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Summary. In recent years, many researches have focused on improving the accu-
racy of protein structure prediction, and many significant results have been achieved.
However, the existing methods lack the ability to explain the process of how a
learning result is reached and why a prediction decision is made. The explanation
of a decision is important for the acceptance of machine learning technology in
bioinformatics applications such as protein structure prediction. The support vector
machines (SVMs) have shown better performance than most traditional machine
learning approaches in a variety of application areas. However, the SVMs are still
black box models. They do not produce comprehensible models that account for the
predictions they make. To overcome this limitation, in this chapter, we present two
new approaches of rule generation for understanding protein structure prediction.
Based on the strong generalization ability of the SVM and the interpretation of the
decision tree, one approach combines SVMs with decision trees into a new algorithm
called SVM DT. Another method combines SVMs with association rule (AR) based
scheme called SVM PCPAR. We also provide the method of rule aggregation for
a large number of rules to produce the super rules by using conceptual clustering.
The results of the experiments for protein structure prediction show that not only
the comprehensibility of SVM DT and SVM PCPAR are much better than that
of SVMs, but also that the test accuracy of these rules is comparable. We believe
that SVM DT and SVM PCPAR can be used for protein structure prediction, and
understanding the prediction as well. The prediction and its interpretation can be
used for guiding biological experiments.

1 Introduction

For the past few decades, many studies have focused on the accuracy of protein
structure prediction using machine learning technologies such as neural net-
works or support vector machine and have achieved good results [3,4,10,12,24].
In spite of this, these methods do not explain the process of how a learning
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result is reached and why a decision is made. It is important to be able to
explain how a decision is made for the acceptance of the machine learning
technology, especially for applications such as bioinformatics since the rea-
sons for a decision is a useful guide for the “wet experiments”. The extracted
rules can also be used later as a basis for advanced approaches to deduce
biological features.

In most of these cases, the performance of support vector machines
(SVMs) is either similar to or better than that of traditional machine learn-
ing approaches, including neural networks. It is especially important for the
field of computational biology because it is used for pattern recognition prob-
lems including protein remote homology detection, microarray gene expression
analysis, recognition of translation start sites, protein structure prediction,
functional classification of promoter regions, prediction of protein-protein
interactions, and peptide identification from mass spectrometry data [17].
Nevertheless, like the neural networks, the SVMs are black box models. They
do not have the ability to produce comprehensible models that account for
their predictions.

Recent researches try to extract the embedded knowledge in trained neural
networks in the form of symbolic rules in order to improve comprehensibility
in the field of neural networks (NNs) [26–28]. These rule extraction meth-
ods serve for several purposes: to provide NNs with explanatory power, to
acquire knowledge for symbolic AI systems, to explore data, to develop hybrid
architectures and to improve adequacy for data mining applications [18].

With SVM, some researchers have started to address the issue of improving
the comprehensibility. Rule-extraction from SVM [18] and learning-based rule-
extraction from SVMs technique [1] are two examples. Some of the limitations
of these two approaches are discussed in [25].

Although some researchers have started to apply SVMs and decision trees
in bioinformatics areas, all of these have not integrated the merits of both
SVMs and decision trees. For example, Krishnan et al. [29] have done a com-
parative study of SVMs and decision tree to predict the effects of single
nucleotide polymorphisms on protein function. In his paper [14], Lin clas-
sified genes by names using decision trees and SVMs. The result showed
that, although the prediction errors of both methods were acceptably low
for production purpose, SVM outperforms decision trees. There is also some
research using the decision tree to produce rules for bioinformatics, such as
automatic rule generation for protein annotation with the C5.0 data mining
algorithm [20] applied on SWISS-PROT [19].

In this chapter, two novel approaches of rule-extraction for understanding
protein structure prediction are presented. One approach combines SVM with
decision tree into a new algorithm called SVM DT, which proceeds in four
steps. This algorithm first trains SVMs. Next, a new training set is generated
by careful selection from the result of SVMs. Third, this new training set is
used to train a decision tree learning system and extract the corresponding
rule sets. Finally, it decodes the rules into logical rules with biological meaning
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according to encoding schemes. Another method combines SVM with a new
association rule based classifier, pattern based classification with predictive
association rules (PCPAR), into an algorithm called SVM PCPAR with the
similar process applied to SVM DT.

Since a large number of rules are difficult for researchers to interpret
and analyze, we use conceptual clustering to cluster huge number of rules
based on similarity, and then aggregate the rules in each cluster to generate
new super-rules. These super-rules represent the consensus rule pattern and
the essential underlying relationship of classification. Because the super-rules
come from each clusters, the researchers can not only understand the general
trend and ignore the noise, but also interactively focus on the key aspects of
the domain by using super-rules and selectively view the original rules in the
corresponding cluster.

Based on protein secondary structure prediction with the RS126 data sets
and transmembrane segments prediction with the 165 low-resolution data sets
[5], the results show that they have similar accuracy while SVM DT and
SVM PCPAR are more comprehensible. Hence, SVM DT and SVM PCPAR
can be used both for prediction and guiding biological experiments.

This chapter is organized as follows. Section 2 describes the method of
SVM DT and presents the experiments of protein secondary structure pre-
diction on RS126 data sets and transmembrane segments prediction on 165
low-resolution data set. Section 3 presents the method of extracting rules from
SVM based on association rule based method. Section 4 is about the rule clus-
tering and super rules generation. Finally, Section 5 summarizes the main
contribution of this chapter and discusses some issues of the methods that
should be further investigated.

