

Joachim Diederich (Ed.)

Rule Extraction from Support Vector Machines

Studies in Computational Intelligence, Volume 80
Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springer.com

Vol. 59. Andrzej P. Wierzbicki and Yoshiteru
Nakamori (Eds.)
Creative Environments, 2007
ISBN 978-3-540-71466-8

Vol. 60. Vladimir G. Ivancevic and Tijana T. Ivacevic
Computational Mind: A Complex Dynamics
Perspective, 2007
ISBN 978-3-540-71465-1

Vol. 61. Jacques Teller, John R. Lee and Catherine
Roussey (Eds.)
Ontologies for Urban Development, 2007
ISBN 978-3-540-71975-5

Vol. 62. Lakhmi C. Jain, Raymond A. Tedman
and Debra K. Tedman (Eds.)
Evolution of Teaching and Learning Paradigms
in Intelligent Environment, 2007
ISBN 978-3-540-71973-1

Vol. 63. Wlodzislaw Duch and Jacek Mańdziuk (Eds.)
Challenges for Computational Intelligence, 2007
ISBN 978-3-540-71983-0

Vol. 64. Lorenzo Magnani and Ping Li (Eds.)
Model-Based Reasoning in Science, Technology, and
Medicine, 2007
ISBN 978-3-540-71985-4

Vol. 65. S. Vaidya, L.C. Jain and H. Yoshida (Eds.)
Advanced Computational Intelligence Paradigms in
Healthcare-2, 2007
ISBN 978-3-540-72374-5

Vol. 66. Lakhmi C. Jain, Vasile Palade and Dipti
Srinivasan (Eds.)
Advances in Evolutionary Computing for System Design,
2007
ISBN 978-3-540-72376-9

Vol. 67. Vassilis G. Kaburlasos and Gerhard X. Ritter
(Eds.)
Computational Intelligence Based on Lattice
Theory, 2007
ISBN 978-3-540-72686-9

Vol. 68. Cipriano Galindo, Juan-Antonio
Fernández-Madrigal and Javier Gonzalez
A Multi-Hierarchical Symbolic Model of the Environment
for Improving Mobile Robot Operation, 2007
ISBN 978-3-540-72688-3

Vol. 69. Falko Dressler and Iacopo Carreras (Eds.)
Advances in Biologically Inspired Information Systems:
Models, Methods, and Tools, 2007
ISBN 978-3-540-72692-0

Vol. 70. Javaan Singh Chahl, Lakhmi C. Jain, Akiko
Mizutani and Mika Sato-Ilic (Eds.)
Innovations in Intelligent Machines-1, 2007
ISBN 978-3-540-72695-1

Vol. 71. Norio Baba, Lakhmi C. Jain and Hisashi Handa
(Eds.)
Advanced Intelligent Paradigms in Computer
Games, 2007
ISBN 978-3-540-72704-0

Vol. 72. Raymond S.T. Lee and Vincenzo Loia (Eds.)
Computation Intelligence for Agent-based Systems, 2007
ISBN 978-3-540-73175-7

Vol. 73. Petra Perner (Ed.)
Case-Based Reasoning on Images and Signals, 2008
ISBN 978-3-540-73178-8

Vol. 74. Robert Schaefer
Foundation of Global Genetic Optimization, 2007
ISBN 978-3-540-73191-7

Vol. 75. Crina Grosan, Ajith Abraham and Hisao
Ishibuchi (Eds.)
Hybrid Evolutionary Algorithms, 2007
ISBN 978-3-540-73296-9

Vol. 76. Subhas Chandra Mukhopadhyay and Gourab Sen
Gupta (Eds.)
Autonomous Robots and Agents, 2007
ISBN 978-3-540-73423-9

Vol. 77. Barbara Hammer and Pascal Hitzler (Eds.)
Perspectives of Neural-Symbolic Integration, 2007
ISBN 978-3-540-73953-1

Vol. 78. Costin Badica (Ed.)
Intelligent and Distributed Computing, 2008
ISBN 978-3-540-74929-5

Vol. 79. Xing Cai and T.-C. Jim Yeh (Eds.)
Quantitative Information Fusion for Hydrological
Sciences, 2008
ISBN 978-3-540-75383-4

Vol. 80. Joachim Diederich (Ed.)
Rule Extraction from Support Vector Machines, 2008
ISBN 978-3-540-75389-6

Joachim Diederich
(Ed.)

Rule Extraction from
Support Vector Machines

With 55 Figures and 51 Tables

123

Joachim Diederich
Honorary Professor
School of Information Technology and
Electrical Engineering
School of Medicine, Central Clinical Division
The University of Queensland
Brisbane Q 4072
Australia
joachimd@itee.uq.edu.au

ISBN 978-3-540-75389-6 e-ISBN 978-3-540-75390-2

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2007937227

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover Design: WMXDesign GmbH, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

spinger.com

Preface

Over a period spanning more than a decade, support vector machines (SVMs)
have evolved into a leading machine learning technique. SVMs are being
applied to a wide range of problems, including bioinformatics, face recog-
nition, text classification and many more. It is fair to say that SVMs are one
of the most important methods used for data mining with a wide range of
software available to support their application.

A significant barrier to the widespread application of support vector
machines is the absence of a capability to explain, in a human comprehensible
form, either the process by which an SVM arrives at a specific decision/result,
or more general, the totality of knowledge embedded in these systems. This
lack of a capacity to provide an explanation is an obstacle to a more gen-
eral acceptance of “back box” machine learning systems. In safety-critical or
medical applications, an explanation capability is an absolute requirement.

This book provides an introduction and overview of methods used for rule
extraction from support vector machines. The first part offers an introduction
to the topic as well as a summary of current research issues. The second
chapter surveys the field of rule extraction from SVMs, reviews areas of current
research and introduces an application in the financial field.

Part II describes a range of methods currently being used to extract com-
prehensible rules from support vector machines. It is very fortunate that
practically all authors who published break-through papers on the topic
in journals and conference proceedings since 2002 are contributing to this
book. One of the first papers with the title “Rule extraction from support
vector machines” (if not the first paper) was published in 2002 by Núñez
et al. and describes a “decompositional” method to obtain rules from SVMs.
Haydemar Núñez, with coauthors, is contributing to the second part of this
book. Another decompositional method was published soon afterwards by
Glenn Fung who is also contributing a chapter, as is Lisa Torrey and col-
leagues from the University of Wisconsin in Madison. The research group led
by Jude Shavlik has made significant and highly regarded contributions to
both rule extraction from neural networks as well as support vector machines.

VI Preface

Publications that truly shaped the field and the authors are establishing the
connection between SVMs and reinforcement learning in Part II of this book.

Clearly, the field of rule extraction from support vector machines has grown
and is now including methods such as SVM Trees which are being introduced
by Shaoning Pang and Nik Kasabov in Part II of this volume. The use of
prototypes for explanatory purposes has a history in the area of rule extraction
from neural networks. Prototypes are now being applied to SVMs by Marcin
Blachnik and Wlodzislaw Duch in this book.

Rule extraction from neural networks is an established data mining
method. This was made possible by authors who applied these emerging meth-
ods to real world data sets and compared the results with other machine
learning techniques. Fortunately, researchers in the field of rule extraction
from support vector machines have tackled real word problems early on and
one of the first attempts by Rolf Mitsdorffer is included in Part III of this
book. Part III is entirely devoted to real world applications of rule extraction
from support vector machines. Mitsdorffer investigates the problem of fore-
casting the success of initial public offering in the US stock market by use of
rule extraction and other methods.

Support vector machines are performing particularly well for high dimen-
sional data, i.e. sample sets with input vectors that have a significant number
of elements (tens of thousands and more) and relatively few nonzero values.
Problems such as text, speech and image classification often include data sets
of this nature. An application to speech recognition, and in particular accent
classification, by Carol Pedersen has been included in the third part of this
book. This chapter is also investigating novel testing and evaluation methods
for rule extraction from SVMs.

As mentioned earlier, bioinformatics and in particular protein structure
prediction is a core application area for support vector machines. Jieyue He
and coworkers have developed rule extraction methods for these applications
and the work is included in this book.

I would like to thank Professor Janusz Kacprzyk for including this vol-
ume in Springer Verlag’s “Studies on Computational Intelligence” series and
Thomas Dillinger and Heather King for their ongoing advice and support dur-
ing the editing process of this book. This book would not have been possible
without the encouragement of Wlodzislaw Duch during a visit to Singapore in
2006. Jude Shavlik offered important advice on the structure of this book. My
friends and colleagues Alan Tickle and Shlomo Geva have contributed many
ideas on rule extraction over the years and I am grateful for their comments.

Special thanks to Professor Paul Bailes from the School of Information
Technology and Electrical Engineering at the University of Queensland for
his ongoing support and the use of the excellent facilities of the University.
Finally, I would like to thank the most prolific academic book author I know,
my wife Susan K. Wright, for her encouragement and support.

Brisbane, Australia Joachim Diederich
July 2007

Contents

Part I Introduction

Rule Extraction from Support Vector Machines: An
Introduction
Joachim Diederich . 3
1 Explanation: The Foundations . 3

1.1 Forms of Explanation . 4
1.2 Analogy as a Form of Explanation . 5
1.3 Explanation-Based Generalization . 6
1.4 How and Why Explanations . 7
1.5 Generating or Identifying the Best Explanation 8

2 Rule Extraction from Support Vector Machines: Aims and
Significance . 8
2.1 Provision of a “User Explanation” Capability 9
2.2 Transparency . 10
2.3 Software Verification . 10
2.4 Improving Generalisation . 11
2.5 Data Exploration and the Induction of Scientific Theories 11

3 Translucency and Rule Quality . 11
3.1 The Neural Network Case . 12
3.2 Translucency and Rule Quality Applied to Rule Extraction

from SVMs . 13
4 An Alternative View on Rule Extraction: Information Retrieval 14
5 A Case Study . 16
6 A Classification System for Rule Extraction from SVMs 26
7 Conclusions and Future Challenges . 28
8 Acknowledgements . 30
References . 30

VIII Contents

Rule Extraction from Support Vector Machines: An Overview
of Issues and Application in Credit Scoring
David Martens, Johan Huysmans, Rudy Setiono, Jan Vanthienen, and
Bart Baesens . 33
1 Introduction . 34
2 The Support Vector Machine . 34
3 The Rationale Behind SVM Rule Extraction . 36

3.1 Why Rule Extraction . 36
3.2 Why SVM Rule Extraction . 37

4 An Overview of SVM Rule Extraction Techniques 38
4.1 Classification Scheme for SVM Rule Extraction Techniques . . . 38
4.2 SVM Rule Extraction Techniques . 41

5 Issues Concerning SVM Rule Extraction . 49
5.1 Rule Output . 49
5.2 High Dimensional Data . 51
5.3 Constraint Based Learning: Knowledge Fusion Problem 51
5.4 Specificness of Underlying Black Box Model 53
5.5 Regression . 53
5.6 Availability of Code . 53

6 Credit Scoring Application . 53
6.1 Credit Scoring in Basel II . 53
6.2 Classification Model . 54

7 Alternatives to Rule Extraction . 56
7.1 Inverse Classification . 56
7.2 Self Organizing Maps. 56
7.3 Incremental Approach . 57

8 Conclusion . 59
9 Acknowledgement . 59
References . 59

Part II Algorithms and Techniques

Rule Extraction for Transfer Learning
Lisa Torrey, Jude Shavlik, Trevor Walker, and Richard Maclin 67
1 Introduction . 67
2 Transfer Learning and Advice Taking . 67
3 SVMs in Reinforcement Learning . 69
4 Extracting Rules from an RL Source Task . 71

4.1 Acquiring Rules from the Q-function . 72
4.2 Acquiring Rules from Observed Behavior 73

5 Case Study . 76
5.1 Policy-Transfer Results . 78
5.2 Skill-Transfer Results . 79

Contents IX

6 Summary and Open Problems . 81
References . 81

Rule Extraction from Linear Support Vector Machines via
Mathematical Programming
Glenn Fung, Sathyakama Sandilya, and R. Bharat Rao 83
1 Introduction . 83

1.1 About Notation . 84
2 Medical Relevance . 85
3 Sparse Hyperplane Classifiers: 1-Norm Support Vector Machines . . . 86
4 Rule Extraction from Hyperplane Classifiers . 87

4.1 Volume Maximization Criteria . 90
4.2 Point Coverage Maximization Criteria . 91

5 Algorithm Convergence Properties . 93
6 Numerical Testing . 96

6.1 WDBC Dataset . 98
6.2 The Lung CAD Dataset . 99

7 Other Mathematical Programming Formulations 99
7.1 Conditioning Rules by Using Prior Knowledge 99
7.2 Creating a Rule that Covers an Specific Given Point

or Set of Points . 100
7.3 Rule Extraction and Knowledge-Based SVMS for Incremental

Learning . 101
8 Conclusion and Future Directions . 104
References . 105

Rule Extraction Based on Support and Prototype Vectors
Haydemar Núñez, Cecilio Angulo, and Andreu Català 109
1 Combining Support Vectors and Prototype Vectors

to Extract Rules . 110
1.1 Building an Ellipsoid and Its Associated Rule Equation 112
1.2 Generating a Set of Rules . 118
1.3 Simplified Representational Language for the Model 122
1.4 Classification by Using the Set of Rules . 126

2 Experiments . 127
3 Eliminating Randomness from the Clustering Algorithm 130
4 Conclusions and Further Research . 132
References . 133

SVMT-Rule: Association Rule Mining Over SVM
Classification Trees
Shaoning Pang and Nik Kasabov . 135
1 Introduction . 135
2 SVM Classification Tree . 137

2.1 Two-Class SVM Tree . 137

X Contents

3 The Spanning of SVM Tree . 141
3.1 Depth-First Spanning Tree . 142
3.2 Breadth-First Spanning Tree . 142
3.3 The SVMT Algorithms . 143
3.4 Coping with Class Imbalance and Class Overlap 145

4 SVMT Rules Extraction . 145
4.1 Logic Association Rules . 145
4.2 SVM Nodes Interpolation . 146
4.3 SVMT-Rule . 149

5 Experiments and Applications . 152
5.1 Synthetic Dataset . 152
5.2 Cancer Diagnosis . 156
5.3 Fraud Detection . 158

6 Discussions and Conclusions . 159
7 Acknowledgements . 160
References . 160

Prototype Rules from SVM
Marcin Blachnik and W�lodzis�law Duch . 163
1 Why Prototype-Based Rules? . 163
2 P-Rules and Their Interpretation . 165

2.1 Types of P-Rules . 166
2.2 Support Vectors as Prototypes . 166
2.3 Removing Linear Dependencies Among Support Vectors 167
2.4 Reducing the Number of Support Vectors 169
2.5 Finding Optimal Number of Support Vectors 171
2.6 Problems with Interpretation . 174

3 Searching for Informative Prototypes . 174
3.1 Prototype Selection Using Context Dependent Clustering 176
3.2 The Conditional Fuzzy Clustering Algorithm 177
3.3 Determining the Context . 178
3.4 Numerical Illustration of the CFCM Approach 178

4 Conclusions . 180
References . 181

Part III Applications

Prediction of First-Day Returns of Initial Public Offering in
the US Stock Market Using Rule Extraction from Support
Vector Machines
Rolf Mitsdorffer and Joachim Diederich . 185
1 Motivation . 185
2 Introduction . 186

2.1 Financial Data Mining . 186

Contents XI

2.2 IPOs as a Case Study . 186
3 Overview of the Chapter . 187
4 Methodology. 187

4.1 Statistical Tests . 188
4.2 Data . 188
4.3 Machine Learning Techniques Used in This Study 191

5 Results . 194
5.1 Results of Rule Extraction from SVM

for Cross-Industry IPOs . 194
5.2 Rule Extraction from SVM Results

for Single-Industry IPOs . 196
6 Discussion of Results . 197
7 Conclusions . 201
References . 202

Accent in Speech Samples: Support Vector Machines for
Classification and Rule Extraction
Carol Pedersen and Joachim Diederich . 205
1 Introduction . 205

1.1 Motivation and Significance . 205
1.2 Overview . 205

2 Accent Recognition . 206
2.1 Accent . 206
2.2 Automatic Speech Recognition . 207
2.3 Mel Frequency Cepstrum Coefficients . 208

3 Rule Extraction from Support Vector Machines for Accent 209
3.1 Support Vector Machines . 209
3.2 Rule Extraction . 210
3.3 Objectives . 211

4 Methodology. 211
4.1 Speech Data and Feature Extraction . 211
4.2 Machine Learning Experiments . 212
4.3 Rule Extraction and Evaluation . 213

5 Results . 213
5.1 Machine Learning Experiments . 213
5.2 Evaluation of the Rule Extraction Results 218

6 Discussion . 223
References . 225

Rule Extraction from SVM for Protein Structure Prediction
Jieyue He, Hae-jin Hu, Bernard Chen, Phang C. Tai, Rob Harrison,
and Yi Pan . 227
1 Introduction . 227
2 Rule Generation by Combing SVM and DT . 229

2.1 SVM DT . 229

XII Contents

2.2 Protein Second Structure Prediction with SVM DT 231
2.3 Transmembrane Segments Prediction and Understanding

Using SVM DT. 235
3 Extracting Rule from SVM Based on Association Rule 238

3.1 Association Rule Based Method . 238
3.2 Association Rule Mining . 239

4 Rule Clustering and Super rule Generation . 244
5 Conclusions . 247
6 Acknowledgements . 249
References . 249

Subject Index . 253

Author Index . 261

Part I

Introduction

Rule Extraction from Support Vector
Machines: An Introduction

Joachim Diederich

American University of Sharjah, UAE and University of Queensland, Australia

Rule extraction from support vector machines (SVMs) follows in the footsteps
of the earlier effort to obtain human-comprehensible rules from artificial neural
networks (ANNs) in order to explain “how” a decision was made or “why”
a certain result was achieved. Hence, much of the motivation for the field
of rule extraction from support vector machines carries over from the now
established area of rule extraction from neural networks. This introduction
aims at outlining the significance of extracting rules from SVMs and it will
investigate in detail what it means to explain the decision-making process
of a machine learning system to a human user who may not be an expert
on artificial intelligence or the particular application domain. It is natural to
refer to both psychology and philosophy in this context because “explanation”
refers to the human mind and its effort to understand the world; the traditional
area of philosophical endeavours. Hence, the foundations of current efforts to
simulate human explanatory reasoning are discussed as are current limitations
and opportunities for rule extraction from support vector machines.

1 Explanation: The Foundations

In a series of paper and books, Paul Thagard explores what it means to
explain something (most recently Thagard and Litt forthcoming). Human
thinking is essentially an ongoing, inner dialogue to explain why certain events
do or do not happen or why things behave in a certain way. Explanation is
closely linked to problem solving because the failure to explain an event or
a certain outcome may trigger a problem solving episode. People explain to
themselves and others why things are not working properly and what to expect
if certain actions are taken. Explanation is a continuous cognitive process
almost identical to thinking because humans are constantly explaining “why”
things happen and “how” things work.

J. Diederich: Rule Extraction from Support Vector Machines: An Introduction, Studies in

Computational Intelligence (SCI) 80, 3–31 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

4 J. Diederich

1.1 Forms of Explanation

It is useful to distinguish between various types of explanation, e.g. causal
explanations that are acceptable answers to “why” questions as opposed to
the step-wise explanations that are acceptable responses to “how” questions.
It is also possible to ask for clarifications if certain facts are known already
and more detail is required. Finally, there are those types of questions that
are best answered by providing an example for an event or fact that is most
typical and therefore helps to explain a whole set of observations.

Thagard and Litt (forthcoming) distinguish between three major explana-
tory processes:

• Providing an explanation from available information
• Generating new hypotheses that provide explanations
• Evaluating competing explanations

The four major theoretical approaches are: “deductive, using logic or rule-
based systems; schematic, using explanation patterns or analogies; probabilis-
tic, using Bayesian networks; and neural, using networks of artificial neurons”
(Thagard and Litt forthcoming, p. 2).

The classical explanation is deductive and requires logical reasoning. What
is to be explained (the explanatory target) follows from known facts by log-
ically applying a set of rules (“Anyone with influenza has fever, aches and
cough. You have influenza. So, you have fever, aches and cough”, Thagard and
Litt forthcoming, p. 4). This is the modus ponens, a simple, logical argument:
If X is true then Y is true. X is true. Therefore Y is true.

Sometimes the explanatory target is only probable and more than one
explanation is possible. Explanation is then closer to a conditional probability.
Often, it is useful or required to find the best explanation which can be a
complex process because whole “explanation structures” need to be examined
to determine the best (Thagard, 1978).

Logical, deductive explanation requires a set of known facts as well as a set
of IF . . . THEN rules. Background knowledge is then expressed in the form of
propositions which are used to explain an explanatory target. Here is a simple
example following (Thagard and Litt forthcoming):

1. Anyone who completes a marathon has muscle pain and feels tired.
2. Person X has muscle pain and is tired.
3. Person X has completed a marathon.

The conclusion here obviously does not necessarily hold: there are many
reasons why a person may have muscle pain and may feel tired, running a
marathon is just one of them and maybe not the most probable explanation.
Hence it is possible to have a loser association between propositions and an
explanatory target. Again following the general argument in Thagard and Litt
(forthcoming), it is possible to characterize causal schemas as an alternative
to formal deduction. Here is a simple example:

Rule Extraction from Support Vector Machines: An Introduction 5

1. Explanatory pattern: Typically, running a marathon causes muscle pain
and tiredness.

2. Explanatory target: Person X has muscle pain and is tired.
3. Schema instantiation: Maybe person X has completed a marathon.

The example above invites already the application of probability theory
and statistics. Again in the context of our simple example: the probability
of muscle pain and the feeling of tiredness after a marathon is high. The
marathon explains why person X feels pain and is tired. Here explanation is
more like a conditional probability and the value of the explanation depends
on known probabilities and the match with the schema.

Thagard and Litt (forthcoming) outline an additional way of modelling
explanation and interestingly this is the use of artificial neural networks. Tha-
gard and Litt (forthcoming) confirm that the neural approach by itself is not
a theory of explanation; it is a method that simulates the cognitive processes
that are part of explanatory thinking. Thagard and coworkers have used neu-
ral networks for cognitive modelling including the generation of explanations.
In the current context, it has been demonstrated again and again that in
particular feedforward neural networks are lacking explanatory power and
hence rule extraction has to be applied. This is our point of departure from
Thagard’s argument.

In summary, the classic review is that explanation is a deductive argu-
ment including background knowledge and inference rules such as modus
ponens. The inference rules allow the sequential application of “if-then-else”
statements in order to justify an explanatory target. Whenever no precise
knowledge is available, explanatory schemas or probabilistic rules can be used.
But of course other forms of explanation are possible as well.

1.2 Analogy as a Form of Explanation

Every classroom teacher knows that at times it is very difficult to introduce a
new theoretical concept. Even with the best of efforts it may not be possible
for the class to grasp the theoretical elements that are being introduced. A
single example, however, may change all of that and leads to an “aha” expe-
rience and complete understanding of the new material. So examples do have
explanatory value and can be most useful, in particular if they are typical
or even prototypical. In the current context, that his rule extraction from
support vector machines, it may well be an objective to identify one or more
examples that explain the behaviour of the machine (see Martens et al. and
Nunez et al. in this volume). If this is not possible and precise background
knowledge in the form of rules is not available, an analogy may be used for
explanation.

An analogy requires the existence of a memory system to store and search
cases which may have varying degrees of similarity. For instance, a case-based
system could store various types of sporting events, including those that

6 J. Diederich

require a great deal of endurance. There are obviously similarities between
a marathon and a triathlon and it is to nobody’s surprise that both can
cause tiredness and muscle pain immediately after the event. Even if we don’t
know that a particular person has just completed a marathon, the similarities
between a long run and a multi-sports event explain why a marathon runner
should be just as tired as a triathlete. Here, explanation is based on obvious
and implicit similarities.

Analogies and schemas go hand in hand. Instead of storing all sort of
sporting events we can have one schema for endurance sports which includes
the immediate consequences including muscle pain and tiredness. For any
given sports of this type, special features are replaced by variables which can
be instantiated whenever an explanation is required. There could be a variable
“physical effects” which can be instantiated by the two known consequences
of endurance sports.

In summary, the following processes can generate explanations acceptable
to humans:

• Logical deduction by use of inference rules
• Probabilistic rules including conditional probabilities
• Schemas based on the similarity between cases
• The provision of one or more examples which are typical or even proto-

typical

In artificial intelligence, several of these processes are often combined to
arrive at systems that either use or generate explanations. The best example
is explanation-based learning or explanation-based generalization. This form
of learning has a long history in cognitive science and is often traced back
to Gestalt theory, a branch of psychology popular in continental Europe in
the first half of the twentieth century. Gestalt theory in turn has its roots
in a rational form of philosophy which assumes that a significant part of
our knowledge is innate and learning occurs at the periphery of knowledge
only. That is, a significant amount of background knowledge is required for
successful learning. On the other side, very few examples are necessary.

1.3 Explanation-Based Generalization

Explanation-based generalization is most interesting for the discussion here
because it uses logical deduction based on the presentation of a single example.
Since its invention twenty years ago, it has been modified to allow probabilis-
tic reasoning and even the use of schemas. Explanation-based generalization
had a significant impact on theory formation in artificial intelligence and early
efforts to realize rule extraction from neural networks are linked to the attempt
to build explanation-based learning systems. Hence, explanation-based gen-
eralization had a significant impact on the current understanding of what
constitutes an explanation and will be briefly summarized here.

Rule Extraction from Support Vector Machines: An Introduction 7

An explanation-based generalization system requires four components
(1) the target concept, (2) the training example, (3) background knowledge
in the form of rules and (4) the operationality criterion which defines what is
to be learned or how learning should improve performance. There is an addi-
tional requirement that the training example is a positive instance of the target
concept. Also, background knowledge must be both complete and consistent.
Explanation-based generalization proceeds in two stages (1) explanation and
(2) generalization. During the first stage a formal proof is constructed which
demonstrates that the training example is a positive instance of the goal con-
cept. If this is not the case, learning can fail. In the second stage, on the basis
of the formal proof that the example is a positive instance of the goal con-
cept, a new rule is formed and the knowledge is added to the rule base. Most
importantly, and in contrast to statistical learning systems such as neural net-
works and support vector machines, the generalization that is the result of
the learning episode is justified: it can be formally proven that the generaliza-
tion holds given the training example, the goal concept and the background
knowledge.

An example may be useful to explain explanation-based generalization:
assume you are walking the streets and you see a car you have not seen before
but you recognize as a BMW. The car has features you associate with BMWs
but there are new, unexpected aspects as well. These new features immediately
generate interest and start a learning process that is indeed an explanation
process: the known attributes (this may be “shape of head lights”, “company
logo”, etc.) are being used to explain that this particular car is a BMW. This is
the first stage of explanation-based generalization. The process may continue
with a generalization: A new class or concept is added to the background
knowledge that includes the just seen car but maybe used to recognize other
cars identical or similar to this one. As a matter of fact, this scenario invites a
generalization as it is extremely unlikely that the just seen car is unique and
no others of this type exit.

Explanation-based generalization is a very natural model for human learn-
ing. The previous paragraph describes an everyday observation and the
learning process that is triggered by an observation. In addition, explanation-
based generalization uses a “proof structure” (the sequence of rules that have
been applied to prove that the training example is an instance of the goal
concept) as the basis of an explanation. Hence, in the following chapters expla-
nations are “rule sets” that explain “how” a certain decision was made and
“why” it was made.

1.4 How and Why Explanations

As indicated earlier, it is useful to distinguish between various types of expla-
nation, e.g. causal explanations that are acceptable answers to “why” ques-
tions in contrast to the step-wise explanations that are acceptable responses
to “how” questions. Let’s focus on how questions first.

8 J. Diederich

A how explanation consists of a sequence of rules that map a given input
to an output, in this case the input to a neural network or a support vector
machine. In explanation-based generalization, a sequence of rules explains
how the single training example is a positive instance of the target concept.
Even though both rule extraction from neural networks and support vector
machines generate rule sets, these rules are rarely applied in sequence. Very
often rules are propositional in nature and include sets of inputs that result
in a positive output. In this sense, rules can be independent and can even
overlap. In rule extraction from neural networks, each rule includes a set of
inputs that can result in a positive or negative output independently. The
totality of the rule set explains how the neural network arrives at a decision.

“Why” explanations are typically used in expert systems. Here, the user
may be engaged in an extensive dialogue and sometimes the system poses
questions which are difficult to understand. After each question, the user has
the option to ask “why” and the system will justify asking that particular
question at this point in time. In this sense, “Why” explanation in expert sys-
tems does not include deep causal reasoning or the identification of a limited
set of inputs that causes some output. A justification for a question is given.

1.5 Generating or Identifying the Best Explanation

Very often, more than one explanation is possible and explanations may even
compete. Thagard and Litt (forthcoming) identify the evaluation of compet-
ing explanations as one of three major processes modelled by computational
systems that aim to simulate human reasoning. The term “abduction” is well
established in artificial intelligence and describes the inference to the best
explanation as well as the generation of hypotheses (Thagard and Litt forth-
coming). Thagard and Litt (forthcoming, p. 9) identify three criteria for the
best explanation:

• Consilience: How much does a hypothesis explain?
• Simplicity: How many additional assumptions are required to carry out an

explanation?
• Analogy: Are there hypotheses whose explanations are analogous to ac-

cepted ones?

2 Rule Extraction from Support Vector Machines: Aims
and Significance

Andrews et al. (1995) describe the motivation behind rule extraction from neu-
ral networks. The five points outlined below, with the possible exception of
“knowledge acquisition for expert systems”, are relevant for the current effort
to extraction comprehensible rules from SVMs. A brief review of Andrews
et al. (1995) arguments will help to establish aims and significance for rule

Rule Extraction from Support Vector Machines: An Introduction 9

extraction from SVM techniques. For an introduction to support vector
machines, see Martens et al. in this volume.

2.1 Provision of a “User Explanation” Capability

In symbolic artificial intelligence (AI), the term “explanation” refers to an
explicit structure which can be used internally for reasoning and learning,
and externally for the explanation of results to a user. Users of symbolic
AI systems benefit from an explicit declarative representation of knowledge
and traditionally, symbolic AI systems are deductive techniques: Reasoning
(including classification) is from the “generic” (expressed in the form of gen-
eral rules) to the “specific” (an instance or individual that is to be classified).
Even learning, if it is based on a large amount of background knowledge, is
deductive in symbolic AI systems.

The explanation capability of symbolic AI is based on intermediate steps
of the reasoning process, e.g. a trace of rule firings, a proof structure, etc.,
which can be used to answer “How” questions. Gallant (1988) observes that
the benefits of an explanation capability include a check on the internal logic
of the system as well as enabling a novice user to gain insights into the problem
at hand.

An explanation capability is considered to be one of the most impor-
tant functions provided by symbolic AI systems. The ability to generate
even limited explanations is essential for the user-acceptance of such sys-
tems (Davis et al., 1977). In contrast to symbolic AI systems, neural networks
have no explicit declarative knowledge representation, and with exception
of structured connectionist systems, neural networks do not perform deduc-
tion. Therefore neural networks have considerable difficulty in generating
explanation structures and the situation is no different in support vector
machines.

Traditionally, practitioners in the field of symbolic AI have experimented
with various forms of user explanation, in particular rule traces (i.e. the
sequence of rules or inference steps that are part of a problem-solving episode).
However, it is obvious that explanations based on rule traces are too rigid
and inflexible (Gilbert, 1989) because rules may not be equally meaningful
to the user. In addition, rule traces always reflect the current structure of a
knowledge base. Further, rule traces may have references to internal proce-
dures (e.g. calculations); might include repetitions (e.g. if an inference was
made more than once); and the granularity of the explanation is often inap-
propriate (Gilbert 1989; Andrews et al. 1995). A clear lesson from the use
of rule traces in symbolic AI is that the transparency of an explanation is
by no means guaranteed. For example, an explanation based on rule traces
from a poorly organised rule base with perhaps hundreds of premises per rule
cannot be regarded as “transparent”. Interestingly, it is an inherent problem
of rule extraction from neural network techniques (in particular those that
are learning-based), that a large number of rules with many antecedents are

10 J. Diederich

generated. Similar to the extended explanations based on rule traces in sym-
bolic AI, the large rule sets extracted from neural networks offer limited or
no explanation capability.

An additional example of the limitations of explanation capabilities in
symbolic AI systems is described in Moore and Swartout (1989). In the field
of expert systems practitioners have been linking “canned text” with rules and
instead of providing the user directly with the trace of rules, the sequence of
pre-prepared text elements has been used to facilitate comprehensibility. This
type of user explanation is very rigid, systems always interpret questions in
the same way, and there are no adequate response strategies. Although efforts
have been made to take advantage of natural-language dialogues including
mixed initiatives, user-models and explicitly planned explanation strategies,
there is little doubt that these systems are inflexible and rigid (Andrews et al.,
1995).

While the integration of an explanation capability (via rule extraction)
within a trained neural network or SVM is crucial for user acceptance, such
systems must avoid the problems already encountered in symbolic AI.

2.2 Transparency

The creation of a “user explanation” capability is the primary objective for
extracting rules from neural networks and SVMs, with the provision of “trans-
parency” of the internal states of a system a close second. Transparency means
that internal states of the machine learning system are both accessible and can
be interpreted unambiguously. Such transparency would allow the exploration
of regions in generalisation space which may lead to erroneous or sub-optimal
decisions.

Such a capability is mandatory if neural network or SVM based solutions
are to be accepted into “safety-critical” problem domains such as air traffic
control, the operation of power plants, medical surgery, etc. Rule extraction
offers the potential for providing such a capability (Andrews et al. 1995).

2.3 Software Verification

If neural networks or SVMs are to be integrated in larger software systems that
need to be verified, then clearly this requirement must be extended to all com-
ponents, including the ANNs and SVMs. Currently, rule extraction algorithms
do not allow for verification, i.e. they do not prove that a machine learning
system behaves according to some specification. However, rule extraction algo-
rithms provide a mechanism for either partially or completely “decompiling” a
neural network or SVM. This is about half-way to software verification because
it allows for a comparison between the extracted rules and the specification.

Rule Extraction from Support Vector Machines: An Introduction 11

2.4 Improving Generalisation

If a limited or unrepresentative data set has been used in the ANN training
process, it is difficult to determine if and when generalisation fails for specific
cases even with evaluation methods such as cross-validation. By expressing
learned knowledge as a set of rules, an experienced user can anticipate or
predict a generalisation failure (Andrews et al., 1995). It may also be possible
to identify regions in input space that are not represented sufficiently in the
data set and need to be supplemented (Andrews et al. 1995).

2.5 Data Exploration and the Induction of Scientific Theories

This has been one of the primary objectives for rule extraction from neural
networks and is essential for data mining and knowledge discovery. As Craven
and Shavlik (1994) write “a (learning) system may discover salient features
in the input data whose importance was not previously recognised”. If a neural
network or SVM has learned important and possibly non-linear relationships,
these relationships are encoded incomprehensibly as weight vectors, support
vectors and additional parameters. Within the context of discovering new
relationships, rule extraction algorithms significantly enhance the data mining
capabilities of neural networks and SVMs.

3 Translucency and Rule Quality

Over the last years, a number of studies on rule extraction from support vec-
tor machines have been introduced. The research strategy in these projects
is often based on this idea: develop algorithms for rule extraction based on
the perception (or “view”) of the underlying SVM which is either explicitly
or implicitly assumed within the rule extraction technique. In the context of
rule extraction from neural networks the notion of “translucency” describes
the degree to which the internal representation of the ANN is accessible to
the rule extraction technique (Andrews et al. 1995; Tickle et al. 1998). More
broadly, a taxonomy for rule extraction from neural networks has been intro-
duced (Andrews et al. 1995; Tickle et al. 1998) which includes five evaluation
criteria: translucency, rule quality, expressive power, portability and algorith-
mic complexity. These evaluation criteria are now commonly used for rule
extraction from SVMs.

It is important to develop new techniques for rule extraction from sup-
port vector machines, including those that are based on SVMs only and do
not require any other machine learning technique. In particular support vec-
tor machines that allow the generation of structured outputs (Taskar et al.
2005) can be used to generate rule sets not unlike those extracted from neural

12 J. Diederich

networks. This represents a clear advancement since user explanation is real-
ized by an SVM and not by a technique with a different representational bias.
In addition, methods for the extraction of high quality rule sets from SVMs
trained on high-dimensional data are required.

The following briefly describes the first two of the five evaluation criteria
for rule extraction from neural networks (Andrews et al. 1995; Tickle et al.
1998) which are then discussed in the context of rule extraction from SVMs.

3.1 The Neural Network Case

Translucency describes the degree to which the internal representation of the
ANN is accessible to the rule extraction technique. At one end of the translu-
cency spectrum are those rule extraction techniques which view the underlying
ANN at the maximum level of granularity, i.e. as a set of discrete hidden
and output units. Craven and Shavlik (1994) categorized such techniques as
“decompositional”. The basic strategy of decompositional techniques is to
extract rules at the level of each individual hidden and output unit within the
trained ANN. In general, decompositional rule extraction techniques incorpo-
rate some form of analysis of the weight vector and associated bias (threshold)
of each unit in the trained ANN. Then, by treating each unit in the ANN as
an isolated entity, decompositional techniques initially generate rules in which
the antecedents and consequents are expressed in terms which are local to the
unit from which they are derived. A process of aggregation is then required to
transform these local rules into a composite rule base for the ANN as a whole
(Tickle et al. 1998).

In contrast to the decompositional approaches, the strategy of pedagog-
ical techniques is to view the trained ANN at the minimum possible level
of granularity, i.e. as a single entity or alternatively as a “black box”. The
focus is on finding rules that map the ANN inputs (e.g. the attribute/value
pairs from the problem domain) directly to outputs (Tickle et al. 1998). In
addition to these two main categories, Andrews et al. (1995) also proposed a
third category which they labelled as “eclectic” to accommodate those rule
extraction techniques which incorporate elements of both the decompositional
and pedagogical approaches.

A number of authors have studied the algorithmic complexity of extracting
rules from feedforward neural network. Here is a brief summary of results:

• Decompositional approach: The basic process of searching for subsets of
rules at the level of each (hidden and output) unit is exponential in the
number of inputs to the node.

• Heuristics are invoked to limit the depth to which the space is explored.
• Golea (1996) showed that extracting the minimum DNF (disjunctive nor-

mal form) expression from a trained feedforward net is hard in the worst
case.

Rule Extraction from Support Vector Machines: An Introduction 13

• Furthermore, Golea (1996) showed that the Craven and Shavlik (1994)
algorithm is not polynomial in the worst case.

• This result does not apply to single-layer networks; however, extracting
the best N-of-M rule from a single-layer network is again hard.

Rule extraction from neural networks early on adopted criteria for the
quality of the extracted rules. The set of criteria for evaluating rule quality
includes (Andrews et al. 1995):

1. Accuracy
2. Fidelity
3. Consistency, and
4. Comprehensibility of the extracted rules

A rule set is considered to be accurate if it can correctly classify a set of
previously unseen examples from the problem domain (Tickle et al. 1998).
Similarly a rule set is considered to display a high level of fidelity if it can
mimic the behaviour of neural network from which it was extracted by cap-
turing all of the information represented in the ANN. An extracted rule set
is deemed to be consistent if, under differing training sessions, the neural
network generates rule sets which produce the same classifications of unseen
examples. Finally the comprehensibility of a rule set is determined by measur-
ing the size of the rule set (in terms of the number of rules) and the number
of antecedents per rule (Tickle et al. 1998).

3.2 Translucency and Rule Quality Applied to Rule Extraction
from SVMs

Most current studies on rule extraction from SVMs focus on decompositional
extraction; however, learning-based approaches are also available (Barakat
and Diederich 2005). The idea is simple: learn what the SVM has learned. For
this purpose a data set is divided into two or more parts. The first set is used
to train the SVM to completion. The second set does not include targets,
the inputs are presented to the SVM and the output is obtained from the
SVM. Inputs and outputs combined represent a new data set that is used for
a second machine learning episode by use of a machine learning system that
produces rules as output.

Hence, pedagogical rule extraction from SVMs is trivial, in particular if
the data set is low-dimensional. Support vector machines have been designed
to process high-dimensional input data. Typical examples are text, speech
and image classification. Yet most of the studies available on rule extraction
from support vector machines use benchmark data sets that include a limited
number of features only. As a result, SVMs are not being used in their core
application area and hence rule extraction results are not very meaningful.

It is very easy to illustrate the limitations of current studies on rule
extraction from SVMs by use of an example: text classification. SVMs can

14 J. Diederich

achieve good performance with very simple text representation formats such
as the “bag-of words” (BOW) technique. BOW uses a document-term matrix
such that rows are indexed by the documents and columns by the terms
(e.g. words). SVMs allow the classification of texts of differing lengths; hence,
document vectors may differ greatly in the number of elements.

A disadvantage of the BOW representation is that after successful classifi-
cation, it may not be obvious what has been learned. For instance, an author
may have a preference for certain topics and as a result, an SVM trained on an
authorship identification problem in reality may perform topic detection. This
problem has lead to various techniques to eliminate content from the BOW
input, for instance by replacing content words with lexical tags (categories).

Given the fact that it is not at all obvious what contributes to classifi-
cation in case of a BOW input representation, rule extraction from support
vector machines is presented with a special opportunity. However, the num-
ber of features can be very large: e.g. all words that exist in a given natural
language. While a combination of words constitutes meaning in a natural lan-
guage, BOW and hence classification is based on words in isolation. This is
a significant problem with regard to rule quality: The antecedents in a rule
include individual words completely out of context. As the set of antecedents
includes completely unrelated words, human or semantic comprehensibility
is low.

4 An Alternative View on Rule Extraction: Information
Retrieval

The introduction to explanation in Sect. 1 neglected one very important
aspect: Explanation is frequently based on an interaction between two per-
sons (e.g. a teacher and a student) or a machine and a human (e.g. in tutorial
or help systems). Cawsey (1993) uses a very simple definition of explanation:
“In general an explanation is something which makes some piece of knowledge
clear to the hearer. . . . The explanation is complete when the hearer is satis-
fied with the reply and understands the piece of knowledge” (Cawsey, 1993,
p. 1). Hence, explanation is based on an “information need” and essentially is
a dialogue. As part of this dialogue, explanatory targets may change and may
be refined.

Frequently, it is possible to retrieve more than one explanation (i.e. rule
set) from a given SVM or neural network. In this case, it is often necessary to
select the best explanation. There are two main reasons why it is possible to
generate multiple explanations from or for a given machine learning system
(1) Rule extraction methods include parameters that need to be initialized
and the selection of certain options or values for variables results in different
rule sets. (2) Rules can be expressed in different ways, e.g. a rule set with few
rules that have many antecedents can be re-written as a rule set with many,
simple rules, i.e. rules with few conditions. While it is generally acknowledged

Rule Extraction from Support Vector Machines: An Introduction 15

that a rule set with few rules and a limited set of antecedents provides best
explanation capability, it is far from obvious that this is always the case.
Indeed, the information need of the user has to be taken into consideration
and the user may interact with the machine learning system by use of rule
extraction.

A user may have a need for multiple explanations (rules sets) because
the objective is to explore the generalization space of the underlying SVM or
neural network. Several rule sets, if considered in turn, may offer best trans-
parency of the ANN or SVM. In another scenario, a user may be interested
in the single-best explanation in the form of a few simple rules. In addition,
the user may be interested in exploring different parameter sets which lead to
different learning results and consequently to different rule sets. It is difficult
to consider rule quality criteria without reference to the information need of
the user.

The concept of information need is central to the discipline of information
retrieval. The performance of an information retrieval system, e.g. an Internet
search engine, is traditionally evaluated by use of “precision” and “recall”.
Precision is the probability that a document predicted to be genuine truly
belongs to this class. In other words, a document that has been retrieved
from a database truly matched the information need of the user. Recall is the
probability that a genuine document is classified into this class. Less formally,
high recall is given if all documents that satisfy the information need of the
user are indeed retrieved from a database.

It is obviously desirable to have high recall and precision simultaneously
but this is difficult to achieve in information retrieval. A trade-off exists
between large recall and precision. By adjusting a parameter, e.g. by altering
the cost of misclassification, recall may be increased at the cost of decreasing
precision and vice versa.

The observation that multiple explanations can be extracted from a trained
SVM or neural network leads to the application of information retrieval con-
cepts to rule extraction (see the case study below). In the context of rule
extraction from either support vector machines or neural networks, high pre-
cision represents the scenario that the rule sets extracted are relevant to the
user, i.e. match his or her information need. Recall refers to the question “how
many relevant explanations that can be extracted from the SVM or neural
network are indeed being extracted?” Is it possible to generate all possible
explanations by way of rule extraction that match the information need of
the user?

The ideas outlined above may lead to the application of additional per-
formance measurements that are commonly used in information retrieval and
that are based on precision and recall. The view that a single explanation is
to be extracted from an SVM or neural network is a simplification. It may
be desirably to extend the notion of “rule quality” to include assessments of
multiple explanations in relation to the information need of a user.

16 J. Diederich

5 A Case Study

To illustrate the problem (and opportunity) faced by rule extraction from
SVMs when applied to text classification, support vector machines are used to
classify business news articles from the Persian Gulf with regard to emotional
content. A total of 914 news articles are used for this experiment.1 In addition,
experiments on authorship attribution (identifying the author of a text) and
topic classification are performed.

The pre-processing includes two parts: text extraction and feature selec-
tion. Text extraction is performed by lexical analysis to strip all non-word
annotations and to convert the text into a list of words or tokens. This step can
be summarised as follows: (1) upper case letters are converted to lower case,
(2) all words containing non-letter characters are removed including hyphen-
ated words and words with an underscore, (3) all punctuations are replaced
with space characters to be treated as token delimiters, (4) author identi-
ties are extracted, (5) the texts are converted to a “bag-of words” (BOW)
representation.

In addition, all class identifiers are removed from the articles in the BOW
format before they are used to generate a fixed vocabulary: author names
and words used for topic and emotion identification are removed (see the sec-
tion below on the clustering process used to generate targets for supervised
machine learning). After the text extraction process, a fixed length vocab-
ulary is built from the set of all extracted news articles through a feature
selection process. Firstly, stopword removal and stemming2 are performed
on each extracted text. Secondly, document frequency thresholding is used
to reduce further the feature vector space. Words occurring once only are
removed.

After the vocabulary generation process, for each class (four authors, emo-
tions and topics), the extracted texts are (1) labelled with the class and
(2) mapped to an SVM data file in which each line represents a news article.
Each row includes a label that indicates whether the article belongs to the
target class or not.

Pre-processing of the text samples, including elimination of frequent words
(using an edited list of the 6,500 most frequent words in English) led to the
development of lists of words that are low frequent, but included some words
with topical or emotional content which are common. Simple clustering tech-
niques are used to extract topic and emotion information from texts to perform
supervised learning.

1 This is joint work with Insu Song, Aqeel Al Ajmi, Jihan Zhu, Imran Fanaswala
and Mark Pedersen.

2 Stopword removal refers to the elimination of function words such as articles (the,
a) Stemming identifies the root of a word, e.g. “goes” will be converted to “go”.

Rule Extraction from Support Vector Machines: An Introduction 17

The following is a description of the algorithm used to identify topical and
emotive information:

For all business news articles

1. Generate a ranked list of n words that are not in a stoplist (comprising
an edited list of the 6,500 most spoken words in English)

2. Apply cluster analysis to the ranked word lists extracted from the
documents

3. Identify words that are high-frequent in clusters

The method in step 2 is described by Chiu et al. (2001) who proposed a
conceptual or model-based approach to hierarchical clustering. The method
includes a two-step strategy to determine the number of clusters. The model
associated with a cluster covers both numerical and categorical attributes
and constitutes a mixture of Gaussian and multinomial models. The dis-
tance between two clusters is defined as a decrease in log-likelihood caused
by merging of the two clusters under consideration. The process continues
until a stopping criterion is met. As such, determination of the best number
of clusters is automatic (Berkhin, 2002).

The emotion categories extracted by this process are “boom”, “confident”,
“regret” and “demand”. The topic categories are “asian economy”, “oil price”,
“stock” and “gas”. As in previous studies, authorship attribution succeeds at
a very high level. All four attempts to identify the author of the texts are
successful (Level-one-out cross-validation estimates of the performance: error
<2%, precision 100% and recall 70–97%). Topic detection performance is lower
and on par with the emotion classification results. Two of the topic detection
learning results are relatively poor as are two of the attempts to discover the
emotion express in the text.

Pedagogical rule extraction from SVMs as outlined in Barakat and
Diederich (2005) is applied to the trained SVMs (one authorship attribu-
tion as well as one topic detection and emotion classification problem). The
procedure for rule extraction is as follows:

1. Divide data in two or more sets
2. Train SVM on a subset of data A
3. Get SVM predictions on subset B
4. Combine inputs from subset B with SVM predictions
5. Train a symbolic machine learning system on the new data set
6. Obtain rules from the symbolic machine learning system (in this case a

decision tree learner and a classification and regression tree)

Since the decision tree learning system cannot efficiently deal with high-
dimensional input spaces, the first 200 features are used for See 5 learning
only. The following rules (Table 1) were extracted in one run from an SVM

18 J. Diederich

Table 1. Rules extracted from an SVM trained on an authorship identification task

Rule 1: interest <= 0

percent > 0.079

product <= 0.086

-> Target author

Rule 2: us <= 0

price <= 0.027

compani <= 0.031

set > 0.061

-> Target author

Rule 3: market <= 0.075

number > 0.1

-> Target author

Rule 4: percent <= 0.079

product <= 0.086

number <= 0.1

set <= 0.061

-> Other author

Rule 5: us > 0

number <= 0.1

-> Other author

Rule 6: price > 0.027

-> Other author

Rule 7: market > 0.075

-> Other author

Default

class:

Other author

trained on an authorship identification problem. Please note that in this case,
the SVM classifications for inputs in the training set A are used.

The training error of the decision tree learning method is low: 2.3%. There
are rules for the positive and negative classes and rule quality is high: seven
rules and 17 antecedents in total (of the 200 possible features, only nine occur
in the rules). The rules include content words (or rather word stems) only
since pre-processing eliminated all function words. Word frequency distribu-
tion over function words is relevant for authorship attribution; nevertheless,
even without function words SVM and decision tree learning succeeds.

The following rules were extracted from the topic-detection SVM (Table 2).
Again, note that SVM classifications for inputs of the training set A are used
as targets for decision tree learning.

The See 5 learning error is 5.0% and rule quality is obviously slightly
reduced. Rule 6 is particularly problematic, a point which will be discussed
in detail further below.

Finally, rules were extracted from an SVM trained on an emotion clas-
sification problem (Table 3). The learning result for this SVM is acceptable
(leave-one-out cross-validation result: error 8.6%, precision 94.9%, recall 70%).

Rule Extraction from Support Vector Machines: An Introduction 19

Table 2. Rules extracted from an SVM trained on a topic detection problem

Rule 1: exchang > 0.089

valu <= 0.024

-> Target topic

Rule 2: share > 0.083

-> Target topic

Rule 3: investor > 0.053

advanc > 0.043

-> Target topic

Rule 4: market > 0.046

fed <= 0.076

-> Target topic

Rule 5: market <= 0.046

share <= 0.083

exchang <= 0.089

advanc <= 0.043

-> Other topic

Rule 6: oil <= 0.318

investor <= 0.033

share <= 0.083

world < = 0.077

foreign <= 0.091

jordan <= 0.053

exchang <= 0.089

long <= 0.068

export <= 0.097

posit <= 0.053

hous <= 0.058

-> Other topic

Rule 7: fed > 0.076

-> Other topic

Rule 8: german > 0.057

japan <= 0.032

-> Other topic

Rule 9: share <= 0.083

properti > 0.183

-> Other topic

Rule 10: dollar > 0.336

-> Other topic

Rule 11: sterl > 0.078

-> Other topic

Default

class:

Other topic

20 J. Diederich

In contrast to the two cases above, SVM classifications for inputs of the test
set B are used as target for decision tree learning.

The test set includes 120 cases and the See 5 learning error is 1.7%. Tenfold
cross-validation reveals a test error of 13.3%, however, practically all positive
examples are misclassified. Clearly, there are an insufficient number of positive
examples in this data set (8 out of 120).

It is possible to use sub-sampling techniques or boosting trials to elicit
more words (antecedents in rules) in order to identify relevant features or
to clarify the classification task. Ten boosting trials lead to rule sets that
confirm the result above on the one hand but also identify additional features
(Table 4). The boosted decision tree classifier correctly learns all cases.

Table 3. Rules extracted from an SVM trained on an emotion classification problem

Rule 1: suppli > 0

estat > 0.032

-> Target emotion

Rule 2: close > 0.02

estat > 0.032

-> Target emotion

Rule 3: estat <= 0.032

-> Other emotion

Rule 4: estat > 0.032

-> Other emotion

Default class: Other emotion

Table 4. Rules extracted by use of a tenfold boosting run from an SVM trained an
emotion classification problem

Rule 0/1: suppli > 0

estat > 0.032

-> Target emotion

Rule 0/2: close > 0.02

estat > 0.032

-> Target emotion

Rule 0/3: estat <= 0.032

-> Other emotion

Rule 0/4: estat > 0.032

-> Other emotion

Default class: Other emotion

Rule 1/1: war > 0.022

-> Target emotion

Rule 1/2: war <= 0.022

-> Other emotion

Default class: Other emotion

Rule Extraction from Support Vector Machines: An Introduction 21

Table 4. (Continued)

Rule 2/1: al > 0.024

high > 0.028

chang <= 0

-> Target emotion

Rule 2/2: chang > 0

-> Other emotion

Rule 2/3: high <= 0.028

-> Other emotion

Rule 2/4: al <= 0.024

-> Other emotion

Default class: Other emotion

Rule 3/1: oil > 0.222

-> Target emotion

Rule 3/2: estat > 0.046

-> Target emotion

Rule 3/3: oil <= 0.222

estat <= 0.046

-> Other emotion

Default class: Other emotion

Rule 4/1: uae > 0.193

-> Target emotion

Rule 4/2: higher > 0.154

-> Target emotion

Rule 4/3: higher <= 0.154

uae <= 0.193

-> Other emotion

Default class: Other emotion

Rule 5/1: hous > 0

-> Target emotion

Rule 5/2: hous <= 0

-> Other emotion

Default class: Other emotion

Rule 6/1: compani <= 0.05

gulf <= 0

estat > 0.032

-> Target emotion

Rule 6/2: suppli > 0.058

-> Target emotion

Rule 6/3: suppli <= 0.058

estat <= 0.032

-> Other emotion

(continued)

22 J. Diederich

Table 4. (Continued)

Rule 6/4: compani > 0.05

-> Other emotion

Rule 6/5: gulf > 0

-> Other emotion

Default class: Other emotion

Rule 7/1: dubai <= 0.087

monei > 0.05

-> Target emotion

Rule 7/2: dubai > 0.087

-> Target emotion

Rule 7/3: dubai <= 0.087

monei <= 0.05

-> Other emotion

Default class: Other emotion

Rule 8/1: declin > 0.09

-> Target emotion

Rule 8/2: iraq > 0.028

-> Target emotion

Rule 8/3: iraq <= 0.028

declin <= 0.09

-> Other emotion

Default class: Other emotion

Rule 9/1: project > 0.116

-> Target emotion

Rule 9/2: real > 0.177

-> Target emotion

Rule 9/3: real <= 0.177

project <= 0.116

-> Other emotion

Default class: Other emotion

It is obvious that different machine learning techniques that “learn what
the SVM has learned” may produce different results (the value of extracting
a range of different rule sets from an SVM has been outlined above). If a clas-
sification and regression tree is used to generate the explanation, two simple
rules are generated (Table 5).

The rule sets above allow a number of interesting observations. In the case
of the “authorship attribution” rule set (Table 1), it is not at all clear what
contributes to the identification of this author. All documents are business
news articles, hence the question is: does this author focus on a particular

Rule Extraction from Support Vector Machines: An Introduction 23

Table 5. Rules extracted from an SVM by use of a classification and regression
tree. The SVM has been trained an emotion classification problem

Rule 1: valu < 0.047

invest < 0.275

-> Other emotion

invest >= 0.275

-> Target emotion

Rule 2: valu >= 0.047

currenc < 0.016

-> Other emotion

currenc >= 0.016

-> Target emotion

topic (e.g. the US stock market) or do the rules capture relevant features of
the author’s style?

The rule sets obtained from the SVM trained on the emotion classification
problem are even more intriguing: Rule quality is very high, rule extrac-
tion is consistent and the learning results are good. However, none of the
antecedents express emotion in any way at all! Even though all SVM and
decision tree learning results are acceptable (with exception of the “extreme”
k-fold cross-validation), the rules appear not to be linked to the task at hand :
classify documents into categories that express the emotion of a text. Since
it is one of the objectives of rule extraction to explain “how” classification is
realized by an SVM, the question must be asked to what extend the above
rule sets help to provide an answer.

The experiments outlined above invite a number of objections that should
be discussed in the context of evaluating the rules. First of all, the decision tree
learner was trained by use of the 200 most frequent features (word stems) only,
the SVM considers up to 6,484 attributes. It is possible that the vast majority
of features that are not input to the decision tree learner are relevant for SVM
learning (the feature ranked 200 in the corpus has an absolute frequency of
291; generally, word stems that occur twice or more in the entire data set
are being considered for SVM learning). Joachims (1998) established that the
majority of words with low frequency in a corpus do contribute to a text
classification task. Hence, it is possible that the example rule sets above do
not completely capture what the SVM has learned.

Since it is difficult to train a decision tree learner or a classification and
regression tree on a high-dimensional data set, it may be argued that this
is a case for a “decompositional” extraction method that does not rely on
a non-SVM learning technique so obviously insufficient for high-dimensional
problems. It is unlikely; however, that such an approach offers a solution to
the problem. Obviously, individual words or word stems taken out of context
cannot provide a human comprehensible explanation.

24 J. Diederich

The four rules in Table 3 all include the antecedent “estat”. This is a word
stem generated from the word “estate” which occurs 362 times in the corpus.
Practically all of the occurrences are in the context of “real estate”, and since
this is a corpus including business news articles from the Persian Gulf, “real
estate” refers to the current construction boom in Dubai. Table 3 does not
include any reference to “real” (as in “real estate” or “Dubai”). The boosting
trials in Table 4, however, extract the words “real” and “Dubai”. Similarly,
the word stem “suppli” originated from “supplies” or “suppliers” and is used
in the context of “oil supplies”.

In a further experiment, a neural network was trained on the data used for
rule extraction (Tables 3 and 4). The neural network achieved more than 90%
accuracy in various configurations. For instance, a feedforward neural network
with a 200 unit input layer, a first hidden layer of 7 and a second hidden layer
with nine units as well as a one unit output layer achieves an accuracy of
90.5%. After completion of the training, sensitivity analysis was performed on
the neural network to obtain information on the relevance of input features.
Sensitivity analysis ranks all inputs to the neural network (in this case 200)
according to the relevance of the feature for the classification task. In various
runs with different neural network architectures, “real” and “estat” were both
ranked by sensitivity analysis among the top 5 input features to the neural
network. “suppli” was also ranked as a top feature by sensitivity analysis.
These results confirm the relevance of the features in Table 3, the rules in
Tables 3 and 4 as well as the interpretation provided above.

Finally, the classification and regression tree rules in Table 5 use the
word stem “valu” which occurs 355 times in the corpus. The original word
forms are “value”, “valuation”, and “devaluation” and so on. “invest” is one
of the most frequent word stems (1,543 occurrences) similar to “currenc” (974
occurrences). Obviously, the original words appear in various contexts.

The rules in Tables 3–5 point only indirectly to the criteria the SVM
utilises for classification. Again, it is important to emphasise that the SVM in
question has been trained on an emotion classification task, yet, rule extraction
does not reveal any word that is linked to affect or emotion. Sensitivity analysis
after neural network training on the same data, however, extracts some words
that do have emotional content such as “profit”. There is some indication that
in reality, the SVM performs a topic classification task. The rule extraction
process could be considered a success since a possible confusion between a
topic and emotion classification task has been discovered. Yet again, in this
particular case the SVM does perform emotion classification to some extent
as indicated by the ROC curve in Fig. 1 with an “area under the curve”
AUC of .86. The extracted rules should be used in full view of the learning
result of the SVM in order to explain what the support vector machine has
learned.

Is it possible to say that SVM emotion classification by use of a “bag-
of-words” representation has failed because no emotion word occurs in the
extracted rules? No, it is not possible to say this conclusively because the

Rule Extraction from Support Vector Machines: An Introduction 25

Fig. 1. The ROC curve for the emotion classification SVM. Please note that this
ROC curve has been obtained from an SVM trained on a slightly larger data set
(914 patterns). The SVM used for rule extraction has been trained on 734 examples

SVM has been trained on a high-dimensional data set while the decision tree
learner used for extraction utilizes 200 features only. Also, the boosting runs
in Table 4 generated rules including words like “war”, “iraq”, “declin” (for
decline) and potentially several others which do have emotional content at the
point in time this study was performed. Nevertheless, there is evidence that
input dimensionality is crucially important for rule extraction from SVMs!

In order to enhance the explanatory value of the rules extracted from
the SVMs, it may be beneficial to train an additional SVM on “bigram fre-
quencies” and to extract rules from this SVM. “Bigrams” are sequences or
combinations of words that appear in sentences. For instance, the sentence
“Real estate in Dubai is expensive” includes “real estate” and “in Dubai”
as bigrams. If stopwords such as “in” and “is” are eliminated, bigrams such
as “real estate” and “Dubai expensive” would be generated. As part of the
pre-processing of documents for SVM learning, the frequency of occurrence
of bigrams would be calculated and would be utilised in the SVM data set.
For instance, bigrams such as “real estate” would be attributes in the SVM
data set and the normalised frequency of occurrence would be the value of
the feature.

Rule extraction from SVMs would then generate rules including antecedents
such as “real estate”, “in Dubai” or “Dubai expensive”. Due to the added con-
text, rules with these antecedents would be much more comprehensible. Even
if the SVMs trained on bigrams frequencies do not perform as well as those
trained on a simple “bag-of-words” representation, the bigram rules can be
compared to those extracted from an SVM trained on “bag-of-words”. It is
common in artificial intelligence systems to have an independent explanation

26 J. Diederich

system, i.e. a system separate from the core inference machine. In a similar
sense, the rules extracted from the bigram SVM can be used for explanatory
purposes only.

The observations above lead to a new rule quality criterion: semantic com-
prehensibility. In the cases outlined above, rule quality as originally formulated
(Tickle et al. 1998) is high due to the limited number of antecedents and rules,
yet comprehensibility for the user is low. Therefore, it is necessary to introduce
a new rule quality criterion, semantic comprehensibility.

6 A Classification System for Rule Extraction
from SVMs

Rule extraction from support vector machines requires evaluation criteria that
emphasize data (Table 6). SVMs have demonstrated very good performance
when trained on data sets with high-dimensional inputs; significant applica-
tion areas are image classification (including face recognition), bioinformatics
and text classification. At this point in time, many Internet search engines
use support vector machines.

In light of the discussions above, the following dimensions are proposed:

1. Translucency: This dimension as originally proposed in Andrews et al.
(1995) and Tickle et al. (1998) continues to be useful, even with the

Table 6. A classification system for rule extraction from SVMs

Attribute Type From To

Translucency Continuous Decompositional Pedagogical
Data Continuous Low-dimensional High-dimensional
Expressiveness Discrete Boolean First-order

predicate logic
Rule quality

Number of rules Continuous 1 No upper limit
Number of Continuous 1 No upper limit
antecedents
Semantic Discrete Yes No
comprehensibility
Fidelity Continuous 0% 100%
ROC Fidelity Continuous Low High
Accuracy of rules Continuous 0% 100%
Precision of rules Continuous 0% 100%
Recall of rules Continuous 0% 100%

Complexity Continuous Linear Exponential
Non-SVM
extraction

Discrete Yes No

Rule Extraction from Support Vector Machines: An Introduction 27

introduction of rule extraction techniques for high-dimensional data sets.
However, there are important questions with regard to the learning-based
or pedagogical approach: Many of the rule-based learners have very dif-
ferent representational biases compared to support vector machines. In
addition, many are less suitable for high-dimensional inputs, again in com-
parison to SVMs. These limitations have been discussed already by use of
the case study.

2. Data: From low to high-dimensional input space. Many data mining prac-
titioners would probably agree with the view that it is possible to engineer
a neural network with similar learning performance to an SVM for low-
dimensional data sets. As a matter of fact, SVMs are not necessarily the
method of choice for these data sets, there are many alternatives. This
includes those cases with relationships between attributes that are best
expressed as a decision tree. Hence, the view here is that SVMs are the
primary choice for high-dimensional inputs and rule extraction techniques
should work in these cases.

3. Expressiveness of the extracted rules. Rule extraction from neural net-
works has previously almost exclusively been used to generate proposi-
tional rule sets (Hayward et al. 2000). While this is sufficient for many
applications where rule sets can be effectively used, it is clearly desirable
to provide a more general explanation capability. Hayward et al. (2000)
describe an approach to representing a neural network as a PROLOG
logic program, where the activation values of hidden and output units
are equated with the truth value of predicates. The technique addresses
several issues. Hayward et al. (2000) describe a process whereby Boolean
formulae are translated into a first-order representation consisting of pred-
icates, rules and facts. This is a field that is largely unexplored in the
context of rule extraction from support vector machines; however, it is
conceivable that SVMs with structured output (Taskar et al. 2005) will
lead to complex rule sets and languages beyond and above propositional
logic. Also, please see the chapter by Torrey et al. in this volume.

