2 standard added a new feature to MPI called gen-
eralized requests. Generalized requests allow users to add new nonblock-
ing operations to MPI while still using many pieces of MPI infrastructure
such as request objects and the progress notification routines (MPI Test,
MPI Wait). The generalized request design as it stands, however, has de-
ficiencies regarding typical use cases. These deficiencies are particularly
evident in environments that do not support threads or signals, such as
the leading petascale systems (IBM Blue Gene/L, Cray XT3 and XT4).
This paper examines these shortcomings, proposes extensions to the in-
terface to overcome them, and presents implementation results.

1 Introduction

In a message-passing environment, a nonblocking communication model often
makes a great deal of sense. Implementations have flexibility in optimizing com-
munication progress; and, should asynchronous facilities exist, computation can
overlap with the nonblocking routines.

MPI provides a host of nonblocking routines for independent communication,
and MPI-2 added nonblocking routines for file I/O. When callers post nonblock-
ing MPI routines, they receive an MPI request object, from which the state of
the nonblocking operation can be determined. Generalized requests, added as
part of the MPI-2 standard [1], provide a way for users to define new nonblock-
ing operations. Callers of these user-defined functions receive a familiar request
object and can use the same test and wait functions as a native request object. A
single interface provides a means to test communication, I/O, and user-defined
nonblocking operations.

Generalized requests, unfortunately, are difficult to use in some environments.
Our experience with generalized requests comes from using them to implement
nonblocking I/O in the widely available ROMIO MPI-IO implementation [2].

In the absence of generalized requests, ROMIO defines its own ROMIO-
specific request objects to keep track of state in its nonblocking MPI-IO routines.
With these custom objects, ROMIO does not need to know the internals of a

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 223–232, 2007.
c© Argonne National Laboratory 2007

224 R. Latham et al.

given MPI implementation. The usual MPI request processing functions, how-
ever, cannot operate on ROMIO’s custom objects, so ROMIO must also export
its own version of the MPI test and wait routines (MPIO TEST, MPIO WAIT, etc.).
Moreover, these custom objects and routines are not standards-conformant.

With the implementation of MPI-2 on many more platforms now, ROMIO
can use generalized requests instead of custom requests and functions. General-
ized requests allow ROMIO to adhere to the MPI standard and provide fewer
surprises to users of ROMIO’s nonblocking routines. Unfortunately, the current
definition of generalized requests makes it difficult (or in some instances im-
possible) to implement truly nonblocking I/O. To carry out asynchronous I/O
with generalized requests, ROMIO must spawn a thread or set up a signal han-
dler that can then test and indicate an asynchronous operation has completed.
Since threads or signal handlers cannot be used in all environments, however,
an alternative approach is desireable.

In this work we examine the shortcomings of the existing generalized request
system, propose improvements to the generalized request design, and discuss the
benefits these improvements afford.

2 MPI Requests vs. Generalized Requests

The MPI standard addresses the issue of progress for nonblocking operations
in Section 3.7.4 of [3] and Section 6.7.2 of [1]. MPI implementations have some
flexibility in how they interpret these two sections. The choice of a weak in-
terpretation (progress occurs only during MPI calls) or a strict interpretation
(progress can occur at any point in time) has a measurable impact on perfor-
mance, particularly when the choice of progress model affects the amount of
overlap between computation and communication [4].

The MPI-2 standard addresses the issue of progress for generalized requests
by defining a super-strict model in which no progress can be made during an
MPI call. When creating generalized requests, users must ensure all progress
occurs outside of the context of MPI.

Here’s how one uses generalized requests to implement a new nonblocking op-
eration. The new operation calls MPI GREQUEST START to get an MPI request ob-
ject. After the operation has finished its task, a call to MPI GREQUEST COMPLETE
marks the request as done. However, the completion call will never be invoked
by any MPI routine. All progress for a generalized request must be made outside
of the MPI context. Typically a thread or a signal handler provides the means
to make progress.

When we used generalized requests to implement nonblocking I/O routines in
ROMIO, we found this super-strict progress model limiting. In many situations
we do not want to or are unable to spawn a thread. Moreover, we recognized
that we could effectively apply generalized requests to more situations if we
could relax the progress model. We could also achieve a greater degree of overlap
between computation and file I/O.

Extending the MPI-2 Generalized Request Interface 225

3 Asynchronous File I/O

To illustrate the difficulties using generalized requests with ROMIO, we use
asynchronous file I/O as an example. The most common model today is POSIX
AIO [5], but Win32 Asynchronous I/O [6] and the PVFS nonblocking I/O in-
terfaces [7] share a common completion model with POSIX AIO.

Table 1. Typical functions for several AIO interfaces

POSIX AIO Win32 AIO PVFS v2

Initiate aio write WriteFileEx PVFS isys write
Test aio error SleepEx PVFS sys test
Wait aio suspend WaitForSingleObjectEx PVFS sys wait
Wait (all) aio suspend WaitForMultipleObjectsEx PVFS sys waitall

In Table 1 we show a few of the functions found in these three AIO interfaces.
The completion model looks much like that of MPI and involves two steps: post
an I/O request and then, at some point, test or wait for completion of that
request. After posting I/O operations, a program can perform other work while
the operating system asynchronously makes progress on the I/O request. The
operating system has the potential to make progress in the background though
all work could occur in either the initiation or the test/wait completion call.
This model lends itself well to programs with a single execution thread.

We note that POSIX AIO does define an alternative mechanism to indicate
completion via real-time signals. This signal-handler method fits well only with
POSIX AIO, however. Neither the other AIO interfaces nor other situations
where work is occurring asynchronously can make effective use of signals, and
so we will not consider them further.

4 Generalized Request Deficiencies

ROMIO, one of the earliest and most widely deployed MPI-IO implementations,
has portability as a major design goal. ROMIO strives to work with any MPI
implementation and on all platforms. Because of this portability requirement,
ROMIO cannot always use threads. While POSIX threads are available on many
platforms, they are notably not available on the Blue Gene/L or the Cray XT3
and XT4 machines, for example.

As discussed in Section 2, the requirement of a super-strict progress model
for generalized requests makes it difficult to create new nonblocking operations
without spawning a thread. Under this super-strict progress model, common
asynchronous I/O interfaces have no good thread-free mechanism by which to
invoke their completion routine.

Consider the code fragment in Figure 1 implementing MPI File iwrite. If the
implementation wishes to avoid spawning a thread, it must block: there is no
other way to invoke aio suspend and MPI Grequest complete yet, a thread or

226 R. Latham et al.

MPI_File_iwrite (..., *request) {
struct aiocb write_cb = { ... }

aio_write (& write_cb)
MPI_Grequest_start (..., request)
aio_suspend (write_cb , 1, MAX_INT)
MPI_Grequest_complete (request)
return;

}

Fig. 1. A thread-free way to use generalized requests. In the current generalized request
design, the post and the test for completion of an AIO operation and the call to
MPI GREQUEST COMPLETE must all happen before the routine returns. Future MPI Wait
routines will return immediately as the request is already completed.

signal handler is unnecessary in the file AIO case: the operating system takes care
of making progress. This pseudocode is not a contrived example. It is essentially
the way ROMIO must currently use generalized requests. The current generalized
request design needs a way for the MPI test and wait routines to call a function
that can determine completion of such AIO requests.

Other Interfaces. In addition to AIO, other interfaces might be able to make use
of generalized requests were it not for portability issues. Coupled codes, such as
those used in weather forecasting, need a mechanism to poll for completion of var-
ious model components. This mechanism could use generalized requests to initi-
ate execution and test for completeness. Nonblocking collective communication
lends itself well to generalized requests as well, especially on architectures with
hardware-assisted collectives. These interfaces, however, must accommodate the
lack of thread support on Blue Gene/L and Cray XT series machines and cannot
use generalized requests in their current form if they wish to remain portable.

In this paper we suggest improvements to the generalized request interface.
We use asynchronous I/O as an illustrative example. However, the benefits would
apply to many situations such as those given above where the operating envi-
ronment can do work on behalf of the process.

5 Improving the Generalized Request Interface

As we have shown, AIO libraries need additional function calls to determine the
state of a pending operation. We can accommodate this requirement by extend-
ing the existing generalized request functions. We propose an MPIX GREQUEST
START function similar to MPI GREQUEST START, but taking an additional func-
tion pointer (poll fn) that allows the MPI implementation to make progress on
pending generalized requests. We give the prototype for this function in Figure 3
in the Appendix.

When the MPI implementation tests or waits for completion of a general-
ized request, the poll function will provide a hook for the appropriate AIO

Extending the MPI-2 Generalized Request Interface 227

completion function. It may be helpful to illustrate how we imagine an MPI
implementation might make use of this extension for the test and wait rou-
tines ({MPI TEST,MPI WAIT}{,ALL,ANY,SOME}). All cases begin by calling the
request’s user-provided poll fn. For the wait routines, the program continues
to call poll fn until either at least one request completes (wait, waitany, wait-
some) or all requests complete (wait, waitall).

An obvious defect of this approach is that the MPI WAIT{ANY/SOME/ALL} and
MPI WAIT functions must poll (i.e., busy wait). The problem is that we do not
have a single wait function that we can invoke. In Section 7 we provide a partial
solution to this problem.

6 Results

We implemented MPIX GREQUEST START in an experimental version of MPICH2
[8] and modified ROMIO’s nonblocking operations to take advantage of this ex-
tension. Without this extension, ROMIO still uses generalized requests, but does
so by carrying out the blocking version of the I/O routine before the nonblocking
routine returns. With the extension, ROMIO is able to initiate an asynchronous
I/O operation, use generalized requests to maintain state of that operation, and
count on our modified MPICH2 to invoke the completion routine for that asyn-
chronous I/O operation during test or wait. This whole procedure can be done
without any threads in ROMIO.

Quantifying performance of a nonblocking file operation is not straightfor-
ward. Ideally, both the I/O and some unit of work execute concurrently and
with no performance degradation. Capturing both performance and this mea-
sure of “overlap” can be tricky.

Nonblocking writes introduce an additional consideration when measuring
performance. Write performance has two factors: when the operating system
says the write is finished, and when the write has been flushed from buffers to
disk. Benchmark results for both old and new MPICH2 implementations look
quite similar, since MPI FILE SYNC dominates the time for both implementations.
We will therefore focus on performance of the more straightforward read case.

We used the Intel R©MPI Benchmarks package [9]. Our results are for “op-
tional” mode, only because we increased the maximum message size from 16
MB to 512 MB in order to see how performance varied across a wider scale of
I/O sizes. Our test platform is a dual dual-core Opteron (4 cores total), writing
to a local software RAID-0 device.

We depict the results of the P IreadPriv benchmark in Figure 2(a)
(2 processes) and Figure 2(b) (4 processes). This MPI-IO test measures non-
blocking I/O performance when each process reads data from its own file (i.e.,
one file per process) while a synthetic CPU-heavy workload runs concurrently.
The benchmark varies the size of the nonblocking I/O requests while keeping the
CPU workload fixed (0.1 seconds). 1 When comparing two MPI implementations,
1 This benchmark computes an “overlap” factor, but the computation in this case
gave odd and inconsistent results.

228 R. Latham et al.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 100 200 300 400 500 600

M
B

/s
ec

MiBytes

P_IRead_Priv (2proc)

Modified
Stock

(a) 2 Processes

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

M
B

/s
ec

MiBytes

P_IRead_Priv (4proc)

Modified
Stock

(b) 4 Processes

Fig. 2. P IRead Priv test with two MPI processes. “Stock” depicts standard (blocking)
generalized requests. “Modified” shows performance with our improvements.

we found computing the effective bandwidth at a given request size yielded a
useful metric for evaluating relative overlap. “Effective bandwidth” in this case
means the size of a request divided by the (inclusive) time taken to post the
request, run the CPU-heavy workload, and detect completion of that request.
Higher effective bandwidth means a higher degree of overlap between I/O and
computation.

Both graphs have three regions of interest. For small I/O sizes, true nonblock-
ing operations give little if any benefit. As the amount of I/O increases, however,
effective bandwidth increases when the MPI implementation can carry out I/O
asynchronously. Asynchronous I/O benefits most — nearly three times at peak
— if there are spare CPUs, but even in the fully subscribed case we see almost a
doubling of peak performance. At large enough request sizes, the amount of I/O
dwarfs the fixed amount of computation, limiting the opportunities for I/O and
computation to overlap. Even so, asynchronous I/O on this platform appears to
benefit significantly from the unused cores in the two-process case. We suspect
polling in the MPI implementation might have an impact on I/O performance.
In Section 7 we propose a refinement that can limit busy-waiting.

We note that the work described in this paper enables asynchronous I/O.
Whether asynchronous I/O is beneficial or not depends on many factors, such
as application workload and the quality of a system’s AIO libraries. Finding
the ideal balance in overlapping I/O and computation is a fascinating area of
research but is beyond the scope of this paper.

7 Further Improvements: Creating a Generalized Request
Class

With this simple extension to generalized requests we have already achieved
our main goals: ROMIO has a hook by which it can determine the status of a
pending AIO routine, and can do so without spawning a thread. If we observe

Extending the MPI-2 Generalized Request Interface 229

that generalized requests are created with a specific task in mind, we can further
refine this design.

In the AIO case, all callers are going to use the same test and wait routines.
In POSIX AIO, for example, a nonblocking test for completion of an I/O op-
eration (read or write) can be carried out with a call to aio error, looking
for EINPROGRESS. AIO libraries commonly provide routines to test for comple-
tion of multiple AIO operations. The libraries also have a routine to block until
completion of an operation, corresponding to the MPI WAIT family.

We can give implementations more room for optimization if we introduce
the concept of a generalized request class. MPIX GREQUEST CLASS CREATE would
take the generalized request query, free, and cancel function pointers already
defined in MPI-2 along with our proposed poll function pointer. The routine
would also take a new “wait” function pointer. Initiating a generalized re-
quest then reduces to instantiating a request of the specified class via a call
to MPIX GREQUEST CLASS ALLOCATE. Prototypes for these routines are given in
Figure 4 in the Appendix.

At first glance this may appear to be just syntax: why all this effort just to
save passing two pointers? One answer is that in ROMIO’s use of generalized
requests, the query, free, and cancel methods are reused multiple times; Hence,
a generalized request class would slightly reduce duplicated code.

A more compelling answer lies in examining how to deal with polling. By
creating a class of generalized requests, we give implementations a chance to
optimize the polling strategy and minimize the amount of time consuming CPU
while waiting for request completion.

Refer back to Figure 2(b), where the unmodified, blocking MPICH2 outper-
forms the modified MPICH2 at the largest I/O request size. At this point, I/O
takes much longer to compute than the computation. All available CPUs are
executing the benchmark and polling repeatedly inside MPI Waitall until the
I/O completes. The high CPU utilization, aside from doing no useful work, also
appears to be interfering with the I/O transfer.

Our proposed generalized request class adds two features that together solve
the problem of needlessly consuming CPU in a tight testing loop. First, we
introduce wait fn, a hook for a blocking function that can wait until completion
of one or more requests. If multiple generalized requests are outstanding, an
implementation cannot simply call a user-provided wait routine (created with a
specific generalized request in mind) on all of them. If all the outstanding requests
are of the same generalized request class, however, the implementation might be
able to pass several or even all requests to a user-provided wait routine, which
in turn could complete multiple nonblocking operations. By avoiding repeated
polling and aggregating multiple requests, our generalized request class thus can
make processing user-defined nonblocking operations more efficient, particularly
in those MPI functions such as MPI WAITALL that take multiple requests.

Generalized request classes also open the door for the MPI implementation to
learn more about the behavior of these user-provided operations, and potentially
adapt. We imagine that an MPI implementation could keep timing information

230 R. Latham et al.

or other statistics about a class of operations and adjust timeouts or otherwise
inform decisions in the same way Worringen automatically adjusts MPI-IO hints
in [10]. Implementations cannot collect such statistics without a request class,
since those implementations can glean meaningful information only by looking
at generalized requests implementing a specific feature.

8 Conclusions

Generalized requests in their current form do much to simplify the process of
creating user-provided nonblocking operations. By tying into an implementa-
tion’s request infrastructure, users avoid reimplementing request bookkeeping.
Unfortunately, while generalized requests look in many ways like first-class MPI
request objects, the super-strict progress model hinders their usefulness. Whereas
an MPI implementation is free to make progress for a nonblocking operation in
the test or wait routine, generalized requests are unable to make progress in
this way. This deficiency manifests itself most when interacting with common
asynchronous I/O models, but it is also an issue when offloading other system
resources.

We have presented a basic extension to the generalized request design as
well as a more sophisticated class-based design. In reviewing the MPI Forum’s
mailing list discussions about generalized requests, we found early proposals
advocating an approach similar to ours. A decade of implementation experience
and the maturity of AIO libraries show that these early proposals had merit
that perhaps went unrecognized at the time. For example, at that time it was
thought that using threads would solve the progress problem, but today we are
faced with machines for which threads are not an option.

Our extensions would greatly simplify the implementation of nonblocking I/O
operations in ROMIO or any other library trying to extend MPI with custom
nonblocking operations. Class-based approaches to making progress on oper-
ations would alleviate some of the performance concerns of using generalized
requests.

Unlike many MPI-2 features, generalized requests have seen neither wide-
spread adoption nor much research interest. We feel the extensions proposed in
this paper would make generalized requests more attractive for library writers
and for those attempting to use MPI for system software, in addition to opening
the door for additional research efforts.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357.

Extending the MPI-2 Generalized Request Interface 231

References

1. The MPI Forum: MPI-2: Extensions to the message-passing interface. The MPI
Forum (July 1997)

2. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with high
performance. In: Proceedings of the Sixth Workshop on Input/Output in Parallel
and Distributed Systems, pp. 23–32 (1999)

3. Message Passing Interface Forum: MPI: A message-passing interface standard.
Technical report (1994)

4. Brightwell, R., Riesen, R., Underwood, K.: Analyzing the impact of overlap, offload,
and independent progress for MPI. The International Journal of High-Performance
Computing Applications 19(2), 103–117 (2005)

5. IEEE/ANSI Std. 1003.1: Single UNIX specification, version 3 (2004 edition)
6. Microsoft corporation: Microsoft Developer Network Online Documentation (ac-

cessed 2007), http://msdn.microsoft.com
7. PVFS development team: The PVFS parallel file system (accessed 2007),

http://www.pvfs.org/
8. MPICH2 development team: MPICH2. http://www.mcs.anl.gov/mpi/mpich2
9. Intel GmbH: Intel MPI benchmarks. http://www.intel.com
10. Worringen, J.: Self-adaptive hints for collective I/O. In: Proceedings of the 13th

European PVM/MPI User’s Group, Bonn, Germany, pp. 202–211 (2006)

Appendix: Function Prototypes

In this paper we have proposed several new MPI routines. Figure 3 and Figure 4
give the C prototypes for these routines.

int MPIX_Grequest_start (
MPI_Grequest_query_function *query_fn ,
MPI_Grequest_free_function *free_fn ,
MPI_Grequest_cancel_function *cancel_fn ,
MPIX_Grequest_poll_function *poll_fn ,
void *extra_state ,
MPI_Request *request)

typedef int MPIX_Grequest_poll_fn (
void *extra_state ,
MPI_Status *status);

Fig. 3. Prototypes for generalized request poll extension

http://msdn.microsoft.com
http://www.pvfs.org/
http://www.mcs.anl.gov/mpi/mpich2
http://www.intel.com

232 R. Latham et al.

typedef int MPIX_Grequest_wait_fn (
int count ,
void *array_of_states ,
double timeout ,
MPI_Status *status);

int MPIX_Grequest_class_create(
MPI_Grequest_query_function *query_fn ,
MPI_Grequest_free_function *free_fn ,
MPI_Grequest_cancel_function ,
MPIX_Grequest_poll_fn ,
MPIX_Grequest_wait_fn ,
MPIX_Request_class *greq_class);

int MPIX_Grequest_class_allocate(
MPIX_Request_class greq_class ,
void *extra_state
MPI_Request *request)

Fig. 4. Prototypes for generalized request classes and blocking wait function

Transparent Log-Based Data Storage in MPI-IO

Applications

Dries Kimpe1,2, Rob Ross3, Stefan Vandewalle1,
and Stefaan Poedts2

1 Technisch-Wetenschappelijk Rekenen, K.U.Leuven,
Celestijnenlaan 200A, 3001 Leuven, België

Dries.Kimpe@cs.kuleuven.be
2 Centrum voor Plasma-Astrofysica, K.U.Leuven,

Celestijnenlaan 200B, 3001 Leuven, België
3 Argonne National Laboratory,

9700 S Cass Ave, 60439 Argonne, IL

Abstract. The MPI-IO interface is a critical component in I/O software
stacks for high-performance computing, and many successful optimiza-
tions have been incorporated into implementations to help provide high
performance I/O for a variety of access patterns. However, in spite of
these optimizations, there is still a large performance gap between ”easy”
access patterns and more difficult ones, particularly when applications
are unable to describe I/O using collective calls.

In this paper we present LogFS, a component that implements log-
based storage for applications using the MPI-IO interface. We first dis-
cuss how this approach allows us to exploit the temporal freedom present
in the MPI-IO consistency semantics, allowing optimization of a variety
of access patterns that are not well-served by existing approaches. We
then describe how this component is integrated into the ROMIO MPI-IO
implementation as a stackable layer, allowing LogFS to be used on any
file system supported by ROMIO. Finally we show performance results
comparing the LogFS approach to current practice using a variety of
benchmarks.

1 Introduction

Dealing with complex I/O patterns remains a challenging task. Despite all op-
timizations, there is still a huge difference in I/O performance between simple
(contiguous) and complex (non-contiguous) access patterns [2] This difference
can be attributed to physical factors (non-contiguous patterns typically cause
read-modify-write sequences and require time-consuming seek operations) and to
software issues (complex patterns require more memory and processing). Recent
papers concentrated on reducing the software overhead associated with process-
ing complex I/O patterns [4,5,6].

In computational science defensive I/O is common: applications write check-
points in order to provide a way to rollback in the event that a system fail-
ure terminates the application prematurely. In the event that an application

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 233–241, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

234 D. Kimpe et al.

successfully executes for an extended period, these checkpoints may never ac-
tually be read. So while the application might exhibit complex access patterns
during checkpoint write, if we can defer the processing of the complex pattern,
we might attain much higher throughputs than otherwise possible. Of course,
some mechanism must be available for post-processing the complex pattern in
the event that the data is read, ideally with little or no additional overhead. If
this post-processing mechanism is fast enough, this approach could be used as a
general-purpose solution as well.

The MPI-IO interface is becoming the standard mechanism for computational
science applications to interact with storage, either directly or indirectly via high-
level libraries such as HDF5 and Parallel netCDF [9]. This makes the MPI-IO
implementation an ideal place to put I/O optimizations. The MPI-IO default
consistency semantics are more relaxed than the traditional POSIX semantics
that most file systems strive to implement. In particular, the MPI-IO default
semantics specify that only local changes are visible to an application process
until an explicit file synchronization call is made. This aspect of the standard
will enable us to further optimize our implementation.

In this paper we present LogFS, an extension to the ROMIO MPI-IO im-
plementation [1] designed to provide log-based storage of file data in parallel
applications. The functionality is provided transparently to the user, it follows
the MPI-IO consistency semantics, and a mechanism is provided for reconsti-
tuting the canonical file so that UNIX applications can subsequently access the
file. In Section 2 we describe the LogFS approach. In Section 3 we show how
this approach has significant performance benefits in write-heavy workloads. In
Section 4 we conclude and discuss future directions for this work.

1.1 Related Work

Two groups are actively pursuing research in MPI-IO optimizations that are rel-
evant to this work. The group at Northwestern University has been investigating
mechanisms for incorporating cooperative caching into MPI-IO implementations
to provide what is effectively a large, shared cache. They explore using this cache
for both write-behind, to help aggregate operations, and to increase hits in read-
heavy workloads [12,13]. Our work is distinct in that we allow our “cache” to spill
into explicit log files, and we perform this caching in terms of whole accesses rather
than individual pages or blocks. Their implementations to date have also relied
on the availability of threads, MPI-2 passive-target one-sided communication, or
the Portals interface, limiting applicability until passive-target operations become
more prevalent on large systems. Our work does not have these requirements.

Yu et. al. have been investigating mechanisms for improving parallel I/O per-
formance with the Lustre file system. Lustre includes a feature for joining previ-
ously created files together into a new file. They leverage these features to create
files with more efficient striping patterns, leading to improved performance [11].
Their observations on ideal stripe widths could be used to tune stripe widths
for our log files or to improve the ration of creation of the final canonical file on
systems using Lustre.

Transparent Log-Based Data Storage in MPI-IO Applications 235

2 LogFS

The LogFS extension to ROMIO provides independent, per-process write logging
for applications accessing files via MPI-IO. On each process, logging is separated
into a log file containing the data to be written, called the datalog and a log file
holding metadata about these writes such as location and epoch, called the meta-
log. A global logfs file is stored while the file is in log format and maintains a list of
the datalogs and metalogs. Together these files maintain sufficient data that the
correct contents of the file can be generated at any synchronization point.

The logfs file is initially created using MPI MODE EXCL and MPI MODE CREATE.
Note that in a production implementation we would need to manage access to
this file so that the file was open by only one MPI application if logging was in
progress. This could be managed using an additional global lockfile.

The datalog and metalog files are opened independently with MPI COMM SELF
and are written sequentially in contiguous blocks, regardless of the application’s
write pattern, hiding any complexity in the write pattern and deferring the
transformation of the data into the canonical file organization (i.e. the traditional
POSIX file organization) until a later time.

The data logfile contains everything written to the file by the corresponding
process. Data is written in large contiguous blocks corresponding to one or more
MPI-IO write operations. This lends itself to high performance on most parallel
file systems, because there is no potential for write lock contention.

The metadata logfile records, for every write operation by the process, the file
offset (both in the real file and in the datalog) and the transfer size. In addition to
write operations, the metadata log also tracks MPI File sync, MPI File set size
and MPI File set view. However, this is done in a lazy fashion: only changes actu-
ally needed to accurately replay the changes are stored. Calling sequences without
effect to the final file, such as repeatedly changing the file view without actually
writing to the file, are not recorded in the metalog. Of these operations, all have a
fixed overhead, except for MPI File set view. Currently, datatypes are stored as
lists of 〈offset, size〉 pairs.

It was observed in early parallel I/O studies that parallel applications often
perform many, small, independent I/O operations [10]. This type of behavior con-
tinues today, and in some cases high-level I/O libraries can contribute through
metadata updates performed during I/O. Keeping this in mind, LogFS can ad-
ditionally use a portion of local memory for aggregation of log entries. This
aggregation allows LogFS to more efficiently manage logging of I/O operations
and convert many small I/O operations into a fewer number of larger contiguous
ones, again sequential in file.

2.1 Creating the Canonical File for Reading

By default, LogFS tries to postpone updating the canonical file for as long as
possible. In some situations, such as files opened in write-only mode, even closing
the file will not necessarily force a replay. This allows for extremely efficient
checkpointing.

236 D. Kimpe et al.

When a LogFS file is opened in MPI MODE RDONLY, the canonical file is au-
tomatically generated if logs are still present. The canonical file is generated
through a collective “replay” of the logs. In our implementation we assume that
the number of replay processes is the same as the original number of writer
processes, but replay processes could manage more than one log at once.

Replay occurs in epochs corresponding to writes that occur between synchro-
nization points. By committing all writes from one epoch before beginning the
next, we are able to correctly maintain MPI-IO consistency semantics without
tracking the timing of individual writes. Each process creates an in memory
rtree[8], a spatial data structure allowing efficient range queries. Replayers move
through the metalog, updating their rtree with the location of the written data
in the datalog. When the replayer hits the end of an epoch or the processed data
reaches a certain configurable size, the replayer commits these changes to the
canonical file. To accomplish a commit, the replayer process reads the data from
the datalog into a local buffer, calls MPI File set view to define the region(s)
in the canonical file to modify, then calls MPI File write all to modify the
region(s). Processes use MPI Allreduce between commits to allow all processes
to complete one epoch before beginning the next. This approach to replay al-
ways results in large, collective I/O operations, allowing any underlying MPI-IO
optimizations to be used to best effect [7].

This also enables the user to only replay those files that are actually needed.
With this system, LogFS is transparent to all applications using MPI-IO; re-
play will happen automatically when needed. However, it is often the case that
post-processing tools are not written using MPI-IO. In the climate community,
for example, Parallel netCDF is often used to write datasets in parallel using
MPI-IO, but many post-processing tools use the serial netCDF library, which is
written to use POSIX I/O calls. For those situations, a small stand-alone utility
is provided that can force the replay of a LogFS file.

An additional MPI-IO hint, replay-mode is understood by the LogFS-enabled
ROMIO. When this is set to “replay-on-close”, replay is automatically performed
when a LogFS file is closed after writing. The stand-alone tool simply opens the
LogFS file for writing with this hint set, then closes the file. Note that with this
approach as many processes as originally wrote the LogFS file may be used to
replay in parallel.

2.2 Mixed Read and Write Access

The LogFS system is obviously designed for situations where writes and reads
are not mixed. However, for generality we have implemented two mechanisms
for supporting mixed read and write workloads under LogFS.

When MPI MODE RDRW is selected for a file, MPI consistency semantics require
that a process is always able to read back the data it wrote; Unless atomic mode
is also enabled, data written by other processes only has to become visible after
MPI File sync is called (or after closing and re-opening the file, which performs
an implicit sync). If a user chooses both atomic mode and MPI MODE RDRW, LogFS

Transparent Log-Based Data Storage in MPI-IO Applications 237

optimizations are not appropriate, and we will ignore that case in the remainder
of this work.

In order to guarantee that data from other processes is visible at read time,
we replay local logs on each process at synchronization points. Replay consists
of local independent reads of logs followed by collective writes of this data in
large blocks. This has the side-effect of converting all types of application access
(independent or collective, contiguous or noncontiguous) into collective accesses,
increasing performance accordingly [7].

We have two options for guaranteeing that data written locally is returned
on read operations prior to synchronization. A simple option is for processes to
ensure that the canonical file is up-to-date on read; this may be accomplished
by performing a local replay in the event of a read operation. In this case,
only the first read operation will be slow, all subsequent reads will continue at
native speeds. However, this method performs badly with strongly mixed I/O
sequences; Frequent reads force frequent log replays, and the efficiency of write
aggregation diminishes with increased replay frequencies.

Another option is for each process to track regions written locally since the last
sync operation. If those regions overlap with parts of a read request, data needs
to be read from the datalog. Accesses to unchanged regions may be serviced
using data from canonical file. If a very large number of writes occur, and the
memory cost of tracking each individual region becomes too high, we have the
option of falling back to our first option and completely replaying the local log,
removing the need to track past regions.

To efficiently track write regions during MPI MODE RDRW mode, every process
maintains an in-memory rtree at run-time. For every written region, the rtree
records the location of that data in the datalog of the process, and on every
write operation this rtree is updated, in a manner similar to the approach used
in replay.

The rtree then provides us with an efficient mechanism for determining if local
changes have been made since the last synchronization, and if so, where that data
is located in the datalog. With this scheme a read request gets transformed by
LogFS into at most two read operations; one to read data from the datalog, and
one to read any remaining data from the canonical file.

Unfortunately, tracking all affected regions in long-living files with lots of
fragmented write accesses can lead to large rtree descriptions. In these cases we
are forced to either update the canonical file with local changes, to shrink the
rtree, or stop tracking writes all together and fall back to our original option.

2.3 Implementing in ROMIO

LogFS is implemented as a component integrated into ROMIO[1]. ROMIO in-
corporates an interface for supporting multiple underlying file systems called
ADIO. We prototyped two approaches for implementing LogFS.

LogFS ADIO Implementation. The first approach was to implement LogFS
as a new ADIO component. In this approach LogFS appears as a new file system

238 D. Kimpe et al.

type, but internally it makes use of some other ADIO implementation for per-
forming file I/O. For example, a user opening a new file on a PVFS file system
using the “logfs:” prefix on their file name would create a new LogFS-style file
with logs and canonical file stored on the PVFS file system. A consequence of this
approach is that LogFS can be enabled on any filesystem supported by ROMIO,
and the file may be written in the usual “normal” data representation.

Under a strict interpretation of the MPI-IO standard, changes to a file in the
“normal” (or “external32”) data representation must be made visible to other
applications at synchronization points, unless the file is opened with MPI MODE
UNIQUE OPEN. To meet this strict interpretation of the standard, LogFS must
perform a full replay at synchronization points if unique open is not specified,
even when in write-only mode. This approach is only most effective when appli-
cations use the unique open mode.

LogFS as a Data Representation. Our second approach was to implement
LogFS as ROMIO’s “internal” data representation, a somewhat creative inter-
pretation of the internal data representation specification. To function as a data
representation, LogFS must intercept all file access operations. For this pur-
pose, a layering technique for ADIO components was developed which allowed
transparent interception of all ADIO methods.

When the user changes to our internal data representation (using MPI File
set view, the LogFS ADIO is layered on top of the active ADIO driver for the
file. One difference between this approach and the ADIO approach is that the
data representation may be changed through MPI File set view at any time,
so if the view is later restored to its original setting, the logfiles are immediately
replayed and the canonical file created.

According to the standard, the format of a file stored in the internal data
representation is not known. This means that we can force applications to open
the file and change the data representation back to “native” prior to access by
application not using MPI-IO. This hook allows us to avoid the need to replay
logs at synchronization points in the general case.

3 Performance Results

In this section we show results of experiments comparing the LogFS approach
to a stock ROMIO implementation (included in mpich 1.0.5p4). As the base
filesystem, PVFS[14] version 2.6.3 was used. The filesystem was configured to
use TCP (over gigabit ethernet) as network protocol, with 4 I/O servers and 1
metadataserver. For testing the filesystem, 16 additional nodes were used.

Before we present our results we will first quantitatively describe the overhead
incurred by our logging process.

3.1 Overhead

There is a certain amount of overhead introduced by first recording I/O oper-
ations in the logfiles. During the write-phase, overhead consists of meta data

Transparent Log-Based Data Storage in MPI-IO Applications 239

(describing the I/O operation) and actual data (the data to be written), both
stored in the logfiles. Likewise, during replay, everything read from the logfiles
can be considered overhead. Table 1 indicates per-operation overhead based on
the storage format described in 2.

Table 1. LogFS logfile overhead

Operation Log File Overhead
Metalog Datalog

MPI File write datalog offset, write offset (2x MPI OFFSET) datatype size × count
MPI File set view displacement(MPI OFFSET) + 0

etype(flatlist) + filetype(flatlist)
MPI File sync epoch number(MPI INT) 0

MPI File set size filesize(MPI OFFSET) 0

Many scientific applications perform regular checkpointing. Typically, only
the latest or a small number of checkpoints are kept; In this case, most of the
data written to the checkpoint file will never survive; it will be overwritten during
run-time or deleted shortly after the application terminates. Although all data
will be forced out to the datalog, in the event that data is overwritten it will
never be read again because a replay of the metalog will only keep track of the
most recent data.

In the worst case when data is not overwritten, all data will be read again
during replay. However, since data in the metalog is accessed sequentially and
in large blocks, these transfers typically reach almost full filesystem bandwidth.

3.2 Results

For testing, we choose the well known “noncontig” benchmark. Noncontig par-
titions the test file in vectors of a fixed size, allocating them in a round-robin
fashion to every CPU. This generates a non-contiguous regular strided access
pattern. Figure 1 shows how the LogFS write bandwidth compares to that of a
stock ROMIO implementation.

The results clearly show how LogFS is capable of transforming extremely
inefficient access patterns (such as the independent non-contiguous pattern in
the left figure) into faster ones. Using LogFS, a peak write bandwidth of approx.
300 MB/s is reached. Without LogFS, peak bandwidth is only approx. 20 MB/s
for collective access, and only around 2 MB/s for independent access.

To see how closely LogFS gets to the maximum write bandwidth possible, a
small test program (“contwrite”) was created that directly writes large blocks –
the same size of the write-combining buffers used in two-phase and LogFS – to
the filesystem. The results can be seen in Figure 1.

240 D. Kimpe et al.

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14 16

ba
nd

w
id

th
 (

M
B

/s
)

number of nodes

noncontig, directly on PVFS

collective
independent

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12 14 16

ba
nd

w
id

th
 (

M
B

/s
)

number of nodes

noncontig, using LogFS on PVFS

collective
independent

contwrite

Fig. 1. noncontig benchmark (vector count = 8388608)

4 Conclusions and Future Work

LogFS is capable of enhancing write performance of programs using complex file
access patterns. Its layered design and modest file system requirements allow
the approach to be employed on a wide variety of underlying file systems. For
application checkpoints that might never be read again, performance can be
improved by at least a factor of 10.

LogFS is primarily targeted at write-only (or write-heavy) I/O workloads.
However, much of the infrastructure implemented for LogFS may be reused to
implement independent per-process caching in MPI-IO. We are actively pursuing
this development. This approach provides write aggregation benefits, can trans-
form a larger fraction of I/O operations into collective ones, and has benefits
for read-only and read-write workloads. Similar to LogFS, per-process caching
doesn’t require MPI threads or passive-target one-sided MPI operations, mean-
ing that it can be implemented on systems such as the IBM Blue Gene/L [3]
and Cray XT3 that lack these features.

Currently, LogFS creates one logfile for every process opening the file. When
running on large numbers of processes, this leads to a huge amount of logfiles. To
avoid this, we are considering sharing logfiles between multiple processes. This
approach is complicated by the need for processes opening files in read/write
mode to “see” local changes between synchronization points, because this means
that multiple processes might need to read the same log files at runtime.

References

1. Thakur, R., Gropp, W., Lusk, E.: An Abstract-Device Interface for Implementing
Portable Parallel-I/O Interfaces. In: Proceedings of the 6th Symposium on the
Frontiers of Massively Parallel Computation, pp. 180–187 (1996)

2. Kimpe, D., Vandewalle, S., Poedts, S.: On the Usability of High-Level Parallel
IO in Unstructured Grid Simulations. In: Proceedings of the 13th EuroPVM/MPI
Conference, pp. 400–401 (2007)

Transparent Log-Based Data Storage in MPI-IO Applications 241

3. Allsopp, N., Follows, J., Hennecke, M., Ishibashi, F., Paolini, M., Quintero, D.,
Tabary, A., Reddy, H., Sosa, C., Prakash, S., Lascu, O.: Unfolding the IBM Es-
erver Blue Gene Solution. International Business Machines Corporation (Septem-
ber 2005)

4. Worringen, J., Traff, J., Ritzdorf, H.: Improving Generic Non-Contiguous File Ac-
cess for MPI-IO. In: Proceedings of the 10th EuroPVM/MPI Conference (2003)

5. Ross, R., Miller, N., Gropp, W.: Implementing Fast and Reusable Datatype
Processing. In: Proceedings of the 10th EuroPVM/MPI Conference (2003)

6. Hastings, A., Choudhary, A.: Exploiting Shared Memory to Improve Parallel I/O
Performance. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface. LNCS,
vol. 4192, Springer, Heidelberg (2006)

7. Thakur, R., Gropp, W., Lusk, E.: A case for using MPI’s derived datatypes to
improve I/O performance. In: Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing, San Jose, CA (1998)

8. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Pro-
ceedings of the ACM International Conference on Management of Data (SIGMOD),
ACM, New York (1984)

9. Li, J., Liao, W., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham, R.,
Siegel, A., Gallagher, B., Zingale, M.: Parallel netCDF: A High-Performance Sci-
entific I/O Interface. In: Proceedings of SC2003 (2003)

10. Purakayastha, A., Ellis, C., Kotz, D., Nieuwejaar, N., Best, M.: Characterizing
Parallel File-Access Patterns on a Large-Scale Multiprocessor. In: Proceedings of
the Ninth International Parallel Processing Symposium (1995)

11. Yu, W., Vetter, J., Canon, R., Jiang, S.: Exploiting Lustre File Joining for Effective
Collective IO. In: Seventh IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 2007), IEEE Computer Society Press, Los Alamitos (2007)

12. Coloma, K., Choudhary, A., Liao, W., Ward, L., Tideman, S.: DAChe: Direct
Access Cache System for Parallel I/O. In: the 2005 Proceedings of the International
Supercomputer Conference (2005)

13. Liao, W., Ching, A., Coloma, K., Choudhary, A., Kandemir, M.: Improving MPI In-
dependent Write Performance Using A Two-Stage Write-Behind Buffering Method.
In: the Proceedings of the Next Generation Software (NGS) Workshop, held in
conjunction with the 21th International Parallel and Distributed Processing Sym-
posium (IPDPS), Long Beach, California (2007)

14. Carns, P.H., Ligon, W.B., Ross, III.R.B., Thakur, R.: PVFS: A Parallel File System
For Linux Clusters. In: the Proceedings of the 4th Annual Linux Showcase and
Conference, Atlanta, GA, pp. 317–327 (2000)

Analysis of Implementation Options for

MPI-2 One-Sided

Brian W. Barrett1, Galen M. Shipman1, and Andrew Lumsdaine2

1 Los Alamos National Laboratory�, Los Alamos, NM 87545, USA
{bbarrett,gshipman}@lanl.gov

2 Indiana University��, Bloomington, IN 47405, USA
lums@osl.iu.edu

Abstract. The Message Passing Interface provides an interface for one-
sided communication as part of the MPI-2 standard. The semantics spec-
ified by MPI-2 allow for a number of different implementation avenues,
each with different performance characteristics. Within the context of
Open MPI, a freely available high performance MPI implementation, we
analyze a number of implementation possibilities, including layering over
MPI-1 send/receive and true remote memory access.

1 Introduction

The Message Passing Interface [1,2,3,4] (MPI) has been adopted by the high
performance computing community as the communication library of choice for
distributed memory systems. The original MPI specification provides for point-
to-point and collective communication, as well as environment management func-
tionality. The MPI-2 specification added dynamic process creation, parallel I/O,
and one-sided communication.

The MPI-2 one-sided specification allows for implementation over send/receive
or remote memory access (RMA) networks. Although this design feature has
been the source of criticism [5], it also ensures maximum portability, a goal
of MPI. The MPI-2 one-sided interface utilizes the concept of exposure and
access epochs to define when communication can be initiated and when it must
be completed. Explicit synchronization calls are used to initiate both epochs, a
feature which presents a number of implementation options, even when networks
support true RMA operations. This paper examines implementation options for
the one-sided interface within the context of Open MPI.

� Los Alamos National Laboratory is operated by Los Alamos National Security, LLC,
for the National Nuclear Security Administration of the U.S. Department of Energy
under contract DE-AC52-06NA25396. LA-UR-07-3197.

�� This work was supported by a grant from the Lilly Endowment and National Science
Foundation grants EIA-0202048 and ANI-0330620.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 242–250, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Analysis of Implementation Options for MPI-2 One-Sided 243

2 Related Work

A number of MPI implementations provide support for the one-sided interface.
LAM/MPI [6] provides an implementation layered over point-to-point, although
it does not support passive synchronization and performance generally does not
compare well with other MPI implementations. Sun MPI [7] provides a high
performance implementation, although it requires all processes be on the same
machine and the use of MPI ALLOC MEM for optimal performance. The NEC
SX-5 MPI implementation includes an optimized implementation utilizing the
global shared memory available on the platform [8]. The SCI-MPICH implemen-
tation provides one-sided support using hardware reads and writes [9].

MPICH2 [10] includes a one-sided implementation implemented over point-to-
point and collective communication. Lock/unlock is supported, although the pas-
sive side must enter the library to make progress. The synchronization primitives
in MPICH2 are significantly optimized compared to previous MPI implemen-
tations [11]. MVAPICH2 [12] extends the MPICH2 one-sided implementation
to utilize InfiniBand’s RMA support. MPI PUT and MPI GET communication
calls translate into InfiniBand put and get operations for contiguous datatypes.
MVAPICH2 has also examined using native InfiniBand for Lock/Unlock syn-
chronization [13].

3 Open MPI Architecture

Open MPI [14] is a complete, open-source MPI implementation. The project is
developed as a collaboration between a number of academic, government, and
commercial institutions, including Indiana University, University of Tennessee,
Knoxville, University of Houston, Los Alamos National Laboratory, Cisco Sys-
tems, and Sun Microsystems. Open MPI is designed to be scalable, fault toler-
ant, and high performance, while at the same time being portable to a variety
of networks and operating systems. Open MPI utilizes a low-overhead compo-
nent architecture—the Modular Component Architecture (MCA)—to provide
abstractions for portability and adapting to differing application demands. In
addition to providing a mechanism for portability, the MCA allows developers
to experiment with different implementation ideas, while minimizing develop-
ment overhead.

MPI communication is layered on a number of component frameworks, as
shown in Fig. 1. The PML and OSC frameworks provide MPI send/receive and
one-sided semantics, respectively. The BML, or BTL Management Layer, allows
the use of multiple networks between two processes and the use of multiple upper-
layer protocols on a given network, by maintainin available routes to every peer
and handling scheduling across available routes. The BTL framework provides
communication between two endpoints; an endpoint is usually a communication
device connecting two processes, such as an Ethernet address or an InfiniBand
port. The current BML/BTL implementation allows multiple upper-layer pro-
tocols to simultaneously utilize multiple communication paths. The design and
implementation of the communication layer is described in detail in [15,16].

244 B.W. Barrett, G.M. Shipman, and A. Lumsdaine

MPI

Point-to-point (PML)

BML

GM BTL

Rcache

GM
MPool

TCP BTLSM BTL

SM
MPool

One Sided (OSC)

Fig. 1. Component structure for communication in Open MPI

BTL components provide two communication modes: an active-message style
send/receive protocol and a remote memory access (RMA) put/get protocol.
All sends are non-blocking, with a callback on local send completion, generally
from a BTL-provided buffer. Receives are all into BTL-provided buffers, with a
callback on message arrival. RMA operations provide callbacks on completion
on the origin process and no completion callbacks on the target process (as all
networks do not support remote completion events for RMA operations). All
buffers used on both the origin and target must be “prepared” for use by calls
to the BTL by higher-level components.

4 Open MPI One-Sided Implementation

Open MPI provides two implementations of the one-sided (OSC) framework:
pt2pt and rdma. The pt2pt component is implemented entirely over the point-
to-point and collective MPI functions. The original one-sided implementation in
Open MPI, it is now primarily used when a network library does not expose RMA
capabilities, such as Myrinet MX [17]. The rdma component is implemented di-
rectly over the BML/BTL interface and supports a variety of protocols, including
active-message send/receive and true RMA. More detail on the implemnetation
is provided in Section 4.2. Both components share the same synchronization im-
plementation, although the rdma component starts communication before the
synchronization call to end an epoch, while the pt2pt component does not.

4.1 Synchronization

Synchronization for both components is similar to the design used by MPICH2
[11]. Control messages are sent either over the point-to-point engine (pt2pt) or
the BTL (rdma). A brief overview of the synchronization implementation follows:

Fence. MPI WIN FENCE is implemented with a reduce-scatter to share the
number of incoming communication operations, then each process waits un-
til the specified number of operations has completed. Communication may
be started at any time during the exposure/access epoch.

General Active Target. A call to MPI POST results in a post control message
sent to every involved process. Communication may be started as soon as a
post message is received from all involved processes. During MPI COMPLETE,

Analysis of Implementation Options for MPI-2 One-Sided 245

all RMA operations are completed, then a control message with the number
of incoming requests is sent to all peer processes. MPI WAIT blocks until all
peers send a complete message and incoming operations are completed.

Passive. Lock/Unlock synchronization does not wait for a lock to be acquired
before returning from MPI WIN LOCK, but may start all communication as
soon as a lock acknowledgment is received. During MPI WIN UNLOCK, a
control message with number of incoming messages is sent to the peer. The
peer waits for all incoming messages before releasing the lock and potentially
giving it to another peer. Like other single threaded MPI implementations,
our implementation currently requires the target process enter the MPI li-
brary for progress to be made.

4.2 Communication

Three communication protocols are implemented for the rdma one-sided compo-
nent. For networks that support RMA operations, all three protocols are avail-
able at run-time, and the selection of protocol is made per-message.

send/recv. All communication is done using the send/receive interface of the
BTL, with data copied at both sides for short messages. Long messages are
transferred using the protocols provided by the PML (which may include
RMA operations). Messages are queued until the end of the synchronization
phase.

buffered. All communication is done using the send/receive interface of the
BTL, with data copied at both sides for short messages. Long messages are
transferred using the transfer protocols provided by the PML. Short messages
are coalesced into the BTL’s maximum eager send size. Messages are started
as soon as the synchronization phase allows.

RMA. All communication for contiguous data is done using the RMA inter-
face of the BTL. All other data is transferred using the buffered protocol.
MPI ACCUMULATE also falls back to the buffered protocol.

