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Summary. A generative model based on the gaussian mixture model and gaussian
processes is presented in this paper. Typical motion paths are learnt and then used
for motion prediction using this model. The principal novel aspect of this approach is
the modelling of paths using gaussian processes. It allows the representation of smooth
trajectories and avoids discretization problems found in most existing methods. Gaus-
sian processes not only provides a comprehensive and formal theoretical framework
to work with, it also lends itself naturally to path clustering using gaussian mixture
models. Learning is performed using expectation maximization where the E-Step uses
variational methods to maximize its lower bound before optimization over parameters
are performed in the M-Step.

1 Introduction

The analysis of motion patterns is important for performing motion prediction
in robotic applications. For most environments, objects do not move around ran-
domly. The objects often move according to a set of typical motion pattern. One
such example is the traffic cross junction where vehicles follow a certain pattern
of movements according to the traffic rules. It is hence possible to learn the set
of typical motions in a certain scene. Prediction can then be performed based
on the knowledge of the typical motions learnt from past observations. Such
predictions can be used in applications such as anomaly detection or improved
navigation capabilities [5] [3] [4].

Most existing models for modelling motion patterns requires the discretization
of the state space [§] [5] [B]. These approaches mostly model motion trajectories
as transitions between discretized states. The main disadvantage of discretization
is the need to determine the discretization of the state spaces and the association
of observations to these discretized state spaces.

Most existing models are based on the “learn then predict” approach where
a database of observations are available to perform batch learning before pre-
diction can then be performed. In these approaches, the discretization problem
again makes the problem of path clustering unnatural and difficult. However,
[8] described a “learn and predict” approach where learning and prediction can
be performed on line while continuously making a stream of observations. The
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model described in [8] does not require the clustering of paths because the model
is able to adapt the topology of the state space within the hidden markov model
[6] using growing neural gas [2].

In this paper, we propose a novel path modelling approach based on gaus-
sian processes [7]. Gaussian processes makes it possible to represent paths as
continuous functions in a probabilistic manner. The problem of discretization is
conveniently side stepped. Prediction on the future path taken can be performed
in a theoretically proper probabilistic framework.

The proposed model enables one to pose questions in a probabilistic manner
such as the distribution of predicted trajectories (see fig. [l). Similarly, it is also
possible to obtain probability distribution of trajectories in unobserved portions
(see fig. 2)). Since we model a single motion trajectory as a gaussian process, the
probability distribution over trajectories are analytic and easily evaluated.

Fig. 1. Variance and mean of motion Fig. 2. Variance and mean of unobserved
trajectory prediction. Dots represents motion trajectory portion
observations.

The approach described in this paper falls into the “learn then predict” cat-
egory. Thanks to the gaussian process model for paths, the well known mixture
of gaussians model is naturally used to perform clustering. In this paper, the
expectation maximization approach is adopted. During the E-step, variational
approximation is used to estimate the probability distribution over latent vari-
ables. The M-step maximizes the lower bound with respect to gaussian process
parameters. This approach enables the automatic determination of the number
of clusters while obtaining a point estimate for gaussian process parameters.

In section 2] we present the generative model based on the gaussian mixture
model to model the set of paths in a scene. Learning of the model and its param-
eters are described in sectionBlusing expectation maximization. Path predictions
based on the gaussian mixture model and gaussian process are described in section
@l The paper finishes with some results in section [ and conclusion in section [Gl
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2 Probabilistic Model

We consider the problem of learning a set of typical paths in a certain scene.
Inputs into the system consists of the path of objects in the scene. The path
taken by each object is a sequence of (z,y); cartesian coordinates representing
the position of the object at various instances. Each typical path is represented
by a gaussian process and the different typical paths in a scene is modelled using
the mixture of gaussians.

2.1 Representing Typical Paths Using Gaussian Processes

A short description of gaussian processes is presented here. For more details,
please refer to [7]. A gaussian process is a generalization of the gaussian prob-
ability distribution in function space. Given a collection of random variables,
any finite number of which are gaussian distributed [7]. In this case, the set of
random variables are { f(x1), f(x2),..., f(xn)}. It can be represented mathemat-
ically using the mean function and covariance function k(x,2’) as:

f(x) ~ G(m(x), k(z,2)) (1)
m(z) = Elf(z)] (2)
k(z,a') = E[(f(x) — m(2))(f (&) — m(z'))] 3)

Where G(u, X) represents a gaussian distribution with mean p and covariance
Y. k(z, ") is expressed as a covariance function which are functions with domain
from the input space. In this paper, the squared exponential covariance function
is adopted:

(z — ")
07
In our model, each path corresponding to a typical path that an object takes in a
given environment is represented as 2 gaussian processes, one each to represent
the path in x and y axes as we assume the movements in the x and y axes
to be independent. The mean of these gaussian processes is the mean function
(in the z and y axes each) representing the path. A gaussian distribution over
the different paths for a typical path can thus be represented using gaussian
processes. As the gaussian distribution takes place within a function space, it is
infinite dimensional and no discretization is required.

