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Summary. Innovative storage technology and the rising popularity of the Inter-
net have generated an ever-growing amount of data. In this vast amount of data
much valuable knowledge is available, yet it is hidden. The Support Vector Machine
(SVM) is a state-of-the-art classification technique that generally provides accurate
models, as it is able to capture non-linearities in the data. However, this strength
is also its main weakness, as the generated non-linear models are typically regarded
as incomprehensible black-box models. By extracting rules that mimic the black
box as closely as possible, we can provide some insight into the logics of the SVM
model. This explanation capability is of crucial importance in any domain where
the model needs to be validated before being implemented, such as in credit scoring
(loan default prediction) and medical diagnosis. If the SVM is regarded as the cur-
rent state-of-the-art, SVM rule extraction can be the state-of-the-art of the (near)
future. This chapter provides an overview of recently proposed SVM rule extraction
techniques, complemented with the pedagogical Artificial Neural Network (ANN)
rule extraction techniques which are also suitable for SVMs. Issues related to this
topic are the different rule outputs and corresponding rule expressiveness; the focus
on high dimensional data as SVM models typically perform well on such data; and
the requirement that the extracted rules are in line with existing domain knowledge.
These issues are explained and further illustrated with a credit scoring case, where
we extract a Trepan tree and a RIPPER rule set from the generated SVM model.
The benefit of decision tables in a rule extraction context is also demonstrated.
Finally, some interesting alternatives for SVM rule extraction are listed.
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1 Introduction

Over the past decades we have witnessed a true explosion of data, which
has mainly been driven by an ever growing popularity of the Internet and
continuous innovations in storage technology. Information management and
storage company EMC has recently calculated that 161 billion GigaByte of
data has been created, with an expected 988 billion GigaByte to be created
in 2010 [23]. Being able to find useful knowledge in this tremendous amount
of data is humanly no longer possible, and requires advanced statistical and
data mining techniques.

The Support Vector Machine (SVM) is currently the state-of-the-art in
classification techniques. Benchmarking studies reveal that in general, the
SVM performs best among current classification techniques [4], due to its abil-
ity to capture non-linearities. However, its strength is also its main weakness,
as the generated non-linear models are typically regarded as incomprehensible
black-box models. The opaqueness of SVM models can be remedied through
the use of rule extraction techniques, which induce rules that mimic the black-
box SVM model as closely as possible. If the SVM is regarded as the current
state-of-the-art, SVM rule extraction can be the state-of-the-art of the (near)
future.

This chapter is structured as follows. Before elaborating on the rationale
behind SVM rule extraction (Sect. 3) as well as some of the issues (Sect. 5) and
techniques (Sect. 4), an obligatory introduction to SVMs follows in the next
section. We will illustrate these principles with an application in the financial
domain, namely credit scoring, in Sect. 6, and finally discuss some possible
alternatives for SVM rule extraction in Sect. 7.

2 The Support Vector Machine

Given a training set of N data points {(xi, yi)}N
i=1 with input data xi ∈

IRn and corresponding binary class labels yi ∈ {−1, +1}, the SVM classi-
fier, according to Vapnik’s original formulation satisfies the following condi-
tions [20, 64]: {

wT ϕ(xi) + b ≥ +1, if yi = +1
wT ϕ(xi) + b ≤ −1, if yi = −1 (1)

which is equivalent to

yi[wT ϕ(xi) + b] ≥ 1, i = 1, . . . , N. (2)

The non-linear function ϕ(·) maps the input space to a high (possibly infinite)
dimensional feature space. In this feature space, the above inequalities basi-
cally construct a hyperplane wT ϕ(x) + b = 0 discriminating between the two
classes. By minimizing wT w, the margin between both classes is maximized
(Fig. 1).
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Fig. 1. Illustration of SVM optimization of the margin in the feature space

In primal weight space the classifier then takes the form

y(x) = sign[wT ϕ(x) + b], (3)

but, on the other hand, is never evaluated in this form. One defines the convex
optimization problem:

minw,b,ξ J (w, b, ξ) = 1
2w

T w + C
∑N

i=1 ξi (4)

subject to {
yi[wT ϕ(xi) + b] ≥ 1 − ξi, i = 1, . . . , N
ξi ≥ 0, i = 1, . . . , N.

(5)

The variables ξi are slack variables which are needed in order to allow mis-
classifications in the set of inequalities (e.g. due to overlapping distributions).
The first part of the objective function tries to maximize the margin between
both classes in the feature space, whereas the second part minimizes the mis-
classification error. The positive real constant C should be considered as a
tuning parameter in the algorithm.

The Lagrangian to the constraint optimization problem (4) and (5) is
given by

L(w, b, ξ; α, ν) = J (w, b, ξ)−
∑N

i=1 αi{yi[wT ϕ(xi) + b]− 1 + ξi}−
∑N

i=1 νiξi

(6)
The solution to the optimization problem is given by the saddle point of

the Lagrangian, i.e. by minimizing L(w, b, ξ; α, ν) with respect to w, b, ξ and
maximizing it with respect to α and ν.

maxα,ν minw,b,ξ L(w, b, ξ; α, ν). (7)

This leads to the following classifier:

y(x) = sign[
∑N

i=1 αi yi K(xi,x) + b], (8)



36 D. Martens et al.

whereby K(xi,x) = ϕ(xi)T ϕ(x) is taken with a positive definite kernel satis-
fying the Mercer theorem. The Lagrange multipliers αi are then determined
by means of the following optimization problem (dual problem):

maxαi − 1
2

N∑
i,j=1

yiyjK(xi,xj)αiαj +
N∑

i=1

αi (9)

subject to ⎧⎪⎨
⎪⎩

N∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, ..., N.

(10)

The entire classifier construction problem now simplifies to a convex quadratic
programming (QP) problem in αi. Note that one does not have to calculate
w nor ϕ(xi) in order to determine the decision surface. Thus, no explicit
construction of the non-linear mapping ϕ(x) is needed. Instead, the kernel
function K will be used. For the kernel function K(·,·), one typically has the
following choices:

K(x,xi) = xT
i x, (linear kernel)

K(x,xi) = (1 + xT
i x/c)d, (polynomial kernel of degreed)

K(x,xi) = exp{−‖x− xi‖2
2/σ2}, (RBF kernel)

K(x,xi) = tanh(κxT
i x + θ), (MLP kernel),

where d, c, σ, κ and θ are constants.
For low-noise problems, many of the αi will be typically equal to zero

(sparseness property). The training observations corresponding to non-zero
αi are called support vectors and are located close to the decision boundary.
This observation will be illustrated with Ripley’s synthetic data in Sect. 5.

