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1 Introduction

1.1 Motivation and Significance

Accent is the pattern of pronunciation which can identify a person’s linguis-
tic, social or cultural background. It is an important source of inter-speaker
variability and a particular problem for automated speech recognition. This
study aims to investigate the effectiveness of rule extraction from support
vector machines for speech accent classification. The presence of a speaker’s
accent in the speech signal has significant implications for the accuracy of
speech recognition because the effectiveness of an Automatic Speech Recogni-
tion System (ASR) is greatly reduced when the particular accent or dialect in
the speech samples on which it is trained differs from the accent or dialect of
the end-user [4] [14]. The correct identification of a speaker’s accent, and the
subsequent use of the appropriately trained system, can be used to improve the
efficiency and accuracy of the ASR application. If used in automated telephone
helplines, analysing accent and then directing callers to the appropriately-
accented response system may improve customer comfort and understanding.
The increasing use of speech recognition technology in modern applications
by people with a wide variety of linguistic and cultural backgrounds, means
that addressing accent-related variability in speech is an important area of
ongoing research. Rule extraction in this context can aid in the refinement
of the design of a successful classifier, by discovering the contribution of the
various input features, as well as by facilitating the comparison of the results
with other machine learning methods.

1.2 Overview

Current approaches to the identification of speaker accent usually require
specialized linguistic knowledge or analysis of the particular speech contrasts
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between the accents, and often extensive pre-processing of large amounts of
data. In contrast, this chapter presents an accent classification system using
time-based segments consisting of Mel Frequency Cepstrum Coefficients as
features and utilizing rule extraction from SVMs (support vector machines).
It is applied to a small corpus of two accents of English. Its performance is
compared to two other machine learning techniques, and rule extraction is
performed using a combination of SVMs and a rule-based learner.

2 Accent Recognition

2.1 Accent

Each person speaks in his or her own idiosyncratic way, but groups of people
of a similar geographical or sociological background can be considered to share
various common patterns in their speech. These include, but are not limited to:

– Pronunciation or acoustic features: the use of particular vowel and con-
sonant sounds and how these change when they are combined in words
and groups of words, as well as stress, tempo, rhythmic, and intonational
factors [30]

– Grammar and vocabulary: morphology and syntax, vocabulary and
idiom [30]

The combination of these patterns contributes to a sense of “accent” or
“dialect” and can vary according to geographical origin, sex, social class, age,
education, and whether the language being spoken is one’s first or has been
subsequently learned. Accent is usually considered to include only the effects
of pronunciation or acoustic features, whereas dialect includes accent as well
as grammar and vocabulary differences.

Accents are systematic and repeatable [27] [30]. Accents occur in most
if not all languages with a sufficiently large number of speakers. However,
accents are not set, “standard” entities, and considerable variation between
people occurs. Accent is usually established early in life [30] but may be altered
by, for example, living in another country for significant lengths of time, or
significant speech training. A person’s accent may also change in the short
term, depending on to whom he or she is talking [30]. That is, humans are
able to adjust their accent (usually along cultural or social lines rather than
regional/geographic lines) in order to improve understanding and/or social
acceptance [30].

Despite the variability in the realization of the spoken message due to
different accents, and also differences in listener characteristics (such as lis-
tener attention and familiarity with the accent and speaker), both utterance
understanding and accent identity are usually preserved [27]. Tatham and
Morton [27, p114] note that “Speakers and listeners recognise the utterance
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‘behind’ the accent. That is, they can identify. . . the same utterance spoken in
different accents, and can readily disassociate the utterance from the accent.”

Accent recognition by listeners can even occur in the absence of an
identifiable message, that is, in unfamiliar languages [3] and in artificially
manipulated speech (e.g. playing recordings backwards, removing features [22]
[23] [29]).

Modern English is an important world language, serving as an interna-
tional lingua franca in business, education, international relations and the
media [7]. Many, if not most, speakers of English worldwide have English as
their second or even third language, so advances in computerized speech tech-
nology will increasingly have to deal with a wide variety of accents if they
are to be successful on the world stage. Similarly, speech technology based
on other languages will benefit from research into accent and other sources of
variation in human speech.

2.2 Automatic Speech Recognition

ASR is the recognition of human speech by use of computer analysis. An
input speech signal is compared to a stored model of the various elements
of spoken language (usually phonemes and their combinations) and the most
likely sequence of words is produced. It is used in many applications, such as
data entry, voice dialing, caller routing and translation assistance. Accuracy
is highly dependant on the application domain and the training data used to
build the stored acoustic and language models.

The effectiveness of an Automatic Speech Recognition System is greatly
reduced when the particular accent or dialect in the speech samples on which it
is trained differs from the accent or dialect of the end-user [14]. Increasing the
accuracy of ASRs on accented speech can be done in a number of ways. At its
simplest, the accented speech can be passed through a number of ASRs trained
on different accents, and the output is then evaluated for the most likely
utterance. If there are a large number of accents, this “multiple processing”
can be time consuming and expensive.

