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Rule extraction from support vector machines (SVMs) follows in the footsteps
of the earlier effort to obtain human-comprehensible rules from artificial neural
networks (ANNs) in order to explain “how” a decision was made or “why”
a certain result was achieved. Hence, much of the motivation for the field
of rule extraction from support vector machines carries over from the now
established area of rule extraction from neural networks. This introduction
aims at outlining the significance of extracting rules from SVMs and it will
investigate in detail what it means to explain the decision-making process
of a machine learning system to a human user who may not be an expert
on artificial intelligence or the particular application domain. It is natural to
refer to both psychology and philosophy in this context because “explanation”
refers to the human mind and its effort to understand the world; the traditional
area of philosophical endeavours. Hence, the foundations of current efforts to
simulate human explanatory reasoning are discussed as are current limitations
and opportunities for rule extraction from support vector machines.

1 Explanation: The Foundations

In a series of paper and books, Paul Thagard explores what it means to
explain something (most recently Thagard and Litt forthcoming). Human
thinking is essentially an ongoing, inner dialogue to explain why certain events
do or do not happen or why things behave in a certain way. Explanation is
closely linked to problem solving because the failure to explain an event or
a certain outcome may trigger a problem solving episode. People explain to
themselves and others why things are not working properly and what to expect
if certain actions are taken. Explanation is a continuous cognitive process
almost identical to thinking because humans are constantly explaining “why”
things happen and “how” things work.
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1.1 Forms of Explanation

It is useful to distinguish between various types of explanation, e.g. causal
explanations that are acceptable answers to “why” questions as opposed to
the step-wise explanations that are acceptable responses to “how” questions.
It is also possible to ask for clarifications if certain facts are known already
and more detail is required. Finally, there are those types of questions that
are best answered by providing an example for an event or fact that is most
typical and therefore helps to explain a whole set of observations.

Thagard and Litt (forthcoming) distinguish between three major explana-
tory processes:

• Providing an explanation from available information
• Generating new hypotheses that provide explanations
• Evaluating competing explanations

The four major theoretical approaches are: “deductive, using logic or rule-
based systems; schematic, using explanation patterns or analogies; probabilis-
tic, using Bayesian networks; and neural, using networks of artificial neurons”
(Thagard and Litt forthcoming, p. 2).

The classical explanation is deductive and requires logical reasoning. What
is to be explained (the explanatory target) follows from known facts by log-
ically applying a set of rules (“Anyone with influenza has fever, aches and
cough. You have influenza. So, you have fever, aches and cough”, Thagard and
Litt forthcoming, p. 4). This is the modus ponens, a simple, logical argument:
If X is true then Y is true. X is true. Therefore Y is true.

Sometimes the explanatory target is only probable and more than one
explanation is possible. Explanation is then closer to a conditional probability.
Often, it is useful or required to find the best explanation which can be a
complex process because whole “explanation structures” need to be examined
to determine the best (Thagard, 1978).

Logical, deductive explanation requires a set of known facts as well as a set
of IF . . . THEN rules. Background knowledge is then expressed in the form of
propositions which are used to explain an explanatory target. Here is a simple
example following (Thagard and Litt forthcoming):

1. Anyone who completes a marathon has muscle pain and feels tired.
2. Person X has muscle pain and is tired.
3. Person X has completed a marathon.

The conclusion here obviously does not necessarily hold: there are many
reasons why a person may have muscle pain and may feel tired, running a
marathon is just one of them and maybe not the most probable explanation.
Hence it is possible to have a loser association between propositions and an
explanatory target. Again following the general argument in Thagard and Litt
(forthcoming), it is possible to characterize causal schemas as an alternative
to formal deduction. Here is a simple example:
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1. Explanatory pattern: Typically, running a marathon causes muscle pain
and tiredness.

2. Explanatory target: Person X has muscle pain and is tired.
3. Schema instantiation: Maybe person X has completed a marathon.

The example above invites already the application of probability theory
and statistics. Again in the context of our simple example: the probability
of muscle pain and the feeling of tiredness after a marathon is high. The
marathon explains why person X feels pain and is tired. Here explanation is
more like a conditional probability and the value of the explanation depends
on known probabilities and the match with the schema.

Thagard and Litt (forthcoming) outline an additional way of modelling
explanation and interestingly this is the use of artificial neural networks. Tha-
gard and Litt (forthcoming) confirm that the neural approach by itself is not
a theory of explanation; it is a method that simulates the cognitive processes
that are part of explanatory thinking. Thagard and coworkers have used neu-
ral networks for cognitive modelling including the generation of explanations.
In the current context, it has been demonstrated again and again that in
particular feedforward neural networks are lacking explanatory power and
hence rule extraction has to be applied. This is our point of departure from
Thagard’s argument.

In summary, the classic review is that explanation is a deductive argu-
ment including background knowledge and inference rules such as modus
ponens. The inference rules allow the sequential application of “if-then-else”
statements in order to justify an explanatory target. Whenever no precise
knowledge is available, explanatory schemas or probabilistic rules can be used.
But of course other forms of explanation are possible as well.

1.2 Analogy as a Form of Explanation

Every classroom teacher knows that at times it is very difficult to introduce a
new theoretical concept. Even with the best of efforts it may not be possible
for the class to grasp the theoretical elements that are being introduced. A
single example, however, may change all of that and leads to an “aha” expe-
rience and complete understanding of the new material. So examples do have
explanatory value and can be most useful, in particular if they are typical
or even prototypical. In the current context, that his rule extraction from
support vector machines, it may well be an objective to identify one or more
examples that explain the behaviour of the machine (see Martens et al. and
Nunez et al. in this volume). If this is not possible and precise background
knowledge in the form of rules is not available, an analogy may be used for
explanation.

An analogy requires the existence of a memory system to store and search
cases which may have varying degrees of similarity. For instance, a case-based
system could store various types of sporting events, including those that
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require a great deal of endurance. There are obviously similarities between
a marathon and a triathlon and it is to nobody’s surprise that both can
cause tiredness and muscle pain immediately after the event. Even if we don’t
know that a particular person has just completed a marathon, the similarities
between a long run and a multi-sports event explain why a marathon runner
should be just as tired as a triathlete. Here, explanation is based on obvious
and implicit similarities.

Analogies and schemas go hand in hand. Instead of storing all sort of
sporting events we can have one schema for endurance sports which includes
the immediate consequences including muscle pain and tiredness. For any
given sports of this type, special features are replaced by variables which can
be instantiated whenever an explanation is required. There could be a variable
“physical effects” which can be instantiated by the two known consequences
of endurance sports.

