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The support vector machine (SVM) is a modelling technique based on the
statistical learning theory (Cortes and Vapnik 1995; Cristianini and Shawe-
Taylor 2000; Vapnik 1998), which has been successfully applied initially in
classification problems and later extended in different domains to other kind
of problems like regression or novel detection. As a learning tool, it has demon-
strated its strength especially in the cases where a data set of reduced size is
at hands and/or when input space is of a high dimensionality. Nevertheless,
a possible limitation of the SVMs is, similarly to the neuronal networks case,
that they are only able of generating results in the form of black box models;
that is, the solution provided by them is difficult to be interpreted from the
point of view of the user.

In the neuronal networks research area there has been a wide activity
addressed to solve this situation by developing methods able to transfer the
knowledge acquired by a neuronal network during the learning phase to a
more amenable representation (Andrews et al. 1995; Craven and Shavlik 1997;
Tickle et al. 1998; Tickle et al. 2000). The objective of these rule extraction
methods is to use the neuronal networks like a tool for solving the problem,
obtaining benefit from the advantages that offer these learning paradigms
(like its good generalization property, its ability to process nonlinear relations
and their high tolerance to the noise and the imprecision in the input data),
as well as adding the possibility to open the black box, which would allow
to obtain an explanatory result of the problem under study and a simpler
solution to be understood by the user. Hence, the extraction of rules improves
the adjustment of the neuronal networks to solve problems of data mining
(Mitra et al. 2002; Witten and Frank 2005), when the primary target is to
discover unknown and implicit relations in large databases that, in many cases,
is necessary to be expressed in a comprehensible format.

Following this line of work, a solution to the lack of transparency of the
models generated for the support vector machines would be the development of
specific techniques of rule extraction directed to this kind of learning machines.
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An interesting property of the SVM is that the hypothesis that it generates
is built on the basis of a subgroup of training vectors called support vec-
tors. These vectors constitute the key elements of the learning set since they
are the points nearest to the decision limit and, therefore, represents the
most informative patterns for building the solution. This explicit dependency
of the learned model on the support vectors will facilitate the work of its
interpretation.

A rule extraction method for the interpretation of support vector machines
is presented in this work which uses the support vectors, along with prototype
vectors generated by any clustering algorithm, for building a set of regions that
fit the limit of the decision function defined by the SVM, so that it can be
transferred to interpretable rules by the user (Núñez et al. 2002a, 2003). These
regions can be built in two types: ellipsoids, which will generate equation-type
rules, and hyper-rectangles, built from ellipsoids parallel to the axes of the
variables, rising to a more comprehensible language in the form of interval
rules.

In Sect. 1, the algorithm for the extraction of rules from a SVM is presented
in detail, starting with the explanation about how generating an ellipsoid of
maximal coverage that adjusts to the decision function generated for the SVM.
Next, it is described the generation of a set of rules for a class. This algorithm
will be modified to derive interval rules. The description of the mechanism
ends with the description of the most interesting features of the algorithm.
Several experiments on standard databases are described for different domains
in Sect. 2, in order to evaluate the performance of the proposed rule extraction
method, in particular its ability to extract the knowledge retained in a trained
SVM. Since it is proved that the algorithm is strongly dependent on the initial
conditions of the clustering algorithm used to derive the prototype vectors, in
Sect. 3 a different approach is described for obtaining these prototype vectors
based on the support vectors, overcoming in this form all the randomness due
to the nowadays avoided clustering algorithm. Finally, some conclusions are
derived and future works are sketched.

1 Combining Support Vectors and Prototype
Vectors to Extract Rules

The methods for the extraction of rules from neuronal networks can be classi-
fied according to three basic features (Andrews et al. 1995; Craven and Shavlik
1997):

• The representation language used to describe the model estimated by the
network.

• The form how the method explores the network to derive the rules. In
this sense, local methods analyse the structure of the network at level of
both, the hidden units and the output units to extract the rules, whereas
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global methods extract rules on the basis of the input–output mapping gen-
erated by the network, with not analysis of its internal structure. Hybrid
techniques have also been settled out in the between of these two methods.

• The portability of the method; that is, whether the technique is applicable
independently of the network architecture and its training regime.

These features could be also used to define a rule extraction method for
support vector machines and, similar to the case of neuronal networks, the
main problem to be solved is to transfer the knowledge acquired by a SVM
during the learning to a description in a new and comprehensible represen-
tation language. A key point to be considered is the functional equivalence
between the new model and the SVM model from which it was extracted, by
providing the same predictions.

For the development of such a translation technique, it is important to
identify how the knowledge is codified for the hypothesis generated by a SVM.
The solution provided by these learning machines is an expansion of kernel
functions on the basis of the number of support vectors,

fa (x) = sign

(
sv∑

i=1

αiyiK (x, xi) + b

)
. (1)

It could be affirmed then that knowledge is expressed in the form of:

• A set of support vectors SV = {(xi, yi)i=1...sv}, which are the data from
the learning set LS nearest the limit of separation between classes

• A set of values A = {αi=1...N} associated to the data, which indicate
whether or not a pattern is a support vector without error (0 < α < C), a
support vector with error (α = C), or a pattern not considered in building
the decision function (α = 0)

• A kernel function K and its associated parameters, such as degree in a
polynomial function or width in a Gaussian kernel

The support vectors, although in general are a small group of patterns into
the learning set, are the most informative samples for the classification task.
Being these vectors the points nearest the limit of separation between classes,
would turn out advantageous then to use them in the extraction technique in
the form of a set of class delimiters establishing the borders of regions defined
in the input space that can be transferred to rules. In the method detailed in
this work, these regions are a form of ellipsoids and the new representational
language is a rule equation of the type ‘if-then’ using like antecedent or premise
to the mathematical equation of the ellipsoid and like consequent, the label of
the class associated to the data covered by this one, as it is shown in Fig. 1.