Alternatively, the recognizer itself can be made to identify multiple
accented “versions” of the various phonemes and words. This leads to very
large numbers of alternative representations within the recognizer, of words,
phonemes or other units relevant to the operation of the ASR. This can actu-
ally reduce decoding accuracy [14] because of greater numbers of confusions
and overlapping entities.

A third approach is to classify speech into its appropriate accent, and then
to pass it through the appropriately accent-trained recognizer. The classifier
would not necessarily need to fully decode the speech sample, but would only
need to classify speech into the appropriate accent group.

If the aim is simply to identify an utterance as having one accent or another
in, for example, a telephone call or recording, the usual approach involves
training several ASRs on different varieties of accented speech, and choosing
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the best performer as the indicator of the accent [17] [28] [1]. The training
of ASRs is labor-intensive and requires specialized phonetic knowledge to
transcribe and label the data. Training ASRs also requires very large amounts
of data, which is generally not available for accented speech, especially for
some less studied or less populous accents. Other methods usually involve some
prior knowledge or training on specific linguistic features [1]. The accuracy of
such systems greatly depends on the method used, the accents investigated
and the restrictions placed on the input speech samples, and ranges in the
order of 65 to 98.5% [28] [9] [14].

For a simple classification task, the use of a fully developed ASR may not
be required if the differences between particular accents can be learned by a
supervised machine learning system. It may not even require knowledge of the
specific linguistic differences between the accents of concern if the classifier
can successfully learn from real speech examples. However, discovering the
contribution of the various input features - e.g. through rule extraction - can
aid in the refinement of the design of a successful classifier.

2.3 Mel Frequency Cepstrum Coefficients

Mel Frequency Cepstral Coefficients (MFCCs) provide an efficient means of
representing the frequency characteristics of the speech waveform, and are the
most widely used feature in state-of-the-art speech recognition systems.

The standard speech recognizer front end includes calculation of the 13
absolute MFCCs and their first- and second-order derivatives (a total of
39 MFCCs). MFCC extraction is carried out on a speech sample using the
following steps [19] [8]:

1. Compensation for the unequal sensitivity of human hearing across fre-
quency.

2. Spectral analysis using a Fourier transform on 20–30ms Hamming-shaped
windows (frames) of speech every 10ms.

3. Mel-scale filtering using a bank of triangular windows which become more
compact at lower frequencies, in accordance with the sensitivity of human
hearing.

4. Log compression of the mel-filterbank channels to model the relationship
between the intensity of sound and its perceived loudness.

5. Discrete cosine transforms to produce the cepstral coefficients.
6. Cepstral mean subtraction and energy normalisation to reduce channel

effects.
7. Extraction of derivatives (first- and second-order).

Following their widespread use in the speech domain, MFCCs have also
been used successfully in the classification of music samples [13].

The first MFCC (MFCC(0)) shows a close correlation to the geometric
energy in the (mel filtered) speech signal. MFCC(1) represents spectral slope,
but beyond that it is less clear what the individual MFCCs are representing
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in terms of how they relate to perceived aspects of speech and sound. Simple
inversion of the MFCC extraction process does not generate a speech sig-
nal [20], since phase and fundamental frequency information are discarded.
Relating individual MFCC values to individual aspects of human percep-
tion (such as pitch or particular phonemes) appears extremely difficult. This
limits the use of rule extraction because rule sets may be useful during the
experimental stage only.

MFCCs on a single time frame basis may not be particularly useful for
accent classification, since they may encode a time too short to represent
meaningful information. For use in an ASR, the MFCCs are usually combined
into phoneme units; however this requires further segmentation of the speech
sample and identification of phoneme units using a pre-trained system. Pure
phoneme recognition rate is rather low [18] so further processing is required
to produce a sequence of recognized speech, using scoring probabilities for
phoneme combinations in the particular language and domain.

Since phonemes in continuous speech are approximately 60–70ms in aver-
age duration [12] and the actual identity of the units is not of concern for
simple accent classification, it may be possible to use time-based segments
rather than phoneme-based segments for the simple classification task. The
optimum duration of these segments would be an important part of the
investigation.

3 Rule Extraction from Support Vector Machines
for Accent

3.1 Support Vector Machines

Support vector machines (SVMs) are a class of algorithms which are well-
suited to learning classification and regression tasks. They have been used
successfully on a wide variety of tasks, including text and image classification
[15] [5] as well as bio-medical applications [11]. SVMs utilize kernels to work
in a high-dimensional feature space, since only inner products of data points
are used rather than the input features themselves. In classification tasks,
the margin between the two classes is maximized in order to find the best
possible separator, and is further optimized in the presence of noisy data by
the introduction of slack variables.

