

Lecture Notes in Computer Science 4764
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Pekka Abrahamsson Nathan Baddoo
Tiziana Margaria Richard Messnarz (Eds.)

Software Process
Improvement

14th European Conference, EuroSPI 2007
Potsdam, Germany, September 26-28, 2007
Proceedings

13

Volume Editors

Pekka Abrahamsson
VTT Technical Research Centre of Finland
E-mail: Pekka.Abrahamsson@vtt.fi

Nathan Baddoo
University of Hertfordshire, UK
E-mail: N.Baddoo@herts.ac.uk

Tiziana Margaria
University of Potsdam, Germany
E-mail: margaria@cs.uni-potsdam.de

Richard Messnarz
ISCN, Austria
E-mail: rmess@iscn.com

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, K.6, K.4.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-74765-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74765-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12167821 06/3180 5 4 3 2 1 0

Preface

This textbook is intended for use by SPI (software process improvement) man-
agers and researchers, quality managers, and experienced project and research
managers. The papers constitute the research proceedings of the 14th EuroSPI
(European Software Process Improvement, www.eurospi.net) conference in Pots-
dam, September 26-28, 2007, Germany. Conferences in this series have been held
since 1994 in Dublin, 1995 in Vienna (Austria), 1997 in Budapest (Hungary),
1998 in Gothenburg (Sweden), 1999 in Pori (Finland), 2000 in Copenhagen
(Denmark), 2001 in Limerick (Ireland), 2002 in Nuremberg (Germany), 2003
in Graz (Austria), 2004 in Trondheim (Norway), 2005 in Budapest (Hungary),
and 2006 in Joensuu (Finland). EuroSPI established an experience library (li-
brary.eurospi.net) which will be continuously extended over the next few years
and will be made available to all attendees. EuroSPI also established an umbrella
initiative for establishing a European Qualification Network in which different
SPINs and national initiatives join mutually beneficial collaborations (EQN -
EU Leonardo a Vinci network project).

With a general assembly during October 15–16, 2007 through EuroSPI part-
ners and networks, in collaboration with the European Union (supported by the
EU Leonardo da Vinci Programme), a European certification association has
been created for the IT and services sector to offer SPI knowledge and certifi-
cates to industry, establishing close knowledge transfer links between research
and industry. The biggest value of EuroSPI lies in its function as a European
knowledge and experience exchange mechanism for SPI know-how between re-
search institutions and industry.

September 2007 Richard Messnarz

Organization

Organization Committee

EuroSPI 2007 was organized by the EuroSPI partnership (www.eurospi.net),
internationally coordinated by ISCN, and locally supported by the University of
Potsdam.

Program Committee

Conference Chair Richard Messnarz (ISCN, IRL)
Scientific Program Chair Pekka Abrahamsson (University of Oulu,

Finland)
Scientific Program Chair Nathan Baddoo (University of Hertfordshire,

UK)
Scientific Program Chair Tiziana Margaria (University of Potsdam,

Germany)
Industrial Program Chair Jorn Johansen (DELTA, Denmark)
Industrial Program Chair Mads Christiansen (DELTA, Denmark)
Industrial Program Chair Nils Brede Moe (SINTEF, Norway)
Industrial Program Chair Risto Nevalainen (STTF, Finland)
Tutorial Chair Richard Messnarz (ISCN, Ireland)
Organizing Chair Stephan Goericke (ISQI, Germany)
Organizing Chair Adrienne Clarke (ISCN, Ireland)

Reviewers

Abrahamsson Pekka, VTT Electronics, Finland
Ambriola Vincenzo, Universita di Pisa, Italy
Aurum Aybke, University of New South Wales, Australia
Baddoo Nathan, University of Hertfordshire, UK
Biffl Stefan, Technische Universität Wien, Austria
Biro Miklos, Corvinus University of Budapest, Hungary
Ciolkowski Marcus, TU Kaiserslautern, Germany
Dalcher Darren, School of Computing Science, UK
Daughtrey Taz H., James Madison University, USA
Desouza Kevin C., University of Illinois at Chicago, USA
Dingsoyr Torgeir, SINTEF IKT, Norway
Duncan Howard, Dublin City University, Ireland
Dyba Tore, SINTEF Telecom and Informatics, Norway
Gorschek Tony, Blekinge Institute of Technology, Sweden

VIII Organization

Gresse Von Wangenheim Christiane, Universidade do Vale do Itajai, Brazil
Landes Dieter, Fachhochschule Coburg, Germany
Mcquaid Patricia, California Polytechnic State University, USA
Mueller Matthias, EnBW AG, Germany
Muench Juergen, Fraunhofer IESE, Germany
Oivo Markku, University of Oulu, Finland
Pries-Heje Jan, IT University of Copenhagen, Denmark
Richardson Ita, University of Limerick, Ireland
Ruhe Guenther, University of Calgary, Canada

Table of Contents

Introduction

Software Process Improvement – EuroSPI 2007 Conference 1
Pekka Abrahamsson, Nathan Baddoo, Margaria Tiziana, and
Richard Messnarz

Enforcement, Alignment, Tailoring

Tailoring and Introduction of the Rational Unified Process 7
Geir Kjetil Hanssen, Finn Olav Bjørnson, and Hans Westerheim

Maintaining a Large Process Model Aligned with a Process Standard:
An Industrial Example . 19

Mart́ın Soto and Jürgen Münch

Synergies Between the Common Criteria and Process Improvement 31
Miklós Biró and Bálint Molnár

Focus on SME Issues

Determining Practice Achievement in Project Management Using a
Two-Phase Questionnaire on Small and Medium Enterprises 46

Garcia Ivan, Calvo-Manzano Jose A., Cuevas Gonzalo, and
San Feliu Tomas

Using Practice Outcome Areas to Understand Perceived Value of
CMMI Specific Practices for SMEs . 59

Xi Chen and Mark Staples

SPI with Lightweight Software Process Modeling in a Small Software
Company . 71

Paula Savolainen, Hanna-Miina Sihvonen, and Jarmo J. Ahonen

Improvement Analysis and Empirical Studies

A Practitioner Experiment in Understanding Software Process
Improvement Using Systems Modular Analysis . 82

Narciso Cerpa, Javier Pereira, and June Verner

Organizing Improvement Work: A Longitudinal Case 94
Jan Pries-Heje and Malene M. Krohn

X Table of Contents

An Experiment with a Release Planning Method for Web Application
Development . 106

Sven Ziemer and Ilaria Canova Calori

New Avenues of SPI

Defining a Legal Risk Management Strategy: Process, Legal Risk and
Lifecycle . 118

Ricardo J. Rejas-Muslera, Juan.J. Cuadrado-Gallego, and
Daniel Rodriguez

iCharts: Charts for Software Process Improvement Value
Management . 124

Román López-Cortijo, Javier Garćıa Guzmán, and
Antonio Amescua Seco

Organizational Learning Through Project Postmortem Reviews – An
Explorative Case Study . 136

Torgeir Dingsøyr, Nils Brede Moe, Joost Schalken, and Tor St̊alhane

SPI Methodologies

Modelling Software Processes as Human-Centered Adaptive Work
Systems . 148

Levent Yilmaz

Performance Comparision of Software Complexity Metrics in an Open
Source Project . 160

Min Zhang and Nathan Baddoo

A Methodology for Identifying Critical Success Factors That Influence
Software Process Improvement Initiatives: An Application in the
Brazilian Software Industry . 175

Mariano Montoni and Ana Regina Rocha

Testing and Reliability

Quality Impact of Introducing Component-Level Test Automation and
Test-Driven Development . 187

Lars-Ola Damm and Lars Lundberg

The Impact of Test-Driven Development on Software Development
Productivity — An Empirical Study . 200

Lech Madeyski and �Lukasz Sza�la

Table of Contents XI

Investigating the Software Fault Profile of Industrial Projects to
Determine Process Improvement Areas: An Empirical Study 212

Jon Arvid Børretzen and Jostein Dyre-Hansen

Author Index . 225

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 1–6, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Software Process Improvement
– EuroSPI 2007 Conference

Pekka Abrahamsson1, Nathan Baddoo2, Margaria Tiziana3,
and Richard Messnarz4

1 VTT Technical Resarch Centre of Finland, P.O. Box 1100, FIN-90571, Oulu, Finland
2 University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK

3 University of Potsdam, August Bebel Straβe 89, 14482 Potsdam, Germany
4 EuroSPI, c/o ISCN LTD, Bray, Co. Wicklow, Ireland

http://www.eurospi.net

Abstract. This book constitutes the refereed research proceeding of the 14th
European Software Process Improvement Conference, EuroSPI 2007, held in
Potsdam, Germany in September 2007. The 18 revised full papers presented
were carefully reviewed and selected from 60 submissions. The papers are
organized in topical sections on agile methods, software process improvement
studies, improvement methods, engineering and development, and quality and
knowledge concepts.

1 EuroSPI Overview

EuroSPI is a partnership of large Scandinavian research companies and experience
networks (SINTEF, DELTA,STTF), the ASQF as a large German quality association,
the American Society for Quality, and ISCN as the co-coordinating partner. EuroSPI
collabrates with a large number of SPINs (Software Process Improvement Network)
in Europe.

EuroSPI conferences present and discuss results from software process
improvement (SPI) projects in industry and research, focusing on the benefits gained
and the criteria for success. Leading European universities, research centers, and
industry are contributing to and participating in this event. This year's event is the
14th of a series of conferences to which international researchers contribute their
lessons learned and share their knowledge as they work towards the next higher level
of software management professionalism.

The greatest value of EuroSPI lies in its function as a European knowledge and
experience exchange mechanism for Software Process Improvement and Innovation of
successful software product and service development. EuroSPI aims at forming an
exciting forum where researchers, industrial managers and professionals meet to exchange
experiences and ideas and fertilize the grounds for new developments and improvements.

1.1 Board Members

EuroSPI Board Members represent centres or networks of SPI excellence having large
experience with SPI. The board members are collaborating with different European
SPINS (Software Process Improvement Networks).

2 P. Abrahamsson et al.

The following six organisations have been members of the conference board in the
last 8 years:

ASQ, http://www.asq.org
ASQF, http://www.asqf.de
DELTA, http://www.delta.dk
ISCN, http://www.iscn.com
SINTEF, http://www.sintef.no
STTF, http://www.sttf.fi

1.2 EuroSPI Scientific Programme Committee

EuroSPI established an international committee of selected well known experts in SPI
who are willing to be mentioned in the program and to review a set of papers each year.
The list below represents the research program committee members. EuroSPI also has a
separate industrial program committee responsible for the industry/experience
contributions.

ABRAHAMSSON Pekka, VTT Electronics, FINLAND
AMBRIOLA Vincenzo, Universita di Pisa, ITALY
AURUM Aybke, University of New South Wales, AUSTRALIA
BADDOO Nathan, University of Hertfordshire, UK
BIFFL Stefan, Technische Universitt Wien, AUSTRIA
BIRO Miklos, Corvinus University of Budapest, Hungary
CIOLKOWSKI Marcus, TU Kaiserslautern, GERMANY
DALCHER Darren, School of Computing Science, UK
DAUGHTREY Taz H., James Madison University, USA
DESOUZA Kevin C., University of Illinois at Chicago, USA
DINGSOYR Torgeir, SINTEF IKT, NORWAY
DUNCAN Howard, Dublin City University, IRELAND
DYBA Tore, SINTEF Telecom and Informatics, NORWAY
GORSCHEK Tony, Blekinge Institute of Technology, SWEDEN
GRESSE VON WANGENHEIM Christiane, Universidade do Vale do Itajai,
BRAZIL
LANDES Dieter, Fachhochschule Coburg, GERMANY
MCQUAID Patricia, California Polytechnic State University, USA
MÜLLER Matthias, EnBW AG, Germany
MÜNCH Juergen, Fraunhofer IESE, GERMANY
OIVO Markku, University of Oulu, FINLAND
PRIES-HEJE Jan, IT University of Copenhagen, DENMARK
RICHARDSON Ita, University of Limerick, IRELAND
RUHE Guenther, University of Calgary, CANADA

1.3 EuroSPI Scientific Chairs

For EuroSPI 2007 the conference board decided to appoint three research programme
committee chairs, Dr. Pekka Abrahamsson, Dr. Nathan Baddoo and Dr. Tiziana
Margaria, who all have an outstanding SPI experience record.