In summary, the following processes can generate explanations acceptable
to humans:

• Logical deduction by use of inference rules
• Probabilistic rules including conditional probabilities
• Schemas based on the similarity between cases
• The provision of one or more examples which are typical or even proto-

typical

In artificial intelligence, several of these processes are often combined to
arrive at systems that either use or generate explanations. The best example
is explanation-based learning or explanation-based generalization. This form
of learning has a long history in cognitive science and is often traced back
to Gestalt theory, a branch of psychology popular in continental Europe in
the first half of the twentieth century. Gestalt theory in turn has its roots
in a rational form of philosophy which assumes that a significant part of
our knowledge is innate and learning occurs at the periphery of knowledge
only. That is, a significant amount of background knowledge is required for
successful learning. On the other side, very few examples are necessary.

1.3 Explanation-Based Generalization

Explanation-based generalization is most interesting for the discussion here
because it uses logical deduction based on the presentation of a single example.
Since its invention twenty years ago, it has been modified to allow probabilis-
tic reasoning and even the use of schemas. Explanation-based generalization
had a significant impact on theory formation in artificial intelligence and early
efforts to realize rule extraction from neural networks are linked to the attempt
to build explanation-based learning systems. Hence, explanation-based gen-
eralization had a significant impact on the current understanding of what
constitutes an explanation and will be briefly summarized here.
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An explanation-based generalization system requires four components
(1) the target concept, (2) the training example, (3) background knowledge
in the form of rules and (4) the operationality criterion which defines what is
to be learned or how learning should improve performance. There is an addi-
tional requirement that the training example is a positive instance of the target
concept. Also, background knowledge must be both complete and consistent.
Explanation-based generalization proceeds in two stages (1) explanation and
(2) generalization. During the first stage a formal proof is constructed which
demonstrates that the training example is a positive instance of the goal con-
cept. If this is not the case, learning can fail. In the second stage, on the basis
of the formal proof that the example is a positive instance of the goal con-
cept, a new rule is formed and the knowledge is added to the rule base. Most
importantly, and in contrast to statistical learning systems such as neural net-
works and support vector machines, the generalization that is the result of
the learning episode is justified: it can be formally proven that the generaliza-
tion holds given the training example, the goal concept and the background
knowledge.

An example may be useful to explain explanation-based generalization:
assume you are walking the streets and you see a car you have not seen before
but you recognize as a BMW. The car has features you associate with BMWs
but there are new, unexpected aspects as well. These new features immediately
generate interest and start a learning process that is indeed an explanation
process: the known attributes (this may be “shape of head lights”, “company
logo”, etc.) are being used to explain that this particular car is a BMW. This is
the first stage of explanation-based generalization. The process may continue
with a generalization: A new class or concept is added to the background
knowledge that includes the just seen car but maybe used to recognize other
cars identical or similar to this one. As a matter of fact, this scenario invites a
generalization as it is extremely unlikely that the just seen car is unique and
no others of this type exit.

Explanation-based generalization is a very natural model for human learn-
ing. The previous paragraph describes an everyday observation and the
learning process that is triggered by an observation. In addition, explanation-
based generalization uses a “proof structure” (the sequence of rules that have
been applied to prove that the training example is an instance of the goal
concept) as the basis of an explanation. Hence, in the following chapters expla-
nations are “rule sets” that explain “how” a certain decision was made and
“why” it was made.

1.4 How and Why Explanations

As indicated earlier, it is useful to distinguish between various types of expla-
nation, e.g. causal explanations that are acceptable answers to “why” ques-
tions in contrast to the step-wise explanations that are acceptable responses
to “how” questions. Let’s focus on how questions first.
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A how explanation consists of a sequence of rules that map a given input
to an output, in this case the input to a neural network or a support vector
machine. In explanation-based generalization, a sequence of rules explains
how the single training example is a positive instance of the target concept.
Even though both rule extraction from neural networks and support vector
machines generate rule sets, these rules are rarely applied in sequence. Very
often rules are propositional in nature and include sets of inputs that result
in a positive output. In this sense, rules can be independent and can even
overlap. In rule extraction from neural networks, each rule includes a set of
inputs that can result in a positive or negative output independently. The
totality of the rule set explains how the neural network arrives at a decision.

“Why” explanations are typically used in expert systems. Here, the user
may be engaged in an extensive dialogue and sometimes the system poses
questions which are difficult to understand. After each question, the user has
the option to ask “why” and the system will justify asking that particular
question at this point in time. In this sense, “Why” explanation in expert sys-
tems does not include deep causal reasoning or the identification of a limited
set of inputs that causes some output. A justification for a question is given.

1.5 Generating or Identifying the Best Explanation

Very often, more than one explanation is possible and explanations may even
compete. Thagard and Litt (forthcoming) identify the evaluation of compet-
ing explanations as one of three major processes modelled by computational
systems that aim to simulate human reasoning. The term “abduction” is well
established in artificial intelligence and describes the inference to the best
explanation as well as the generation of hypotheses (Thagard and Litt forth-
coming). Thagard and Litt (forthcoming, p. 9) identify three criteria for the
best explanation:

• Consilience: How much does a hypothesis explain?
• Simplicity: How many additional assumptions are required to carry out an

explanation?
• Analogy: Are there hypotheses whose explanations are analogous to ac-

cepted ones?

2 Rule Extraction from Support Vector Machines: Aims
and Significance

Andrews et al. (1995) describe the motivation behind rule extraction from neu-
ral networks. The five points outlined below, with the possible exception of
“knowledge acquisition for expert systems”, are relevant for the current effort
to extraction comprehensible rules from SVMs. A brief review of Andrews
et al. (1995) arguments will help to establish aims and significance for rule
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extraction from SVM techniques. For an introduction to support vector
machines, see Martens et al. in this volume.

2.1 Provision of a “User Explanation” Capability

In symbolic artificial intelligence (AI), the term “explanation” refers to an
explicit structure which can be used internally for reasoning and learning,
and externally for the explanation of results to a user. Users of symbolic
AI systems benefit from an explicit declarative representation of knowledge
and traditionally, symbolic AI systems are deductive techniques: Reasoning
(including classification) is from the “generic” (expressed in the form of gen-
eral rules) to the “specific” (an instance or individual that is to be classified).
Even learning, if it is based on a large amount of background knowledge, is
deductive in symbolic AI systems.

The explanation capability of symbolic AI is based on intermediate steps
of the reasoning process, e.g. a trace of rule firings, a proof structure, etc.,
which can be used to answer “How” questions. Gallant (1988) observes that
the benefits of an explanation capability include a check on the internal logic
of the system as well as enabling a novice user to gain insights into the problem
at hand.

An explanation capability is considered to be one of the most impor-
tant functions provided by symbolic AI systems. The ability to generate
even limited explanations is essential for the user-acceptance of such sys-
tems (Davis et al., 1977). In contrast to symbolic AI systems, neural networks
have no explicit declarative knowledge representation, and with exception
of structured connectionist systems, neural networks do not perform deduc-
tion. Therefore neural networks have considerable difficulty in generating
explanation structures and the situation is no different in support vector
machines.