As (8) shows, the SVM classifier is a complex, non-linear function. Trying
to comprehend the logics of the classifications made is quite difficult, if not
impossible.

3 The Rationale Behind SVM Rule Extraction

SVM rule extraction is a natural variant of the well researched ANN rule
extraction domain. To understand the usefulness of SVM rule extraction we
need to discuss (1) why rule extraction is performed, and (2) why SVM rule
extraction is performed rather than the more researched ANN rule extraction.

3.1 Why Rule Extraction

Rule extraction is performed for the following two reasons: (1) to understand
the classifications made by the underlying non-linear black-box model,1 thus

1 As this can be an ANN, SVM or any other non-linear model, we will refer to it
as the black box model.
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to open up the black box ; and (2) to improve the performance of rule induction
techniques by removing idiosyncrasies in the data.

1. The most common motivation for using rule extraction is to obtain a set of
rules that can explain the black box model. By obtaining a set of rules that
mimic the predictions of the SVM, some insight is gained into the logical
workings of the SVM. The extent to which the set of rules is consistent
with the SVM is measured by the fidelity, and provides the percentage
of test instances on which the SVM and the rule set concur with regard
to the class label. If the rules and fidelity are satisfactory, the user might
decide the SVM model has been sufficiently explained and use the SVM
as decision support model.

2. An interesting observation is that the (generally) better performing
non-linear model can be used in a pre-processing step to clean up the
data [35,42]. By changing the class labels of the data by the class label of
the black box, all noise is removed from the data. This can be seen from
Fig. 2, which shows the synthetic Ripley’s data set. Ripley’s data set has
two variables and thus allows for visualization of the model. The data set
has binary classes, where the classes are drawn from two normal distribu-
tions with a high degree of overlap [51]. In Fig. 2a the original test data
is shown, where one needs to discriminate between the blue dots and the
red crosses. As can be seen, there is indeed much noise (overlap) in the
data. The decision boundary of the induced SVM model, which has an
accuracy of 90%, as well as the original test data are shown in Fig. 2b. If
we change the class labels of the data to the class labels as predicted by
the SVM model, that is all data instances above the decision boundary
become blue dots, all below become red crosses, we obtain Fig. 2c. As this
figure illustrates no more noise or conflict is present in the data. Finally,
Fig. 2d shows that the SVM model can be used to provide class labels to
artificially generated data, thereby circumventing the problem of having
only few data instances. A rule extraction technique that makes advantage
of this approach is Trepan, discussed in the next section. In our previous
work, we have shown that performing rule induction techniques on these
new SVM predicted data set can increase the performance of traditional
rule induction techniques [42].

3.2 Why SVM Rule Extraction

Rule extraction from ANNs has been well researched, resulting in a wide
range of different techniques (a full overview can be found in [29], an appli-
cation of ANN rule extraction in credit scoring is given in [3]). The SVM is,
as the ANN, a non-linear predictive data mining technique. Benchmarking
studies have shown that such models exhibit good and comparable general-
ization behavior (out-of-sample accuracy) [4, 63]. However, SVMs have some
important benefits over ANNs. First of all, ANNs suffer from local minima in
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Fig. 2. (a) Ripley’s synthetic data set, with SVM decision boundary (b). In (c) the
class labels have been changed to the SVM predicted class labels, thereby remov-
ing present noise. Artificial data examples can be generated with their class labels
assigned by the SVM model, as shown by the 1,500 extra generated instances in (d)

the weight solution space [8]. Secondly, several architectural choices (such as
number of hidden layers, number of hidden nodes, activation function, etc.)
need to be determined (although we need to remark that for SVMs the regu-
larization parameter C and bandwidth σ for an RBF kernel, also need to be
set. These are typically set using a gridsearch procedure [63]). Extracting rules
from this state-of-the-art classification technique is the natural next step.

4 An Overview of SVM Rule Extraction Techniques

4.1 Classification Scheme for SVM Rule Extraction Techniques

Andrews et al. [2] propose a classification scheme for neural network rule
extraction techniques that can easily be extended to SVMs, and is based on
the following criteria:

1. Translucency of the extraction algorithm with respect to the underlying
neural network;
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2. Expressive power of the extracted rules or trees;
3. Specialized training regime of the neural network;
4. Quality of the extracted rules;
5. Algorithmic complexity of the extraction algorithm.

As for SVM rule extraction the training regime is not as much an issue as for
ANNs, and the algorithmic complexity of a rule extraction algorithm is hard
to assess, we will only elaborate on the translucency, the expressive power of
the rules, and the quality of the rules as part of the rule extraction technique
evaluation.

Translucency

The translucency criterion considers the technique’s perception of the SVM.
A decompositional approach is closely intertwined with the internal workings
of the SVM and its constructed hyperplane. On the other hand, a pedagogical
algorithm considers the trained model as a black box. Instead of looking at
the internal structure, these algorithms directly extract rules which relate the
inputs and outputs of the SVM. These techniques typically use the trained
SVM model as an oracle to label or classify artificially generated training
examples which are later used by a symbolic learning algorithm, as already
illustrated in Fig. 2d. The idea behind these techniques is the assumption that
the trained model can better represent the data than the original data set.
That is, the data is cleaner, free of apparent conflicts. The difference between
decompositional and pedagogical rule extraction techniques is schematically
illustrated in Fig. 3. Since the model is viewed as a black box, most pedagogical
algorithms lend themselves very easily to rule extraction from other machine
learning algorithms. This allows us to extrapolate rule extraction techniques
from the neural networks domain to our domain of interest, SVMs.

Expressive Power

The expressive power of the extracted rules depends on the language used to
express the rules. Many types of rules have been suggested in the literature.
Propositional rules are simple If... Then... expressions based on conventional
propositional logic.

The second rule type we will encounter are M-of-N rules and are usually
expressed as follows:

If {at least/exactly/at most} M of the N conditions (C1, C2, . . . ,CN)
are satisfied Then Class = 1.

(11)
This type of rules allows one to represent complex classification concepts more
succinctly than classical propositional DNF rules.

