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Summary. A FastSLAM approach to the SLAM problem is considered in this paper. An im-
provement to the classical FastSLAM algorithm has been obtained by replacing the Extended
Kalman Filters used in the prediction step and in the feature update with Unscented Kalman
Filters and by introducing an adaptive selective resampling. The simulations confirm the effec-
tiveness of the proposed modifications.

1 Introduction

The Simultaneous Localization and Map Building (SLAM) problem has recently re-
ceived a large attention (see, e.g., [4, 13]). The SLAM problem consists in a mobile
robot moving in an unknown environment, which attempts to estimate its own posi-
tion and to realize a spatial map. The environment is described through a set of natural
landmarks extracted by the robot from the surrounding.

The SLAM can be faced as a state estimation problem, where the state includes the
robot and the landmark coordinates, and can be approached with the well-known Ex-
tended Kalman Filter (EKF) [1]. EKF-based SLAM algorithms have two limitations:
they present a high computational complexity and are prone to the data association
problem when, like in this paper, the correspondence between measurements and land-
marks is assumed unknown. An Unscented Kalman Filter (UKF) based solution to the
SLAM problem [10] has been recently proposed. The UKF has been introduced in the
context of non-linear system filtering by [7, 8]. Even if more performant, the resulting
approach is similar to the EKF-SLAM since the conditional independence among the
features position estimates given the robot path (introduced by the FastSLAM approach)
is not exploited. The FastSLAM approach [11, 12] exploits this independence: it uses a
modified particle filter to estimate the robot pose and each particle is equipped with N
EKF to estimate the position of the N landmarks. The resulting algorithm is an applica-
tion of the Rao-Blackwellized particle filter [5]. The FastSLAM has a lower complexity
w.r.t. the EKF-SLAM and is more robust regarding the data association problem since
each particle performs its own data association. Nevertheless, the robot pose estimated
by the classical FastSLAM is based on the EKF and may incur into divergence due to
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the approximations introduced by linearization. The idea of replacing EKF with UKF
to improve the proposal distribution of a particle filter has been introduced in [15] in a
general framework. In addition, the use of UKF to cope with nonlinearities associated
with a stereo camera observation model was exploited in [2], where a FastSLAM al-
gorithm was developed in an experimental context. In our paper, the idea of using the
Unscented Transformation (UT) both in the observation and in the motion model has
been combined with an adaptive selective resampling, based on an adaptive threshold,
which significantly improves the selective resampling described in [5, 6], where a fixed
threshold was considered. With these modifications, the robot pose error is drastically
reduced (around one order of magnitude in our simulation results) and a more consis-
tent map is obtained with respect to the classical FastSLAM 2.0 algorithm described
in [12].

2 SLAM and FastSLAM Background

The SLAM problem can be correctly described through a Markov chain or, more in
general, through a dynamic Bayesian network. The robot pose st changes according
to a probabilistic law p(st|ut, st−1) referred to as motion model, where ut ∈ R

nu is
the control at time t. Following a common notation, the superscript t denotes a set of
variables from time 1 up to time t, the subscript t indicates the value of the variable
at time t. In planar SLAM st = [xt, yt, αt]T , where x, y are the coordinates of the
robot and α is its orientation. The environment is represented through N fixed land-
marks ϑn, n = 1, ..., N , described by their coordinates relative to the global coordinate
frame. Proprioceptive data (like encoders) and exteroceptive data (like, e.g., lasers) are
available to the robot which can sense landmarks and know their distance and bearing,
relative to its local coordinate frame. zt denotes a landmark measurement at time t and
for mathematical convenience it is assumed that a single feature at a time is observed.
These landmark measurements are noisy and a measurement model p(zt|st, ϑnt , nt) is
considered for them, with ϑnt , nt ∈ 1, ...N being the particular landmark observed at
time t. We assume in our formulation that data association is unknown. Both the mo-
tion and the measurement models are in general governed by non-linear deterministic
functions, respectively h and g, affected by noise [14]:

p(st|ut, st−1) = h(st−1, ut + δt) (1)

p(zt|st, ϑnt , nt) = g(ϑnt , st) + εt (2)

