
Prototype Rules from SVM

Marcin Blachnik1 and W�lodzis�law Duch2

1 Division of Computer Methods, Department of Electrotechnology, The Silesian
University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
marcin.blachnik@polsl.pl

2 Department of Informatics, Nicolaus Copernicus University, Grudzia̧dzka 5,
Toruń, Poland Google: W. Duch

Summary. Prototype based rules (P-rules) are an alternative to crisp and fuzzy
rules, moreover they can be seen as a generalization of different forms of knowledge
representation. In P-rules knowledge is represented as set of reference vectors, that
may be derived from the SVM model.

The number of support vectors (SV) should be reduced to a minimal number
that still preserves SVM generalization abilities. Several state-of-the-art methods
that reduce the number of support vectors are compared with a new approach,
taking into consideration possible interpretation of retained support vectors as the
basis for P-rules.

1 Why Prototype-Based Rules?

Propositional logical rules may not be the best way to understand the class
structure of data describing some objects or states of nature. The best expla-
nation may differ depending on the problem, the type of questions and the
type of explanations that are commonly accepted in a given field. Although
most research has focused on propositional logical rules [14, 19] their expres-
sive powers have serious limitations. For example, a simple majority voting
can be expressed using the “majority is for it” concept that is easy to formu-
late using M-of-N threshold rules. Given n binary xi = 0, 1 answers the rule∑n

i=1 xi > 0.5n is an elegant expression of such concept and is impossible to
state directly in propositional form, leading to

(
n

n/2

)
terms. This type of rules

may be regarded as a particular form of similarity or prototype-based rules.
In the voting example the similarity to the “all for it” prototype A, that is a
vector with all ai = 1, has to be greater than n/2 in the Hamming distance
sense, ||A−X|| < n/2. Cognitive psychology experiments proved that human
categorization of natural objects and states of nature is based on memoriza-
tion of numerous examples and creation of prototypes that are abstractions
of these examples [34]. Propositional logical rules are prevalent in abstract
sciences but in real life they are rarely useful, their use being restricted to

M. Blachnik and W. Duch: Prototype Rules from SVM, Studies in Computational Intelligence

(SCI) 80, 163–182 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

164 M. Blachnik and W. Duch

enumeration of small number of nominal values, or one or two continuous
features with corresponding thresholds. In real life “intuitive understanding”
is used more often, reflecting experience, i.e. memorized examples of patterns
combined with various similarity measures that allow for their comparison
and evaluation.

Decision borders between different categories produced by propositional
rules are simple hyperboxes. Univariate decision trees provide even simpler
borders based on hierarchical reduction of decision regions to half-spaces and
hyperboxes. Using similarity to prototypes quite complex decision regions may
be created, including hyperboxes and fuzzy decision regions. Some of these
decisions may be difficult to describe using linguistic statements and thus may
server as a model of intuition. One may argue that comprehensibility of rules is
lost in this way, but if similarity functions are sufficiently simple interpretation
may in fact be quite easy. For example, interpretation of the ||A−X|| < n/2
rule is quite obvious. Other voting rules may easily be expressed in the same
way, including polarization of opinions around several different issues. Weight-
ing evidence before decision is made requires non-trivial aggregation function
to combine all available evidence, and similarity or dissimilarity functions are
the most natural way to do it. Despite these arguments the study of prototype-
based rules has been much less popular than of the other forms of rules.

Similarity-Based Methods (SBM) [8,13] are quite popular in pattern recog-
nition and data mining. The framework for construction of such methods
enables integration of many methods for data analysis, including neural net-
works [12], probabilistic and fuzzy methods [15], kernel approaches and many
other methods [32]. One of the most exciting possibility that such framework
offers is to build the simplest accurate method on demand, in a meta-learning
scheme, searching for the best model in the space of all similarity-based
methods [18]. This family of methods includes also prototype-based rules (P-
rules) [17] that are more general than fuzzy rules (F-rules), crisp propositional
rules (C-rules) and M-of-N rules, including them as special cases. All methods
covered by the SBM framework represent knowledge as a set of prototypes
or reference vectors, adding appropriate similarity metrics and the aggrega-
tion procedures that combine information from different prototypes giving the
final output. Several similarity-based transformations may be done in succes-
sion, creating higher-order SBM models. Prototype based rules are based on
the SBM framework, but their aim is to represent the knowledge hidden in the
data in the most comprehensible way. This goal is obtained by reducing the
number of prototype vectors (prototype selection), minimizing the number of
features used to create final model and using simple similarity metrics.

One of the most important advantages of P-rules is their universality.
They enable integration of different type of rules, depending on the sim-
ilarity function associated with each prototype: classical crisp rules result
form Chebychev distance, fuzzy rules (F-rules) from any separable similarity
metrics [16]. P-rules can also represent M-of-N rules in a natural way using
prototype threshold rules [2, 21], adding the distance to a prototype as one
of the coordinates. Such rules often give very simple interpretation of data,

Prototype Rules from SVM 165

for example a single prototype threshold rule gives over 97.5% accuracy on a
well known Wisconsin Breast Cancer dataset [21]. Thus P-rules provide most
general form of knowledge representation.

