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Summary. Designing filters exploiting the sparseness of the information matrix for
efficiently solving the simultaneous localization and mapping (SLAM) problem has
attracted significant attention during the recent past. The main contribution of this
paper is a review of the various sparse information filters proposed in the literature to
date, in particular, the compromises used to achieve sparseness. Two of the most recent
algorithms that the authors have implemented, Exactly Sparse Extended Information
Filter (ESEIF) by Walter et al. [5] and the D-SLAM by Wang et al. [6] are discussed
and analyzed in detail. It is proposed that this analysis can stimulate developing a
framework suitable for evaluating the relative merits of SLAM algorithms.

1 Introduction

Use of an Extended Information Filter (EIF) to solve SLAM to gain compu-
tational savings has been demonstrated by a number of researchers. A notable
result has been that from Thrun et al. [2] where a sparsification process is used to
reduce the number of non-zero elements in the information matrix. Another way
to ensure that the information matrix is sparse is to include both features and
a sequence of robot poses in the state vector [13] [3]. Alternatively SLAM can
also be formulated with a state vector containing only robot poses, as shown in
the Exactly Sparse Delayed State Filter (ESDSF) [4]. Very recently, two SLAM
algorithms, which can achieve exactly sparse information matrix without includ-
ing previous robot poses in the state vector, were developed independently. One
is the Exactly Sparse Extended Information Filter (ESEIF) by Walter et al. [5]
and the other is the D-SLAM by Wang et al. [6].

All above algorithms rely on the sparse structure of the information matrix to
achieve computational benefits. Sparseness is achieved through various tradeoffs.
Although the estimation process becomes efficient, probabilistic data association
requires the recovery of the relevant elements of the state as well as the associ-
ated covariance matrix, and may have a significant impact on the computational
cost of a practical implementation. Although each algorithm claims different ad-
vantages, no comprehensive examination is so far available to make clear the
relative merits and the compromises used. This paper addresses this important
issue by providing a classification and a qualitative analysis of SLAM algorithms
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Table 1. A summary of sparse information filters used in SLAM – here N is the total
number of 2D features and M is the number of selected 3D robot poses

SLAM Dimension Consistency Information Covariance recovery
Algorithm of state vector loss for data association

SEIF [2] 2N+3 No[5] – approximate

SAM [3][7] 3M+2N Yes No exact [7]

ESDSF [4] 3M Yes See Section 2.3 approximate

ESEIF [5] 2N+3 Yes Yes approximate

D-SLAM [6] 2N Yes Yes exact

based on sparse information filters published to date. ESEIF and D-SLAM are
analyzed in detail and a quantitative comparison is provided. It is hoped that
this paper will stimulate further research towards the development of a compre-
hensive strategy and benchmark datasets for evaluating SLAM algorithms under
a variety of different conditions.

The paper is organized as follows. Section 2 summarizes different sparse in-
formation filters for SLAM. Simulation and experiment comparisons of ESEIF
and D-SLAM are provided in Section 3. Section 4 concludes the paper.

2 Summary of Sparse Information Filters in SLAM

This section classifies the sparse information filters published so far based on the
strategy used to achieve sparseness. Only the algorithms based on a filtering pro-
cess are discussed. Other valuable contributions that use sparse representations
such as [10], [1], [11] and [9] are not examined.

2.1 Approximate the Information Matrix in EIF SLAM

An empirical finding that normalized information matrix obtained when the
SLAM problem is formulated in the information form is approximately sparse,
motivates the work by Thrun et al. [2], Sparse Extended Information Filter
(SEIF). Theoretical explanation for this observation was later presented by Frese
[13]. Sparsification essentially removes the weak links in the information ma-
trix by setting elements that are smaller than a given threshold to zero, while
strengthening other links to make up for the effect of this change.

State estimates for robot pose and a subset of features that are needed
for computing Jacobians are recovered by solving a set of linear equations
with a sparse coefficient matrix using relaxation. Data association is solved by
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approximating the data association probability that an observation under con-
sideration originates from a feature in the map and using the standard maximum
likelihood method. However, Walter et al. [5] demonstrates that the sparsifica-
tion process leads to inconsistent estimates.

