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Summary. In this paper, we describe real-time methods for incorporating non-line-
of-sight range measurements into a framework for finding a non-adversarial target in
cluttered environments using multiple robotic searchers. We extend previous coordi-
nated search strategies to utilize information from noisy non-line-of-sight range mea-
surements. Sensors using ultra-wideband radio are becoming available that provide
range measurements to targets even when they are occluded. We present two Bayesian
methods for updating the expected location of a mobile target and integrating these
updates into planning. We present simulated results in a complex museum environment
as well as on mobile robots. Our results show the success of our algorithms at utilizing
information from measurements in a coordinated search framework.

1 Introduction

The problem of coordinating multiple robots to search for a non-adversarial
target is relevant to many applications throughout robotics. Urban search and
rescue teams in military and first response scenarios often need to search for
both moving and stationary targets in cluttered environments. The major appli-
cation that has inspired our work is the assistance of first responders in disaster
scenarios. Previous work by Liao et al. has examined the potential for range-only
measurements to track a mobile first responder in disaster scenarios [8]. As in
this previous work, we assume that non-line-of-sight range measurements to a
target are available. Ultra-wideband radios are currently in development that
can provide range measurements through walls using a synchronized time-of-
arrival method [9]. The availability of these sensors motivates the development
of algorithms to utilize their potential.

This paper describes real-time methods for incorporating noisy non-line-of-
sight sensor measurements of range to a target into a probabilistic multi-robot
coordinated search framework. Applications to first response assistance have led
us to make the assumption that the target is non-adversarial. This assump-
tion is consistent with the task of locating a moving first responder or survivor
in a disaster scenario. We discuss our underlying framework and then outline
two Bayesian methods for utilizing information from sensors. This paper is an
extension of previous work by Hollinger, Kehagias, and Singh on locating a
non-adversarial target in the minimum expected time [6]. The novelties of this
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paper include the formulation and testing of the measurement update methods,
coordinated search results on the museum environment, and the implementation
of this work on mobile robots.

This paper is organized as follows. Section 2 discusses related work in the
areas of tracking, search, and pursuit-evasion. Section 3 describes the problem of
finding a non-adversarial target with multiple searchers. Section 4 presents our
algorithms for coordinated search and incorporating measurements. Section 5
gives both simulated results and results on mobile robots. Finally, Section 6
draws conclusions and discusses future directions for this work.

2 Related Work

Research in the areas of tracking, pursuit-evasion, and multi-robot coordination
are all relevant to the coordinated search problem. The potential for multi-robot
assistance in first response scenarios is examined at a high level by Kumar, Rus,
and Singh [7]. They propose a general system for autonomous robotic assistance
for first responders. More specific solutions to the first response assistance prob-
lem have been formulated by Djugash el al. [2] and later by Liao et al. [8]. These
works utilize an ad hoc network of range-only sensors to track first responders,
map the locations of new nodes in the network, and coordinate mobile nodes to
minimize uncertainty.

Recent work in tracking mobile targets is also relevant to the coordinated search
problem. Ferris, Hahnel, and Fox develop an algorithm for tracking a mobile tar-
get using wireless signal strength [3]. Their algorithm discertizes the environment
in a similar manner to ours and then uses a particle filter to estimate position. We
provide an alternative method for position estimation that closely couples with
planning and remains computationally tractable. Our method also does not re-
quire prior training data, and it is completely online. As a tradeoff, our method is
less appropriate than theirs for sensors with very complex or unknown models.

Coordinated search is closely related to work in the field of pursuit-evasion.
One of the first algorithms for capturing an adversarial evader in an indoor
environment was developed by Guibas et al. [5]. Their algorithm discretizes a
polygonal environment based on visibility boundaries and searches the result-
ing information space for a path that guarantees capture. The problem studied
by Guibas and LaValle differs from the one we discuss in this paper in that it
assumes an adversarial evader. Sarmiento et al. also directly studied the coordi-
nated search problem by developing strategies for searching indoor environments
for a stationary target using a cost heuristic [10]. In previous work, we developed
a heuristic graph search solution to the coordinated search problem for a mobile,
non-adversarial evader [6].

