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Summary. This paper presents a software component, the plan database, which pro-
vides the services needed to build and execute plans in a multi-robot context. This plan
database handles fully dynamic plans (insertion and removal of tasks), provides tools
for safe concurrent execution and modification of plans, and handles distributed plan
supervision without permanent robot-to-robot communication. The proposed concept
is illustrated by a simulated example that involves a rover and an UAV in an initially
unmapped environment.

1 Introduction

One can distinguish two main schemes in today’s distributed robotics architec-
tures. On the one hand, some approaches rely on a team-management layer which
sends orders to a mono-robot supervision system (for instance Teamwork [9] and
TraderBots [1]). In these approaches, interactions between robots are reactively
managed, and are not pro-actively managed within a plan structure. Systems
based on such a scheme cannot predict that, for instance, interactions will be
needed in the future. Also, the team-management layer is limited to managing
high-level tasks, which makes difficult to handle tighter interaction modalities,
like opportunistic cooperation, which take place at a lower abstraction level.

On the other hand, some approaches rely in mono-robot supervision systems
that can send orders transparently to other robots: in FIRE [8], a robot can
change the state of a remote robot, but not pro-actively, and it assumes that
communication is available at all times, which can not be taken for granted in
multi-robot systems. Coupling such supervision layers with a team-management
component gives better result (like FIRE, which is a modified Task Desciption
Language coupled with a Contract-Net Protocol task allocation scheme), but the
resulting systems still have the problem of the above architectures: the two layers
do not share all the information they have, and so the interaction managed by
the upper layer can only loosely take into account the interaction in the lowest
one. They lack a common place in which to describe all the interactions in place.

To our knowledge, three architecture have implemented plan-based coopera-
tion: GPGP and its associated task representation TAEMS [6], the COMETS [3]
architecture and Machinetta [7]. In COMETS, a plan which can contain joint
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tasks1 is produced by a Shop2 planner. The joint tasks are then negotiated
among the team by an “Interaction Manager”. The resulting plan (developed
joint tasks and mono-robot tasks) is then sent as an unique plan to an exe-
cution component. In GPGP, the joint plan is modified through a whiteboard
mechanism by all involved robots. When they all agree on the result, each robot
sends it to its own scheduler which starts its execution. Machinetta defines a
plan-based interaction mechanism and an architecture for the interaction. The
main focus of COMETS and Machinetta is to define a generic team management
system and the one of GPGP is multi-robot planning. All three are tied to their
particular interaction scheme. None has been designed to be flexible enough to
integrate different plan production mechanisms and different team management
schemes.
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Fig. 1. In this architecture, each robot plan is managed by its own plan database. Parts
of these plans are shared among databases. Decision control manages plan generation,
team management and solves conflicts between execution and planning.

In this paper, we present a plan database component, whose role is to provide
the services required to manage and execute multi-robot plans. The component
is generically designed, and is not associated to specific plan generation systems
or specific team management schemes. This plan database acts as the middle-
man between the functional layer and plan generation components (Fig. 1). In
this architecture, the planners are responsible for producing coherent plans ei-
ther for the robot alone or for the team, and the functional layer is a service layer
which provides the perception and action algorithms that interfaces the robot
and the real world. Between these two, we introduce three components: the plan
database maintains a plan, which is a graph of tasks and events defining what
the robot may do in the future and how it will do it. This plan is continuously
interpreted by the executive to produce actual actions, using an event-based
model. The decision control component has two roles: first, it may call the plan-
ners for instance to adapt the plan for new missions, for contingency planning
1 A joint task is a task which is executed by more than one robot at a time.
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and because of cooperation possibilities with other robots. Second, it handles
the choices that have to be made during execution: since our framework allows
simultaneous planning and execution, conflicts will arise between the main plan
being executed and the partial plans being built. In a multi-robot context, it
also solves conflicts between the needs of the robot and the needs of the team.

The plan database (pDB) has been designed with the following goals:

• provide the tools required to build multi-robot plans, and use plans as a
basis of negotiation. In a pDB, one can build plans that involve multiple
robots, make these robots negotiate about the new plan (distributed plan
modification) and, if they agree, commit them to the result.

• manage plan modifications atomically: the executive must not execute partial
plans that are being generated by planners, as they are not sound yet.

• express multi-robot execution contexts, and handle them during execution.
In particular, plan execution is able to handle the fact that robots cannot
communicate at all times.

• allow integration of external tools to handle multi-robot decision processes
like task allocation and multi-robot planning.