2.2 Including Previous Robot Poses and Features in the State
Vector

When all the previous robot poses and all the features are included in the state
vector, the SLAM problem becomes a static estimation problem. This situation
is discussed in Frese [13]. A considerable amount of off-diagonal elements in the
information matrix are exactly zero and the information matrix is exactly sparse.
This state vector is used in Square Root SAM [3].

In [3], SLAM is formulated as a linear least squares problem and is solved by
factorizing the smoothing information matrix using Choleskey or QR factoriza-
tion in a batch or incremental manner. Exact state and covariance recovery can
be achieved by exploiting the special sparse structure of the factorization matrix
resulting from the QR factorization [7]. The advantage of the SAM algorithm
is that the quality of the estimate can be better than traditional EKF SLAM
since in each step the estimates of all previous robot poses are updated together
with the feature location estimates through the smoothing process. Thus the
linearization error is reduced. Therefore, the SAM algorithm is less prone to
estimator inconsistency that can arise due to linearization errors than all other
EIF algorithms discussed in this paper.

However, the sparseness of the information matrix is achieved through in-
creasing the state dimension, which keeps increasing even when robot is revis-
iting previously explored regions. Therefore, the computational cost increases
over time and is not bounded by the number of features in the environment.

2.3 Including Only Robot Poses in the State Vector

By computing the relationship between two consecutive robot poses using the
observation made at each pose, SLAM can be solved using a state vector con-
taining only robot poses. The resulting information matrix is exactly sparse, as
shown in the Exactly Sparse Delayed State Filter (ESDSF) [4].

A suboptimal partial state recovery is achieved by keeping the irrelevant states
fixed at their current estimates and solving a set of sparse equations relating the
state, the information matrix and the information vector. Data association is
solved by estimating a bound for the covariance matrix. The key advantage of
ESDSF is that it is suitable for the scenarios where features are difficult to
extract or the number of features is too large as compared with robot poses, as
demonstrated by the excellent maps shown in [4].

However, the resulting “map” is only an alignment of a sequence of observa-
tions (such as images or laser scans). There are no statistical map updates, thus
improvements to the state estimates achieved through feature location updates
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in traditional SLAM is not present. Extent of the information loss due to this
has not yet been analyzed.

2.4 Including Only Features in the State Vector

D-SLAM, recently proposed by Wang et al. [6] uses a state vector that only con-
tains the feature locations to generate maps of an environment. Robot location
estimate is obtained through a concurrent yet separate process.

In D-SLAM mapping, the original measurements relating the robot and fea-
tures are first transformed into relative distances and angles among features.
Then these transformed measurements are fused into the map using EIF. It is
shown that only the features that are observed at the same time instant have
links in the information matrix making it exactly sparse. The extent of sparseness
is governed by the sensor range and feature density. Localization is performed
by combining two estimates: one is obtained by solving a “kidnapped robot
problem”; the other is obtained by a local EKF SLAM where only the features
currently observed are retained in the state vector. The two correlated estimates
are fused by Covariance Intersection (CI) [6].

Exact state and covariance recovery is achieved by preconditioned Conjugated
Gradient (PCG). A good preconditioner produced by an iterative Cholesky fac-
torization method by exploiting the similarity between the information matrices
of successive steps is used to make the PCG efficient. Data association is solved
by a combination of the standard maximum likelihood approach and a chi-square
test.

There is some information loss in D-SLAM, and this is further addressed in
Section 3.

2.5 Periodic Marginalization of Robot Pose

The ESEIF algorithm by Walter et al. [5] achieves sparse information matrix by
periodically marginalizing out and relocating robot.

Similar to SEIF, ESEIF exploits the fact that when the robot location is
marginalized out from the state vector, new links will only be built up among the
features that were previously linked with the robot in the information matrix.
The set of features that are linked with the robot is called “active features”.
Thus the information matrix will be sparse if the number of “active features”
is bounded. In contrast to the sparsification process in SEIF, ESEIF controls
the number of “active features” by “kidnapping” the robot when the number of
“active features” is about to become larger than a predefined threshold Γa. This
is followed by “relocating” the robot using a set of selected measurements. Thus,
the EIF information matrix is kept sparse without any approximations that can
lead to inconsistency. The extent of sparseness is controlled by the active feature
bound Γa, the sensor range and feature density.