 Software Process Improvement – EuroSPI 2007 Conference 3

All four chairs, the general and the research chairs, have a quite complementary
and interesting profile. Dr Messnarz works in close collaboration with Austrian
research institutions (universities of applied sciences) and large German automotive
companies. Dr. Pekka Abrahamsson is a research professor at VTT (a leading Finnish
research centre) with an outstanding SPI experience record in SMEs and large
companies in the telecom field. Dr. Nathan Baddoo is a professor at the University of
Hertfordshire, UK, and he has published scientific articles about the human factors in
SPI and has performed studiers at major European organisations applying motivation
techniques in SPI. And finally, Dr. Tiziana Margaria, is a professor at the University
of Potsdam and she is a program chair and co-chair in various international
conferences concerning electronics and software design. The experience portfolio of
the chairs covers different market segments, different sizes of organisations, and
different SPI approaches.

This strengthens then fundamental principal of EuroSPI to cover a variety of
different markets, experiences, and approaches.

Dr Richard Messnarz
General Chair of EuroSPI
ISCN, Ireland and Austria
rmess@iscn.com

Dr. Pekka Abrahamsson
EuroSPI Scientific Programme Committee Chair
VTT Technical Research Centre of Finland
Pekka.Abrahamsson@vtt.fi

Dr. Nathan Baddoo
EuroSPI Scientific Programme Committee Chair
University of Hertfordshire, UK
N.Baddoo@herts.ac.uk

Dr. Tiziana Margaria
EuroSPI Scientific Programme Committee Chair
University of Potsdam, Germany
margaria@cs.uni-potsdam.de

2 How to Read the Proceedings

Since its beginning in 1994 in Dublin, the EuroSPI initiative outlines that there is not a
single silver bullet to solve SPI issues but you need to understand a combination of

4 P. Abrahamsson et al.

different SPI methods and approaches to achieve concrete benefits. Therefore each
proceeding covers a variety of different topics and at the conference we discuss potential
synergies and combined use of such methods and approaches. This proceeding contains
selected research papers for 6 topics each having three research papers:

Section I: Enforcement, alignment, tailoring
Section II: Focus on SME issues
Section III: Improvement analysis and empirical studies
Section IV: New avenues on software process improvement
Section V: Software process improvement methodologies
Section VI: Testing and reliability.

Each of the section will be briefly outlined in the following.

2.1 Research Contents

Section I presents three studies addressing three different use cases of process models
and standards in a software organization. Hanssen et al. perform a systematic
literature review to find out what is the current state-of-the-art research in introducing
and tailoring Rational Unified Process (RUP) in different industrial contexts. They
conclude that most of the studies are anecdotal and they actually address the effects of
RUP rather than the tailoring aspect. Soto and Münch address the alignment of
process standards evolving in parallel to derived process models. They use an actual
industrial example to illustrate whether a strongly tailored model can still be aligned
with its parent standard and to assess the potential cost of such an alignment. The
paper by Biro and Molnár attempts to discover the multifaceted synergies discovered
between the ISO/IEC 15408 (Common Criteria) IT Security Evaluation standard,
software quality evaluation standards and the Capability Maturity Model Integration
(CMMI). They demonstrate the use of their findings by real world case studies.

It is well acknowledged that majority of the software companies globally are quite
small in their size and volume. Papers in section II focus on issues dealing with
processes of an SME organization. Garcia et al. help SME companies to discover
which of their project management practices are executed even if not document.
Based on the CMMI standard and a questionnaire study, they also point out issues
where these companies should focus their improvements. Chen and Staples argue that
it is critical to understand the business and practice needs of SMEs in order to
increase the relevance and benefits of software process improvement for SMEs. When
studying SMEs they place their analytical focus on practice outcomes. They find that
SMEs perceive most value for working on project-related outcomes, and for planning
and doing work on product-related outcomes. As an empirical conclusion, Chen and
Staples present a framework for categorization of project-related practices for further
study about CMMI and other SPI approaches. Savolainen et al. present a practical
approach to software process improvement in small organizations. Their approach is
validated by a case study in a small software company. Their approach helped the

 CMMI is registered in the U.S. Patent & Trademark Office by Carnegie Mellon University.

 Software Process Improvement – EuroSPI 2007 Conference 5

company independently implement quite significant improvements for identified
problems.

The papers in section III present empirical studies on improving software
processes. Cerpa et al. argue that SPI models are difficult to understand because they
lack visual representations relating concepts to text. They propose a Systems Modular
Analysis (SMA) as a graphical modelling approach to facilitate understanding of SPI
models. Based on a real world experiment, authors conclude that SMA significantly
improves understanding of the properties and structure of CMM-SW Level 2. Pries-
Heje and Krohn find find it problematic that software process improvement work is
not organized systematically. They summarize experiences from seven years of
improvement work at a company. They show empirically that different types of
improvement work requires different ways of organizing. As a pragmatically valid
conclusion, Pries-Heje and Krohn propose five ways of organizing for five types of
improvement work. Ziemer and Canova Calori have earlier developed a decision
modeling approach for analyzing requirements configuration trade-offs in time-
constrained web application development. Their method aims at bringing stakeholders
together to share knowledge and to decide on a configuration for the next release that
satisfies all stakeholders. In this paper they report results from an industrial
experiment where the method has been tried out with positive results.

The field of software process improvement quickly evolves and develops. Session
IV presents some new approaches to SPI. Rejas-Muslera et al. have noticed that
current software process improvement models do not properly include processes for
legal audits and more concretely legal risks management for each phase of the
software development lifecycle. Authors argue that this bears a significant risk since
the potential cost of an inadequate management of legal aspects can even contribute to
the failure of the project. Authors propose a process for managing legal risks by a
sequence of steps to be taken in each life-cycle phase. López-Cortijo et al. address an
important problem in the SPI field, namely, how to convince senior management to
sponor SPI initiatives. Authors introduce a concept SPI value management, which
enables benchmarking with successful histories by means of case studies. This is
supported by a technique to formalize the information enclosed in an SPI case study
providing an easy access to the relevant information of an SPI initiative. Dingsøyr et
al. approach software process improvement from the knowledge management
perspective. In their exploratory study, they try to improve organizational learning by
systematically reviewing the results of a series of project postmortem reviews.

The papers in section V present new approaches and methodologies to better
implement SPI in organizations. The paper from Levent Yilmaz illustrates, for
instance, that there is a need for a software process simulation framework that
represents not only technical activities, policies, and procedures, but also the
resources, preferences, and human factors, together with functional and social
organization and strategic management, all in unified and coherent terms. M. Zhang
et.al. describe in their paper how complexity metrics are used in open source
development projects to analyze specific situations, such as the relationship of
complexity and the number of faults in the components. The analysis based on the
CVS version control system of Eclipse JDT open source project and compared three
different complexity metrics to perform such an analysis. M. Montoni et.al. analyzed
critical success factors in SPI projects. The paper lists 25 major success criteria and

6 P. Abrahamsson et al.

statistically analyzed their importance in SPI projects. The result of the study shows
that certain success criteria are related to each other which needs to be considered in
the implementation of SPI programs.

The papers in section VI present new approaches and methods for testing and
reaching a high reliability of systems. Lars-Ola Damm et.al illustrate in their paper
experiences with using TDD (Test Driven Development) approaches in agile
development and how this positively impacted the quality of the systems and software
development based on fault statistics. Lech Madeyski et.al. additionally describe how
the TDD approach helps to increase the productivity in the development. And finally
the paper from Jon Arvid Børretzen et.al. describes how the analysis of faults (root
causes and their common cause) resulted in process improvement decisions and by
comparing previous and actual data the success of improvement actions is evaluated.

2.2 Recommended Further Reading

In [1] we integrated the proceedings of 3 EuroSPI conferences into one book which
was edited by 30 experts in Europe. In [2] you find the EuroSPI research proceeding
published by Springer and based on EuroSPI 2004. In [3] you find the EuroSPI
research proceeding published by Springer and based on EuroSPI 2005. In [4] you
find the most recent EuroSPI research proceeding published by Springer and based on
EuroSPI 2006.

References

1. Messnarz, R., Tully, C. (eds.): Better Software Practice for Business Benefit - Principles
and Experience. pages 409, IEEE Computer Society Press, Los Alamitos (September 1999)

2. Dingsøyr, T. (ed.): Software Process Improvement. LNCS, vol. 3281, p. 207. Springer,
Heidelberg (2004)

3. Richardson, I., Abrahamsson, P., Messnarz, R. (eds.): Software Process Improvement.
LNCS, vol. 3792, p. 213. Springer, Heidelberg (2005)

4. Richardson, I., Runeson, P., Messnarz, R. (eds.): Software Process Improvement. LNCS,
vol. 4257, pp. 11–13. Springer, Heidelberg (2006)

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 7–18, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Tailoring and Introduction of the Rational Unified
Process

Geir Kjetil Hanssen1,2, Finn Olav Bjørnson2, and Hans Westerheim1

1 SINTEF ICT, NO7465 Trondheim, Norway
2 NTNU/IDI, NO7491 Trondheim, Norway

ghanssen@sintef.no, bjornson@idi.ntnu.no,
hans.westerheim@sintef.no

Abstract. RUP is a comprehensive software development process framework
that has gained a lot of interest by the industry. One major challenge of taking
RUP into use is to tailor it to specific needs and then to introduce it into a
development organization. This study presents a review and a systematic
assembly of existing studies on the tailoring and introduction of RUP. From a
systematic search for study reports on this topic we found that most research is
anecdotal and focus on the effects of RUP itself. Only a few number of studies
address tailoring and introduction. We have found that tailoring RUP is a
considerable challenge by itself and that it must be closely related to existing
best practices. We see a tendency of turning from large complete process
frameworks towards smaller and more light-weight processes which may
impose a smoother transition from process model to process in use.

Keywords: software development process, method tailoring, method adoption,
rational unified process.

1 Introduction

As software development is a highly complex process; methodology support is a
prerequisite for the completion of a successful software development project. There
exist a wide variety of software development methodologies, spanning from heavy
and bureaucratic processes to light-weight and dynamic processes, lately agile
processes have gained a lot of interest both by the industry and academia. A more
mature direction within software development methodologies is the Unified
Process[1] (UP) and its commercial variant Rational Unified Process (RUP). There
exist no exact figures on how many organizations that have tried and use (R)UP – in
any variant; however an overview of experience reports from software engineering
conferences, books and magazine publications indicate a considerable interest in UP
and RUP. RUP is an extensive framework that is a collection of best practices
described as a structured collection of process components; activities (what to do and
how to do it), roles (by whom) and artifacts (what are the input and/or result of the
activities). RUP contains detailed descriptions of these components and how they
relate to each other. To establish structure, these components are organized in two
dimensions; first by phases from inception to elaboration and then by a set of
disciplines adhering to common SE activities. In addition, RUP is based on a few

8 G.K. Hanssen, F.O. Bjørnson, and H. Westerheim

basic values; it is architecture centric, it is use-case driven and it is an iterative and
incremental process. Having this completeness and complexity it is not intended to be
a silver bullet process for all development project situations – RUP is a framework
that must be tailored to the situation of use. It is an absolute necessity to do so to get
the intentional value from using RUP. Despite this indisputable interest, the total
amount of empirical studies on the adoption and introduction of RUP is surprisingly
low. A search for empirical studies identified only five studies that to some extent
explain tailoring and introduction of RUP. We separate clearly between simple
lessons-learned reports that don’t present information on context and study method
and those that present these details as well as findings, analysis and conclusions. This
leads to the aim of this paper: What do the software industry and the research
community know about the limitations, benefits, prerequisites and costs of tailoring
and introducing RUP? Thus, cost and benefit of RUP in use is outside the scope of
this paper. As RUP covers more or less all aspects of SE it may seem easy to take it
into use. However there are many challenges in doing so successfully. How do you
know which parts to keep, exclude or alter? Who should get involved in the process?
How much time does it take? How is the result to be taken into use? How do you
know that the result was good? To be able to answer such questions and to pinpoint
further research needs, at least in part, we have done a literature review of all existing
relevant studies on tailoring and introducing RUP - holding a minimum of
methodological quality. In addition, we extend this compiled overview with three case
studies of the introduction and use of RUP that the authors have done over the past
few years [2-5] thus bringing together all available empirical experience on the topic.
This paper first describes our research method, both for the literature review and for
our own case studies. Then, results are presented giving an overview of identified
experience reports. A discussion summarizes findings from the literature review and
own experiences giving a conclusion addressing the research aim of this paper.