A single observation of a path is represented as two D dimensional vectors.
One vector represents the sequence of positions along the cartesian = axis and
the other for the y axis. The likelihood for a set of N path observations for a
single typical path can then be written as:

cov(f(x), f(a")) = k(x,2") = O exp— + 03635 (4)

N

n=1
N

Ly = [T Gnlny, 2y) (6)
n=1
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Where x,, and ¥, are vectors of z and y positions for the nt* observation. i,
iy, 2 and Xy are the mean vectors and covariances of the x and y positions
for the typical path. In almost all cases, the sequence of observations of position
for path observations are all of different length. In this case, a fixed dimension
D can be chosen and the D positions can be obtained from D samples equally
distributed along the length of the path.

2.2 Multiple Typical Trajectories Using Gaussian Mixture Model

Since each observed path corresponds to two D dimensional vectors and that
a typical motion path is gaussian distributed, the observed paths are gaussian
distributed from the generative point of view. A single typical motion path is
a D dimensional gaussian distribution and this view can be easily extended to
the case of representing several typical motion paths using mixture of gaussians.
Each path observation n is probabilistically associated with one of the mixture
components k via the variable Z,, = {0,1} where ), Z,; = 1. The prior
distribution for all Z,, all path observations and component means are:

]
N
S

I
=
=

(7)

n=1k=1
N K
P(X|Z,12,0) = [ ] G@nlrar, C(©)) 7" (®)
n=1k=1
N kK
P(Y|Z, 112, 0) = [[ I1 Gwnltryn, € ()% 9)
n=1k=1
K
P(p:|0) = 1] Gluanlman, boxC(0)) (10)
k]:(l
P(p,|0) = H G(pyk|myk, byeC(0)) (11)

~
Il
-

where z,, and y,, are the x and y vectors of a path observation. pi,1 and p, are
x and y means of cluster component k, with each component weight being 7.
Mg and myy are means of the prior distribution over the mean components.
by and by are scaling constants to C(6y), the covariance matrix constructed
using the squared exponential function (eq. []) parameterized by ©.

The decomposition of the joint distribution over the variables can be expressed
as:

P(Xva/l:vv/iyaZ‘ﬂ—vQ) = P(X|Z, /L,;,@)P(Y|Z, Nyve)
P(piz|©)P(py|©)P(Z|) (12)
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3 Model Learning

The parameters for the probabilistic model in section 2] are learnt from the data
using the expectation maximization (EM) algorithm. Consider the general model
of data X, latent variables Z and model parametrized by ©. The goal in EM is
to maximize the log likelihood:

mmm@:m/pwzwwz
Z
> L(Q,0)+ KL(Q || P) (13)

where Q(Z) is the joint distribution over latent parameters. K L(Q || P) is the
kullback-leibler divergence and lower bound L defined as:

P(X, Z|0)
L(Q,0) = /Q olz) (14)

Maximization of eqn. [[3 is equivalent to minimizing K L(Q || P). This occurs
when Q(Z) = P(X|©). This minimization can be performed by approximating
Q(Z) with a constrained family of variational approximations:

mzﬂ@@) (15)

In this case, the minimization of KL(Q || P) can be obtained by iteratively
computing for each Q;(Z;):
exp(ln P(X, Z|0))iz;

Qi(Z:) = [ exp(ln P(X, Z|6))iz;dzi (16)

This variational maximization of the lowerbound L(Q, @) constitutes the E-Step.
During the M-Step, the log likelihood is maximized with respect to parameter O:

Omag = arg max In P(X|O) (17)

The E-Step and M-Step are iteratively computed till convergence.
We shall next present in more detail the expectation and maximization step
especially within the context of trajectory modelling.

3.1 Expectation Step

This technique can be applied to the mixture of gaussians model. A similar model
can be found in [I]. The variational approximation and posteriors can thus be
obtained as follows:

Qe 1ys Z) = Q112)Q(11y)Q(2) (18)
N K
QZ)=[11]rm (19)
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I
=

Q(Hm) G(Hmk ‘Mxka Bka'(@)) (20)
k;l

Quy) = [[ Gluyr|Myx, ByC(0)) (21)
k=1

(22)

The variational update equations are as follows:

InP,, = —In|C(O)] — DIn2rw

1 T -1
- ((zn — par) " C(O) H(wn — um)mk
1 _
— ) (G = 1) CO)  (n = ), +Inme (23)
Pnk:
Tnk = (24)
Zj P
N
Nk = Z Tnk (25)
n=1
1 N
T = nkdn 2
= ;T kT (26)
B! = N +b}! (27)
My = (N @y + marbyl) Boy (28)

Equations 26, 27 and 28 are similar for 7, B;kl and Myy.