Two general types of P-rules are possible, the Nearest Neighbor Rules
(PN-rules), and the prototype threshold rules (PT-rules), introduced in the
next section. In the same section the use of support vectors as prototypes
is discussed. Reduction of the number of support vectors (SVs) and meth-
ods of searching for informative prototypes are described in Sects. 2.3 and 3,
while numerical examples are presented in Sect. 3.4. Perspectives on the use
of support vector machines for P-rule extraction conclude this paper.

2 P-Rules and Their Interpretation

Prototype rules are based on analysis of similarity between objects and pro-
totypes that are used as a reference. In its most general form [13,32] objects
(cases) {Oi}, i = 1..n do not need to be represented by numerical features, a
kernel (or a set of different kernels that provide “receptive fields” that stress
different perspectives) estimating (dis)similarity is sufficient Kij = K(Oi,Oj)
to characterize such objects. Selecting some of these objects as prototypes an
object O is represented by n-dimensional vector p(O) = Kp. Alternatively,
each object is represented by N feature values. In the first case features come
from evaluation of similarity and may be created for quite complex and diverse
objects (such as proteins or whole organisms), for which a common set of fea-
tures is hard to define. Below it is assumed that all objects are described by
vectors in some feature space.

A single prototype p with associated similarity function S(·,p) defines
for a given threshold θ a subspace Sp of vectors x for which S(x,p) < θ.
This subspace is centered at the position of the prototype p and may have
different shapes, depending on the similarity function. Such interpretation
defines a crisp logical rule for the new feature xp = S(x,p). In this case the
antecedent part of a P-rule uses similarity to a single prototype and the class
label of that prototype (in classification tasks) is the consequence part.

If S(x;p) > θ Then C(x) = C(p) (1)

The similarity value may be used to estimate confidence factor for such
rule. The rescaled difference µp(x) = S(x,p)−θ may obviously be interpreted
as a fuzzy membership function defining the degree to which vector x belongs
to the fuzzy subspace Sp. Many similarity functions are separable in respect
to all features:

S(x;p, σ) =
∏

i

S(xi, pi; σi) (2)

where x = [x1, x2, . . . , xn]T and p = [p1, p2, . . . , pn]T are n-dimensional
vectors, and S(·) is similarity function.

P-rules with separable similarity functions can be interpreted as fuzzy
rules (F-rules) with a product as a fuzzy and aggregation operator. Linguistic

166 M. Blachnik and W. Duch

interpretation of F-rules relies on semantics of linguistic values assigned to
each linguistic variable as adjectives describing the membership functions.
Such representation is sensitive to context. Good example of this context
dependence is an adjective high that may describe objects of different types, for
example a person, but even in this case different kinds of people: kids, women
or basketball players will require different membership function representing
variable “high”. Thus indirectly fuzzy rules have to rely on prototypes of
objects or concepts to define the context, but since in fuzzy rules this context
is not explicitly represented confusion is quite likely. P-rules make this reliance
explicit always pointing to prototypes of particular concepts, allowing each
concept to be decomposed into independent features that may be treated as
linguistic values in the fuzzy sense.

2.1 Types of P-Rules

Two distinct types of P-rules are:

– Prototype Threshold Rules (PT-rules), where each prototype pi has an
associated threshold θi value and i-th rule is written as:

If S(x,pi) > θi Then C(x) = C(pi) (3)

where C(·) is a function returning class labels or some other information
associated with the prototype.

– Nearest Neighbor Rule (PN-rules), where the most similar prototype is
selected:

If k = arg max
i

S(x,pi) Then C(x) = C(pk) (4)

so the output value depends on the internal relations between prototypes.

More general form of PN-rules is used by the Generalized Nearest Proto-
type Classifier [25]. From the rule-based perspective it is defined as: If x is
similar to pi then it is of the same class with some support wi:

If wi = S(x,pi) Then C(x) = C(pi) with support wi (5)

where P = [p1,p2, . . . ,pv]T is set of v prototype vectors, and wi is support
for the conclusion of the i-th rule. The final decision of the set of such rules
is obtained as:

C(x) = A(wi, C(pi)) (6)

where A(·) is an aggregation operator, which joins conclusions of individual
P-rules.

2.2 Support Vectors as Prototypes

The SVM model defines a hyperplane that can be used for linear discrimina-
tion in the feature space:

Prototype Rules from SVM 167

Ψ =
m∑

i=1

γiφ(xi) (7)

where φ(x) is function that maps vectors from n dimensional input space
to some feature space �. Since scalar products are sufficient to define linear
models in the φ-transformed space kernels are used to represent these products
in the original feature space. Decision function is in this case defined as:

f(x) =
m∑

i=1

γiyiK(x,xi) + b (8)

where m is the number of support vectors xi with non-zero γi coefficients
(Lagrangian multipliers), K(x,xi) is the kernel function, and yi = C(xi) = ±1
are the class labels.

This model may be expressed as a set of PN-rules with weighted aggrega-
tion A(·) (5) as a sum from i = 1 to m, replacing the kernel with a similarity
function S(·, ·) and defining support for a rule as wi = αiS(x,pi; α). Simi-
lar ideas have also been considered from the fuzzy perspective by Chen and
Wang [5] who interpret SVM model as a fuzzy rule based system. In their
paper they introduced Positive-Definite Fuzzy Classifiers using the Takagi
Sugeno (TS) fuzzy inference system [37], adopting this model to extract fuzzy
rules from support vector machines. However, in their solution comprehen-
sibility and model transparency, the most important properties of any rule
bases system, are lost. As stated in [19], logical rules are useful only if they
are simple and accurate, otherwise there is no point in extracting rules from
black box systems that works well because no additional understanding is
gained by creation of many complex rules. The goal of comprehensibility and
transparency can be achieved only when small number of support vectors
(SV) can be defined, or when SVM decisions can be replicated with another
simpler rule-based model. These two strategies have been studied by many
research groups. The first leads to methods aimed at reduction of the number
of support vectors through removing approximately linearly dependent ker-
nels in the SV set. The second one leads to the “Reduced Set” methods aimed
at reconstruction of the SVM hyperplane defined in the kernel feature space
with smaller number of kernel functions.