Due to the lack of remote completion notification for RMA operations, care
must be taken to ensure that an epoch is not completed before all data transfers
have been completed. Because ordering semantics of RMA operations (especially
compared to send/receive operations) tends to vary widely between network
interfaces, the only ordering assumed by the rdma component is that a message
sent after local completion of an RMA operation will result in remote completion
of the send after the full RMA message has arrived. Therefore, any completion
messages sent during synchronization may only be sent after all RMA operations
to a given peer have completed. This is a limitation in performance for some
networks, but adds to the overall portability of the system.

5 Performance Evaluation

Latency and bandwidth micro-benchmark results are provided using the Ohio
State benchmark suite. Unlike the point-to-point interface, the MPI community

246 B.W. Barrett, G.M. Shipman, and A. Lumsdaine

has not developed a set of standard “real world” benchmarks for one-sided com-
munication. Following previous work [11], a nearest-neighbor ghost cell update
benchmark is utilized — the fence version is shown in Fig. 5. The test was also
extended to call MPI PUT once per integer in the buffer, rather than once per
buffer.

for (i = 0 ; i < ntimes ; i++) {
MPI Win fence(MPI MODE NOPRECEEDE, win);
for (j = 0 ; j < num nbrs ; j++) {
MPI Put(send buf + j ∗ bufsize, bufsize, MPI DOUBLE, nbrs[j],

j, bufsize, MPI DOUBLE, win);
}
MPI Win fence(0, win);

}

Fig. 2. Ghost cell update using MPI FENCE

All tests were run on the Indiana University Department of Computer Sci-
ence Odin cluster, a 128 node cluster of dual-core dual-socket 2.0 GHz Opteron
machines, each with 4 GB of memory. Each node contains a single Mellanox
InfiniHost PCI-X SDR HCA, connected to a 148 port switch. MVAPICH2 0.9.8
results are provided as a baseline. No configuration or run-time performance op-
tions were specified for MVAPICH2. The mpi leave pinned option, which tells
Open MPI to leave memory registered with the network until the buffer is freed
by the user rather than when communication completes, was specified to Open
MPI (this functionality is the default in MVAPICH). Results are provided for
the pt2pt component and all three protocols of the rdma component.

Latency/Bandwidth. Fig. 3 presents the latency and bandwidth of MPI PUT
using the Ohio State benchmarks [18]. The buffered protocol presents the best
latency for Open MPI. Although the message coalescing of the buffered proto-
col does not improve performance of the latency test, due to only one message
pending during an epoch, the protocol outperforms the send/recv protocol due to
starting messages eagerly, as soon as all post messages are received. The buffered
protocol provides lower latency than the rdma protocol for short messages be-
cause of the requirement for portable completion semantics, described in the
previous section. No completion ordering is required for the buffered protocol,
so MPI WIN COMPLETE does not wait for local completion of the data transfer
before sending the completion count message. On the other hand, the rdma pro-
tocol must wait for local completion of the event before sending the completion
count control message, otherwise the control message could overtake the RDMA
transfer, resulting in erroneous results.

The bandwidth benchmark shows the advantage of the buffered protocol, as
the benchmark starts many messages in each synchronization phase. The buffered
protocol is therefore able to outperform both the rdma protocol and MVAPICH.

Analysis of Implementation Options for MPI-2 One-Sided 247

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

La
te

nc
y

(u
s)

Message size (bytes)

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

MVAPICH2

(a) Latency

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
ill

io
ns

 o
f b

yt
es

 /
se

co
nd

)

Message size (bytes)

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

MVAPICH2

(b) Bandwidth

Fig. 3. Latency and Bandwidth of MPI PUT calls between two peers using generalized
active synchronization

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

La
te

nc
y

(u
s)

Message size (bytes)

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

MVAPICH2

(a) Latency

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
ill

io
ns

 o
f b

yt
es

 /
se

co
nd

)

Message size (bytes)

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

MVAPICH2

(b) Bandwidth

Fig. 4. Latency and Bandwidth of MPI GET calls between two peers using generalized
active synchronization

Again, the send/recv protocol suffers compared to the other protocols, due to the
extra copy overhead compared to rdma, the extra transport headers compared to
both rdma and buffered, and the delay in starting data transfer until the end of
the synchronization phase. For large messages, where all protocols are utilizing
RMA operations, realized bandwidth is similar for all implementations.

The latency and bandwidth of MPI GET are shown in Fig. 4. The rdma proto-
col has lower latency than the send/receive based protocols, as the target process
does not have to process requests at the MPI layer. The present buffered protocol
does not coalesce reply messages from the target to the origin, so there is little
advantage to using the buffered protocol over the send/recv protocol. For the ma-
jority of the bandwidth curve, all implementations other than the rdma protocol
provide the same bandwidth. The rdma protocol clearly suffers from a perfor-
mance issue that the MVAPICH2 implementation does not. For short messages,
we believe the performance lag is due to receiving the data directly into the user
buffer, which requires registration cache look-ups, rather than copying through a

248 B.W. Barrett, G.M. Shipman, and A. Lumsdaine

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06

T
im

e
pe

r
ite

ra
tio

n
(u

s)

Message Size

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

(a) Fence – one put

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000 100000

T
im

e
pe

r
ite

ra
tio

n
(u

s)

Message Size

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

(b) Fence – many puts

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06

T
im

e
pe

r
ite

ra
tio

n
(u

s)

Message Size

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

MVAPICH

(c) Generalized – one put

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000 100000

T
im

e
pe

r
ite

ra
tio

n
(u

s)

Message Size

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

(d) Generalized – many puts

Fig. 5. Ghost cell iteration time at 32 nodes for varying buffer size, using fence or
generalized active synchronization

pre-registered “bounce” buffer. The use of a bounce buffer for MPI PUT but not
MPI GET is an artifact of the BTL interface, which we are currently addressing.

Ghost Cell Updates. Fig. 5 shows the cost of performing an iteration of a
ghost cell update sequence. The tests were run across 32 nodes, one process
per node. For both fence and generalized active synchronization, the ghost cell
update with large buffers shows relative performance similar to the put latency
shown previously. This is not unexpected, as the benchmarks are similar with
the exception that the ghost cell updates benchmark sends to a small number of
peers rather than to just one peer. Fence results are not shown for MVAPICH2
because the tests ran significantly slower than expected and we suspect that the
result is a side effect of the testing environment.

When multiple puts are intiated to each peer, the benchmark results show
the disadvantage of the send/recv and rdma protocol compared to the buffered
protocol. The number of messages injected into the MPI layer grows as the
message buffer grows. With larger buffer sizes, the cost of creating requests,
buffers, and the poor message injection rates of InfiniBand becomes a limiting
factor. When using InfiniBand, the buffered protocol is able to reduce the number
of messages injected into the network by over two orders of magnitude.

Analysis of Implementation Options for MPI-2 One-Sided 249

6 Summary

As we have shown, there are a number of implementation options for the MPI
one-sided interface. While the general consensus in the MPI community has been
to exploit the RMA interface provided by modern high performance networks,
our results appear to indicate that such a decision is not necessarily clear-cut.
The message coalescing opportunities available when using send/receive seman-
tics provides much higher realized network bandwidth than when using RMA.
The completion semantics imposed by a portable RMA abstraction also requires
ordering that can cause higher latencies for RMA operations than for send/re-
ceive semantics.

Using RMA operations has one significant advantage over send/receive – the
target side of the operation does not need to be involved in the message trans-
fer, so the theoretical availability of computation/communication overlap is im-
proved. In our tests, we were unable to see this in practice, likely due less to any
shortcomings of RMA and more due to the two-sided nature of the MPI-2 one-
sided interface. Further, we expected the computation/communication overlap
advantage to become less significant as Open MPI develops a stronger progress
thread model, allowing message unpacking as messages arrive, regardless of when
the application enters the MPI library.

References

1. Geist, A., Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Saphir, W.,
Skjellum, T., Snir, M.: MPI-2: Extending the Message-Passing Interface. In: Fraig-
niaud, P., Mignotte, A., Robert, Y., Bougé, L. (eds.) Euro-Par 1996. LNCS,
vol. 1124, pp. 128–135. Springer, Heidelberg (1996)

2. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W.,
Snir, M.: MPI: The Complete Reference. the MPI-2 Extensions, vol. 2. MIT Press,
Cambridge (1998)

3. Message Passing Interface Forum: MPI: A Message Passing Interface. In: Proc. of
Supercomputing ’93, IEEE Computer Society Press, pp. 878–883 (November 1993)

4. Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.: MPI: The
Complete Reference. MIT Press, Cambridge (1996)

5. Bonachea, D., Duell, J.: Problems with using MPI 1.1 and 2.0 as compilation
targets for parallel language implementations. Int. J. High Performance Computing
and Networking 1(1/2/3), 91–99 (2004)

6. Burns, G., Daoud, R., Vaigl, J.: LAM: An Open Cluster Environment for MPI. In:
Proceedings of Supercomputing Symposium, pp. 379–386 (1994)

7. Booth, S., Mourao, F.E.: Single Sided Implementations for SUN MPI. In: Super-
computing (2000)

8. Trff, J.L., Ritzdorf, H., Hempel, R.: The implementation of mpi-2 one-sided com-
munication for the nec sx-5. In: Supercomputing 2000, IEEE/ACM (2000)

9. Worringen, J., Gäer, A., Reker, F.: Exploiting transparent remote memory access
for non-contiguous and one-sided-communication. In: Proceedings of ACM/IEEE
International Parallel and Distributed Processing Symposium (IPDPS 2002),
Workshop for Communication Architecture in Clusters (CAC 02), Fort Lauderdale,
USA (April 2002)

250 B.W. Barrett, G.M. Shipman, and A. Lumsdaine

10. Argonne National Lab.: MPICH2, http://www-unix.mcs.anl.gov/mpi/mpich2/
11. Thakur, R., Gropp, W., Toonen, B.: Optimizing the Synchronization Operations

in Message Passing Interface One-Sided Communication. Int. J. High Perform.
Comput. Appl. 19(2), 119–128 (2005)

12. Huang, W., Santhanaraman, G., Jin, H.W., Gao, Q., Panda, D.K.: Design and
Implementation of High Performance MVAPICH2: MPI2 over InfiniBand. In: Int’l
Sympsoium on Cluster Computing and the Grid (CCGrid), Singapore (May 2006)

13. Jiang, W., Liu, J., Jin, H.W., Panda, D.K., Buntinas, D., Thakur, R., Gropp, W.:
Efficient Implementation of MPI-2 Passive One-Sided Communication on Infini-
Band Clusters. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary (September 2004)

14. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, pp. 97–104 (September 2004)

15. Shipman, G.M., Woodall, T.S., Graham, R.L., Maccabe, A.B., Bridges, P.G.: In-
finiBand Scalability in Open MPI. In: IEEE International Parallel And Distributed
Processing Symposium (to appear, 2006)

16. Woodall, T., et al.: Open MPI’s TEG point-to-point communications method-
ology: Comparison to existing implementations. In: Proceedings, 11th European
PVM/MPI Users’ Group Meeting (2004)

17. Myricom, Inc.: Myrinet Express (MX): A High-Performance, Low-Level, Message-
Passing Interface for Myrinet (2006)

18. Network-Based Computing Laboratory, Ohio State University: Ohio State Bench-
mark Suite, http://mvapich.cse.ohio-state.edu/benchmarks/

http://www-unix.mcs.anl.gov/mpi/mpich2/
http://mvapich.cse.ohio-state.edu/benchmarks/

MPI-2 One-Sided Usage and Implementation for Read
Modify Write Operations: A Case Study with HPCC�

Gopalakrishnan Santhanaraman, Sundeep Narravula, Amith. R. Mamidala,
and Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

Columbus, Ohio 43210
{santhana,narravul,mamidala,panda}@cse.ohio-state.edu

Abstract. MPI-2’s One-sided communication interface is being explored in sci-
entific applications. One of the important operations in a one sided model is read-
modify-write. MPI-2 semantics provide MPI Put, MPI Get and MPI Accumulate
operations which can be used to implement read-modify-write functionality. The
different strategies yield varying performance benefits depending on the underly-
ing one-sided implementation. We use HPCC Random Access benchmark which
primarily uses read-modify-write operations as a case study for evaluating the
different implementation strategies in this paper. Currently this benchmark is im-
plemented based on MPI two-sided semantics. In this work we design and eval-
uate MPI-2 versions of the HPCC Random Access benchmark using one-sided
operations. To improve the performance, we explore two different optimizations:
(i) software based aggregation and (ii) hardware-based atomic operations. We
evaluate our different approaches on an InfiniBand cluster. The software based
aggregation outperforms the basic one sided scheme without aggregation by a
factor of 4.38. The hardware based scheme shows an improvement by a factor of
2.62 as compared to the basic one sided scheme.

1 Introduction

In the last decade MPI (Message Passing interface) [14] has evolved as the de facto par-
allel programming model in high performance computing scenarios. The MPI-2 stan-
dard provides a one-sided communication interface which is starting to be explored in
scientific applications. One of the important operations in a one sided model is read-
modify-write. Applications like [12] which is based on MPI-2 one-sided, predominantly
use this operation. MPI-2 semantics provide MPI Put, MPI Get and MPI Accumulate
operations that can be used to implement the read-modify-write operations.

HPCC Benchmark suite is a set of tests that examine the performance of HPC ar-
chitectures that stress different aspects of HPC systems involving memory and network

� This research is supported in part by Department of Energy’s grant #DE-FC02-06ER25749
and #DE-FC02-06ER25755; National Science Foundation’s grants #CNS-0403342 and #CCF-
0702675; grants from Intel, Sun Microsystems, Cisco Systems, and Linux Networx; Equip-
ment donations from Intel, Mellanox, AMD, Apple, IBM, Microway, PathScale, Silverstorm
and Sun Microsystems.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 251–259, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

252 G. Santhanaraman et al.

in addition to computation [3]. HPCC Random Access benchmark is one of the bench-
marks in this suite which measures the rate of random updates to remote memory loca-
tions. Currently this benchmark is implemented based on MPI two-sided semantics. In
this work we design different MPI-2 versions of the Random Access benchmark using
the MPI-2 one-sided alternatives. We use the one-sided versions of the Random Access
benchmark as a case study for studying different implementations of the read-modify-
write operations and provide optimizations to improve the performance. In this work
we use two different techniques: (i) software-based aggregation and (ii) hardware-based
atomic operations provided by InfiniBand to improve the performance. We evaluate and
analyze the benefits of using software aggregation using datatypes with one-sided op-
erations as well as the hardware based direct accumulate approach.

The rest of the paper is organized as follows. In Section 2, we provide an overview
of InfiniBand, MVAPICH2 and HPCC Random Access benchmark. In Section 3, we
describe different strategies for implementing one-sided versions of the HPCC bench-
mark. In Section 4, we discuss the two optimization techniques that we propose. In
Section 5, we show performance evaluations of the various schemes. We present some
discussion in Section 6. In section 7, we present related work. Conclusions and future
work are presented in Section 8.

2 Background

In this section, we provide a brief background on InfiniBand, MVAPICH2 and the
HPCC Random Access benchmark.

InfiniBand: The InfiniBand Architecture (IBA) [7] is an industry standard. It de-
fines a switched network fabric for interconnecting processing nodes and I/O nodes.
IBA supports both channel semantics and memory semantics. In channel semantics,
send/receive operations are used for communication. In memory semantics, InfiniBand
provides Remote Direct Memory Access (RDMA) operations, including RDMA write
and RDMA read. InfiniBand also provides RDMA atomic operations namely fetch and
add and compare and swap. The network interface card on the remote node guarantees
the atomicity of these operations. The operations are performed on 64 bit values. Lever-
aging this atomic fetch and add mechanism is one of the focus of this paper.

MVAPICH2: MVAPICH2 is a popular implementation of MPI-2 over InfiniBand[1].
The implementation is based on MPICH2. MPICH2[2] supports MPI-1 as well as
MPI-2 extensions including one-sided communication. In MVAPICH2 the one sided
implementation of MPI Put and MPI Get uses the InfiniBand RDMA Write and
RDMA Read services to provide high performance and scalability to the applications.
The MPI Accumulate is currently two sided based in the sense that the remote node is
involved in performing the accumulate operation on that node. In this work we also pro-
vide a prototype of truly one-sided implementation of the MPI Accumulate operation
using the InfiniBand atomic fetch and add operation.

HPCC: The HPC Challenge (HPCC) benchmark suite has been funded by the DARPA
High Productivity Computing Systems (HPCS) program to help define the performance
boundaries of future Petascale computing systems [5]. HPCC is a suite of tests that

MPI-2 One-Sided Usage and Implementation 253

examine the performance of high-end architectures using kernels with memory access
patterns more challenging than those of the High Performance LINPACK (HPL) bench-
mark used in the Top500 list. The Random Access benchmark measures the rate of in-
teger updates to random memory locations (GUPs). It uses xor operation to perform the
updates on the remote node. It allows optimization in terms of aggregating up to 1024
updates to improve the performance.

3 One Sided HPCC Benchmark: Design Alternatives

In this section we describe different approaches taken to implement the one-sided ver-
sion of the HPCC Random Access benchmark. As described earlier, random access
benchmark measures the GUPs rating. An update is a read modify write operation on
a table of 64-bit words. An address is generated, the value at that address read from
memory, modified by an xor operation with a literal value and that new value is written
back to memory. Currently the MPI version of the benchmark is a two sided version.

3.1 Design Issues

In this section we first describe the semantics and mechanisms offered by MPI-2 for
designing one-sided applications. In a one-sided model, the sender can access the re-
mote address space directly without an explicit receive posted by the remote node. The
memory area on the target process that can be accessed by the origin process is called a
Window. In this model we have the communication operations MPI Put, MPI Get and
MPI Accumulate and the synchronization calls to make sure that the issued one sided
operations are complete. There are two types of synchronization: a) active in which the
remote node is involved and b) passive in which the remote node is not involved in the
synchronization. The active synchronization calls are collective on the entire group in
case of MPI Fence or a smaller group in case of Start Complete and Post Wait model.
This could lead to some limitations when the number of synchronizations needed per
process are different for different nodes. In passive synchronization the origin process
issues MPI Lock and MPI Unlock call to indicate the beginning and end of the access
epoch. Next we describe our approach taken in designing the one-sided versions of the
HPCC Random Access benchmark. We map the table memory to the Window so that
the one-sided versions can read and write directly to this memory.

3.2 HPCC Get-Modify-Put (HPCC GMP)

In the first approach we call MPI Get to get the data, perform the modification, then use
MPI Put to put the updated data to the remote location. As compared to the two sided
versions there are no receive calls made on the remote node. Also the active synchro-
nization model cannot be used since we cannot match the number of synchronization
calls across all nodes. This is because the number of remote updates as well as the lo-
cation of the remote updates for each node can vary randomly. Hence we use passive
synchronization MPI Lock and MPI Unlock calls in this scheme. Further we need one
set of Lock and Unlock calls to fetch the data, perform the modification, then another

254 G. Santhanaraman et al.

set of Lock and Unlock operations to put the data. The reason for this is the flexibil-
ity of MPI-2 semantics which allows MPI Get to fetch the data in Unlock. Also the
MPI Get and MPI Put can be reordered within an access epoch. We describe this ap-
proach in Fig. 1a and will henceforth refer to it as HPCC GMP. This approach leads
to a lot of network operations resulting in lower performance. Further the possibility of
incorrect updates increases. This is due to the coherency issues that might arise because
of parallel updates occurring simultaneously.

3.3 HPCC Accumulate (HPCC ACC)

Our next approach uses the MPI Accumulate operation provided by MPI-2. MPI-2
semantics provide MPI Accumulate which are basically atomic reductions. This non
collective one-sided operation combines communication and computation in a single
interface. It allows the programmer to update atomically remote locations by combin-
ing the content of the local buffer with the remote memory buffer. This implementation
calls MPI Accumulate between MPI Lock and MPI Unlock synchronization calls. Us-
ing this approach shown in Fig. 1b, we do not have the issue of incorrect updates. Also
as compared to our HPCC GMP, the number of network operations is significantly
reduced. Another approach is to use Accumulate with Active synchronization model
using Win Fence. This could be done by calling Win Fence at the very beginning, per-
forming all the updates using MPI Accumulate and then call one Win Fence at the very
end. All the processes need to call two Win Fence calls, one at the beginning and one at
the end. However since MPI-2 semantics allows the actual data transfer to occur inside
the synchronization call that closes the exposure epoch, all the accumulates could hap-
pen during the second Win Fence call. Many MPI implementations actually make use
of this flexibility. This violates the random benchmark rule that you could store only
1024 updates at the maximum. Hence we did not consider this approach.

4 Optimizations

In this section we describe two optimizations we propose in this paper to improve the
performance of the one-sided version of HPCC Random Access benchmark.

4.1 HPCC Accumulate with Software Aggregation (HPCC ACC AGG)

In this technique we want to aggregate or pack a number of update operations together
so that the overhead of sending as well as synchronization operations can be reduced.
Using this approach, we aggregate a bunch of update operations before sending them
as a single communication operation. The HPCC random access benchmark allows
each processor to store up to 1024 updates before sending them out. The MPI-2 se-
mantics provides datatypes feature that can be leveraged to achieve aggregation. For
one-sided operations both the sender and destination datatypes need to be created. We
create MPI Type struct sender and receiver datatypes to represent a bunch of updates.
We then use the created datatypes to issue a single communication call as shown in
Fig. 1c. Using this approach we expect to improve the performance since the number
of network operations are minimized.

MPI-2 One-Sided Usage and Implementation 255

MPI_Free_Win()

MPI_Create_Win()MPI_Create_Win() MPI_Create_Win()

MPI_Type_Create_Struct (datatype)

MPI_Type_Commit (datatype)

MPI_Lock()

MPI_Accumulate(datatype)

MPI_Unlock()

MPI_Type_Free(datatype)

MPI_Free_Win()

MPI_Lock()

MPI_Accumulate()

MPI_Unlock()

MPI_Free_Win()

MPI_Lock()

MPI_Get ()

MPI_Unlock ()

Modify Operation

MPI_Unlock ()

MPI_Lock()

LOOP LOOP LOOP

 a) HPCC_GMP b)HPCC_ACC c)HPCC_ACC_AGG

MPI_Put ()

Fig. 1. Code snippets of one-sided versions of HPCC Random Access benchmark

4.2 Hardware Based Direct Accumulate (HPCC DIRECT ACC)

InfiniBand provides hardware atomic fetch and add operation that can be leveraged to
optimize MPI Accumulate operation for MPI SUM. The Accumulate operations use
the hardware fetch and add operation that can provide good latency and scalability.
One limitation of this approach is that we can only do single 64 bit accumulates with
each fetch and add operation, i.e. aggregation is not possible. A benefit of using this
approach is that since it is truly one-sided in nature, it provides more scope for overlap
that can lead to improved performance. It is to be noted that this optimization is imple-
mented in the underlying MVAPICH2 MPI library as a prototype and is transparent to
the application writer.

5 Performance Evaluation

In this section, we evaluate the performance of one-sided version of the HPCC bench-
mark for the different schemes. We present some micro-benchmark results to give the
basic performance of different one-sided operations and show the potential of our pro-
posed optimizations. The experimental testbed is x86 64 node cluster with 32 Opteron
nodes and 32 Intel nodes. Each node has 4GB memory and equipped with PCI-Express
interface and InfiniBand DDR network adapters (Mellanox InfiniHost III Ex HCA).

5.1 Basic Performance of One-Sided Operations

In this section we show the performance of the basic one-sided operations MPI Put,
MPI Get and MPI Accumulate. Fig. 2a shows the small message latency for these op-
erations. The latency for 8bytes for put and get are 5.68 and 11.03 usecs, respectively,
whereas the accumulate latency is 7.06 usecs. Since get modify put implementation
needs both get and put in addition to modify and synchronization operation, we expect
this performance to be lower compared to the accumulate based approach.

5.2 HPCC One-Sided Benchmark Performance with Different Schemes

In this section we evaluate the performance of the two different versions of the bench-
mark HPCC GMP and HPCC ACC. The results are shown in Fig. 2b. As expected

256 G. Santhanaraman et al.

0

2

4

6

8

10

12

14

16

1 2 4 8 16 32 64 128 256 512

Message Size (bytes)

L
at

en
cy

(u
se

cs
)

MPI_Put MPI_Get MPI_Acc

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

4 8 16 32 64

Number of Processors

G
U

P
s

HPCC_GMP HPCC_ACC

Fig. 2. Basic Performance (a) Micro-benchmarks and (b) Basic HPCC GUPs

the HPCC ACC performs better than the HPCC GMP because of the number of syn-
chronization and communication operations in HPCC GMP. The overhead of these
additional network operations leads to lower performance of HPCC GMP. This perfor-
mance gap increases with increasing number of processors since the synchronization
cost increases further for larger number of nodes. Hence we choose HPCC ACC as our
base case for further optimizations and evaluations.

5.3 Aggregation Benefits

To improve the performance of Accumulate operation, we proposed aggregation using
Accumulate with datatype. We evaluate the performance benefits of using datatype at
micro-benchmark level. In basic version we do multiple accumulates corresponding to
the number of updates. In aggregated version we create a datatype corresponding to the
number of updates and perform a single accumulate operation with that datatype. Fig. 3a
shows the results of our study. With increasing amounts of aggregation, the Accumu-
late with datatype outperforms the multiple accumulate schemes. With aggregation the
cost of sending overhead and the synchronization overheads are limited to the number
of aggregated operations. Next we compare the performance of HPCC ACC AGG with
HPCC ACC for 512 and 1024 aggregations. The results are shown in Fig. 3b. We ob-
serve a similar trend with the optimized HPCC ACC AGG performing better than the
HPCC ACC scheme. This result demonstrates the benefits of aggregation.

0

100

200

300

400

500

600

700

800

900

1000

8 16 32 64 128

Number of updates

L
at

en
cy

(u
se

cs
)

Acc_without_agg Acc_with_agg

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

4 8 16 32 64

Number of processors

G
U

P
s

No Aggregation 512 aggregation 1024 aggregation

Fig. 3. Aggregation Performance Benefits (a) Basic Aggregation Micro-benchmarks and (b)
HPCC with Aggregation

MPI-2 One-Sided Usage and Implementation 257

5.4 Hardware Based Direct Accumulate

In this section we first study the benefits that could be achieved using the hardware based
fetch and add operation to implement a read modify write operation at microbenchmark
level (DIRECT ACC). We compare its performance with the the schemes that uses Get
Modify Put (GMP) approach and MPI Accumulate (ACC) approach. The MPI imple-
mentation allows optimizations that delays the actual lock and data transfer operation
to happen during unlock. In this case measuring just the lock and unlock cost does not
provide any additional insight. Hence we measure the latency that includes both data
transfer and lock/unlock synchronization operation. Fig. 4a compares the basic perfor-
mance of GMP, ACC and DIRECT ACC. We note that for single updates of 64bit inte-
ger, the (DIRECT ACC) scheme provides the lowest latency. This is because the existing
MPI Accumulate implementation is inherently two sided whereas the Direct Accumu-
late implementation makes use of the truly one-sided hardware feature.

0

2

4

6

8

10

12

14

16

Direct_Accum Accum Get_modify_put

L
at

en
cy

U
se

cs

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

4 8 16 32 64

number of processors

G
U

P
s

Accum Direct accum

Fig. 4. Direct Accumulate Performance Benefits (a) Micro-benchmarks and (b) HPCC with Direct
Accumulate

Next we try to understand the benefits that a hardware based Accumulate operation
can provide to an application. To evaluate this we modify the HPCC ACC benchmark
to use the MPI SUM operation instead of the MPI BXOR operation and call this as
HPCC ACC MOD. The verification phase is correspondingly modified. We then com-
pare the HPCC ACC which uses the existing MPI Accumulate implementation in the
MVAPICH2 library with the modified HPCC ACC MOD which uses our Direct Ac-
cumulate prototype implementation. The results are shown in Fig. 4b. We observe that
the Direct accumulate performs significantly better than the basic accumulate. Also the
Direct Accumulate seems to scale very well with increasing number of processors. The
reason for this is two-fold: 1) low software overhead and 2) true one-sided nature of the
hardware based Direct Accumulate.

Finally we compare our two proposed techniques Direct Accumulate and software
aggregation (Accumulate with datatype). The results are shown in Fig. 5. The software
aggregation scheme beats the hardware based direct accumulate approach since cur-
rently the hardware fetch and add operation does not support aggregation. Also the gap
between the two schemes seem to be narrowing with increasing nodes. This demon-
strates the scalability of the hardware based operations and suggests the benefits of
having aggregation in hardware as well.

258 G. Santhanaraman et al.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

4 8 16 32 64

Number of processors
G

U
P

s
accumulate direct accumulate accumulate with agg

Fig. 5. Software Aggregation vs Hardware Direct Accumulate benefits

6 Discussion

Current implementations for HPCC Random Access benchmark are based on two-sided
communication primitives. While the main objective of this paper is not to compare the
designs based on one-sided and two-sided semantics, it is also important in this con-
text to note that the current one-sided implementations are largely based on two-sided
primitives in the MPI libraries and hence, such an evaluation is not as informative. In-
finiBand’s hardware fetch and add operation provides a design opportunity for a Direct
Accumulate for MPI Sum operation for a single 64 bit field. While we have demon-
strated that both aggregation and direct hardware based accumulation has benefits, an
aggregated direct accumulate is likely to yield much higher performance benefit. How-
ever it is clearly not possible to implement such a design with current hardware.

7 Related Work

There are several studies regarding implementing one sided communication in MPI-2.
Some of the MPI-2 implementations which implement one sided communication are
MPICH2 [2], WMPI [?], SUN-MPI [3],In [10,8], the authors have used InfiniBand
hardware features to optimize the performance of MPI-2 one sided operations. Other
researchers [9] study the different approaches for implementing the one sided atomic
reduction. The authors in [?] have looked at utilizing the hardware atomic operations
in Myrinet/GM to implement efficient synchronization operations. Recently several re-
searchers have been looking at providing optimizations to the HPCC benchmark. In [6]
the authors have suggested techniques for optimizing the Random access benchmark for
Blue Gene clusters.

8 Conclusions and Future Work

In this paper we designed MPI-2 one sided versions of HPCC random access bench-
mark using get modify put and MPI Accumulate operations . We evaluated these two
different approaches on a 64 node cluster. To improve the performance we explored two
techniques: a) software based aggregation and b) utilizing hardware atomic operations.

MPI-2 One-Sided Usage and Implementation 259

We analyzed the benefits and trade-offs of these two approaches. Our studies show that
the software based aggregation performs the best. We also demonstrate the potential
and scalability of the hardware based approach. As part of future work we would also
like to evaluate the potential benefits with one sided applications which use these oper-
ations.We also plan to contribute our one-sided versions of the benchmark to the HPCC
benchmarking group.

References

1. Network Based Computing Laboratory, MVAPICH2 http://mvapich.cse.ohio-
state.edu/

2. Argonne National Laboratory: MPICH2 http://www-unix.mcs.anl.gov/mpi/
mpich2/

3. Booth, S., Mourao, F.E.: Single Sided MPI Implementations for SUN MPI. In: Supercom-
puting (2000)

4. Buntinas, D., Panda, D.K., Gropp, W.: NIC-Based Atomic Remote Memory Operations in
Myrinet/GM. In: Workshop on Novel Uses of System Area Networks (SAN-1) (February
2002)

5. Dongarra, J., Luszczek, P.: overview of the hpc challenge benchmark suite. In: SPEC Bench-
mark Workshop (2006)

6. Garg, R., Sabharwal, Y.: Optimizing the HPCC randomaccess benchmark on blue Gene/L
Supercomputer. ACM SIGMETRICS Performance Evaluation Review (2006)

7. InfiniBand Trade Association: InfiniBand Architecture Specification, Release 1.0 (October
24, 2000)

8. Jiang, W., J.Liu, Jin, H.W., Panda, D.K., Buntinas, D., R.Thakur, W.Gropp: Efficient Im-
plementation of MPI-2 Passive One-Sided Communication on InfiniBand Clusters. Eu-
roPVM/MPI (September 2004)

9. Nieplocha, J., Tipparaju, V., Apra, E.: An evaluation of two implementation strategies for
optimizing one-sided atomic reduction. In: IPDPS (2005)

10. Liu, J., Jiang, W., Jin, H.W., Panda, D.K., Gropp, W., Thakur, R.: High Performance MPI-2
One-Sided Communication over InfiniBand. In: CCGrid 04 (April 2004)

11. Mourao, F.E., Silva, J.G.: Implementing MPI’s One-Sided Communications for WMPI. new-
block In: EuroPVM/MPI (September 1999)

12. Thacker, R.J., Pringle, G., Couchman, H.M.P., Booth, S.: Hydra-mpi: An adaptive particle-
particle, particle-mesh code for conducting cosmological simulations on mpp architectures.
High Performance Computing Systems and Applications (2003)

13. HPCC Benchmark Suite. http://icl.cs.utk.edu/hpcc
14. Gropp, W., Lusk, E., Skjellum, A.: Using MPI:Portable Parallel Programming with the Mes-

sage Passing Interface, 2nd edn. MIT Press, Cambridge, MA (1999)

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://www-unix.mcs.anl.gov/mpi/mpich2/
http://www-unix.mcs.anl.gov/mpi/mpich2/
http://icl.cs.utk.edu/hpcc

RDMA in the SiCortex Cluster Systems

Lawrence C. Stewart, David Gingold, Jud Leonard,
and Peter Watkins

SiCortex, Inc.
larry.stewart,david.gingold,jud.leonard,

peter.watkins@sicortex.com

Abstract. The SiCortex cluster systems implement a high-bandwidth,
low-latency interconnect. We describe how the SiCortex systems imple-
ment RDMA, including zero-copy data transfers and user-level network-
ing. The system uses optimistic virtual memory registration without page
locking. Finally, we provide preliminary performance results.

1 Introduction

In a compute node of a typical cluster system, the network interface is a separate
device on the I/O bus. In the SiCortex system, the NI is integrated on-chip and
is coherent with the multicore CPU caches. This high level of integration permits
increased packaging density, reduced power consumption, greater reliability, and
improved interconnect performance.

We took the opportunity to rethink the NI’s design at all levels, consider-
ing together the hardware, operating system, and communication software. We
came to the conclusions that letting the application talk directly to the NI—
so-called user-level networking, or OS-Bypass—and supporting DMA access to
virtually addressed application buffers, so-called zero-copy, were essential. These
techniques are not new, but we have been more aggressive than previous efforts
in our use of optimistic methods.

2 Related Work

Many groups have studied interconnect APIs for high-performance networking,
including [1,2,3,4,5,6,7,8]. Generally, workers in the field have come to the con-
clusion that permitting user-level access to the network hardware reduces latency
for short messages, and that eliminating memory-to-memory copies—so-called
zero-copy or minimal-copy [9]—can reduce CPU overheads and deliver greater
bandwidth for large messages. A number of systems have been built on these
principles [3,10,11,12].

2.1 User-Level Networking

In user-level networking, application code running in user mode has direct access
to the network hardware, so that it can initiate operations without incurring
system call overheads.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 260–271, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

RDMA in the SiCortex Cluster Systems 261

In user-level networking designs, the application libraries directly command
I/O operations. While this avoids system calls, it can also introduce security
problems and requires a means of sharing the device hardware among applica-
tions and that the NI be able to route incoming traffic to the correct application.

The implementation challenges include providing virtual-to-physical address
translation for the hardware, and providing user-mode access to hardware in a
way that does not compromise the integrity of the kernel or other processes.

A good introduction is [4], which introduces Application Device Channels,
as protected communication paths from user code to hardware. Our design is
similar; we use the VM system to map sets of device registers. But instead of
mapping device memory, we share data structures in main memory.

2.2 Zero-Copy

In zero-copy I/O, an application buffer is handed directly to the device [13]. At
the receiver, data is written by the hardware directly into application buffers.

Zero-copy is primarily a tool for improving bandwidth and reducing CPU
overhead for large messages. The QLogic InfiniPath [14] achieves good results
by copying all data but most devices use DMA. (For a contrarian view, see [15].)

The previous work closest to ours is [5] and [9]. These efforts use device address
translation tables managed by user code, but memory is pinned and the wire
messages carry virtual addresses [9] or are inspected by receive-side code [5].
In contrast, we don’t pin memory, and wire messages carry translation table
indices.

Most previous work focused on locking memory during DMA operations so
that the OS would not unmap or reallocate memory in use by the hardware
[16,17,18,12].

Previous designs also guarantee the success of DMA operations. Locally, this
requires pinned memory and preloaded device translations or that translation
misses be handled in real time. One-sided operations use advance window setup
as in MPI-2, hardware translation [12], or RPC setup [16].

The Optimistic Direct Access File System (OADFS) [19,20,21] comes clos-
est to our optimistic registration approach. In ODAFS, clients initiate RDMA
commands using old cached addresses that may no longer be valid. If the server
translation fails, a remote exception is raised, but a fault can occur only before
the transfer starts. Once underway, a DMA operation is guaranteed to finish
successfully.

3 The SiCortex Hardware

The SiCortex system [22] is a purpose-built Linux-based cluster computer, with
up to 972 compute notes. Each node, shown in Figure 1, is a six-way symmetric
multiprocessor (SMP) with coherent caches, interleaved memory interfaces, high
speed I/O, and a programmable interface to the interconnect fabric. Each node is
one system-on-a-chip plus external DRAM. Each node runs a single SMP Linux
kernel.

262 L.C. Stewart et al.

Fig. 1. Cluster Node, including DMA Engine, Switch, and Links

The interconnect fabric consists of three components (see Figure 1): the DMA
Engine, the fabric switch, and the fabric links. The DMA Engine implements the
software interface to the fabric. The switch forwards traffic between incoming and
outgoing links, and to and from the DMA Engine. The links connect directly
to other nodes in the system [23]. The links run at 2 GB/s. The switch is a
virtual-channel cut-through buffered crossbar switch [24].

4 The Hardware-Software Interface

In an approach similar to [4], the network interface appears to user-mode code
as a set of in-memory data structures shared with the DMA Engine and with a
small set of memory-mapped registers. The bulk of an application’s interaction
with the DMA Engine happens through shared memory. The data structures
include:

– a command queue (CQ), a circular memory buffer which a CPU writes,
providing commands for the DMA Engine to execute;

– an event queue (EQ), a circular memory buffer into which the DMA Engine
writes incoming short messages and events indicating DMA completion;

– a heap, where the CPU can place command chains, and to which the DMA
can write additional messages;

– a route descriptor table (RDT), whose indices serve as handles specifying
routes through the fabric to remote DMA contexts; and

– a buffer descriptor table (BDT), whose indices serve as handles specifying
areas in the application’s virtual memory.

Similar to [5] and [9], in order to enforce proper OS protection, only the kernel may
write a process’s BDT and RDT tables. Application software detects incoming

RDMA in the SiCortex Cluster Systems 263

events by polling or interrupts. The command and event queues are implemented
as ring buffers, with read and write pointers stored in device registers.

4.1 DMA Primitives

Software issues DMA commands by writing them to the command queue and
then writing a DMA Engine register. The available commands include:

– send-event : Deliver data in a single packet to a remote EQ.
– write-heap: Write data in a single packet to a location in a remote heap.
– send-command : Transmit an embedded DMA command in a packet to be

executed by the remote context’s DMA Engine.
– do-command : Decrement a counter, and if the result is negative, execute a

specified list of commands in the local heap.
– put-buffer : Transmit an entire memory segment to a remote context’s mem-

ory. Upon completion, optionally generate a remote event or execute remote
commands.

The ability to remotely execute commands provides much of the power of these
primitives. Software implements RDMA GET operations, for example, by issu-
ing one or more send-command commands, each with an embedded put-buffer
command.

We targeted this design for MPI but we believe it is also well suited to other
networking systems, such as TCP/IP, SHMEM, and GASnet [25,26,16].

4.2 The Put-Buffer Command

The put-buffer command is the mechanism that applications use to achieve zero-
copy RDMA.

The put-buffer command specifies memory locations as a buffer descriptor
(BD) index and offset pair. The BD index represents an entry in a context’s BD
table; user-level software has associated that entry with a region of its virtual
memory (as described in Section 5). The offset is a byte offset within this memory
region. A route handle field in the command identifies the operation’s destination
node and context. The destination BD index references an entry in the BD table
of the destination context.

The DMA Engine signals the normal completion of the command by posting
a notifier event to the EQ of the destination context. The command can also
specify commands to be executed by the DMA Engine at the destination.

5 DMA Registration

Virtual memory presents a challenge for RDMA implementations, both because
of the need to translate from virtual to physical addresses and because a valid
virtual page at a given moment may not be mapped to physical memory at
all. RDMA designs often solve this by requiring that virtual pages be pinned

264 L.C. Stewart et al.

to physical pages during the lifetime of RDMA operations. But this solution
is awkward. In MPI, for example, pages that are pinned when the application
initiates a send operation might need to remain so for an arbitrarily long time
before the application posts a matching receive.

Our implementation requires that virtual pages used for RDMA be registered,
but not pinned. Registration creates an association between an application’s vir-
tual page and the corresponding physical page. The OS invalidates this associ-
ation when it unmaps the virtual page. An RDMA operation which references
an invalidated association results in a fault, requiring that software re-start the
operation.

We call this scheme optimistic registration because, in practice, the operating
system should rarely unmap the virtual pages of a running application that fits in
memory. Optimistic registration is efficient in this common case, simple to imple-
ment, and allows the OS the flexibility to unmap pages when it needs to do so.

5.1 Implementing Registration

Our DMA Engine uses entries in a Buffer Descriptor Table (BDT) to associate
pages of virtual memory with physical memory. The BDT is an in-memory data
structure, and there is one BDT per DMA context. A BDT entry stores the
physical address associated with a single page of virtual memory. User-level
code directs the kernel to map virtual addresses to specified BDT entries. The
BDT is managed by user-level code, but written only by the kernel. When the
kernel unmaps a virtual address, it invalidates corresponding BDT entries.

When user-level code issues an RDMA operation, in the form of a put-buffer
command, to the DMA Engine, it specifies a memory location as an index in the
BDT and a byte offset within that page. The user-level code can pass its BDT
indices to other nodes.

A single BDT entry is physically a 64-bit word that stores a physical memory
address, a size, a valid bit, and a read-only bit. In our implementation, a user-
level BDT entry maps a single 64KB virtual page in its entirety.

5.2 User-Level BDT Management

The BDT performs a function similar to that of a traditional virtual memory
page table, but it differs in that user-level code directs exactly how the BDT en-
tries are used. Different applications can choose different management schemes.

When an MPI call needs to initiate an RDMA operation (either at the sending
or receiving end), the library uses a red-black tree to determine whether the
associated virtual addresses are already mapped to BDT entries. If the addresses
are not mapped, the software allocates BDT entries, invokes a system call to map
them, and inserts the information into the red-black tree.

5.3 Kernel-Level BDT Management

The kernel provides system call interfaces to allow user-level code to map BDT
entries. The registration kernel call is lightweight. It maps the virtual address

RDMA in the SiCortex Cluster Systems 265

to a physical address by traversing the process page tables, with access and
protection checks, and then marks the physical page as being used by DMA. If
the access permits writes, the page is proactively marked dirty1. The page is not
pinned, and no data structures are allocated.

When the kernel invalidates a virtual mapping, it must invalidate associated
BDT entries, just as it invalidates its page table entries. If there is a valid BDT
mapping, the kernel must clear the BDT entry, invalidate associated cached
entries within the DMA Engine, and ensure that any pending memory operations
complete before reclaiming the physical page.

5.4 BDT Faults

RDMA operations complete successfully if the BDT entries they reference remain
valid until the DMA transfer finishes. Upon completion, the DMA Engine writes a
notifier event to the receiving context. There is no need to unregister BDT entries.

An RDMA operation that references an invalidated BDT entry results in a
buffer descriptor fault. The fault might happen at either the sending or receiving
end. All faults generate a notifier event at the receiving end.

If a buffer descriptor fault is detected at the transmit node, the transmit DMA
Engine abandons the rest of the transfer, and sends a LASTDMA packet with
a fault indication.

If a buffer descriptor fault is detected at the receive node, the receive DMA
Engine sets a bit in a per context bitmap indexed by the notifier transfer ID and
discards the packet. There is no way for the receive end to cause the transmit
end to abort the transfer, so the receive DMA Engine continues to process (and
discard) packets.

When the LASTDMA packet arrives, the receive DMA Engine checks the
error bitmap. If the LASTDMA packet does not report a transmit fault, and the
local bitmap does not record a receive fault, then the DMA Engine generates a
normal completion event. If a fault was reported, the receive node DMA Engine
generates a local fault event.

User-level software, not the kernel, recovers from a buffer descriptor fault. The
software does this by remapping the BDT entries referenced by the operation
and then restarting the RDMA.

6 MPI

Our MPI implementation is derived from the MPICH2 software from Argonne
National Laboratory. At present, our implementation supports all MPI-1 and
selected MPI-2 features.

6.1 MPI Internals

The MPI software sends small messages using an eager protocol that copies the
data at both ends, and larger messages using a rendezvous protocol that uses
1 Pages marked copy-on-write must be pre-faulted.

266 L.C. Stewart et al.

RDMA for zero-copy transfers. The receivers perform MPI matching in software,
using optimized code to traverse posted receive and early send queues.

Longer messages are sent using a rendezvous protocol. The sending end trans-
mits a rendezvous-request message, including the source application buffer’s BDT
indices. At the receiving end, the MPI library matches the request, and resolves
the destination buffer’s address to BDT entries. The receiver initiates the RDMA
by issuing a send-command operation to the DMA Engine. The send-command
encodes a put-buffer command, which is sent to the sender’s DMA Engine.

The sending DMA Engine, having received the remote command, executes it
by looking up the specified BDT entry’s physical address, reading memory, and
sending a series of DMA packets to the receiver. The receiving DMA Engine looks
up the receive BDT entry’s physical address and writes the packets’ payloads to
memory. (An invalid buffer descriptor at either end would be treated as described
in Section 5.2.)

At the end of the transfer, the receiving DMA Engine posts a notifier event to
the receiver’s event queue to signal that the put-buffer is complete. The receiver’s
MPI library then sends an event to the sender, notifying it both that it is done
with the sender’s BDT entries and that the send operation is complete.

For messages larger than 64KB, the MPI library breaks the operation into
multiple 64 KB segments. It schedules a few segments along each of the fabric’s
three independent paths available from source to destination, then schedules ad-
ditional segments as early ones complete. This increases end-to-end bandwidth
by load-sharing across available paths, and helps to avoid hot-spots. The tech-
nique also hides the DMA registration overhead in a way similar to the pipelined
pinning approach described in [18].

7 Performance

We present latency and bandwidth results for MPI ping-pong with particular
emphasis on long messages, which use the rendezvous protocol with RDMA.
These results are preliminary; we expect improvements with future revisions of
software, microcode, and hardware.

We have optimized the critical code path for short messages. With our ap-
proach, we have demonstrated a node-to-node short-message MPI latency (in
a ping-pong test) of 1420 nanoseconds. Of this, the DMA Engine and fabric
spend 950 nanoseconds performing the send-event operation. The remaining 470
nanoseconds—just 235 processor clock cycles at 500 MHz–are the software over-
head of the MPI implementation.

Figure 2 shows overall one-way latency and bandwidth for various size MPI
messages in a ping-pong test. We transition to RDMA above 1024 bytes. Off-
node bandwidth is better than on-node because the on-node case loads the node’s
memory system with both reads and writes. Above 128 KB the software uses
multiple interconnect paths.

Figure 3 shows latency for rendezvous mode transfers. For a 2K-byte transfer,
the overall latency is 10.9 microseconds. Of this, 4.3 microseconds are in the

RDMA in the SiCortex Cluster Systems 267

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 100 1000 10000 100000 1e+06 1e+07

M
B

/s

message length (bytes)

MPI message bandwidth

off-node

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 100 1000 10000 100000 1e+06 1e+07

M
B

/s

message length (bytes)

MPI message bandwidth

on-node

Fig. 2. MPI Ping-Pong Bandwidth

MPI software. The DMA Engine and fabric are responsible for the remaining 6.6
microseconds: 1.2 transmitting the rendezvous request from node to node with a
send-event command, and 5.4 microseconds for the RDMA get operation, which
includes 3.4 microseconds of fixed overhead.

In the tests that generated the above data, the cost of DMA registration is
amortized over many iterations of send and receive operations. Measured de-
liberately, the cost of registering and de-registering a single 64K-byte page of
memory is about 7 microseconds. By comparison, locking and unlocking a 64K-
byte page of memory, via the mlock() and munlock() Linux system calls, also
requires about 7 microseconds in this system.

Figure 4 shows results from the HPC Challenge Random Ring benchmark
on an SC648 with 108 six-CPU nodes. The figure shows random ring latency
and bandwidth results for all 108 nodes active, and with one to six CPUs per
node active. HPCC Ping-Pong Latency is shown as well. The bandwidth results
reflect an aggregate bandwidth limit around 1200 MB/sec shared by transmit
and receive activities of all processors.

7.1 Effects of Registration

The benefits that we expect from optimistic registration are largely gains in flex-
ibility rahter than gains in performance. Here we argue why we expect optimistic
registration to perform at least as well as a page pinning approach, and explain
where we see its benefits in flexibility.