The rule types considered above are crisp in the sense that their antecedent
is either true or false. Fuzzy rules allow for more flexibility and are usually
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Fig. 3. Pedagogical (a) and decompositional (b) rule extraction techniques

expressed in terms of linguistic concepts which are easier to interpret for
humans.

Rule Extraction Technique Evaluation

In order to evaluate the rule extraction algorithms, Craven and Shavlik [18]
listed five performance criteria:

1. Comprehensibility: The extent to which extracted representations are
humanly comprehensible.

2. Fidelity: The extent to which the extracted representations model the
black box from which they were extracted.

3. Accuracy: The ability of extracted representations to make accurate
predictions on previously unseen cases.

4. Scalability: The ability of the method to scale to other models with large
input spaces and large number of data.

5. Generality: The extent to which the method requires special training
regimes or restrictions on the model architecture.

The latter two performance measures are often forgotten and omitted, since
it is difficult to quantify them. In the context of SVM rule extraction
mainly scalability becomes an important aspect, as SVMs perform well on
large dimensional data. Craven and Shavlik additionally consider software
availability as key to the success of rule extraction techniques.
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4.2 SVM Rule Extraction Techniques

Table 1 provides an overview of SVM rule extraction techniques, and describes
the translucency and rule expressiveness.2 A chronological overview of all
discussed algorithms (and some additional techniques that were not discussed
in the text) is given below in Table 1. For each algorithm, we provide the
following information:

Translucency (P or D): Pedagogical or Decompositional
Scope (C or R): Classification or Regression
Summary: A very short description of the algorithm

The first set of techniques are specifically intended as SVM rule extraction
techniques. Thereafter, we list some commonly used rule induction techniques
that can be used as pedagogical rule extraction techniques (by changing the
class to the SVM predicted class), and pedagogical ANN rule extraction tech-
niques that can easily be used as SVM rule extraction technique. Notice that
the use of such pedagogical techniques have only rarely been applied as SVM
rule extraction techniques.

What follows is a short description of the proposed decompositional
SVM rule extraction techniques, and some of the most commonly used rule

Table 1. Chronological overview of rule extraction algorithms

Algorithm (Year) Ref. Transl. Scope Summary
SVM Rule extraction techniques

SVM + Prototypes (2002) [46] D C Clustering
Barakat (2005) [6] D C Train decision tree on support vectors and their

class labels
Fung (2005) [25] D C Only applicable to linear classifiers
Iter (2006) [28] P C + R Iterative growing of hypercubes
Minerva (2007) [30] P C + R Sequential covering + iterative growing

Rule induction techniques, and
Pedagogical ANN rule extraction techniques, also applicable to SVMs

CART (1984) [11] P C + R Decision tree induction
CN2 (1989) [15] P C Rule induction
C4.5 (1993) [49] P C Decision tree induction
TREPAN (1996) [18] P C Decision tree induction, M-of-N splits
BIO-RE (1999) [56] P C Creates complete truth table, only applicable to

toy problems
ANN-DT (1999) [52] P C + R Decision tree induction, similar to TREPAN
DecText (2000) [10] P C Decision tree induction
STARE (2003) [68] P C Breadth-first search with sampling, prefers cat-

egorical variables over continuous variables
G-REX (2003) [34] P C + R Genetic programming: different types of rules
REX (2003) [41] P C Genetic algorithm: fuzzy rules
GEX (2004) [40] P C Genetic algorithm: propositional rules
Rabuñal (2004) [50] P C Genetic programming
BUR (2004) [14] P C Based on gradient boosting machines
Re-RX (2006) [53] P C Hierarchical rule sets: first splits are based on

discrete attributes
AntMiner + (2007) [44] P C Ant-based induction of rules

2 Partially based upon artificial neural network classification scheme by Andrews,
Diederich and Tickle [2].
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induction and pedagogical rule extraction techniques, which were originally
proposed in the context of neural networks.

SVM+Prototypes

One of the few rule extraction methods designed specifically for support
vector machines is the SVM+Prototypes method proposed in [46]. This
decompositional algorithm is not only able to extract propositional (interval)
classification rules from a trained SVM, but also rules from which the con-
ditions are mathematical equations of ellipsoids. We will discuss the variant
that results in propositional rules.

The SVM+Prototypes algorithm is an iterative process that proceeds as
follows:

Step 1 Train a Support Vector Machine The SVM’s decision bound-
ary will divide the training data in two subsets S+ and S−, containing
the instances for which the predicted class is respectively positive and
negative. Initialize the variable i to 1.

Step 2 For each subset, use some clustering algorithm to find i clusters (new
subsets) and calculate the prototype or centroid of each cluster. For each
of these new subsets find the support vector that lies farthest to the pro-
totype. Use the prototype as center and the support vector as vertex to
create a hypercube in the input space.

Step 3 Do a partition test on each of the hypercubes. This partition test is
performed to minimize the level of overlapping between cubes for which
the predicted class is different. One possible method is to test whether all
of the corners of the hypercube are predicted to be of the same class. If
this is the case then we say that the partition test is positive.

Step 4 Convert the hypercubes with a negative partition test into rules. If
there are hypercubes with a positive partition test and i is smaller than a
user-specified threshold Imax then increase i, take the subsets from which
these cubes were created and go back to step 2, else go to step 5.

Step 5 If i is equal to Imax, convert all of the current hypercubes into rules.

The example of Fig. 4 shows the principal idea behind the algorithm.
During the first iteration (i = 1), the algorithm looks for the centroid of
respectively the black and white instances. These prototypes are indicated by
a star sign. It will then search the support vector in that partition that lies
farthest away from the prototype and will create a cube from these two points
(Step Two). In step three, the partition test will be positive for the leftmost
cube as one of its vertices lies in the area for which the SVM predicts a dif-
ferent class. The other cube has a negative partition test and will therefore
become a rule in step 4. For the first cube with a positive partition test, we
will iterate the above procedure but with i = 2. This will result in the creation
of two new rules.
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(a) First iteration (b) Second iteration

Fig. 4. Example of SVM+Prototypes algorithm

The main drawback of this algorithm is that the extracted rules are nei-
ther exclusive nor exhaustive which results in conflicting or missing rules for
the classification of new data instances. Each of the extracted rules will also
contain all possible input variables in its conditions, making the approach
undesirable for larger input spaces as it will extract complex rules that lack
interpretability. In [6], another issue with the scalability of this method is
observed: a higher number of input patterns will result in more rules being
extracted, which further reduces comprehensibility.

