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Summary. We present a fast, robust method for registering successive laser rangefinder
scans. Correspondences between the current scan and previous scans are determined.
Gaussian uncertainties of the correspondences are generated from the data, and are used
to fuse the data together into a unified egomotion estimate using a Kalman process. Ro-
bustness is increased by using a RANSAC variant to avoid invalid point correspondences.
The algorithm is very fast; computational and memory requirements are O(nlogn) where
n is the number of points in a scan. Additionally, a covariance suitable for use in SLAM
and filter techniques is cogenerated with the egomotion estimate. Results in large indoor
environments are presented.

1 Introduction and Motivation

Maps are extremely useful in mobile robotics; they are of immense value to a
robot tasked with localization, planning, and navigation. At present, it is com-
mon to use dead reckoning with range sensing in simultaneous localization and
mapping (SLAM) algorithms to bound global error in unknown environments.
The effectiveness of such algorithms depends in large part on the quality of dead
reckoning. As dead reckoning degrades, the search for landmark correspondences
grows, and becomes the dominating factor in most SLAM approaches. Although
high-quality dead reckoning solutions exist, their components, such as fiber-optic
gyroscopes, tend to be expensive.

At the same time, laser rangefinder registration is capable of providing signifi-
cant improvements to dead reckoning estimates; however, to be useful in a larger
context, such registrations must provide useful error metrics to higher level sys-
tems. This work incorporates data-derived uncertainties in scanner registrations
to both improve registration results and generate accurate uncertainty estimates
to higher level systems.

2 Related Work

Most of the popular methods for laser scanner registration find their roots in
the Tterative Closest Point algorithm presented in [3]. [I0] and [II] present
a modified ICP-based approach to estimate robot egomotion using different
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correspondence algorithms to estimate rotation and translation, but the work
doesn’t take into account the quality of individual point matches nor does it
generate an estimate of the quality of the registration. In [14] and [I3], a Bayesian
framework is added to separate moving objects from stationary landmarks; this
work is orthogonal to and compatible with that framework. [5] and [4] use a grid
to divide previous scans into localized bins. Covariances are calculated for these
bins, and new scans are registered into old ones by numerical maximization of a
pseudo probability density function. However, the artificial division of the world
and required selection of representation is not straightforward.

[2] presents two methods for generating covariances from the Iterative Dual
Correspondence algorithm; a real-time approach is based on examining the min-
imized error function, and an offline approach shifts registration around a min-
imum and uses a correlation metric to estimate registration uncertainty. The
offline approach generates very good results, but is not suitable for a real-time
system.

[12] uses Gaussian noise models to improve estimation of linear surfaces in
laser scans. [16] uses line segments to generate localization matches. However,
these methods require specific structure in the environment; this method does
not.

3 Problem Definition

Consider a mobile robot which is capable of translation and rotation on a flat
surface. This robot is equipped with a rigidly fixed range sensor which gener-
ates sets of range returns from a plane parallel with the surface of motion. At
periodic intervals while moving, the robot takes a set of readings. The sensor
and environment are assumed to provide a significant number of returns, but
the environment is specifically not constrained to be linear or smooth.

In order to estimate the robot’s path, we wish to generate an estimate of
the rigid transformation needed to most accurately register successive sets of
measurements. To enable incorporation into a higher level framework, we wish
to simultaneously generate a corresponding metric of the uncertainty of the
estimate.

4 Algorithm

We deal with two sets of returns: A is collected, the robot moves, then B is
collected. The motion of the robot between scans is m = (mw7my7mg)T. We
seek an estimate m of this motion as well as a covariance ) for that estimate.

Each return in a set is parameterized as a Cartesian coordinate in a frame
with its origin at the robot’s center of rotation at the time A was gathered.
Generating this parameterization for B requires some initial value for m. If no
information is available to seed the registation process, the initial estimate can
be 0. Alternatively, the initial estimate can come from odometry or a motion
model.
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Robot

Fig. 1. Sample Match and Covariance Ellipse

For each point a; in A, we find b}, the closest point on the polyline defined by
the bearing-sorted points of B. All returns in B within a fixed bearing window
of b are used to calculate a 2x2 covariance matrix, R;.

Figure [[ illustrates the various aspects of a single generated point match.

The next step is best discussed in the framework of an update step of a Kalman
Filter. One popular formulation of the filter, from [I5], can be summarized as
follows:

Given a state estimate T at time k with associated covariance matrix P, if
we have an observation of the form:

2 = Hpzp + vy,

where

p(vk) ~ N(0, R)

Z and P are updated as follows:
Ky = P HF (Hy P H! + R)™*
Tht1 = Tk + K;c(zk - Hi‘k)

Pyy1 = (I — KyHy) Py

We initialize the filter with a & of 0 and we let Py be an arbitrarily large
diagonal matrix. We consider each point match z; = b —a; to be an independent
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observation of the state to be estimated, with associated covariance R;. The
mapping from state to observation is nonlinear, so we substitute the Jacobian:

H p—
01 dicos(¢;)
where d; = ||a;|| and ¢; = atan2(a;y, aiz).
After processing all the point correspondences, the filter contains an incre-
mental refinement to the overall transformation:

Mpyp1 = My + T

As with ICP, as the estimate is refined, better correspondences are found
between scans. Thus, we generate new matches with the refined estimate and
iterate until convergence. When converged, @ is simply the calculated P from
the final iteration.