2 Plan-Based Cooperation in a Rover/UAV Scenario

As a supporting example to present the concepts associated to the pDB, we out-
line here a scenario which has been partially realized in simulation2. In this sce-
nario, the mission to achieve is a rover GoTo task in an initially unknown terrain.
For that purpose, the rover is endowed with algorithms which instance a percep-
tion/decision/action loop, summarized by the three tasks Bmap::TravPercep,
Nav::Path and P3d::TrackPath. These tasks respectively build a traversabil-
ity map from perceived data, plan a path in the traversability map and ex-
ecute the planned path. The rover is assisted by an UAV, which is able to
update the traversability information of the rover thanks to a vision process
(Plid::TravPercep). We assume the UAV flies at an obstacle free elevation, so
that its movement can be handled by a simple waypoint navigation scheme.

On the basis of this simple scenario, we will show in this section how the
rover-UAV cooperation can be expressed as relations between individual robot
plans, and how this joint plan is managed in our plan database.

Fig. 2 presents the initial rover plan, in which P3d::TrackPath follows the
waypoint list, Nav::Path, established by Nav::PathPlanning on the basis of the
results of Bmap::TravPercep 3. The arrows between tasks express relationships
between tasks, which are described in section 3.1.

We selected for this scenario an opportunistic method to initialize the inter-
action: the rover does not know beforehand that an UAV will help to realize
its mission. When the UAV detects the rover presence by using an automatic
network discovery mechanism, it will add triggers on the rover’s plan. These trig-
gers are used to match specific patterns in plans, and a list of known patterns
2 Its realization with real robots is currently under way.
3 POM::Localization summarizes all the localization processes on-board the rover.
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the rover (FollowRobot)

(b) the UAV knowns the goal and planned path of the 
rover. It can map along the planned rover’s path 
(MapAlongPath). This way, the UAV takes the rover 
projected needs into account.

Fig. 2. (top) partial view of the initial rover plan. (bottom) two alternative cooperation
scheme, based on two different patterns found in the rover’s plan, in transactions built
by the UAV.

are defined in each robot controller. The UAV will therefore be notified of a
pattern it is able to interpret.

The two alternatives presented in Fig. 2 are based on two different triggers.
When multiple triggers match the same task pattern, the choice of the modality
is not a decision made by the pDB, but by the decision control. The pDB only
notifies decision control what task set triggered what pattern. To achieve this
choice, decision control can for instance build multiple transactions with the
multiple possible outcomes and compare the resulting plans.

Let’s assume that the (b) modality is chosen by decision control. The UAV
then uses a planner to produce the plan, based on its partial knowledge of the
rover’s plan. This planner cannot directly change the current rover plan: first,
partial plans are not directly executable, and second, if the UAV had such an
ability, it would mean that the rover is not able to fully control its activities.
We therefore need a way to change plans outside the plan being executed, so
that (i) the executive only sees complete executable plans and (ii) one robot
can propose a plan modification to another. This is achieved by transactions,
that represent a plan changeset, i.e. set of modifications required to get from
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the current main plan to the desired final plan. Transactions can be shared and
synchronized across pDBs.

So, while the UAV generates its proposal, the rover is not aware of the trans-
action. Once the transaction is complete from the UAV point of view, the trans-
action is sent to the rover. The rover can modify it, in which case the changes
are sent back to the UAV: both robots use the transaction as a whiteboard to
build their joint plan. Once both agree on the new plan, they change their main
plan accordingly at the same time, and can start its execution. If a joint plan
cannot be found, the transaction is simply discarded.

3 A Distributed Plan Database

The plan database has been designed as a tool for plan management, in both
mono-robot and multi-robot systems. In a multi-robot context, a single pDB is
able to express and manipulate plans where tasks executed by the local robot
(local tasks) are interacting with tasks executed by other robots (remote tasks),
or even the joint tasks that imply more than a single robot. Note that in order
to reduce plan complexity, there is no need for one robot to know everything
about another’s plan: a pDB is informed only about the remote tasks it is inter-
acting with (section 3.3). This allows to keep each pDB plan at a tractable size
regardless of the number of pDB currently interacting.

The section first describes the pDB model of tasks and events, and how these
objects interact which each other. It then presents how multi-robot plans are
managed and built, and finally the way to handle situations where two interacting
pDBs do not have communication, which is a key feature in a multi-robot system.

3.1 Plan Model

We summarize here the plan model used in the pDB – more details on this
model, and the general plan execution mechanisms and on error recovery are
detailed in [4].