The noises δt and εt are assumed normally distributed with zero mean and covariance
given, respectively, by Pt and Rt. With respect to [14], a direct effect of δt on ut has
been assumed. This is the case in several kinematic models and in particular for the one
considered in Section 5. Formally stated, the SLAM problem consists in the determi-
nation of the location of all the landmarks ϑn and of the robot pose st only using the
information of the controls ut = {u1, ..., ut} and the measurements zt = {z1, ..., zt}.
That is, it consists in the determination of the posterior

p(st, Θ|zt, ut, nt) (3)
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where Θ = {ϑ1, . . . , ϑN} is the set of all the landmarks. The FastSLAM approach
heavily relies on the conditional independence present in the SLAM problem which
allows to factorize the posterior over the robot path as follows [14]:

p(st, Θ|zt, ut, nt) = p(st|zt, ut, nt)
∏

n

p(ϑn|st, zt, nt) (4)

A particle filter, similar to the Monte Carlo Localization (MCL) algorithm [3], esti-
mates the robot path, maintaining a set St of M particles st,[m], m = 1, . . . , M , which
approximates the posterior p(st|zt, ut, nt). A temporary set of particles is generated
at time t according to St−1, using the measurements zt and the controls ut. Since the
set St−1 corresponds to p(st−1|zt−1, ut−1, nt−1), the new set is distributed according
to p(st|st−1, zt, ut, nt). This distribution is often referred to as the proposal distribu-
tion of the particle filter. The new set is generated by sampling (with replacement) M

particles proportionally to an importance factor w
[m]
t :

w
[m]
t =

target distribution
proposal distribution

=
p(st|zt, ut, nt)

p(st|st−1, zt, ut, nt)
(5)

This step, usually known as resampling process, accounts for the difference between
the target and the proposal distribution. Next, the FastSLAM updates the posterior
p(ϑn|st, zt, nt) conditioning it on the robot path. So, the full posterior over the robot
path and the landmark position is approximated through the set:

St = {st,[m], μ
[m]
1,t , Σ

[m]
1,t , ..., μ

[m]
N,t, Σ

[m]
N,t}m=1,...,M (6)

where μ
[m]
n,t and Σ

[m]
n,t denote the mean and the covariance of the normal distribution

representing the estimate provided by the m-th particle about the n-th landmark posi-
tion. The FastSLAM performs the position estimate update of landmark nt through the
EKF while the position estimate of the other landmarks remains unchanged. Therefore
there are N ·M low dimensional EKF (one for each landmark relative to each particle).
The FastSLAM samples the pose s

[m]
t from the posterior:

s
[m]
t ∼ p(st|st−1,[m], zt, ut, nt) (7)

The posterior in (7) is approximated through the following expression [14], which al-
lows to perform the sampling procedure:

s
[m]
t ∼p(st|st−1,[m], zt, ut, nt)

Bayes,Markov
=

η[m]
∫ [

p(zt|ϑnt , st, nt)p(ϑnt |st−1,[m], zt−1, nt−1)
]
dϑnt p(st|s[m]

t−1, ut)

(8)

In the remaining of the paper only the modified steps of the FastSLAM 2.0 algorithm
will be discussed. The other steps can be found in [12] and [14].
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3 The Proposed Unscented Based Improvements

We focus our attention on the rightmost term in (8) because an accurate approximation
of this term drastically reduces the ambiguity in the data association.