4. Rule Quality: This category includes accuracy, fidelity and comprehen-
sibility. “Semantic comprehensibility” is given if minimal rules sets with
concise rules are extracted from SVMs trained on high-dimensional data.
Fidelity may be extended to “ROC fidelity”, e.g. if and when the SVM
and the rule set exhibit the same classification behaviour with modified
cost functions.
It is crucial to consider the sub-category “semantic comprehensibility”
and the case study above is designed to outline some of the relevant
issues. Given high-dimensional data sets, features in isolation have lim-
ited or no explanation capability. It has been proposed earlier to extract
multiple rule sets from SVMs to explore the full feature set that con-
tributes to a classification. In many ways, it is the user who decides
which rule set has value and hence, the notion of “information need”
has been adopted from information retrieval. Semantic comprehensibility

28 J. Diederich

is not formally defined here and is not proposed as a quantitative measure.
At this stage, “semantic comprehensibility” refers to the ultimate goal to
extract user-comprehensible rule sets from any SVM.

5. Complexity of the extraction. To date, there has been no systematic
study on the algorithmic complexity of rule extraction from SVMs. The
results that have been obtained for rule extraction from neural networks
(some have been summarised above) are not applicable because they rely
on (1) the structure of the neural network (single or multi-layer) and
(2) properties of a learning algorithm such as backpropagation. Many of
the current approaches for rule extraction from SVMs include heuristics
and/or machine learning or statistical techniques that are interchangeable.
For instance, the learning-based rule extraction from SVM technique used
in the case study above uses either a decision tree learner or a classification
and regression tree. Núñez et al. (2002) use clustering techniques with the
aim to identify regions in decision space that can be translated to rules.
Opportunities and limitations of the rule extraction from support vector
machines enterprise are yet to be fully explored.

6. Non-SVM extraction: It is important to develop new techniques for rule
extraction from support vector machines, including those that are solely
based on SVMs and do not require any other machine learning tech-
nique. In particular, support vector machines that allow the generation
of structured outputs (Taskar et al. 2005) can be used to generate rule
sets not unlike those extracted from neural networks. This represents a
clear advancement since user explanation is realized by an SVM and not
by a technique with a different representational bias. In addition, meth-
ods for the extraction of high quality rule sets from SVMs trained on
high-dimensional data are required.

By way of example, it is easily possible to apply this classification system
to the simple case study provided above, the emotion classification problem.

Table 7 clearly demonstrates the limitations of the algorithm used in the
case study. Rules lack expressiveness, the extraction process does not really
consider the dimensionality of the data set, and while rule quality is quite
good, the algorithmic complexity of the extraction process is not satisfactory.

7 Conclusions and Future Challenges

It is obviously not possible to discuss all aspects of rule extraction from
support vector machines in this brief introduction. There is one area in par-
ticular that would deserve a fuller consideration. This is the use of committee

Rule Extraction from Support Vector Machines: An Introduction 29

Table 7. The classification of the case study in Sect. 5

Translucency Pedagogical

Data Low-dimensional (SVM
is trained on

high-dimensional data)
Expressiveness Boolean
Rule quality

Number of rules 2–11
Number of antecedents 5–28
Semantic comprehensibility No
Fidelity Not tested
ROC Fidelity Not tested
Accuracy of rules 90%
Precision of rules 66%
Recall of rules 90%

Complexity3 O(mn log n) + O(n(log n)2)
Non-SVM extraction No

machines or ensemble learning approaches.4 Obviously, it is more difficult
to extract comprehensive rules from a set of support vector machines or an
ensemble of machine learning techniques of different type. The requirements
for comprehensibility are even harder to meet if more than one classifier is
involved.

A first attempt has been made in a project to predict the return of stocks in
the US market.5 An SVM was trained to accept input from various machine
learning techniques to predict the next day return of shares. The machine
learning methods includes various types of neural networks, support vector
machines as well as an implementation of Ripper. The target for the SVM-
based committee machine is the next day return. Rules were then extracted
which took the following form:

IF the value of the prediction of C4.5 is equal to −1 THEN the SVM
committee machine classifies the sample as −1, Otherwise, it classifies
the case as +1.

Given the low-dimensionality of the input, SVM learning (i.e. the commit-
tee machine) did not significantly improve the overall results and the SVM
tends to agree with the decision tree learner C4.5

3 Decision tree learning complexity for C4.5 according to Witten and Frank (1999,
p. 168). n is the number of samples and m the number of attributes. See 5 has
been used in this study.

4 Thank you to Alan Tickle for suggesting the importance of committee machines.
5 This work was performed by Hanan Tayeb, Shahrazad Mohammed, Ghasaq Yousif

and Shrouq Hasan as part of a final year undergraduate project, Department of
Computer Science, American University of Sharjah, Spring 2007.

30 J. Diederich

The objective of this introductory chapter is to outline a number of
research issues, some of which are addressed in the following chapters. The
ultimate goal, however, is to achieve what rule extraction from neural net-
work undoubtedly has achieved, and this is to propose a set of techniques
suitable for data mining and commercial applications. The following chapters
include new algorithms for rule extraction as well as applications in a variety
of domains. This includes financial applications as well as speech recognition.
There is no doubt that the current research on developing new kernel methods
to increase the accuracy of classification and regression must be complemented
by a set of techniques that allow user explanation at a very high level.

8 Acknowledgements

Thank you to David Martens, Lisa Torrey, Shlomo Geva and Alan Tickle for
comments on earlier versions of this introduction.

References

Andrews R, Diederich J, Tickle AB (1995) A Survey and Critique of Tech-
niques For Extracting Rules From Trained Artificial Neural Networks,
Knowledge Based Systems, 8, pp. 373–389

Barakat N, Diederich J (2005) Eclectic rule extraction from support vector
machines. International Journal of Computational Intelligence, 2(1), 59–62,
2005

Berkhin P (2002) Survey of Clustering Data Mining Techniques. Accrue
Software, San Jose, California

Cawsey A (1993) Explanation and Interaction. The Computer Generation of
Explanatory Dialogues. The MIT Press Cambridge London

Chiu T, Fang D, Chen J, Wang Y, Jeris C (2001) A Robust and Scal-
able Clustering Algorithm for Mixed Type Attributes in Large Database
Environment. Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 263

Craven M, Shavlik J (1994) Using sampling and queries to extract rules
from trained neural networks. In Proceedings of the 11th International
Conference on Machine Learning, 1994, 37–45

Davis R, Buchanan BG, Shortliffe E (1977) Production rules as a represen-
tation for a knowledge-based consultation program’. Artificial Intelligence
8:1 15–45

Gallant S (1988) Connectionist expert systems. Communications of the ACM.
13:2 152–169

Gilbert N (1989) Explanation and dialogue. The Knowledge Engineering
Review. 4:3 235–247

Rule Extraction from Support Vector Machines: An Introduction 31

Golea, M (1996) “On the complexity of rule extraction from neural net-
works and network querying”. Proceedings of the Rule Extraction from
Trained Artificial Neural Networks Workshop, Society for the Study of Arti-
ficial Intelligence and Simulation of Behavior Workshop Series (AISB’96)
University of Sussex, Brighton, UK, 51–59

Hayward R, Nayak R, Diederich J (2000) Using Predicates to Explain Net-
works. In: ECAI-2000 Workshop: “Foundations of Connectionist-Symbolic
Integration: Representation, Paradigms and Algorithms. Berlin, Germany

Joachims T (1998) Text Categorization with Support Vector Machines: Learn-
ing With Many Relevant Features. In: ECML-98, 10th European Conference
on Machine Learning, Heidelberg, Germany, 137–142

Moore, JD, Swartout WR (1989) A Reactive Approach to Explanation.
In: IJCAI-89 International Joint Conference on Artificial Intelligence,
1504–1510

Núñez H, Angulo C, Catala A (2002) Rule extraction from support vector
machines. In: ECAI-92 Proceedings of European Symposium on Artificial
Neural Networks, 107–112

Taskar B, Chatalbashev V, Koller D, Guestrin C (2005) Learning structured
prediction models: A large margin approach. In: ICML 2005, Proceedings
of the 22nd International Conference on Machine Learning

Thagard PR (1978) The best Explanation: Criteria for Theory Choice. The
Journal of Philsosophy 75:2, 76–92

Thagard P, Litt A (forthcoming). Models of scientific explanation. In R. Sun
(ed.), The Cambridge handbook of computational cognitive modeling.
Cambridge: Cambridge University Press

Tickle A, Andrews R, Golea M, Diederich J (1998) The truth will come
to light: directions and challenges in extracting the knowledge embed-
ded within trained artificial neural network. IEEE Transactions on Neural
Networks 9:6, 1057–1068

Witten IH, Frank E (1999) Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Paperback 162–164

Rule Extraction from Support Vector
Machines: An Overview of Issues and
Application in Credit Scoring

David Martens1, Johan Huysmans1, Rudy Setiono2, Jan Vanthienen1, and
Bart Baesens3,1

1 Department of Decision Sciences and Information Management, K.U.Leuven
Naamsestraat 69, B-3000 Leuven, Belgium {David.Martens;Johan.Huysmans;
Bart.Baesens;Jan.Vanthienen}@econ.kuleuven.be

2 School of Computing, National University of Singapore, 3 Science Drive 2,
Singapore 117543, Singapore rudys@comp.nus.edu.sg

3 University of Southampton, School of Management, Highfield Southampton,
SO17 1BJ, UK Bart@soton.ac.uk

Summary. Innovative storage technology and the rising popularity of the Inter-
net have generated an ever-growing amount of data. In this vast amount of data
much valuable knowledge is available, yet it is hidden. The Support Vector Machine
(SVM) is a state-of-the-art classification technique that generally provides accurate
models, as it is able to capture non-linearities in the data. However, this strength
is also its main weakness, as the generated non-linear models are typically regarded
as incomprehensible black-box models. By extracting rules that mimic the black
box as closely as possible, we can provide some insight into the logics of the SVM
model. This explanation capability is of crucial importance in any domain where
the model needs to be validated before being implemented, such as in credit scoring
(loan default prediction) and medical diagnosis. If the SVM is regarded as the cur-
rent state-of-the-art, SVM rule extraction can be the state-of-the-art of the (near)
future. This chapter provides an overview of recently proposed SVM rule extraction
techniques, complemented with the pedagogical Artificial Neural Network (ANN)
rule extraction techniques which are also suitable for SVMs. Issues related to this
topic are the different rule outputs and corresponding rule expressiveness; the focus
on high dimensional data as SVM models typically perform well on such data; and
the requirement that the extracted rules are in line with existing domain knowledge.
These issues are explained and further illustrated with a credit scoring case, where
we extract a Trepan tree and a RIPPER rule set from the generated SVM model.
The benefit of decision tables in a rule extraction context is also demonstrated.
Finally, some interesting alternatives for SVM rule extraction are listed.

D. Martens et al.: Rule Extraction from Support Vector Machines: An Overview of Issues and

Application in Credit Scoring, Studies in Computational Intelligence (SCI) 80, 33–63 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

34 D. Martens et al.

1 Introduction

Over the past decades we have witnessed a true explosion of data, which
has mainly been driven by an ever growing popularity of the Internet and
continuous innovations in storage technology. Information management and
storage company EMC has recently calculated that 161 billion GigaByte of
data has been created, with an expected 988 billion GigaByte to be created
in 2010 [23]. Being able to find useful knowledge in this tremendous amount
of data is humanly no longer possible, and requires advanced statistical and
data mining techniques.

The Support Vector Machine (SVM) is currently the state-of-the-art in
classification techniques. Benchmarking studies reveal that in general, the
SVM performs best among current classification techniques [4], due to its abil-
ity to capture non-linearities. However, its strength is also its main weakness,
as the generated non-linear models are typically regarded as incomprehensible
black-box models. The opaqueness of SVM models can be remedied through
the use of rule extraction techniques, which induce rules that mimic the black-
box SVM model as closely as possible. If the SVM is regarded as the current
state-of-the-art, SVM rule extraction can be the state-of-the-art of the (near)
future.

This chapter is structured as follows. Before elaborating on the rationale
behind SVM rule extraction (Sect. 3) as well as some of the issues (Sect. 5) and
techniques (Sect. 4), an obligatory introduction to SVMs follows in the next
section. We will illustrate these principles with an application in the financial
domain, namely credit scoring, in Sect. 6, and finally discuss some possible
alternatives for SVM rule extraction in Sect. 7.

2 The Support Vector Machine

Given a training set of N data points {(xi, yi)}N
i=1 with input data xi ∈

IRn and corresponding binary class labels yi ∈ {−1, +1}, the SVM classi-
fier, according to Vapnik’s original formulation satisfies the following condi-
tions [20, 64]: {

wT ϕ(xi) + b ≥ +1, if yi = +1
wT ϕ(xi) + b ≤ −1, if yi = −1 (1)

which is equivalent to

yi[wT ϕ(xi) + b] ≥ 1, i = 1, . . . , N. (2)

The non-linear function ϕ(·) maps the input space to a high (possibly infinite)
dimensional feature space. In this feature space, the above inequalities basi-
cally construct a hyperplane wT ϕ(x) + b = 0 discriminating between the two
classes. By minimizing wT w, the margin between both classes is maximized
(Fig. 1).

Issues and Application of SVM Rule Extraction 35

WTj(x) + b = +1

WTj(x) + b = 0

WTj(x) + b = −1

j1(x)

j2(X)
2/||w||

Class + 1

Class − 1

x

x x

x

x
x

x

x x

x
+

+
+

+

+

+

+
+

+

+

Fig. 1. Illustration of SVM optimization of the margin in the feature space

In primal weight space the classifier then takes the form

y(x) = sign[wT ϕ(x) + b], (3)

but, on the other hand, is never evaluated in this form. One defines the convex
optimization problem:

minw,b,ξ J (w, b, ξ) = 1
2w

T w + C
∑N

i=1 ξi (4)

subject to {
yi[wT ϕ(xi) + b] ≥ 1 − ξi, i = 1, . . . , N
ξi ≥ 0, i = 1, . . . , N.

(5)

The variables ξi are slack variables which are needed in order to allow mis-
classifications in the set of inequalities (e.g. due to overlapping distributions).
The first part of the objective function tries to maximize the margin between
both classes in the feature space, whereas the second part minimizes the mis-
classification error. The positive real constant C should be considered as a
tuning parameter in the algorithm.

The Lagrangian to the constraint optimization problem (4) and (5) is
given by

L(w, b, ξ; α, ν) = J (w, b, ξ)−
∑N

i=1 αi{yi[wT ϕ(xi) + b]− 1 + ξi}−
∑N

i=1 νiξi

(6)
The solution to the optimization problem is given by the saddle point of

the Lagrangian, i.e. by minimizing L(w, b, ξ; α, ν) with respect to w, b, ξ and
maximizing it with respect to α and ν.

maxα,ν minw,b,ξ L(w, b, ξ; α, ν). (7)

This leads to the following classifier:

y(x) = sign[
∑N

i=1 αi yi K(xi,x) + b], (8)

36 D. Martens et al.

whereby K(xi,x) = ϕ(xi)T ϕ(x) is taken with a positive definite kernel satis-
fying the Mercer theorem. The Lagrange multipliers αi are then determined
by means of the following optimization problem (dual problem):

maxαi − 1
2

N∑
i,j=1

yiyjK(xi,xj)αiαj +
N∑

i=1

αi (9)

subject to ⎧⎪⎨
⎪⎩

N∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, ..., N.

(10)

The entire classifier construction problem now simplifies to a convex quadratic
programming (QP) problem in αi. Note that one does not have to calculate
w nor ϕ(xi) in order to determine the decision surface. Thus, no explicit
construction of the non-linear mapping ϕ(x) is needed. Instead, the kernel
function K will be used. For the kernel function K(·,·), one typically has the
following choices:

K(x,xi) = xT
i x, (linear kernel)

K(x,xi) = (1 + xT
i x/c)d, (polynomial kernel of degreed)

K(x,xi) = exp{−‖x− xi‖2
2/σ2}, (RBF kernel)

K(x,xi) = tanh(κxT
i x + θ), (MLP kernel),

where d, c, σ, κ and θ are constants.
For low-noise problems, many of the αi will be typically equal to zero

(sparseness property). The training observations corresponding to non-zero
αi are called support vectors and are located close to the decision boundary.
This observation will be illustrated with Ripley’s synthetic data in Sect. 5.

As (8) shows, the SVM classifier is a complex, non-linear function. Trying
to comprehend the logics of the classifications made is quite difficult, if not
impossible.

3 The Rationale Behind SVM Rule Extraction

SVM rule extraction is a natural variant of the well researched ANN rule
extraction domain. To understand the usefulness of SVM rule extraction we
need to discuss (1) why rule extraction is performed, and (2) why SVM rule
extraction is performed rather than the more researched ANN rule extraction.

3.1 Why Rule Extraction

Rule extraction is performed for the following two reasons: (1) to understand
the classifications made by the underlying non-linear black-box model,1 thus

1 As this can be an ANN, SVM or any other non-linear model, we will refer to it
as the black box model.

Issues and Application of SVM Rule Extraction 37

to open up the black box ; and (2) to improve the performance of rule induction
techniques by removing idiosyncrasies in the data.

1. The most common motivation for using rule extraction is to obtain a set of
rules that can explain the black box model. By obtaining a set of rules that
mimic the predictions of the SVM, some insight is gained into the logical
workings of the SVM. The extent to which the set of rules is consistent
with the SVM is measured by the fidelity, and provides the percentage
of test instances on which the SVM and the rule set concur with regard
to the class label. If the rules and fidelity are satisfactory, the user might
decide the SVM model has been sufficiently explained and use the SVM
as decision support model.

2. An interesting observation is that the (generally) better performing
non-linear model can be used in a pre-processing step to clean up the
data [35,42]. By changing the class labels of the data by the class label of
the black box, all noise is removed from the data. This can be seen from
Fig. 2, which shows the synthetic Ripley’s data set. Ripley’s data set has
two variables and thus allows for visualization of the model. The data set
has binary classes, where the classes are drawn from two normal distribu-
tions with a high degree of overlap [51]. In Fig. 2a the original test data
is shown, where one needs to discriminate between the blue dots and the
red crosses. As can be seen, there is indeed much noise (overlap) in the
data. The decision boundary of the induced SVM model, which has an
accuracy of 90%, as well as the original test data are shown in Fig. 2b. If
we change the class labels of the data to the class labels as predicted by
the SVM model, that is all data instances above the decision boundary
become blue dots, all below become red crosses, we obtain Fig. 2c. As this
figure illustrates no more noise or conflict is present in the data. Finally,
Fig. 2d shows that the SVM model can be used to provide class labels to
artificially generated data, thereby circumventing the problem of having
only few data instances. A rule extraction technique that makes advantage
of this approach is Trepan, discussed in the next section. In our previous
work, we have shown that performing rule induction techniques on these
new SVM predicted data set can increase the performance of traditional
rule induction techniques [42].

3.2 Why SVM Rule Extraction

Rule extraction from ANNs has been well researched, resulting in a wide
range of different techniques (a full overview can be found in [29], an appli-
cation of ANN rule extraction in credit scoring is given in [3]). The SVM is,
as the ANN, a non-linear predictive data mining technique. Benchmarking
studies have shown that such models exhibit good and comparable general-
ization behavior (out-of-sample accuracy) [4, 63]. However, SVMs have some
important benefits over ANNs. First of all, ANNs suffer from local minima in

38 D. Martens et al.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Original data

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

SVM boundary

(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

SVM predicted class labels

−0.2

0

0.2

0.4

0.6

0.8

1

(c)

Extra randomly generated data

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

(d)

Fig. 2. (a) Ripley’s synthetic data set, with SVM decision boundary (b). In (c) the
class labels have been changed to the SVM predicted class labels, thereby remov-
ing present noise. Artificial data examples can be generated with their class labels
assigned by the SVM model, as shown by the 1,500 extra generated instances in (d)

the weight solution space [8]. Secondly, several architectural choices (such as
number of hidden layers, number of hidden nodes, activation function, etc.)
need to be determined (although we need to remark that for SVMs the regu-
larization parameter C and bandwidth σ for an RBF kernel, also need to be
set. These are typically set using a gridsearch procedure [63]). Extracting rules
from this state-of-the-art classification technique is the natural next step.

4 An Overview of SVM Rule Extraction Techniques

4.1 Classification Scheme for SVM Rule Extraction Techniques

Andrews et al. [2] propose a classification scheme for neural network rule
extraction techniques that can easily be extended to SVMs, and is based on
the following criteria:

1. Translucency of the extraction algorithm with respect to the underlying
neural network;

Issues and Application of SVM Rule Extraction 39

2. Expressive power of the extracted rules or trees;
3. Specialized training regime of the neural network;
4. Quality of the extracted rules;
5. Algorithmic complexity of the extraction algorithm.

As for SVM rule extraction the training regime is not as much an issue as for
ANNs, and the algorithmic complexity of a rule extraction algorithm is hard
to assess, we will only elaborate on the translucency, the expressive power of
the rules, and the quality of the rules as part of the rule extraction technique
evaluation.

Translucency

The translucency criterion considers the technique’s perception of the SVM.
A decompositional approach is closely intertwined with the internal workings
of the SVM and its constructed hyperplane. On the other hand, a pedagogical
algorithm considers the trained model as a black box. Instead of looking at
the internal structure, these algorithms directly extract rules which relate the
inputs and outputs of the SVM. These techniques typically use the trained
SVM model as an oracle to label or classify artificially generated training
examples which are later used by a symbolic learning algorithm, as already
illustrated in Fig. 2d. The idea behind these techniques is the assumption that
the trained model can better represent the data than the original data set.
That is, the data is cleaner, free of apparent conflicts. The difference between
decompositional and pedagogical rule extraction techniques is schematically
illustrated in Fig. 3. Since the model is viewed as a black box, most pedagogical
algorithms lend themselves very easily to rule extraction from other machine
learning algorithms. This allows us to extrapolate rule extraction techniques
from the neural networks domain to our domain of interest, SVMs.

Expressive Power

The expressive power of the extracted rules depends on the language used to
express the rules. Many types of rules have been suggested in the literature.
Propositional rules are simple If... Then... expressions based on conventional
propositional logic.

The second rule type we will encounter are M-of-N rules and are usually
expressed as follows:

If {at least/exactly/at most} M of the N conditions (C1, C2, . . . ,CN)
are satisfied Then Class = 1.

(11)
This type of rules allows one to represent complex classification concepts more
succinctly than classical propositional DNF rules.

The rule types considered above are crisp in the sense that their antecedent
is either true or false. Fuzzy rules allow for more flexibility and are usually

40 D. Martens et al.

ruleset

svm

Decompositional
rule extractiion

technique

++
+

+
++ +

+

+

+
+

+

+

+

classdatapoint

ruleset

svm

Pedagogical
rule extraction

technique

(a) (b)

Fig. 3. Pedagogical (a) and decompositional (b) rule extraction techniques

expressed in terms of linguistic concepts which are easier to interpret for
humans.

Rule Extraction Technique Evaluation

In order to evaluate the rule extraction algorithms, Craven and Shavlik [18]
listed five performance criteria:

1. Comprehensibility: The extent to which extracted representations are
humanly comprehensible.

2. Fidelity: The extent to which the extracted representations model the
black box from which they were extracted.

3. Accuracy: The ability of extracted representations to make accurate
predictions on previously unseen cases.

4. Scalability: The ability of the method to scale to other models with large
input spaces and large number of data.

5. Generality: The extent to which the method requires special training
regimes or restrictions on the model architecture.

The latter two performance measures are often forgotten and omitted, since
it is difficult to quantify them. In the context of SVM rule extraction
mainly scalability becomes an important aspect, as SVMs perform well on
large dimensional data. Craven and Shavlik additionally consider software
availability as key to the success of rule extraction techniques.

Issues and Application of SVM Rule Extraction 41

4.2 SVM Rule Extraction Techniques

Table 1 provides an overview of SVM rule extraction techniques, and describes
the translucency and rule expressiveness.2 A chronological overview of all
discussed algorithms (and some additional techniques that were not discussed
in the text) is given below in Table 1. For each algorithm, we provide the
following information:

Translucency (P or D): Pedagogical or Decompositional
Scope (C or R): Classification or Regression
Summary: A very short description of the algorithm

The first set of techniques are specifically intended as SVM rule extraction
techniques. Thereafter, we list some commonly used rule induction techniques
that can be used as pedagogical rule extraction techniques (by changing the
class to the SVM predicted class), and pedagogical ANN rule extraction tech-
niques that can easily be used as SVM rule extraction technique. Notice that
the use of such pedagogical techniques have only rarely been applied as SVM
rule extraction techniques.

What follows is a short description of the proposed decompositional
SVM rule extraction techniques, and some of the most commonly used rule

Table 1. Chronological overview of rule extraction algorithms

Algorithm (Year) Ref. Transl. Scope Summary
SVM Rule extraction techniques

SVM + Prototypes (2002) [46] D C Clustering
Barakat (2005) [6] D C Train decision tree on support vectors and their

class labels
Fung (2005) [25] D C Only applicable to linear classifiers
Iter (2006) [28] P C + R Iterative growing of hypercubes
Minerva (2007) [30] P C + R Sequential covering + iterative growing

Rule induction techniques, and
Pedagogical ANN rule extraction techniques, also applicable to SVMs

CART (1984) [11] P C + R Decision tree induction
CN2 (1989) [15] P C Rule induction
C4.5 (1993) [49] P C Decision tree induction
TREPAN (1996) [18] P C Decision tree induction, M-of-N splits
BIO-RE (1999) [56] P C Creates complete truth table, only applicable to

toy problems
ANN-DT (1999) [52] P C + R Decision tree induction, similar to TREPAN
DecText (2000) [10] P C Decision tree induction
STARE (2003) [68] P C Breadth-first search with sampling, prefers cat-

egorical variables over continuous variables
G-REX (2003) [34] P C + R Genetic programming: different types of rules
REX (2003) [41] P C Genetic algorithm: fuzzy rules
GEX (2004) [40] P C Genetic algorithm: propositional rules
Rabuñal (2004) [50] P C Genetic programming
BUR (2004) [14] P C Based on gradient boosting machines
Re-RX (2006) [53] P C Hierarchical rule sets: first splits are based on

discrete attributes
AntMiner + (2007) [44] P C Ant-based induction of rules

2 Partially based upon artificial neural network classification scheme by Andrews,
Diederich and Tickle [2].

42 D. Martens et al.

induction and pedagogical rule extraction techniques, which were originally
proposed in the context of neural networks.

SVM+Prototypes

One of the few rule extraction methods designed specifically for support
vector machines is the SVM+Prototypes method proposed in [46]. This
decompositional algorithm is not only able to extract propositional (interval)
classification rules from a trained SVM, but also rules from which the con-
ditions are mathematical equations of ellipsoids. We will discuss the variant
that results in propositional rules.

The SVM+Prototypes algorithm is an iterative process that proceeds as
follows:

Step 1 Train a Support Vector Machine The SVM’s decision bound-
ary will divide the training data in two subsets S+ and S−, containing
the instances for which the predicted class is respectively positive and
negative. Initialize the variable i to 1.

Step 2 For each subset, use some clustering algorithm to find i clusters (new
subsets) and calculate the prototype or centroid of each cluster. For each
of these new subsets find the support vector that lies farthest to the pro-
totype. Use the prototype as center and the support vector as vertex to
create a hypercube in the input space.

Step 3 Do a partition test on each of the hypercubes. This partition test is
performed to minimize the level of overlapping between cubes for which
the predicted class is different. One possible method is to test whether all
of the corners of the hypercube are predicted to be of the same class. If
this is the case then we say that the partition test is positive.

Step 4 Convert the hypercubes with a negative partition test into rules. If
there are hypercubes with a positive partition test and i is smaller than a
user-specified threshold Imax then increase i, take the subsets from which
these cubes were created and go back to step 2, else go to step 5.

Step 5 If i is equal to Imax, convert all of the current hypercubes into rules.

The example of Fig. 4 shows the principal idea behind the algorithm.
During the first iteration (i = 1), the algorithm looks for the centroid of
respectively the black and white instances. These prototypes are indicated by
a star sign. It will then search the support vector in that partition that lies
farthest away from the prototype and will create a cube from these two points
(Step Two). In step three, the partition test will be positive for the leftmost
cube as one of its vertices lies in the area for which the SVM predicts a dif-
ferent class. The other cube has a negative partition test and will therefore
become a rule in step 4. For the first cube with a positive partition test, we
will iterate the above procedure but with i = 2. This will result in the creation
of two new rules.

Issues and Application of SVM Rule Extraction 43

(a) First iteration (b) Second iteration

Fig. 4. Example of SVM+Prototypes algorithm

The main drawback of this algorithm is that the extracted rules are nei-
ther exclusive nor exhaustive which results in conflicting or missing rules for
the classification of new data instances. Each of the extracted rules will also
contain all possible input variables in its conditions, making the approach
undesirable for larger input spaces as it will extract complex rules that lack
interpretability. In [6], another issue with the scalability of this method is
observed: a higher number of input patterns will result in more rules being
extracted, which further reduces comprehensibility.

An interesting approach for this technique to avoid the time-consuming
clustering might be the use of Relevance Vector Machines [58, 59]. This tech-
nique is introduced by Tipping in 2000, and similar to the SVM but based
on Bayesian learning. As he mentions unlike for the SVM, the relevance vec-
tors are some distance from the decision boundary (in x-space), appearing
more “prototypical” or even “anti-boundary” in character. In this manner,
prototypes are immediately formed and could be used in the rule extraction
technique.

Fung et al.

In [25], Fung et al. present an algorithm to extract propositional classification
rules from linear classifiers. The method is considered to be decompositional
because it is only applicable when the underlying model provides a linear
decision boundary. The resulting rules are parallel with the axes and non-
overlapping, but only (asymptotically) exhaustive. Completeness can however,
be ensured by retrieving rules for only one of both classes and specification of
a default class.

The algorithm is iterative and extracts the rules by solving a constrained
optimization problem that is computationally inexpensive to solve. While the
mathematical details are relatively complex and can be found in [25], the
principal idea is rather straightforward to explain. Figure 5 shows execution
of the algorithm when there are two inputs and when only rules for the black
squares are being extracted.

44 D. Martens et al.

Fig. 5. Example of algorithm of Fung et al.

First, a transformation is performed such that all inputs of the black
squares observations are in the interval [0,1]. Then the algorithm searches
for an (hyper)cube that has one vertex on the separating hyperplane and lies
completely in the region below the separating hyperplane. There are many
cubes that satisfy these criteria, and therefore the authors added a criterion
to find the “optimal” cube. They developed two variants of the algorithm
that differ only in the way this optimality is defined: volume maximization
and point coverage maximization. In the example of Fig. 5, this “optimal”
cube is the large cube that has the origin as one of its vertices. This cube
divides the region below the separating hyperplane in two new regions: the
regions above and to the right of the cube. In general for an N-dimensional
input space, one rule will create N new regions. In the next iteration, a new
“optimal” cube is recursively retrieved for each of the new regions that contain
training observations. The algorithm stops after a user-determined maximum
number of iterations.

The proposed method faces some drawbacks. Similar to the SVM+Proto-
types method discussed above, each rule condition involves all the input
variables. This makes the method unsuitable for problems with a high-
dimensional input space. A second limitation is the restriction to linear
classifiers. This requirement considerably reduces the possible application
domains.

Rule and Decision Tree Induction Techniques

Many algorithms are capable of learning rules or trees directly from a set of
training examples, e.g., CN2 [15], AQ [45], RIPPER [16], AntMiner+ [44],
C4.5 [49] or CART [11]. Because of their ability to learn predictive mod-
els directly from the data, these algorithms are not considered to be rule
extraction techniques in the strict sense of the word. However, these algo-
rithms can also be used to extract a human-comprehensible description from

Issues and Application of SVM Rule Extraction 45

opaque models. When used for this purpose, the original target values of the
training examples are modified by the predictions made by the black box
model and the algorithm is then applied to this modified data set. Addition-
ally, to ensure that the white box learner will mimic the decision boundary of
the black box model even more, one can also create a large number of artificial
examples and then ask the black box model to provide the class labels for these
sampled points. The remainder of this section briefly covers both approaches,
as they form the basic for most pedagogical rule extraction techniques.

Rule Induction Techniques

In this section, we discuss a general class of rule induction techniques: sequen-
tial covering algorithms. This series of algorithms extracts a rule set by
learning one rule, removing the data points covered by that rule and reiterat-
ing the algorithm on the remainder of the data. RIPPER, Iter and Minerva
are some of the techniques based on this general working.

Starting from an empty rule set, the sequential covering algorithm first
looks for a rule that is highly accurate for predicting a certain class. If the
accuracy of this rule is above a user-specified threshold, then the rule is added
to the set of existing rules and the algorithm is repeated over the rest of the
examples that were not classified correctly by this rule. If the accuracy of the
rule is below this threshold the algorithm will terminate. Because the rules in
the rule set can be overlapping, the rules are first sorted according to their
accuracy on the training examples before they are returned to the user. New
examples are classified by the prediction of the first rule that is triggered.

It is clear that in the above algorithm, the subroutine of learning one
rule is of crucial importance. The rules returned by the routine must have
a good accuracy but do not necessarily have to cover a large part of the
input space. The exact implementation of this learning of one rule will be
different for each algorithm but usually follows either a bottom-up or top-
down search process. If the bottom-up approach is followed, the routine will
start from a very specific rule and drop in each iteration the attribute that
least influences the accuracy of the rule on the set of examples. Because each
dropped condition makes the rule more general, the search process is also
called specific-to-general search. The opposite approach is the top-down or
general-to-specific search: the search starts from the most general hypothesis
and adds in each iteration the attribute that most improves accuracy of the
rule on the set of examples.

Decision Trees: C4.5 and CART

Decision trees [11, 36, 49] are widely used in predictive modeling. A decision
tree is a recursive structure that contains a combination of internal and leaf
nodes. Each internal node specifies a test to be carried out on a single variable
and its branches indicate the possible outcomes of the test. An observation
can be classified by following the path from the root towards a leaf node.

46 D. Martens et al.

At each internal node, the corresponding test is performed and the outcome
indicates the branch to follow. With each leaf node, a value or class label is
associated.

In the rest of this section, we discuss briefly the most widespread algo-
rithm for decision tree induction, namely C4.5. It uses a divide-and-conquer
approach to construct a suitable tree from a set of training examples [48].

C4.5 induces decision trees based on information theoretic concepts. Let
p1 (p0) be the proportion of examples of class 1(0) in sample S. The entropy
of S is then calculated as follows:

Entropy(S) = −p1 log2(p1) − p0 log2(p0), (12)

whereby p0 = 1−p1. Entropy is used to measure how informative an attribute
is in splitting the data. Basically, the entropy measures the order (or disorder)
in the data with respect to the classes. It equals 1 when p1 = p0 = 0.5
(maximal disorder, minimal order) and 0 (maximal order, minimal disorder)
when p1 = 0 or p0 = 0. In the latter case, all observations belong to the
same class. Gain(S, xj) is defined as the expected reduction in entropy due to
sorting (splitting) on attribute xj :

Gain(S, xj) = Entropy(S) −
∑

v ∈ values(xj)

|Sv|
|S| Entropy(Sv), (13)

where values(xj) represents the set of all possible values of attribute xj , Sv the
subset of S where attribute xj has value v and |Sv| the number of observations
in Sv. The Gain criterion was used in ID3, the forerunner of C4.5, to decide
upon which attribute to split at a given node [48]. However, when this criterion
is used to decide upon the node splits, the algorithm favors splits on attributes
with many distinct values. In order to rectify this, C4.5 applies a normalization
and uses the gainratio criterion which is defined as follows:

Gainratio(S, xj) =
Gain(S, xj)

SplitInformation(S, xj)
with

SplitInformation(S, xj) = −
∑

k ∈ values(xj)

|Sk|
|S| log2

|Sk|
|S| .

(14)

Another very popular tree induction algorithm is CART, short for Clas-
sification and Regression Trees [11]. It is largely similar to C4.5, but with a
different splitting criterion (Gini Index) and pruning procedure. Additionally,
CART can also be applied to regression problems.

The tree induction algorithm C4.5 is applied to the data where the output
has been changed to the SVM predicted value, so that the tree approximates
the SVM. Since the trees can be converted into rules, we can regard this
technique as a rule extraction technique. This approach has been used in [5]

Issues and Application of SVM Rule Extraction 47

to extract rules from SVMs. A slightly different variant is proposed in [6],
where only the support vectors are used. A problem that arises with such
decision tree learners however, is that the deeper a tree is expanded, the fewer
data points are available to use to decide upon the splits. The next technique
we will discuss tries to overcome this issue.

Trepan

Trepan [17,18] is a popular pedagogical rule extraction algorithm. While it is
limited to binary classification problems, it is able to deal with both continuous
and nominal input variables. Trepan shows many similarities with the more
conventional decision-tree algorithms that learn directly from the training
observations, but differs in a number of respects.

First, when constructing conventional decision trees, a decreasing number
of training observations is available to expand nodes deeper down the tree.
Trepan overcomes this limitation by generating additional instances. More
specifically, Trepan ensures that at least a certain minimum number of obser-
vations are considered before assigning a class label or selecting the best split.
If fewer instances are available at a particular node, additional instances will
be generated until this user-specified threshold is met. The artificial instances
must satisfy the constraints associated with each node and are generated by
taking into account each feature’s marginal distribution. So, instead of tak-
ing uniform samples from (part of) the input space, Trepan first models the
marginal distributions and subsequently creates instances according to these
distributions while at the same time ensuring that the constraints to reach
the node are satisfied. For discrete attributes, the marginal distributions can
easily be obtained from the empirical frequency distributions. For continuous
attributes, Trepan uses a kernel density based estimation method [55] that
calculates the marginal distribution for attribute x as:

f(x) =
1
m

m∑
i=1

1√
2πσ

e−(
x−µi
2σ)2 (15)

with m the number of training examples, µi the value for this attribute for
example i and σ the width of the gaussian kernel. Trepan sets the value
for σ to 1/

√
m. One shortcoming of using the marginal distributions is that

dependencies between variables are not taken into account. Trepan tries to
overcome this limitation by estimating new models for each node and using
only the training examples that reach that particular node. These locally
estimated models are able to capture some of the conditional dependencies
between the different features. The disadvantage of using local models is that
they are based on less data, and might therefore become less reliable. Trepan
handles this trade-off by performing a statistical test to decide whether or not
a local model is used for a node. If the locally estimated distribution and the

48 D. Martens et al.

estimated distribution at the parent are significantly different, then Trepan
uses the local distributions, otherwise it uses the distributions of the parent.

Second, most decision tree algorithms, e.g., CART [11] and C4.5 [49], use
the internal (non-leaf) nodes to partition the input space based on one simple
feature. Trepan on the other hand, uses M-of-N expressions in its splits that
allow multiple features to appear in one split. Note that an M-of-N split is
satisfied when M of the N conditions are satisfied. 2-of-{a,¬b,c} is therefore
logically equivalent to (a∧¬b)∨ (a∧ c)∨ (¬b ∧ c). To avoid testing all of the
possibly large number of M-of-N combinations, Trepan uses a heuristic beam
search with a beam width of two to select its splits. The search process is
initialized by first selecting the best binary split at a given node based on the
information gain criteria ([17] (or gain ratio according to [18]). This split and
its complement are then used as basis for the beam search procedure that is
halted when the beam remains unchanged during an iteration. During each
iteration, the following two operators are applied to the current splits:

– M-of-N+1: the threshold remains the same but a new literal is added to
the current set. For example, 2-of-{a,b} is converted into 2-of-{a,b,c}

– M+1-of-N+1: the threshold is incremented by one and a new literal is
added to the current set. For example, 2-of-{a,b} is converted into 3-of-
{a,b,c}
Finally, while most algorithms grow decision trees in a depth-first manner,

Trepan employs the best-first principle. Expansion of a node occurs first for
those nodes that have the greatest potential to increase the fidelity of the tree
to the network.

Previous rule extraction studies have shown the potential benefit in per-
formance from using Trepan [4, 42], which can be mainly attributed to it’s
extra data generating capabilities.

Re-RX

The final promising pedagogical rule extraction technique that we will discuss
is Re-RX.

As typical data contain both discrete and continuous attributes, it would
be useful to have a rule set that separates the rule conditions involving these
two types of attributes to increase its interpretability. Re-RX is a recursive
algorithm that has been developed to generate such rules from a neural net-
work classifier [53]. Being pedagogical in its approach, it can be easily applied
for rule extraction from SVM.

The basic idea behind the algorithm is to try to split the input space first
using only the relevant discrete attributes. When there is no more discrete
attribute that can be used to partition the input space further, in each of
these subspaces the final partition is achieved by a hyperplane involving only
the continuous attributes. If we depict the generated rule set as a decision
tree, we would have a binary tree where all the node splits are determined

Issues and Application of SVM Rule Extraction 49

by the value of a single discrete attributes, except for the last split in each
tree branch where the condition of the split is a linear combination of the
continuous attributes. The outline of the algorithm is given below.

Input: A set of data samples S having the discrete attributes D and
continuous attributes C.
Output: A set of classification rules.

1. Train and prune a neural network using the data set S and all its attributes
D and C.

2. Let D′
and C′

be the sets of discrete and continuous attributes still present
in the network, respectively. And let S ′

be the set of data samples that
are correctly classified by the pruned network.

3. If D′
= ∅, then generate a hyperplane to split the samples in S ′

according
to the values of their continuous attributes C′

and stop.
Otherwise using only the discrete attributes D′

, generate the set of
classification rules R for the data set S ′

.
4. For each rule Ri generated:

If support(Ri) > δ1 and error(Ri) > δ2, then
– Let Si be the set of data samples that satisfy the condition of rule

Ri and Di be the set of discrete attributes that do not appear in rule
condition of Ri.

– If Di = ∅, then generate a hyperplane to split the samples in Si accord-
ing to the values of their continuous attributes Ci and stop.
Otherwise, call Re-RX(Si,Di, Ci).

Using samples that have been correctly classified by the pruned neural
network, the algorithm either (1) groups these samples into one of the two
possible classes by a single hyperplane if only continuous attributes are found
relevant by the network, or (2) generates a set of classification rules using only
the relevant discrete attributes. In latter case, the support and accuracy of
each generated rule are computed. Those rules that are found not to be satis-
factory according to predetermined criteria need to be refined. The refinement
of a rule is achieved by simply executing the algorithm Re-RX again on all
samples that satisfied the condition of this rule.

An example of a rule generated by Re-RX for credit scoring application is
shown in Table 2.

5 Issues Concerning SVM Rule Extraction

5.1 Rule Output

As we have seen in Sect. 4.1 rule expressiveness is one of the categories for clas-
sifying rule extraction techniques. While for performance criteria accuracy and
fidelity it is straightforward to rank the results (the higher the percentage of

50 D. Martens et al.

Table 2. Example rule set from Re-RX

Rule r: if Years Client < 5 and Purpose �= Private loan
Rule r1: if Number of applicants ≥ 2 and Owns real estate = yes, then

Rule r1a: if Savings amount + 1.11 Income - 38,249.74 Insurance - 0.46 Debt > -19,39,300
then applicant = good.
Rule r1b: else applicant = bad.

Rule r2: else if Number of applicants ≥ 2 and Owns real estate = no, then
Rule r2a: if Savings amount + 1.11 Income - 38,249.74 Insurance - 0.46 Debt > -16,38,720
then applicant = good.
Rule r2b: else applicant = bad.

Rule r3: else if Number of applicants = 1 and Owns real estate = yes, then
Rule r3a: if Savings amount + 1.11 Income - 38,249.74 Insurance - 0.46 Debt > -16,98,200
then applicant = good.
Rule r3b: else applicant = bad.

Rule r4: else if Number of applicants = 1 and Owns real estate = no, then
Rule r4a: if Savings amount + 1.11 Income - 38,249.74 Insurance - 0.46 Debt > -12,56,900
then applicant = good.
Rule r4b: else applicant = bad.

correctly classified test instances, the better), this is not the case for compre-
hensibility. Although one might argue that fewer rules is better, the question
arises how one can compare a propositional rule set with an M-of-N decision
tree, an oblique rule set or a fuzzy rule set. A decision tree can be converted
into a set of rules, where each leaf corresponds to one rule, but is a rule set
with 4 rules really just as comprehensible as a tree with 4 leaves? Don’t many
variants of a tree with 4 leaves exist (completely balanced, unbalanced, binary,
etc.)?

The comprehensibility of the chosen output and the ranking among the
possible formats is a very difficult issue that has not yet been completely
tackled by existing research. This is mainly due to the subjective nature
of “comprehensibility”, which is not just a property of the model but also
depends on many other factors, such as the analyst’s experience with the
model and his/her prior knowledge. Despite this influence of the observer,
some representation formats are generally considered to be more easily inter-
pretable than others. In [32], an experiment was performed to compare the
impact of several representation formats on the aspect of comprehensibility.
The formats under consideration were decision tables, (binary) decision trees,
a textual description of propositional rules and a textual description of oblique
rules. In addition to a comparison between the different representation for-
mats, the experiment also investigated the influence of the size or complexity
of each of these representations on their interpretability.

It was concluded that decision tables provide significant advantages if com-
prehensibility is of crucial importance. The respondents of the experiment
were able to answer a list of questions faster, more accurately and more confi-
dently with decision tables than with any of the other representation formats.
A majority of the users also found decision tables the easiest representation
format to work with. For the relation between complexity and comprehensibil-
ity the results were less ideal: whatever the representation format, the number

Issues and Application of SVM Rule Extraction 51

of correct answers of the respondents was much lower for the more complex
models. For rule extraction research, this result implies that only small mod-
els should be extracted as the larger models are deemed too complex to be
comprehensible. We would promote collaboration between the data mining
and cognitive science communities to create algorithms and representations
that are both effective as well as comprehensible to the end-users.

5.2 High Dimensional Data

SVMs are able to deal with high dimensional data through the use of the
regularization parameter C. This advantage is most visible in high dimensional
problem domains such as text mining [33] and in bioinformatics [13]. A case
study on text mining has been put forward in the introductory chapter by
Diederich.

Rule induction techniques on the other hand, have more problems with
this curse of dimensionality [57]. At this moment, we are not aware of any
SVM rule extraction algorithm that can flexibly deal with high dimensional
data, for which it is known that SVMs are particularly suitable.

5.3 Constraint Based Learning: Knowledge Fusion Problem

Although many powerful classification algorithms have been developed, they
generally rely solely on modeling repeated patterns or correlations which occur
in the data. However, it may well occur that observations, that are very evident
to classify by the domain expert, do not appear frequently enough in the data
in order to be appropriately modeled by a data mining algorithm. Hence, the
intervention and interpretation of the domain expert still remains crucial. A
data mining approach that takes into account the knowledge representing the
experience of domain experts is therefore much preferred and of great focus
in current data mining research. A model that is in line with existing domain
knowledge is said to be justifiable [43].

Whenever comprehensibility is required, justifiability is a requirement as
well. Since the aim of SVM rule extraction techniques is to provide compre-
hensible models, this justifiability issue becomes of great importance. The
academically challenging problem of consolidating the automatically gener-
ated data mining knowledge with the knowledge reflecting experts’ domain
expertise, constitutes the knowledge fusion problem (see Fig. 6). The final
goal of the knowledge fusion problem is to provide models that are accurate,
comprehensible and justifiable, and thus acceptable for implementation. The
most frequently encountered and researched aspect of knowledge fusion is the
monotonicity constraint. This constraint demands that an increase in a cer-
tain input(s) cannot lead to a decrease in the output. More formally (similarly
to [24]), given a data set D = {xi, yi}n

i=1, with xi = (xi
1, x

i
2, . . . , x

i
m) ∈ X =

X1 × X2 × . . . Xm, and a partial ordering ≤ defined over this input space X .

52 D. Martens et al.

Consolidated
Knowledge

expert database

Knowledge
Acquisition

Data
Mining

Knowledge
Fusion

Fig. 6. The knowledge fusion process

Over the space Y of class values yi, a linear ordering ≤ is defined. Then the
classifier f : xi 	→ f(xi) ∈ Y is monotone if (16) holds.

xi ≤ xj ⇒ f(xi) ≤ f(xj), ∀i, j (or f(xi) ≥ f(xj), ∀i, j). (16)

For instance, increasing income, keeping all other variables equal, should yield
a decreasing probability of loan default. Therefore if client A has the same
characteristics as client B, but a lower income, then it cannot be that client
A is classified as a good customer and client B a bad one.

In linear mathematical models, generated by e.g., linear and logistic regres-
sion, the monotonicity constraint is fulfilled by demanding that the sign of the
coefficient of each of the explanatory variables is the same as the expected sign
for that variable. For instance, since the probability of loan default should be
negatively correlated to the income, the coefficient of the income variable is
expected to have a negative sign.

Several adaptions to existing classification techniques have been put for-
ward to deal with monotonicity, such as for Bayesian learning [1], classification
trees [7,21,24], classification rules [43] and neural networks [54,66]; e.g., in the
medical diagnosis [47], house price prediction [65] and credit scoring [21, 54]
domains.

Until now this justifiability constraint has not been addressed in the SVM
rule extraction literature, although the application of rule induction tech-
niques that do obtain this feature, such as AntMiner+ [43] and tree inducers
proposed in [7,24], as SVM rule extraction techniques is a first step into that
direction.

Issues and Application of SVM Rule Extraction 53

5.4 Specificness of Underlying Black Box Model

Although decompositional techniques might better exploit the advantages of
the underlying black box model, a danger exists that a too specific model
is required. In ANN rule extraction almost all decompositional techniques
require a certain architecture for the ANN, for example only one hidden node,
or the need for product units.

As we’ve seen, the technique by Fung et al. also requires a special kind
of SVM: a linear one. We believe it is important for a successful SVM rule
extraction technique not to require a too specific SVM, such as for instance
a LS-SVM, or a RVM. Although this is not yet a real issue with SVM rule
extraction, this can certainly be observed in ANN rule extraction and should
thus be kept in mind when developing new techniques.

5.5 Regression

From Table 1 it can be seen that only few rule extraction techniques focus on
the regression task. Still, there is only little reason for exploring the use of rule
extraction for classification only, as the SVM is just as successful for regression
tasks. The same comprehensibility issues are important for regression, thereby
providing the same motivation for rule extraction.

5.6 Availability of Code

A final issue in rule extraction research is the lack of executable code for
most of the algorithms. In [19], it was already expressed that availability of
software is of crucial importance to achieve a wide impact of rule extraction.
However, only few algorithms are publicly available. This makes it difficult
to gain an objective view of the algorithms’ performance or to benchmark
multiple algorithms on a data set. Furthermore, we are convinced that it is
not only useful to make the completed programs available, but also to provide
code for the subroutines used within these programs as they can often be
shared. For example, the creation of artificial observations in a constrained
part of the input space is a routine that is used by several methods, e.g.,
Trepan, ANN-DT and Iter. Other routines that can benefit from sharing and
that can facilitate development of new techniques are procedures to query the
underlying model or routines to optimize the returned rule set.

6 Credit Scoring Application

6.1 Credit Scoring in Basel II

The introduction of the Basel II Capital Accord has encouraged financial
institutions to build internal rating systems assessing the credit risk of their
various credit portfolios. One of the key outputs of an internal rating system

54 D. Martens et al.

is the probability of default (PD), which reflects the likelihood that a coun-
terparty will default on his/her financial obligation. Since the PD modeling
problem basically boils down to a discrimination problem (defaulter or not),
one may rely on the myriad of classification techniques that have been sug-
gested in the literature. However, since the credit risk models will be subject
to supervisory review and evaluation, they must be easy to understand and
transparent. Hence, techniques such as neural networks or support vector
machines are less suitable due to their black box nature, while rules extracted
from these non-linear models are indeed appropriate.

6.2 Classification Model

We have applied two rule extraction techniques with varying properties to the
German credit scoring data set, publicly available from the UCI data reposi-
tory [26]. The provided models illustrate some of the issues, mentioned before,
such as the need to incorporate domain knowledge, the different comprehen-
sibility accompanied by different rule outputs, and the benefits of decision
tables.

First, a Trepan tree is provided in Fig. 7, while Table 3 provides the rules
extracted by RIPPER on the data set with class labels predicted by the
SVM. The attentive reader might also notice some intuitive terms, both in
the Trepan tree, and in RIPPER rules. For RIPPER, for instance, the fourth
rule is rather unintuitive: an applicant that has paid back all his/her previous
loans in time (and does not fulfill any of the previous rules) is classified as
a bad applicant. In the Trepan tree, the third split has similar intuitiveness
problems. This monotonicity issue, as discussed in Sect. 5.3, can restrict or
even prohibit the implementation of these models in practical decision support
systems.

When we compare the Trepan tree, the RIPPER rule set, and the Re-
RX rule example in Table 2, we clearly see the rule expressiveness issue of
the different rule outputs. As decision tables seem to provide the most com-
prehensible decision support system (see Sect. 5.1), we have transformed the
RIPPER rule set into a decision table with the use of the Prologa software
(Fig. 8).3 The reader will surely agree that the decision table provides some
advantages over the rule set, e.g., where in the rule set one needs to consider
the rules in order, this is not the case for the decision table.

Note that the more rules exist, the more compact the decision table will
be compared to the set of rules. We mention this, as the benefit of the the
decision table is expected to be bigger for the typical, larger rule sets.

3 Software available at http://www.econ.kuleuven.ac.be/prologa/.

Issues and Application of SVM Rule Extraction 55

Yes
1 of {Checking Account < 0DM, Duration ≥ 3y}

2 of {Critical Account, Credit amount < 5000DM}

No

Bad

Bad

Good

Good

Good

c
Yes No

Yes No

Yes No

Fig. 7. Trepan tree

Table 3. Example rule set from RIPPER

if (Checking Account < 0DM) and (Housing = rent)
then Applicant = Bad

elseif (Checking Account < 0DM) and (Property = car or other) and
(Present residence since ≤ 3y)
then Applicant = Bad

elseif (Checking Account < 0DM) and (Duration ≥ 30m)
then Applicant = Bad

elseif (Credit history = None taken/All paid back duly)
then Applicant = Bad

elseif (0 ≤ Checking Account < 200DM) and (Age ≤ 28) and
(Purpose = new car)
then Applicant = Bad

else Applicant = Good

56 D. Martens et al.

Fig. 8. Decision table classifying a loan applicant, based on RIPPER’s rule set of
Table 3

7 Alternatives to Rule Extraction

A final critical point needs to be made concerning SVM rule extraction, since
other alternatives exist for obtaining comprehensible models. Although the
expressiveness of rules is superior to the alternative outputs, it is possible that
one of the alternatives is more suitable for certain applications. Therefore we
mention some of the most interesting ones in this final section.

7.1 Inverse Classification

Sensitivity analysis is the study of how input changes influence the change in
the output, and can be summarized by (17).

f(x + ∆x) = f(x) + ∆f (17)

Inverse classification is closely related to sensitivity analysis and involves
determining the minimum required change to a data point in order to reclas-
sify it as a member of a (different) preferred class [39]. This problem is called
the inverse classification problem, since the usual mapping is from a data
point to a class, while here it is the other way around. Such information can
be very helpful in a variety of domains: companies, and even countries, can
determine what macro-economic variables should change so as to obtain a
better bond, competitiveness or terrorism rating. Similarly, a financial insti-
tution can provide (more) specific reasons why a customer’s application was
rejected, by simply stating how the customer can change to the good class,
e.g., by increasing income by a certain amount. A heuristic, genetic-algorithm
based approach is used in [39].

The use of distance to the nearest support vector as an approximator for
the distance to the decision boundary (thus distance to the other class) might
be useful in this approach, and constitutes an interesting issue for future
research within this domain.

7.2 Self Organizing Maps

SOMs were introduced in 1982 by Teuvo Kohonen [37] and have been used in a
wide array of applications like the visualization of high-dimensional data [67],
clustering of text documents [27], identification of fraudulent insurance claims

Issues and Application of SVM Rule Extraction 57

[12] and many others. An extensive overview of successful applications can be
found in [22] and [38]. A SOM is a feedforward neural network consisting of
two layers [57]. The neurons from the output layer are usually ordered in a
low-dimensional (typically two-dimensional) grid.

Self-organising maps are often called topology-preserving maps, in the
sense that similar inputs, will be close to each other in the final output grid.
First, the SOM is trained on the available data with the independent vari-
ables, followed by assigning a color to each neuron based on the classification
of the data instances projected on that neuron. In Fig. 9, light and dark shades
indicate respectively “non corrupt” and “highly corrupt” countries, according
their Corruption Perceptions Index [31]. We can observe that the lower right
corner contains the countries perceived to be most corrupt (e.g., Pakistan
(PAK), Nigeria (NIG), Cameroon (CMR) and Bangladesh (BGD)). At the
opposite side, it can easily be noted that the North-European countries are
perceived to be among the least corrupt: they are all situated in the white-
colored region at the top of the map. As the values for the three consecutive
years are denoted with different labels (e.g., usa, Usa and USA), one can notice
that most European countries were projected on the upper-half of the map
indicating a modest amount of corruption and that several countries seemed
to be in transition towards a more European, less corrupt, model.

7.3 Incremental Approach

An incremental approach is followed so as to find a trade-off between simple,
linear techniques with excellent readability, but restricted model flexibility and

sgp
SGP

Hkg
hkg

HKG

TWN

Twn
twn

jor
JOR

mys
VEN

ven

Chn
CHN

Sgp

Mys

MYS

Ven

IDN

chn

Isr

isr

Nzl
nzl

NZL

ISR

Mex

COL

idn

Idn
EGY

mex

Col
col

Tur

Usa
usa
USA

AUS

Can
aus

can

CHL

Chl
chl

MEX

ECU

Ecu
ecu

Aus
CAN

ARG

Arg
arg

PHL

Phl
phl

Swe
nor

CHE

irl
IRL

BOL

bol

Jor

Nor
NOR

Che
che

Kor
kor

THA

BRA

bra

Bra

Zaf

Bol

fin
swe
FIN

SWE

jpn

Irl
Jpn

KOR

tha

Tha
TUR

Fin

Aut
aut

prt

tur

Egy
egy

Ken
ken

Nld
nld

AUT

Deu
PRT

Rus
rus

RUS

pak
PAK

BEL
JPN
NLD
GBRbel

Bel
ESP

GRC

Grc
grc

IND

ind

bgd
BGD

Pak

gbr

fra

ITA

ita
esp

Esp

Ind

Bgd

Cmr
Nga
cmr

Gbr
FRA
DEU

Fra
deu

Ita

CZE

Prt

CMR

Dnk
dnk
DNK

hun
HUN
POLCze

cze
polHun

Pol

zaf
ZAF

KEN

nga
NGA

Uga
uga
UGA

Fig. 9. Visualizing corruption index with the use of SOMs [31]

58 D. Martens et al.

Linear regression

Intrinsically linear regression

SVM

perform
ance

readability

Fig. 10. From linear to non-linear models

complexity, and advanced techniques with reduced readability but extended
flexibility and generalization behavior, as shown by Fig. 10.

The approach, introduced by Van Gestel et al. for credit scoring [60–62],
constructs an ordinal logistic regression model in a first step, yielding latent
variable zL. In this linear model, a ratio xi influences the latent variable zL in
a linear way. However, it seems reasonable that a change of a ratio with 5%
should not always have the same influence on the score [9]. Therefore, non-
linear univariate transformations of the independent variables (xi 	→ fi(xi))
are to be considered in the next step. This model is called intrinsically linear
in the sense that after applying the non-linear transformation to the explana-
tory variables, a linear model is being fit [9]. A non-linear transformation
of the explanatory variables is applied only when it is reasonable from both
financial as well as statistical point of view. For instance, for rating insurance
companies, the investment yield variable is transformed as shown by Fig. 11,4

with cutoff values at 0% and 5%; values more than 5% do not attribute to a
better rating because despite the average, it may indicate higher investment
risk [62].

Finally, non-linear SVM terms are estimated on top of the existing intrin-
sically model by means of a partial regression, where the parameters β are
estimated first assuming that w = 0 and in a second step the w parameters
are optimized with β fixed from the previous step. This combination of linear,
intrinsically linear and SVM terms is formulated in (18).

zL = −β1x1 − β2x2 − . . . − βnxn

zIL = −β1x1 − . . . − βmxm − βm+1fm+1(xm+1) − . . . − βnfn(xn)

zIL+SVM =

intrinsically linear part︷ ︸︸ ︷
linear part︷ ︸︸ ︷

−β1x1 − . . . − βmxm

nonlinear transformations︷ ︸︸ ︷
−βm+1f(xm+1) − . . . − βnf(xn)

−w1ϕ1(x) − . . . − wpϕp(x)︸ ︷︷ ︸
SVM terms

(18)

4 A sigmoid transformation x �→ f(x) = tanh(x × a + b), was used, with
hyperparameters a and b estimated via a grid search.

Issues and Application of SVM Rule Extraction 59

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

x=Investment Yield

f(
x
)

Fig. 11. Visualisation of the univariate non-linear transformations applied to the
investment yield variable in the intrinsically linear model [62]

The incremental approach has been applied to provide credit ratings for
countries [60], banks [61] and insurance companies [62].

8 Conclusion

In recent years, the SVM has proved its worth and has been successfully
applied in a variety of domains. However, what remains as an obstacle is its
opaqueness. This lack of transparency can be overcome through rule extrac-
tion. SVM rule extraction is still in its infancy, certainly compared to ANN
rule extraction. As we put forward in this chapter, much can be transferred
from the well researched ANN rule extraction domain, issues as well as the
pedagogical rule extraction techniques. In this chapter, we have listed exist-
ing SVM rule extraction techniques and complemented this list with the often
overlooked pedagogical ANN rule extraction techniques.

Many of the issues related to this field are still completely neglected or
under-researched within the rule extraction domain, such as the need for intu-
itive rule sets, the ability to handle high dimensional data, and a ranking for
rule expressiveness among the different rule outputs. We hope this chapter
will contribute to further research to this very relevant topic.

9 Acknowledgement

We would like to thank the Flemish Research Council (FWO) for financial
support (Grant G.0615.05).

References

1. E. Altendorf, E. Restificar, and T.G. Dietterich. Learning from sparse data by
exploiting monotonicity constraints. In Proceedings of the 21st Conference on
Uncertainty in Artificial Intelligence, Edinburgh, Scotland, 2005.

60 D. Martens et al.

2. Robert Andrews, Joachim Diederich, and Alan B. Tickle. Survey and cri-
tique of techniques for extracting rules from trained artificial neural networks.
Knowledge-Based Systems, 8(6):373–389, 1995.

3. B. Baesens, R. Setiono, C. Mues, and J. Vanthienen. Using neural network rule
extraction and decision tables for credit-risk evaluation. Management Science,
49(3):312–329, 2003.

4. B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J.A.K. Suykens, and
J. Vanthienen. Benchmarking state-of-the-art classification algorithms for credit
scoring. Journal of the Operational Research Society, 54(6):627–635, 2003.

5. N. Barakat and J. Diederich. Learning-based rule-extraction from support
vector machines. In 14th International Conference on Computer Theory and
Applications ICCTA 2004 Proceedings, Alexandria, Egypt, 2004.

6. N. Barakat and J. Diederich. Eclectic rule-extraction from support vector
machines. International Journal of Computational Intelligence, 2(1):59–62,
2005.

7. A. Ben-David. Monotonicity maintenance in information-theoretic machine
learning algorithms. Machine Learning, 19(1):29–43, 1995.

8. C.M. Bishop. Neural networks for pattern recognition. Oxford University Press,
Oxford, UK, 1996.

9. G.E.P. Box and D.R. Cox. An analysis of transformations. Journal of the Royal
Statistical Society Series B, 26:211–243, 1964.

10. O. Boz. Converting A Trained Neural Network To A Decision Tree. DecText -
Decision Tree Extractor. PhD thesis, Lehigh University, Department of
Computer Science and Engineering, 2000.

11. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression
trees. Wadsworth and Brooks, Monterey, CA, 1994.

12. P.L. Brockett, X. Xia, and R. Derrig. Using kohonen’s self-organizing feature
map to uncover automobile bodily injury claims fraud. International Journal of
Risk and Insurance, 65:245–274, 1998.

13. M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet, M. Ares Jr., and
D. Haussler. Support vector machine classification of microarray gene expression
data. Technical UCSC-CRL-99-09, University of California, Santa Cruz, 1999.

14. F. Chen. Learning accurate and understandable rules from SVM classifiers.
Master’s thesis, Simon Fraser University, 2004.

15. P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning,
3(4):261–283, 1989.

16. W. Cohen. Fast effective rule induction. In Armand Prieditis and Stuart Russell,
editors, Proceedings of the 12th International Conference on Machine Learning,
pages 115–123, Tahoe City, CA, 1995. Morgan Kaufmann Publishers.

17. M.W. Craven. Extracting Comprehensible Models from Trained Neural Net-
works. PhD thesis, Department of Computer Sciences, University of Wisconsin-
Madison, 1996.

18. M.W. Craven and J.W. Shavlik. Extracting tree-structured representations of
trained networks. In D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo, editors,
Advances in Neural Information Processing Systems, volume 8, pages 24–30.
The MIT Press, 1996.

19. M.W. Craven and J.W. Shavlik. Rule extraction: Where do we go from here?
Working paper, University of Wisconsin, Department of Computer Sciences,
1999.

Issues and Application of SVM Rule Extraction 61

20. N. Cristianini and J. Shawe-Taylor. An introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press, New
York, NY, USA, 2000.

21. H. Daniels and M. Velikova. Derivation of monotone decision models from non-
monotone data. Discussion Paper 30, Tilburg University, Center for Economic
Research, 2003.

22. G. Deboeck and T. Kohonen. Visual Explorations in Finance with selforganizing
maps. Springer-Verlag, 1998.

23. EMC. Groundbreaking study forecasts a staggering 988 billion gigabytes of
digital information created in 2010. Technical report, EMC, March 6, 2007.

24. A.J. Feelders and M. Pardoel. Pruning for monotone classification trees. In
Advanced in intelligent data analysis V, volume 2810, pages 1–12. Springer,
2003.

25. G. Fung, S. Sandilya, and R.B. Rao. Rule extraction from linear support vector
machines. In Proceedings of the 11th ACM SIGKDD international Conference
on Knowledge Discovery in Data Mining, pages 32–40, 2005.