An interesting approach for this technique to avoid the time-consuming
clustering might be the use of Relevance Vector Machines [58, 59]. This tech-
nique is introduced by Tipping in 2000, and similar to the SVM but based
on Bayesian learning. As he mentions unlike for the SVM, the relevance vec-
tors are some distance from the decision boundary (in x-space), appearing
more “prototypical” or even “anti-boundary” in character. In this manner,
prototypes are immediately formed and could be used in the rule extraction
technique.

Fung et al.

In [25], Fung et al. present an algorithm to extract propositional classification
rules from linear classifiers. The method is considered to be decompositional
because it is only applicable when the underlying model provides a linear
decision boundary. The resulting rules are parallel with the axes and non-
overlapping, but only (asymptotically) exhaustive. Completeness can however,
be ensured by retrieving rules for only one of both classes and specification of
a default class.

The algorithm is iterative and extracts the rules by solving a constrained
optimization problem that is computationally inexpensive to solve. While the
mathematical details are relatively complex and can be found in [25], the
principal idea is rather straightforward to explain. Figure 5 shows execution
of the algorithm when there are two inputs and when only rules for the black
squares are being extracted.
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Fig. 5. Example of algorithm of Fung et al.

First, a transformation is performed such that all inputs of the black
squares observations are in the interval [0,1]. Then the algorithm searches
for an (hyper)cube that has one vertex on the separating hyperplane and lies
completely in the region below the separating hyperplane. There are many
cubes that satisfy these criteria, and therefore the authors added a criterion
to find the “optimal” cube. They developed two variants of the algorithm
that differ only in the way this optimality is defined: volume maximization
and point coverage maximization. In the example of Fig. 5, this “optimal”
cube is the large cube that has the origin as one of its vertices. This cube
divides the region below the separating hyperplane in two new regions: the
regions above and to the right of the cube. In general for an N-dimensional
input space, one rule will create N new regions. In the next iteration, a new
“optimal” cube is recursively retrieved for each of the new regions that contain
training observations. The algorithm stops after a user-determined maximum
number of iterations.

The proposed method faces some drawbacks. Similar to the SVM+Proto-
types method discussed above, each rule condition involves all the input
variables. This makes the method unsuitable for problems with a high-
dimensional input space. A second limitation is the restriction to linear
classifiers. This requirement considerably reduces the possible application
domains.

Rule and Decision Tree Induction Techniques

Many algorithms are capable of learning rules or trees directly from a set of
training examples, e.g., CN2 [15], AQ [45], RIPPER [16], AntMiner+ [44],
C4.5 [49] or CART [11]. Because of their ability to learn predictive mod-
els directly from the data, these algorithms are not considered to be rule
extraction techniques in the strict sense of the word. However, these algo-
rithms can also be used to extract a human-comprehensible description from
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opaque models. When used for this purpose, the original target values of the
training examples are modified by the predictions made by the black box
model and the algorithm is then applied to this modified data set. Addition-
ally, to ensure that the white box learner will mimic the decision boundary of
the black box model even more, one can also create a large number of artificial
examples and then ask the black box model to provide the class labels for these
sampled points. The remainder of this section briefly covers both approaches,
as they form the basic for most pedagogical rule extraction techniques.

Rule Induction Techniques

In this section, we discuss a general class of rule induction techniques: sequen-
tial covering algorithms. This series of algorithms extracts a rule set by
learning one rule, removing the data points covered by that rule and reiterat-
ing the algorithm on the remainder of the data. RIPPER, Iter and Minerva
are some of the techniques based on this general working.

Starting from an empty rule set, the sequential covering algorithm first
looks for a rule that is highly accurate for predicting a certain class. If the
accuracy of this rule is above a user-specified threshold, then the rule is added
to the set of existing rules and the algorithm is repeated over the rest of the
examples that were not classified correctly by this rule. If the accuracy of the
rule is below this threshold the algorithm will terminate. Because the rules in
the rule set can be overlapping, the rules are first sorted according to their
accuracy on the training examples before they are returned to the user. New
examples are classified by the prediction of the first rule that is triggered.

It is clear that in the above algorithm, the subroutine of learning one
rule is of crucial importance. The rules returned by the routine must have
a good accuracy but do not necessarily have to cover a large part of the
input space. The exact implementation of this learning of one rule will be
different for each algorithm but usually follows either a bottom-up or top-
down search process. If the bottom-up approach is followed, the routine will
start from a very specific rule and drop in each iteration the attribute that
least influences the accuracy of the rule on the set of examples. Because each
dropped condition makes the rule more general, the search process is also
called specific-to-general search. The opposite approach is the top-down or
general-to-specific search: the search starts from the most general hypothesis
and adds in each iteration the attribute that most improves accuracy of the
rule on the set of examples.

Decision Trees: C4.5 and CART

Decision trees [11, 36, 49] are widely used in predictive modeling. A decision
tree is a recursive structure that contains a combination of internal and leaf
nodes. Each internal node specifies a test to be carried out on a single variable
and its branches indicate the possible outcomes of the test. An observation
can be classified by following the path from the root towards a leaf node.
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At each internal node, the corresponding test is performed and the outcome
indicates the branch to follow. With each leaf node, a value or class label is
associated.

In the rest of this section, we discuss briefly the most widespread algo-
rithm for decision tree induction, namely C4.5. It uses a divide-and-conquer
approach to construct a suitable tree from a set of training examples [48].

C4.5 induces decision trees based on information theoretic concepts. Let
p1 (p0) be the proportion of examples of class 1(0) in sample S. The entropy
of S is then calculated as follows:

Entropy(S) = −p1 log2(p1) − p0 log2(p0), (12)

whereby p0 = 1−p1. Entropy is used to measure how informative an attribute
is in splitting the data. Basically, the entropy measures the order (or disorder)
in the data with respect to the classes. It equals 1 when p1 = p0 = 0.5
(maximal disorder, minimal order) and 0 (maximal order, minimal disorder)
when p1 = 0 or p0 = 0. In the latter case, all observations belong to the
same class. Gain(S, xj) is defined as the expected reduction in entropy due to
sorting (splitting) on attribute xj :

Gain(S, xj) = Entropy(S) −
∑

v ∈ values(xj)

|Sv|
|S| Entropy(Sv), (13)

where values(xj) represents the set of all possible values of attribute xj , Sv the
subset of S where attribute xj has value v and |Sv| the number of observations
in Sv. The Gain criterion was used in ID3, the forerunner of C4.5, to decide
upon which attribute to split at a given node [48]. However, when this criterion
is used to decide upon the node splits, the algorithm favors splits on attributes
with many distinct values. In order to rectify this, C4.5 applies a normalization
and uses the gainratio criterion which is defined as follows:

Gainratio(S, xj) =
Gain(S, xj)

SplitInformation(S, xj)
with

SplitInformation(S, xj) = −
∑

k ∈ values(xj)

|Sk|
|S| log2

|Sk|
|S| .