Transferring to this new representation the knowledge captured by the
SVM during the learning entails the determination of a set of ellipsoids that
fit to the form of the decision limit, avoiding as much as possible the over-
lapping between classes in the new model. In this sense, it is beneficial for
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Fig. 1. Representational language used for the rule extraction

building these regions to use, in addition to the support vectors, the infor-
mation provided by the vector of parameters α, since it indicates whether a
support vector is in the region associated to another class or within the margin
of separation between classes (those with a value of the associated parameter
equal to C). In reference to the kernel functions, it is considered advisable
that the method is independent of this characteristic in order that it can be
applied to the widest range of SVM models.

Once defined the representational language of the extraction method, the
problem to be approached is how to build these ellipsoids for a class from the
information provided by a trained SVM. It will be two aspects that will be
taken into account to perform this task:

• Ellipsoids fitting. The set of ellipsoids must fit the form of the discriminant
function defined by the SVM, exhibiting as low overlapping between classes
as possible to avoid problems of multiple instances in the set of rules. This
premise will allow building rules with a high precision.

• Ellipsoids coverage. It is advisable to built ellipsoids covering as much data
as possible with the purpose of producing a compact set of rules.

It is explained in the next, in a detailed form, the extraction method for
building the associated ellipsoids to a class. It will be presented in a two-stage
incremental procedure: first it will be assumed that it is possible to represent
a whole class with a single ellipsoid. Next, it will be described how to generate
a set of rules when this premise is not fulfilled, as it is usually the case.

1.1 Building an Ellipsoid and Its Associated Rule Equation

It is possible to define an ellipsoid associated to an input data set by deter-
mining the covariance matrix of the set and finding their eigenvectors and
eigenvalues (Strang 1998). In this form, a set of axes for an ellipsoid follow-
ing the directions of greater variance of the data is obtained, the vertices
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being determined from the own values. Nevertheless, the idea underlying in
the proposed method is that the ellipsoids should adjust to the form of the
limit of decision generated by the SVM. In order to obtain an ellipsoid with
these characteristics, its orientation is defined by the support vectors, which
are explicitly used for determining the associated set of axes of the ellipsoid
and vertices by means of geometric methods. Hence, the problem associated
to determining such an ellipsoid in the m-dimensional input space, can be
defined as:

Given

– A set of support vectors SV =
{
(x i ,yi ) ∈ �m+1, i = 1 . . . sv

}
obtained

by using some SVM training procedure
– A set of remaining training data D =

{(
x j ,yj

)
∈ �m+1,

(
x j ,yj

)
/∈ SV

}
,

defined by excluding support vectors from the original training data
– A set of parameters A = {(αk ) ∈ �, k = 1 . . .N}, obtained by the SVM

training procedure, being different to zero those associated to the support
vectors

Determine

– A centre p
– A set of orthonormal vectors, E = {(ei ) , i = 1 . . .m}
– A set of pair of vertices, V = {(vi1, vi2) , i = 1 . . .m}
To define an ellipsoid which orientation is explicitly determined

by the support vectors.

The algorithm in pseudo-code to derive an ellipsoid is in Table 1. First
step in the algorithm is the initialization of the output values. Output sets

Table 1. Algorithm for deriving an ellipsoid

{Input: SV, D, A}
Initialize p, E, V
Build Ellipsoid

{e1, v11} = Determine First Axis Vertex
v12 = Determine Second Vertex
E = E ∪ e1, V = V ∪ {(v11, v12)}
p = Update Prototype
For k = 2 to m

{ei, vi1} = Determine Next Axis Vertex
vi2 = Determine Second Vertex
E = E ∪ ei, V = V ∪ {(vi1, vi2)}

End For
End Build Ellipsoid
{Output: p, E, V}
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are set to null and the first considered centre of the ellipsoid is defined like
the centre of gravity of all the data in the class,

p =
1
N

N∑
i=1

xi,x i ∈ LS. (2)

Once the initial prototype is calculated, now the algorithm to build the
ellipsoid determines, using the Determine First Axis Vertex procedure, the
first axis of the ellipsoid as well as the first vertex in this axis. Using
Determine Second Vertex, the second vertex along the first axis is defined.
E is a matrix of column vectors containing the orthonormal vectors defin-
ing the axes of the ellipsoid. V holds for the vertices associated to each
axis. Next, the algorithm enters into a loop in which, both, the axis and
its first vertex are determined each iteration by means of the Determine Next
Axis Vertex procedure, as well as the second vertex through the
Determine Second Vertex procedure. It will be now detailed each one of the
procedures used in the algorithm.

Determine First Axis Vertex Procedure

This procedure determines both, the vector that will be used like the first
axis and the first vertex considered on this axis. The vector e1 ∈ E is built
from the prototype p and the support vector without error, i.e. α < C having
maximal distance to the prototype,

q11 = {x| ‖x − p‖ = argmax (‖xj − p‖) , xj ∈ SV, αj < C} . (3)

As it were already indicated, an ellipsoid as general as possible should be
built, but fitting the form of the decision limit defined by the SVM.

Whether more than a support vector fulfils this condition, one of them is
randomly selected. In the opposite, it is also possible that a support vector
without error does not exist. In this case, the pattern in the set D with
maximal distance to the prototype is selected,

q11 = {x| ‖x − p‖ = argmax (‖xj − p‖) , xj ∈ D} . (4)

The unitary vector is defined as,

e1 =
q11 − p

‖q11 − p‖ . (5)

And the first vertex along this axis is the selected end-point,

v11 = q11. (6)
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Determine Second Vertex Procedure

Through this procedure the second vertex on the axis is determined in the
following form: first, a search region for support vectors is built by considering
the subset of support vectors accomplishing,

SVi2 =
{

x ∈ SV | arccos
(

(x − p) · ei

‖x − p‖

)
≥ 3π

8

}
. (7)

Support vectors in this zone are those such that its projection with respect
to the prototype over the axis is greater that any other projection over orthog-
onal axes to this one. The support vector related with the second vertex is
that in SVi2 without error and larger distance to the prototype p,

q12 = {x| ‖x − p‖ = argmax (‖xj − p‖) , xj ∈ SVi2, αj < C} . (8)

Again, when more than a support vector exists fulfilling the specific con-
dition, one of them is randomly selected. For the case that no support vector
exists in the zone, the pattern in D that satisfies the established criterion is
selected.