26. S. Hettich and S. D. Bay. The uci kdd archive [http://kdd.ics.uci.edu], 1996.
27. T. Honkela, S. Kaski, K. Lagus, and T. Kohonen. WEBSOM—self-organizing

maps of document collections. In Proceedings of Workshop on Self-Organizing
Maps (WSOM’97), pages 310–315. Helsinki University of Technology, Neural
Networks Research Centre, Espoo, Finland, 1997.

28. J. Huysmans, B. Baesens, and J. Vanthienen. ITER: an algorithm for predictive
regression rule extraction. In 8th International Conference on Data Warehousing
and Knowledge Discovery (DaWaK 2006), volume 4081, pages 270–279. Springer
Verlag, lncs 4081, 2006.

29. J. Huysmans, B. Baesens, and J. Vanthienen. Using rule extraction to improve
the comprehensibility of predictive models. Research 0612, K.U.Leuven KBI,
2006.

30. J. Huysmans, B. Baesens, and J. Vanthienen. Minerva: sequential covering for
rule extraction. 2007.

31. J. Huysmans, D. Martens, B. Baesens, J. Vanthienen, and T. van Gestel.
Country corruption analysis with self organizing maps and support vector
machines. In International Workshop on Intelligence and Security Informatics
(PAKDD-WISI 2006), volume 3917, pages 103–114. Springer Verlag, lncs 3917,
2006.

32. J. Huysmans, C. Mues, B. Baesens, and J. Vanthienen. An empirical evaluation
of the comprehensibility of decision table, tree and rule based predictive models.
2007.

33. T. Joachims. Learning to Classify Text Using Support Vector Machines: Meth-
ods, Theory and Algorithms. Kluwer Academic Publishers, Norwell, MA, USA,
2002.

34. U. Johansson, R. König, and L. Niklasson. Rule extraction from trained neural
networks using genetic programming. In Joint 13th International Conference
on Artificial Neural Networks and 10th International Conference on Neural
Information Processing, ICANN/ICONIP 2003, pages 13–16, 2003.

35. U. Johansson, R. König, and L. Niklasson. The truth is in there - rule extraction
from opaque models using genetic programming. In 17th International Florida
AI Research Symposium Conference FLAIRS Proceedings, 2004.

62 D. Martens et al.

36. R. Kohavi and J.R. Quinlan. Decision-tree discovery. In W. Klosgen and
J. Zytkow, editors, Handbook of Data Mining and Knowledge Discovery, pages
267–276. Oxford University Press, 2002.

37. T. Kohonen. Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43:59–69, 1982.

38. T. Kohonen. Self-Organising Maps. Springer-Verlag, 1995.
39. M. Mannino and M. Koushik. The cost-minimizing inverse classification prob-

lem: A genetic algorithm approach. Decision Support Systems, 29:283–300,
2000.

40. U. Markowska-Kaczmar and M. Chumieja. Discovering the mysteries of neural
networks. International Journal of Hybrid Intelligent Systems, 1(3–4):153–163,
2004.

41. U. Markowska-Kaczmar and W. Trelak. Extraction of fuzzy rules from trained
neural network using evolutionary algorithm. In European Symposium on
Artificial Neural Networks (ESANN), pages 149–154, 2003.

42. D. Martens, B. Baesens, T. Van Gestel, and J. Vanthienen. Comprehensi-
ble credit scoring models using rule extraction from support vector machines.
European Journal of Operational Research, Forthcoming.

43. D. Martens, M. De Backer, R. Haesen, B. Baesens, C. Mues, and J. Vanthienen.
Ant-based approach to the knowledge fusion problem. In Proceedings of the Fifth
International Workshop on Ant Colony Optimization and Swarm Intelligence,
Lecture Notes in Computer Science, pages 85–96. Springer, 2006.

44. D. Martens, M. De Backer, R. Haesen, M. Snoeck, J. Vanthienen, and
B. Baesens. Classification with ant colony optimization. IEEE Transaction on
Evolutionary Computation, Forthcoming.

45. R. Michalski. On the quasi-minimal solution of the general covering problem.
In Proceedings of the 5th International Symposium on Information Processing
(FCIP 69), pages 125–128, 1969.

46. H. Núñez, C. Angulo, and A. Català. Rule extraction from support vector
machines. In European Symposium on Artificial Neural Networks (ESANN),
pages 107–112, 2002.

47. M. Pazzani, S. Mani, and W. Shankle. Acceptance by medical experts of rules
generated by machine learning. Methods of Information in Medicine, 40(5):380–
385, 2001.

48. J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
49. J.R. Quinlan. C4.5 programs for machine learning. Morgan Kaufmann, 1993.
50. J.R. Rabuñal, J. Dorado, A. Pazos, J. Pereira, and D. Rivero. A new approach

to the extraction of ANN rules and to their generalization capacity through GP.
Neural Computation, 16(47):1483–1523, 2004.

51. B.D. Ripley. Neural networks and related methods for classification. Journal of
the Royal Statistical Society B, 56:409–456, 1994.

52. G.P.J. Schmitz, C. Aldrich, and F.S. Gouws. Ann-dt: An algorithm for the
extraction of decision trees from artificial neural networks. IEEE Transactions
on Neural Networks, 10(6):1392–1401, 1999.

53. R. Setiono, B. Baesens, and C. Mues. Risk management and regulatory com-
pliance: A data mining framework based on neural network rule extraction.
In Proceedings of the International Conference on Information Systems (ICIS
2006), 2006.

54. J. Sill. Monotonic networks. In Advances in Neural Information Processing
Systems, volume 10. The MIT Press, 1998.

Issues and Application of SVM Rule Extraction 63

55. D.W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman
and Hall, 1986.

56. I.A. Taha and J. Ghosh. Symbolic interpretation of artificial neural networks.
IEEE Transactions on Knowledge and Data Engineering, 11(3):448–463, 1999.

57. P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison
Wesley, Boston, MA, 2005.

58. M. Tipping. The relevance vector machine. In Advances in Neural Information
Processing Systems, San Mateo, CA. Morgan Kaufmann, 2000.

59. M. Tipping. Sparse bayesian learning and the relevance vector machine. Journal
of Machine Learning Research, 1:211–244, 2001.

60. T. Van Gestel, B. Baesens, P. Van Dijcke, J. Garcia, J.A.K. Suykens, and J. Van-
thienen. A process model to develop an internal rating system: credit ratings.
Decision Support Systems, forthcoming.

61. T. Van Gestel, B. Baesens, P. Van Dijcke, J.A.K. Suykens, J. Garcia, and
T. Alderweireld. Linear and non-linear credit scoring by combining logistic
regression and support vector machines. Journal of Credit Risk, 1(4), 2006.

62. T. Van Gestel, D. Martens, B. Baesens, D. Feremans, J; Huysmans, and
J. Vanthienen. Forecasting and analyzing insurance companies ratings.

63. T. Van Gestel, J.A.K. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene,
B. De Moor, and J. Vandewalle. Benchmarking least squares support vector
machine classifiers. CTEO, Technical Report 0037, K.U. Leuven, Belgium, 2000.

64. V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag New
York, Inc., New York, NY, USA, 1995.

65. M. Velikova and H. Daniels. Decision trees for monotone price models. Compu-
tational Management Science, 1(3–4):231–244, 2004.

66. M. Velikova, H. Daniels, and A. Feelders. Solving partially monotone problems
with neural networks. In Proceedings of the International Conference on Neural
Networks, Vienna, Austria, March 2006.

67. J. Vesanto. Som-based data visualization methods. Intelligent Data Analysis,
3:111–26, 1999.

68. Z.-H. Zhou, Y. Jiang, and S.-F. Chen. Extracting symbolic rules from trained
neural network ensembles. AI Communications, 16(1):3–15, 2003.

Part II

Algorithms and Techniques

Rule Extraction for Transfer Learning

Lisa Torrey1, Jude Shavlik1, Trevor Walker1, and Richard Maclin2

1 Department of Computer Science, University of Wisconsin, Madison, WI 53706,
USA

2 Department of Computer Science, University of Minnesota, Duluth, MN 55812,
USA

Summary. This chapter discusses transfer learning, which is one practical applica-
tion of rule extraction. In transfer learning, information from one learning experience
is applied to speed up learning in a related task. The chapter describes several tech-
niques for transfer learning in SVM-basedreinforcement learning, and shows results
from a case study.

1 Introduction

Typically rule extraction is done for the purposes of human interpretation.
However, there are other possible applications of rule extraction. One practical
application is transfer learning, in which knowledge learned in one task is used
to aid in learning a related task. The extracted rules, which explain the learned
solution to the first task, can be considered advice on how to approach the
second task.

Transfer learning, besides being desirable in its own right, could be viewed
as another way to evaluate extracted rules. That is, how well extracted knowl-
edge transfers to a related task is a potential way of judging the value of the
rule extraction algorithm. Thus transfer can be used as an alternative to tra-
ditional measures such as complexity and faithfulness to the original model.
While this method is more objective and more computational than some of
the traditional measures, it requires a trusted algorithm for making use of
extracted knowledge.

This chapter discusses transfer learning via advice taking, in particular for
reinforcement learning (RL) tasks that use support vector machines (SVMs)
as function approximators. After some background information on transfer,
advice, and RL with SVMs, it describes two methods for rule extraction in
this context and presents a case study from our recent research.

L. Torrey et al.: Rule Extraction for Transfer Learning, Studies in Computational Intelligence

(SCI) 80, 67–82 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

68 L. Torrey et al.

Learn
source task

Learn
target taskknowledge

acquired

target task
performance

experience

with transfer
without transfer

Fig. 1. With transfer from a related source task, the learning curve for the tar-
get task might improve in one or more of the ways shown above: higher initial
performance, faster performance increase, and higher asymptotic performance

2 Transfer Learning and Advice Taking

Machine learning tasks are often addressed independently, under the implicit
assumption that each new task has no relation to the tasks that came
before. However, many machine learning domains contain several related
tasks. Instead of learning each one from scratch, agents in such domains should
be able to use knowledge learned in previous tasks to speed up learning in
later ones. This is the goal of transfer learning (see Fig. 1).

For example, consider the domain of simulated soccer (e.g., [10]). Suppose
an agent has learned a game of keeping the ball from its opponents by passing
amongst its teammates, and the next game to learn is to score goals against
opponents. Since these games have some similarities, the agent could benefit
from using its knowledge from the first game while learning the second. In this
case we refer to the first game as the source task and the second game as the
target task.

There are several approaches to transfer learning in RL that do not involve
rule extraction. Examples are Taylor et al. [15], who transfer Q-functions
directly, and Soni and Singh [11], who transfer multi-step action sequences
known as options. Here, however, we will focus on approaches that use rule
extraction and apply those rules as advice for the target task.

Advice is a set of approximately correct instructions for a task. It may
have some errors, and it usually does not provide a complete solution. Due to
differences between the source and target tasks in transfer learning, extracted
rules are likely to have these characteristics. In advice-taking RL algorithms,
advice can be followed, refined, or ignored according to its value. In the target
task, this means extracted rules can be obeyed if they lead to positive transfer,
but quickly get refined or ignored if they lead to negative transfer.

For example, in the simulated soccer domain where the state features are
distances and angles between players, some reasonable advice might look like:

Rule Extraction for Transfer Learning 69

if distance(nearestOpponent, self) ≤ 5 and
angle(teammate, self, minAngleOpponent(teammate)) ≥ 40

then prefer pass(teammate) over other actions

This advice tells an agent to pass to a teammate when two conditions hold:
(1) an opponent is too close to the agent, and (2) the smallest angle from the
teammate to the agent to an opponent is large enough (i.e. there is an open
passing lane).

There is a substantial body of work on advice taking in RL. Examples are
Clouse and Utgoff [2], who allow a human observer to step in and advise the
learner to take a specific action; Driessens and Dzeroski [4], who use human
guidance to create a partial initial Q-function; and Kuhlmann et al. [5], who
propose giving advice that increases Q-values by a fixed amount. As most
advice-taking approaches do, these studies assume that advice comes directly
from a human interacting with the learner. Here, however, we will focus on
advice that is automatically extracted from a source task.

3 SVMs in Reinforcement Learning

In reinforcement learning [14], an agent navigates through an environment
trying to earn rewards. The environment’s state is typically described by a
set of features. After each action the agent takes, it receives a reward and
observes the next state.

In Q-learning [19], one common form of RL, the agent builds a Q-function
to estimate the long-term value of taking an action from a state. An agent’s
policy is typically to take the action with the highest Q-value in the current
state, except for occasional exploratory actions that are needed to discover
better policies. After taking the action and receiving a reward, the agent
updates its Q-value estimates for the current state.

The Q-function can be approximated with SVM regression models [3],
so that each action’s Q-value is estimated by a weighted linear sum of the
state features. In this case, after taking a sequence of actions and receiving
a corresponding sequence of rewards, the RL agent learns a linear SVM with
weights that minimize:

ModelSize + C × DataMisfit

Here ModelSize is the sum of the absolute values of the feature weights,
and DataMisfit is the disagreement between the learned function’s outputs and
the correct outputs (estimated based on the rewards received). The numeric
parameter C specifies the relative importance of minimizing disagreement
with the data versus finding a simple model.

The agent learns many intermediate SVM models as its performance
improves. Eventually it reaches an asymptote, so there is a final model that
represents the learned task. This is the model from which rules are extracted
to perform transfer learning.

70 L. Torrey et al.

Advice can be included in this RL algorithm with Knowledge-Based Sup-
port Vector Regression, abbreviated KBKR [6–8]. This algorithm adds another
term to the optimization problem, so that it minimizes:

ModelSize + C × DataMisfit + µ × AdviceMisfit

Here AdviceMisfit is the disagreement between the learned function’s out-
puts and the advice constraints. The numeric parameter mu specifies the
relative importance of minimizing disagreement with the advice versus mini-
mizing the original quantity. Over time mu decays and C increases so that the
advice has less impact as the learner gains experience and no longer requires
guidance.

Advice therefore becomes a soft constraint on the task solution. Depending
on whether the advice agrees with the training examples, the learner can fully
follow the rule, only follow it approximately (which is like refining it), or ignore
it altogether.

The details behind this intuitive idea are as follows. Let A be a matrix in
which each row contains the feature values for a training example. Let y be
the vector of Q-value estimates (for a single action) for this set of examples.
We wish to model the Q-function as a weighted sum:

Aw + b−→e = y, (1)

where w is a vector of weights, b is a scalar offset, and −→e denotes a vector of
ones (we omit this for simplicity from now on).

To learn a good Q-function, we want to find w and b to satisfy this equa-
tion. However, an exact solution may not exist. Also, it is preferable to have
non-zero weights for only a few important features in order to keep the model
simple and avoid overfitting the training examples. Therefore we include a
vector of slack variables s to allow inaccuracies on some examples, and a
penalty parameter C for trading off these inaccuracies with the complexity of
the solution. The linear equation then becomes a linear minimization problem:

min
(w,b,s)

||w||1 + ν|b| + C||s||1
s.t. |Aw + b − y| ≤ s,

(2)

where | · | denotes an absolute value, || · ||1 denotes a sum of absolute values
from a vector, and ν is a penalty on the offset term that discourages constant
models. Solving this problem means finding w, b, and s such that the penalties
are minimized but the model’s value for Aiw + b is within si of yi. The RL
agent therefore finds a compromise between accuracy and simplicity.

Advice generated from the source task can be expressed in the form:

Bx ≤ d =⇒ Qp(x) − Qn(x) ≥ β, (3)

where B is a matrix and d is a vector [7]. This can be read as: if the current
state satisfies the set of linear inequalities Bx ≤ d, the Q-value of the preferred
action p should exceed that of the non-preferred action n by at least β. For
example, consider the advice rule from Sect. 2:

Rule Extraction for Transfer Learning 71

if distance(nearestOpponent, self) ≤ 5 and
angle(teammate, self, minAngleOpponent(teammate)) ≥ 40

then prefer pass(teammate) over other actions

If we assume that the two features mentioned in this rule make up the
entire feature vector x, then we would express this advice with:

B =
(

1 0
0 −1

)
,

d =
(

5
−40

)
, (4)

where Qp represents the Q-value of pass, β is a constant small fraction of the
Q-value range, and there is one equation for each other action n. Note that
the ≥ inequality in the second constraint is converted to a ≤ inequality by
multiplying both sides of the equation by −1.

Just as our method allows some inaccuracy on the training examples, it
allows advice to be satisfied only partially. To do so, following Mangasarian
et al. [8], we introduce slack variables z and ζ and penalty parameters µ1 and
µ2 for trading off the impact of the advice on the solution with the impact of
the training examples. The resulting linear program, which finds Q-functions
for all of the actions simultaneously, is:

min
(wa,ba,sa,zi,ζi≥0,ui≥0)

m∑
a=1

(||wa||1 + ν|ba| + C||sa||1) +
k∑

i=1

(µ1||zi||1 + µ2ζi)
(5)

s.t. for each action a ∈ {1, . . . , m} :
|Aawa + ba − ya| ≤ sa

for each advice item i ∈ {1, . . . , k} :

|wp − wn + BT
i ui| ≤ zi

− dT ui + ζi ≥ βi − bp + bn.

By solving this optimization problem, the RL agents learn a policy that
satisfies the advice as long as it does not disagree too much with the training
examples.

4 Extracting Rules from an RL Source Task

The final SVM model representing the learned RL task can be separated into
several models (one per action). Each SVM calculates the Q-value of one
action as a weighted sum of the state features. We discuss two methods for
extracting transfer advice from these models. In both approaches, the resulting
rules are of the form:

if condition
then prefer one action over the others

where the condition is a conjunction of linear constraints on the state features.

72 L. Torrey et al.

As is common in transfer learning, our methods assume the existence of
a mapping showing how features and actions correspond between the source
and target tasks. Transfer is a reasonable endeavor only if there is substantial
correspondence. However, there may be some features and actions in one task
that do not have parallels in the other, and the transfer methods we discuss
handle this problem in different ways.

4.1 Acquiring Rules from the Q-function

One approach for generating rules from RL source-task models first appeared
in Torrey et al. [18]. It is called policy transfer, because it builds a set of rules
to describe the entire policy represented by the source-task models. To ref-
erence the neural-network rule-extraction literature, this is best described as
a decompositional strategy [1], in which the internal mechanics of the model
affect the extracted rules.

Recall that the policy of an RL agent determines which action it will
choose – generally the action with the highest Q-value. The policy can there-
fore be expressed as a set of rules, one for each action, saying to prefer that
action when its SVM regression model assigns it the highest Q-value. Alter-
natively, it can be expressed as a set of rules, two for each pair of actions,
saying to prefer one action over the other when its SVM regression model
assigns it the higher Q-value of the pair. Table 1 gives a simple example of
the construction of this pairwise ruleset.

The policy-transfer rules effectively tell the target-task learner to pretend
it is performing the source task (via the mapping) and choose actions accord-
ingly. They do not attempt to constrain the actual Q-values of target-task

Table 1. An example of constructing policy-transfer rules

source task model: advice format:
Qa = wa1 ∗ f1 + wa2 ∗ f2 if Q′

a − Q′
b ≥ ∆

Qb = wb1 ∗ f1 then prefer a′ to b′

Qc = wc2 ∗ f2 (and so on for each pair of actions)

user-provided mapping: full advice expression:
(a, b, c) −→ (a′, b′, c′) if (wa1 − wb1) ∗ f ′

1 + wa2 ∗ f ′
2 ≥ ∆

(f1, f2) −→ (f ′
1, f

′
2) then prefer a′ to b′

(and so on for each pair of actions)

translated model:
Q′

a = wa1 ∗ f ′
1 + wa2 ∗ f ′

2

Q′
b = wb1 ∗ f ′

1

Q′
c = wc2 ∗ f ′

2

The actions in the old task are a, b, and c, and the corresponding actions in the
new task are a′, b′, and c′. The learned models for the old task are linear Q-value
expressions with weights w and features f , and these are translated into rules that
use the corresponding new task features f ′

Rule Extraction for Transfer Learning 73

Table 2. Our policy-transfer algorithm

given
A learned source-task model and
A mapping of features and actions from source to target

do
for each a ∈ Actions(source):
for each b �= a ∈ Actions(source) generate advice:
if Q′

a − Q′
b ≥ ∆

then prefer a′ to b′ in target task

actions, but only the relative ordering of the Q-values; this can be impor-
tant if the Q-value ranges of the tasks differ. We set the parameter ∆ to
approximately 1% of the target task’s Q-value range.

One complication that might arise for this method is if a source-task fea-
ture has no corresponding feature in the target task – for example, if the f1

in Table 1 has no logical f ′
1 mapping. In this case, the algorithm gives f ′

1 a
constant value. By default it uses the average value that the f1 feature takes
in the source-task data, although the user may also tell it to use the minimum
or maximum value if that seems more appropriate.

Table 2 summarizes our policy-transfer algorithm in pseudocode.
We present experiments with policy transfer as part of a case study in

Sect. 5. The rules constructed by this method are long, complex and not
well suited to human interpretation. They capture very fine details of the
source-task models, which may not actually be desirable for transfer learn-
ing because general principles are more likely to transfer to new tasks than
specific details. The approach we discuss next was designed to address these
shortcomings.

4.2 Acquiring Rules from Observed Behavior

A second approach for generating rules from RL source-task models is pre-
sented in Torrey et al. [17]. It is called skill transfer, because it learns rules that
represent important source-task skills. In the neural-network rule-extraction
literature, this falls under the category of pedagogical strategies [1], in which
the model is treated as a black box and the rules mimic its outputs.

Skill transfer is intended to capture general knowledge rather than fine
detail. Instead of transferring an entire policy, this method transfers only
the skills that the source and target tasks have in common. A skill is
associated with one action, and describes the circumstances under which
that action should be taken. Our skill transfer algorithm learns skills by
observing behavior in the source task and applying inductive logic program-
ming [9].

74 L. Torrey et al.

Inductive Logic Programming Inductive logic programming (ILP) is a
method for learning first-order rules to explain examples. For example, recall
the rule from Sect. 2:

if distance(nearestOpponent, self) < 5 and
angle(teammate, self, minAngleOpponent(teammate)) > 40

then prefer pass(teammate) over other actions

This rule might describe the pass skill in soccer: pass to a teammate if an
opponent is too close and the passing lane is open. If the symbol teammate
refers to a specific teammate object, then the rule is called propositional; if
it is a variable that can refer to any teammate object, then the rule can be
called first-order. The first-order version is more powerful and more general
than the propositional version, since it is more likely to capture the essential
elements of the passing skill.

A common approach for ILP is to start by selecting a seed example, such
as one state in which the soccer player performed the pass action. It then
calculates a set of facts that are true for this example, which might include
distance(nearestOpponent, self) <5 and angle(teammate, self, minAngleOp-
ponent(teammate)) >40 along with many other less relevant facts. The clause
that contains all these constraints is called the bottom clause [12]. A rule is
then learned by searching for some subset of the bottom clause that is more
general, covering many positive examples but few negative examples. The
search algorithm could be any of those familiar to students of general arti-
ficial intelligence, such as heuristic search and randomized search. Figure 2
gives an example of a top-down heuristic search.

We use the Prolog-based Aleph software package [12] to perform ILP. The
metric we use to score rules and select the best is F(β), a generalization of the
more familiar F(1) metric, with β2 = 0.1 to put more weight on rule precision

Fig. 2. A top-down heuristic ILP search that adds one constraint at a time. Here
the lower-case letters are predicates and the upper-case letters are variables. The
rule begins with no constraints, and at each step, the search adds the new constraint
that the heuristic function scores highest, indicated by the solid arrow above. New
variables that were not in the head p(X) can be introduced into the body of the rule

Rule Extraction for Transfer Learning 75

action = pass(Teammate) ?

outcome = caught(Teammate) ?

pass(Teammate) good?

pass(Teammate)
clearly best?

some action good?

pass(Teammate)
clearly bad?

Positive example for
pass(Teammate)

Negative example
for pass(Teammate)

yes

no

yes

yes

yes

yes

yes

Reject
example

no

no

no

no

no

Fig. 3. Example showing how we select training examples for the skill pass
(Teammate)

than rule recall. The search therefore concentrates on finding rules that cover
a reasonable amount of data with high accuracy.

Skill Transfer with ILP Skill transfer with ILP is accomplished by apply-
ing the standard ILP procedure using states from source-task games as the
examples. One challenge for using ILP on reinforcement learning data is to
decide which states are positive examples and which are negative examples.
This is an important process, and it is not immediately obvious how the
choices should be made. Figure 3 illustrates the procedure that we use in
Torrey et al. [17] with an example from the simulated soccer domain.

In a positive example, several conditions must be met: the skill is per-
formed, the desired outcome occurs, and the expected Q-value is above the
10th percentile in the training set and is at least 1.05 times the predicted
Q-values of all other actions. (The desired outcome of pass(teammate), for
example, is that the ball is caught by the teammate.) The purpose of these
conditions is to remove ambiguous states in which several actions may be good
or no actions seem good.

There are two potential types of negative examples. These conditions
describe one type: some other action is performed, that action’s Q-value is
above the 10th percentile in the training set, and the Q-value of the skill
being learned is at most 0.95 times that Q-value and below the 50th per-
centile in the training set. This again rules out ambiguous states. The second
type of negative example includes states in which the skill being learned was
taken but the desired outcome did not occur (for example, pass(teammate)
was taken but the ball was caught by an opponent).

Note that the source and target-task features remain propositional in
skill transfer, since we use a linear SVM model that requires a fixed-length

76 L. Torrey et al.

Table 3. Our skill-transfer algorithm

given do
Games from source task For each skill to transfer:
List of skills to be transferred Collect training examples
User advice (optional) Learn rules with Aleph

Select rule with highest F (β) score
Propositionalize rules for target task

feature vector. After learning first-order rules, our skill-transfer algorithm
propositionalizes them for use in the target task.

As in policy transfer, there may be features that exist in the source but
not the target. Here there is a simple solution, however: we restrict the search
space of ILP so that learned rules may only contain features that both tasks
share. This forces the algorithm to consider only skill definitions that are
relevant in the target task.

As in policy transfer, a rule learned by the skill-transfer method describes
the conditions under which one action should be preferred over the other
actions shared between the source and target task. However, these rules
are much simpler and easier to interpret. These are desirable qualities for
extracted rules in general, and because they imply more general rules, for
transfer learning as well.

Table 3 summarizes our skill transfer algorithm in pseudocode. We present
experiments with skill transfer as part of the case study in Sect. 5.

Because the skill-transfer rules are more accessible to human understand-
ing, they open up more possibilities for further human contribution. The user
could add constraints to the learned rules reflecting known differences in the
source and target tasks, or even provide simple new rules for skills required
in the target task that were not in the source. We call this user advice, and
include an example in the case study. User advice provides a natural and
powerful way for a human to guide transfer.

5 Case Study

To illustrate the transfer learning techniques in this chapter, we present a
case study in the simulated soccer domain, which is a motivating domain for
transfer. The results are reproduced from Torrey et al. [16].

The RoboCup project [10] has the overall goal of producing robotic soccer
teams that compete on the human level, but it also has a software simulator
for research purposes. Stone and Sutton [13] introduced RoboCup as an RL
domain that is challenging because of its large, continuous state space and
non-deterministic action effects.

Rule Extraction for Transfer Learning 77

BreakAwayKeepAway MoveDownfield

Fig. 4. Snapshots of RoboCup soccer tasks

Since the full game of soccer is quite complex, researchers have devel-
oped several smaller games in the RoboCup domain (see Fig. 4). These are
inherently multi-agent games, but a standard simplification is to have only
one agent (the one in possession of the soccer ball) learning at a time using a
model built with combined data from all the agents.

One RoboCup task is M -on-N KeepAway [13], in which the objective of
the M reinforcement learners called keepers is to keep the ball away from N
hand-coded players called takers. The keeper with the ball may choose either
to hold it or to pass it to a teammate. Keepers without the ball follow a hand-
coded strategy to receive passes. The game ends when an opponent takes the
ball or when the ball goes out of bounds. The learners receive a +1 reward
for each time step their team keeps the ball.

The KeepAway state representation was designed by Stone and Sutton [13]
and consists of distances and angles between players. The keepers are ordered
by their distance to the learner k0, as are the takers.

A second RoboCup task is M -on-N MoveDownfield, where the objective
of the M reinforcement learners called attackers is to move across a line on the
opposing team’s side of the field while maintaining possession of the ball. The
attacker with the ball may choose to pass to a teammate or to move ahead,
away, left, or right with respect to the opponent’s goal. Attackers without the
ball follow a hand-coded strategy to receive passes. The game ends when they
cross the line, when an opponent takes the ball, when the ball goes out of
bounds, or after a time limit of 25 seconds. The learners receive symmetrical
positive and negative rewards for horizontal movement forward and backward.

The MoveDownfield state representation was introduced in Torrey et al.
[17] and consists of distances and angles between players and the goal. The
attackers are ordered by their distance to the learner a0, as are the defenders.

A third RoboCup task is M -on-N BreakAway, where the objective of the
M attackers is to score a goal against N−1 hand-coded defenders and a hand-
coded goalie. The attacker with the ball may choose to pass to a teammate,
to move ahead, away, left, or right with respect to the opponent’s goal, or to
shoot at the left, right, or center part of the goal. Attackers without the ball
follow a hand-coded strategy to receive passes. The game ends when they score

78 L. Torrey et al.

a goal, when an opponent takes the ball, when the ball goes out of bounds,
or after a time limit of 10 seconds. The learners receive a +1 reward if they
score a goal, and zero reward otherwise.

The BreakAway state representation was introduced in Torrey et al. [18]
and consists of distances and angles between players and the goal. The attack-
ers are ordered by their distance to the learner a0, as are the non-goalie
defenders.

These three RoboCup games have substantial differences in features,
actions, and rewards. The goal, goalie, and shoot actions exist in BreakAway
but not in the other two tasks. The move actions do not exist in KeepAway
but do in the other two tasks. Rewards in KeepAway and MoveDownfield
occur for incremental progress, but in BreakAway the reward is more sparse.
These differences mean the solutions to the tasks may be quite different. How-
ever, some knowledge should clearly be transferable between them, since they
share many features and some actions, such as the pass action. Furthermore,
since these are difficult RL tasks, speeding up learning through transfer is
desirable.

5.1 Policy-Transfer Results

Figure 5 displays results from several policy-transfer experiments. The target
task in each experiment is 3-on-2 BreakAway, and the three source tasks are
2-on-1 BreakAway, 3-on-2 MoveDownfield, and 3-on-2 KeepAway. One curve
is the average of 25 runs of standard reinforcement learning. The other curves
are RL with transfer via model reuse from various source tasks. Each transfer

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 500 1000 1500 2000 2500 3000

P
ro

ba
bi

lit
y

of
 G

oa
l

Training Games

Standard RL

PT from BA

PT from MD

PT from KA

Fig. 5. Probability of scoring a goal while training in 3-on-2 BreakAway with
standard RL and policy transfer (PT) from 2-on-1 BreakAway (BA), 3-on-2
MoveDownfield (MD) and 3-on-2 KeepAway (KA)

Rule Extraction for Transfer Learning 79

curve is an average of five transfer runs from five different source runs, for a
total of 25 runs (this way, the results include both source and target variance).
Because the variance is high, the y-value at each data point is smoothed by
averaging over the y-values of the last 10 data points.

The extracted rules are too large and complex to include an example here.
However, the results in Fig. 5 show that policy transfer has a small over-
all positive impact, particularly when the source and target tasks are most
similar.

5.2 Skill-Transfer Results

Figure 6 displays results from several skill-transfer experiments. The source
and target tasks are the same as in the policy-transfer experiments. Again
each transfer curve is an average of 25 runs, consisting of five runs from five
different source runs, with the y-value at each point smoothed over the last
ten points.

For the experiments in which the target was a different task than the
source, we provided some simple handwritten user advice to help with the
new required skills. In transfer from KeepAway to BreakAway the important
new skills are moving ahead and shooting, and from MoveDownfield to Break-
Away only shooting. From one size of BreakAway to another no user advice
is needed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000

P
ro

ba
bi

lit
y

of
 G

oa
l

Training Games

Standard RL

ST from BA

ST from MD

ST from KA

Fig. 6. Probability of scoring a goal while training in 3-on-2 BreakAway with stan-
dard RL and skill transfer (ST) from 2-on-1 BreakAway (BA), 3-on-2 MoveDownfield
(MD) and 3-on-2 KeepAway (KA)

80 L. Torrey et al.

We took the appropriate subset of user advice from this set:

if distBetween(a0, GoalRight) < 10 and
angleDefinedBy(GoalRight, a0, goalie) > 40

then prefer shoot(GoalRight) over other actions

if distBetween(a0, GoalLeft) < 10 and
angleDefinedBy(GoalLeft, a0, goalie) > 40

then prefer shoot(GoalLeft) over other actions

if distBetween(a0, goalCenter) > 10
then prefer moveAhead over other actions

Note that this user advice is not tuned. By adjusting the numerical values
in the rules above, it is possible to improve the performance further. However,
we assume that users will only give approximate advice.

To give an example of the skill concepts learned, the following is an
example rule for pass that our skill transfer algorithm extracted from 3-on-2
MoveDownfield:

if distBetween(Teammate, fieldCenter) ≥ 6,
distBetween(Teammate, minDistTaker(Teammate)) ≥ 8,
angleDefinedBy(Teammate, a0, minAngleTaker(Teammate)) ≥ 41 and
angleDefinedBy(OtherTeammate, a0, minAngleTaker(OtherTeammate))≤ 23

then prefer pass(Teammate) over other actions

This rule specifies a minimum pass angle and an open distance around
the receiving teammate. It also requires that the teammate not be too close
to the center of the field and gives a maximum pass angle for the alternate
teammate.

The following is an example rule for shoot extracted from 2-on-1 Break-
Away:

if distBetween(a0, goalCenter) ≥ 6,
angleDefinedBy(GoalPart, a0, goalie) ≥ 52,
distBetween(a0, oppositePart(GoalPart)) ≥ 6,
angleDefinedBy(oppositePart(GoalPart), a0, goalie) ≤ 33 and
angleDefinedBy(goalCenter, a0, goalie) ≥ 28

then prefer shoot(GoalPart) over other actions

This rule requires a large open shot angle, a minimum distance to the goal,
and angle constraints that restrict the goalie’s position to a small area.

The results in Fig. 6 show that skill transfer can have a large overall positive
impact in most transfer scenarios. The skill-transfer method of rule extraction
not only produces more understandable rules than policy transfer, but also
leads to better performance in the target task.

Rule Extraction for Transfer Learning 81

6 Summary and Open Problems

Rule extraction can have practical applications beyond explaining a machine-
generated solution to humans. Transfer learning, in which the solution to one
task is used while learning a related task, is one such application. The transfer
learning framework could be also viewed as a way to evaluate rulesets based
on their ability to improve learning in a related task.

This chapter discussed ways to transfer rules between SVM-based rein-
forcement learning tasks. In this context, it is more important to obtain
general rules that express the basic skill concepts than to describe the specifics
of the source-task model. Therefore, learning by observing behavior is more
effective than building rules from complex Q-functions. The use of induc-
tive logic programming is also beneficial because it allows rules to employ
first-order logic, which makes them more general.

We use extracted rules as advice for a target task. With an SVM-based
reinforcement learner, there is a straightforward method of incorporating
advice as a soft constraint. This allows the rules to improve learning in the
target task to the extent that they are relevant, but also provides protection
against negative transfer effects.

There are several open problems in this area, in both the rule-extraction
and advice-taking steps. One is to develop advice-taking methods for rela-
tional reinforcement learning (RRL), so that first-order advice can be applied
directly without propositionalizing it first. Another is to extract rules that
describe multiple-step plans rather than single-step action choices, which
might capture more information from the source task than the current appro-
aches do.

The research referenced in this chapter was supported by DARPA grant
HR0011-04-1-0007.

References

1. R. Andrews, J. Diederich, and A. Tickle. A survey and critique of techniques
for extracting rules from trained artificial neural networks. In Knowledge Based
Systems, 1995.

2. J. Clouse and P. Utgoff. A teaching method for reinforcement learning. In
Proceedings of the 9th International Conference on Machine Learning, 1992.

3. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press, 2000.

4. K. Driessens and S. Dzeroski. Integrating experimentation and guidance in
relational reinforcement learning. In Proceedings of the 19th International
Conference on Machine Learning, 2002.

5. G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik. Guiding a reinforcement
learner with natural language advice: Initial results in RoboCup soccer. In AAAI
Workshop on Supervisory Control of Learning and Adaptive Systems, 2004.

82 L. Torrey et al.

6. R. Maclin, J. Shavlik, L. Torrey, and T. Walker. Knowledge-based support vec-
tor regression for reinforcement learning. In IJCAI Workshop on Reasoning,
Representation, and Learning in Computer Games, 2005.

7. R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild. Giving advice about
preferred actions to reinforcement learners via knowledge-based kernel regres-
sion. In Proceedings of the 20th National Conference on Artificial Intelligence,
2005.

8. O. Mangasarian, J. Shavlik, and E. Wild. Knowledge-based kernel approxima-
tion. Journal of Machine Learning Research 5, pages 1127–1141, 2004.

9. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. Journal of Logic Programming 19,20, pages 629–679, 1994.

10. I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: A tool for research
on multiagent systems. Applied Artificial Intelligence, 12:233–250, 1998.

11. V. Soni and S. Singh. Using homomorphisms to transfer options across con-
tinuous reinforcement learning domains. In Proceedings of the 21st National
Conference on Artificial Intelligence, 2006.

12. A. Srinivasan. The Aleph Manual, 2001.
13. P. Stone and R. Sutton. Scaling reinforcement learning toward RoboCup soccer.

In Proceedings of the 18th International Conference on Machine Learning, 2001.
14. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,

1998.
15. M. Taylor, P. Stone, and Y. Liu. Value functions for RL-based behavior trans-

fer: A comparative study. In Proceedings of the 20th National Conference on
Artificial Intelligence, 2005.

16. L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Advice-based transfer in
reinforcement learning. Technical Report TR06-2, Machine Learning Research
Group, U. Wisconsin-Madison, 2006.

17. L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Relational skill transfer via
advice taking. In Proceedings of the 17th European Conference on Machine
Learning, 2006.

18. L. Torrey, T. Walker, J. Shavlik, and R. Maclin. Using advice to transfer knowl-
edge acquired in one reinforcement learning task to another. In Proceedings of
the 16th European Conference on Machine Learning, 2005.

19. C. Watkins. Learning from delayed rewards. Technical Report PhD Thesis,
University of Cambridge, Psychology Dept., 1989.

Rule Extraction from Linear Support Vector
Machines via Mathematical Programming

Glenn Fung1, Sathyakama Sandilya2, and R. Bharat Rao1

1 Siemens Medical Solutions, USA Glenn.fung,Bharat.Rao@siemens.com
2 Merrill Lynch, UK sandilya@alumni.princeton.edu

Summary. We describe an algorithm for converting linear support vector machines
SVM and any other arbitrary hyperplane-based linear classifiers into a set of non-
overlapping rules that, unlike the original classifier, can be easily interpreted by
humans.

Each iteration of the rule extraction algorithm is formulated as a constrained
optimization problem that is computationally inexpensive to solve. We discuss vari-
ous properties of the algorithm and provide proof of convergence for two different
optimization criteria. We demonstrate the performance and the speed of the algo-
rithm on linear classifiers learned from real-world datasets, including a medical
dataset on detection of lung cancer from medical images.

The ability to convert SVMs and other “black-box” classifiers into a set of
human-understandable rules, is critical not only for physician acceptance, but also
for reducing the regulatory barrier for medical-decision support systems based on
such classifiers.

We also present some variations and extensions of the proposed mathematical
programming formulations for rule extraction.

1 Introduction

Support Vector Machines (SVMs) [13,24] and other linear classifiers are pop-
ular methods for building hyperplane-based classifiers from data sets, and
have been shown to have excellent generalization performance in a variety of
applications. These classifiers, however, are hard to interpret by humans.

For instance, when an unlabeled example is classified by the linear classifier
as positive or negative, the only explanation that can be provided is that some
linear weighted sum of the variables of the example are lower (higher) than
some threshold; such an explanation is completely non-intuitive to human
experts.

Humans are more comfortable dealing with rules that can be expressed as
a hypercube with axis-parallel surfaces in the variable space.

G. Fung et al.: Rule Extraction from Linear Support Vector Machines via Mathematical Pro-

gramming, Studies in Computational Intelligence (SCI) 80, 83–107 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

84 G. Fung et al.

Previous work [19, 22] and more recent work [11] included rule extraction
for neural networks but very few work has been done to extract rules from
SVMs or any other kind of hyperplane-based classifier. Recently Nunez et al
[17] proposed a method to extract rules from an SVM classifier which involves
applying a clustering algorithm first to identify groups that later define the
rules to be obtained.

We propose a methodology for converting any linear classifier into a set of
such non-overlapping rules.

This rule set is (asymptotically) equivalent to the original linear classifier,
covers most of the training examples in the hyperplane halfspace. Unlike [17]
our method does not require computationally expensive data preprocessing
steps (as clustering) and the rule extraction is done in a very fast manner,
typically it takes less than a second to extract rules from SVM’s trained on
thousands of samples.

Our algorithm does not required anything more complicated that solving
simple linear programming problems in 2n variables where n is the number
of input features (after feature selection).

In the next section we briefly discuss the medical relevance of this research.
The ability to provide explanations of decisions reached by “black-box” clas-
sifiers is not only important for physician acceptance, but it is also a vital step
in potentially reducing the regulatory requirements for introducing a medi-
cal decision-support system based on such a classifier into clinical practice.
Section 3 then describes the commonly used linear support vector machine
classifier and gives a linear program for it.

Section 4 provides our rule extraction algorithm; each iteration of the
rule extraction algorithm is formulated as one of two possible optimization
problems based on different “optimal” rule criteria. The first formulation,
which seeks to maximize the volume covered by each rule, is a constrained
nonlinear optimization problem whose solution can be found by obtaining the
closed form solution of a relaxed associated unconstrained problem.

The second formulation, which maximizes the number of samples covered
by each rule, requires us to solve a linear programming problem. In Sect. 5 we
discuss finite termination and convergence conditions for our algorithm.

Section 6 summarizes our results on four publicly available datasets, and
an additional medical dataset from our previous work [3] in building a CAD
system to detect lung cancer from computed tomography volumes. In Sect. 7
we present and discuss several possible extensions for the mathematical pro-
gramming formulations proposed in this paper. We end with some thoughts
on further extensions and applications.

1.1 About Notation

We now describe the notation used in this paper. The notation A ∈ Rm×n will
signify a real m×n matrix. For such a matrix, A′ will denote the transpose of
A and Ai will denote the i-th row of A. All vectors will be column vectors. For

SVM Rule Extraction via Mathematical Programming 85

x ∈ Rn, ‖x‖p denotes the p-norm, p = 1, 2,∞. A vector of ones in a real space
of arbitrary dimension will be denoted by e. Thus, for e ∈ Rm and y ∈ Rm,
e′y is the sum of the components of y. A vector of zeros in a real space of
arbitrary dimension will be denoted by 0.

A separating hyperplane, with respect to two given point sets A and B,
is a plane that attempts to separate Rn into two halfspaces such that each
open halfspace contains points mostly of A or B. A bounding plane to the set
A is a plane that places A in one of the two closed halfspaces that the plane
generates. The symbol ∧ will denote the logical “and” and the symbol ∨ will
denote the logical “or”. The abbreviation “s.t.” stands for “such that”. For a
vector x ∈ Rn, the sign function sign(x) is defined as sign(x)i = 1 if xi > 0
else sign(x)i = −1 if xi ≤ 0, for i = 1, . . . , n.

2 Medical Relevance

From the earliest days of computing, physicians and scientists have explored
the use of artificial intelligence systems in medicine [20]. A long-standing area
of research has been building computer-aided diagnosis (CAD) systems for
the automated interpretation and analysis of medical images [18]. Despite
the demonstrated success of many such systems in research labs and clinical
settings, these systems were not widely used, or even available, in clinical
practice. The primary barrier to entry in the United States is the reluctance
of the US Government to allow the use of “black box” systems that could
influence patient treatment.

Although the Food and Drug Administration (FDA) has recently granted
approval for CAD systems based on “black-box” classifiers [21], the barrier to
entry remains very high.

These systems may only be used as “second-readers”, to offer advice after
the initial physician diagnosis.

More significantly, these CAD systems must receive pre-market approval
(PMA). A PMA is equivalent to a complete clinical trial (similar to the ones
used for new drugs), where the CAD system must demonstrate statistically
significant improvement in diagnostic performance when used by physicians
on a large number of completely new cases. This is a obviously a key area of
research in CAD, but not the focus of this paper. The FDA has indicated that
the barrier to entry for CAD systems that are able to explain their conclusions,
could be significantly lowered. Note, this will not lower the barrier in terms of
generalization performance on unseen cases, but the FDA is potentially willing
to consider using performance on retrospective or previously seen cases and
significantly reduce the number of cases needed for a prospective clinical trial.
This is critical, because a full-blown clinical trial can add several years delay
to the release of a CAD system into general clinical practice.

Much research in the field of artificial intelligence, and now knowledge
discovery and data mining has focused on the endowing systems with the

86 G. Fung et al.

ability to explain their reasoning, both to make the consultation more accept-
able to the user, and to help the human expert more easily identify errors in
the conclusion reached by the system [4]. On the other hand, when building
classifiers from (medical) data sets, the best performance is often achieved by
“black-box” systems, such as, Support Vector Machines (SVMs). The research
described in this paper will allow us to use the superior generalization perfor-
mance of SVM’s and other linear hyperplane-based classifiers in CAD system,
and using the explanation features of the rule extraction algorithm to reduce
the regulatory requirements for market introduction of such systems into daily
clinical practice.

3 Sparse Hyperplane Classifiers: 1-Norm
Support Vector Machines

We consider the problem of classifying m points in the n-dimensional input
space Rn, represented by the m × n matrix A, according to membership of
each point Ai in the class A+ or A− as specified by a given m × m diagonal
matrix D with plus ones or minus ones along its diagonal. For this problem,
depicted in Fig. 1, the linear programming support vector machine [5,13] with
a linear kernel (this is a variant of the standard SVM [6, 24]) is given by the
following linear program with parameter ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + ‖w‖1

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0,

(1)

where ‖ · ‖1 denotes the 1-norm as defined in the introduction. That this
problem is indeed a linear program, can be easily seen from the equivalent
formulation:

min
(w,γ,y,t)∈Rn+1+m

νe′y + e′t

s.t. D(Aw − eγ) + y ≥ e
t ≥ w ≥ −t

y ≥ 0.

(2)

For economy of notation we shall use the first formulation (1) with the
understanding that computational implementation is via (2).

The 1-norm term ‖w‖1 in (1), which is half the reciprocal of the distance
2

‖w‖1
measured using the ∞-norm distance [12] between the two bounding

planes (see Fig. 1), maximizes this distance, often called the “margin”. then
two planes bound the two classes with a “soft margin” (i.e. bound approx-
imately with some error) determined by the nonnegative error variable y,
that is:

Aiw + yi ≥ γ + 1, for Dii = 1,
Aiw − yi ≤ γ − 1, for Dii = −1.

(3)

SVM Rule Extraction via Mathematical Programming 87

Fig. 1. The LP–SVM classifier in the w-space of Rn. The plane of equation (3)
approximately separating points in A+ from points in A−

The 1-norm of the error variable y is minimized parametrically with weight
ν in (1), resulting in an approximate separating plane. This plane classifies
data as follows:

sign(x′w − γ)

{
= 1, then x ∈ A+,

= −1, then x ∈ A−,
(4)

where sign(·) is the sign function defined in the Introduction. Empirical
evidence [5] indicates that the 1-norm formulation has the advantage of gen-
erating very sparse solutions. This results in the normal w to the separating
plane x′w = γ having many zero components, which implies that many input
space features do not play a role in determining the linear classifier. This
makes this approach suitable for feature selection in classification problems.

Since our rule extraction algorithm depends directly on the features used
by the hyperplane classifier, sparser normal vectors w will lead to rules
depending on a fewer number of features.

4 Rule Extraction from Hyperplane Classifiers

In the previous section, we described a linear programming SVM formulation
to generate hyperplane classifiers. We now present an algorithm to extract
rules of the form:

88 G. Fung et al.

∧n
i=1li ≤ xi < ui =⇒ class membership

to approximate these classifiers. Note that every rule form defined above
defines an hypercube in the n dimensional space with edges parallel to the
axis. Rule of this form are very intuitive and can be easily interpreted by
humans.

Our rule extraction approach can be applied to any linear classifier regard-
less of the algorithm or criteria used to construct the classifier, including
Linear Fisher Discriminant (LFD) [15], Least squares SVMs (LS–SVMs)
[23] or Proximal SVMs (PSVM) [7]. Denote by P−(w, γ, I) the problem of
constructing rules for the classifier for the region:

I = {x s.t. w′x < γ, li ≤ xi ≤ ui, 1 ≤ i ≤ n}

based on the classification hyperplane w′x = γ obtained by solving problem
(1). Note that the problem of rule extraction P+(w, γ, I ′) where

I ′ = {x s.t. w′x > γ, li ≤ xi ≤ ui, 1 ≤ i ≤ n}

is the same as P−(−w,−γ, I). We now establish that this is equivalent to solv-
ing the problem with positive hyperplane coefficients, γ = 1 and the feature
domain being the unit hypercube. Consider a diagonal matrix T constructed
in the following way:

Tii =
sign(wi)
ui − li

, i ∈ {1, . . . , n} (5)

and a vector b with components b = {ui if wi < 0, li if wi > 0}.
We now define a transformation of coordinates such that y = T (x − b).

Note that

wi > 0 ⇒ 0 ≤ yi = Tii(xi − li) =
xi − li
ui − li

≤ 1

wi < 0 ⇒ 0 ≤ yi = Tii(xi − ui) =
−(xi − ui)

ui − li
=

(ui − xi)
ui − li

≤ 1

(6)

hence, I is transformed to [0, 1]n. Furthermore x = T−1y + b, and hence, the
hyperplane of interest becomes

w′T−1y = γ − w′b

which is equivalent to:

w̃y =
(

w′T−1

γ − w′b

)
y = 1 (7)

Thus the problem becomes P−(w̃, 1, I0) in the new domain, where I0 =
[0, 1]n. In mapping the original problem to the unit hypercube the measure

SVM Rule Extraction via Mathematical Programming 89

of volume Although the objective function being optimized is different, it is
merely a scaled version of the original problem, and thus the optimum remains
the same.

Note that the components of w̃ are positive as w′b < γ and wiTii > 0.
For the rest of this paper we will concentrate in finding rules with the

following properties:

– The hypercube defined by the extracted rule

∧n
i=1li ≤ xi < ui

is a subset of the bounded region I = {x s.t. w′x < γ}.
– The resulting hypercube cube defined by the extracted rule contains one

vertex that lies in the separating hyperplane w′x−γ = 0. This assumption
allows to obtain set of disjoint rules that are easy to generate and simplifies
the problem considerable.

Figure 2 illustrates an example in two dimensions where the halfspace w′x < γ
is almost totally covered by rules represented by hypercubes with a vertex in
the hyperplane w′x − γ = 0.

Given a region I we can define the “optimal” rule according to different
criteria, Next we present two of them.

−0.5 0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

A−

A+

Fig. 2. Two-dimensional example where the non-overlapping rules covering the
halfspace ({x s.t. w′x < γ}) are represented as cyan rectangles

90 G. Fung et al.

4.1 Volume Maximization Criteria

An optimal rule can be defined as the rule that covers the hypercube with
axis-parallel faces with the largest possible volume. Since the log function is
strictly increasing, arg max f(x) = arg max log (f(x)), we can find the rule
that maximizes the log of the volume of the region that it encloses (instead of
the volume). Assuming that the linear transformation T was already applied
and that one corner of the region lies on the hyperplane, this rule can be found
by solving the following problem:

max
x∈Rn

log(
n∏

i=1

xi) s.t.
n∑

i=1

wixi = γ, 0 ≤ x ≤ 1. (8)

The Lagrangian function for this nonlinear constrained optimization prob-
lem is:

L(x, λ, θ) = log(
n∏

i=1

xi) − λ(w′x − γ) −
n∑

i=1

θi(x − 1) +
n∑

i=1

δix. (9)

The KKT optimality conditions for problem (8) are given by:

1
xi

− λwi − θi + δi = 0 ∀i ∈ {1, . . . , n},
w′x = γ,

0 ≤ xi ≤ 1, λ ≥ 0, θi ≥ 0, δi ≥ 0 ∀i ∈ {1, . . . , n},
θi(xi − 1) = 0 ∀i ∈ {1, . . . , n},

δixi = 0 ∀i ∈ {1, . . . , n}.

(10)

In order to find a solution for problem (8) we will first consider solutions
for the relaxed equality constrained problem:

max
x∈Rn

log(
n∏

i=1

xi) s.t.
n∑

i=1

wixi = γ. (11)

The KKT optimality conditions for problem (11) (which are very similar
to the KKT conditions of problem (8)) are given by:

1
xi

− λwi = 0, i ∈ {1, . . . , n}, wx − γ = 0. (12)

From the KKT optimality conditions (12) we obtained the following closed
form solutions for the relaxed optimization problem:

x̃i =
1

λwi
=

γ

nwi
i ∈ {1, . . . , n}, λ̃ =

n

γ
. (13)

A solution x∗ of the original optimization problem (8) can be obtained
from the solution (13). Let’s define x∗ as follows:

SVM Rule Extraction via Mathematical Programming 91

x∗
i =

⎧⎨
⎩

1
λ∗wi

if x̃i ≤ 1, i ∈ {1, . . . , n}
1 otherwise

⎫⎬
⎭ , (14)

where,
λ∗ =

nI

γ −
∑

{i∈A} wi
(15)

where A = {i |x̃i > 1} and nI is n − |A| with λ∗ defined as above we have
that:

wx∗ − γ =
n∑

i=1

wix
∗
i =
∑
i∈I

wix
∗
i +
∑
i∈A

wix
∗
i − γ

=
∑

i∈I

wi

λ∗wi
+
∑
i∈A

wi − γ

=
nI

λ∗ +
∑
i∈A

wi − γ

= nI

γ −
∑

i∈A wi

nI
+
∑
i∈A

wi − γ

= γ − γ = 0,

(16)

if 0 ≤ x∗
i ≤ 1, ∀i ∈ {1, . . . , n}, then x∗ is the optimal solution for problem 8,

otherwise define x̃ = x∗ and recalculate x∗ until 0 ≤ x∗
i ≤ 1, ∀i ∈ {1, . . . , n}.

This iterative procedure can be seen as a gradient projection method for which
convergence is well established [1, 2].

4.2 Point Coverage Maximization Criteria

Another optimal rule can be defined as the rule that covers the hypercube with
axis-parallel faces with that contains the largest possible number of training
points in the halfspace. Given a transformed problem P−(w̃, 1, I0), we want to
find x∗ such that w′x∗ − γ = 0 and |C| (cardinality of C)is maximal, where:

C = (A− ∩ {x| w′x < 1}) ∩ {x| 0 ≤ x ≤ x∗}.

The following Linear programming formulation is an approximation to this
problem:

min
x,y

e′y

s.t. w′x = 1
A.i − eyi ≤ xi ∀i ∈ {1, . . . , n},

0 ≤ x ≤ 1,
y ≥ 0.

(17)

Note that the variable y ≥ 0 acts as a slack or error variable that is min-
imized in order in order for the rule to cover the largest possible amount of
points.

92 G. Fung et al.

We can now use either one of the optimal rule definitions described in Sects. 4.1
and 4.2 to propose an iterative procedure that extract as many rules as we
require to describe adequately the region of interest. We first demonstrate
that in a n-dimensional feature space, extracting one such a rule results in n
new similar problems to solve. Let the first rule extracted for the transformed
problem P−(w̃, 1, I0) be ∧n

i=1(0 ≤ xi < x∗
i). The remaining volume on this

side of the hyperplane that is not covered, is the union of n nonintersecting
regions similar to the original region, namely

Ii =

⎧⎨
⎩

x ∈ Rn, s.t. 0 ≤ xj < x∗
j ∀1 ≤ j < i,

x∗
i ≤ xi < 1,
0 ≤ xj < 1 ∀j > i,

(18)

that is, the rule inequalities for the first i − 1 components of x are satisfied,
the inequality that relates to the ith component is not satisfied, and the rest
are free. Consider i, j with j > i. For each x ∈ Ij , we have 0 ≤ xi < x∗

i and
for each x ∈ Ii, we have x∗

i ≤ xi < 1. Hence, Ii are nonintersecting, and the
rules that we arrive at for each Ii will be “independent”. Now we extract the
optimal rule for each of these regions that contains a training data point using
a depth first search. Note that the problem for Ii is P−(w̃, 1, Ii), and we can
now use the same transformation as described in (5)–(7) to transform each of
the n subproblems P−(w̃, 1, Ii) to problems equivalent to the original problem
P−(w̃, 1, I0).

Next, we state our algorithm to obtain a set of rules R that cover all the
training points belonging to A− such that w′x < γ. Let R be the set containing
all the extracted rules, and U be the set containing the indices of the points
uncovered by the rules in R. R and U are initialized to ∅ and A− respectively,
dmax (which bounds the maximum depth of the depth first search, typically
less than 20) is assigned, and w, γ are obtained by solving the LP-SVM (1)
before ExtractRules is invoked for the first time.

Algorithm 4.1 ExtractRules(w, γ, I, d): Algorithm for rule extrac-
tion from linear classifiers.

Given parameters dmax that bounds the depth on the depth-first search,
(typically dmax < 20), Initial hyperplane parameters (w, γ) obtained by solv-
ing the linear programming SVM formulation as described in (1) and I =
{x s.t. w′x < γ, li ≤ xi ≤ ui, i ∈ {1, . . . , n}}. Let 0 ≤ xi ≤ 1, i ∈ {1, . . . , n},
and wi ≥ 0, i ∈ {1, . . . , n} be obtained by mapping the original data.

1. If d = dmax, stop.
2. Transform problem P−(w, γ, I) into P−(w̃, 1, I0) using the linear transfor-

mation described in Sect. 5, (5)–(10).
3. Obtain y∗ by solving problem P−(w̃, 1, I0) using either (14)–(15) or (17).
4. Calculate x∗ = T−1y∗ + b, get new rules R̃(x∗), update R ← R ∪ R̃(x∗).
5. Let C = {x ∈ U st. R̃(x∗) is true} = U ∩ R̃(x∗), this is, a set containing

the indices of the points in U that are covered by the new obtained rule.

SVM Rule Extraction via Mathematical Programming 93

6. Update U ← U − C. If U = ∅, stop. Else d ← d + 1.
7. for k = 1 to n do

• Calculate Îk = T−1Ik + b. If U ∩ Îk �= ∅ apply recursively
ExtractRules(w, γ, Îk, d), where Îk is one of the n remaining regions
of interest uncovered by rule R̃(x∗) as defined in (18).

5 Algorithm Convergence Properties

We now derive the rate at which the volume covered by the rules extracted
for P (w, 1, I0) converges to the total volume of the region of interest.

Lemma 5.1 Volume of the region {x s.t. w′x < γ, xi ≥ 0}
The volume of the region {x s.t. w′x < γ, xi ≥ 0} is

Vn(w, γ) =

n∏
i=1

γ

wi

n!
.

Proof. We show this by induction. For n = 2, this is the area of a right-angled
triangle with sides γ/w1 and γ/w2, which is γ2/2w1w2. Now, assume that this
is true for n = k.

Vk+1(w, γ) =
∫ γ/w1

0

. . .

∫ (γ−w1x1−...−wkxk)/wk+1

0

dx1dx2 . . . dxk+1

=
∫ γ/w1

0

dx1

∫ (γ−w1x1)/w2

0

dx2 . . .

∫ (γ−w1x1...−wkxk)/wk+1

0

dxk+1

=
∫ γ/w1

0

dx1Vk(w−1, γ − w1x1)

=
∫ γ/w1

0

dx1
1
k!

k+1∏
i=2

γ − w1x1

wi

=
1
k!

k+1∏
i=2

1
wi

∫ γ
w1

0

dx1(γ − w1x1)k

=
1
k!
(k+1∏

i=2

1
wi

) γk+1

(k + 1)w1
=

1
(k + 1)!

k+1∏
i=1

γ

wi

where w−i contains all components of w except the ith. ��
Lemma 5.2 Volume bound
For any S ⊆ {1, 2, . . . , n}, the volume of a region defined by w′x < 1 and
0 ≤ xi < 1, 1 ≤ i ≤ n is bounded by

1
|S|!
∏
i∈S

1
wi

94 G. Fung et al.

Proof. We can assume without loss of generality that S is {1, 2, . . . , k} (if it is
not, the coordinates may be permuted so that it is). The volume of interest,
say V is given by

V =
∫ min(1,1/w1)

0

dx1

∫ min(1,(1−w1x1)/w2)

0

dx2 . . .

. . .

∫ min(1,(1−w1x1−...−wn−1xn−1)/wn)

0

dxn

≤
∫ min(1,1/w1)

0

. . .

∫ min(1,(1−w1x1−...−wk−1xk−1)/wk)

0

. . .

. . .

∫ 1

0

. . .

∫ 1

0

dx1dx2 . . . dxn

≤
∫ 1/w1

0

. . .

∫ (1−w1x1−...−wk−1xk−1)/wk

0

dx1dx2 . . . dxk

=
1
k!

k∏
i=1

1
wi

,

where the first two inequalities are because the upper limit in the integral is
replaced by an upper bound, and the last equality comes from the previous
lemma with γ = 1. ��

Lemma 5.3 Volume Coverage
At each “stage”, the algorithm covers at least α = n!

nn of the volume yet to be
covered. Hence, the volume remaining after k stages is at most (1 − α)kV0.

Proof. The volume covered by the rule is given by

Vrule =
n∏

i=1

x∗
i =
(∏

i/∈A

1
λ∗wi

)
(
∏
i∈A

1)

=
∏
i/∈A

1
wi

1 −
∑
i∈A

wi

n − |A|

≥
∏
i/∈A

1
wi

1 − |A|/n

n − |A|

=
∏
i/∈A

1
wi

1
n

,

where A as before is the set of active constraints, and the inequality above
comes from the fact that for i ∈ A, 1

nwi
> 1 (the original solution to the relaxed

problem violates the constraints). Using the result of the previous lemma, and
setting S = {1, . . . , n}\A, we have

SVM Rule Extraction via Mathematical Programming 95

Vrule

Vtotal
≥

∏
i/∈A

1
wi

1
n

1
(n−|A|)!

∏
i/∈A

1
wi

=
(n − |A|)!
nn−|A| ≥ n!

nn

the last inequality arises because the bound is monotonically increasing in |A|
with it being the smallest when |A| = 0. ��

Lemma 5.4 At each stage, the algorithm reduces the largest distance from
an interior point yet to be covered to the separating hyperplane by a factor of
1 − 1/n.

Proof. We establish the lemma for one stage of P (w, 1, I0) (a simple scaling
argument would extend it to a general γ and I, and hence to further stages
of the problem as well). The largest distance from the plane in I0

d0
max = sup

x∈I0,w′x<1
(1 − w′x)/||w|| = 1/||w||.

In region Ii, as xi ≥ x∗
i and w′x is monotonically increasing in each coordinate

di
max = sup

x∈Ii,w′x<1
(1 − w′x)/||w|| = (1 − wixi∗)/||w||,

when i ∈ A, then Ii has no interior points. When i /∈ A, x̃i = wix
∗
i = 1/n.

Hence,
di

max = (1 − 1/n)/||w|| = (1 − 1/n)d0
max ��

Theorem 5.5 Finite termination After extracting t rules, the remaining
volume is at most (1 − α)logn t−1 of the original volume. Moreover, the rule
extraction algorithm covers in finite time any dataset that has all points in
the interior of I.

Proof. As described before, each rule extraction leads to n further “subprob-
lems”. Hence, the number of rules to be extracted in stage k is nk−1, and the
number of rules extracted up to and including stage k is nk−1

n−1 . Hence, if t
rules have been extracted and k stages are complete,

t <
nk+1 − 1

n − 1
⇒ t < nk+1 ⇒ k > logn t − 1.

Hence, at least logn t − 1 stages are complete, and hence, by a previous
lemma, at most (1−α)logn t−1 of the volume remains (which converges to 0 as
t → ∞). Moreover, by the previous lemma we have that at the end of stage k,

dmax = (1 − 1/n)kγ/||w||.

Hence, for a data point x, we have that x is covered when

(γ − w′x)/||w|| > (1 − 1/n)kγ/||w||,

96 G. Fung et al.

i.e. when
k ≥ log(1−1/n) (1 − w′x/γ).

Hence, the entire data set A− is covered when

k ≥ log(1−1/n) (1 − max
x∈A−

(w′x)/γ),

i.e., when
t = n1+log(1−1/n) (1−maxx∈A− (w′x)/γ).

We now use this to establish termination of the algorithm for a given data
set in finite time. Let us assume the contrary, i.e. that there is a point x# such
that w′x# < γ and it is not covered in the rule extraction process. By the
previous lemma, we have that y = x# +(γ−w′x#)w/2||w|| is not covered (as
it is greater than x). Moreover, any point in the hypercuboid x#

i ≤ xi < yi is
not covered by the rules. Hence the volume of the uncovered region is at least∏n

i=1 (yi − x#
i), which is a contradiction of the previous part of the theorem.

Hence, the point x# gets covered after a finite number of iterations. ��

6 Numerical Testing

To show the effectiveness of our rule extraction algorithm, we performed exper-
iments in five real-world datasets. Three of the datasets are publicly available
datasets from the UCI Machine Learning Repository [16]: Wisconsin Diag-
nosis Breast Cancer (WDBC), Ionosphere, and Cleveland heart. The fourth
dataset is a dataset related to the nontraditional authorship attribution prob-
lem related to the federalist papers [10] and the fifth dataset is a dataset
used for training in a computer aided detection (CAD) lung nodule detection
algorithm, we refer to this set as the Lung CAD dataset.