In the pDB, plans are graphs of two kind of objects: events and tasks. Events
describe what occurs during task execution (for instance a stopped event is
emitted when a task has stopped), and the way they occur: an interruptible task
has a controllable stopped event, which means that the controller can call the
event command and make the task stop. The main event relation is the signal
relation: if an event e1 signals a controlable event e2, then e2’s command will be
called when e1 is emitted. The signal graph therefore describes the action(s) to
take when an event is emitted.

Tasks describe processes, and the task relations describes the interactions
between these processes. Tasks models are defined as a set of events, the basic
ones being started, failed, success and stopped, which define milestones in
the task execution. These task models are put into a hierarchy in which the more
abstract task models are refined in less abstract ones. In the plan, these models
are used to define task instances, which are the active objects: they determine
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when the events should be emitted, handle event commands, and can locally
repair the plan in case of exceptions. Defining a task model hierarchy has the
advantage that, in multi-robot contexts, a robot does not necessarily have to
know all the models known by all the pDBs. Instead, it can use an intermediate
level of abstraction to represent another’s specific task implementation (compare
the specific models of the rover and the more generic ones on Fig. 2).

Three task relations are currently defined:

• The realized by relation is used to express dependency: the successful exe-
cution of Nav::MoveTo requires its two child tasks to be successfully achieved.

• The planned by relation expresses that finding a way to execute an action
is handled by a specific task.

• The influenced by relation: the rover motion and the UAV traversabil-
ity mapping do not have a strong dependency, but the execution time
and efficiency of the motion can be greatly improved thanks to the UAV’s
Plid::TravPercep task.

3.2 Multi-robot Plans

In order to represent what tasks are executed by whom, a task instance has an
ownership attribute, which is set to the list of pDBs which are executing this
task. For local tasks, ownership is naturally set to the local pDB only, for remote
tasks to the remote pDB which is handling the task, and for joint tasks to all
the pDBs involved in the joint task.

During execution, a pDB is transparently notified of all changes that are done
to remote tasks that are present in its own main plan, in a manner robust to
communication failures (section 3.4). This includes execution status (signalling,
event emission), and changes in the event and task graphs, which allows the
distributed execution and adaptation of multi-robot plans. However, we can
easily see that if it were possible to freely create relations between local and
remote objects, then one pDB would be able to take decisions for another, which
should only be possible through negotiation: the golden rule of multi-robot plan
management in our system is that a remote pDB cannot change a robot plan
without its consent. To ensure that, the following rules are in effect:

• to remove a relation, it is sufficient to only own one of the two objects in-
volved. A pDB can for instance freely remove a realized by relation between
one of its own task and a task owned by another pDB (or a joint task). This
is needed because one robot should be able to remove itself from a joint plan
without negotiation, in cases of emergency for instance.

• any robot can remove itself at any time from the list of owners of a joint
task. Ownership removal is then notified to the other pDBs.

• as for the removal of task relations, to add or remove an event relation, the
local pDB must be the owner of the child in the relation: it allows one pDB
to synchronize itself on events of another pDB, which does not really affect
the other pDB.
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Any other modification involving an object not exclusively owned by the local
pDB is not allowed in the main plan. To handle the negotiation process needed for
these modifications, we added distributed transactions, which act as distributed
whiteboard to change plans.

3.3 Building Multi-robot Plans

In a mono-robot pDB, a transaction is a whiteboard used to build a set of
plan modifications without modifying the plan being executed. The pDB can
then synchronously apply all the changes to the main plan (or discard them). It
ensures that the main plan is always sound, provided that the planners produce
sound plans.

In a multi-robot context, transactions are shared among pDBs, and therefore
they can change multiple plans at the same time. They are a central tool for
negotiation: one robot builds a partial multi-robot transaction, which can then
be modified by others, until an agreement has been found on the new joint plan,
in which case the transaction is committed into all the involved plans. The pDB
ensures that the changeset contained in the transaction is applied at the same
time on all involved plans or not at all. A robot can therefore assume that, if
new multi-robot relations have been added to its plan, the same relations have
been added on the other pDBs as well.

The update mechanism mentioned earlier uses subscription: a pDB subscribes
to remote tasks to get all updates about them. Obviously, it must be automat-
ically subscribed to remote tasks that are related to local tasks by the object
graphs. One of the role of plan building through distributed transactions is to
determine what tasks, outside of the automatically subscribed ones, are relevant
to the remote pDBs.

3.4 Connection Management

Multi-robot systems cannot take communication for granted: interactions be-
tween plan databases can therefore not rely on a permanent network link. In
our system, two interacting pDBs are connected. Connections are either alive if
a communication link exists, or dead if there is no communication link.