The initial idea behind the kernel reduction methods was to speed up the
decision process, but these methods can obviously be also used to understand
data using small number of P-rules. These two approaches differ in the way
support vectors are used. SVs are vectors that define or lie within the margin,
that is they are close to the decision hyperplane. Those SVs that are outside
of the margin on the wrong side should be removed, as they are cases that
cannot be correctly classified and should not be used to create rules. Reducing
linear dependencies removes some of the original SVs but will leave other SVs
intact. In the “Reduced Set” approach new support vectors are not selected
from the training examples but may be defined anywhere in the input space.

168 M. Blachnik and W. Duch

2.3 Removing Linear Dependencies Among Support Vectors

Many numerical methods of removing linear dependencies from the kernel
matrix K(xi,xj) may be defined. For smooth kernels the problem may also
be analyzed in the feature space, because it is created by vectors that are
too similar to each other. Therefore clusterization techniques may be used to
select representative vectors that are sufficiently distinct to avoid problems
with linear dependencies. In some applications cluster centers may replace
original vectors.

SVM approach based on quadratic programming has a unique solution,
avoiding the problem of local minima and initialization of parameters that
neural network algorithms have to face. Still there are some differences in
SVM implementations that use different quadratic programming solvers. Solu-
tions obtained with SMO [33], SVM Light [24], SVMTorch [6] or other SVM
methods slightly differ from each other. On the other hand even if identical
decision function are obtained different support vectors may be selected dur-
ing the optimization procedure. Such situation is bound to happen when SVs
are linearly dependent. This observation leads to a reduction of the number
of support vectors, as studied by Downs et al. in [7] in the algorithm referred
below using RLSV acronym (removed linearly-dependent support vectors).
Linear dependence in the kernel space Φ can be written as:

φ(xk) =
m∑

i=1
i�=k

qiφ(xi) (9)

where qi are scalar coefficients. If such vector xk exist (up to predefined
precision) the hyperplane (7) can be rewritten as:

Ψ =
m∑

i=1
i�=k

γiφ(xi) + γk

m∑
i=1
i�=k

qiφ(xi) (10)

Using the kernel equation (10) is written as:

f(x) =
m∑

i=1
i�=k

γiyiK(x,xi) + γkyk

m∑
i=1
i�=k

qiK(x,xi) + b (11)

This may be finally rewritten as:

f(x) =
m∑

i=1
i�=k

γ′
iyiK(x,xi) + b (12)

where
γ′

i = γi + γkqiyk/yi (13)
The form of the decision function is thus unchanged, but the coefficients are
redefined to account for the removed component.

Prototype Rules from SVM 169

2.4 Reducing the Number of Support Vectors

The methodology of reduced set methods was proposed by Burges in [4]. When
support vectors are removed the dimensionality of the transformed space is
decreased and this is reflected in the change of the original decision hyperplane
Ψ in the input space to Ψ′ plane. The distance between the two hyperplanes

d = min ||Ψ − Ψ′||2 (14)

should be as small as possible, and the approximation Ψ′

Ψ′ =
m′∑
i=1

βiφ(zi) (15)

for the P-rules should satisfy m′ � m, with scalar coefficients βi. The inequal-
ity m′ � m should be considered very carefully because the number of SV
cannot be too small [27].

Now there are two possible solution to the problem stated in this way. First,
both the coefficients βi and the position of vectors xi in the input space may
be optimized, and second, only the coefficients are optimized while support
vectors are kept selected from the input vectors zi. Both approaches has some
advantages and disadvantages. Optimization of SV positions allows for better
approximation and thus stronger reduction of the number of support vectors,
but may lead to vectors that are difficult to interpret from the P-rule perspec-
tive. For example, in medical applications unrestricted optimization of support
vector positions may create cases that are quite different from real patient’s
data, including intermediate values of binary features (such as sex). A com-
promise in which optimization of SVs is performed only in selected dimensions
may be the best solution from both accuracy and comprehensibility point of
view.

Optimizing support vectors zi requires minimization of (14) over β and z:

min
β,z

(d) =
m∑

i,j=1

γiγjK(xi, xj) +
m′∑

i,j=1

βiβjK(zi, zj)

−2
m∑

i=1

m′∑
j=1

βjγiK(xi,zj)

(16)

Directly minimization [4] requires evaluation of derivatives:

∂

∂βa

∥∥∥∥∥∥Ψ−
m′∑
i=1

βiφ(zi)

∥∥∥∥∥∥
2

= 2φ(za)

⎛
⎝Ψ −

m′∑
i=1

βiφ(zi)

⎞
⎠ (17)

Setting this derivative to zero and replacing Ψ with (7) one obtains:

m∑
j=1

γjφ(xj) =
m′∑
i=1

βiφ(zi) (18)

170 M. Blachnik and W. Duch

In the kernel matrix notation Kzxγ = Kzzβ where γ = [γ1, γ2, . . . , γm]T ,
β = [β1, β2, . . . , βm′]T , and Kzx is matrix of the m′ × m dimensions contain-
ing K(zi,xj) values. The solution may be written in a number of ways, for
example:

β = (Kzz)−1 Kzxγ (19)

or using pseudoinverse matrices etc. Selection of the support vectors zi from
the initial pool of SVM-selected input vectors can be done using systematic
search techniques, or using some stochastic selection procedures.