RDMA implementations that require page pinning typically maintain a “pin
cache” to limit the number of pages that they may have pinned at one time [17].

268 L.C. Stewart et al.

 10

 100

 1000

 10000 100000 1e+06

m
ic

ro
se

co
nd

s

message length (bytes)

MPI long message latency

off-node

 10

 100

 1000

 10000 100000 1e+06

m
ic

ro
se

co
nd

s

message length (bytes)

MPI long message latency

on-node

Fig. 3. MPI Ping-Pong Latency

 0

 1

 2

 3

 4

 5

 100 200 300 400 500 600 700
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

La
te

nc
y

(u
se

c)

B
an

dw
id

th
 (

G
B

/s
)

MPI ranks (108 nodes with 1 to 6 cpu cores active)

Random Ring Latency
Random Ring Bandwidth

PingPong Latency

Fig. 4. HPCC RandomRing Results

RDMA in the SiCortex Cluster Systems 269

When the application’s communication working set is smaller than the pin cache,
there is very little pinning and unpinning. When it exceeds the cache size, the
cache will thrash. Maintaining a limited-size pin cache prevents applications from
starving the system of usable physical memory.

In some respects, our optimistic registration scheme is similar to such a pin
cache: the first-time communication cost of registering a page is roughly that
of pinning a page, and our communication library avoids this subsequently by
noticing that the memory has been registered previously. But in our system, the
OS does not limit the number of pages an application may have registered. It is
as if we are operating with a pin cache that has an unlimited size.

Applications that perform well in a pin cache system clearly should also per-
form well under optimistic registration. Applications that suffer because of an
insufficiently large pin cache should do better under optimistic registration. But
the real benefit is not the difference in usable memory size, but simply that the
system can run without having the bulk of its memory pinned. The operating
system can page out an idle application, and applications can take advantage of
backing store, even for registered memory pages.

8 Conclusion

In the SiCortex system, applications manage the network interface’s buffer de-
scriptor table which associates virtual addresses with physical addresses. The
kernel creates these associations as directed by user-level code, but can invali-
date them as it needs. DMA transfers, even those that have already started, can
receive translation faults at any time, which are reported to user mode software
for recovery. This approach avoids pinning in the critical latency path, in trade
for more expensive, but infrequently used, recovery paths in the event of faults.

The performance effect of this design is similar to the use of a cache of pinned
memory, but with an unlimited cache size.

9 Future Work

The present paper is a preliminary report on certain aspects of communication
hardware and software in the SiCortex system. The current software implemen-
tation is sufficient to run MPI-1 applications, but could be enhanced in many
ways.

Collective operations are not yet optimized, although a number of DMA En-
gine features were designed for this purpose. We expect MPI-2 one sided op-
erations to be straightforward, but they aren’t done yet. Our implementation
doesn’t provide asynchronous progress, and so reduces the available overlap of
communication and computation[27]. We have not as yet implemented non-MPI
communications APIs such as SHMEM and GASnet for use by global address
space languages such as UPC. Finally, there is a lot more work to be done in
optimization and analysis of real applications.

270 L.C. Stewart et al.

References

1. Brightwell, R., Hudson, T., Riesen, R.: The Portals 3.0 message passing interface
revision 1.0. Technical Report SAND99-2959, Sandia National Laboratories (1999)

2. Brightwell, R., Maccabe, A.: Scalability limitations of VIA-based technologies in
supporting MPI. In: Proceedings of the Fourth MPI Developer’s and User’s Con-
ference (2000)

3. Blumrich, M.A., Li, K., Alpert, R., Dubnicki, C., Felten, E.W., Sandberg, J.: Vir-
tual memory mapped network interface for the SHRIMP multicomputer. In: ISCA
(1994)

4. Druschel, P.: Operating system support for high-speed networking. Communica-
tions of the ACM 39(9) (1996)

5. Chen, Y., Bilas, A., Damianakis, S.N., Dubnicki, C., Li, K.: UTLB: A mechanism
for address translation on network interfaces. In: ASPLOS (1998)

6. Schaelicke, L.: Architectural Support For User-Level Input/Output. PhD thesis,
University of Utah (2001)

7. Araki, S., Bilas, A., Dubnicki, C., Edler, J., Konishi, K., Philbin, J.: User-space
communication: A quantitative study. In: SC98: High Performance Networking and
Computing (1998)

8. Riddoch, D., Pope, S., Roberts, D., Mapp, G.E., Clarke, D., Ingram, D., Mansley,
K., Hopper, A.: Tripwire: A synchronisation primitive for virtual memory mapped
communication. Journal of Interconnection Networks 2(3) (2001)

9. Schoinas, I., Hill, M.D.: Address translation mechanisms in network interfaces. In:
HPCA (1998)

10. Liu, J., Wu, J., Kini, S., Wyckoff, P., Panda, D.: High performance RDMA-based
MPI implementation over InfiniBand. In: SC (2003)

11. Liu, J., Jiang, W., Wyckoff, P., Panda, D., Ashton, D., Buntinas, D., Gropp, W.,
Toonen, B.: Design and implementation of MPICH2 over InfiniBand with RDMA
support. In: IPDPS (2004)

12. Weikuan, Y., Woodall, T.S., Graham, R.L., Panda, D.K.: Design and implemen-
tation of Open MPI over Quadrics/Elan4. In: IPDPS (2005)

13. Welsh, M., Basu, A., von Eicken, T.: Incorporating memory management into user-
level network interfaces. Technical Report Cornell TR97-1620, Cornell (1997)

14. Harbaugh, L.G.: Reviews: Pathscale InfiniPath interconnect. Linux J. 149 (2006)
15. Binkert, N.L., Saidi, A.G., Reinhardt, S.K.: Integrated network interfaces for high-

bandwidth TCP/IP. SIGARCH Comput. Archit. News 34(5) (2006)
16. Bell, C., Bonachea, D.: A new DMA registration strategy for pinning-based high

performance networks. In: CAC (2003)
17. Tezuka, H., O’Carroll, F., Hori, A., Ishikawa, Y.: Pin-down cache: A virtual memory

management technique for zero-copy communication. In: IPPS/SPDP (1998)
18. Shipman, G.M., Woodall, T.S., Bosilca, G., Graham, R.L., Maccabe, A.B.: High

performance RDMA protocols in HPC. In: EuroPVM/MPI (2006)
19. Magoutis, K.: The optimistic direct access file system: Design and network interface

support. In: Workshop on Novel Uses of System Area Networks (SAN-1) (2002)
20. Magoutis, K., Addetia, S., Fedorova, A., Seltzer, M.I.: Making the most out of

direct-access network attached storage. In: FAST (2003)
21. Magoutis, K.: Design and implementation of a direct access file system (DAFS)

kernel server for FreeBSD. In: BSDCon (2002)
22. Reilly, M., Stewart, L.C., Leonard, J., Gingold, D.: Sicortex technical sum-

mary (2006), Available http://www.sicortex.com/whitepapers/sicortex-tech
summary.pdf

http://www.sicortex.com/whitepapers/sicortex-tech_summary.pdf
http://www.sicortex.com/whitepapers/sicortex-tech_summary.pdf

RDMA in the SiCortex Cluster Systems 271

23. Stewart, L.C., Gingold, D.: A new generation of cluster interconnect
(2006), Available http://www.sicortex.com/whitepapers/sicortex-cluster
interconnect.pdf

24. Dally, W.J., Towles, B.P.: Principles and Practices of Interconnection Networks.
Morgan Kaufmann, San Francisco (2003)

25. Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library for
distributed array libraries and compiler run-time systems. In: Rolim, J.D.P. (ed.)
Parallel and Distributed Processing. LNCS, vol. 1586, Springer, Heidelberg (1999)

26. Scott, S.L.: Synchronization and communication in the T3E multiprocessor. In:
ASPLOS (1996)

27. Doerfler, D., Brightwell, R.: Measuring MPI send and receive overhead and ap-
plication availability in high performance network interfaces. In: EuroPVM/MPI
(2006)

http://www.sicortex.com/whitepapers/sicortex-cluster_interconnect.pdf
http://www.sicortex.com/whitepapers/sicortex-cluster_interconnect.pdf

Revealing the Performance of MPI RMA

Implementations

William D. Gropp and Rajeev Thakur

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA
{gropp,thakur}@mcs.anl.gov

Abstract. The MPI remote-memory access (RMA) operations provide
a different programming model from the regular MPI-1 point-to-point
operations. This model is particularly appropriate for cases where there
are multiple communication events for each synchronization and where
the target memory locations are known by the source processes. In this
paper, we describe a benchmark designed to illustrate the performance of
RMA with multiple RMA operations for each synchronization, as com-
pared with point-to-point communication. We measured the performance
of this benchmark on several platforms (SGI Altix, Sun Fire, IBM SMP,
Linux cluster) and MPI implementations (SGI, Sun, IBM, MPICH2,
Open MPI). We also investigated the effectiveness of the various op-
timization options specified by the MPI standard. Our results show that
MPI RMA can provide substantially higher performance than point-to-
point communication on some platforms, such as SGI Altix and Sun Fire.
The results also show that many opportunities still exist for performance
improvements in the implementation of MPI RMA.

1 Introduction

MPI-2 added remote-memory access (RMA) operations to the MPI standard.
These one-sided operations offer the promise of improved performance for appli-
cations, yet users are uncertain whether these operations offer any advantage in
most implementations.

A key feature of the one-sided operations is that data transfer and synchro-
nization are separated. This allows multiple transfers to use a single synchroniza-
tion operation, thus reducing the total overhead. RMA differs from the two-sided
or point-to-point model, where each message combines both the transfer and the
synchronization. Because of this feature, a performance benefit is most likely to
be observed when there are multiple, relatively short data transfers for each
communication step in an application.

In this paper, we present a benchmark designed to test such a communication
pattern. The benchmark is based on the common “halo exchange” (or ghost-cell
exchange) operation in applications that approximate the solution to partial dif-
ferential equations. We compare a number of implementations of this benchmark

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 272–280, 2007.
c© Argonne National Laboratory 2007

Revealing the Performance of MPI RMA Implementations 273

with all three MPI RMA synchronization mechanisms: MPI Win fence, the scal-
able synchronization (post/start/complete/wait), and passive target (MPI Win
lock/unlock). For each of these mechanisms, MPI defines various parameters
(assert options) that may be used by the programmer to help the MPI implemen-
tation optimize the operation. In addition, careful implementation can further
improve performance [8].

Related Work. A number of papers have explored the performance of MPI RMA.
The results in [4] focused on bandwidth for large messages and active-target
synchronization in a variant of the ping-pong benchmark, though Table 1 there
presents times for a single 4-byte message. The SKaMPI benchmark now sup-
ports tests of the MPI one-sided routines [1] and mentions a test similar to our
halo test, but without considering varying numbers of neighbors or providing
results. The MPI Benchmark Program Library [10] was developed to test the
performance of MPI on the Earth Simulator and showed that MPI RMA was
faster than the point-to-point operations on that system.

Evaluating the performance of MPI RMA requires careful attention to the
semantics of the MPI RMA routines. The broadcast algorithms used in Appendix
B and C of [6], for example, rely on MPI Get being a blocking function, which it
need not be. In implementations that take advantage of the nonblocking nature
of MPI Get allowed by the MPI Standard (for example, MPICH2 [8]), the code
in Appendix B and C of [6] will indeed go into an infinite loop.

Papers that discuss the implementation of MPI RMA naturally include per-
formance measurements; for example, see [2,9]. The test we use in this paper
is similar to Wallcraft’s halo benchmark [11], but that benchmark does not use
MPI one-sided communication and uses only four neighbors in the halo exchange.
Wallcraft’s halo benchmark has also been used in comparing MPI with other
programming models [3].

2 The Benchmark

Our benchmark exchanges data with a selected number of partner processes. It
mimics a halo, or ghost-cell, exchange that is a common component of parallel
codes that solve partial differential equations. The code for this pattern, using
MPI point-to-point communication, is as follows:

for (j=0; j<n_partners; j++) {
MPI_Irecv(rbuffer[j], len, MPI_BYTE, partners[j], 0,

MPI_COMM_WORLD, &req[j]);
MPI_Isend(sbuffer[j], len, MPI_BYTE, partners[j], 0,

MPI_COMM_WORLD, &req[n_partners+j]);
}
MPI_Waitall(2*n_partners, req, MPI_STATUSES_IGNORE);

In the case of two partners, the neighbor processes are the processes with ranks
one greater and one less than the rank of the process. In the case of four partners,

274 W.D. Gropp and R. Thakur

the neighbor processes mimic a two-dimensional decomposition. In the case of
eight partners, the eight neighbors in a two-dimensional decomposition are used.

This test is chosen because it allows us to separate the data transfers (in the
RMA case, the MPI Put and MPI Get calls) from the synchronization (e.g., the
MPI Win fence call). It also better reflects the communication in many simula-
tion applications than does the standard ping-pong test.

Each of the MPI RMA methods allows different options for optimization. For
example, there are various “assert” options for MPI Win fence. Our test allows
the selection of the following options.

Fence. This is active-target synchronization with MPI Win fence.
1. Allocate send and receive buffers with MPI Alloc mem.
2. Specify “no locks” in MPI Win create.
3. Provide assert option MPI MODE NOPRECEDE on MPI Win fence before

RMA calls and all of MPI MODE NOSTORE, MPI MODE NOPUT, and
MPI MODE NOSUCCEED on the MPI Win fence after the RMA calls.

Post/Start/Complete/Wait. This is scalable active-target synchronization
with MPI Win post, MPI Win start, MPI Win complete, and MPI Win wait.
1. Allocate send and receive buffers with MPI Alloc mem.
2. Specify “no locks” in MPI Win create.

Passive. This is passive-target synchronization with MPI Win lock and
MPI Win unlock.
1. Use locktype MPI LOCK SHARED (instead of MPI LOCK EXCLUSIVE).
2. Do not use a separate MPI Barrier for the target processes to know that

all RMA operations have completed. This is relevant for applications that
may have an algorithmic reason for knowing that RMA operations are
complete, such as a required MPI Allreduce.

Since an implementation may require that only memory allocated with
MPI Alloc mem be used for passive-target RMA, we do not attempt to use
the passive-target mode without allocating memory in this way.

The testing methodology is the same as that used in mpptest and was de-
scribed in [5]. It uses the minimum of an average time, where the time of an
individual test (containing multiple iterations of the basic communication test)
is large relative to the granularity and precision of the clock. Since the tests are
implemented within the mpptest code, all of the many options for controlling
message sizes and measurement details are available. The tests are available as
part of the current distribution of mpptest, available at [7]. A script, runhalo,
is provided that runs the tests with the various RMA optimization options.

To better understand the tests, we also measured the halo exchange as imple-
mented with MPI Isend, MPI Irecv, and MPI Waitall (as in the example code)
and with persistent sends and receives. In addition, since MPI Win fence can
be implemented with MPI Barrier on cache-coherent SMPs where immediate
direct-memory copy is used for the MPI RMA operations, we also measured the
performance of MPI Barrier.

Revealing the Performance of MPI RMA Implementations 275

3 Results

We ran our tests on a variety of platforms and with a variety of MPI implementa-
tions. Results for the native (vendor-supplied) implementations are provided for
SGI Altix, Sun Fire, and IBM p655+ SMPs. We also include results for MPICH2
version 1.0.5 and Open MPI 1.2.0 on a Linux cluster.

The results of testing the performance-optimization features showed that only
a few optimizations are exploited by the implementations we tested. Table 1
summarizes which optimization approaches provided a significant, measurable
benefit in our tests. In the discussion of each platform, the results with the best
choice of options are used.

Table 1. Optimizations that were observed to help in the halo tests. An “X” appears
in the “All” row only if using multiple optimizations provides an improvement over a
single optimization. “NA” means that the MPI implementation does not support that
feature. No options provided a benefit on the IBM p655+.

Option SGI Altix SUN Fire IBM p655+ MPICH2 Open MPI

AllocMem w Fence X
Nolocks w Fence
Asserts w Fence X X
All w Fence

AllocMem w PSCW NA X
Nolocks w PSCW NA

All w PSCW NA

Shared locks X X

The rest of this section describes the performance of the different RMA syn-
chronization modes using the best set of optimization values. In the interests
of space, we provide graphs for only a subset of our results, summarizing the
measurements in the text.

3.1 SGI Altix

We ran our tests on three different SGI Altix SMP systems that are part of the
Columbia supercomputer at the NASA Ames Research Center. These were the
single-core SGI Altix 3700 and Altix 3700 Bx2 and the dual-core Altix 4700; the
results in this paper are from the Altix 3700 Bx2. SGI’s MPI implementation
does not support the post/start/complete/wait method of synchronization, only
fence and lock-unlock.

Figure 1 shows that the Altix has excellent RMA performance. Lock-put-
unlock without an additional barrier performs significantly better than any other
form of communication. For the 8-neighbors case, it is ten times faster than send-
receive. Even the fence method for 8 neighbors (put-8) is more than twice as fast
as send-receive.

276 W.D. Gropp and R. Thakur

Fig. 1. Performance of halo exchange on SGI Altix with 16 processes. The best RMA
results are compared with point-to-point; the legend indicates the number of neighbors
(e.g., put-4 is put/fence with four neighbors, psendrecv-8 is persistent send/receive
with eight neighbors, and nb stands for no barrier).

A surprising aspect of the Altix results is that the RMA optimization features
in the MPI calls (e.g., the assert values in MPI Win fence) have no measurable
effect, nor does using memory allocated with MPI Alloc mem (for fence). While
this is attractive for the user (nothing to do), a closer look at all the data we
collected suggests that additional optimizations could help in some cases. For
example, in the two-neighbor case, put-fence was slower than send-recv by 50%.
But since lock-unlock was significantly faster, a tuned version of fence that takes
advantage of user-provided asserts should also be able to outperform send-recv.

3.2 Sun Fire

We ran our tests on the Sun Fire SMP cluster at the RWTH Aachen University
using Sun’s MPI. The specific machine we ran on was a Sun Fire E2900 with eight
dual-core UltraSPARC IV 1.2 GHz CPUs. Figure 2 shows a subset of the results.
As on the Altix, the performance of lock-unlock without an additional barrier
is the best of all communication methods—it is twice as fast as send-receive.
The performance of MPI RMA on this system is quite good if the memory used
is allocated with MPI Alloc mem. The other optimization options had little or
no effect on the performance of the halo tests. In particular, the MPI Win fence
options had no effect. One unusual feature of this implementation is the extra-
ordinarily long time required by MPI Alloc mem and MPI Win create. Times of
several seconds were measured; we rarely saw these routines take less than a few
seconds when using 16 processes.1

1 We were told that the performance problem with MPI Alloc mem has been fixed in
Sun’s ClusterTools 7; the version on the machine was ClusterTools 5.

Revealing the Performance of MPI RMA Implementations 277

Fig. 2. Performance of 8-neighbor halo exchange on Sun Fire SMP with 16 processes in
MPI COMM WORLD. putpscwalloc is the scalable synchronization with MPI Alloc mem. put-
lockshared is passive target with shared locks, and putlocksharednb omits the barrier
that is necessary to ensure completion at the target.

3.3 IBM p655+

We ran our tests on the DataStar machine at the San Diego Supercomputer
Center with IBM’s MPI. The specific node we ran on was an IBM p655+ 8-
way SMP. The p655+ has 1.7 GHz POWER4+ CPUs. Nodes in DataStar are
connected with the Federation Switch; however, as our tests used a single node,
the switch was not used.

With eight processes on an eight-node SMP, the RMA performance was very
poor, on the order of forty times slower than the point-to-point performance.
With seven processes on the same eight-node SMP, the RMA performance was
still poor but an order of magnitude faster than with eight processes. This case
is shown in Figure 3. The significant change in performance between eight and
seven processes suggests that a thread is used for implementing the RMA op-
erations and that the implementation is not prepared to handle the case where
there are more threads than processors. To test this hypothesis, we also ran with
four MPI processes on an eight-processor system. The performance in that case
was further improved over the seven-process case but was still poor relative to
the point-to-point version. An MPI Barrier on this system takes roughly 9 μsec
on 8 processes, so the cost of a barrier or barrier-like synchronization is not a
major contributor to the high cost of RMA on this system.

3.4 Linux Cluster

We also ran the tests on the Jazz cluster at Argonne, which has 2.4 GHz Pentium
Xeon nodes and both a Myrinet 2000 and 100 Mb/s Ethernet interconnect. We

278 W.D. Gropp and R. Thakur

Fig. 3. Performance of RMA on IBM p655+. The chart to the left is with 7 processes
on an 8-node SMP; to the right is 4 processes on an 8-node SMP. Results for two and
four neighbors are shown using the two active target synchronization methods (put and
putpscw in the legend) and point to point with nonblocking and persistent send/receive
(sendrecv and psendrecv in the legend, respectively).

Fig. 4. Performance of 8-neighbor halo exchange with 16 processes on the Linux cluster
by using Open MPI (left) and MPICH2 (right)

used two MPI implementations, MPICH2 1.0.5 and Open MPI 1.2.0. The cluster
uses an older version of the native GM library for Myrinet, and we could not
build Open MPI for that version. Hence we used TCP over Myrinet for commu-
nication with both MPICH2 and Open MPI. As the results in Figure 4 show,

Revealing the Performance of MPI RMA Implementations 279

the best performance was achieved with the point-to-point operations for both
implementations. The reason is that in the absence of hardware and software sup-
port for RMA from the network-transport layer, the MPI RMA operations are
simply implemented on top of lower-level point-to-point operations. Nonetheless,
RMA with MPICH2 performs significantly better than with Open MPI. Some
of this performance improvement is due to the optimizations in MPICH2 that
minimize the synchronization overhead associated with MPI RMA [8].

4 Conclusions

We have shown that implementations of MPI RMA can provide a performance
advantage on systems with hardware support for remote-memory operations,
particularly when there are multiple RMA operations per synchronization oper-
ation. The SGI Altix and Sun Fire provided surprisingly good performance for
the passive-target RMA operations; in fact, the performance was so good that it
may be possible to improve the performance of the active-target RMA methods
by making use of the approach used for the passive-target RMA.

We measured surprisingly poor performance on an IBM SMP. We suspect
that the implementation is not optimized for MPI RMA operations and relies
on separate threads that may be running in a polling mode, thus leading to very
poor performance when there are fewer processors than at least two times the
number of MPI processes.

Few of the flags provided by the MPI standard are exploited by the implemen-
tations. This situation was reflected in the surprisingly high overhead for active-
target RMA operations on most of the platforms. We hope that our benchmark
will encourage MPI implementors to exploit these features.

Acknowledgments

We thank the RWTH Aachen University, NASA Ames, and the San Diego Su-
percomputer Center for providing computing time on their systems. We partic-
ularly thank Subhash Saini and Dale Talcott for running the tests on the Altix
machines and Anthony Chan for running the tests on the Linux cluster.

This work was supported by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced Scientific Com-
puting Research, Office of Science, U.S. Department of Energy, under Contract
DE-AC02-06CH11357.

References

1. Augustin, W., Straub, M.-O., Worsch, T.: Benchmarking one-sided communication
with SKaMPI 5. In: Di Martino, B., Kranzlmüller, D., Dongarra, J.J. (eds.) Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface. LNCS,
vol. 3666, pp. 301–308. Springer, Heidelberg (2005)

280 W.D. Gropp and R. Thakur

2. Booth, S.: Mourão, E.: Single sided MPI implementations for SUN MPI. In: Pro-
ceedings of Supercomputing 2000 (CD-ROM), Dallas, TX, November 2000. IEEE
and ACM SIGARCH. EPCC, The University of Edinburgh (2000)

3. Co-Array Fortran vs MPI http://www.co-array.org/cafvsmpi.htm
4. Gabriel, E., Fagg, G.E., Dongarra, J.: Evaluating the performance of MPI-2 dy-

namic communicators and one-sided communication. In: Dongarra, J.J., Laforenza,
D., Orlando, S. (eds.) Recent Advances in Parallel Virtual Machine and Message
Passing Interface. LNCS, vol. 2840, pp. 88–97. Springer, Heidelberg (2003)

5. Gropp, W.D., Lusk, E.: Reproducible measurements of MPI performance charac-
teristics. In: Margalef, T., Dongarra, J.J., Luque, E. (eds.) Recent Advances in
Parallel Virtual Machine and Message Passing Interface. LNCS, vol. 1697, pp. 11–
18. Springer, Heidelberg (1999)

6. Luecke, G.R., Spanoyannis, S., Kraeva, M.: The performance and scalability of
SHMEM and MPI-2 one-sided routines on a SGI Origin 2000 and a Cray T3E-600.
Concurrency and Computation: Practice and Experience 16(10), 1037–1060 (2004)

7. MPPTEST - Measuring MPI Performance http://www.mcs.anl.gov/mpi/mpptest
8. Thakur, R., Gropp, W., Toonen, B.: Optimizing the synchronization operations in

MPI one-sided communication. International Journal of High-Performance Com-
puting Applications 19(2), 119–128 (2005)

9. Träff, J.L., Ritzdorf, H., Hempel, R.: The implementation of MPI-2 one-sided com-
munication for the NEC SX-5. In: Proceedings of Supercomputing’ (CD-ROM),
Dallas, TX, November 2000. IEEE and ACM SIGARCH NEC Europe Ltd. (2000)

10. Uehara, H., Tamura, M., Yokokawa, M.: An MPI benchmark program library and
its application to the Earth Simulator. In: Zima, H.P., Joe, K., Sato, M., Seo,
Y., Shimasaki, M. (eds.) ISHPC 2002. LNCS, vol. 2327, pp. 219–230. Springer,
Heidelberg (2002)

11. Wallcraft, A.J.: SPMD OpenMP versus MPI for ocean models. Concurrency: Prac-
tice and Experience 12(12), 1155–1164 (2000)

http://www.co-array.org/cafvsmpi.htm
http://www.mcs.anl.gov/mpi/mpptest

Distributed Real-Time Computing with

Harness�

Emanuele Di Saverio1, Marco Cesati1, Christian Di Biagio2, Guido Pennella2,
and Christian Engelmann3

1 Department of Computer Science, Systems, and Industrial Engineering,
University of Rome “Tor Vergata”, Rome, Italy

2 Applied Research & Technology Department, MBDA Italia SPA, Rome, Italy
3 Computer Science and Mathematics Division,

Oak Ridge National Laboratory, Oak Ridge, TN, USA
emanuele.disaverio@alice.it,cesati@uniroma2.it,

{christian.di-biagio,guido.pennella}@mbda.it,engelmannc@ornl.gov

Abstract. Modern parallel and distributed computing solutions are of-
ten built onto a “middleware” software layer providing a higher and
common level of service between computational nodes. Harness is an
adaptable, plugin-based middleware framework for parallel and distrib-
uted computing. This paper reports recent research and development
results of using Harness for real-time distributed computing applications
in the context of an industrial environment with the needs to perform
several safety critical tasks. The presented work exploits the modular ar-
chitecture of Harness in conjunction with a lightweight threaded imple-
mentation to resolve several real-time issues by adding three new Harness
plug-ins to provide a prioritized lightweight execution environment, low
latency communication facilities, and local timestamped event logging.

Keywords: Distributed Computing, Middleware, Real-Time, Harness,
Plugin.

1 Introduction

Parallel and distributed computing solutions provide the means for computa-
tional performance for High-End Computing (HEC) applications beyond the
limits of single processor technology. The actual implementation of complex par-
allel and distributed software systems can be enormously eased by the adoption
of an intermediate software layer, a “middleware”. A middleware is defined as
“. . . a connectivity software that consists of a set of enabling services that allow
multiple processes running on one or more machines to interact across a net-
work.” [1]. A very specific topic of HEC applications is real-time computation.

� The research at Oak Ridge National Laboratory (ORNL) is sponsored by the Office
of Advanced Scientific Computing Research; U.S. Department of Energy. ORNL is
managed by UT-Battelle, LLC under Contract No. De-AC05-00OR22725.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 281–288, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

282 E. Di Saverio et al.

The term real-time pertains to computer applications whose correctness de-
pends not only on results, but also on the time at which results are delivered.
A real-time system (RTS) is a computer system that is able to run real-time
applications and fulfill their requirements in a deterministic fashion. Thus, when
defining a real-time system, we actually define requirements about its response
time, meaning with this average value or the tail distribution of it. Distributed
real-time systems development requires a well suited real-time oriented middle-
ware as a supporting layer.

2 Previous Work

Traditional solutions in distributed real-time environments refer to Parallel Vir-
tual Machine (PVM) [2] and Message Passing Interface (MPI) [3] libraries. Al-
though PVM is a solid and simple solution, its process-based architecture is
a little outdated, and the service set does not fit well into an industrial con-
text. MPI is not well suited when compared to modern middlewares because it
provides just a communication abstraction. More recent and rich products in-
clude Real-Time Innovations Data Distribution Service [4] (RTI DDS, formerly
NDDS) and the Adaptive Communication Environment (ACE) Object Request
Broker (ORB) in conjunction with TAO [5]. RTI DDS provides a communica-
tion abstraction data-centric layer that realizes a publish-subscribe semantic. It
is a performing and well-featured product, which offers real-time oriented fea-
tures, like a fine tunable QoS performance level, and an efficient low-latency
implementation based on an open standard from OMG group [6]. However, it
is especially suited for dynamically changing network topologies and to cover
reliability issues. Moreover, it is a commercial (and thus closed) product, while
in the industrial context being able to lower costs and customize the product
at will is of key importance. The ACE ORB, on the other hand, is an open
source project that implements the Object Request Broker semantic. TAO is
a very complex and complete middleware, but it is designed around the ORB
specification and is meant to be used with the existing plethora of CORBA ser-
vices. This means that the internal architecture of TAO involves many different
components. Moreover, its service-oriented nature makes it not easily tailorable
for embedded applications. The approach described in this paper is more simple
and streamlined, it avoids the role of the broker node, and it integrates nicely
with the Harness framework.

3 Modern Middleware: Harness

Our effort focuses on an emerging technology in this field, the Harness project, a
joint development effort between the Oak Ridge National Laboratory (ORNL),
the University of Tennessee, and Emory University. Harness is a distributed,
reconfigurable and heterogeneous computing environment that supports dynam-
ically adaptable parallel and distributed applications. The unique feature of Har-
ness relies on its almost total level of pluggability. The aim is to build a virtual

Distributed Real-Time Computing with Harness 283

environment that can dynamically change (almost) anything at runtime. In this
highly adaptable framework, several parallel and distributed user applications
can reside, all executed on top of its distributed virtual machine (DVM) and
runtime environment (RTE) concepts, a PVM successor. Harness runs a RTE
on every computational unit as the “shell” in which it hosts the user applications
and the resource management routines that belong to the distributed environ-
ment. Every RTE is realized by a Harness kernel, the core of the unit, which is
capable of loading and unloading plugin modules and consists of a communica-
tion module, a module dedicated to process control, and a module dedicated to
resource management, plus possibly a number of other plugins.

Several Harness prototypes have been developed, in Java and C. The work
presented in this paper focuses on the C variant developed at ORNL [7], which
runs on GNU/Linux. Its design focuses on a lightweight and pluggable middle-
ware layer with a Harness kernel running as a Linux daemon process. The kernel
performs process management, thread pool management, and dynamic plugin
loading/unloading. The process management module can fork and execute a
user application, and provides means for passing arguments, sending input, and
retrieving output for these external processes. The thread pool is the heart of
the lightweight execution environment provided by Harness. It creates a set of
working threads that keep trying to empty a job queue data structure. It pro-
vides interfaces for adding a new job to the queue with proper arguments and
cleanup function in case of thread cancellation. The plugin loader builds on top of
the Linux dynamic library loader, and provides interfaces for loading/unloading
modules and publishing their functionalities to the whole runtime environment.
The communication facilities are effectively provided through RMIX (Remote
Method Interface eXtensible) [8]. RMIX is a dynamic, heterogeneous, reconfig-
urable communication framework that allows software components to communi-
cate using various RMI/RPC protocols by employing provider plugins in order
to support different protocol stacks. RMIX emulates the Java RMI structure,
allowing components to remotely call methods, retrieve the output, and export
locally available methods.

4 Existing Real-Time Issues

Within the middleware definition stated in Section 1, we can outline a set of
requirements expected from such a software. The first assumption we make is
that the services on top of which the middleware is built retain themselves real-
time capabilities. We cannot avoid this assumption because the aim is to work
on a middleware that is a relatively high-level software, thus built on top of a set
of services, and the performances of the resulting system are bound to those of
that services. Secondly, remote services have to be designed without concurrency
issues. In this context, the meaning of concurrency is twofold:

– Call Concurrency: simultaneous access of the same service offered by the
same computational resource

284 E. Di Saverio et al.

– Service Concurrency: simultaneous access of different services offered by
the same computational resource

A real-time middleware has to guarantee both kinds of concurrency support in
order to be seamlessly scalable with the growth of the execution flows. Finally,
services have to be locally executed without scheduling issues by providing a
proper priority-aware execution environment. The hosted application should be
able to run a number of real-time tasks that are expected to be scheduled in a
deterministic manner. In order to address all these issues, three Harness plugins
have been developed:

– A plugin to provide a prioritized lightweight execution environment
– A plugin for low latency communication facilities
– A plugin to support local timestamped event logging

5 Developed Plugins

The aim of our work is exploiting the pluggable nature of Harness in order to
implement a set of services enabling the development and execution of successful
real-time applications.

5.1 Real-Time Thread Pools

The lightweight execution environment provided by Harness is designed for great
efficiency, but lacks in direct support for operating system scheduler directives.
The thread pool solution is indeed a lightweight solution for job processing,
but lacks the ability to exploit the preemptability of the latest Linux kernels.
POSIX threads, like processes, can control their scheduling priority and con-
tention scope, which can be set to either process or system scope. By using the
latter it is possible to grant absolute schedule priority to the thread. Therefore,
the first developed plugin focuses on providing a greater level of control on thread
pools to user applications. It allows to define an arbitrary number of job classes,
and for each level to specify the scheduler policy and priority of the related
thread pool. Each pool tries to empty a different job queue. If not otherwise
specified, the plugin is configured by default to create three pools of threads,
in addition to the original one, it adds two pools entirely made of threads with
real-time scheduling properties.

The first additional thread pool adopts a round-robin scheduling algorithm
with priority p1. The second additional thread pool uses a first-in/first-out
scheduling algorithm with priority p2, where p1 < p2 and global contention
scope hold. This way we scaled the priority of the executing threads from one
to three levels, allowing the application executing on top of Harness to have
control over the scheduling of its tasks. The default configuration should provide
more than enough means for executing real-time applications without worries
for scheduling issues. If a more fine-grained solution is needed, it is still possible
to explicitly specify the pool parameters.

Distributed Real-Time Computing with Harness 285

5.2 Real-Time Remote Procedure Calls

The second plugin faces a problem of the RMIX framework in its actual form.
The standard provider plugin builds on top of the TCP transport layer. This
solution, while providing a reliable and stream oriented communication, is not
well suited for distributed real-time applications. In order to address this issue,
an RMIX provider plugin was built to implement the RMIX primitives over
UDP, while keeping a real-time job (as explained in the previous subsection)
serving the incoming and outgoing communications. This way we bring into the
Harness middleware layer a more efficient implementation of the Remote Pro-
cedure Call communication scheme built onto a connectionless transport level.
While losing the reliability and the complex acknowledgment system of TCP,
we gain performance in response time metric, both in its absolute value and in
variance of its distribution. This solution exploits the pluggable nature of the
RMIX Framework, that itself is seen as a plugin by the Harness Framework. This
double-layered pluggability has the added benefit of not requiring modifications
to applications already using the RMIX Communication Framework.

5.3 Real-Time Event Logging

A common source of unpredictable latency is the access to file or screen I/O
devices, as a plain printf() function call is a very time consuming task. While
this effect can easily be ignored in standard distributed applications, it can-
not be tolerated in a distributed real-time system. The third developed plugin
implements a simple event logging system. Loading this module enables the ap-
plication to push the event to be logged in a temporary shared buffer, while
storing information about the source of the event, the timestamp, and the de-
scription of the event itself. This operation is a low overhead one, while the buffer
will be emptied by a regular Harness thread waiting on the event queue, and
optionally formatting the output in a simple XML or plain text file. This way an
application can effectively maintain logs of events with accurate timestamps in
a lightweight fashion, that is, without perturbating the execution environment
as seen by real-time tasks.

6 Experimental Tests and Evaluation

The development process in industrial, high performance, and time-critical en-
vironments includes an extensive and thorough performance testing. It is im-
portant to build a test environment that resembles the operational environment
as closely as possible, both in hardware and software, and to perform tests in
adequately set up stress conditions.

6.1 Test Environment

The Operational Environment of an industrial time-critical application is mainly
composed by “Command and Control” (C2) applications. We model a C2

286 E. Di Saverio et al.

distributed application as constituted by components of one of three types [9]:
a sensor type component that receives the data from the environment, an elab-
orator component that computes the actions to be taken in response to data
received from sensor, and an actuator component that finally executes these ac-
tions in order to modify one or more entities of the environment to be controlled.
Following this scheme, a distributed application was developed in order to real-
istically mimic this behavior. The application testing utilizes a fictional remote
control of a vector in a 2D space along the two coordinates and speed. Such an
application is computationally very similar to real-world C2 applications used
in industrial, aerospace, and military contexts, because it involves geometric al-
gorithms on 2D polygons as well as trigonometric and floating-point operations.
Moreover, to perform stress tests, benchmark programs are used to synthetically
generate the load that simulates extreme operational conditions. Stress tests are
necessary for an industrial and mission-critical real-time system to check if the
software retains its performance level even in presence of high or spike load. The
Ubench and Hackbench benchmarks were used in order to study the behavior of
the application under varying load circumstances.

6.2 Test Results

The test were performed with unloaded systems, with Ubench load (CPU and
memory), and with different Hackbench load parameters. The goal was to deter-
mine how the performance of the distributed application as a whole was affected
in scenarios of high load. Figure 1 shows the round trip time (RTT) of the distrib-
uted application in the Ubench-loaded configuration, i.e., the time that occurs
between the data capture from the sensor component and the action taken by
the actuator component. The total RTT of the application roughly doubles un-
der loaded conditions, due to the number of context switches needed between
the benchmark program and the application, but never exceeds the value of 2.2
milliseconds, as reported in Table 1.

Fig. 1. Computational and Memory Load Sensitivity - Ubench

Distributed Real-Time Computing with Harness 287

Table 1. Round Trip Time Latency Comparison - Ubench

Average Standard Deviation Maximum
Unloaded 669.67μs 81.62μs 932μs

Loaded 1694.39μs 178.45μs 2182μs

In the Hackbench tests we measured mean, maximum, and standard devia-
tion values of the application RTT while varying the coefficient of load (passed
as parameter to the benchmark). The results (see Figure 2) do not show a sig-
nificant relation between the rise of the load parameter and the RTT either in
its maximum value or in mean and variance. It is worth noting that both load
configurations were tested thoroughly with increasing loads until reaching insta-
bility of the host systems. Yet the performance of the distributed application
was predictable and reliable, and retained real-time class performance.

Fig. 2. Task Scheduling Load Sensitivity - Hackbench

7 Conclusions and Future Work

In this paper, we described recent research and development efforts in build-
ing an open source runtime and communication middleware layer for distributed
real-time applications. Within this context, Harness represents an optimal choice
of base line due to the extreme dynamic modularity its pluggable architecture of-
fers. We exploited this feature to build the desired set of real-time functionalities
in the form of plugins that realize communication and priority-aware execution
services with a real-time level of performance.

The performed tests show how a distributed real-time application (in this
case, a Command & Control application) can utilize the developed features. Our
work, however, makes the assumption that the underlying software layers can
provide an adequate level of performance. This is generally not true in the chosen
test environment.

Future work in this area will include porting the Harness middleware layer
onto a dedicated hard real-time operating system and network stack. Xenomai

288 E. Di Saverio et al.

seems to be the best candidate of the set of real-time OS’s, because it can
provide access to (hard) real-time features, while keeping an external POSIX
interface (Xenomai Skin Technology [10]). As an added bonus, Xenomai offers
a complete real-time networking stack with its integrated RTNET technology.
Another solution consists of adopting a completely different network technology
that offers an entire stack of real-time-oriented features, like Infiniband and its
related protocols. Ongoing research activities are conducted in this direction by
the Applied Research & Technology Department of MBDA Italia S.p.a.

References

1. Bray, M.: Middleware, Software Technology Review at Software Engineering In-
stitute, Carnegie Mellon University, Pittsburgh, PA, USA(1997), Available at
http://www.sei.cmu.edu/str/descriptions/middleware.html

2. Geist, G.A., Beguelin, A., Dongarra, J.J., Jiang, W., Manchek, R., Sunderam,
V.S.: PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, Cambridge, MA, USA (1994)

3. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-
plete Reference. MIT Press, Cambridge, MA, USA (1996)

4. Real-Time Innovations, Inc. Santa Clara, CA, USA: Data Distribution Service.
(2007), Available at http://www.rti.com/products/data distribution/

5. Washington University, St. Louis, MO, USA: Adaptive Communication En-
vironment (ACE) with TAO (2007), Available at http://www.cs.wustl.edu/
schmidt/ TAO.html

6. Object Management Group, Inc. Needham, MA, USA: Data Distribution Ser-
vice for Real-time Systems (2007), Available at http://www.omg.org/technology/
documents/ formal/data distribution.htm

7. Engelmann, C., Geist, G.A.: A lightweight kernel for the harness metacomput-
ing framework. In: Proceedings of the 14th Heterogeneous Computing Workshop
(HCW) 2005, in conjunction with the 19th International Parallel and Distributed
Processing Symposium (IPDPS), Denver, CO, USA (2005)

8. Engelmann, C., Geist, G.A.: RMIX: A dynamic, heterogeneous, reconfigurable
communication framework. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A.,
Dongarra, J.J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 573–580. Springer, Heidel-
berg (2006)

9. Ravindran, B.: Engineering dynamic real-time distributed systems: Architecture,
system description language, and middleware. IEEE Transactions on Software En-
gineering 28, 30–57 (2002)

10. Gerum, P.: Xenomai - Implementing a RTOS emulation framework on GNU/Linux
(2004), Available at http://download.gna.org/rtai/documentation/vesuvio/
html/xenomai

http://www.sei.cmu.edu/str/descriptions/middleware.html
http://www.rti.com/products/data_distribution/
http://www.cs.wustl.edu/~schmidt/ TAO.html
http://www.cs.wustl.edu/~schmidt/ TAO.html
http://www.omg.org/technology/documents/ formal/data_distribution.htm
http://www.omg.org/technology/documents/ formal/data_distribution.htm
http://download.gna.org/rtai/documentation/vesuvio/html/xenomai
http://download.gna.org/rtai/documentation/vesuvio/html/xenomai

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 289–296, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Frequent Itemset Minning with Trie Data Structure and
Parallel Execution with PVM

Levent Guner and Pinar Senkul

Department of Computer Engineering, Middle East Technical University,
Ankara, Turkey

{Leventguner,senkul}@ceng.metu.edu.tr

Abstract. Apriori algorithm is one of the basic algorithms introduced to solve
the problem of frequent itemset mining (FIM). Since there is a new generation
of affordable computers with parallel processing capability and it is easier to set
up computer clusters, we can develop more efficient parallel FIM algorithms
for these new systems. This paper investigates the use of trie data structure in
parallel execution of Apriori algorithm, the potential problems during imple-
mentation, performance comparison of several parallel implementations and in
order to increase the efficiency, proposes a new way of message passing for
parallel Apriori on a computer cluster with PVM.

Keywords: Apriori, PVM, Parallel Execution, Trie, Message Passing.

1 Introduction

Frequent itemset mining (FIM) is a relatively new field of data mining. It is a part of
associative rule mining where sample data is given as a set of itemsets and the aim is
to find associations among itemsets. In FIM, the aim is to find sets of items that occur
over a predefined frequency (i.e. support threshold) among all data, which is a set of
itemsets, where basket is a common word to describe each itemset [1]. FIM is a nec-
essary step in association rule mining, and used in different applications such as gene
analysis and customer relationship management.

Apriori is one of the basic algorithms used for frequent itemset mining. It is a
breadth first search algorithm that generates the frequent itemsets in a bottom-up
fashion. Candidates of size k are generated from frequent itemsets of sizes k-1. Then
the candidates that contain infrequent k-1 subsets are removed before the support
count, because any subset of a frequent itemset has to be frequent. Hence the name
‘Apriori’ is given for this property [2].

After pruning set of candidates, the database is scanned for the actual support
count. If a candidate does not meet the minimum support frequency, it is eliminated
(i.e. not found in at least the minimal number of transactions in the database).

In the search for faster techniques, some other well known FIM algorithms have
been developed like FP-growth [3] and Eclat [4]. There has also been an interest in
different data structures and search techniques used with these basic algorithms.

290 L. Guner and P. Senkul

 Selection of data structure and search technique is important for the efficiency and
scalability of the FIM algorithms.

In this paper parallel scalability of the Apriori algorithm is investigated while some
data structure related techniques are evaluated for their contribution to the overall
performance.

The paper is organized as follows: In section two, brief information of previous
work on the subject is given. In section three, our implementation, with explanation of
data structures and speed-up techniques, and parallelization efforts of Apriori with
PVM is explained. Experiments and their results are shown in fourth section. Conclu-
sions and future works are discussed in the last section.

2 Previous Work

Apriori algorithm was developed by Agrawal and Srikant [2]. In its original form
hash trees were used as the data structure. Bodon has conducted an extensive survey
on frequent itemset mining, and proposed the trie data structure as simple and effi-
cient to be used in Apriori. He has also offered some interesting methods used to
accelerate Apriori [5-7]. These are filtering transactions, frequency ordering of the
candidate trie, early breakup in the support count function, simultaneous traversal of
the trie, binary and reverse binary search in the candidate tree.

As a result, he has produced a very competitive implementation with the combina-
tion of these new techniques. Some of these techniques are explained in the next sec-
tion while discussing our own implementation.

Several alternative parallel execution methods of Apriori algorithm were evaluated
in a comprehensive paper by Han, Karypis and Kumar [8]. While it is possible to
execute Apriori in parallel with several different methods, the count distribution
method mentioned in their paper and in Agrawal’s paper [9] is the most efficient and
a similar method will form the basis of our implementation.

A simple parallel Apriori implementation was also offered by Ye [10]. Ye has
made some experiments on Apriori with trie on a parallel computer; however, details
of the implementation are not fully disclosed in his paper.

3 Implementation

3.1 Data Structure

Trie, though a simple data structure, can be implemented in several ways. In our im-
plementation trie was constructed of several binary trees in each level. It is possible to
use arrays or hash tables for this purpose; however, since the implementation lan-
guage is C++, binary trees provided by STL makes the implementation fairly simpler.
The balanced binary tree is represented with map in STL. It offers an automatic sort-
ing property and built-in binary searches. The associative array property of the map
allows the storage of support count values and the storage of information for the con-
nected edges that are represented as pointers to the maps in the next level.

Transaction database is represented as a binary tree, but in this case the associative
property allows the storage of multiple occurrences of the same transaction in one slot.

 Frequent Itemset Minning with Trie Data Structure and Parallel Execution with PVM 291

A B C D E

BCE C D E E E

E DE E

E

EC

D

Fig. 1. Sample Trie Structure from our implementation

3.2 Parallel Execution of Apriori

In this work, it is aimed to evaluate the Apriori algorithm’s scalability on a parallel
computer, while using some speed-up techniques proposed by Bodon [5]. The system
used for parallel execution is a computer cluster with PVM as the message passing
interface and each computer has an AMD Athlon 1700+ CPU and 256MB’s of memory.

The support count is the computationally most expensive step in Apriori; therefore
it is advantageous to start parallel processing from the point of support calculation.
The basic approach is to distribute the transaction database into several processors to
divide the support count step.

The basic and the least efficient method is using string-matching between candi-
dates and transactions. In the implementation of this work, in order to store candidate
itemsets, a trie is used (Figure 1). The circle shows the STL map containing C, D, and
E, in the level 2. Curved arrows show the pointers to the maps in the next level in the
trie. In this trie, there are eight 2-itemsets, {A,B}, {A,C}, {A,E}, {B,C}, {B,D},
{B,E}, {C,E}, {D,E}, four 3-itemsets, {A,B,E}, {B,C,D}, {B,C,E}, {B,D,E}, and one
4-itemset {B,C,D,E}.

We distribute the transaction database to the slave processes in the beginning of the
algorithm. As the first step, the one item frequent itemsets are found in the first scan
of the database by the master process, then, using them the 2-itemset candidates are
formed and sent to the slave processes.

At this point there are several alternative ways of sending the candidates from the
candidate trie.

Version 1. The first approach is to extract the candidates and send them as arrays and
let the slave processes build tries. This lets us manipulate the candidates according to
their orderings, for example according to their frequency as explained in the next
section. Our experiments have shown that this approach scales poorly with the num-
ber of slave processes. This is shown with blue arrows in Figure 2.