Traditionally, practitioners in the field of symbolic AI have experimented
with various forms of user explanation, in particular rule traces (i.e. the
sequence of rules or inference steps that are part of a problem-solving episode).
However, it is obvious that explanations based on rule traces are too rigid
and inflexible (Gilbert, 1989) because rules may not be equally meaningful
to the user. In addition, rule traces always reflect the current structure of a
knowledge base. Further, rule traces may have references to internal proce-
dures (e.g. calculations); might include repetitions (e.g. if an inference was
made more than once); and the granularity of the explanation is often inap-
propriate (Gilbert 1989; Andrews et al. 1995). A clear lesson from the use
of rule traces in symbolic AI is that the transparency of an explanation is
by no means guaranteed. For example, an explanation based on rule traces
from a poorly organised rule base with perhaps hundreds of premises per rule
cannot be regarded as “transparent”. Interestingly, it is an inherent problem
of rule extraction from neural network techniques (in particular those that
are learning-based), that a large number of rules with many antecedents are
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generated. Similar to the extended explanations based on rule traces in sym-
bolic AI, the large rule sets extracted from neural networks offer limited or
no explanation capability.

An additional example of the limitations of explanation capabilities in
symbolic AI systems is described in Moore and Swartout (1989). In the field
of expert systems practitioners have been linking “canned text” with rules and
instead of providing the user directly with the trace of rules, the sequence of
pre-prepared text elements has been used to facilitate comprehensibility. This
type of user explanation is very rigid, systems always interpret questions in
the same way, and there are no adequate response strategies. Although efforts
have been made to take advantage of natural-language dialogues including
mixed initiatives, user-models and explicitly planned explanation strategies,
there is little doubt that these systems are inflexible and rigid (Andrews et al.,
1995).

While the integration of an explanation capability (via rule extraction)
within a trained neural network or SVM is crucial for user acceptance, such
systems must avoid the problems already encountered in symbolic AI.

2.2 Transparency

The creation of a “user explanation” capability is the primary objective for
extracting rules from neural networks and SVMs, with the provision of “trans-
parency” of the internal states of a system a close second. Transparency means
that internal states of the machine learning system are both accessible and can
be interpreted unambiguously. Such transparency would allow the exploration
of regions in generalisation space which may lead to erroneous or sub-optimal
decisions.

Such a capability is mandatory if neural network or SVM based solutions
are to be accepted into “safety-critical” problem domains such as air traffic
control, the operation of power plants, medical surgery, etc. Rule extraction
offers the potential for providing such a capability (Andrews et al. 1995).

2.3 Software Verification

If neural networks or SVMs are to be integrated in larger software systems that
need to be verified, then clearly this requirement must be extended to all com-
ponents, including the ANNs and SVMs. Currently, rule extraction algorithms
do not allow for verification, i.e. they do not prove that a machine learning
system behaves according to some specification. However, rule extraction algo-
rithms provide a mechanism for either partially or completely “decompiling” a
neural network or SVM. This is about half-way to software verification because
it allows for a comparison between the extracted rules and the specification.
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2.4 Improving Generalisation

If a limited or unrepresentative data set has been used in the ANN training
process, it is difficult to determine if and when generalisation fails for specific
cases even with evaluation methods such as cross-validation. By expressing
learned knowledge as a set of rules, an experienced user can anticipate or
predict a generalisation failure (Andrews et al., 1995). It may also be possible
to identify regions in input space that are not represented sufficiently in the
data set and need to be supplemented (Andrews et al. 1995).

2.5 Data Exploration and the Induction of Scientific Theories

This has been one of the primary objectives for rule extraction from neural
networks and is essential for data mining and knowledge discovery. As Craven
and Shavlik (1994) write “a (learning) system may discover salient features
in the input data whose importance was not previously recognised”. If a neural
network or SVM has learned important and possibly non-linear relationships,
these relationships are encoded incomprehensibly as weight vectors, support
vectors and additional parameters. Within the context of discovering new
relationships, rule extraction algorithms significantly enhance the data mining
capabilities of neural networks and SVMs.

3 Translucency and Rule Quality

Over the last years, a number of studies on rule extraction from support vec-
tor machines have been introduced. The research strategy in these projects
is often based on this idea: develop algorithms for rule extraction based on
the perception (or “view”) of the underlying SVM which is either explicitly
or implicitly assumed within the rule extraction technique. In the context of
rule extraction from neural networks the notion of “translucency” describes
the degree to which the internal representation of the ANN is accessible to
the rule extraction technique (Andrews et al. 1995; Tickle et al. 1998). More
broadly, a taxonomy for rule extraction from neural networks has been intro-
duced (Andrews et al. 1995; Tickle et al. 1998) which includes five evaluation
criteria: translucency, rule quality, expressive power, portability and algorith-
mic complexity. These evaluation criteria are now commonly used for rule
extraction from SVMs.

It is important to develop new techniques for rule extraction from sup-
port vector machines, including those that are based on SVMs only and do
not require any other machine learning technique. In particular support vec-
tor machines that allow the generation of structured outputs (Taskar et al.
2005) can be used to generate rule sets not unlike those extracted from neural
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networks. This represents a clear advancement since user explanation is real-
ized by an SVM and not by a technique with a different representational bias.
In addition, methods for the extraction of high quality rule sets from SVMs
trained on high-dimensional data are required.

The following briefly describes the first two of the five evaluation criteria
for rule extraction from neural networks (Andrews et al. 1995; Tickle et al.
1998) which are then discussed in the context of rule extraction from SVMs.

3.1 The Neural Network Case

Translucency describes the degree to which the internal representation of the
ANN is accessible to the rule extraction technique. At one end of the translu-
cency spectrum are those rule extraction techniques which view the underlying
ANN at the maximum level of granularity, i.e. as a set of discrete hidden
and output units. Craven and Shavlik (1994) categorized such techniques as
“decompositional”. The basic strategy of decompositional techniques is to
extract rules at the level of each individual hidden and output unit within the
trained ANN. In general, decompositional rule extraction techniques incorpo-
rate some form of analysis of the weight vector and associated bias (threshold)
of each unit in the trained ANN. Then, by treating each unit in the ANN as
an isolated entity, decompositional techniques initially generate rules in which
the antecedents and consequents are expressed in terms which are local to the
unit from which they are derived. A process of aggregation is then required to
transform these local rules into a composite rule base for the ANN as a whole
(Tickle et al. 1998).