An interesting procedure for approximation Ψ have been proposed in [35],
where the problem has been analyzed as clustering in the feature space. First
notice that instead of direct distance (17) minimization the distance between
Ψ and orthogonal projection of Ψ on the space generated by Span(φ(z)) may
be used. Considering a single vector z and (16) the value of β is calculated
from (19) as:

β =
m∑

i=1

γiK(xi, z)

/
K(z, z) (20)

and then z may be optimized minimizing:

min
z

∥∥∥∥Ψ · φ(z)
φ(z)φ(z)

φ(z) − Ψ
∥∥∥∥2 = ‖Ψ‖2 − (Ψ · φ(z))2

φ(z)φ(z)
(21)

This is equivalent to maximization of:

max
z

(
(Ψ · φ(z))2

φ(z)φ(z)

)
(22)

In case of similarity-based kernels K(z, z) = 1 and maximization in (22)
can be simplified just to maximization of the numerator using fixed-point
iterative methods. Calculating derivatives it is not hard to show that first
approximation to z1 is calculated as [35]:

z1 =

m∑
i=1

γiK(||xi − z||2)xi

m∑
i=1

γiK(||xi − z||2)
(23)

and iterations improve this estimation:

zn+1 =

m∑
i=1

γiK(||xi − zn||2)xi

m∑
i=1

γiK(||xi − zn||2)
(24)

Stability of this process is not guaranteed, and results strongly depend on
the initialization of z and may require multiple restarts to find good solution.

Prototype Rules from SVM 171

This is one of many possible approaches. Another interesting method has been
proposed by Kwok and Tsang [26], using Multidimensional Scaling (MDS)
algorithm to represent images of the feature space vectors back in the input
space.

2.5 Finding Optimal Number of Support Vectors

Analysis of numerical experiments performed by Downs et al. [7] shows that
RLSV method is not sufficient for rule generation. Elimination of linear depen-
dencies among SVs leads to a small reduction of their number, although
quality of results is usually quite good. One exception is reduction of over 80%
of the original number of SVs for the Heberman dataset [7], where quadratic
kernel with SMO optimization found 87 SVs, while RLSV algorithm reduced
it to just 10 vectors. Stronger reduction may be achieved relaxing numerical
accuracy for linear dependency tests, but this will probably degrade also the
quality of results. The effects of such reduction remains to be investigated.

Quality of this method depends on the type of kernel function, the C-value
and the complexity of the decision border created by the SVM algorithm.
Parameter C defining the size of SVM margins has important influence on
the number of SVs. In soft margin SVM softer margins (lower C value) leads
to a higher number of SVs that have more linear dependencies and thus
higher reduction rate is obtained. Generally best results of RLSV algorithm
are obtained for linear kernel, as in principle two support vectors are sufficient
to define a decision hyperplane.

RS-SVM approach allows for significant reduction of the number of SVs,
leading to more comprehensible models. To find optimal number of SVs any
search method can be used with typical cost function driven by minimization
of the distance between separating hyperplanes ((14)):

E1(m′) = ‖Ψ − Ψ′‖ =⎛
⎝ m∑

i,j=1

γiγjK(xi,xj) +
m′∑

i,j=1

βiβjK(zi, zj) − 2
m∑

i=1

m′∑
j=1

βjγiK(xi, zj)

⎞
⎠2

(25)

An additional term αm′/m defining model complexity as a fraction of reduced
number of SVs (m′) to the original number of SVs (m) multiplied by some
constant α may be added to the difference of distances between hyperplanes.
Because the distance ‖Ψ−Ψ′‖ may take very high values α may be rescaled
by 1/‖Ψ− Ψ′

1‖, where Ψ′
1 is Ψ′ defined with just one SV.

An alternative function that measures changes in classification accuracy
may be defined as:

E2(m′) = acc(SVM) − acc(RSSVM(m’)) (26)

where acc() is classification accuracy measured using some loss function; in
this case also the penalty for complexity may be added. Because acc(SV M)

172 M. Blachnik and W. Duch

doesn’t change during optimization the number of SV, we can simplify the
function (26) omitting the first component, optimizing:

E3(m′) = acc(RSSVM(m’)) (27)

To compare the approach based on minimization of distance and accuracy
few tests have been done using Gaussian SVM on two datasets, Pima Indians
Diabetes, and Cleveland Heart Disease [28]. In the first step all datasets were
normalized to the [0, 1] range. The best C value for the SVM was selected
using five-fold cross validation (CV) greedy search procedure in the C = 21

to C = 28 range, while σ = 1, and Alpha cutoff = 10−2 were fixed. Finally
the process of five-fold CV was used to test different cost functions using
Fixed Point Iteration algorithm (Fig. 1 for the first, and Fig. 2 for the second