2 Background: Method Tailoring

There exists a set of guidelines for tailoring and adoption of RUP; one book that
specifically targets the issue [6] and one book that covers the issue to some detail [7].
Additionally there exists a guideline documented through a website [8]. In addition
there are some guidance in the RUP documentation itself [4] or RUP-related books,
however these guidelines tends to be superficial. Despite the existence of these
guidelines the authors have not been able to find any experience reports evaluating
their outcome and suitability. On the other hand, there exist a set of experience reports
addressing tailoring and adoption of RUP done in other ways. These experience
reports are summarized and analyzed later in this paper. The term methodology is
defined as "A body of methods, rules, and postulates employed by a discipline: a
particular procedure or set of procedures" by the Merriam-Webster dictionary [9].
Basically, a methodology describes how someone, e.g. an organization performs a
task, e.g. software development. In our context we talk about methodologies for
running projects with a defined customer having more or less defined goals initially.

The process of adapting RUP can possibly take many forms. IBM Rational, the
provider of RUP has defined the Process Engineering Process (PEP) [8]. This is a

 Tailoring and Introduction of the Rational Unified Process 9

comprehensive adaptation process requiring a fairly big amount of resources (people
and time). This may very well be appropriate for larger companies, but for the small
ones this process may be too expensive. Adaptation of a framework, such as RUP, can
take one of (at least) three approaches. The first is to do it in one step, for each
project, thus representing a heavy job in each case. This can be justified for large
projects. This approach may be called situational method engineering, as defined by
ter Hoefstede and Verhoef in [10]. The second approach is to do an up-front
adaptation producing a subset of the framework, still being a framework, but now
tuned to the organizations general characteristics (technology, customers, domain,
traditions etc.). This is the intentional process of PEP and may be called method
engineering, as defined by Brinkkemper in [11]. The thirds approach is to first
identify and describe a set of recurring project types. Having knowledge of
characteristics and differences of these types, an adaptation is done for each type. No
matter which approach being used; in the last step, a final adaptation is done to each
case (project). Adapting RUP in practice means to decide on which process elements
to keep, remove, alter, add or merge. These decisions can be based on assumptions,
experience, goals and visions. It is the quality of this underlying knowledge and
experience that determines how good these decisions are. Having decided the content
and principles of a process it must be made available to the users – the project
team(s). Traditionally process descriptions have taken the form of voluminous printed
descriptions. Today the most common form is through web-based process guides,
RUP Online is such an example. In the case of RUP, IBM Rational provide a set of
software tools to assist the reengineering of the process elements of RUP to build a
coherent web based presentation of the result. Edwards et al. [12] emphasize the
importance of actively involving stakeholders in the process of tailoring situational
specific methods. This will both ensure that necessary detailed information becomes
available and affects the tailoring process and that the resulting process actually is
taken into use due to ownership and relevance. Various acceptance models such as
TAM, TAM2, PCI and others [13] may help to explain and underline the importance
of involving stakeholders that, after the tailoring, are going to use or be affected by
the resulting process. For example, stakeholder participation may affect the
Usefulness-construct (the extent to which the person thinks using the system will
enhance his or her job performance) and the Ease-of-use-construct (the extent to
which the person perceives using the system will be free of effort).

3 Method

In this chapter we first describe the study methods used in our own three studies –
each description is based on four parts: 1) a brief overview of the study context, 2)
study aim, 3) data collection procedures and 4) method for data analysis and finally,
in the last part of the chapter we present the method used to perform the literature
review.

Case study A: Context: Company A is a Norwegian software consultancy company
with 50 employees mainly developing software systems with heavy back-end logic
and often with a web front-end, typically portals. However, they also develop lighter
solutions with most emphasis on the front-end. All development is done in the form of

10 G.K. Hanssen, F.O. Bjørnson, and H. Westerheim

projects. The authors have followed A for a period of five years - having a varying
focus over these years; First we studied how A initially used RUP, out-of-the-box,
with no restrictions or guidelines. The study is reported in [3]. Secondly, we carried
out an action research project to follow A in an attempt to tailor RUP to a predefined
project type. The study is reported in [2]. Thirdly, and finally, we have carried out a
case study of a pilot project at A using a heavily downscaled variant of RUP
documented in the form of an internal Wiki-web. The results from this study are still
not published, however reported in this article.

Study aim: For the three studies, the study aims were respectively; to present an
industry case to provide lessons learned and answers with respect to process uptake
and effect. The second study aimed to provide others considering remodeling and
adapting a process framework in general, and RUP particularly, an insight in how
this has been done in a small software company. The third study aimed to study the
use and effects of an extensively downscaled variant of RUP documented in the form
of a Wiki-web.

Data collection: For the first study we first interviewed four project managers
(claiming to be using RUP in four projects) to make a usage map per project to see
what parts of RUP actually was being used. Then, we arranged semi structured
interviews with five employees with varying roles to document main experiences and
find potential explanations for use/no-use of RUP. For the second study we took an
action research approach [14] following A in the whole process of tailoring RUP, as a
group-process, to a defined project-type. In the third study we have interviewed the
project manager and analyzed internal mid term- and end- PMA-evaluations [15] of
the pilot project being studied.

Analysis: As all three studies have been descriptive with no hypothesis to validate
we have done a qualitative analysis. For the first study, interviews were documented
on-the-fly in a usage-map (excel spreadsheet) showing which RUP process
components had been used or not with potential explanations from the interviewees.
Further on, the interviews were transcribed and analyzed using the constant
comparison technique [16]. In the second study which was organized according to the
principles of action research our report [2] contains a discussion that extracts and
summarizes key learning’s. In the third study we also used the constant comparison
technique to extract key learning’s from the transcribed interview and the internal
project evaluations.

Case study B: Context: Company B is the software development department (300
persons) within a large Norwegian company with a total of 2000 employees. B is
focused at both software development and consulting services within the domain of
banking and transportation services. The authors have followed B over period of two
years, entering the scene about a year after the company’s RUP specialization had
been taken into use by projects. This study is reported in[4].

Study aim: The aim of the study was to investigate the level of use of a large-scale
RUP specialization, explaining positive and negative experiences using the tailored
process and reasons for use/no-use.

Data collection: In this case study we used three main sources of information; 1) a
main contact person which was the leader of the tailoring of RUP prior to our study,
2) the process advisory board responsible of the tailoring and the introduction of the

 Tailoring and Introduction of the Rational Unified Process 11

new process in the organization and 3) project managers and software developers. Our
main method of data collection was workshops and semi structured interviews with
these roles. We had three workshops with the project advisory board; information was
recorded on-the-fly using mind-maps. We did two rounds of interviews, the first –
interviewing representatives from eight projects face-to-face, mainly project
managers. The second round of interviews was carried out one year later with the
same eight interviewees, this time over telephone. All 16 interviews were recorded
and transcribed for later analysis. The aim of the interviews was to document
experiences from the introduction of the tailored RUP, find effects – both positive and
negative, and to investigate the level of use and correspondingly explanations.

Analysis: All transcribed interviews was analyzed using the constant comparison
technique, the first eight interviews were coded and analyzed using the NVivo™-tool,
the last eight were coded manually by two researchers in pair using a whiteboard.
Lessons learned and experiences were counted across the interviews to find key
learning’s of most significance.

Case study C: Context: Company C was a company specializing in the development
of web applications with a high emphasis on the user experience of the web sites. The
company had software developers and psychologists employed. The latter ones
worked as producers, specifying the look and feel of the web sites, as well as the
logical aspects of the use of the web pages. The company did develop both
ecommerce applications and more entertainment types of sites. This study is reported
in [5] and [17].

Study aim: The aim of the study was to investigate how RUP could support the
specifications and development of non-functional parts of a web site. The company
had its own tailored RUP, where the original disciplines and the structure of RUP
were not changed. The tailoring was a new user experience discipline, with dedicated
activities to be performed by new roles.

Data collection: In this case study the main data source was the conducted
Postmortem [15] analyses. Data from six different projects is included in the case
study. The tailoring of RUP was already in place when the researchers started to
cooperate with the company.

Analysis: The data in the PMA reports was analyzed using constant comparison.

Literature review method: A systematic review is a strategy for gathering and
systematizing results from several independent studies sharing more or less the same
thematic focus. The intention is to establish a compiled overview of all relevant
experiences and to identify gaps in existing knowledge, thus implicating the
directions for further research. In this case we did a simplified review inspired by the
guidelines described by Kitchenham [18], hence we call it a literature review.
Systematic reviews have traditionally been used to systematize quantitative research,
typically as a means of doing statistical meta-analysis. However, most software
engineering method-focused experience reports so far are qualitative single-case
studies. We therefore needed to adopt practices to be able to systematize qualitative
data. This resulted in a review-protocol that we used to 1) define a common research
question, 2) search for relevant literature, 3) select studies to include in an analysis
and 4) systematize findings and lessons learned.

12 G.K. Hanssen, F.O. Bjørnson, and H. Westerheim

Step 1 - A common research question: We defined the following question for the
review: What are the challenges, prerequisites and success criteria’s for tailoring and
introducing RUP?
Step 2 - Finding relevant literature: The following SE index databases; ISI Web of
science, Compendex and ACM Digital Library were searched using the phrase unified
process AND software.

Step 3 – Select studies to keep: All three authors participated in the evaluation of the
search results using the following routine:

Deselect on title: a coarse deselection of studies was done based on title, removing
studies with an obvious wrong focus. The exclusions and inclusions were based on a
few simple selection criteria’s: The study aim or topic had to be within the frames of
tailoring/adopting/specializing/introducing the Unified Process or Rational Unified
Process This resulted in 100 unique studies.

Deselect on title and abstract: The second selection criterion was: the study must
present empirical data beyond anecdotal evidence. This left 36 studies.

Deselect on full text: Studies was excluded if they had insufficient quality with
respect to 1) a well defined and limited study aim, 2) an adequate description of the
study method, 3) a sufficient description of the study context, 4) a presentation of the
study results, 5) a thorough analysis of the results and 6) giving conclusions or
answers with respect to the defined study aim. This left 5 studies.

Final, group based selection: Each resulting study was reviewed by each of the
three authors discussing the six quality criterions defined above. This final step left 2
studies. The complete list of idendified reports are not presentet here due to space
limitations but can be obtained from the authors on request.

Step 4 - Systematize findings and lessons learned: The main learnings or conclusions
from the resulting studies were identified and expressed as claims. A claim can be seen as
a hypothesis supported by at least one study.

4 Results

The results are here presented in a common form; each study is briefly summarized
and discussed. The main findings or conclusions relevant to tailoring and introduction
of RUP is expressed as claims (separate pieces of knowledge that are supported by an
empirical study).

Case study A: The first part of the study, addressing RUP-use out-of-the-box
concludes that a direct use of a framework, such as RUP, with no assistance, tailoring
or guidelines results in low use. Introducing RUP is an investment beyond the license
fee. In this case the outcome could have been better if the introduction of RUP was
carefully managed and not left as an autonomous effort in each project. The second
part of the study concludes that a success factor in tailoring RUP to a defined project
type is to have focus on the features of the defined process and that a tailoring
workshop should consist of persons with proper experience from case projects of the
defined type. In the third study we saw that the main objection with the use of the
small footprint process guide was lack of content, the project manager typically had a

 Tailoring and Introduction of the Rational Unified Process 13

demand for more and better check lists. However, the content was still under
development. The project manager commented that it has to be a balance between
content size and the lightness as one of the main positive experiences was the
simplicity of the guide – it was easy to find relevant guidance. As the process guide is
a Wiki-web the project manager clearly saw a need of defining an editor role as
editing is free to all and may compromise the content. The content which basically is
a collection of activity descriptions organized over the four RUP phases seemed
appropriate for the case project, only four new activity descriptions was suggested.
Beyond task guidance the project manager strongly demanded practical process
support tools such as estimation models, project follow-up support, a testing
framework etc. When asked to comment the difference between this light process
guide and the complete RUP the project manager emphasized the ease of use and
clear relevance of the new guide as opposed to RUP’s well of information that may be
hard to find one’s way through. However, interestingly, a definite premise of using
such a minimum version of RUP is that the user must have an good understanding of
the principles of RUP.