In contrast to the decompositional approaches, the strategy of pedagog-
ical techniques is to view the trained ANN at the minimum possible level
of granularity, i.e. as a single entity or alternatively as a “black box”. The
focus is on finding rules that map the ANN inputs (e.g. the attribute/value
pairs from the problem domain) directly to outputs (Tickle et al. 1998). In
addition to these two main categories, Andrews et al. (1995) also proposed a
third category which they labelled as “eclectic” to accommodate those rule
extraction techniques which incorporate elements of both the decompositional
and pedagogical approaches.

A number of authors have studied the algorithmic complexity of extracting
rules from feedforward neural network. Here is a brief summary of results:

• Decompositional approach: The basic process of searching for subsets of
rules at the level of each (hidden and output) unit is exponential in the
number of inputs to the node.

• Heuristics are invoked to limit the depth to which the space is explored.
• Golea (1996) showed that extracting the minimum DNF (disjunctive nor-

mal form) expression from a trained feedforward net is hard in the worst
case.
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• Furthermore, Golea (1996) showed that the Craven and Shavlik (1994)
algorithm is not polynomial in the worst case.

• This result does not apply to single-layer networks; however, extracting
the best N-of-M rule from a single-layer network is again hard.

Rule extraction from neural networks early on adopted criteria for the
quality of the extracted rules. The set of criteria for evaluating rule quality
includes (Andrews et al. 1995):

1. Accuracy
2. Fidelity
3. Consistency, and
4. Comprehensibility of the extracted rules

A rule set is considered to be accurate if it can correctly classify a set of
previously unseen examples from the problem domain (Tickle et al. 1998).
Similarly a rule set is considered to display a high level of fidelity if it can
mimic the behaviour of neural network from which it was extracted by cap-
turing all of the information represented in the ANN. An extracted rule set
is deemed to be consistent if, under differing training sessions, the neural
network generates rule sets which produce the same classifications of unseen
examples. Finally the comprehensibility of a rule set is determined by measur-
ing the size of the rule set (in terms of the number of rules) and the number
of antecedents per rule (Tickle et al. 1998).

3.2 Translucency and Rule Quality Applied to Rule Extraction
from SVMs

Most current studies on rule extraction from SVMs focus on decompositional
extraction; however, learning-based approaches are also available (Barakat
and Diederich 2005). The idea is simple: learn what the SVM has learned. For
this purpose a data set is divided into two or more parts. The first set is used
to train the SVM to completion. The second set does not include targets,
the inputs are presented to the SVM and the output is obtained from the
SVM. Inputs and outputs combined represent a new data set that is used for
a second machine learning episode by use of a machine learning system that
produces rules as output.

Hence, pedagogical rule extraction from SVMs is trivial, in particular if
the data set is low-dimensional. Support vector machines have been designed
to process high-dimensional input data. Typical examples are text, speech
and image classification. Yet most of the studies available on rule extraction
from support vector machines use benchmark data sets that include a limited
number of features only. As a result, SVMs are not being used in their core
application area and hence rule extraction results are not very meaningful.

It is very easy to illustrate the limitations of current studies on rule
extraction from SVMs by use of an example: text classification. SVMs can
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achieve good performance with very simple text representation formats such
as the “bag-of words” (BOW) technique. BOW uses a document-term matrix
such that rows are indexed by the documents and columns by the terms
(e.g. words). SVMs allow the classification of texts of differing lengths; hence,
document vectors may differ greatly in the number of elements.

A disadvantage of the BOW representation is that after successful classifi-
cation, it may not be obvious what has been learned. For instance, an author
may have a preference for certain topics and as a result, an SVM trained on an
authorship identification problem in reality may perform topic detection. This
problem has lead to various techniques to eliminate content from the BOW
input, for instance by replacing content words with lexical tags (categories).

Given the fact that it is not at all obvious what contributes to classifi-
cation in case of a BOW input representation, rule extraction from support
vector machines is presented with a special opportunity. However, the num-
ber of features can be very large: e.g. all words that exist in a given natural
language. While a combination of words constitutes meaning in a natural lan-
guage, BOW and hence classification is based on words in isolation. This is
a significant problem with regard to rule quality: The antecedents in a rule
include individual words completely out of context. As the set of antecedents
includes completely unrelated words, human or semantic comprehensibility
is low.

4 An Alternative View on Rule Extraction: Information
Retrieval

The introduction to explanation in Sect. 1 neglected one very important
aspect: Explanation is frequently based on an interaction between two per-
sons (e.g. a teacher and a student) or a machine and a human (e.g. in tutorial
or help systems). Cawsey (1993) uses a very simple definition of explanation:
“In general an explanation is something which makes some piece of knowledge
clear to the hearer. . . . The explanation is complete when the hearer is satis-
fied with the reply and understands the piece of knowledge” (Cawsey, 1993,
p. 1). Hence, explanation is based on an “information need” and essentially is
a dialogue. As part of this dialogue, explanatory targets may change and may
be refined.

Frequently, it is possible to retrieve more than one explanation (i.e. rule
set) from a given SVM or neural network. In this case, it is often necessary to
select the best explanation. There are two main reasons why it is possible to
generate multiple explanations from or for a given machine learning system
(1) Rule extraction methods include parameters that need to be initialized
and the selection of certain options or values for variables results in different
rule sets. (2) Rules can be expressed in different ways, e.g. a rule set with few
rules that have many antecedents can be re-written as a rule set with many,
simple rules, i.e. rules with few conditions. While it is generally acknowledged
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that a rule set with few rules and a limited set of antecedents provides best
explanation capability, it is far from obvious that this is always the case.
Indeed, the information need of the user has to be taken into consideration
and the user may interact with the machine learning system by use of rule
extraction.

A user may have a need for multiple explanations (rules sets) because
the objective is to explore the generalization space of the underlying SVM or
neural network. Several rule sets, if considered in turn, may offer best trans-
parency of the ANN or SVM. In another scenario, a user may be interested
in the single-best explanation in the form of a few simple rules. In addition,
the user may be interested in exploring different parameter sets which lead to
different learning results and consequently to different rule sets. It is difficult
to consider rule quality criteria without reference to the information need of
the user.

The concept of information need is central to the discipline of information
retrieval. The performance of an information retrieval system, e.g. an Internet
search engine, is traditionally evaluated by use of “precision” and “recall”.
Precision is the probability that a document predicted to be genuine truly
belongs to this class. In other words, a document that has been retrieved
from a database truly matched the information need of the user. Recall is the
probability that a genuine document is classified into this class. Less formally,
high recall is given if all documents that satisfy the information need of the
user are indeed retrieved from a database.

It is obviously desirable to have high recall and precision simultaneously
but this is difficult to achieve in information retrieval. A trade-off exists
between large recall and precision. By adjusting a parameter, e.g. by altering
the cost of misclassification, recall may be increased at the cost of decreasing
precision and vice versa.