100 101 102 103
0

50

100

150

200

250

(a) Dependence of the cost function E1 on the
logarithm of the number of SVs

100 101 102 103
0.55

0.6

0.65

0.7

0.75

0.8

(b) Dependence of the mean accuracy (cost
function E3) on the logarithm of the num-
ber of SVs. Dashed line represents mean
accuracy of the original SVM

Fig. 1. Comparison of the distance (25) and accuracy (27) based cost functions for
Pima Indians diabetes data

Prototype Rules from SVM 173

100 101 102 103
0

50

100

150

200

250

300

(a) Dependence of the cost function E1 on
the logarithm of the number of SVs

100 101 102 103

0.65

0.55

0.7

0.75

0.8

0.85

(b) Dependence of the mean accuracy (cost
function E3) on the logarithm of the num-
ber of SVs. Dashed line represents mean
accuracy of the original SVM

Fig. 2. Comparison of the distance (25) and accuracy (27) based cost functions for
Cleveland Heart disease data

dataset). The distance between hyperplanes plotted in the top subfigure is
decreasing in approximately linear way with the logarithm of the number of
SVs. On the other hand the classification accuracy (27) grows rapidly reaching
the accuracy of SVM with just a few SVs.

Although increasing the number of SVs leads to decision border that are
equivalent to the one found by SVM algorithm without restrictions on the
number of SVs results are not correlated with increasing accuracy of the mod-
els. Large differences between hyperplanes in the region far from data are not
important, but the distance-based approach does not distinguish between dif-
ferent regions, trying to decrease the overall distance. This problem will be
especially acute for Gaussian or other non-linear kernels that place SV far
from decision borders in the feature space. For two overlapping distributions

174 M. Blachnik and W. Duch

SVM with Gaussian kernels will use support vectors that are all around both
distributions, even though only those that are close to the support vectors from
the opposite class are really useful. It should be possible to use the distance
between closest support vectors from the opposite classes to rank candidates
for removal in the SV selection process. This can simplify the search in the
accuracy-based approach.

2.6 Problems with Interpretation

Even if a simple and transparent model that mimics SVM’s decision borders
could be created the question “what can be learned from it” still remains.
Similar problems face most rule extraction approaches, including fuzzy and
rough rule based systems, with the exception of simple crisp rule sets that
sometimes have straightforward interpretation [14,19]. Prototype-based rules
demand not only a small number of prototypes but also a meaningful position
of these prototypes among other input vectors.

None of the support vector reduction methods considered here gives proto-
types which have simple interpretation, as they are never placed at the centers
of clusters (as in the RBF networks). This problem is illustrated in Fig. 3a.
Four prototypes selected by the Schölkopf algorithm are somewhere near the
decision border and in the “flattened” image space are sufficient to define
good border, but in the feature spaces they make little sense. More intuitive
solution is obtained with the Burges algorithm where position of prototypes
looks more “natural”, however also here the knowledge which can be inferred
from these positions is not clear.

If the goal is to understand the data the problem of prototype selections
should be solved in some other way. In the next section algorithms driven by
prototype selection methods used in the k-nearest neighbor (kNN) classifiers
are used to search for informative prototypes.

3 Searching for Informative Prototypes

SVM decision borders should be approximated in such a way that uses
informative prototypes to understand data structure. These prototypes do
not have to be selected from support vectors, but may be placed in opti-
mized positions. Possible solutions can be taken from kNN learning algo-
rithms where many prototype selection methods that reduce the number
of reference vectors exist. Good comparison of existing prototype selec-
tion algorithms can be found in papers by Jankowski and Grochowski
[22, 23] and Wilson and Martinez [39]. The general algorithm proposed here
starts from training SVM model, then selecting prototypes using one of
the algorithms developed for kNN methods, and then assigning to each
prototype weight value to reproduce the SVM decision border. The weights
are calculated using (19). To facilitate better interpretation of results

Prototype Rules from SVM 175

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Contour plot of SVM classifier decision borders

−1.5

1.5

−1

−1

1

−0.5

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.5

0

(b) Contour plot of Schölkopf’s RS-SVM with
marked positions of prototypes

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

(c) Contour plot of Burges RS-SVM with marked
positions of prototypes

Fig. 3. An example of decision borders generated by (a) SVM classifier, (b) with
RS-SVM reduction according to Schölkopf and (c) Burges algorithm

176 M. Blachnik and W. Duch

weights can be normalized without any loss of generalization using softmax
procedure:

β′ =
β∑
β

(28)

The weight value after normalization indicates how strong is the influence of
each prototype on the final decision function. Generally the higher β′

i is, the
more important associated i’th prototype is. The algorithm is schematically
written below.

Algorithm 1

1: train SVM;
2: select prototypes with one of the kNN-based algorithms;
3: optimize prototype weights using formula (19);
4: normalize weights to [0,1] range.