3 Problem Definition

To describe the state of the world in a coordinated search scenario, we must
develop representations for the environment and the locations of the searchers
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and targets. Assume that the state of a searcher at time t is known to be XP (t),
and the state of a target at any time t is known with a certain probability to be
XE(t). In a polygonal environment, this problem is continuous. To collapse the
problem into a discrete domain, discretize the environment into a number of cells,
1 . . .N . The state of the ith searcher is now fully defined by XP

i (t) = n where n
is the cell in which the searcher is currently located. Now, define a capture event
at time t as the occurrence of XP

i (t) = XE(t) for any searcher i. To define the
state of the target, let p be a row vector such that p = [p0, . . . , pN ] where each
value represents the probability that the target is in the corresponding cell. Let
the value p0 represent the probability that the target has already been found by
the searchers. Refer to this as the “capture state.” The vector p now defines a
probability distribution over the target’s position in the environment (with the
addition of a capture state).

The searchers’ goal is to minimize the expected time of reaching a capture
event. Thus, the searchers seek to maximize the probability that the target is in
the capture state at any given time t. The coordination problem is then defined as
the determination of paths for the searchers such that the probability of capture
is maximized at any given time. The problem of incorporating measurements
becomes one of modifying the probability vector p to take into account new
information from sensors.

4 Algorithm Description

4.1 Planning and Coordination

To reduce the task of finding a mobile target in a polygonal environment from
a continuous to a discrete planning problem, we discretize a polygonal map into
convex cells to form an undirected graph. Figure 1 shows an example discretiza-
tion for a museum environment. The museum environment is challenging for
coordinated search because it contains many cycles, which give a moving target
many paths to avoid detection.

To integrate a motion model of the target into our pursuit-evasion framework
and better define capture events, we use “capture” and “dispersion” matrices to
modify the target’s state vector. We can represent a capture event by defining
a matrix that moves probability from the searcher’s current cell to the capture
state. Similarly, we can define dispersion matrices to represent the expected mo-
tion of the target in the environment. Concatenating the capture and dispersion
matrices yields a forward model for the target’s state vector at each time step.

Since the expected time of capture of the target cannot be known exactly
during planning, we use a heuristic cost function to guide coordination of robotic
searchers. The entropy of the target’s estimated state vector provides a heuristic
that directly relates to expected time of capture. Adding a summation to the cost
function over a path allows the searchers to look several cells ahead to determine
the optimal search path. When planning using cost functions, locations in the
environment must be assigned as replanning points. These locations represent the
points in the environment between which the robots move. The most obvious
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Fig. 1. Museum map used for simulated coordinated search trials. Gray lines show
discretization boundaries. The museum map has many cycles by which moving targets
can escape detection.

replanning points to use are the centroids of cells because they provide quick
access to adjacent cells.

Once a cost function has been defined, coordination strategies for robotic
searchers can be found by enumerating possible paths on the discretized floor
plan. To develop a decoupled planning algorithm, allow each searcher to enu-
merate all possible paths on the graph to a given depth while assuming that
the states of the other searchers are fixed. This prevents the search space from
growing in complexity with the number of searchers. The searchers can passively
coordinate with each other by communicating their current paths. Each searcher
can then plan for its own path while assuming that the other searchers will ad-
here to theirs. The coordination algorithm presented in this section is given in
much greater detail in previous work [6].

4.2 Incorporation of Measurements

To incorporate noisy, sporadic measurements into our coordinated search frame-
work, we propose two methods for modifying the target’s state probability vector
given new sensor data. Both methods can be seen as estimating a posterior dis-
tribution given a prior distribution on the target’s state. Thus, they both fit
into a Bayesian probabilistic framework. For all cells xi, we seek to estimate
the posterior distribution P (xt

i) = P (xt
i|z, xt−1

i ) given a measurement z and a
prior P (xt−

i ). The prior is an estimate of the evader’s position after the applica-
tion of the dispersion matrix, P (xt−

i ) = P (xt
i|xt−1

i )P (xt−1
i ). Once we calculate a

posterior, we can renormalize and define the target’s state probability vector as
pt = [P (xt

c), P (xt
1), . . . , P (xt

n)], where P (xt
c) is the probability that evader has

already been captured (the capture state). The value of P (xt
c) remains constant

since we assume that noisy measurements cannot capture the target.

Sampling Method

Our first method for incorporating sensor data draws samples from a mea-
surement distribution and uses these samples to directly estimate the posterior
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distribution on the target’s state. Assume that we receive a measurement z with
an arbitrary noise model. We can draw n samples from this distribution to rep-
resent the “true” measurement.1 In Euclidean space, each sample represents an
(x, y) position of the target, which corresponds to a cell on the map discretiza-
tion. We then weight each sample according to the prior on the cell in which it
falls. This allows for the calculation of the posterior distribution on each cell as
in Equation 1.

P (xt
i|z, xt−1

i ) = ηP (xt−

i )ni, (1)

where ni is the number of samples that fall in a cell xi, and η is a normalizing
constant.