In the plan, connections are represented by ConnectionTask instances, with
remote tasks being dependent of this connection task. Therefore, if a separate
component determines that we cannot rely on the remote robot, for instance
because the connection has been dead for too long or the robot is late at a ren-
dezvous, it simply stops the corresponding ConnectionTask and lets the usual
pDB recovery mechanisms apply (not described here, see [4]). These monitor-
ing situations can also be expressed in the plan, for instance by making the
ConnectionTask realized by monitoring tasks. That way, ConnectionTask
will be marked as failed if the monitoring fails.

Moreover, remote tasks are represented locally by task proxies, which are
passive objects in general. Specific proxies can be defined for specific task models
to predict the remote task state in a disconnected scenario, like the proxies of
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Machinetta [7]. This allows to make the plan continue its execution without
having a communication link. Recovering after a bad prediction is however an
issue with which our system is not dealing.

4 Implementation and Simulation Results

The pDB is currently implemented4 in the Ruby language. We use the object-
oriented capabilities of Ruby as a way to define task models and task instances as
classes and objects. In distributed contexts, Ruby allows to create classes on-the-
fly, which allows to map unknown remote models to anonymous local classes. More-
over, developing the system in a general-purpose language promotes code reuse in
supervisors. The development of our controllers shows that a great level of modu-
larity can be achieved by sharing code between the task models on the one hand,
and defining libraries of often-used plan modification operators on the other hand.

Two controllers, one for the rover and one for the UAV have been imple-
mented, using an already existing set of Genom [2] modules that implement the
robots’ functional layer. Pocosim [5], our simulation system, allowed us to use
most of the modules in simulation without modification. We only replaced the
image acquisition chain by modules (plid on the UAV and bitmap on the rover)
which read a pre-computed traversability map (Fig. 3). These modules offer the
same interface as the real ones: we keep the two layers as close as possible to use
the same controller in simulated and real environments. Since no noise is added
to perception, the functional layer behaviour is of course much better than in
real conditions.

Fig. 3. (left) rover trajectories with (red) and without (white) the UAV’s help, and
the UAV trajectory in map-along-path mode. (right) Traversability map, white being
perfectly traversable and black not traversable.

4.1 Plan Execution

The joint plans built during negotiation include all the information required to
manage its execution. The pDB offers two error recovery mechanisms: either
4 Available at http://www.laas.fr/∼sjoyeux/research.php

http://www.laas.fr/~sjoyeux/research.php
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errors are handled in the plan (conditional plans), or an exception mechanism
(not described here) is used. In multi-robot contexts, exception handling is not
distributed: it is supposed to be a synchronous operation, and thus cannot be
done in the asynchronous communication scheme we use. If multi-robot error
recovery is needed, it shall be either directly expressed in the plan or done
reactively by negociation between the involved decision control components.

During execution, the UAV is therefore kept informed of any update of the
rover’s path (Path). It can use this information to build and update its own
mapping path and send the traversability updates to the rover. The rover then
replans its path, sends the updated path to the UAV, and so on.

The interaction finishes either when (i) the influenced tasks (parent tasks in
the influenced by relation) have successfully finished, which would announce
the success of the joint plan, or (ii) when the plan structure from which the
systems initiated the interaction has ceased to exist. In that case, the rover’s
pDB will notify the UAV of this change, and the UAV can then decide to change
its plan accordingly. Note that it is not an automatic process of the pDB plan
management, but a decision to be taken by the UAV.

4.2 Simulation Results

We have run three different kinds of simulations: the rover alone, with the UAV
as a remote sensor, and with the UAV which maps along the rover path (Fig. 3
displays the resulting trajectories). In these simulations, the rover alone don’t al-
ways reach its goal. The two interaction schemes are consistently successful. The
rover reaches its goal (at 200 metres) in 10 minutes. The two setups are equiva-
lent in this simulation because the rover quickly gets trapped in the corridor we
see in the terrain.

5 Conclusion

The contributions of this paper are the multi-robot extension to a plan model,
and the set of tools embedded in the plan database to build and execute multi-
robot plans. The pDB transactions allow to cooperatively build multi-robot
plans, negotiate on them and commit them. Its distribution mechanisms al-
low to manage the plan during its distributed execution, including situations
where communication is not permanent. Finally, by not relying on particular
interaction schemes, the pDB is generic enough to allow integration of most of
the existing schemes.

The framework described in this paper has shown promising results for the
integration of a modular functional layer like Genom in a plan management
system, and for the development of interaction schemes. In the future, it should
act in various projects as an integration tool for interaction schemes, planning
tools and functional layers. Our main objective is now to integrate temporal
information in the plans, which is required to properly handle communication
loss for instance by handling the setup of rendezvous points.
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