SVMs have been designed for high-dimensional input spaces. Speech pro-
vides the opportunity for working with a very large number of features. Very
large numbers of samples of accented speech are not generally available, and
the numbers of samples from the different accent groups may be imbalanced,
hence investigating the performance of SVMs is an important task in these
contexts. A small number of samples increases the chance of overfitting, and
as a result, the performance of the SVM has to be tightly controlled [10].
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3.2 Rule Extraction

There are three classes of users of speech recognition systems: (1) the engineer
who explores features sets and designs the system, (2) the application expert
who installs and maintains a speech recognition system (e.g. for directory
assistance), and (3) the end user. The application expert is interested in the
performance of the system but not necessarily in speech features while the
end user is interested in a fast, reliable and accurate service and does not
require detailed knowledge of the system. In this application, it is the engineer
who employs machine learning and tests its performance who is interested in
explanation. In this context, it is important to know why certain input features
lead to acceptable results and while other feature sets fail.

As Craven and Shavlik (1994) [6] observe, “a (learning) system may dis-
cover salient features in the input data whose importance was not previously
recognised.” If a support vector machine has learned interesting relationships,
these are encoded incomprehensibly as alphas and support vectors and hence
cannot easily serve the generation of scientific theories. Rule extraction algo-
rithms significantly enhance the capabilities of SVMs to explore data to the
benefit of the user.

Support vector machines do not easily lend themselves to the discovery
of explanations or rules that represent classification decisions. Unlike rule-
based or decision tree systems, the output of the SVM is a numeric value
and does not include additional information such as pattern elements or their
combinations, which could be useful in explaining the knowledge obtained
in the training process. Such explanations are important for the acceptance
of SVM results by researchers and developers performing machine learning
experimentation, and for the contribution SVMs can make to the knowledge
in the domain in which they are operating. Rule extraction from SVMs is,
therefore, an important advance for both the usefulness and verification of
SVMs.

As indicated earlier, the relevant user in this case is the engineer/researcher
who applies support vector machines for speech recognition and not the end
user. That is, rule extraction from SVMs supports experimentation and test-
ing, in particular the identification of features and feature sets that contribute
to classification. A range of alternative methods are available, for instance
sensitivity analysis. However, rule extraction from SVMs represents a conve-
nient way to capture the totality of knowledge learned by the SVM (at least,
this is the objective). The rule-based representation facilitates the comparison
of SVM learning results with other machine learning techniques. Hence, the
experimenter can select the best machine learning method for deployment.

Rule extraction is easily realized if SVMs are used in combination with
other symbolic learning systems such as decision trees, when pattern labels
predicted by an SVM (the “black box”) are used as input labels for the second
system (the “white box”) in order to represent what the SVM has learned.
The rules extracted may be few and simple, with high accuracy and fidelity [2],
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however, this method faces severe limitations if the “white box” learner cannot
accept high dimensional input patterns (see Chap. 1). In addition, small rule
sets may not fully explain the decision-making process of the SVMs, i.e. the
totality of knowledge learned by the SVM. Going from the high dimensional
SVM to a lower dimensional learning system represents a loss of information
and as a result, reduced fidelity and explanatory capability.

3.3 Objectives

If it is accepted that the intention in the utterance “behind” the accent is
unaltered despite differences in realization due to accent differences - and this
would be especially true in the case of “read” speech - then by comparing the
manifest speech patterns for particular utterances, an appropriately trained
classifier may be able to accurately identify the accent of the speaker from
features derived from the speech signal, even without explicit decoding of the
intended message itself. Knowledge of the particular acoustic or phonetic con-
trasts between various accents may not be necessary if the classifier is able
to “learn” from examples rather than operate using the coding of known
accent-related differences. This would make the extension of the system to
previously unstudied accents a simpler and less time-consuming task. In addi-
tion, if accent-related differences were already known or were discovered, they
could later be used to further enhance the effectiveness of the system. Support
Vector Machines provide an ideal example of a classifier which is able to work
with the high-dimensional inputs provided by speech. Rule extraction from
SVMs in this context is useful in advancing further classifier design and for
an explanation of the knowledge obtained

This chapter presents an analysis of an accent classification system using
SVMs with MFCC features in time-based segments as inputs. The length of
speech sample required for good performance, as well as the duration of the
temporal segments is investigated for three samples of differently accented
speech. Rule extraction is undertaken in order to identify the features which
contribute to classification.

4 Methodology

4.1 Speech Data and Feature Extraction

A corpus of accented speech was collected from 40 male and female subjects in
two groups, Arabic (n = 27) and Indian (n = 13) accents of English. Subjects
were aged between 20 and 56 years (mean 27.8 y) and had a high to very
high level of spoken English proficiency. Fully informed consent was obtained.
Subjects read a single page of English text on each of three topics. Read
speech was chosen to provide a uniform sample space, and because it is easier
to elicit than spontaneous or conversational speech. The speech samples were
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recorded using a unidirectional dynamic close-talk head-mounted microphone,
via a mixer and USB audio interface onto computer as mono WAV signed 16
bit PCM (uncompressed) files at 16KHz sample rate. All recordings were
made in the same location under identical conditions in order to minimize
channel effects.