In this paper, we examine the incorporation of range measurements into the
coordinated search framework. A measurement z is a single range value, and we
assume that its noise is Gaussian with variance σ2. We can draw sample range
values from this Gaussian, and these values map to circles in Euclidean space. To
map to (x, y) coordinates, we use Bresenham’s circle drawing algorithm [1] on a
finely discretized grid and count each hit as a sample. This takes full advantage of
the sampled range values and greatly decreases the number of samples necessary
to properly estimate the posterior.

Centroid Method

Our second method seeks to improve computational efficiency by calculating the
likelihood of a measurement given the target is in each cell. Using Bayes’s rule,
the posterior can be rewritten as in Equation 2.

P (xt
i|z, xt−1

i ) = ηP (z|xt
i)P (xt−

i ), (2)

where η is a normalizing constant.
This reduces the problem of calculating the posterior to that of calculating

a likelihood term P (z|xt
i). Since each cell is represented as a continuous set of

points in the map plane, this calculation is difficult. To reduce the complexity
of the problem, we make the assumption that the target will remain close to
the centroid of each cell.2 Thus, each cell can be reduced to its centroid. Since
cells are convex, the centroid is guaranteed to be inside the cell. The calculation
of P (z|xt

i) is now one of calculating a likelihood at a point. This is a common
problem in state estimation, and is prevalent throughout Monte Carlo methods
and particle filter literature [3].

For range measurements, the problem of calculating P (z|xt
i) is simply that of

determining the expected range value for each cell centroid. Let rc
i be the range

1 There are other methods for estimating the posterior through sampling, i.e. main-
taining particle estimates of the target’s position. Our method is particularly ap-
pealing for range measurements because it allows us to sample a 1D space.

2 Another technique for generating likelihoods is to finely discretize the environment
and calculate a likelihood at each point. This is equivalent to the histogram filter in
the literature. The centroid method can be seen as a special case of the histogram
filter.
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from a ranging sensor to the centroid of cell xi and let r be the received range
measurement with assumed Gaussian noise variance σ2. The likelihood is then
calculated as in Equation 3.

P (z|xt
i) = N(r; rc

i , σ
2) (3)

Comparison of Methods

The sampling and centroid methods each have strengths and weaknesses in dif-
ferent environments. The sampling method biases towards larger cells since those
cells will contain more sampled points. In the case of a moving target, the target
will spend more time in larger cells, thus warranting this bias. A drawback to
the sampling method is that it is computationally expensive if the number of
samples grows large. Thus, to maintain real-time measurement incorporation,
the number of samples must be kept small. The sampling method is particularly
appropriate for small environments (requiring few samples) with highly irregular
cells. Such cells are difficult to approximate simply by their centroid.

The major disadvantage of the centroid method is that it makes the strong
assumption that the target is near the centroid of the cell. To account for this
assumption, a value for σ must be used that is greater than the underlying noise
model of the sensor. This degrades the accuracy of the sensor model. Unlike
the sampling method, the centroid method does not bias towards larger cells.
The major advantage of the centroid method is that it is extremely fast, only
requiring one calculation for each cell in the environment. Thus, the centroid
method is appropriate for large environments with regularly shaped cells.

5 Results

5.1 Simulated Results

We implemented our algorithms on a multi-agent coordinated search simulation
in C++ on a 3.2 GHz Pentium 4 processor [6]. This simulation allows for multiple
searchers, realistic modeling of ranging measurements, and both stationary and
moving targets. For moving trials, we assumed that the average speed of the
target is 1 m/s, and that it moves holonomically between cell boundaries. We
tested our algorithms with varying numbers of searchers on a museum map
(shown in Fig. 1). The searchers start in the same location for all trials, and the
location of the target is initialized at random on the map. Each searcher holds
a mobile ranging sensor, and a stationary ranging sensor is placed at the top
left corner of the map. The stationary sensor corresponds to one placed outside
of a building and helps to disambiguate target position uncertainty caused by
symmetry. The simulated ranging sensors were given a variance of 2 m2 and
were given a 10% chance of providing a measurement each second.

Fig. 2 shows average capture times for moving and stationary targets with
varying numbers of searchers. The results show significant improvement using
measurements with both the centroid and the sampling methods. Additionally,
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Fig. 2. Simulated coordinated search results in a museum comparing two methods for
incorporating range measurements. Graphs show average capture times versus number
of searchers for a stationary target (left) and a moving target (right). Error bars are
one SEM, and averages are over 200 trials. Graphs are zoomed in for comparison.

the centroid method outperformed the sampling method. This is likely due to
the limitations on the number of samples necessary to maintain real-time opera-
tion (500 samples were used for each measurement). Furthermore, the sampling
method’s bias towards large cells is detrimental when the target is stationary.
Conversely, the centroid method’s assumption that the target remains close to
the centroid of the cell is valid for moving targets in small cells, which is most
often the case on this map.