Experiments for the five datasets were performed to test the capability
of Algorithm 4.1 to cover training points correctly classified by the SVM
hyperplane. For each experiment, we obtained a separating hyperplane using
the 1−norm linear programming SVM (LP-SVM) formulation as described
in (1). The state of the art optimization software CPLEX was used to solve
the corresponding linear programming problems. Ten-fold cross validation was
used as a tuning procedure to determine the SVM parameter ν. In All the
experiments, the resulting hyperplane classifier was sparse, this means that
the set {wi s.t. wi �= 0, 1 ≤ i ≤ n} was “small”, this was expected because of
the effect of the 1−norm regularization term on the coefficients wi.

Having a sparse hyperplane implies that the dimensionality of the training
dataset can be reduced by discarding the features corresponding to wi = 0
since they do not play any role in the classification.

Once the hyperplane was obtained we applied Algorithm 4.1 using one
of the two criteria for optimal rules described in Sects. 4.1 and 4.2. The first
criteria is based in finding rules that maximizes the volume of the region

SVM Rule Extraction via Mathematical Programming 97

covered by the rule, we will refer to this variant of Algorithm 4.1 as Volume
Maximization (VM). The second criteria is to find rules that attempt to
cover a many points of the training set as possible. We will call this variant
of Algorithm 4.1 Point Coverage Maximization (PCM).

Results for both VM and PCM are reported in Tables 1 and 2 includ-
ing: total number of optimization problems solved, total execution time, total
number of extracted rules and percentage of correctly classify points by the
hyperplane that were covered by the extracted rules.

It is important to note that the results reported included only rules that
covered more than one point. We considered that rules that covered only one
point did not have any generalization capability and therefore were discarded.
In general, the algorithm can be tuned to discard rules that do not cover
enough points according to a number predefined by the user.

Empirical results on the five datasets as reported in Tables 1 and 2 show
the effectiveness of both the VM and PCM variants of our proposed algorithm.
In most cases our algorithms covered more of 90% of the training points using
only a few rules. As was expected, the VM variant seems to solve more “easy”
optimization problems and generate more rules. On the other hand, the PCM
variant solved fewer optimizations problems (linear programming problems)
but that were slightly harder to solve, generating fewer rules.

Note that Tables 1 and 2 appear at the end of this paper (the references).
Next, we will discuses in more detail the results obtained for the WDBC
dataset and the lungcad dataset since medical diagnosis applications is of
special interest to us.

Table 1. Results using maximal area formulation, # of optimization problems
solved, total execution time (in s), number of rules and % of correctly classified
points covered are shown for both classes A− and A+ on six datasets

Data Set # prob. solved Time # of points # rules Coverage %

m × n, card(A−), card(A+) Â− Â− Â− Â− Â−
of features Â+ Â+ Â+ Â+ Â+

Lung CAD 33 0.14 124 18 97.6
274 × 34, 137, 137 43 0.17 102 20 100.0

5
WPBC 53 0.23 214 28 100.0

683 × 9, 444, 239 12 0.11 435 9 100.0
5

Ionosphere 46 0.17 70 19 100.0
351 × 34, 225, 126 29 0.19 224 11 100.0

6
Cleveland 102 0.30 53 10 79.3

297 × 13, 214, 83 68 0.20 195 22 98.4
6

Federalist 22 0.17 50 4 90.0
106 × 70, 50, 56 23 0.19 52 6 92.00

6

98 G. Fung et al.

Table 2. Results using the maximal coverage formulation, # of optimization prob-
lems solved, total execution time (in s), Number of rules and % of correctly classified
points covered are shown for both classes A− and A+ on six datasets

Data Set # prob. solved Time # of points # rules Coverage %

m × n, card(A−), card(A+) Â− Â− Â− Â− Â−
of features Â+ Â+ Â+ Â+ Â+

Lung CAD 5 0.09 124 4 98.4
274 × 34, 137, 137 10 0.16 102 9 94.1

5
WPBC 10 0.17 214 7 98.1

683 × 9, 444, 239 3 0.14 435 3 99.8
5

Ionosphere 11 0.17 70 7 87.2
351 × 34, 225, 126 5 0.09 224 2 98.2

6
Cleveland 32 0.33 53 7 81.1

297 × 13, 214, 83 11 0.19 195 11 97.44
6

Federalist 2 0.08 50 2 100.0
106 × 70, 50, 56 13 0.25 52 11 96.2

6

6.1 WDBC Dataset

The first experiment relates to the publicly available WDBC dataset that con-
sists of 683 patient data. The classification task associated with this dataset
is to diagnose breast masses based solely on a Fine Needle Aspiration (FNA).
Doctors identified nine visually assessed characteristics or attributes of an
FNA sample which they considered relevant to diagnosis (for more detail
please refer to [14]).

After applying the LP–SVM algorithm and discarding the features cor-
responding to the wi = 0, we ended up with a hyperplane classifier in five
dimensions that achieved 95.0% tenfold testing set correctness.

After applying our ExtractRules-PCM algorithm to cover the 214 points
in A− correctly classified by the hyperplane we obtained a total of seven
non empty, non-singleton rules that cover 99.8% of the points. Similarly we
obtained a total of three non empty, non-singleton rules that cover 98.1% of
points in A+ correctly classified by the hyperplane. For example after using the
fact that all the features values are integers between one and ten we obtained
the following rule that covered 383 of the 435 positive training points:

(Cell Size ≤ 3) ∧ (Bare Nuclei ≤ 1)
∧ (Normal Nucleoli ≤ 7)

⇒ mass is benign

SVM Rule Extraction via Mathematical Programming 99

6.2 The Lung CAD Dataset

The second experiment relates to a set of data used in a computer aided
detection (Lung CAD) system for pulmonary nodule detection on thin slice
multidetector CT scans. The Lung CAD algorithm performs the following
processing steps:

(a) Lung segmentation
(b) Candidate generation
(c) Feature calculation at each candidate location
(d) Classification
(e) Presenting CAD findings to a physician for review

The task of the candidate generation step, is to reduce the search space by
quickly generating a list of suspicious locations for different types of nodules
at a high sensitivity without considering the specificity. For this, shape based
characteristics are used to generate a candidate list. For each candidate in the
list a set of features is calculated. Those features are based on the intensity,
the shape, the curvature, and the location. The goal of the last processing step
is to increase the specificity without decreasing the sensitivity by pruning the
list of candidates. For this, a classifier is used.

Our dataset consists on 274 candidates represented by 34 numerical fea-
tures. Each datapoint corresponds to a candidate labeled as a nodule or not
a nodule. The LP–SVM algorithm generated a classifier in only five features
with 82.5% tenfold testing set correctness. Our ExtractRules-PCM algo-
rithm extracted a total of ten nonempty, non-singleton rules that cover 94%
of positive training points correctly classified for the hyperplane, similarly we
obtained a total of only five nonempty, non-singleton rules that cover 98.4%
of the points in A+ correctly classified for the hyperplane.

7 Other Mathematical Programming Formulations

Next, we present and briefly discuss several natural extensions or variations
of the mathematical programming formulations presented in this paper.

7.1 Conditioning Rules by Using Prior Knowledge

Let’s illustrate this case by using an example, let’s suppose that after solving
formulation (2) for the dataset used in Sect. 6.1, we obtained a linear classi-
fier that only depends on three features: Cell Size, Bare Nuclei and Normal
Nucleoli. Suppose also that using doctor’s knowledge we suspect that having
the following condition Cell Size ≤ 2 is a good indicator of the mass to be
benign, but the ranges of values of other variables needed to have a more
solid implication or rule are unknown. This problem can be addressed by
incorporating this kind of prior knowledge represented by a logical rule (Cell

100 G. Fung et al.

Size ≤ 2 probably implies benign mass) in the form of linear constraints in
formulation (17).

Let’s define the set K the subset of indices of the features for which a
threshold tk is given and U the set of features for which these threshold are
unknow (in formulation 17 we assume that K = ∅). similarly to Sect. 4.2
we assume that we are given a transformed problem P−(w̃, 1, I0), but the
case when we are given a transformed problem P+(w̃, 1, I0) is analogous. We
want to find x∗

U ∈ �|U| such that w′x∗ − γ = 0 and |C| is maximal. where,
x∗ = x∗

U , (t1, . . . , t|K| and C is defined in the following way:

C = (A− ∩ {x| w′x < 1}) ∩ {x| 0 ≤ xi ≤ x∗
Ui i ∈ Uand 0 ≤ xi ≤ ti i ∈ K}

An approximate solution to this problem can be found by incorporating
the following set of linear constraints to formulation (17);

xi = ti∀i ∈ K

which after simplification is equivalent to the following linear program:

min
xU ,y

e′y

s.t.
∑

i∈U wixi = 1 −
∑

i∈K witi
A.i − eyi ≤ xi ∀i ∈ U,
A.i − eyi ≤ ti ∀i ∈ K,

0 ≤ xU ≤ 1
y ≥ 0.

(19)

7.2 Creating a Rule that Covers an Specific Given Point
or Set of Points

For some applications it may be the case that a rule that explains a single
point or a given set of points is required. This set of points may be part of the
training set or may be not. Lets call P the set of points for which we want
to find a covering rule. We can enforce this requirement in the respective for-
mulations for both the volume maximization and the point coverage criteria.
This can be achieved by simply adding the following set of linear constraints
to both formulations (8) and (17).

pi ≤ xi ∀i ∈ 1, . . . , n and ∀p ∈ P.

Note that in the case of formulation (17) that corresponds to the point cover-
age criteria, adding this set of constraints will generate redundant constraints
if P is a subset of the training set T . Enforcing this set of constraints for
points p ∈ P ∩ T , is equivalent to simply remove the slacks variables that
correspond to these points in formulation (17).

SVM Rule Extraction via Mathematical Programming 101

7.3 Rule Extraction and Knowledge-Based SVMS
for Incremental Learning

Next, we present an introduction to the approach proposed in [8,9] to incorpo-
rating prior knowledge in the form of polyhedral knowledge sets into a linear
programming SVM classifier formulation.

Knowledge-Based SVMs

Let’s assume that we the following knowledge sets in the form of polyhedral
sets (intersection of a finite family of closed halfspaces) are given:

k sets belonging to A+ : {x | Bix ≤ bi}, i = 1, . . . , k
� sets belonging to A− : {x | Cix ≤ ci}, i = 1, . . . , �

(20)

By Proposition 2.1 [8] this knowledge is equivalent to the following
requirements with respect to the bounding planes (9):

There exist ui, i = 1, . . . , k, vj , j = 1, . . . , �, such that:
Bi′ui + w = 0, bi′ui + γ + 1 ≤ 0, ui ≥ 0, i = 1, . . . , k

Cj ′vj − w = 0, cj ′vj − γ + 1 ≤ 0, vj ≥ 0, j = 1, . . . , �

(21)

All what is needed to do in order to incorporate the knowledge sets (20)
into the SVM linear programming formulation (2), is to add the conditions
(21) as constraints to (2) as follows:

min
w,γ,y,ui,vj

νe′y + ‖w‖1

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0

Bi′ui + w = 0
bi′ui + γ + 1 ≤ 0

ui ≥ 0, i = 1, . . . , k

Cj ′vj − w = 0
cj ′vj − γ + 1 ≤ 0

vj ≥ 0, j = 1, . . . , �

(22)

This linear programming formulation will ensure that each of the knowl-
edge sets {x | Bix ≤ bi}, i = 1, . . . , k and {x | Cix ≤ ci}, i = 1, . . . , �
lie on the appropriate side of the bounding planes (9). However, there is no
guarantee that such bounding planes exist that will precisely separate these
two classes of knowledge sets, just as there is no a priori guarantee that the
original points belonging to the sets A+ and A− are linearly separable.

We therefore add error variables ri, ρi, i = 1, . . . , k, sj , σj , j = 1, . . . , �,
just like the error variable y of the SVM formulation (2), and attempt to

102 G. Fung et al.

drive these error variables to zero by modifying our last formulation above as
follows:

min
w,γ,y,ui,ri,ρi,vj ,sj ,σj

νe′y +

µ(
k∑

i=1

(ri + ρi) +
�∑

j=1

(sj + σj)) + ‖w‖1

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0

−ri ≤ Bi′ui + w ≤ ri,

bi′ui + γ + 1 ≤ ρi,
ui, ri, ρi ≥ 0, i = 1, . . . , k,

−sj ≤ Cj ′vj − w ≤ sj,

cj ′vj − γ + 1 ≤ σj ,
vj , sj , σj ≥ 0, j = 1, . . . , �.

(23)

This knowledge-based linear programming formulation incorporates the
knowledge sets (20) into the linear classifier with weight µ, while the (empir-
ical) error term e′y is given weight ν. As usual, the value of these two
parameters, ν, µ, are chosen by means of a tuning set extracted from the
training set. If we set µ = 0 then the linear program (23) degenerates to (2),
the linear program associated with an ordinary linear SVM.

The geometry of incorporating knowledge sets into a classification problem
can be illustrated by considering a synthetic example in R2 with m = 200
points, 100 of which are in A+ and the other 100 in A−. Figure 3 depicts
ordinary linear separation using the linear SVM formulation (2).

It is important to note that if ν = 0, then the linear program (23) generates
a linear SVM that is strictly based on knowledge sets, but not on any specific
training data. This might be a useful paradigm for situations where train-
ing datasets are not easily available, but expert knowledge, such as doctors’
experience in diagnosing certain diseases, is readily available.

We can combine the rule extraction algorithm presented in Sect. 4 with
the knowledge-based SVM formulation to propose an algorithm to perform
incremental SVM learning. The algorithm is mainly motivated by the following
two facts:

1. It is is usually the case that after applying Algorithm 4.1, the number of
rules obtained is much smaller that the number of original training points
used to train the SVM classifier, especially when using the maximum point
coverage criteria. This is in fact strongly supported by the experimental
section of this paper. The resulting set of rules can be seen as a compacted
(compressed) representation of the points in the original training set.

2. By using the knowledge-based SVM formulation described above, a set
of rules represented as a polyhedral set can be combined with a set of
training points to obtain an optimal hyperplane classifier that takes into
account both the rules sets and the training points for learning.

SVM Rule Extraction via Mathematical Programming 103

−20 −15 −10 −5 0 5
−45

−40

−35

−30

−25

−20

−15

x’w= γ +1

x’w= γ

x’w= γ −1

A−

A+

w

||w||1

2
Margin

(a)

−20 −15 −10 −5 0 5
−45

−40

−35

−30

−25

−20

−15

{x | B1x ≤ b1}

{x | C2x ≤ c2}{x | C1x ≤ c1}

A−

A+

x’w= γ −1

x’w= γ +1

x’w= γ

(b)

Fig. 3. (a) A linear SVM separation for 200 points in R2 using the linear program-
ming formulation (2). (b) A linear SVM separation for the same 200 points in R2 as
those in (a) but using the linear programming formulation (23) which incorporates
three knowledge sets: {x | B1x ≤ b1} into the halfspace of A+, and {x | C1x ≤ c1},
{x | C2x ≤ c2} into the halfspace of A−, as depicted above. Note the substantial
difference between the linear classifiers x′w = γ of both figures

104 G. Fung et al.

Let’s assume now that we are interested in learning an SVM classifier
and that we are in the incremental setting, this is, the training data comes
continuously in batches through time: At1 , At2 , . . . , and eventually the total
accumulated dataset gets too large to be handled by a traditional learning
algorithm, in this case formulation 2.

the main idea is that at any time tk only a set of rules Rk obtained
using Algorithm 4.1 is kept as a compact representation of past training data.
When a new set of training data Atk+1 is available, this training data is com-
bined with the set of rules Rk to obtained an updated classifier by using the
knowledge-based SVM formulation. once the new classifier is obtained, the set
of rules is updated.

Next we present a more detailed version of the algorithm:

Algorithm 7.1 IncrementalLeaning(w, γ, I, d): Algorithm for incre-
mental SVM learning.
Given Ato and the corresponding labels. iter = 0, R0 = ∅
1. If iter = 0, Solve formulation (2) to obtain an initial sparse hyperplane

classifier witer.
2. If iter > 0, Solve formulation (17) using the new training data Atiter and

the compact set of rules Riter to obtain new sparse hyperplane classifier
witer.

3. Use Algorithm 4.1 and witer to generate an updated set of rules Riter+1.
4. make iter = iter + 1 and got to 1.

Note that step 3 requires to use Algorithm 7.1 to obtain a new set of
rules, the simplest way to do this is by using the volume maximization criteria
(VMC) and the stopping criteria has to be set based on the amount of volume
covered a each step.

Experiments and details on the formulations presented on this section are
still work in progress and will presented in future work.

8 Conclusion and Future Directions

We have described an efficient algorithm for converting any arbitrary linear
classifier into a rule set that can be easily interpreted by humans. We pre-
sented two variants of our algorithm based on different criteria for selecting
“optimal rules”. One main advantage of our algorithm is that it only involves
solving relatively simple optimization problems in a few variables. We also
discussed various properties and provided a detailed convergence analysis of
the algorithm. Empirical results on several real-world data sets demonstrate
the efficacy and speed of our method.

We plan to extend our numerical results to include comparisons to other
rule-based classification methods. We are also considering other mathematical
programming formulations where the rules can overlap since overlapping rules
may have an advantage that may depend on the specific problem.

SVM Rule Extraction via Mathematical Programming 105

The incorporation of the feature selection into the rule extraction problem
is also a possibility we are exploring at this moment. This approach would
generate rules that depend on different features instead of depending on the
same preselected subset of features.

So far we have focused on developing rule sets that are human interpretable
models that are equivalent to the original linear classifier. An equally impor-
tant use of our method would be to provide an explanation of the classification
for a new unlabeled (test) example. The most obvious way is to present the
user with the specific rule that includes the test example. For instance, when
working with physicians, we have found that an explanation of a classification
label which is in terms of a bounding hypercube, is far more understandable
than “explaining” a label because some weighted sum of the variables is less
than some constant.

The interesting case arises when no rule covers the test example. The obvi-
ous extension to execute ExtractRules on the region I which contains the
test example, until a covering rule is found. However, the resulting rule may
cover a very small volume around the test example, rendering the explanation
useless. An alternate approach is not to build a rule set that is equivalent to
the entire classifier, but instead to revise the original problem defined in (8)
to extract just one rule – the largest possible hypercube (rule) which contains
the test example. Such a rule, however, may not have much explanatory value
because in most cases the test example will lie on one of the surfaces of the
hypercube.

A more satisfactory explanation for a test sample may be provided by
a rule where the example lies well within the interior of the rule, far away
from the bounding spaces. The rule that provides the “optimal” explanation,
can be created by drawing a normal from the test sample to the hyperplane,
and the intersection of the normal with the hyperplane defines the corner
of a uniquely defined bounding hypercube (rule), which centrally contains
the test sample. Additionally, we can provide a confidence associated with
the explanation (rule); ideally the explanation rule should cover all training
examples in A+ (A−), contain only all positive (negative) training samples,
be as large as possible (the volume ratio with respect to the rule created by
ExtractRules), and for the test sample to be as far from the hyperplane. All
these factors may be used to adjust the confidence associated with the rule
(for the specific test sample) by weighting it using some scoring scheme. In
general, these criteria may be applied to any explanatory rule, not just the
“optimal” explanatory rules created as defined above.

References

1. D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1995.
2. Dimitri P. Bertsekas. Projected Newton methods for optimization problems with

simple constraints. SIAM Journal on Control and Optimization, 20:221–246,
1982.

106 G. Fung et al.

3. F. Beyer, L. Zierott, J. Stoeckel, W. Heindel, and D. Wormanns. Computer-
assisted detection (cad) of pulmonary nodules at mdct: Can cad be used as
concurrent reader? In Proceeding of the 11th European Congress of Radiology,
Viena, Austria, March 2005. To appear.

4. E. H. Shortliffe B. G. Buchanan. Rule-Based Expert Systems: the MYCIN experi-
ments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading,
MA, 1984.

5. P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization
and support vector machines. In J. Shavlik, editor, Machine Learning Pro-
ceedings of the Fifteenth International Conference (ICML ’98), pages 82–90,
San Francisco, California, 1998. Morgan Kaufmann. ftp://ftp.cs.wisc.edu/math-
prog/tech-reports/98-03.ps.

6. V. Cherkassky and F. Mulier. Learning from Data - Concepts, Theory and
Methods. John Wiley & Sons, New York, 1998.

7. G. Fung and O. L. Mangasarian. Proximal support vector machine classi-
fiers. In F. Provost and R. Srikant, editors, Proceedings KDD-2001: Knowl-
edge Discovery and Data Mining, August 26-29, 2001, San Francisco, CA,
pages 77–86, New York, 2001. Asscociation for Computing Machinery.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-02.ps.

8. G. Fung, O. L. Mangasarian, and J. Shavlik. Knowledge-based support vector
machine classifiers. Technical Report 01-09, Data Mining Institute, Computer
Sciences Department, University of Wisconsin, Madison, Wisconsin, Novem-
ber 2001. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-09.ps, NIPS 2002 Pro-
ceedings, to appear.

9. G. Fung, O. L. Mangasarian, and J. Shavlik. Knowledge-based nonlinear
kernel classifiers. Technical Report 03-02, Data Mining Institute, Computer Sci-
ences Department, University of Wisconsin, Madison, Wisconsin, March 2003.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/02-03.ps. Conference on Learning
Theory (COLT 03) and Workshop on Kernel Machines, Washington D.C.,
August 24-27, 2003, submitted.

10. Glenn Fung. The disputed federalist papers: Svm feature selection via concave
minimization. In TAPIA ’03: Proceedings of the 2003 conference on Diversity
in computing, pages 42–46. ACM Press, 2003.

11. F. J. Kurfes. Neural networks and structured knowledge: Rule extraction and
applications. Applied Intelligence (Special Issue), 12(1-2):7–13, 2000.

12. O. L. Mangasarian. Arbitrary-norm separating plane. Operations Research Let-
ters, 24:15–23, 1999. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-07r.ps.

13. O. L. Mangasarian. Generalized support vector machines. In A. Smola,
P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large
Margin Classifiers, pages 135–146, Cambridge, MA, 2000. MIT Press.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps.

14. O. L. Mangasarian, W. N. Street, and W. H. Wolberg. Breast cancer diagno-
sis and prognosis via linear programming. Operations Research, 43(4):570–577,
July-August 1995.

15. S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discrim-
inant analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas,
editors, Neural Networks for Signal Processing IX, pages 41–48. IEEE, 1999.

16. P. M. Murphy and D. W. Aha. UCI machine learning repository, 1992.
www.ics.uci.edu/∼mlearn/MLRepository.html.

SVM Rule Extraction via Mathematical Programming 107

17. Haydemar Nuñez, Cecilio Angulo, and Andreu Catal. Rule extraction from sup-
port vector machines. In ESANN’2002 proceedings - European Symposium on
Artificial Neural Networks, pages 107–112. d-side, 2002.

18. K. Preston. Computer processing of biomedical images. Computer, 9:54–68,
1976.

19. A. Tickle R. Andrews, and J. Diederich. A survey and critique of techniques
for extracting rules from trained artificial neural networks. Knowledge-Based
Systems, 8:373–389, 1995.

20. L. B. Lusted and R. S. Ledley. Reasoning foundations of medical diagnosis.
Science, 130:9–21, 1959.

21. J. Roehrig. The promise of cad in digital mammography. European Journal of
Radiology, 31:35–39, 1999.

22. G. Towell & J. Shavlik. The extraction of refined rules from knowledge-based
neural networks. Machine Learning, 13:71–101, 1993.

23. J. A. K. Suykens and J. Vandewalle. Least squares support vector machine
classifiers. Neural Processing Letters, 9(3):293–300, 1999.

24. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,
second edition, 2000.

Rule Extraction Based on Support
and Prototype Vectors

Haydemar Núñez1, Cecilio Angulo2, and Andreu Català2

1 Artificial Intelligence Laboratory, School of Computing, Central University
of Venezuela, Caracas, Venezuela

2 Knowledge Engineering Research Group, Technical University of Catalonia,
Rambla de l’Exposició s/n. E-08800 Vilanova i laGeltrú, Spain

The support vector machine (SVM) is a modelling technique based on the
statistical learning theory (Cortes and Vapnik 1995; Cristianini and Shawe-
Taylor 2000; Vapnik 1998), which has been successfully applied initially in
classification problems and later extended in different domains to other kind
of problems like regression or novel detection. As a learning tool, it has demon-
strated its strength especially in the cases where a data set of reduced size is
at hands and/or when input space is of a high dimensionality. Nevertheless,
a possible limitation of the SVMs is, similarly to the neuronal networks case,
that they are only able of generating results in the form of black box models;
that is, the solution provided by them is difficult to be interpreted from the
point of view of the user.

In the neuronal networks research area there has been a wide activity
addressed to solve this situation by developing methods able to transfer the
knowledge acquired by a neuronal network during the learning phase to a
more amenable representation (Andrews et al. 1995; Craven and Shavlik 1997;
Tickle et al. 1998; Tickle et al. 2000). The objective of these rule extraction
methods is to use the neuronal networks like a tool for solving the problem,
obtaining benefit from the advantages that offer these learning paradigms
(like its good generalization property, its ability to process nonlinear relations
and their high tolerance to the noise and the imprecision in the input data),
as well as adding the possibility to open the black box, which would allow
to obtain an explanatory result of the problem under study and a simpler
solution to be understood by the user. Hence, the extraction of rules improves
the adjustment of the neuronal networks to solve problems of data mining
(Mitra et al. 2002; Witten and Frank 2005), when the primary target is to
discover unknown and implicit relations in large databases that, in many cases,
is necessary to be expressed in a comprehensible format.

Following this line of work, a solution to the lack of transparency of the
models generated for the support vector machines would be the development of
specific techniques of rule extraction directed to this kind of learning machines.
H. Núñez et al.: Rule Extraction Based on Support and Prototype Vectors, Studies in

Computational Intelligence (SCI) 80, 109–134 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

110 H. Núñez et al.

An interesting property of the SVM is that the hypothesis that it generates
is built on the basis of a subgroup of training vectors called support vec-
tors. These vectors constitute the key elements of the learning set since they
are the points nearest to the decision limit and, therefore, represents the
most informative patterns for building the solution. This explicit dependency
of the learned model on the support vectors will facilitate the work of its
interpretation.

A rule extraction method for the interpretation of support vector machines
is presented in this work which uses the support vectors, along with prototype
vectors generated by any clustering algorithm, for building a set of regions that
fit the limit of the decision function defined by the SVM, so that it can be
transferred to interpretable rules by the user (Núñez et al. 2002a, 2003). These
regions can be built in two types: ellipsoids, which will generate equation-type
rules, and hyper-rectangles, built from ellipsoids parallel to the axes of the
variables, rising to a more comprehensible language in the form of interval
rules.

In Sect. 1, the algorithm for the extraction of rules from a SVM is presented
in detail, starting with the explanation about how generating an ellipsoid of
maximal coverage that adjusts to the decision function generated for the SVM.
Next, it is described the generation of a set of rules for a class. This algorithm
will be modified to derive interval rules. The description of the mechanism
ends with the description of the most interesting features of the algorithm.
Several experiments on standard databases are described for different domains
in Sect. 2, in order to evaluate the performance of the proposed rule extraction
method, in particular its ability to extract the knowledge retained in a trained
SVM. Since it is proved that the algorithm is strongly dependent on the initial
conditions of the clustering algorithm used to derive the prototype vectors, in
Sect. 3 a different approach is described for obtaining these prototype vectors
based on the support vectors, overcoming in this form all the randomness due
to the nowadays avoided clustering algorithm. Finally, some conclusions are
derived and future works are sketched.

1 Combining Support Vectors and Prototype
Vectors to Extract Rules

The methods for the extraction of rules from neuronal networks can be classi-
fied according to three basic features (Andrews et al. 1995; Craven and Shavlik
1997):

• The representation language used to describe the model estimated by the
network.

• The form how the method explores the network to derive the rules. In
this sense, local methods analyse the structure of the network at level of
both, the hidden units and the output units to extract the rules, whereas

Rule Extraction Based on Support and Prototype Vectors 111

global methods extract rules on the basis of the input–output mapping gen-
erated by the network, with not analysis of its internal structure. Hybrid
techniques have also been settled out in the between of these two methods.

• The portability of the method; that is, whether the technique is applicable
independently of the network architecture and its training regime.

These features could be also used to define a rule extraction method for
support vector machines and, similar to the case of neuronal networks, the
main problem to be solved is to transfer the knowledge acquired by a SVM
during the learning to a description in a new and comprehensible represen-
tation language. A key point to be considered is the functional equivalence
between the new model and the SVM model from which it was extracted, by
providing the same predictions.

For the development of such a translation technique, it is important to
identify how the knowledge is codified for the hypothesis generated by a SVM.
The solution provided by these learning machines is an expansion of kernel
functions on the basis of the number of support vectors,

fa (x) = sign

(
sv∑

i=1

αiyiK (x, xi) + b

)
. (1)

It could be affirmed then that knowledge is expressed in the form of:

• A set of support vectors SV = {(xi, yi)i=1...sv}, which are the data from
the learning set LS nearest the limit of separation between classes

• A set of values A = {αi=1...N} associated to the data, which indicate
whether or not a pattern is a support vector without error (0 < α < C), a
support vector with error (α = C), or a pattern not considered in building
the decision function (α = 0)

• A kernel function K and its associated parameters, such as degree in a
polynomial function or width in a Gaussian kernel

The support vectors, although in general are a small group of patterns into
the learning set, are the most informative samples for the classification task.
Being these vectors the points nearest the limit of separation between classes,
would turn out advantageous then to use them in the extraction technique in
the form of a set of class delimiters establishing the borders of regions defined
in the input space that can be transferred to rules. In the method detailed in
this work, these regions are a form of ellipsoids and the new representational
language is a rule equation of the type ‘if-then’ using like antecedent or premise
to the mathematical equation of the ellipsoid and like consequent, the label of
the class associated to the data covered by this one, as it is shown in Fig. 1.

Transferring to this new representation the knowledge captured by the
SVM during the learning entails the determination of a set of ellipsoids that
fit to the form of the decision limit, avoiding as much as possible the over-
lapping between classes in the new model. In this sense, it is beneficial for

112 H. Núñez et al.

Fig. 1. Representational language used for the rule extraction

building these regions to use, in addition to the support vectors, the infor-
mation provided by the vector of parameters α, since it indicates whether a
support vector is in the region associated to another class or within the margin
of separation between classes (those with a value of the associated parameter
equal to C). In reference to the kernel functions, it is considered advisable
that the method is independent of this characteristic in order that it can be
applied to the widest range of SVM models.

Once defined the representational language of the extraction method, the
problem to be approached is how to build these ellipsoids for a class from the
information provided by a trained SVM. It will be two aspects that will be
taken into account to perform this task:

• Ellipsoids fitting. The set of ellipsoids must fit the form of the discriminant
function defined by the SVM, exhibiting as low overlapping between classes
as possible to avoid problems of multiple instances in the set of rules. This
premise will allow building rules with a high precision.

• Ellipsoids coverage. It is advisable to built ellipsoids covering as much data
as possible with the purpose of producing a compact set of rules.

It is explained in the next, in a detailed form, the extraction method for
building the associated ellipsoids to a class. It will be presented in a two-stage
incremental procedure: first it will be assumed that it is possible to represent
a whole class with a single ellipsoid. Next, it will be described how to generate
a set of rules when this premise is not fulfilled, as it is usually the case.

1.1 Building an Ellipsoid and Its Associated Rule Equation

It is possible to define an ellipsoid associated to an input data set by deter-
mining the covariance matrix of the set and finding their eigenvectors and
eigenvalues (Strang 1998). In this form, a set of axes for an ellipsoid follow-
ing the directions of greater variance of the data is obtained, the vertices

Rule Extraction Based on Support and Prototype Vectors 113

being determined from the own values. Nevertheless, the idea underlying in
the proposed method is that the ellipsoids should adjust to the form of the
limit of decision generated by the SVM. In order to obtain an ellipsoid with
these characteristics, its orientation is defined by the support vectors, which
are explicitly used for determining the associated set of axes of the ellipsoid
and vertices by means of geometric methods. Hence, the problem associated
to determining such an ellipsoid in the m-dimensional input space, can be
defined as:

Given

– A set of support vectors SV =
{
(x i ,yi) ∈ �m+1, i = 1 . . . sv

}
obtained

by using some SVM training procedure
– A set of remaining training data D =

{(
x j ,yj

)
∈ �m+1,

(
x j ,yj

)
/∈ SV

}
,

defined by excluding support vectors from the original training data
– A set of parameters A = {(αk) ∈ �, k = 1 . . .N}, obtained by the SVM

training procedure, being different to zero those associated to the support
vectors

Determine

– A centre p
– A set of orthonormal vectors, E = {(ei) , i = 1 . . .m}
– A set of pair of vertices, V = {(vi1, vi2) , i = 1 . . .m}
To define an ellipsoid which orientation is explicitly determined

by the support vectors.

The algorithm in pseudo-code to derive an ellipsoid is in Table 1. First
step in the algorithm is the initialization of the output values. Output sets

Table 1. Algorithm for deriving an ellipsoid

{Input: SV, D, A}
Initialize p, E, V
Build Ellipsoid

{e1, v11} = Determine First Axis Vertex
v12 = Determine Second Vertex
E = E ∪ e1, V = V ∪ {(v11, v12)}
p = Update Prototype
For k = 2 to m

{ei, vi1} = Determine Next Axis Vertex
vi2 = Determine Second Vertex
E = E ∪ ei, V = V ∪ {(vi1, vi2)}

End For
End Build Ellipsoid
{Output: p, E, V}

114 H. Núñez et al.

are set to null and the first considered centre of the ellipsoid is defined like
the centre of gravity of all the data in the class,

p =
1
N

N∑
i=1

xi,x i ∈ LS. (2)

Once the initial prototype is calculated, now the algorithm to build the
ellipsoid determines, using the Determine First Axis Vertex procedure, the
first axis of the ellipsoid as well as the first vertex in this axis. Using
Determine Second Vertex, the second vertex along the first axis is defined.
E is a matrix of column vectors containing the orthonormal vectors defin-
ing the axes of the ellipsoid. V holds for the vertices associated to each
axis. Next, the algorithm enters into a loop in which, both, the axis and
its first vertex are determined each iteration by means of the Determine Next
Axis Vertex procedure, as well as the second vertex through the
Determine Second Vertex procedure. It will be now detailed each one of the
procedures used in the algorithm.

Determine First Axis Vertex Procedure

This procedure determines both, the vector that will be used like the first
axis and the first vertex considered on this axis. The vector e1 ∈ E is built
from the prototype p and the support vector without error, i.e. α < C having
maximal distance to the prototype,

q11 = {x| ‖x − p‖ = argmax (‖xj − p‖) , xj ∈ SV, αj < C} . (3)

As it were already indicated, an ellipsoid as general as possible should be
built, but fitting the form of the decision limit defined by the SVM.

Whether more than a support vector fulfils this condition, one of them is
randomly selected. In the opposite, it is also possible that a support vector
without error does not exist. In this case, the pattern in the set D with
maximal distance to the prototype is selected,

q11 = {x| ‖x − p‖ = argmax (‖xj − p‖) , xj ∈ D} . (4)

The unitary vector is defined as,

e1 =
q11 − p

‖q11 − p‖ . (5)

And the first vertex along this axis is the selected end-point,

v11 = q11. (6)

Rule Extraction Based on Support and Prototype Vectors 115

Determine Second Vertex Procedure

Through this procedure the second vertex on the axis is determined in the
following form: first, a search region for support vectors is built by considering
the subset of support vectors accomplishing,

SVi2 =
{

x ∈ SV | arccos
(

(x − p) · ei

‖x − p‖

)
≥ 3π

8

}
. (7)

Support vectors in this zone are those such that its projection with respect
to the prototype over the axis is greater that any other projection over orthog-
onal axes to this one. The support vector related with the second vertex is
that in SVi2 without error and larger distance to the prototype p,

q12 = {x| ‖x − p‖ = argmax (‖xj − p‖) , xj ∈ SVi2, αj < C} . (8)

Again, when more than a support vector exists fulfilling the specific con-
dition, one of them is randomly selected. For the case that no support vector
exists in the zone, the pattern in D that satisfies the established criterion is
selected.

Since the more general ellipsoid is searched, the second vertex is deter-
mined as,

vi2 = p − ‖qi2 − p‖ ei. (9)

When it does not exist neither data in the SVi2 set nor in the set D, the
vertex is defined by using the first vertex as,

vi2 = p − ‖vi1 − p‖ ei. (10)

Update Prototype Procedure

Once vertices are both determined on the first axis, the prototype is updated to
be its midpoint. In this form, the original averaged initial centre p is replaced
through the geometric situation of the support vectors by,

p =
v11 + v12

2
. (11)

Determine Next Axis Vertex Procedure

This procedure iteratively determines orthonormal vectors to the set E
included in the m − i + 1 linear manifold containing the centre p . They are
selected guided by the support vectors. Hence, first the set of support vectors

SVi1 =
{

x ∈ SV |angx ≤ π

4

}
, (12)

116 H. Núñez et al.

is firstly determined, where angx is the angle determined by the vector (x − p)
and the m − i + 1 linear subspace,

angx = arccos

⎛
⎝
√√√√1 −

i−1∑
j=1

(
(x − p) · ej

‖x − p‖

)2
⎞
⎠ . (13)

From this set, the vector with greater distance to the prototype is selected,

qi1 = {x| ‖x − p‖ = argmax (‖xj − p‖) , xj ∈ SVi1, αj < C} . (14)

When no support vector exists in the searching zone, then the pattern in D
that fulfils the maximal distance criterion is selected. In order to determine the
unitary vector, a projection of the former vector with respect to the prototype
on the m − i + 1 linear subspace is used. It is built by using the projection
matrix Mp onto the subspace generated by E,

Mp = EET . (15)

Hence, the projection is defined as,

pqi1 = (qi1 − p) − Mp (qi1 − p) (16)

the orthonormal vector is built as,

ei =
(pqi1 − p)
‖pqi1 − p‖ (17)

and the first vertex in this vector will be defined as,

vi1 = p + ‖qi1 − p‖ ei. (18)

A key point to be solved is related with the infeasibility to find in the
searching region a support vector or a pattern for determining an orthogonal
vector to the set E. When it is not possible to find such a pattern in a certain
iteration k, then it will be also impossible to find a pattern accomplishing
the criteria in the successive iterations, that is, when the linear subspace will
be smaller. In this situation, it has not more sense to evaluate our proposed
algorithm of finding for the axe defined from support vectors. The ellipsoid is
projected in this case on the k-dimensional linear manifold and a spheroid is
obtained in this subspace.

In order to obtain a set of k orthonormal vectors in the k-dimensional
subspace, an equation system can be solved and one of the infinite solutions
be selected. Nevertheless, it is proposed to use a procedure based on the Gram-
Schmidt orthogonalization (Strang 1998) which is described in the following.

Given a standard set of unitary vectors,

U = {(ui)}i=1,...,m (19)

Rule Extraction Based on Support and Prototype Vectors 117

an auxiliary set Be, initialized as U is defined. Each time that a vector in E
is determined, the nearest vector in Be is searched,

proymax = argmax
u∈Be

(u · ei) (20)

uei = {uj ∈ Be|uj · ei = proymax} (21)

and it is removed from the set Be.
In the case that it is impossible to find a point (a support vector or a gen-

eral pattern) that fulfils the criterion determining an axis, the k orthonormal
vectors to the set E are determined from the set Be in the following form,

For l = m − k + 1 to m
Mp = EET

j = 1
el = uj − Mpuj ; el = el

‖el‖ ; E = E + {el}
j = j + 1

End For

This procedure allows obtaining a fast unique solution without solving a
system of equations, using basic vector operations and matrix product. In
order to determine the vertices on each axis it is necessary to find the radius
of the spheroid, which can be obtained from the radii associated to the axes
in E. Several choices are possible, to use the greater radius, to use the smaller
radius or the average of the radii. Since the most general ellipsoid is desired,
the greater radius criterion will be used. When overlapping with data of other
classes due to this generalist criterion appears, the ellipsoid can be specialized
later by using a procedure for determining a set of rules that will be described
later.

Another point to be solved is about the fact that, with the exception of
the first axis, it will be usual that the vertices on the axes define a different
radius, therefore one of them must be refined. Two criteria to decide which
vertex to refine can be: using the radius defined by the vertex derived from
a support vector or considering always the greater one from radii. Again, if
overlapping with data of other classes appears when applying this heuristic,
then the ellipsoid will specialize.

Generating the Rule

Once generated the ellipsoid, the rule equation can be derived from the centre
p, the set of orthonormal vectors E and the set of vertices V in the following
form:

Let’s suppose a 3-dimensional input space, then the ellipsoid is defined as,(
x′

1

r1

)2

+
(

x′
2

r2

)2

+
(

x′
3

r3

)2

≤ 1 (22)

118 H. Núñez et al.

with ri = ‖vi1 − p‖ , p = (p1, p2, p3) and⎡
⎣x′

1

x′
2

x′
3

⎤
⎦ = ET ·

⎡
⎣x1 − p1

x2 − p2

x3 − p3

⎤
⎦ . (23)

Developing (23), it is obtained an expression in the form

Ax2
1+Bx2

2+Cx2
3+Dx1x2+Ex1x3+Fx2x3+Gx1+Hx2+Ix3+J ≤ K. (24)

Generating an equation-type rule with a form,

IF Ax2
1 + Bx2

2 + Cx2
3 + Dx1x2 + Ex1x3 + Fx2x3 + Gx1 + Hx2 + Ix3 +

J ≤ K THEN CLASS.

1.2 Generating a Set of Rules

Is an ellipsoid enough to describe the distinctive zone of a class? A positive
answer is possible for some cases, but it will not be thus for the general case.
On the other hand, it is difficult to establish a priori the number of necessary
rules to represent the model of a SVM.

Two basic premises exist on which the building of the new model is based:
the generalization or covering of the rules and the accuracy or precision of the
ellipsoids to fit the shape of the decision surface defined by the SVM. The
proposed procedure to build an ellipsoid tries to satisfy them. However, when
one ellipsoid is not enough to describe the data in a class, the question is
how to determine a number of regions that exhibit these characteristics. For
instance, it can be observed in Fig. 2a that the ellipsoid generated from the
midpoint of the data invades the zone associated to the other class due to
the curvature of the decision limit. By dividing the ellipsoid (as it is shown
in Fig. 2b) overlapping is reduced and the two new regions fit better to the
decision surface than the original region.

Therefore, to generate a set of rules, the extraction method will initially
build one ellipsoid which will be divided (specialized) until a group of more
specific ellipsoids covering the data in the class and fitting the shape of the
separation surface defined by the SVM is obtained.

A mechanism for determining the centre of each ellipsoid must be available
in order to be able executing our proposed procedure. Initially, the centre was
built as the midpoint of the data in the class. Nevertheless, it must be defined
how to find new centres and which data to use to build each ellipsoid when
it is mandatory to divide the initial ellipsoid in two or more regions. The
derivation of the centres or prototypes can be performed using a clustering
algorithm (Duda et al. 2001; Kaufman and Rousseeuw 1990), which divides
the data set of a class in a predetermined number of disjoint partitions and it
determines a prototype or representative centre for each one of the partitions.

On the other hand, it is also necessary to establish conditions for deter-
mining when to divide an ellipsoid. Division criteria can be based on an index

Rule Extraction Based on Support and Prototype Vectors 119

Fig. 2. (a) Generating one ellipsoid for a class. (b) By dividing the ellipsoid, two
regions are obtained fitting better the decision function

of overlapping between classes, which could be implemented by means of geo-
metric methods. It can be noticed in Fig. 2 that some support vectors exist
belonging to another class within the defined ellipsoid. Since support vectors
are the data nearest the decision function, they are the most informative about
the shape of this separation surface. A first proposed criterion suggesting when
to divide an ellipsoid is:

– Criterion 1 : To divide an ellipsoid when support vectors of other classes
exist in the region covered by it.

In this form, support vectors are used, not only for defining the ellipsoids,
but also to verify the overlapping between ellipsoids of different classes. Over-
lapping also appears when the generated prototypes belong to another class
(see Fig. 3); this fact can be verified by using the SVM function to generate
the class label for these artificial points, which leads to a second partition
criterion:

– Criterion 2 : To divide an ellipsoid when the generated prototype belongs
to another class.

120 H. Núñez et al.

Prototype belongs
to Class 1

Ellipsoid generated for
Class 2

Dividing
the

ellipsoid

Class 2

Class 1

Fig. 3. The prototype generated like the midpoint of the data belongs to another
class

Finally, overlapping between classes can also appear when at least one of
the vertices generated by the algorithm to build an ellipsoid belongs to another
class, which also can be verified using the trained SVM function. This third
criterion of division is translated like:

– Criterion 3 : To divide an ellipsoid when at least one of the vertices belongs
to another class.

These three criteria can be formalized like a test of partition. Whether this
test is positive when being applied to an ellipsoid, it indicates that it is very
probable that it covers data from other classes.

It has been showed that overlapping can be reduced and fitting to the
decision function increased by increasing the number of regions describing
a class, however it should be now addressed how many regions are needed
to describe data in a class. This number of regions could be user defined,
providing in this form control on the size of the set of rules. Also it could be
considered to divide ellipsoids until some established criterion is reached, for
instance a good level of prediction.

According to this analysis, the extraction method for generating the set
of ellipsoids associated to a class follows an iterative scheme. Starting by the
prototype of the class (midpoint of the data) the initial ellipsoid is derived.
Next, the partition test is applied on this region; when the answer to the
test is negative the ellipsoid is transferred to a rule. Otherwise, a clustering
algorithm is applied for determining two new prototypes with the data of
the initial partition (data of the class); one ellipsoid is built for each one of
them using the data of the respective partitions. The partition test is applied
to these two new regions and the process is repeated. In this form, in the
k-th iteration, tp regions have a positive test of partition and tn will be with
negative answer. These last ones are transferred to rules. In the next iteration

Rule Extraction Based on Support and Prototype Vectors 121

k + 1, data from the tp regions are used to generate tp + 1 new prototype
vectors which will lead to tp + 1 new regions. The procedure ends when all
the partition tests have a negative answer or when the maximum number of
iterations is reached (externally defined to control the number of generated
rules). In Table 2 the complete algorithm to be used for deriving a set of rules
is described, where:

– Determine Prototypes (Data, Number regions): It is a function for deter-
mining an equal number of prototypes to Number regions for the data,
using a clustering algorithm. For each prototype it also returns the

Table 2. Algorithm for deriving a set of rules

{Input: SV, D, SVM function}
Initialize Generating Rules
Do for each Class

Number regions = 1
Data = Data class
[prototypes, partition] = Determine Prototypes (Data, Number regions)
Ellipsoid = Build Ellipsoid (prototypes, partition)
Ellipsoid rules = Ellipsoid
Condition(1) = Partition Test (Ellipsoid)
Number regions = 2
While ((Condition(i) = 1) ∧ Iterations < max iterations)

[prototypes, partition] = Determine Prototypes (Data,
number regions)
For i = 1 to number regions

Ellipsoid(i) = Build Ellipsoid (prototypes(i), partition(i))
Condition(i) = Partition Test (Ellipsoid (i))

End For
Number new regions = 1
New data = []
For i = 1 to Number regions

If Condition(i) =0 ∨ Iterations =max iterations
ellipsoid rules = ellipsoid(i)

Else
Number new regions = Number new regions + 1
New data = New data + Partition(i)

End If
End For
Data = New data
Number regions = Number new regions

End While
End Do
{Output: rules}

122 H. Núñez et al.

Fig. 4. Several examples of ellipsoids generated for learned SVM. Iteration left
to right

respective partition. In the first iteration, the prototype will be the
midpoint of the data.

– Build Ellipsoid (prototypes, partition): This function builds an ellipsoid
from a prototype and data from a partition.

– Partition Test (Ellipsoid): It returns the logical answer of the partition
test on an ellipsoid.

Figure 4 shows several examples of the iterative application of the rule
extraction algorithm.

1.3 Simplified Representational Language for the Model

The ellipsoids and their equation-type rules define a representational language
obtained by the rule extraction method to describe the model generated by
the trained SVM. However, it will be showed that it is possible to derive more
interpretable type rules by using like premise a set of constraints over the
values of each one of the variables, to be satisfied so that the consequent one

Rule Extraction Based on Support and Prototype Vectors 123

Fig. 5. Interval-type rule for SVM

is fulfilled (class label). This second representational language, called interval-
type rules, can be observed in Fig. 5: it is associated to a convex region in the
form of a hyper-rectangle generated from an ellipsoid parallel to the axes of
the variables.

In order to derive the interval-type rules, the procedures Determine
First Axis Vertex and Determine Next Axis Vertex of the Algorithm shown
in Table 1 are modified. Key difference is about how the axes of the ellipsoid
rising to a hyper-rectangle are built, by using the standard set U of unitary
vectors. Support vectors are used to establish the order in selecting unitary
vectors of the set Be according to a criterion of proximity with the end points,
as well as to build the vertices on the axes. This heuristic will allow that the
ellipsoids parallel to the axes of the variables fit the shape of the separation
surface defined by the SVM, without overlapping with the distinctive zone of
other classes. These two modified procedures are described in the following.

Determine First Axis Vertex Procedure

Given the standard set of unitary vectors U, it is initially defined Be = U, and
q11 is determined as defined in Sect. 1.1. Next, it is calculated the projection
of the vector (q11 − p) onto any vector in Be. First selected unitary vector
will be that in this set with higher projection, selecting in this form the axis
with higher information about the support vector, that is,

proymax = arg max
u∈Be

((q11 − p) · u) (25)

e1 = {ui ∈ Be| (q11 − p) · ui = proymax} . (26)

The selected vector is removed from the set Be. The vertex v11 is the
projection of the vector (q11 − p) on the next axis e1,

v11 = p + (e1 · (q11 − p)) e1. (27)

124 H. Núñez et al.

Determine Next Axis Vertex Procedure

In order to determine the next axe, the support vectors to be considered are
those forming with the centre an angle lower than 45◦ with respect to the
m− i + 1 linear manifold containing the centre and that is orthogonal to the
set of vectors E, which leads to a subset defined as,

SVi1 =
{

x ∈ SV |angx ≤ π

4

}
, (28)

where

angx = arccos

⎛
⎝
√√√√1 −

i−1∑
j=1

(
(x − p) · ej

‖x − p‖

)2
⎞
⎠ . (29)

From this subset, the support vector without error with maximal distance
to the prototype is selected,

qi1 = {x| ‖x − p‖ = argmax (‖xj − p‖) , xj ∈ SVi1, αj < C} . (30)

When there are no support vectors in the searching zone, the pattern in
D satisfying the already established criterion for these vectors is selected. In
order to determine the unitary vector, the usual projection onto each vector
of Be is considered, and the higher projected one is selected,

proymax = argmax
u∈Be

((qi1 − p) · u) (31)

ei = {uk ∈ Be| (qi1 − p) · uk = proymax} . (32)

The selected vector is removed from Be. The vertex is calculated as usual,

vi1 = p + (ei · (qi1 − p)) ei. (33)

When it is impossible to find a point (a support vector or a general pattern)
that fulfils the criterion determining an axis, the k unitary vectors to the set
E are determined from the set Be in the following form,

resferoide = argmax
(i=1...(m−k))(j=1,2)

(‖vij − p‖) .

For l = (m − k + 1) to m
j = 1
el = uj

v l1 = p + resferoideel

v l2 = p − resferoideel

E = E + {el}
j = j + 1

End For

Rule Extraction Based on Support and Prototype Vectors 125

Fig. 6. Several examples of hyper-rectangles generated for learned SVM. Iteration
left to right

The greater radius criterion is used for obtaining an as general ellipsoid
as possible. Figure 6 shows some examples for hyper-rectangles associated to
ellipsoids generated using the described iterative procedure.

Once derived the ellipsoid, its translation to an interval-type rule is per-
formed by using a set of ordered vertexes V = {(vi1, vi2) , i = 1 . . .m} as
follows,

IF x1 ∈ [v11, v12] ∧ x2 ∈ [v21, v22] ∧ · · · ∧ xm ∈ [vm1, vm2] THEN Class.

Determination of the set of interval-type rules for a class is processed sim-
ilarly to that procedure described in Table 2; nevertheless, some modifications
should be considered:

• The function Build Ellipsoid is now based on the algorithm for building
an ellipsoid parallel to the axis of the variables.

• Verification of the Criterion 1 in the function Partition Test is performed
on the hyper-rectangle associated to the ellipsoid in order to reduce the
overlapping when deriving the interval-type rule.

126 H. Núñez et al.

1.4 Classification by Using the Set of Rules

Once obtained the model of the learned SVM in the new representation
(equation-type or interval-type rules) it must be considered how this descrip-
tion will be used to classify a new pattern. Several scenarios can appear for
the new pattern being evaluated:

• It is covered only for one rule. This is the most favourable case, allowing
classifying a new entry without ambiguity.

• It is covered for no rule. In this case it is possible to define a default rule for
classifying all these cases not covered for any rule (Mitchell 1997; Witten
and Frank 2005). Using a similarity measure for determining the proximity
of a pattern to a rule is an alternative choice; the assigned class label to
the data will be those associated to the nearest rule (Domingos 1991).

• It is covered for more than a rule. Several solutions can be considered in
this overlapping situation. A first one is ordering the covering rules using
some quality measure and classifying the new instance according to the
first fired rule (Berthold and Hand 1999; Witten and Frank 2005). A second
one is applying a weighted classification scheme using all the covering rules
similarly to the fuzzy logic algorithms. Other solutions include using a
frequency based scheme that assigns the class associated to the most active
rule, or, inversely, assign the pattern to the most specific rule (Salzberg
1991). Finally, it can be attempted to avoid multiple covering by refining
the rules until a disjoint partition is achieved.

The proposed method classify an instance assigning it the label associated
to the nearest rule (Domingos 1991), following the nearest neighbour tech-
nique. A distance measure between a pattern and a rule is defined depending
on the type of rule, equation or interval. The distance between an equation
rule and an instance is defined as,

D (R, x) = EQ (x), (34)

where EQ(x) is the result of evaluating the mathematical equation of the
ellipsoid on the pattern x . For the interval-type rules, the distance definition
is based on a distance component for each attribute defined as follows,

δi =

⎧⎨
⎩

0 if li,inf ≤ xi ≤ li,sup,
xi − li,sup if xi > li,sup,
li,inf − xi if xi < li,inf ,

(35)

where li,inf y li,sup are the lower and upper bounds of the interval, respectively,
of the i-th component. Hence,

D (R, x) =
m∑

i=1

δi. (36)

Rule Extraction Based on Support and Prototype Vectors 127

When an instance is covered for more than a rule, the following heuristic
is used to solve the overlapping: the most specific ellipsoid or hyper-rectangle
containing the instance is selected, that is, that with the lowest volume
(Salzberg 1991). For interval-type rules this volume is calculated as,

V (R) =
m∏

i=1

(li,sup − li,inf). (37)

For equation-type rules, the volume associated to rules is compared by
using an approximated measure based on the radius for each axis of the
ellipsoid, in the following form,

V (R) =
m∏

i=1

ri. (38)

2 Experiments

The proposed rule extraction methods have been evaluated through experi-
mentation on ten databases from the UCI repository (Blake and Merz 1998),
considered a standard benchmark for the machine learning community. Fea-
tures defining these bases are showed in Table 3: number of input variables,
type of variables, number of patterns and number of classes.

The algorithms associated to the rule extraction method were developed
under the Matlab v6.5 programming environment. SVM’s training was com-
pleted using the software package “OSU Support Vector Machines Toolbox”
version 3.00 (Ma and Zhao 2002). For multi-class classification, the one-
versus-rest technique was employed for determining the SVM decision function
(Vapnik 1998), i.e. a classifier was trained for each class and obtained sup-
port vectors were stored to be used next in the rule extraction algorithm. For

Table 3. Features describing the ten databases used for experimentation

Code Databases No.
patterns

No.
attributes

Type attributes No.
classes

1 IRIS 150 4 Numerical (continuous) 3
2 WISCONSIN 699 9 Categorical 2
3 WINE 178 13 Numerical (continuous) 3
4 SOYBEAN 47 35 Numerical (discrete) 4
5 NewTHYROID 215 5 Numerical (continuous) 3
6 MUSHROOM 8,124 22 Categorical 2
7 SPECT 267 23 Binary 2
8 MONK3 432 6 Categorical 2
9 ZOO 101 16 Categorical 7

10 HEART 270 13 Mixed 2

128 H. Núñez et al.

all the experiments, the k-means algorithm (Duda et al. 2001) was used for
determining the centres or prototypes of the ellipsoids.

A key point is to determine the performance indexes to be used for eval-
uating the rule extraction algorithm (Andrews et al. 1995; Mitra et al. 2002;
Zhou 2004). Goal is the extraction of the embedded knowledge in the trained
SVM and represent it in the language defined by the method, so an interesting
parameter is to determine the functional equivalence between both methods,
known like fidelity parameter, being calculated like the percentage of data
where both, the SVM and the rule set produce the same results,

Fidelity = 100 · Nagreed

Datatotal
, (39)

where Nagreed is the number of times that both, SVM and rule set predicts
the same result.

A second main feature to be considered is the generality or covering of
the rules on the data set, as well as their accuracy, defined through the error.
Hence, two more parameters will be measured to determine the performance
of the algorithm:

– Covering: Percentage of samples covered by the set of rules

Covering = 100 · Datacovered

Datatotal
, (40)

where Datacovered is the number of samples covered by the rules and
Datatotal is the size of the dada set

– Error: Mean quadratic error of the rule set on the data

In order to estimate these performance features, ten stratified cross-
validation experiments on ten partitions were performed (Witten and Frank
2005) and the mean values on the test set were taken for the performance
comparison. Obtained results for each database are shown in Table 4, for the
equation-type and interval-type rules. It have been displayed the accuracy
(Error), the percentage for the features measuring the equivalence or fidelity
(Equ.), the covering (Cov.) and the number of obtained rules (NR).

Results on the application of the rule extraction method to support vector
machines trained with real data databases in different domains, shown in gen-
eral a high percentage of equivalence between the SVM and the extracted set
of rules (upper to 90%). This high level indicates that the proposed methods
are able to capture the embedded knowledge in the support vector machine.

It was also observed a high dependency of both, the quality and the quan-
tity of the rules generated by the extraction method on the initial conditions
for the k-means clustering algorithm. It is well-known that the final result of
a clustering algorithm highly depends on the random choice of the prototypes
(Duda et al. 2001), so it was a predictable result, but it is not a desirable
behaviour. In this sense, a new proposal for reducing this randomness will be
explained below, and it is still an open research area.

Rule Extraction Based on Support and Prototype Vectors 129

Table 4. Performance values of the rules for each database

Database
Error Equation-type rules Interval-type rules

SVM Error Equ. Cov. NR Error Equ. Cov. NR

1 0.046 0.041 98.67 82.33 6.1 0.038 97.59 80.66 3.8
2 0.045 0.039 98.65 86.45 15.3 0.041 96.54 94.45 14.5
3 0.023 0.018 98.40 78.34 5.9 0.023 97.87 80.96 8.9
4 0.022 0.022 100.00 33.00 6.0 0.028 97.70 84.50 6.0
5 0.052 0.049 97.13 80.24 7.3 0.047 95.33 72.99 10.8
6 0.002 0.003 96.05 28.87 25.5 0.010 99.06 98.19 30.8
7 0.102 0.117 96.26 21.49 14.0 0.093 97.33 45.00 28.0
8 0.023 0.034 97.45 27.55 7.0 0.023 99.07 100.00 10.0
9 0.042 0.043 99.09 32.02 9.8 0.043 98.77 79.01 8.6

10 0.164 0.158 96.93 58.35 6.7 0.155 96.39 66.52 18.7

They are listed below, as a particular example, the set rules generated for
the IRIS database using both rule extraction regimes

Equation-type rules

R1: IF (6.16X1
2 + 2.68X2

2 + 9.84X3
2 + 15.96X4

2 − 3.63X1X2 − 3.62X1X3 −
1.63X1X4 − 0.47X2X3 + 2.31X2X4 − 0.14X3X4 + 43.6X1 + 0.01X2 −
8.78X3 − 7.52X4 + 116.49 ≤ 2.64) THEN Iris-setosa

R2: IF (1.29X1
2 + 4.79X2

2 + 3.31X3
2 + 5.28X4

2 + 1.69X1X2 − 2.02X1X3 +
0.97X1X4 − 2.50X2X3 − 1.84X2X4 − 2.09X3X4 − 11.77X1 − 22.53X2 −
6.34X3 − 5.08X4 + 78.30 ≤ 0.84) THEN Iris-virsicolor

R3: IF (4.65X1
2 + 3.60X2

2 + 6.75X3
2 + 5.74X4

2 + 0.67X1X2 − 1.46X1X3 +
1.14X1X4 − 0.04X2X3 − 0.48X2X4 − 2.89X3X4 − 56.84X1 − 25.00X2 −
47.34X3 − 9.05X4 + 333.49 ≤ 1.81) THEN Iris-virsicolor

R4: IF (9.91X1
2 + 5.63X2

2 + 12.13X3
2 + 9.26X4

2 − 3.21X1X2 − 3.89X1X3 +
7.69X1X4 + 4.90X2X3 + 0.03X2X4 + 0.57X3X4 − 127.63X1 − 41.29X2

137.18X3 − 96.32X4 + 1, 052.49 ≤ 3.54) THEN Iris-virginica
R5: IF (16.25X1

2 + 49.58X2
2 + 19.01X3

2 + 66.59X4
2 − 11.35X1X2 −

8.13X1X3 − 5.03X1X4 + 4.98X2X3 − 54.77X2X4 − 10.81X3X4 − 109.50X1 −
128.41X2 − 140.12X3 − 22.13X4 + 886.57 ≤ 18.80) THEN Iris-virginica

Interval-type rules

R1: IF (X1 ∈ [4.40, 5.80] ∧ X2 ∈ [2.30, 4.40] ∧ X3 ∈ [1.00, 1.95] ∧ X4 ∈
[0.20, 0.51]) THEN Iris-setosa

R2: IF (X1 ∈ [5.40, 6.10] ∧ X2 ∈ [2.70, 3.00] ∧ X3 ∈ [3.90, 4.57] ∧ X4 ∈
[0.97, 1.64]) THEN Iris-versicolor

R3: IF (X1 ∈ [4.90, 6.00] ∧ X2 ∈ [1.90, 2.93] ∧ X3 ∈ [2.99, 4.00] ∧ X4 ∈
[1.00, 1.27]) THEN Iris-versicolor

130 H. Núñez et al.

R4: IF (X1 ∈ [6.10, 7.00] ∧ X2 ∈ [2.30, 3.30] ∧ X3 ∈ [4.28, 4.95] ∧ X4 ∈
[1.31, 1.50]) THEN Iris-versicolor

R5: IF (X1 ∈ [4.90, 6.70] ∧ X2 ∈ [2.02, 3.67] ∧ X3 ∈ [4.90, 5.57] ∧ X4 ∈
[1.29, 2.63]) THEN Iris-virginica

R6: IF (X1 ∈ [6.30, 7.70] ∧ X2 ∈ [2.50, 4.00] ∧ X3 ∈ [5.40, 7.19] ∧ X4 ∈
[1.60, 2.67]) THEN Iris-virginica

A 100% equivalence is obtained with the trained SVM for these two sets of
rules and no test data is classified wrong.

3 Eliminating Randomness from the Clustering
Algorithm

It has been realized during the experimentation that the method is very sen-
sible to the used prototype vectors and, therefore, the quality and amount
of the obtained rules varies depending on the location of the centres of the
ellipsoids. These centres have been obtained from an initial solution provided
by the clustering algorithm based on k-means, which randomly depends on
the ordination of the provided training points (Duda et al. 2001). From the
point of view of the extraction method this randomness is an obstacle, espe-
cially if it is necessary to extract several rules by class. Hence, it is required
to apply the method several times on the trained SVM (with different initial
conditions for the clustering algorithm) to be able to obtain a good solution,
because the set and performance of the extracted rules show a high variance
from an experiment to another one.

This situation of randomness and dependency of the method on the centres
is a problem to be solved. It would be possible to evaluate in an empirical form
different clustering algorithms for each database and to select that providing
a greater stability. Nevertheless, a novel direct technique will be proposed
for the determination of unique initial conditions for the clustering algorithm
based on the support vectors provided by the learning machine. In short,
the algorithm works as follows: if m prototypes are needed for the j-labelled
class in the k-th iteration of the extraction algorithm, the algorithm proposes
clustering the available data around m support vectors selected according to
some criterion; once established the disjoint partitions, the midpoint of each
one of them would be an initial centre for the clustering algorithm (Núñez
et al. 2002c).

Let SVjk be the set of support vectors in class j for the iteration k and let
Djk be the set of data in class j for the iteration k, then:

– Select m support vectors from SVjk

– Determine initial partitions Pi, assigning each instance in Djk to the
nearest support vector according to the Euclidean distance,

Rule Extraction Based on Support and Prototype Vectors 131

Pi ← x, if d(x, svi) = argmin
p=1...m

[d (x, svp)] ∀x ∈ Djk (41)

– Next, calculate the midpoint for each partition,

ui =
∑ni

r=1 xr

ni
, (42)

where ni is the number of patterns in the partition Pi. The points ui will
determine the initial conditions for the selected k-means algorithm

The criteria that could be used for the selection of the support vectors are
the following ones (where it is only taken into account those vectors without
error, i.e. with a value for the associated α lower than C):

• Scheme of partition EP1: Support vectors are ordered in a descendent way
according to its average similarity with data in the class (Kaufman and
Rousseeuw 1990), so that the first m support vectors are selected.

• Scheme of partition EP2: The m closest support vectors are chosen; it
is aimed with this heuristic that the initial partitions are directed to the
zones with greater curvature of the decision surface defined by the SVM.

• Scheme of partition EP3: Support vectors are ordered in descendent form
according to the value of the parameter α and the first m vectors are
selected, on the hypothesis that larger is the value of the parameter, more
informative is the associated pattern (Guyon et al. 1996).

For all these schemes of partition, in the case that only q support vectors
are available with q < m, then the remaining vectors will be determined form
the set Djk by selecting those m − q patterns with higher average similarity
to the data.