Since the more general ellipsoid is searched, the second vertex is deter-
mined as,

vi2 = p − ‖qi2 − p‖ ei. (9)

When it does not exist neither data in the SVi2 set nor in the set D, the
vertex is defined by using the first vertex as,

vi2 = p − ‖vi1 − p‖ ei. (10)

Update Prototype Procedure

Once vertices are both determined on the first axis, the prototype is updated to
be its midpoint. In this form, the original averaged initial centre p is replaced
through the geometric situation of the support vectors by,

p =
v11 + v12

2
. (11)

Determine Next Axis Vertex Procedure

This procedure iteratively determines orthonormal vectors to the set E
included in the m − i + 1 linear manifold containing the centre p . They are
selected guided by the support vectors. Hence, first the set of support vectors

SVi1 =
{

x ∈ SV |angx ≤ π

4

}
, (12)
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is firstly determined, where angx is the angle determined by the vector (x − p)
and the m − i + 1 linear subspace,

angx = arccos

⎛
⎝
√√√√1 −

i−1∑
j=1

(
(x − p) · ej

‖x − p‖

)2
⎞
⎠ . (13)

From this set, the vector with greater distance to the prototype is selected,

qi1 = {x| ‖x − p‖ = argmax (‖xj − p‖) , xj ∈ SVi1, αj < C} . (14)

When no support vector exists in the searching zone, then the pattern in D
that fulfils the maximal distance criterion is selected. In order to determine the
unitary vector, a projection of the former vector with respect to the prototype
on the m − i + 1 linear subspace is used. It is built by using the projection
matrix Mp onto the subspace generated by E,

Mp = EET . (15)

Hence, the projection is defined as,

pqi1 = (qi1 − p) − Mp (qi1 − p) (16)

the orthonormal vector is built as,

ei =
(pqi1 − p)
‖pqi1 − p‖ (17)

and the first vertex in this vector will be defined as,

vi1 = p + ‖qi1 − p‖ ei. (18)

A key point to be solved is related with the infeasibility to find in the
searching region a support vector or a pattern for determining an orthogonal
vector to the set E. When it is not possible to find such a pattern in a certain
iteration k, then it will be also impossible to find a pattern accomplishing
the criteria in the successive iterations, that is, when the linear subspace will
be smaller. In this situation, it has not more sense to evaluate our proposed
algorithm of finding for the axe defined from support vectors. The ellipsoid is
projected in this case on the k-dimensional linear manifold and a spheroid is
obtained in this subspace.

In order to obtain a set of k orthonormal vectors in the k-dimensional
subspace, an equation system can be solved and one of the infinite solutions
be selected. Nevertheless, it is proposed to use a procedure based on the Gram-
Schmidt orthogonalization (Strang 1998) which is described in the following.

Given a standard set of unitary vectors,

U = {(ui)}i=1,...,m (19)
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an auxiliary set Be, initialized as U is defined. Each time that a vector in E
is determined, the nearest vector in Be is searched,

proymax = argmax
u∈Be

(u · ei) (20)

uei = {uj ∈ Be|uj · ei = proymax} (21)

and it is removed from the set Be.
In the case that it is impossible to find a point (a support vector or a gen-

eral pattern) that fulfils the criterion determining an axis, the k orthonormal
vectors to the set E are determined from the set Be in the following form,

For l = m − k + 1 to m
Mp = EET

j = 1
el = uj − Mpuj ; el = el

‖el‖ ; E = E + {el}
j = j + 1

End For

This procedure allows obtaining a fast unique solution without solving a
system of equations, using basic vector operations and matrix product. In
order to determine the vertices on each axis it is necessary to find the radius
of the spheroid, which can be obtained from the radii associated to the axes
in E. Several choices are possible, to use the greater radius, to use the smaller
radius or the average of the radii. Since the most general ellipsoid is desired,
the greater radius criterion will be used. When overlapping with data of other
classes due to this generalist criterion appears, the ellipsoid can be specialized
later by using a procedure for determining a set of rules that will be described
later.

Another point to be solved is about the fact that, with the exception of
the first axis, it will be usual that the vertices on the axes define a different
radius, therefore one of them must be refined. Two criteria to decide which
vertex to refine can be: using the radius defined by the vertex derived from
a support vector or considering always the greater one from radii. Again, if
overlapping with data of other classes appears when applying this heuristic,
then the ellipsoid will specialize.

Generating the Rule

Once generated the ellipsoid, the rule equation can be derived from the centre
p, the set of orthonormal vectors E and the set of vertices V in the following
form:

Let’s suppose a 3-dimensional input space, then the ellipsoid is defined as,(
x′

1

r1

)2

+
(

x′
2

r2

)2

+
(

x′
3

r3

)2

≤ 1 (22)
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with ri = ‖vi1 − p‖ , p = (p1, p2, p3) and⎡
⎣x′

1

x′
2

x′
3

⎤
⎦ = ET ·

⎡
⎣x1 − p1

x2 − p2

x3 − p3

⎤
⎦ . (23)

Developing (23), it is obtained an expression in the form

Ax2
1+Bx2

2+Cx2
3+Dx1x2+Ex1x3+Fx2x3+Gx1+Hx2+Ix3+J ≤ K. (24)

Generating an equation-type rule with a form,

IF Ax2
1 + Bx2

2 + Cx2
3 + Dx1x2 + Ex1x3 + Fx2x3 + Gx1 + Hx2 + Ix3 +

J ≤ K THEN CLASS.

1.2 Generating a Set of Rules

Is an ellipsoid enough to describe the distinctive zone of a class? A positive
answer is possible for some cases, but it will not be thus for the general case.
On the other hand, it is difficult to establish a priori the number of necessary
rules to represent the model of a SVM.