2 Rule Generation by Combing SVM and DT

SVM have shown strong generalization ability in many application areas,
including protein structure prediction. However, it is a black box model. On
the other hand, a decision tree has good comprehensibility. It motivates us to
integrate merits of both support vector machine and decision tree to generate
rules for understanding protein structure prediction. This approach combines
SVM with decision tree into a new algorithm called SVM DT.

2.1 SVM DT

SVM represents novel learning techniques that have been introduced in the
framework of structural risk minimization (SRM) inductive principle and in
the theory of Vapnik Chervonenkis (VC) [22] bounds. SVM has a number of
interesting properties, including effective avoidance of over fitting, the ability
to handle large feature spaces, and information condensing of the given data
set, etc.
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The basic idea of applying SVM for solving classification problems can be
stated briefly in two steps. First, SVM transforms the input space to a higher
dimension feature space through a non-linear mapping function. Second, it
constructs the separating hyperplane with maximum distance from the closest
points of the training set [2].

Decision tree learning [15] is a means for approximating discrete-valued
target functions, in which the learned function is represented by a decision
tree. It is one of the most popular classification methods and has been used
in many research areas, such as personalized recommender system based on
web [6] and effective technology commercialization [7]. Learned trees can also
be re-represented as sets of if–then rules to improve human readability. Let
us suppose, in a set of records, each record has the same structure, consisting
of a number of attribute/value pairs. One of these attributes represents the
category of the record. The problem is to determine a decision tree that, on
the basis of answers to question about the non-category attributes, predicts
correctly the value of the category attribute. In the decision tree, each node
corresponds to a non-categorical attribute and each arc to a possible value of
that attribute. A leaf of the tree specifies the expected value of the categorical
attribute for the records described by the path from the root to that leaf. There
are many decision tree algorithms. The results of the experiment [13] show
the C4.5 [20] tree-induction algorithm provides good classification accuracy.

C5.0 is a new version of C4.5. They use the gain ratio criterion, which is
based on information theory and produces suboptimal trees heuristically [20].
At first, a decision tree is built using the training set. In a second step, the
decision tree is pruned by replacing a whole subtree by a leaf node. If a decision
rule establishes that the expected error rate in the subtree is greater than in
the single leaf, the replacement takes place.

Decision trees can sometimes be quite difficult to understand. Thus, the
rule sets that consist of simple if–then rules are derived from a decision tree:
write a rule for each path in the decision tree from the root to a leaf. In that
rule, the leaf-hand side is easily built from the label of the nodes and the labels
of the arcs. Rules are ordered by class and sub-ordered by confidence, and a
default rule is created for dealing with instances that are not covered by any
of the generated rules. The default rule has no antecedent and its consequence
is the class that contains the most training instances not covered by any rule.
Each of the rule sets produced is then evaluated using the original training
data and the test data.

SVM claims to guarantee generalization, i.e. its decision model reflects the
regularities of the training data rather than the incapability of the learning
machine. SVM reveals the classification by looking at the critical cases. On
the other hand, the advantage of the Decision Trees algorithm is easily com-
prehensible; it describes what attributes are important for classification [14].
Thus, the motivation of combining SVM and decision tree to classify is the
desire of combining the strong generalization ability of SVM and the strong
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comprehensibility of rule induction. Specifically, our new algorithm SVM DT
employs SVM as a pre-process of decision tree.

Suppose we are given a training data set S = {(x1, y1), (x2, y2), . . .,
(xm, ym)}, where xi is the feature vector and yi is the expected class label
or target of the ith training instance. At first, SVMs are trained using N-fold
cross validation. That is, for data set S, we divided it into N subsets with sim-
ilar sizes (k) and similar distribution of classes. We perform the tests for the N
runs, each with a different subset as the test set (Te svmi, i = 1. . .N) and with
the union of the other N-1 subsets as the training set (Tr svmi, i = 1. . .N).
Then, from each test set (Te svmii, i = 1. . .N), based on the result of pre-
diction Pi svm, we select cases that are correctly predicted by SVMs into
new data set (Si svm, i = 1. . .N). Finally, we use the original test data
Te svmi, i = 1. . .N as test data set (Te dti, i = 1. . .N) and the union of the
other N-1 subsets Si svm as the training set (Tr dti, i = 1. . .N) to train deci-
sion trees and induce the rule sets. In summary, the pseudo-code of SVM DT
algorithm is shown in [49]. Since support vector machine usually has strong
generalization ability and we select the new data set from the correct result
of SVMs as our inputs to DT, we believe that some bad ingredients of S, such
as the noise, may be reduced by the process of SVMs, and some weak cases
may be filtered by SVMs. It is indicated that new data set Si svm data is
better than the original training data set S for rule induction based on our
experiment results that will be shown later. This is the reason why we use
support vector machine as a pre-process of decision tree.

2.2 Protein Second Structure Prediction with SVM DT

We apply the method of SVM DT to the prediction of protein secondary
structure. On one hand, the method is used to generate the rule sets for
explaining how a secondary structure can be classified, and on the other hand,
it is applied to evaluate the performance of the algorithm. We use RS126
[21] as a data set which was proposed by Rost and Sander. Based on their
definition, it is a non-homologous set. This set was used in many researches on
protein secondary structure prediction such as the experiments by Hua [10]
and Kim [12]. The protein secondary structure prediction can be analyzed as a
typical classification problem where the class (secondary structure) of a given
instance is predicted based on its sequence features. The goal of secondary
structure prediction is to classify a pattern of adjacent residues as helix (H),
sheet (E) or coil (C, the remaining part) based on the idea that the segments
of consecutive residues prefer certain secondary structure.