Claim A.1: RUP, out-of-the-box is over-comprehensive and will provide more
confusion than guidance and consequently low uptake and use.
Claim A.2: Tailoring RUP efficiently must be based on best practice from the native
organization and relevant project cases.
Claim A.3: RUP may be downscaled extensively to increase relevance and ease of
use, however, a successful use requires a good knowledge of RUP principles.

Case study B: The findings resemble with known models of technology acceptance[13];
little knowledge of RUP and thereby low motivation results in low or no use. On the
other hand, knowledge and motivation for RUP results in medium/extensive use. In
relation, education seems to be an important factor, not only prior to the process but also
continuously trough the use. Further on, we found that management support seemed to be
an important factor with respect to uptake and to continuously improve the process
during use; this also resembles with other similar studies[19].

Claim B.1: Low knowledge of RUP creates low motivation and further low uptake
and use.
Claim B.2: Management support is a success factor in tailoring and using RUP
efficiently.

Case study C: The main result, when it comes to introduction of RUP, is that
formalization of roles makes them more visible and understandable to others in a
project. In this case, new roles related to graphical design were added to the RUP
process resulting in a higher acceptance from more technical roles which
consequently increased the uptake and use of RUP in the project.

Claim C.1: Explicit definition of roles makes them visible to other project members
and thus positively affects the use of the process.

Our search for empirically justified claims on RUP tailoring and adaptation resulted
in only two study reports; a clear signal that more research is needed in this area. In
this chapter we summarize the claims these papers add to the research community. To

14 G.K. Hanssen, F.O. Bjørnson, and H. Westerheim

assess the validity of these claims, we also include a short summary of the setting and
research method described in each of the papers. The papers we identified were by
Folkestad et.al. [20] and Bygstad [21].

Folkestad et.al. [20]:

Context: The specific case being studied was a project to transfer an existing system
from mainframe architecture to a client-server based architecture. The company saw
the project as an opportunity to rebuild and enhance the competence of their staff and
was willing to spend resources on this. They chose to use a version of Unified Process
as their software development approach. The size of the project was about 30 man-
years and lasted three years.

Study aim: The study aims are clearly stated as 1) Identify the effects of changing to a
new process. 2) Identify the causes for these changes. 3) Identify what properties of
the new work process that was instrumental in the change.

Data collection: The data was gathered after the project had been running for one
year. The main sources were seven semi-structured depth interviews with members of
the software developer group. In addition some data was gathered through informal
discussions and from the business’ documents regarding the development process and
the project.

Analysis: The data was analyzed qualitatively using a method called Activity Theory,
which can be considered “a framework for the understanding of human activity”.

Limitations: Openly discussed in the paper. Since it is a single case study, it is not
easy to generalize the results. Factors like openness, flat hierarchy, and confident staff
may be the cause behind the results, just as much as UP itself.

Findings: We have extracted the following findings based on this paper:

Claim R.1: The iterative approach of Unified Process will ensure large effects in
terms of learning.
Claim R.2: Unified Process will improve on communication and work distribution in
a company.
Claim R.3: Unified Process helps constrain activities and leads to developers being
more focused on their tasks, and hence it has a positive influence on productivity and
quality.
Claim R.4: As a project develops, elements of Unified Process will become
internalized and become tools for the developers. Or in other words, the developers
will focus less and less on UP in itself, but focus more on following the practices that
they decide to adopt.

Bygstad : [21]

Context: A RUP development project at Scandinavian Airline System (SAS), carried
out by the Scandinavian IT Group (SIG) (owned by SAS). The goal of the project was
to establish a web based marketing channel, enable easy publishing and integrating it
with the existing booking systems. SAS had chosen RUP as their standard software

 Tailoring and Introduction of the Rational Unified Process 15

methodology two years prior to this project. RUP was tailored to the project, and was
linked to established practices in SIG.

Study aim: The research questions are 1) how can the project manager control the
integration challenge? And 2) what support is there in the software engineering
frameworks, like RUP?

Data collection: The case was followed for 18 months. Interviews were conducted
over three intervals, project meetings were observed and project documentation
analyzed.

Analysis: All data was coded with in-vivo codes, using only domain (project) terms.
Then each iteration of the project was analyzed qualitatively using constant
comparison methods.

Limitations: There is no discussion concerning external validity, but since it is a
single case study, the results may not be easy to generalize. The internal validity is
discussed in the paper with emphasis on how they addressed the principles of
dialogical reasoning, multiple interpretations and member verification in their
analysis.

Findings: Claim R.5: RUP provides good support for internal technical integration and
poor support for external technical integration.

Claim R.6: RUP provides weak support for internal stakeholder integration throughout a
project.
Claim R.7: RUP provides strong support for external stakeholder integration in the early
phases, but weak support in the later phases.
Claim R.8: RUP gives strong declarational support to step-wise external integration, but
too little practical support.
Claim R.11: Using RUP as a basis, linking it to existing best practices results in a process
that is actually used.

5 Discussion

The search for relevant empirical studies, with sufficient quality, on tailoring and
introduction of RUP resulted in only two study reports. In addition to our three own
studies this forms a very small experience base and it has shown to be hard to see
trends across these studies.

From the studies we see that RUP initially is too complex to be used without any
tailoring which in practice means that the project manager must make more or less ad-
hoc decisions. This becomes an error prone process if the knowledge of the content of
RUP is low and thus makes it hard to decide upon which elements to keep, alter or
avoid [3]. The RUP-online documentation is a comprehensive collection of process
elements and their relations containing about 3700 web pages – which makes it
necessary to have a detailed knowledge about the content to be able to select a
consistent subset suitable for a given context of use. In the first attempt to deselect
RUP elements in case study A we saw that insufficient knowledge of such details
quickly became a problem. In case study B a dedicated team needed to get assistance

16 G.K. Hanssen, F.O. Bjørnson, and H. Westerheim

from a trained RUP mentor to be able to accomplish a successful tailoring. In the
second attempt in case study A, a bottom-up approach was used – building a small
process guide based on existing best practices using RUP merely as inspiration rather
than a commodity. This approach made it at least possible to accomplish the task and
resulted in a complete process guide that was taken into use by project teams. In this
case, almost all users of this heavily downscaled RUP-process had very high
knowledge of RUP through training. This made it possible to use simplistic guidelines
as the users knew the details or at least where to find them when needed. The
resulting process guide itself in case A was a simple overview of the most important
high-level tasks to perform in a development project – no templates or process maps
were included. So, the resulting process and its web-based representation can be
characterized as minimalistic, thus rising the question of what RUP is; how much do
you have to keep unaltered to still call it RUP and when is it merely inspired by RUP
that by it self is a collection of already existing best practices and guidelines? As a
contrast to case A where the basic knowledge of RUP was high we saw in case B that
the intended users had little knowledge which clearly affected their motivation for use
which consequently also resulted in low uptake of the new process - even though it in
this case was tailored to their project characteristics by a dedicated tailoring team.
Other studies also support this in the case of acceptance and uptake of electronic
process guides [19]. It is reasonable to believe that low knowledge negatively affects
these motivational factors. Further on, in case B, we found that management support
was a success factor – one project in this case study was found to actually use RUP
and report a certain level of success of doing so. In this case the management had
been clear in their expectations that the project should use RUP and supported this. In
other projects in the same case study, management was more absent which made the
project members use their own varying best practices in an uncoordinated way, thus
hampering the goal of establishing a corporate unified development process. Another
potential success factor for uptake was found in case study C. As RUP clearly defines
roles it became evident how each role was needed and how they related to each other
through joint activities and shared artefacts. This increased the acceptance of existing
roles that was not documented to be a part of the total development process. We have
not followed our own cases to assess the use of RUP over time, however Folkestad et
al. found that developers, over time, will focus less and less on the process in itself,
but focus more on following the practices that they decide to adopt [20]. Thus, the
value of introducing RUP may have important effects when it comes to learning a
new shared process.

An interesting note in the context of RUP and the challenge of making it fit to local
needs and context is the recent spirited development of agile processes [22]. Ivar
Jacobson, one of the original contributors to RUP has recently initiated a total remake
of RUP, resulting in something called the Essential Unified Process (EssUP). This is
intended to be a great improvement of RUP and Jacobson says in a whitepaper [23]:
“The Unified Process became too heavy, the process improvement programs required
too much boring work…”. This is interesting since RUP for years has been marketed
as a framework that could help most software organizations in professionalizing
software development effectively. EssUP can simply be described as a combination of
RUP – which may be seen as a heavy type of process – and agile software
development principles [24]. Our findings, both from our own studies and others

 Tailoring and Introduction of the Rational Unified Process 17

support this view that RUP is too heavy and that it may require too much tedious and
difficult work to make it fit. The question is; will a join of RUP and agile be a better
approach? Others as well has addressed the challenge of making RUP simpler and
agile which, in sum, can be seen as a shared opinion that RUP has its limitations
despite its comprehensiveness. This adds to our findings summarized in this paper.

RUP has since its creation gone through several transformations, all leading
towards a more light-weight approach of designing and developing software. This
has resulted in various variants and spin-offs of the process, followed by numerous
books and even more presentations, speeches, courses and consultant services. It is
hard to predict where this will end; however, based on our findings we see a clear
need of simplifying RUP to ensure uptake and efficient use. The development turns
clearly towards the agile side of the spectrum – perhaps in search for a balance
between discipline and agility [25].

6 Conclusions

Based on our own, and a few other empirical studies on tailoring and introduction of
RUP into development organizations we found that there exist few or none (reported)
direct success stories. All experiences pull in the same direction; RUP is, out of the
box, too complex, however, tailoring it to specific needs is also too complex. Looking
at the evolution of RUP itself over the past years and the cases we summarize here we
see a clear need for, and movement towards, a more agile process that can bee tailored
with less effort.

Acknowledgment

The authors would like to thank the participants from the case companies. We would
also like to thank the SPIKE and EVISOFT projects, funded by the Research Council
of Norway under grant 156701/220 and 174390/I40.

References

1. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. In:
Booch, G., Jacobson, I., Rumbaugh, J. (eds.) Object Technology Series, p. 463. Addison
Wesley Longman Inc., Reading, Massachusetts (1999)

2. Hanssen, G.K., Westerheim, H., Bjørnson, F.O.: Tailoring RUP to a defined project type:
A case study. In: Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2005. LNCS, vol. 3547,
Springer, Heidelberg (2005)

3. Hanssen, G.K., Westerheim, H., Bjørnson, F.O.: Using Rational Unified Process in an
SME - A Case Study. In: Richardson, I., Abrahamsson, P., Messnarz, R. (eds.) Software
Process Improvement. LNCS, vol. 3792, Springer, Heidelberg (2005)

4. Westerheim, H., Hanssen, G.K.: The Introduction and Use of a Tailored Unified Process -
A Case Study. In: Euromicro 2005, Porto, Portugal (2005)

18 G.K. Hanssen, F.O. Bjørnson, and H. Westerheim

5. Westerheim, H., Hanssen, G.K.: Extending the Rational Unified Process with a User
Experience Discipline: a Case Study. In: Richardson, I., Runeson, P., Messnarz, R. (eds.)
Software Process Improvement. LNCS, vol. 4257, Springer, Heidelberg (2006)

6. Bergström, S., Råberg, L.: Adopting the Rational Unified Process, pp. 165–182. Addison-
Wesley, Reading (2004)

7. Kroll, P., Kruchten, P.: The Rational Unified Process Made Easy - A Practitionare’s Guide
to the RUP, ed. O.T. Series. Addison Wesley, Reading (2003)

8. Rational PEP. Available from: http://www-1.ibm.com/ support/ docview.wss?uid= swg
21158199

9. Merriam-Webster dictionary
10. ter Hofstede, A.H.M., Verhoef, T.F.: On the feasibility of situational method engineering.