Two basic premises exist on which the building of the new model is based:
the generalization or covering of the rules and the accuracy or precision of the
ellipsoids to fit the shape of the decision surface defined by the SVM. The
proposed procedure to build an ellipsoid tries to satisfy them. However, when
one ellipsoid is not enough to describe the data in a class, the question is
how to determine a number of regions that exhibit these characteristics. For
instance, it can be observed in Fig. 2a that the ellipsoid generated from the
midpoint of the data invades the zone associated to the other class due to
the curvature of the decision limit. By dividing the ellipsoid (as it is shown
in Fig. 2b) overlapping is reduced and the two new regions fit better to the
decision surface than the original region.

Therefore, to generate a set of rules, the extraction method will initially
build one ellipsoid which will be divided (specialized) until a group of more
specific ellipsoids covering the data in the class and fitting the shape of the
separation surface defined by the SVM is obtained.

A mechanism for determining the centre of each ellipsoid must be available
in order to be able executing our proposed procedure. Initially, the centre was
built as the midpoint of the data in the class. Nevertheless, it must be defined
how to find new centres and which data to use to build each ellipsoid when
it is mandatory to divide the initial ellipsoid in two or more regions. The
derivation of the centres or prototypes can be performed using a clustering
algorithm (Duda et al. 2001; Kaufman and Rousseeuw 1990), which divides
the data set of a class in a predetermined number of disjoint partitions and it
determines a prototype or representative centre for each one of the partitions.

On the other hand, it is also necessary to establish conditions for deter-
mining when to divide an ellipsoid. Division criteria can be based on an index
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Fig. 2. (a) Generating one ellipsoid for a class. (b) By dividing the ellipsoid, two
regions are obtained fitting better the decision function

of overlapping between classes, which could be implemented by means of geo-
metric methods. It can be noticed in Fig. 2 that some support vectors exist
belonging to another class within the defined ellipsoid. Since support vectors
are the data nearest the decision function, they are the most informative about
the shape of this separation surface. A first proposed criterion suggesting when
to divide an ellipsoid is:

– Criterion 1 : To divide an ellipsoid when support vectors of other classes
exist in the region covered by it.

In this form, support vectors are used, not only for defining the ellipsoids,
but also to verify the overlapping between ellipsoids of different classes. Over-
lapping also appears when the generated prototypes belong to another class
(see Fig. 3); this fact can be verified by using the SVM function to generate
the class label for these artificial points, which leads to a second partition
criterion:

– Criterion 2 : To divide an ellipsoid when the generated prototype belongs
to another class.
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Prototype belongs 
to Class 1 

Ellipsoid generated for 
Class 2 

Dividing 
the 

ellipsoid 

Class 2

Class 1

Fig. 3. The prototype generated like the midpoint of the data belongs to another
class

Finally, overlapping between classes can also appear when at least one of
the vertices generated by the algorithm to build an ellipsoid belongs to another
class, which also can be verified using the trained SVM function. This third
criterion of division is translated like:

– Criterion 3 : To divide an ellipsoid when at least one of the vertices belongs
to another class.

These three criteria can be formalized like a test of partition. Whether this
test is positive when being applied to an ellipsoid, it indicates that it is very
probable that it covers data from other classes.

It has been showed that overlapping can be reduced and fitting to the
decision function increased by increasing the number of regions describing
a class, however it should be now addressed how many regions are needed
to describe data in a class. This number of regions could be user defined,
providing in this form control on the size of the set of rules. Also it could be
considered to divide ellipsoids until some established criterion is reached, for
instance a good level of prediction.

According to this analysis, the extraction method for generating the set
of ellipsoids associated to a class follows an iterative scheme. Starting by the
prototype of the class (midpoint of the data) the initial ellipsoid is derived.
Next, the partition test is applied on this region; when the answer to the
test is negative the ellipsoid is transferred to a rule. Otherwise, a clustering
algorithm is applied for determining two new prototypes with the data of
the initial partition (data of the class); one ellipsoid is built for each one of
them using the data of the respective partitions. The partition test is applied
to these two new regions and the process is repeated. In this form, in the
k-th iteration, tp regions have a positive test of partition and tn will be with
negative answer. These last ones are transferred to rules. In the next iteration
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k + 1, data from the tp regions are used to generate tp + 1 new prototype
vectors which will lead to tp + 1 new regions. The procedure ends when all
the partition tests have a negative answer or when the maximum number of
iterations is reached (externally defined to control the number of generated
rules). In Table 2 the complete algorithm to be used for deriving a set of rules
is described, where:

– Determine Prototypes (Data, Number regions): It is a function for deter-
mining an equal number of prototypes to Number regions for the data,
using a clustering algorithm. For each prototype it also returns the

Table 2. Algorithm for deriving a set of rules

{Input: SV, D, SVM function}
Initialize Generating Rules
Do for each Class

Number regions = 1
Data = Data class
[prototypes, partition] = Determine Prototypes (Data, Number regions)
Ellipsoid = Build Ellipsoid (prototypes, partition)
Ellipsoid rules = Ellipsoid
Condition(1) = Partition Test (Ellipsoid)
Number regions = 2
While ((Condition(i) = 1) ∧ Iterations < max iterations)

[prototypes, partition] = Determine Prototypes (Data,
number regions)
For i = 1 to number regions

Ellipsoid(i) = Build Ellipsoid (prototypes(i), partition(i))
Condition(i) = Partition Test (Ellipsoid (i))

End For
Number new regions = 1
New data = [ ]
For i = 1 to Number regions

If Condition(i) =0 ∨ Iterations =max iterations
ellipsoid rules = ellipsoid(i)

Else
Number new regions = Number new regions + 1
New data = New data + Partition(i)

End If
End For
Data = New data
Number regions = Number new regions

End While
End Do
{Output: rules}
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Fig. 4. Several examples of ellipsoids generated for learned SVM. Iteration left
to right

respective partition. In the first iteration, the prototype will be the
midpoint of the data.