In this study, firstly, we combined orthogonal matrix and BLOSUM62
matrix [8] as encoding schemes [9]. The orthogonal encoding scheme is the sim-
plest profile which assigns a unique binary vector to each residue, such as (1, 0,
0. . . ), (0, 1, 0. . . ), (0, 0, 1. . . ) and so on. The BLOSUM62 matrix is a measure
of difference between two distantly related proteins. Namely, the values in the
BLOSUM62 matrix mean “log-odds” scores for the possibility that a given
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amino acid pair will interchange with each other and it contains the general
evolutionary information among the protein families. This BLOSUM62 matrix
was applied as an encoding scheme by converting its data range to [0,1]. In
the encoding schemes, the information about the local interactions among
neighboring residues can be embedded as a feature value, because the feature
values of each amino acid residue in a window mean the weight of each residue
in a pattern. Therefore, the optimal window length 13 was adopted by testing
different window lengths from 5 to 19. We construct three one vs. one binary
classifiers (H/∼H, E/∼E, and C/∼C).

Secondly, to train the SVM, we selected the kernel function K(x, y) =
e−λ‖x−y‖2

based on the previous studies [10, 12], and the parameter of the
kernel function λ and the regularization parameter C were optimized based
on tests [9]. With the data set, we ran sevenfold cross validation in the
experiments. That is, we divided the data set into seven subsets with sim-
ilar sizes and similar distribution of classes. Then, we performed the tests
for the seven runs, each with a different subset as the test set and with the
union of the other six subsets as the training set. In this experiment, we used
SVMlight [11] software. In each run, we fed the training data into SVMlight to
get the model and used test data as validation.

Thirdly, in order to compare the prediction result from SVM on test data to
the original data set, and to see if they were consistent, we selected the instance
into a new data set which was used later for building rules. We repeat the
process until seven sets of new data have been finished. Then, combining six
of them as a training data and original test data as test data to train decision
tree of C4.5 and C4.5 rules, we get seven group rule sets. For comparison,
we also applied the original train data and test data directly into C4.5 and
C4.5 rules. All the average accuracy of binary classifier by three methods is
shown as Fig. 1, respectively. From Fig. 1 we can see that the accuracy of
binary classifier by SVM (SVMlight) is better than that of binary classifier by
the decision tree (C4.5), but the accuracy of binary classifier by SVM DT is
better than that of binary classifier by the decision tree. We believe that this
is a benefit from the generalization ability of SVM.
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Fig. 1. Comparison of accuracy of E/∼E, H/∼H and C/∼C with three methods
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Fig. 2. Comparison of number of rules with DT method and SVM DT method
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Fig. 3. Comparison average of number of rules with different confidence values of
two methods

The average number of rules produced by DT and SVM DT are shown
in Fig. 2. From Fig. 2, we can see SVM DT generated more rules than DT.
In addition, Fig. 3 also shows that the average number of rules produced by
SVM DT is much more than that produced by DT under the same confidence
values. This means that SVM DT not only generates more rules but also
generates rules with better quality for prediction. This observation indicates
that the training data set processed by SVM is better than the original training
data set for rule induction. The reason is that SVM reveals the classification
by looking at the critical cases and by selecting the correct output results
from SVM; SVM DT can get the data set that has less noise.

Finally, based on the encoding schemes, we decoded the rules. We obtained
a group of logical rules which have biological meaning and then we checked
them in the original sequence data according to the logical rules, to verify
the accuracy of them. Some of the results are shown in Table 1 with five
columns. In the second column there are rules which produced by SVM DT,
and their corresponding rules with biological meaning by decoding based on
the encoding schemes are shown in the third column. In the fifth column
there are validation examples which are selected from the original sequence
according to the logical rule in the third column and the explanation in the
fourth column.
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Table 1. Two example of protein secondary structure produced by SVM DT

Rule
num.

Rule produced
by SVM DT

Rule with
biological
meaning

Explanation Examples

Rule
469

IF
A222 <= 0.035
and A260> 0
and A300> 0
THEN
‘E’
[90.6%]

IF
Sq[2] in {‘C’, ‘I’,
‘F’, ‘W’, ‘V’}
and Sq[3] = ‘V’
and Sq[4] = ‘V’
THEN
St[3] = ‘E’
[90.6%]

If the target is
‘V’, and one
amino acid
before the target
is one of
{C,I,F,W,V},
and the one next
to the target is
‘V’, the second
structure of the
target is ‘E’ with
81.2% accuracy.

>2FOX:
Sequence
Length: 138 rule
469: the position
is: 108 CVV
CEE rule 469:
the position is:
109 VVV EEC

Rule
471

IF
A481 > 0
THEN
‘∼E’
[96.8%]

IF
Sq[7] = ‘A’
THEN
St[1] = ‘∼E ’
[96.8%]

If the sixth
amino acids after
the target is ‘A’,
the second
structure of the
target is not ‘E’
with 82.4%
accuracy.

>1TGS:
Sequence
Length: 56 rule
471: the position
is: 0 TSPQREA
CCCCCCC
>1UBQ:
Sequence
Length: 76 rule
471: the position
is: 21 TIENVKA
CHHHHHH

Although the accuracy of the binary classifier by SVM DT is not better
than that of the binary classifier by the SVM, we have gotten the rule sets.
We also found that the rules generated have strong biological meaning. For
example:

IF
Sq[2]=‘V’ and Sq[4] in {‘C’, ‘I’, ‘L’, ‘V’}
and Sq[5]=‘G’

THEN
St[1]=‘E’ [87.1%]

This rule can also be explained biologically. The amino acid in position
two is the hydrophobic amino acid valine (V) and position four is one of
the hydrophobic amino acids (‘C’, ‘I’, ‘L’, or ‘V’) followed by a glycine (G)
in position five. If this forms a sheet (E), then the two hydrophobic amino
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acids point in the same direction (possibly into the core of the protein), thus
stabilizing a sheet.