3.1 Prototype Selection Using Context Dependent Clustering

One of the most popular methods for prototype selection in kNN and RBF
classifiers is to use clustering of the training vectors. However, unsupervised
clustering algorithms do not use any knowledge about class structure, leading
to unnecessarily large number of prototypes. Such situation is presented in
Fig. 4, where one of the prototypes is useless because it does not participate
directly in construction of the decision border. This problem may be solved
with semi-supervised clustering. A clustering approach which uses additional
knowledge to reduce the number of prototypes was proposed by Blachnik

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1
 [−]

x 2[−
]

(a) Prototype selection using classi-
cal clustering method (FCM)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1
 [−]

x 2[−
]

(b) Prototype selection using context
clustering (CFCM)

Fig. 4. Comparison of prototype selection methods using two types of clustering
methods, FCM and CFCM

Prototype Rules from SVM 177

et al. [3]. In this approach context dependent clustering was used to train
the kNN prototypes. Context dependent clustering is a family of grouping
algorithms which use external, user defined variable (for each input vector)
describing the strengths of association between the input vector and external
parameter. Context clustering was studied by Pedrycz [29, 31], �Lȩski [20, 36]
and others, and has been applied with very good results in training of the
RBF networks [1, 30].

3.2 The Conditional Fuzzy Clustering Algorithm

One of methods that belong to the context dependent clustering family of
algorithms is Conditional Fuzzy C-Means (CFCM). It is based on minimizing
cost function defined as:

Jm(U,P) =
c∑

i=1

m∑
k=1

(uik)δ ‖xk − pi‖2
A (29)

where c is the number of clusters centered at pi, m is the number of vectors,
δ > 1 is a parameter describing fuzziness, and U = (uik) is a c × m dimen-
sional membership matrix with elements uik ∈ [0, 1] defining the degree of
membership of the k-th vector in the i-th cluster. The matrix U has to fulfill
three conditions:
1o each vector xk belongs to the i-th cluster to some degree:

∀
1≤i≤c

∀
1≤k≤m

uik ∈ [0, 1] (30)

2o sum of the membership values of k-th vector xk in all clusters is equal to
fk

∀
1≤k≤m

c∑
i=1

uik = fk (31)

3o no clusters are empty.

∀
1≤i≤c

0 <

m∑
k=1

uik < m (32)

Under these conditions cost function (29) reaches minimum for [29],

∀
1≤i≤c

pi =
m∑

k=1

(uik)δxk

[
m∑

k=1

(uik)δ

]−1

(33)

∀
1≤i≤c
1≤k≤m

uik = fk

⎡
⎣ c∑

j=1

(
‖xk − pi‖
‖xk − pj‖

)2/(δ−1)
⎤
⎦−1

(34)

178 M. Blachnik and W. Duch

3.3 Determining the Context

In classification problems the goal is to find a small number of prototypes
that define classification border. In simple cases when linear solution is suffi-
cient one prototype far from decision border implements approximately linear
threshold P-rule. In more complex situations prototypes that are close to the
decision border are needed, and they are also close to vectors from the oppo-
site classes. This leads to a conclusion that grouping algorithms should be
focused on clusters found close to the decision border and not on the whole
space. For the context dependent clustering appropriate coefficients f(k) tak-
ing this into account should be defined. Such a coefficient can be introduced
in various ways, with one possible approach [3] based on the ratio of distances:

wk =
∑

j,C(xj)=C(xk)

‖xk − xj‖2

⎡
⎣ ∑

l,C(xl) �=C(xk)

‖xk − xl‖2

⎤
⎦−1

(35)

These coefficients are renormalized to fit the [0,1] range:

wk ←−
(
wk − min

i
wi

)(
max

i
wi − min

i
wi

)−1

(36)

Normalized wk coefficients reach values close to 0 for vectors inside large
homogeneous clusters, and close to 1 if the vector xk is near the vectors of the
opposite classes and far from other vectors from the same class (for example
if it is an outlier). These normalized weights determine the external variable
which then is used to assign appropriate context or condition in the CFCM
clustering process.

fk = exp
(
−η(wk − µ)2

)
(37)

with the best parameters in the range of µ = 0.6−0.8 and η = 1−3, determined
empirically for a wide range of datasets. The µ parameter controls where the
prototypes will be placed; for small µ they are closer to the center of the
cluster and for larger µ closer to the decision borders. The range in which
they are sought is determined by the η parameter.

3.4 Numerical Illustration of the CFCM Approach

Conditional clustering proposed above does not use SVM to place prototypes
directly, but the adjustment of weights is based on the SVM decision function.
To verify this approach some simple numerical experiments were performed.
Because in the CFCM method the number of prototypes for each class has
to be determined independently the total number of desired SVs has been
divided equally among the classes.

An artificial dataset example with a ring of data from one class between
inner circle and outer data from another class was considered first, generated

Prototype Rules from SVM 179

−1
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

10.8−0.8 0.6−0.6 0.4−0.4 0.2−0.2 0

(a) SVs selected using CFCM
clustering

−1
−1

−0.8

−0.8

−0.6

−0.6

−0.4

−0.4

−0.2

−0.2

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(b) SVs selected using
Schölkopf approach

Fig. 5. Comparison of the CFCM and Fixed Point algorithms on artificial data,
showing support vector positions

using the Spider toolbox subroutines [38]. Results from the Fixed Point Itera-
tion calculations (Schölkopf algorithm) and from the CFCM-based algorithm
described are presented in Fig. 5. The number of SVs was set to 20 (in CFCM
10 SVs per class), and Gaussian SVM parameters C = 10000 and σ = 1 have
been used for both methods.

Five SVs found by the Fixed Point algorithm could not be plotted because
they lie outside of the figure. Mean accuracy of the original SVM was 92.0 ±
1.7%, for the Fixed Point algorithm 87.5 ± 1.4 and 91.5 ± 2.3 for the CFCM
algorithm.