Information Systems Journal 22(6), 401–422 (1997)
11. Brinkkemper, S.: Method engineering: Engineering of information systems development

methods and tools. Information and Software Technology 38(4), 275–280 (1996)
12. Edwards, H.M., Barrie Thompson, J., Hardy, C.J.: Developing situationally specific

methods through stakeholder collaboration. In: COMPSAC. Computer Software and
Applications Conference (1998)

13. Riemenschneider, C.K., Hardgrave, B.C., Davis, F.D.: Explaining Software Developer
Acceptance of methodologies: a Comparison of Five Theoretical Models. IEEE
Transactions on Software Engineering 28(12), 1135 (10) (2002)

14. Avison, D., et al.: Action Research. Communications of the ACM 42(1), 94 (4) (1999)
15. Birk, A., Dingsøyr, T., Stålhane, T.: Postmortem: Never Leave a Project without It. IEEE

Software 19(3), 43–45 (2002)
16. Seaman, C.B.: Qualitative methods in empirical studies in software engineering. IEEE

Transactions on Software Engineering 25(4), 557–572 (1999)
17. Westerheim, H., Dingsøyr, T., Hanssen, G.K.: Studying the User Experience Discipline

extension of the Rational Unified Process and its effects on Usability - The design of a
case study. In: Bunse, C., Jedlitschka, A. (eds.) Empirical Studies in Software Engineering:
Proceedings from the first international workshop, December 2002, pp. 69–74. Fraunhofer
IRB Verlag, Rovaniemi, Finland (2002)

18. Kitchenham, B.: Procedures for Performing Systematic Reviews. Keele University and
Empirical Software Engineering National ICT Australia Ltd. p. 33 (2004)

19. Dybå, T., Moe, N.B., Mikkelsen, E.M.: An Empirical Investigation on Factors Affecting
Software Developer Acceptance and Utilization of Electronic Process Guides. In:
METRICS 2004, Chicago, USA (2004)

20. Folkestad, H., Pilskog, E., Tessem, B.: Effects of Software Process in Organization
Development - A Case Study. In: Melnik, G., Holz, H. (eds.) LSO 2004. LNCS, vol. 3096,
Springer, Heidelberg (2004)

21. Bygstad, B.: Controlling Iterative Software Development Projects: The Challenge of
Stakeholder and Technical Integration. In: Hawaii International Conference on System
Sciences, Hawaii, USA (2004)

22. Cockburn, A.: Agile Software Development. In: Cockburn, A.H.J. (ed.) The Agile
Software Development Series, Addison-Wesley, Reading (2002)

23. Jacobson, I., Ng, P.W., Spence, I.: The Essential Unified Process - a Fresh New Start
(2006)

24. Agile Manifesto, http://www.agilemanifesto.org/
25. Boehm, B., Turner, R.: Balancing Agility and Discipline - A Guide for the Perplexed, p.

266. Addison-Wesley, Reading (2004)

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 19–30, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Maintaining a Large Process Model Aligned with
a Process Standard: An Industrial Example

Martín Soto and Jürgen Münch

Fraunhofer Institute for Experimental Software Engineering,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{soto,muench}@iese.fraunhofer.de

Abstract. An essential characteristic of mature software and system develop-
ment organizations is the definition and use of explicit process models. For a
number of reasons, it can be valuable to produce new process models by tailor-
ing existing process standards (such as the V-Modell XT). Both process models
and standards evolve over time in order to integrate improvements or adapt the
process models to context changes. An important challenge for a process engi-
neering team is to keep tailored process models aligned over time with the stan-
dards originally used to produce them. This article presents an approach that
supports the alignment of process standards evolving in parallel to derived
process models, using an actual industrial example to illustrate the problems
and potential solutions. We present and discuss the results of a quantitative
analysis done to determine whether a strongly tailored model can still be
aligned with its parent standard and to assess the potential cost of such an
alignment. We close the paper with conclusions and outlook.

Keywords: process modeling, process model change, process model evolution,
model comparison, process standard alignment.

1 Introduction

Documenting its software development processes is a step that every software organi-
zation striving to achieve a high level of process maturity must take sooner or later.
One problem that many organizations face when first attempting to perform this cru-
cial task is the lack of appropriate expertise: Documenting a complete set of organiza-
tion-wide development processes is potentially a very large undertaking, and doing it
successfully requires highly specialized knowledge that organizations often lack. For
these reasons, customizing an existing standard process model can be an excellent
option for many organizations, as opposed to documenting their processes “from
scratch”. A standard process model (e.g., the German V-Modell XT [1]) offers them a
solid framework, which can greatly help to guarantee that the resulting process docu-
mentation is complete and detailed enough, and that it is structured in such a way that
it is useful to process engineers and process performers alike.

Since tailoring is central to process standard adoption, standard models should ide-
ally offer a mechanism for making adaptations in a systematic way, and for keeping
those adaptations separated from, but properly linked to, the original standard. Unfor-
tunately, most existing models have not yet reached the point where they can support

20 M. Soto and J. Münch

this type of advanced tailoring out-of-the-box. Therefore, most customization is per-
formed in practice by directly modifying a copy of the original model until it reflects
the practices of a given organization. This way, organizations can quickly get up to
speed with their own process definition, requiring only access to a standard process
model and its corresponding editing tools (which are often distributed together with
the model, or are freely available.)

Although very useful in practice, this type of ad hoc process model tailoring also
introduces some problems, the largest of which is probably long-term maintenance.
As soon as tailoring starts, the organization-specific model and the standard model
take different paths, and after some time, they will probably diverge significantly. At
some point, every organization relying on a customized process model will be con-
fronted with the problem of deciding if it should try to keep it aligned with the stan-
dard, or if it should rather maintain it as a completely separate entity.

This decision is not easy at all. On the one hand, maintaining the customized model
separately implies that, potentially, many corrections and improvements done at the
standard level will not be adopted, and also involves the risk that the practices docu-
mented for the organization deviate unnecessarily from mainstream accepted
practices. On the other hand, keeping the model aligned with the standard implies
integrating changes from the standard into the local documentation at regular inter-
vals, a task that, to our knowledge, is not well supported by existing tools and that can
be very expensive and unreliable if performed manually.

We believe that this and other similar problems related to process model mainte-
nance can be greatly mitigated by properly managing the evolution of process models.
We have devised our DeltaProcess [2, 3] approach for process model difference
analysis with this goal in mind. The approach makes it possible to efficiently and re-
liably identify changes in newer versions of a process model with respect to its older
versions. It also makes it possible to perform analyses that classify changes in a model
(e.g., a process standard) according to their relevance to another model (e.g, a custom-
ized model). We expect that by making use of this information, process engineers will
be able to save significant effort and produce much more reliable results when trying
to align complex process models.

We are currently conducting a study intended to investigate the above hypothesis.
In the study, we are trying to help a company to align a process model, customized
over a period of about one and a half years, with its corresponding process standard.
The rest of this paper uses this case study as an example to illustrate the problems
involved in keeping complex process models aligned. The paper is organized as fol-
lows: Section 0 describes the process alignment problem and the challenges it pre-
sents to process engineers. Section 0 presents a brief description of our DeltaProcess
approach. Section 0 describes an analysis we performed as part of our ongoing case
study to determine the viability of aligning two large process models. Section 0 closes
the paper with conclusions and future work.

2 Aligning a Customized Process Model with a Standard

In this section, we provide a more detailed description of the problem that occupies us
in our case study, namely, aligning a large industrial-grade, customized process model

 Maintaining a Large Process Model Aligned with a Process Standard 21

with the standard from which it was originally derived. In order to provide the reader
with a complete view of the problem, we describe the process model standard (the
German V-Modell XT), the company performing the customization, and the extent
and characteristics of their customized model. The section concludes with a discus-
sion of related work, and of why existing approaches are not completely adequate to
solve the problem we are dealing with.

2.1 The German V-Modell XT

The V-Modell XT [1] is a prescriptive process model intended originally for use in
German public institutions, but finding increasing acceptance in the German private
sector. Its predecessor, the so-called V-Modell 97, was developed in the 1990s and
released originally only in the form of a text document. The V-Modell XT is the result
of a recent effort by a publicly-financed consortium of private companies, and gov-
ernment and research institutions to “modernize” the original V-Modell. This effort
included converting the original document-based process description into an actual
process model with formalized entities and relationships, creating a set of tools to
manage instances of the model in this new representation, and improving and extend-
ing the actual model contents.

As of this writing, three major versions of the V-Modell XT have been released,
namely 1.0 (finished in January 2005 with a minor update in March 2005), 1.1 (fin-
ished in July 2005) and 1.2 (finished in January 2006 but released in May 2006.) Fur-
ther active development by a team of experts from the development consortium is still
ongoing. All V-Modell XT releases are freely available and can be downloaded at no
cost from the Internet (see [1].)

For editing purposes, instances of the V-Modell are stored as XML files that can be
processed using a set of specialized tools (also freely available as an Internet
download). The model is structured as a hierarchy of process entities, each having a
number of attributes. Entities can be connected to other entities through a variety of
relations. Version 1.2 of the V-Modell XT is comprised of about 2100 process entities
with over 5000 attributes, and connected by some 4100 entity relations. The paper
documentation generated automatically from this model is 620 pages long. Also, the
current model schema contains 38 classes and 43 different types of relations. Most of
these numbers are only approximate, but should be able to give the reader a general
idea of the size and complexity involved.

2.2 A Customized Version of the V-Modell XT

We are performing our case study in the context of a medium-sized (about 1200 em-
ployees), privately-held company that is an early adopter of the V-Modell XT. Al-
though information technology is not its main business, this company has a software
development division with about 70 employees, which is mainly dedicated to the de-
velopment and maintenance of the company's own information systems. The idea of
introducing the V-Modell XT arose in 2005 as part of a software process improve-
ment effort. Since it was judged that the V-Modell XT in its standard form was not
adequate for internal use, the company's software process group started a customiza-
tion effort at the end of 2005, whose first results were seen a year later with the

22 M. Soto and J. Münch

introduction of the model as official guidance for new development projects. The tai-
lored model is based on version 1.1 of the V-Modell, which was the current version at
the time the customization effort was started.

The tailored model differs significantly from the standard V-Modell XT. During
customization, more than half of the original entities were erased because they were
considered irrelevant for the company. The resulting trimmed model was afterwards
extended with a number of new entities. Many of the entities preserved from the
original model were also adapted, by changing names and descriptions as necessary to
fit the local processes and terminology. Despite the extensive changes, the final model
still uses the original V-Modell XT metamodel without modification.

As mentioned above, Version 1.2 of the V-Modell XT was released in May 2006,
when the company's process customization effort was already quite advanced. As of this
writing (March 2007), no attempt has been made to integrate any of the additions and
corrections present in version 1.2 into the company's customized model, although mem-
bers of the software process group have expressed their interest in doing this at least to
some extent. This is currently not a high priority because the customization process was
finished only recently, but it is acknowledged that there may be corrections and additions
in the new V-Modell XT version that could benefit the tailored model.

Due to the size and complexity of the models involved, it is very difficult to manu-
ally determine the actual extension of the changes performed on each one of them,
and this, in turn, makes it difficult to estimate the effort involved in aligning the tai-
lored model with the standard. As discussed in the following section, determining the
extent of the changes and analyzing them to find those that are suitable for incorpora-
tion into the tailored model and those that may lead to conflicts has been, until re-
cently, a mainly manual, and thus potentially expensive and unreliable, process.