One of these criteria has been empirically evaluated on trained support
vector machines with the real databases of the UCI repository. In order to
establish a direct comparison with the previously exposed results in Sect. 2,
the same performance parameters were used, and they were identically calcu-
lated. Contrarily to the precedent results, now they are obtained by running a
single iteration for the extraction algorithm, because SVM are unequivocally
determined and so the centres from the proposed clustering procedure.

Table 5 shows the results obtained by using the scheme of partition EP1.
It can be observed that the performance is in average very similar to that
obtained in Sect. 2. Therefore, using some of these schemes is a valid alter-
native route to be considered for generating the set of rules from a trained
SVM trained in a determinist form. Possible extensions could be considered
by defining some hybrid approaches that uses more than a partition scheme,
with a decision module selecting the best set of generated rules.

132 H. Núñez et al.

Table 5. Performance values for the set of rules applied on each database using the
scheme of partition EP1

Database
Error
SVM

Equation-type rules Interval-type rules

Error Equ. Cov. NR Error Equ. Cov. NR

1 0.046 0.041 98.00 80.40 6.4 0.037 97.00 81.40 4.5
2 0.045 0.039 97.85 86.03 16.1 0.042 96.00 90.33 15.9
3 0.023 0.020 98.33 78.40 6.2 0.024 92.90 79.42 9.8
4 0.022 0.022 100.00 25.00 6.6 0.020 98.00 73.00 6.2
5 0.052 0.048 97.04 78.46 8.0 0.045 94.82 72.03 11.3
6 0.002 0.003 96.51 29.81 25.4 0.009 99.10 97.56 31.4
7 0.102 0.143 90.78 20.01 12.0 0.112 96.01 56.34 32.00
8 0.023 0.025 96.99 40.05 8.0 0.022 99.53 95.60 11.00
9 0.042 0.044 99.02 29.33 10.3 0.045 98.16 79.00 8.8

10 0.164 0.160 97.13 57.40 6.5 0.167 97.30 62.24 19.3

4 Conclusions and Further Research

A method has been developed transforming the knowledge captured by a
support vector machine during its learning in a representation based on rules,
with the aim of equipping it with the capacity of explanation.

The algorithm proposed for the extraction of rules is based on the combina-
tion, using geometry elements, of the support vectors obtained from the SVM
with prototype vectors derived from a clustering training regime to determine
a set of ellipsoidal regions in the input space, later transferred to rules in
the form of equation or interval rules. The hypothesis lying in this hybrid
procedure is that, when using the support vectors, the defined regions adjust
to the shape of the separation surface defined by the SVM with a minimal
overlapping between classes.

An iterative procedure is followed for determining the set of rules, starting
with the construction of a general ellipsoid that is successively specialized
in more reduced ellipsoids in order to fit the shape of the decision function
determined by the SVM. The partition criterion is also based on both, the
support vectors and the decision function. The final number of rules, derived
from the ellipsoids or hyper-rectangles, can be defined either, externally or
through a stopping performance criterion.

Experimental results obtained when applying the rule extraction method
on real databases from different domains shown a high degree of equivalence
between the SVM and the extracted set of rules on test patterns. It can be so
concluded that the proposed method is able to cope the acquired knowledge
of the SVM during the learning phase.

None requirement is imposed in the initial method derivation about specific
training regimes employed to train the SVM, kernel functions, nor clustering
algorithm. Nevertheless, experimentation demonstrated that the quality and
number of the generated rules with this method is highly dependent, due to

Rule Extraction Based on Support and Prototype Vectors 133

the randomness of the clustering algorithm, on the location of the prototype
vectors to be used as centres of the regions. A good average solution is only
provided by the algorithm after some iteration with different initial conditions
for the clustering algorithm.

A totally novel solution has been proposed to this problem by determining
unequivocally the initial conditions from the unique set of support vectors.
Three associated schemes of partition have been proposed to initialize the
proposed clustering algorithm and build in a deterministic form the set of
rules from a trained SVM. Empirical results showed the opportunity of such
schemes or a hybridization of them to reduce the sensibility of the method to
the clustering algorithm.

Starting from these proposed solutions to increase the explicative power of
a learned SVM in the form of a set of rules, it is possible to plan new develop-
ments. For example, it would be interesting to study a direct extension of the
rule extraction method to regression problems. In reference to the represen-
tational language, it could be studied using another one to express the new
model, for example generating fuzzy rules from the ellipsoids. It would be also
profitable developing algorithms for rule simplification that can be applied to
improve, when it is required, the understand ability of the knowledge that has
been extracted of the SVM.

Finally, it should be realized that the method can be extended to extract
rules of other models, such as radial basis function networks (RBFN). The
extraction algorithm could be designed so that the prototype vectors would
be replaced by the centres of the RBF nodes (Núñez et al. 2002b), and the
borders of the rules or their activation rates would be determined by the
support vectors.

References

Andrews R, Diederich J, Tickle AB (1995) A Survey and Critique of Tech-
niques For Extracting Rules From Trained Artificial Neural Networks,
Knowledge Based Systems, 8, pp. 373–389

Berthold M, Hand D (1999) Intelligent Data Analysis An Introduction.
Springer-Verlag

Blake CL, Merz CJ (1998) UCI Repository of Machine Learning Data-Bases.
University of California, Irvine. Dept. of Information and Computer Science.
(http://www.ics.uci.edu/∼mlearn/MLRepository.html)

Cortes C, Vapnik V (1995) Support-Vector Networks. Machine Learning
20:273–297

Craven M, Shavlik J (1997) Using Neural Networks for Data Mining. Future
Generation Computer Systems 13:211–229

Cristianini N, Shawe-Taylor J (2000) An Introducction to Support Vector
Machines and other kernel-based learning methods. Cambridge University
Press

134 H. Núñez et al.

Domingos P (1991) Unifying Instance-Based and Rule-Based Induction.
Machine Learning 24:141–168

Duda R, Hart P, Stork D (2001) Pattern Recognition. 2nd edn. John Wiley &
Sons, Inc

Guyon I, Mart́ıc N, Vapnik V (1996) Discovery Information Patterns and
Data Cleaning. In: Fayyad V, Piatetsky G, Smyth P, Uthurusamy R (eds).
Advances in Knowledge Discovery and Data Mining. MIT Press

Kaufman L, Rousseeuw PJ (1990) Finding Groups in Data. An Introduction
to Cluster Analysis. John Wiley & Sons, Inc

Ma J, Zhao Y (2002) OSU Support Vector Machines Toolbox, version 3.0.
http://www.csie.ntu.edu.tw/∼cjlin/libsvm

Mitchell T (1997). Machine Learning. McGraw-Hill
Mitra S, Pal SK, Mitra P (2002) Data Mining in Soft Computing Framework:

A survey. IEEE Transactions on Neural Networks 13(1):3–14
Núñez H, Angulo C, Català A (2002a) Rule extraction from support vector

machines. Proc. 10th European Symposium on Artificial Neural Networks,
pp. 107–112

Núñez H, Angulo C, Català A (2002b) Rule Extraction from Radial Basis
Function Networks by Using Support Vectors. Lecture Notes in Artificial
Intelligence 2527:440–449

Núñez H, Angulo C, Català A (2002c) Support Vector Machines with Symbolic
Interpretation. 7th Brazilian Symposium on Neural Networks, IEEE, pp.
142–147

Núñez H, Angulo C, Català A (2003) Hybrid Architecture based on Support
Vector Machines. Lecture Notes in Computer Science 2686:646–653

Salzberg S (1991) A Nearest Hyper rectangle Learning Method. Machine
Learning 6:251–276

Strang G (1998) Introduction to linear algebra. 3rd. edition. Wellesley-
Cambridge Press

Tickle A, Andrews R, Mostefa G, Diederich J (1998) The Truth will come to
light: Directions and Challenges in Extracting the Knowledge Embedded
within Trained Artificial Neural Networks. IEEE Transactions on Neural
Networks 9(6):1057–1068

Tickle A, Maire F, Bologna G, Andrews R, Diederich J (2000) Lessons from
Past, Current Issues, and Future Research Directions in Extracting the
Knowledge Embedded Artificial Neural Networks. In: Wermter S, Sun R
(eds) Hybrid Neural Systems. Springer-Verlag

Vapnik V (1998) Statistical Learning Theory. John Wiley & Sons, Inc
Witten I, y Frank E (2005) Data Mining. Practical Machine Learning

Tools and Techniques with Java Implementations. Second edition. Morgan
Kaufmann Publishers

Zhou Z (2004) Rule Extraction: Using Neural Networks or For Neural
Networks? Journal of Computer Science and Technology. 19(2):249–253

SVMT-Rule: Association Rule Mining
Over SVM Classification Trees

Shaoning Pang1 and Nik Kasabov2

1 Knowledge Engineering & Discovery Research Institute, Auckland University of
Technology, Private Bag 92006, Auckland 1020, New Zealand spang@aut.ac.nz

2 Knowledge Engineering & Discovery Research Institute, Auckland University of
Technology, Private Bag 92006, Auckland 1020, New Zealand
nkasabov@aut.ac.nz

1 Introduction

Since support vector machines (SVM) [7–9] demonstrate a good accuracy in
classification and regression, rule extraction from a trained SVM (SVM-Rule)
procedure is important for data mining and knowledge discovery [1–6,29,31].
However, the obtained rules from SVM-Rule in practice are less comprehen-
sible than our expectation because there is a big number of incomprehensible
numerical parameters (i.e., support vectors) turned up in those rules. Com-
pared to SVM-Rule, decision-tree is a simple, but very efficient rule extraction
method in terms of comprehensibility [33]. The obtained rules from decision
tree may not be so accurate as SVM rules, but they are easy to comprehend
because that every rule represents one decision path that is traceable in the
decision tree.

The method of rule extraction from SVM trees (SVMT-Rule) achieves rule
extraction over a decision tree of SVM, where rules are extracted not only
from support vectors from the SVMs aggregated in the tree, but also from the
tree structure in the way of decision tree rule. The benefits of SVMT-Rule are
that the decision-tree rule provides better comprehensibility, and the support-
vector rule retains the good classification accuracy. Furthermore, the SVMT-
Rule is capable of performing a very robust classification on such datasets that
have serious, even overwhelming, class-imbalanced data distribution, which
profits from the super generalization ability of SVMT due to the aggregation
of groups of SVMs.

This chapter exploits knowledge discovery by constructing a SVM classi-
fication tree, and decodes the SVMT into linguistic association rules.

In the literature, rule extraction based on single SVM focuses on interpo-
lating the support vector and hyper-plane boundary from a trained SVM to a
set of linguistic rule expression. Nunez et al. [1] extract a rule by first cluster-
ing support vectors by k-Mean, then for each cluster, choosing the prototype
S. Pang and N. Kasabov: SVMT-Rule: Association Rule Mining Over SVM Classification

Trees, Studies in Computational Intelligence (SCI) 80, 135–162 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

136 S. Pang and N. Kasabov

vector (i.e., the center of the cluster), and the support vector furthest to the
prototype vector to build an ellipsoid using a geometric method. Finally, the
ellipsoid is translated into a linguistic ‘if-then’ rule by an symbolic interpreta-
tion. Nunez’s method used a reduced number of support vectors, but made the
generated ellipsoid rule overlaps each other. In addition, this method requires
to have parameters such as the number of cluster and initial cluster centers as
the prior knowledge. As an improvement over Nunez’s method, Zhang et al. [2]
proposed a hyper-rectangle rule extraction (HRE) method. Instead of cluster-
ing support vectors, HRE clusters the original data using a support vector
clustering (SVC) method to find the prototypes of each class samples, then
constructs hyper-rectangle by the obtained prototypes and support vectors
from the trained SVM. Because of the merits of the SVC algorithm, HRE
can generate high quality rules even when training data contains outliers.
Later, Fu et al. developed RulExSVM (rule extraction from support vector
machine) [3, 6]. RulExSVM generates rules straightforwardly based on each
of the support vectors. The rule condition is structured as a conjunction of
several attribute conditions, each of them is built upon a hyper-rectangle asso-
ciated with a certain support vector. RulExSVM is easy, but needs a tuning
and pruning phase to reduce rules with overlap and outliers.

The above SVM rule extraction methods are regarded as incomprehensible
techniques because they are completely support vector based rule extraction
methods, and the knowledge of obtained rules is concealed in a number of
numerical support vectors that are normally not transparent to the user. To
mitigate this problem, the decision tree is a good rule extraction example that
is recommended here for SVM rule extraction because every rule generated by
a decision tree represents a certain decision path that has a comprehensible
rule antecedent and rule consequence. For instance, C4.5 Rule [17, 30] inter-
polates every path from the root to a leaf of a trained C4.5 decision tree to an
rule by regarding all the test conditions as the conjunctive rule antecedents
while regarding the class label held by the leaf as the rule consequence. The
comprehensibility of the C4.5 Rule is better than that of the C4.5 decision
tree, because the C4.5 Rule has the knowledge over a decision tree fused and
grouped, and comes with a concise knowledge structure.

Unlike decision trees, the SVMT is a type of SVM aggregation method
towards combining a family of concurrent SVMs to achieve the problem-
solving for traditional computational intelligence [11]. SVMT is different from
the well known SVM ensemble [10,18] aggregation in that (1) SVM ensemble
takes the number of SVMs for aggregation and the structure of aggregation
as the prior knowledge that is assumed to be known in advance, whereas
SVMT has this prior knowledge learned automatically from data. (2) SVMT
has a even more outstanding generalization ability than SVM ensemble in
particular when it is confronted by tasks with the difficulty of a serious class-
imbalance and/or class-overlap [12]. To extract rules from data, the presented
SVMT-Rule in this chapter derives a new type SVM classification tree in the
form of DFS-SVMT and BFS-SVMT, and models rule extraction as a rule

SVMT-Rule: Association Rule Mining Over SVM Classification Trees 137

induction over the resulting decision-tree structure and support vectors from
local SVMs.

This organization of the chapter is given as follows. Section 2 gives
the mathematical derivation of SVM classification trees. Section 3 presents
the algorithms of SVM classification trees construction. Section 4 describes the
detailed techniques for association rule extraction using SVMT (i.e., SVMT-
Rule) method. In Sect. 5, we described the experiments on a synthetic data
and two applications to cancer diagnosis and mobile telecom fraud detec-
tion. Finally, the conclusions and outlines of future work are pointed out in
Sect. 6.

2 SVM Classification Tree

The SVM classification tree (SVMT) was first proposed in [12], in the con-
text of face membership authentication application [10]. SVMT was shown to
be capable of reducing the classification difficulty due to class-overlap by a
recursive divide-and-conquer procedure, thus is useful in pattern recognition
problems with large training samples but with noise information suppressed
effectively via feature extraction. From the viewpoint of SVM aggregation,
the SVM ensemble [18] assumes that the number of SVMs in aggregation
should be known in advance as the prior knowledge, but this is often difficult
to determine in real applications. SVMT has solved the difficulty of the SVM
ensemble with the determination of the number of SVMs in a SVMT learned
automatically from data.

However, because the spanning of SVMT in [12] is completely data-driven,
this type of SVMT grows easily an overfitting due to noise, and come up with
a large size decision tree, which is not optimal for decision making and rule
extraction [35]. To mitigate this difficulty, a new type of SVMT with spanning
order preference are modeled as follows.

2.1 Two-Class SVM Tree

Mathematically, a 2-SVMT can be formulated as a composite structural model
as follows: Given a two-class dataset D for classification, and a predefined data
partitioning function P on D, the whole dataset D can be divided through
an optimized P∗ into N partitions {g1, g2, . . . , gN}.

Then, a 2-SVMT can be modeled as,

T2−SV MT (P , fSvm<2>
i

, f<1>
Sgnj

, f<2>
Sgnk

, x),

i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K, (1)

where Svm<2>
i is a local two-class SVM classifier. Sgn<1>

j and Sgn<2>
k rep-

resent a regional “one-class classifier” of class 1 and class 2, respectively. I,J,K

138 S. Pang and N. Kasabov

such that I + J + K = N , correspond to the number of three data-partition
types: partition with data from class 1 and class 2, partition with only data
from class 1, and partition with only data from class 2, respectively. I,J,K,
and N are determined after the SVM tree model generation. Figure 1 gives an
example of two-class SVM and one-class SVM over data partition with data
distributed in one-class and two-class, respectively.

In the case that gi contains two classes data, a typical two-class SVM
fSvm, as Fig. 1a, is applied to model a local fi on gi as,

fSvm<2> =
l∑

i=1

yi((wi)T ˙ϕ(xi) + b∗i), (2)

where ϕ is the kernel function, l is the number of training samples, and w, b
is optimized through

min
1
2
(wi)T wi + C(

L∑
t=1

(ξi))k, (3)

yi((wi)T ϕ(xt) + bi) ≥ 1 − (ξi),

where C and k are used to weight the penalizing variable ξ, ϕ(.) acts the role
of kernel function.

In another case, when gi contains only data from one-class, gi can be
modeled strictly as a one-class classifier [13–16], where outlier samples are
identified as negative samples among the positive samples, the origin data of
the partition. Following [13], a one-class SVM function can be modeled as
an outlier classifier as in Fig. 1b by setting positive on the origin data of the
partition S and negative on the complement S̄:

fSgn<i> =
{

+1 if x ∈ S,
−1 if x ∈ S̄, (4)

where i represents class label “1” or “2” in binary classification. In practice,
the above one-class classifier also can be simplified as: if x by P belongs to
class i, then the output of the one-classifier is assigned as i.

Thus, we can have the decision function of 2-SVMT f̂ as,

f̂(x) =

⎧⎨
⎩

fSgn<1> if P(x) ∈ class 1
fSgn<2> if P(x) ∈ class 2
fSvm<2> otherwise

, (5)

where one-class classifier Sgn<1> and Sgn<2> are one-class regional deci-
sion maker of 2-SVMT, and Svm<2> is two-class regional decision maker of
2-SVMT.

Clearly, error may occur in the classification of constructed f̂ , as f̂ may
differ from the true classification function f . Thus, a suitably chosen real-value

SVMT-Rule: Association Rule Mining Over SVM Classification Trees 139

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

(b)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

0.5

0.6

0.7

0.8

0.9

1

-1

+1

(a)

Fig. 1. Example of two-class SVM and one-class SVM over one data partition in
the case that the data is in two classes, or all in one class. (a) one-class SVM;
(b) two-class SVM

140 S. Pang and N. Kasabov

loss function L = L(f̂ , f) is used to capture the extent of this error. Loss L is
therefore data dependent:

L = |f̂ − y|, (6)

where y = f(x). As f̂ is applied to datasets drawn from the whole data D
under a distribution of g. The expected loss can be quantified as,

E[L] = |f̂ − y|g(D)dD. (7)

In experiments, g can be realized by applying a tenfold cross validation
policy on D. Since we have no information of the real classification function
f , for simplicity we can fix y as the class label of the training dataset.

Thus, given data drawn under a distribution g, constructing an SVM tree
here requires choosing a function f∗ such that the expected loss is minimized:

f∗ = arg min
f̂∈F

|f̂ − y|g(D)dD, (8)

where, F is a suitably defined SVM tree functions.
Substituting f̂ to (6), the loss function of 2-SVMT is,

L =
I∑

i=1

|fSvm<2>
i

− fi|�2i +
J∑

j=1

|f<1>
Sgnj

− fj|q1j +
K∑

k=1

|f<2>
Sgnk

− fk|q2k, (9)

where fi,fj and fk are the local true values of f . �2i represents the distribution
probability of the ith partition that contains both class 1 and class 2 data.
q represents the distribution probability of a partition that contains the data
of one class (i.e., either class 1 or class 2).

In (9), L is determined by the performance of every regional classification
from a regional SVM classifier or a one-class classifier. Given every SVM in
2-SVMT with the same linear kernel and penalty parameter, loss function L
now depends only on the data distribution of local regions. In other words,
the data partitioning method P eventually determines the loss function of the
resulting SVM tree.

In this sense, the construction of SVMT f∗ is equivalent to seeking a
partition function P∗ that is able to minimize the following loss function,

P∗ = arg min
P∈[P]

|f̂ − y|g(D)dD (10)

= arg min
P∈[P]

I∑
i=1

|fSvm<2>
i

−fi|�2i+
J∑

j=1

|f<1>
Sgnj

−fj|q1j +
K∑

k=1

|f<2>
Sgnk

−fk|q2k,

where, [P] is a set of suitably defined 2-split data partition functions P . The
first term of the above function is the risk from SVM classification, and the
remaining two terms are the risks from one-class classifier fSgn.

SVMT-Rule: Association Rule Mining Over SVM Classification Trees 141

The risk from fSgn can be minimized through the training of an SVM
one-classifier. In the case that Sgn is simplified by making every decision of
classification through P , the classification risk can be simply evaluated by the
loss function of P . Due to the loss function of P has been minimized when the
data partitioning is performed. For a binary partitioning [X1, X2] = P(X),
the risk can be the same minimized by a SVM training using X1 and X2 as
class “+1” and “−1” respectively. So, (10) can be updated as,

P∗ = arg min
P∈[P]

|f̂ − y|g(D)dD (11)

= arg min
P∈[P]

I∑
i=1

|fSvm<2>
i

− fi|�2i.

Thus, we can solve the above function by finding out every individual
partition that has the minimized SVM classification risk,

P∗ = arg min
P∈[P]

|fSvm<2>
i

− fi|�2i. (12)

Equation (12) is proportional to the size of the region (i.e., number of
samples in the region), thus in practice (12) can be implemented by seeking
data partitions with different sizes and a minimized SVM classification risk.
To this end, P∗ is modeled as the following recursive supervised and scalable
data partitioning procedure,

[g1, g2, · · · , gj , · · · gN] = Pn(X, ρ0) (13)
Subject to : LSvm(gj) < ξ or, gj ∈ one class ,

where X is the input dataset. ρ0 is the initial partitioning scale, and LSvm =
|fSvmi − fi| is a local two-class SVM classifier loss function. ξ is the SVM
class separability threshold. Pn represents a recursive partitioning function
such that Pn(X, ρ, LSvm) = P(Pn−1(X, ρn−1, LSvm), ρn, LSvm). For every
iteration, optimal partitions are extracted out, and the remaining samples go
to the next iteration of partitioning.

As a result of (12) and (13), partitions with LSvm minimized is produced
by P at different scales. Each of them builds a regional two-class decision
maker fSvm<2> . Meanwhile, partitions that contain only one class data are also
being produced. This builds the regional one-class decision makers fSgn<1>

and fSgn<2> .

3 The Spanning of SVM Tree

To construct a SVM tree, a completely data-driven spanning approach is,
to split data whenever there exists class mixture in the current data parti-
tion [12], and to perform such data partitioning recursively until all data from

142 S. Pang and N. Kasabov

different classes mostly goes to a different partition. As mentioned above, the
SVM tree can be grown up automatically without use of any prior knowledge.
However, this often grows easily the overfitting of learning, and comes up with
a huge size SVM tree. To deal with this difficulty, we construct a SVM tree
using the following two spanning order preferences.

3.1 Depth-First Spanning Tree

The idea of depth-first spanning is to expand the tree to a node of the next
layer as quickly as possible before fanning out to other nodes of the current
layer.

The procedure is as follows: at a data partitioning scale ρ, once has one
data partition judged as classification optimal (either a one-class partition or
a partition with LSvm < δ), then the tree expansion goes to the next layer,
and one terminal node is produced at the current layer of the tree.

Thus (13) can be realized by repeating the following binary data parti-
tioning,

[Xρ, X
′] = P(X, ρ, LSvm) (14)

Subjectto : LSvm > ξ,

where Xρ is the one optimal partition at scale ρ generated by P , and X ′ is
the remaining dataset such that X = Xρ ∪ X ′.

3.2 Breadth-First Spanning Tree

Breadth-first is another tree spanning approach. The basic idea is to fan out
to as many nodes as possible of current layer before expanding the tree to a
node of the next layer.

This can be explained as, at a data partitioning scale ρ, if there are max-
imum υ data partitions judged to be classification optimal (either a one-class
partition or a partition with LSvm < δ), then υ nodes are produced at current
layer of the tree.

In this case, (13) uses a multiple data partitioning,

[{X1, X2, . . . , X�}, X ′] = P(X, ρ, LSvm) (15)
Subjectto : LSvm > ξ,

where {X1, X2, . . . , Xυ} is a set of optimal partitions at scale ρ, and X ′ is the
remaining dataset such that X = X1 ∪X2 . . . ∪Xυ} ∪ X ′. υ is the number of
optimal partition at scale ρ, and it is determined by partitioning function ℘
and the used partitioning scale ρ.

SVMT-Rule: Association Rule Mining Over SVM Classification Trees 143

3.3 The SVMT Algorithms

As constructing a SVMT, (10) is implemented by a 2-step recursive proce-
dures. First, a partition method is employed to split the data at a certain
scale into two or more partitions. Next, for those partitions that are optimal
for the two-class pattern classification, a one-class classifier or a SVM classifier
is built to serve as a node of the 2-SVMT.

Algorithm 1 and 2 below present the detailed steps of constructing
a Depth-first spanning (DFS) 2-SVMT, and Breadth-first spanning (BFS)
2-SVMT, respectively.

[Algorithm 1. Depth-First Spanning 2-SVMT]

Inputs: Xtrain (Training dataset), ρ0 (the initial partition scale), ξ (the
threshold of SVM loss function), K (the used type of SVM Kernel)

Outputs: T (a trained DFS 2-SVMT)
Step 1: Initialize T as the root node, and current partitioning scale ρ as ρ0.
Step 2: If Xtrain is empty then iteration stops, return constructed SVMT T .
Step 3: Perform (15) data partitioning with current partitioning scale ρ, and

obtain data partition Xρ.
Step 4: If Xρ belongs to one-class, then train a one-class SVM as (4), and

append a one-class SVM node to T .
Step 5: Otherwise, Xρ belongs to two-class, and the classification loss func-

tion of the partition is greater than ξ, train a standard two-class SVM as
(2) and (4) over this partition, and append a two-class SVM node to T .

Step 6: If no new node is added to T , then adjust current partitioning scale
by ρ = ρ −�ρ.

Step 7: Set Xtrain as Xtrain − Xρ, and go to Step 2.

[Algorithm 2. Breadth-First Spanning 2-SVMT]

Inputs: Xtrain (Training dataset), ρ0 (the initial partition scale), ξ (the
threshold of SVM loss function), K (the used type of SVM Kernel)

Outputs: T (a trained BFS 2-SVMT)
Step 1: Initialize T as the root node, and current partitioning scale ρ as ρ0.
Step 2: If Xtrain is empty then iteration stops, return constructed SVMT T .
Step 3: Perform (16) data partitioning with current partitioning scale ρ, and

obtain data partition {X1, X2, . . . , X�}.
Step 4: For each data partition Xi, do the following operations

(a) If Xi belongs to one-class, then train a one-class SVM as (4), and
append a one-class SVM node to T .

(b) Otherwise, Xi belongs to two-class such that the Classification loss
function of Xi is greater than ξ, train a standard two-class SVM as

144 S. Pang and N. Kasabov

(2) and (4) over this partition, and append a two-class SVM node
to T .

Step 5: If no new node is added to T , then adjust current partitioning scale
by ρ = ρ −�ρ.

Step 6: Set Xtrain as Xtrain − {X1, X2, . . . , X�}, and go to Step 2.

To test the above constructed 2-SVMTs, a input sample x is first judged
by the test function T (x) at the root node in the SVM tree. Depending on
the decision made by the root node, x will be branched to one of the children
of the root node. This procedure is repeated until a leaf node or a SVM
node is reached, then the final classification decision is made for the testing
sample T (x) by a node one-class classifier or a single SVM classification.
Algorithm 3 illustrates the testing procedure of a 2-SVMT (DFS 2-SVMT or
BFS 2-SVMT).

[Algorithm 3. 2-SVMT Testing Algorithm]

Inputs: T (a trained 2-SVMT), x (a testing sample)
Output: C (class label of the testing sample)
Step 1: Set the root node as the current node.
Step 2: If the current node is an internal node, then start the following loop

operations:
(a) Branch x to the next generation of T by performing current node test

function Tcurrent(x).
(b) Find the next node that x is branched to in T ;
(c) Set the node from (b) as the new current node, and go to Step 2.

Step 3: The above loop is stopped when a terminal node is reached, and the
class label C is computed by a decision test Tcurrent(x). Here, the current
node is a terminal node, which is either an SVM node or a node with a
single class.

In the above SVMT algorithms, K specifies the type of SVM used in 2-
SVMT construction. ρ0 determines an initial resolution for 2-SVMT to start
zooming in the data and to construct an SVMT over the data. ξ is the permit-
ted minimum loss function value, which gives a criterion of partition selection
for optimal SVM classification.

The default ρ can be set as the biggest the partitioning scale that the
used partitioning method allows. For example, for the K-Mean partitioning
method, ρ0 can be set as 2; for ECM partitioning method, ρ0 can be set as
0.9. Given a serious class-imbalance and class-overlap of data, a finer scale can
be taken to enable 2-SVMT to separate classes in a more accurate resolution.
The default ξ is 0. In practice, a small error is given. Certainly, the smaller ξ,
the more time cost that it takes to get the 2-SVMT trained.

SVMT-Rule: Association Rule Mining Over SVM Classification Trees 145

3.4 Coping with Class Imbalance and Class Overlap

The above 2-SVMTs cope with class-imbalance and class-overlap in two
parallel ways:

1. The recursive data zooming-in schema, where larger size data partitions
(particularly for those partitions of overweighed class, e.g., class 1 for
Fig. 5 dataset) are separated out in the first few rounds. This reduces
the imbalance interference for learning of the remaining data. Meanwhile,
data with class-overlap/class-mixture is being left for the next round, thus
2-SVMT is able to zoom-in the data, and makes decisions only at a scale
and region, where decision can be reached.

2. 2-SVMT model also can be adjusted to favor the smaller class (the class
with less samples than the other) by defining LSvm merely on the smaller
class,

LSvm =
1
l

l∑
i=1

(1 − (yiλ
∗
i K(x,xi) + b∗)). (16)

Note that l here is the number of smaller-class samples, and x is an input
sample of the smaller class.

4 SVMT Rules Extraction

4.1 Logic Association Rules

According to the literature of rule mining, given a n-dimensional data space
D, a standard logic rule is formed as

IF x ∈ gi THEN Class(x) = Ck, (17)

where the IF part is the rule antecedent, and the THEN part is the rule
consequence. The rule means that If x belongs to the subspace gi, the it is
assigned a class label Ck.

Typically, there is a conjunction of logical predicate function T (x) =
{True, False} to tell if the condition part of the above rule is satisfied or
not. In common case, the predicate function T is a test on a single attribute
of D. For example, if x has attribute ai value that belongs to an interval
xi ∈ [ai−, ai+], then x ∈ gi.

However, when interpolating the knowledge from the decision tree struc-
ture of an SVMT, the predicate function T is extended to be on multiple
attributes of D because every subspace gi in an SVMT is obtained through
a supervised data partitioning (13), and both the loss function and the
partitioning function of (13) are a multivariate computation. Thus, the pred-
icate function T will be a multivariate function determined by the choice of
partitioning function P

146 S. Pang and N. Kasabov

T (x) = P(gi, x) (18)

T (x) judges if x is partitioned into gi. It could be a linear or nonlinear distance
function depending on the choice of partitioning function.

On the other hand, when interpolating a support vector from a local SVM
into a linguistic rule, the predicate function T is a conjunction of a set of tests
on several relaxant attributes,

T (x) = xi ∈ [ai−, ai+] ∪ · · · ∩ xj ∈ [aj−, aj+]. (19)

4.2 SVM Nodes Interpolation

As discussed above, a trained SVMT has two types of SVM nodes:

(1) Two-class SVM node V = {g, ρ, fsvm}, where g contains two classes data
with Lsvm < ξ satisfied

(2) One-class SVM node V <1> = {g, ρ, fsvm<1>} or V <2> = {g, ρ, fsvm<2>},
where g contains either class 1 or class 2 data

Two-Class SVM Node

For a two-class SVM node (called SVM node at the rest of writing), rule
extraction according to [6] is based on hyper-rectangular boundary built upon
support vector of a trained SVM. Given support vector sm of class l, the
hyper-rectangular boundary for sm is,

{smi + λ2i ≥ xi ≥ smi − λ1i, }, (20)

where 1 ≥ λpi ≥ 0, p = {1, 2}, and i = 1, . . . , n the sequence number of
dimension.

Set Lo and Ho as the lower limit and upper limit of the hyper-rectangular
rule along the ith dimension respectively, where,

Lo(i) = smi − λ1i (21)

and
Ho(i) = smi + λ2i. (22)

Given a trained SVM, the rule based on support vector sm can be
generated by Fu’s algorithm [6] as,

[Algorithm 4. Two-Class Support Vector Rule Extraction]

Input: sm (support vector)
Output: Lo (the lower limit of the hyper-rectangular rule), Ho (the upper

limit of the hyper-rectangular rule)
Step 1: Set l = 1, refers to dimension l

SVMT-Rule: Association Rule Mining Over SVM Classification Trees 147

Step 2: Calculate xl subject to f(x) = 0 and xj = smj (j = 1, . . . , n, and
j �= l) by the Newton’s method

Step 3: Determine Lo and Ho according to the solutions of the problem in
Step 2. The number of solutions of xl may be different under different
data distribution:
(a) If there is no solution, i.e., there is no cross point between the line

extended from sm along dimension l and the decision boundary, then
Lo(l) = 0, Ho = 1

(b) If there is one solution: if sml ≥ xl, Lo(l) = xl, and Ho(l) = 1, else
Lo(l) = 0, and Ho(l) = xl2

(c) If there are two solutions, xl1 and xl2(xl1 ≤ xl2) : Lo(l) = xl1, and
Ho(l) = xl2

(d) If there are more than two solutions the nearest neighbor xl1 and xl2 of
xl2 are chosen from the solutions under the condition xl1 ≤ Smj ,xl2 ≥
xl2 and the data points x|xj = smj , j = 1, . . . , n, j �= l, xl1 ≤ xl ≤ xl2

are with the same class label with the support vector sm : Lo(l) = xl1,
and Ho(l) = xl2

Step 4: l = l + 1, if l < n, go to Step 2, else end.

Fig. 2 gives an example of hyper-rectangular rule extraction from a trained
two-class SVM in SVMT, where the black circles and points represent the

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.5

0.6

0.7

0.8

0.9

1.0

Sm

X1

X2

(xi1,xi2)

(sm1,sm2)

(xj1,xj2)

Class 1

Class 2

Class 1 Support Vector

Class 2 Support Vector

Fig. 2. Example of hyper-rectangular rule extraction from a trained two-class SVM

148 S. Pang and N. Kasabov

support vectors from class 1 and class 2 respectively. Given a support vector
sm = (sm1, sm2) from class 2, there is two cross points (xi1, xi2) and (xj1, xj2)
between the extend lines of sm and the decision boundary. According to Algo-
rithm 4, a hyper-rectangular rule with Lo(1) = xi1, Ho(2) = xj1, Lo(2) = xi2

and Ho(2) = xj2 is obtained. The coverage area of this rule is identified as
the dashed rectangle in Fig. 2.

One-Class SVM Node

For one-class SVM node, the one-class SVM approximates the origin of the
class by distinguishing the outlier data from the major distribution of the
class data. As another format of such knowledge approximation, the obtained
hyper-rectangle rules are required to cover the class data as much as possible.

Given two support vectors sm and sn from a trained one-class SVM, and
Smi �= sni along ith dimension, Lo and Ho are computed as,

Lo(i) = min(smi, sni) (23)

and
Ho(i) = max(smi, sni). (24)

[Algorithm 5. One-class Support Vector Rule Extraction]

Input: sm and sn (two support vectors)
Output: Lo (the lower limit of the hyper-rectangular rule), Ho (the upper

limit of the hyper-rectangular rule)
Step 1: Set l = 1, refers to dimension l
Step 2: Calculate xl subject to f(x) = 0 and xj = smj (j = 1, . . . , n, and

j �= l) by the Newton’s method.
Step 3: Determine Lo and Ho according to the solutions of the problem in

Step 2. The number of solutions of xl may be different under different
data distribution:
(a) If there is no solution, i.e., there is no cross point between the line

extended from sm along dimension l and the decision boundary, then
Lo(l) = min(0, sml, snl)Ho = max(1, sml, snl)

(b) If there is one solution: Lo(l) = min(xl, sml, snl), and Ho(l) =
max(1, sml, snl), else

(c) If there are two solutions: Lo(l) = min(xl1, xl2, sml, snl), and Ho(l) =
max(xl1, xl2, sml, snl)

(d) If there are more than two solutions the two Neighbor xl1 and xl2

nearest to sm and sn are chosen, Lo(l) = min(xl1, xl2, sml, snl), and
Ho(l) = Lo(l) = max(xl1, xl2, sml, snl).

Step 4: l = l + 1, if l < n, go to Step 2, else end.

SVMT-Rule: Association Rule Mining Over SVM Classification Trees 149

Figure 3a illustrates an example of the above pairwise support vector
rectangular rule extraction. According to Algorithm 5, given a n-dimensional
one-class data with m obtained support vectors from one-class SVM, n.m(m−
1)/2 rules are generated. In other words, a small number of support vec-
tors produce a large number of rules, and they are for the same partition,
as well as the same class of data. The resulting rules certainly have much
redundancy.

Since the data from one-class SVM, either outliers or the origin of the
class, both are in the same class. From the viewpoint of classification, there is
no need to separate one from another. In this way, the above rule extraction
of (23) and (24) can be simplified as,

Lo(i) = min(s1i, s2i, . . . , smi, . . .) (25)
Ho(i) = max(s1i, s2i, . . . , smi, . . .). (26)

Correspondingly, Algorithm 5 is modified to extract rectangular rules only
from the pair of vectors (maximum and minimum). For example, Fig. 3b illus-
trates such rule extraction, where a set of smaller rectangles of Fig. 3a are
replaced with one rectangle, which is built on a pair of support vectors, and
which covers most of the one-class data.

[Algorithm 6. Simplified One-class Support Vector Rule Extraction]

Input: s1, s2, . . . , sm (set of support vector from a trained one-class SVM)
Output: Lo (the lower limit of the hyper-rectangular rule), Ho (the upper

limit of the hyper-rectangular rule)
Step 1: Set l = 1, refers to dimension l
Step 2: Calculate Lo(l) by (25)
Step 3: Calculate Ho(l) by (26)
Step 4: l = l + 1, if l < n, go to Step 2, else end.

4.3 SVMT-Rule

Over the encoded SVMT in Sect. 3, the rule knowledge is decoded through
decision-tree rule extraction and SVM node knowledge interpolation. Figure 4
gives the block diagram of the SVMT Rule extraction method, where an SVM
classification tree is first modeled on the training data, and followed by three
rule extraction procedures over the obtained SVMT, including rule extraction
over the tree structure, SVM node, and one-class SVM node, respectively.
Consequently, the final rule set is obtained by merging all the obtained rules
via a redundancy pruning procedure. Algorithm 7 presents the final algorithm
of rule extraction over SVMT, where individual steps have been detailed in
the above subsections.

150 S. Pang and N. Kasabov

+1

+1

-1

(a)

0.5

0.6

0.7

0.8

0.9

1.0

X1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
X2

Sm

Sn

+1

+1

-1

(b)

0.5

0.6

0.7

0.8

0.9

1.0

X1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
X2

support vector

Fig. 3. Example of hyper-rectangular rule extraction from a trained one-class SVM.
(a) Pairwise support vector rectangular rule extraction; (b) the maximum and
minimum pair support vector rectangular rule extraction

SVMT-Rule: Association Rule Mining Over SVM Classification Trees 151

Merge Rules by
Pruning Redundancy

Rule Extraction Over
One-class SVM node

Rule Extraction From
Tree Structure

Rule Extraction Over
SVM nodes

Training Dataset
X

Construct SVM
Classification Tree

Rule Extraction Over
SVMT

Fig. 4. Block diagram of the proposed SVMT-Rule procedure

[Algorithm 7. Rule Extraction Over SVM Trees]

Inputs: Xtrain (Training dataset)
Output: R (tuned ruleset), C (Decision tree ruleset), S (Support vector

ruleset)
Step 1: Apply the SVM classification tree algorithm (Algorithm 1 for DFS

SVMT, and Algorithm 2 for BFS SVMT) to construct T over Xtrain.
Step 2: For every path in T from the root node to a terminal node of SVMT,

extract rules C by taking all test functions along the path as the con-
junctive rule antecedent, and the class label held by the leaf as the rule
consequence, R = C.

Step 3: For every terminal node (i.e., SVM node or one-class SVM node) in
T , do the following operations:

(a) If the terminal node that the leaf is attached is an SVM node, apply
Algorithm 4 to the terminal node for the support vector rule Rsvm2

extraction, S = S ∪ Rsvm2 and R = R ∪ Rsvm2 .
(b) If the terminal node to which the leaf is attached is a one-class SVM

node, apply Algorithm 5 to the terminal node for one-class support
vector rule Rsvm1 extraction, S = S ∪ Rsvm2 and R = R ∪ Rsvm1 .

Step 4: Labeled samples in Xtrain to fall into a region of each of the above
obtained rules in R.

152 S. Pang and N. Kasabov

Step 5: If the set of sample in a certain rule region is a subset of samples
covered by another rule, this rule is removed.

Step 6: Repeat Step 3 until no rule is removed from R, output R, C, and S.

Note that, Algorithm 7 is run in the form of DFS SVMT-Rule and BFS
SVMT-Rule, depending on the choice of SVMT in Step 1.

5 Experiments and Applications

In our experiments, algorithms were implemented in Matlab Version 6.5, run
on Pentium 4 PC, 3.0GHz 512MB RAM, and comparison tests were per-
formed in the environment of Neucom 2.0 [28]. For extracting rules over
SVMT, one-class SVM is set with a RBF β = 3.5 kernel, and binary SVM
with a standard linear kernel. All SVMs have the same penalty coefficient
of 0.1. ℘ is assigned as a K-means clustering partitioning function, and all
2-SVMTs use the same default parameters of ρ0 = 2 and ξ = 0.02.

Because Polynomial SVMs perform better than linear SVM on most clas-
sification tasks [34], for a simple validity verification we merely compare the
SVMT-Rule with the SVM-Rule, and the rule extraction from a trained
second-order polynomial single SVM [6]. Note that all SVMs are set with
the same penalty coefficient.

To setup the class-imbalance criterion for comparing the input bias (class
data distribution) with the output bias (class classification accuracy) of the
system, we define the class bias ratio (CBR) as,

1 − min(class 1, class 2)/max(class 1, class 2), (27)

where a larger CBR value means a more imbalanced of the class data
distribution, or the class classification accuracy.

5.1 Synthetic Dataset

We first experimented the SVMT-Rule with a synthetic dataset for classifica-
tion. Figure 5 shows the distribution of the dataset, where class 1 and class
2 data are both in a 2D Gaussian distribution, and the number of class 2
samples is approximately 1/10 of class 1, which follows that the CBR of this
dataset in terms of class data distribution is 0.9.

Constructing SVMT over the dataset of Fig. 5, Fig. 6 gives an example
of DFS-SVMT and BFS-SVMT generated by Algorithm 1 and Algorithm 2,
respectively. The root node P1 represents the data partitioning function at
scale ρ0, P2 for the data partitioning at scale ρ1, so on so forth. Every one-
class node here is denoted as a circle labeled with class “1” or “2,” and SVM
node denoted as a ellipse circled “SVM” label. Each SVM node has two sons,
which means that each SVM node provides, class 1 and class 2, two decision

SVMT-Rule: Association Rule Mining Over SVM Classification Trees 153

−4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4 Class 1
Class 2

Fig. 5. Two-dimensional synthetic data for classification, CBR = 0.9

choices. They are symbolized the same as the one-class node in the figure, but
they are not counted here as one-class node. The DFS-SVMT is seen to have
8 SVM nodes, 14 one-class nodes, and the BFS-SVMT has 8 SVM nodes, 24
one-class nodes. The number of one-class nodes is several times of SVM nodes,
suggesting that SVMT makes decision depending on the decision tree more
than the SVM.

In the construction of SVMT, the data is zoomed in recursively by a
supervised data partitioning. Figure 7b shows the resulting hyper-plane from
Algorithm 2 as the data partitioning step goes to the second iteration. Com-
pared to the single SVM hyper-plane in Fig. 7a, the SVMT hyper-plane in
Fig. 7b is a combination of the part of data partitioning boundary estimated
in Fig. 7c and two pieces of short SVM hyper-planes. It turns out that SVMT
conducts classification using less support vectors from SVM, but more decision
boundaries from data partitioning. In other words, SVM is not used unless
it is absolutely necessary. By Algorithm 7, a set of SVMT rules are encoded
over the constructed SVMTs, example rules are given below, where the first
two rules are encoded directly from the obtained SVM tree structure, and the
remaining rules are from a reginal SVM.

if 1.89 <= x1 <= 4.95 and −5.0 <= x2 <= −2.3 then [x1 x2] in cls.1
if −5.00 <= x1 <= −2.00 and 2.42 <= x1 <= 5.00 then [x1 x2] in cls.1
if −5.00 <= x1 <= −2.00 and −2.42 <= x1 <= 2.30 and x12 ∗ 0.34 + x2 ∗

1.87 + 0.987 > 0 then [x1 x2] in cls. 2.
if −5.00 <= x1 <= −2.00 and −2.42 <= x1 <= 2.30 and x12 ∗ 0.34 + x2 ∗

1.87 + 0.987 < 0 then [x1 x2] in cls. 1.

154 S. Pang and N. Kasabov

P0

SVM

P2

1
2

P3

SVM
1

2

SVM
1

2

P4

1

P5

P6

SVM

2

1

1

P7

1

P8

1

P9

P10

SVM

2
1

2

P11

2

P12

P13

SVM 1

2

2

P14
1

P15SVM

1

2

P16
1

P17
2

P18

2P19

2

P20

P21

2
1

P22

2

P23

SVM

1

2

P1

1

1

SVM

11

SVM

SVM

P2

1

1

1

1

1

1

2

2
1

1

2
1

P3

1

1

P4

1
1

1
1

SVM

11

1

P5

1

SVM

1
2

SVM

1
2

1
2

1

1

SVM

1
P6

1

2

P7

1

SVM

1

2

1

2

Fig. 6. Example of DFS-SVMT (top) and BFS-SVMT (bottom) from SVMT rule
extraction over Fig. 5 dataset

SVMT-Rule: Association Rule Mining Over SVM Classification Trees 155

4

4

−4 −2 0 2 6

−4

−3

−2

−1

0

1

2

3

(b)

−4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

(a)

−4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

(c)

Fig. 7. (a) Single SVM hyper-plane, (b) SVMT hyper-plane, (c) the data
partitioning boundary part of SVMT hyper-plane

156 S. Pang and N. Kasabov

Table 1. The results of comparison between SVM-Rule and SVMT-Rule on the
classification of Fig. 5 dataset

Measurements SVM-Rule DFS DFS-SVMT BFS BFS-SVMT
SVMT-Rule SVMT-Rule

No. of rules 58 23 (8/15) – 33(9/24) –
No. of SVs 32 16 16 18 18
Ave. Acc. 91.3% 92.4% 92.7% 90.0% 90.1
Cls1 Acc. 100% 94.9% 94.8% 91.2% 92.0
Cls2 Acc. 0.0% 66.3% 70.5% 76.9% 79.0
CBR 1.0 0.30 0.25 0.16 0.14

Table 1 compares the SVMT-Rule with SVM-Rule and the original SVMT
on the classification of the above synthetic dataset, based on the following six
measurements:

(1) The number obtained rules (N. of Rules)
(2) The number of support vectors (N. of SVs)
(3) The average general classification accuracy (Ave. Acc.)
(4) The classification accuracy of class 1 (Cls1 Acc.)
(5) The classification accuracy of class 2 (Cls2 Acc.)
(6) The class bias ratio in terms of class classification accuracy (CBR)

For the CBR 0.9 dataset in Fig. 5, SVMT-Rules come up with a CBR ≤0.3
class classification accuracy while the SVM-Rule gives a completely imbal-
anced output with CBR = 1.0. It is distinct that SVMT-Rules have profited
from the outstanding generalization ability of SVMTs as both statistics are
shown to be quite similar in Table 1. The two BFS type SVMT methods
(i.e., BFS SVMT-Rule and BFS-SVMT) perform even better than the DFS
type SVMT methods (i.e., DFS SVMT-Rule and DFS-SVMT), this suggests
that BFS is able to fit the data more appropriated than DFS for constructing
SVMT.

5.2 Cancer Diagnosis

We have implemented the BFS SVMT-Rule technique in cancer diagnosis
and decision support. Table 2 gives the seven well-known cancer microarray
datasets with a two-class classification problem. As seen in the table, most
datasets were biased in the sense of having an unbalanced number of patients
in the two classes, e.g., normal vs. tumor.

For the three datasets that had an independent validation dataset avail-
able, we selected 100 genes from the training dataset by a typical t-test gene
selection [26], and used them on the validation dataset. For the remaining
four datasets, we verify the method using tenfold cross-validation, removing
randomly one tenth of the data and then using the remainder of the data as

SVMT-Rule: Association Rule Mining Over SVM Classification Trees 157

Table 2. Cancer datasets used for testing the algorithm

Cancer Class 1 vs. class 2 Genes Train data Test data Ref.

Lymphoma(1) DLBCL vs. FL 7129 (58/19)77 – [19]
Leukaemia ALL vs. AML 7129 (27/11)38 34 [20]
CNS cancer Survivor vs. failure 7129 (21/39)60 – [21]
Colon cancer Normal vs. tumor 2000 (22/40)62 – [22]
Ovarian cancer Cancer vs. normal 15154 (91/162)253 – [23]
Breast cancer Relapse vs. non-relapse 24482 (34/44)78 19 [24]
Lung cancer MPM vs. ADCA 12533 (16/16)32 149 [25]

Columns for training and validation data show the total number of patients. The
numbers in brackets are the ratios of the patients in the two classes

Table 3. The results of comparison between SVM-Rule and BFS SVMT-Rule on
seven cancers diagnosis

Dataset SVM-Rule BFS SVMT-Rule BFS SVMT

Acc. (%) No. of No. of Acc. (%) No. of No. of Acc. (%)
rules SVs rules SVs

Lymphoma(1) 89.6 233 60 80.8 221 38 89.6
Leukaemia 73.5 245 29 94.1 108 20 94.1
CNS cancer 61.7 234 37 62.9 278 26 65.0
Colon cancer 71.3 205 48 75.3 202 32 77.3
Ovarian cancer 96.5 178 34 98.4 198 21 97.3
Breast cancer 52.6 269 62 78.9 206 33 78.9
Lung cancer 94.6 171 23 98.5 188 17 99.3

Table 4. The statistics of rule extraction for fraud detection

Method No. of Rules No. of SVs Rule/per SV Accuracy (%)

SVM-Rule 269 35 7.6 78.5
DFS SVMT-Rule 98 17 5.7 89.3
BFS SVMT-Rule 123 19 6.4 92.3
C4.5-Rule 176 – – 80.8

a training set. For each fold, we similarly selected 100 genes over the train-
ing set, then applied the obtained 100 genes to the corresponding testing set.
The comparison of SVMT-Rule to single SVM-Rule and the original SVMT
on seven cancer diagnosis is shown in Table 3, where rule extraction is mea-
sured in terms of diagnosis accuracy, the number of rules, and the number of
involved support vectors, respectively. For comparison, Table 4 also shows the
predictive accuracy of SVMT.

Although the SVMT-Rule does not perform better than the SVMT, it
is still impressive that Table 3 indicates the prior generalization ability of
SVMT-Rule to SVM-Rule is about 10% (((0.808 − 0.896)/(1 − 0.808) +
(0.941 − 0.735)/(1 − 0.735) + · · · + (0.985 − 0.946)/(1− 0.946))/7 = 0.1096).

158 S. Pang and N. Kasabov

More importantly, the comprehensibility of BFS SVMT-Rule is clearly
improved as compared to SVM-Rule because the average number of support
vectors for SVMT-Rule is only about 60% that of SVM-Rule. For CNS and
Lung Cancer, BFS SVMT-Rule is found with less support vectors, but even
more rules than SVM-Rule. This inconsistency owes to the reason that these
two cancers are more difficult than the other type of cancers for a correct
knowledge representation, where the BFS SVMT has allocated more efforts
on decision tree spanning.

5.3 Fraud Detection

The cell phone fraud often occurs in the telecommunication industry. We have
investigated a fraud detection using SVMT-Rule rule extraction. The database
was obtained from a mobile telecom company. It recorded 1 years action data
of 53,696 customers. The historical data on fraud includes 15 tables. Among
them, three core tables for the topic are IBS USERINFO (customer pro-
file), IBS USRBILL (customer payment information), and IBS USERPHONE
(customer action) and all others are the additional tables.

Fraud detection basically is a binary classification problem, where cus-
tomers are divided into two classes: fraud or nonfraud. The aim of fraud
detection is to distinguish the fraud customers from the remaining honest
customers. The method of fraud detection is to analyze the historical data,
which is a typical data mining procedure as follows:

Step 1: Data cleaning, to purge redundant data for a certain fraud action
analysis

Step 2: Feature selection and extraction, to discover indicators corresponding
to changes in behavioral indicatives of fraud

Step 3: Modeling, to determine fraud pattern by classifier and predictor
Step 4: Fraud action monitoring and prediction, to issue the alarm

Step 2 extracts the eight salient features to measure the customer pay-
ment behaviors using PROC DATA of SAS/BASE and combine the cus-
tomer profile (IBS USERINFO) and customer action (IBS BILL) to one
table (IBS USERPERFORMANCE). Table IBS USERPERFORMANCE has
53,696 records and nine attribute items.

To discover the fraud patterns, BS USERPERFORMANCE data is divided
into a training set and a test set, in which the training set contains 70% of
53,696 records, and the test dataset is the remaining 30% of 53,696 records.
Table 4 lists the statistical results of rule extraction using SVMT-Rule, SVM-
Rule, and C4.5-Rule for the fraud detection. As expected, the SVMT-Rule
shows a more accurate fraud detection than SVM-Rule, as well as C4.5-Rule,
where BFS SVMT-Rule performs slightly better than DFS SVMT-Rule at the
price of that more support vectors and more rules are used. It is surprising
that the number of rules from SVMT-Rule is only about half of the number
from SVM-Rule. This could be explained that the SVMT-Rule suits better

SVMT-Rule: Association Rule Mining Over SVM Classification Trees 159

a large database, where the decision tree part of SVMT plays an absolutely
more important role in encapsulating data for rule extraction.

6 Discussions and Conclusions

The SVMT aggregates the decision tree and the support vector machine meth-
ods in an SVM classification tree, facilitates the two-side rule extraction by
selecting the simple part of the problem for a comprehensible decision tree
representation, and leaving the remaining difficult part with support vector
machine approximation. For extracting rules, SVMT-Rule is introduced in the
form of DFS SVMT-Rule and BFS SVMT-Rule, which encodes the knowledge
of rules by an induction over the decision tree of SVM, and the interpolation
of the support vectors from local SVMs.

The experimental results and applications have shown that the SVMT-
Rule, compared to single SVM rule extraction, has the following desirable
properties:

(1) SVMT-Rule is more accurate, and especially more robust for the classifi-
cation of data with an class-imbalanced data distribution.

(2) SVMT-Rule has a better comprehensibility for rule extraction because
only about half the number of single SVM support vectors are kept in
SVMT rules.

(3) The BFS SVMT-Rule commonly outperforms DFS SVMT-Rule.

SVMT-Rule is also able to apply to a multiclass case by extending the
two-class SVMT to a m-class (m ≥ 2) SVMT. One straightforward way is to
do “one-to-one” or “one-to-all” SVMT integration. However, this approach
creates a new problems of decision forests [27].

In the principle of SVM aggregation, the construction of a m-SVMT is to
decompose an m-class task into a certain number of 1 − m classes regional
tasks as,

Tm−SV MT (℘<ρ>, fSvm<2> , . . . , fSvm<m>, fSgn<1> , . . . , fSgn<m> , x) (28)

where ℘<ρ>, ρ ≥ 2 represents here a multi-split data partitioning function.
Similarly, fSvm<i> , 2 ≤ i ≤ m represents a i-class SVM classification func-
tion, and fSgn<j> , 1 ≤ i ≤ m represents a jth-class one-class SVM decision
function.

Accordingly, the classification function of a m-SVMT can be written as,

f̂(x) =
{

fSgn<i> if ℘(x) ∈ class i,
fSvm<j> otherwise,

(29)

where 1 ≤ i ≤ m and 2 ≤ i ≤ m.
The proposed SVMT-Rule method has improved the comprehensibility of

SVM rule extraction by reducing the number of support vectors effectively,

160 S. Pang and N. Kasabov

however there are still a few support vectors left in the rule of the SVMT-Rule.
To further improve the comprehensibility of the SVMT-Rule, it is suggested
that a symbolic rule interpolation [32] could be developed for SVMT-Rule in
the future.

7 Acknowledgements

The research presented in the chapter was partially funded by the New
Zealand Foundation for Research, Science and Technology under the grant:
NERF/AUTX02-01, and by the knowledge Engineering and Discovery
Research Institute (KEDRI) of Auckland University of Technology (http:
//www.kedri.info).

References

1. H. Nunez, C. Angulo, and A. Catala (2002) Rule-extraction from Support vector
Machines. The European Symposiumon Aritificial Neural Netorks, Burges, pp.
107–112.

2. Y. Zhang, H. Y. Su, T. Jia, and J. Chu (2005) Rule Extraction from Trained
Support Vector Machines, PAKDD 2005, LANI3518, pp. 61–70, Springer-Verlag
Berling Heidelberg.

3. Lipo Wang and Xiuju Fu (2005) Rule Extraction from Support Vector Machine.
In: Data Mining with Computational Intelligence, nced Information and
Knowlegde Processing, Springer Berlin Heidelberg.

4. N. Barakat and Andrew P. Bradley (2006) Rule Extraction from Support Vec-
tor Machines: Measuring the Explanation Capability Using the Area under
the ROC Curve. In The 18th International Conference on Pattern Recognition
(ICPR’06), August, 2006, Hong Kong.

5. Glenn Fung, Sathyakama Sandilya, and Bharat Rao (2005) Rule Extraction
for Linear Support Vector Machines, KDD2005, August 2124, 2005, Chicago,
Illinois, USA.

6. Xueju Fu, C. Ong, S. Keerthi, G. G. Huang, and L. Goh (2004) Proceedings
of IEEE International Joint Conference on Neural Networks, Vol. 1, no. 25–29
July 2004, pp. 291–296.

7. V. Vapnik, Estimation of dependences based on empirical data. Springer-Verlag,
1982.

8. V. Vapnik, The nature of statistical learning theory, New York: Spinger-Verlag,
1995.

9. C. Cortes and V. Vapnik, “Support vector network,” Machine learning, vol. 20,
pp. 273–297, 1995.

10. Shoning Pang, D. Kim, and S. Y. Bang, “Membership authentication in the
dynamic group by face classification using SVM ensemble,” Pattern Recognition
Letters, Vol. 24, pp. 215–225, 2003.

11. Shaoning Pang, SVM Aggregation: SVM, SVM Ensemble, SVM Classifi-
cation Tree, IEEE SMC eNewsletter Dec. 2005. http://www.ieeesmc.org/
Newsletter/Dec2005/R11Pang.php

SVMT-Rule: Association Rule Mining Over SVM Classification Trees 161

12. Shaoning Pang, D. Kim, and S. Y. Bang, “Face Membership Authentication
Using SVM Classification Tree Generated by Membership-based LLE Data
Partition,” IEEE Trans. on Neural Network Vol. 16, no. 2, pp. 436–446 Mar.
2005.

13. J.C. Schölkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson,
“Estimating the support of a high-dimensional distribution,” Technical report,
Microsoft Research, MSR-TR-99-87, 1999.

14. Tax D.M.J. (2001) One-class Classification, concept-learning in the absence of
counter-examples. Ph.D. Thesis.

15. Tax D.M.J. and Duin R.P.W. (2001) Combining one-class classifiers. LNCS
2096: 299–308.

16. Xu Y. and Brereton R. G. (2005) Diagnostic pattern recognition on gene
expression profile data by using one-class classifiers. J. Chem. Inf. Model. 45:
1392–1401.

17. J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann, 1993.

18. Hyun-Chul Kim, Shaoning Pang, Hong-Mo Je, Daijin Kim,and Sung Yang
Bang, “Constructing support vector machine ensemble,” Pattern Recognition,
vol. 36, no. 12, pp. 2757–2767.

19. M. A. Shipp, K. N. Ross, et al., (2002) “Supplementary Information for Diffuse
large B-cell lymphoma outcome prediction by gene-expression profiling and
supervised machine learning,” Nature Medicine, 8(1):68–74, (2002).

20. T. R. Golub, “Toward a functional taxonomy of cancer,” Cancer Cell, 6(2):107–
8, (2004).

21. S. Pomeroy, P. Tamayo, et al., “Prediction of Central Nervous System Embry-
onal Tumour Outcome Based on Gene Expression,” Nature, 415(6870), 436–442,
2002.

22. U. Alon, N. Barkai, et al., Broad Patterns of Gene Expression Revealed by Clus-
tering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide
Arrays, Proc Natl Acad Sci, USA, (1999).

23. E. F. Petricoin, A. M. Ardekani, et al., “Use of Proteomic Patterns in Serum
to Identify Ovarian Cancer,” Lancet, 359, 572–577, (2002).

24. Van’t Veer L. J. et al., “Gene expression profiling predicts clinical outcome of
breast cancer,” Nature 415:530–536, (2002).

25. G. J. Gordon, R. Jensen, et al., Translation of Microarray Data into Clini-
cally Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung
Cancer And Mesothelioma,” Cancer Research, 62, 4963–4967, (2002).

26. Dudoit, S., Yang, Y. H., Callow, M. J., and Speed, T. P. (2002) Statistical meth-
ods for identifying differentially expressed genes in replicated cDNA microarray
experiments. Stat. Sinica, 12, 111–139.

27. Tin Kam Ho, “The random subspace method for constructing decision forests
Tin Kam Ho,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 20(8), pp. 832–844, Aug. 1998.

28. NeuCom - A Neuro-computing Decision Support Enviroment, Knowledge Engi-
neering and Discovery Research Institute, Auckland University of Technology,
www.theneucom.com.

29. H. Nez, C. Angulo and Andreu Catal, “Hybrid Architecture Based on Support
Vector Machines,” Lecture Notes in Computer Science Volume 2686, in Book
Computational Methods in Neural Modeling, pp. 646–653, 2003.

162 S. Pang and N. Kasabov

30. Z. H. Zhou and Y. Jiang, “Medical Diagnosis with C4.5 Rule Preceded by
Artificial Neural Netowrk Ensemble,” IEEE Trans. on Information Technology
in Biomedicine, 7(1):37–42, 2003.

31. Yixin Chen and J. Z. Wang, J. Z., “Support vector learning for fuzzy rule-based
classification systems, IEEE Transactions on Fuzzy Systems 11(6), pp. 716–728,
2003.

32. H. Nunez, C. Angulo, and A. Catala, “Support vector machines with symbolic
interpretation,” Proceedings. VII Brazilian Symposium on Neural Networks,
pp. 142–147, 11–14 Nov. 2002.

33. W. Duch, R. Setiono, and J. M. Zurada, “Computational intelligence methods
for rule-based data understanding,” Proc. of the IEEE, 92(5), pp. 771–805, May
2004.

34. Shaoning Pang, Dajin Kim, S. Y. Bang (2001) Fraud Detection Using Support
Vector Machine Ensemble. ICONIP2001, Shanghai, China.

35. Y. S. Chen and T. H. Chu, “A neural network classification tree,” Proc. IEEE
Int. Conf. Neural Networks, Vol. 1 , Nov. 27- Dec. 1, 1995, pp. 409–413.

Prototype Rules from SVM

Marcin Blachnik1 and W�lodzis�law Duch2

1 Division of Computer Methods, Department of Electrotechnology, The Silesian
University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
marcin.blachnik@polsl.pl

2 Department of Informatics, Nicolaus Copernicus University, Grudzia̧dzka 5,
Toruń, Poland Google: W. Duch

Summary. Prototype based rules (P-rules) are an alternative to crisp and fuzzy
rules, moreover they can be seen as a generalization of different forms of knowledge
representation. In P-rules knowledge is represented as set of reference vectors, that
may be derived from the SVM model.

The number of support vectors (SV) should be reduced to a minimal number
that still preserves SVM generalization abilities. Several state-of-the-art methods
that reduce the number of support vectors are compared with a new approach,
taking into consideration possible interpretation of retained support vectors as the
basis for P-rules.

1 Why Prototype-Based Rules?

Propositional logical rules may not be the best way to understand the class
structure of data describing some objects or states of nature. The best expla-
nation may differ depending on the problem, the type of questions and the
type of explanations that are commonly accepted in a given field. Although
most research has focused on propositional logical rules [14, 19] their expres-
sive powers have serious limitations. For example, a simple majority voting
can be expressed using the “majority is for it” concept that is easy to formu-
late using M-of-N threshold rules. Given n binary xi = 0, 1 answers the rule∑n

i=1 xi > 0.5n is an elegant expression of such concept and is impossible to
state directly in propositional form, leading to

(
n

n/2

)
terms. This type of rules

may be regarded as a particular form of similarity or prototype-based rules.
In the voting example the similarity to the “all for it” prototype A, that is a
vector with all ai = 1, has to be greater than n/2 in the Hamming distance
sense, ||A−X|| < n/2. Cognitive psychology experiments proved that human
categorization of natural objects and states of nature is based on memoriza-
tion of numerous examples and creation of prototypes that are abstractions
of these examples [34]. Propositional logical rules are prevalent in abstract
sciences but in real life they are rarely useful, their use being restricted to

M. Blachnik and W. Duch: Prototype Rules from SVM, Studies in Computational Intelligence

(SCI) 80, 163–182 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

164 M. Blachnik and W. Duch

enumeration of small number of nominal values, or one or two continuous
features with corresponding thresholds. In real life “intuitive understanding”
is used more often, reflecting experience, i.e. memorized examples of patterns
combined with various similarity measures that allow for their comparison
and evaluation.