(14)

Another very popular tree induction algorithm is CART, short for Clas-
sification and Regression Trees [11]. It is largely similar to C4.5, but with a
different splitting criterion (Gini Index) and pruning procedure. Additionally,
CART can also be applied to regression problems.

The tree induction algorithm C4.5 is applied to the data where the output
has been changed to the SVM predicted value, so that the tree approximates
the SVM. Since the trees can be converted into rules, we can regard this
technique as a rule extraction technique. This approach has been used in [5]
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to extract rules from SVMs. A slightly different variant is proposed in [6],
where only the support vectors are used. A problem that arises with such
decision tree learners however, is that the deeper a tree is expanded, the fewer
data points are available to use to decide upon the splits. The next technique
we will discuss tries to overcome this issue.

Trepan

Trepan [17,18] is a popular pedagogical rule extraction algorithm. While it is
limited to binary classification problems, it is able to deal with both continuous
and nominal input variables. Trepan shows many similarities with the more
conventional decision-tree algorithms that learn directly from the training
observations, but differs in a number of respects.

First, when constructing conventional decision trees, a decreasing number
of training observations is available to expand nodes deeper down the tree.
Trepan overcomes this limitation by generating additional instances. More
specifically, Trepan ensures that at least a certain minimum number of obser-
vations are considered before assigning a class label or selecting the best split.
If fewer instances are available at a particular node, additional instances will
be generated until this user-specified threshold is met. The artificial instances
must satisfy the constraints associated with each node and are generated by
taking into account each feature’s marginal distribution. So, instead of tak-
ing uniform samples from (part of) the input space, Trepan first models the
marginal distributions and subsequently creates instances according to these
distributions while at the same time ensuring that the constraints to reach
the node are satisfied. For discrete attributes, the marginal distributions can
easily be obtained from the empirical frequency distributions. For continuous
attributes, Trepan uses a kernel density based estimation method [55] that
calculates the marginal distribution for attribute x as:

f(x) =
1
m

m∑
i=1

1√
2πσ

e−(
x−µi
2σ )2 (15)

with m the number of training examples, µi the value for this attribute for
example i and σ the width of the gaussian kernel. Trepan sets the value
for σ to 1/

√
m. One shortcoming of using the marginal distributions is that

dependencies between variables are not taken into account. Trepan tries to
overcome this limitation by estimating new models for each node and using
only the training examples that reach that particular node. These locally
estimated models are able to capture some of the conditional dependencies
between the different features. The disadvantage of using local models is that
they are based on less data, and might therefore become less reliable. Trepan
handles this trade-off by performing a statistical test to decide whether or not
a local model is used for a node. If the locally estimated distribution and the
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estimated distribution at the parent are significantly different, then Trepan
uses the local distributions, otherwise it uses the distributions of the parent.

Second, most decision tree algorithms, e.g., CART [11] and C4.5 [49], use
the internal (non-leaf) nodes to partition the input space based on one simple
feature. Trepan on the other hand, uses M-of-N expressions in its splits that
allow multiple features to appear in one split. Note that an M-of-N split is
satisfied when M of the N conditions are satisfied. 2-of-{a,¬b,c} is therefore
logically equivalent to (a∧¬b)∨ (a∧ c)∨ (¬b ∧ c). To avoid testing all of the
possibly large number of M-of-N combinations, Trepan uses a heuristic beam
search with a beam width of two to select its splits. The search process is
initialized by first selecting the best binary split at a given node based on the
information gain criteria ([17] (or gain ratio according to [18]). This split and
its complement are then used as basis for the beam search procedure that is
halted when the beam remains unchanged during an iteration. During each
iteration, the following two operators are applied to the current splits:

– M-of-N+1: the threshold remains the same but a new literal is added to
the current set. For example, 2-of-{a,b} is converted into 2-of-{a,b,c}

– M+1-of-N+1: the threshold is incremented by one and a new literal is
added to the current set. For example, 2-of-{a,b} is converted into 3-of-
{a,b,c}
Finally, while most algorithms grow decision trees in a depth-first manner,

Trepan employs the best-first principle. Expansion of a node occurs first for
those nodes that have the greatest potential to increase the fidelity of the tree
to the network.

Previous rule extraction studies have shown the potential benefit in per-
formance from using Trepan [4, 42], which can be mainly attributed to it’s
extra data generating capabilities.

Re-RX

The final promising pedagogical rule extraction technique that we will discuss
is Re-RX.

As typical data contain both discrete and continuous attributes, it would
be useful to have a rule set that separates the rule conditions involving these
two types of attributes to increase its interpretability. Re-RX is a recursive
algorithm that has been developed to generate such rules from a neural net-
work classifier [53]. Being pedagogical in its approach, it can be easily applied
for rule extraction from SVM.

The basic idea behind the algorithm is to try to split the input space first
using only the relevant discrete attributes. When there is no more discrete
attribute that can be used to partition the input space further, in each of
these subspaces the final partition is achieved by a hyperplane involving only
the continuous attributes. If we depict the generated rule set as a decision
tree, we would have a binary tree where all the node splits are determined
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by the value of a single discrete attributes, except for the last split in each
tree branch where the condition of the split is a linear combination of the
continuous attributes. The outline of the algorithm is given below.

Input: A set of data samples S having the discrete attributes D and
continuous attributes C.
Output: A set of classification rules.

1. Train and prune a neural network using the data set S and all its attributes
D and C.

2. Let D′
and C′

be the sets of discrete and continuous attributes still present
in the network, respectively. And let S ′

be the set of data samples that
are correctly classified by the pruned network.