Three sections of speech samples were chosen for initial analysis, one from
each topic, and each 10 s long. Samples were trimmed to 50ms before the start
of the relevant section in order to minimize the effect of potential edge-related
effects on parameters. Analysis was conducted on samples of between 1 and
10 s in duration, in 1-s steps, all starting at the same “zero” point.

The samples were processed to obtain energy and 12 basic MFCCs, their
velocity and acceleration parameters (first and second order derivatives). The
method included cepstral mean subtraction and energy normalization in order
to minimize any recording differences. A frame shift of 10ms was used (that
is, MFCCs were calculated every 10ms) and a Hamming window of width
25ms was used. There was therefore some overlap between adjacent frames,
however the shape of the window means that most of the energy was in the
center of the segment. The processing resulted in 39 features for each frame
for the duration of the speech sample, giving 3,900 features for each second
of sample duration.

Because a shift of 10ms is a very short time relative to the length of many
phonemes, each feature was averaged across a number of frames in order
to obtain values for larger time segments. The procedure was repeated for
segment “lengths” of 10ms (that is, no averaging) to 150ms.

4.2 Machine Learning Experiments

The sequence of averaged MFCCs for a particular sample was used as the
input feature vector for the particular subject for SVM training and testing.
The samples were not divided into separate training and testing groups due to
the small number of samples; instead, leave-one (speaker)-out cross-validation
(LOO; built-in to SVMlight, one of the tools use in this study [16]) was used for
performance evaluation, focusing on accuracy, precision and recall parameters.
In addition, ROC curve analysis was used.

Recall and precision are defined as follows:

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

where TP, FP and FN are the number of true positives, false positives and
false negatives respectively.

The three topics were initially analyzed separately. Experiments were
repeated for each of the sample duration and segment size combinations.
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Various SVM kernel designs (linear, polynomial, RBF) were investigated for
the binary classification task.

The number of MFCCs per segment was also reduced from 39 to 13 (that
is, excluding the first and second order MFCC derivatives) and the analysis
repeated for all duration-segment combinations.

A series of LOOs was performed using training samples from one topic set
and testing samples from each of the other two topics, in order to test the
effect of sample content mismatch. This was repeated for each combination of
topic, sample length and segment size.

A further series of tests was performed by adding extra “non-matching”
samples to the training set of the third topic (1-s sample, 100ms segment case),
and conducting LOOs. The “non-matching” samples had the same duration
and segment size but were not from the same part of the speech sample as
the original training set.

A subset of the 13-MFCC duration-segment combinations from each of the
three topics was analyzed using a Decision Tree Learner (J48) [31] [24] and
a Rule-based classifier (JRip) [31] in order to provide a comparison with the
SVM results.

4.3 Rule Extraction and Evaluation

A variation of the pedagogical rule extraction method [21] [2] was used for
rule extraction from the SVMs for the same subset of the duration-segment
combinations for each topic that was used with the non-SVM machine learning
methods.

In each topic, sample length and segment size combination, the model pro-
duced by SVM analysis was used to reclassify the original input patterns. The
predicted class labels were then applied to the patterns to create a synthetic
dataset which was used to train a rule-based classifier (JRip). The rules pro-
duced by the rule-based classifier were then examined in terms of accuracy
and ROC curve analysis, and were compared to the performance on the origi-
nal data, both in relation to the SVM and the rule-based classifier. Individual
rules were examined and the elements of the rules compared with both the
original JRip analysis and the original J48 analysis.

5 Results

5.1 Machine Learning Experiments

Classification results varied by topic, sample length and segment size. The
results for 13 and 39 features per segment were almost identical, therefore
results for 13 MFCC features per segment will be presented.

Best results were obtained using a linear SVM, for the third topic and 4-s
sample duration or less (Table 1). Best classification accuracy ranged from
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Table 1. Performance of SVM – accuracy, duration, recall – for best cases

Topic Accuracy Recall Precision Sample Segment
number (%) (%) (%) duration (s) duration (ms)

1 75 92.59 75.76 2 140
2 87.5 96.3 86.67 1 30, 40, 60–80, 120–150
3 97.5 100 96.43 1 130
3 97.5 100 96.43 4 60, 80–110, 140
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Fig. 1. ROC curves

Table 2. Area under ROC curve

Topic Sample Segment Area under ROC curve
number duration (s) duration (ms)

1a 2 140 0.8604

1b 6 70 0.8348
2a 1 120 0.8832

2b 9 60 0.7778
3a 4 140 0.9943

3b 10 20 0.9516

a Best case
b Poor case

75% to 97.5%, with very high precision and recall. Accuracy, recall and preci-
sion fell as sample duration increased from these peak results. Accuracy was
slightly higher (mean 2.5% points) for longer segment durations. Recall did
not change with segment duration, and precision increased by an average of
1.1%, 3.2% and 5.6% points for the first, second and third topics respectively,
as sample duration increased from 10 to 150ms.

Selected ROC curves are presented in Fig. 1 as examples of typical best
and worst cases (by accuracy, precision and recall) for each topic. Area under
the ROC curve is shown in Table 2.