2.3 Difference Identification in the V-Modell

Comparing source code versions and analyzing the resulting differences is a task soft-
ware developers perform on a daily basis for a variety of purposes, including sharing
of changes, review and analysis of changes done by others, and space-efficient stor-
age of multiple versions of a program. Such comparisons can be performed using
widely available software, such as the well-known diff utility present in most UNIX-
like operating systems, and other similar programs. Diff relies on interpreting files as
being composed of text lines (sequences of characters separated by the newline char-
acter) and then finding longest common subsequences (LCS) of lines by using an
efficient algorithm (see [4] for an example). Lines not belonging to a common subse-
quence are considered to be differences among the compared files.

In most practical cases, entities in a process model are connected in an arbitrary
graph structure (the V-Modell XT is a good example of this). Since LCS algorithms
can only operate on sequential structures, it is thus impossible to apply them directly
to most process models. Nonetheless, the idea of using diff or a similar LCS-based
program on process models is still appealing. The reason is that many useful tools,
including most source code versioning systems, rely on an LCS algorithm implemen-
tation as their only comparison mechanism, and it would be valuable if these tools
would work on process models, as opposed to working only on program source code.

 Maintaining a Large Process Model Aligned with a Process Standard 23

For the the team working on the V-Modell XT, for example, it was necessary to in-
troduce a code versioning system to support collaborative work, since members of the
team work separately and in parallel on different aspects of the model's contents. In
order to do that, each team member changes a separate copy of the model, and later
uses the versioning system to merge the changes into the main development branch.
The merge operation, however, is based on finding a minimal set of changes using
diff, and, thus, requires diff to produce somewhat usable results when applied to the
V-Modell XML representation. The V-Modell solution to this problem is to format
XML files in a special way, carefully controlling the order of elements in the file, and
ingenuously introducing line breaks and comment lines into the XML representation.
When working with XML files formatted this way, diff is able to recognize simple
changes, like added or deleted entities or changed attributes, as separated groups of
inserted, deleted, or changed lines.

Although this approach has effectively enabled the use of collaborative versioning
tools for the model's development and maintenance, it is not free of problems. First of
all, change integration works mostly correctly when integrating non-conflicting sets of
changes, i.e., sets of changes that affect completely separate areas of the model. If, on
the other hand, the change sets happen to touch the same area of the model (e.g., by
altering the same attribute in different ways), a conflict is detected and marked. Solv-
ing the conflict requires a human being to look into the XML file where the changes
have been merged and correct the conflicting lines manually using a text editor. This
is a cumbersome process that requires detailed knowledge of the XML representation.

3 The DeltaProcess Approach

Considering the problems discussed in the previous section, we developed the Del-
taProcess approach with the following goals in mind:

− Operate on models based on a variety of schemata. New schemata can be sup-
ported with relatively little effort.

− Be flexible about the changes that are recognized and how they are displayed.
− Allow for easily specifying change types that are specific to a particular schema or

even to a particular application.
− Be tolerant to schema evolution by allowing the comparison of model instances

that correspond to different versions of a schema (this sort of comparison requires
additional effort, though.)

We claim that our approach is suitable for difference analysis as opposed to just
difference identification (i.e., simple comparison). First of all, instead of defining a set
of interesting change types in advance, we make it possible for the user to specify the
types of changes that interest him in a schema-specific way. Additionally, since we
use queries to find changes, it is possible for a user to restrict results to relevant areas
of a model, according to a variety of criteria. Finally, postprocessing allows for apply-
ing specialized comparison and visualization algorithms to the resulting data, making
it possible to display changes at a level of abstraction that is adequate for a specific
task.

24 M. Soto and J. Münch

In this section, we provide a brief description of the DeltaProcess approach and its
implementation Evolyzer. Readers interested in the inner workings of the approach
are invited to read [2] and [3].

3.1 Description of the Approach

In order to compare models, the DeltaProcess approach goes through the following
steps:

1. Convert the compared models to a normalized triple-based notation.
2. Perform an identity-based comparison of the resulting models, to produce a so-

called comparison model.
3. Find relevant changes by using queries to search for patterns in the comparison

model.
4. Postprocess the resulting change data, in order to refine the results or produce task-

specific visualizations.

We explain these steps in some more detail in the following paragraphs.
The first step normalizes the compared models by expressing them as sets of so-

called statements. Statements make simple assertions about the model entities (e.g., e1
has type Activity or e1 has name “Design”), or define relations among entities (e.g.,
e1 produces product p1). Although we could have defined our own notation for the
statements, we decided to use the standard RDF notation [5] for this purpose. Beside
the standardization benefits, RDF has the formal properties required by our approach.

In general, using a normalized triple notation has a number of advantages with re-
spect to other generic notations like XML:

– It is generally inexpensive and straightforward to convert models to the notation.
Since the set of possible assertions is not limited and can be defined separately for
every model, models in arbitrary notations can be converted to RDF without losing
information.

− Models do not lose their “personality” when moved to the notation. Once con-
verted, model elements are often still easy for human beings to recognize.

− The results of a basic, unique-identifier based comparison can be expressed in the
same notation. That is, comparisons are models, too. Additionally, elements remain
easy for human beings to identify even inside the comparison.

− Thanks to normalization, a single, simple pattern notation can be used to describe a
large number of interesting changes.

In step 2, two or more normalized models (in our case study, we perform many
analyses using a three-way comparison) are put together into a single so-called com-
parison model. In this new model, statements are marked to indicate which of the
original models they come from. One central aspect of the comparison model is that it
is also a valid RDF model. The theoretical device that makes this possible is called
RDF reification, and is defined formally in the RDF specification [5]. The main pur-
pose of RDF reification is to allow for statements to speak about other statements.
This way, it is possible to add assertions about the model statements, telling which
one of the original models they belong to.

 Maintaining a Large Process Model Aligned with a Process Standard 25

Changes appear in the comparison model as combinations of related statements
that fulfill certain restrictions. For example, the change a1's name was changed from
“Design” to “System Design” appears in the comparison model as the statement a1
has name “Design” marked as belonging only to the older version of the model, and
the statement a1 has name “System Design” marked as belonging only to the newer
version of the model. Since the number of statements in a comparison model is at
least as large as the number of statements in the smallest of the compared models (the
three-way comparison model used for the case study contains almost 18,000 state-
ments), automated support is necessary to identify such change patterns reliably. For
this reason, in step 3, a pattern-based query language is used to formally express in-
teresting change types as queries. By executing the queries, corresponding changes
are identified in the comparison model. There is already a standardized notation
(SPARQL, see [6]) to express patterns in RDF models. With minimal adaptations, this
notation makes it possible to specify interesting types of changes in a generic way.
Our Evolyzer system (see Section 0) provides an efficient implementation of
SPARQL that is adequate for this purpose.

The final step involves postprocessing of the change data obtained in step 3 in or-
der to prepare the results for final display. One important purpose of this step is to
allow for applying specialized comparison algorithms to particular model elements.
For example, changed text descriptions in the V-Modell can be compared using a
word-level, LCS-based algorithm to determine which words were changed. We also
use this step to generate a variety of textual and graphical representations of change
data.

One important limitation of the DeltaProcess approach is the fact that it requires
that entities have unique identifiers that are consistent in all of the compared model
instances. Otherwise, it would be impossible to reliably compare the resulting state-
ments. Although this limitation may appear at first sight to be very onerous, our
experience shows that, in practice, most modeling notations actually contain the iden-
tifiers, and most modeling tools do a good job of keeping them among versions. The
V-Modell is not an exception, since its entities are always given a universal, unique,
aleatory identifier at creation time.

3.2 Implementation

Our current implementation, Evolyzer, (see Fig. 1) was especially designed to work
on large software process models, such as the V-Modell and its variants. Neverthe-
less, since the comparison kernel implements a significant portion of the RDF and
SPARQL specifications (with the remaining parts also planned), support for other
types of models can be added with relatively small effort.

The current implementation is written completely in the Python programming lan-
guage, and uses the MySQL database management system to store models. Until now,
we have mainly tested it with various process models, including many versions of the
V-Modell (both standard releases and customized versions.) Converted to RDF, the
latest released version of the V-Modell (1.2) contains over 13.000 statements, which
describe over 2000 different entities. A large majority of the interesting comparison
queries on models of this size (e.g., those used for producing the results presented in
Section 0) run in less than 5 seconds on a modern PC.

26 M. Soto and J. Münch

3.3 Related Approaches

A number of other approaches are concerned with identifying differences in models
of some type. [7] and [8] deal with the comparison of UML models representing
diverse aspects of software systems. These works are generally oriented towards sup-
porting software development in the context of the Model Driven Architecture. Al-
though the basic comparison algorithms they present could also be applied to this
case, the approaches do not seem to support the level of difference analysis we re-
quire.

Fig. 1. The Evolyzer tool working on the V-Modell XT

[9] presents an extensive survey of approaches for software merging, many of
which involve a comparison of program versions. Some of the algorithms used for
advanced software merging may be applied to the problem of guaranteeing consistent
results after a model merge operation, but this is a problem we are not yet trying to
solve.

[10] provides an ontology and a set of basic formal definitions related to the com-
parison of RDF graphs. [11] and [12] describe two systems currently under develop-
ment that allow for efficiently storing a potentially large number of variants of an
RDF model by using a compact representation of the differences between them. These

 Maintaining a Large Process Model Aligned with a Process Standard 27

works concentrate on space-efficient storage and transmission of difference sets, but
do not go into depth regarding how to use them to support higher-level comparison
tasks.

Finally, an extensive base of theoretical work is available from generic graph com-
parison research (see [13]), an area that is basically concerned with finding isomor-
phisms (or correspondences that approach isomorphisms according to some metric)
between arbitrary graphs whose nodes and edges cannot be directly matched by name.
This problem is analogous in many ways to the problem that interests us, but applies
to a separate range of practical situations. In our case, we analyze the differences
(and, of course, the similarities) between graphs whose nodes can be reliably matched
in a computationally inexpensive way (i.e., unique identifiers.)

4 An Alignment Viability Analysis

As part of our ongoing case study, we performed an analysis aimed at determining the
viability of aligning the company's customized process model with the V-Modell, by
incorporating a subset of the changes that occurred in the V-Modell between versions
1.1 and 1.2. In order to perform this assessment, we decided to count the number of
entities, entity attribute values, and relations affected by certain types of changes. The
purpose of these measurements was to obtain a general impression of the number of
separate changes that need to be considered by the process engineers while doing the
alignment work.

In order to obtain the values, we defined a change pattern query for every change
type, and used the Evolyzer tool to execute it and count the results. Although we are
only presenting consolidated numbers, the individual changes are available from the
tool and could be used by a process engineer as input for the actual alignment task.
Regarding effort invested into the analysis, it was performed by one engineer in a
single day, with the models having been imported previously into the tool's database.

The table below summarizes our results. The first column numbers the rows for
reference, and the second column contains a description of the analyzed change type.
The columns labeled “Entities”, “Attributes”, and “Relations” contain the respective
counts of affected model elements. When a change type does not affect a particular
type of model element, the corresponding cell remains empty.

Rows 1 to 3 present the total entity counts involved. It is clear that the tailoring
process deleted a significant portion of the original. Another important observation is
that 64% or about two thirds of the entities in the tailored model are still shared with
the V-Modell. This portion seems large enough to justify attempting an alignment.

Rows 4 to 6 count the number of changed entities (defined as entities with changed
attributes). Lines 5 and 6, in particular, count entities changed by the V-Modell that
are still present in the tailored model. The count in 5 (96) corresponds to entities
without conflicts, whereas the count in 6 (180) corresponds to entities with conflicts.
The sum (276) is the total number of changed entities to consider. Notice that this
number is about one half of the total of entities changed by the V-Modell (536). The
difference (260) is the number of changed entities that do not have to be considered
because they were deleted from the tailored model.