Version 2. The alternative solution is to transfer the trie as in its original form. This
way the candidates are not extracted, sent and slave processes reconstruct the trie; but
the slave processes listen to the master for the steps to take, as master traverses its
own candidate trie while encoding the steps it takes. This approach is shown with

292 L. Guner and P. Senkul

yellow arrows in Figure 2. This solution seemed to scale well but only up to a certain
value of candidates generated and sent. The PVM process also has problems like
random terminations or extremely long response times.

Version 3. To be able to overcome the problems with previous approaches, in this
work, a new solution is developed and a single message for the encoded trie is cre-
ated. In this approach the slave processes do not have to listen to the master but de-
code this single message in order to build the candidate trie. This approach is shown
with red arrows in Figure 2.

Fig. 2. Trie with 3-itemset candidates derived from the trie in Figure 1 is sent to slave proces-
sors with three alternative methods. The letter ‘r’ signals for a recursion and ‘e’ signals the end
of the recursion call.

For the return of the support count results, after finishing their support count, the
slave processes create an array and send it back. Since the candidate tries are exactly
the same in each process, master process arithmetically add these arrays and traverse
the candidate trie to insert the values. The elimination of candidates with low support
count and creation of new candidates are combined in a single function.

3.3 Speed-up Techniques in Apriori

Several speed-up techniques are implemented and evaluated. The first one of them is
the removal of infrequent elements from a transaction. Bodon [5] has called this a
filtered transaction. Since each transaction and its elements are visited many times in
the support count, removing infrequent elements from transactions has a big impact
on the performance of the Apriori algorithm. It should also be noted that the infre-
quent items are not required in the rest of the processing. We can remove the infre-
quent elements from transactions as soon as we finish the first iteration of the algo-
rithm, which is finding the frequency of one element candidates. Let t be a transaction
composed of {A, B, C, D}. If C and D are found to be infrequent the filtered transac-
tion t is {A, B}.

As the second speed-up technique, for the order of elements in the trie, two options
can be discussed: frequency based ordering and others (lexicographic, random etc.)

A B

B C D

E D E E

B C D
A B
E
B C E
B D E

A B

B C D

E D E E

A r B r E e e B r C r D E e D r E e
e

A rB rE e B rC rD De E e rE e e

 Frequent Itemset Minning with Trie Data Structure and Parallel Execution with PVM 293

We can build the trie with both ascending and descending frequency orderings. Ac-
cording to Bodon [5] the ascending frequency tries were faster in Apriori, while mem-
ory requirement is the opposite. The hypothesis is that the ascending frequency order-
ing has the advantage of having rare elements closer to the root and breaking from the
loop in earlier steps during support count. Descending frequency ordering carries the
advantage of being a smaller trie, with common elements closer to the root, hence it
occupies less memory.

The third speed-up is on the calculation of the support count. During the support
count of a k item subset in a transaction t, assume that at a certain depth d after jth ele-
ment in t, we need to check for items at ith position in t such that j < i < |t| - k + d + 1.
This is because we need at least that amount of items to complete the support count for
that subset in the trie. This is called an early breakup from the support count function.

As the fourth speed-up, binary search, reverse binary search and simultaneous tra-
versal are tested. While checking for n element subsets for support count, it is possi-
ble to search for items to be present in the candidate trie, or work the other way
around; look for the presence of n element subtries or paths to be present in the trans-
action. Although the result is the same, the search space is different and either we
search for transaction elements in the trie, or trie elements in the transaction. The
latter is called a reverse binary search. Simultaneous traversal keeps two iterators,
one in the trie and the other in the transaction. The iterator that points to the smaller
item is incremented, until a match is found.

The fifth speed-up technique is as follows: During support count using binary
search and lexicographic ordering, support count in the trie for a subset of a transac-
tion, after searching for an item, for the next one, we need to look for items that are
lexicographically later than the previous item searched. We call this a lower bound for
the next element. This technique makes the search space smaller.

Using a trie, the candidate generation step is simple. After reaching the deepest
level generated in the previous iteration, we just need to combine the elements while
taking into account their orderings. One other advantage of using trie is that it is pos-
sible to combine the elimination of branches with low support count and candidate
generation in one function. In addition to this, in order to save memory, a single trie
can hold both frequent itemsets and candidates.

4 Evaluation

In this paper an evolutionary development process is taken. The first parallelization
trial is sending the candidates separately to slave processes and let them build their
own candidate tries, while trying the different frequency orderings. It is called Ver-
sion 1 and described in the Section 3.2. The results are shown in Figure 3. The fre-
quency based orderings are applied both on the single processor sequential algorithm
and the parallel algorithm. The compact parallel uses a single trie to store candidates
and frequent itemsets. The dataset consists of 10.000 transactions, randomly created;
each transaction has up to 100 elements.

294 L. Guner and P. Senkul

It is seen that the Version 1 cannot scale its performance as the number slave proc-
ess increase. On the contrary, Version 2 which sends the candidate trie recursively has
a more linear performance increase in parallel with the increase in number of slave
processes.

Response Time In Seconds

0
100

200
300
400

500
600

1 2 3 4 5 6 7
Processors used

Sequential Compact

Sequential Ascending

Sequential
Descending
Version 1 Ascending

Version 1 Descending

Version 1 Compact

Version 2 Recursive

Fig. 3. Comparison of non-recursive (called Version 1) and recursive (called Version 2) trie
transfer options. Support threshold 0.45.

When the support threshold is decreased to 0.4, the recursive version has problems
of either very long response times, or random PVM terminations. The late responses
and terminations are observed usually at certain iterations of the Apriori where candi-
date numbers generated in the master process is in excess of 25000.

The next version developed, Version 3, aims to decrease the messaging load on the
PVM system, by creating a single message composed of a recursive definition of the
candidate trie. The performance results of this version are considerably better than the
previous one, as shown in Figure 4.

Response Time In Seconds

0

50

100

150

200

250

2 3 4 5 6 7
Processors used

Version 2
Recursive

Version 3
Improved
Recursive

Fig. 4. The improved message passing used in Version 3 shows considerably better response
times. Support threshold 0.45. Values for lower support thresholds are not shown in this graphic,
since Version 2 cannot produce any comparable times. At support threshold of 0.4 Version 3 has a
response time of 59 seconds with 7 slave processes, while PVM terminates with Version 2.

 Frequent Itemset Minning with Trie Data Structure and Parallel Execution with PVM 295

Response Time of Version 3
Combined With Other Techniques

0

50

100

150

200

250

300

2 3 4 5 6 7
Processors used

Version 3 with no
speed-up techniques

Early Breakup

Simultaneous
Traversal

Reverse Binary
Search with Lower
Bounds
Apriori Property

Filtering Transactions

Fig. 5. The same dataset with support threshold now reduced to 0.4 and the additional speed-up
techniques applied on Version 3.

Various speed-up techniques are applied to the Version 3 with binary search as the
basis and the results are shown in Figure 5. The results to be noted are the effect of
the Apriori check on the candidates. This considerably reduces the search space

before the support count. In our case, it also reduces the communication time, as the
candidate trie is transferred to the slave processes. Simultaneous traversal slightly but
consistently outperforms other support count techniques. Reverse binary with lower-
bounds is the slowest. Early break up somewhat unexpectedly does not change execu-
tion time. It may be due to that fact that this check does also take CPU time, probably
overtaking its benefits. Filtering transactions did not change the response time, but it
should not be misinterpreted, because effect of this technique is extremely dependent
on the data distribution and the support threshold chosen.

5 Conclusions and Future Work

In this paper the trie data structure has been used to test Apriori algorithms’s scalabil-
ity on a parallel computer cluster, while determining contribution of several other
techniques. From the experiments, it can be seen that, the communication between the
processes in a cluster may be a bottleneck and may be as important as the actual sup-
port count function. The improved message passing may be further developed through
combining several similar messages into more compact messaging schemas.

Since not all algorithms perform well on all datasets and all threshold values, sev-
eral processes running different algorithms and switching to the best after few itera-
tions may be evaluated. This is also valid for variations of these algorithms. It is also
worthy to implement parallelization efforts on shared memory multi core CPU’s in
clusters which makes up a mixture of separate memory and shared memory space.

296 L. Guner and P. Senkul

References

[1] Han J. and M. Kamber: Data Mining: Concepts and Techniques Morgan Kaufmann Pub-
lishers, August 2000. ISBN 1-55860-489-8

[2] Agrawal R, Srikant R. "Fast Algorithms for Mining Association Rules", VLDB. Sep 12-
15 1994, Chile, 487-99, pdf, ISBN 1-55860-153-8.

[3] Jiawei Han, Jian Pei, Yiwen Yin, Mining Frequent Patterns without Candidate Genera-
tion, in Proc. of the 2000 ACM SIGMOD Int. Conf. Management of Data, Dallas, TX
(2000), pp 1–12.

[4] Mohammed J. Zaki, Scalable Algorithms for Association Mining, In IEEE Transactions
on Knowledge and Data Engineering, 12(3) (2000), pp 372–390.

[5] Ferenc Bodon, Surprising results of trie-based FIM algorithms, IEEE ICDM Workshop
on Frequent Itemset Mining Implementations (FIMI'04), in Bart Goethals and Moham-
med J. Zaki and Roberto Bayardo editors, CEUR Workshop Proceedings, volume 90,
Brighton, UK, 1. November 2004.

[6] F. Bodon. A fast Apriori implementation. In Proceedings of the IEEE ICDM Workshop
on Frequent Itemset Mining Implementations, 2003.

[7] Ferenc Bodon, A Survey on Frequent Itemset Mining, Technical Report, Budapest Uni-
versity of Technology and Economic, 2006

[8] Han, Karypis, Kumar. Scalable Parallel Data Mining for Association Rules. In Proc. of
the ACM SIGMOD Conference on Management of Data, pages 277–288. ACM Press,
1997.

[9] R. Agrawal and J.C. Shafer. Parallel mining of association rules. IEEE Transactions on
Knowledge and Data Eng., 8(6):962-969, December 1996.

[10] Ye, A Parallel Apriori Algorithm for Frequent Itemsets Mining. SERA 2006: 87-94

Retrospect: Deterministic Replay of MPI

Applications for Interactive Distributed
Debugging

Aurelien Bouteiller, George Bosilca, and Jack Dongarra

University of Tennessee, Knoxville
bouteill,bosilca,dongarra@cs.utk.edu

Abstract. While high performance computing was eagerly adopted by
users as a vehicle for satisfying a growing demand on computational
power, some areas are still poorly explored. The MPI paradigm is con-
sidered as being the keystone for the large development of the HPC
infrastructure over the last decade. However, even today the users have
to face the lack of tools able to help increase the stability of the software
stack and/or of the applications. In this paper we present and evaluate
a tool designed to allow developers to further investigate the execution
of parallel applications by enabling them to dynamically move back and
forth in the execution timeline of a parallel application. Based on an un-
obtrusive message logging mechanism, deterministic replay is enforced,
leading to a simpler and more efficient way to debug parallel software.

1 Introduction and Motivation

In the last few years, distributed computing platforms have become mainstream
High Performance Computing (HPC) platforms. Wide acceptance of parallel
computing has been encouraged by the introduction of middle-ware and stan-
dards, like the Message Passing Interface (MPI), which help the software design-
ers benefit from the tremendous, but hard to gather, computing power available
from parallel machines. Nevertheless, software development has surpassed hard-
ware as the main source of exploitation costs. Finding software flaws is a difficult
and time consuming process, even for sequential applications. The fundamental
non determinism of distributed systems worsens the picture by adding several
failure scenarios involving message races and other time dependent events.

Interactive debugging tools, like gdb, have been successfully used for long
time to debug sequential applications. It allows for stepping into the program
execution, adding breakpoints and reading memory values, which are critical
features to find the source of software flaws. Setting a distributed debugging
session with gdb is time consuming but parallel debuggers like Totalview [1] or
DDT [2] solve most of the inconvenience of deploying the debugging framework
and give good control over the distributed execution. However, it is very difficult
to reproduce the same exact scenario leading to the appearance of the failure,
because it requires the programmer to interactively control message interleaves.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 297–306, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

298 A. Bouteiller, G. Bosilca, and J. Dongarra

This is a serious limitation, as distributed applications programmers usually need
to reproduce on demand the same particular bug scenario several times in order
to fully comprehend the mechanisms leading to its appearance.

Several solutions have been proposed to detect programming mistakes in dis-
tributed applications. Tools like Umpire [3] propose automatic runtime detection
of the most classical MPI bug scenarios. However, a large number of program-
ming mistakes do not belong to checked scenarios and cannot be detected; so
remains the need to investigate those bugs. Another popular technique is post-
mortem trace analysis [4]. Some traces analyzers even propose deterministic
replay of the execution in a simulator [5] with random message payload and de-
lays replacing actual computation. While suitable to tune communication con-
tentions, gathering enough information in order to scope variables at various
dates during the execution timeline is impracticable; such a large amount of
events would overwhelm typical disk capacities.

All those considerations rise the need for a tool able to enforce deterministic
replay of the actual processes of a MPI application. In this paper we present and
evaluate a tool based on an unobtrusive message logging mechanism that allows
a deterministic replay of the application, at least for applications completely de-
veloped over MPI. The same bug scenario can be repeated, and each particular
process can be monitored with a debugger (such as gdb) until it is fixed. Several
message payload strategies allow the user to run only a subset of the processes
during a debugging session, and checkpoints are used 1) to migrate the applica-
tion from an overloaded shared cluster to a more convenient and available set
of local machines and 2) to replay a particular time interval of the application’s
execution without having to restart it from the beginning.

This paper is organized as follows. In the next section, some related works
on deterministic replay of distributed applications are discussed. In the third
section, the architecture and implementation of our deterministic replay middle-
ware are presented. Some usage scenarios are discussed. The fourth section
presents the performance impact of our debugging system. Finally, we conclude
and discuss some future works.

2 Related Work

The system community has recently showed some interest in deterministic replay
of distributed UNIX applications. In [6] is presented liblog, a libc wrapper
loaded at runtime that monitors TCP streams, UDP packets, signals, memory
allocations and enforces a deterministic thread scheduling. Each network packet
is annotated with a Lamport clock and thus can be replayed in correct order.
Migratable checkpoints are used to move all processes and logs to a centralized
replay server. Because high performance networks are accessed directly by the
MPI library without involving the TCP stack, liblog wrappers are bypassed.
Furthermore, centralized replay is not a practical option when considering the
typical memory footprint of MPI processes.

Retrospect: Deterministic Replay of MPI Applications 299

Deterministic replay have also been integrated in MPI libraries. Fault tolerant
MPI middle-ware, like MPICH-V [7], are using message logging to enforce correct
global state after failure recovery. The unpredictable nature of failures requires
to log synchronously the message payload on the sender and receive events on a
remote stable storage, which incurs unnecessarily high overhead in the context
of application debugging. Several papers focus solely on MPI debugging [8,9];
among them [10] supersedes most of other works. It considers two different kind
of events, promiscuous receives and non blocking test operations. Indeed, perfor-
mance evaluations are restricted to a small set of nodes lacking any scalability
evaluations and the selected benchmarks are not representative of typical par-
allel applications. Performance overhead of all the proposed implementations is
high, typically doubling the point-to-point latency when trace collection is acti-
vated. Data-replay [11] allows to debug only faulty processes. However message
payload logging incurs up to 30% performance degradation compared to event
logging and the log amount reaches typical cluster nodes memory size, even for
small applications. Such performance degradation might prevent occurrence of
races that lead to application failure.

Because of the layer where sits our implementation, trace collection is less
obstructive than previous works. Our replay mechanism is decentralized and we
provide scalability evaluation up to thousand of nodes. Checkpoints are used to
migrate processes to more available resources and to jump directly at the inter-
esting time interval; extra checkpoints can be set anytime during the interactive
debugging session to further investigate a particular time step. Receiver based
message logging allows to run only suspected processes and their neighbors with-
out full application deployment, and without disturbing event ordering during
trace recording.

3 Deterministic Replay

Distributed applications are especially difficult to debug because of message
races and time dependent events that raise some uncommon failure scenarios.
Considering the level of performance reached by MPI communications, i.e. very
low latency and high throughput, it is challenging to design a deterministic replay
framework that does not disturb the behavior of the monitored application. This
leads to better identify the main sources of non determinism in MPI applications
before describing efficient mechanisms to repeat the execution timeline.

3.1 Non Deterministic Events in MPI Applications

Event Model. Each computational or communication step of a process is con-
sidered as an event. An execution is an alternate sequence of events and process
states; the effect of an event on the preceding state leading the process to the
new state. Events can be classified into two categories: deterministic and non
deterministic. A deterministic event is an event that always occurs (in every pos-
sible execution) from the same state, while a non deterministic event does not

300 A. Bouteiller, G. Bosilca, and J. Dongarra

hold this property. As a parallel application is by nature loosely synchronized,
there exists no direct time relationship between events occurring on different
processes.

In event logging, processes are considered as Piecewise deterministic: only
sparse non deterministic events occur, separating large parts of deterministic
computation. In this paper, we only focus on network, MPI related, events; in-
ternal events are usually driven by the determinist code-flow in MPI applications.
Even Monte-Carlo algorithms rely on deterministic pseudo-random generators
to build a sequence of “random” events. However, if internal non deterministic
events should occur anyway, it can be managed using techniques proposed in
liblog. Considering that any non deterministic event’s outcome is stored dur-
ing the initial execution to a safe repository, a second instance of the program
can be forced to replay exactly the same execution.

MPI Communications. For the sake of simplicity, we assume that collec-
tive communications are decomposed into point-to-point communications. As
imposed by the MPI standard, each communication channel is considered as
FIFO, but there exist no particular order enforced on messages traveling along
different channels. Those are realistic assumptions regarding the most popular
MPI implementations: the collective operations are commutative and are deter-
ministic, and the low level device driver takes care of reordering mixed message
fragments. However, the major source of non determinism from the MPI applica-
tion standpoint is the relative order of reception events occurring on a different
channel.

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

������������
������������
������������
������������
������������

������������
������������
������������
������������
������������

(tagA)
m2

(tagB)
m1

(tagA)
m3

MPI

App.

P0

P1

P2

Matching

iRecv(ANY_SOURCE, tagA, buffer2)
iRecv(ANY_SOURCE, tagB, buffer3)

iRecv(ANY_SOURCE, tagA, buffer1)

buffer3

buffer2
buffer1

buffer−i

Fig. 1. Basic steps of any source non blocking MPI receptions

Figure 1 shows the basic steps for some non blocking communications. First,
the application requests a message to be received, specifying message source,
tag and reception buffer. When a message arrives from the network, the source
and the tag are compared to the pending requests. If the message matches a
pending request, like m3 and m4, it is directly written in the receive buffer with-
out intermediate copy. Because requests can be any source, the result of the

Retrospect: Deterministic Replay of MPI Applications 301

matching depends on the order of reception of the first fragment of the message
(if m2 were faster it would have been delivered in buffer1). It is interesting to
notice that FIFO property makes any tag messages deterministic. Next step
for the application is to probe for message delivery readiness. The result of such
probe functions may depend on the date of message transfer termination, but
is not related to the matching order (m3 is matched first but lasts longer than
m2). This leads to considering two different kinds of events: those related to
any-source messages and those related to non deterministic delivery probes.

3.2 Enforcing Deterministic Replay with Message Logging

Any Source Receptions. Any source receptions replay is managed in the
iRecv, Recv, and Start MPI functions. At delivery time, the request contains
two fields: first is the source as specified by the Recv or iRecv function, sec-
ond is the communication peer specified by the incoming message header. If the
any-source flag has been used, a new match event containing the unique request
id and the peer is created. As channels are FIFO, peer id is enough to enforce
matching order. This event is then stored to a local stable storage. During re-
play, once the events have been retrieved from the stable storage; all any-source
flagged messages are modified at the beginning of Recv or iRecv functions to
have explicit peer source.

Non Deterministic Deliveries. Non deterministic deliveries are rooted in the
iProbe, WaitSome, WaitAny, Test, TestAll, TestSome and TestAny functions.
We increase a local clock to assign a unique number to each of those operations.
When one or more messages are delivered by this particular operation, we create
a new delivery event containing the clock and the list of all unique request
identifiers delivered during this particular operation.

During replay, as long as the current probe clock is less than the probe clock
stored in the first event to replay, this particular operation has to return that
no delivery occurred. When the clocks match, the requests corresponding to the
event are completed by calling the blocking deterministic delivery operation with
the corresponding parameters.

Message Payload Management. Unlike message ordering, message payloads
do not need to be stored because they are regenerated during replay. However, it
might be convenient for users to step into one single process without running the
whole application on the entire cluster. Receiver-based message logging keeps the
message payload of incoming messages alongside the events in the log data; the
entire communication can be replayed without involving any other process of the
system. However, this mode of operation has a major drawback, the amount of
data stored on the receiver might be large, depending on the application behav-
ior. Thus, there is a potential to affect the application execution by increasing
the number of cache misses.

302 A. Bouteiller, G. Bosilca, and J. Dongarra

Checkpoints. Most production MPI applications have a long execution time.
Having to wait for hours to replay the execution before reaching the faulty
behavior again is a serious limitation. Checkpoints can be used to restart some
processes of the parallel application at a date closer to the occurrence of the bug.
Indeed, the only way to avoid payload logging when restarting from checkpoints
is to use coordinated checkpoints. This synchronization wave typically alters the
communication pattern of the application, preventing the appearance of some
types of message race bugs. Users should consider a large checkpoint interval
during the first run to decrease the probability of impacting trace generation.

3.3 Implementation in Open MPI and Usage

Figure 2 summarizes the Open MPI communication layers. Dashed components
have been added to the core Open MPI architecture to enforce deterministic
replay of the process communications. The lowest layer of the Open MPI com-
munication stack, the BTL, is not aware of any MPI semantics; it simply moves
a sequence of bytes across the underlying transport. The PML implements all
logic for point-to-point MPI semantics including short and long message proto-
cols, control messages, standard, buffered, ready, and synchronous modes. Last,
MPI, COLL and TOPO components implement the high level MPI interface, in-
cluding communicators and collective communications on top of point-to-point
operations.

BTL−MX
BTL BTL

BTL−TCP

COLL TOPO MPI

Application

Recv iRecv Send iSend WaitAny WaitSome iProbe Test

Vdebug

PML−V

gdb
Remote
Debug
Console

Ckpt, events, messages
Log Keeper

Original unchanged PML
PML−OB1

Fig. 2. Added components to the Open MPI architecture to enforce deterministic re-
play

The PML-V is a parasitic symbiotic component unable to handle itself the
usual tasks of a PML. Instead, it loads a monitoring wrapper component: once
the PML has been selected, some of the interface functions are replaced with
the one provided by a Vprotocol component. The Vdebug component implements
the principles described in the previous section. This modular design does not
modify any core Open MPI component and uses the regular optimized BTL
devices, preserving a performance profile close to the unmonitored execution.

Vdebug includes wrappers for Recv, iRecv, Send, iSend, Start, WaitAny, Wait-
Some, Test, TestAny, TestSome, TestAll and iProbe functions. Once message
logging has been processed, the corresponding PML function is called to achieve

Retrospect: Deterministic Replay of MPI Applications 303

the actual communication. The Log Keeper component logs events to local disk
asynchronously in order to avoid running communications at the disk’s pace.
Vdebug uses the Berkeley Lab’s Linux Checkpoint/Restart library (BLCR) [12]
to take checkpoints and migrate processes.

Using Deterministic Replay for Interactive Debugging. Consider a soft-
ware developer working on application maintenance. The program is compiled
and started as usual with the mpicc and mpirun tools. To enable the generation
of a set of logs, the users just have to add the “–mca vprotocol debug priority
1”. The log set is identified by the current jobid, and contains checkpoints and
non deterministic events.

If some singular behavior occurs during the run, the user can investigate it by
restarting the application and adding the extra “–mca vprotocol debug replay
jobid” argument. The entire application is restarted on the same set of nodes and
a debugging console shows up. From the console, the user can attach a gdb to any
process, force the generation of receiver-based payload logging for any process,
jump to a checkpoint, and adjust the checkpoint interval to a smaller value.
Processes are conveniently identified by their rank in the MPI COMM WORLD.

When the developer identifies the process and time slotwhere the flaw appeared,
an alternate launch option allows for running a single process from receiver-based
logs on the local machine (several instances might run in parallel).

4 Experimental Evaluation

Our experimental testbed is the Lyon Grid5000 cluster. Each node is a dual
Opteron 246 (2GHz) with 2GB DDR400 memory. The network interconnect is
Myrinet 2000 and the software setup is Linux 2.6.7 with MX-1.03. Benchmarks
are compiled using gcc and gfortran 4.1.2 with -O3 and loop unrolling opti-
mizations. We used NetPIPE for round trip time tests and the NAS Parallel
Benchmarks to investigate application behavior.

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M

Message Size (Bytes)

0

1

2

3

4

5

6

R
T

T
 O

ve
rh

ea
d

(%
) OpenMPI-V with receiver-based

OpenMPI-V
OpenMPI

Vdebug Application
overhead (%)
Rcvr-based None Yes

BT.B.64 0 6.4
LU.B.64 0 2.2
MG.B.64 2.2 4
CG.B.64 0.8 4
FT.B.64 0 7.3
SP.B.64 0 6.4
EP.B.64 0 0

Fig. 3. Myrinet 2000 performance comparison between core Open MPI and Open MPI-
Vdebug with and without receiver-based payload message logging

Figure 3 presents performance on Myrinet for core Open MPI and Open MPI-
Vdebug with and without receiver-based message payload logging. On the round

304 A. Bouteiller, G. Bosilca, and J. Dongarra

trip time test, the performance penalty of logging the non deterministic events is
barely noticeable: the latency is increased by a mere 0.11μs, while, as expected,
no impact is visible on the bandwidth. Receiver-based message logging incurs
little overhead, latency increases by 0.41μs, bandwidth by about 2% due to mem-
ory copies. The most important overhead comes from the size of message payload
logs that reach more than 350MB on this simple ping-pong test. If memory gets
exhausted, which can happen for highly communicative applications, the per-
formance profile is modified and the communications runs at the disk’s pace.
Performance on the NAS benchmarks confirms these conclusions: event logging
have very little impact with a maximum overhead of 2.2% in MG which is very
latency sensitive, and almost no overhead on the others. Receiver-based logging
shows up to 7.3% overhead due to memory swapping. So it is beneficial that
receiver-based message logging is only activated once the determinism of the
application is already enforced.

Another important parameter is the size of logs generated by the event log-
ging mechanism. Among the seven NAS kernels we tested, only two involve non
deterministic MPI operations: MG and LU.

Table 1. Log size per process (Kb) depending on the number of processes for some of
the NAS Benchmarks (log size for other kernels is zero)

#procs 4 8 16 32 64 128 256 512 1024 Average

LU.B 11.2 11.2 11.9 10.6 13.9 19 14.9 14.2 12.7 13.3
MG.B 11.2 11.2 10.8 10.6 10.6 9.8 9.5 9.3 9.2 10.24

Table 1 presents the log size per process when the number of processes in-
creases in LU and MG class B (class A-C show similar behavior). Per process log
size remains close to the average of 13.3kB for LU and decreases with the number
of processes in MG. This outlines that the log size does not correlates with the
number of processes but with the communication pattern of the application. A
scalable application typically tries not to increase the number of communication
events per process when the number of nodes increases.

When considering the larger data-set of the class C Benchmarks on 1024
processors, LU generates 287kB per computing node of logs and MG 12kB. This
is several orders of magnitude below the available 2GB of memory, meaning that
it can be safely flushed to disk without altering application behavior.

5 Conclusion

In this paper, we introduced deterministic replay capabilities in MPI to allow
interactive debugging of time related and message race dependent software flaws.
During a first run, an unobstructive event logging mechanism stores on disk the
outcome of non deterministic MPI communications, while deterministic commu-
nications are not logged. This allows the programmer to repeat several time a
particular bug scenario under supervision of a debugger. Checkpoints are used
to decrease the replay time to reach a singular behavior and allows to migrate

Retrospect: Deterministic Replay of MPI Applications 305

processes to more available hosts. The user can enable receiver-based message
logging at any time during the debugging session to specifically investigate a
particular process without running the whole parallel application.

Overhead on communication performance is barely noticeable and thus is
expected to introduce insignificant differences on application behavior. Event
logging memory requirement is moderate, while message payload logging, which
produces a large amount of data and might change memory constraints of the
application, can be enabled on demand, once the deterministic behavior of the
application is already enforced.

In future works, we plan to better interoperate with parallel debuggers like
TotalView. We also plan to decrease the log size by using trace compression tech-
niques and incremental checkpoints. Last, we plan to investigate our contention
that our checkpoint synchronization approach is unobstructive because it uses
the Chandy and Lamport algorithm and does not require flushing the network.

References

1. Gottbrath, C.: Eliminating parallel application memory bugs with totalview. In:
SC 2006 Proceedings of the 2006 ACM/IEEE conference on Supercomputing p.
210. ACM Press, New York (2006)

2. Rudgyard, M.: Novel techniques for debugging and optimizing parallel applications.
In: SC 2006 Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
p. 281. ACM Press, New York (2006)

3. Vetter, J.S., de Supinski, B.R.: Dynamic software testing of mpi applications with
umpire. In: SC ’00: Proceedings of the 2000 ACM/IEEE conference on Supercom-
puting, p. 51. IEEE Computer Society, Washington, DC, USA (2000)

4. Wolf, F., Mohr, B., Dongarra, J., Moore, S.: Efficient pattern search in large traces
through successive refinement. In: Danelutto, M., Vanneschi, M., Laforenza, D.
(eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 47–54. Springer, Berlin (2004)

5. Noeth, M., Mueller, F., Schulz, M., de Supinski, B.: Scalable compression and
replay of communication traces in massively parallel environments. In: 21th IEEE
International Parallel and Distributed Processing Symposium (IPDPS’07), ACM
Press, New York (to appear, 2007)

6. Geels, D., Altekar, G., Shenker, S., Stoica, I.: Replay debugging for distributed
applications. In: Proceedings of the 2006 USENIX Annual Technical Conference,
Boston, MA, USENIX pp. 289–300 (2006)

7. Bouteiler, A., Herault, T., Krawezik, G., Lemarinier, P., Cappello, F.: MPICH-V
project: a multiprotocol automatic fault tolerant MPI, vol. 20, pp. 319–333. SAGE
Publications, Thousand Oaks (2006)

8. Clemencon, C., Fritscher, J., Meehan, M.J., Ruhl, R.: An implementation of race
detection and deterministic replay with mpi. In: Haridi, S., Ali, K., Magnusson, P.
(eds.) EURO-PAR ’95: Parallel Processing. LNCS, vol. 966, pp. 155–166. Springer,
Heidelberg (1995)

9. Kranzlmuller, D., Schaubschlager, C., Volkert, J.: An integrated record&replay
mechanism for nondeterministic message passing programs. In: Proceedings of the
8th EuroPVM/MPI Users’ Group Meeting, pp. 192–200. Springer, London, UK
(2001)

306 A. Bouteiller, G. Bosilca, and J. Dongarra

10. de Kergommeaux, J.C., Ronsse, M., de Bosschere, K.: MPL*: Efficient
record/replay of nondeterministic features of message passing libraries. In: Mar-
galef, T., Dongarra, J.J., Luque, E. (eds.) Recent Advances in Parallel Virtual
Machine and Message Passing Interface. LNCS, vol. 1697, pp. 141–148. Springer,
Heidelberg (1999)

11. Maryama, M., Tsumara, T., Nakashima, H.: Parallel program debugging based on
data replay. In: 17th IASTED International Conference on Parallel and Distributed
Computing Systems, pp. 151–156. ACTA Press (November 2005)

12. Duell, J., Hargrove, P., Roman, E.: The design and implementation of berkeley lab’s
linux checkpoint/restart. Technical Report LBNL-54941, Berkeley Lab (2003)

Extended MPICC to Generate MPI Derived

Datatypes from C Datatypes Automatically

Éric Renault

GET / INT — Samovar UMR INT-CNRS 5157
9 rue Charles Fourier
91011 Évry, France

eric.renault@int-edu.eu

Abstract. More and more MPI programs are developed by people who
are not experienced parallel programmers; many others are automatically
generated by specific frameworks. For both cases, MPI derived datatypes
are difficult to handle. This article presents MPIECC, the MPI Extended
C Compiler, which aims at introducing a new operator in the MPI API.
This new operator is used to automatically translate C datatypes to MPI
derived datatypes including pointers and nests of arrays and structures.

Keywords: MPI, Datatypes, Automatic translation.

1 Introduction

As applications are getting larger everyday, and as their computing time is get-
ting longer despite the use of more and more powerful processors, developing par-
allel applications has become necessary in every scientific fields of research. How-
ever, not all the people developing these scientific applications are computer sci-
entists with strong skills in parallel computing. For such a user, message-passing
libraries are tools used to perform basic operations like sending and receiving
messages, and they are not aware of most functionalities of MPI-like message-
passing libraries, like their ability to take into account complex datatypes. Other
kinds of users are aware they can define and use derived datatypes but consider
this is too difficult to handle. The result is that both kinds of users are limited to
basic datatypes and are managing the transfer of complex datatypes manually.

In order to ease the development of parallel applications, tools have been
developed to allow the parallel execution of sequential programs. Some of these
tools are used at compilation to transform a sequential program into a parallel
program automatically [1]; others are used at execution time to allow the parallel
execution of a set of instances of a single sequential program, as it is done for
task parallelism applications [2].

As a result, for people managing complex datatypes on their own and for
applications allowing the execution in parallel of programs provided as sequen-
tial codes, there is a need for tools that would automatically manage complex
datatypes. Some have been developed for MPI like Automap/Autolink [3] and

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 307–314, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

308 É. Renault

C++2MPI [4]. However, they are usually limited in their ability to handle com-
plex datatypes and their use is quite orthogonal to either the programming
language and/or the message-passing library.

This article presents MPIECC, which stands for MPI Extended C Compiler,
an efficient wrapper around MPICC able to generate MPI derived datatypes
from C datatypes automatically. As a result, it deals with the C programming
language only. However, all the solutions provided could be implemented for a
Fortran compiler.

The document is organized as follows. The first section presents the new
operator we have introduced inside the MPI API. The next section highlights the
benefits involved by using this new operator. Section 4 details the architecture
of MPIECC, ie. both compile time and runtime parts are described. The last
sections before the conclusion are devoted to the presentation of the limits of
MPIECC and a comparison to some related works respectively.

2 MPIECC Principle

In order to let MPIECC know an MPI derived datatype has to be generated, the
user is expected to tag any C datatypes used for communications. In the pro-
gram, this operation is performed using a new dedicated operator (MPI Typeof)
where the MPI derived datatype is requested. The MPI Typeof operator can
be used in a similar way as the sizeof operator, except that the MPI derived
datatype is returned instead of the number of bytes for the type provided as
a parameter. For example, to get the MPI derived datatype associated to type
char in the C programming language, one can just use MPI Typeof (char).
Fig. 1 provides a more complete example.

Fig. 1. Example of code using MPI Typeof

In order to compile the MPI program and take full advantage of the new func-
tionalities, one shall use mpiecc instead of mpicc. In fact, MPIECC is implemented

Extended MPICC to Generate MPI Derived Datatypes 309

as a wrapper around MPICC to deal with the automatic generation of MPI derived
datatypes. However, we expect this new functionality to be included as a standard
in a future version of MPI.

3 MPIECC Features

At present, the MPI Typeof operator allows MPIECC to add two new features to
the original MPI C Compiler. The first one is the ability to transform C datatypes
to MPI datatypes and the second one is the ability to manage links between
memory areas.

3.1 Transformation of C Datatypes

C datatypes that MPIECC is able to handle are integral types, arrays, structures,
pointers and any compositions at any depths. This task is delegated to MPIPP
(an MPI Pre-Processor we developed) [5,6].

Each integral type of the C programming language has a corresponding MPI
type. As a result, any call to MPI Typeof for these types or any use of these
types inside the definition of a more complex type results in the use of the
corresponding MPI datatype.

Arrays are collections of data stored in a contiguous memory area. As a result,
the definition of an MPI derived datatype composed of an array is performed
using the MPI Type contiguous function.

A structure is a collection of elements each being located the one after the
other one. In order to define the MPI derived datatype associated to a given
structure, it is mandatory to determine for each field of the structure, its dis-
placement from the beginning of the structure, the MPI type (derived or not)
to associate and the number of items to store (if it is an array). Thus, function
MPI Type struct is used to generate MPI derived datatypes for structures.

3.2 Taking Pointers into Account

MPIECC is able to transfer memory areas linked all together using pointers.
Fig. 2 presents an example of complex memory structure to be transfered auto-
matically using MPIECC. In this example, let us assume each node is part of a
binary tree with a left and a right subtree. For this particular tree, a node may
be the left and/or the right node of more than one node. This is for example the
case for node 6 which is at the same time the right node of 4 and the left node
of 11. It would lead to wrong behaviours if the result of the transfer includes two
copies of nodes 6, 7 and 8. Typically, it would not be possible any longer on the
target node to perform a comparison to check if the right pointer of 4 is equal
to the left pointer of 11. As a result, the source node (resp. the target node)
manages a list of sent (resp. received) memory areas to avoid sending twice the
same memory area on the sender and automatically link memory areas together
on the receiver.

310 É. Renault

2

3 4

5

1

9

10 11

126

7 8

6

7 8

Source Target

2

3 4

5

1

9

10 11

126

7 8

Fig. 2. Example of a complex memory transfer

It is important to note that the reconstruction of the memory structure on the
target node is performed in the scope of a single transfer. This means that if the
user first sends the content of node 6 (with nodes 7 and 8 transfered implicitly),
another transfer including node 6 (for example sending the content of node 4)
resends the content of nodes 6, 7 and 8. In fact, as any operations may have been
performed between the two transfers, it is not possible to assume that nodes 6,
7 and 8 are still the same as those transfered earlier.

In order to allow MPIECC to determine which memory areas have to be
transfered together with the buffer specified by the user, another function (MPI
Typeof pointer) is added to the MPI API. The goal of function MPI Typeof
pointer is to specify the offset from the beginning of the datatype for each
pointer. The prototype of function MPI Typeof pointer is as follows:

int MPI Typeof pointer (MPI Datatype type, int size, MPI Aint * off, MPI Datatype * list)

where type is the MPI derived datatype for which the list of pointers applies to,
size is the number of pointers in the structure (ie. it is the number of elements
of the arrays provided by the last two parameters), off is the list of offsets used
to indicate where pointers are located from the beginning of the datatype and
list is the list of MPI derived datatypes, one for each offset.

Function MPI Typeof pointer is automatically used by MPIECC if necessary
to specify the location of pointers inside MPI derived datatypes. As it remains
possible for users to define their own MPI derived datatypes, it is also possible
to use function MPI Typeof pointer to specify the location of pointers inside
user MPI derived datatypes.

4 MPIECC Architecture

The introduction of these new functionalities inside MPI are performed at two
different steps of the program lifetime. The first step occurs at compilation to
generate MPI derived datatypes from C datatypes automatically. The second

Extended MPICC to Generate MPI Derived Datatypes 311

step occurs at run time where calls to send and receive functions are diverted to
take into account pointed memory areas.

4.1 At Compile Time

The definition of MPI derived datatypes is performed at compilation. After the
source file has been processed by the C preprocessor, the C file contains the defin-
ition of all the datatypes used in the program. As a result, MPIPP (the MPI Pre-
Processor we developed to generate MPI derived datatypes from C datatypes)
can parse the C file and extract the definition of all user-defined datatypes. Then,
MPIPP marks all the datatypes that have been tagged inside the program us-
ing the MPI Typeof operator and recursively performs the same operation on
all types used for their definition. Finally, the MPI derived datatype for each
marked type is generated and calls to the MPI Typeof operator are substituted
the corresponding MPI type if the given C datatype is a basic type and a call
to the function that defines the MPI derived datatype associated to the given
C datatype in the other case. Fig. 3 presents how the output of the C preproces-
sor is diverted to feed MPIPP and how the output of MPIPP is returned in the
usual compilation chain.

.c cpp .i cc .s as .o ld

.aar

.c cpp

.i

.h

a.out

stage
mpipp Extra

.h
Usual compilation

chain

Fig. 3. Introduction of MPIPP in the compilation chain

4.2 At Run Time

There are several solutions to deal with pointers. The one we have chosen consists
in using the LD PRELOAD facility provided by the ELF linkage format (available
on almost all Unix-like systems) in order to divert calls to send and receive
functions. One of the main advantages of using the LD PRELOAD facility is that
it makes our solution independent from the underlying MPI implementation.

Send and receive functions provided by MPIECC are able to handle pointers in
MPI derived datatypes, ie. memory areas pointed to by non-NULL pointers are
sent together with the original buffer. Original send and receive functions of the
MPI library are only used to send and receive both predefined MPI datatypes and
MPI derived datatypes (with pointers coded as intergers for the data transfer).

312 É. Renault

5 Limits of MPIECC

MPIECC is able to deal with almost any C datatypes. This section is devoted to
highlight the limitations of the present implementation. One can remark that all
these limitations are not due to the implementation of MPIECC but they are due
to a lack of information at compilation. The only way to bypass these limitations
is to get knowledge from the semantic of the program at runtime or ask the pro-
grammer to provide information on how these data structures are used.

Unions. Regardless structures, MPI provides no specific function to deal with
unions. A solution is provided in [7] but an extra integer is required to select the
good MPI derived datatype in an array of MPI derived datatype. Therefore, as
this integer must be managed by the user, it is not possible to generate an MPI
derived datatype from a C datatype including a union automatically without
any extra information.

Void Pointers. MPIECC isable to handle any kind of pointers as long as the
datatype of the pointed area is know. The problem with void pointers is that the
datatype (and therefore the characteristics like the size) of the pointed area is
not defined. It is the programmer responsability to make sure the use of this area
is correct. As a result, it is not possible to generate an MPI derived datatype
from a C datatype including a void pointer.

Dynamically Allocated Arrays. Pointers in the C programming language
are used in order to refer to a memory area. However, even if the datatype of
the pointed memory area is known, there is no information to specify whether
this memory area stores a single element of that type or several ones. Therefore,
without extra information, it is not possible to determine if a memory region

Table 1. Comparison of functionalities

�

�

� � � �

�

♦ � � �

♦ �

� � � �

�

♦

♦

�

♦

�

�

�

Extended MPICC to Generate MPI Derived Datatypes 313

pointed to inside an automatically generated MPI derived datatype is a single
data or not. As a result, we used as a convention that a pointed to memory area
is always composed of a single element.

6 Related works

Table 1 draws a comparison in terms of functionalities between AutoMap/Auto-
link, C++2MPI and MPIECC. MPIECC provides two main advantages regard-
ing the other works. First, it does not require any function calls or comments,
but just calls to the MPI Typeof operator. Second, it allows to take into account
any kind of C datatype (including nested arrays and structures).

7 Conclusion

This article presented MPIECC, an extension to the MPI C Compiler that en-
ables the automatic generation of MPI derived datatypes from C datatypes au-
tomatically. After introducing a new operator to the MPI API, we presented the
architecture of MPIECC and how it handles the creation of new MPI derived
datatypes. Finally, we presented the limits of our current compiler and a com-
parison with both the AutoMap/AutoLink couple and C++2MPI and shows
that MPIECC provides more functionalities than the other tools and is able to
handle more complex cases.

References

1. Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira,
S., Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A.,
Zagorodnov, D.: Adaptive computing on the grid using AppLeS. IEEE Transactions
on Parallel and Distributed Computing 14(4), 369–382 (2003)

2. Hadjidoukas, P.E.: A Lightweight Framework for Executing Task Parallelism on Top
of MPI. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J.J. (eds.) Recent Advances
in Parallel Virtual Machine and Message Passing Interface. LNCS, vol. 3241, pp.
287–294. Springer, Heidelberg (2004)

3. Goujon, D.S., Michel, M., Peeters, J., Devaney, J.E.: AutoMap and AutoLink: Tools
for Communicating Complex and Dynamic Data-Structures Using MPI. In: Panda,
D.K., Stunkel, C.B. (eds.) CANPC 1998. LNCS, vol. 1362, pp. 98–109. Springer,
Heidelberg (1998)

4. Hillson, R., Iglewski, M.: C++2MPI: A Software Tool for Automatically Generating
MPI Datatypes from C++ Classes. In: International Conference on Parallel Com-
puting in Electrical Engineering, Trois-Rivières, QC,, pp. 13–17. IEEE Computer
Society, Los Alamitos (2000)

5. Renault, E., Parrot, C.: Automatic generation of mpi derived datatypes from
c datatypes with mpipp. In: Proceedings of the ISCA 19th International Confer-
ence on Parallel and Distributed Computing Systems, San Francisco, CA, ISCA,
The International Society for Computers and Their Applications (2006)

314 É. Renault

6. Renault, E., Parrot, C.: Mpi pre-processor: Generating mpi derived datatypes from
c datatypes automatically. In: Proceedings of the, International Conference on Par-
allel Processing Workshops, Colombus, OH (2006) pp 248–254 (2006)

7. Message Passing Interface Forum: MPI: A Message Passing Interface Standard
(1995)

Timestamp Synchronization for Event Traces of

Large-Scale Message-Passing Applications

Daniel Becker1, Rolf Rabenseifner2, and Felix Wolf1

1 Forschungszentrum Jülich, John von Neumann Institute for Computing (NIC)
52425 Jülich, Germany

{d.becker,f.wolf}@fz-juelich.de
www.fz-juelich.de

2 University of Stuttgart, High-Performance Computing-Center (HLRS)
70550 Stuttgart, Germany
rabenseifner@hlrs.de

www.hlrs.de

Abstract. Identifying wait states in event traces of message-passing
applications requires measuring temporal displacements between con-
current events. In the absence of synchronized hardware clocks, linear
interpolation techniques can already account for differences in offset and
drift, assuming that the drift of an individual processor is not time de-
pendant. However, inaccuracies and drifts varying in time can still cause
violations of the logical event ordering. The controlled logical clock al-
gorithm accounts for such violations in point-to-point communication
by shifting message events in time as much as needed while trying to
preserve the length of intervals between local events. In this article, we
describe how the controlled logical clock is extended to collective commu-
nication to enable a more complete correction of realistic message-passing
traces. In addition, we present a parallel version of the algorithm that
is intended to scale to thousands of application processes and outline its
implementation within the framework of the scalasca toolkit.

Keywords: Performance analysis, event tracing, clock synchronization.

1 Introduction

Event tracing is a frequently applied technique for post-mortem performance
analysis of message-passing applications because it can be used to analyze tem-
poral relationships between concurrent activities. Obviously, the accuracy of such
analyses depends on the comparability of timestamps taken on different proces-
sors. Inaccurate timestamps can not only cause a given interval to appear shorter
or longer than it actually was, but also change the logical event order, which re-
quires that a message can only be received after it has been sent. This is also
referred to as the clock condition. To avoid violations of this condition, the error
of timestamps should ideally be smaller than one half of the message latency.

Often, however, the clocks accessible from different processors are entirely non-
synchronized or only synchronized within disjoint partitions (e.g., smp-node or

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 315–325, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.fz-juelich.de
www.hlrs.de

316 D. Becker, R. Rabenseifner, and F. Wolf

multicore-chip). Clock synchronization protocols, such as ntp [4], can align the
clocks to a certain degree, but are often not accurate enough for our purposes.
Assuming that all local clocks on a parallel machine run at different but constant
speeds (i.e., drifts), their time can be described as a linear function of the global
time. This approach is used in the tracing library of the scalasca toolkit [2],
which performs offset measurements between all local clocks and an arbitrarily
chosen master clock once at program initialization and once at program final-
ization. However, as the assumption of constant drift is only an approximation,
violations of the clock condition may still occur.

The controlled logical clock (clc) [6] is a method to retroactively correct
timestamps violating the clock condition. As the modification of individual
timestamps might change the length of local intervals and even introduce new
violations, the correction takes the context of the modified event into account by
stretching the local time axis in the immediate vicinity of the affected event. The
current clc algorithm, however, is limited by two factors. First, it covers only
point-to-point operations and ignores collective ones. Second, it is a serial algo-
rithm designed for a single global trace file. In this article, we describe how the
controlled logical clock is extended to collective communication to enable a more
complete correction of realistic message-passing traces. In addition, we present
a parallel version of the algorithm that is intended to scale to thousands of ap-
plication processes and outline its implementation design within the framework
of scalasca [2], a performance-analysis tool that can be used to automatically
identify idle times in event traces of large-scale message-passing programs.

The outline of this article is as follows: In Section 2, we start with a short
description of scalasca’s event model and its parallel trace analysis approach,
followed by a review of the basic clc mechanism in Section 3. In Section 4, we
describe our extensions required to handle collective operations. After that, we
present the new parallel algorithm design in Section 5. Finally in Section 6, we
summarize our paper and give an outlook on future work.