The effect of a mismatch between training and testing samples varied sub-
stantially between different training-testing combinations. Best results were



Support Vector Machines for Classification and Rule Extraction 215

50

60

70

80

90

100

Number of patterns
40 80 120 160 200

P
er

ce
nt

ag
e

Accuracy

Recall

Precision

Fig. 2. Effect of adding non-matching samples from the same topic

achieved for SVM training on topic 3 and testing on topic 2, with up to 85%
accuracy, 82% recall and 87% precision. In contrast, training on topic 1 and
testing on topics 2 or 3 resulted in 50–70% accuracy, 97% recall and 67%
precision, with almost all errors being misclassification of Indian samples as
Arabic. These results varied little with increasing sample duration and seg-
ment size. Training on topic 2 and testing on topic 3 produced improved recall
with longer samples and smaller frame sizes, but a drop in precision in both
cases.

Adding more 1-s samples from topic 3 to the training set for topic 3 (1-s
samples, 100ms segments in all cases) had a negative effect on accuracy, pre-
cision and recall (Fig. 2). When all 1-s samples were included in the training
set (a total of 400 patterns), accuracy was 68.25%, recall 86.3% and precision
72.14%. Area under the ROC curve in this case was 0.6728, compared with
0.9829 when only the first sample was used for training.

Decision Tree (J48) and rule-based (JRip) analyses were conducted on
samples of 1, 2 and 4 s duration, with segments of 40 to 150ms and 13 MFCCs
per segment, in order to provide a comparison with SVM results, for most
of the best cases in Table 1. Due to the small number of patterns, 40-fold
cross-validation was done to most closely correlate to the SVM LOOs, and a
comparison of the accuracy for each classifier (by topic) is shown in Table 3.
The mean accuracy was calculated for each sample duration-text combination
and these are shown in Fig. 3. J48 and JRip accuracy varied according to
segment size much more than did SVM accuracy. Taking the topic 1, 2-s
group as a typical example, SVM accuracy varied by up to 7.5% points across
segment sizes from 40 to 150ms, whereas J48 and JRip accuracy varied by
up to 42.5 and 30% points respectively. J48 trees and JRip rules are shown in
Tables 4 and 5 for the topic 1, 2-s cases.
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Table 3. Comparison of LOO accuracy for various machine learning methods

Topic JRip accuracy (%) J48 accuracy (%) SVM accuracy (%)

number Mean SD Mean SD Mean SD

1 67.2 8.3 65.6 10.7 66.6 4.0
2 71.5 8.8 73.2 8.8 82.9 3.2
3 81.9 7.3 83.5 8.6 94.6 2.0
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Table 4. Trees from J48 analysis on topic 1, 2-s samples

Segment size (ms) Tree

40 time6mfcc2 <= -4.595: Arabic

time6mfcc2 > -4.595

| time3mfcc12 <= 1.622: Indian

| time3mfcc12 > 1.622: Arabic

Number of Leaves : 3

Size of the tree : 5

50 time5mfcc2 <= -3.177: Arabic

time5mfcc2 > -3.177

| time3mfcc13 <= 0.005: Indian

| time3mfcc13 > 0.005: Arabic

Number of Leaves : 3

Size of the tree : 5
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Table 4. (Continued)

Segment size (ms) Tree

60 time4mfcc2 <= -5.963: Arabic

time4mfcc2 > -5.963

| time2mfcc4 <= 3.721: Arabic

| time2mfcc4 > 3.721: Indian

Number of Leaves : 3

Size of the tree : 5

70 time4mfcc13 <= -2.145: Indian

time4mfcc13 > -2.145

| time2mfcc2 <= 4.046: Arabic

| time2mfcc2 > 4.046

| | time24mfcc5 <= -0.078: Indian

| | time24mfcc5 > -0.078: Arabic

Number of Leaves : 4

Size of the tree : 7

80 time2mfcc8 <= -4.328: Indian

time2mfcc8 > -4.328

| time3mfcc12 <= 4.537: Arabic

| time3mfcc12 > 4.537: Indian

Number of Leaves : 3

Size of the tree : 5

90 time3mfcc2 <= -4.493: Arabic

time3mfcc2 > -4.493

| time2mfcc8 <= -0.409: Indian

| time2mfcc8 > -0.409

| | time3mfcc1 <= -1.387: Indian

| | time3mfcc1 > -1.387: Arabic

Number of Leaves : 4

Size of the tree : 7

100 time3mfcc13 <= -1.73: Indian

time3mfcc13 > -1.73

| time17mfcc7 <= -1.242

| | time1mfcc10 <= -2.199: Arabic

| | time1mfcc10 > -2.199: Indian

| time17mfcc7 > -1.242: Arabic

Number of Leaves : 4

Size of the tree : 7

110 time9mfcc9 <= -6.577: Indian

time9mfcc9 > -6.577

| time4mfcc2 <= -0.788: Arabic

| time4mfcc2 > -0.788

| | time1mfcc2 <= 1.778: Arabic

| | time1mfcc2 > 1.778: Indian

Number of Leaves : 4

Size of the tree : 7

(continued)
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Table 4. (Continued)