2.3 Transmembrane Segments Prediction and Understanding
Using SVM DT

Transmembrane (TM) proteins are the integral membrane proteins that can
completely cross from the external to the internal surface of a biological mem-
brane. TM proteins are critical targets for drug design. However, because
of their hydrophobic properties, the conventional experimental approaches,
such as X-ray crystallography or nuclear magnetic resonance (NMR) cannot
be easily applied to determine their 3D structures. Therefore, computational
or theoretical approaches have become important tools for identifying the
structures and functions of TM proteins. Many significant results have been
achieved in the prediction of transmembrane segments [24,29]. In spite of these
results, the existing methods do not explain the process of the prediction.

In this study, the data set given by Rost et al. is tested and this is labeled
as data set of 165 low-resolution. According to Rost et al. [29], the 165 proteins
are expert-curated set from the SWISS-PROT database which was originally
collected by Möller et al. [30]. The test method with these data sets is a
sevenfold cross validation test.

In this research, we use two encoding schemes. One is the combined orthog-
onal and Blosum62 matrix (OB), the other is position-specific scoring matrix
(PSSM) generated by PSI-BLAST. These PSSM values are position-specific
scores for each position in the alignment. In this matrix, highly conserved posi-
tions have high scores and weakly conserved positions have low scores close
to zero. This scheme is originally used to perform the prediction of protein
secondary structure by Jones [31]. The author used this PSSM as an encod-
ing profile for his neural network. As another approach, Kim [12] applied this
matrix to train the SVM for the prediction of protein secondary structure.
According to the author, this PSSM shows better performance than the fre-
quency matrix generated by the multiple sequence alignments. Therefore, in
this study, this encoding scheme is applied to test the performance in the
prediction of transmembrane segments.

Four methods with different encoding schemes are used in the experiments.
Because we focused on the rules extraction for understanding prediction of
transmembrane segments, we should get the logical rules which have biologi-
cal meaning. In the first method, PSSM matrix as encoding schemes are fed
into SVM and DT(PSSM PSSM). In the second method, PSSM matrix as
encoding schemes are fed into SVM and the sequences are directly fed into
DT(PSSM SEQ). In the third method, the combined orthogonal and Blo-
sum62 matrix as encoding schemes are fed into SVM and DT(OB OB). In
the fourth method, PSSM matrix as encoding schemes are fed into SVM and
the combined orthogonal and Blosum62 matrix as encoding schemes are fed
into DT(PSSM OB).
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Fig. 4. Comparison of prediction accuracy of seven group rule sets with different
encoding schemes

The comparison of prediction accuracy of seven group rule sets with dif-
ferent encoding schemes is shown in Fig. 4. From this figure, we can see the
method of (PSSM PSSM) achieves the highest average prediction accuracy.
However, because PSSM is position-specific scoring matrix which is related
to the context of amino acid sequence, the rules produced by DT cannot
be decoded into logical rules with biological meaning. Although the method
of (PSSM SEQ) has the lower prediction accuracy than the other methods,
its rules do not need to be decoded. In Fig. 4, the method of (OB OB) and
(PSSM OB) show similar accuracy.

In order to analyze the quality of the logical rules, we compare the aver-
age rule accuracy, prediction accuracy, and percentage of rule numbers and
support of seven group rule sets for the confidence of rules range of 95–100
(OB OB). We obtain the average rule accuracy is 94.1%, average prediction
accuracy is 89.6%, average percentage of rule numbers is 84.8% and average
support of seven group rule sets is 83.7%. All of these show that the rules with
confidence 95–100 not only have the high rule accuracy, but also have the high
percentage of rule numbers and high support. The average percentage of rule
numbers and support are all over 80% which means that a majority of rules
obtained is of high quality.

We also analyze the rules encoded by PSSM SEQ. The comparison of
average confidence, accuracy, support, and percentage of rule numbers of seven
group rule sets with confidence (90–100) is shown in Fig. 5. The results of
experiment also indicate that the average prediction accuracy of rules is 93.4
for all of the rules with a confidence greater than 90. At the same time, its
support is 78.0 and the percentage of rule numbers is 62.6. This means that
these rules not only have high quality, but also are the majority of the rules
obtained. From Fig. 5, we could find that the rules with confidence value from
97 to 99 even have a higher support value and percentage of rule numbers. The
corresponding accuracies of the rules are also very high. These observations
suggest that these rules are more important and valuable.

Empirical results show that the prediction accuracy is usually lower than
the confidence of the rules. However, they are usually very consistent and
proportional in values. A rule with a high rule confidence often produces high
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prediction accuracy, while a rule with a low confidence usually generates low
prediction accuracy, just as Fig. 6 shows.

We decoded the rules into logical rules with biological meaning according
to encoding schemes. Table 2 shows one example of logical rules and their
explanation with SVM DT (PSSM SEQ). There are three differences between
the logical rules produced by PSSM SEQ and by OB OB:

1. Because the rules generated by PSSM SEQ have biological meaning, they
do not need to be decoded. However, the rules generated by OB OB should
be decoded into logical rules by encoding schemes.

2. The number of rules produced by PSSM SEQ is much greater than that of
the rules produced by OB OB. Usually, the number of rules of one set by
PSSM SEQ is about 2,000, and the number of rules in one set by OB OB
is about 200.
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Table 2. One example of logical rule and their explanation with SVM DT
(PSSM SEQ)

1 Logical rule with
biological meaning

Rule 3570:
A5 = I
A7 = L
A11 = F
−> class +1 [85.6%]

2 Rule explanation If the second amino acid before the target is ‘I’, the
fouth amino acid following the target is ‘F’ , and at the
same time, the target is ‘L’, the segment of the target is
‘T’ (transmembrane) with an confidence 85.60%,
prediction accuracy is 83.33% when we do the
experiment on the test data.