2 Event Model and Replay-Based Parallel Analysis

Because we plan to integrate the extended clc algorithm with the scalasca

trace-analysis tool, we describe it in terms of the scalasca event model, which is
similar to the vampir event model [5], for which the algorithm has been originally
designed. As far as message passing is concerned, the two models differ only in
the way they express collective communication, which the original algorithm
ignores anyway.

The information scalasca records for an individual event includes at least a
timestamp, the location (i.e., the process) causing the event and the event type.
Depending on the type, additional information may be supplied. The event model
distinguishes between programming-model independent events, such as entering
and exiting code regions, and events related to mpi operations. The latter in-
clude events representing point-to-point operations, such as sending and receiv-
ing messages, and events representing the completion of collective operations.

Timestamp Synchronization for Event Traces 317

These collective exit events are specializations of normal exit events carrying
additional information (i.e., the communicator) that allows identifying concur-
rent collective exits belonging to the same collective operation instance. Table 1
illustrates the event sequences recorded for typical mpi operations.

To facilitate trace analysis for large numbers of application processes, the
scalasca analyzer scans the trace data in parallel. After creating one analysis
process per (target) application process, the analyzer loads the entire trace data
into the potentially distributed main memory and performs a parallel replay of
the applications communication behaviour, thereby examining each communi-
cation operation using an operation of similar type. During this procedure, the
analyzer measures temporal differences both between remote and between local
events, which requires the time stamps to be as accurate as possible. The exe-
cution time of the analyzer mainly depends on communication, which resembles
the original communication of the target application. For details, please see [2].

Table 1. Exemplary event sequences recorded for typical mpi operations

Function name Event sequence
MPI Send() (enter, send, exit)
MPI Recv() (enter, receive, exit)
MPI Allreduce() (enter, collective exit) for each participating process

3 Controlled Logical Clock

Non-synchronized processor clocks may cause inaccurate timestamps in event
traces. A clock condition violation occurs if the receive event of a message has
an earlier timestamp than its matching send event. That is, the happened-before
relation e → e′ [6] between two events e and e′ with their respective timestamps
C(e) and C(e′) does not hold. A clock condition violation between two events is
defined as:

∃ e, e′ : e → e′ ∧ C(e) ≥ C(e′). (1)

The clc algorithm restores the clock condition using happened-before rela-
tionships between distributed events derived from point-to-point communication
event semantics. More precisely, if the condition is violated for a send-receive event
pair, the receive event is moved forward in time. The correction is only applied if
the trace contains clock condition violations. To preserve the length of intervals be-
tween local events, events immediately following or preceding the corrected event
are moved forward as well. This adjustment is called forward and backward amor-
tization, respectively. Note that the accuracy of the adjustment depends on the
accuracy of the original timestamps. Therefore, the algorithm benefits from weak
pre-synchronization, such as the aforementioned linear interpolation. In this sec-
tion, we review the clc algorithm including forward and backward amortization.
The interested reader can find a detailed description of the clc algorithm and a
review of further synchronization approaches in [6] and [7].

318 D. Becker, R. Rabenseifner, and F. Wolf

3.1 CLC with Forward Amortization

The clc algorithm is an enhancement of Lamport’s logical clock [3] and was
introduced by Rabenseifner [6]. The algorithm requires timestamps with lim-
ited errors, which can be achieved through weak pre-synchronization. To denote
timestamps computed by clc, we use the symbol LC′.

In the following, LC′ is modeled with t as the wall clock time and T (t) as the
global time to which the process clocks Ci(t) (i = 0..n − 1) are synchronized.
Next, n is the number of processes, ej

i is the jth event on process i and so
E = {ej

i |i = 0..n − 1, j = 0..jmax(i)} is the set of all events in the trace. In
addition, the set of matching send and receive pairs is defined with

M = {(el
k, en

m)|el
k = send event, en

m = matching receive event}. (2)

Note that the send event always marks the beginning of a send operation
whereas a receive event marks the end of a receive operation. By contrast, ej

i is
an internal event if it is neither a send nor a receive event. Furthermore, δi is
the minimal difference between two events on process i and μk,i is the minimum
message delay of messages from process k to process i. Finally, γj

i is a control
variable with γj

i ∈ [0, 1]. For each process, LC′
i is now defined as

LC′
i(e

j
i) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(LC′
k(el

k) + μk,i,

LC′
i(e

j−1
i) + δi,

LC′
i(e

j−1
i) + γj

i (Ci(t(e
j
i))−Ci(t(e

j−1
i))),

Ci(t(e
j
i))) if

el
k

∃ (el
k, ej

i) ∈M (3)

max(LC′
i(e

j−1
i) + δi,

LC′
i(e

j−1
i) + γj

i (Ci(t(e
j
i))−Ci(t(e

j−1
i))),

Ci(t(e
j
i))) otherwise. (4)

As can be seen, the algorithm consists of two equations. Equation (3) adjusts
the timestamps of receive events while Equation (4) modifies timestamps of
internal and send events. Note that for each process, the terms LC′

i(e
j−1
i) + δi

and LC′
i(e

j−1
i) + γj

i (Ci(t(e
j
i))−Ci(t(e

j−1
i))) must be omitted for the first event

(j = 0).
Through the term Ci(t(e

j
i)) in Equation (3) and Equation (4), the algorithm

ensures that a correction is only applied if the trace violates the clock condition.
The new timestamps satisfy the clock condition, since the term LC′

k(el
k) + μk,i

in Equation (3) ensures that LC′(ej
i) is put forward compared to Ci(t(e

j
i)) if

needed in case of a clock condition violation. To ensure that the clock does
not stop after a clock condition violation, the term LC′

i(e
j−1
i) + γj

i (Ci(t(e
j
i))−

Ci(t(e
j−1
i)) in Equation (3) and Equation (4) approximates the duration of the

Timestamp Synchronization for Event Traces 319

original communication after a clock condition violation. This mechanism is
called forward amortization.

Moreover, Rabenseifner has shown that γj
i with a constant value can cause

LC′ to be faster than the fastest clock among all process-local clocks Ci [7].
Cyclic changes of physical clock drifts may cause an avalanche effect that enlarges
the value of clock corrections and propagates until the end. To avoid this effect,
a control loop is used to find the optimal value of γj

i . The controller tries to
limit the differences between LC′ and T , i.e., the controller estimates the output
error indirectly because T (t(ej

i)) is unknown. If 1− γ is chosen smaller than the
maximal drift differences, the controller will enlarge 1−γ (e.g., to 1%) to ensure
that any propagation is bounded by this factor. To calculate γj

i for each event,
the controller requires a global view of the event data. Mainly, γj

i is kept less
than 1 minus the maximal drift of the clocks, however, in most cases a fixed
γ = 0.99 or 0.999 is good enough because physical clock drifts are normally less
than 10−4. For subsequent events of the same process, the term LC′

i(e
j−1
i) + δi

in Equation (3) and Equation (4) causes LC′ to advance at least a small number
of ticks δi if the controller has reduced γj

i to nearly zero. Rabenseifner describes
the control mechanism in more detail in [7].

A jump discontinuity in LC′ of Δt is caused by the term LC′
k(el

k) + μk,i in
Equation (3) if LC′(ej

i) of the violating receive event is put forward compared to
Ci(t(e

j
i)). The term LC′

i(e
j−1
i)+γj

i (Ci(t(e
j
i))−Ci(t(e

j−1
i)) in Equation (3) imple-

ments a forward amortization of such a jump. That is, the clock LC′
i for subsequent

events of process i runs with the speed of Ci reduced by the factor γj
i .

3.2 Backward Amortization

Backward amortization is applied to smooth jump discontinuities caused by the
first part of the clc algorithm. This is done by slowly building up the ascension
to a jump Δt using a piecewise process-local linear correction in an amortization
interval LA of appropriate size before the violating receive event [7] (Figure 1).
The compensation is realized by setting the timestamps forward. If there are no
violating send events in the backward amortization interval of a process i, then
the dash-dotted linear interpolation can be used. In Figure 1, the horizontal axis
represents LCb

i , which is equal to LC′
i (i.e., the state after forward amortization)

but without the jump Δt at event r. The vertical axis shows offsets to LCb
i after

applying different stages of backward amortization. Naturally, the offset at r
corresponds to the jump Δt. Note that the smaller the gradient of a clock in this
figure, the better the correction and the smaller the perturbation of preceding
events. Therefore, the ratio Δt/LA should be only a few percent. Apparently,
adjacent clock condition violations cause a larger perturbation.

In addition, not to violate the clock condition, the correction must not ad-
vance the timestamps of send events farther than LC′

m−μi,m of the correspond-
ing receive event en

m of a process m. These upper limits are shown as circled
values above the locations of the send events. If these limits are smaller than the
dashed-dotted line (here at events s1 and s2), then a reduced piecewise linear
interpolation function must be used, see the dotted line in Figure 1. As can be

320 D. Becker, R. Rabenseifner, and F. Wolf

X

X

X

i ris3s2is1

Amortization interval LA

LCi
b

with LCi
b := LC’i without jump Δt

Jump Δt due to LC’k(ek
l)+μi.k in Eq.(3)

(LC’m(em
n) - μi.m)

Clocks – LCi
b

of process i

Corresponding receive
event , i.e., (s3,em

n) M∈

Clocks: LCi’
 LCi

I ideal backward amortization
 in the absence of conflicting sends
 LCi

A piece-wise linear
 backward amortization

Events : r = Receive event
 s = Send event
 i = Internal event

Fig. 1. Algorithm of the backward amortization

seen, the clock error rate is higher than the desired Δt/LA in the interval (s2, r).
For each receive event with a jump, the backward amortization algorithm is
applied independently. If there are additional receive events inside the amorti-
zation interval during such a calculation step, then these events can be treated
like internal events, because advancing the timestamp of a receive event further
cannot violate the clock condition.

4 Extended Controlled Logical Clock

Unfortunately, the clc algorithm in its present state is only designed to cor-
rect clock condition violations related to point-to-point communication. Collec-
tive communication semantics are ignored. In this section, we extend the algo-
rithm including forward and backward amortization to correctly handle collective
communication. Again, we start with considering happened-before relationships
among collective communication events. We start with a description of the ex-
tended forward amortization followed by the extended backward amortization.

4.1 Extended CLC with Forward Amortization

The clc algorithm requires the detection of clock condition violations. The
happened-before relation is used to synchronize the timestamp of the receive
event with the timestamp of the corresponding send event, i.e., the receive event
is put forward in time if a clock condition violation has occurred.

A single collective operation can be considered as a composition of many
point-to-point communications. Using this model, we determine collective send
and receive pairs occurring during a collective operation instance. We distinguish
several types of collective operations (e.g., 1-to-N, N-to-1, etc.). Depending on
the type, some of the enter events in a collective operation instance can be
regarded as send events and some of the collective exit events as receive events.

In the following, we review the different types of collective operations to identify
happened-before relationships based on the decomposition of collective operations
into send and receive pairs. With S and R we denote the set of send and receive
events in a collective operation instance i, respectively. For each call to a collective
operation, the set of all send-receive pairs M is enlarged by adding S ×R.

Timestamp Synchronization for Event Traces 321

1-to-N: One root process sends its data to N other processes. Example are
MPI Bcast, MPI Scatter, and MPI Scatterv. S only contains the send event of
the root process (i.e., its enter event), whereas R contains receive events from all
processes of the communicator (i.e., all collective exit events) with a data length
greater zero, i.e., the set may be smaller than the size of the communicator in
the case of variable length operations (MPI ...v).

N-to-1: One root process receives its data from N processes. Examples are MPI
Reduce, MPI Gather, and MPI Gatherv. R only contains the receive event on the
root process (i.e., its collective exit event). S is the set of send events (i.e., all
enter events) on all processes of the communicator with a data length greater
zero. Given that the root process is not allowed to exit the operation until the
last process enters the operation, the latest enter event is the relevant send event
to fulfill the collective clock condition. Hence, if S contains more than one ele-
ment, the term LC′

k(el
k)+μk,i in Equation (3) must be replaced by the maximum

of LC′
k(el

k) + μk,i over all el
k ∈ S. That is, Equation (3) must be replaced by

LC′
i(e

j
i) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max((max∀el
kwith(el

k,ej
i)∈M LC′

k(el
k) + μk,i),

LC′
i(e

j−1
i) + δi,

LC′
i(e

j−1
i) + γj

i (Ci(t(e
j
i))−Ci(t(e

j−1
i))),

Ci(t(e
j
i))) if

el
k

∃ (el
k, ej

i) ∈M (3)′

... otherwise. (4)

N-to-N’: All processes of the communicator are sender and receiver. Exam-
ples are MPI Allreduce, MPI Allgather, MPI Alltoall, and MPI Barrier with
N’=N, and the variable length operations MPI Reduce scatter,MPI Allgatherv,
and MPI Alltoallv. S and R are defined by all those enter and collective exit
events whose processes contribute input data or receive output data. For a call to
MPI Barrier, all processes of the communicator contribute to S and R.

Special cases: For MPI Scan and MPI Exscan, the set of messages added to M
cannot be expressed as the Cartesian product S × R. Below, el

k refers to the
enter event of a collective operation instance and ej

i refers to the collective exit
event and, thus, the set of messages added to M has the form

{(el
k, ej

i) | k = 0..N−1, i = 0..k−x}

with x = 0 for MPI Scan and x = 1 for MPI Exscan.
Independently of collective operation type, it is important to optimize the

handling of S × R in Equation (3’). A parallelized algorithm of the extended
clc should attempt to reduce the effort to O(log N).

322 D. Becker, R. Rabenseifner, and F. Wolf

4.2 Extended Backward Amortization

To extend the backward amortization algorithm for collective routines, the upper
bounds for the send events (see Figure 1) must be adapted to collective events: If
ej−m

i is the send event of a collective routine, an upper bound for the piecewise
linear interpolation at ej−m

i is defined by minel
k∈R LC′

k(el
k)− μi,k with R being

the receive event data set defined in Section 4.1.

5 Parallel Timestamp Synchronization

Event tracing of applications running on thousands of processes [8] requires a
scalable synchronization scheme. In this section, we present a parallel version of
the extended clc algorithm.

5.1 Pre-synchronization

The accuracy of the clc algorithm depends on the accuracy of the original
timestamps and therefore a pre-synchronization is required. This can be achieved
through a linear interpolation where all process-local clocks are mapped onto a
single master clock. Given that different clocks vary in offset and drift, offset
values between worker processes and one master process measured at program
start and at program end are used to find a linear correction function. The
offset values are measured using the remote clock reading technique introduced
by Cristian [1]. As a byproduct, the minimum transfer delay can be estimated
during the offset measurements.

5.2 Parallel Post-mortem Timestamp Synchronization

scalasca’s replay-based approach of analyzing separate process-local trace files
in parallel can handle traces from thousands of processes. We can achieve com-
parable scalability for the clc algorithm if we also implement it using a parallel
replay. This has the additional advantage that it can be seamlessly integrated
into the existing analysis framework.

Fig. 2. Non-linear drifts of physical clocks measured on an Infiniband cluster in com-
parison to Send-Recv and Allreduce latency

Timestamp Synchronization for Event Traces 323

Preparation: While each scalasca analysis process reads the local trace file
of the corresponding application process into memory, the linear correction is
applied to all timestamps based on the previous offset measurements at program
start and end. The resulting timestamps are taken as the Ci. Inaccurate Ci can
occur for two reasons: (i) inaccurate offset measurements and (ii) time-dependant
clock drift. Figure 2 shows the non-linear behavior of the clocks Ci after such
linear correction on an infiniband cluster. Clock errors are still significantly
larger than point-to-point and collective latencies, i.e., violations of the clock
condition can still occur.

Logical clock synchronization algorithm: To apply the extended clc algorithm,
a parallel traversal of the event stream is performed. Whenever reaching com-
munication events, the corresponding communication operation is replayed to
exchange the timestamps of communication events for their later comparison.
For each event, a new timestamp is calculated using the extended clc algorithm.
The comparison between the remote timestamp and the local timestamp is used
to find clock condition violations. Depending on the type of the original com-
munication operation, different timestamps are exchanged using different mpi

function calls, as listed in Table 2.

Table 2. Timestamps exchanged depending on the type of operation during forward
amortization

Type of operation timestamp exchanged MPI function
P2P timestamp of send event MPI Send
1-to-N timestamp of root enter event MPI Bcast
N-to-1 max(all enter event timestamps) MPI Reduce
N-to-N’ max(all enter event timestamps) MPI Allreduce
MPI Scan max(some enter event timestamps) MPI Scan
MPI Exscan max(some enter event timestamps) MPI Exscan

Note, that in Equation (3’), the parallel calculation of the maximum over
all corresponding send events (max∀el

kwith(el
k,ej

i)∈M LC′
k(el

k) + μk,i) in the case
of N-to-1, N-to-N’, MPI Scan, and MPI Exscan can not be implemented with
the mpi function identified in Table 2 if μk,i is not the same for all pairs of
processes. Therefore in Equation (3’), μk,i must be substituted by min∀k,i(μk,i).
The exchanged timestamps are based on the LC′ values calculated up to the
specific event.

The control mechanism used for the controlled logical clock requires a global
view of the trace data to calculate γi as described in Section 3. Establishing
a global view of the trace data is not feasible with the replay-based approach
since communication would be required for each single event. Therefore, we
eventually have to perform multiple passes until the maximum error e is below
a predefined threshold ε. For the first pass through the trace files, we propose to
use γ = const < 1, for subsequent passes a γj+1 < γj should be used.

Backward amortization algorithm: The backward amortization requires a sec-
ond replay of the target application’s communication behavior. Timestamps are

324 D. Becker, R. Rabenseifner, and F. Wolf

Table 3. Timestamps exchanged depending on the type of operation during backward
amortization

Type of operation timestamp exchanged MPI function
P2P timestamp of receive event MPI Send
1-to-N min(all collective exit event timestamps) MPI Reduce
N-to-1 timestamp of root collective exit event MPI Bcast
N-to-N min(all collective exit event timestamps) MPI Allreduce
MPI Scan min(some collective exit event timestamps) MPI Scan
MPI Exscan min(some collective exit event timestamps) MPI Exscan

exchanged at synchronization points of the application. However, as explained
in Section 3, the former sender now needs data from the former receiver and so
the roles between sender and receiver are switched during the backward amor-
tization. Depending on the type of operation, the collective receiver needs the
timestamp of the relevant collective send event which are shown in Table 3. For
MPI Scan and MPI Exscan, a communicator with reverse rank ordering must be
used. The exchanged timestamps are based on the LC′ values after completion
of the extended clc algorithm. After receiving the data, each process temporally
stores the timestamps to locally apply the backward amortization if LC′ exhibits
a jump disconutinity. Note that this happens after the forward amortization has
already been applied.

Given that most mpi implementations use binomial tree algorithms to per-
form their collective operations, our replay-based approach reduces the commu-
nication complexity automatically to O(log N). Moreover, the stepwise parallel
replay during the backward amortization phase could be replaced by a single col-
lective operation per communicator for the entire trace - provided that sufficient
memory is available.

6 Conclusion

In this paper, we have extended the clc algorithm to take collective communi-
cation semantics into account so that now a more complete correction of realistic
message-passing traces can be achieved. Although the extended clc algorithm
only needs information about the respective event semantics (e.g., root sends to
all other processes), we would like to point out that the accuracy of our model
could be improved if the mpi-internal messaging inside collective operations was
exposed using interfaces such as peruse. In this case, the decomposition into
(additional) send and receive events is naturally given.

Finally, we have presented a design how the previously sequential algorithm
can de parallelized and implemented within the framework of the scalasca

toolkit. Once we have completed the actual implementation, we will perform a
detailed quantitative evaluation using real message-passing codes.

Timestamp Synchronization for Event Traces 325

References

1. Cristian, F.: Probabilistic clock synchronization. Distributed Computing 3, 146–158
(1998)

2. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: Scalable parallel trace-based perfor-
mance analysis. In: Proc. 13th European PVM/MPI Conference, Bonn, Germany,
Springer, Heidelberg (2006)

3. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM 21(7), 558–565 (1978)

4. Mills, D.L.: Network Time Protocol (Version 3). The Internet Engineering Task
Force - Network Working Group, March 1992. RFC (1305)

5. Nagel, W., Weber, M., Hoppe, H.-C., Solchenbach, K.: VAMPIR: Visualization and
analysis of MPI resources. Supercomputer 12(1), 69–80 (1996)

6. Rabenseifner, R.: The controlled logical clock - a global time for trace based software
monitoring of parallel applications in workstation clusters. In: Proc. 5th EUROMI-
CRO Workshop on Parallel and Distributed (PDP’97), London, UK, pp. 477–484
(1997)

7. Rabenseifner, R.: Die geregelte logische Uhr, eine globale Uhr für die tracebasierte
Überwachung paralleler Anwendungen. PhD thesis, Universität Stuttgart (March
2000)

8. Wolf, F., Freitag, F., Mohr, B., Moore, S., Wylie, B.: Large event traces in parallel
performance analysis. In: 8th Workshop Parallel Systems and Algorithms (PASA),
Lecture Notes in Informatics, Frankfurt/Main, Germany, March 13-16, Gesellschaft
für Informatik (2006), http://icl.cs.utk.edu/projectsfiles/kojak/pubs/
pasa06.pdf

http://icl.cs.utk.edu/projectsfiles/kojak/pubs/pasa06.pdf
http://icl.cs.utk.edu/projectsfiles/kojak/pubs/pasa06.pdf

Verification of Halting Properties for MPI

Programs Using Nonblocking Operations�

Stephen F. Siegel1 and George S. Avrunin2

1 Verified Software Laboratory, Department of Computer and Information Sciences,
University of Delaware, Newark, DE 19716, USA

siegel@cis.udel.edu,
http://www.cis.udel.edu/∼siegel

2 Laboratory for Advanced Software Engineering Research, Department of Computer
Science, University of Massachusetts, Amherst, MA 01003, USA

avrunin@cs.umass.edu,
http://www.math.umass.edu/∼avrunin

Abstract. We show that many important properties of certain MPI
programs can be verified by considering only a class of executions in
which all communication takes place synchronously. In previous work, we
showed that similar results hold for MPI programs that use only blocking
communication (and avoid certain other constructs, such as MPI_ANY_-
SOURCE); in this paper we show that the same conclusions hold for
programs that also use the nonblocking functions MPI_ISEND, MPI_-
IRECV, and MPI_WAIT. These facts can be used to dramatically reduce
the number of states explored when using model checking techniques to
verify properties such as freedom from deadlock in such programs.

1 Introduction

MPI includes nonblocking communication constructs, such as MPI_ISEND and
MPI_IRECV, that can increase the parallelism of a program by allowing processes
to overlap computation and communication. But this same parallelism can make
programs hard to understand, test, and debug. In principle, model checking tech-
niques [1] can explore all the possible executions of a parallel program and detect
problems such as deadlock even if those problems arise only on rare and unusual
execution paths, and these techniques have attracted growing interest from the
scientific computing community. One of the main difficulties in the application of
model checking, however, is the state explosion problem—the number of system
states that the model checker must examine typically grows exponentially in the
number of processes in the program. In particular, for MPI programs the buffer-
ing of messages makes an enormous contribution to this state explosion. In [13],
we showed that many properties of a class of MPI programs using only the (stan-
dard mode) blocking communication constructs (MPI_SEND, MPI_RECV, etc.)

� This material is based upon work supported by the National Science Foundation
under Grant No. 0541035.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 326–334, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.cis.udel.edu/~siegel
http://www.math.umass.edu/~avrunin

Verification of Halting Properties for MPI 327

could be verified by checking only synchronous executions, thereby eliminating
the buffering and greatly expanding the range of model checking. In this paper,
we extend those results to the nonblocking communication constructs.

In the next section, we explain how we model MPI programs and state a key
lemma. In Sec. 3, we use the lemma to show that checking for deadlock can
be restricted to synchronous executions, and in fact to an even more restricted
type of synchronous execution. We present a few experimental results showing
its impact on model checking using the model checker Mpi-Spin [10] in Sec. 4.
The last section presents some conclusions and discusses future work.

2 Traces

In what follows, we let P be a model of an MPI program in which the only
MPI functions used are MPI_INIT, MPI_FINALIZE, MPI_COMM_RANK, MPI_-
COMM_SIZE, MPI_ISEND, MPI_IRECV, and MPI_WAIT, and which does not use
MPI_ANY_SOURCE. We call such a model permissible. (We will see below that
the list of permitted functions can be expanded significantly.) The definition of
such a model can be made mathematically precise in a variety of ways (see, for
example, [10]). However, in the discussion here we will use a somewhat informal
notion of model in order to emphasize the essential concepts underlying the
theorem and its proof.

In essence, P may be thought of as an abstract version of an MPI program
consisting of a fixed number of single-threaded processes. Each process has a
unique integer process ID (pid); the rank of the process in MPI_COMM_WORLD
could be used as the pid, for example. A process of P may use MPI_ANY_TAG
and may even make nondeterministic choices. Such choices are common in models
of MPI programs that have been created by abstracting the data and variables in
the original program. Each process maintains a local state, which may be thought
of an assignment of values to all variables in the process, including “invisible”
variables such as the program counter.

An execution of P is considered to progress in a series of discrete atomic
steps, each step corresponding to the execution of a statement by one process in
P and possibly modifying the state of that process. In general, there are many
different ways P can execute, because the steps from the different processes can
be interleaved in various ways and a process can make nondeterministic choices.
An execution can consist of a finite or (countably) infinite number of steps. Finite
executions can stop at any point—it is not required that the processes terminate
or become permanently blocked—and are sometimes called execution prefixes.

We think of each execution of P as leaving behind a trace which captures
all information regarding that execution. We will treat the trace as a sequence
of events that occur instantaneously and atomically when the processes execute
certain actions. Each event contains complete information describing the change
made to the system state. The events fall into the following categories:

1. A post-send event ps is generated when an MPI_ISEND statement returns.
The information incorporated into this event includes the pid of the sending

328 S.F. Siegel and G.S. Avrunin

process, the pid of the destination process, the tag, and some unique identifier
for the request object instantiated by the call, which we will call the request
id (rid).

2. A post-receive event pr is generated upon the return of an MPI_IRECV. The
event information includes the pid of the process executing the statement,
the pid of the source, the tag (or MPI_ANY_TAG), and the rid.

3. An enter-wait event ew is generated just before executing a call to MPI_WAIT.
The event information includes the pid of the process executing the call and
the rid of the request being waited on.

4. An exit-wait event xw is generated when a call to MPI_WAIT returns. The
event information includes the pid of the process executing the call and the
rid of the request. If the request is for a receive operation, the data received
is also included.

5. A term event term is generated just before a process terminates.
6. A local event local is generated for every statement that does not fall into one

of the categories above (and hence does not involve communication). The
event includes all information necessary to determine the change in local
state resulting from execution of the statement.

We need both the ew and xw events since an MPI_WAIT call can block. To
simplify the presentation we have not recorded MPI_INIT and MPI_FINALIZE in
the trace. We assume those functions are invoked properly by each process.

We say that traces T and T ′ are equivalent if for each process p, the sequence
of events from p are identical in the two traces and the state of p after the last
event in T is the same as the state after the last event in T ′. In particular, the
two traces differ only in how events from different processes are interleaved.

Note that, since we have forbidden MPI_ANY_SOURCE, there is a unique way
that send and receive operations can be paired by the MPI infrastructure, and
this pairing relation is clearly discernible from the trace. An important point
about the pairing relation is that it depends only on the order of the posting
events within each process, and not in any way on how events from different
processes are interleaved. We will say that a ps or pr event in T is paired in T if
the pr or ps event with which it must be paired also occurs in T .

The rids allow us to determine which posting events correspond to which ew
and xw events. Hence every communication involves at most six related entries:
the ps and matching pr, the two corresponding ew events, and the two corre-
sponding xw events. Of course, not all six events need occur. It is possible, for
example, for a send to post and then complete without a matching receive ever
posting, because the message emanating from the send can be buffered. On the
other hand, a receive request can never complete if the related send has not
posted. In fact, this last restriction is the only barrier to changing the inter-
leaving of events from different processes. This is made precise by the following:

Lemma 1. Suppose that T is a trace from P , and let ei and ei+1 be consecutive
events in T satisfying the following conditions:

(i) The two events ei and ei+1 do not come from the same process.

Verification of Halting Properties for MPI 329

(ii) If ei+1 is an xw for a receive request, then ei is not the matching ps.

Then the sequence obtained by transposing ei and ei+1 is a trace of P equivalent
to T .

Lemma 1 may be taken as an “axiom” following from the informal semantics
described in the MPI Standard [4], or may be proved from a formal model such
as the one described in [10].

3 Deadlock

Let T be a finite trace of a model P . A process p is in a potentially blocked state
at the end of T if p has either terminated or the last event for p is an ew for
which the corresponding posting event is not paired in T . The motivation for
this terminology is the fact that the Standard permits—but does not require—
an MPI implementation to block a (standard mode) send operation until the
message can be delivered synchronously, i.e., until the receiving process has
posted a matching receive. We say that T ends in a potentially halted state if at
the end of T every process is potentially blocked. Hence in a potentially halted
state it is not possible to progress unless, possibly, send operations are allowed
to complete without their matching receives having been posted. To distinguish
between the “good” case where all processes have terminated normally and the
“bad” one where deadlock may occur, we say T ends in a potentially deadlocked
state if T ends in a potentially halted state and furthermore at least one process
has not terminated. We say P is deadlock-free if it has no trace ending in a
potentially deadlocked state.

A trace T is synchronous if every xw event on a send request is preceded by
the related pr. Hence a synchronous trace represents an execution in which no
message buffering was required. We say P is synchronously deadlock-free if it has
no synchronous trace ending in a potentially deadlocked state.

A synchronous trace T = e1, e2, . . . is greedy if, for all i, if ei is an event from
process p and ei+1 is an event from process q �= p, then p is in a potentially
blocked state at the end of e1, . . . , ei. In other words, control switches from one
process to another in T only when the first process becomes potentially blocked.

Theorem 1. Let P be a permissible model of an MPI program and assume that
no greedy trace of P ends in potential deadlock. Suppose that T is a finite trace
from P ending in a potentially halted state. Then there exists a greedy trace T ′

from P which is equivalent to T .

Proof. We will produce the greedy trace T ′ by modifying the interleaving of
T . The modification proceeds in m stages numbered 1, . . . , m, where m is the
number of events in T . Let T0 = T and let Ti denote the modified trace after
stage i (1 ≤ i ≤ m). We will show by induction on i that Ti is equivalent to T
and its prefix of length i is greedy. The case i = 0 is vacuously true and the case
i = m is the desired result.

330 S.F. Siegel and G.S. Avrunin

Suppose 1 ≤ i ≤ m and let the event sequence Ti−1 just before stage i be
e1, . . . , em. By the induction hypothesis, we may assume that the prefix R =
e1, . . . , ei−1 is greedy. Stage i proceeds as follows. Let p be the process of ei−1.
(If i = 1 we may let p be any process.) Assume p satisfies the following criterion:
there is an event from p in the suffix S = ei, . . . , em, and if the first such event
e is an xw then the posting event associated with e is paired in R. Then, by
Lemma 1, the sequence Ti obtained by commuting e to the left until it is in
position i is a trace equivalent to Ti−1, which the induction hypothesis tells us is
equivalent to T . Moreover, the prefix of Ti of length i is greedy. So if p satisfies
the criterion, we have completed the inductive step.

Now if p fails to satisfy the criterion, then it must be potentially blocked.
For suppose that there are no events from p in S. Since T ends in a potentially
halted state, that means p must either have terminated in R or ended with an
ew for which one of the two related posts does not occur in R. In this case, we
may choose any process q satisfying the criterion and proceed as before, and the
resulting prefix of length i is still guaranteed to be greedy, and we have again
completed the inductive step.

We are left with the possibility that no process p satisfies the criterion. In that
case, every process is potentially blocked at the end of R, yet not every process
has terminated, since there remain events in S. This means R is a greedy trace
ending in potential deadlock, contradicting the hypothesis that no greedy trace
ends in potential deadlock. ��

Corollary 1. Let P be a permissible model of an MPI program. Then P is
deadlock-free if, and only if, P is synchronously deadlock-free.

Proof. If P is deadlock-free then no trace ends in potential deadlock, so certainly
no synchronous trace does. So suppose P is synchronously deadlock-free. Since
any greedy trace is synchronous, no greedy trace of P can end in potential dead-
lock. Now if P had a trace T ending in potential deadlock, then by Theorem 1, P
would have to have a greedy trace ending in potential deadlock, a contradiction.
So P has no trace ending in potential deadlock, i.e., P is deadlock-free. ��

While we have expressed Theorem 1 using a very limited subset of MPI, it
is clear that a number of other functions can be safely added to that subset.
For example, MPI_SEND is functionally equivalent to an MPI_ISEND followed
immediately by an MPI_WAIT, and so can be included. The same goes for MPI_-
RECV. MPI_SENDRECV may be replaced by the post of the send, followed by
the post of the receive, followed by the two waits. MPI_SENDRECV_REPLACE
may be expressed in a similar way, using a temporary buffer to handle the
receive. All of the collective functions can be modeled using these basic point-
to-point functions (see [11]) and so can be included as well. The functions MPI_-
WAITALL, MPI_SEND_INIT, MPI_RECV_INIT, MPI_START, MPI_STARTALL,
MPI_REQUEST_GET_STATUS, and MPI_REQUEST_FREE are also permissible.

It is instructive to see how the proof fails if P uses MPI_ANY_SOURCE. Con-
sider the code in Fig. 1(a). In the sole synchronous trace of this program, every

Verification of Halting Properties for MPI 331

if (rank==0) { MPI_Recv(...,MPI_ANY_SOURCE,...); MPI_Recv(...,2,...); }
else if (rank==1) { MPI_Send(...,0,...); MPI_Send(...,2,...); }
else if (rank==2) { MPI_Recv(...,1,...); MPI_Send(...,0,...); }

(a) Counterexample using MPI_ANY_SOURCE and 3 processes

if (rank==0) {
MPI_Isend(...,1,tag0,...,&req[0]); MPI_Isend(...,1,tag1,...,&req[1]);
MPI_Waitany(2,req,&i,...);
if (i==0) { MPI_Recv(...,1,tag2,...); MPI_Wait(&req[1],...); }

else { MPI_Wait(&req[0],...); }
} else if (rank==1) {
MPI_Recv(...,0,tag0,...); MPI_Send(...,0,tag2,...);
MPI_Recv(...,0,tag1,...);

}

(b) Counterexample using MPI_WAITANY and 2 processes

assert (rank == 0 || rank == 1);
MPI_Isend(..., 1 - rank, tag1, &req, ...);
MPI_Test(&req, &flag, ...); MPI_Barrier(...);
if (flag) { MPI_Recv(..., 1 - rank, tag2, ...); }
else { MPI_Recv(..., 1 - rank, tag1, ...); MPI_Wait(&req, ...); }

(c) Counterexample using MPI_TEST and 2 processes

Fig. 1. Counterexamples to Corollary 1 for models using “impermissible” primitives

process terminates normally. If buffering is allowed, process 1 may send both mes-
sages, then process 2 may execute to completion, then the receive in process 0 may
get paired with the message from process 2, and then process 0 will deadlock at
the second receive. In attempting to apply the algorithm from the proof to convert
this sequence into a synchronous one, one gets to a point where there is no process
satisfying the criterion, but nevertheless the synchronous prefix is not potentially
deadlocked. The reason is that the wildcard receive can be paired with a different
send in order to escape from the deadlock. The proof of Theorem 1 depends on
the fact that the way sends and receives are paired cannot be changed.

The functions MPI_TEST and MPI_WAITANY are impermissible. Counterex-
amples using these are given in Fig. 1(b,c).

4 Application

Theorem 1 has implications for model checking to verify properties such as
deadlock-freedom: It is sufficient to use the model checker to explore all syn-
chronous (or just all greedy) executions. If no potentially deadlocked state is
found, then P is deadlock-free.

But Theorem 1 applies to more than just deadlock-freedom. Suppose we have
established deadlock freedom for P (as above) and we wish to prove some prop-
erty about the state of P at termination—for example, that the values computed

332 S.F. Siegel and G.S. Avrunin

by P are correct. If we can use the model checker to establish this correctness
for all greedy traces, then Theorem 1 implies correctness must hold on any ex-
ecution. For if there were some execution leading to an incorrect result then
Theorem 1 says there must exist an equivalent greedy execution. Since the final
values of all variables are the same in equivalent executions, the greedy one will
also be incorrect. Hence if the model checker can show that all greedy executions
lead to a correct result, we can conclude that all executions do.

Mpi-Spin is an extension to the model checker Spin [2] that adds a number of
features corresponding closely to the MPI primitives, making it much easier to
model MPI programs for verification. Mpi-Spin can be used to verify properties
such as deadlock-freedom and the correctness of the numerical results produced
by P . The latter is accomplished by providing Mpi-Spin with both a sequential
version of the program, assumed to be correct, and the parallel version and
then using Mpi-Spin to show that the parallel and sequential versions must
produce the same output on any input. The technique uses symbolic execution
to model the numerical operations in the programs and is described in detail
in [14]. Mpi-Spin can check properties of programs employing the nonblocking
operations but uses a general checking algorithm that does not take advantage
of the reductions made possible with Theorem 1. One can force Mpi-Spin to
search only synchronous traces, however, by invoking it with the option -buf=0.
If in addition one encloses the body of each process in an atomic block, then
only greedy traces will be explored.

To illustrate the impact of the optimizations, we consider Example 2.17, “Use
of nonblocking communications in Jacobi computation” from [15]. The program
distributes a matrix by columns, maintaining appropriate ghost cell columns. At
each iteration, a process first computes the new values for its left- and right-most
columns, then posts two send and two receive requests to update the ghost cells,
then computes the new values for its interior columns, and finally waits on the
four requests before moving to the next iteration.

We considered two properties: deadlock-freedom and the functional equiva-
lence of this parallel program to the simple sequential version (Example 2.12).
We scaled n, the number of processes, and set the global matrix size to 3n× 3n
and the number of loop iterations to 3. For each n, we used Mpi-Spin to verify

100

101

102

103

104

105

106

107

 2 3 4 5 6 7 8 9 10

Buffered
Synchronous

Greedy
100

101

102

103

104

105

106

107

 2 3 4 5 6 7 8 9 10

Buffered
Synchronous

Greedy

(a) Freedom from deadlock (b) Sequential-parallel equivalence

Fig. 2. The number of states (y-axis) vs. number of processes (x-axis) for verifying two
properties of the Jacobi iteration program

Verification of Halting Properties for MPI 333

each property in three different ways: (1) allowing buffering of messages, (2)
allowing only synchronous communication, and (3) allowing only greedy execu-
tions. The number of states for each search can be seen in Fig. 2, where each
curve shows exponential growth as expected. The synchronous optimization cer-
tainly helped but restricting to greedy executions made a dramatic improvement
and allowed the verification to scale much further. In fact, our theorem shows
that we could look only at the greedy executions in which the processes execute
(if not blocked) in some fixed order such as round-robin. This would presumably
allow a much greater reduction in the number of states, but we do not see a
straightforward way to implement that in Spin.

5 Conclusion

To the best of our knowledge, Matlin, Lusk, and McCune [3] were the first to
apply model checking techniques to an MPI problem, using Spin to investigate a
component of the MPI implementation MPICH. In [12,13] we showed how Spin

could be used to verify properties of simple MPI-based scientific programs; we
also presented theorems for countering state-explosion for MPI programs that
used only blocking functions and no wildcard receives. These reduction results
were generalized to deal with wildcard receives in [9]. Pervez, Gopalakrishnan,
Kirby, Thakur, and Gropp [8] used Spin to verify programs that use MPI’s “one-
sided” operations and found a subtle bug in one such program. The problem of
verifying the numerical computations carried out by MPI programs was tackled
by Siegel, Mironova, Avrunin, and Clarke in [14], which introduced the symbolic
method for establishing the equivalence of sequential and parallel versions of
a program. This method was incorporated into the Mpi-Spin tool, which was
introduced in [10], along with a technique for modeling nonblocking functions.

Other very recent results appear to be closely connected to this work. In [6],
Palmer, Gopalakrishnan, and Kirby introduce a model for a somewhat different
subset of MPI and show how dynamic partial order methods allow checking
properties by considering only a subset of the possible traces. Pervez, Gopala-
krishnan, Kirby, Palmer, Thakur, and Gropp [7] have developed a model checking
technique that works directly on source code, bypassing the model construction
step. Using the modeling language TLA+, Palmer, Delisi, Gopalakrishnan, and
Kirby [5] have developed a formal description of a large portion of the MPI
Standard, and have integrated this into model checking tools. In future work,
we will explore the connections between these approaches and ours.

In this paper we have generalized some of the earlier reduction theorems to the
case of nonblocking functions, and demonstrated how these results can be used to
improve the performance of Mpi-Spin. In particular, we have shown that many
important properties of MPI programs that use the (standard mode) nonblocking
operations can be verified by checking only a special class of executions in which
no messages are buffered by the MPI infrastructure. A small example shows
that this can provide a very substantial reduction in the resources required for
verification, allowing model checking of significantly larger MPI programs. Our

334 S.F. Siegel and G.S. Avrunin

results do not hold for programs that make use of MPI_ANY_SOURCE, MPI_-
WAITANY, MPI_WAITSOME, MPI_TEST, MPI_TESTANY, or MPI_TESTSOME.
We plan to investigate the generalization of the Urgent algorithm of [9] to handle
these constructs.

References

1. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

2. Holzmann, G.J.: The Spin Model Checker. Addison-Wesley, Boston (2004)
3. Matlin, O.S., Lusk, E., McCune, W.: SPINning parallel systems software. In:

Bošnački, D., Leue, S. (eds.) Model Checking Software. LNCS, vol. 2318, pp. 213–
220. Springer, Heidelberg (2002)

4. Message Passing Interface Forum: MPI: A Message-Passing Interface standard,
version 1.1 (1995), http://www.mpi-forum.org/docs/

5. Palmer, R., Delisi, M., Gopalakrishnan, G., Kirby, R.M.: An approach to formal-
ization and analysis of message passing libraries. In: Proceedings of the 12th Intl.
Workshop on Formal Methods for Industrial Critical Systems (FMICS), Springer,
Heidelberg (to appear, 2007)

6. Palmer, R., Gopalakrishnan, G., Kirby, R.M.: Semantics driven partial-order reduc-
tion of MPI-based parallel programs. In: Parallel and Distributed Systems: Testing
and Debugging (PADTAD V), London, (to appear, 2007)

7. Pervez, S., Gopalakrishnan, G., Kirby, R.M., Palmer, R., Thakur, R., Gropp, W.:
Practical model checking method for verifying correctness of MPI programs. In:
Proceedings of the 14th European PVM/MPI Users’ Group Meeting, Springer,
Heidelberg (2007)

8. Pervez, S., Gopalakrishnan, G., Kirby, R.M., Thakur, R., Gropp, W.: Formal verifi-
cation of programs that use MPI one-sided communication. In: Mohr, B., Träff, J.L.,
Worringen, J., Dongarra, J. (eds.) Recent Advances in Parallel Virtual Machine and
Message Passing Interface. LNCS, vol. 4192, pp. 30–39. Springer, Heidelberg (2006)

9. Siegel, S.F.: Efficient verification of halting properties for MPI programs with wild-
card receives. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 413–429.
Springer, Heidelberg (2005)

10. Siegel, S.F.: Model checking nonblocking MPI programs. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 44–58. Springer, Heidelberg (2007)

11. Siegel, S.F., Avrunin, G.S.: Modeling MPI programs for verification. Technical
Report UM-CS-2004-75, Department of Computer Science, University of Massa-
chusetts (2004)

12. Siegel, S.F., Avrunin, G.S.: Verification of MPI-based software for scientific compu-
tation. In: Graf, S., Mounier, L. (eds.) Model Checking Software. LNCS, vol. 2989,
pp. 286–303. Springer, Heidelberg (2004)

13. Siegel, S.F., Avrunin, G.S.: Modeling wildcard-free MPI programs for verification.
In: Proceedings of the 2005 ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP ’05), pp. 95–106. ACM Press, New York (2005)

14. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Using model checking with
symbolic execution to verify parallel numerical programs. In: Pollock, L.L., Pezzé,
M. (eds.) Proceedings of the ACM SIGSOFT Intl. Symposium on Software Testing
and Analysis (ISSTA 2006), pp. 157–168. ACM Press, New York (2006)

15. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI—The Com-
plete Reference, The MPI Core, 2nd edn. MIT Press, Cambridge (1998)

http://www.mpi-forum.org/docs/

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 335–343, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Correctness Debugging of Message Passing Programs
Using Model Verification Techniques*

Robert Lovas and Peter Kacsuk

MTA SZTAKI, Laboratory of Parallel and Distributed Systems
H-1518 Budapest, P.O. Box 63, Hungary
{rlovas,kacsuk}@sztaki.hu

Abstract. During the correctness debugging of non-deterministic message-
passing programs the software engineers must face the probe effect, the irrepro-
ducibility, the completeness problem, and also the large state-space to be dis-
covered. This work attempts to over-come the limitation of existing debugging
solutions, and combines the traditional debugging methods with automated
modeling and formal verification of parallel programs. The presented debug-
ging framework provides user-friendly facilities for active control and highly
automated observation mechanism for message passing programs based on
formal methods; Petri-net modeling, partial ordering of state space, and tempo-
ral logic assertions.

1 Introduction

One of the main problems in verification and debugging of systems is the so-called
state space explosion problem. Partial order reduction [6] is a technique that addresses
this problem for concurrent systems by constructing a smaller state space that is
searched by the developers or the verification algorithms (e.g. using temporal logic
assertions), and considering only a restricted set of behaviors of the system, while
guaranteeing that the ignored behaviors do not add any new information.

The presented debugging framework applies a kind of partial order reduction tech-
nique, called macrostep-based execution, which was elaborated in the P-GRADE par-
allel programming environment. P-GRADE [1] provides tools to construct, execute,
debug, monitor and visualise message-passing based parallel programs. In P-GRADE
development environment, the parallel applications can be constructed based on the
syntax and semantics of GRAPNEL hybrid programming language, which provides
language elements to express graphically the parallelism, distribution, concurrency,
and communication between processes using three hierarchical design levels.

The concept of GRAPNEL language and the application of the debugging method
are illustrated through the well-known Producer-Consumer problem. At the top level
(see ‘Application Window’ in Fig. 2), called application (or inter-process communi-
cation) level the outline of the whole application is described graphically with respect
to communication connections (channels and ports) among the parallel processes. The

*
 This work was partially supported by the following EU FP6 grants: CoreGRID (IST-2002-
004265), CancerGrid (LSHC-CT-2006-037559), and SEE-GRID-2 (031775).

336 R. Lovas and P. Kacsuk

process internal level (see ‘Process:…’ windows in Fig. 2) is used for describing the
inner structure of the individual processes graphically using a control flow-like tech-
nique, which describes the message passing related parts of the process. For example,
the send (output) and receive (input) operations are represented by labeled rectangles,
e.g. ‘O1’ or ‘I1’, with the corresponding communication port. At the lowest level of
GRAPNEL code, called textual level, the developer can define textual C code frag-
ments representing the actual contents of the graphical icons defined at the process in-
ternal level.

2 The Concept of Macrostep-Based Execution

The idea of macrostep is based on the concept of collective breakpoints1, such as the
set of CAO2

1- CAO2
2- CAO2

3- CAO2
4 in Fig. 1, which are placed on the inter-process

communication primitives; CAO (output), CAI (input) or CAIALT (alternative input)
in each GRAPNEL process. Another example collective breakpoint set can be seen
highlighted in Fig. 2, where the program with three processes was stopped at two
CAO (labeled ’O1’) and one CAIALT operations (labeled ‘I1’). These communica-
tion actions are indexed by the corresponding process number (lower index), and a se-
rial number (upper index). The set of sequential executed code regions between two
consecutive collective breakpoints is called a macrostep. A detailed description of
macrostep is given in [2].

Process 2

Process 1

Process 3

Process 4

M1
M2 M3 M4 M5

CAI11

CAO1
2

CAO1
3

CAI14

CAO2
2

CAO2
1

CAO2
3

CAI24

CAO3
1

CAI34

CAI33

CAIALT3
2

CAO4
4

CAI42

CAO5
4

CAI43

Active breakpoint

Sleeping breakpoint

message passing

postponed message passing

boundary of macrostep

Process 2

Process 1

Process 3

Process 4

M1
M2 M3 M4 M5

CAI11

CAO1
2

CAO1
3

CAI14

CAO2
2

CAO2
1

CAO2
3

CAI24

CAO3
1

CAI34

CAI33

CAIALT3
2

CAO4
4

CAI42

CAO5
4

CAI43

Active breakpoint

Sleeping breakpoint

message passing

postponed message passing

boundary of macrostep

Fig. 1. Illustration for macrostep-based execution

A single breakpoint of the collective breakpoint is called active if it was hit in a
macrostep and its associated communication operation can be completed (e.g. see

1 A collective breakpoint consists of a finite number of single breakpoints placed in different

processes, and it was hit if (and only if) all the breakpoints belonging the collective break-
point were hit.