The observation that multiple explanations can be extracted from a trained
SVM or neural network leads to the application of information retrieval con-
cepts to rule extraction (see the case study below). In the context of rule
extraction from either support vector machines or neural networks, high pre-
cision represents the scenario that the rule sets extracted are relevant to the
user, i.e. match his or her information need. Recall refers to the question “how
many relevant explanations that can be extracted from the SVM or neural
network are indeed being extracted?” Is it possible to generate all possible
explanations by way of rule extraction that match the information need of
the user?

The ideas outlined above may lead to the application of additional per-
formance measurements that are commonly used in information retrieval and
that are based on precision and recall. The view that a single explanation is
to be extracted from an SVM or neural network is a simplification. It may
be desirably to extend the notion of “rule quality” to include assessments of
multiple explanations in relation to the information need of a user.
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5 A Case Study

To illustrate the problem (and opportunity) faced by rule extraction from
SVMs when applied to text classification, support vector machines are used to
classify business news articles from the Persian Gulf with regard to emotional
content. A total of 914 news articles are used for this experiment.1 In addition,
experiments on authorship attribution (identifying the author of a text) and
topic classification are performed.

The pre-processing includes two parts: text extraction and feature selec-
tion. Text extraction is performed by lexical analysis to strip all non-word
annotations and to convert the text into a list of words or tokens. This step can
be summarised as follows: (1) upper case letters are converted to lower case,
(2) all words containing non-letter characters are removed including hyphen-
ated words and words with an underscore, (3) all punctuations are replaced
with space characters to be treated as token delimiters, (4) author identi-
ties are extracted, (5) the texts are converted to a “bag-of words” (BOW)
representation.

In addition, all class identifiers are removed from the articles in the BOW
format before they are used to generate a fixed vocabulary: author names
and words used for topic and emotion identification are removed (see the sec-
tion below on the clustering process used to generate targets for supervised
machine learning). After the text extraction process, a fixed length vocab-
ulary is built from the set of all extracted news articles through a feature
selection process. Firstly, stopword removal and stemming2 are performed
on each extracted text. Secondly, document frequency thresholding is used
to reduce further the feature vector space. Words occurring once only are
removed.

After the vocabulary generation process, for each class (four authors, emo-
tions and topics), the extracted texts are (1) labelled with the class and
(2) mapped to an SVM data file in which each line represents a news article.
Each row includes a label that indicates whether the article belongs to the
target class or not.

Pre-processing of the text samples, including elimination of frequent words
(using an edited list of the 6,500 most frequent words in English) led to the
development of lists of words that are low frequent, but included some words
with topical or emotional content which are common. Simple clustering tech-
niques are used to extract topic and emotion information from texts to perform
supervised learning.

1 This is joint work with Insu Song, Aqeel Al Ajmi, Jihan Zhu, Imran Fanaswala
and Mark Pedersen.

2 Stopword removal refers to the elimination of function words such as articles (the,
a) Stemming identifies the root of a word, e.g. “goes” will be converted to “go”.
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The following is a description of the algorithm used to identify topical and
emotive information:

For all business news articles

1. Generate a ranked list of n words that are not in a stoplist (comprising
an edited list of the 6,500 most spoken words in English)

2. Apply cluster analysis to the ranked word lists extracted from the
documents

3. Identify words that are high-frequent in clusters

The method in step 2 is described by Chiu et al. (2001) who proposed a
conceptual or model-based approach to hierarchical clustering. The method
includes a two-step strategy to determine the number of clusters. The model
associated with a cluster covers both numerical and categorical attributes
and constitutes a mixture of Gaussian and multinomial models. The dis-
tance between two clusters is defined as a decrease in log-likelihood caused
by merging of the two clusters under consideration. The process continues
until a stopping criterion is met. As such, determination of the best number
of clusters is automatic (Berkhin, 2002).

The emotion categories extracted by this process are “boom”, “confident”,
“regret” and “demand”. The topic categories are “asian economy”, “oil price”,
“stock” and “gas”. As in previous studies, authorship attribution succeeds at
a very high level. All four attempts to identify the author of the texts are
successful (Level-one-out cross-validation estimates of the performance: error
<2%, precision 100% and recall 70–97%). Topic detection performance is lower
and on par with the emotion classification results. Two of the topic detection
learning results are relatively poor as are two of the attempts to discover the
emotion express in the text.

Pedagogical rule extraction from SVMs as outlined in Barakat and
Diederich (2005) is applied to the trained SVMs (one authorship attribu-
tion as well as one topic detection and emotion classification problem). The
procedure for rule extraction is as follows:

1. Divide data in two or more sets
2. Train SVM on a subset of data A
3. Get SVM predictions on subset B
4. Combine inputs from subset B with SVM predictions
5. Train a symbolic machine learning system on the new data set
6. Obtain rules from the symbolic machine learning system (in this case a

decision tree learner and a classification and regression tree)

Since the decision tree learning system cannot efficiently deal with high-
dimensional input spaces, the first 200 features are used for See 5 learning
only. The following rules (Table 1) were extracted in one run from an SVM
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Table 1. Rules extracted from an SVM trained on an authorship identification task

Rule 1: interest <= 0

percent > 0.079

product <= 0.086

-> Target author

Rule 2: us <= 0

price <= 0.027

compani <= 0.031

set > 0.061

-> Target author

Rule 3: market <= 0.075

number > 0.1

-> Target author

Rule 4: percent <= 0.079

product <= 0.086

number <= 0.1

set <= 0.061

-> Other author

Rule 5: us > 0

number <= 0.1

-> Other author

Rule 6: price > 0.027

-> Other author

Rule 7: market > 0.075

-> Other author

Default

class:

Other author

trained on an authorship identification problem. Please note that in this case,
the SVM classifications for inputs in the training set A are used.

The training error of the decision tree learning method is low: 2.3%. There
are rules for the positive and negative classes and rule quality is high: seven
rules and 17 antecedents in total (of the 200 possible features, only nine occur
in the rules). The rules include content words (or rather word stems) only
since pre-processing eliminated all function words. Word frequency distribu-
tion over function words is relevant for authorship attribution; nevertheless,
even without function words SVM and decision tree learning succeeds.

The following rules were extracted from the topic-detection SVM (Table 2).
Again, note that SVM classifications for inputs of the training set A are used
as targets for decision tree learning.

The See 5 learning error is 5.0% and rule quality is obviously slightly
reduced. Rule 6 is particularly problematic, a point which will be discussed
in detail further below.