3. The rules generated by PSSM SEQ are simpler than that of rules by
OB OB.

The reason of these differences is that the input attributes of DT in
PSSM SEQ are characters, while the input attributes of DT in OB OB are
continuous.

3 Extracting Rule from SVM Based on Association Rule

3.1 Association Rule Based Method

In the previous section, the learning-based rule extraction approaches applied
decision tree as a second learning algorithm to extract the rules from SVM
[25]. The advantage of DT is that the significance of rules is measured by
their contribution to the overall accuracy of the classifier therefore system-
atic accuracy-based rule pruning is possible [32]. This method searches for
rules locally based on a heuristic by adding one capable attribute at a time
according to the order of goodness.

An alternative of the DT algorithm is an association rule (AR) based
scheme. This method searches for all rules globally based on the cooperative
prediction of several attributes and assesses each rule individually without
considering the interaction with other rules [32]. The final rule set covers
the training data in all possible ways hence the number of rules are usually
large compared with DT method. The set with the large number of rules has
the potential to find the true classification template from the training data if
the over-fitting rules are pruned properly. Therefore, in AR based approach,
rule pruning has been a main interest to the researchers.

Recently Hu et al. [33] attempted to apply the AR based method to extract
rules from SVM on transmembrane segments prediction. They devised the
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pattern based classification with predictive association rules (PCPAR) scheme
based on classification based on predictive association rules (CPAR) method
[34] to handle the dataset with a sliding window scheme. This section begins
with basic concepts of AR mining algorithm. Then traditional and recent AR
mining algorithms are presented and finally rule generation method based on
SVM PCPAR scheme is described in detail.

3.2 Association Rule Mining

Basic Concepts

A formal definition of association rule mining is as follows [35].
Let I = {i1, i2, . . ., im} be a set of literals, or items. Let X be an itemset

which is a subset of I. Let D = {t1, t2, . . ., tn} be a set of transactions called a
transaction database. Each transaction t has a transaction identifier, tid and
a transaction itemset such as t = (tid, t - itemset). A transaction t contains
an itemset X if X ⊆ T .

In a transaction database D, each itemset X has a support, supp(X) which
is the ratio of transactions in D containing X .

supp(X) = |X(t)|/|D|, (1)

where X(t) = {t in D|t contains X}. A large or frequent itemset is defined
as an itemset whose support is equal to, or greater than, the user-specified
minimal support threshold.

An association rule is an implication X → Y , where itemsets X and Y are
disjoint, X ∩ Y = φ. In each association rule, there are two quality measures,
support and confidence. The support is the number of occurrences of each
pattern and the confidence is the strength of implication. These measures are
defined formally as follows:

• The support of a rule X → Y is the support of X ∪ Y
• The confidence of a rule X → Y, conf(X → Y ) is the ratio

|(X ∪ Y )(t)|/|X(t)|, or supp(X ∪ Y )/supp(X).

When a transaction database D is given, mining association rules is gener-
ating all association rules which have support and confidence values equal to,
or greater than, the user-specified minimal support and confidence threshold
respectively.

Association Rule Mining Algorithms

Most of the traditional association rule mining algorithms are based on
support-confidence model which is suitable for analyzing the market basket
data [36]. For example, a Apriori is a famous and commonly-used algorithm
based on this model [37].
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However, in other applications such as bioinformatics or system traces, the
number of occurrences may not be a good metric to measure the significance of
a pattern [38]. In bioinformatics, researchers try to find statistically important
sequential patterns from the sequential data. Since the frequency of each sym-
bols in a sequence may not evenly distributed (some symbols occur more often
than other symbols), a pattern with common symbols occur more often than
that with rare symbols. Therefore, the frequency (support) may not always
indicate the importance of a pattern. Researchers should consider both the fre-
quent patterns and the “surprising” patterns [38]. Sometimes a few numbers
of “unexpected” rare patterns could provide more information than a large
number of “expected” frequent patterns. Wang and Yang adopted the infor-
mation metric [39] to characterize these surprising patterns. In their research,
information is used to measure the degree of “surprise” when a pattern actu-
ally occurs. Also, the information gain metric is devised to characterize the
accumulated information of a pattern.

Besides the Wang and Yang’s approaches, first order inductive learner
(FOIL), predictive rule mining (PRM) and classification based on predictive
association rules (CPAR) also applied the information metric for the rule
generation. FOIL [40] is a greedy algorithm that repeatedly searches for the
attribute with the highest information gain. Once this attribute is appended
to a rule, all the examples which are not satisfying the rule are removed from
both the positive and negative examples. After the rule is added into a rule
set, this process is repeated until all positive examples in the data set are
covered. For selection of attributes, “FOIL Gain” is defined such as follows to
measure the information gained from appending this attribute to the current
rule.

gain(p) = |P ∗|
(

log
|P ∗|

|P ∗| + |N∗| − log
|P |

|P | + |N |

)
, (2)

where |P | and |N | are positive and negative examples that satisfy the current
rule. After attribute p is added to the rule, there are |P ∗| positive and |N∗|
negative examples satisfying the new rule’s body.

The FOIL algorithm was later further improved by Yin and Han to achieve
higher accuracy and efficiency. It is called the predictive rule mining (PRM)
algorithm [34]. PRM algorithm is a “weighted” version of FOIL [34]. In PRM,
if an example is covered by a rule, without removing it, its weight is reduced
by multiplying a decay factor. This algorithm was then further improved by
the same authors to produce CPAR [34].