Decision borders between different categories produced by propositional
rules are simple hyperboxes. Univariate decision trees provide even simpler
borders based on hierarchical reduction of decision regions to half-spaces and
hyperboxes. Using similarity to prototypes quite complex decision regions may
be created, including hyperboxes and fuzzy decision regions. Some of these
decisions may be difficult to describe using linguistic statements and thus may
server as a model of intuition. One may argue that comprehensibility of rules is
lost in this way, but if similarity functions are sufficiently simple interpretation
may in fact be quite easy. For example, interpretation of the ||A−X|| < n/2
rule is quite obvious. Other voting rules may easily be expressed in the same
way, including polarization of opinions around several different issues. Weight-
ing evidence before decision is made requires non-trivial aggregation function
to combine all available evidence, and similarity or dissimilarity functions are
the most natural way to do it. Despite these arguments the study of prototype-
based rules has been much less popular than of the other forms of rules.

Similarity-Based Methods (SBM) [8,13] are quite popular in pattern recog-
nition and data mining. The framework for construction of such methods
enables integration of many methods for data analysis, including neural net-
works [12], probabilistic and fuzzy methods [15], kernel approaches and many
other methods [32]. One of the most exciting possibility that such framework
offers is to build the simplest accurate method on demand, in a meta-learning
scheme, searching for the best model in the space of all similarity-based
methods [18]. This family of methods includes also prototype-based rules (P-
rules) [17] that are more general than fuzzy rules (F-rules), crisp propositional
rules (C-rules) and M-of-N rules, including them as special cases. All methods
covered by the SBM framework represent knowledge as a set of prototypes
or reference vectors, adding appropriate similarity metrics and the aggrega-
tion procedures that combine information from different prototypes giving the
final output. Several similarity-based transformations may be done in succes-
sion, creating higher-order SBM models. Prototype based rules are based on
the SBM framework, but their aim is to represent the knowledge hidden in the
data in the most comprehensible way. This goal is obtained by reducing the
number of prototype vectors (prototype selection), minimizing the number of
features used to create final model and using simple similarity metrics.

One of the most important advantages of P-rules is their universality.
They enable integration of different type of rules, depending on the sim-
ilarity function associated with each prototype: classical crisp rules result
form Chebychev distance, fuzzy rules (F-rules) from any separable similarity
metrics [16]. P-rules can also represent M-of-N rules in a natural way using
prototype threshold rules [2, 21], adding the distance to a prototype as one
of the coordinates. Such rules often give very simple interpretation of data,

Prototype Rules from SVM 165

for example a single prototype threshold rule gives over 97.5% accuracy on a
well known Wisconsin Breast Cancer dataset [21]. Thus P-rules provide most
general form of knowledge representation.

Two general types of P-rules are possible, the Nearest Neighbor Rules
(PN-rules), and the prototype threshold rules (PT-rules), introduced in the
next section. In the same section the use of support vectors as prototypes
is discussed. Reduction of the number of support vectors (SVs) and meth-
ods of searching for informative prototypes are described in Sects. 2.3 and 3,
while numerical examples are presented in Sect. 3.4. Perspectives on the use
of support vector machines for P-rule extraction conclude this paper.

2 P-Rules and Their Interpretation

Prototype rules are based on analysis of similarity between objects and pro-
totypes that are used as a reference. In its most general form [13,32] objects
(cases) {Oi}, i = 1..n do not need to be represented by numerical features, a
kernel (or a set of different kernels that provide “receptive fields” that stress
different perspectives) estimating (dis)similarity is sufficient Kij = K(Oi,Oj)
to characterize such objects. Selecting some of these objects as prototypes an
object O is represented by n-dimensional vector p(O) = Kp. Alternatively,
each object is represented by N feature values. In the first case features come
from evaluation of similarity and may be created for quite complex and diverse
objects (such as proteins or whole organisms), for which a common set of fea-
tures is hard to define. Below it is assumed that all objects are described by
vectors in some feature space.

A single prototype p with associated similarity function S(·,p) defines
for a given threshold θ a subspace Sp of vectors x for which S(x,p) < θ.
This subspace is centered at the position of the prototype p and may have
different shapes, depending on the similarity function. Such interpretation
defines a crisp logical rule for the new feature xp = S(x,p). In this case the
antecedent part of a P-rule uses similarity to a single prototype and the class
label of that prototype (in classification tasks) is the consequence part.

If S(x;p) > θ Then C(x) = C(p) (1)

The similarity value may be used to estimate confidence factor for such
rule. The rescaled difference µp(x) = S(x,p)−θ may obviously be interpreted
as a fuzzy membership function defining the degree to which vector x belongs
to the fuzzy subspace Sp. Many similarity functions are separable in respect
to all features:

S(x;p, σ) =
∏

i

S(xi, pi; σi) (2)

where x = [x1, x2, . . . , xn]T and p = [p1, p2, . . . , pn]T are n-dimensional
vectors, and S(·) is similarity function.

P-rules with separable similarity functions can be interpreted as fuzzy
rules (F-rules) with a product as a fuzzy and aggregation operator. Linguistic

166 M. Blachnik and W. Duch

interpretation of F-rules relies on semantics of linguistic values assigned to
each linguistic variable as adjectives describing the membership functions.
Such representation is sensitive to context. Good example of this context
dependence is an adjective high that may describe objects of different types, for
example a person, but even in this case different kinds of people: kids, women
or basketball players will require different membership function representing
variable “high”. Thus indirectly fuzzy rules have to rely on prototypes of
objects or concepts to define the context, but since in fuzzy rules this context
is not explicitly represented confusion is quite likely. P-rules make this reliance
explicit always pointing to prototypes of particular concepts, allowing each
concept to be decomposed into independent features that may be treated as
linguistic values in the fuzzy sense.

2.1 Types of P-Rules

Two distinct types of P-rules are:

– Prototype Threshold Rules (PT-rules), where each prototype pi has an
associated threshold θi value and i-th rule is written as:

If S(x,pi) > θi Then C(x) = C(pi) (3)

where C(·) is a function returning class labels or some other information
associated with the prototype.

– Nearest Neighbor Rule (PN-rules), where the most similar prototype is
selected:

If k = arg max
i

S(x,pi) Then C(x) = C(pk) (4)

so the output value depends on the internal relations between prototypes.

More general form of PN-rules is used by the Generalized Nearest Proto-
type Classifier [25]. From the rule-based perspective it is defined as: If x is
similar to pi then it is of the same class with some support wi:

If wi = S(x,pi) Then C(x) = C(pi) with support wi (5)

where P = [p1,p2, . . . ,pv]T is set of v prototype vectors, and wi is support
for the conclusion of the i-th rule. The final decision of the set of such rules
is obtained as:

C(x) = A(wi, C(pi)) (6)

where A(·) is an aggregation operator, which joins conclusions of individual
P-rules.

2.2 Support Vectors as Prototypes

The SVM model defines a hyperplane that can be used for linear discrimina-
tion in the feature space:

Prototype Rules from SVM 167

Ψ =
m∑

i=1

γiφ(xi) (7)

where φ(x) is function that maps vectors from n dimensional input space
to some feature space �. Since scalar products are sufficient to define linear
models in the φ-transformed space kernels are used to represent these products
in the original feature space. Decision function is in this case defined as:

f(x) =
m∑

i=1

γiyiK(x,xi) + b (8)

where m is the number of support vectors xi with non-zero γi coefficients
(Lagrangian multipliers), K(x,xi) is the kernel function, and yi = C(xi) = ±1
are the class labels.

This model may be expressed as a set of PN-rules with weighted aggrega-
tion A(·) (5) as a sum from i = 1 to m, replacing the kernel with a similarity
function S(·, ·) and defining support for a rule as wi = αiS(x,pi; α). Simi-
lar ideas have also been considered from the fuzzy perspective by Chen and
Wang [5] who interpret SVM model as a fuzzy rule based system. In their
paper they introduced Positive-Definite Fuzzy Classifiers using the Takagi
Sugeno (TS) fuzzy inference system [37], adopting this model to extract fuzzy
rules from support vector machines. However, in their solution comprehen-
sibility and model transparency, the most important properties of any rule
bases system, are lost. As stated in [19], logical rules are useful only if they
are simple and accurate, otherwise there is no point in extracting rules from
black box systems that works well because no additional understanding is
gained by creation of many complex rules. The goal of comprehensibility and
transparency can be achieved only when small number of support vectors
(SV) can be defined, or when SVM decisions can be replicated with another
simpler rule-based model. These two strategies have been studied by many
research groups. The first leads to methods aimed at reduction of the number
of support vectors through removing approximately linearly dependent ker-
nels in the SV set. The second one leads to the “Reduced Set” methods aimed
at reconstruction of the SVM hyperplane defined in the kernel feature space
with smaller number of kernel functions.

The initial idea behind the kernel reduction methods was to speed up the
decision process, but these methods can obviously be also used to understand
data using small number of P-rules. These two approaches differ in the way
support vectors are used. SVs are vectors that define or lie within the margin,
that is they are close to the decision hyperplane. Those SVs that are outside
of the margin on the wrong side should be removed, as they are cases that
cannot be correctly classified and should not be used to create rules. Reducing
linear dependencies removes some of the original SVs but will leave other SVs
intact. In the “Reduced Set” approach new support vectors are not selected
from the training examples but may be defined anywhere in the input space.

168 M. Blachnik and W. Duch

2.3 Removing Linear Dependencies Among Support Vectors

Many numerical methods of removing linear dependencies from the kernel
matrix K(xi,xj) may be defined. For smooth kernels the problem may also
be analyzed in the feature space, because it is created by vectors that are
too similar to each other. Therefore clusterization techniques may be used to
select representative vectors that are sufficiently distinct to avoid problems
with linear dependencies. In some applications cluster centers may replace
original vectors.

SVM approach based on quadratic programming has a unique solution,
avoiding the problem of local minima and initialization of parameters that
neural network algorithms have to face. Still there are some differences in
SVM implementations that use different quadratic programming solvers. Solu-
tions obtained with SMO [33], SVM Light [24], SVMTorch [6] or other SVM
methods slightly differ from each other. On the other hand even if identical
decision function are obtained different support vectors may be selected dur-
ing the optimization procedure. Such situation is bound to happen when SVs
are linearly dependent. This observation leads to a reduction of the number
of support vectors, as studied by Downs et al. in [7] in the algorithm referred
below using RLSV acronym (removed linearly-dependent support vectors).
Linear dependence in the kernel space Φ can be written as:

φ(xk) =
m∑

i=1
i�=k

qiφ(xi) (9)

where qi are scalar coefficients. If such vector xk exist (up to predefined
precision) the hyperplane (7) can be rewritten as:

Ψ =
m∑

i=1
i�=k

γiφ(xi) + γk

m∑
i=1
i�=k

qiφ(xi) (10)

Using the kernel equation (10) is written as:

f(x) =
m∑

i=1
i�=k

γiyiK(x,xi) + γkyk

m∑
i=1
i�=k

qiK(x,xi) + b (11)

This may be finally rewritten as:

f(x) =
m∑

i=1
i�=k

γ′
iyiK(x,xi) + b (12)

where
γ′

i = γi + γkqiyk/yi (13)
The form of the decision function is thus unchanged, but the coefficients are
redefined to account for the removed component.

Prototype Rules from SVM 169

2.4 Reducing the Number of Support Vectors

The methodology of reduced set methods was proposed by Burges in [4]. When
support vectors are removed the dimensionality of the transformed space is
decreased and this is reflected in the change of the original decision hyperplane
Ψ in the input space to Ψ′ plane. The distance between the two hyperplanes

d = min ||Ψ − Ψ′||2 (14)

should be as small as possible, and the approximation Ψ′

Ψ′ =
m′∑
i=1

βiφ(zi) (15)

for the P-rules should satisfy m′ � m, with scalar coefficients βi. The inequal-
ity m′ � m should be considered very carefully because the number of SV
cannot be too small [27].

Now there are two possible solution to the problem stated in this way. First,
both the coefficients βi and the position of vectors xi in the input space may
be optimized, and second, only the coefficients are optimized while support
vectors are kept selected from the input vectors zi. Both approaches has some
advantages and disadvantages. Optimization of SV positions allows for better
approximation and thus stronger reduction of the number of support vectors,
but may lead to vectors that are difficult to interpret from the P-rule perspec-
tive. For example, in medical applications unrestricted optimization of support
vector positions may create cases that are quite different from real patient’s
data, including intermediate values of binary features (such as sex). A com-
promise in which optimization of SVs is performed only in selected dimensions
may be the best solution from both accuracy and comprehensibility point of
view.

Optimizing support vectors zi requires minimization of (14) over β and z:

min
β,z

(d) =
m∑

i,j=1

γiγjK(xi, xj) +
m′∑

i,j=1

βiβjK(zi, zj)

−2
m∑

i=1

m′∑
j=1

βjγiK(xi,zj)

(16)

Directly minimization [4] requires evaluation of derivatives:

∂

∂βa

∥∥∥∥∥∥Ψ−
m′∑
i=1

βiφ(zi)

∥∥∥∥∥∥
2

= 2φ(za)

⎛
⎝Ψ −

m′∑
i=1

βiφ(zi)

⎞
⎠ (17)

Setting this derivative to zero and replacing Ψ with (7) one obtains:

m∑
j=1

γjφ(xj) =
m′∑
i=1

βiφ(zi) (18)

170 M. Blachnik and W. Duch

In the kernel matrix notation Kzxγ = Kzzβ where γ = [γ1, γ2, . . . , γm]T ,
β = [β1, β2, . . . , βm′]T , and Kzx is matrix of the m′ × m dimensions contain-
ing K(zi,xj) values. The solution may be written in a number of ways, for
example:

β = (Kzz)−1 Kzxγ (19)

or using pseudoinverse matrices etc. Selection of the support vectors zi from
the initial pool of SVM-selected input vectors can be done using systematic
search techniques, or using some stochastic selection procedures.

An interesting procedure for approximation Ψ have been proposed in [35],
where the problem has been analyzed as clustering in the feature space. First
notice that instead of direct distance (17) minimization the distance between
Ψ and orthogonal projection of Ψ on the space generated by Span(φ(z)) may
be used. Considering a single vector z and (16) the value of β is calculated
from (19) as:

β =
m∑

i=1

γiK(xi, z)

/
K(z, z) (20)

and then z may be optimized minimizing:

min
z

∥∥∥∥Ψ · φ(z)
φ(z)φ(z)

φ(z) − Ψ
∥∥∥∥2 = ‖Ψ‖2 − (Ψ · φ(z))2

φ(z)φ(z)
(21)

This is equivalent to maximization of:

max
z

(
(Ψ · φ(z))2

φ(z)φ(z)

)
(22)

In case of similarity-based kernels K(z, z) = 1 and maximization in (22)
can be simplified just to maximization of the numerator using fixed-point
iterative methods. Calculating derivatives it is not hard to show that first
approximation to z1 is calculated as [35]:

z1 =

m∑
i=1

γiK(||xi − z||2)xi

m∑
i=1

γiK(||xi − z||2)
(23)

and iterations improve this estimation:

zn+1 =

m∑
i=1

γiK(||xi − zn||2)xi

m∑
i=1

γiK(||xi − zn||2)
(24)

Stability of this process is not guaranteed, and results strongly depend on
the initialization of z and may require multiple restarts to find good solution.

Prototype Rules from SVM 171

This is one of many possible approaches. Another interesting method has been
proposed by Kwok and Tsang [26], using Multidimensional Scaling (MDS)
algorithm to represent images of the feature space vectors back in the input
space.

2.5 Finding Optimal Number of Support Vectors

Analysis of numerical experiments performed by Downs et al. [7] shows that
RLSV method is not sufficient for rule generation. Elimination of linear depen-
dencies among SVs leads to a small reduction of their number, although
quality of results is usually quite good. One exception is reduction of over 80%
of the original number of SVs for the Heberman dataset [7], where quadratic
kernel with SMO optimization found 87 SVs, while RLSV algorithm reduced
it to just 10 vectors. Stronger reduction may be achieved relaxing numerical
accuracy for linear dependency tests, but this will probably degrade also the
quality of results. The effects of such reduction remains to be investigated.

Quality of this method depends on the type of kernel function, the C-value
and the complexity of the decision border created by the SVM algorithm.
Parameter C defining the size of SVM margins has important influence on
the number of SVs. In soft margin SVM softer margins (lower C value) leads
to a higher number of SVs that have more linear dependencies and thus
higher reduction rate is obtained. Generally best results of RLSV algorithm
are obtained for linear kernel, as in principle two support vectors are sufficient
to define a decision hyperplane.

RS-SVM approach allows for significant reduction of the number of SVs,
leading to more comprehensible models. To find optimal number of SVs any
search method can be used with typical cost function driven by minimization
of the distance between separating hyperplanes ((14)):

E1(m′) = ‖Ψ − Ψ′‖ =⎛
⎝ m∑

i,j=1

γiγjK(xi,xj) +
m′∑

i,j=1

βiβjK(zi, zj) − 2
m∑

i=1

m′∑
j=1

βjγiK(xi, zj)

⎞
⎠2

(25)

An additional term αm′/m defining model complexity as a fraction of reduced
number of SVs (m′) to the original number of SVs (m) multiplied by some
constant α may be added to the difference of distances between hyperplanes.
Because the distance ‖Ψ−Ψ′‖ may take very high values α may be rescaled
by 1/‖Ψ− Ψ′

1‖, where Ψ′
1 is Ψ′ defined with just one SV.

An alternative function that measures changes in classification accuracy
may be defined as:

E2(m′) = acc(SVM) − acc(RSSVM(m’)) (26)

where acc() is classification accuracy measured using some loss function; in
this case also the penalty for complexity may be added. Because acc(SV M)

172 M. Blachnik and W. Duch

doesn’t change during optimization the number of SV, we can simplify the
function (26) omitting the first component, optimizing:

E3(m′) = acc(RSSVM(m’)) (27)

To compare the approach based on minimization of distance and accuracy
few tests have been done using Gaussian SVM on two datasets, Pima Indians
Diabetes, and Cleveland Heart Disease [28]. In the first step all datasets were
normalized to the [0, 1] range. The best C value for the SVM was selected
using five-fold cross validation (CV) greedy search procedure in the C = 21

to C = 28 range, while σ = 1, and Alpha cutoff = 10−2 were fixed. Finally
the process of five-fold CV was used to test different cost functions using
Fixed Point Iteration algorithm (Fig. 1 for the first, and Fig. 2 for the second

100 101 102 103
0

50

100

150

200

250

(a) Dependence of the cost function E1 on the
logarithm of the number of SVs

100 101 102 103
0.55

0.6

0.65

0.7

0.75

0.8

(b) Dependence of the mean accuracy (cost
function E3) on the logarithm of the num-
ber of SVs. Dashed line represents mean
accuracy of the original SVM

Fig. 1. Comparison of the distance (25) and accuracy (27) based cost functions for
Pima Indians diabetes data

Prototype Rules from SVM 173

100 101 102 103
0

50

100

150

200

250

300

(a) Dependence of the cost function E1 on
the logarithm of the number of SVs

100 101 102 103

0.65

0.55

0.7

0.75

0.8

0.85

(b) Dependence of the mean accuracy (cost
function E3) on the logarithm of the num-
ber of SVs. Dashed line represents mean
accuracy of the original SVM

Fig. 2. Comparison of the distance (25) and accuracy (27) based cost functions for
Cleveland Heart disease data

dataset). The distance between hyperplanes plotted in the top subfigure is
decreasing in approximately linear way with the logarithm of the number of
SVs. On the other hand the classification accuracy (27) grows rapidly reaching
the accuracy of SVM with just a few SVs.

Although increasing the number of SVs leads to decision border that are
equivalent to the one found by SVM algorithm without restrictions on the
number of SVs results are not correlated with increasing accuracy of the mod-
els. Large differences between hyperplanes in the region far from data are not
important, but the distance-based approach does not distinguish between dif-
ferent regions, trying to decrease the overall distance. This problem will be
especially acute for Gaussian or other non-linear kernels that place SV far
from decision borders in the feature space. For two overlapping distributions

174 M. Blachnik and W. Duch

SVM with Gaussian kernels will use support vectors that are all around both
distributions, even though only those that are close to the support vectors from
the opposite class are really useful. It should be possible to use the distance
between closest support vectors from the opposite classes to rank candidates
for removal in the SV selection process. This can simplify the search in the
accuracy-based approach.

2.6 Problems with Interpretation

Even if a simple and transparent model that mimics SVM’s decision borders
could be created the question “what can be learned from it” still remains.
Similar problems face most rule extraction approaches, including fuzzy and
rough rule based systems, with the exception of simple crisp rule sets that
sometimes have straightforward interpretation [14,19]. Prototype-based rules
demand not only a small number of prototypes but also a meaningful position
of these prototypes among other input vectors.

None of the support vector reduction methods considered here gives proto-
types which have simple interpretation, as they are never placed at the centers
of clusters (as in the RBF networks). This problem is illustrated in Fig. 3a.
Four prototypes selected by the Schölkopf algorithm are somewhere near the
decision border and in the “flattened” image space are sufficient to define
good border, but in the feature spaces they make little sense. More intuitive
solution is obtained with the Burges algorithm where position of prototypes
looks more “natural”, however also here the knowledge which can be inferred
from these positions is not clear.

If the goal is to understand the data the problem of prototype selections
should be solved in some other way. In the next section algorithms driven by
prototype selection methods used in the k-nearest neighbor (kNN) classifiers
are used to search for informative prototypes.

3 Searching for Informative Prototypes

SVM decision borders should be approximated in such a way that uses
informative prototypes to understand data structure. These prototypes do
not have to be selected from support vectors, but may be placed in opti-
mized positions. Possible solutions can be taken from kNN learning algo-
rithms where many prototype selection methods that reduce the number
of reference vectors exist. Good comparison of existing prototype selec-
tion algorithms can be found in papers by Jankowski and Grochowski
[22, 23] and Wilson and Martinez [39]. The general algorithm proposed here
starts from training SVM model, then selecting prototypes using one of
the algorithms developed for kNN methods, and then assigning to each
prototype weight value to reproduce the SVM decision border. The weights
are calculated using (19). To facilitate better interpretation of results

Prototype Rules from SVM 175

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Contour plot of SVM classifier decision borders

−1.5

1.5

−1

−1

1

−0.5

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.5

0

(b) Contour plot of Schölkopf’s RS-SVM with
marked positions of prototypes

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

(c) Contour plot of Burges RS-SVM with marked
positions of prototypes

Fig. 3. An example of decision borders generated by (a) SVM classifier, (b) with
RS-SVM reduction according to Schölkopf and (c) Burges algorithm

176 M. Blachnik and W. Duch

weights can be normalized without any loss of generalization using softmax
procedure:

β′ =
β∑
β

(28)

The weight value after normalization indicates how strong is the influence of
each prototype on the final decision function. Generally the higher β′

i is, the
more important associated i’th prototype is. The algorithm is schematically
written below.

Algorithm 1

1: train SVM;
2: select prototypes with one of the kNN-based algorithms;
3: optimize prototype weights using formula (19);
4: normalize weights to [0,1] range.

3.1 Prototype Selection Using Context Dependent Clustering

One of the most popular methods for prototype selection in kNN and RBF
classifiers is to use clustering of the training vectors. However, unsupervised
clustering algorithms do not use any knowledge about class structure, leading
to unnecessarily large number of prototypes. Such situation is presented in
Fig. 4, where one of the prototypes is useless because it does not participate
directly in construction of the decision border. This problem may be solved
with semi-supervised clustering. A clustering approach which uses additional
knowledge to reduce the number of prototypes was proposed by Blachnik

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1
 [−]

x 2[−
]

(a) Prototype selection using classi-
cal clustering method (FCM)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1
 [−]

x 2[−
]

(b) Prototype selection using context
clustering (CFCM)

Fig. 4. Comparison of prototype selection methods using two types of clustering
methods, FCM and CFCM

Prototype Rules from SVM 177

et al. [3]. In this approach context dependent clustering was used to train
the kNN prototypes. Context dependent clustering is a family of grouping
algorithms which use external, user defined variable (for each input vector)
describing the strengths of association between the input vector and external
parameter. Context clustering was studied by Pedrycz [29, 31], �Lȩski [20, 36]
and others, and has been applied with very good results in training of the
RBF networks [1, 30].

3.2 The Conditional Fuzzy Clustering Algorithm

One of methods that belong to the context dependent clustering family of
algorithms is Conditional Fuzzy C-Means (CFCM). It is based on minimizing
cost function defined as:

Jm(U,P) =
c∑

i=1

m∑
k=1

(uik)δ ‖xk − pi‖2
A (29)

where c is the number of clusters centered at pi, m is the number of vectors,
δ > 1 is a parameter describing fuzziness, and U = (uik) is a c × m dimen-
sional membership matrix with elements uik ∈ [0, 1] defining the degree of
membership of the k-th vector in the i-th cluster. The matrix U has to fulfill
three conditions:
1o each vector xk belongs to the i-th cluster to some degree:

∀
1≤i≤c

∀
1≤k≤m

uik ∈ [0, 1] (30)

2o sum of the membership values of k-th vector xk in all clusters is equal to
fk

∀
1≤k≤m

c∑
i=1

uik = fk (31)

3o no clusters are empty.

∀
1≤i≤c

0 <

m∑
k=1

uik < m (32)

Under these conditions cost function (29) reaches minimum for [29],

∀
1≤i≤c

pi =
m∑

k=1

(uik)δxk

[
m∑

k=1

(uik)δ

]−1

(33)

∀
1≤i≤c
1≤k≤m

uik = fk

⎡
⎣ c∑

j=1

(
‖xk − pi‖
‖xk − pj‖

)2/(δ−1)
⎤
⎦−1

(34)

178 M. Blachnik and W. Duch

3.3 Determining the Context

In classification problems the goal is to find a small number of prototypes
that define classification border. In simple cases when linear solution is suffi-
cient one prototype far from decision border implements approximately linear
threshold P-rule. In more complex situations prototypes that are close to the
decision border are needed, and they are also close to vectors from the oppo-
site classes. This leads to a conclusion that grouping algorithms should be
focused on clusters found close to the decision border and not on the whole
space. For the context dependent clustering appropriate coefficients f(k) tak-
ing this into account should be defined. Such a coefficient can be introduced
in various ways, with one possible approach [3] based on the ratio of distances:

wk =
∑

j,C(xj)=C(xk)

‖xk − xj‖2

⎡
⎣ ∑

l,C(xl) �=C(xk)

‖xk − xl‖2

⎤
⎦−1

(35)

These coefficients are renormalized to fit the [0,1] range:

wk ←−
(
wk − min

i
wi

)(
max

i
wi − min

i
wi

)−1

(36)

Normalized wk coefficients reach values close to 0 for vectors inside large
homogeneous clusters, and close to 1 if the vector xk is near the vectors of the
opposite classes and far from other vectors from the same class (for example
if it is an outlier). These normalized weights determine the external variable
which then is used to assign appropriate context or condition in the CFCM
clustering process.

fk = exp
(
−η(wk − µ)2

)
(37)

with the best parameters in the range of µ = 0.6−0.8 and η = 1−3, determined
empirically for a wide range of datasets. The µ parameter controls where the
prototypes will be placed; for small µ they are closer to the center of the
cluster and for larger µ closer to the decision borders. The range in which
they are sought is determined by the η parameter.

3.4 Numerical Illustration of the CFCM Approach

Conditional clustering proposed above does not use SVM to place prototypes
directly, but the adjustment of weights is based on the SVM decision function.
To verify this approach some simple numerical experiments were performed.
Because in the CFCM method the number of prototypes for each class has
to be determined independently the total number of desired SVs has been
divided equally among the classes.

An artificial dataset example with a ring of data from one class between
inner circle and outer data from another class was considered first, generated

Prototype Rules from SVM 179

−1
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

10.8−0.8 0.6−0.6 0.4−0.4 0.2−0.2 0

(a) SVs selected using CFCM
clustering

−1
−1

−0.8

−0.8

−0.6

−0.6

−0.4

−0.4

−0.2

−0.2

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(b) SVs selected using
Schölkopf approach

Fig. 5. Comparison of the CFCM and Fixed Point algorithms on artificial data,
showing support vector positions

using the Spider toolbox subroutines [38]. Results from the Fixed Point Itera-
tion calculations (Schölkopf algorithm) and from the CFCM-based algorithm
described are presented in Fig. 5. The number of SVs was set to 20 (in CFCM
10 SVs per class), and Gaussian SVM parameters C = 10000 and σ = 1 have
been used for both methods.

Five SVs found by the Fixed Point algorithm could not be plotted because
they lie outside of the figure. Mean accuracy of the original SVM was 92.0 ±
1.7%, for the Fixed Point algorithm 87.5 ± 1.4 and 91.5 ± 2.3 for the CFCM
algorithm.

This example shows that our CFCM algorithm finds prototypes that are
informative and represent the shape of the decision border with high accuracy.
More knowledge can be derived from CFCM prototypes if the number of
prototypes per class is optimized. This can be done using for example the
racing algorithm described in [3].

Three well known benchmark datasets from the UCI repository [28] were
used to verify quality of the proposed solution on real data. The Pima Indi-
ans Diabetes, Cleveland Heart Disease, and Ionosphere datasets have been
selected. All calculations were performed with the Spider toolbox [38] using
the 5-fold crossvalidation, extended by our own subroutines for CFCM pro-
totype selection algorithm. In all cases the number of SVs were fixed to 4
(in CFCM two per class), the C value for SVM was optimized using the
greedy search approach, and the Gaussian kernel parameter was fixed σ = 1.
Classification results are presented in Table 1.

These results show that also on the real-word problems CFCM clustering
combined with SVM gives quite good results. For such a small number of
SVs Schölkopf and Burges RS-SVM algorithms give rather poor results, while
RS-SVM based on CFCM clustering on the Cleveland Heart dataset obtained
even better results then the original SVM classifier.

180 M. Blachnik and W. Duch

Table 1. 5×CV classification error on the three datasets; the number of SVs from
the Gaussian SVM given in the second column has been reduced in all cases to four

#SV SVM Schölkopf Burges CFCM
RS-SVM RS-SVM

Pima 305 23.4 ± 2.3 37.9 ± 7.6 38.3 ± 8.1 25.9 ± 1.3
Cleveland 99 20.9 ± 1.9 44.5 ± 8.8 31.6 ± 8.2 18.9 ± 1.8
Ionosphere 65 6.3 ± 1.3 18.8 ± 3.3 16.5 ± 2.7 13.1 ± 1.9

4 Conclusions

Although SVMs is a very powerful black box data classification tool it cannot
be used directly for problems where decisions should be comprehensible. The
hyperplane found in the feature space cannot be easily translated into the
knowledge useful for data understanding in the original input space. Therefore
various ways of expressing this knowledge should be studied. In this paper
prototype-based rules are advocated as a natural extension of most of the
rule based systems, well suited to the form of knowledge that may be derived
from the SVM algorithm.

To represent knowledge contained in the SVM model in a comprehensible
way as P-rules reduction of the number of SVs is necessary. This topic has
been studied by many experts and a few approaches have been discussed in
this chapter. Minimization of the distance between original SVM hyperplane
and the one obtained after reduction of the number of SVs does not seem to
be correlated with the accuracy of the system obtained in this way. More com-
prehensible results are obtained using cost functions that are based directly
on the classification accuracy.

Another problem that is facing P-rules based on typical RS-SVM algo-
rithms is the interpretation of obtained prototypes. A solution proposed here
is to use algorithms developed for optimization of the classical kNN classifiers.
As an example conditional clustering algorithm (CFCM) was adopted to learn
prototypes (SV) from the original dataset, with SVM hyperplane used to fit
appropriate weights to selected prototypes. Results of such a combination on
the artificial and real data used in this paper appear to be quite good, although
it should be tested on much wider range of data and actual knowledge in form
of P-rules should be carefully analyzed. This approach should be combined
with feature selection to simplify further the interpretation of the rules.

Visualization techniques offer an interesting alternative to the rule-based
understanding of the SVM function, as it has been done for MLP [10] and
RBF neural networks [9, 11].

Prototype Rules from SVM 181

References

1. M. Blachnik. Warunkowe metody rozmytego grupowania w zastosowaniu do
uczenia radialnych sieci neuronowych. Master’s thesis, Silesian University of
Technology, Gliwice, Poland, 2002.

2. M. Blachnik and W. Duch. Prototype-based threshold rules. Springer Lecture
Notes in Computer Science, 4234, 2006.

3. M. Blachnik, W. Duch, and T. Wieczorek. Selection of prototypes rules - context
searching via clustering. Lecture Notes in Artificial Intelligence, 4029:573–582,
2006.

4. C. Burges. Simplified support vector decision rules. In International Conference
on Machine Learning, pages 71–77, 1996.

5. Y. Chen and J.Z. Wang. Support vector learning for fuzzy rule-based classifica-
tion systems. IEEE Transactions on Fuzzy Systems, 11(6):716–728, 2003.

6. R. Collobert and S Bengio. SVMTorch: Support vector machines for large-scale
regression problems. Journal of Machine Learning Research, 1:143–160, 2001.

7. T. Downs, K. Gates, and A. Masters. Exact simplification of support vector
solutions. The Journal of Machine Learning Research, 2:293–297, 2001.

8. W. Duch. Similarity based methods: a general framework for classification,
approximation and association. Control and Cybernetics, 29:937–968, 2000.

9. W. Duch. Coloring black boxes: visualization of neural network decisions. In Int.
Joint Conf. on Neural Networks, Portland, Oregon, volume I, pages 1735–1740.
IEEE Press, 2003.

10. W. Duch. Visualization of hidden node activity in neural networks: I. visualiza-
tion methods. In L. Rutkowski, J. Siekemann, R. Tadeusiewicz, and L. Zadeh,
editors, Lecture Notes in Artificial Intelligence, volume 3070, pages 38–43.
Physica Verlag, Springer, Berlin, Heidelberg, New York, 2004.

11. W. Duch. Visualization of hidden node activity in neural networks: Ii. appli-
cation to rbf networks. In L. Rutkowski, J. Siekemann, R. Tadeusiewicz, and
L. Zadeh, editors, Lecture Notes in Artificial Intelligence, volume 3070, pages
44–49. Physica Verlag, Springer, Berlin, Heidelberg, New York, 2004.

12. W. Duch, R. Adamczak, and G.H.F. Diercksen. Distance-based multilayer
perceptrons. In M. Mohammadian, editor, International Conference on Com-
putational Intelligence for Modelling Control and Automation, pages 75–80,
Amsterdam, The Netherlands, 1999. IOS Press.

13. W. Duch, R. Adamczak, and G.H.F. Diercksen. Classification, association and
pattern completion using neural similarity based methods. Applied Mathemath-
ics and Computer Science, 10:101–120, 2000.

14. W. Duch, R. Adamczak, and K. Gra̧bczewski. A new methodology of extraction,
optimization and application of crisp and fuzzy logical rules. IEEE Transactions
on Neural Networks, 12:277–306, 2001.

15. W. Duch and M. Blachnik. Fuzzy rule-based systems derived from similarity to
prototypes. In N.R. Pal, N. Kasabov, R.K. Mudi, S. Pal, and S.K. Parui, edi-
tors, Lecture Notes in Computer Science, volume 3316, pages 912–917. Physica
Verlag, Springer, New York, 2004.

16. W. Duch and G.H.F. Diercksen. Feature space mapping as a universal adaptive
system. Computer Physics Communications, 87:341–371, 1995.

17. W. Duch and K. Grudziński. Prototype based rules - new way to understand
the data. In IEEE International Joint Conference on Neural Networks, pages
1858–1863, Washington D.C, 2001. IEEE Press.

182 M. Blachnik and W. Duch

18. W. Duch and K. Grudziński. Meta-learning via search combined with param-
eter optimization. In L. Rutkowski and J. Kacprzyk, editors, Advances in Soft
Computing, pages 13–22. Physica Verlag, Springer, New York, 2002.

19. W. Duch, R. Setiono, and J. Zurada. Computational intelligence methods for
understanding of data. Proceedings of the IEEE, 92(5):771–805, 2004.

20. J. �Lȩski. Ordered weighted generalized conditional possibilistic clustering. In
J. Chojcan and J. �Lȩskiki, editors, Zbiory rozmyte i ich zastosowania, pages
469–479. Wydawnictwa Politechniki lskiej, Gliwice, 2001.

21. K. Gra̧bczewski and W. Duch. Heterogeneous forests of decision trees. Springer
Lecture Notes in Computer Science, 2415:504–509, 2002.

22. M. Grochowski and N. Jankowski. Comparison of instance selection algorithms.
ii. results and comments. Lecture Notes in Computer Science, 3070:580–585,
2004.

23. N. Jankowski and M. Grochowski. Comparison of instance selection algorithms.
i. algorithms survey. Lecture Notes in Computer Science, 3070:598–603, 2004.

24. T. Joachims. Learning to Classify Text Using Support Vector Machines. Kluwer
Academic Publisher, 2002.

25. L.I. Kuncheva and J.C. Bezdek. An integrated framework for generalized nearest
prototype classifier design. International Journal of Uncertainty, 6(5):437–457,
1998.

26. J.T. Kwok and I.W. Tsang. The pre-image problem in kernel methods. IEEE
Transactions on Neural Networks, 15:408–415, 2003.

27. K. Lin and C. Lin. A study on reduced support vector machines. IEEE
Transactions on Neural Networks, 14(6):1449–1459, 2003.

28. C.J. Merz and P.M. Murphy. UCI repository of machine learning databases,
1998–2004. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

29. W. Pedrycz. Conditional fuzzy c-means. Pattern Recognition Letters, 17:625–
632, 1996.

30. W. Pedrycz. Conditional fuzzy clustering in the design of radial basis function
neural networks. IEEE Transactions on Neural Networks, 9(4), 1998.

31. W. Pedrycz. Fuzzy set technology in knowledge discover. Fuzzy Sets and
Systems, 98(3):279–290, 1998.

32. E. Pȩkalska and R.P.W. Duin. The dissimilarity representation for pattern recog-
nition: foundations and applications. New Jersey; London: World Scientific,
2005.

33. J. Platt. Using sparseness and analytic qp to speed training of support vector
machines. Advances in Neural Information Processing Systems, 11, 1999.

34. I. Roth and V. Bruce. Perception and Representation. Open University Press,
1995. 2nd ed.

35. B. Schölkopf, P. Knirsch, A. Smola, and C. Burges. Fast approximation of
support vector kernel expansions. Informatik Aktuell, Mustererkennung, 1998.

36. J. �Lȩski. A new generalized weighted conditional fuzzy clustering. BUSEFAL,
81:8–16, 2000.

37. T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications
to model ing and control. IEEE Transactions on Systems, Man, Cybernetics,
15:116–132, 1985.

38. J. Weston, A. Elisseeff, G. BakIr, and F. Sinz. The spider. http://www.
kyb.tuebingen.mpg.de/bs/people/spider/.

39. D.R. Wilson and T.R. Martinez. Reduction techniques for instance-based
learning algorithms. Machine Learning, 38:257–268, 2000.

Part III

Applications

Prediction of First-Day Returns of Initial
Public Offering in the US Stock Market Using
Rule Extraction from Support Vector Machines

Rolf Mitsdorffer1 and Joachim Diederich2

1 Queensland Education, Brisbane, Australia
2 American University of Sharjah, UAE and University of Queensland, Australia

Summary. Artificial neural networks (ANNs) and support vector machines have
successfully improved the quality of predicting share movements in relation to sta-
tistically based counterparts. However, it has not been feasible to gain insight into
the reasons why a certain prediction is made. Due to this limitation, the use of
machine learning techniques in the capital market has met a critical hurdle. This
chapter outlines a method based on pedagogical learning for extracting rules from
support vector machines. To the best of our knowledge, the experiments reported
here are the first attempt to utilize learning based rule extraction from support
vector machines for financial data mining.

The experiments use predictions from support vector machines for extracting
rules associated with the first-day returns of “initial public offerings” (IPOs) in the
US stock market. A novel feature of the experiments is the simultaneous application
of fundamental and technical analysis in the context of predicting the success of
IPOs. Cross-industry IPOs covering the period from 1974 to 1984 and software and
services IPOs launched between 1996 and 2000 are utilized.

1 Motivation

Predictions of share prices in the capital market are said to be inconsis-
tent with the theory underlying the “capital asset pricing method” (CAPM).
CAPM is based on the random walk hypothesis which assumes linearity of
the data. Unfortunately, the statistically based linearity assumption is fre-
quently invalid. Marginal improvements in the prediction of share prices have
been obtained based on non-linear models. Forecasting limitations are also
imposed by the difficulty of understanding the time dependent dynamics of the
share market. Models based on symbolic manipulation never quite capture the
dynamic essence of the market. This problem results in a “knowledge acqui-
sition bottleneck” and limits human understanding of the multi-dimensional
problem.
R. Mitsdorffer and J. Diederich: Prediction of First-Day Returns of Initial Public Offering

in the US Stock Market Using Rule Extraction from Support Vector Machines, Studies in

Computational Intelligence (SCI) 80, 185–203 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

186 R. Mitsdorffer and J. Diederich

The experiments reported here are aimed at addressing the current fore-
casting limitations at the birth of the capital market: initial public offerings.

2 Introduction

2.1 Financial Data Mining

Machine learning techniques are increasingly being adopted by capital market
analysts and have been used in numerous studies. It is likely that only a
minority of projects have been published due to the commercial nature of the
applications.

A number of authors have used ANNs to model stock returns. Refenes
and Zapranis (1995) describe an experiment using a set of unspecified factors
extracted from the balance sheets of companies in the universe of UK stocks.
Mitsdorffer et al. (2001, 2002) employed ANNs and other machine learning
techniques for the predictions of first-day returns of initial public offerings
and found significant market inefficiencies.

Comparing results from classical statistical techniques with simple neural
learning procedures, Mitsdorffer et al. (2001, 2002) concluded that predictions
derived from ANNs outperform current best practice and have a significantly
better generalisation capability.

Similar to artificial neural networks, the knowledge embedded in support
vector machines is opaque in that it cannot easily be made comprehensible to
a human user. While rule extraction from ANNs is now established (Andrews
et al. 1995), there have not been any attempts to extract rules from sup-
port vector machines prior to 2002. Mitsdorffer et al. (2001, 2002) report
first experiments including learning based rule extraction from support vector
machines.

2.2 IPOs as a Case Study

This research explores the application of machine learning techniques in the
field of initial public offerings, a subset of the capital market. In this section,
the purpose of IPOs and processes leading up to them are outlined.

A private company can be converted to a public corporation by raising
funds for expansion, product development or the restructuring of debt. IPOs
reduce the dependence of companies on bank credit, a notoriously unstable
way to allocate capital. IPOs are often used by venture capitalists as an “exit
route”.

The most important and time consuming task facing the IPO preparation
team is the development of the prospectus, a business document that serves
as a brochure for the company. Since the US Securities and Exchange Com-
mission (SEC) imposes a “quiet period” on companies once they file for an

Prediction of First-Day Returns of Initial Public Offering 187

IPO until 25 days after the stock starts trading, the prospectus is the primary
source of information for the investor.

At the heart of a prospectus is the company’s financial position and past
financial performance. Financial reports are essential for informed decision
making. Relevant financial information may be found in several sections of a
prospectus – including the balance sheet, the profit and loss statement, cash
flow analysis and the accountant’s report and notes.

2.3 The Valuation of IPOS

According to Ritter (1991), IPOs are not different from other stocks, where
discounted cash flow (DCF) analysis and the comparable firm analysis are
used. Numerous studies have investigated the “short run under-pricing” of
IPOs and the “hot issue market” phenomenon (Ibbotson & Jaffe 1975; Ritter
(1984)). Under pricing of IPOs is an internationally widespread phenomenon.
Ritter (1991, p. 3) observed that “investors are periodically overoptimistic
about the earning potential of young growth companies and firms take
advantage of these windows of opportunity”.

There is a presumption that many young firms issuing new shares have
growth potential, which is difficult to forecast using one-year-ahead earnings
projections. Moonchul and Ritter (1999) tested this idea by using a sample
of young and older firms. Consistent with the assumption that younger firms
are more difficult to value; the authors determined that the valuation errors
were noticeably smaller for older firms.

3 Overview of the Chapter

The rule extraction experiments described in this chapter focus on two dif-
ferent datasets: “cross-industry” and “single-industry” IPOs. Following trials
to investigate the overall ability of SVMs to predict first-day IPO returns,
support vector machine predictions are obtained from test datasets. The pre-
dictions associated with these test datasets are then used to extract rules
representing what the SVM has learned using pedagogical rule extraction
techniques. Finally, statistical tests are utilized to establish that the extracted
rules represent what the SVM has learned.

4 Methodology

The project includes the collection of data from company reports and stock
market indices. Following a pre-processing phase to make the data amenable
to support vector and decision tree learning, the data serves as training input
to machine learning techniques.

188 R. Mitsdorffer and J. Diederich

For each of the cross-industry and single-industry datasets:

1. SVM training and prediction using the leave-one-out cross-validation
method is conducted by use of SVMlight (Joachims, 1999). Different
parameters are used to establish the effect on prediction and generalisation
quality.

2. SVM predictions are transcribed into the test dataset. This dataset
represents what the SVM has learned.

3. Rules are extracted from the transcribed dataset using See5, C4.5, Ripper
and Rulex.

4. An overall analysis of the prediction, generalisation and rule extraction
procedure is performed.

The performance of individual machine learning techniques is evaluated in
terms of precision, and recall as well as the f-value:

• Precision = true positive/(true positive + false positive)
• Recall = true positive/(true positive + false negative)
• F-value = (2∗precision∗recall)/(precision + recall)

The experiments result in several competing models of the stock market
dynamics governing returns of IPOs on the first trading day based on the
extracted rules.

4.1 Statistical Tests

In order to establish that rules represent what the SVM has learned, the
McNemar Test (Gardner & Altman 1989) is used to test whether combina-
tions between two dichotomous variables are equally likely. The exact p-value
is determined using the binomial distribution as described in Gardner and
Altman (1989) and implemented in the statistical analysis tool Analyse-it.
Based on the p-value (p-value < critical value) the null hypothesis of inequal-
ity is accepted. The rejection of the null hypothesis leads to the conclusion
that rules from a given technique significantly represent what the SVM has
learned at a level of confidence of 95%.

4.2 Data

Cross-Industry IPOs

An extensive search was conducted to locate data in the public domain suit-
able for this research. The search established IPO data sources in the public
domain of R. J. Ritter, University of Florida that are freely available for aca-
demic research.1 Ritter (1991) has used this data to investigate the long-term
performance of IPOs.

1 http://bear.cba.ufl.edu/ritter/ipodata.htm.

Prediction of First-Day Returns of Initial Public Offering 189

The dataset includes 2,609 firms with common stock initial public offerings
in the period between 1974 and 1984. Companies included in the dataset have
used S1 or S18 registration statements. The primary source of information is
the direct inspection of the prospectuses.

For each IPO, the following aspects are relevant:

• First-day trading data, including the date the company went public, open
and closing prices

• Fundamental data to enable the valuation of companies, such as assets
and liabilities as well as shareholder equity and dilution

• Past performance data, including sales, the cost of sales, expenditure for
R&D, etc.

• Proxies for market sentiment

In order to reduce extreme outliers, the following selection criteria are used
to exclude IPOs with the following attribute values:

• Minimum number of shares < 2, 000
• Market capitalisation < $1 m > $1, 000 m
• Offer price > $30
• First-day variation < −80% > 200%
• Offer fraction < 0.05.

The cross-industry attributes are shown in Table 1.
Market sentiment data is represented by wins and losses of the NASDAQ

computer index in the 100 trading days immediately preceding the IPO. The
period of 100 trading days is condensed into five separate 20-day periods.

Input values are scaled in the range from −1 to +1. Outliers are replaced
by maximum and minimum values established according to the table of bin
attribute values.

Next, the target values are established. The analysis of first-day gains
identified about 24% of the 1,841 IPOs with gains of over 18.1%. Using binary
classification, IPOs in the above 18.1% bracket are classified as positive while
the remainders are classified as negative.

Computer Software and Services IPOs

This section describes the data used for predicting first-day returns of single
industry IPOs. The rationale for selecting a single industry is to ascertain if
financial ratios representing underlying company fundamentals within a single
industry are more comparable than cross-industries data and thus provide
more plausible explanations of first-day IPO returns.

IPO data related to the computer software and services categories were
retrieved from the Hoover service. Companies in this sector are involved in the
design and marketing of all types of software and the provision of computer
services, such as mainframe and system integration.

190 R. Mitsdorffer and J. Diederich

Table 1. Attribute summary of cross-industry IPOs

Attribute name Attribute description

BOOK.CAPZTN Book value/capitalization ratio
BOOK.VALUE Book value (absolute)
CAPITALIZTN Capitalization (absolute)
EXPENSES Expenses (absolute)
GAIN.LOSS.1 First-day IPO gain/loss 1–20 days prior to first trading day
GAIN.LOSS.2 First-day IPO gain/loss 21–40 days prior to first trading

day
GAIN.LOSS.3 First-day IPO gain/loss 41–60 days prior to first trading

day
GAIN.LOSS.4 First-day IPO gain/loss 61–80 days prior to first trading

day
GAIN.LOSS.5 First-day IPO gain/loss 81–100 days prior to first trading

day
NO.IPOS.1 Number of IPOs released 1–20 days prior to the first

trading day
NO.IPOS.2 Number of IPOs released 21–40 days prior to the first

trading day
NO.IPOS.3 Number of IPOs released 41–60 days prior to the first

trading day
NO.IPOS.4 Number of IPOs released 61–80 days prior to the first

trading day
NO.IPOS.5 Number of IPOs released 81–100 days prior to the first

trading day
OFFER.FRACT Offer fraction
OFFER.PR Offer price (absolute)
REV.CAP Revenue vs. capitalization ratio
REVENUE Revenue absolute
RISKS Number of risk factors
SEL.DAYS Number of days selling days
SP.DIFF.1 Absolute difference of the S&P Index 1–20 days prior to

the first trading day
SP.DIFF.2 Absolute difference of the S&P Index 21–40 days prior to

the first trading day
SP.DIFF.3 Absolute difference of the S&P Index 41–60 days prior to

the first trading day
SP.DIFF.4 Absolute difference of the S&P Index 61–80 days prior to

the first trading day
SP.DIFF.5 Absolute difference of the S&P Index 81–100 days prior to

the first trading day
UW.DISCOUNT.CAP Underwriter discount in relation to the market

capitalization
YR.FOUND Year the company was founded
BOOK.CAPZTN Book value/capitalization ratio
BOOK.VALUE Book value (absolute)
CAPITALIZTN Capitalization (absolute)
EXPENSES Expenses (absolute)

Prediction of First-Day Returns of Initial Public Offering 191

IPOs satisfying certain criteria were selected. These criteria include a min-
imum of $10million in sales and 80 employees or more. At the time of data
collection, nearly all IPOs between 1996 and 1999 were considered.

The aim of the next stage of the data collection is the acquisition of balance
sheet and income data from company IPO prospectuses launched with the
SEC.

The following aspects are included in the model:

• IPO specific data, such as the date of listing, the date the company went
public, offer price, offer fraction, post offering shares

• First-day closing prices
• Fundamental data to enable the valuation of companies, such as assets

and liabilities as well as shareholder equity and dilution
• Past performance data, including sales, the cost of sales, expenditure for

R&D, etc.
• Daily NASDAQ computer index values for 100days preceding each IPO

The single-industry attributes considered for the analysis are shown in
Table 2.

Each IPO is represented by a vector with 27 input features and one
output or predictor attribute. Input features include attributes calculated
from balance sheets and income data and those constructed from the NAS-
DAQ computer index. Attributes are scaled which requires knowledge of the
statistical properties of attributes to eliminate the effects of outliers.

The decision was made to consider the influence of the NASDAQ computer
index on 100 trading days preceding the IPO. Considering the small dataset
of 182 IPOs, the number of attributes representing the index was reduced by
dividing the 100 index values into 10 time periods and forming the absolute
difference of the index for each 10-day period. Generating attributes based on
the absolute difference also has the effect of removing the time dependency of
index values which in turn enables the formation of time independent rules.

The output attribute represents first-day gains or losses of an IPO. Since
the aim of the research is the prediction of first-day gains and the extraction
of rules, a binary model was built where IPOs exceeding a certain percentage
of first-day gains are classified as positive and others as negative.

4.3 Machine Learning Techniques Used in This Study

Support Vector Machines

Support vector machines are an alternative to neural networks as tools for
solving pattern recognition problems. SVMs have a major advantage over
neural networks in that they formulate the learning problem as a quadratic
optimization problem whose error surface is free of local minima and has a
unique global optimum.

192 R. Mitsdorffer and J. Diederich

Table 2. Attribute summary of single-industry IPOs

Attribute name Attribute description

ActualOffer Actual offer price (absolute)
CashLiab Cash vs. liabilities (%)
CurAssLiab Current assets vs. liabilities (%)
EquityShare Equity per share (%)
GrMarginShare Gross margin per share (%)
GrossMargin Gross margin (%)
IncGrowth Income growth (%)
MarketCap Market capitalization (absolute)
NASDAQ.Period.1 NASDAQ computer index 10 days prior to first trading day
NASDAQ.Period.2 NASDAQ computer index 20 days prior to first trading day
NASDAQ.Period.3 NASDAQ computer index 30 days prior to first trading day
NASDAQ.Period.4 NASDAQ computer index 40 days prior to first trading day
NASDAQ.Period.5 NASDAQ computer index 50 days prior to first trading day
NASDAQ.Period.6 NASDAQ computer index 60 days prior to first trading day
NASDAQ.Period.7 NASDAQ computer index 70 days prior to first trading day
NASDAQ.Period.8 NASDAQ computer index 80 days prior to first trading day
NASDAQ.Period.9 NASDAQ computer index 90 days prior to first trading day
NASDAQ.Period.10 NASDAQ computer index 100 days prior to first trading

day
NetIncShare Net income per share (%)
OfferOutst Offer vs. outstanding shares (%)
PropActOffer Proposed vs. actual offer price (%)
RDRev Research & development vs. revenue (%)
RegDays Registration days (absolute)
Revenue Revenue (absolute)
RevGrowth Revenue growth (%)
RevShare Revenue per share (%)
SGRev Sales and general expenses vs. revenue (%)

SVMs are based on some simple ideas and provide a clear intuition of what
learning from examples is all about. More importantly, they also show high
performance in practical applications. SVMs correspond to a linear method in
a very high dimensional feature space that is non-linearly related to the input
space. Even though SVMs implement a linear algorithm in a high dimensional
feature space, in practice they do not involve any computations in that high
dimensional space. By use of kernels, all necessary computations are performed
directly in input space. Data vectors nearest to the separating hyperplane in
the transformed space are called support vectors. Classification as well as
regression can be learned by SVMs.

Joachims (1998) reported that SVMs are well suited to learn in high dimen-
sional spaces (>10,000 inputs). They achieve substantial improvements over
currently best performing methods, reducing the need for feature selection.

Prediction of First-Day Returns of Initial Public Offering 193

Rule Extraction from Neural Networks (Rapid Backpropagation)

Rule extraction from neural networks is used for benchmark purposes in
this context. The extraction of symbolic knowledge from ANNs and the
direct encoding of partial knowledge into ANNs before training are impor-
tant issues. They allow the exchange of information between symbolic and
neural network knowledge representation. ANNs store knowledge in a com-
pletely numerical form, which is not open to explanation, a situation similar
to SVMs.

Rule extraction from local function networks employs decompositional
algorithms that directly decompile weights to generate rules. The underly-
ing network is formed by “Rapid Back Propagation” (RBP), a three layer
architecture similar to radial base function networks. The network consists of
an input layer, a hidden layer of locally responsive basis function nodes, and
an output node. The network is suitable for binary classification tasks as well
as function approximation.

Rulex, a tool used in this project and described by Andrews and Geva
(1996), is a program that converts the numeric weights of RBP networks into
symbolic IF THEN rules that explain the decisions made by the network.

Other Machine Learning Techniques

Classification techniques such as decision trees play a major role in machine
learning and knowledge based systems. These learning methods have been
successfully applied to a large range of tasks, from learning medical diagnostics
to credit risks assessment and are used in this research.

See5/C5 is a system commercialized by Rulequest Research (1997) for
analysing data and generating classifiers in the form of decision trees and/or
rule sets. C4.5 is the program used in our experiments. Quinlan’s work
(1986,1993,2001) on C4.5 is widely acknowledged as a major contribution
to the development of classifier systems. Examples include a mixture of nom-
inal and numeric properties that are analysed to allow the discrimination of
classes. The patterns are expressed in the form of a decision tree or a set of
IF THEN rules. The rules can be used to classify new cases.

The Ripper rule learner is a system for inducing classification rules from a
set of pre-classified examples and has been used in this project for benchmark
purposes. Ripper (Repeated Incremental Pruning to Produce Error Reduc-
tion) is an efficient, noise tolerant propositional rule learning algorithm based
on the separate and conquer strategy. The basic strategy used by Ripper is
to find an initial model and then to iteratively improve that model using an
optimisation procedure described in Cohen (1995).

194 R. Mitsdorffer and J. Diederich

5 Results

For each of the datasets, cross-industry and single industry IPOs, the following
results are reported:

• SVM training and prediction results using the leave-one-out method built-
in to SVMlight (Joachims, 1999).

• SVM prediction results using explicit test sets. SVM prediction results are
then transcribed into the test dataset. This dataset in essence represents
what the SVM has learned.

• Rules extracted from the transcribed dataset using See5, C4.5, Ripper and
Rulex.

5.1 Results of Rule Extraction from SVM for Cross-Industry IPOs

Leave-one-out Cross-Validation Results

At first glance, the learning and generalisation ability of support vector
machines is sufficient as indicated by an error rate of 22.38% (Table 3).

SVM Prediction Using a Test Set

Results from a randomly created test set are shown below.
As is evident from Table 4, the quality of the SVM prediction is not satis-

factory with a precision of 0.33, a recall 0.35 and an f-value 0.34. The problem
is obviously a confusion of the positive class. This may be due to lack of data.

Table 3. Leave-one-out training results of cross-industry IPOs (rbf kernel)

Trade-off between Cost Parameter in Test
training error and factor gamma rbf error %
margin (c) (j) kernel (g)

100 0.12 0.5 24.12
50 0.30 0.2 22.87
Default 0.1 0.1 23.85
Default 0.90 0.1 22.38

Table 4. Confusion matrix for SVM predictions

(a) (b) <-classified as

38 76 (a): class positive
72 275 (b): class negative

Prediction of First-Day Returns of Initial Public Offering 195

Rules Extracted by Use of See5, C4.5, Ripper and Rulex

This part of the experiment is based on transcribing the SVM prediction
results into the training sets for rule learners. The results of training the four
rule learners with the SVM test predictions as target output are shown below.

In order to establish if See5 rules represented what the SVM has learned
the McNemar test (Gardner & Altman 1989) was used to investigate whether
combinations between two dichotomous variables shown in the confusion
matrix in Table 5 are equally likely.

The exact p-value was computed using the binomial distribution as descri-
bed by Gardner and Altman (1989) and implemented in the statistical analysis
tool Analyse-it. Based on the p-value (p-value < critical value) the null
hypothesis of inequality is accepted. The acceptance of the null hypothesis
leads to the conclusion that See5 rules fail to represent what the SVM has
learned at a level of confidence of 95%. Consequently the resulting rules are
not discussed here.

The results of extracting rules by use of C4.5 are shown in Table 6.
Similar to See5, C4.5 did not represent what the SVM has learned at a

level of confidence of 95%.
Ripper extracted one rule from the dataset representing what the SVM

has learned (Table 7).

Table 5. See5 confusion matrix for cross-industry IPOs

Evaluation on training data (460 cases):

(a) (b) <-classified as
44 30 (a): class positive
3 383 (b): class negative

Table 6. Decision tree (C4.5) results

Classification C4.5

SVM Positive Negative
Positive 48 26
Negative 2 384

Table 7. Ripper rules of what the SVM has learned for cross-industry IPOs

Final hypothesis is:

positive :-
SP DIFF 1>= 1, SP DIFF 2>= −0.422777, YR FOUND>= 0.317073 (40/30)
Default negative (328/62)
Train error rate: 20.00% 1.87% (460 data points) �
Hypothesis size: 1 rule, 4 conditions

196 R. Mitsdorffer and J. Diederich

Table 8. RBP/Rulex results of what the SVM has learned for cross-industry IPOs

Classification Rulex

Positive Negative
Positive 23 51
Negative 12 374

The precision for Ripper is 0.57, recall 0.38 and the f-value 0.46.
The null hypothesis of inequality (McNemar test) was rejected (p-value

> critical value) and the alternative hypothesis of equality of what the SVM
and Ripper have learned was accepted at a level of confidence of 95%. The
success of this test is the extraction of a minimal rule set representing SVM
learning results.

The RBP/Rulex results are shown in Table 8.
The McNeamar Test leads to the conclusion that Rulex failed to signifi-

cantly represent what the SVM has learned at a level of confidence of 95%
and the resulting rules are not discussed here.

5.2 Rule Extraction from SVM Results for Single-Industry IPOs

SVM Training and Prediction Using the Leave-one-out Method

Support vector machines are used to explore to what extent the upper 25% of
first-day returns of “Software and Services IPOs” can be predicted and what
are the rules governing these predictions are.

Results from SVM leave-one-out predictions (Table 9) including an error
rate as low as 18.13% are an indication that market inefficiencies exist.

SVM Training and Prediction Using Test Sets

Similar to the earlier approach, a learning-based method for rule extrac-
tion from support vector machines is used. Software and Services IPOs are
randomly split into 122 training and 60 test cases. Repeated random selection
is performed until the test set contains about 25% positive cases (22), the
same proportion as in the total dataset.

As is evident from Table 10, the quality of the SVM predictions is
insufficient, with a precision of 0.3, recall of 0.5 and an f-value of 0.38.

To determine why SVM learning has failed, SVM prediction results are
transcribed into the training sets for rule learners to establish what the SVM
learned or failed to learn.

Rules Extracted by Use of See5, C4.5, Ripper and Rulex

The results of training the four rule learners with the SVM test predictions
as target output are shown below.

Prediction of First-Day Returns of Initial Public Offering 197

Table 9. Leave-one-out results for single-industry IPOs (Linear SVMs)

C value Test
error %

Test
recall %

Precision %

Default 19.23 57.14 74.42
0.1 19.23 57.14 74.42
0.2 29.12 5.36 100
1 18.68 60.71 73.91
2 18.13 62.50 74.47
4 21.98 54.17 66.67

Table 10. SVM prediction using a test set for single-industry IPOs

Classed as
positive

Classed as
negative

7 16 Positive
7 32 Negative

The rejection of the null hypothesis in the McNemar Test leads to the
conclusion that the See5 rules significantly represented what the SVM has
learned at a level of confidence of 97.5%. Rule precision was established as
0.86, recall as 1 and the f-value as 0.92.

The rules extracted from C4.5 are shown in Table 12. Evaluation of the
rules yields the following results: Since the confusion matrix in Table 13 is
identical to the See5 learning results (Table 11) the conclusions are identical.
The results of what Ripper has learned are shown in Table 14: Ripper estab-
lished just one rule with a precision of 0.8, recall 0.57 and f-value 0.67. The
McNemar Test established that Ripper significantly represents what the SVM
has learned. The results of using the local functions network RBP and the rule
extraction technique Rulex are shown in Table 15. The confusion matrix based
on RBP and Rulex is shown in Table 16. RBP/Rulex precision is 0.93, recall
0.93 and f-value 0.93. This concludes the rule extraction from SVM experi-
ments, leading to the interpretation of results. The McNemar Test established
that RBP/Rulex significantly represents what the SVM has learned.

6 Discussion of Results

The knowledge stored in support vector machines is opaque and cannot easily
be extracted. The aim of this research is the extraction of rules from support
vector machines in the context of initial public offerings in the US stock market
as well as the evaluation of the quality of the rules.

The results from these experiments show how pedagogical techniques using
cross-industry and single-industry IPO datasets successfully extract rules from
support vector machines.

198 R. Mitsdorffer and J. Diederich

Table 11. See5 rules of what the SVM has learned for single-industry IPOs

Extracted rules:

Rule 1: (cover 8)
CurAssLiab > 0.6863084
RevGrowth > −0.4512843
− > class positive (0.900)

Rule 2: (cover 4)
CurAssLiab <= −0.1916766
MarketCap > 0.3253333
− > class positive (0.833)

Rule 3: (cover 38)
CurAssLiab <= 0.6863084
MarketCap <= 0.3253333
− > class negative (0.950)

Rule 4: (cover 16)
RevGrowth <= −0.4512843
− > class negative (0.944)

Rule 5: (cover 25)
CurAssLiab > −0.1916766
CurAssLiab <= 0.6863084
− > class negative (0.926)

Default class: negative
(a) (b) <-classified as
12 2 (a): class positive
0 48 (b): class negative

Table 12. C4.5 rules

Rule 1:
CurAssLiab > 0.686308
RevGrowth > −0.407389
− > class positive (84.1%)

Rule 2:
CurAssLiab <= −0.191677
OfferOutst <= −0.761158
− > class positive (70.7%)

Rule 3:
CurAssLiab <= 0.686308
OfferOutst > −0.761158
− > class negative (93.2%)

Rule 4:
RevGrowth <= −0.407389
− > class negative (92.6%)

Rule 5:
CurAssLiab > −0.191677
CurAssLiab <= 0.686308
− > class negative (89.8%)

Default class: negative

Prediction of First-Day Returns of Initial Public Offering 199

Table 13. C4.5 rule evaluation

Rule Size Error Used Wrong Advantage

1 2 15.9% 8 0 (0.0%) 8 (8|0) positive
2 2 29.3% 4 0 (0.0%) 4 (4|0) positive
3 2 6.8% 38 1 (2.6%) 0 (0|0) negative
4 1 7.4% 6 0 (0.0%) 0 (0|0) negative
5 2 10.2% 6 1 (16.7%) 0 (0|0) negative

(a) (b) <-classified as
12 2 (a): class positive
0 48 (b): class negative

Table 14. Ripper results

Final hypothesis is:

Positive: – CurAssLiab >= 1 (8/2)
Default negative (46/6)
Train error rate: 12.90% 4.29% (62 data points) �
Hypothesis size: 1 rules, 2 conditions

The conclusions drawn from the cross-industry experiments are:

• There is an indication of market inefficiencies, however, the learning results
are insufficient.