There is some information loss in ESEIF due to “kidnapping” and “relocating”
the robot. This is further addressed in Section 3.
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3 Comparison of Information Loss in ESEIF and
D-SLAM

ESEIF [5] and D-SLAM [6] have been selected for a detailed comparison as both
these algorithms have a state vector of the same character and do not use any
approximations to achieve sparseness. As the authors do not have access to an
efficient implementation of ESEIF, a quantitative analysis of the computational
cost can not be presented. This section, therefore, focuses on the extent of in-
formation loss.

3.1 Comparison Using 1D Simulations

An analysis of the mapping performance of ESEIF and D-SLAM based on a
linear one-dimensional form of the SLAM problem is presented below. The 1D
simulation is used so that the effects due to linearization errors are avoided.

The scenario consists of a set of uniformly distributed features arranged on
a straight line with a interval of 1m. The robot, moving forward and backward
along this line, can measure the distances to features within its sensor range
(9m). At each time step, robot observes 9 features. The robot only makes one
observation before moving.

Four parameters are considered: the active feature bound Γa, the process
noise, the robot speed and the time steps. Extensive simulations were conducted
by varying these parameters over a large range of values. The trace of the sub-
matrix of the covariance matrix corresponding to all features from ESEIF, Pmm,
and the trace of the covariance matrix from D-SLAM mapping, P , are used to
indicate the accumulated information. The results obtained are summarized in
Table 2, from which the following conclusions can be drawn.

(1) When the active feature bound Γa is smaller than the number of feature
in each observation, ESEIF performs worse than D-SLAM, because in this case
robot is marginalized out and relocated at each step in ESEIF. When the active
feature bound Γa is gradually increased, number of instances where the robot
needs to be relocated reduces and at some point ESEIF map becomes better
than that obtained using D-SLAM.

(2) When all other parameters are fixed, the larger the robot speed, the larger
the range of Γa in which D-SLAM map is better (compare rows 4 − 6 with rows
1 − 3 in Table 2). This is because when robot runs faster, robot relocation step
becomes more frequent resulting in more information loss.

(3) When all other parameters are fixed and the process noise is small enough,
ESEIF map is always better than D-SLAM as long as Γa is at least equal to the
the number of features in one observation (see rows 10 − 12 in Table 2). When
all other parameters are fixed, the larger the process noise, the larger the range
of Γa in which D-SLAM map is better (compare rows 7 − 9 with rows 1 − 3
in Table 2). With larger process noise, process model contains less information,
thus the information loss in D-SLAM is less.

(4) When other parameters are fixed, the smaller the time steps, the larger
the range of Γa in which ESEIF map is better (compare rows 13 − 15 with rows
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Table 2. Evaluation of mapping in ESEIF and D-SLAM using 1D simulations

Test Active feature Process Speed Time D-SLAM ESEIF Trace ratio
No. bound Γa noise (m/s) (m/s) steps trace of P trace of Pmm

D−SLAM
ESEIF

1 8 0.5 1 280 0.087099 0.099094 0.87895
2 10 0.5 1 280 0.087099 0.087564 0.99468
3 11 0.5 1 280 0.087099 0.087074 1.00029

4 8 0.5 2 280 0.423266 0.518746 0.87895
5 23 0.5 2 280 0.423266 0.423358 0.99978
6 24 0.5 2 280 0.423266 0.423229 1.00009

7 8 2 1 280 0.087099 0.104539 0.83317
8 33 2 1 280 0.087099 0.087105 0.99994
9 34 2 1 280 0.087099 0.087097 1.00002

10 8 0.2 1 280 0.087099 0.089111 0.97743
11 9 0.2 1 280 0.087099 0.083668 1.04101
12 10 0.2 1 280 0.087099 0.08311 1.04801

13 8 0.5 1 600 0.236643 0.281696 0.84006
14 13 0.5 1 600 0.236643 0.23673 0.99963
15 14 0.5 1 600 0.236643 0.236378 1.00112

1− 3 in Table 2). This is due to the different accumulation speed of information
loss in the two algorithms.

3.2 Comparison Using 2D Simulations

A 2D simulation using larger number of features was conducted to further com-
pare the two algorithms. The environment used is a 35 meter square with 144
features arranged in uniformly spaced rows and columns. The robot trajectory
are shown in Figures 1(a) and 1(d). A sensor with a field of view of 180 degrees
and a range of 6 meters is simulated to generate relative range and bearing
measurements between the robot and the features.