Association Rule Based Classifiers

Associative classification is an approach to integrate association rule (AR)
mining and classification [41]. It applies AR mining algorithm to generate
the whole set of association rules. Based on this complete rule set, a small
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subset of significant rules is selected and this set is used for prediction. Two
typical AR based classifiers are classification based on associations (CBA) [41]
and classification based on multiple association rules (CMAR) [42]. These
classifiers are based on support and confidence framework which is not suitable
for large dataset.

Classification based on predictive association rules (CPAR) is a more
advanced AR based classifier based on information metric [34]. In CPAR,
Laplace accuracy is used to measure the accuracy of rules. Given a rule r, it
is defined as follows:

Laplace accuracy (r) =
(Nc + 1)

(Ntotal + m)
, (3)

where m is the number of classes, Ntotal is the total number of examples that
satisfy the rule’s body, among which Nc examples belong to the predicted
class, c of the rule. For classification, the best k rules of each class are selected
from the rule sets of each class. By comparing the averaged Laplace accuracy
of the best k rules of each class, the class with the best accuracy is chosen as
the predicted class.

The pattern based classification with predictive association rules (PCPAR)
[33] is a modified version of classification based on predictive association rules
(CPAR). It is devised to handle the dataset with sliding window scheme. The
rule generation part of PCPAR is the same as that of CPAR algorithm except
the fact that in PCPAR each attribute window is able to participate in the
AR training with different initial weight. The main differences of PCPAR
and CPAR are in the post processing and the classification scheme. CPAR
algorithm doesn’t have any post processing step after rule generation. The
PCPAR algorithm incorporates the post processing step to create more gen-
eral patterns by decoding and merging the rules. For example, the following
rules are the same even though the antecedents display different feature val-
ues. If we decode these rules, the antecedents of the following rules have the
meaning of the amino acid ‘EE’ occurring position 5 and 6, 6 and 7, and 7
and 8, respectively.

{87, 107} → {261},
{107, 127} → {261},
{127, 147} → {261}.

As can be observed from the above, the absolute location of each attribute
is not important in the sliding window scheme. Rather we should focus on
the pattern of the features. With the example above, by decoding and rule
merging, we can find a pattern of ‘EE’ occurring somewhere in a window. This
pattern is simpler and also more general than the rules.

The PCPAR classification is based on the patterns created from the
post process (decode-merge process) after rule mining. Each test data is
checked against all the patterns of each class and the final class is determined
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based on the following cases. For each test instance, there are four possible
situations:

1. It matches with the positive patterns only.
2. It matches with the negative patterns only.
3. It matches with both the positive and negative patterns.
4. It matches with none of them.

In the first and the second case, the final class is positive and negative
class respectively. In the third case, by comparing the normalized numbers of
patterns matched, the class with bigger number of patterns is selected as a
final class. Finally, if no matched pattern is found with a test instance, the
class is selected as a negative class by default.

Rule Generation Based on SVM PCPAR Model

SVM PCPAR model borrows the idea from the SVM DT [25] for combining
classifiers. This algorithm combines the SVM with a new AR based classifier,
pattern based classification with predictive association rules (PCPAR) with
the following process (Fig. 7).

First, SVM is trained with the two highly performed encoding profiles
including the orthogonal and Blosum62 combined matrix and PSSM. Next,
with the output of SVM, correctly predicted set is chosen as a new training
set for AR mining. These two steps are the pre-process for the AR mining.
The rationale of this pre-process is that since SVM usually has strong gen-
eralization ability, some noise or uncertain instances can be filtered out by

Trainset1..7 SVM

SVM

Prediction
Output

Pred1..7

Correct Prediction
yes

AR
generatortrainset1_AR

testset 1_AR

Rules Patterns

Decode_Merge

AR classifier

Testset 2..7

Testset1..7 SVM

Pred 2..7

7-fold
test

pre-processing

T N

  no 

PCPAR

Fig. 7. SVM PCPAR model
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Positive rules Decoded positive
rule body

Positive pattern

(428) {31 50 170} → {262} 0.97 L 2 I 3 I 9 *LI*****I**** 0.92
(429) {150 231 250} → {262} 0.96 I 8 L 12 I 13 *******I***LI 0.92
(430) {50 70 150} → {262} 0.96 I 3 I 4 I 8 **II***I***** 0.94
(431) {30 50 130} → {262} 0.96 I 2 I 3 I 7 ***V**I*I**** 0.94
(432) {110 130 210} → {262} 0.95 I 6 I 7 I 11 ****LFI****** 0.91
(433) {130 150 230} → {262} 0.95 I 7 I 8 I 12 ***FAI******* 0.91
(434) {150 170 250} → {262} 0.95 I 8 I 9 I 13 ****II*F***** 0.92
(435) {80 130 170} → {262} 0.95 V 4 I 7 I 9 *L**LLV****** 0.91
(436) {91 114 130} → {262} 0.95 L 5 F 6 I 7 L*L*L*I****** 0.97
(437) {60 110 150} → {262} 0.95 V 3 I 6 I 8 **I***L*V**** 0.91