• SVM learning from randomly selected data points to a “hard to learn”
dataset. Precision is established as 0.33, while recall is 0.5 and the f-value
0.38.

• The subsequently extracted rules from the SVM using the rule learners
See5, C4.5 and RBP/Rulex did not significantly represent what the SVM
has learned.

• The one rule extracted from the SVM using Ripper significantly represents
what the SVM has learned. Rule precision was established as 0.57, recall
as 0.38 and the f-value as 0.46.

The Ripper rule uses technical and company specific attributes: a steep
increase in the S&P index in the last two periods combined with more
established companies (year founded). The rule is economically plausible since
it points to a “hot issue market” phenomenon (Ibbotson & Jaffe 1975; Ritter
1984) and the age of the firms is found to be significant by Moonchul and Ritter
(1999). The issue that accounting ratios did not feature in the one Ripper rule
may point to the difficulty of comparing companies across different industries.

200 R. Mitsdorffer and J. Diederich

Table 15. RBP/Rulex results

Number of rules = 2 Number of antecedents = 24

RULE 1
IF CashLiab IS BETWEEN −0.0357694 AND 1
AND ActualOffer IS BETWEEN −1 AND 0.484134
AND PropActOffer IS BETWEEN −1 AND 0.603759
AND RegDays IS BETWEEN −1 AND 0.0335572
AND GrossMargin IS BETWEEN −1 AND 0.598339
AND GrMarginShare IS BETWEEN −1 AND −0.26638
AND RevGrowth IS BETWEEN −0.605131 AND 1
AND Revenue IS BETWEEN −1 AND 0.381687
AND NASDAQ Period 5 IS BETWEEN −1 AND 0.286907
AND NASDAQ Period 4 IS BETWEEN −0.67481 AND 1
AND NASDAQ Period 3 IS BETWEEN −0.183016 AND 1
AND NASDAQ Period 1 IS BETWEEN −1 AND 0.0780277
THEN >50%

RULE 2
IF MarketCap IS BETWEEN 0.131663 AND 1
AND PropActOffer IS BETWEEN −1 AND 0.563242
AND OfferOutst IS BETWEEN −1 AND 0.780495
AND RegDays IS BETWEEN −1 AND 0.655597
AND GrossMargin IS BETWEEN −0.380277 AND 1
AND RevGrowth IS BETWEEN −0.418135 AND 1
AND NASDAQ Period 10 IS BETWEEN −0.502027 AND 1
AND NASDAQ Period 9 IS BETWEEN −1 AND 0.342823
AND NASDAQ Period 7 IS BETWEEN −0.446386 AND 1
AND NASDAQ Period 5 IS BETWEEN −1 AND 0.334158
AND NASDAQ Period 3 IS BETWEEN −1 AND 0.770492
AND NASDAQ Period 1 IS BETWEEN −0.906461 AND 1
THEN >50%

The conclusions drawn from the single-industry experiments are:

• The overall error rate of 18.13% achieved by SVM learning using cross-
validation points to market inefficiencies, but not to the specific factors
responsible for these inefficiencies.

• SVM learning from randomly selected data points to a “hard to learn”
dataset. Precision was established as 0.3, recall as 0.5 and the f-value as
0.46.

• The subsequently extracted rules from the SVM by all rule learners (See5,
C4.5, Ripper and RBP/Rulex) significantly represent what the SVM has
learned.

Prediction of First-Day Returns of Initial Public Offering 201

Table 16. Performance summary of RBP/Rulex

Evaluation on test data (62 items):

Rule Size Used Correct Wrong Certainty
1 12 10 10 0 1.00
3 12 6 5 1 0.83

Performance summary
predicted

0 1 No classification
Class 0 47 1 0

1 1 13 0

• The attributes of See5 rules exclusively focus on accounting ratios. Higher
asset to liabilities ratios and higher market capitalisation feature as making
a positive contribution to higher first-day IPO returns. See5 rule accuracy
is very high and rules are economically plausible. Precision was established
as 0.86, recall as 1 and the f-value as 0.92.

• Similarly C4.5 focuses exclusively on accounting ratios, but adds the rule
element of offered vs. outstanding shares. C4.5 rule accuracy is also very
high and rules are economically plausible. Precision was established as
0.86, recall as 1 and the f-value as 0.92.

• The one rule Ripper generates, including the asset vs. liabilities ratio, is
precise and economically plausible. Precision was established as 0.8, recall
as 0.57 and the f-value as 0.67.

• In contrast RBP/Rulex yield two rules consisting of a mix of company
specific and market sentiment elements. RBP/Rulex rules are very precise.
Again RBP/Rulex rules are economically plausible, adding the “hot issues
market” theme. Precision was established as 0.93, recall as 0.93 and the
f-value as 0.93. The RBP/Rulex rules are therefore by a slim margin
superior to See5 and C4.5 rules.

In summary, all rule learners found it substantially easier to extract rules
from the dataset representing what the SVM has learned in comparison to
the original data. This points to a filtering or smoothing effect as a result of
SVM learning. Two major competing rule models emerge, one that exclusively
focuses on accounting ratios and one that combines accounting ratios with
market sentiment.

7 Conclusions

The experiments have shown how the ability of SVMs to solve problems can
be combined with the benefits of extracting the symbolic representation of
the knowledge contained in SVMs.

202 R. Mitsdorffer and J. Diederich

The experiments have shown that small pockets of predictability exist in
the IPO market. The economic plausibility of the rule attributes associated
with the predictions has been confirmed. These results are not only relevant
for investment decisions in the capital market, but may be of benefit to other
applications, such as software verification and safety applications.

References

Andrews R, Diederich J, Tickle AB (1995) A Survey and Critique of Tech-
niques For Extracting Rules From Trained Artificial Neural Networks,
Knowledge Based Systems, 8, pp. 373–389

Andrews R, Geva S (1996) Rules and local function networks, In Rules and
Networks, R. Andrews, R. & J. Diederich (eds), Queensland University of
Technology, Neurocomputing Research Centre

Cohen WW (1995) Fast effective rule induction (Ripper), AT&T Laborato-
ries, New York: Proceedings of 12th International Conference of Machine
Learning, Lake Tahoe, California, July 9–12

Gardner MJ, Altman DG (1989) Statistics with confidence. London BMG
Books

Ibbotson RG, Jaffe JF (1975) Hot issue markets, Journal of Finance, vol. 30,
pp. 1027–1032

Joachims T (1998) Categorization with support vector machines, learning
with many relevant features’, European Conference of Machine Learning.
Chemnitz, Germany, April 21–23, Proceedings: Springer (1998)

Joachims T (1999) Making large-Scale SVM learning practical. In: Advances
in kernel methods – Support Vector Learning. Schölkopf B, Burges C, Smola
A (eds), MIT Press, Cambridge, Massachusetts

Mitsdorffer R, Diederich J, Tan TW (2001) Predicting first-day returns of
cross-industry initial public offerings in the US stock market’, ANNES 2001,
the biennial International New Zealand Conference on Artificial Neural
Networks and Expert Systems, University of Otago, Dunedin, New Zealand

Mitsdorffer R, Diederich J, Tan TW (2002) Rule-extraction from technol-
ogy IPOs in the US Stock Market: The Ninth International Conference on
Neural Information Processing (ANNES 02), November 2002, Singapore

Quinlan JR (1986) Induction of decision trees, Machine Learning, Vol. 1(1),
pp. 81–106

Quinlan JR (1993) C4.5: Programs for machine learning. San Mateo: CA,
Morgan Kaufmann

Quinlan JR (2001) Bagging and boosting, and C4.5, University of Sydney,
Sydney

Moonchul K, Ritter JR (1999) Valuing IPOs, Journal of Financial Economics,
Vol. 53, pp. 409–437

Prediction of First-Day Returns of Initial Public Offering 203

Refenes AN, Zapranis AD (1995) Modeling stock returns in the framework of
APT: A comparative study with regression models, Neural networks in the
capital market. pp. 138–161. John Wiley & Sons, Chichester

Ritter JR (1984) The “Hot Issue” market of 1980, Journal of Business, Vol.
32, pp. 215–240

Ritter JR (1991) The long-run performance of initial public offerings, Journal
of Finance, vol. 46, pp. 3–27

Rulequest Research (1997) Data Mining Tools See5 and C5.0, Available at:
http://www.rulequest.com/see5-info.html, viewed: 2003, October 28

Accent in Speech Samples: Support Vector
Machines for Classification and Rule
Extraction

Carol Pedersen1 and Joachim Diederich1,2

1 School of Information Technology and Electrical Engineering, The University of
Queensland, St Lucia, Australia

2 American University of Sharjah, Sharjah, UAE

1 Introduction

1.1 Motivation and Significance

Accent is the pattern of pronunciation which can identify a person’s linguis-
tic, social or cultural background. It is an important source of inter-speaker
variability and a particular problem for automated speech recognition. This
study aims to investigate the effectiveness of rule extraction from support
vector machines for speech accent classification. The presence of a speaker’s
accent in the speech signal has significant implications for the accuracy of
speech recognition because the effectiveness of an Automatic Speech Recogni-
tion System (ASR) is greatly reduced when the particular accent or dialect in
the speech samples on which it is trained differs from the accent or dialect of
the end-user [4] [14]. The correct identification of a speaker’s accent, and the
subsequent use of the appropriately trained system, can be used to improve the
efficiency and accuracy of the ASR application. If used in automated telephone
helplines, analysing accent and then directing callers to the appropriately-
accented response system may improve customer comfort and understanding.
The increasing use of speech recognition technology in modern applications
by people with a wide variety of linguistic and cultural backgrounds, means
that addressing accent-related variability in speech is an important area of
ongoing research. Rule extraction in this context can aid in the refinement
of the design of a successful classifier, by discovering the contribution of the
various input features, as well as by facilitating the comparison of the results
with other machine learning methods.

1.2 Overview

Current approaches to the identification of speaker accent usually require
specialized linguistic knowledge or analysis of the particular speech contrasts
C. Pedersen and J. Diederich: Accent in Speech Samples: Support Vector Machines for Classi-

fication and Rule Extraction, Studies in Computational Intelligence (SCI) 80, 205–226 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

206 C. Pedersen and J. Diederich

between the accents, and often extensive pre-processing of large amounts of
data. In contrast, this chapter presents an accent classification system using
time-based segments consisting of Mel Frequency Cepstrum Coefficients as
features and utilizing rule extraction from SVMs (support vector machines).
It is applied to a small corpus of two accents of English. Its performance is
compared to two other machine learning techniques, and rule extraction is
performed using a combination of SVMs and a rule-based learner.

2 Accent Recognition

2.1 Accent

Each person speaks in his or her own idiosyncratic way, but groups of people
of a similar geographical or sociological background can be considered to share
various common patterns in their speech. These include, but are not limited to:

– Pronunciation or acoustic features: the use of particular vowel and con-
sonant sounds and how these change when they are combined in words
and groups of words, as well as stress, tempo, rhythmic, and intonational
factors [30]

– Grammar and vocabulary: morphology and syntax, vocabulary and
idiom [30]

The combination of these patterns contributes to a sense of “accent” or
“dialect” and can vary according to geographical origin, sex, social class, age,
education, and whether the language being spoken is one’s first or has been
subsequently learned. Accent is usually considered to include only the effects
of pronunciation or acoustic features, whereas dialect includes accent as well
as grammar and vocabulary differences.

Accents are systematic and repeatable [27] [30]. Accents occur in most
if not all languages with a sufficiently large number of speakers. However,
accents are not set, “standard” entities, and considerable variation between
people occurs. Accent is usually established early in life [30] but may be altered
by, for example, living in another country for significant lengths of time, or
significant speech training. A person’s accent may also change in the short
term, depending on to whom he or she is talking [30]. That is, humans are
able to adjust their accent (usually along cultural or social lines rather than
regional/geographic lines) in order to improve understanding and/or social
acceptance [30].

Despite the variability in the realization of the spoken message due to
different accents, and also differences in listener characteristics (such as lis-
tener attention and familiarity with the accent and speaker), both utterance
understanding and accent identity are usually preserved [27]. Tatham and
Morton [27, p114] note that “Speakers and listeners recognise the utterance

Support Vector Machines for Classification and Rule Extraction 207

‘behind’ the accent. That is, they can identify. . . the same utterance spoken in
different accents, and can readily disassociate the utterance from the accent.”

Accent recognition by listeners can even occur in the absence of an
identifiable message, that is, in unfamiliar languages [3] and in artificially
manipulated speech (e.g. playing recordings backwards, removing features [22]
[23] [29]).

Modern English is an important world language, serving as an interna-
tional lingua franca in business, education, international relations and the
media [7]. Many, if not most, speakers of English worldwide have English as
their second or even third language, so advances in computerized speech tech-
nology will increasingly have to deal with a wide variety of accents if they
are to be successful on the world stage. Similarly, speech technology based
on other languages will benefit from research into accent and other sources of
variation in human speech.

2.2 Automatic Speech Recognition

ASR is the recognition of human speech by use of computer analysis. An
input speech signal is compared to a stored model of the various elements
of spoken language (usually phonemes and their combinations) and the most
likely sequence of words is produced. It is used in many applications, such as
data entry, voice dialing, caller routing and translation assistance. Accuracy
is highly dependant on the application domain and the training data used to
build the stored acoustic and language models.

The effectiveness of an Automatic Speech Recognition System is greatly
reduced when the particular accent or dialect in the speech samples on which it
is trained differs from the accent or dialect of the end-user [14]. Increasing the
accuracy of ASRs on accented speech can be done in a number of ways. At its
simplest, the accented speech can be passed through a number of ASRs trained
on different accents, and the output is then evaluated for the most likely
utterance. If there are a large number of accents, this “multiple processing”
can be time consuming and expensive.

Alternatively, the recognizer itself can be made to identify multiple
accented “versions” of the various phonemes and words. This leads to very
large numbers of alternative representations within the recognizer, of words,
phonemes or other units relevant to the operation of the ASR. This can actu-
ally reduce decoding accuracy [14] because of greater numbers of confusions
and overlapping entities.

A third approach is to classify speech into its appropriate accent, and then
to pass it through the appropriately accent-trained recognizer. The classifier
would not necessarily need to fully decode the speech sample, but would only
need to classify speech into the appropriate accent group.

If the aim is simply to identify an utterance as having one accent or another
in, for example, a telephone call or recording, the usual approach involves
training several ASRs on different varieties of accented speech, and choosing

208 C. Pedersen and J. Diederich

the best performer as the indicator of the accent [17] [28] [1]. The training
of ASRs is labor-intensive and requires specialized phonetic knowledge to
transcribe and label the data. Training ASRs also requires very large amounts
of data, which is generally not available for accented speech, especially for
some less studied or less populous accents. Other methods usually involve some
prior knowledge or training on specific linguistic features [1]. The accuracy of
such systems greatly depends on the method used, the accents investigated
and the restrictions placed on the input speech samples, and ranges in the
order of 65 to 98.5% [28] [9] [14].

For a simple classification task, the use of a fully developed ASR may not
be required if the differences between particular accents can be learned by a
supervised machine learning system. It may not even require knowledge of the
specific linguistic differences between the accents of concern if the classifier
can successfully learn from real speech examples. However, discovering the
contribution of the various input features - e.g. through rule extraction - can
aid in the refinement of the design of a successful classifier.

2.3 Mel Frequency Cepstrum Coefficients

Mel Frequency Cepstral Coefficients (MFCCs) provide an efficient means of
representing the frequency characteristics of the speech waveform, and are the
most widely used feature in state-of-the-art speech recognition systems.

The standard speech recognizer front end includes calculation of the 13
absolute MFCCs and their first- and second-order derivatives (a total of
39 MFCCs). MFCC extraction is carried out on a speech sample using the
following steps [19] [8]:

1. Compensation for the unequal sensitivity of human hearing across fre-
quency.

2. Spectral analysis using a Fourier transform on 20–30ms Hamming-shaped
windows (frames) of speech every 10ms.

3. Mel-scale filtering using a bank of triangular windows which become more
compact at lower frequencies, in accordance with the sensitivity of human
hearing.

4. Log compression of the mel-filterbank channels to model the relationship
between the intensity of sound and its perceived loudness.

5. Discrete cosine transforms to produce the cepstral coefficients.
6. Cepstral mean subtraction and energy normalisation to reduce channel

effects.
7. Extraction of derivatives (first- and second-order).

Following their widespread use in the speech domain, MFCCs have also
been used successfully in the classification of music samples [13].

The first MFCC (MFCC(0)) shows a close correlation to the geometric
energy in the (mel filtered) speech signal. MFCC(1) represents spectral slope,
but beyond that it is less clear what the individual MFCCs are representing

Support Vector Machines for Classification and Rule Extraction 209

in terms of how they relate to perceived aspects of speech and sound. Simple
inversion of the MFCC extraction process does not generate a speech sig-
nal [20], since phase and fundamental frequency information are discarded.
Relating individual MFCC values to individual aspects of human percep-
tion (such as pitch or particular phonemes) appears extremely difficult. This
limits the use of rule extraction because rule sets may be useful during the
experimental stage only.

MFCCs on a single time frame basis may not be particularly useful for
accent classification, since they may encode a time too short to represent
meaningful information. For use in an ASR, the MFCCs are usually combined
into phoneme units; however this requires further segmentation of the speech
sample and identification of phoneme units using a pre-trained system. Pure
phoneme recognition rate is rather low [18] so further processing is required
to produce a sequence of recognized speech, using scoring probabilities for
phoneme combinations in the particular language and domain.

Since phonemes in continuous speech are approximately 60–70ms in aver-
age duration [12] and the actual identity of the units is not of concern for
simple accent classification, it may be possible to use time-based segments
rather than phoneme-based segments for the simple classification task. The
optimum duration of these segments would be an important part of the
investigation.

3 Rule Extraction from Support Vector Machines
for Accent

3.1 Support Vector Machines

Support vector machines (SVMs) are a class of algorithms which are well-
suited to learning classification and regression tasks. They have been used
successfully on a wide variety of tasks, including text and image classification
[15] [5] as well as bio-medical applications [11]. SVMs utilize kernels to work
in a high-dimensional feature space, since only inner products of data points
are used rather than the input features themselves. In classification tasks,
the margin between the two classes is maximized in order to find the best
possible separator, and is further optimized in the presence of noisy data by
the introduction of slack variables.

SVMs have been designed for high-dimensional input spaces. Speech pro-
vides the opportunity for working with a very large number of features. Very
large numbers of samples of accented speech are not generally available, and
the numbers of samples from the different accent groups may be imbalanced,
hence investigating the performance of SVMs is an important task in these
contexts. A small number of samples increases the chance of overfitting, and
as a result, the performance of the SVM has to be tightly controlled [10].

210 C. Pedersen and J. Diederich

3.2 Rule Extraction

There are three classes of users of speech recognition systems: (1) the engineer
who explores features sets and designs the system, (2) the application expert
who installs and maintains a speech recognition system (e.g. for directory
assistance), and (3) the end user. The application expert is interested in the
performance of the system but not necessarily in speech features while the
end user is interested in a fast, reliable and accurate service and does not
require detailed knowledge of the system. In this application, it is the engineer
who employs machine learning and tests its performance who is interested in
explanation. In this context, it is important to know why certain input features
lead to acceptable results and while other feature sets fail.

As Craven and Shavlik (1994) [6] observe, “a (learning) system may dis-
cover salient features in the input data whose importance was not previously
recognised.” If a support vector machine has learned interesting relationships,
these are encoded incomprehensibly as alphas and support vectors and hence
cannot easily serve the generation of scientific theories. Rule extraction algo-
rithms significantly enhance the capabilities of SVMs to explore data to the
benefit of the user.

Support vector machines do not easily lend themselves to the discovery
of explanations or rules that represent classification decisions. Unlike rule-
based or decision tree systems, the output of the SVM is a numeric value
and does not include additional information such as pattern elements or their
combinations, which could be useful in explaining the knowledge obtained
in the training process. Such explanations are important for the acceptance
of SVM results by researchers and developers performing machine learning
experimentation, and for the contribution SVMs can make to the knowledge
in the domain in which they are operating. Rule extraction from SVMs is,
therefore, an important advance for both the usefulness and verification of
SVMs.

As indicated earlier, the relevant user in this case is the engineer/researcher
who applies support vector machines for speech recognition and not the end
user. That is, rule extraction from SVMs supports experimentation and test-
ing, in particular the identification of features and feature sets that contribute
to classification. A range of alternative methods are available, for instance
sensitivity analysis. However, rule extraction from SVMs represents a conve-
nient way to capture the totality of knowledge learned by the SVM (at least,
this is the objective). The rule-based representation facilitates the comparison
of SVM learning results with other machine learning techniques. Hence, the
experimenter can select the best machine learning method for deployment.

Rule extraction is easily realized if SVMs are used in combination with
other symbolic learning systems such as decision trees, when pattern labels
predicted by an SVM (the “black box”) are used as input labels for the second
system (the “white box”) in order to represent what the SVM has learned.
The rules extracted may be few and simple, with high accuracy and fidelity [2],

Support Vector Machines for Classification and Rule Extraction 211

however, this method faces severe limitations if the “white box” learner cannot
accept high dimensional input patterns (see Chap. 1). In addition, small rule
sets may not fully explain the decision-making process of the SVMs, i.e. the
totality of knowledge learned by the SVM. Going from the high dimensional
SVM to a lower dimensional learning system represents a loss of information
and as a result, reduced fidelity and explanatory capability.

3.3 Objectives

If it is accepted that the intention in the utterance “behind” the accent is
unaltered despite differences in realization due to accent differences - and this
would be especially true in the case of “read” speech - then by comparing the
manifest speech patterns for particular utterances, an appropriately trained
classifier may be able to accurately identify the accent of the speaker from
features derived from the speech signal, even without explicit decoding of the
intended message itself. Knowledge of the particular acoustic or phonetic con-
trasts between various accents may not be necessary if the classifier is able
to “learn” from examples rather than operate using the coding of known
accent-related differences. This would make the extension of the system to
previously unstudied accents a simpler and less time-consuming task. In addi-
tion, if accent-related differences were already known or were discovered, they
could later be used to further enhance the effectiveness of the system. Support
Vector Machines provide an ideal example of a classifier which is able to work
with the high-dimensional inputs provided by speech. Rule extraction from
SVMs in this context is useful in advancing further classifier design and for
an explanation of the knowledge obtained

This chapter presents an analysis of an accent classification system using
SVMs with MFCC features in time-based segments as inputs. The length of
speech sample required for good performance, as well as the duration of the
temporal segments is investigated for three samples of differently accented
speech. Rule extraction is undertaken in order to identify the features which
contribute to classification.

4 Methodology

4.1 Speech Data and Feature Extraction

A corpus of accented speech was collected from 40 male and female subjects in
two groups, Arabic (n = 27) and Indian (n = 13) accents of English. Subjects
were aged between 20 and 56 years (mean 27.8 y) and had a high to very
high level of spoken English proficiency. Fully informed consent was obtained.
Subjects read a single page of English text on each of three topics. Read
speech was chosen to provide a uniform sample space, and because it is easier
to elicit than spontaneous or conversational speech. The speech samples were

212 C. Pedersen and J. Diederich

recorded using a unidirectional dynamic close-talk head-mounted microphone,
via a mixer and USB audio interface onto computer as mono WAV signed 16
bit PCM (uncompressed) files at 16KHz sample rate. All recordings were
made in the same location under identical conditions in order to minimize
channel effects.

Three sections of speech samples were chosen for initial analysis, one from
each topic, and each 10 s long. Samples were trimmed to 50ms before the start
of the relevant section in order to minimize the effect of potential edge-related
effects on parameters. Analysis was conducted on samples of between 1 and
10 s in duration, in 1-s steps, all starting at the same “zero” point.

The samples were processed to obtain energy and 12 basic MFCCs, their
velocity and acceleration parameters (first and second order derivatives). The
method included cepstral mean subtraction and energy normalization in order
to minimize any recording differences. A frame shift of 10ms was used (that
is, MFCCs were calculated every 10ms) and a Hamming window of width
25ms was used. There was therefore some overlap between adjacent frames,
however the shape of the window means that most of the energy was in the
center of the segment. The processing resulted in 39 features for each frame
for the duration of the speech sample, giving 3,900 features for each second
of sample duration.

Because a shift of 10ms is a very short time relative to the length of many
phonemes, each feature was averaged across a number of frames in order
to obtain values for larger time segments. The procedure was repeated for
segment “lengths” of 10ms (that is, no averaging) to 150ms.

4.2 Machine Learning Experiments

The sequence of averaged MFCCs for a particular sample was used as the
input feature vector for the particular subject for SVM training and testing.
The samples were not divided into separate training and testing groups due to
the small number of samples; instead, leave-one (speaker)-out cross-validation
(LOO; built-in to SVMlight, one of the tools use in this study [16]) was used for
performance evaluation, focusing on accuracy, precision and recall parameters.
In addition, ROC curve analysis was used.

Recall and precision are defined as follows:

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

where TP, FP and FN are the number of true positives, false positives and
false negatives respectively.

The three topics were initially analyzed separately. Experiments were
repeated for each of the sample duration and segment size combinations.

Support Vector Machines for Classification and Rule Extraction 213

Various SVM kernel designs (linear, polynomial, RBF) were investigated for
the binary classification task.

The number of MFCCs per segment was also reduced from 39 to 13 (that
is, excluding the first and second order MFCC derivatives) and the analysis
repeated for all duration-segment combinations.

A series of LOOs was performed using training samples from one topic set
and testing samples from each of the other two topics, in order to test the
effect of sample content mismatch. This was repeated for each combination of
topic, sample length and segment size.

A further series of tests was performed by adding extra “non-matching”
samples to the training set of the third topic (1-s sample, 100ms segment case),
and conducting LOOs. The “non-matching” samples had the same duration
and segment size but were not from the same part of the speech sample as
the original training set.

A subset of the 13-MFCC duration-segment combinations from each of the
three topics was analyzed using a Decision Tree Learner (J48) [31] [24] and
a Rule-based classifier (JRip) [31] in order to provide a comparison with the
SVM results.

4.3 Rule Extraction and Evaluation

A variation of the pedagogical rule extraction method [21] [2] was used for
rule extraction from the SVMs for the same subset of the duration-segment
combinations for each topic that was used with the non-SVM machine learning
methods.

In each topic, sample length and segment size combination, the model pro-
duced by SVM analysis was used to reclassify the original input patterns. The
predicted class labels were then applied to the patterns to create a synthetic
dataset which was used to train a rule-based classifier (JRip). The rules pro-
duced by the rule-based classifier were then examined in terms of accuracy
and ROC curve analysis, and were compared to the performance on the origi-
nal data, both in relation to the SVM and the rule-based classifier. Individual
rules were examined and the elements of the rules compared with both the
original JRip analysis and the original J48 analysis.

5 Results

5.1 Machine Learning Experiments

Classification results varied by topic, sample length and segment size. The
results for 13 and 39 features per segment were almost identical, therefore
results for 13 MFCC features per segment will be presented.

Best results were obtained using a linear SVM, for the third topic and 4-s
sample duration or less (Table 1). Best classification accuracy ranged from

214 C. Pedersen and J. Diederich

Table 1. Performance of SVM – accuracy, duration, recall – for best cases

Topic Accuracy Recall Precision Sample Segment
number (%) (%) (%) duration (s) duration (ms)

1 75 92.59 75.76 2 140
2 87.5 96.3 86.67 1 30, 40, 60–80, 120–150
3 97.5 100 96.43 1 130
3 97.5 100 96.43 4 60, 80–110, 140

0

0.2

0.4

0.6

0.8

1

False Positive Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
P
os

it
iv

e
R

at
e

2sec 140ms
6sec 70ms

0

0.2

0.4

0.6

0.8

1

False Positive Rate
0 0.2 0.4 0.6 0.8 1

T
ru

e
P
os

it
iv

e
R

at
e

1sec 120ms

8sec 90ms
0

0.2

0.4

0.6

0.8

1

False Positive Rate

0 0.2 0.4 0.6 0.8 1

T
ru

e
P
os

it
iv

e
R

at
e

4s 140ms
7s 40ms

(a) Topic 1 (b) Topic 2 (c) Topic 3

Fig. 1. ROC curves

Table 2. Area under ROC curve

Topic Sample Segment Area under ROC curve
number duration (s) duration (ms)

1a 2 140 0.8604

1b 6 70 0.8348
2a 1 120 0.8832

2b 9 60 0.7778
3a 4 140 0.9943

3b 10 20 0.9516

a Best case
b Poor case

75% to 97.5%, with very high precision and recall. Accuracy, recall and preci-
sion fell as sample duration increased from these peak results. Accuracy was
slightly higher (mean 2.5% points) for longer segment durations. Recall did
not change with segment duration, and precision increased by an average of
1.1%, 3.2% and 5.6% points for the first, second and third topics respectively,
as sample duration increased from 10 to 150ms.

Selected ROC curves are presented in Fig. 1 as examples of typical best
and worst cases (by accuracy, precision and recall) for each topic. Area under
the ROC curve is shown in Table 2.

The effect of a mismatch between training and testing samples varied sub-
stantially between different training-testing combinations. Best results were

Support Vector Machines for Classification and Rule Extraction 215

50

60

70

80

90

100

Number of patterns
40 80 120 160 200

P
er

ce
nt

ag
e

Accuracy

Recall

Precision

Fig. 2. Effect of adding non-matching samples from the same topic

achieved for SVM training on topic 3 and testing on topic 2, with up to 85%
accuracy, 82% recall and 87% precision. In contrast, training on topic 1 and
testing on topics 2 or 3 resulted in 50–70% accuracy, 97% recall and 67%
precision, with almost all errors being misclassification of Indian samples as
Arabic. These results varied little with increasing sample duration and seg-
ment size. Training on topic 2 and testing on topic 3 produced improved recall
with longer samples and smaller frame sizes, but a drop in precision in both
cases.

Adding more 1-s samples from topic 3 to the training set for topic 3 (1-s
samples, 100ms segments in all cases) had a negative effect on accuracy, pre-
cision and recall (Fig. 2). When all 1-s samples were included in the training
set (a total of 400 patterns), accuracy was 68.25%, recall 86.3% and precision
72.14%. Area under the ROC curve in this case was 0.6728, compared with
0.9829 when only the first sample was used for training.

Decision Tree (J48) and rule-based (JRip) analyses were conducted on
samples of 1, 2 and 4 s duration, with segments of 40 to 150ms and 13 MFCCs
per segment, in order to provide a comparison with SVM results, for most
of the best cases in Table 1. Due to the small number of patterns, 40-fold
cross-validation was done to most closely correlate to the SVM LOOs, and a
comparison of the accuracy for each classifier (by topic) is shown in Table 3.
The mean accuracy was calculated for each sample duration-text combination
and these are shown in Fig. 3. J48 and JRip accuracy varied according to
segment size much more than did SVM accuracy. Taking the topic 1, 2-s
group as a typical example, SVM accuracy varied by up to 7.5% points across
segment sizes from 40 to 150ms, whereas J48 and JRip accuracy varied by
up to 42.5 and 30% points respectively. J48 trees and JRip rules are shown in
Tables 4 and 5 for the topic 1, 2-s cases.

216 C. Pedersen and J. Diederich

Table 3. Comparison of LOO accuracy for various machine learning methods

Topic JRip accuracy (%) J48 accuracy (%) SVM accuracy (%)

number Mean SD Mean SD Mean SD

1 67.2 8.3 65.6 10.7 66.6 4.0
2 71.5 8.8 73.2 8.8 82.9 3.2
3 81.9 7.3 83.5 8.6 94.6 2.0

0

10

20

30

40

50

60

70

80

90

100

topic1
1sec

topic1
2sec

topic2
1sec

topic2
2sec

topic2
4sec

Topic and Sample Length Combination

A
cc

ur
ac

y
[%

]

JRip

SVM

SVM+Jrip

Fig. 3. Accuracy for various machine learning techniques

Table 4. Trees from J48 analysis on topic 1, 2-s samples

Segment size (ms) Tree

40 time6mfcc2 <= -4.595: Arabic

time6mfcc2 > -4.595

| time3mfcc12 <= 1.622: Indian

| time3mfcc12 > 1.622: Arabic

Number of Leaves : 3

Size of the tree : 5

50 time5mfcc2 <= -3.177: Arabic

time5mfcc2 > -3.177

| time3mfcc13 <= 0.005: Indian

| time3mfcc13 > 0.005: Arabic

Number of Leaves : 3

Size of the tree : 5

Support Vector Machines for Classification and Rule Extraction 217

Table 4. (Continued)

Segment size (ms) Tree

60 time4mfcc2 <= -5.963: Arabic

time4mfcc2 > -5.963

| time2mfcc4 <= 3.721: Arabic

| time2mfcc4 > 3.721: Indian

Number of Leaves : 3

Size of the tree : 5

70 time4mfcc13 <= -2.145: Indian

time4mfcc13 > -2.145

| time2mfcc2 <= 4.046: Arabic

| time2mfcc2 > 4.046

| | time24mfcc5 <= -0.078: Indian

| | time24mfcc5 > -0.078: Arabic

Number of Leaves : 4

Size of the tree : 7

80 time2mfcc8 <= -4.328: Indian

time2mfcc8 > -4.328

| time3mfcc12 <= 4.537: Arabic

| time3mfcc12 > 4.537: Indian

Number of Leaves : 3

Size of the tree : 5

90 time3mfcc2 <= -4.493: Arabic

time3mfcc2 > -4.493

| time2mfcc8 <= -0.409: Indian

| time2mfcc8 > -0.409

| | time3mfcc1 <= -1.387: Indian

| | time3mfcc1 > -1.387: Arabic

Number of Leaves : 4

Size of the tree : 7

100 time3mfcc13 <= -1.73: Indian

time3mfcc13 > -1.73

| time17mfcc7 <= -1.242

| | time1mfcc10 <= -2.199: Arabic

| | time1mfcc10 > -2.199: Indian

| time17mfcc7 > -1.242: Arabic

Number of Leaves : 4

Size of the tree : 7

110 time9mfcc9 <= -6.577: Indian

time9mfcc9 > -6.577

| time4mfcc2 <= -0.788: Arabic

| time4mfcc2 > -0.788

| | time1mfcc2 <= 1.778: Arabic

| | time1mfcc2 > 1.778: Indian

Number of Leaves : 4

Size of the tree : 7

(continued)

218 C. Pedersen and J. Diederich

Table 4. (Continued)

Segment size (ms) Tree

120 time1mfcc6 <= 7.001

| time14mfcc7 <= -3.048

| | time4mfcc2 <= -2.548: Arabic

| | time4mfcc2 > -2.548: Indian

| time14mfcc7 > -3.048: Arabic

time1mfcc6 > 7.001: Indian

Number of Leaves : 4

Size of the tree : 7

130 time1mfcc6 <= 2.334

| time1mfcc7 <= -2.372

| | time1mfcc4 <= 4.738: Arabic

| | time1mfcc4 > 4.738: Indian

| time1mfcc7 > -2.372: Arabic

time1mfcc6 > 2.334

| time10mfcc9 <= 3.71: Indian

| time10mfcc9 > 3.71: Arabic

Number of Leaves : 5

Size of the tree : 9

140 time1mfcc6 <= 2.285

| time2mfcc9 <= 4.912: Arabic

| time2mfcc9 > 4.912: Indian

time1mfcc6 > 2.285

| time3mfcc9 <= -4.871: Arabic

| time3mfcc9 > -4.871: Indian

Number of Leaves : 4

Size of the tree : 7

150 time1mfcc6 <= 0.311: Arabic

time1mfcc6 > 0.311

| time2mfcc2 <= -3.38

| | time6mfcc8 <= -2.558: Indian

| | time6mfcc8 > -2.558: Arabic

| time2mfcc2 > -3.38: Indian

Number of Leaves : 4

Size of the tree : 7

5.2 Evaluation of the Rule Extraction Results

Analysis was conducted on samples of 1, 2 and 4 s duration, with segments of
40–150ms and 13MFCCs per segment, for all three topics.

The SVM-predicted class labels were found to be the same as the original
class labels for all segment durations of the topic 3, 2 and 4-s duration cases,
and for over 50% of the cases in topic 1, 4-s and topic 3, 1-s duration. There-
fore, further analyses of accuracy and AUC were only conducted on topic 1

Support Vector Machines for Classification and Rule Extraction 219

Table 5. Rules extracted using JRip on original data, topic 1, 2-s samples

40 ms (2 rules)

(time6mfcc2 >= -2.312) => class=Indian

=> class=Arabic

50 ms (2 rules)

(time5mfcc2 >= -2.905) => class=Indian

=> class=Arabic

60 ms (3 rules)

(time28mfcc7 <= -1.046) and (time5mfcc2 <= -0.249) => class=Indian

(time4mfcc1 <= -1.587) => class=Indian

=> class=Arabic

70 ms (2 rules)

(time24mfcc7 <= -1.006) and (time4mfcc9 >= 2.148) => class=Indian

=> class=Arabic

80 ms (2 rules)

(time3mfcc2 >= -4.391) and (time11mfcc7 >= -1.175) => class=Indian

=> class=Arabic

90 ms (2 rules)

(time3mfcc2 >= -3.551) => class=Indian

=> class=Arabic

100 ms (3 rules)

(time17mfcc7 <= -1.242) and (time1mfcc10 >= -1.917) => class=Indian

(time3mfcc13 <= -1.73) => class=Indian

=> class=Arabic

110 ms (3 rules)

(time17mfcc9 >= 3.455) and (time1mfcc1 <= 1.029) => class=Indian

(time3mfcc13 <= -2.838) => class=Indian

=> class=Arabic

120 ms (3 rules)

(time14mfcc7 <= -3.057) => class=Indian

(time1mfcc6 >= 7.082) => class=Indian

=> class=Arabic

130 ms (2 rules)

(time1mfcc6 >= 2.346) => class=Indian

=> class=Arabic

140 ms (2 rules)

(time2mfcc2 >= -3.543) and (time1mfcc6 >= -0.125) => class=Indian

=> class=Arabic

150 ms (2 rules)

(time2mfcc2 >= -3.843) and (time1mfcc6 >= 0.426) => class=Indian

=> class=Arabic

220 C. Pedersen and J. Diederich

(1 and 2-s samples), and topic 2, (1, 2 and 4-s samples). Rule content was
analyzed for all data.

Accuracy and Area Under Roc Curve

Mean results are shown in Table 6. Paired samples t-tests were performed
to compare the various conditions. Accuracy and AUC were significantly worse
for the original JRip analysis compared to both the SVM and JRip on data
labeled with SVM-predictions (hereafter called “JRip Improved”) (p < 0.001).
There was no significant difference in accuracy between the original SVM
analysis and JRip Improved analysis. AUC was significantly better for original
SVM analysis than JRip Improved analysis (p = 0.001), which was in turn
significantly better than original JRip analysis (all p < 0.001).

Mean Accuracy and AUC for the five topic-segment duration combinations
are shown in Figs. 4 and 5. Where SVM accuracy was poorest (topic 1, 1-s
samples), JRip Improved analysis had significantly greater accuracy than both
SVM and JRip (paired t-test, p = 0.021 and 0.024 respectively) but AUC was
not significantly different (at around 0.6). Only in the topic 2, 4-s sample case
was the AUC for JRip Improved analysis significantly different from AUC for

Table 6. Accuracy and AUC for different learning systems

Learning system Mean accuracy (%) Area under ROC curve

JRip on original labels 69.79 0.5965
SVM on original labels 78.95 0.7316
JRip improved 79.5 0.6778

0

10

20

30

40

50

60

70

80

90

100

topic1
1sec

topic1
2sec

topic2
1sec

topic2
2sec

topic2
4sec

Topic and Sample Length Combination

JRip

SVM

SVM+Jrip

Fig. 4. Accuracy, various machine learning systems

Support Vector Machines for Classification and Rule Extraction 221

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

topic1
1sec

topic1
2sec

topic2
1sec

topic2
2sec

topic2
4sec

Topic and Sample Length Combination

A
re

a
U

nd
er

 R
O

C
 C

ur
ve

JRip

SVM

SVM+Jrip

Fig. 5. Area under ROC curve, various machine learning systems

original JRip analysis (pairwise t-test, p = 0.008), whereas SVM AUC was
significantly better than original JRip analysis for all but the topic 1, 1-s case.

Rules

Individual rules were examined for each topic, sample length and segment
size, for J48, JRip and JRip Improved analysis.

MFCCs in the antecedents of the rules were identified by a segment time
period and an MFCC number (e.g. time6mfcc2, signifying MFCC number 2 in
the 6th segment from the beginning). The MFCC number represents the same
aspect of the speech signal regardless of the segment it is in, whereas each
segment time period covered a different section of the speech signal (both in
duration and location), depending on the segment size being analyzed.

In the JRip Improved analysis, there were 166 MFCCs mentioned in the
antecedents of the 108 rule sets (all three topics and three sample lengths).
MFCC number 3 was mentioned most often (15% of rules, in 25 rule sets),
followed by MFCCs 1 and 2 (each 13.25% of rules) and MFCC 5 (12.65%),
MFCC 7 (10.8%) and MFCC 6 (10.2%). The distribution of these MFCCs
across the various topics varied greatly. Counting those MFCCs occurring in
greater than 10% of the rule antecedents within a particular topic, MFCCs
1, 3 and 7 accounted for 83.3% of the antecedents for topic 3; MFCCs 2, 3, 5
and 6 accounted for 80.6% of the antecedents for topic 2, and MFCCs 2, 6, 7,
9 and 13 accounted for 76.8% of the antecedents for topic 1.

Sample rules are shown in Table 7 for JRip Improved analysis. In JRip
Improved analysis, there were 108 rule sets (three topics, three sample lengths,
12 segment sizes). 68.5% of rule sets had only two rules, and 29.6% had three

222 C. Pedersen and J. Diederich

Table 7. Rules for topic 2, 1-s samples extracted using Jrip on data labelled with
SVM predictions (JRip improved)

40 ms segments (2 rules)

(time4mfcc5 >= 2.198) => class=Indian

=> class=Arabic

50 ms segments (2 rules)

(time3mfcc6 >= -0.076) and (time2mfcc2 >= 6.887) => class=Indian

=> class=Arabic

60 ms segments (3 rules)

(time4mfcc3 <= -5.189) => class=Indian

(time15mfcc11 >= 4.709) => class=Indian

=> class=Arabic

70 ms segments (2 rules)

(time2mfcc6 >= 1.696) => class=Indian

=> class=Arabic

80 ms segments (2 rules)

(time3mfcc3 <= -3.96) => class=Indian

=> class=Arabic

90 ms segments (2 rules)

(time2mfcc5 >= 2.514) => class=Indian

=> class=Arabic

100 ms segments (3 rules)

(time2mfcc5 >= 2.708) => class=Indian

(time1mfcc12 >= 2.972) => class=Indian

=> class=Arabic

110 ms segments (2 rules)

(time1mfcc6 >= 2.352) and (time1mfcc12 >= -2.99) => class=Indian

=> class=Arabic

120 ms segments (2 rules)

(time2mfcc6 >= -3.298) and (time1mfcc6 >= 1.41) => class=Indian

=> class=Arabic

130 ms segments (2 rules)

(time1mfcc6 >= 1.581) and (time2mfcc5 >= -3.744) => class=Indian

=> class=Arabic

140 ms segments (2 rules) 8

(time2mfcc3 <= -5.81) => class=Indian

=> class=Arabic

150 ms segments (3 rules)

(time2mfcc3 <= -4.848) => class=Indian

(time3mfcc5 >= 4.652) => class=Indian

=> class=Arabic

Support Vector Machines for Classification and Rule Extraction 223

rules. Two rule sets had only one rule, that is, everything was classified as
Arabic. Of the 246 rules, only 29 had more than one condition.

57% of the 60 topic-segment length combinations (topic 1, 1 and 2-s seg-
ments; topic 2, 1, 2 and 4-s segments) had at least one common MFCC
mentioned in the antecedent of a rule (or in a tree) for both J48 and JRip anal-
ysis (on original data). The accuracy of JRip on these cases was significantly
better than where there was no MFCC in common in the rule antecedent
(73.3% vs. 65.2%, t-test p = 0.001). Exactly 50% of the combinations had at
least one common MFCC mentioned in the antecedent in the rules of JRip
and JRip Improved analysis. There was no significant difference in accuracy
of JRip Improved analysis between these two groups. (77.99% vs. 77.01%).
Exactly 50% of the combinations had at least one common MFCC in the
antecedent of a rule in J48 and JRip Improved analysis. The accuracy of
JRip Improved was significantly better if there was a common MFCC in the
rule antecedent in both J48 and JRip Improved analysis (82.5% vs. 76.5%,
p = 0.0024).

Out of the 30 MFCCs that were in common between J48 and JRip
Improved analysis, only 19 were already in common between J48 and JRip
(original). There was no significant difference in JRip Improved accuracy
between these two groups. There were 34 rule sets where there was an MFCC
in common between JRip and J48 analysis; 15 of these did not have that
MFCC in common when the rules and trees for those cases in J48 and JRip
Improved analysis were compared. In addition, 11 new common MFCCs had
arisen between J48 and JRip Improved analysis.

6 Discussion

The performance of the SVM classifier using time-based segments of averaged
MFCCs as features was very high, with up to 97.5% accuracy, with a sample
length of up to only 4 s. This compares favorably with a human listener study
[25] conducted using the same samples, which yielded accuracy of 92.5% (range
80–100%) after an average of 7.7 s. Interestingly, error analysis revealed that
SVMs mostly made mistakes on the Indian-accented samples while humans
made almost all their mistakes on the Arabic-accented samples.

SVM accuracy also compared favorably with JRip and J48 classifier accu-
racy. SVM accuracy was 7.3% and 7.9% points higher on average than JRip
and J48 accuracy respectively. There was much less variability in SVM accu-
racy than for the other classifiers, across the various segment durations. This
means that the choice of segment size was much less critical for the good per-
formance of the SVM system. SVM accuracy was, overall, slightly higher for
longer segment durations than shorter ones.

Classification accuracy with SVMs appears to be dependant on the content
of the speech sample under investigation, as shown by the different results for
the various topics. Also, when the content of a test sample is different from

224 C. Pedersen and J. Diederich

that on which the classifier is trained, accuracy can still be up to 85% but
is often worse. Adding extra, non-matching samples in order to improve the
feature-pattern ratio does not improve performance, and in fact may degrade
performance further [26]. This is likely to be due to the diversity of sounds
across the samples (due to diverse speech content), being greater than the
difference in sound realization between the accent groups, as represented by
MFCCs.

Many speech sounds are shared by different accents, and the nature of the
variations that do occur can often be subtle and sparse. If strong contrasts in
the speech sounds between the accents do actually occur in a short enough
time (that is, over a few seconds, thereby avoiding excessive variation in con-
tent) the SVM-based classifier can be very effective in distinguishing between
the accents, even without linguistic pre-processing or explicit identification of
the individual contrasting speech sounds.

SVMs do not easily provide rules or explanations for the classifications
that they make, but in this study the rules provided by the “white box”
learner also do not easily translate to knowledge about accent differences in
the speech stream. Apart from the first MFCC (usually termed MFCC(0),
but here termed “mfcc1”), which shows a close correlation to log Energy
of a speech signal, and the second MFCC which represents spectral slope, it
becomes increasingly unclear as to what exactly the higher individual MFCCs
represent, in terms of actual speech sounds, despite their demonstrated use-
fulness in speech recognition and accent classification. In addition, because of
the small number of patterns and their high dimensionality, rules extracted by
the “white box” learner can vary greatly from one fold to the next, depending
on which patterns are excluded at learning time. Nevertheless, rule extrac-
tion gives some indication which features of the high dimensional input space
contribute to classification.

As mentioned above, there was no significant difference in accuracy between
the original SVM analysis and JRip Improved analysis. However, AUC was
significantly better for the original SVM analysis than JRip Improved anal-
ysis, which was in turn significantly better than original JRip analysis. It
is worth noting that rule extraction resulted in the JRip Improved analysis
which is a success in itself. The more conservative AUC evaluation confirmed
the overall superiority of the SVM.

Not all MFCC-based features may be important for classifier performance,
as was shown by the redundancy of the first and second order derivatives. The
prominence of certain MFCCs in the rulesets of the various “white box” learn-
ers is also an indication that not all MFCCs are equally important for accurate
classification. However, the contribution of individual MFCCs may not be
fully captured in propositional rules such as those presented in this study.
Investigation of more expressive rule languages may capture relations between
features that are not represented in the rules presented above, but which are
nevertheless important for the good performance of the SVM learner.

Support Vector Machines for Classification and Rule Extraction 225

Future work will focus on additional methods for feature selection, with
the goal of minimizing the number of features required, and extending the
ability of the classifier to handle miss-matched data. Testing on other corpora
is also an important priority. Emphasis will also be on knowledge initialisation
of the SVMs by the use of domain knowledge to create virtual data sets in
order to enhance classifier accuracy.

References

1. Angkititrakul P, Hansen JLH (2003) Use of trajectory models for automatic
accent classification. In: Proc INTERSPEECH-2003/Eurospeech-2003, Geneva,
Switzerland, pp. 1353–1356, September 2003.

2. Barakat N, Diederich J (2005) Eclectic Rule-Extraction from Support Vector
Machines. Int J Computational Intelligence 2(1):59–62.

3. Bond ZS, Stockmal V, Markus D, (2003) Sentence Durations and Accentedness
Judgments. J Acoust Soc Am 113(4):2330–2331.

4. Caballero M, Moreno A, Nogueiras A (2006) Multidialectal Acoustic Modeling:
a Comparative Study. In: Proc ITRW on Multilingual Speech and Language
Processing, Stellenbosch, South Africa, paper 001, April 2006.

5. Chapelle O, Haffner P, Vapnik VN (1999) Support vector machines for
histogram-based image classification: Vapnik-Chervonenkis (VC) learning the-
ory and its applications. In: IEEE Transcactions on Neural Networks, vol. 10,
no. 5, pp. 1055–1064, September 1999.

6. Craven MW, Shavlik JW (1994) Using Sampling and Queries to Extract Rules
from Trained Neural Networks. In: Cohen WW, Hirsh H (eds) Machine Learning:
Proceedings of the Eleventh International Conference. Morgan Kaufmann San
Francisco pp. 37–45.

7. Crystal D (1997) English as a global language. Cambridge University Press,
Cambridge New York.

8. Davis SB, Mermelstein P (1980) Comparison of Parametric Representations for
Monosyllabic Word Recognition in Continuously Spoken Sentences. In: IEEE
Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-28, No. 4,
August 1980.

9. Frid J (2002) Automatic classification of accent and dialect type: results from
southern Swedish. In: Fonetic 2002 – TMH QPSR, vol. 43, pp. 89–92.

10. Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D
(2000) Support vector machine classification and validation of cancer tissue
samples using microarray expression data. Bioinformatics 16(10): 906–914.

11. Golland P, Grimson WEL, Shenton ME, Kikinis R (2000) Small sample size
learning for shape analysis of anatomical structures. In: Proc. MICCAI-00,
Pittsburgh, PA, pp. 72–82, October 2000.

12. Gong Y, Treurniet WC (1993) Duration of Phones as Function of Utterance
Length and its use in Automatic Speech Recognition. In: Proc Eurospeech-93,
Berlin, Germany, pp. 315–318, September 1993.

13. Guo G, Li SZ (2003) Content-Based Audio Classification and Retrieval by Sup-
port Vector Machines. IEEE Transactions on Neural Networks 14(1):209–215.

14. Huang C, Chen T, Chang E (2004) Accent Issues in Large Vocabulary
Continuous Speech Recognition. Int J Speech Technology 7:141–153.

226 C. Pedersen and J. Diederich

15. Joachims T (1998) Text Categorization with Support Vector Machines: Learn-
ing with Many Relevant Features. In: ECML-98, 10th European Conference on
Machine Learning, Heidelberg, Germany, pp. 137–142, April 1998.

16. Joachims T (1999) Making Large-Scale SVM Learning Practical. In: Schölkopf
B, Burges C, Smola A (eds) Advances in Kernel Methods – Support Vector
Learning, MIT Press.

17. Kumpf K, King RW (1996) Automatic accent classification of foreign accented.
Australian English speech. In: Proc ICSLP 1996, Philadelphia, PA, pp. 1740–
1743, October 1996.

18. Lin X, Simske S (2004) Phoneme-less heirarchichal accent classification. In:
Matthews MB (ed) Signals, Systems and Computers 2004; Conference Record
of the Thirty-Eighth Asilomar Conference on. vol. 2:1801–1804.

19. Milner B (2002) A Comparison of Front-End Configurations for Robust speech
Recognition. In: Proc. ICASSP 2002, Orlando Florida May 2002.

20. Milner B, Shao X, (2007) Prediction of Fundamental Frequency and Voicing
from Mel-Frequency Cepstral Coefficients for Unconstrained Speech Reconstruc-
tion. IEEE Transactions on Audio, Speech and Language Processing 15(1):
24–33.

21. Mitsdorffer R, Diederich J, Tan CNW (2002) Rule Extraction from Technol-
ogy IPOs in the US Stock Market. In: 9th International Conference on Neural
Information Processing. 4th Asia-Pacific Conference on Simulated Evolution
And Learning. 2002 International Conference on Fuzzy Systems and Knowledge
Discover. Orchid Country Club, Singapore, 18 November-22 November 2002.

22. Munro MJ (1995) Non-segmental factors in foreign accent: Ratings of filtered
speech. Studies in Second Language Acquisition 17:17–34.

23. Munro MJ, Derwing TM, Burgess CS (2003) The Detection of Foreign Accent
in Backwards Speech. In: Sole M-J, Recasens De, Romero J (eds) Proceedings
of the 15th International Congress of Phonetic Sciences, (Barcelona). Causal
Productions Australia. pp. 535–538.

24. Quinlan JR (2007) Data Mining Tools See5 and C5.0, Rulequest Research (2007)
http://rulequest.com/see5-info.html.

25. Pedersen C, Diederich J (2006) Listener Discrimination of Accent. In: Proc
Human and Machine Speech Workshop, HCSNet Summerfest ’06, Sydney,
Australia, p107, November–December 2006.

26. Pedersen C, Diederich J (2007) Accent Classification Using Support Vector
Machines. In: Lee R, Chowdhury MU, Ray S, Lee T (eds) Proceedings 6th

IEEE/ACIS International Conference on Computer and Information Science.
Melbourne Australia, July 2007, pp. 444–449.

27. Tatham M, Morton K (2005) Developments in Speech Synthesis. Wiley,
Chichester.

28. Teixeira C, Trancoso IM, Serralheiro A (1996) Accent Identification. In: Proc
ICSLP 1996, Philadelphia, PA, pp. 1784–1787, October 1996.

29. van Els T, de Bot K (1987) The Role of Intonation in Foreign Accent. The
Modern Language Journal 71(2):147–155.

30. Wells JC (1982) Accents of English: An Introduction. Cambridge University
Press Cambridge New York.

31. Witten IH, Frank E (2005) “Data Mining: Practical machine learning tools and
techniques, 2nd edn. Morgan Kaufmann, San Francisco.

Rule Extraction from SVM for Protein
Structure Prediction

Jieyue He1, Hae-jin Hu2, Bernard Chen2, Phang C Tai3, Rob Harrison2,
and Yi Pan2

1 School of Computer Science and Engineering, Southeast University, NJ 210096,
China

2 Department of Computer Science, Georgia State University, Atlanta, GA 30303
USA

3 Department of Biology, Georgia State University, Atlanta, GA 30303-4110, USA

Summary. In recent years, many researches have focused on improving the accu-
racy of protein structure prediction, and many significant results have been achieved.
However, the existing methods lack the ability to explain the process of how a
learning result is reached and why a prediction decision is made. The explanation
of a decision is important for the acceptance of machine learning technology in
bioinformatics applications such as protein structure prediction. The support vector
machines (SVMs) have shown better performance than most traditional machine
learning approaches in a variety of application areas. However, the SVMs are still
black box models. They do not produce comprehensible models that account for the
predictions they make. To overcome this limitation, in this chapter, we present two
new approaches of rule generation for understanding protein structure prediction.
Based on the strong generalization ability of the SVM and the interpretation of the
decision tree, one approach combines SVMs with decision trees into a new algorithm
called SVM DT. Another method combines SVMs with association rule (AR) based
scheme called SVM PCPAR. We also provide the method of rule aggregation for
a large number of rules to produce the super rules by using conceptual clustering.
The results of the experiments for protein structure prediction show that not only
the comprehensibility of SVM DT and SVM PCPAR are much better than that
of SVMs, but also that the test accuracy of these rules is comparable. We believe
that SVM DT and SVM PCPAR can be used for protein structure prediction, and
understanding the prediction as well. The prediction and its interpretation can be
used for guiding biological experiments.

1 Introduction

For the past few decades, many studies have focused on the accuracy of protein
structure prediction using machine learning technologies such as neural net-
works or support vector machine and have achieved good results [3,4,10,12,24].
In spite of this, these methods do not explain the process of how a learning
J. He et al.: Rule Extraction from SVM for Protein Structure Prediction, Studies in Computa-

tional Intelligence (SCI) 80, 227–252 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

228 J. He et al.

result is reached and why a decision is made. It is important to be able to
explain how a decision is made for the acceptance of the machine learning
technology, especially for applications such as bioinformatics since the rea-
sons for a decision is a useful guide for the “wet experiments”. The extracted
rules can also be used later as a basis for advanced approaches to deduce
biological features.

In most of these cases, the performance of support vector machines
(SVMs) is either similar to or better than that of traditional machine learn-
ing approaches, including neural networks. It is especially important for the
field of computational biology because it is used for pattern recognition prob-
lems including protein remote homology detection, microarray gene expression
analysis, recognition of translation start sites, protein structure prediction,
functional classification of promoter regions, prediction of protein-protein
interactions, and peptide identification from mass spectrometry data [17].
Nevertheless, like the neural networks, the SVMs are black box models. They
do not have the ability to produce comprehensible models that account for
their predictions.

Recent researches try to extract the embedded knowledge in trained neural
networks in the form of symbolic rules in order to improve comprehensibility
in the field of neural networks (NNs) [26–28]. These rule extraction meth-
ods serve for several purposes: to provide NNs with explanatory power, to
acquire knowledge for symbolic AI systems, to explore data, to develop hybrid
architectures and to improve adequacy for data mining applications [18].

With SVM, some researchers have started to address the issue of improving
the comprehensibility. Rule-extraction from SVM [18] and learning-based rule-
extraction from SVMs technique [1] are two examples. Some of the limitations
of these two approaches are discussed in [25].

Although some researchers have started to apply SVMs and decision trees
in bioinformatics areas, all of these have not integrated the merits of both
SVMs and decision trees. For example, Krishnan et al. [29] have done a com-
parative study of SVMs and decision tree to predict the effects of single
nucleotide polymorphisms on protein function. In his paper [14], Lin clas-
sified genes by names using decision trees and SVMs. The result showed
that, although the prediction errors of both methods were acceptably low
for production purpose, SVM outperforms decision trees. There is also some
research using the decision tree to produce rules for bioinformatics, such as
automatic rule generation for protein annotation with the C5.0 data mining
algorithm [20] applied on SWISS-PROT [19].

In this chapter, two novel approaches of rule-extraction for understanding
protein structure prediction are presented. One approach combines SVM with
decision tree into a new algorithm called SVM DT, which proceeds in four
steps. This algorithm first trains SVMs. Next, a new training set is generated
by careful selection from the result of SVMs. Third, this new training set is
used to train a decision tree learning system and extract the corresponding
rule sets. Finally, it decodes the rules into logical rules with biological meaning

Rule Extraction from SVM for Protein Structure Prediction 229

according to encoding schemes. Another method combines SVM with a new
association rule based classifier, pattern based classification with predictive
association rules (PCPAR), into an algorithm called SVM PCPAR with the
similar process applied to SVM DT.

Since a large number of rules are difficult for researchers to interpret
and analyze, we use conceptual clustering to cluster huge number of rules
based on similarity, and then aggregate the rules in each cluster to generate
new super-rules. These super-rules represent the consensus rule pattern and
the essential underlying relationship of classification. Because the super-rules
come from each clusters, the researchers can not only understand the general
trend and ignore the noise, but also interactively focus on the key aspects of
the domain by using super-rules and selectively view the original rules in the
corresponding cluster.

Based on protein secondary structure prediction with the RS126 data sets
and transmembrane segments prediction with the 165 low-resolution data sets
[5], the results show that they have similar accuracy while SVM DT and
SVM PCPAR are more comprehensible. Hence, SVM DT and SVM PCPAR
can be used both for prediction and guiding biological experiments.

This chapter is organized as follows. Section 2 describes the method of
SVM DT and presents the experiments of protein secondary structure pre-
diction on RS126 data sets and transmembrane segments prediction on 165
low-resolution data set. Section 3 presents the method of extracting rules from
SVM based on association rule based method. Section 4 is about the rule clus-
tering and super rules generation. Finally, Section 5 summarizes the main
contribution of this chapter and discusses some issues of the methods that
should be further investigated.

2 Rule Generation by Combing SVM and DT

SVM have shown strong generalization ability in many application areas,
including protein structure prediction. However, it is a black box model. On
the other hand, a decision tree has good comprehensibility. It motivates us to
integrate merits of both support vector machine and decision tree to generate
rules for understanding protein structure prediction. This approach combines
SVM with decision tree into a new algorithm called SVM DT.

2.1 SVM DT

SVM represents novel learning techniques that have been introduced in the
framework of structural risk minimization (SRM) inductive principle and in
the theory of Vapnik Chervonenkis (VC) [22] bounds. SVM has a number of
interesting properties, including effective avoidance of over fitting, the ability
to handle large feature spaces, and information condensing of the given data
set, etc.

230 J. He et al.

The basic idea of applying SVM for solving classification problems can be
stated briefly in two steps. First, SVM transforms the input space to a higher
dimension feature space through a non-linear mapping function. Second, it
constructs the separating hyperplane with maximum distance from the closest
points of the training set [2].

Decision tree learning [15] is a means for approximating discrete-valued
target functions, in which the learned function is represented by a decision
tree. It is one of the most popular classification methods and has been used
in many research areas, such as personalized recommender system based on
web [6] and effective technology commercialization [7]. Learned trees can also
be re-represented as sets of if–then rules to improve human readability. Let
us suppose, in a set of records, each record has the same structure, consisting
of a number of attribute/value pairs. One of these attributes represents the
category of the record. The problem is to determine a decision tree that, on
the basis of answers to question about the non-category attributes, predicts
correctly the value of the category attribute. In the decision tree, each node
corresponds to a non-categorical attribute and each arc to a possible value of
that attribute. A leaf of the tree specifies the expected value of the categorical
attribute for the records described by the path from the root to that leaf. There
are many decision tree algorithms. The results of the experiment [13] show
the C4.5 [20] tree-induction algorithm provides good classification accuracy.

C5.0 is a new version of C4.5. They use the gain ratio criterion, which is
based on information theory and produces suboptimal trees heuristically [20].
At first, a decision tree is built using the training set. In a second step, the
decision tree is pruned by replacing a whole subtree by a leaf node. If a decision
rule establishes that the expected error rate in the subtree is greater than in
the single leaf, the replacement takes place.

Decision trees can sometimes be quite difficult to understand. Thus, the
rule sets that consist of simple if–then rules are derived from a decision tree:
write a rule for each path in the decision tree from the root to a leaf. In that
rule, the leaf-hand side is easily built from the label of the nodes and the labels
of the arcs. Rules are ordered by class and sub-ordered by confidence, and a
default rule is created for dealing with instances that are not covered by any
of the generated rules. The default rule has no antecedent and its consequence
is the class that contains the most training instances not covered by any rule.
Each of the rule sets produced is then evaluated using the original training
data and the test data.

SVM claims to guarantee generalization, i.e. its decision model reflects the
regularities of the training data rather than the incapability of the learning
machine. SVM reveals the classification by looking at the critical cases. On
the other hand, the advantage of the Decision Trees algorithm is easily com-
prehensible; it describes what attributes are important for classification [14].
Thus, the motivation of combining SVM and decision tree to classify is the
desire of combining the strong generalization ability of SVM and the strong

Rule Extraction from SVM for Protein Structure Prediction 231

comprehensibility of rule induction. Specifically, our new algorithm SVM DT
employs SVM as a pre-process of decision tree.

Suppose we are given a training data set S = {(x1, y1), (x2, y2), . . .,
(xm, ym)}, where xi is the feature vector and yi is the expected class label
or target of the ith training instance. At first, SVMs are trained using N-fold
cross validation. That is, for data set S, we divided it into N subsets with sim-
ilar sizes (k) and similar distribution of classes. We perform the tests for the N
runs, each with a different subset as the test set (Te svmi, i = 1. . .N) and with
the union of the other N-1 subsets as the training set (Tr svmi, i = 1. . .N).
Then, from each test set (Te svmii, i = 1. . .N), based on the result of pre-
diction Pi svm, we select cases that are correctly predicted by SVMs into
new data set (Si svm, i = 1. . .N). Finally, we use the original test data
Te svmi, i = 1. . .N as test data set (Te dti, i = 1. . .N) and the union of the
other N-1 subsets Si svm as the training set (Tr dti, i = 1. . .N) to train deci-
sion trees and induce the rule sets. In summary, the pseudo-code of SVM DT
algorithm is shown in [49]. Since support vector machine usually has strong
generalization ability and we select the new data set from the correct result
of SVMs as our inputs to DT, we believe that some bad ingredients of S, such
as the noise, may be reduced by the process of SVMs, and some weak cases
may be filtered by SVMs. It is indicated that new data set Si svm data is
better than the original training data set S for rule induction based on our
experiment results that will be shown later. This is the reason why we use
support vector machine as a pre-process of decision tree.