3. If D′
= ∅, then generate a hyperplane to split the samples in S ′

according
to the values of their continuous attributes C′

and stop.
Otherwise using only the discrete attributes D′

, generate the set of
classification rules R for the data set S ′

.
4. For each rule Ri generated:

If support(Ri) > δ1 and error(Ri) > δ2, then
– Let Si be the set of data samples that satisfy the condition of rule

Ri and Di be the set of discrete attributes that do not appear in rule
condition of Ri.

– If Di = ∅, then generate a hyperplane to split the samples in Si accord-
ing to the values of their continuous attributes Ci and stop.
Otherwise, call Re-RX(Si,Di, Ci).

Using samples that have been correctly classified by the pruned neural
network, the algorithm either (1) groups these samples into one of the two
possible classes by a single hyperplane if only continuous attributes are found
relevant by the network, or (2) generates a set of classification rules using only
the relevant discrete attributes. In latter case, the support and accuracy of
each generated rule are computed. Those rules that are found not to be satis-
factory according to predetermined criteria need to be refined. The refinement
of a rule is achieved by simply executing the algorithm Re-RX again on all
samples that satisfied the condition of this rule.

An example of a rule generated by Re-RX for credit scoring application is
shown in Table 2.

5 Issues Concerning SVM Rule Extraction

5.1 Rule Output

As we have seen in Sect. 4.1 rule expressiveness is one of the categories for clas-
sifying rule extraction techniques. While for performance criteria accuracy and
fidelity it is straightforward to rank the results (the higher the percentage of
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Table 2. Example rule set from Re-RX

Rule r: if Years Client < 5 and Purpose �= Private loan
Rule r1: if Number of applicants ≥ 2 and Owns real estate = yes, then

Rule r1a: if Savings amount + 1.11 Income - 38,249.74 Insurance - 0.46 Debt > -19,39,300
then applicant = good.
Rule r1b: else applicant = bad.

Rule r2: else if Number of applicants ≥ 2 and Owns real estate = no, then
Rule r2a: if Savings amount + 1.11 Income - 38,249.74 Insurance - 0.46 Debt > -16,38,720
then applicant = good.
Rule r2b: else applicant = bad.

Rule r3: else if Number of applicants = 1 and Owns real estate = yes, then
Rule r3a: if Savings amount + 1.11 Income - 38,249.74 Insurance - 0.46 Debt > -16,98,200
then applicant = good.
Rule r3b: else applicant = bad.

Rule r4: else if Number of applicants = 1 and Owns real estate = no, then
Rule r4a: if Savings amount + 1.11 Income - 38,249.74 Insurance - 0.46 Debt > -12,56,900
then applicant = good.
Rule r4b: else applicant = bad.

correctly classified test instances, the better), this is not the case for compre-
hensibility. Although one might argue that fewer rules is better, the question
arises how one can compare a propositional rule set with an M-of-N decision
tree, an oblique rule set or a fuzzy rule set. A decision tree can be converted
into a set of rules, where each leaf corresponds to one rule, but is a rule set
with 4 rules really just as comprehensible as a tree with 4 leaves? Don’t many
variants of a tree with 4 leaves exist (completely balanced, unbalanced, binary,
etc.)?

The comprehensibility of the chosen output and the ranking among the
possible formats is a very difficult issue that has not yet been completely
tackled by existing research. This is mainly due to the subjective nature
of “comprehensibility”, which is not just a property of the model but also
depends on many other factors, such as the analyst’s experience with the
model and his/her prior knowledge. Despite this influence of the observer,
some representation formats are generally considered to be more easily inter-
pretable than others. In [32], an experiment was performed to compare the
impact of several representation formats on the aspect of comprehensibility.
The formats under consideration were decision tables, (binary) decision trees,
a textual description of propositional rules and a textual description of oblique
rules. In addition to a comparison between the different representation for-
mats, the experiment also investigated the influence of the size or complexity
of each of these representations on their interpretability.

It was concluded that decision tables provide significant advantages if com-
prehensibility is of crucial importance. The respondents of the experiment
were able to answer a list of questions faster, more accurately and more confi-
dently with decision tables than with any of the other representation formats.
A majority of the users also found decision tables the easiest representation
format to work with. For the relation between complexity and comprehensibil-
ity the results were less ideal: whatever the representation format, the number
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of correct answers of the respondents was much lower for the more complex
models. For rule extraction research, this result implies that only small mod-
els should be extracted as the larger models are deemed too complex to be
comprehensible. We would promote collaboration between the data mining
and cognitive science communities to create algorithms and representations
that are both effective as well as comprehensible to the end-users.

5.2 High Dimensional Data

SVMs are able to deal with high dimensional data through the use of the
regularization parameter C. This advantage is most visible in high dimensional
problem domains such as text mining [33] and in bioinformatics [13]. A case
study on text mining has been put forward in the introductory chapter by
Diederich.

Rule induction techniques on the other hand, have more problems with
this curse of dimensionality [57]. At this moment, we are not aware of any
SVM rule extraction algorithm that can flexibly deal with high dimensional
data, for which it is known that SVMs are particularly suitable.

5.3 Constraint Based Learning: Knowledge Fusion Problem

Although many powerful classification algorithms have been developed, they
generally rely solely on modeling repeated patterns or correlations which occur
in the data. However, it may well occur that observations, that are very evident
to classify by the domain expert, do not appear frequently enough in the data
in order to be appropriately modeled by a data mining algorithm. Hence, the
intervention and interpretation of the domain expert still remains crucial. A
data mining approach that takes into account the knowledge representing the
experience of domain experts is therefore much preferred and of great focus
in current data mining research. A model that is in line with existing domain
knowledge is said to be justifiable [43].

Whenever comprehensibility is required, justifiability is a requirement as
well. Since the aim of SVM rule extraction techniques is to provide compre-
hensible models, this justifiability issue becomes of great importance. The
academically challenging problem of consolidating the automatically gener-
ated data mining knowledge with the knowledge reflecting experts’ domain
expertise, constitutes the knowledge fusion problem (see Fig. 6). The final
goal of the knowledge fusion problem is to provide models that are accurate,
comprehensible and justifiable, and thus acceptable for implementation. The
most frequently encountered and researched aspect of knowledge fusion is the
monotonicity constraint. This constraint demands that an increase in a cer-
tain input(s) cannot lead to a decrease in the output. More formally (similarly
to [24]), given a data set D = {xi, yi}n

i=1, with xi = (xi
1, x

i
2, . . . , x

i
m) ∈ X =

X1 × X2 × . . . Xm, and a partial ordering ≤ defined over this input space X .
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Fig. 6. The knowledge fusion process

Over the space Y of class values yi, a linear ordering ≤ is defined. Then the
classifier f : xi 	→ f(xi) ∈ Y is monotone if (16) holds.

xi ≤ xj ⇒ f(xi) ≤ f(xj), ∀i, j (or f(xi) ≥ f(xj), ∀i, j). (16)

For instance, increasing income, keeping all other variables equal, should yield
a decreasing probability of loan default. Therefore if client A has the same
characteristics as client B, but a lower income, then it cannot be that client
A is classified as a good customer and client B a bad one.