28 M. Soto and J. Münch

Change Type Entities Attributes Relations

1 Total entities in the V-Modell (1.2) 2107

2 Total entities in the tailored model 1231

3 Entities present in both models (common entities) 789

4 Changed entities in the V-Modell 536 670

5 Common entities changed only by the V-Modell 96 99

6 Common entities containing conflicting attributes 180 210

7 New entities in the V-Modell 286

8 New entities in the V-Modell that are contained in
preexisting entities

150

9 New entities in the V-Modell that are contained in entities
still present in the tailored model

109

10 Entities deleted from the V-Modell that are still present in
the tailored model

0

11 New entities in the V-Modell that reference preexisting
entities

170 393

12 New entities in the V-Modell that reference entities that
are still present in the tailored model.

100 189

13 Preexisting entities in the V-Modell that reference new
entities

81 109

14 Entities still present in the tailored model that reference
new entities in the V-Modell.

26 41

15 New relations between preexisting entities in the V-
Modell

 67

16 New relations in the V-Modell between entities that are
also present in the tailored model

 7

17 Deleted relations (between preexisting entities) in the
V-Modell

 127

18 Relations deleted in the V-Modell between entities still
present in the tailored model

 1

19 Entities in the V-Modell moved to another position in the
structure.

86

20 Entities still present in both the V-Modell and the tailored
model, which were moved by the V-Modell but not by
the tailored model

14

21 Entities moved to conflicting positions in the structure by
the V-Modell and the tailored model

0

Rows 7-18 try to quantify the size of totally new additions present in the V-Modell.
7 and 8, respectively, count all new entities (286) and new entities contained in preex-
isting entities. The latter is probably the most relevant count, because the remaining
entities are subentities of other new entities, and will probably be considered together

 Maintaining a Large Process Model Aligned with a Process Standard 29

with their parents. The subsequent rows try to determine whether it is possible to filter
some of these new entities by analyzing their relations to preexisting entities. The
resulting values suggest that this is possible, and that a significant number (40 to
50%) can probably be discarded because they have no connections to any of the enti-
ties in the tailored model. Line 10, in particular, contains good news: no entity deleted
by the V-Modell is still being maintained by the tailored model.

The last three rows (19-21) are an attempt to measure a particular type of structural
change, namely, movement of entities in the containment hierarchy. From 86 total
changes in the V-Modell, only 14 affect the tailored model, and there are no conflict-
ing changes.

Without historical effort data, it is difficult to produce an exact estimation of the
effort involved in performing a model alignment. However, a few conclusions can be
extracted from this data. First, integrating the changes done to existing entities (lines
1-3) is probably possible with relatively little effort. Informal observation of the ver-
sioning changelogs tells us that many of the changes are small grammar and spelling
corrections, but to confirm this, we would need to exactly measure the extent of the
changes done to text attributes.

Second, although integrating the new V-Modell elements is likely to take more work,
it is also probably viable in a few days time, because the number of entities to consider is
relatively small (around 100). Finally, the analysis shows that in this case, the total num-
ber of model elements to consider for alignment can be reduced to about half by filtering
those elements that were already deleted from the tailored model or that are not con-
nected to elements in the tailored model. This fact alone represents a significant effort
saving, which is not achievable with any other method we are aware of.

5 Conclusions and Future Work

Organizations trying to document their software processes for the first time may
greatly benefit from adopting an existing process standard and customizing it. How-
ever, since both process standards and the models derived from them evolve over
time, sooner or later they diverge to a point where their lack of alignment becomes
problematic. Realigning large process models, however, is a complex problem. Man-
ual alignment is tedious and unreliable, and automated tool support for this task has
been insufficient.

Our DeltaProcess approach and its Evolyzer implementation are a first step to
remedy this situation. They provide a framework for identifying changes in process
models and for analyzing these changes in order to support particular tasks. The im-
plementation works efficiently on models of the size of the German V-Modell XT.

As the analysis presented in Section 0 shows, our approach can be used effectively
to identify relevant changes and filter irrelevant changes when trying to align large
process models that were changed independently from each other for an extended
period of time. We have not yet started doing the actual alignment as part of our cur-
rent case study, but expect to be able to attempt it in the following months. A com-
plete experience report will be produced from that effort.

We are also working on extending our tools, which currently concentrate on
change analysis, to also support altering the analyzed models. This way, we expect to

30 M. Soto and J. Münch

make it easier for process engineers to work on complex model alignment tasks, by
being able to move seamlessly from the change data to the actual model contents.

Acknowledgments. This work was supported in part by the German Federal Ministry
of Education and Research (V-Bench Project, No.01| SE 11 A).

References

1. V-Modell XT (last checked 2006-03-31), available from http://www.v-modell.iabg.de/
2. Soto, M., Münch, J.: Process Model Difference Analysis for Supporting Process Evolu-

tion. In: Richardson, I., Runeson, P., Messnarz, R. (eds.) Software Process Improvement.
LNCS, vol. 4257, Springer, Heidelberg (2006)

3. Soto, M., Münch, J.: The DeltaProcess Approach for Analyzing Process Differences and
Evolution. Internal report No. 164.06/E, Fraunhofer Institute for Experimental Software
Engineering (IESE) Kaiserslautern, Germany (2006)

4. Black, P.E. (ed.): Algorithms and Theory of Computation Handbook, Longest Common
Subsequence. From Dictionary of Algorithms and Data Structures. NIST. CRC Press LLC
(1999)

5. Manola, F., Miller, E.R. (eds.): Primer. W3C Recommendation (2004) (last checked 2006-
03-22), available from http://www.w3.org/TR/rdf-primer/

6. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C
Working Draft (2006) (last checked 2006-10-22), available from http:// www.w3. org/ TR/
rdf-sparql-query/

7. Alanen, M., Porres, I.: Difference and Union of Models. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) «UML» 2003 - The Unified Modeling Language. Modeling Languages
and Applications. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003)

8. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transformation
Testing and Version Control in Model Driven Software Development. In: OOPSLA
Workshop on Best Practices for Model-Driven Software Development, Vancouver (2004)

9. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Soft-
ware Engineering 28(5) (2002)

10. Berners-Lee, T., Connolly, D.: Delta: An Ontology for the Distribution of Differences Be-
tween RDF Graphs. MIT Computer Science and Artificial Intelligence Laboratory
(CSAIL) (last checked 2006-03-30), online publication http:// www.w3.org/ DesignIs-
sues/Diff

11. Völkel, M., Enguix, C.F., Ryszard-Kruk, S., Zhdanova, A.V., Stevens, R., Sure, Y.: Sem-
Version - Versioning RDF and Ontologies. Technical Report, University of Karlsruhe
(2005)

12. Kiryakov, A., Ognyanov, D.: Tracking Changes in RDF(S) Repositories. In: KTSW 2002.
Proceedings of the Workshop on Knowledge Transformation for the Semantic Web, Lyon,
France (2002)

13. Kobler, J., Schöning, U., Toran, J.: The Graph Isomorphism Problem: Its Structural Com-
plexity. Birkhäuser (1993)

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 31–45, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Synergies Between the Common Criteria and
Process Improvement

Miklós Biró and Bálint Molnár

Corvinus University of Budapest
{miklos.biro,balint.molnar}@informatika.uni-corvinus.hu

Abstract. This paper summarizes multifaceted synergies discovered between
the ISO/IEC 15408 (Common Criteria) IT Security Evaluation standard,
software product quality evaluation standards and the Capability Maturity
Model Integration (CMMI). In addition to serving research motivated interest,
the usefulness of the synergies is demonstrated through case studies related to
significant systems development projects.

Keywords: Security, Quality, Assessment, Evaluation, Capability, Maturity,
Classification, Categorization.

1 Introduction

Security is naturally present in all systems of software product quality criteria, and
plays a significant role in the approporiate implementation of many software and
systems engineering process areas. The development of the Information Society made
this criterion of even higher significance, which resulted in the distinguished attention
of international standardization bodies for example, resulting in the ISO/IEC 15408
(Common Criteria) standard.

Certification needs and the constraints of the standardization process led to the
flexibility in both the product standards (ISO/IEC 9126, ISO/IEC 14598) and the
process methodologies (CMMI , ISO/IEC 15504) which allows for evaluation
modules based on a more elaborated background (ISO/IEC 15408, ISO/IEC 12207) as
well as other modules based on simpler measurements.

Even if some of the underlying standards evolved independently of each-other, the
discovery of synergies between their structure can contribute to the establishment of a
cost and resource effective multiple certification process [Taylor, Alves-Foss, Rinker,
2002].

The combination of software process and product quality standards has already
been studied in [Boegh, Régo, 2000]. In this paper we examine the synergies between
the ISO/IEC 15408 (Common Criteria) standard and software quality and process
capability evaluation methodologies. In addition to serving research motivated
interest, the usefulness of the synergies is also demonstrated through case studies
related to significant systems development projects.

® CMMI is registered in the U.S. Patent & Trademark Office by Carnegie Mellon University.

32 M. Biró and B. Molnár

2 The Common Criteria

The history of the ISO/IEC 15408 (Common Criteria~CC) standard goes back to the
80's with the following non-exhaustive list of milestones:

• 1980- TCSEC: Trusted Computer System Evaluation Criteria (USA)
• 1991 ITSEC: Information Technology Security Evaluation Criteria v 1.2

(France, Germany, the Netherlands, U.K.)
• 1993 CTCPEC: Canadian Trusted Computer Product Evaluation Criteria v 3.0
• 1993 FC: Federal Criteria for Information Technology Security v 1.0 (USA)
• CC Editorial Board
• 1996 CC v 1.0 ISO Committee Draft (CD)
• 1998 CC v 2.0 ISO Committee Draft (CD)
• 1999 CC v 2.1 = ISO/IEC 15408
CC v 2.1 consists of the following parts:

Part 1: Introduction and general model
Part 2: Security functional requirements
Part 3: Security assurance requirements

It is a common perception that understanding the Common Criteria (CC) evaluation
process requires painstakingly inspecting multiple documents and cross referencing
innumerable concepts and definitions [Prieto-Díaz, 2002]. The first challenge is the
digestion of the abbreviations of which here is a brief extract for our immediate purposes:

• TOE: Target of Evaluation — An IT product or system and its associated
administrator and user guidance documentation that is the subject of an evaluation.

• TSP: TOE Security Policy — A set of rules that regulate how assets are managed,
protected and distributed within a TOE.

• TSF: TOE Security Functions — A set consisting of all hardware, software, and
firmware of the TOE that must be relied upon for the correct enforcement of the TSP.

• PP: Protection Profile — An implementation-independent set of security
requirements for a category of TOEs that meet specific consumer needs.

• ST: Security Target — A set of security requirements and specifications to be used
as the basis for evaluation of an identified TOE.

• EAL: Evaluation Assurance Level — A package consisting of assurance components
from Part 3 that represents a point on the CC predefined assurance scale.

Figure 1 and Figure 2 give an overview of the CC evaluation context and process.
Here is an illustrative list of the classes of security functional requirements

discussed in Part 2 of the CC introducing more abbreviations:

• FAU Security audit
• FCO Communication
• FCS Cryptographic support
• FDP User data protection
• FIA Identification and authentication
• FMT Security management
• FPR Privacy

 Synergies Between the Common Criteria and Process Improvement 33

Fig. 1. Evaluation context (Source: Common Criteria for Information Technology Security Evalua-
tion Introduction and general model, August 1999 Version 2.1)

Fig. 2. TOE evaluation process (Source: Common Criteria for Information Technology Security
Evaluation Introduction and general model, August 1999 Version 2.1)

34 M. Biró and B. Molnár

• FPT Protection of the TOE security functions
• FRU Resource utilisation
• FTA TOE access
• FTP Trusted path / channels

The following are classes of security assurance requirements discussed in Part 3:
• ACM Configuration Management
• ADO Delivery and Operation
• ADV Development
• AGD Guidance Documents
• ALC Life Cycle Support
• ATE Tests
• AVA Vulnerability Assessment
• AMA Maintenance of Assurance
• APE Protection Profile Evaluation
• ASE Security Target Evaluation

And finally, table B.1 from Appendix B of Part 3 of CC v 2.1 which describes the
relationship between the evaluation assurance levels and the assurance classes,
families and components (Table 2).

3 Enlightening Analogies

The above sample from the CC naturally raises a lot of questions whose answers
would require the already mentioned inspection and cross referencing of multiple
documents including hundreds of pages. As an introductory alternative approach, the
analogies below offer a shortcut to those who already have a basic understanding of
models of software quality and process capability.