This example shows that our CFCM algorithm finds prototypes that are
informative and represent the shape of the decision border with high accuracy.
More knowledge can be derived from CFCM prototypes if the number of
prototypes per class is optimized. This can be done using for example the
racing algorithm described in [3].

Three well known benchmark datasets from the UCI repository [28] were
used to verify quality of the proposed solution on real data. The Pima Indi-
ans Diabetes, Cleveland Heart Disease, and Ionosphere datasets have been
selected. All calculations were performed with the Spider toolbox [38] using
the 5-fold crossvalidation, extended by our own subroutines for CFCM pro-
totype selection algorithm. In all cases the number of SVs were fixed to 4
(in CFCM two per class), the C value for SVM was optimized using the
greedy search approach, and the Gaussian kernel parameter was fixed σ = 1.
Classification results are presented in Table 1.

These results show that also on the real-word problems CFCM clustering
combined with SVM gives quite good results. For such a small number of
SVs Schölkopf and Burges RS-SVM algorithms give rather poor results, while
RS-SVM based on CFCM clustering on the Cleveland Heart dataset obtained
even better results then the original SVM classifier.

180 M. Blachnik and W. Duch

Table 1. 5×CV classification error on the three datasets; the number of SVs from
the Gaussian SVM given in the second column has been reduced in all cases to four

#SV SVM Schölkopf Burges CFCM
RS-SVM RS-SVM

Pima 305 23.4 ± 2.3 37.9 ± 7.6 38.3 ± 8.1 25.9 ± 1.3
Cleveland 99 20.9 ± 1.9 44.5 ± 8.8 31.6 ± 8.2 18.9 ± 1.8
Ionosphere 65 6.3 ± 1.3 18.8 ± 3.3 16.5 ± 2.7 13.1 ± 1.9

4 Conclusions

Although SVMs is a very powerful black box data classification tool it cannot
be used directly for problems where decisions should be comprehensible. The
hyperplane found in the feature space cannot be easily translated into the
knowledge useful for data understanding in the original input space. Therefore
various ways of expressing this knowledge should be studied. In this paper
prototype-based rules are advocated as a natural extension of most of the
rule based systems, well suited to the form of knowledge that may be derived
from the SVM algorithm.

To represent knowledge contained in the SVM model in a comprehensible
way as P-rules reduction of the number of SVs is necessary. This topic has
been studied by many experts and a few approaches have been discussed in
this chapter. Minimization of the distance between original SVM hyperplane
and the one obtained after reduction of the number of SVs does not seem to
be correlated with the accuracy of the system obtained in this way. More com-
prehensible results are obtained using cost functions that are based directly
on the classification accuracy.

Another problem that is facing P-rules based on typical RS-SVM algo-
rithms is the interpretation of obtained prototypes. A solution proposed here
is to use algorithms developed for optimization of the classical kNN classifiers.
As an example conditional clustering algorithm (CFCM) was adopted to learn
prototypes (SV) from the original dataset, with SVM hyperplane used to fit
appropriate weights to selected prototypes. Results of such a combination on
the artificial and real data used in this paper appear to be quite good, although
it should be tested on much wider range of data and actual knowledge in form
of P-rules should be carefully analyzed. This approach should be combined
with feature selection to simplify further the interpretation of the rules.

Visualization techniques offer an interesting alternative to the rule-based
understanding of the SVM function, as it has been done for MLP [10] and
RBF neural networks [9, 11].

Prototype Rules from SVM 181

References

1. M. Blachnik. Warunkowe metody rozmytego grupowania w zastosowaniu do
uczenia radialnych sieci neuronowych. Master’s thesis, Silesian University of
Technology, Gliwice, Poland, 2002.

2. M. Blachnik and W. Duch. Prototype-based threshold rules. Springer Lecture
Notes in Computer Science, 4234, 2006.

3. M. Blachnik, W. Duch, and T. Wieczorek. Selection of prototypes rules - context
searching via clustering. Lecture Notes in Artificial Intelligence, 4029:573–582,
2006.

4. C. Burges. Simplified support vector decision rules. In International Conference
on Machine Learning, pages 71–77, 1996.

5. Y. Chen and J.Z. Wang. Support vector learning for fuzzy rule-based classifica-
tion systems. IEEE Transactions on Fuzzy Systems, 11(6):716–728, 2003.

6. R. Collobert and S Bengio. SVMTorch: Support vector machines for large-scale
regression problems. Journal of Machine Learning Research, 1:143–160, 2001.

7. T. Downs, K. Gates, and A. Masters. Exact simplification of support vector
solutions. The Journal of Machine Learning Research, 2:293–297, 2001.

8. W. Duch. Similarity based methods: a general framework for classification,
approximation and association. Control and Cybernetics, 29:937–968, 2000.

9. W. Duch. Coloring black boxes: visualization of neural network decisions. In Int.
Joint Conf. on Neural Networks, Portland, Oregon, volume I, pages 1735–1740.
IEEE Press, 2003.

10. W. Duch. Visualization of hidden node activity in neural networks: I. visualiza-
tion methods. In L. Rutkowski, J. Siekemann, R. Tadeusiewicz, and L. Zadeh,
editors, Lecture Notes in Artificial Intelligence, volume 3070, pages 38–43.
Physica Verlag, Springer, Berlin, Heidelberg, New York, 2004.