Negative rules Decoded negative
rule body

Negative pattern

(1) {132} → {261} 1.0 K 7 ******K****** 0.99
(2) {107 127} → {261} 1.0 E 6 E 7 *****EE****** 1.00
(3) {127 147} → {261} 1.0 E 7 E 8 ****A*R****** 0.99
(4) {87 107} → {261} 1.0 E 5 E 6 ******K**L*** 0.99
(5) {67 87} → {261} 1.0 E 4 E 5 *****SR****** 1.00
(6) {47 67} → {261} 1.0 E 3 E 4 ******E*****A 1.00
(7) {147 167} → {261} 1.0 E 8 E 9 *****GE****** 1.00
(8) {167 187} → {261} 1.0 E 9 E 10 ****E**K***** 1.00
(9) {81 122} → {261} 1.0 A 5 R 7 ******R**A*** 0.99
(10) {132 191} → {261} 1.0 K 7 L 10 ******PE***** 0.99

Fig. 8. Example of Decode Merge process in SVM PCPAR model

this process [25]. Third, the new training data is normalized to adjust the for-
mat for PCPAR training. Fourth, the normalized data is applied to PCPAR
to train and generate the rules. Once the rule sets are generated, they are
decoded into biologically meaningful rules using a decode table. The example
of decoded rule bodies and patterns obtained by merging the same rules are
presented in Fig. 8. The same rules are identified by examining the decoded
rule body. For example, if a positive rule body is decoded into (V 3 I 6 I
8), it means that amino acids V, I, I occur at position 3, 6 and 8 in a slide
window. Since the encoding profile of our AR based classifier is composed of
the sliding windows of amino acid sequences, these positions could be any of
(1, 4, 6), (2, 5, 7), (4, 7, 9), (5, 8, 10), (6, 9, 11), (7, 10, 12), and (8, 11, 13)
with the window size 13. The decoded rule body (V 3 I 6 I 8) can be merged
with (V 4 I 7 I 9) since these are the same. Because of this reason, we should
rely on the relative positional expression (pattern) rather than the absolute
positional information. If we use the previous example again, the positive rule
body, (V 3 I 6 I 8) can be expressed as the positive pattern, (V∗∗I∗I). It means
that only if this pattern comes somewhere within a window, it becomes a pos-
itive class. Here, the ‘*’ can be considered as a “don’t-care” character. Based
on this kind of patterns defining positive and negative classes respectively,
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the test data can be classified with pattern match. The PCPAR classification
algorithm performs this to determine the final class of the amino acid in the
middle of a sliding window.

The first column is the positive and negative rules with the Laplace accu-
racy values, the second is the decoded rule bodies based on the decode table,
and the third column is the patterns created from the rule merge process.
The Laplace accuracy values in the third column are averaged values from
the same rules.

4 Rule Clustering and Super rule Generation

By combining SVM with decision tree, we extract rules for understanding
transmembrane segments prediction. However, rules we have gotten are as
many as 20,000. Such a large number of rules are difficult for researcher to
interpret and analyze [48]. This can often hamper the knowledge discovery
process. Clearly, it will not be satisfactory for researchers to simply use arbi-
trary small subset of rules because the subset of rules can’t cover all the data
of the domains.

Many researchers have addressed this problem by proposing a number of
approaches to produce a suitable rule set. Usually, rules have to be pruned
and grouped at the post mining stage, so that only a reasonable number of
rules have to be inspected and analyzed. For example, one method of reduced
error pruning is used in the decision tree [20] which takes each of nodes in
the tree as pruning candidate. Another successful method for finding high
accuracy is rule post-pruning used in C4.5 [20]. Chawla [43] presented pruning
of association rules using directed hypergraph which maps a set of association
rules into a directed hypergraph and systematically removing circular paths,
redundant and backward edges that may obscure the relationship between the
target and other frequent item. The clustering is often used for the grouping
rules to deal with huge rules. Association rule clustering system (ARCS) is the
example [16] which clusters all those two attribute associate rules where the
right-hand side of the rules satisfies the segmentation criteria. This approach
is based on the geometric properties. In the papers [44–46], the main idea of
the approaches is distance based clustering for association rules. The distance
is strongly correlated with support, and high support rules will on average
tend to have higher distances to everybody else.

In this study, the target of the research can be described as “global” in
the sense that we want to compress the rule base into smaller one set with the
assurance that very little useful information is lost as possible. Moreover, the
rules are not created by frequent items as the primitive association rule mining
methods do. Therefore, unlike the methods in [43–46], we present the method
of rule clustering and super rules generation based on the conceptual cluster-
ing [47]. In conceptual clustering, a group of objects forms a class only if it
is describable by a concept. Different from conventional clustering, concep-
tual clustering consists of two steps: First, discover the appropriate clusters.
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Second, form descriptions for each cluster. In the study, descriptions of each
cluster are super rules.

Therefore, a novel approach of rule clustering for super-rule (C SuperRule)
generation is presented. We use the clustering to group huge number of rules
based on similarity, and then aggregate the rules in each cluster to generate
new super-rules. These super-rules represent the consensus rule pattern and
the essential underlying relationship of classification. Since the super-rules
come from each of clusters, the researchers not only can understand the general
trend and ignore the noise but also can interactively focus on the key aspects
of the domain by using super-rules and selectively view the detailed rules in
the corresponding of cluster.

In this research, the rules are used for protein structure prediction by
amino acid sequence. It means that if the length of the sliding windows is L,
the corresponding structure of amino acid at the position of [L/2] will be
predicted. Therefore, we could take the rules as follows:

For a rule � : B → A, A ∈ [−1, 1],
B: IF Sq[1]∩Sq[2] ∩. . .∩Sq[L], Sq[i]=Q[1]∪Q[2]∪. . .∪Q[20],Q[k]∈ Λ, or Q[k] =
φ, Λ[20] = {A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V}.