 Correctness Debugging of Message Passing Programs 337

CAO1
2 in Fig. 1). On the other hand, a breakpoint is called sleeping if it was hit in a

collective breakpoint but its associated communication instruction cannot be com-
pleted only at the next macrostep thus, it will be a part of the next collective break-
point. For example (see Fig. 1), a send instruction (CAO2

2) of a given process (Proc-
ess 1) wants to send a message to another process (Process 4), but it is
communicating with a third process (Process 3). That is why, the breakpoint placed at
the instruction CAO2

2 is a sleeping breakpoint and can be found in the next collective
breakpoint. Similarly to this, the CAI3

4 is also a sleeping breakpoint; it must wait for
the CAO4

5 .

Fig. 2. An example debugging session in the P-GRADE programming environment with the
Execution tree of Consumer-Producer application, and with the results of evaluation of tempo-
ral logic specification

The execution path is a graph whose nodes represent the macrosteps (i.e. consistent
global states) and the directed arcs indicates the possible state transitions between

338 R. Lovas and P. Kacsuk

consecutive macrosteps. The execution tree [2] is a generalization of the execution
path (see Fig 2. ‘Macrostep …’ window as an example); it contains all the possible
execution paths of a parallel program assuming that the non-determinism of the cur-
rent program is inherited only from alternative (CAIALT) receive communications.

3 Coloured Petri-Net Model for Macrostep Based Execution

The formalism of coloured Petri net (CPN, CP net) was chosen for expressing and
composing model for GRAPNEL programs in order to simulate the applications, and
to create the base of formal description and proof of macrostep-based concept. Two
different approaches were taking into consideration to compose CP net models for
GRAPNEL programs: the place fusion approach, that models each communication
channel explicitly and the environment place approach [3] that models communica-
tion channels implicitly, by coupling arc inscriptions. The main disadvantage of
environment place approach is that the control of message orderings and the synchro-
nisation dependences between processes cannot be expressed effectively but it is es-
sential in the modelling of the macrostep-based execution.

Following the place fusion approach the application developer can generate auto-
matically the CP net model of GRAPNEL programs based on graph transformation
[4]. Briefly, the model of the synchronization channel in the generated CP net works
similarly to the traditional CPN model of rendezvous primitive; the corresponding
transition is able to fire when both the sender side and the receiver side places hold
one token at the matching CAO and CAO operations. The meta-language of De-
sign/CPN tool is used for defining guards for transitions belonging to the conditional
and loop constructs in GRAPNEL processes, and compound tokens for description of
the local state (i.e. variables) of process. In the CPN model three types of transition
can be distinguished and referred later in the proof: transitions belonging to communi-
cations channels of GRAPNEL program (Tcomm), the local transitions of individual
GRAPNEL processes (Tlocal), and special transitions belonging to alternative input
communications (TCAIALT), which selects the current sender process if there is a race-
condition among them. The details can be found in [4].

During the simulation of the CPN model with Design/CPN tool, the Occurrence
Graph (OCC graph) of a given model is a directed graph where each s ∈ S node
represents a possible token distribution (i.e. marking), each r ∈ R arc represents a
possible state transition between two consecutive token distributions, and

− enabled(si): set of (globally) enabled transitions in the given si marking. A transi-
tion r ∈ R is enabled in a state s if there exists a state s’ such that (s; s’) ∈ r. Oth-
erwise, r is said to be disabled at s. The set of enabled transitions, enabled(s) may
contain arbitrary types of transitions (Tcomm, Tlocal, or TCAIALT) depending on the ac-
tual local conditions of processes as well as the actual communication interactions.

− locally_enabled(si): set of locally enabled transitions in the given si marking. A
transition r ∈ R is locally enabled if the corresponding process enables it (but an-
other process may disable it thus, it may not be part of globally enabled transitions)

 Correctness Debugging of Message Passing Programs 339

− ample(si) ⊆ enable(si): set of representative transitions in the given si marking,
only these transitions are taken into consideration by the generation of state-space
during the macrostep execution

− succ (si , j): a node of OCC graph where the jth ample transition leads from si node.

The macrostep execution reduces the set of enabled transitions, which must be
taken into consideration during the construction of global state-space (i.e. the execu-
tion tree). This subset of enabled transitions in OCC graph is noted as ample(s) in a
given marking. The requirements of generation of representative transitions can be
summarised as follows: (i) the debugging method must be unaffected by the skipped
paths, (ii) the size of graph must be reduced, (iii) the calculation requirements of rep-
resentative paths must be as low as possible. The ample set generation of macrostep
execution follows these rules:

enabled(si) = ∅ ⇒ ample(si) = ∅ (Rule 1)

enabled(si) ∩ Tlocal ≠ ∅ ⇒ ample(si) = r,
where r ∈ (enabled(si) ∩ Tlocal)

(Rule 2)

locally_enabled(si) ∩ TCAIALT ≠ ∅ ⇒
ample(si) = (enabled(si) ∩ TCAIALT) ∪ enabled(si) ∩ Tpartner_process (r) ,

where r ∈ locally_enabled(si) ∩ TCAIALT
(Rule 3)

enabled(si) ∩ Tcomm ≠ ∅ ⇒ ample(succ(si,j)) = r,
where r ∈ enabled(succ(si, j)) ∩ Tcomm and 0 ≤ j < |enabled(si) ∩ Tcomm|

(Rule 4)

In other words; (Rule 1) if there is not enabled transition, the ample set must be
empty. (Rule 2) If any of the local transitions (Tlocal) is enabled, the ample set must con-
tain only one of these transitions (and nothing else). (Rule 3) If there is no local transi-
tion, all enabled message selection transitions (TCAIALT) must be included in the current
ample set and the enabled (communication) transitions of the processes, which cannot
send a message to any alternative input, however it is waiting for it. (4) If only message
passing transitions (Tcomm) are enabled, they must be fired transition by transition.

For practical reasons, the boundaries of macrosteps are defined before applying
Rule 4, because Rule 3 is the only one, which can generate an ample set including
more than one transition, and the selection of the actual sender processes for CAIALT
operations must be allowed to the user. Here, in the execution tree a new branch be-
longs to each combination of possible sender processes.

4 Correctness of Macrostep-Based Debugging Concept

In this section, the correctness of the macrostep based debugging methodology is pre-
sented based on Kripke structures as the common way for the representation of OCC
graph and Execution Tree. As the first step, both the Execution Tree (the result of
macrostep-based execution) and the Occurrence Graph (corresponding to the entire
state space of GRAPNEL program) can be transformed into Kripke structures; KSe

340 R. Lovas and P. Kacsuk

and KSp. The labeling of individual nodes can be inherited from the marking of OCC
nodes taking into consideration of the compound colored tokens of one selected proc-
ess Ps, and the actual values of variables of process Ps in case of the Execution tree.

Some key notations must be introduced before the proof: (1) Invisible transition: A
transition r = (s, s’) is called invisible, if L(s)=L(s’) i.e. the labeling is not changed
between the two transitions. (2) Stuttering equivalence: In a path, there can be con-
secutive states with the same label due to invisible transitions. We can create so-
called stuttering blocks from these states, and stuttering equivalent (∼st) paths.

The core mechanism of macrostep-by-macrostep execution can be interpreted as
the overlapped execution of independent state transitions. Hence, we can apply some
partial ordering techniques and methods on KSp Kripke structure (derived from the
Occurrence Graph of CPN model) in order to get the KSe, the Execution Tree built by
the macrostep debugger.

In order to prove that the Kripke structures are stuttering equivalents to each other,
and a particular class of temporal logic expressions (LTL-x) from the program specifi-
cation can be evaluated on the paths of Execution Tree during the macrostep-based
execution; the following conditions (C0-C3) must be guaranteed according to [6].

4.1 Emptiness

The first condition guarantees that the macrostep algorithm will make progress if the
normal search algorithm would:

ample(s) = ∅ iff enabled(s) = ∅ (C0)

The emptiness condition in case of the macrostep algorithm can be proven in the
following three steps. (1) The macrostep algorithm generates an empty ample set if
there is no enabled transition. It is ensured by Rule 1, which must be applied in all
states. Thus, enabled(s) = ∅ ⇒ ample(s) = ∅ must be true on the entire state space.
On the other hand, the transitions can be classified in three types in the CPN model,
such as Tcomm, Tlocal, and TCAIALT. Rules 2-4 guarantee that in each state that en-
abled(s) ≠ ∅ ⇒ ample(s) ≠ ∅, since one of the rules must be always applied if the set
of enabled transition is non-empty, and each rule generates a non-empty ample set.
Combining the above constraints into one constraint, and after some basic Boolean
transformations, we can get C0 as a result.

4.2 Ample Decomposition

It ensures that any path that is not included in the reduced state-transition graph can be
transformed, based on the properties of independent transitions, into a path in the re-
duced model, and therefore the reduction does not omit any paths which are essential
for verification.

In the full state graph, on any path starting from some state s,
a transition dependent on a transition from ample(s)

 cannot appear before some transition from ample(s) is executed.
(C1)

In practice, instead of expensive algorithms the model checker tools usually take
advantage of the specific system structure to generate ample sets of transitions for

 Correctness Debugging of Message Passing Programs 341

which C1 can be easily guaranteed to hold. Let ample(s) be the set of all transitions
enabled at s in some set of processes P with the following property: no process Pi ∈ P
has a communication transition locally enabled in Pi with a process outside of P. The
partitioning of the processes in two sets guarantees that by executing transitions out-
side the ample set it is not possible that a transition dependent on an ample transition
will become globally enabled and therefore executed before a transition in the ample
set. This is exactly the constraint imposed by C1.

The macrostep execution meets C1 since every rule satisfies it as follows.

− Rule 1: There is no enabled transition at all. P must be empty.
− Rule 2: P has always one member process with one enabled local transition, which

will form the one-element ample set. This way of ample set generation meets con-
dition C1, since this process do not intend to communicate to other processes.

− Rule 3: In this case, P contains all processes, which have alternative input commu-
nication action (CAIALT) as well as all the possible sender process belonging to
these alternative input communications. All the enabled CAIALT transitions are
the member of ample set. Moreover, the ample set contains the enabled transitions
belonging to the sender processes, which are actually not able to send a message to
the CAIALT constructions. Thus, condition C1 is guaranteed.

− Rule 4: In this case, we have only pairwised processes, which are ready to ex-
change their messages and they do not intend to communicate to other processes.
Therefore, P always contains the two communicating processes, and the ample set
contains only one transition, which is a member of Tcomm, so condition C1 is guar-
anteed.

4.3 Invisibility

It must be guaranteed that the specification is not affected, by ensuring that the gener-
ated path is stuttering equivalent to the original one, i.e. q1, q2, …, qn, r ∼st r, q1, q2, …,
qn [6]. Generally, this aspect is handled by the following condition:

If a state s is not fully expanded,
every transition r ∈ ample(s) must be invisible.

(C2)

But a modified version of C2 can also guarantee this:

If a state s is not fully expanded, every transition,
which is independent from any transition r ∈ ample(s), must be invisible.

(C2’)

According to C2’ the transitions q1, q2, …, qn must be invisible. Hence, q1, q2, …,
qn, r ∼st r, q1, q2, …, qn is also guaranteed. Therefore, we can apply either C2 or C2’ in
order to proof the invisibility condition by each macrostep Rule.
− Rule 1: There is no ample set.
− Rule 2: The ample set always consists of one local transition r ∈ Tlocal of a process.

If r is not visible (i.e. not belonging to the selected process Ps), then C2 is true. On
the other hand, if transition r is visible (i.e. belonging to the selected process Ps),
all the other independent transitions q1, q2, …, qn must belong to other (not se-
lected) processes. Thus, transitions q1, q2, …, qn must be invisible, they can not
change the labelling according to introduced labelling rules thus, C2’ is true.

342 R. Lovas and P. Kacsuk

− Rule 3: The ample set may consist of transition either r ∈ TCAIALT or r ∈ Tcomm.
Transition r ∈ TCAIALT is always invisible; they cannot change the state of control
tokens. So if there is not any transition r ∈ Tcomm, then C2 is true. If there is at least
one transition r ∈ Tcomm, we can distinguish two cases. (1) If all transitions r ∈
Tcomm are invisible (not belonging to the selected process Ps or communication
without CONTROL_PROTOCOL2), then C2 is again true. (2) If one of the transi-
tions r ∈ Tcomm belongs to the selected process Ps and communication with
CONTROL_PROTOCOL, then this transition will be visible. All the other inde-
pendent transitions q1, q2, …, qn must belong to other (not selected) processes,
which cannot change the labelling, then C2’ is true.

− Rule 4: The ample set always a one-element set containing a transition r ∈ Tcomm. If
one of these transitions r ∈ Tcomm belongs to the selected process Ps and communi-
cation with CONTROL_PROTOCOL, then this transition will be visible (other-
wise C2 can be applied). The independent transitions q1, q2, …, qn must belong to
other (not selected) processes thus, C2’ is true.

4.4 Cycle Closing Condition

A transition, which is enabled in every state of a cycle in the reduced state
space, belongs to the ample set of some state on the cycle.

(C3)

The origin of a cycle in the state-space is obviously the loop construct of GRAPNEL
programs. The condition C3 can be fulfilled relying on a simple restriction of
GRAPNEL programs, i.e. every loop construct must contain at least one communica-
tion action. Consequently, at least one successful communication action, i.e. one mac-
rostep must be done successfully in each cycle involving the application of Rule 4. It
ensures that there must be a state, where are only message passing transitions (Tcomm)
enabled in the model. Later, these transitions will form one-element ample sets and
will be fired one by one. Therefore, there is no transition, which is always enabled in
a cycle, and it is not an element of any ample set.

5 Summary and Related Works

In the last decade, several researchers have developed methods to apply reduction
principles in model checking. These techniques include e.g. the stubborn sets method
of Valmari [5], or the ample sets method of Peled [6]. These works contain similar
ideas, although they differ with respect to the details of the suggested reduction. In
our work, the ample sets method was applied because of its similar approach to the
original idea of macrostep based debugging implemented in P-GRADE parallel pro-
gramming environment.

There is a clear analogy between the step-by-step execution mode of sequential
programs realized by local breakpoints and the macrostep-by-macrostep execution

2 If a communication uses this protocol, than the receiver behavior (e.g. number of cycles in

loops, or the evaluation of conditions in if-than-else constructs) may be changed according to
the received data [4].

 Correctness Debugging of Message Passing Programs 343

mode of parallel programs. This execution mode enables to check the progress of the
parallel program at the points that are relevant from the point of view of parallel exe-
cution, i.e. at the message passing points. Moreover, based on the presented proof
temporal logic assertions can be also evaluated automatically at these points (see
‘DIWIDE / Model Checker’ window in Fig. 2) as it was demonstrated with the TLC
checker [11], and the simulation of future states can steer the debugging session to-
wards to suspicious situations using the CPN model of P-GRADE programs [4].

Concerning the related debugger works, there are some similar advanced debug-
ging frameworks; for example the record & replay tool NOPE (NOndeterministic
Program Evaluator) [7] has been developed for testing and debugging of nondeter-
ministic MPI programs within the MAD environment [8], and DDBG [10] together
with the STEPS testing tool [9] has been integrated in order to explore systematically
the state of PVM programs. However, none of them can support the evaluation of
temporal logic specifications against the observed program behavior and the simula-
tion (e.g. based on CPN) of message passing programs are not solved in these sys-
tems.

References

1. Kacsuk, P., et al.: GRADE: A Graphical Programming Environment for Multicomputers.
Computer and Artificial Intelligence. 17(5), 417–427 (1998)

2. Kacsuk, P.: Systematic Macrostep Debugging of Message Passing Parallel Programs. Fu-
ture Generation Computer Systems 16(6), 609–624 (2000)

3. Tsiatsoulis, Z., Dozsa, G., Cotronis, Y., Kacsuk, P.: Associating Composition of Petri Net
Specifications with Application Designs in Grade. In: Proc. of the Seventh Euromicro
Workshop on Parallel and Distributed Processing, Funchal, Portugal, pp. 204–211 (1999)

4. Lovas, R., Vécsei, B.: Integration of formal verification and debugging methods in P-
GRADE environment. In: Distributed and Parallel Systems: Cluster and Grid Computing.
Kluwer International Series in Engineering and Computer Science, vol. 777, pp. 83–92
(2004)

5. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E., Kurshan, R.P. (eds.)
CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991)

6. Peled, D., Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. Software Tools for Technology Transfer 3(1), 279–287 (1999)

7. Kranzlmüller, D., Volkert, J.: NOPE: A Nondeterministic Program Evaluator. In:
Zinterhof, P., Vajtersic, M., Uhl, A. (eds.) ACPC 1999 and ParNum 1999. LNCS,
vol. 1557, pp. 490–499. Springer, Heidelberg (1999)

8. Kranzlmüller, D., Rimnac, A.: Parallel Program Debugging with MAD - A Practical Ap-
proach. In: International Conference on Computational Science 2003, pp. 201–212 (2003)

9. Krawczyk, H., et al.: STEPS - a Tool for Structural Testing of Parallel Software. In the
book: Parallel Program Development for Cluster Computing: Methodology. In: Tools and
Integrated Environments, ch. 16, pp. 334–354. Nova Science Publishers, New York (2001)

10. Cunha, J.C., et al.: The DDBG Distributed Debugger. In the book: Parallel Program De-
velopment for Cluster Computing: Methodology. In: Tools and Integrated Environments,
ch. 13, pp. 292–303. Nova Science Publishers, New York (2001)

11. Kovacs, J., et al.: Integrating Temporal Assertions into a Parallel Debugger. In: Monien,
B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 113–120. Springer, Hei-
delberg (2002)

Practical Model-Checking Method for Verifying

Correctness of MPI Programs

Salman Pervez1, Ganesh Gopalakrishnan1, Robert M. Kirby1, Robert Palmer1,
Rajeev Thakur2, and William Gropp2

1 School of Computing
University of Utah

Salt Lake City, UT 84112, USA

2 Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA

Abstract. Formal program verification often requires creating a model
of the program and running it through a model-checking tool. However,
this model-creation step is itself error prone, tedious, and difficult for
someone not familiar with formal verification. In this paper, we describe
a tool for verifying correctness of MPI programs that does not require
the creation of a model and instead works directly on the MPI program.
Our tool uses the MPI profiling interface, PMPI, to trap MPI calls and
hand over control of the MPI function execution to a scheduler. The
scheduler verifies correctness of the program by executing all “relevant”
interleavings of the program. The scheduler records an initial trace and
replays its interleaving variants by using dynamic partial-order reduction.
We describe the design and implementation of the tool and compare it
with our previous work based on model checking.

1 Introduction

Parallel programs are notoriously difficult to debug, and MPI programs, partic-
ularly those that have intricate control flow or employ relatively new features
such as one-sided communication, are no exception. Tools such as MARMOT
[7], MPI-CHECK [8], Umpire [16], and Intel Message Checker [2] can detect
many errors in MPI programs but do not guarantee that all interleavings of
the processes in the program being tested have been systematically examined.
While there are an exponential number of such interleavings, partial-order re-
duction [1, Chapter 10]—a class of methods belonging to the area known as
model checking [1]—offers specific approaches to examine only some (usually a
small fraction) of these interleavings and declare that the effect of examining all
the interleavings has been achieved. Partial-order methods are commonly used
to verify models of parallel programs. For MPI programs, this approach would
require that programmers build, either manually or automatically, a model (de-
scription) of their protocol in a language such as Promela [6], MPI-SPIN [13],
or Zing [9]. This model-creation step is known to be tedious and error prone.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 344–353, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Practical Model-Checking Method for Verifying Correctness 345

We take the in situ approach to model checking, previously demonstrated in
the context of many languages, including C programs in tools such as [5,18] and
Java programs in tools such as [17]. During in situ model checking, programs
written in the target language (usually with some obvious simplifications such
as data-range reduction) are directly model checked, without first creating a
model. In this paper, we describe our tool that performs in situ model checking
of MPI programs that use one-sided communication. We use a dynamic version
of partial-order reduction (DPOR, [3]) to reduce the number of interleavings,
thus being able to, in effect, exhaustively examine all traces of small (but intri-
cate) MPI programs. We call our tool in situ dynamic partial order, or ISP. ISP
handles many standard MPI communication functions, including MPI_Barrier,
various flavors of MPI_Send and MPI_Recv, and some MPI one-sided functions.
In this paper we focus on one-sided functions, partly because of the inherent
intricacies of handling one-sided communication under in situ scheduling. The
complex nature of MPI one-sided communication also forces us to use infor-
mation specific to the underlying library, MPICH2 in this case. One restriction
placed by MPICH2 is that for passive-target one-sided communication, the tar-
get process needs to be inside the MPI progress engine in order to process lock
requests. We account for this restriction in ISP as described in Section 2. ISP
can easily be extended to efficiently handle other MPI implementations.
To motivate the ISP approach, consider the simple MPI

0: MPI_Init
1: MPI_Win_lock
2: MPI_Accumulate
3: MPI_Win_unlock
4: MPI_Barrier
5: MPI_Finalize

Fig. 1. Simple MPI
program

program given in Figure 1, executed by two processes P0
and P1. Figure 2 shows how ISP examines two different
interleavings of this program. ISP employs the MPI pro-
filing interface, PMPI, to trap MPI calls and hand over
control of the MPI function execution to a scheduling
process. This scheduler can dictate the order in which
each process makes MPI calls. We define the block of
code starting from the beginning of an MPI call, going
forward in the code path including C program state-
ments, and ending at the beginning of the next MPI
call to be a transition (in our current example, there are no intervening C pro-
gram statements). We assume that no transition executes infinitely (MPI calls
always complete and the intervening C statements have no infinite loops). We
also assume that the MPI program is well formed in accordance with the MPI
Standard 2.0. The errors detected by ISP are safety properties [1], including
deadlocks, violations of assert statements placed by the user, and exceptions
thrown at runtime.

Given these assumptions, at Step 1, ISP would find processes P0 and P1 to
be runnable (Options). Assume that ISP randomly chooses P1, executing the
instruction shown against P1.1, which is an MPI_Win_lock. At Step 2, P0 and P1
are both runnable again; ISP picks P1, executing MPI_Accumulate. Proceeding
in this manner, we reach Step 4, where P1 executes MPI_Barrier. At this point,
the only runnable process would be P0, forcing Steps 5 through 8. The execution
of MPI_Barrier by P0 results in both processes becoming runnable once again.

346 S. Pervez et al.

First Second
Step Proc. Inter- Trace due to Inter- Trace due to
No. Options leaving First Interleaving leaving Second Interleaving
---- ------- ------- -------------------- ------- -------------------
1: P0 P1 P1 P1.1: MPI_Win_lock P1 P1.1: MPI_Win_lock
2: P0 P1 P1 P1.2: MPI_Accumulate P1 P1.2: MPI_Accumulate
3: P0 P1 P1 P1.3: MPI_Win_unlock P1 P1.3: MPI_Win_unlock
4: P0 P1 P1 P1.4: MPI_Barrier P1 P1.4: MPI_Barrier
5: P0 P0 P0.1: MPI_Win_lock P0 P0.1: MPI_Win_lock
6: P0 P0 P0.2: MPI_Accumulate P0 P0.2: MPI_Accumulate
7: P0 P0 P0.3: MPI_Win_unlock P0 P0.3: MPI_Win_unlock
8: P0 P0 P0.4: MPI_Barrier P0 P0.4: MPI_Barrier
9: P0 P1 P1 P1.5: MPI_Finalize P0 P0.5: MPI_Finalize
10: P0 P0 P0.5: MPI_Finalize P1 P1.5: MPI_Finalize

Fig. 2. Interleavings explored for the example in Figure 1

Now ISP picks P1, followed by P0, generating the first interleaving (the last two
actions being MPI_Finalize).

A näıve implementation of ISP would now backtrack to the decision point at
Step 9, picking P0 instead of P1, as shown by the second interleaving. We say
this is “näıve” because we know that the order in which MPI_Finalize is invoked
is immaterial. This is precisely what partial-order reduction does: it computes
which actions are commuting actions, meaning that their interleavings do not
produce any semantically observable changes in program outcome. Another com-
muting pair in the above program would be the two MPI_Barrier invocations.
Under a näıve approach, an N -way barrier can generate all N ! interleavings of
the order in which processes encounter the barriers; under partial-order reduc-
tion, we can simply generate one interleaving and claim complete coverage.

If our current example is run with MPICH2 with the MPI_Win_lock operation
specifying an exclusive lock, the only actions that require interleaving are the
MPI_Win_unlock calls within which shared variable updates take place. For a
process accessing the MPI window remotely, only its MPI_Win_unlock call mod-
ifies the communication window, posting all the accumulated updates within
that particular epoch. For this example, the ISP tool would generate two inter-
leavings as opposed to 504 interleavings1 if we were to use only the in situ feature
without DPOR. Since the theory of partial-order reduction is vast, we simply
present our assumptions as a table of commuting MPI operations (Figure 6),
citing past references [10] based on which such tables can be created. The table
can be adjusted to correspond to any MPI implementation of choice, or even to
suppress certain interleavings for quicker bug hunting. Also, as opposed to static
partial-order reduction where the commuting nature of the two MPI_Finalize
invocations would have been determined while going forward during the first
interleaving, we instead follow the dynamic approach to partial-order reduction,
in which we fully generate the first interleaving and walk up the stack trace and

1 2 × (10!/(5!)2).

Practical Model-Checking Method for Verifying Correctness 347

mark places where interleavings can be added. Space does not permit a fuller
description of DPOR; we note only that it exploits run-time information to effect
better reduction (e.g., wildcard communication, as described in [10]).

2 Basics of Scheduling and in Situ Model Checking

In situ model checking lets a scheduler control the transitions of the given MPI
program. The scheduler opens an arrayof communication channels (via TCP sock-
ets) through which it receives appeals from each process. The pseudocode in Fig-
ure 3 captures how the MPI call of a process (generically called Generic_Func) is
processed. Basically, the MPI function call is intercepted by the profiling library.
It then conveys the process id (pID), the call type (Generic_Func), and the re-
maining arguments to the scheduler through the sendToSocket call. In reply, the
scheduler provides either a “go-ahead” or a “loop” to the appealing processes. A
loop signal indicates that the appealing process must make an MPI_Iprobe call,
a side-effect-free mechanism that causes control to enter the MPI progress engine
to process all queued-up events within it. MPI_Iprobe is needed with MPICH2 in
order to cause progress to occur on communication with other processes, because
MPICH2 does not use an asynchronous progress thread in its progress engine.2

When the appealing process receives “go-ahead,” it issues PMPI_Generic_Func,
which then enters the MPI library.

In situ model check-
MPI_Generic_Func(arg1, arg2...argN) {
sendToSocket(pID, Generic_Func, arg1,...,argN);
while(recvFromSocket(pID) != go-ahead)
MPI_Iprobe(MPI_ANY_SOURCE, 0, MPI_COMM_WORLD...);
return PMPI_Generic_Func(arg1, arg2...argN); }

Fig. 3. PMPI instrumentation pseudocode

ing depends on the de-
sig ner’s understanding of
how a given MPI library
handles each MPI call in
terms of the latitude al-
lowed in the MPI stan-
dard. For example, MPI
CH2 treats a MPI_Win_lock operation issued from a remote (nontarget) process
as a “no operation.” However, an MPI_Win_lock issued by the target process
may cause a lock on the one-sided communication window to be acquired. Let
us denote the MPI_Win_lock issued from a target as MPI_Win_lock_T, from
a nontarget as MPI_Win_lock_NT, and use the altered names Win_unlock_T
and Win_unlock_NT assuming the same conventions. In our framework, these
functions are used to indicate when the “trapped control” comes to the
MPI_Generic_Func associated with these calls. We also use the notation
PMPI_Win_lock_T to indicate the PMPI call coming after the “trapped”
MPI_Win_lock call issued by the target, and we similarly use the notations
PMPI_Win_lock_NT, PMPI_Win_unlock_T, and PMPI_Win_unlock_NT. ThesePMPI
calls signal the point at which the MPI system first knows that these MPI calls
are being made. We now present some of the scheduling decisions made by ISP.
We explain these with the aid of Figure 1. We rely on the following conven-
tions:
2 MPI Iprobe does not have a version corresponding to MPI Generic Func; otherwise,
it would cause an infinite loop when these MPI Iprobes are trapped.

348 S. Pervez et al.

• Because of the assumptions made in Section 1 about transitions, we know
that each time the scheduler will be handling up to N appeals of the form
sendToSocket(pID, Generic_Func, arg1,...,argN) (it would be N appeals
unless some process has executed a blocking operation).
• The scheduler also keeps track of the lock state of each MPI one-sided window.
We will use the terms window locked and window unlocked.

Consider P0 to be the owner of the window. We call the owner the target
because that is where all decisions about locking and unlocking the one-sided
MPI window are made. Consider the program in Figure 1 run using processes P0
and P1. Specifically, consider the scheduler actions with respect to the following
interleaving:
• P0 does MPI_Win_lock_T. The scheduler records that the window is locked,
and issues a go-ahead, permitting the PMPI_Win_lock_T call to be made.
• P1 does MPI_Win_lock_NT. The scheduler treats this as a ‘no op’ (reasons in
Section 1) and gives the go-ahead, allowing P1 to make the PMPI_Win_lock_NT
call.
• P1 does MPI_Accumulate. The scheduler gives the go-ahead, allowing P1 to
make the PMPI_Acccumulate call.
• P1 does MPI_Win_unlock_NT. Noting that the window is locked, the scheduler
gives the go-ahead, allowing P1 to make the PMPI_Win_unlock call. It records
that P1 is blocked.
• P0 does its MPI_Accumulate, receiving a go-ahead.
• P0 does its MPI_Win_unlock_T. Clearly, the scheduler must issue a go-ahead
to P0, causing PMPI_Win_unlock_T to occur, thus freeing up the window. Note
that P1 has already made its PMPI_Win_unlock_NT call. However the following
race condition could occur: P0 could hurry through the MPI progress engine
upon issuing PMPI_Win_unlock_T. Suppose P1’s lock request reaches P0 only
after P0’s PMPI_Win_unlock_T call has returned. However, since the MPICH2
progress engine has no separate thread to grant locks, P1’s successful acquisition
of the window is at the mercy of P0 entering the progress engine again, which
happens when P0 executes its PMPI_Barrier call.
• For simplicity, our scheduler is implemented in so that it moves only one
process at a time—in the current example, after we let go P1, we await P1 to
make its next MPI command appeal before entertaining any other process.
• However, if we keep P0’s appeal in abeyance, the following deadlock might
occur: The PMPI_Win_unlock_NT can cause an event to be placed in the target’s
event queue. These events are processed only when the progress engine is en-
tered. Since we have kept P0 in abeyance, however, the progress engine won’t
be entered.
• Instead of keeping P0 in abeyance, we keep sending “loop” to P0, which causes
the IProbe’s to be issued. This ensures that P1’s event will be processed, causing
P1 to reach its next MPI command, at which point we can stop sending “loop”
to P0.

Practical Model-Checking Method for Verifying Correctness 349

1 S.add_last (<0...n-1>) /* randomly choose a proc to run at each depth */
2 backtrack.add_last(<n-1>)
3 done.add_last(<n-1>)
4 if(!fork ()) execlp(MPI program) /* run the given MPI program */
5 make all server connections
6 while(backtrack.size() > 0) {
7 current choice = pick randomly from backtrack
8 get readable envelopes for all runnable processes
9 current envelope = envelope for current choice

10 servers[current choice] << goahead /* the chosen MPI process may execute */
11 update block/unblock info for all processes based on current envelope
12 if(chosen process executed MPI_Finalize) {
13 specify that current choice is DONE
14 close(servers[current choice])
15 decrement active procsses }
16 if(active processes != 0) { /* backtrack shows no runnable procs. */
17 if(depth+1 >= backtrack.size ()) {
18 rprocs = <all currently runnable processes >
19 if(rprocs.size() == 0) /* POSSIBLE DEADLOCK */
20 close all socket connections
21 report deadlock and print trace}
22 else { /* current interleaving can be explored further */
23 S.add_last(<all runnable procs >)
24 backtrack.add_last(<S.last.last >) /* randomly choose a proc */
25 done.add_last(<empty >) } }
26 depth++ }
27 else {
28 /* we have gone through one interleaving of the program. Remove all
29 choices from S as well as backtrack until the last decision point.
30 This is where we had more than 1 choice of MPI processes. */
31 while(backtrack.size() > 0 && backtrack.last.size() == 1) {
32 updateBacktrackInfo ()
33 S.remove_last ()
34 backtrack.remove_last ()
35 done.remove_last () }
36 if(backtrack.size() > 0) { /* make sure search is not over */
37 remove most recent choice from backtrack at current depth
38 /* the next interleaving will be forced to take an alternate route */
39 reset checker state for next interleaving
40 if(!fork ()) execlp(MPI program)
41 make all server connections
42 depth = 0
43 active procs = n } } }

Fig. 4. DPOR-based scheduling algorithm

3 In Situ Model Checking with Dynamic Partial-Order
Reduction

The algorithm of Figure 4 shows how ISP exhaustively explores all relevant inter-
leavings of the given MPI process as determined by DPOR. The first interleaving
is chosen at random by following a standard depth-first search. It is then simply
a matter of traversing up the stack, having DPOR identify points where adding
interleavings might be useful, and carrying on the search.

The following data structures are used by ISP: S contains the set of processes
that are able to run at each depth; backtrack contains the set of processes that
are allowed to run at each depth; done contains the set of processes that have
been explored at each depth; servers is the set of n server connections, one with
each MPI process; and active processes is initialized to the number of MPI

350 S. Pervez et al.

S backtrack First Interleaving S’ backtrack’ S’’ backtrack’’

------ -------- ------------------- ------- --------- ------ ----------

P0 P1 P1 P1.1: MPI_Win_lock P0 P1 P1 P0 P1 P1

P0 P1 P1 P1.2: MPI_Accumulate P0 P1 P1 P0 P1 P1

P0 P1 P1 P1.3: MPI_Win_unlock P0 P1 P0 P1 P0 P1 P0

P0 P1 P1 P1.4: MPI_Barrier P0 P1 P1

P1 P0 P0.1: MPI_Win_lock P1 P0

P1 P0 P0.2: MPI_Accumulate P1 P0

P1 P0 P0.3: MPI_Win_unlock

P1 P0 P0.4: MPI_Barrier

P0 P1 P1 P1.5: MPI_Finalize

P1 P0 P0.5: MPI_Finalize

Fig. 5. DPOR algorithm applied to Example 1

processes n. The most interesting is the backtrack set. Readers may view it as
a set of sets that keeps track of meaningful interleavings at each depth. The
sets S and backtrack are almost identical except that S contains the meaningless
interleavings as well. Hence, a näıve implementation of ISP would simply discard
the backtrack set and refer only to S. We now explain how this algorithm works
by referring to the interleavings shown in Figure 5. Note that these interleavings
correspond to the MPI program of Figure 1.

S is initialized so that its first element contains both P0 and P1. The first
element of backtrack contains only P1, chosen at random; depth is initialized to
0. In lines 12–14 we choose a process randomly from backtrack at depth 0. Note
that for the entire first interleaving, there will only be one possible choice at each
depth. We then indicate to P1 that it may make its MPI call MPI_Win_unlock, by
answering its appeal with a go-ahead token. ISP must now update its internal
bookkeeping information. It does so in line 19 by noting which processes are
blocked/unblocked as a result of executing the chosen MPI process. We have
now reached a point where backtrack will indicate no possible choices in the
next step. Line 29 is responsible for calculating the runnable processes so they
can be added to the backtrack set. Again, both P0 and P1 will be added to S as
runnable processes. The last step is to increment depth and continue our random
depth-first-search algorithm.

The first significant digression from this pattern occurs when P0 calls
MPI_Finalize. At this point, since both processes have called MPI_Finalize,
we execute the else clause of line 45. The idea is to remove all the choices
already made, so that in the next execution of the loop, a different interleav-
ing can be explored. Thus, we remove the MPI_Finalize executed by P0. The
updateBacktrackInfo function then is called on line 51. This function traverses
up the set S and identifies any transitions that may need to be interleaved with
the MPI_Finalize just removed. If any such transitions are identified, the cor-
responding MPI process is added to the backtrack set.

Following our DPOR assumptions, no change results to the backtrack set. We
continue to remove choices until we reach the P0.3: MPI_Win_unlock call. This
time, the function updateBacktrackInfo updates the backtrack set to look like

Practical Model-Checking Method for Verifying Correctness 351

backtrack’ in Figure 5. This indicates that the MPI_Win_unlock functions of P0
and P1 must be interleaved in order to get a different, meaningful interleaving.
We continue removing all choices that have already been taken until the back-
track set looks like backtrack”. At this point, we are ready to start our search
from the beginning.

The DPOR-based algor-
MPIFunctions Dependence

MPI Init None
MPI Send MPI Send, MPI Ssend, MPI Recv
MPI Ssend MPI Send, MPI Ssend, MPI Recv
MPI Recv MPI Send, MPI Ssend
MPI Barrier None
MPI Win lock None
MPI Win unlock MPI Win unlock
MPI Win free None
MPI Finalize None

Fig. 6. Supported MPI functions

ithm of Figure 4 identifies all
such meaningful interleavings
and terminates the search ei-
ther when it encounters a
deadlock scenario on line 30
or the search is completed.
The commuting MPI opera-
tions assumed by ISP
are given in Figure 6.

4 Case Study: Byte-Range Locking

Our work in [11] described how we model checked the byte-range-locking protocol
presented in [15]. This uncovered a subtle but crucial deadlock bug that had gone
unnoticed during testing. With the help of ISP, we successfully caught this bug
in the source code of this protocol. We note that no modeling effort and no
changes to the source code were required. The results are presented in Figure 7.
ISP has been tested on other smaller protocols and has worked as expected. It
can be viewed as an exhaustive testing facility that gives the effect of examining
all interleavings of small but intricate MPI programs.

The most striking

Program #procs interleavings interleavings
w/o DPOR with DPOR

byterange
reduced depth 2 2289 119
byterange
full depth 2 - 1522

Fig. 7. Experimental results

feature of these results
is that ISP was un-
able to find this bug
without using DPOR.
The search algorithm
was aborted after it
did not finish within
24 hours. Our knowl-
edge of the algorithm allowed us to reduce the search depth and find the bug
more quickly. By enabling DPOR within ISP, however, we were able to reproduce
the deadlock scenario without having to reduce the search depth. While a hand-
written model of the same protocol using SPIN could find the same bug without
partial-order reduction [11], with ISP we have eliminated the nontrivial task of
modeling MPI programs in Promela. The ISP approach is especially beneficial
if the intervening C statements between MPI calls cannot easily be modeled in

352 S. Pervez et al.

Promela, the actual MPI library in use cannot faithfully be modeled, or the error
is triggered by a bug in the MPI library.

All our experiments consisted of test programs up to a depth of 20. In other
words, they each had fewer than 20 MPI function invocations. Model checking
such programs can take anywhere from half an hour to an hour on a single 1 GHz
processor with 1 GB of memory.

5 Related Work and Conclusions

Model checking has been used for verifying MPI programs by Siegel et al. in
[13,14]. The closest related work to ours is [18], where distributed in situ model
checking for Pthreads programs has been presented.

In our experience with the byte-range-locking algorithm, the initial program
presented in [15] exhibited no discernible bugs, even with conventional testing.
However, porting the same program to a laptop caused deadlock. This prompted
us to model the protocol in Promela, revealing the bugs reported in [11]. This
paper thus comes full circle, and shows that the same bugs can be detected at
the C program level without model extraction.

Clearly, restarting ISP from MPI_Init in order to explore each new inter-
leaving requires a huge overhead, even with partial-order reduction dramatically
reducing the number of interleavings. To reduce the overhead, we plan to explore
three ideas: (i) divide the program using MPI barriers, and interleave only the
code between two subsequent barriers, cutting down the extent of interleavings
and also helping to localize errors; (ii) use MPI checkpointing systems (e.g., [4])
to see whether we can checkpoint intermediate states and restart from there as
opposed to restarting the search from MPI_Init; and (iii) use distributed ISP.
We hope to research these topics in the context of ISP.

We would also like to make ISP compatible with all MPI library implementa-
tions, not just MPICH2. One issue is that the MPI standard gives too much free-
dom to implementors. For example, the blocking semantics of MPI_Send and some
of the one-sided functions are far from being well defined. However, with ISP it is
possible to force the underlying MPI library to follow a stricter interpretation of
the MPI standard. This approach will allow ISP to be used with any MPI library
that conforms to the MPI standard. The code of ISP is available at [12].

Acknowledgments

This work was supported by NSF award CNS-0509379, by the Microsoft HPC
Institutes program, and by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357.

Practical Model-Checking Method for Verifying Correctness 353

References

1. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge,
MA (1999)

2. Souza, J.D., Kuhn, B., de Supinski, B.R., Samofalov, V., Zheltov, S., Bratanov, S.,
Bratanov, S.: Automated, scalable debugging of MPI programs with Intel Message
Checker. In: SE-HPCS ’05, pp. 78–82 (2005)

3. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: POPL, pp. 110–121 (2005)

4. Gao, Q., Yu, W., Huang, W., Panda, D.K.: Application-transparent check-
point/restart for MPI programs over InfiniBand. In: ICPP (August 2006)

5. Godefroid, P.: Model checking for programming languages using Verisoft. In: POPL
97: Principles of Programming Languages, pp. 174–186 (1997)

6. Holzmann, G.J.: The Spin Model Checker. Addison-Wesley, Reading (2003)
7. Krammer, B., Resch, M.M.: Correctness checking of MPI one-sided communication

using MARMOT. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface. LNCS,
vol. 4192, pp. 105–114. Springer, Heidelberg (2006)

8. Luecke, G., Chen, H., Coyle, J., Hoekstra, J., Kraeva, M., Zou, Y.: MPI-CHECK:
A tool for checking Fortran 90 MPI programs. Concurrency and Computation:
Practice and Experience 15, 93–100 (2003)

9. Palmer, R., Barrus, S., Yang, Y., Gopalakrishnan, G., Kirby, R.M.: Gauss: A frame-
work for verifying scientific computing software. In: Workshop on Software Model
Checking. ENTCS 953 (2005)

10. Palmer, R., Gopalakrishnan, G., Kirby, R.M.: Semantics driven dynamic partial-
order reduction of MPI-based parallel programs. In: PADTAD (2007)

11. Pervez, S., Gopalakrishnan, G., Kirby, R.M., Thakur, R., Gropp, W.: Formal ver-
ification of programs that use MPI one-sided communication. In: EuroPVM/MPI,
pp. 30–39 (2006)

12. Preliminary release of the ISP software at http://www.cs.utah.edu/formal
verification/isp.tar.gz

13. Siegel, S.F.: Model checking nonblocking MPI programs. In: Verification, Model
Checking, and Abstract Interpretation (VMCAI) (January 2007)

14. Siegel, S.F., Avrunin, G.S.: Verification of MPI-based software for scientific com-
putation. In: SPIN Workshop, pp. 286–303 (April 2004)

15. Thakur, R., Ross, R., Latham, R.: Implementing byte-range locks using MPI one-
sided communication. In: EuroPVM/MPI, pp. 120–129 (September 2005)

16. Vetter, J.S., de Supinski, B.R.: Dynamic software testing of MPI applications with
Umpire. In: Proc. of SC2000, pp. 70–79 (2000)

17. Visser, W., Havelund, K., Brat, G., Park, S.: Model checking programs. In: ASE
(September 2000)

18. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Distributed dynamic partial
order reduction based verification of threaded software. In: Workshop on Model
Checking Software (SPIN 2007) (July 2007)

http://www.cs.utah.edu/formal_verification/isp.tar.gz
http://www.cs.utah.edu/formal_verification/isp.tar.gz

6th International Special Session on

Current Trends in Numerical Simulation for
Parallel Engineering Environments

New Directions and Work-in-Progress

ParSim 2007

Carsten Trinitis1 and Martin Schulz2

1 Lehrstuhl für Rechnertechnik und Rechnerorganisation (LRR)
Institut für Informatik

Technische Universität München, Germany
Carsten.Trinitis@in.tum.de

2 Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA, USA
schulzm@llnl.gov

In today’s world, the use of parallel programming and architectures is essential
for simulating practical problems in engineering and related disciplines. Remar-
kable progress in CPU architecture (multi- and manycore, SMT, transactional
memory, virtualization support, etc.), system scalability, and interconnect tech-
nology continues to provide new opportunities, as well as new challenges for
both system architects and software developers. These trends are paralleled by
progress in parallel algorithms, simulation techniques, and software integration
from multiple disciplines.

In its 6th year ParSim continues to build a bridge between computer science
and the application disciplines and to help with fostering cooperations between
the different fields. In contrast to traditional conferences, emphasis is put on the
presentation of up-to-date results with a shorter turn-around time. This offers the
unique opportunity to present new aspects in this dynamic field and discuss them
with a wide, interdisciplinary audience. The EuroPVM/MPI conference series, as
one of the prime events in parallel computation, serves as an ideal surrounding
for ParSim. This combination enables the participants to present and discuss
their work within the scope of both the session and the host conference.

This year, ten papers with authors in ten countries were submitted to ParSim,
and after a quick turn-around, yet thorough review process we decided to accept
three of them for publication and presentation during the ParSim session. These
three papers show the use of simulation in a range of different application fields
including earthquake and turbulence simulation. At the same time, they also
address computer science aspects and discuss different parallelization strategies,

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 354–355, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

6th International Special Session on Current Trends 355

programming models and environments, as well as scalability. We are confident
that this provides an attractive program and that ParSim will yet again be an
informal setting for lively discussions and for fostering new collaborations.

Several people contributed to this event. Thanks go to Jack Dongarra, the
EuroPVM/MPI general chair, and to Thomas Hérault and Franck Cappello, the
PC chairs, for their support to continue the ParSim series at EuroPVM/MPI
2007. We would also like to thank the numerous reviewers, who provided us with
their reviews in such a short amount of time (in most cases in just a few days)
and thereby helped us to maintain the tight schedule. Last, but certainly not
least, we would like to thank all those who took the time to submit papers and
hence made this event possible in the first place.

We are confident that this session will fulfill its purpose to provide new insights
from both the engineering and the computer science side and encourages inter-
disciplinary exchange of ideas and cooperations. We hope that this will continue
ParSim’s tradition at EuroPVM/MPI.

1 Part of this work was performed under the auspices of the U.S. Department of Energy
by University of California Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48. UCRL-PROC-232591.

Gyrokinetic Semi-lagrangian Parallel Simulation

Using a Hybrid OpenMP/MPI Programming

G. Latu1, N. Crouseilles2, V. Grandgirard3, and E. Sonnendrücker2

1 INRIA/Scalapplix project & Strasbourg 1 University
LaBRI, 341 cours Libération, 33405 Talence Cedex, France

2 INRIA/Calvi project & Strasbourg 1 University
IRMA, 7 rue Descartes, 67084 Strasbourg Cedex, France

3 CEA/DSM/DRFC
Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France

Abstract. This paper describes a parallel implementation of a numeri-
cal solver for the Vlasov equation. The solver is based on a kinetic model
describing the motion of charged particles in a plasma. The evolution
of the distribution of particles in phase space is computed with an ex-
plicit method, and we take into account the self-consistent electric field
through the coupling with a Poisson type equation. In this paper, we fo-
cus on a recently developed 5D parallel numerical application dedicated
to gyrokinetic simulation of tokamak systems and ITG turbulence simu-
lation. A semi-Lagrangian Vlasov solver is used. A specific cubic spline
interpolation allows us to formulate a domain decomposition method. A
hybrid MPI/OpenMP paradigm was used to benefit from a large number
of processors while reducing communication costs.

1 Introduction

Understanding turbulent transport in a magnetically confined plasma is a subject
of interest to figure out and optimize physics experiments in the present fusion
devices and also to design future reactors. Indeed, the thermal confinement of
a magnetized plasma is essentially determined by turbulent heat conduction
across the equilibrium magnetic field. In practice, the study of plasma turbulence
requires to solve the Maxwell equations coupled to the calculation of the plasma
response to the perturbed electromagnetic field. This response can be computed
by using either a fluid or a kinetic description of the plasma. The purpose of the
code described in this article is to perform kinetic simulations in order to compute
accurately the turbulence in nearly collisionless plasmas. In this approach, the
time evolution of a particle distribution function is well described by the Vlasov
equation. This distribution function f(−→x ,−→v , t) represents the unknown which
depends on the time t ≥ 0, the position −→x ∈ R

d and the velocity −→v ∈ R
d.

The quantity f(−→x ,−→v , t)d−→x d−→v represents the number of particles located in a
volume d−→x d−→v centered around (−→x ,−→v). To describe the most general case, one

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 356–364, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Gyrokinetic Semi-lagrangian Parallel Simulation 357

needs (−→x ,−→v) ∈ R
d × R

d with d = 3. For the strongly magnetized plasmas we
consider here, the particles are confined around the magnetic field lines with a
high frequency. Averaging the full Vlasov equation over this cyclotron motion,
which is faster than characteristic motions of interest, reduces dimensionality.
The so-obtained equation, called gyrokinetic equation, describes the distribution
function in a 5D phase space (3D in space and 2D in velocity).