Finally, rules were extracted from an SVM trained on an emotion clas-
sification problem (Table 3). The learning result for this SVM is acceptable
(leave-one-out cross-validation result: error 8.6%, precision 94.9%, recall 70%).
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Table 2. Rules extracted from an SVM trained on a topic detection problem

Rule 1: exchang > 0.089

valu <= 0.024

-> Target topic

Rule 2: share > 0.083

-> Target topic

Rule 3: investor > 0.053

advanc > 0.043

-> Target topic

Rule 4: market > 0.046

fed <= 0.076

-> Target topic

Rule 5: market <= 0.046

share <= 0.083

exchang <= 0.089

advanc <= 0.043

-> Other topic

Rule 6: oil <= 0.318

investor <= 0.033

share <= 0.083

world < = 0.077

foreign <= 0.091

jordan <= 0.053

exchang <= 0.089

long <= 0.068

export <= 0.097

posit <= 0.053

hous <= 0.058

-> Other topic

Rule 7: fed > 0.076

-> Other topic

Rule 8: german > 0.057

japan <= 0.032

-> Other topic

Rule 9: share <= 0.083

properti > 0.183

-> Other topic

Rule 10: dollar > 0.336

-> Other topic

Rule 11: sterl > 0.078

-> Other topic

Default

class:

Other topic
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In contrast to the two cases above, SVM classifications for inputs of the test
set B are used as target for decision tree learning.

The test set includes 120 cases and the See 5 learning error is 1.7%. Tenfold
cross-validation reveals a test error of 13.3%, however, practically all positive
examples are misclassified. Clearly, there are an insufficient number of positive
examples in this data set (8 out of 120).

It is possible to use sub-sampling techniques or boosting trials to elicit
more words (antecedents in rules) in order to identify relevant features or
to clarify the classification task. Ten boosting trials lead to rule sets that
confirm the result above on the one hand but also identify additional features
(Table 4). The boosted decision tree classifier correctly learns all cases.

Table 3. Rules extracted from an SVM trained on an emotion classification problem

Rule 1: suppli > 0

estat > 0.032

-> Target emotion

Rule 2: close > 0.02

estat > 0.032

-> Target emotion

Rule 3: estat <= 0.032

-> Other emotion

Rule 4: estat > 0.032

-> Other emotion

Default class: Other emotion

Table 4. Rules extracted by use of a tenfold boosting run from an SVM trained an
emotion classification problem

Rule 0/1: suppli > 0

estat > 0.032

-> Target emotion

Rule 0/2: close > 0.02

estat > 0.032

-> Target emotion

Rule 0/3: estat <= 0.032

-> Other emotion

Rule 0/4: estat > 0.032

-> Other emotion

Default class: Other emotion

Rule 1/1: war > 0.022

-> Target emotion

Rule 1/2: war <= 0.022

-> Other emotion

Default class: Other emotion
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Table 4. (Continued)

Rule 2/1: al > 0.024

high > 0.028

chang <= 0

-> Target emotion

Rule 2/2: chang > 0

-> Other emotion

Rule 2/3: high <= 0.028

-> Other emotion

Rule 2/4: al <= 0.024

-> Other emotion

Default class: Other emotion

Rule 3/1: oil > 0.222

-> Target emotion

Rule 3/2: estat > 0.046

-> Target emotion

Rule 3/3: oil <= 0.222

estat <= 0.046

-> Other emotion

Default class: Other emotion

Rule 4/1: uae > 0.193

-> Target emotion

Rule 4/2: higher > 0.154

-> Target emotion

Rule 4/3: higher <= 0.154

uae <= 0.193

-> Other emotion

Default class: Other emotion

Rule 5/1: hous > 0

-> Target emotion

Rule 5/2: hous <= 0

-> Other emotion

Default class: Other emotion

Rule 6/1: compani <= 0.05

gulf <= 0

estat > 0.032

-> Target emotion

Rule 6/2: suppli > 0.058

-> Target emotion

Rule 6/3: suppli <= 0.058

estat <= 0.032

-> Other emotion

(continued)



22 J. Diederich

Table 4. (Continued)

Rule 6/4: compani > 0.05

-> Other emotion

Rule 6/5: gulf > 0

-> Other emotion

Default class: Other emotion

Rule 7/1: dubai <= 0.087

monei > 0.05

-> Target emotion

Rule 7/2: dubai > 0.087

-> Target emotion

Rule 7/3: dubai <= 0.087

monei <= 0.05

-> Other emotion

Default class: Other emotion

Rule 8/1: declin > 0.09

-> Target emotion

Rule 8/2: iraq > 0.028

-> Target emotion

Rule 8/3: iraq <= 0.028

declin <= 0.09

-> Other emotion

Default class: Other emotion

Rule 9/1: project > 0.116

-> Target emotion

Rule 9/2: real > 0.177

-> Target emotion

Rule 9/3: real <= 0.177

project <= 0.116

-> Other emotion

Default class: Other emotion

It is obvious that different machine learning techniques that “learn what
the SVM has learned” may produce different results (the value of extracting
a range of different rule sets from an SVM has been outlined above). If a clas-
sification and regression tree is used to generate the explanation, two simple
rules are generated (Table 5).

The rule sets above allow a number of interesting observations. In the case
of the “authorship attribution” rule set (Table 1), it is not at all clear what
contributes to the identification of this author. All documents are business
news articles, hence the question is: does this author focus on a particular
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Table 5. Rules extracted from an SVM by use of a classification and regression
tree. The SVM has been trained an emotion classification problem

Rule 1: valu < 0.047

invest < 0.275

-> Other emotion

invest >= 0.275

-> Target emotion

Rule 2: valu >= 0.047

currenc < 0.016

-> Other emotion

currenc >= 0.016

-> Target emotion

topic (e.g. the US stock market) or do the rules capture relevant features of
the author’s style?

The rule sets obtained from the SVM trained on the emotion classification
problem are even more intriguing: Rule quality is very high, rule extrac-
tion is consistent and the learning results are good. However, none of the
antecedents express emotion in any way at all! Even though all SVM and
decision tree learning results are acceptable (with exception of the “extreme”
k-fold cross-validation), the rules appear not to be linked to the task at hand :
classify documents into categories that express the emotion of a text. Since
it is one of the objectives of rule extraction to explain “how” classification is
realized by an SVM, the question must be asked to what extend the above
rule sets help to provide an answer.

The experiments outlined above invite a number of objections that should
be discussed in the context of evaluating the rules. First of all, the decision tree
learner was trained by use of the 200 most frequent features (word stems) only,
the SVM considers up to 6,484 attributes. It is possible that the vast majority
of features that are not input to the decision tree learner are relevant for SVM
learning (the feature ranked 200 in the corpus has an absolute frequency of
291; generally, word stems that occur twice or more in the entire data set
are being considered for SVM learning). Joachims (1998) established that the
majority of words with low frequency in a corpus do contribute to a text
classification task. Hence, it is possible that the example rule sets above do
not completely capture what the SVM has learned.