In linear mathematical models, generated by e.g., linear and logistic regres-
sion, the monotonicity constraint is fulfilled by demanding that the sign of the
coefficient of each of the explanatory variables is the same as the expected sign
for that variable. For instance, since the probability of loan default should be
negatively correlated to the income, the coefficient of the income variable is
expected to have a negative sign.

Several adaptions to existing classification techniques have been put for-
ward to deal with monotonicity, such as for Bayesian learning [1], classification
trees [7,21,24], classification rules [43] and neural networks [54,66]; e.g., in the
medical diagnosis [47], house price prediction [65] and credit scoring [21, 54]
domains.

Until now this justifiability constraint has not been addressed in the SVM
rule extraction literature, although the application of rule induction tech-
niques that do obtain this feature, such as AntMiner+ [43] and tree inducers
proposed in [7,24], as SVM rule extraction techniques is a first step into that
direction.
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5.4 Specificness of Underlying Black Box Model

Although decompositional techniques might better exploit the advantages of
the underlying black box model, a danger exists that a too specific model
is required. In ANN rule extraction almost all decompositional techniques
require a certain architecture for the ANN, for example only one hidden node,
or the need for product units.

As we’ve seen, the technique by Fung et al. also requires a special kind
of SVM: a linear one. We believe it is important for a successful SVM rule
extraction technique not to require a too specific SVM, such as for instance
a LS-SVM, or a RVM. Although this is not yet a real issue with SVM rule
extraction, this can certainly be observed in ANN rule extraction and should
thus be kept in mind when developing new techniques.

5.5 Regression

From Table 1 it can be seen that only few rule extraction techniques focus on
the regression task. Still, there is only little reason for exploring the use of rule
extraction for classification only, as the SVM is just as successful for regression
tasks. The same comprehensibility issues are important for regression, thereby
providing the same motivation for rule extraction.

5.6 Availability of Code

A final issue in rule extraction research is the lack of executable code for
most of the algorithms. In [19], it was already expressed that availability of
software is of crucial importance to achieve a wide impact of rule extraction.
However, only few algorithms are publicly available. This makes it difficult
to gain an objective view of the algorithms’ performance or to benchmark
multiple algorithms on a data set. Furthermore, we are convinced that it is
not only useful to make the completed programs available, but also to provide
code for the subroutines used within these programs as they can often be
shared. For example, the creation of artificial observations in a constrained
part of the input space is a routine that is used by several methods, e.g.,
Trepan, ANN-DT and Iter. Other routines that can benefit from sharing and
that can facilitate development of new techniques are procedures to query the
underlying model or routines to optimize the returned rule set.

6 Credit Scoring Application

6.1 Credit Scoring in Basel II

The introduction of the Basel II Capital Accord has encouraged financial
institutions to build internal rating systems assessing the credit risk of their
various credit portfolios. One of the key outputs of an internal rating system
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is the probability of default (PD), which reflects the likelihood that a coun-
terparty will default on his/her financial obligation. Since the PD modeling
problem basically boils down to a discrimination problem (defaulter or not),
one may rely on the myriad of classification techniques that have been sug-
gested in the literature. However, since the credit risk models will be subject
to supervisory review and evaluation, they must be easy to understand and
transparent. Hence, techniques such as neural networks or support vector
machines are less suitable due to their black box nature, while rules extracted
from these non-linear models are indeed appropriate.

6.2 Classification Model

We have applied two rule extraction techniques with varying properties to the
German credit scoring data set, publicly available from the UCI data reposi-
tory [26]. The provided models illustrate some of the issues, mentioned before,
such as the need to incorporate domain knowledge, the different comprehen-
sibility accompanied by different rule outputs, and the benefits of decision
tables.

First, a Trepan tree is provided in Fig. 7, while Table 3 provides the rules
extracted by RIPPER on the data set with class labels predicted by the
SVM. The attentive reader might also notice some intuitive terms, both in
the Trepan tree, and in RIPPER rules. For RIPPER, for instance, the fourth
rule is rather unintuitive: an applicant that has paid back all his/her previous
loans in time (and does not fulfill any of the previous rules) is classified as
a bad applicant. In the Trepan tree, the third split has similar intuitiveness
problems. This monotonicity issue, as discussed in Sect. 5.3, can restrict or
even prohibit the implementation of these models in practical decision support
systems.

When we compare the Trepan tree, the RIPPER rule set, and the Re-
RX rule example in Table 2, we clearly see the rule expressiveness issue of
the different rule outputs. As decision tables seem to provide the most com-
prehensible decision support system (see Sect. 5.1), we have transformed the
RIPPER rule set into a decision table with the use of the Prologa software
(Fig. 8).3 The reader will surely agree that the decision table provides some
advantages over the rule set, e.g., where in the rule set one needs to consider
the rules in order, this is not the case for the decision table.

Note that the more rules exist, the more compact the decision table will
be compared to the set of rules. We mention this, as the benefit of the the
decision table is expected to be bigger for the typical, larger rule sets.

3 Software available at http://www.econ.kuleuven.ac.be/prologa/.
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Yes
1 of {Checking Account < 0DM, Duration ≥ 3y}

2 of {Critical Account, Credit amount < 5000DM}

No

Bad

Bad

Good

Good

Good

c
Yes No

Yes No

Yes No

Fig. 7. Trepan tree

Table 3. Example rule set from RIPPER

if (Checking Account < 0DM) and (Housing = rent)
then Applicant = Bad

elseif (Checking Account < 0DM) and (Property = car or other) and
(Present residence since ≤ 3y)
then Applicant = Bad

elseif (Checking Account < 0DM) and (Duration ≥ 30m)
then Applicant = Bad

elseif (Credit history = None taken/All paid back duly)
then Applicant = Bad

elseif (0 ≤ Checking Account < 200DM) and (Age ≤ 28) and
(Purpose = new car)
then Applicant = Bad

else Applicant = Good
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Fig. 8. Decision table classifying a loan applicant, based on RIPPER’s rule set of
Table 3

7 Alternatives to Rule Extraction

A final critical point needs to be made concerning SVM rule extraction, since
other alternatives exist for obtaining comprehensible models. Although the
expressiveness of rules is superior to the alternative outputs, it is possible that
one of the alternatives is more suitable for certain applications. Therefore we
mention some of the most interesting ones in this final section.