– Build Ellipsoid (prototypes, partition): This function builds an ellipsoid
from a prototype and data from a partition.

– Partition Test (Ellipsoid): It returns the logical answer of the partition
test on an ellipsoid.

Figure 4 shows several examples of the iterative application of the rule
extraction algorithm.

1.3 Simplified Representational Language for the Model

The ellipsoids and their equation-type rules define a representational language
obtained by the rule extraction method to describe the model generated by
the trained SVM. However, it will be showed that it is possible to derive more
interpretable type rules by using like premise a set of constraints over the
values of each one of the variables, to be satisfied so that the consequent one
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Fig. 5. Interval-type rule for SVM

is fulfilled (class label). This second representational language, called interval-
type rules, can be observed in Fig. 5: it is associated to a convex region in the
form of a hyper-rectangle generated from an ellipsoid parallel to the axes of
the variables.

In order to derive the interval-type rules, the procedures Determine
First Axis Vertex and Determine Next Axis Vertex of the Algorithm shown
in Table 1 are modified. Key difference is about how the axes of the ellipsoid
rising to a hyper-rectangle are built, by using the standard set U of unitary
vectors. Support vectors are used to establish the order in selecting unitary
vectors of the set Be according to a criterion of proximity with the end points,
as well as to build the vertices on the axes. This heuristic will allow that the
ellipsoids parallel to the axes of the variables fit the shape of the separation
surface defined by the SVM, without overlapping with the distinctive zone of
other classes. These two modified procedures are described in the following.

Determine First Axis Vertex Procedure

Given the standard set of unitary vectors U, it is initially defined Be = U, and
q11 is determined as defined in Sect. 1.1. Next, it is calculated the projection
of the vector (q11 − p) onto any vector in Be. First selected unitary vector
will be that in this set with higher projection, selecting in this form the axis
with higher information about the support vector, that is,

proymax = arg max
u∈Be

((q11 − p) · u) (25)

e1 = {ui ∈ Be| (q11 − p) · ui = proymax} . (26)

The selected vector is removed from the set Be. The vertex v11 is the
projection of the vector (q11 − p) on the next axis e1,

v11 = p + (e1 · (q11 − p)) e1. (27)
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Determine Next Axis Vertex Procedure

In order to determine the next axe, the support vectors to be considered are
those forming with the centre an angle lower than 45◦ with respect to the
m− i + 1 linear manifold containing the centre and that is orthogonal to the
set of vectors E, which leads to a subset defined as,

SVi1 =
{

x ∈ SV |angx ≤ π

4

}
, (28)

where

angx = arccos

⎛
⎝
√√√√1 −

i−1∑
j=1

(
(x − p) · ej

‖x − p‖

)2
⎞
⎠ . (29)

From this subset, the support vector without error with maximal distance
to the prototype is selected,

qi1 = {x| ‖x − p‖ = argmax (‖xj − p‖) , xj ∈ SVi1, αj < C} . (30)

When there are no support vectors in the searching zone, the pattern in
D satisfying the already established criterion for these vectors is selected. In
order to determine the unitary vector, the usual projection onto each vector
of Be is considered, and the higher projected one is selected,

proymax = argmax
u∈Be

((qi1 − p) · u) (31)

ei = {uk ∈ Be| (qi1 − p) · uk = proymax} . (32)

The selected vector is removed from Be. The vertex is calculated as usual,

vi1 = p + (ei · (qi1 − p)) ei. (33)

When it is impossible to find a point (a support vector or a general pattern)
that fulfils the criterion determining an axis, the k unitary vectors to the set
E are determined from the set Be in the following form,

resferoide = argmax
(i=1...(m−k))(j=1,2)

(‖vij − p‖) .

For l = (m − k + 1) to m
j = 1
el = uj

v l1 = p + resferoideel

v l2 = p − resferoideel

E = E + {el}
j = j + 1

End For
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Fig. 6. Several examples of hyper-rectangles generated for learned SVM. Iteration
left to right

The greater radius criterion is used for obtaining an as general ellipsoid
as possible. Figure 6 shows some examples for hyper-rectangles associated to
ellipsoids generated using the described iterative procedure.

Once derived the ellipsoid, its translation to an interval-type rule is per-
formed by using a set of ordered vertexes V = {(vi1, vi2) , i = 1 . . .m} as
follows,

IF x1 ∈ [v11, v12] ∧ x2 ∈ [v21, v22] ∧ · · · ∧ xm ∈ [vm1, vm2] THEN Class.

Determination of the set of interval-type rules for a class is processed sim-
ilarly to that procedure described in Table 2; nevertheless, some modifications
should be considered:

• The function Build Ellipsoid is now based on the algorithm for building
an ellipsoid parallel to the axis of the variables.

• Verification of the Criterion 1 in the function Partition Test is performed
on the hyper-rectangle associated to the ellipsoid in order to reduce the
overlapping when deriving the interval-type rule.
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1.4 Classification by Using the Set of Rules

Once obtained the model of the learned SVM in the new representation
(equation-type or interval-type rules) it must be considered how this descrip-
tion will be used to classify a new pattern. Several scenarios can appear for
the new pattern being evaluated:

• It is covered only for one rule. This is the most favourable case, allowing
classifying a new entry without ambiguity.

• It is covered for no rule. In this case it is possible to define a default rule for
classifying all these cases not covered for any rule (Mitchell 1997; Witten
and Frank 2005). Using a similarity measure for determining the proximity
of a pattern to a rule is an alternative choice; the assigned class label to
the data will be those associated to the nearest rule (Domingos 1991).