B could be express as a matrix M : L × 20,

Mi,j =
{

1 if sq[i] = Λ[j], 1 ≤ j ≤ 20, 1 ≤ i ≤ L
0 or

For example: IF Sq[1] = {R,S,T}
and Sq[2] = {N,T}
and Sq[3] = {A,G}
and Sq[5] = {D}

THEN
St[7] = N

The precondition part of the rule can be a matrix as Fig. 9.
We use k-means to cluster rules according to the similarity of rules.

K-means clustering algorithm is the most widely used method in partition
category due to its fast speed and easy understanding. The method uses
an object called centroid which is the mean point in a cluster, and tries
to minimize the intra-cluster distance between any point in the cluster and
the centroid. We applied this method in our classification rules clustering by
combining similar rules together to generate more general and error-tolerant
rules. First, based on the prediction results of the rules we classify the rule
set into positive rule set and negative rule set. Then, the rules in positive
rule set and negative rule set are separately clustered by combining similar
rules together. Next, the score matrix of each rule cluster is calculated. The
score matrix of the cluster means the frequency for the specific amino acid
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Fig. 9. The example of matrix of the rule

residue in a given window position for a cluster. It is obtained by the following
formula:

SCij =

n∑
k=1

Mk
ij

n
× 100, (4)

where, n is the number of rules in the cluster.
Finally, the super rules are generated according to a given threshold in the

clusters. The pseudo-code of the C SuperRule algorithm is shown in Fig. 10.
In this study, the experiment of the C SuperRule is performed based on the

rules created by the method in Sect. 2.3. We use random method to generate
initial centroids positions; we set K equals to 20 for transmembrane predic-
tion rules, 30 or 35 (depends on the result) for non-transmembrane prediction
rules. Comparison of percentage of rule numbers of seven group super-rules
for the accuracy range of prediction “T” is shown as Table 3. From Table 3
we can see the percentage of rule number of accuracy over 85 is about 60%.
It means the super-rules have high quality. The example of super-rules and
explanation is shown in [50]. The super-rules are very useful in guiding bio-
logical experiments. In the clustering, we get the cluster score matrix, such as
Fig. 11; these indicate the profile of the amino acid in each position of 13 win-
dows for transmembrane prediction. The higher frequency of the amino acid
in the position implies that in this position this amino acid is more impor-
tant for the corresponding structure. We believe that it will be very useful
information for biology.

The experiments show that these super-rules not only have high quality
but also are different from the rules before clustering because these super-
rules are produced by aggregating the detailed rules and indicate the general
trend.
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C SuperRule
input: Logical Rule set L Ri, i=1,. . . ,N
output: Super-rule set S R
Process:

S R = Φ
FOR i = 1 to N { /* for each L Ri set, classify into R+ and R−*/

IF L Ri is positive rule
L R+ = L R+ ∪ L Ri

ELSE
L R− = L R− ∪ L Ri

ENDIF
END IF
FOR L R+, L R−

/ rules clustering by combining similar rules together /
{rule number1, C R+} = k-means (L R+)
{rule number2, C R−} = k-means (L R−)

ENDFOR
FOR i = 1 to rule number1

Calculate the cluster score matrix of SC Ri
+

S Ri = create super rule(SC Ri
+)

S R = S R ∪ S Ri

ENDFOR
FOR i = 1 to rule number2

Calculate the cluster score matrix of SC Ri
−

S Ri =create super rule(SC Ri
−)

S R = S R ∪ S Ri

ENDFOR

Fig. 10. C SuperRule Algorithm

Table 3. Comparison of percentage of rule numbers of super-rules which covers
each accuracy range of prediction “T”

Accuracy Percentage of rule numbers

1 95–100 26.9
2 90–95 18.9
3 85–90 15.5
4 80–85 15.2
5 <80 23.5

5 Conclusions

The explanation of a decision is important for the acceptance of machine
learning technology in bioinformatics applications such as protein structure
prediction. In this chapter, we present two approaches for rule generation from
SVM for protein structure prediction, and we also discuss the rule clustering
for huge number of rules at the post mining stage. Empirical results on several
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Fig. 11. One of the cluster score matrix of {A,R,N,D,C}

data sets demonstrate the efficacy of our methods. The explanation of the
rules is very useful in biology domain. These rules with biological meaning
not only indicate what a prediction is, but also how a decision is made. These
rules can guide the “wet experiments” since they can help to identify the
explicit sequence features causing the prediction and to recognize the specific
mutation invalidating the prediction or presumably altering the behavior of
the protein. Therefore, we can narrow the experiment scope and focus only
on certain changes in the amino acid sequence.

There is still much work need to be done to improve the current approaches.
First, we trained the SVM with the encoded training data. When we generated
rules produced by SVM DT, we needed to decode them into the biologically
meaningful rules. One of the encoding schemes such as PSSM, we could get
higher prediction accuracy than other encoding schemes. However, we were
not able to decode them into the logical rules with biological meaning. One
of the methods researchers used is to replace kernel functions of SVMs with
PSSM. This will solve the decoding problem. But how to use it and which
matrix is suitable for use as a kernel function for protein structure prediction
is our future work.

Second, Andrews et al. [26] have presented a framework of rule quality
evaluation, namely FACC, for evaluating the quality of the rules extracted
from neural networks. In detail, the FACC framework comprises four criteria,
namely fidelity, accuracy, consistency, and comprehensibility. Zhou [51] points
out that the accuracy, consistency, and comprehensibility (ACC) instead of the
FACC framework should be used for rule extraction using neural networks,
while the fidelity, consistency, and comprehensibility (FCC) instead of the
FACC framework should be used for rule extraction for neural networks. In
the study, we focused on the accuracy and comprehensibility. How to evaluate
the quality of the rules generated from SVM still needs to be studied.
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