Since it is difficult to train a decision tree learner or a classification and
regression tree on a high-dimensional data set, it may be argued that this
is a case for a “decompositional” extraction method that does not rely on
a non-SVM learning technique so obviously insufficient for high-dimensional
problems. It is unlikely; however, that such an approach offers a solution to
the problem. Obviously, individual words or word stems taken out of context
cannot provide a human comprehensible explanation.



24 J. Diederich

The four rules in Table 3 all include the antecedent “estat”. This is a word
stem generated from the word “estate” which occurs 362 times in the corpus.
Practically all of the occurrences are in the context of “real estate”, and since
this is a corpus including business news articles from the Persian Gulf, “real
estate” refers to the current construction boom in Dubai. Table 3 does not
include any reference to “real” (as in “real estate” or “Dubai”). The boosting
trials in Table 4, however, extract the words “real” and “Dubai”. Similarly,
the word stem “suppli” originated from “supplies” or “suppliers” and is used
in the context of “oil supplies”.

In a further experiment, a neural network was trained on the data used for
rule extraction (Tables 3 and 4). The neural network achieved more than 90%
accuracy in various configurations. For instance, a feedforward neural network
with a 200 unit input layer, a first hidden layer of 7 and a second hidden layer
with nine units as well as a one unit output layer achieves an accuracy of
90.5%. After completion of the training, sensitivity analysis was performed on
the neural network to obtain information on the relevance of input features.
Sensitivity analysis ranks all inputs to the neural network (in this case 200)
according to the relevance of the feature for the classification task. In various
runs with different neural network architectures, “real” and “estat” were both
ranked by sensitivity analysis among the top 5 input features to the neural
network. “suppli” was also ranked as a top feature by sensitivity analysis.
These results confirm the relevance of the features in Table 3, the rules in
Tables 3 and 4 as well as the interpretation provided above.

Finally, the classification and regression tree rules in Table 5 use the
word stem “valu” which occurs 355 times in the corpus. The original word
forms are “value”, “valuation”, and “devaluation” and so on. “invest” is one
of the most frequent word stems (1,543 occurrences) similar to “currenc” (974
occurrences). Obviously, the original words appear in various contexts.

The rules in Tables 3–5 point only indirectly to the criteria the SVM
utilises for classification. Again, it is important to emphasise that the SVM in
question has been trained on an emotion classification task, yet, rule extraction
does not reveal any word that is linked to affect or emotion. Sensitivity analysis
after neural network training on the same data, however, extracts some words
that do have emotional content such as “profit”. There is some indication that
in reality, the SVM performs a topic classification task. The rule extraction
process could be considered a success since a possible confusion between a
topic and emotion classification task has been discovered. Yet again, in this
particular case the SVM does perform emotion classification to some extent
as indicated by the ROC curve in Fig. 1 with an “area under the curve”
AUC of .86. The extracted rules should be used in full view of the learning
result of the SVM in order to explain what the support vector machine has
learned.

Is it possible to say that SVM emotion classification by use of a “bag-
of-words” representation has failed because no emotion word occurs in the
extracted rules? No, it is not possible to say this conclusively because the
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Fig. 1. The ROC curve for the emotion classification SVM. Please note that this
ROC curve has been obtained from an SVM trained on a slightly larger data set
(914 patterns). The SVM used for rule extraction has been trained on 734 examples

SVM has been trained on a high-dimensional data set while the decision tree
learner used for extraction utilizes 200 features only. Also, the boosting runs
in Table 4 generated rules including words like “war”, “iraq”, “declin” (for
decline) and potentially several others which do have emotional content at the
point in time this study was performed. Nevertheless, there is evidence that
input dimensionality is crucially important for rule extraction from SVMs!

In order to enhance the explanatory value of the rules extracted from
the SVMs, it may be beneficial to train an additional SVM on “bigram fre-
quencies” and to extract rules from this SVM. “Bigrams” are sequences or
combinations of words that appear in sentences. For instance, the sentence
“Real estate in Dubai is expensive” includes “real estate” and “in Dubai”
as bigrams. If stopwords such as “in” and “is” are eliminated, bigrams such
as “real estate” and “Dubai expensive” would be generated. As part of the
pre-processing of documents for SVM learning, the frequency of occurrence
of bigrams would be calculated and would be utilised in the SVM data set.
For instance, bigrams such as “real estate” would be attributes in the SVM
data set and the normalised frequency of occurrence would be the value of
the feature.

Rule extraction from SVMs would then generate rules including antecedents
such as “real estate”, “in Dubai” or “Dubai expensive”. Due to the added con-
text, rules with these antecedents would be much more comprehensible. Even
if the SVMs trained on bigrams frequencies do not perform as well as those
trained on a simple “bag-of-words” representation, the bigram rules can be
compared to those extracted from an SVM trained on “bag-of-words”. It is
common in artificial intelligence systems to have an independent explanation
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system, i.e. a system separate from the core inference machine. In a similar
sense, the rules extracted from the bigram SVM can be used for explanatory
purposes only.

The observations above lead to a new rule quality criterion: semantic com-
prehensibility. In the cases outlined above, rule quality as originally formulated
(Tickle et al. 1998) is high due to the limited number of antecedents and rules,
yet comprehensibility for the user is low. Therefore, it is necessary to introduce
a new rule quality criterion, semantic comprehensibility.

6 A Classification System for Rule Extraction
from SVMs

Rule extraction from support vector machines requires evaluation criteria that
emphasize data (Table 6). SVMs have demonstrated very good performance
when trained on data sets with high-dimensional inputs; significant applica-
tion areas are image classification (including face recognition), bioinformatics
and text classification. At this point in time, many Internet search engines
use support vector machines.

In light of the discussions above, the following dimensions are proposed:

1. Translucency: This dimension as originally proposed in Andrews et al.
(1995) and Tickle et al. (1998) continues to be useful, even with the

Table 6. A classification system for rule extraction from SVMs

Attribute Type From To

Translucency Continuous Decompositional Pedagogical
Data Continuous Low-dimensional High-dimensional
Expressiveness Discrete Boolean First-order

predicate logic
Rule quality

Number of rules Continuous 1 No upper limit
Number of Continuous 1 No upper limit
antecedents
Semantic Discrete Yes No
comprehensibility
Fidelity Continuous 0% 100%
ROC Fidelity Continuous Low High
Accuracy of rules Continuous 0% 100%
Precision of rules Continuous 0% 100%
Recall of rules Continuous 0% 100%

Complexity Continuous Linear Exponential
Non-SVM
extraction

Discrete Yes No
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introduction of rule extraction techniques for high-dimensional data sets.
However, there are important questions with regard to the learning-based
or pedagogical approach: Many of the rule-based learners have very dif-
ferent representational biases compared to support vector machines. In
addition, many are less suitable for high-dimensional inputs, again in com-
parison to SVMs. These limitations have been discussed already by use of
the case study.