• It is covered for more than a rule. Several solutions can be considered in
this overlapping situation. A first one is ordering the covering rules using
some quality measure and classifying the new instance according to the
first fired rule (Berthold and Hand 1999; Witten and Frank 2005). A second
one is applying a weighted classification scheme using all the covering rules
similarly to the fuzzy logic algorithms. Other solutions include using a
frequency based scheme that assigns the class associated to the most active
rule, or, inversely, assign the pattern to the most specific rule (Salzberg
1991). Finally, it can be attempted to avoid multiple covering by refining
the rules until a disjoint partition is achieved.

The proposed method classify an instance assigning it the label associated
to the nearest rule (Domingos 1991), following the nearest neighbour tech-
nique. A distance measure between a pattern and a rule is defined depending
on the type of rule, equation or interval. The distance between an equation
rule and an instance is defined as,

D (R, x) = EQ (x), (34)

where EQ(x ) is the result of evaluating the mathematical equation of the
ellipsoid on the pattern x . For the interval-type rules, the distance definition
is based on a distance component for each attribute defined as follows,

δi =

⎧⎨
⎩

0 if li,inf ≤ xi ≤ li,sup,
xi − li,sup if xi > li,sup,
li,inf − xi if xi < li,inf ,

(35)

where li,inf y li,sup are the lower and upper bounds of the interval, respectively,
of the i-th component. Hence,

D (R, x) =
m∑

i=1

δi. (36)
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When an instance is covered for more than a rule, the following heuristic
is used to solve the overlapping: the most specific ellipsoid or hyper-rectangle
containing the instance is selected, that is, that with the lowest volume
(Salzberg 1991). For interval-type rules this volume is calculated as,

V (R) =
m∏

i=1

(li,sup − li,inf). (37)

For equation-type rules, the volume associated to rules is compared by
using an approximated measure based on the radius for each axis of the
ellipsoid, in the following form,

V (R) =
m∏

i=1

ri. (38)

2 Experiments

The proposed rule extraction methods have been evaluated through experi-
mentation on ten databases from the UCI repository (Blake and Merz 1998),
considered a standard benchmark for the machine learning community. Fea-
tures defining these bases are showed in Table 3: number of input variables,
type of variables, number of patterns and number of classes.

The algorithms associated to the rule extraction method were developed
under the Matlab v6.5 programming environment. SVM’s training was com-
pleted using the software package “OSU Support Vector Machines Toolbox”
version 3.00 (Ma and Zhao 2002). For multi-class classification, the one-
versus-rest technique was employed for determining the SVM decision function
(Vapnik 1998), i.e. a classifier was trained for each class and obtained sup-
port vectors were stored to be used next in the rule extraction algorithm. For

Table 3. Features describing the ten databases used for experimentation

Code Databases No.
patterns

No.
attributes

Type attributes No.
classes

1 IRIS 150 4 Numerical (continuous) 3
2 WISCONSIN 699 9 Categorical 2
3 WINE 178 13 Numerical (continuous) 3
4 SOYBEAN 47 35 Numerical (discrete) 4
5 NewTHYROID 215 5 Numerical (continuous) 3
6 MUSHROOM 8,124 22 Categorical 2
7 SPECT 267 23 Binary 2
8 MONK3 432 6 Categorical 2
9 ZOO 101 16 Categorical 7

10 HEART 270 13 Mixed 2
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all the experiments, the k-means algorithm (Duda et al. 2001) was used for
determining the centres or prototypes of the ellipsoids.

A key point is to determine the performance indexes to be used for eval-
uating the rule extraction algorithm (Andrews et al. 1995; Mitra et al. 2002;
Zhou 2004). Goal is the extraction of the embedded knowledge in the trained
SVM and represent it in the language defined by the method, so an interesting
parameter is to determine the functional equivalence between both methods,
known like fidelity parameter, being calculated like the percentage of data
where both, the SVM and the rule set produce the same results,

Fidelity = 100 · Nagreed

Datatotal
, (39)

where Nagreed is the number of times that both, SVM and rule set predicts
the same result.

A second main feature to be considered is the generality or covering of
the rules on the data set, as well as their accuracy, defined through the error.
Hence, two more parameters will be measured to determine the performance
of the algorithm:

– Covering: Percentage of samples covered by the set of rules

Covering = 100 · Datacovered

Datatotal
, (40)

where Datacovered is the number of samples covered by the rules and
Datatotal is the size of the dada set

– Error: Mean quadratic error of the rule set on the data

In order to estimate these performance features, ten stratified cross-
validation experiments on ten partitions were performed (Witten and Frank
2005) and the mean values on the test set were taken for the performance
comparison. Obtained results for each database are shown in Table 4, for the
equation-type and interval-type rules. It have been displayed the accuracy
(Error), the percentage for the features measuring the equivalence or fidelity
(Equ.), the covering (Cov.) and the number of obtained rules (NR).

Results on the application of the rule extraction method to support vector
machines trained with real data databases in different domains, shown in gen-
eral a high percentage of equivalence between the SVM and the extracted set
of rules (upper to 90%). This high level indicates that the proposed methods
are able to capture the embedded knowledge in the support vector machine.

It was also observed a high dependency of both, the quality and the quan-
tity of the rules generated by the extraction method on the initial conditions
for the k-means clustering algorithm. It is well-known that the final result of
a clustering algorithm highly depends on the random choice of the prototypes
(Duda et al. 2001), so it was a predictable result, but it is not a desirable
behaviour. In this sense, a new proposal for reducing this randomness will be
explained below, and it is still an open research area.
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Table 4. Performance values of the rules for each database

Database
Error Equation-type rules Interval-type rules

SVM Error Equ. Cov. NR Error Equ. Cov. NR

1 0.046 0.041 98.67 82.33 6.1 0.038 97.59 80.66 3.8
2 0.045 0.039 98.65 86.45 15.3 0.041 96.54 94.45 14.5
3 0.023 0.018 98.40 78.34 5.9 0.023 97.87 80.96 8.9
4 0.022 0.022 100.00 33.00 6.0 0.028 97.70 84.50 6.0
5 0.052 0.049 97.13 80.24 7.3 0.047 95.33 72.99 10.8
6 0.002 0.003 96.05 28.87 25.5 0.010 99.06 98.19 30.8
7 0.102 0.117 96.26 21.49 14.0 0.093 97.33 45.00 28.0
8 0.023 0.034 97.45 27.55 7.0 0.023 99.07 100.00 10.0
9 0.042 0.043 99.09 32.02 9.8 0.043 98.77 79.01 8.6