11. W. Duch. Visualization of hidden node activity in neural networks: Ii. appli-
cation to rbf networks. In L. Rutkowski, J. Siekemann, R. Tadeusiewicz, and
L. Zadeh, editors, Lecture Notes in Artificial Intelligence, volume 3070, pages
44–49. Physica Verlag, Springer, Berlin, Heidelberg, New York, 2004.

12. W. Duch, R. Adamczak, and G.H.F. Diercksen. Distance-based multilayer
perceptrons. In M. Mohammadian, editor, International Conference on Com-
putational Intelligence for Modelling Control and Automation, pages 75–80,
Amsterdam, The Netherlands, 1999. IOS Press.

13. W. Duch, R. Adamczak, and G.H.F. Diercksen. Classification, association and
pattern completion using neural similarity based methods. Applied Mathemath-
ics and Computer Science, 10:101–120, 2000.

14. W. Duch, R. Adamczak, and K. Gra̧bczewski. A new methodology of extraction,
optimization and application of crisp and fuzzy logical rules. IEEE Transactions
on Neural Networks, 12:277–306, 2001.

15. W. Duch and M. Blachnik. Fuzzy rule-based systems derived from similarity to
prototypes. In N.R. Pal, N. Kasabov, R.K. Mudi, S. Pal, and S.K. Parui, edi-
tors, Lecture Notes in Computer Science, volume 3316, pages 912–917. Physica
Verlag, Springer, New York, 2004.

16. W. Duch and G.H.F. Diercksen. Feature space mapping as a universal adaptive
system. Computer Physics Communications, 87:341–371, 1995.

17. W. Duch and K. Grudziński. Prototype based rules - new way to understand
the data. In IEEE International Joint Conference on Neural Networks, pages
1858–1863, Washington D.C, 2001. IEEE Press.

182 M. Blachnik and W. Duch

18. W. Duch and K. Grudziński. Meta-learning via search combined with param-
eter optimization. In L. Rutkowski and J. Kacprzyk, editors, Advances in Soft
Computing, pages 13–22. Physica Verlag, Springer, New York, 2002.

19. W. Duch, R. Setiono, and J. Zurada. Computational intelligence methods for
understanding of data. Proceedings of the IEEE, 92(5):771–805, 2004.

20. J. �Lȩski. Ordered weighted generalized conditional possibilistic clustering. In
J. Chojcan and J. �Lȩskiki, editors, Zbiory rozmyte i ich zastosowania, pages
469–479. Wydawnictwa Politechniki lskiej, Gliwice, 2001.

21. K. Gra̧bczewski and W. Duch. Heterogeneous forests of decision trees. Springer
Lecture Notes in Computer Science, 2415:504–509, 2002.

22. M. Grochowski and N. Jankowski. Comparison of instance selection algorithms.
ii. results and comments. Lecture Notes in Computer Science, 3070:580–585,
2004.

23. N. Jankowski and M. Grochowski. Comparison of instance selection algorithms.
i. algorithms survey. Lecture Notes in Computer Science, 3070:598–603, 2004.

24. T. Joachims. Learning to Classify Text Using Support Vector Machines. Kluwer
Academic Publisher, 2002.

25. L.I. Kuncheva and J.C. Bezdek. An integrated framework for generalized nearest
prototype classifier design. International Journal of Uncertainty, 6(5):437–457,
1998.

26. J.T. Kwok and I.W. Tsang. The pre-image problem in kernel methods. IEEE
Transactions on Neural Networks, 15:408–415, 2003.

27. K. Lin and C. Lin. A study on reduced support vector machines. IEEE
Transactions on Neural Networks, 14(6):1449–1459, 2003.

28. C.J. Merz and P.M. Murphy. UCI repository of machine learning databases,
1998–2004. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

29. W. Pedrycz. Conditional fuzzy c-means. Pattern Recognition Letters, 17:625–
632, 1996.

30. W. Pedrycz. Conditional fuzzy clustering in the design of radial basis function
neural networks. IEEE Transactions on Neural Networks, 9(4), 1998.

31. W. Pedrycz. Fuzzy set technology in knowledge discover. Fuzzy Sets and
Systems, 98(3):279–290, 1998.

32. E. Pȩkalska and R.P.W. Duin. The dissimilarity representation for pattern recog-
nition: foundations and applications. New Jersey; London: World Scientific,
2005.

33. J. Platt. Using sparseness and analytic qp to speed training of support vector
machines. Advances in Neural Information Processing Systems, 11, 1999.

34. I. Roth and V. Bruce. Perception and Representation. Open University Press,
1995. 2nd ed.

35. B. Schölkopf, P. Knirsch, A. Smola, and C. Burges. Fast approximation of
support vector kernel expansions. Informatik Aktuell, Mustererkennung, 1998.

36. J. �Lȩski. A new generalized weighted conditional fuzzy clustering. BUSEFAL,
81:8–16, 2000.

37. T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications
to model ing and control. IEEE Transactions on Systems, Man, Cybernetics,
15:116–132, 1985.

38. J. Weston, A. Elisseeff, G. BakIr, and F. Sinz. The spider. http://www.
kyb.tuebingen.mpg.de/bs/people/spider/.

39. D.R. Wilson and T.R. Martinez. Reduction techniques for instance-based
learning algorithms. Machine Learning, 38:257–268, 2000.