Let Ξt be the set representing the evolution of the particles belonging to the set St−1
at time t − 1, according to noisy ut. Ξt has the following structure:

Ξt = {〈ξ[1]
t , Q

[1]
t 〉, ..., 〈ξ[M ]

t , Q
[M ]
t 〉} (9)

where ξ
[m]
t is the new m-th particle pose and Q

[m]
t is the covariance matrix relative to

the m-th particle. FastSLAM 2.0 computes Ξt by putting each particle s
[m]
t−1 into the

motion model and taking the obtained value as the mean of a Gaussian distribution
approximating the particle pose. That is1:

sξt
[m] = h(s[m]

t−1, ut), sQ
[m]
t = Gst−1Q

[m]
t−1G

T
st−1

+ GutPtG
T
ut

(10)

where Gst−1 and Gut are the Jacobians of h with respect to st−1 and ut. This
linearization-based approach, which neglects the second and higher order terms of the
Taylor expansion of s

[m]
t−1, sometimes produces uncorrect clouds of particles for the

motion-only evolution. We attempt to provide a more accurate set Ξt exploiting the
UT. First, the pose vector is augmented with the control noise vector δt ∈ R

nu to give
an na = 3+nu dimensional random vector s

a,[m]
t−1 := [s[m]

t−1; δt] ∈ R
na , with augmented

covariance matrix:

Q
[m]

′

t−1 =
[
Q

[m]
t−1 0
0 Pt

]
(11)

The cross terms in Q
[m]

′

t−1 are 0 since the pose s
[m]
t−1 and the noise δt are independent.

Then, a set of (sigma points) {X i,[m]}, each X i,[m] ∈ R
na , and corresponding weights

{W i,[m]}, i = 0, 1, . . . , p, are generated according to [7]: the weights W i,[m] can be
positive or negative but, to provide an unbiased estimate, must sum to one. In addition,
to match the mean and the covariance, it must be:

p∑

i=0

W i,[m]X i,[m] = s̄
a,[m]
t−1 ,

p∑

i=0

W i,[m](X i,[m] − s̄
a,[m]
t−1 )(X i,[m] − s̄

a,[m]
t−1 )T = Q

[m]
′

t−1

(12)

where s̄
a,[m]
t−1 =

[
s
[m]
t−1
0

]
.

Next, the non-linear motion model is applied, in turn, to each point (i = 0, ..., p) for
the m-th particle to yield a cloud of transformed points Zi,[m] ∈ R

3:

Zi,[m] = h(X i,[m]
1:3 , ut + X i,[m]

4:na
) (13)

1 We denote the standard computation of ξ
[m]
t by sξt

[m], while we denote by uξt
[m] the compu-

tation performed through the unscented approach. A similar notation applies to the covariance
matrix.
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where X i,[m]
r:j denotes a vector comprising the components from r to j of X i,[m]. Now,

according to [7], the predicted particle pose ξ
[m]
t is given by the weighted average of

the transformed points:

uξ
[m]
t =

p∑

i=0

W i,[m]Zi,[m] (14)

and the covariance is the weighted outer product of the transformed points:

uQt =
p∑

i=0

W i,[m](Zi,[m] − uξ
[m]
t )(Zi,[m] − uξ

[m]
t )T (15)

After estimating the particles pose, FastSLAM 2.0 carries out the landmark loca-
tion estimation by using a set of EKF. We rather provide an unscented-based feature
update (UKF). The UT enables one to avoid the linearization of the perceptual model
and the common problems that this solution involves. Details are omitted for space rea-
sons. The update of the landmark location is capital for the correct data association and
consequently for the estimated pose corrections.

4 The Proposed Adaptive Selective Resampling

Resampling is the step that has a major influence on the performance of the particle
filter and it consists in replacing particles with low importance factor w

[m]
t by particles

with a higher weight. This process may erroneously eliminate good particles, causing
the phenomenon known as particles impoverishment or depletion. To overcome this
problem, it is important to determine when and how the resampling must be performed.
Liu [9] introduced the effective number of particles