10 0.164 0.158 96.93 58.35 6.7 0.155 96.39 66.52 18.7

They are listed below, as a particular example, the set rules generated for
the IRIS database using both rule extraction regimes

Equation-type rules

R1: IF (6.16X1
2 + 2.68X2

2 + 9.84X3
2 + 15.96X4

2 − 3.63X1X2 − 3.62X1X3 −
1.63X1X4 − 0.47X2X3 + 2.31X2X4 − 0.14X3X4 + 43.6X1 + 0.01X2 −
8.78X3 − 7.52X4 + 116.49 ≤ 2.64) THEN Iris-setosa

R2: IF (1.29X1
2 + 4.79X2

2 + 3.31X3
2 + 5.28X4

2 + 1.69X1X2 − 2.02X1X3 +
0.97X1X4 − 2.50X2X3 − 1.84X2X4 − 2.09X3X4 − 11.77X1 − 22.53X2 −
6.34X3 − 5.08X4 + 78.30 ≤ 0.84) THEN Iris-virsicolor

R3: IF (4.65X1
2 + 3.60X2

2 + 6.75X3
2 + 5.74X4

2 + 0.67X1X2 − 1.46X1X3 +
1.14X1X4 − 0.04X2X3 − 0.48X2X4 − 2.89X3X4 − 56.84X1 − 25.00X2 −
47.34X3 − 9.05X4 + 333.49 ≤ 1.81) THEN Iris-virsicolor

R4: IF (9.91X1
2 + 5.63X2

2 + 12.13X3
2 + 9.26X4

2 − 3.21X1X2 − 3.89X1X3 +
7.69X1X4 + 4.90X2X3 + 0.03X2X4 + 0.57X3X4 − 127.63X1 − 41.29X2

137.18X3 − 96.32X4 + 1, 052.49 ≤ 3.54) THEN Iris-virginica
R5: IF (16.25X1

2 + 49.58X2
2 + 19.01X3

2 + 66.59X4
2 − 11.35X1X2 −

8.13X1X3 − 5.03X1X4 + 4.98X2X3 − 54.77X2X4 − 10.81X3X4 − 109.50X1 −
128.41X2 − 140.12X3 − 22.13X4 + 886.57 ≤ 18.80) THEN Iris-virginica

Interval-type rules

R1: IF (X1 ∈ [4.40, 5.80] ∧ X2 ∈ [2.30, 4.40] ∧ X3 ∈ [1.00, 1.95] ∧ X4 ∈
[0.20, 0.51]) THEN Iris-setosa

R2: IF (X1 ∈ [5.40, 6.10] ∧ X2 ∈ [2.70, 3.00] ∧ X3 ∈ [3.90, 4.57] ∧ X4 ∈
[0.97, 1.64]) THEN Iris-versicolor

R3: IF (X1 ∈ [4.90, 6.00] ∧ X2 ∈ [1.90, 2.93] ∧ X3 ∈ [2.99, 4.00] ∧ X4 ∈
[1.00, 1.27]) THEN Iris-versicolor



130 H. Núñez et al.

R4: IF (X1 ∈ [6.10, 7.00] ∧ X2 ∈ [2.30, 3.30] ∧ X3 ∈ [4.28, 4.95] ∧ X4 ∈
[1.31, 1.50]) THEN Iris-versicolor

R5: IF (X1 ∈ [4.90, 6.70] ∧ X2 ∈ [2.02, 3.67] ∧ X3 ∈ [4.90, 5.57] ∧ X4 ∈
[1.29, 2.63]) THEN Iris-virginica

R6: IF (X1 ∈ [6.30, 7.70] ∧ X2 ∈ [2.50, 4.00] ∧ X3 ∈ [5.40, 7.19] ∧ X4 ∈
[1.60, 2.67]) THEN Iris-virginica

A 100% equivalence is obtained with the trained SVM for these two sets of
rules and no test data is classified wrong.

3 Eliminating Randomness from the Clustering
Algorithm

It has been realized during the experimentation that the method is very sen-
sible to the used prototype vectors and, therefore, the quality and amount
of the obtained rules varies depending on the location of the centres of the
ellipsoids. These centres have been obtained from an initial solution provided
by the clustering algorithm based on k-means, which randomly depends on
the ordination of the provided training points (Duda et al. 2001). From the
point of view of the extraction method this randomness is an obstacle, espe-
cially if it is necessary to extract several rules by class. Hence, it is required
to apply the method several times on the trained SVM (with different initial
conditions for the clustering algorithm) to be able to obtain a good solution,
because the set and performance of the extracted rules show a high variance
from an experiment to another one.

This situation of randomness and dependency of the method on the centres
is a problem to be solved. It would be possible to evaluate in an empirical form
different clustering algorithms for each database and to select that providing
a greater stability. Nevertheless, a novel direct technique will be proposed
for the determination of unique initial conditions for the clustering algorithm
based on the support vectors provided by the learning machine. In short,
the algorithm works as follows: if m prototypes are needed for the j-labelled
class in the k-th iteration of the extraction algorithm, the algorithm proposes
clustering the available data around m support vectors selected according to
some criterion; once established the disjoint partitions, the midpoint of each
one of them would be an initial centre for the clustering algorithm (Núñez
et al. 2002c).