2. Data: From low to high-dimensional input space. Many data mining prac-
titioners would probably agree with the view that it is possible to engineer
a neural network with similar learning performance to an SVM for low-
dimensional data sets. As a matter of fact, SVMs are not necessarily the
method of choice for these data sets, there are many alternatives. This
includes those cases with relationships between attributes that are best
expressed as a decision tree. Hence, the view here is that SVMs are the
primary choice for high-dimensional inputs and rule extraction techniques
should work in these cases.

3. Expressiveness of the extracted rules. Rule extraction from neural net-
works has previously almost exclusively been used to generate proposi-
tional rule sets (Hayward et al. 2000). While this is sufficient for many
applications where rule sets can be effectively used, it is clearly desirable
to provide a more general explanation capability. Hayward et al. (2000)
describe an approach to representing a neural network as a PROLOG
logic program, where the activation values of hidden and output units
are equated with the truth value of predicates. The technique addresses
several issues. Hayward et al. (2000) describe a process whereby Boolean
formulae are translated into a first-order representation consisting of pred-
icates, rules and facts. This is a field that is largely unexplored in the
context of rule extraction from support vector machines; however, it is
conceivable that SVMs with structured output (Taskar et al. 2005) will
lead to complex rule sets and languages beyond and above propositional
logic. Also, please see the chapter by Torrey et al. in this volume.

4. Rule Quality: This category includes accuracy, fidelity and comprehen-
sibility. “Semantic comprehensibility” is given if minimal rules sets with
concise rules are extracted from SVMs trained on high-dimensional data.
Fidelity may be extended to “ROC fidelity”, e.g. if and when the SVM
and the rule set exhibit the same classification behaviour with modified
cost functions.
It is crucial to consider the sub-category “semantic comprehensibility”
and the case study above is designed to outline some of the relevant
issues. Given high-dimensional data sets, features in isolation have lim-
ited or no explanation capability. It has been proposed earlier to extract
multiple rule sets from SVMs to explore the full feature set that con-
tributes to a classification. In many ways, it is the user who decides
which rule set has value and hence, the notion of “information need”
has been adopted from information retrieval. Semantic comprehensibility
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is not formally defined here and is not proposed as a quantitative measure.
At this stage, “semantic comprehensibility” refers to the ultimate goal to
extract user-comprehensible rule sets from any SVM.

5. Complexity of the extraction. To date, there has been no systematic
study on the algorithmic complexity of rule extraction from SVMs. The
results that have been obtained for rule extraction from neural networks
(some have been summarised above) are not applicable because they rely
on (1) the structure of the neural network (single or multi-layer) and
(2) properties of a learning algorithm such as backpropagation. Many of
the current approaches for rule extraction from SVMs include heuristics
and/or machine learning or statistical techniques that are interchangeable.
For instance, the learning-based rule extraction from SVM technique used
in the case study above uses either a decision tree learner or a classification
and regression tree. Núñez et al. (2002) use clustering techniques with the
aim to identify regions in decision space that can be translated to rules.
Opportunities and limitations of the rule extraction from support vector
machines enterprise are yet to be fully explored.

6. Non-SVM extraction: It is important to develop new techniques for rule
extraction from support vector machines, including those that are solely
based on SVMs and do not require any other machine learning tech-
nique. In particular, support vector machines that allow the generation
of structured outputs (Taskar et al. 2005) can be used to generate rule
sets not unlike those extracted from neural networks. This represents a
clear advancement since user explanation is realized by an SVM and not
by a technique with a different representational bias. In addition, meth-
ods for the extraction of high quality rule sets from SVMs trained on
high-dimensional data are required.

By way of example, it is easily possible to apply this classification system
to the simple case study provided above, the emotion classification problem.

Table 7 clearly demonstrates the limitations of the algorithm used in the
case study. Rules lack expressiveness, the extraction process does not really
consider the dimensionality of the data set, and while rule quality is quite
good, the algorithmic complexity of the extraction process is not satisfactory.

7 Conclusions and Future Challenges

It is obviously not possible to discuss all aspects of rule extraction from
support vector machines in this brief introduction. There is one area in par-
ticular that would deserve a fuller consideration. This is the use of committee
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Table 7. The classification of the case study in Sect. 5

Translucency Pedagogical

Data Low-dimensional (SVM
is trained on

high-dimensional data)
Expressiveness Boolean
Rule quality

Number of rules 2–11
Number of antecedents 5–28
Semantic comprehensibility No
Fidelity Not tested
ROC Fidelity Not tested
Accuracy of rules 90%
Precision of rules 66%
Recall of rules 90%

Complexity3 O(mn log n) + O(n(log n)2)
Non-SVM extraction No

machines or ensemble learning approaches.4 Obviously, it is more difficult
to extract comprehensive rules from a set of support vector machines or an
ensemble of machine learning techniques of different type. The requirements
for comprehensibility are even harder to meet if more than one classifier is
involved.

A first attempt has been made in a project to predict the return of stocks in
the US market.5 An SVM was trained to accept input from various machine
learning techniques to predict the next day return of shares. The machine
learning methods includes various types of neural networks, support vector
machines as well as an implementation of Ripper. The target for the SVM-
based committee machine is the next day return. Rules were then extracted
which took the following form:

IF the value of the prediction of C4.5 is equal to −1 THEN the SVM
committee machine classifies the sample as −1, Otherwise, it classifies
the case as +1.

Given the low-dimensionality of the input, SVM learning (i.e. the commit-
tee machine) did not significantly improve the overall results and the SVM
tends to agree with the decision tree learner C4.5

3 Decision tree learning complexity for C4.5 according to Witten and Frank (1999,
p. 168). n is the number of samples and m the number of attributes. See 5 has
been used in this study.

4 Thank you to Alan Tickle for suggesting the importance of committee machines.
5 This work was performed by Hanan Tayeb, Shahrazad Mohammed, Ghasaq Yousif

and Shrouq Hasan as part of a final year undergraduate project, Department of
Computer Science, American University of Sharjah, Spring 2007.
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The objective of this introductory chapter is to outline a number of
research issues, some of which are addressed in the following chapters. The
ultimate goal, however, is to achieve what rule extraction from neural net-
work undoubtedly has achieved, and this is to propose a set of techniques
suitable for data mining and commercial applications. The following chapters
include new algorithms for rule extraction as well as applications in a variety
of domains. This includes financial applications as well as speech recognition.
There is no doubt that the current research on developing new kernel methods
to increase the accuracy of classification and regression must be complemented
by a set of techniques that allow user explanation at a very high level.
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