In this simulation, all the parameters are set to values for an indoor scenario.
The standard deviations of the noises in robot speed and turnrate are 0.05 m/s
and 4 degree/s respectively, and those of the noises in sensor range and bearing
are 0.1 m and 1 degree respectively. Robot explores in the environment at the
speed of 0.4 m/s for 533 time steps. At each time step, robot can observe 5 − 6
features. Γa is set to be 10.

As expected, with small process noise and robot speed, ESEIF provides more
accurate map than D-SLAM as shown in Figures 1(a) and 1(d). This can be
seen more clearly in Figures 1(c) and 1(f). Both algorithms provide consistent
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Fig. 1. Simulation results

robot location estimation. However, robot location estimation in D-SLAM is
more accurate as shown in Figures 1(b) and 1(e).

3.3 Experimental Comparison

The large-scale outdoor Victoria Park data set [14] is also used for the com-
parison. As the ground truth is not available, it is impossible to use this data
set for evaluating whether a given algorithm is consistent. Furthermore, some
sparse information filter based SLAM papers use this data set with different
pre-defined data associations, and different noise parameters. It is, therefore,
unreasonable to compare the outcomes from this data set except as a proof that
the algorithms concerned are able to deal with some of the practical issues such
as non-stationery objects and spurious measurements. Interestingly, the gross
character of the vehicle trajectories reported in some publications differs from
the results presented by the original authors who collected this data. Figures
extracted from the original publications of D-SLAM and ESEIF are presented
to highlight these issues.
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(a) Map and robot trajectory from
ESIEF (ellipses indicate 3σ error
bounds; the figure is from [5])
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Fig. 2. Outdoor, large-scale implementation using Victoria Park data set

3.4 Analysis of Comparison Results between ESEIF and D-SLAM

Since D-SLAM transforms the original measurements to relative distances and
angles among features, the information from process model is lost in mapping,
as compared with traditional EKF SLAM. In localization, the information loss
comes from using CI, which is a conservative way to fuse two pieces of information
with unknown correlations. The main factors that affect the extent of information
loss include: process and sensor noises, feature density, and time steps before
robot starts moving. This is analyzed in detail in [6].

In ESEIF, when marginalizing out and relocating robot, the information from
process model is lost. This process results in poor robot location estimation for
the following step and the loss of the correlations between robot and features,
as compared with traditional EKF SLAM. These correlations together with the
robot uncertainty govern the improvement to the feature location estimates. In-
formation is also lost due to the fact that one part of measurements (zα in [5]) is
used in normal update and another part (zβ in [5]) is used in relocating robot.
During this process, the implicit information that these two parts of measure-
ments are made from the same robot location is not exploited. The main factor
governing the extent of information loss is how often robot is kidnapped and re-
located. This is mainly determined by the active feature bound Γa, sensor range
and the robot speed.

4 Conclusions and Discussions

Following the pioneering work by Thrun et al. [2], many different sparse informa-
tion filters have been developed for SLAM. This paper summarized the relative
merits of different sparse information filters. Especially, the extent of information
loss of D-SLAM and ESEIF is compared in detail.
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When the number of robot poses (at which observations are made) is not
significant as compared with the total number of features, including all the robot
poses in the state vector will produce better estimation than traditional EKF
SLAM due to the smoothing of previous robot poses [3]. In the case when features
are difficult to extract or the number of features is too large as compared with
robot poses. The view-based ESDSF [4] is a good option since only robot poses
are included in the state vector. When the number of robot poses is large as
compared with the total number of features, ESEIF [5] and D-SLAM [6] are two
efficient exactly sparse information filters.

Overall, sparse information filters provide promising solutions for the SLAM
problems. The computational saving is significant although there are some trade-
offs. More work is necessary to further investigate the recovery of state and
covariance matrix such that real time data association can be achieved. Further-
more, it is perhaps a critical requirement that SLAM researchers collaborate
to generate a set of benchmark data sets, both simulated and real-life, as well
as performance metrics so that plethora of emerging SLAM algorithms can be
compared in a consistent setting. The recently proposed sparse information fil-
ters based on submaps, Tectonic SAM [17], Treemap [18], D-SLAM local map
joining [15], Sparse local submap joining filter (SLSJF) [16], which are not dis-
cussed in this paper due to the space limitation, introduce significant flexibilities
in achieving the sparseness and the comparison of these algorithms remain the
future work.
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