The numerical solution of such Vlasov type equations is performed most of the
time using Particle In Cell (PIC) methods where the plasma is approached by a
finite number of macro-particles [1]. Even if these methods give satisfying results
with relatively few particles, for some applications however, it is well known that
the numerical noise inherent to the particle methods becomes too significant.
Consequently, methods which discretize the Vlasov equation on a phase space
grid have been proposed (see [2,3]) for plasma and beam physics applications.
Among these Eulerian methods, we are interested in the implementation of the
semi-Lagrangian method; it consists in updating the values of the distribution
function at the nodes of the grid by following the characteristics ending at these
nodes backward and interpolating the value at the bottom of the characteristics
from the known values at the previous time step. Interpolation techniques that
could be used are Lagrange, Hermite or spline for example.

The present work describes a parallel implementation of the semi-Lagrangian
method by using a cubic spline interpolation method. Coupled with a time split-
ting procedure, the cubic spline interpolation seems to be a good compromise
between accuracy and simplicity. Nevertheless, the standard method does not
provide the locality of the reconstruction since all the values of the distribution
function for a given 2D section are necessary to reconstruct f̄ values in each
cell of this 2D section. To overcome this problem of strong dependencies, we
propose a solution that allows us to interpolate on quasi independent small 2D
patches. Thus, we decompose global 2D sections into patches, each patch being
devoted to a set of processor. One patch computes its own local cubic spline
coefficients by solving reduced linear systems. Some adapted boundary condi-
tions are imposed at the interface of the patches to obtain a C1 global solver
which is close to the sequential solver that uses classical global splines. More-
over, thanks to a restrictive condition on the time step, the inter-processor com-
munications are only done between logically adjacent sets of processors, which
enables us to obtain competitive results from a communication cost point of
view.

A first parallel simulator, that does not use the local interpolation method,
was designed, but it does not scale well [4]. The present work focuses on the
parallelization of a realistic semi-Lagrangian code which considers a full tokamak
system. The rest of the paper is organized as follows. Section 2 focuses on the
numerical scheme. Section 3 describes the sequential algorithms and Section 4
depicts the parallelization. Section 5 deals with performance analysis. These
current researches are performed in an interdisciplinary approach together with
physicists, mathematicians and computer scientists.

358 G. Latu et al.

2 Numerical Scheme

The gyrokinetic model considers a distribution function f̄ which depends on
time and 5 other dimensions : r and θ are the polar coordinates in the shortest
cross-section of the torus (called polöıdal section), ϕ refers to the angle in the
largest cross-section of the torus, v‖ is the velocity along the magnetic field lines
(one has v‖ = dϕ

dt), μ the magnetic moment corresponds to the action variable
associated with the gyrophase (μ acts as a parameter because it is an adiabatic
motion invariant). The time evolution of the guiding-center 5D gyroaveraged
distribution function f̄t(r, θ, ϕ, v‖, μ) is governed by the gyrokinetic equation :

∂f̄

∂t
+

dr

dt

∂f̄

∂r
+

dθ

dt

∂f̄

∂θ
+

dϕ

dt

∂f̄

∂ϕ
+

dv‖
dt

∂f̄

∂v‖
= 0. (1)

f̄ is periodic along θ and ϕ. Vanishing perturbations are imposed at the bound-
aries in the non-periodic directions, namely r and v‖. f̄ is initialized as an equilib-
rium distribution function f̄eq perturbed by a sum of accessible (m, n) Fourier
modes (m and n being respectively the poloidal and toroidal wave numbers).
That means, f̄ = f̄eq(1 + δf̄) where the perturbed part δf̄∝�m,n cos(mθ+nϕ) and
f̄eq(r,E)=n0(r)×[2πTi(r)/mi]

− 3
2 exp(−E/Ti(r)) with the energy E= 1

2 miv
2
‖+μB(r,θ). The ra-

dial temperature profile of the ions Ti(r) (respectively of the electrons Te(r)),
the radial profile of density n0(r) and the magnetic field B(r, θ) are input data
independant with respect to time.

The electric quasi-neutrality provides the self-consistency of the problem, cou-
pling the electric potential Φt(r, θ, ϕ) (which plays a major role in the dv‖

dt
∂f̄
∂v‖

term) to f̄ . The Φ function is found by solving the quasi-neutrality equation
(denoting by ∇⊥ = (∂r,

1
r ∂θ))

− 1
n0(r)∇⊥ .

[
n0(r)
B0 ωc

∇⊥Φ
]

+ e
Te(r) [Φ− 〈Φ〉] = Ā(r, θ, ϕ) (2)

Ā(r, θ, ϕ) = 2π
mi n0(r)

∫
dμ B(r, θ)J0(k⊥ρc)

∫
dv‖(f̄ − f̄eq) (3)

The brackets 〈·〉 refer to the magnetic flux surface average: 〈·〉 = 1/(2π)2∫∫
· dθ dϕ. The Larmor radius corresponds to the notation ρc. The ion charge is

ei = Zi e, and the ion mass mi. The magnetic configuration is a circular concen-
tric tokamak configuration with B0 the value of magnetic field at the magnetic
axis. The time is normalized to the inverse of the ion cyclotronic frequency
ωc = ei B0/mi. The zero-th order Bessel function J0 corresponds to the gyro-
average operator in Fourier space. The variable k⊥ is the transverse component
of the wave vector.

Equations (1) and (2) are solved successively at each time step thanks to an ex-
plicit method. One deduces Φt from integral computations on f̄t followed by the
solution of equation (2). Then the electrostatic field Et(r, θ, φ) = −∇Φt(r, θ, ϕ)
can be determined. The solution of (1) enables to update f̄t−dt by f̄t+dt using
Φt, which yields second order accuracy in time.

Gyrokinetic Semi-lagrangian Parallel Simulation 359

3 Sequential Analysis

3.1 Global Algorithm

The Vlasov equation (1) is solved by splitting it into the advection equations:

∂tf̄ +−−→vGC ·
−→∇⊥f̄ = 0 (r̂θ operator),

∂tf̄ + v‖∂ϕf̄ = 0 (ϕ̂ operator), ∂tf̄ + v̇‖∂v‖ f̄ = 0 (v̂‖ operator).

where −−→vGC =
−→
E×−→

B
B2 is the drift velocity of the ion guiding center trajectories.

Each advection consists in applying a shift operator. A Strang splitting proce-
dure [2] is employed to reach second order accuracy. The sequence we choose is
(v̂‖, ϕ̂, 2 r̂θ, ϕ̂, v̂‖), where the factor 2 is a shift over an increased time step 2 dt.

Algorithm 1: One time step in Gysela

// Vlasov solver
for μ, r, θ in local subdomain do in //1

forall ϕ, v‖ do2

1D splitting, operator v̂‖3

4

for μ, r, θ in local subdomain do in //5

forall ϕ, v‖ do6

1D splitting, operator ϕ̂7

8

for μ, r, θ in local subdomain do in //9

forall ϕ, v‖ do10

2D splitting, parallel operator 2 r̂θ11

12

for μ, r, θ in local subdomain do in //13

forall ϕ, v‖ do14

1D splitting, operator ϕ̂15

16

for μ, r, θ in local subdomain do in //17

forall ϕ, v‖ do18

1D splitting, operator v̂‖19

20

// Field solver21

Compute in parallel and broadcast Φt+dt22

At time step t, we will present
key points of the different computa-
tions and their associated complexi-
ties. The algorithm manipulates two
types of data structures: the 5D data
f̄t−dt, f̄t, f̄t+dt, and the 3D data Φ
and Ā. The sizes of these structures
are parametrized by the discretiza-
tion along the different dimensions.
Let Nr, Nθ, Nϕ, Nv‖ , Nμ be respec-
tively the number of points in each di-
mension r, θ, ϕ, v‖, μ. The 5D and 3D
data size are (Nr Nθ Nϕ Nv‖Nμ) and
(Nr Nθ Nϕ).

The Vlasov solver is composed of 5
splitting substeps. A substep requires
the computation of the shift of each
grid point, together with an inter-
polation step. The algorithmic com-
plexity of each splitting substep is in
Θ(Nr Nθ Nϕ Nv‖Nμ). The field solver requires a traversal of data f̄t+dt and the
complexity is too in Θ(Nr Nθ Nϕ Nv‖Nμ). Even if the Vlasov solver concentrates
the major part of execution time, we have to consider the parallelization of every
part to get an eventually scalable program. However, the parallelization of the
field solver will not be described here.

4 Parallel Algorithm

4.1 Domain Decomposition

Concerning the Vlasov solver, the variable μ acts as a parameter. Then we give
the responsibility of each value of μ to a given set of processors. Within such a set,
a 2D domain decomposition allows us to attribute to each processor a subdomain

360 G. Latu et al.

in (r, θ) dimensions. For a given local (μ, r, θ) tuple, a processor stores all values
of f̄ for ϕ = ∗ and v‖ = ∗. This data distribution leads to a straightforward
parallelization of all parts of the Vlasov solver, excluding the r̂θ operator part
(see next subsection). The algorithm 1 introduces the computation distribution.
Communications between processors are only required at lines 11, 22.

4.2 Local Spline Interpolation

In this section, we present an interpolation technique, based on a cubic spline
method, in one dimension [5]. With a 2D tensor product of this spline method,
interpolations on a 2D subdomain is achievable. In order to apply the r̂θ oper-
ator, we use this 2D extension. Nevertheless, we explain here, only the 1D case
to simplify the explanations.

Let us consider a function f̄ which is defined on a global domain [xmin, xMax] ⊂
IR. This domain is decomposed into several subdomains called generically [xmp ,
xMp−1]; each subdomain will be devoted to one processor p. In the following, we
will use the notation xi = xmp+ ih, where h is the cell size: h = (xMp − xmp)/K
and K the number of cells on a subdomain (K ∈ IN).

Let us now restrict the study of f : x �→ f(x) on the interval [xmp , xMp] with
Mp = mp + K. The projection s of f onto the cubic spline basis reads

f(x) s(x) =
∑K+1

ν=−1 ηνBν(x),

where Bν is the cubic B-spline. The interpolating spline s is uniquely determined
by (K+1) interpolating conditions and the Hermite boundary conditions at both
ends of the interval in order to obtain a C1 global approximation

f(xi) = s(xi), ∀i = mp, ..., Mp, f ′(xmp) s′(xmp), f ′(xMp) s′(xMp). (4)

The only cubic B-spline not vanishing at point xi are Bi±1(xi) = 1/6 and
Bi(xi) = 2/3. Hence (4) yields

f(xi) = 1/6 ηi−1 + 2/3 ηi + 1/6 ηi+1, i = mp, . . . , Mp. (5)

On the other hand, we have B′
i±1(xi) = ±1/(2h), and B′

i(xi) = 0. Thus the
Hermite boundary conditions (4) become

f ′(xmp) s′(xmp) = − 1
2h

ηmp−1 +
1
2h

ηmp+1, f
′(xMp) s′(xMp) = − 1

2h
ηMp−1 +

1
2h

ηMp+1.

Finally, η = (ηmp−1, ...ηMp+1)T is the solution of the (K +3)×(K +3) system
Aη = F , where F and A are

F =
[
f ′(xmp), f(xmp), ..., f(xMp), f ′(xMp)

]T
, A =

1
6

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

−3/h 0 3/h 0 · · · 0

1 4 1 0
...

...
. 0

... 0 1 4 1
0 0 0 −3/h 0 3/h

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.

Gyrokinetic Semi-lagrangian Parallel Simulation 361

A classical LU algorithm is used to solve the linear system Aη = F (known
as the Thomas algorithm).

Approximation of the interface derivatives. In order to get accurate nu-
merical simulations, one has to take care of the approximation of the derivatives
at the interface of the subdomains. Various approximations were implemented.
In order to recover the approximation of these interface derivatives obtained by
a classical global cubic splines interpolation, a new formula can be derived to
evaluate f ′(xmp) and f ′(xMp). Accurate numerical results are obtained with:

f ′
left(xi) =

j=10�

j=1

γ̃+
j fi+j ; f ′

right(xi) =

j=−1�

j=−10

γ̃−
j fi+j ; f ′(xi) = f ′

left(xi)+f ′
right(xi).

We refer the reader to [5] for the details of the obtention of this approximation
and values of coefficients γ−

j and γ+
j .

Properties. In our simulator we expect to interpolate on the interval [xmp−1,
xMp] instead of [xmp , xMp]. In order to extend the interpolation capability on
one processor, we compute an extra ηmp−2 coefficient. We impose the property
that mpi =Mpj for pi and pj two adjacent processors that share the grid point
xmpi

. With these minor modifications, each processor has the responsibility to
modify the values of grid points in the interval [xmp , xMp−1], and have the capa-
bility to interpolate onto the extended interval [xmp−1, xMp]. In the 2D splitting
phase, where the local splines are used, it means that the shift of one single grid
point on the border of a subdomain must not exceed the elementary cell width.
This constraint can be very restrictive and constitutes the main drawback of the
method, since it is not possible to consider big shift (in r or θ) during a single
advection in the 2D splitting phase. The computation of the ηmp−2 coefficient
is deduced from (5) with i = mp − 1. The term f(xmp−1) is received from a
neighboring processor.

Communication pattern. In the parallel implementation of the local spline
method, communications are required between adjacent processors to build the
right hand side term F . On a local processor, the known values are
f(xi)i∈[mp,Mp−1]. For processors located at the borders of the global domain
(xmin = xmp or xMax = xMp), boundary conditions (compact or periodic) are
considered to retrieve the values of f needed outside the domain. Hereafter, we
enumerate the data that lacks on the local processor to get F (excluding the
specific problems that arise at the global domain boundaries):

1. Values of f(xmp−1), f ′
left(xmp) are received from a neighboring processor.

2. Values of f(xMp), f ′
right(xMp) are received from a neighboring processor.

3. The quantities f ′
right(xmp) and f ′

left(xMp) are computed on the local proces-
sor and send to processors that need them.

Concerning the item 3, we choose practically a large enough K to have only
local calculations to compute f ′

right(xmp) and f ′
left(xMp). Experimentally, we

have determined a lower bound on K: Kmin = 32, that leads to a relatively
small overhead and provides good numerical stability.

362 G. Latu et al.

In the case of a 2D interpolation, the F term is a matrix instead of a vector.
The assembly of F requires communications with the 8 neighboring processors.
On one processor and for a 2D patch of size K1 × K2, the number of double
precision real numbers to receive is 4 (K1 + K2 + 4). This amount of communi-
cation could be compared to the interpolation cost of the K1 ×K2 points in a
patch, which is in Θ(K1 K2). For K1 and K2 greater to Kmin = 32, the ratio of
communication cost over computation cost remains small.

Limitation. Numerical experiments with the local spline method for the 2D
splitting on physical test cases have shown a bottleneck. The shifts in direction θ
are often too large and above the limit we fixed (the width of one cell). It was not
feasible to keep this configuration, so we were compelled to remove completely
the θ parallelization in the algorithm (1). Another solution would have been to
improve the interpolation capacity of each processor to larger subdomains. But
in such case, extra unwanted communication would be required.

5 Performance Analysis

5.1 Hybrid Approach

The designed parallel simulator achieves good performance. Nevertheless, the
limitation on the maximum number of processors that can be used, requires
that we investigate other possible levels of parallelism. A refinement of the MPI
parallelization would require a fair amount of code restructuring and would
imply new communication schemes. Indeed, the MPI and OpenMP programming
models can be combined into a hybrid paradigm to exploit levels of parallelism at
a finer grain, without heavy code manipulation. The hybrid approach is suitable
for clusters of SMP nodes where MPI provides communication capability across
nodes and OpenMP exploits loop level parallelism within a node.

We add several parallel loops in all parts of the algorithm 1. A parallelization
in variable ϕ is adequate for the 1D splitting in v‖, the 2D splitting in (r, θ). A
parallel loop in θ allows a simple formulation in the 1D splitting in ϕ. The field
solver uses too OpenMP parallelization.

5.2 Efficiency of the Parallelization

Numerical experiments were performed on a cluster of IBM 16-core nodes located
at Bordeaux, France. Each node hosts Power5 processors and offers 27GB of
shared memory.

Hereafter, we present a 4D test case with Nμ = 1. The variable μ corresponds
to the coarser level of parallelism. So, if we imagine running the same test case
in a 5D configuration (with Nμ = 16) on 16 times more processors, we should
observe quite similar scalability performances for advections.

Let us recall that we are limited down by width Kmin=32 for 2D patches (see
subsection 4.2), and the MPI parallelization on variable θ is not active; so in the

Gyrokinetic Semi-lagrangian Parallel Simulation 363

Table 1. Efficiency and computation time in seconds for a single time
step of a medium 4D test case with hybrid OpenMP/MPI solution
Nr = 256,Nθ = 256,Nϕ = 128,Nv‖ = 64,Nμ=1 (nbt the number of threads within
each MPI process, and [Nb. procs/nbt] the number of MPI processes)

Time Effic. Time Effic. Time Effic. Time Effic.

Nb. processors 1 (nbt=1) 8 (nbt=1) 64 (nbt=8) 128 (nbt=16)

advections 1D (ϕ) 334.7 100 40.87 102 5.38 99 2.66 98

advections 1D (v‖) 305.6 100 40.22 95 5.04 95 2.52 95

advection 2D (r, θ) 709.5 100 99.67 89 12.94 85 6.86 81

Total advections 1349.8 100 180.76 93 23.37 90 12.04 88

Total field sover 33.1 100 9.95 42 1.50 33 0.78 33

given test case with Nr = 256, the (r, θ) domain could be decomposed up to
only procr = 8 subdomains. The maximum number of processors that we could
use is then procr Nμ = 8, which is a small number for a 4D test case requiring
large computation time. The hybrid paradigm usage increases this maximum
number to 128 (one could use up to 16 threads per node), thus improving scal-
ability.

In table 1, the 1D splittings are perfectly parallel and scalable, because no
overhead in computation nor in communication is needed. However, the 2D split-
ting requires a communication step to transmit boundary coefficients and deriva-
tives. Furthermore, the 2D interpolation on patches induces a small computation
overhead in comparison to a global spline sequential method. These two facts
explain why the efficiency decays whenever procr and number of processors in-
creases from 1 to 8. The field solver, because of a too much simple parallelization
has not a good speedup. Nevertheless, computation time for this field solver re-
mains small compared to others.

The main advantages of the hybrid approach is to allow one to use more
processors for a given test case. These results demonstrated the overall scalability
of the application.

6 Conclusion

We describe the parallelization of a numerical simulator that solves a 5D Vlasov
system1. The scalability is really impressive on a cluster of SMP nodes thanks to
good properties of the local spline method. Furthermore, multiple levels of par-
allelism are used by combining message passing and OpenMP parallelization.
The hybrid approach leads to an application that could use more processors
than in a MPI-only approach for a given test case size. The scalability im-
provement will enable us to run the code with good efficiency on hundreds of
processors.
1 Acknowledgments: This work was partially suported by EURATOM/CEA, contract
V.3529.001.

364 G. Latu et al.

References

1. Birdsall, C., Langdon, A.: Plasma Physics via Computer Simulation. Institute of
Physics Publishing, Bristol and Philadelphia (1991)

2. Cheng, C., Knorr, G.: The integration of the Vlasov equation in configuration space.
J. Comput Phys. 22, 330 (1976)

3. Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the
Vlasov equation. J. Comput. Phys. 172(1), 166–187 (2001)

4. Grandgirard, V., Brunetti, M., Bertrand, P., Besse, N., Garbet, X., Ghendrih, P.,
Manfredi, G., Sarazin, Y., Sauter, O., Sonnendrücker, E., Vaclavik, J., Villard, L.:
A drift-kinetic semi-Lagrangian code for ion turbulence simulation. J. Comput.
Phys. 217, 395–423 (2006)

5. Crouseilles, N., Latu, G., Sonnendrücker, E.: Hermite spline interpolation on patches
for a parallel solving of the Vlasov-Poisson equation. Technical Report 5926, Re-
search report INRIA (2006), http://hal.inria.fr/inria-00078455/en/

http://hal.inria.fr/inria-00078455/en/

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 365–372, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Automatic Parallelization of Object Oriented Models
Executed with Inline Solvers

Håkan Lundvall and Peter Fritzson

PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, S-581 83 Linköping, Sweden

{haklu,petfr}@ida.liu.se

Abstract. In this work we report preliminary results of automatically generating
parallel code from equation-based models together at two levels: Performing
inline expansion of a Runge-Kutta solver combined with fine-grained automatic
parallelization of the resulting RHS opens up new possibilities for generating
high performance code, which is becoming increasingly relevant when multi-
core computers are becoming common-place. We have introduced a new way
of scheduling the task graph generated from the simulation problem which
utilizes knowledge about locality of the simulation problem.

Keywords: Modelica, automatic parallelization.

1 Background – Introduction to Mathematical Modeling and
Modelica

Modelica is a rather new language for equation-based object-oriented mathematical
modeling which is being developed through an international effort [4], [5]. The
language unifies and generalizes previous object-oriented modeling languages.
Modelica is intended to become a de facto standard. It allows defining simulation
models in a declarative manner, modularly and hierarchically and combining various
formalisms expressible in the more general Modelica formalism. The multidomain
capability of Modelica gives the user the possibility to combine electrical,
mechanical, hydraulic, thermodynamic, etc., model components within the same
application model.

In the context of Modelica class libraries software components are Modelica
classes. However, when building particular models, components are instances of
those Modelica classes. Classes should have well-defined communication interfaces,
sometimes called ports, in Modelica called connectors, for communication between a
component and the outside world. A component class should be defined
independently of the environment where it is used, which is essential for its
reusability. This means that in the definition of the component including its equations,
only local variables and connector variables can be used. No means of communication
between a component and the rest of the system, apart from going via a connector, is
allowed. A component may internally consist of other connected components, i.e.
hierarchical modeling.

366 H. Lundvall and P. Fritzson

To grasp this complexity a pictorial representation of components and connections
is quite important. Such graphic representation is available as connection diagrams.

To summarize, Modelica has improvements in several important areas:
• Object-oriented mathematical modeling. This technique makes it possible to create

physically relevant and easy-to-use model components, which are employed to
support hierarchical structuring, reuse, and evolution of large and complex models
covering multiple technology domains.

• Acausal modeling. Modeling is based on equations instead of assignment
statements as in traditional input/output block abstractions. Direct use of equations
significantly increases re-usability of model components, since components adapt
to the data flow context in which they are used. This generalization enables both
simpler models and more efficient simulation.

• Physical modeling of multiple application domains. Model components can
correspond to physical objects in the real world, in contrast to established
techniques that require conversion to “signal” blocks with fixed input/output
causality.

2 Approaches to Integrate Parallelism and Mathematical Models

There are several approaches to exploit parallelism in mathematical models. In this
section we briefly review some approaches that are being investigated in the context
of parallel simulation of Modelica models.

2.1 Automatic Parallelization of Mathematical Models

One obstacle to parallelization of traditional computational codes is the prevalence of
low-level implementation details in such codes, which also makes automatic
parallelization hard.

Instead, it would be attractive to directly extract parallelism from the high-level
mathematical model, or from the numerical method(s) used for solving the problem.
Such parallelism from mathematical models can be categorized into three groups:

• Parallelism over the method. One approach is to adapt the numerical solver for

parallel computation, i.e., to exploit parallelism over the method. For example, by
using a parallel ordinary differential equation (ODE) solver for that allows
computation of several time steps simultaneously. However, at least for ODE
solvers, limited parallelism is available. Also, the numerical stability can decrease
by such parallelization.

• Parallelism over time. A second alternative is to parallelize the simulation over the
simulated time. This is however best suited for discrete event simulations, since
solutions to continuous time dependent equation systems develop sequentially over
time, where each new solution step depends on the immediately preceding steps.

• Parallelism of the system. This means that the modeled system (the model
equations) are parallelized. For an ODE or DAE equation system, this means
parallelization of the right-hand sides of such equation systems which are available

 Automatic Parallelization of Object Oriented Models Executed with Inline Solvers 367

in explicit form; moreover, in many cases implicit equations can automatically be
symbolically transformed into explicit form.

A thorough investigation of the third approach, automatic parallelization over the
system, has been done in our recent work on automatic parallelization (fine-grained
task-scheduling) of a mathematical model [1],[10]. Speedup measurements from this
investigation can be seen in figure 2.

In this work we aim at extending our previous approach to inlined solvers,
integrated in a framework exploiting several levels of parallelism.

2.2 Coarse-Grained Explicit Parallelization Using Computational Components

Automatic parallelization methods have their limits. A natural idea for improved
performance is to structure the application into computational components using
strongly-typed communication interfaces.

This involves generalization of the architectural language properties of Modelica,
currently supporting components and strongly typed connectors, to distributed
components and connectors. This will enable flexible configuration and connection of
software components on multiprocessors or on the GRID. This only involves a
structured system of distributed solvers/ or solver components.

2.3 Explicit Parallel Programming

The third approach is providing general easy-to-use explicit parallel programming
constructs within the algorithmic part of the modeling language. We have previously
explored this approach with the NestStep-Modelica language [6], [11].

3 Combining Parallelization at Several Levels

Models described in object oriented equations based languages like Modelica render
large differential algebraic equation systems that can be solved using numerical ODE-
solvers. Many scientific and engineering problems require a lot of computational
resources, particularly if the system is large or if the right hand side is complicated
and expensive to evaluate. Obviously, the ability to parallelize such models is
important, if such problems are to be solved in a reasonable amount of time.

As mentioned in Section 2, parallelization of object oriented equation based
simulation code can be done at several different levels. In this paper we explore the
combination of the following two parallelization approaches:

• Parallelization across the method, e.g., where the stage vectors of a Runge-Kutta
solver can be evaluated in parallel within a single time step

• Fine grained parallelization across the system where the evaluation of the right
hand side of the system equations is parallelized.

In previous work [1] automatic parallelization across the system has been done by
building a task graph containing all the operations involved in evaluating the
equations of the system DAE. In order to make the cost of evaluating each task large

368 H. Lundvall and P. Fritzson

Fig. 1. Task graph of two stage inlined Runge-Kutta solver

enough compared to the communication cost between the parallel processors he uses
a graph rewriting system that merges tasks together in such a way that the total cost of
computing and communicating is minimized. The solver is centralized and runs on
one processor. Each time the right hand side is to be evaluated, data needed by tasks
on other processors is send and the result of all tasks is collected in the first process
before returning to the solver. As a continuation of this work we now inline an entire
Runge-Kutta solver in the task graph before scheduling of the tasks.

Many simulation problems have DAE:s consisting of a very large set of equations
but were each equation only depends on a relatively small set of other equations.

Let f = (f1,…,fn) be the right hand side of such a simulation problem and let fi
contain equations only depending on equations of components of indices in a range
near i. This makes it possible to pipeline the computations of the resulting task graph,
since evaluating fi for stage s of the Runge-Kutta solver depend only on fj of stage s
for j close to i and on fi of stage s-1.

A task graph of a system where the right hand side can be divided into three parts,
denoted by the functions f1, f2 and f3 where fi only depend on fi-1, inlined in a two stage
Runge-Kutta solver is shown in figure 1. In the figure n_k represent the state after the
previous time step. We call the function fi the blocks of the system. If we schedule
each block to a different processor, let us say fi is scheduled to pi, then p1 can continue
calculating the second stage of the solver as p2 starts calculating the first stage of f2.
The communication between p1 and p2 can be non-blocking so that if many stages are
used communication can be carried out simultaneous to the calculations.

The pipelining technique is described in [9]. Here we aim to automatically detect
pipelining possibilities in the total task graph containing both the solver stages and the
right hand side of the system, and automatically generate parallelized code optimized
for the specific latency and bandwidth parameters of the target machine.

 Automatic Parallelization of Object Oriented Models Executed with Inline Solvers 369

It the earlier approach with task merging including task duplication the resulting
task graph usually ends up with one task per processor and communication takes
place at two points in each simulation step; initially when distributing the previous
step result from the processor running the solver to all other processors and at the end
collecting the results back to the solver.

When inlining a multi-stage solver in the task graph each processor only needs to
communicate whit its neighbor. In this approach however we cannot merge tasks as
much since the neighbors of a processor depends on initial results to be able to start
their tasks. So, instead of communicating a lot in the beginning and in the end smaller
portions are communicated throughout the calculation of the simulation step.

If the task graph of a system mostly has the property of having a narrow access
distance, which is required for the pipelining, but only on a small number of places
access components in more distant parts of the graph.

4 Pipelining the Task Graph

Since communication between processors is going to be more frequent with this
approach we want to make sure the communication interfere as little as possible with
computation. Therefore, we schedule the tasks in such a way that communication
taking place inside the simulation step is always directed from a processor with lower
rank to a higher ranked processor. In this way the lower ranked processor is always
able to carry on with calculations even if the receiving processor temporarily falls
behind. At the end of the simulation step there is a face were values required for the
next simulation step is transferred back to lower ranked processors, but this is only
needed once per simulations step instead of once for each evaluation of the right hand
side. Further more this communication takes place between neighbors and not to a
single master process which otherwise can get overloaded with communication as the
number of processors becomes large.

4.1 Sorting Equations for Short Access Distance

One part of translating an acausal equation-based model into simulation code involves
sorting the equations into data dependency order. This is done using Tarjan’s
algorithm which also finds any strongly connected components in the system graph,
i.e., a group of equations that must be solved simultaneously. We assign a sequence
number to each variable, or set of variables in case of a strongly connected
component, and use this to help the scheduler assign tasks that communicate much
within the same processor. When the task graph is generated each task is marked with
sequence number of the variable it calculates. When a system with n variables is to be
scheduled onto p processors, tasks marked 1 through n/p is assigned to the first
processor and so on.

Even though Tarjan’s algorithm assures that the equations are evaluated in a
correct order we cannot be sure that there is not a different ordering where the access
distance is smaller. If for example two parts of the system is largely independent they
can become interleaved in the sequence of equations making the access distance
unnecessarily large. Therefore we apply an extra sorting step after Tarjan’s algorithm

370 H. Lundvall and P. Fritzson

which moves equations with direct dependencies closer together. This reduces the risk
of two tasks with a direct dependency getting assigned to different processors.

As input to the extra sorting step we have a list of components and a matching
defining which variable is solved by which equation. On component represent a set of
equations that must be solved simultaneously. A component often includes only one
equation. The extra sorting step works by popping a component from the head of the
component list and placing them in the resulting sorted list as near the head of the
sorted list as possible without placing it before a component on which it depends.

4.2 Scheduling

In this section we describe the scheduling process. We want all communication
occurring inside the simulation step to be one-way only, from processors with lower
rank to processors with higher rank. To achieve this we make use of information
stored with each task telling us from which equation it originates and thus which
variable it is a part of evaluating. We do this by assigning the tasks to the processors
in the order obtained after the sorting step described in section 6.

Task with variable number 0 through n1 is scheduled to the first processor, n1+1
through n2 to the second and so on. The values of ni are chosen so that they are always
the variable number representing a state variable.

If we generate code for a single stage solver, e.g., Euler, this would be enough to
ensure backward communication only takes place between simulation steps, since the
tasks are sorted to ensure no backward dependencies. This is not, however, the case
when we generate code for multi-stage solvers. When sorting the equations in data-
dependency order, variables considered known, like the state of the previous step are
not considered, but in a later stage of the solver those values might have been
calculated by an equation that comes later in the data-dependency sorting. This kind
of dependency is represented by the dotted lines in figure 1. Luckily such references
tend to have a short access distance as well and we solve this by adding a second step
to the scheduling process.

For each processor p starting with the lowest ranked, find each task reachable from
any leaf task scheduled to p by traversing the task graph with the edges reversed. Any
task visited that was not already assigned to processor p is then moved to processor p.
Tests show that the moved tasks do not influence the load balance of the schedule
much.

5 Measurements

In order to evaluate the gained speedup we have used a model of a flexible shaft using
a one-dimensional discretization scheme. The shaft is modeled using a series of n
rotational spring-damper components connected in a sequence. In order to make the
simulation task computationally expensive enough, to make parallelization worth
while, we use a non linear spring-damper model. In these tests we use a shaft
consisting of 100 spring-damper elements connected together. The same model has

 Automatic Parallelization of Object Oriented Models Executed with Inline Solvers 371

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

0 2 4 6 8 10 12 14 16 18 20 22

Number of Processors

R
el

at
iv

e
S

p
ee

d
u

p

Solver inlining

Task merging

Fig. 2. Relative speedup on Linux-cluster. The new technique compared to the previous task
merging technique.

bee used when the task merging approach was evaluated in [1], which makes it
possible to compare the results of this work to what was previously achieved.

The measurements were carried out on a 30-node PC cluster where each
computation node is equipped with two 1.8 GHz AMD Athlon MP 2200+ and 2GB of
RAM. Gigabit Ethernet is used for communication.

Figure 2 shows the results of the tests carried out so far. As can be seen the
speedup for two processors is almost linear, but when the number of processors
increase the speedup does not follow.

6 Conclusion and Future Work

To conclude we can se that for two processors the tests were very promising, but
those promises were not fulfilled when the number of processors increased. If we
compare to the previous results obtained with task merging in [1], though, we do not
suffer from slowdown in the same way (see figure 2). Most likely this has to do with
the fact that the communication cost for the master process running the solver
increases linearly with the number of processors whereas in our new approach this
communication is distributed more evenly among all processors.

In the nearest future we will profile the generated code to see were the bottlenecks
are when ran on more than two processors and see if the scheduling algorithm can be
tuned to avoid them. Also, tests must be carried out on different simulation problems
to see if the results are general or if it differs much depending on the problem.

We also intend to port the runtime to run on threads in a shared memory setup.
Since the trend is for CPU manufacturers to add more and more cores to the CPUs, it
is becoming more and more relevant to explore parallelism in such environments.

A runtime for the Cell BE processor is also planed. This processor has eight, so
called, Synergistic Processing Elements (SPE) which their own local memory.
Transfers to and from those local memories can be carried out using DMA without
using any computation resources.

372 H. Lundvall and P. Fritzson

Acknowledgements

This work was supported by Vinnova in the Safe & Secure Modeling and Simulation
project.

References

1. Aronsson, P.: Automatic Parallelization of Equation-Based Simulation Programs. PhD
thesis, Dissertation No 1022, Dept. Computer and Information Science, Linköping
University, Linköping, Sweden

2. Bonorden, O., Juurlink, B., von Otte, I., Rieping, I.: The Paderborn University BSP (PUB)
Library. Parallel Computing 29, 187–207 (2003)

3. Fritzson, P., Aronsson, P., Lundvall, H., Nyström, K., Pop, A., Saldamli, L., Broman, D.:
The OpenModelica Modeling, Simulation, and Software Development Environment. In:
Simulation News Europe, 44/45, (December 2005) See also, http://www.ida.liu.se/
projects/OpenModelica

4. Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, p.
940 ISBN 0-471-471631, Wiley-IEEE Press (2004) See also book web page
http://www.mathcore.com/drModelica

5. The Modelica Association. The Modelica Language Specification Version 2.2 (March
2005), http://www.modelica.org

6. Sohl, J.: A Scalable Run-time System for NestStep on Cluster Supercomputers. Master
thesis LITH-IDA-EX-06/011-SE, IDA, Linköpings universitet, 58183 Linköping, Sweden
(March 2006)

7. Nyström, K., Fritzson, P.: Parallel Simulation with Transmission Lines in Modelica. In:
Proceedings of the 5th International Modelica Conference (Modelica’2006), Vienna,
Austria (September 4-5, 2006)

8. Siemers, A., Fritzson, D., Fritzson, P.: Meta-Modeling for Multi-Physics Co-Simulations
applied for OpenModelica. In: Proceedings of International Congress on Methodologies
for Emerging Technologies in Automation (ANIPLA2006), Rome, Italy (November 13-
15, 2006)

9. Korch, M., Rauber, T.: Optimizing Locality and Scalability of Embedded Runge-Kutta
Solvers Using Block-Based Pipelining. Journal of Parallel and Distributed
Computing 66(3), 444–468 (2006)

10. Aronsson, P., Fritzson, P.: Automatic Parallelization in OpenModelica. In: Proceedings of
5th EUROSIM Congress on Modeling and Simulation, Paris, France. ISBN (CD-ROM) 3-
901608-28-1 (September 2004)

11. Kessler, C., Fritzson, P., Eriksson, M.: NestStepModelica: Mathematical Modeling and
Bulk-Synchronous Parallel Simulation. PARA-06 Workshop on state-of-the-art in
scientific and parallel computing, Umeå, Sweden (June 18-21, 2006)

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 373–380, 2007.
© Springer-Verlag Berlin Heidelberg 2007

3D Parallel Elastodynamic Modeling of Large
Subduction Earthquakes

Eduardo Cabrera1, Mario Chavez2,3, Raúl Madariaga3, Narciso Perea2,
and Marco Frisenda3

1 Supercomputing Dept., DGSCA, UNAM, C.U., 04510, Mexico DF, Mexico
2 Institute of Engineering, UNAM, C.U., 04510, Mexico DF, Mexico

3 Laboratoire de Géologie CNRS-ENS, 24 Rue Lhomond, Paris, France
eccf@super.unam.mx, marioch48@hotmail.com,

raul.madariaga@ens.fr, narpere@hotmail.com, mfrisenda@yahoo.it

Abstract. The 3D finite difference modeling of the wave propagation of M>8
earthquakes in subduction zones in a realistic-size earth is very computationally
intensive task. We use a parallel finite difference code that uses second order
operators in time and fourth order differences in space on a staggered grid. We
develop an efficient parallel program using message passing interface (MPI)
and a kinematic earthquake rupture process. We achieve an efficiency of 94%
with 128 (and 85% extrapolating to 1,024) processors on a dual core platform.
Satisfactory results for a large subduction earthquake that occurred in Mexico in
1985 are given.

Keywords: Elastodynamic, modeling, earthquakes, parallel computing.

1 Introduction

The 19/09/1985 a large Ms 8.1 subduction earthquake occurred on the Mexican
Pacific coast with an epicenter at about 340 km from Mexico City is shown in Fig.
1A. The rupture area of this event of about 180 x 100 km is also shown in this figure.
In Fig. 1B, a profile from the Mexican coast and beyond Mexico City shows the
tectonic plates involved in the generation of this type of earthquakes in Mexico.
Finally, the kinematic representation of the average slip associated to the mentioned
earthquake is presented in Fig. 1C. As the recurrence time estimated for this highly
destructive type of events in Mexico is of only a few decades, there is a seismological
and engineering interest in modeling them [1].

Herewith, we developed an efficient parallel program using message passing
interface (MPI) with a kinematic specification of the rupture process in the fault. In
Ch. 2 we synthesize the elastodynamics of the problem; the data parallelism approach
decomposition proposed and the MPI implementation are presented in Ch. 3. The
study of the efficiency of the proposed parallel program is discussed in Ch. 4 and in
Ch. 5 results obtained for the modeling of the seismic wave propagation of the
19/09/1985 Ms 8.1 subduction earthquake are given.

374 E. Cabrera et al.

Fig. 1. A) Inner rectangle is the rupture area of the 19/09/1985 Ms 8.1 earthquake on surface
projection of the 500x600x124 km earth crust volume 3DFD discretization; B) profile P-P´; C)
Kinematic slip distribution of the rupture of the 1985 earthquake [4]

2 Elastodynamics and the 3DFD Algorithm

A synthesis of the elastodynamic formulation and its algorithm description of the
elastic wave propagation problem are presented by following [2]. The elastic wave
equation in a 3D medium occupying a volume V and boundary S, the medium may be

described using Lamé parameters x and x and mass density x , where

 3D Parallel Elastodynamic Modeling of Large Subduction Earthquakes 375

3x . The velocity-stress form of the elastic wave equation consists of nine
coupled, first order partial differential equations for the three particle velocity vector

components txij , and the six independent stress tensor components txij , ,

where i,j = 1,2,3 and assuming that txtx jiij ,, :

j

a
ij

i
j

iji

x

txm
txfxb

x

tx
xb

t
txv ,

,
,,

. (1)

t

txm

x

txv

x
txv

x
x

txv
x

t

tx s
ij

i

j

j

i
ij

k

kij ,,,,,
 (2)

where b=1/ρ, and fi is the force source tensor and

() () ()[]txmtxmtxm jiij
a
ij ,,2/1, −= , () () ()[]txmtxmtxm jiij

s
ij ,,2/1, += are

the moment antisymmetric and symmetric source tensors and δij is Dirac´s δ. The
traction boundary condition (normal component of stress) must satisfy

 () () ()txtxntx ijij ,, =σ . (3)

for x on S, where ()txti , are the components of the time-varying surface traction

vector and ()xni are the components of the outward unit normal to S. The initial

conditions on the dependent variables are specified at V and on S at time t = t0 by

() ()xvtxv ii
0, = , () ()xtx ijij

0, σσ = . (4)

On output, the code produces both seismograms and 2D plane slices. If the

orientation of interest is on a particular axis defined by the dimensionless unit vector
b , then the particle velocity seismogram is:

() () () () ()txvbtxvbtxvbtxvbtxv rrrrkkrb ,,,,, 332211 ++== . (5)

Details about the staggered finite difference scheme on which the algorithm used is

based can be found in [3].

3 Parallel Implementation

We use data parallelism for efficiency. The best parallel programs are those where
each processor gets almost the same amount of work while trying to minimize
communications. Using this kind of partition, the domain is decomposed into small
pieces (subdomains) and distributed among all processors; therefore, each processor
solves its own subdomain problems. 3D domain decomposition is shown in Fig. 2.

376 E. Cabrera et al.

For the process discussed in this paper, 1D, 2D, and 3D decomposition are possible;
however, we encourage the 3D one because it is well-balanced, extremely efficient
and the more appropriate for the elastic wave propagation code as large problems –too
big to fit on a single processor.

We use message passing interface (MPI) to parallelize 3DFD. The fourth order
spatial finite difference scheme requires two additional planes of memory on every
face of the subdomain to compute properly the finite difference solution
independently from the other processes; therefore, we allocate padded subdomains of
memory for every face of the subdomain cube (shown in the bottom of Fig. 2) to
assure the precise functioning of the staggered finite difference scheme used.

Fig. 2. 3D decomposition using data parallelism and an independent subdomain with ghost
cells as dashed lines

Parallel I/O is used in the program that allows us to model a large realistic-size
model. The input basic run parameters and geometry data which are scalars are read
and broadcast by processor 0. The earth model data is read by all processors using
collective I/O. The output part of the program uses, as well, collective I/O to write
plane slices and seismograms. We do not measure the time spent in such phases
because it is in the time-step loop where the majority of the time is spent. We use
MPI shift commands to communicate neighboring's edges.

4 Efficiency

Speedup, Sp, and efficiency, E, among others, are the most important metrics to
characterize the performance of parallel programs. Theoretically, speedup is limited
by Amdahl's law [5]. For a scaled-size problem, one must estimate the running time
on a single processor [2]. Sp and E are defined as

)(

)/(1

nT

mnmT
Sp

m

≡ ,
)(

)/(1

nmT

pnT
E

m

≡ . (6)

 3D Parallel Elastodynamic Modeling of Large Subduction Earthquakes 377

where T1 is the serial time execution and Tm is the parallel time execution on m
processors for a size problem n.

We can estimate the cost for this parallel algorithm straightforward without I/O
timings because the largeness of the work occurs in the elastic wave propagation.
Therefore, we must estimate computation and communication terms

() () ()mnmnmnT commcomp ,,, ττ += . (7)

where compτ is the computation cost and commτ represent the communication cost on

m processors for a size problem n.
There are two main machine constants which most impact the speed of message

communication that are bandwidth, β , -message dependant- which is (the reciprocal

of) transmission time/byte, and latency,ι , represents the startup cost of sending an
message -independent of message size. Therefore, the cost to send a single message
with χ length of data is χβι + .

We use 128 processors of UNAM HP Cluster Platform 4000, which has Opteron
dual core processors (1,368 cores) of 2.6GHz with Infiniband interconnection
(known in short as KanBalam [6]). KanBalam has the following time constants: β =

1 910−× , ι =13 610−× , and the computation time per flop, Γ = 1.9 1310−× , all of
them are in seconds. The size of each subdomain is NzNyNx ×× , that we call R

for simplicity, where Nx=500, 1000, 2000, 4000; Ny=600, 1200, 2400, 4800 and
Nz=124, 248, 496, 992 are model size per direction; therefore, the cost of performing

a finite difference calculation on npznpynpx ×× ,m, processors is mR /3ΑΓ ,

where Α is the number of floating operations in the finite difference scheme
(velocity-stress consists of nine coupled variables). As we stated above, this scheme
requires us to communicate two neighboring's planes in the 3D decomposition plus
four extra planes for cubic extrapolation –necessary if the user specifies a receiver or
slice plane not on a grid node; therefore, communication costs for a 1D

decomposition are –at most- ()248 Rβι + , where the factor 4 is the size in bytes of

memory of each data grid. ()mR /416 2βι + is the cost for a 2D decomposition,

and for a 3D decomposition we have ()3/22 /424 mRβι + . In short, for a 3D

decomposition we have the following

() ()3/223 /424/, mRmRmnT βι ++ΑΓ= . (8)

and

()3/223

3

/424/ mRmR

R
Sp

βι ++ΑΓ
ΑΓ≡ . (9)

The communication cost depends on both the order the finite difference scheme
and the type of processor decomposition.

Results for different size models and number of processors (P) from 1-1,024 are
shown in Table 1 and Fig. 3. I/O timings are not reported.

378 E. Cabrera et al.

Table 1. Scaled-sized model: processors used in each axis, timings, speedup, efficiency and
memory per subdomain (mps) obtained (The 1,024 processors results are based on (8) and (9))

Size model and spatial
step (dh, km)

P Px Py Pz Total run
time (s)

Speedup
(Sp)

Efficiency
 (E)

Mps
(GB)

500x600x124 (1) 1 1 1 1 34187.7 1 1 2.08

1000x1200x248 (0.5) 16 1 4 4 33201.5 16.47 1.03 1.042

2000x2400x496 (0.25) 128 4 8 4 36230.3 120.8 0.94 1.042

4000x4800x992 (0.125) 1024 16 16 4 39986.3 876 0.85 1.042

1 10 100 1000 10000
Number of processors

To
ta

l r
u

n
tim

e
(s

) 50,000

40,000

30,000

20,000

Theoretical
Experimental
Extrapolated

Fig. 3. Running time for the models run on KanBalam. (The 1,024 processors results are based
on (8) and (9)).

5 Results for the 19/09/1985 Mexico's Ms 8.1 Subduction
Earthquake

Herewith we present two examples of the type of results that were obtained with the
3D parallel MPI code implemented: the low frequency velocity field patterns in the X
direction, Fig. 2 and the seismograms obtained at observational points in the so-called
near and far fields of the wave propagation pattern.

Three spatial discretizations of the earth crust volume were used: dh = 1, 0.5, and
0.25 km. In Fig. 4A, we present two snapshots of the wave propagation patterns in the
X direction obtained 48 and 120s after the initiation of the kinematic rupture of the
seismic source, They correspond to the dh = 0.5 km discretization, notice in Fig. 4A
that at 48s the main seismic effects are occurring in the near field, i.e. on top of the
seismic source, while the opposite is observed at 120s, when the seismic waves are
fully developed in the far field, where Mexico City is located with respect to the
source.

In Fig. 4B the synthetic seismograms obtained for dh = 1, 0.5 and 0.25 km, at an
observation site practically on top of the largest “subevent” of the 1985 Mexico
earthquake (Fig. 1C) are presented, Notice in Fig. 4B, that, the maximum amplitude
of the seismograms are very similar; however, the effect of the “numerical noise” of
the seismogram associated to the coarser discretization of 1 km of the seismic source
is drastically reduced for the corresponding to the 0.25 km one. This effect is clearly
shown in the Fourier Amplitude spectra of the seismograms, which are shown on the

 3D Parallel Elastodynamic Modeling of Large Subduction Earthquakes 379

Fig. 4. A) Snapshot of the velocity wavefield in the X direction of propagation for f<= 0.2 Hz
in the surface of the domain of interest; B) Left side seismogram, right side Fourier amplitude
spectra obtained for the dh=1, 0.5 and 0.25 km discretizations; C) Left side observed and
synthetic accelerograms north-south direction, right side Fourier amplitude spectra for the
Mexico's Ms 8.1 earthquake

right side of Fig. 4B. In the latter, the mentioned “numerical noise” of the dh = 1 km
discretization is associated to the bump between 0.5 and 0.6 Hertz of its Fourier
amplitude spectra, versus the “no bump” at the same frequencies of the dh = 0.25 km
discretization.