Let SVjk be the set of support vectors in class j for the iteration k and let
Djk be the set of data in class j for the iteration k, then:

– Select m support vectors from SVjk

– Determine initial partitions Pi, assigning each instance in Djk to the
nearest support vector according to the Euclidean distance,
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Pi ← x, if d(x, svi) = argmin
p=1...m

[d (x, svp)] ∀x ∈ Djk (41)

– Next, calculate the midpoint for each partition,

ui =
∑ni

r=1 xr

ni
, (42)

where ni is the number of patterns in the partition Pi. The points ui will
determine the initial conditions for the selected k-means algorithm

The criteria that could be used for the selection of the support vectors are
the following ones (where it is only taken into account those vectors without
error, i.e. with a value for the associated α lower than C):

• Scheme of partition EP1: Support vectors are ordered in a descendent way
according to its average similarity with data in the class (Kaufman and
Rousseeuw 1990), so that the first m support vectors are selected.

• Scheme of partition EP2: The m closest support vectors are chosen; it
is aimed with this heuristic that the initial partitions are directed to the
zones with greater curvature of the decision surface defined by the SVM.

• Scheme of partition EP3: Support vectors are ordered in descendent form
according to the value of the parameter α and the first m vectors are
selected, on the hypothesis that larger is the value of the parameter, more
informative is the associated pattern (Guyon et al. 1996).

For all these schemes of partition, in the case that only q support vectors
are available with q < m, then the remaining vectors will be determined form
the set Djk by selecting those m − q patterns with higher average similarity
to the data.

One of these criteria has been empirically evaluated on trained support
vector machines with the real databases of the UCI repository. In order to
establish a direct comparison with the previously exposed results in Sect. 2,
the same performance parameters were used, and they were identically calcu-
lated. Contrarily to the precedent results, now they are obtained by running a
single iteration for the extraction algorithm, because SVM are unequivocally
determined and so the centres from the proposed clustering procedure.

Table 5 shows the results obtained by using the scheme of partition EP1.
It can be observed that the performance is in average very similar to that
obtained in Sect. 2. Therefore, using some of these schemes is a valid alter-
native route to be considered for generating the set of rules from a trained
SVM trained in a determinist form. Possible extensions could be considered
by defining some hybrid approaches that uses more than a partition scheme,
with a decision module selecting the best set of generated rules.



132 H. Núñez et al.

Table 5. Performance values for the set of rules applied on each database using the
scheme of partition EP1

Database
Error
SVM

Equation-type rules Interval-type rules

Error Equ. Cov. NR Error Equ. Cov. NR

1 0.046 0.041 98.00 80.40 6.4 0.037 97.00 81.40 4.5
2 0.045 0.039 97.85 86.03 16.1 0.042 96.00 90.33 15.9
3 0.023 0.020 98.33 78.40 6.2 0.024 92.90 79.42 9.8
4 0.022 0.022 100.00 25.00 6.6 0.020 98.00 73.00 6.2
5 0.052 0.048 97.04 78.46 8.0 0.045 94.82 72.03 11.3
6 0.002 0.003 96.51 29.81 25.4 0.009 99.10 97.56 31.4
7 0.102 0.143 90.78 20.01 12.0 0.112 96.01 56.34 32.00
8 0.023 0.025 96.99 40.05 8.0 0.022 99.53 95.60 11.00
9 0.042 0.044 99.02 29.33 10.3 0.045 98.16 79.00 8.8

10 0.164 0.160 97.13 57.40 6.5 0.167 97.30 62.24 19.3

4 Conclusions and Further Research

A method has been developed transforming the knowledge captured by a
support vector machine during its learning in a representation based on rules,
with the aim of equipping it with the capacity of explanation.

The algorithm proposed for the extraction of rules is based on the combina-
tion, using geometry elements, of the support vectors obtained from the SVM
with prototype vectors derived from a clustering training regime to determine
a set of ellipsoidal regions in the input space, later transferred to rules in
the form of equation or interval rules. The hypothesis lying in this hybrid
procedure is that, when using the support vectors, the defined regions adjust
to the shape of the separation surface defined by the SVM with a minimal
overlapping between classes.

An iterative procedure is followed for determining the set of rules, starting
with the construction of a general ellipsoid that is successively specialized
in more reduced ellipsoids in order to fit the shape of the decision function
determined by the SVM. The partition criterion is also based on both, the
support vectors and the decision function. The final number of rules, derived
from the ellipsoids or hyper-rectangles, can be defined either, externally or
through a stopping performance criterion.

Experimental results obtained when applying the rule extraction method
on real databases from different domains shown a high degree of equivalence
between the SVM and the extracted set of rules on test patterns. It can be so
concluded that the proposed method is able to cope the acquired knowledge
of the SVM during the learning phase.

None requirement is imposed in the initial method derivation about specific
training regimes employed to train the SVM, kernel functions, nor clustering
algorithm. Nevertheless, experimentation demonstrated that the quality and
number of the generated rules with this method is highly dependent, due to
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the randomness of the clustering algorithm, on the location of the prototype
vectors to be used as centres of the regions. A good average solution is only
provided by the algorithm after some iteration with different initial conditions
for the clustering algorithm.

A totally novel solution has been proposed to this problem by determining
unequivocally the initial conditions from the unique set of support vectors.
Three associated schemes of partition have been proposed to initialize the
proposed clustering algorithm and build in a deterministic form the set of
rules from a trained SVM. Empirical results showed the opportunity of such
schemes or a hybridization of them to reduce the sensibility of the method to
the clustering algorithm.

Starting from these proposed solutions to increase the explicative power of
a learned SVM in the form of a set of rules, it is possible to plan new develop-
ments. For example, it would be interesting to study a direct extension of the
rule extraction method to regression problems. In reference to the represen-
tational language, it could be studied using another one to express the new
model, for example generating fuzzy rules from the ellipsoids. It would be also
profitable developing algorithms for rule simplification that can be applied to
improve, when it is required, the understand ability of the knowledge that has
been extracted of the SVM.

Finally, it should be realized that the method can be extended to extract
rules of other models, such as radial basis function networks (RBFN). The
extraction algorithm could be designed so that the prototype vectors would
be replaced by the centres of the RBF nodes (Núñez et al. 2002b), and the
borders of the rules or their activation rates would be determined by the
support vectors.
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