Neff =
1

∑M
m=1(w[m])2

(16)

which reflects the particles dispersion and consequently is also a measure of the ap-
proximation quality of the true posterior: it would be equal to the real number M of
particles if the samples were drawn from the true posterior. Our approach extends the
one reported in [5, 6] where the resampling is performed when the effective number
Neff of particles goes below a fixed threshold. A fixed threshold however does not
take into account of the past evolution of Neff , evolution which contains important
information on the quality of the posterior approximation. For example, if the effective
number of particles is not very high but it slightly oscillates in the time around a con-
stant value, this probably corresponds to a good posterior approximation. In this case
a resampling performed when one of the small oscillations of Neff slightly goes be-
low the threshold would be undermining. It would be better to decrease the threshold,
avoiding the resampling, at least until this effective number remains above a minimum
acceptable value. Also the average number of effective particles in a time interval plays
an important role in the characterization of the quality of the approximation over that
interval. Therefore, instead of a static threshold, in this paper a dynamic threshold has
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Fig. 1. Map (dashed black line) and waypoints (red circle). The robot controls are computed
according to the waypoints. The blue solid line simply links the waypoints.

been introduced, whose value depends on the past history of Neff . The idea above can
be formally stated as follows. We take into account of the recent past of Neff consid-
ering a window of observation comprising k time steps. First, denote with υτ−1 the
value of the threshold in the window τ − 1 and with Nmin and Nmax, respectively, the
minimum and the maximum value that the threshold may assume. Our heuristic is to
set Nmin = 0.6M and Nmax = 0.9M . Observe that Nmax must be taken below M
since a threshold too near to M would imply a too large resampling frequency. The new
υτ is taken according to how rapidly Neff changes and to how many effective particles
are present in window τ − 1. If k denotes the number of time steps in the observation
window and Neff (t) is the effective number of particles at the t-th time step in the
window, a measure α of the mean (normalized) number of particles in window τ − 1
and a measure β of the (normalized) variation of Neff can be expressed by:

α =
1

Mk

k−1∑

t=1

Neff (t + 1) + Neff (t)
2

, β =
Neff (k) − Neff (1)
(k − 1)(M − Nmin)

(17)

Then, the following two quantities associated with α and β are computed:

Nα = α(Nmax − Nmin) + Nmin (18)

Nβ = (Nmax − Nmin)|β|
1

Nmin + Nmin (19)

The new threshold υτ can be obtained as a proper weighted average of Nα and Nβ:

υτ = aNα + bNβ (20)
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with a, b > 0, a + b = 1, two suitable parameters. Notice that α near to one denotes
a large average value of Neff and the threshold can be increased. This is in fact ob-
tained, since, when α approaches one, Nα moves linearly to Nmax and the threshold
is increased, according to (20). The non-linear function Nβ takes into account of the
variation of Neff . Now, when β is near to zero, the variation of Neff in the window is
small. A low variation of Neff , even if Neff is not large, means an agreement among
particles with respect to the approximation of the true posterior and the resampling
should be avoided. This is in fact obtained since the threshold, according to (20), with
a rate dependent on the exponent of |β| in (19), is decreased. We choose a function
like the one in (19) for its high variability near to zero. On the other hand, a |β| quite
greater than 0 corresponds to a large variation of Neff in the window and the threshold
is increased, making a resampling more likely to occur.

5 Simulation Results

The robot considered in the simulations is characterized by a car-like kinematic model
(e.g. [4]) and is equipped with a range-bearing laser with a maximum range of 20
meters and a 180 degrees frontal field-of-view. The indoor environment and the way-
points defining its target path are graphically depicted in Fig. 1. The robot controls
(velocity and steering inputs) are generated in order to follow, from the initial pose
s0 = 〈0, 0, 0〉, the blue solid line in Fig. 1. The total traveled distance is about
700 m. Range and bearing readings, as well as the controls, are perturbed by Gaus-
sian noises with zero mean and diagonal covariance matrices, respectively, Rt and
Pt. If ut = [ut,v; ut,s] is the control vector, with ut,v and ut,s the velocity and
the steering inputs, and δt = [δt,v; δt,s] the corresponding control noise vector, then
Pt = E[δtδ

T
t ] = [σ2

v , 0; 0, σ2
s ]. In the simulations reported below, σv = 0.01m/s and

σs = 0.017rad. We have assumed, for the noise on the range and the bearing of each
laser reading, a standard deviation respectively of 0.01m and of 0.017rad.