Segment size (ms) Tree

120 time1mfcc6 <= 7.001

| time14mfcc7 <= -3.048

| | time4mfcc2 <= -2.548: Arabic

| | time4mfcc2 > -2.548: Indian

| time14mfcc7 > -3.048: Arabic

time1mfcc6 > 7.001: Indian

Number of Leaves : 4

Size of the tree : 7

130 time1mfcc6 <= 2.334

| time1mfcc7 <= -2.372

| | time1mfcc4 <= 4.738: Arabic

| | time1mfcc4 > 4.738: Indian

| time1mfcc7 > -2.372: Arabic

time1mfcc6 > 2.334

| time10mfcc9 <= 3.71: Indian

| time10mfcc9 > 3.71: Arabic

Number of Leaves : 5

Size of the tree : 9

140 time1mfcc6 <= 2.285

| time2mfcc9 <= 4.912: Arabic

| time2mfcc9 > 4.912: Indian

time1mfcc6 > 2.285

| time3mfcc9 <= -4.871: Arabic

| time3mfcc9 > -4.871: Indian

Number of Leaves : 4

Size of the tree : 7

150 time1mfcc6 <= 0.311: Arabic

time1mfcc6 > 0.311

| time2mfcc2 <= -3.38

| | time6mfcc8 <= -2.558: Indian

| | time6mfcc8 > -2.558: Arabic

| time2mfcc2 > -3.38: Indian

Number of Leaves : 4

Size of the tree : 7

5.2 Evaluation of the Rule Extraction Results

Analysis was conducted on samples of 1, 2 and 4 s duration, with segments of
40–150ms and 13MFCCs per segment, for all three topics.

The SVM-predicted class labels were found to be the same as the original
class labels for all segment durations of the topic 3, 2 and 4-s duration cases,
and for over 50% of the cases in topic 1, 4-s and topic 3, 1-s duration. There-
fore, further analyses of accuracy and AUC were only conducted on topic 1
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Table 5. Rules extracted using JRip on original data, topic 1, 2-s samples

40 ms (2 rules)

(time6mfcc2 >= -2.312) => class=Indian

=> class=Arabic

50 ms (2 rules)

(time5mfcc2 >= -2.905) => class=Indian

=> class=Arabic

60 ms (3 rules)

(time28mfcc7 <= -1.046) and (time5mfcc2 <= -0.249) => class=Indian

(time4mfcc1 <= -1.587) => class=Indian

=> class=Arabic

70 ms (2 rules)

(time24mfcc7 <= -1.006) and (time4mfcc9 >= 2.148) => class=Indian

=> class=Arabic

80 ms (2 rules)

(time3mfcc2 >= -4.391) and (time11mfcc7 >= -1.175) => class=Indian

=> class=Arabic

90 ms (2 rules)

(time3mfcc2 >= -3.551) => class=Indian

=> class=Arabic

100 ms (3 rules)

(time17mfcc7 <= -1.242) and (time1mfcc10 >= -1.917) => class=Indian

(time3mfcc13 <= -1.73) => class=Indian

=> class=Arabic

110 ms (3 rules)

(time17mfcc9 >= 3.455) and (time1mfcc1 <= 1.029) => class=Indian

(time3mfcc13 <= -2.838) => class=Indian

=> class=Arabic

120 ms (3 rules)

(time14mfcc7 <= -3.057) => class=Indian

(time1mfcc6 >= 7.082) => class=Indian

=> class=Arabic

130 ms (2 rules)

(time1mfcc6 >= 2.346) => class=Indian

=> class=Arabic

140 ms (2 rules)

(time2mfcc2 >= -3.543) and (time1mfcc6 >= -0.125) => class=Indian

=> class=Arabic

150 ms (2 rules)

(time2mfcc2 >= -3.843) and (time1mfcc6 >= 0.426) => class=Indian

=> class=Arabic
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(1 and 2-s samples), and topic 2, (1, 2 and 4-s samples). Rule content was
analyzed for all data.

Accuracy and Area Under Roc Curve

Mean results are shown in Table 6. Paired samples t-tests were performed
to compare the various conditions. Accuracy and AUC were significantly worse
for the original JRip analysis compared to both the SVM and JRip on data
labeled with SVM-predictions (hereafter called “JRip Improved”) (p < 0.001).
There was no significant difference in accuracy between the original SVM
analysis and JRip Improved analysis. AUC was significantly better for original
SVM analysis than JRip Improved analysis (p = 0.001), which was in turn
significantly better than original JRip analysis (all p < 0.001).