2.2 Protein Second Structure Prediction with SVM DT

We apply the method of SVM DT to the prediction of protein secondary
structure. On one hand, the method is used to generate the rule sets for
explaining how a secondary structure can be classified, and on the other hand,
it is applied to evaluate the performance of the algorithm. We use RS126
[21] as a data set which was proposed by Rost and Sander. Based on their
definition, it is a non-homologous set. This set was used in many researches on
protein secondary structure prediction such as the experiments by Hua [10]
and Kim [12]. The protein secondary structure prediction can be analyzed as a
typical classification problem where the class (secondary structure) of a given
instance is predicted based on its sequence features. The goal of secondary
structure prediction is to classify a pattern of adjacent residues as helix (H),
sheet (E) or coil (C, the remaining part) based on the idea that the segments
of consecutive residues prefer certain secondary structure.

In this study, firstly, we combined orthogonal matrix and BLOSUM62
matrix [8] as encoding schemes [9]. The orthogonal encoding scheme is the sim-
plest profile which assigns a unique binary vector to each residue, such as (1, 0,
0. . .), (0, 1, 0. . .), (0, 0, 1. . .) and so on. The BLOSUM62 matrix is a measure
of difference between two distantly related proteins. Namely, the values in the
BLOSUM62 matrix mean “log-odds” scores for the possibility that a given

232 J. He et al.

amino acid pair will interchange with each other and it contains the general
evolutionary information among the protein families. This BLOSUM62 matrix
was applied as an encoding scheme by converting its data range to [0,1]. In
the encoding schemes, the information about the local interactions among
neighboring residues can be embedded as a feature value, because the feature
values of each amino acid residue in a window mean the weight of each residue
in a pattern. Therefore, the optimal window length 13 was adopted by testing
different window lengths from 5 to 19. We construct three one vs. one binary
classifiers (H/∼H, E/∼E, and C/∼C).

Secondly, to train the SVM, we selected the kernel function K(x, y) =
e−λ‖x−y‖2

based on the previous studies [10, 12], and the parameter of the
kernel function λ and the regularization parameter C were optimized based
on tests [9]. With the data set, we ran sevenfold cross validation in the
experiments. That is, we divided the data set into seven subsets with sim-
ilar sizes and similar distribution of classes. Then, we performed the tests
for the seven runs, each with a different subset as the test set and with the
union of the other six subsets as the training set. In this experiment, we used
SVMlight [11] software. In each run, we fed the training data into SVMlight to
get the model and used test data as validation.

Thirdly, in order to compare the prediction result from SVM on test data to
the original data set, and to see if they were consistent, we selected the instance
into a new data set which was used later for building rules. We repeat the
process until seven sets of new data have been finished. Then, combining six
of them as a training data and original test data as test data to train decision
tree of C4.5 and C4.5 rules, we get seven group rule sets. For comparison,
we also applied the original train data and test data directly into C4.5 and
C4.5 rules. All the average accuracy of binary classifier by three methods is
shown as Fig. 1, respectively. From Fig. 1 we can see that the accuracy of
binary classifier by SVM (SVMlight) is better than that of binary classifier by
the decision tree (C4.5), but the accuracy of binary classifier by SVM DT is
better than that of binary classifier by the decision tree. We believe that this
is a benefit from the generalization ability of SVM.

0
10
20
30
40
50
60
70
80
90

E/~E H/~H C/~C

P
re

di
ct

io
n

A
cc

ur
ac

y

SVM

DT

SVM-DT

Fig. 1. Comparison of accuracy of E/∼E, H/∼H and C/∼C with three methods

Rule Extraction from SVM for Protein Structure Prediction 233

0
20
40
60
80

100
120
140
160

E/~E E/~H E/~C

av
er

ag
e

nu
m

be
r

of
 r

ul
es

DT

SVM-DT

Fig. 2. Comparison of number of rules with DT method and SVM DT method

0
5

10
15
20
25
30
35
40

Confidence
60 70 80 90

A
ve

ra
ge

 n
um

be
r

of
 r

ul
es

DT

SVM_DT

Fig. 3. Comparison average of number of rules with different confidence values of
two methods

The average number of rules produced by DT and SVM DT are shown
in Fig. 2. From Fig. 2, we can see SVM DT generated more rules than DT.
In addition, Fig. 3 also shows that the average number of rules produced by
SVM DT is much more than that produced by DT under the same confidence
values. This means that SVM DT not only generates more rules but also
generates rules with better quality for prediction. This observation indicates
that the training data set processed by SVM is better than the original training
data set for rule induction. The reason is that SVM reveals the classification
by looking at the critical cases and by selecting the correct output results
from SVM; SVM DT can get the data set that has less noise.

Finally, based on the encoding schemes, we decoded the rules. We obtained
a group of logical rules which have biological meaning and then we checked
them in the original sequence data according to the logical rules, to verify
the accuracy of them. Some of the results are shown in Table 1 with five
columns. In the second column there are rules which produced by SVM DT,
and their corresponding rules with biological meaning by decoding based on
the encoding schemes are shown in the third column. In the fifth column
there are validation examples which are selected from the original sequence
according to the logical rule in the third column and the explanation in the
fourth column.

234 J. He et al.

Table 1. Two example of protein secondary structure produced by SVM DT

Rule
num.

Rule produced
by SVM DT

Rule with
biological
meaning

Explanation Examples

Rule
469

IF
A222 <= 0.035
and A260> 0
and A300> 0
THEN
‘E’
[90.6%]

IF
Sq[2] in {‘C’, ‘I’,
‘F’, ‘W’, ‘V’}
and Sq[3] = ‘V’
and Sq[4] = ‘V’
THEN
St[3] = ‘E’
[90.6%]

If the target is
‘V’, and one
amino acid
before the target
is one of
{C,I,F,W,V},
and the one next
to the target is
‘V’, the second
structure of the
target is ‘E’ with
81.2% accuracy.

>2FOX:
Sequence
Length: 138 rule
469: the position
is: 108 CVV
CEE rule 469:
the position is:
109 VVV EEC

Rule
471

IF
A481 > 0
THEN
‘∼E’
[96.8%]

IF
Sq[7] = ‘A’
THEN
St[1] = ‘∼E ’
[96.8%]

If the sixth
amino acids after
the target is ‘A’,
the second
structure of the
target is not ‘E’
with 82.4%
accuracy.

>1TGS:
Sequence
Length: 56 rule
471: the position
is: 0 TSPQREA
CCCCCCC
>1UBQ:
Sequence
Length: 76 rule
471: the position
is: 21 TIENVKA
CHHHHHH

Although the accuracy of the binary classifier by SVM DT is not better
than that of the binary classifier by the SVM, we have gotten the rule sets.
We also found that the rules generated have strong biological meaning. For
example:

IF
Sq[2]=‘V’ and Sq[4] in {‘C’, ‘I’, ‘L’, ‘V’}
and Sq[5]=‘G’

THEN
St[1]=‘E’ [87.1%]

This rule can also be explained biologically. The amino acid in position
two is the hydrophobic amino acid valine (V) and position four is one of
the hydrophobic amino acids (‘C’, ‘I’, ‘L’, or ‘V’) followed by a glycine (G)
in position five. If this forms a sheet (E), then the two hydrophobic amino

Rule Extraction from SVM for Protein Structure Prediction 235

acids point in the same direction (possibly into the core of the protein), thus
stabilizing a sheet.

2.3 Transmembrane Segments Prediction and Understanding
Using SVM DT

Transmembrane (TM) proteins are the integral membrane proteins that can
completely cross from the external to the internal surface of a biological mem-
brane. TM proteins are critical targets for drug design. However, because
of their hydrophobic properties, the conventional experimental approaches,
such as X-ray crystallography or nuclear magnetic resonance (NMR) cannot
be easily applied to determine their 3D structures. Therefore, computational
or theoretical approaches have become important tools for identifying the
structures and functions of TM proteins. Many significant results have been
achieved in the prediction of transmembrane segments [24,29]. In spite of these
results, the existing methods do not explain the process of the prediction.

In this study, the data set given by Rost et al. is tested and this is labeled
as data set of 165 low-resolution. According to Rost et al. [29], the 165 proteins
are expert-curated set from the SWISS-PROT database which was originally
collected by Möller et al. [30]. The test method with these data sets is a
sevenfold cross validation test.

In this research, we use two encoding schemes. One is the combined orthog-
onal and Blosum62 matrix (OB), the other is position-specific scoring matrix
(PSSM) generated by PSI-BLAST. These PSSM values are position-specific
scores for each position in the alignment. In this matrix, highly conserved posi-
tions have high scores and weakly conserved positions have low scores close
to zero. This scheme is originally used to perform the prediction of protein
secondary structure by Jones [31]. The author used this PSSM as an encod-
ing profile for his neural network. As another approach, Kim [12] applied this
matrix to train the SVM for the prediction of protein secondary structure.
According to the author, this PSSM shows better performance than the fre-
quency matrix generated by the multiple sequence alignments. Therefore, in
this study, this encoding scheme is applied to test the performance in the
prediction of transmembrane segments.

Four methods with different encoding schemes are used in the experiments.
Because we focused on the rules extraction for understanding prediction of
transmembrane segments, we should get the logical rules which have biologi-
cal meaning. In the first method, PSSM matrix as encoding schemes are fed
into SVM and DT(PSSM PSSM). In the second method, PSSM matrix as
encoding schemes are fed into SVM and the sequences are directly fed into
DT(PSSM SEQ). In the third method, the combined orthogonal and Blo-
sum62 matrix as encoding schemes are fed into SVM and DT(OB OB). In
the fourth method, PSSM matrix as encoding schemes are fed into SVM and
the combined orthogonal and Blosum62 matrix as encoding schemes are fed
into DT(PSSM OB).

236 J. He et al.

70
75
80
85
90
95

100

1 2 3 4 5 6 7

Ave
ra
ge

P
re

di
ct

io
n

A
cc

ur
ac

y
PSSM_PSSM

PSSM_SEQ

OB_OB

PSSM_OB

Fig. 4. Comparison of prediction accuracy of seven group rule sets with different
encoding schemes

The comparison of prediction accuracy of seven group rule sets with dif-
ferent encoding schemes is shown in Fig. 4. From this figure, we can see the
method of (PSSM PSSM) achieves the highest average prediction accuracy.
However, because PSSM is position-specific scoring matrix which is related
to the context of amino acid sequence, the rules produced by DT cannot
be decoded into logical rules with biological meaning. Although the method
of (PSSM SEQ) has the lower prediction accuracy than the other methods,
its rules do not need to be decoded. In Fig. 4, the method of (OB OB) and
(PSSM OB) show similar accuracy.

In order to analyze the quality of the logical rules, we compare the aver-
age rule accuracy, prediction accuracy, and percentage of rule numbers and
support of seven group rule sets for the confidence of rules range of 95–100
(OB OB). We obtain the average rule accuracy is 94.1%, average prediction
accuracy is 89.6%, average percentage of rule numbers is 84.8% and average
support of seven group rule sets is 83.7%. All of these show that the rules with
confidence 95–100 not only have the high rule accuracy, but also have the high
percentage of rule numbers and high support. The average percentage of rule
numbers and support are all over 80% which means that a majority of rules
obtained is of high quality.

We also analyze the rules encoded by PSSM SEQ. The comparison of
average confidence, accuracy, support, and percentage of rule numbers of seven
group rule sets with confidence (90–100) is shown in Fig. 5. The results of
experiment also indicate that the average prediction accuracy of rules is 93.4
for all of the rules with a confidence greater than 90. At the same time, its
support is 78.0 and the percentage of rule numbers is 62.6. This means that
these rules not only have high quality, but also are the majority of the rules
obtained. From Fig. 5, we could find that the rules with confidence value from
97 to 99 even have a higher support value and percentage of rule numbers. The
corresponding accuracies of the rules are also very high. These observations
suggest that these rules are more important and valuable.

Empirical results show that the prediction accuracy is usually lower than
the confidence of the rules. However, they are usually very consistent and
proportional in values. A rule with a high rule confidence often produces high

Rule Extraction from SVM for Protein Structure Prediction 237

0

20

40

60

80

100

[90,91} [93,94} [96,97} [99,100}

Comparison of average confidence, accuracy, support, and

percentage of rule numbers of 7 group rule sets (PSSM_SEQ)

Accuracy (%)

Support (%)

Percentage of
rule (%)

Fig. 5. Comparison of average confidence, accuracy, support, and percentage of rule
numbers of seven group rule sets (PSSM SEQ)

82%

84%

86%

88%

90%

92%

94%

96%

1 2 3 4 5 6 7

Rule_Average_Accuracy

Prediction_Accuracy

Fig. 6. Comparison of average rule accuracy, prediction accuracy of seven group
rule sets for the confidence of rules range of 95–100 (OB OB)

prediction accuracy, while a rule with a low confidence usually generates low
prediction accuracy, just as Fig. 6 shows.

We decoded the rules into logical rules with biological meaning according
to encoding schemes. Table 2 shows one example of logical rules and their
explanation with SVM DT (PSSM SEQ). There are three differences between
the logical rules produced by PSSM SEQ and by OB OB:

1. Because the rules generated by PSSM SEQ have biological meaning, they
do not need to be decoded. However, the rules generated by OB OB should
be decoded into logical rules by encoding schemes.

2. The number of rules produced by PSSM SEQ is much greater than that of
the rules produced by OB OB. Usually, the number of rules of one set by
PSSM SEQ is about 2,000, and the number of rules in one set by OB OB
is about 200.

238 J. He et al.

Table 2. One example of logical rule and their explanation with SVM DT
(PSSM SEQ)

1 Logical rule with
biological meaning

Rule 3570:
A5 = I
A7 = L
A11 = F
−> class +1 [85.6%]

2 Rule explanation If the second amino acid before the target is ‘I’, the
fouth amino acid following the target is ‘F’ , and at the
same time, the target is ‘L’, the segment of the target is
‘T’ (transmembrane) with an confidence 85.60%,
prediction accuracy is 83.33% when we do the
experiment on the test data.

3. The rules generated by PSSM SEQ are simpler than that of rules by
OB OB.

The reason of these differences is that the input attributes of DT in
PSSM SEQ are characters, while the input attributes of DT in OB OB are
continuous.

3 Extracting Rule from SVM Based on Association Rule

3.1 Association Rule Based Method

In the previous section, the learning-based rule extraction approaches applied
decision tree as a second learning algorithm to extract the rules from SVM
[25]. The advantage of DT is that the significance of rules is measured by
their contribution to the overall accuracy of the classifier therefore system-
atic accuracy-based rule pruning is possible [32]. This method searches for
rules locally based on a heuristic by adding one capable attribute at a time
according to the order of goodness.

An alternative of the DT algorithm is an association rule (AR) based
scheme. This method searches for all rules globally based on the cooperative
prediction of several attributes and assesses each rule individually without
considering the interaction with other rules [32]. The final rule set covers
the training data in all possible ways hence the number of rules are usually
large compared with DT method. The set with the large number of rules has
the potential to find the true classification template from the training data if
the over-fitting rules are pruned properly. Therefore, in AR based approach,
rule pruning has been a main interest to the researchers.

Recently Hu et al. [33] attempted to apply the AR based method to extract
rules from SVM on transmembrane segments prediction. They devised the

Rule Extraction from SVM for Protein Structure Prediction 239

pattern based classification with predictive association rules (PCPAR) scheme
based on classification based on predictive association rules (CPAR) method
[34] to handle the dataset with a sliding window scheme. This section begins
with basic concepts of AR mining algorithm. Then traditional and recent AR
mining algorithms are presented and finally rule generation method based on
SVM PCPAR scheme is described in detail.

3.2 Association Rule Mining

Basic Concepts

A formal definition of association rule mining is as follows [35].
Let I = {i1, i2, . . ., im} be a set of literals, or items. Let X be an itemset

which is a subset of I. Let D = {t1, t2, . . ., tn} be a set of transactions called a
transaction database. Each transaction t has a transaction identifier, tid and
a transaction itemset such as t = (tid, t - itemset). A transaction t contains
an itemset X if X ⊆ T .

In a transaction database D, each itemset X has a support, supp(X) which
is the ratio of transactions in D containing X .

supp(X) = |X(t)|/|D|, (1)

where X(t) = {t in D|t contains X}. A large or frequent itemset is defined
as an itemset whose support is equal to, or greater than, the user-specified
minimal support threshold.

An association rule is an implication X → Y , where itemsets X and Y are
disjoint, X ∩ Y = φ. In each association rule, there are two quality measures,
support and confidence. The support is the number of occurrences of each
pattern and the confidence is the strength of implication. These measures are
defined formally as follows:

• The support of a rule X → Y is the support of X ∪ Y
• The confidence of a rule X → Y, conf(X → Y) is the ratio

|(X ∪ Y)(t)|/|X(t)|, or supp(X ∪ Y)/supp(X).

When a transaction database D is given, mining association rules is gener-
ating all association rules which have support and confidence values equal to,
or greater than, the user-specified minimal support and confidence threshold
respectively.

Association Rule Mining Algorithms

Most of the traditional association rule mining algorithms are based on
support-confidence model which is suitable for analyzing the market basket
data [36]. For example, a Apriori is a famous and commonly-used algorithm
based on this model [37].

240 J. He et al.

However, in other applications such as bioinformatics or system traces, the
number of occurrences may not be a good metric to measure the significance of
a pattern [38]. In bioinformatics, researchers try to find statistically important
sequential patterns from the sequential data. Since the frequency of each sym-
bols in a sequence may not evenly distributed (some symbols occur more often
than other symbols), a pattern with common symbols occur more often than
that with rare symbols. Therefore, the frequency (support) may not always
indicate the importance of a pattern. Researchers should consider both the fre-
quent patterns and the “surprising” patterns [38]. Sometimes a few numbers
of “unexpected” rare patterns could provide more information than a large
number of “expected” frequent patterns. Wang and Yang adopted the infor-
mation metric [39] to characterize these surprising patterns. In their research,
information is used to measure the degree of “surprise” when a pattern actu-
ally occurs. Also, the information gain metric is devised to characterize the
accumulated information of a pattern.

Besides the Wang and Yang’s approaches, first order inductive learner
(FOIL), predictive rule mining (PRM) and classification based on predictive
association rules (CPAR) also applied the information metric for the rule
generation. FOIL [40] is a greedy algorithm that repeatedly searches for the
attribute with the highest information gain. Once this attribute is appended
to a rule, all the examples which are not satisfying the rule are removed from
both the positive and negative examples. After the rule is added into a rule
set, this process is repeated until all positive examples in the data set are
covered. For selection of attributes, “FOIL Gain” is defined such as follows to
measure the information gained from appending this attribute to the current
rule.

gain(p) = |P ∗|
(

log
|P ∗|

|P ∗| + |N∗| − log
|P |

|P | + |N |

)
, (2)

where |P | and |N | are positive and negative examples that satisfy the current
rule. After attribute p is added to the rule, there are |P ∗| positive and |N∗|
negative examples satisfying the new rule’s body.

The FOIL algorithm was later further improved by Yin and Han to achieve
higher accuracy and efficiency. It is called the predictive rule mining (PRM)
algorithm [34]. PRM algorithm is a “weighted” version of FOIL [34]. In PRM,
if an example is covered by a rule, without removing it, its weight is reduced
by multiplying a decay factor. This algorithm was then further improved by
the same authors to produce CPAR [34].

Association Rule Based Classifiers

Associative classification is an approach to integrate association rule (AR)
mining and classification [41]. It applies AR mining algorithm to generate
the whole set of association rules. Based on this complete rule set, a small

Rule Extraction from SVM for Protein Structure Prediction 241

subset of significant rules is selected and this set is used for prediction. Two
typical AR based classifiers are classification based on associations (CBA) [41]
and classification based on multiple association rules (CMAR) [42]. These
classifiers are based on support and confidence framework which is not suitable
for large dataset.

Classification based on predictive association rules (CPAR) is a more
advanced AR based classifier based on information metric [34]. In CPAR,
Laplace accuracy is used to measure the accuracy of rules. Given a rule r, it
is defined as follows:

Laplace accuracy (r) =
(Nc + 1)

(Ntotal + m)
, (3)

where m is the number of classes, Ntotal is the total number of examples that
satisfy the rule’s body, among which Nc examples belong to the predicted
class, c of the rule. For classification, the best k rules of each class are selected
from the rule sets of each class. By comparing the averaged Laplace accuracy
of the best k rules of each class, the class with the best accuracy is chosen as
the predicted class.

The pattern based classification with predictive association rules (PCPAR)
[33] is a modified version of classification based on predictive association rules
(CPAR). It is devised to handle the dataset with sliding window scheme. The
rule generation part of PCPAR is the same as that of CPAR algorithm except
the fact that in PCPAR each attribute window is able to participate in the
AR training with different initial weight. The main differences of PCPAR
and CPAR are in the post processing and the classification scheme. CPAR
algorithm doesn’t have any post processing step after rule generation. The
PCPAR algorithm incorporates the post processing step to create more gen-
eral patterns by decoding and merging the rules. For example, the following
rules are the same even though the antecedents display different feature val-
ues. If we decode these rules, the antecedents of the following rules have the
meaning of the amino acid ‘EE’ occurring position 5 and 6, 6 and 7, and 7
and 8, respectively.

{87, 107} → {261},
{107, 127} → {261},
{127, 147} → {261}.

As can be observed from the above, the absolute location of each attribute
is not important in the sliding window scheme. Rather we should focus on
the pattern of the features. With the example above, by decoding and rule
merging, we can find a pattern of ‘EE’ occurring somewhere in a window. This
pattern is simpler and also more general than the rules.

The PCPAR classification is based on the patterns created from the
post process (decode-merge process) after rule mining. Each test data is
checked against all the patterns of each class and the final class is determined

242 J. He et al.

based on the following cases. For each test instance, there are four possible
situations:

1. It matches with the positive patterns only.
2. It matches with the negative patterns only.
3. It matches with both the positive and negative patterns.
4. It matches with none of them.

In the first and the second case, the final class is positive and negative
class respectively. In the third case, by comparing the normalized numbers of
patterns matched, the class with bigger number of patterns is selected as a
final class. Finally, if no matched pattern is found with a test instance, the
class is selected as a negative class by default.

Rule Generation Based on SVM PCPAR Model

SVM PCPAR model borrows the idea from the SVM DT [25] for combining
classifiers. This algorithm combines the SVM with a new AR based classifier,
pattern based classification with predictive association rules (PCPAR) with
the following process (Fig. 7).

First, SVM is trained with the two highly performed encoding profiles
including the orthogonal and Blosum62 combined matrix and PSSM. Next,
with the output of SVM, correctly predicted set is chosen as a new training
set for AR mining. These two steps are the pre-process for the AR mining.
The rationale of this pre-process is that since SVM usually has strong gen-
eralization ability, some noise or uncertain instances can be filtered out by

Trainset1..7 SVM

SVM

Prediction
Output

Pred1..7

Correct Prediction
yes

AR
generatortrainset1_AR

testset 1_AR

Rules Patterns

Decode_Merge

AR classifier

Testset 2..7

Testset1..7 SVM

Pred 2..7

7-fold
test

pre-processing

T N

 no

PCPAR

Fig. 7. SVM PCPAR model

Rule Extraction from SVM for Protein Structure Prediction 243

Positive rules Decoded positive
rule body

Positive pattern

(428) {31 50 170} → {262} 0.97 L 2 I 3 I 9 *LI*****I**** 0.92
(429) {150 231 250} → {262} 0.96 I 8 L 12 I 13 *******I***LI 0.92
(430) {50 70 150} → {262} 0.96 I 3 I 4 I 8 **II***I***** 0.94
(431) {30 50 130} → {262} 0.96 I 2 I 3 I 7 ***V**I*I**** 0.94
(432) {110 130 210} → {262} 0.95 I 6 I 7 I 11 ****LFI****** 0.91
(433) {130 150 230} → {262} 0.95 I 7 I 8 I 12 ***FAI******* 0.91
(434) {150 170 250} → {262} 0.95 I 8 I 9 I 13 ****II*F***** 0.92
(435) {80 130 170} → {262} 0.95 V 4 I 7 I 9 *L**LLV****** 0.91
(436) {91 114 130} → {262} 0.95 L 5 F 6 I 7 L*L*L*I****** 0.97
(437) {60 110 150} → {262} 0.95 V 3 I 6 I 8 **I***L*V**** 0.91

Negative rules Decoded negative
rule body

Negative pattern

(1) {132} → {261} 1.0 K 7 ******K****** 0.99
(2) {107 127} → {261} 1.0 E 6 E 7 *****EE****** 1.00
(3) {127 147} → {261} 1.0 E 7 E 8 ****A*R****** 0.99
(4) {87 107} → {261} 1.0 E 5 E 6 ******K**L*** 0.99
(5) {67 87} → {261} 1.0 E 4 E 5 *****SR****** 1.00
(6) {47 67} → {261} 1.0 E 3 E 4 ******E*****A 1.00
(7) {147 167} → {261} 1.0 E 8 E 9 *****GE****** 1.00
(8) {167 187} → {261} 1.0 E 9 E 10 ****E**K***** 1.00
(9) {81 122} → {261} 1.0 A 5 R 7 ******R**A*** 0.99
(10) {132 191} → {261} 1.0 K 7 L 10 ******PE***** 0.99

Fig. 8. Example of Decode Merge process in SVM PCPAR model

this process [25]. Third, the new training data is normalized to adjust the for-
mat for PCPAR training. Fourth, the normalized data is applied to PCPAR
to train and generate the rules. Once the rule sets are generated, they are
decoded into biologically meaningful rules using a decode table. The example
of decoded rule bodies and patterns obtained by merging the same rules are
presented in Fig. 8. The same rules are identified by examining the decoded
rule body. For example, if a positive rule body is decoded into (V 3 I 6 I
8), it means that amino acids V, I, I occur at position 3, 6 and 8 in a slide
window. Since the encoding profile of our AR based classifier is composed of
the sliding windows of amino acid sequences, these positions could be any of
(1, 4, 6), (2, 5, 7), (4, 7, 9), (5, 8, 10), (6, 9, 11), (7, 10, 12), and (8, 11, 13)
with the window size 13. The decoded rule body (V 3 I 6 I 8) can be merged
with (V 4 I 7 I 9) since these are the same. Because of this reason, we should
rely on the relative positional expression (pattern) rather than the absolute
positional information. If we use the previous example again, the positive rule
body, (V 3 I 6 I 8) can be expressed as the positive pattern, (V∗∗I∗I). It means
that only if this pattern comes somewhere within a window, it becomes a pos-
itive class. Here, the ‘*’ can be considered as a “don’t-care” character. Based
on this kind of patterns defining positive and negative classes respectively,

244 J. He et al.

the test data can be classified with pattern match. The PCPAR classification
algorithm performs this to determine the final class of the amino acid in the
middle of a sliding window.

The first column is the positive and negative rules with the Laplace accu-
racy values, the second is the decoded rule bodies based on the decode table,
and the third column is the patterns created from the rule merge process.
The Laplace accuracy values in the third column are averaged values from
the same rules.

4 Rule Clustering and Super rule Generation

By combining SVM with decision tree, we extract rules for understanding
transmembrane segments prediction. However, rules we have gotten are as
many as 20,000. Such a large number of rules are difficult for researcher to
interpret and analyze [48]. This can often hamper the knowledge discovery
process. Clearly, it will not be satisfactory for researchers to simply use arbi-
trary small subset of rules because the subset of rules can’t cover all the data
of the domains.

Many researchers have addressed this problem by proposing a number of
approaches to produce a suitable rule set. Usually, rules have to be pruned
and grouped at the post mining stage, so that only a reasonable number of
rules have to be inspected and analyzed. For example, one method of reduced
error pruning is used in the decision tree [20] which takes each of nodes in
the tree as pruning candidate. Another successful method for finding high
accuracy is rule post-pruning used in C4.5 [20]. Chawla [43] presented pruning
of association rules using directed hypergraph which maps a set of association
rules into a directed hypergraph and systematically removing circular paths,
redundant and backward edges that may obscure the relationship between the
target and other frequent item. The clustering is often used for the grouping
rules to deal with huge rules. Association rule clustering system (ARCS) is the
example [16] which clusters all those two attribute associate rules where the
right-hand side of the rules satisfies the segmentation criteria. This approach
is based on the geometric properties. In the papers [44–46], the main idea of
the approaches is distance based clustering for association rules. The distance
is strongly correlated with support, and high support rules will on average
tend to have higher distances to everybody else.

In this study, the target of the research can be described as “global” in
the sense that we want to compress the rule base into smaller one set with the
assurance that very little useful information is lost as possible. Moreover, the
rules are not created by frequent items as the primitive association rule mining
methods do. Therefore, unlike the methods in [43–46], we present the method
of rule clustering and super rules generation based on the conceptual cluster-
ing [47]. In conceptual clustering, a group of objects forms a class only if it
is describable by a concept. Different from conventional clustering, concep-
tual clustering consists of two steps: First, discover the appropriate clusters.

Rule Extraction from SVM for Protein Structure Prediction 245

Second, form descriptions for each cluster. In the study, descriptions of each
cluster are super rules.

Therefore, a novel approach of rule clustering for super-rule (C SuperRule)
generation is presented. We use the clustering to group huge number of rules
based on similarity, and then aggregate the rules in each cluster to generate
new super-rules. These super-rules represent the consensus rule pattern and
the essential underlying relationship of classification. Since the super-rules
come from each of clusters, the researchers not only can understand the general
trend and ignore the noise but also can interactively focus on the key aspects
of the domain by using super-rules and selectively view the detailed rules in
the corresponding of cluster.

In this research, the rules are used for protein structure prediction by
amino acid sequence. It means that if the length of the sliding windows is L,
the corresponding structure of amino acid at the position of [L/2] will be
predicted. Therefore, we could take the rules as follows:

For a rule � : B → A, A ∈ [−1, 1],
B: IF Sq[1]∩Sq[2] ∩. . .∩Sq[L], Sq[i]=Q[1]∪Q[2]∪. . .∪Q[20],Q[k]∈ Λ, or Q[k] =
φ, Λ[20] = {A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V}.

B could be express as a matrix M : L × 20,

Mi,j =
{

1 if sq[i] = Λ[j], 1 ≤ j ≤ 20, 1 ≤ i ≤ L
0 or

For example: IF Sq[1] = {R,S,T}
and Sq[2] = {N,T}
and Sq[3] = {A,G}
and Sq[5] = {D}

THEN
St[7] = N

The precondition part of the rule can be a matrix as Fig. 9.
We use k-means to cluster rules according to the similarity of rules.

K-means clustering algorithm is the most widely used method in partition
category due to its fast speed and easy understanding. The method uses
an object called centroid which is the mean point in a cluster, and tries
to minimize the intra-cluster distance between any point in the cluster and
the centroid. We applied this method in our classification rules clustering by
combining similar rules together to generate more general and error-tolerant
rules. First, based on the prediction results of the rules we classify the rule
set into positive rule set and negative rule set. Then, the rules in positive
rule set and negative rule set are separately clustered by combining similar
rules together. Next, the score matrix of each rule cluster is calculated. The
score matrix of the cluster means the frequency for the specific amino acid

246 J. He et al.

ARNDCQEGHILKMFPSTWYV Amino
acids

Matrix M

01000000000000011000
00100000000000001000
10000001000000000000
00000000000000000000
00010000000000000000

Sq[1]

Sq[2]

Sq[3]

Sq[4]

Sq[5]
.
.

Sq[L]
.

Fig. 9. The example of matrix of the rule

residue in a given window position for a cluster. It is obtained by the following
formula:

SCij =

n∑
k=1

Mk
ij

n
× 100, (4)

where, n is the number of rules in the cluster.
Finally, the super rules are generated according to a given threshold in the

clusters. The pseudo-code of the C SuperRule algorithm is shown in Fig. 10.
In this study, the experiment of the C SuperRule is performed based on the

rules created by the method in Sect. 2.3. We use random method to generate
initial centroids positions; we set K equals to 20 for transmembrane predic-
tion rules, 30 or 35 (depends on the result) for non-transmembrane prediction
rules. Comparison of percentage of rule numbers of seven group super-rules
for the accuracy range of prediction “T” is shown as Table 3. From Table 3
we can see the percentage of rule number of accuracy over 85 is about 60%.
It means the super-rules have high quality. The example of super-rules and
explanation is shown in [50]. The super-rules are very useful in guiding bio-
logical experiments. In the clustering, we get the cluster score matrix, such as
Fig. 11; these indicate the profile of the amino acid in each position of 13 win-
dows for transmembrane prediction. The higher frequency of the amino acid
in the position implies that in this position this amino acid is more impor-
tant for the corresponding structure. We believe that it will be very useful
information for biology.

The experiments show that these super-rules not only have high quality
but also are different from the rules before clustering because these super-
rules are produced by aggregating the detailed rules and indicate the general
trend.

Rule Extraction from SVM for Protein Structure Prediction 247

C SuperRule
input: Logical Rule set L Ri, i=1,. . . ,N
output: Super-rule set S R
Process:

S R = Φ
FOR i = 1 to N { /* for each L Ri set, classify into R+ and R−*/

IF L Ri is positive rule
L R+ = L R+ ∪ L Ri

ELSE
L R− = L R− ∪ L Ri

ENDIF
END IF
FOR L R+, L R−

/ rules clustering by combining similar rules together /
{rule number1, C R+} = k-means (L R+)
{rule number2, C R−} = k-means (L R−)

ENDFOR
FOR i = 1 to rule number1

Calculate the cluster score matrix of SC Ri
+

S Ri = create super rule(SC Ri
+)

S R = S R ∪ S Ri

ENDFOR
FOR i = 1 to rule number2

Calculate the cluster score matrix of SC Ri
−

S Ri =create super rule(SC Ri
−)

S R = S R ∪ S Ri

ENDFOR

Fig. 10. C SuperRule Algorithm

Table 3. Comparison of percentage of rule numbers of super-rules which covers
each accuracy range of prediction “T”

Accuracy Percentage of rule numbers

1 95–100 26.9
2 90–95 18.9
3 85–90 15.5
4 80–85 15.2
5 <80 23.5

5 Conclusions

The explanation of a decision is important for the acceptance of machine
learning technology in bioinformatics applications such as protein structure
prediction. In this chapter, we present two approaches for rule generation from
SVM for protein structure prediction, and we also discuss the rule clustering
for huge number of rules at the post mining stage. Empirical results on several

248 J. He et al.

1 3 5 7 9

11 13

A

C0

20

40

60

80

100

Frequency for
the specified
amino acid

Position

Amino acids

A

R

N

D

C

Fig. 11. One of the cluster score matrix of {A,R,N,D,C}

data sets demonstrate the efficacy of our methods. The explanation of the
rules is very useful in biology domain. These rules with biological meaning
not only indicate what a prediction is, but also how a decision is made. These
rules can guide the “wet experiments” since they can help to identify the
explicit sequence features causing the prediction and to recognize the specific
mutation invalidating the prediction or presumably altering the behavior of
the protein. Therefore, we can narrow the experiment scope and focus only
on certain changes in the amino acid sequence.

There is still much work need to be done to improve the current approaches.
First, we trained the SVM with the encoded training data. When we generated
rules produced by SVM DT, we needed to decode them into the biologically
meaningful rules. One of the encoding schemes such as PSSM, we could get
higher prediction accuracy than other encoding schemes. However, we were
not able to decode them into the logical rules with biological meaning. One
of the methods researchers used is to replace kernel functions of SVMs with
PSSM. This will solve the decoding problem. But how to use it and which
matrix is suitable for use as a kernel function for protein structure prediction
is our future work.

Second, Andrews et al. [26] have presented a framework of rule quality
evaluation, namely FACC, for evaluating the quality of the rules extracted
from neural networks. In detail, the FACC framework comprises four criteria,
namely fidelity, accuracy, consistency, and comprehensibility. Zhou [51] points
out that the accuracy, consistency, and comprehensibility (ACC) instead of the
FACC framework should be used for rule extraction using neural networks,
while the fidelity, consistency, and comprehensibility (FCC) instead of the
FACC framework should be used for rule extraction for neural networks. In
the study, we focused on the accuracy and comprehensibility. How to evaluate
the quality of the rules generated from SVM still needs to be studied.

Rule Extraction from SVM for Protein Structure Prediction 249

6 Acknowledgements

The authors would like to thank Professor Thorsten Joachims for making
SVMlight software available, Professor F. Coenen for making association rule
mining software available, and thank RuleQuest Research for a ten-day evalu-
ation licence of C5.0 software available. This research was supported in part by
the scholarship under the State Scholarship Fund of China, the Nation of 985
project and Jiangsu Science Fund of BK2007105, and the U.S. National Insti-
tutes of Health (NIH) under grants R01 GM34766-17S1, P20 GM065762-01A1,
and the U.S. National Science Foundation (NSF) under grants CCF-0514750,
and CCF-0646102. This work was also supported by the Georgia Cancer
Coalition and computer hardware used was supplied by the Georgia Research
Alliance.

References

1. Barakat, N. and Diederich, J.: Learning-based Rule-Extraction from Support
Vector Machine. The third Conference on Neuro-Computing and Evolving
Intelligence (NCEI’04) (2004).

2. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121–167 (1998).

3. Casbon, J.: Protein Secondary Structure Prediction with Support Vector
Machines (2002).

4. Chandonia, J.M. and Karplus, M.: New Methods for accurate prediction of
protein secondary structure. Proteins (1999) 35, 293–306.

5. Chen, C.P., Kernytsky, A. and Rost, B.: Transmembrane helix predictions
revisited. Protein Science, vol. 11, (2002), pp. 2774–2791.

6. Cho, Y.H., Kim, J.K. and Kim, S.H. :A personalized recommender system
based on web usage mining and decision tree induction. Expert Systems with
Applications, Volume 23, Issue 3, 1, (2002), 329–342.

7. Sohn, S. Y. and Moon, T.H.: Decision Tree based on data envelopment analysis
for effective technology commercialization. Expert Systems with Applications,
Volume 26, Issue 2, (2004), 279–284.

8. Henikoff, S. and Henikoff, J.G.: Amino Acid Substitution Matrices from Protein
Blocks. PNAS 89, 10915–10919 (1992).

9. Hu, H., Pan, Y., Harrison, R. and Tai, P. C.: Improved Protein Secondary Struc-
ture Prediction Using Support Vector Machine with a New Encoding Scheme
and an Advanced Tertiary Classifier. IEEE Transactions on NanoBioscience,
Vol. 3, No. 4, Dec. 2004, pp. 265–271.

10. Hua, S. and Sun, Z.: A Novel Method of Protein Secondary Structure Prediction
with High Segment Overlap Measure: Support Vector Machine Approach. J.
Mol. Biol. (2001) 308: 397–407.

11. Joachims, T.: SVMlight. http://www.cs.cornell.edu/People/tj/svm light/
(2002).

12. Kim, H. and Park, H.: Protein Secondary Structure Prediction Based on an
Improved Sup port Vector Machines Approach (2002).

250 J. He et al.

13. Lim, T.S., Loh, W.Y. and Shih, Y.S.: A Comparison of Prediction Accuracy,
Complexity, and Training Time of Thirty Tree Old and New Classification
Algorithm. Machine Learning, Vol. 40, no. 3, pp. 203–228, Sept. 2000.

14. Lin, S., Patel, S. and Duncan, A.: Using Decision Trees and Support Vector
Machines to Classify Genes by Names. Proceeding of the Europen Workshop on
Data Mining and Text Mining for Bioinformatics, 2003.

15. Mitchell, M.T.: Machine Learning. McGraw-Hill, US (1997).
16. Lent, B., Swami, A. N. and Widom, J. Clustering association rules. In ICDE,

1997, pages 20–231.
17. Noble, W.S.: Kernel Methods in Computational Biology. B. Schoelkopf, K.

Tsuda and J.-P. Vert, ed. MIT Press (2004) 71–92.
18. Núñez, H., Angulo, C. and Catala, A.: Rule-extraction from Support Vector

Machines. The European Symposium on Artifical Neural Networks, Burges,
ISBN 2-930307-02-1, 2002, pp. 107–112.

19. Kretschmann, E., Fleischmann, W. and Apweiler, R.: Automatic Rule Genera-
tion for protein Annotation with the C4.5 Data Mining Algorithm Applied on
SWISS-PROT. Bioinformatics, (2001), 17(10).

20. Quinlan, J.R.: C4.5:Programs for Machine Learning. San Mateo, Calif: Morgan
Kaufmann, 1993.

21. Rost, B. and Sander, C.: Prediction of protein Secondary Structure at Better
than 70% Accuracy. J. Mol. Biol. (1993) 232, 584–599.

22. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, Inc., New York
(1998).

23. Yang, Z.R. and Chou, K.: Bio-support Vector Machines for Computational
Proteomics. Bioinformatics 20(5), 2004.

24. Sikder, A.R. and Zomaya, A.Y.: An “overview of protein-folding techniques:
issues and perspectives,” Int. J. Bioinformatics Research and Applications,
Vol. 1, issure 1, pp. 121–143, 2005.

25. He, J., Hu, H., Harrison, R., Tai, P.C. and Y. Pan, “Transmembrane segments
prediction and understanding using support vector machine and decision tree,”
Expert Systems with Applications, Special Issue on Intelligent Bioinformatics
Systems, vol. 30, pp. 64–72, 2006.

26. Andrews, R., Diederich, J. and Tickle, A.: A Survey and Critique of Techniques
for Extracting Rules from Trained Artificial Neural Networks. Knowledge-Based
Systems (1995), 8(6), pp. 373–389.

27. Tickle, A., Andrews, R., Mostefa, G. and Diederich, J.: The Truth will come to
light: Directions and Challenges in Extracting the Knowledge Embedded within
Trained Artificial Neural Networks. IEEE Transactions on Neural Networks,
(1998), 9(6), pp. 1057–1068.

28. Zhou., Z.-H. and Jiang, Y.: NeC4.5.: neural ensemble based C4.5. IEEE
Transactions on Knowledge and Data Engineering, (2004), 16(6): 770–773.

29. Chen, C.P., Kernytsky, A. and Rost, B.: Transmembrane helix predictions
revisited. Protein Science, vol. 11, (2002), pp. 2774–2791.

30. Möller, S., Kriventseva, Apweiler, E.: V. and R.: A collection of well char-
acterized integral membrane proteins. Bioinformatics, vol. 16, (2000), pp.
1159–1160.

31. Jones, D. T.: “Protein Secondary Structure Prediction Based on Position-
specific Scoring Matrix,” J. Mol. Biol, vol. 292, (1999), pp. 195–202.

Rule Extraction from SVM for Protein Structure Prediction 251

32. Wang, K., Zhou, S. and Y. He, “Growing Decision Trees On Support-Less Asso-
ciation Rules,” presented at Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’00), Boston, MA, 2000.

33. Hu, H., Wang, H., Harrison, R., P.C. Tai, and Y. Pan, “Understanding the
Prediction of Transmembrane Proteins by Support Vector Machine using Asso-
ciation Rule Mining,” presented at IEEE Symposium on Computational Intel-
ligence in Bioinformatics and Computational Biology (CIBCB ’07), Honolulu,
Hawaii, 2007.

34. Yin, X. and Han, J. “CPAR: Classification based on Predictive Association
Rules,” presented at SIAM Int. Conf. on Data Mining (SDM’03), San Fransisco,
CA, 2003.

35. Zhang, C. and Zhang, S.: Association Rule Mining: Models and Algorithms:
Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2002.

36. Agrawal, R., Imielinski, T. and A. Swami: “Database mining: A perfor-
mance perspective,” presented at IEEE Transactions on Knowledge and Data
Engineering, 1993a.

37. Agrawal, R. and Srikant, R.: Fast Algorithms for Mining Association Rules,
presented at 20th Int’l Conference on Very Large Databases, Santiago, Chile,
1994.

38. Wang, W. and Yang, J.: Mining Sequential Patterns from Large Data Sets:
Springer, 2005.

39. Blahut, R.: Principles and Practice of Information Theory: Addison-Wesley
Publishing Company, 1987.

40. Quinlan, J. R. and Cameron-Jones, R. M.: FOIL: A Midterm report, presented
at European Conference on Machine Learning (ECML-93), Vienna, Austria,
1993.

41. Liu, B., Hsu, W. and Ma, Y.: Integrating classification and association rule min-
ing, presented at The Fourth International Conference on Knowledge Discovery
and Data Mining (KDD-98)′, New York, 1998.

42. Jayasinghe S, H. K. and White S.H.: Energetics, stability, and prediction of
transmembrane helices., J. Mol. Biol., vol. 312, pp. 927–934, 2001.

43. Chawla, S., Davis, J., Pandey, G. On Local Pruning of Association Rules Using
Directed Hypergraphs. Proceedings of the 20th International Conference on
Data Engineering, ICDE 2004: 832.

44. Gupta, G., Strehl, A. and Ghosh. J. Distance based clustering of association
rules. In Intelligent Engineering Systems Through Artificial Neural Networks
(Proceedings of ANNIE 1999), ASME Press, November, 1999., volume 9: pages
759–764.

45. Lele, S., Golden, B., Ozga, K. and Wasil, E. Clustering Rules Using Empirical
Similarity of Support Sets Lecture Notes In Computer Science; Vol. 2226 archive,
Proceedings of the 4th International Conference on Discovery Science table of
contents, 2001, Pages: 447–451.

46. Toivonen, H., Klemettinen, M., Ronkainen, P. and Mannila. H. Pruning
and grouping discovered association rules. In MLnet Workshop on Statistics,
Machine Learning and Discovery in Databases, April, 1995: pages 47–52.

47. Han, J. and Kambr, M.: Data Mining concepts and Techniques, Higher
Education Press, Morgan Kaufmann Publishers. 2001.

48. Wang, J. ed.: Encyclopedia of Data Warehousing and Minging, Hershey, PA:
IGI, 2005, 190–195.

252 J. He et al.

49. He, J. Hu, H. Harrison, R., Tai, P.C. and Pan, Y.: Rule Generation for Protein
Secondary Structure Prediction with Support Vector Machines and Decision
Tree, IEEE Transactions on NanoBioscience, Vol. 5, No. 1, March 2006, pp.
46–53.

50. He, J. Hu, H. Harrison, R., Tai, P.C., Dong, Y. and Pan, Y : Rule Clustering and
Super rule Generation for Transmembrane Segments Prediction, Proceedings of
IEEE Computational Systems Bioinformatics Conference (CSB 2005), August
8–11, 2005, Califormia, USA, Poster, pp. 224–227.

51. Zhou, Z.-H. Rule extraction:using neural networks or for neural networks?
Journal of Computer Science and Technology, 2004, 19(2), 249–253.

Subject Index

Accent in speech, 205

definition and usage, 205

machine learning experiments results,
213

methodology, 211
recognition and common patterns,

206
rule extraction from SVM, 209

rule extraction results, 218

Accent recognition, 206
accent characteristics, 206

ASR, 207

MFCCs, 208

AdviceMisfit in RL, 69, 70
Algorithm, 92

advantage, 104

convergence properties, 93
for deriving ellipsoid, 113

for deriving set of rules, 121

for incremental SVM learning, 104
Analogy and explanation, 5

ANNs, see Artificial Neural
Networks

AR mining algorithm, 240

ARCS, see Association rule clustering
system

Artificial intelligence (AI), 6, 8

abduction in, 8
and explanation, 6

in medicine, 85

Artificial neural networks (ANNs), 3
and explanation, 4

and SVM in credit scoring, 37

for share movements, 185

stock returns, 186

Association rule (AR), 240

associative classification in, 240

based method in SVM rule
extraction, 238

clustering system, 244

Authorship identification and rule
extraction from SVM techniques,
18

Automatic speech recognition (ASR),
205

application, 205

training, 208

Bag-of words (BOW) technique, 14, 16,
25

Basel II Capital Accord in credit
scoring, 53

Bioinformatics, SVM role, 228

Biological experiments by SVM DT and
SVM PCPAR, 229

Black box model of SVM, 228

Black-box classifiers, 84

for regulatory requirements reduction,
84

patient treatment, influence on, 85

Breadth-first spanning tree
(SVMT-rule), 135, 142, 143

and DFS SVMT-rule, 159

in cancer diagnosis, 156

Burges algorithm in SVMs, 175

254 Subject Index

C4.5 and C5.0 tree-induction
algorithm, 230

C4.5 tree induction techniques, 46, 230

CAD, see Computer-aided
diagnosis

Cancer diagnosis, BFS SVMT-rule
technique in, 156

Capital asset pricing method (CAPM),
185

CART tree induction techniques, 46

Causal explanations, 4, 7

Centroid for error-tolerant rules, 245

CFCM algorithm, numerical
estimation, 178

CFCM and Fixed Point algorithms,
comparison, 179

Class bias ratio (CBR), 152

2-Class SVM tree, 137

testing algorithm, 144

Classification based on associations
(CBA), 241

Cleveland Heart Disease and CFCM
prototypes, 179

Cleveland heart, for rule extraction
algorithm, 96

Clustering algorithm, 121

determine prototypes, 121

Clustering appropriate coefficients f(k)
context determination, 178

Clustering vectors in prototype
selection, 176

CMAR, see Classification based on
multiple association rules

Code availability in SVM rule
extraction techniques, 53

Comparable firm analysis, for IPOs, 187

Computational biology, SVM role, 228

Computer-aided diagnosis

FDA and pre-market approval, 85

for automated interpretation, 85

full-blown clinical trial, 85

lung CAD dataset, 96, 99

Conditional Fuzzy C-Means (CFCM),
177

Conditional probability and
explanation, 4, 5

Corruption Perceptions Index, SOMs
usage, 57

CPAR, see Classification based on
predictive association rules

Credit scoring application, 53
in Basel II and model

classification, 53, 54
Cross-industry IPOs, 188

leave-one-out cross-validation results,
194

Ripper rules, 195
See5 confusion matrix for, 195

C SuperRule
generation, 244, 245
pseudo-code, 246

Cyan rectangles, 89

Data mining capabilities of SVMs, 11
DataMisfit, in reinforcement learning,

69
Decision tree (DT), 215, 228

analysis of SVM, 215
induction techniques, 45
learning and advantages, 230

Decompositional rule extraction
techniques, 12, 39–41

Depth-first spanning tree, for SVM tree
construction, 142, 143, 154

Discounted cash flow (DCF)
analysis, for IPOs, 187

DT and SVM DT rules,
comparision, 233

Eclectic rule extraction techniques,
12

Encoding schemes used in protein
structure prediction, 232

Explanation
and analogy, 5
and generalization, 6
best explanation identification, 8
casual and step-wise explanations, 7
definition, 3
theoretical approaches, 4
types, 4

Explanation capability of symbolic
artificial intelligence, 9

Explanation-based generalization in
rule extraction, 6

and stages, 7
components, 7

Subject Index 255

Extraction steps of MFCCs, 208

Fine Needle Aspiration (FNA), 98
First order inductive learner (FOIL),

240
Fixed Point and CFCM algorithms,

comparison, 179
FOIL Gain, 240
Food and Drug Administration (FDA),

and CAD systems, 85
Fraud detection

method, 158
rule extraction statistics for, 157
use SVMT-Rule rule extraction, 158

Fu’s algorithm, 146
Fung, G, algorithm by, 44
Fuzzy logic algorithms, 126
Fuzzy rules (F-rules), 164, 165

Gaussian kernel, 111
Gestalt theory in psychology, 6
Gram-Schmidt orthogonalization, 116
Group rule sets, average rule accuracy

comparison, 237

Hyper-rectangle rule extraction (HRE)
technique, 136

from 2-class SVM, 147
from one-class SVM, 150

Hyperplane-based classifiers
rule extraction from, 87
support vector machines for, 83

Incremental approach in credit scoring,
57

Inductive Logic Programming (ILP), 74
skill transfer, 75

Information retrieval system in rule
extraction techniques, 14, 15

Initial public offerings, 185
as case study, 186
computer software and services, 189
cross-industry, 188
representation, 191
single-industry, 192
valuation of, 187

Interval-type rule, for support
vector machines (SVM), 123

Inverse classification for credit scoring,
56

Ionosphere
datasets and CFCM prototypes, 179
for rule extraction algorithm, 96

IPO, see Initial public offerings

J48 and JRip analysis of SVM, 215
J48, JRip analyses, rules for, 221
JRip Improved analysis, 221

k-nearest neighbor (kNN) learning
algorithm, 174

Kernel reduction methods, 167, 232
Knowledge expression, 111
Knowledge fusion problem in SVM rule

extraction techniques, 51
Knowledge-Based Support Vector

Regression (KBKR), 70
Knowledge-based SVMS and rule

extraction, 101

Laplace accuracy, CPAR, 241
Learning process and explanation-based

generalization, 7
Least squares SVM’s, rule

extraction for, 88
Linear dependency removal from SVM,

168
Linear fisher discriminant (LFD), rule

extraction for, 88
Linguistic interpretation of F-rules, 165
Log-odds, 231
Logic association rules for SVMT rule

extraction, 145
LOO accuracy comparison for machine

learning method, 216
Lung CAD algorithm, 99
LV-SVMs, see Least Squares SVM’s

Machine learning experiments, 212, 213
results, 213
technologies, 227

Mc-Nemar Test, 188, 195
Mean accuracy and AUC of machine

learning system, 220
Mel Frequency Cepstral Coefficients,

208
Methodology of accent recognition

machine learning experiments, 212
rule extraction and evaluation, 213
speech data and extraction, 211

256 Subject Index

MFCCs, see Mel Frequency
Cepstral Coefficients

ModelSize, in reinforcement
learning, 69

Multidimensional Scaling (MDS)
algorithm, 171

NASDAQ computer index, 189, 191
Nearest Neighbor Rules (PN-rules), 166
Neural networks (NNs), 165, 228

and support vector machine (SVM),
109

for protein structure prediction, 227
rule extraction for, 6
rule set in, 13

Nuclear Magnetic Resonance (NMR),
235

Nunez’s extraction method from SVM,
136

OB, see Orthogonal and Blosum62
matrix

One-versus rest technique, for SVM
decision function determination,
127

Optimal rule, 90, 91
Orthogonal and Blosum62 matrix, 231,

232, 235
Orthonormal vectors, 113, 116

determine next axis vertex procedure,
115

Pattern based classification with predic-
tive association rules (PCPAR),
229, 239, 241, 242

algorithm, 241
classification, 241

Pedagogical rule extraction from SVMs,
17, 39–41

Phonemes in speech, 209
Pima Indians Diabetes and CFCM

prototypes, 179
PMA, see Pre-market approval
Policy-transfer rules in RL, 72
Position-specific scoring matrix, 235
Post-pruning method for transmem-

brane segments prediction,
244

Pre-market approval, for clinical trial,
85

Precision in machine learning
experiments, 212

Predictive association rules
classification, 239–241

Predictive rule mining (PRM), 240
PRM algorithm, 240
Probability of default (PD), 54
Probability theory and explanation, 5
Projection matrix, 116
Propositional logical rules and

prototype-based rules, 163
Protein structure prediction, 227, 245

amino acid sequence, 245
by SVM DT, 231, 234

Prototype algorithms, 174
Prototype selection, methods, 176
Prototype threshold rules (PT-rules),

165, 166
Prototype vectors, 136

and support vectors, 110
for ellipsoid, 136

Prototype-based rules (P-rules) and
SVMs

advantages, 163, 164
informative prototypes, 174
limitations, 174
types, 165, 166

Proximal SVMs (PSVM), rule
extraction for, 88

PSSM, see Position-specific
scoring matrix

PSSM SEQ (7 group rule sets), rule
number, 237

Q-functions and learning in RL,
68–71

Quadratic programming (QP), 36
and SVM, 168

Radial basis function networks (RBFN),
133

Rapid back propagation, 193
performance, 201
use of Rulex, 193

RBP, see Rapid Back Propagation
Recall in machine learning experiments,

212

Subject Index 257

Reinforcement learning (RL), 67
advice taking, 68
rule extraction, 71
SVMs in, 69

Relational reinforcement learning
(RRL), 81

Relevance Vector Machines in
SVM+Prototypes algorithm, 43

Removed linearly-dependent
support vectors (RLSV) in
SVM, 168, 171

Re-RX rule extraction technique, 48
basic idea, 48
in credit scoring application, 49
outline of, 49

Ripper rule learner, for classification
rules induction, 193

Ripper technique and rule set in SVM
rule extraction, 45, 54, 55

RoboCup project, and transfer learning
techniques, 76

and skill-transfer experiments, 79
policy-transfer experiments, 78

ROC curves, accuracy and area, 214,
220, 221

RS-SVM in SVs number reduction,
171

RS126 data set in protein structure
prediction, 231

Rule extraction from support vector
machine (RulExSVM), 136

Rule extraction, 210, 228
algorithm, 92, 127, 210

effectiveness, 96
and evaluation, 213
and knowledge-based SVMS,

101, 102
by JRip, 219
for neural networks, 84, 109

extraction methods, 110
for regulatory experiments

reduction, 86
from hyperplane classifiers, 87
from reinforcement learning, 71

policy transfer rules, 72
skill transfer rules, 73, 75

from SVM, 135, 228, 229
SVM DT, 228
SVM PCPAR, 229

from SVM for accent
objectives, 211
SVM, 209

from SVM techniques, 3
alternatives to, 56
and authorship identification, 18
and boosting trials, 20, 24
and emotion classification

problem, 20, 24
and topic detection problem, 19
classification and regression tree, 23
classification system, 26
evaluation, 40
generalisation improvement and

data mining capabilities, 11
information retrieval, 14
SVM+Prototypes method, 42
translucency, 11–13
transparency, 10
usages, 36, 37
user explanation capability, 9, 10

in transfer learning, 67
methods

for neural networks, 248
from SVM, 228

point coverage maximization
criteria, 91

results, 213
use of support vectors, 110
volume maximization criteria, 90

Rule induction techniques, 45
Rule mining

algorithms, 239
concepts, 239

Rule traces uses in symbolic AI, 9, 10

Schölkopf algorithm, 174
Securities and Exchange Commission

(SEC), 186
See5/C5, 193

for data analysis, 193
for single-industry IPOs, 198

Self Organizing Maps (SOMs), usages
in credit scoring, 56

Sensitivity analysis and inverse
classification in credit
scoring, 56

Similarity-Based Methods (SBM)
framework, 164

258 Subject Index

Single-industry IPOs
attribute summary of, 192
leave-one-out results for, 197
rule extraction from SVM results for,

196
Skill transfer algorithm in

pseudocode, 76
Skill transfer rules in RL, 75
Software verification in SVM

technique, 10
Speech accent classification

data and extraction, 211
recognition systems, 210
signal and applications, 207

SRM, see Structural risk
minimization

Statistical learning theory, 109
Step-wise explanations, 4, 7
Structural risk minimization, 229
Super rule generation and rule

clustering, 244, 246
Support vector clustering (SVC), 136
Support vector machines (SVMs), 209,

227–229, 247, 248
algorithm clustering, 84
and ANN, comparison of, 37
and decision tree combination, 230
and quadratic programming, 168
and SVM-rule, 157
and SVMT rule, 156, 159
classification, 126
confusion matrix for, 194
error analysis, 223
focus, 135
for hyperplane-based classifiers, 83
for protein structure prediction, 227
for share movements, 185
hyper-rectangle rule extraction

(HRE), 136
in reinforcement learning, 69
in rule extraction, 3, 16, 49

alternatives to, 56
black box model, regression and

code availability, 53
classification scheme, 38
for speech accent classification, 205,

209
high dimensional data and

knowledge fusion problem, 51

rule expressiveness, 49
SVM model, 37
SVM+prototypes methods, 42
usages, 36, 37

interval-type rule for, 123
learning techniques, 22
linear algorithm implementation, 192
linear separation, 103
neuronal networks, 109, 191
one-versus-rest method for, 127
optimization, 35, 169
performance, 214
problems solving classification, 230
properties, 110, 229
statistical learning theory, 109
ten-fold cross validation, 96
training and prediction, 188

Support vectors
and prototype vectors, 110
and RulExSVM, 136
ellipsoid determination, 113
for classification task and knowledge

expression, 111
for unitary vectors selection, 123
optimal number of, 171
procedure

determine first axis vertex, 114, 123
determine next axis vertex, 115,

124
determine second vertex, 115

removal of, 169
separation surface, 119
update prototype procedure, 115

SVM logarithm, cost function and mean
accuracy dependence, 172, 173

SVM rule extraction techniques, 9, 36,
52

alternatives to, 56
black box model, regression and code

availability, 53
classification scheme, 38
for speech accent classification, 205,

209
high dimensional data and knowledge

fusion problem, 51
rule expressiveness, 49
SVM model, 37
SVM+Prototypes method, 42
usages, 36, 37

Subject Index 259

SVM trees-rule
algorithms, 143
and SVM rule, 136, 156, 159
and SVMT rule, 136
benefits, 135
2-class SVM tree, 137

class imbalance and overlap,
coping with, 145

testing algorithm, 144
data partitioning method, 140
datasets classification, 135
extraction

logic association rules, 145
SVM nodes interpolation, 146

for face membership authentication
application, 137

for traditional computational
intelligence, 136

fraud detection using, 158
hyper-plane, 153, 155
one-class SVM for, 152
procedure, 151
spanning, 141
use of synthetic dataset, 152

SVM+Prototypes method in rule
extraction, 42, 43

SVM DT (SVM with decision trees),
227

and DT, average number of rules, 233
logical rules, 233
logical rules and difference, 237, 238
method, 231
protein structure prediction, 231

SVM PCPAR, 242
decode merge process, 243
method, 229
rule generation, 242

Symbolic artificial intelligence
system, 9

Takagi Sugeno (TS) fuzzy inference
system, 167

Ten-fold cross validation, for SVM
parameter, 96

Text classification, pre-processing in, 16
Text extraction in text classification, 16
TM proteins prediction by SVM DT,

235
encoding schemes used, 235
group rule sets used, 236

Topology-preserving maps, see Self
Organizing Maps (SOMs)

Transfer learning technique in rule
extraction

advice-taking, 68
case study, 76
goal, 68
rule extraction in reinforcement

learning, 71
SVMs in reinforcement learning,

69–71
Translucency in rule extraction

techniques, 39
and rule quality, 13
in neural network, 12

Transmembrane (TM) proteins, 235
Transparency in SVM technique, 10
Trees from J48 analyses, 216
Trepan rule extraction algorithm, 47

advantages and disadvantages, 47
trepan tree rule set, 54

Unitary vector, 114
linear subspace usage, 116

Vapnik chervonenkis (VC), 229
Venture capitalists, IPOs use by, 186

WDBC, see Wisconsin Diagnosis Breast
Cancer

Wet experiments, 248
White box, 224
Wisconsin Diagnosis Breast

Cancer, 96
fine needle aspiration (FNA), 98
for rule extraction algorithm, 96
LP-SVM algorithm, 98

Author Index

Altman, D.G., 188, 195

Andrews, R., 8–13, 26, 38, 41, 109, 110,
128, 186, 193, 248

Barakat, N., 13, 17, 41
Berkhin, P., 17
Berthold, M., 126

Blake, C.L., 127
Burges, C., 169, 175

Cawsey, A., 14
Chawla, S., 244

Chen, Y., 167
Chiu, T., 17
Clouse, J., 69

Cohen, W.W., 193
Cortes, C., 109

Craven, M., 11–13, 109, 110
Craven, M.W., 40, 210
Cristianini, N., 109

Davis, R., 9

Diederich, J., 13, 17, 41, 51
Domingos, P., 126
Downs, T., 168, 171

Driessens, K., 69
Duda, R., 118, 128, 130
Dzeroski, S., 69

Frank, E., 29, 109, 126, 128

Fu, X., 136
Fung, G., 41, 43, 53

Gallant, S., 9
Gardner, M.J., 188, 195
Geva, 193
Gilbert, N., 9
Golea, M., 12, 13
Grochowski, M., 174
Guyon, I., 131

Han, J., 240
Hand, D., 126
Hayward, R., 27
Hu, H., 232, 238
Hua, S., 231, 232

Ibbotson, R.G., 187, 199

Jaffe, J.F., 187, 199
Jankowski, N., 174
Joachims, T., 23, 188, 192, 194
Jones, D.T., 235

Kaufman, L., 118, 131
Kim, H., 231, 232, 235
Kohonen, T., 56
Krishnan, 228
Kwok, J.T., 171

�Lȩski, 177
Lin, S., 228
Litt, A., 3–5, 8

Ma, J., 127
Martens, D., 5, 9
Martinez, T.R., 174

262 Author Index

Merz, C.J., 127
Mitchell, T., 126
Mitra, S., 109, 128
Mitsdorffer, R., 186
Möller, S., 235
Moonchul, 187, 199
Moore, J.D., 10
Morton, K., 5, 28, 84, 135, 206

Núnez, H., 110, 130, 133

Pedrycz, W., 177

Quinlan, J.R., 193

Refenes, A.N., 186
Ritter, R.J., 187, 188, 199
Rost, B., 231, 235
Rousseeuw, P. J., 118, 131

Salzberg, S., 126, 127
Sander, C., 231
Schölkopf, B., 175, 179
Shavlik, J.W., 11–13, 40, 109, 110, 210
Shawe-Taylor, J., 109
Stone, P., 76, 77
Strang, G., 112, 116
Sutton, R., 76, 77
Swartout, W.R., 10

Taskar, B., 11, 27, 28
Tatham, M., 206
Thagard, P., 3–5, 8
Tickle, A., 11–13, 26, 41, 109
Tipping, M., 43
Torrey, L., 72, 73, 75–77
Tsang, I.W., 171

Utgoff, P., 69

Van Gestel, T., 58
Vapnik, V., 109, 127
Vapnik V.N., 34

Wang, J.Z., 167
Wang, W., 240
Wilson, D.R., 174
Witten, I.H., 29, 109, 126, 128

Yang, J., 240
Yin, X., 240

Zapranis, A.D., 186
Zhang, Y., 136
Zhao, Y., 127
Zhou, Z., 128
Zhou, Z.-H., 248

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