5 Robustness

This algorithm is a modified least squares optimization. As such, it inherits the
sensitivity of such methods to outliers. The most common cause of such outliers
is moving objects in the scene.

The resulting scan registrations are greatly improved by adding a RANSAC
step to the point selection [6]. The process for doing so is straightforward. n
point matches are drawn from the registration, and used to generate an esti-
mate and covariance. Inliers from the rest of the set are determined from the
Mahalanobis distance of the generated estimate. If a sufficent proportion of the
points are inliers, the overall estimate is recalculated using the inliers, otherwise
a new set of n points is drawn. Emprically, generating a sample with 4 single
point motion estimates does an excellent job of rejecting outliers while not being
computationally burdensome.

6 Test Platform

Data is presented from two different robotic platforms.

Indoor results are presented using data gathered from a heavily modified Seg-
way Robotic Mobility Platform (RMP). The RMP carries a SICK LMS mounted
45 cm from the ground. Due to the inverted pendulum nature of the RMP mo-
tion, the SICK is mounted on a servo which allows the robot to keep it nominally
parallel to the ground. The RMP provides state updates, including odometry and
kinematic estimates, at 100 Hz. The SICK provides scans of 181 returns spaced
1 degree apart at 75 Hz.

The RMP data sets presented here were gathered at speeds of up to 2.5 meters
per second, and angular rates of up to 2 radians per second.

Additional testing used data sets collected at Stanford and graciously provided
online at [8]. The Stanford data sets were collected in the Gates building using
a SICK LMS on a Pioneer XT.
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Fig. 2. Result: CMU-Qatar building, 31000 scans
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IDC

Kalreg

Fig. 3. Result: Stanford Gates building, 50,000 scans
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7 Accuracy

For this paper, we call our algorithm “Kalreg”, and compare our results against
both dead reckoning and an implementation of the Iterative Dual Correspon-
dence algorithm [10], a widely used scan-matching system.

To make comparisons more valid, results shown use odometry to seed the
registration process in all cases. The “Kalreg” results do not fuse the odometry
measurements into the final registration.

Figure[2 shows a run consisting of about 31,000 registered scans over a path of
approximate 750 meters. Both registration algorithms encounter some difficulties
with an open area in the middle of the run; the heading estimate in both cases
is noticeably skewed.

Figure B uses the first 50,000 scans of a traversal of the Gates building at
Stanford. This data set is intended for SLAM-type applications, and contains
many loops and backtracks. Despite the lack of loop closure in these results, our
algorithm generates an overall registration which is visibly more consistent than
the IDC result.

8 Complexity and Performance

The algorithm is designed to be very efficient and fast. With the exception of
finding correspondences, the entire algorithm is linear in the number of points
in a scan.

Given a bearing-ordered sensor, several shortcuts can be used to find rea-
sonable candidates for matches in constant time. In the general case, points
can be sorted into bearing order, making approximate correspondence search an
O(nlog(n)) proposition.

Other computational factors that are significant are the number of RANSAC
trials needed to find a consistent estimate and the number of iterations needed to
converge. In the environments tested, where most of the scene is static, neither
factor appears to be onerous.

Interestingly, the uncertainty estimates for matches reduce the iterations re-
quired for convergence, often significantly. One problem in many ICP approaches
is the tendency of linear scene segments correspondences with near-zero offsets
to cause a “drag” effect on the convergence. The original ICP paper proposes a
form of gradient descent to bypass the problem. In this method, such segments
are associated with appropriate covariances, so the “drag” effect is dramatically
lessened, obviating such a requirement.

The authors’ most recent C++ implementation runs comfortably in real-time
on a 2.4 Ghz Pentium 4 workstation. It is possible to perform the bulk of nec-
essary computations as highly pipelinable parallelized vector operations using
SIMD instructions. The authors did write one mildly optimized implementation
which was capable of registering scans at 320 Hz. With more effort, this likely
could be improved by an order of magnitude.
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9 Conclusion

This paper put forth a new method for estimating robot egomotion with ex-
plicit uncertainty reasoning. The algorithm provides good registration results
comfortably in real-time, and generates uncertainty estimates concurrently.

10 Future Work

One of the goals in development of this algorithm was to generate useful but
pessimistic error estimates for registration. Ongoing work is being carried out
on validation of the generated error estimates using loop closures. Addition-
ally, there are no obvious obstacles to extending the developed framework into
registering points in three dimensions.
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