380 E. Cabrera et al.

Finally, in Fig 4C we show the observed and synthetic (for a spatial discretization
dh = 0.5km) low frequency, North-south accelerograms of the 19/09/1985 Ms 8.1
Mexico earthquake, and their corresponding Fourier Amplitude spectra for the firm
soil Tacubaya site in Mexico City, i.e. at a far field observational site. Notice in these
figures that the agreement between the observed and the synthetic accelerograms is
reasonable both in the time and in the frequency domain.

6 Conclusions

We decomposed a realistic-size domain in 1D, 2D and 3D using data parallelism.
Each processor allocates memory for its own subdomain and two plane faces of
padding for each face in order to compute independently the finite difference
calculation. We improve I/O using collective communications, but they are no
reported in getting the performance of the implementation. The efficiency achieved is
of 94% for 128 and of 85% extrapolating to 1,024 processors of the HP Cluster
Platform 4000 Opteron dual core supercomputer of UNAM. The low frequency
synthetic seismograms obtained with the parallel code implemented, particularly the
ones for a spatial discretization of 0.5 and 0.25km show a good fit, both in the time
and in the frequency domain with the observations of the Mexico's 19/09/1985 Ms 8.1
subduction earthquake.

Acknowledgments

We acknowledge DGSCA, UNAM for the support we received to use the HP Cluster
Platform 4000 Opteron dual core supercomputer (KanBalam). We would also like to
thank the staff of the Supercomputing Department at DGSCA, UNAM, particularly to
José Luis Gordillo, Eduardo Murrieta and Adrián Durán. Thanks to Martha Mora for
her grammatical suggestions.

References

[1] Chavez, M., Olsen, K., Cabrera, E.: Broadband Modeling of Strong Ground Motions for
Prediction Purposes for Subduction Earthquakes Occurring in the Colima-Jalisco Region of
Mexico. 13WCEE, Vancouver, B.C., Canada, August 1-6, 2004, Paper No 1653 (2004)

[2] Minkoff, S.E.: Spatial Parallelism of a 3D Finite Difference Velocity-Stress Elastic Wave
Propagation code. SIAM J. Sci. Comput. 24(1), 1–19 (2002)

[3] Madariaga, R.: Dynamics of an Expanding Circular Fault. Bull. Seismol. Soc. Amer. 66,
639–666 (1976)

[4] Mendoza, C., Hartzell, S.: Slip Distribution of the 19 September 1985 Michoacan, Mexico,
Earthquake: near Source and Telesismic constrains. Bull. Seismol. Soc. Amer. 79, 655–699
(1989)

[5] Amdahl, G.: Validity of the Single Processor Approach to Achieving Large Scale
Computing Capabilities. In: Conference Proceedings, AFIPS, pp. 483-485 (1967)

[6] Supercomputing Department, DGSCA, UNAM, Supercomputer KanBalam http://www.
super.unam.mx/index.php?op=eqhw

Virtual Parallel Machines Through

Virtualization: Impact on MPI Executions

Benjamin Quetier1, Thomas Herault1, Vincent Neri1, and Franck Cappello2

1 Univ Paris Sud; LRI; INRIA Futurs; F-91405 Orsay France
quetier@lri.fr, herault@lri.fr, neri@lri.fr

2 INRIA Futurs; F-91405 Orsay France
fci@lri.fr

1 Introduction

Virtual Machines (VM) are used to provide homogeneous environments at low
costs, enhanced security of execution through confinment of the application, and
sometimes for enabling checkpointing capabilities. They rely on special hardware
instructions, or pure software implementations, and are usually located between
the hardware and the different operating systems. In this work, we evaluate the
impact of virtualization parameter (like the number of VM per physical ma-
chine) over applications and micro-benchmarks running inside Message Passing
Interface environments to determine the feasability and efficiency of virtual en-
vironments for high performance computation emulation.

We have used the Xen[2] paravirtualization tool to virtualize up to 64 VMs
in a single physical one. Xen is an open source virtual machine monitor for
the Linux operating system which reports low overhead and efficient execution
of Linux. In this work, we study the impact of the virtualization degree (the
number of VM per physical machine) and different disposition of these VMs.

2 Methodology and Hardware Platform

Our experimental platform consists of a subset of Grid’5000 [1]: GriD eXplorer.
We have used 256 dual AMD opteron 246 at 2GHz with 2MBytes of memory
and with a gigabit network. For the Virtualization, we have used Xen3.04. For
the host and guests system are based on Debian etch with 2.6.16.33-xen kernel.
The version of MPI is : MPICH-1.2.7p1.

On this platform we have used two NAS benchmark [3]: block tridiagonal solver
(BT) and conjugate gradient (CG) compiled in the B class for 256 processes. We
have tested various VM configurations: 4 variation of the virtualization degree and
2 slicing of BT and CG datas on these VMs.

3 Results

The figure show the execution of BT and CG in 4 virtual machines configurations:
8 host times 32 VMs, 16 hosts times 16 Vms, 32 hosts times 8 VMs and 64 hosts

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 381–383, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

382 B. Quetier et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

8x32
16x16

32x8
64x4

T
im

e
in

 s
ec

on
d

#Physical X #Virtual

BT row
BT column

CG row
CG column

Fig. 1. Virtual machines placements and repliments

times 4 VM so each time a total of 256 VMs. We also use 2 VM placements: by
row and by column.For the placement by row we number the machine list by
taking the first VM of each physical machine then the second VM of each, ...
For the colum one we take all the VM of the first physical machine, then all the
VM off the second, ... We can notice many things:

– The execution time decreases in comparison with the number off physical
machines in the experiment but not in a linear way. Indeed, the application
is compiled for 256 process but for example in the case 8x32 of the figure,
there are only 16 physical processors so there are some computation overhead
and some network overhead due to the slicing of the problem.

– For the CG benchmark which is a very communicating application, the dif-
ference between the placement in row, and the placement in column is clearly
visible. For the case 8x32 for example, we have 2996 seconds for the row place-
ment and 1804 for the column so a 40% gain. This can be explain by the
communication model of CG in which it seems there are more communica-
tions between a process and his neighborhood than between this process and
farther other processes. In fact, in the column placement, process’ neighbors
are regulary in VMs of the same phycical machine where internal communi-
cation are faster (in term of latency and bandwidth).

– For the BT benchmark which is a low communicate application, there are
nearly not difference between row and column placement.

References

1. Cappello, F., Desprez, F., Dayde, M., Jeannot, E., Jegou, Y., Lanteri, S., Melab,
N., Namyst, R., Primet, P.V.B., Richard, O., Caron, E., Leduc, J., Mornet, G.:
Grid5000: a nation wide experimental grid testbed. International Journal on High
Performance Computing Applications (2006)

Virtual Parallel Machines Through Virtualization 383

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.m, Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP ’03: Proceedings
of the nineteenth ACM symposium on Operating systems principles, pp. 164–177.
ACM Press, New York (2003)

3. Bailey, D.H., Barton, J.T.: The nas kernel benchmark program. Technical Report
TM-86711, NASA (August 1985)

Seshat Collects MPI Traces: Extended Abstract

Rolf Riesen

Sandia National Laboratories
rolf@sandia.gov

Traces collected at the MPI level can help understand the behavior of applications by
using these traces to visualize the communication patterns of an application. The traces
can also be used for debugging and as input to system simulators. These trace driven
simulators can help with learning how an application makes use of the communication
fabric and how an application will perform on a next-generation machine.

Tools that collect MPI traces have one these two drawbacks: They do not produce ac-
curate enough, fine grained traces, or they distort the application behavior and run time.
Tools that generate detailed traces influence the run time, and sometimes the behavior,
of the application under measurement, because the amount of data collected is large and
requires time to send to storage [1]. The timestamps in the trace data are influenced as
well. Tools that are less intrusive, collect less, or less accurate, information [2,3,4]. We
propose a method to solve both of these problems.

Some users of trace data are interested in the message data itself. For example, a
trace driven simulator that simulates one node of a parallel application needs to feed
the process on that node valid data. Otherwise the process might not behave in the
same way as it would outside the simulator, when it is running as part of a parallel
application. Collecting the application data of every MPI message during an application
run generates enormous trace files and greatly influences the timing of an application.

This extended abstract describes a tool named Seshat1 [5] which we have extended
to allow tracing of MPI applications. Seshat is an execution-driven network simulator
with a feedback channel into the application that it uses to update the virtual time the
application is running in. It is written as a library that is linked with an MPI application.
No instrumentation of the application code is necessary; relinking it with Seshat is
enough. Seshat makes use of the profiling interface that is part of the MPI standard
(PMPI). With hooks into most of the MPI calls, Seshat is able to initialize itself, collect
information about the running application, and adjust the application’s virtual time-
frame.

The application runs as before, but on an additional node runs the Seshat network
simulator. All MPI messages are sent and received as before, but they also generate
events that are sent to the simulator. The simulator calculates the time this message
was supposed to spend in the simulated network and informs the receiver how much
virtual time has elapsed since the message was sent. The receiver uses that information
to update its local virtual clock. In effect, we can simulate a different network than the

 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy under contract DE-AC04-94AL85000.

1 Seshat was the Egyptian goddess of measurement and recording.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 384–386, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Seshat Collects MPI Traces: Extended Abstract 385

one we are running on, and use Lamport’s time synchronization mechanism [6] to keep
the application unaware of the wall-clock time.

This independence of the time system the application runs in, plus the knowledge
about every single message of the application under test, allows the network simulator
to generate MPI traces. For proof of concept we built a prototype that writes a 90-byte
ASCII text line to a file for every message event that arrives at the network simulator.
Writing this data slows down the simulator when measured in wall-clock time. How-
ever, the virtual time-frame the application is running in, has not changed. We have
conducted several experiments to test this hypothesis.

We ran experiments on Sandia’s Cray XT3TM Red Storm machine. It was running
version 1.5.39 of the Cray system software. The performance characteristics of that
software release are also the ones Seshat simulates. We used the NAS parallel bench-
marks version 3.2.1 to verify our claims. These benchmarks are simple compared to
real applications. However, we are only interested in a proof of concept. Any code that
sends and receives a large number of MPI messages will do. In some tests we write so
much information that we slow down the benchmark so it takes several hours of wall-
clock time to complete. Yet, it reports the same few seconds or minutes of (virtual) run
time as it would when run natively.

When tracing is enabled, the LU, class A benchmark reports (virtual) times that are
within 6% of what it reports when run in native mode. (In most cases within 2%.) The
wall-clock time, however, is 2,600 times higher than the 64-node native run. This could
be lowered by making the Seshat network simulator parallel and have it write to a high-
performance file system. The fact that this simple experiment, writing to an NFS-mount
file system from a single simulator node, does not change the time the LU benchmark
reports, shows that our approach works. It will let us collect huge traces that take a
long time to write to stable storage, without changing the time-related behavior of the
application under test.

Unfortunately, there is is currently a bug in Seshat that prevents it from performing
as well as LU for some of the other NAS parallel benchmarks. The CG benchmark,
for example, reports widely different times when attached to Seshat, then when it runs
natively. We know this is a Seshat virtual time bug, and is not due to tracing. Although
the virtual time reported when CG runs under Seshat is wrong, it does not change when
we enable tracing. That means our mechanism for collecting large traces without influ-
encing the application works. We are investigating the problem in Seshat’s virtual time
routines and will fix it.

References

1. Chung, I.H., Walkup, R.E., Wen, H.F., You, H.: MPI performance analysis tool on Blue
Gene/L. In: Proc. IEEE/ACM SuperComputing, Tampa, FL (November 2006)

2. Vetter, J.S., Yoo, A.: An empirical performance evaluation of scalable scientific applications.
In: Supercomputing ’02: Proceedings of the 2002 ACM/IEEE conference on Supercomput-
ing, IEEE Computer Society Press, Los Alamitos, CA, USA (2002)

3. Noeth, M., Mueller, F., Schulz, M., de Supinski, B.R.: Scalable compression and replay of
communication traces in massively parallel environments. In: Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium (IPDPS) (2007)

386 R. Riesen

4. Knüpfer, A., Nagel, W.E.: Compressible memory data structures for event-based trace analy-
sis. Future Generation Computer System 22(3), 359–368 (2006)

5. Riesen, R.: A hybrid MPI simulator. In: IEEE International Conference on Cluster Comput-
ing (CLUSTER’06) (2006)

6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

Dynamic Optimization of Load Balance

in MPI Broadcast

Takesi Soga1, Kouji Kurihara2, Takeshi Nanri3, Motoyoshi Kurokawa4,
and Kazuaki Murakami2

1 Fukuoka IST, 3-8-33 Momochihama, Sawara-ku, Fukuoka 814-0001, Japan
soga@ist.or.jp

2 Graduate School of Information Science and Electrical Enginnering, Kyushu
University

kurihara@c.csce.kyushu-u.ac.jp,
murakami@i.kyshu-u.ac.jp

3 Computing and Communications Center, kyushu University
nanri@cc.kyushu-u.ac.jp,

4 Advanced Center for Computing and Communication, RIKEN, 2-1 Hirosawa,
Wako, Saitama, Japan
motoyosi@riken.jp

Abstract. There are many algorithms that compose broadcast from point-to-
point communications, such as Binary Tree and Binomial Tree. Though many im-
plementations of these algorithms are proposed in MPI libraries like MPICH [1],
most of them are based on an assumption that all processes begin the broadcast
at the same time. That means the orders of the point-to-point communications
in the broadcast are arranged numerically, according to the rank of each process.
However, naturally each process starts broadcast at different times, mainly be-
cause of the imbalance of workload of each process. That causes unnecessary
waiting time on processes. Also, in a broadcast algorithm such as binomial tree
algorithm, the amount of communication is different for each process therefore
load imbalance is increased by the occurrence of both heavy workload and heavy
communications on a same process. Our method purposes to solve these prob-
lems dynamically. This method solves these problems by profiling the workload
of each rank at runtime and adjusting the orders of point-to-point communica-
tions according to the information.

In the various algorithms of MPI Bcast, binomial tree is one of the most
popular one. It broadcasts a message to all M processes in the group with logM
steps of point-to-point communications. At each step, each process that has
already received the data sends data to the process which has not received yet.

Because the number of send operations is different in each rank, if a heavy
workload is assigned to the rank that invokes many send operations in the tree,
whole load-imbalance causes the longer wait time at the ranks that receives the
message from the heavy-loaded rank.

Also, the performance of the broadcast changes according to the starting time
of broadcast at each rank, even if the same algorithm is chosen. The difference of
the starting times is caused mainly by the load-imbalance such as the difference
of instruction counts or cache efficiency at each node. Generally, these kinds of

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 387–388, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

388 T. Soga et al.

differences are not easy to predict before executing programs. Therefore, it is
important to consider the better implementation of the algorithm according to
the behavior of the program at runtime.

To adjust the implementation of algorithm to the behavior of the program,
we introduce a virtual rank and a virtual rank table. The virtual rank represents
the positions of processes in the collective communication. And the virtual rank
table that maps real ranks to the virtual ranks. The implementation can be
adjusted according to the load balance of each rank by changing the entries of
the virtual rank table. The amount of the load of each rank is determined by
the waiting time in MPI Bcast. Virtual ranks that receive the message in earlier
steps are responsible for larger numbers of sends to other ranks. Therefore, by
mapping the real ranks with longer waiting time in previous MPI Bcasts to the
virtual ranks that receive the message earlier, the total waiting time can be
reduced.

This dynamic optimization method changes the entries as follows. At first, the
wait time of each rank is measured from the wait operation for the receive re-
quest in each MPI Bcast. Then, this wait time is compared with that of previous
MPI Bcast. If the difference is larger than a threshold, the rank calls MPI Put to
send the information of the wait time to the optimizer rank. Once after N times
of MPI Bcast, the optimization is executed on the optimizer rank. From the in-
formation arrived so far, it finds the rank with minimum wait time and that with
maximum wait time and mark them as a candidate to exchange the entries of the
virtual rank table. After the optimization phase, the application phase is executed
on all the rank in the communicator. In this time, the information of the pair of
the ranks that exchange the entry of the table and the count N that shows next op-
timization time is propagated. On arrival of the information, each rank exchanges
the entries of the virtual rank table of its own according to the information.

This method has been build experimentally on RSCC(RIKEN Super Com-
bined Cluster) at RIKEN Japan. The experiment uses an MPI program that
invokes MPI Bcast. In addition to that, a pseudo load is executed before each
MPI Bcast on the rank of the first receiver of the message from the root rank
in the original binomial tree. Therefore, extra load on this rank is critical to
the entire performance of MPI Bcast. This experiment shows that the overall
execution time of the MPI Bcast can be reduced by around 40%.

Acknowledgements

This work has been supported by the Petascale System Interconnect project on
”Fundamental Technologies for the Next Generation Supercomputing” of MEXT
(Ministry of Education, Culture, Sports and Technology) Japan. We thank for
computational resources of the RIKEN Super Combined Cluster (RSCC) also.

Reference

1. MPICH http://www-unix.mcs.anl.gov/mpi/mpich

http://www-unix.mcs.anl.gov/mpi/mpich

An Empirical Study of Optimization in Seamless

Remote MPI-I/O for Long Latency Network

Yuichi Tsujita

Department of Electronic Engineering and Computer Science,
School of Engineering, Kinki University

1 Umenobe, Takaya, Higashi-Hiroshima, Hiroshima 739-2116, Japan
tsujita@hiro.kindai.ac.jp

Abstract. A Stampi library realizes MPI-I/O operations among com-
puters which have different MPI libraries by bridging the both libraries
with TCP sockets. If interconnections among computers have long latency,
throughput is degraded due to unoptimized configuration of TCP sock-
ets. For effective remote MPI-I/O operations, improvement in through-
put is an important issue. In this research work, I/O performance was
measured on interconnected PC clusters which were in different network
segments to find desirable configuration. We notice that optimization in
socket buffer sizes and precise traffic control were quite effective to achieve
high throughput I/O.

Keywords:MPI-I/O, Stampi, MPI-I/O process, router process, PSPacer.

Stampi was originally developed to support seamless MPI communications
among different MPI libraries. MPI communications among them are realized
by deploying a wrapper interface library on top of each MPI library [1]. It also
supports MPI-I/O operations both inside a computer and among computers
which have different MPI libraries by invoking MPI-I/O processes which play
I/O operations on a remote computer [2]. Its remote MPI-I/O operations by
using MPICH [3] were realized on a PVFS2 file system [4] with a support of
ROMIO [5] to use huge storage space of the file system. It provided sufficient
performance in a LAN environment even if derived data types were used. If net-
work connections have long latency like WAN, throughput is degraded due to
unoptimized socket buffer size, for example. It is well known that applying twice
the product of bandwidth and latency in a socket buffer size provides better
performance. In addition, pacing TCP packets improves throughput by using
a loadable Linux kernel module of PSPacer [6] which smooths bursting traffic
without any special hardware. To improve throughput of the remote I/O opera-
tions, we have studied a desirable solution by tuning the buffer size and applying
the PSPacer.

We have evaluated its performance in interconnected two Linux PC clusters.
All the PC nodes were connected via Gigabit Ethernet switches. As a native MPI
library, MPICH-1.2.7p1 was used. One of the clusters had a PVFS2 file system
(version 1.5.1) for I/O operations by MPI-I/O processes. One FreeBSD PC server

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 389–390, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

390 Y. Tsujita

was located between the clusters as a gateway with 1 Gbps connections. Several
network latencies were applied to the network connections among the clusters
by dummynet [7] of the PC server.

In performance measurement of remote I/O operations, user processes were
initiated by a Stampi’s start-up command on one of the clusters and the same
number of MPI-I/O processes were invoked on the other by rsh. Firstly, visible
I/O times of collective I/O functions for 5 ms latency were measured in terms of
socket buffer sizes with and without the PSPacer. In this case, applying around
twice the product of bandwidth and latency minimized the times, but there was
not significant difference in the times with and without the PSPacer support.
Secondly, the same measurement was carried out for 50 ms latency. The same
approach in tuning the socket buffer size minimized the times. In addition, the
times were minimized by using the PSPacer relative to the times without it in
write operations. For example, the time with it were around 30 % of that without
it for 256 Mbyte message data when 12 Mbyte was applied to a socket buffer size.

At the present, we can not control configuration of PSPacer in a user program.
As a future work, implementation of a tuning mechanism for it in the remote
I/O system is considered by using a libnl library [8] of it.

Finally the author would like to thank the staff at Center for Computational
Science and e-Systems (CCSE), Japan Atomic Energy Agency (JAEA), for pro-
viding a Stampi library and giving useful information. This research was partially
supported by the Ministry of Education, Culture, Sports, Science and Technol-
ogy (MEXT), Grant-in-Aid for Young Scientists (B), 18700074.

References

1. Imamura, T., Tsujita, Y., Koide, H., Takemiya, H.: An architecture of Stampi: MPI
library on a cluster of parallel computers. In: Dongarra, J.J., Kacsuk, P., Podhorszki,
N. (eds.) Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face. LNCS, vol. 1908, pp. 200–207. Springer, Heidelberg (2000)

2. Tsujita, Y., Imamura, T., Takemiya, H., Yamagishi, N.: Stampi-I/O: A flexible
parallel-I/O library for heterogeneous computing environment. In: Kranzlmüller, D.,
Kacsuk, P., Dongarra, J.J., Volkert, J. (eds.) Recent Advances in Parallel Virtual
Machine and Message Passing Interface. LNCS, vol. 2474, pp. 288–295. Springer,
Heidelberg (2002)

3. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-
mentation of the MPI Message-Passing Interface standard. Parallel Computing 22,
789–828 (1996)

4. PVFS2: http://www.pvfs.org/pvfs2/
5. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with high

performance. In: Proceedings of the Sixth Workshop on Input/Output in Parallel
and Distributed Systems, pp. 23–32 (1999)

6. Takano, R., Kudoh, T., Kodama, Y., Matsuda, M., Okazaki, F., Ishikawa, Y.: Im-
proving TCP performance by using precise software pacing method. IEICE Technical
Report 105, 29–32 (2006) (in Japanese)

7. dummynet: http://info.iet.unipi.it/∼luigi/ip dummynet/
8. libnl - netlink library: http://people.suug.ch/∼tgr/libnl/

http://www.pvfs.org/pvfs2/
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://people.suug.ch/~tgr/libnl/

Multithreaded and Distributed Simulation of

Large Biological Neuronal Networks

Jochen M. Eppler1,4, Hans E. Plesser2, Abigail Morrison3,
Markus Diesmann3,4, and Marc-Oliver Gewaltig1,4

1 Honda Research Institute, Offenbach/Main, Germany
eppler@biologie.uni-freiburg.de

2 Dept. of Mathematical Sciences and Technology, Norwegian University of Life
Sciences, PO Box 5003, 1432 Ås, Norway

3 Computational Neuroscience Group, RIKEN Brain Science Institute, Wako-shi,
Saitama, Japan

4 Bernstein Center for Computational Neuroscience, Albert-Ludwigs-University,
Freiburg, Germany

1 Introduction

To understand the principles of information processing in the brain, we depend
on models with more than 105 neurons and 109 connections [1]. These networks
can be described as graphs of threshold elements that exchange point events.

From the computer science perspective, the key challenges are to represent the
connections succinctly and to transmit events and update neuron states efficiently.
We present the Neural Simulation Tool NEST (www.nest-initiative.org, [2]),
a neuronal network simulator which addresses all these requirements. To
simulate very large networks in acceptable time and with acceptable memory re-
quirements, NEST uses a hybrid strategy, combining distributed simulation across
cluster nodes (MPI) with thread-based simulation on each computer.

2 Network Representation and Update

Conceptually, NEST represents the network as a list of nodes. Nodes are either
neuron models, devices for recording and stimulation, or sub-networks and are
assigned to one of NVP virtual processes, using a simple modulo algorithm [3]. A
virtual process (VP) is a POSIX thread that lives in one of NMPI MPI processes.
Each of the processes contains the same number of threads, NThrd. Device nodes
are created for each virtual process to allow parallel data i/o. This is particularly
important for device nodes that have to deliver large amounts of data to their
targets. To balance the load of all virtual processes, neurons are only created on
the virtual process they are assigned to. On all other virtual processes, they have
light-weight proxies. Each node or proxy only stores the subset of connections
that reach nodes (but not proxies) on the same virtual process. Thus, the network
connections are also distributed, while cache problems are reduced to a minimum.

NEST evaluates the network model on an evenly spaced time-grid ti := i ·Δ,
where Δ is determined by the shortest transmission delay in the system. At each

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 391–392, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.nest-initiative.org

392 J.M. Eppler et al.

point, the network is in a well-defined state Si. Starting at an initial state S0,
a global state transfer function U(S) propagates the system from one state to
the next, such that St+Δ ← U(St). As a side effect of U(St), nodes create events
that must be delivered to the target nodes after a delay that depends on the
connection. The network model in NEST is evaluated by executing the following
algorithm:

1: t← 0
2: while t < Tstop do
3: parallel on all VP do
4: deliver all events due
5: call U(St) for all nodes
6: end parallel
7: exchange events between VPs
8: increment network time: t← t + Δ
9: end while

The optimized data structures used for communication are described in [3].

3 Results

We demonstrate the performance of NEST, using a benchmark simulation of a
large biological neural network model. We show that NEST scales supra-linearly
for different combinations of threads and MPI processes.

On a cluster with 96 processor cores in 24 compute nodes and a central In-
finiband switch we achieve real time with a network of 105 neurons with 109

synapses. On this architecture, the MPI Allgather function performs better than
the CPEX algorithm [4]. We are now investigating how different implementa-
tions of Allgather influence the performance of our multi-threaded/distributed
communication scheme.

Acknowledgments. This work was partially funded by DAAD/NFR 313-PPP-
N4-lk, DIP F1.2, BMBF Grant 01GQ0420 to the Bernstein Center for Compu-
tational Neuroscience Freiburg, and EU Grant 15879 (FACETS).

References

1. Abeles, M.: Corticonics: Neural Circuits of the Cerebral Cortex, 1st edn. Cambridge
University Press, Cambridge (1991)

2. Gewaltig, M.O., Diesmann, M.: Scholarpedia (2007),
http://www.scholarpedia.org/article/NEST (Neural Simulation Tool)

3. Morrison, A., Mehring, C., Geisel, T., Aertsen, A., Diesmann, M.: Advancing the
boundaries of high connectivity network simulation with distributed computing.
Neural Computation 17(8), 1776–1801 (2005)

4. Tam, A., Wang, C.: Efficient scheduling of complete exchange on clusters. In: 13th
International Conference on Parallel and Distributed Computing Systems (PDCS
2000), Las Vegas (August (2000)

http://www.scholarpedia.org/article/NEST_(Neural_Simulation_Tool)

Grid Services for MPI

Camille Coti2, Ala Rezmerita1, Thomas Herault1, and Franck Cappello2

1 Univ Paris Sud; LRI; INRIA Futurs; F-91405 Orsay France
2 INRIA Futurs; F-91405 Orsay France

coti@lri.fr, rezmerit@lri.fr, herault@lri.fr, fci@lri.fr

1 Introduction

Institutional grids consist of the aggregation of clusters belonging to different adminis-
trative domains that build a single parallel machine. In order to run a MPI application
over an institutional grid, one has to address many problems. One of the first problems
to solve is the connectivity of nodes not belonging to the same administrative domain.

To protect the network from unauthorized access many sites use firewalls. On some
sites firewalls are configured to allow outbound connections and to block inbound con-
nections, often with the exception of a few well-known ports (e.g., SSH). On some other
sites there is a strict separation between the internal and external networks and only a
front-end machine is accessible. Theses connectivity constraints limit the execution of
parallel application between multiple sites.

The connectivity problems can sometimes be solved when only one site uses a fire-
wall, since all required connections are initiated from the protected site. However this
solution requires modifications to applications or communication libraries. Also, if all
sites are using firewalls this approach can no longer be applied. Another solution is to
configure the firewalls so that a port range is open and adapt the applications to use
only theses ports. However this solution is a threat to the site security. Sometimes the
only possibility for the compute nodes to communicate with the outside world is to use
the front-end machine as a bridge. In addition to causing connection setup problems
the use of Network Address Translation (NAT) devices complicates machine identifi-
cation. The private addresses used in a NAT site are not globally unique, which causes
difficulties in creating a unique identifier for every machine.

In this work, we propose a set of Grid or Web Services that provide a new level of
communication for establishing connectivity of MPI applications over an experimental
grid.

2 Results

We define a distributed framework to allow the grid infrastructure to provide services to
the applications. In this paper we detail a brokering service that provides the computing
nodes a way to communicate with each other. Other services can be implemented in
our framework, such as monitoring service, spawning service and distributed storage
service. The brokering service establishes a connection between nodes that would not
be able to communicate with each other otherwise because a NAT and/or a firewall

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 393–394, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

394 C. Coti et al.

are standing between them. When the MPI library needs to establish a communication
between two nodes that don’t belong to the same cluster, it invokes the brokering service
that finds the best method to establish this connection (NAT and/or firewall bypassing)
and returns the appropriate connection information to the initiator of the connection.
Some techniques have been presented in [2]. We implemented the service using the
light-weight web-services engine gSOAP[3] and interfaced it with OpenMPI[1].

1 10 100 1000 10000 100000 1x106

Message size in Bytes

0

200

400

600

800

B
an

dw
id

th
 in

 M
bp

s

Reference
Modified OpenMPI

(a) Bandwidth measured by NetPIPE

1 10 100 1000 10000 100000 1x106

Message size in Bytes

100

1000

10000

La
te

nc
y

in
 u

se
c

Reference
Modified OpenMPI

(b) Latency measured by NetPIPE

Fig. 1. Communication performance

Figure 1 shows the impact of the framework on communication performances, mea-
sured using the NetPipe test. The nodes are interconnected by a proxy, which adds a
hop between them. We can see the impact of this additional hop on bandwidth on fig-
ure 1(a) and on latency on figure 1(b). Since the service is invoked only to establish
the communication, it has no effect on the performances of the communications them-
selves. Therefore, the other techniques that establish a direct connection between two
nodes (reverse connection, traversing TCP and TCP hole punching) give the same per-
formances as a direct connection without a firewall. The additional cost induced by the
establishment of the connection is 10 ms.

References

1. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V.,
Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L., Woodall,
T.S.: Open MPI: Goals, concept, and design of a next generation MPI implementation. In:
Proceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary, pp. 97–
104 (September 2004)

2. Rezmerita, A., Morlier, T., Néri, V., Cappello, F.: Private virtual cluster: Infrastructure and
protocol for instant grids. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006.
LNCS, vol. 4128, pp. 393–404. Springer, Heidelberg (2006)

3. van Engelen, R.: Pushing the SOAP envelope with web services for scientific computing. In:
proceedings of the International Conference on Web Services (ICWS), pp. 346–352 (2003)

Author Index

Álvarez, José Antonio 81
Aumage, Olivier 170
Avrunin, George S. 326

Bad́ıa, José M. 89
Barrett, Brian W. 161, 178, 242
Becker, Daniel 315
Bedin, Guilherme 56
Bloch, Gil 178
Bosilca, George 1, 15, 161, 297
Bouteiller, Aurelien 297
Brightwell, Ron 161, 178

Cabeda, Alexis 56
Cabrera, Eduardo 373
Calderón, A. 153
Cappello, Franck 381, 393
Cesati, Marco 281
Chavez, Mario 373
Costa, Veronica Gil 117
Coti, Camille 393
Crouseilles, N. 356

da Silva, Jacques A. 144
de Sande, Francisco 89
Denis, Alexandre 170
Di Biagio, Christian 281
Di Saverio, Emanuele 281
Diesmann, Markus 391
Dongarra, Jack 297
Dorta, Antonio J. 89

Engelmann, Christian 281
Eppler, Jochen M. 391

Fernandes, Luiz Gustavo 56
Fernández, Jose Jesús 81
Fey, Dietmar 73
Frisenda, Marco 373
Fritzson, Peter 365
Fujie, Tetsuya 97

Garćıa, J.R. 195
Garćıa-Carballeira, F. 153
Geimer, Markus 107

Geist, Al 3
Gewaltig, Marc-Oliver 391
Giannetti, Fabio 56
Giné, F. 195
Gingold, David 260
Gopalakrishnan, Ganesh 344
Graham, Richard L. 125, 161
Grandgirard, V. 356
Gropp, William D. 12, 36,

46, 223, 272, 344
Guner, Levent 289

Hanzich, M. 195
Herault, Thomas 381, 393
Hernández, P. 195
Hey, Tony 5
Hoefler, Torsten 125
Hursey, Joshua 64

Isailǎ, Florin 153
Iyengar, Janardhan 204

Jia, Bin 27

Kacsuk, Peter 335
Kambadur, Prabhanjan 125
Kauhaus, Christian 73
Keller, Rainer 153
Kimpe, Dries 233
Kirby, Robert M. 344
Krempel, Stephan 213
Kuhn, Michael 213
Kunkel, Julian 213
Kurihara, Kouji 387
Kurokawa, Motoyoshi 387

Langou, Julien 15
Lastovetsky, Alexey 135
Latham, Robert 223
Latu, G. 356
Leonard, Jud 260
Lérida, J.Ll. 195
Lohse, Christian 213
López, Raúl 187
Lovas, Robert 335

396 Author Index

Ludwig, Thomas 213
Lumsdaine, Andrew 64, 125, 242
Lundvall, H̊akan 365
Lusk, Ewing 7, 12

Madariaga, Raúl 373
Mallove, Ethan 64
Mamidala, Amith.R. 251
Marin, Mauricio 117
Matsuoka, Satoshi 8
Mohr, Bernd 10
Morrison, Abigail 391
Murakami, Kazuaki 387

Namyst, Raymond 170
Nanri, Takeshi 387
Narravula, Sundeep 251
Neri, Vincent 381
Nicolai, Mike 107
Nunes, Thiago 56

O’Flynn, Maureen 135

Palmer, Robert 344
Panda, Dhabaleswar K. 251
Pennella, Guido 281
Penoff, Brad 204
Perea, Narciso 373
Pérez, Christian 187
Pervez, Salman 344
Pješivac-Grbović, Jelena 161
Plesser, Hans E. 391
Poedts, Stefaan 233
Probst, Markus 107

Quetier, Benjamin 381
Quintana-Ort́ı, Enrique S. 89

Rabenseifner, Rolf 315
Raeder, Mateus 56

Rebello, Vinod E.F. 144
Renault, Éric 307
Rezmerita, Ala 393
Riesen, Rolf 384
Roca, Javier 81
Ross, Rob 233
Ross, Robert 223
Rychkov, Vladimir 135

Sanders, Peter 17
Santhanaraman, Gopalakrishnan 251
Schnerring, Wolfgang 73
Schulz, Alexander 153
Schulz, Martin 354
Senkul, Pinar 289
Shinano, Yuji 97
Shipman, Galen M. 125, 178, 242
Siegel, Stephen F. 13, 326
Soga, Takesi 387
Solsona, F. 195
Sonnendrücker, E. 356
Speck, Jochen 17
Squyres, Jeffrey M. 64, 178
Stewart, Lawrence C. 260

Thakur, Rajeev 36, 46, 223, 272, 344
Träff, Jesper Larsson 17, 36
Trahay, François 170
Trinitis, Carsten 354
Tsai, Mike 204
Tsujita, Yuichi 389

Vandewalle, Stefan 233

Wagner, Alan 204
Watkins, Peter 260
Wolf, Felix 315
Wylie, Brian J.N. 107

	title Page
	Preface
	Organization
	Table of Contents
	The X-Scale Challenge
	Sustained Petascale: The Next MPI Challenge
	MPI: Past, Present and Future
	New and Old Tools and Programming Modelsfor High-Performance Computing
	The TSUBAME Cluster Experience a YearLater, and onto Petascale TSUBAME 2.0
	To Infinity and Beyond?! On Scaling Performance Measurement and Analysis Tools for Parallel Programming
	References

	Using MPI-2: A Problem-Based Approach
	Verifying Parallel Programs with MPI-Spin
	Introduction and Demonstration.
	Language Basics.
	Using MPI-Spin.
	Verifying Correctness of Numerical Computations.

	Advanced MPI Programming
	Full Bandwidth Broadcast, Reduction and Scan with Only Two Trees
	Introduction
	Two Pipelined Binary Trees Instead of One
	Broadcast
	Reduction
	Scan

	Experimental Results
	Broadcast
	Reduction
	Coloring

	Conclusion
	References

	Process Cooperation in Multiple Message Broadcast
	Introduction
	Related Work
	Efficient Schedule Construction for Power of Two Processes
	ProcessCooperation
	Performance Studies
	Conclusion and Future Studies
	References

	Self-consistent MPI Performance Requirements
	Introduction
	General Rules and Notation
	General Communication
	Collective Communication
	Regular Communication Collectives
	Reduction Collectives
	Irregular Communication Collectives
	Constraining Implementations

	Communicators and Topologies
	One-Sided Communication
	Automating the Checks
	Concluding Remarks
	References

	Test Suite for Evaluating Performance of MPI Implementations That Support MPI THREAD MULTIPLE
	Introduction
	Overview of MPI and Threads
	The Test Suite
	MPI THREAD MULTIPLE Overhead
	Concurrent Bandwidth
	Concurrent Latency
	Concurrent Short-Long Messages
	Computation/Communication Overlap
	Concurrent Collectives
	Concurrent Collectives and Computation

	Concluding Remarks
	References

	An Improved Parallel XSL-FO Rendering for Personalized Documents
	Introduction
	Rendering Personalized Documents
	Improving Parallel FOP
	Experimental Results
	Platform
	Input Data
	Results Analysis

	Conclusions
	References

	An Extensible Framework for Distributed Testing of MPI Implementations
	Introduction
	Related Work
	The MPI Testing Tool (MTT)
	Configuration
	Funclets
	Test Specification
	Test Execution
	Reporting Testing Results

	Case Study: The Open MPI Project
	Conclusions
	Future Work
	References

	A Virtual Test Environment for MPI Development: Quick Answers to Many Small Questions
	Introduction
	Design and Implementation
	Concise Description of Network Configurations
	Fast Execution
	Semi-transparency
	Complex Network Configuration

	Examples
	Striping
	NAT
	Installation Prefix
	Dual-Stack

	Conclusion
	References

	Multithreaded Tomographic Reconstruction
	Introduction
	Iterative Image Reconstruction
	Data Dependences Basis Functions

	User-Level Threads Framework
	Parallel Iterative Reconstruction Method
	Results
	Discussion and Conclusions
	References

	Parallelizing Dense Linear Algebra Operations with Task Queues in llc
	Introduction
	TheSYRK Operation
	Parallelization of the SYRK Operation
	OpenMP Parallelization
	llc Parallelization

	Experimental Results
	Conclusions and Future Work
	References

	ParaLEX: A Parallel Extension for the CPLEX Mixed Integer Optimizer
	Introduction
	ParaLEX
	Computational Experiments
	Concluding Remarks
	References

	Performance Analysis and Tuning of the XNS CFD Solver on BlueGene/L
	Introduction
	XNS Execution Analysis
	Profile Generation and Analysis
	Trace Collection and Analysis

	Modification of ewdgather and ewdscatter
	Conclusion
	References

	(Sync|Async)+ MPI Search Engines
	Introduction
	Round-Robin Query Processing
	Conclusions
	References

	A Case for Standard Non-blocking Collective Operations
	Introduction
	Related Work

	Application Programming Interface
	Advice to Implementors
	Implementation with Threads
	Implementation with Non-blocking Point-to-Point

	Microbenchmarking the Implementations
	Case Study: Three-Dimensional FFT
	Conclusions
	References

	Optimization of Collective Communications in HeteroMPI
	Introduction
	Related Work
	The Performance Model of MPI Communications
	Optimization of Collective Operations in HeteroMPI
	Experiments
	Conclusion
	References

	Low Cost Self-healing in MPI Applications
	Introduction
	Concepts and Related Work
	EasyGrid Application Management System
	Fault Tolerance in the EasyGrid AMS
	Fault Tolerance for Application Processes
	Fault Tolerance for Host Managers
	Fault Tolerance in Site Managers

	Computational Experiments
	Conclusions and Future Work
	Conclusions and Future Work
	References

	Fault Tolerant File Models for MPI-IO Parallel File Systems
	Introduction
	The Proposed PVFS Version 2 Architecture
	The Integration in MPI-IO: A Case of Study with PVFS Version 2

	Evaluation
	The Evaluation Process: Benchmarking and Configuration

	Related Work
	Conclusions and Future Work
	References

	An Evaluation of Open MPI’s Matching Transport Layer on the Cray XT
	Introduction
	Background
	Open MPI Point-to-Point Architecture
	Cray MPI
	Application Codes
	Test Platforms

	Micro-Benchmark Performance
	Application Performance
	Conclusions
	References

	Improving Reactivity and Communication Overlap in MPI Using a Generic I/O Manager
	Introduction
	Integrating Threads and Communication: The Problems of Network I/O Events Management
	An I/O Manager Model
	Overview of the I/O Manager
	Passive Waiting: Interrupts
	Active Waiting: Polling
	Handling of Both Interrupts and Polling

	Evaluation
	Conclusions and Future Work
	References

	Investigations on InfiniBand: Efficient Network Buffer Utilization at Scale
	Introduction
	Background
	Protocol Description
	Results
	Experimental Setup
	NAS Parallel Benchmarks
	Los Alamos Applications

	Conclusions
	Future Work
	References

	Improving MPI Support for Applications on Hierarchically Distributed Resources
	Introduction and Motivation
	Motivating Application and Infrastructure
	Motivating Application
	Infrastructure
	Discussion

	Related Works
	Improving MPI Support for Hierarchical Resources
	Point-to-Point and Collective Communications
	Data Distribution Issues
	A Simple Example
	Implementation Issues

	Conclusion
	References

	MetaLoRaS: A Re-scheduling and Prediction MetaScheduler for Non-dedicated Multiclusters
	Introduction
	MetaLoRaS
	Blocking
	Non-blocking
	Re-scheduling

	Experimentation
	Prediction Deviation Analysis
	Performance Analysis

	Conclusions and Future Work
	References

	Using CMT in SCTP-Based MPI to Exploit Multiple Interfaces in Cluster Nodes
	Introduction
	Issues Related to Using SCTP and CMT in a Cluster
	Configuration
	Scheduling
	Congestion Control
	Fault Tolerance

	Performance
	Conclusions
	References

	Analysis of the MPI-IO Optimization Levels with the PIOViz Jumpshot Enhancement
	Introduction
	Related Work and State-of-the-Art
	PIOVizConcepts
	TestScenario
	Discussion of Results
	Conclusion and Future Work
	References

	Extending the MPI-2 Generalized Request Interface
	Introduction
	MPI Requests vs. Generalized Requests
	Asynchronous File I/O
	Generalized Request Deficiencies
	Improving the Generalized Request Interface
	Results
	Further Improvements: Creating a Generalized Request Class
	Conclusions
	References

	Transparent Log-Based Data Storage in MPI-IO Applications
	Introduction
	Related Work

	LogFS
	Creating the Canonical File for Reading
	Mixed Read and Write Access
	Implementing in ROMIO

	PerformanceResults
	Overhead
	Results

	Conclusions and Future Work
	References

	Analysis of Implementation Options for MPI-2 One-Sided
	Introduction
	Related Work
	OpenMPIArchitectur
	Open MPI One-Sided Implementation
	Synchronization
	Communication

	Performance Evaluation
	Summary
	References

	MPI-2 One-Sided Usage and Implementation for Read Modify Write Operations: A Case Study with HPCC
	Introduction
	Background
	One Sided HPCC Benchmark: Design Alternatives
	Design Issues
	HPCC Get-Modify-Put (HPCC GMP)
	HPCC Accumulate (HPCC ACC)

	Optimizations
	HPCC Accumulate with Software Aggregation (HPCC ACC AGG)
	Hardware Based Direct Accumulate (HPCC DIRECT ACC)

	Performance Evaluation
	Basic Performance of One-Sided Operations
	HPCC One-Sided Benchmark Performance with Different Schemes
	Aggregation Benefits
	Hardware Based Direct Accumulate

	Discussion
	Related Work
	Conclusions and Future Work
	References

	RDMA in the SiCortex Cluster Systems
	Introduction
	Related Work
	User-Level Networking
	Zero-Copy

	The SiCortex Hardware
	The Hardware-Software Interface
	DMA Primitives
	The Put-Buffer Command

	DMA Registration
	Implementing Registration
	User-Level BDT Management
	Kernel-Level BDT Management
	BDT Faults

	MPI
	MPI Internals

	Performance
	Effects of Registration

	Conclusion
	Future Work
	References

	Revealing the Performance of MPI RMA Implementations
	Introduction
	The Benchmark
	Results
	SGI Altix
	Sun Fire
	IBM p655+
	Linux Cluster

	Conclusions
	References

	Distributed Real-Time Computing with Harness
	Introduction
	Previous Work
	Modern Middleware: Harness
	Existing Real-Time Issues
	Developed Plugins
	Real-Time Thread Pools
	Real-Time Remote Procedure Calls
	Real-Time Event Logging

	Experimental Tests and Evaluation
	Test Environment
	Test Results

	Conclusions and Future Work
	References

	Frequent Itemset Minning with Trie Data Structure and Parallel Execution with PVM
	Introduction
	Previous Work
	Implementation
	Data Structure
	Parallel Execution of Apriori
	Speed-up Techniques in Apriori

	Evaluation
	Conclusions and Future Work
	References

	Retrospect: Deterministic Replay of MPI Applications for Interactive Distributed Debugging
	Introduction and Motivation
	Related Work
	Deterministic Replay
	Non Deterministic Events in MPI Applications
	Enforcing Deterministic Replay with Message Logging
	Implementation in Open MPI and Usage

	Experimental Evaluation
	Conclusion
	References

	Extended MPICC to Generate MPI Derived Datatypes from C Datatypes Automatically
	Introduction
	MPIECC Principle
	MPIECCFeatures
	Transformation of C Datatypes
	Taking Pointers into Account

	MPIECC Architecture
	At Compile Time
	At Run Time

	Limits of MPIECC
	Related works
	Conclusion
	References

	Timestamp Synchronization for Event Traces of Large-Scale Message-Passing Applications
	Introduction
	Event Model and Replay-Based Parallel Analysis
	Controlled Logical Clock
	CLC with Forward Amortization
	Backward Amortization

	Extended Controlled Logical Clock
	Extended CLC with Forward Amortization
	Extended Backward Amortization

	Parallel Timestamp Synchronization
	Pre-synchronizatio
	Parallel Post-mortem Timestamp Synchronization

	Conclusion
	References

	Verification of Halting Properties for MPI Programs Using Nonblocking Operations
	Introduction
	Traces
	Deadlock
	Application
	Conclusion
	References

	Correctness Debugging of Message Passing Programs Using Model Verification Techniques
	Introduction
	The Concept of Macrostep-Based Execution
	Coloured Petri-Net Model for Macrostep Based Execution
	Correctness of Macrostep-Based Debugging Concept
	Emptiness
	Ample Decomposition
	Invisibility
	Cycle Closing Condition

	Summary and Related Works
	References

	Practical Model-Checking Method for Verifying Correctness of MPI Programs
	Introduction
	Basics of Scheduling and in Situ Model Checking
	In Situ Model Checking with Dynamic Partial-Order Reduction
	Case Study: Byte-Range Locking
	Related Work and Conclusions
	References

	6th International Special Session on Current Trends in Numerical Simulation for Parallel Engineering Environments
	Gyrokinetic Semi-lagrangian Parallel Simulation Using a Hybrid OpenMP/MPI Programming
	Introduction
	Numerical Sch
	Sequential Analysis
	Global Algorithm

	Parallel Algorithm
	Domain Decomposition
	Local Spline Interpolation

	Performance Analysis
	Hybrid Approach
	Efficiency of the Parallelization

	Conclusion
	References

	Automatic Parallelization of Object Oriented Models Executed with Inline Solvers
	Background – Introduction to Mathematical Modeling and Modelica
	Approaches to Integrate Parallelism and Mathematical Models
	Automatic Parallelization of Mathematical Models
	Coarse-Grained Explicit Parallelization Using Computational Components
	Explicit Parallel Programming

	Combining Parallelization at Several Levels
	Pipelining the Task Graph
	Sorting Equations for Short Access Distance
	Scheduling

	Measurements
	Conclusion and Future Work
	References

	3D Parallel Elastodynamic Modeling of Large Subduction Earthquakes
	Introduction
	Elastodynamics and the 3DFD Algorithm
	Parallel Implementation
	Efficiency
	Results for the 19/09/1985 Mexico's Ms 8.1 Subduction Earthquake
	Conclusions
	References

	Virtual Parallel Machines Through Virtualization: Impact on MPI Executions
	Introduction
	Methodology and Hardware Platform
	Results
	References

	Seshat Collects MPI Traces: Extended Abstract
	References

	Dynamic Optimization of Load Balance in MPI Broadcast
	Reference

	An Empirical Study of Optimization in Seamless Remote MPI-I/O for Long Latency Network
	References

	Multithreaded and Distributed Simulation of Large Biological Neuronal Networks
	Introduction
	Network Representation and Update
	Results
	References

	Grid Services for MPI
	Introduction
	Results
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