7.1 Inverse Classification

Sensitivity analysis is the study of how input changes influence the change in
the output, and can be summarized by (17).

f(x + ∆x) = f(x) + ∆f (17)

Inverse classification is closely related to sensitivity analysis and involves
determining the minimum required change to a data point in order to reclas-
sify it as a member of a (different) preferred class [39]. This problem is called
the inverse classification problem, since the usual mapping is from a data
point to a class, while here it is the other way around. Such information can
be very helpful in a variety of domains: companies, and even countries, can
determine what macro-economic variables should change so as to obtain a
better bond, competitiveness or terrorism rating. Similarly, a financial insti-
tution can provide (more) specific reasons why a customer’s application was
rejected, by simply stating how the customer can change to the good class,
e.g., by increasing income by a certain amount. A heuristic, genetic-algorithm
based approach is used in [39].

The use of distance to the nearest support vector as an approximator for
the distance to the decision boundary (thus distance to the other class) might
be useful in this approach, and constitutes an interesting issue for future
research within this domain.

7.2 Self Organizing Maps

SOMs were introduced in 1982 by Teuvo Kohonen [37] and have been used in a
wide array of applications like the visualization of high-dimensional data [67],
clustering of text documents [27], identification of fraudulent insurance claims
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[12] and many others. An extensive overview of successful applications can be
found in [22] and [38]. A SOM is a feedforward neural network consisting of
two layers [57]. The neurons from the output layer are usually ordered in a
low-dimensional (typically two-dimensional) grid.

Self-organising maps are often called topology-preserving maps, in the
sense that similar inputs, will be close to each other in the final output grid.
First, the SOM is trained on the available data with the independent vari-
ables, followed by assigning a color to each neuron based on the classification
of the data instances projected on that neuron. In Fig. 9, light and dark shades
indicate respectively “non corrupt” and “highly corrupt” countries, according
their Corruption Perceptions Index [31]. We can observe that the lower right
corner contains the countries perceived to be most corrupt (e.g., Pakistan
(PAK), Nigeria (NIG), Cameroon (CMR) and Bangladesh (BGD)). At the
opposite side, it can easily be noted that the North-European countries are
perceived to be among the least corrupt: they are all situated in the white-
colored region at the top of the map. As the values for the three consecutive
years are denoted with different labels (e.g., usa, Usa and USA), one can notice
that most European countries were projected on the upper-half of the map
indicating a modest amount of corruption and that several countries seemed
to be in transition towards a more European, less corrupt, model.

7.3 Incremental Approach

An incremental approach is followed so as to find a trade-off between simple,
linear techniques with excellent readability, but restricted model flexibility and
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Fig. 10. From linear to non-linear models

complexity, and advanced techniques with reduced readability but extended
flexibility and generalization behavior, as shown by Fig. 10.

The approach, introduced by Van Gestel et al. for credit scoring [60–62],
constructs an ordinal logistic regression model in a first step, yielding latent
variable zL. In this linear model, a ratio xi influences the latent variable zL in
a linear way. However, it seems reasonable that a change of a ratio with 5%
should not always have the same influence on the score [9]. Therefore, non-
linear univariate transformations of the independent variables (xi 	→ fi(xi))
are to be considered in the next step. This model is called intrinsically linear
in the sense that after applying the non-linear transformation to the explana-
tory variables, a linear model is being fit [9]. A non-linear transformation
of the explanatory variables is applied only when it is reasonable from both
financial as well as statistical point of view. For instance, for rating insurance
companies, the investment yield variable is transformed as shown by Fig. 11,4

with cutoff values at 0% and 5%; values more than 5% do not attribute to a
better rating because despite the average, it may indicate higher investment
risk [62].

Finally, non-linear SVM terms are estimated on top of the existing intrin-
sically model by means of a partial regression, where the parameters β are
estimated first assuming that w = 0 and in a second step the w parameters
are optimized with β fixed from the previous step. This combination of linear,
intrinsically linear and SVM terms is formulated in (18).

zL = −β1x1 − β2x2 − . . . − βnxn

zIL = −β1x1 − . . . − βmxm − βm+1fm+1(xm+1) − . . . − βnfn(xn)

zIL+SVM =

intrinsically linear part︷ ︸︸ ︷
linear part︷ ︸︸ ︷

−β1x1 − . . . − βmxm

nonlinear transformations︷ ︸︸ ︷
−βm+1f(xm+1) − . . . − βnf(xn)

−w1ϕ1(x) − . . . − wpϕp(x)︸ ︷︷ ︸
SVM terms

(18)

4 A sigmoid transformation x �→ f(x) = tanh(x × a + b), was used, with
hyperparameters a and b estimated via a grid search.
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Fig. 11. Visualisation of the univariate non-linear transformations applied to the
investment yield variable in the intrinsically linear model [62]

The incremental approach has been applied to provide credit ratings for
countries [60], banks [61] and insurance companies [62].

8 Conclusion

In recent years, the SVM has proved its worth and has been successfully
applied in a variety of domains. However, what remains as an obstacle is its
opaqueness. This lack of transparency can be overcome through rule extrac-
tion. SVM rule extraction is still in its infancy, certainly compared to ANN
rule extraction. As we put forward in this chapter, much can be transferred
from the well researched ANN rule extraction domain, issues as well as the
pedagogical rule extraction techniques. In this chapter, we have listed exist-
ing SVM rule extraction techniques and complemented this list with the often
overlooked pedagogical ANN rule extraction techniques.

Many of the issues related to this field are still completely neglected or
under-researched within the rule extraction domain, such as the need for intu-
itive rule sets, the ability to handle high dimensional data, and a ranking for
rule expressiveness among the different rule outputs. We hope this chapter
will contribute to further research to this very relevant topic.
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