Mean Accuracy and AUC for the five topic-segment duration combinations
are shown in Figs. 4 and 5. Where SVM accuracy was poorest (topic 1, 1-s
samples), JRip Improved analysis had significantly greater accuracy than both
SVM and JRip (paired t-test, p = 0.021 and 0.024 respectively) but AUC was
not significantly different (at around 0.6). Only in the topic 2, 4-s sample case
was the AUC for JRip Improved analysis significantly different from AUC for

Table 6. Accuracy and AUC for different learning systems

Learning system Mean accuracy (%) Area under ROC curve

JRip on original labels 69.79 0.5965
SVM on original labels 78.95 0.7316
JRip improved 79.5 0.6778

0

10

20

30

40

50

60

70

80

90

100

topic1
1sec

topic1
2sec

topic2
1sec

topic2
2sec

topic2
4sec

Topic and Sample Length Combination

JRip

SVM

SVM+Jrip

Fig. 4. Accuracy, various machine learning systems



Support Vector Machines for Classification and Rule Extraction 221

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

topic1
1sec

topic1
2sec

topic2
1sec

topic2
2sec

topic2
4sec

Topic and Sample Length Combination

A
re

a 
U

nd
er

 R
O

C
 C

ur
ve

JRip

SVM

SVM+Jrip

Fig. 5. Area under ROC curve, various machine learning systems

original JRip analysis (pairwise t-test, p = 0.008), whereas SVM AUC was
significantly better than original JRip analysis for all but the topic 1, 1-s case.

Rules

Individual rules were examined for each topic, sample length and segment
size, for J48, JRip and JRip Improved analysis.

MFCCs in the antecedents of the rules were identified by a segment time
period and an MFCC number (e.g. time6mfcc2, signifying MFCC number 2 in
the 6th segment from the beginning). The MFCC number represents the same
aspect of the speech signal regardless of the segment it is in, whereas each
segment time period covered a different section of the speech signal (both in
duration and location), depending on the segment size being analyzed.

In the JRip Improved analysis, there were 166 MFCCs mentioned in the
antecedents of the 108 rule sets (all three topics and three sample lengths).
MFCC number 3 was mentioned most often (15% of rules, in 25 rule sets),
followed by MFCCs 1 and 2 (each 13.25% of rules) and MFCC 5 (12.65%),
MFCC 7 (10.8%) and MFCC 6 (10.2%). The distribution of these MFCCs
across the various topics varied greatly. Counting those MFCCs occurring in
greater than 10% of the rule antecedents within a particular topic, MFCCs
1, 3 and 7 accounted for 83.3% of the antecedents for topic 3; MFCCs 2, 3, 5
and 6 accounted for 80.6% of the antecedents for topic 2, and MFCCs 2, 6, 7,
9 and 13 accounted for 76.8% of the antecedents for topic 1.

Sample rules are shown in Table 7 for JRip Improved analysis. In JRip
Improved analysis, there were 108 rule sets (three topics, three sample lengths,
12 segment sizes). 68.5% of rule sets had only two rules, and 29.6% had three
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Table 7. Rules for topic 2, 1-s samples extracted using Jrip on data labelled with
SVM predictions (JRip improved)

40 ms segments (2 rules)

(time4mfcc5 >= 2.198) => class=Indian

=> class=Arabic

50 ms segments (2 rules)

(time3mfcc6 >= -0.076) and (time2mfcc2 >= 6.887) => class=Indian

=> class=Arabic

60 ms segments (3 rules)

(time4mfcc3 <= -5.189) => class=Indian

(time15mfcc11 >= 4.709) => class=Indian

=> class=Arabic

70 ms segments (2 rules)

(time2mfcc6 >= 1.696) => class=Indian

=> class=Arabic

80 ms segments (2 rules)

(time3mfcc3 <= -3.96) => class=Indian

=> class=Arabic

90 ms segments (2 rules)

(time2mfcc5 >= 2.514) => class=Indian

=> class=Arabic

100 ms segments (3 rules)

(time2mfcc5 >= 2.708) => class=Indian

(time1mfcc12 >= 2.972) => class=Indian

=> class=Arabic

110 ms segments (2 rules)

(time1mfcc6 >= 2.352) and (time1mfcc12 >= -2.99) => class=Indian

=> class=Arabic

120 ms segments (2 rules)

(time2mfcc6 >= -3.298) and (time1mfcc6 >= 1.41) => class=Indian

=> class=Arabic

130 ms segments (2 rules)

(time1mfcc6 >= 1.581) and (time2mfcc5 >= -3.744) => class=Indian

=> class=Arabic

140 ms segments (2 rules) 8

(time2mfcc3 <= -5.81) => class=Indian

=> class=Arabic

150 ms segments (3 rules)

(time2mfcc3 <= -4.848) => class=Indian

(time3mfcc5 >= 4.652) => class=Indian

=> class=Arabic
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rules. Two rule sets had only one rule, that is, everything was classified as
Arabic. Of the 246 rules, only 29 had more than one condition.