3.2 Maximization

The maximization involves the optimization of the marginal log likelihood given
by:

b P(X,Y|0) =} / P(X, Y, o iy, 2|7, O)dpindp,  (29)
A Mz

L Hy

Since eqn 29 is not tractable, we can approximate it with the lower bound (refer
also to equ. [I4)):

L = (InP(X|Z, pe, ©)) + (InP(Y|Z, py, ©))
(InP(p2|©)) + (InP(1y|©)) + (InP(Z|T))
= (InQ(pz)) — (Quy)) — (Q(Z)) (30)
Optimization of the lower bound in equation B0 with respect to the gaussian

process parameters ©. Optimization algorithms such as conjugate gradient or
grid based search can be used.
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By setting the first derivate of the lower bound with respect to m to zero
and imposing the constraint of ), m; = 1 with lagrange multipliers, 7 can be
updated by:

N;
T, = N (3].)

4 Path Prediction

When performing path prediction, the input is a partially observed path of
dimension M < D. For the case of a D dimensional gaussian with x; of dimension
M and z9 of dimension D — M:

PTID))
P (a1, ~aflm |2 39
(@1, 22) ({uz 2o1 Yoo (82)
The probability of a partial path observation of dimension M belonging to a

gaussian of dimension D is evaluated by integrating over the D — M dimensions
of the gaussian distribution to yield the marginal gaussian distribution:

P'(z1) ~ G(p1, 1) (33)

The prediction of a path x5 given observation x1 can be obtained by the gaussian
conditional distribution for each cluster k:

Pl (z2]z1) ~ G (p2 + o1 11 (z1 — 1), Doz — 22121_112;1) (34)

In order to choose the suitable clusters that corresponds to the observations
made so far, the mahanalobis distance can be calculated and then gated based
on the appropriate chi-square values.

Figure [B shows an example of the prediction where the predicted path mean
and variance are represented by the "bars’. Clusters for prediction were selected
according to the chi-square statistic corresponding to the 95% confidence in-
terval. For each cluster, the gaussian distribution of the predicted path can be
obtained using eq. B4l

Fig. 3. Prediction paths and path variance to 2 standard deviations
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5 Results

Experiments were conducted based on simulated data. 36 trajectories typical mo-
tion were manually defined for the generation of the different motions. Figure [
shows the ensemble of motion in the training data set.

It has been noted in [I] that the variational updates were initialized using the
K-Means clustering algorithm. We assumed a maximal number of 100 clusters
during the K-Means stage. And the expectation maximization algorithms were
performed with 100 clusters with equal cluster component weights. Result of the
k-means cluster algorithm is show in figure

The number of cluster components can be determined from the weight of the
cluster components. The learning algorithm on the training data set allowed

Fig. 4. Training Data Motions Fig. 5. The output from the K-Means al-
gorithm with 100 clusters

Fig. 6. 26 typical motion recovered from Fig. 7. Typical motion recovered from the
the training data (different gaussian pro- training data set (same gaussian process
cess hyperparameters for each cluster) hyperparameters across all clusters)
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the suppression of clusters with component weights of nearly zero (< 107°) very
quickly early in the EM iterations. The learning algorithm allows the domination
of gaussian components over the others when clustering in the same regions. 26
gaussian components were recovered after the clustering as shown in figure
The suppression of unrepresentative cluster components with negligible weights
works well only when gaussian process hyperparameters are different for each clus-
ter. However, when the gaussian process hyperparameters are shared across clus-
ters, the variance of the different clusters are not well expressed and as a result,
it is difficult to obtain cluster components with negligible component weights (see

figure[D).

6 Conclusion and Perspectives

We described a generative approach to model motion paths using gaussian pro-
cesses. The typical motion paths are smooth and avoids the problems associated
with discretization. The representation of motion paths with gaussian process
lends itself naturally to clustering using the gaussian mixture model. The “learn
then predict” approach is performed using the EM algorithm. The lower bound
of the EM algorithm is maximized using variational methods in the E-Step. The
M-Step optimizes the model parameters.

We are currently working on extending this method such that it can work in
real time in an incremental fashion. It is also interesting to explore the modelling
of dependencies between the x and y axes. Applications to path planning are
also envisaged.

Finally the authors would like to acknowledge the financial support from the
French Embassy of Singapore. Thanks goes as well to Dizan Vasquez and Pierre
Dangauthier for their interesting discussions.
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