The FastSLAM algorithm, with the modifications proposed in this paper (with pa-
rameters a = 0.7, b = 0.3, k = 150 and p = 2 na + 1 = 11, where a and b are needed
in (20), k is the number of steps in each observation window and p the number of Sigma
points) was tested extensively in various conditions (high and low noises for the odom-
etry and for the laser measurements, different parameters for the data association and,
also, different environments). Our methods reduce the error between the real path and
the estimated path (at each time step the particle with the greater weight is considered
as the best estimate of the robot pose).

In Fig. 2 a comparison between the FastSLAM with and without modifications is
illustrated for the robot coordinates 〈x, y, α〉 error (Frames (a) and (b)) and for the
absolute robot position error (Frames (c) and (d)). The robot, running the FastSLAM
algorithm with the proposed modifications and with a number of particles M = 60,
incurs in an average mean absolute error (MAE) (average computed over 50 simulation
runs, with different noise realizations) of 0.03 m with standard deviation 0.007 m. With
the standard FastSLAM (with the same number of particles and simulation runs) the
average mean absolute error obtained is 0.62 m with standard deviation 0.02 m. The
Frames (e) and (f) of Fig. 2 show the effectiveness of the adaptive selective resampling
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(a) FastSLAM 2.0
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(b) Modified FastSLAM
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(c) FastSLAM 2.0
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(d) Modified FastSLAM
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Fig. 2. Comparison of the standard FastSLAM and the FastSLAM with our modifications for the
〈x, y, α〉 error ((a) and (b)) and for the pose error ((c) and (d); (e) and (f) show the ratio ρ after
the selective-only resampling step (e) and the adaptive selective resampling step (f).

(Frame (f)) w.r.t. the selective resampling (Frame (e)) by reporting the ratio ρ between
the absolute position error when a resampling occurs and the absolute position error in
the previous time step. That is:

ρ =
etr

etr−1
(21)

where etr is the pose error after the resampling step and etr−1 is the same quantity
in the previous time step. With the adaptive selective resampling this ratio is almost
always less than one, i.e. the resampling almost always reduces the pose error. Fig. 3
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shows the maps generated using the FastSLAM modified and the classical FastSLAM
algorithms. In the first case the real path (green) and the estimated path (black) are
almost always overlapping and the robot closes the loop with a position error of only
0.0414 m; the classical FastSLAM closes the loop with a position error of 0.2040 m
and there are pronounced gaps between the real path and the estimated path; both the
algorithms generate a consistent map, but with the proposed modifications the quality
of the map is so high that it can be magnified up to 3 cm of resolution without an
observable significant error; on the other hand, with the classical FastSLAM algorithm,
a map reconstruction error can be highlighted with a smaller magnification level (1 m
is enough).

Modified FastSLAM FastSLAM
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Fig. 3. Final 2-D map generated with FastSLAM and our modification of the FastSLAM

6 Conclusions

This work provides some modifications to the FastSLAM 2.0 algorithm. Unscented
Transformations replace the EKF (avoiding linearizations) generating more accurate
sets of particles St and improving the proposal distribution from which the set of parti-
cles is drawn. The paper has emphasized the importance of providing accurate clouds of
particles for motion-only evolution. This allows to generate a more consistent proposal
and consequently a better set St. In addition an adaptive selective resampling has been
introduced in the resampling step of the particle filter to significantly reduce w.r.t. the
classical FastSLAM the risk of ill-timed resampling operations. Finally the set of EKF
used in the classical FastSLAM approach for the landmark position estimate has been
replaced by a set of UKF. The proposed modifications substantially improve the perfor-
mance of the classical FastSLAM algorithm decreasing of about one order of magnitude
the robot pose estimation error, as shown through an extensive campaign of simulations.
The effectiveness of the adaptive selective resampling has been also illustrated in the
paper.
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