57% of the 60 topic-segment length combinations (topic 1, 1 and 2-s seg-
ments; topic 2, 1, 2 and 4-s segments) had at least one common MFCC
mentioned in the antecedent of a rule (or in a tree) for both J48 and JRip anal-
ysis (on original data). The accuracy of JRip on these cases was significantly
better than where there was no MFCC in common in the rule antecedent
(73.3% vs. 65.2%, t-test p = 0.001). Exactly 50% of the combinations had at
least one common MFCC mentioned in the antecedent in the rules of JRip
and JRip Improved analysis. There was no significant difference in accuracy
of JRip Improved analysis between these two groups. (77.99% vs. 77.01%).
Exactly 50% of the combinations had at least one common MFCC in the
antecedent of a rule in J48 and JRip Improved analysis. The accuracy of
JRip Improved was significantly better if there was a common MFCC in the
rule antecedent in both J48 and JRip Improved analysis (82.5% vs. 76.5%,
p = 0.0024).

Out of the 30 MFCCs that were in common between J48 and JRip
Improved analysis, only 19 were already in common between J48 and JRip
(original). There was no significant difference in JRip Improved accuracy
between these two groups. There were 34 rule sets where there was an MFCC
in common between JRip and J48 analysis; 15 of these did not have that
MFCC in common when the rules and trees for those cases in J48 and JRip
Improved analysis were compared. In addition, 11 new common MFCCs had
arisen between J48 and JRip Improved analysis.

6 Discussion

The performance of the SVM classifier using time-based segments of averaged
MFCCs as features was very high, with up to 97.5% accuracy, with a sample
length of up to only 4 s. This compares favorably with a human listener study
[25] conducted using the same samples, which yielded accuracy of 92.5% (range
80–100%) after an average of 7.7 s. Interestingly, error analysis revealed that
SVMs mostly made mistakes on the Indian-accented samples while humans
made almost all their mistakes on the Arabic-accented samples.

SVM accuracy also compared favorably with JRip and J48 classifier accu-
racy. SVM accuracy was 7.3% and 7.9% points higher on average than JRip
and J48 accuracy respectively. There was much less variability in SVM accu-
racy than for the other classifiers, across the various segment durations. This
means that the choice of segment size was much less critical for the good per-
formance of the SVM system. SVM accuracy was, overall, slightly higher for
longer segment durations than shorter ones.

Classification accuracy with SVMs appears to be dependant on the content
of the speech sample under investigation, as shown by the different results for
the various topics. Also, when the content of a test sample is different from
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that on which the classifier is trained, accuracy can still be up to 85% but
is often worse. Adding extra, non-matching samples in order to improve the
feature-pattern ratio does not improve performance, and in fact may degrade
performance further [26]. This is likely to be due to the diversity of sounds
across the samples (due to diverse speech content), being greater than the
difference in sound realization between the accent groups, as represented by
MFCCs.

Many speech sounds are shared by different accents, and the nature of the
variations that do occur can often be subtle and sparse. If strong contrasts in
the speech sounds between the accents do actually occur in a short enough
time (that is, over a few seconds, thereby avoiding excessive variation in con-
tent) the SVM-based classifier can be very effective in distinguishing between
the accents, even without linguistic pre-processing or explicit identification of
the individual contrasting speech sounds.

SVMs do not easily provide rules or explanations for the classifications
that they make, but in this study the rules provided by the “white box”
learner also do not easily translate to knowledge about accent differences in
the speech stream. Apart from the first MFCC (usually termed MFCC(0),
but here termed “mfcc1”), which shows a close correlation to log Energy
of a speech signal, and the second MFCC which represents spectral slope, it
becomes increasingly unclear as to what exactly the higher individual MFCCs
represent, in terms of actual speech sounds, despite their demonstrated use-
fulness in speech recognition and accent classification. In addition, because of
the small number of patterns and their high dimensionality, rules extracted by
the “white box” learner can vary greatly from one fold to the next, depending
on which patterns are excluded at learning time. Nevertheless, rule extrac-
tion gives some indication which features of the high dimensional input space
contribute to classification.

As mentioned above, there was no significant difference in accuracy between
the original SVM analysis and JRip Improved analysis. However, AUC was
significantly better for the original SVM analysis than JRip Improved anal-
ysis, which was in turn significantly better than original JRip analysis. It
is worth noting that rule extraction resulted in the JRip Improved analysis
which is a success in itself. The more conservative AUC evaluation confirmed
the overall superiority of the SVM.

Not all MFCC-based features may be important for classifier performance,
as was shown by the redundancy of the first and second order derivatives. The
prominence of certain MFCCs in the rulesets of the various “white box” learn-
ers is also an indication that not all MFCCs are equally important for accurate
classification. However, the contribution of individual MFCCs may not be
fully captured in propositional rules such as those presented in this study.
Investigation of more expressive rule languages may capture relations between
features that are not represented in the rules presented above, but which are
nevertheless important for the good performance of the SVM learner.
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Future work will focus on additional methods for feature selection, with
the goal of minimizing the number of features required, and extending the
ability of the classifier to handle miss-matched data. Testing on other corpora
is also an important priority. Emphasis will also be on knowledge initialisation
of the SVMs by the use of domain knowledge to create virtual data sets in
order to enhance classifier accuracy.
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