5.2 Robot Results

To further confirm our algorithms, we implemented them on a mobile robot.
We used a single Pioneer One robot from ActivMedia, equipped with a laser
range scanner, as a searcher and a Nomad Scout as a mobile target. We uti-
lized the Player/Stage software to control the robots [4]. The Pioneer searcher
used the Adaptive Monte Carlo Localization (AMCL) algorithm packaged with
Player/Stage to localize within the known environment. The Nomad Scout uti-
lized a pseudo-random walk algorithm with sonar sensors.

For experiments that required the incorporation of measurements to the tar-
get, a Parrot ranging sensor was used to acquire the measurements. The Parrot
sensors form a ranging sensor network that uses radio to communicate data and
ultrasonic signals to determine range between nodes [11]. A total of three Parrots
were used in our experiments. The first was mounted on top of the searcher, the
second was placed on top of the target, and the third was placed at a surveyed
location near a corner of the map.

We conducted experiments within a 20 ft×17 ft room, which we partitioned
as in Fig. 3 using 1 ft cardboard walls. Since the test environment contains a cy-
cle, it is impossible to guarantee capture of a quickly moving target with a single
searcher [5]. We placed both mobile and stationary Parrots at a height of ap-
proximately 1.5 ft above the floor, making them taller than the cardboard walls.
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By placing the Parrots above the walls, we were able to convert the otherwise
line-of-sight restricted Parrot sensors to “non-line-of-sight” ranging sensors. This
simulates the range measurements that one could receive with ultra-wideband
radio ranging sensors.

Fig. 3. Simple map used for coordinated search trials on Pioneer robot platforms (left)
and corresponding photograph of robots in test environment (right). Gray lines show
discretization boundaries, ‘R’ shows position of robotic searcher, ‘T’ shows position of
target, and ‘M’ shows position of stationary measurement beacon. Blue and red traces
show paths of searcher and target respectively (reconstructed from AMCL output).
The robots are in the same locations on the map as they are in the photograph.
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Fig. 4. Coordinated search results on a Pioneer robot comparing two methods for
incorporating range measurements. Graphs show average capture times for a single
searcher finding a stationary target (left) and a moving target (right). Error bars are
one SEM, and averages are over 24 trials. Graphs are zoomed in for comparison.

In ultrasonic-based ranging systems, there are two types of noises that affect
range estimation, multipath reflections and random noise. For the Parrots, the
latter is easily modeled as a zero-mean gaussian with a variance of 0.5 m2. In
order to detect and remove the multipath measurements from processing, we
added a chi-squared test to our algorithm. This helps to filter out erroneous
measurements caused by multipath.

Fig. 4 gives average times to capture for trials using the Pioneer and Nomad
over a total of 144 runs. The robot results confirm the simulated results by
showing that the centroid and sampling methods outperform the case without
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sensor data. They also show an improvement of the sampling method over the
centroid method for moving targets and the reverse for stationary targets. This
is likely due to the tendency for moving targets to remain in large cells and the
sampling method’s bias towards larger cells. Qualitatively, the searcher moved
more quickly towards the target’s cell while incorporating measurements. This
demonstrates the success of our methods on a mobile robot platform.

6 Conclusions and Future Work

We have presented two techniques for incorporating non-line-of-sight range
measurements into a coordinated search framework. Both techniques utilize a
Bayesian framework for estimating the posterior distribution of a target’s posi-
tion given a prior estimate and a new measurement. Our techniques generalize
to most sensors with a known noise model, and they scale well with increasing
searchers. We make the assumption that a target is non-adversarial and present a
heuristic graph search approach to minimizing the expected time to capture. We
have presented simulated results showing that our methods remain tractable in a
large environment with cycles. Our simulated results also show that both of our
techniques greatly outperform the case without measurements. Additionally, we
have implemented our algorithm on a Pioneer robot utilizing sonar ranging sen-
sors. The results on the Pioneer confirm the simulated results and demonstrate
the real-time performance of our methods.

A major extension of this work is the implementation of our coordinated
search algorithms on multiple robots in large-scale environments. We plan to
move out of the controlled laboratory environment and into an office building
similar to map used in simulation. We will also use ultra-wideband ranging radios
to provide non-line-of-sight sensing in this environment. Our algorithms provide
an important step towards fully utilizing the new technology of ultra-wideband
ranging radios.
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