CC certification is performed after the system is developed. In this sense, CC is
closer to the software product quality evaluation standards ISO/IEC 9126, ISO/IEC
14598, and their follow-up being developed under the acronym SQUARE (ISO/IEC
25000 Software Quality Requirements and Evaluation).

As far as the ISO/IEC 9126 standard is concerned, the classes of security functional
requirements and the classes of security assurance requirements are analogous to the
high-level quality characteristics, while the requirement families to the subcharacteristics.
Evaluation Assurance Levels (EAL) can be simply interpreted as measurement results on
an ordinal scale analogously to measurements of subcharacteristics in ISO/IEC 9126.

A key concept of ISO/IEC 14598 is that of the evaluation module. "An evaluation
module specifies the evaluation methods applicable to evaluate a quality characteristic
and identifies the evidence it needs. It also defines the elementary evaluation
procedure and the format for reporting the measurements resulting from the
application of the techniques."

It also defines its own scope of applicability. In other words, an ISO/IEC 14598
evaluation module defines a consistent set of requirements and procedures for
evaluating a quality characteristic independently from the concrete product, but
depending on its application environment. If we consider the concept of Protection
Profile (PP) as an implementation-independent set of security requirements for a
category of TOEs that meet specific consumer needs, as introduced above, we can
immediately see the analogy with the ISO/IEC 14598 evaluation module.

 Synergies Between the Common Criteria and Process Improvement 35

Even-though CC certification is performed after the system is developed, its
structure shows a striking analogy with the system of continuous and staged
representation structures of the Capability Maturity Model Integration (CMMI). In
order to highlighting the analogy, let us consider Figure 3.5: Target Profiles and
Equivalent Staging in the CMMI for Development, Version 1.2 showing the process
area capability level (CL) target profiles of the Continuous Representation making an
organization's maturity level equivalent to a maturity level (ML) defined in the Staged
Representation (Table 3).

Project
Management

Structure

Development
Team

Project Assurance
External Consultancy

Group
Quality, Process

Improvement
Project Control, Audit

Development
Team

Security-centred issues
METHOD: CC

Development
Team

PC applications -- DBMS

Customer
An organization

of Public
Administration

Fig. 3. Project structure

Let us equivalently transform this table so that the last columns contain maturity
levels instead of capability levels, and the cells underneath contain the capability level
of the given process area necessary for achieving the given maturity level (Table 5).

The analogy between Table 2 and Table 5 is immediately apparent if we consider the
following analogies of the concepts of the Common Criteria and of CMMI (Table 1):

Table 1. Analogies of the concepts of the Common Criteria and of CMMI

Common Criteria CMMI

Assurance Family Process Area

Evaluation Assurance Level (EAL) Maturity Level

Assurance value Capability Level

Classification of Security Requirements Categorization of Process Areas

36 M. Biró and B. Molnár

This analogy not only helps those already familiar with CMMI to better understand
the Common Criteria, but provides a new perspective on CMMI itself as well.

Table 2. Relationships in CC between the evaluation assurance levels and the assurance classes,
families and components

4 CC in Software Development as Process Improvement Tool

The case study context:
Companies specialized in certifying and devising products using the CC take it for
granted to make use of the Common Criteria not only as a tool for certification of
software and hardware products but as a product development method as well. In this
interpretation, the prescribed security and quality inspection steps in CC can be

 Synergies Between the Common Criteria and Process Improvement 37

Table 3. Target Profiles and Equivalent Staging in CMMI®

Name Abbr ML CL1 CL2 CL3 CL4 CL5
Requirements Management REQM 2
Measurement and Analysis MA 2
Project Monitoring and
Control

PMC 2

Project Planning PP 2
Process and Product Quality
Assurance

PPQA 2

Supplier Agreement
Management

SAM 2

Configuration Management CM 2

Target
Profile 2

Decision Analysis and
Resolution

DAR 3

Product Integration PI 3
Requirements Development RD 3
Technical Solution TS 3
Validation VAL 3
Verification VER 3
Organizational Process
Definition

OPD 3

Organizational Process
Focus

OPF 3

Integrated Project
Management (IPPD)

IPM 3

Risk Management RSKM 3
Organizational Training OT 3
Integrated Teaming IT 3
Organizational
Environment for Integration

OEI 3

Target Profile 3

Organizational Process
Performance

OPP 4

Quantitative Project
Management

QPM 4

Target Profile 4

Organizational Innovation
and Deployment

OID 5

Causal Analysis and
Resolution

CAR 5

Target Profile 5

considered as quality control of product development. The software development life
cycle in this perspective can be deduced from the CC overall approach, then the
methods and tools that should be applied can be implicitly inferred from the best

38 M. Biró and B. Molnár

practice of software engineering and software development. The consequence of these
facts is that the quality control focusing on security issues takes place in due course.
Quality inspection concentrates primarily on the security functional requirements, the
representation techniques. The diagrammatic description for depicting the functional
behaviour of the system is not pre-defined. The result of this fact is that the employed
system development procedures are heterogeneous, i.e. they differ not only at the
various companies using CC as system development method and system development
life cycle approach, but they vary from project to project within the same system
development company.

Table 4. ISO/IEC 9126 quality characteristics

Criterion CHARACTERISTIC Criterion CHARACTERISTIC
Quality in Use Effectiveness Usability Understandability

Productivity Learnability
Safety Operability
Satisfaction Attractiveness

Functionality Suitability Compliance
Accuracy Efficiency Time behavior
Interoperability Resource utilization
Security Compliance
Compliance Maintainability Analyzability

Reliability Maturity
(hardware/software/data) Changeability

Fault tolerance Stability
Recoverability (data,
process, technology) Testability

Compliance Compliance
Portability Adaptability

Instability
Co-existence
Replace-ability
Compliance

Generally, this seems not to be a serious problem as the system functional and
security requirements are conceptualized in a “plain text” format either in a traditional
way or a more modern “use case” format in the style of the Unified Process model
(UP). There is no known example for creating a strong coupling between the CC
“system development“ process steps and — in the case of business or mission critical
software development — a structured system development methodology as e.g.
SSADM (Structured System Analysis and Development Method) or UML / UP
(Unified Modelling language, Unified Process) object oriented methodology. The
checking of the syntactic and semantic properties of descriptions and systems can be
effortlessly carried over to the checking of the conformance of function calls and
parameter passing to security standards. This kind of checking, naturally, includes the

 Synergies Between the Common Criteria and Process Improvement 39

Table 5. Capability levels necessary for achieving the given maturity levels in CMMI®

Name Abbr ML ML
1

ML
2

ML
3

ML
4

ML
5

Requirements Management REQM 2 - 2 3 3 3
Measurement and Analysis MA 2 - 2 3 3 3
Project Monitoring and
Control

PMC 2 - 2 3 3 3

Project Planning PP 2 - 2 3 3 3
Process and Product Quality
Assurance

PPQA 2 - 2 3 3 3

Supplier Agreement
Management

SAM 2 - 2 3 3 3

Configuration Management CM 2 - 2 3 3 3
Decision Analysis and
Resolution

DAR 3 - - 3 3 3

Product Integration PI 3 - - 3 3 3
Requirements Development RD 3 - - 3 3 3
Technical Solution TS 3 - - 3 3 3
Validation VAL 3 - - 3 3 3
Verification VER 3 - - 3 3 3
Organizational Process
Definition

OPD 3 - - 3 3 3

Organizational Process
Focus

OPF 3 - - 3 3 3

Integrated Project
Management (IPPD)

IPM 3 - - 3 3 3

Risk Management RSKM 3 - - 3 3 3
Organizational Training OT 3 - - 3 3 3
Integrated Teaming IT 3 - - 3 3 3
Organizational
Environment for Integration

OEI 3 - - 3 3 3

Organizational Process
Performance

OPP 4 - - - 3 3

Quantitative Project
Management

QPM 4 - - - 3 3

Organizational Innovation
and Deployment

OID 5 - - - - 3

Causal Analysis and
Resolution

CAR 5 - - - - 3

40 M. Biró and B. Molnár

pre- and post-conditions of security function calls but there is little or no emphasis on
the other more business like pre- and post conditions. This approach is very effective
and efficient from the security viewpoint but provides little or no hint for the other
important quality aspects, as stipulated in ISO/IEC 9126.

At first glimpse, there is an imminent conflict between the security-oriented
method and the system development process, and which means in fact process
improvement opportunities for both approaches.

In practice, at a certain software development exercise — that could be considered
as a case study example in this connection —, where the aim was to develop an
information system with high security requirement, an ad hoc compromise had to be
worked out. The ISO/IEC 9126 (Table 4) quality aspects are implicitly built-in the
practice of the traditional structured system development methodologies through the
functional and non-functional requirements and their step-by-step modeling and
implementation.

Since the CC does not put emphasis on quality characteristics other than security
and partly safety, the solution was to build up quality criteria checklist based on the
ISO/IEC 9126 characteristics and painstakingly include them into the user side quality
control and quality assurance exercise.

In order to achieve improvement of software development processes based on
principles grounded in CC, the “Target of Evaluation (TOE)”, “TOE Security
Functions”, “Evaluation Assurance Level” subject areas had to be complemented with
the quality criteria. These subject areas can be represented as tangible assets in the
form of documentation, and can be coupled to groups of quality criteria and system
development artifacts (see Table 6).

Table 6. Coupling of groups of quality criteria to system development artifacts

Common Criteria
Concept

System Development Concept Quality
Criterion

Structured
Approach

UML / UP

TOE: Target of
Evaluation

Business Context
Modelling
Requirements
Definitions
Data Modelling

Business Modelling
Artifacts
Requirements Artifacts

Functionality

TSF: TOE Security
Functions

Function Modelling
Behaviour and Process
Modelling

Analysis and Design
Artifacts

Functionality
Reliability

EAL: Evaluation
Assurance Level

User Centred Design
Database and Physical
Process Design

Implementation
Artifacts
Deployment Artifacts

Quality in Use
Usability
Maintainability
Portability

The subject of the development project was to devise and implement a secure PC-
based — moreover laptop-based — distributed system, where a central server with a
central database would communicate to effectively mobile, laptop-based clients. The
communication media would be commercial radio communication network (GSM)
which is able to provide radio coverage even in very distant rural areas.

 Synergies Between the Common Criteria and Process Improvement 41

The developer consortium consisted of a professional company specialized in
developing, manufacturing and operating security products, moreover it had major
expertise in applying CC both for product audit and product development. The other
member was an SME (Small and Medium sized Enterprise) specialized in PC
software development. The Customer was a public agency with the assistance of a
consultancy group specialized in informatics issues for government.

Having experienced the problems in spite of the promises and official statements of
the consortium, the consultancy body started to elaborate quality control steps. For
each stage and each product of the development process, a set of criteria was defined
based on ISO 9126. As a result, the quality control and the criteria implicitly directed
the development process. The development team was replaced with a more
experienced staff in information systems development, and more receptive to the end-
users’ requirements partly embodied into the quality criteria to be checked at the
quality review.

Process improvement has been achieved within the CC methodology without
profoundly modifying it by extending the set of criteria for quality review. There
were no new diagram techniques and analysis tools introduced. However, the
rigorous functional analysis of the security issues built-in CC proved sufficient
with the quality extension to supply information system for the satisfaction of end-
users.

In this way, the CC security-centred engineering approach and system
development quality assurance could be combined to benefit the end-users and
their requirements. The results were satisfying but need further research and
experimental case studies to provide a sound basis for a systematic engineering
method for the combination of two differing world-views instead of a rather ad hoc
approach.

5 Software Quality Standards in Iterative, Object-Oriented
Development

The Unified Modelling Language (UML) and the Unified Process Model have gained
popularity among companies involved in systems or software development.
However, the buyers of systems and the end-users are not satisfied with the systems
shipped to them at all. What are the reasons why the promised quality attributes do
not fulfill the expectations of the end-users?

The case study context:
In a system development case, where a public administration institution has outsour-
ced its system and software development activities to reduce the costs that have
burdened its budget, the vendor had to create a customized method. In order to avoid
quality accountability, the detailed method description did not contain quality criteria
associated to every single technique and method, in spite of the fact that the method
customization was based on a well-known system method and the vendor’s
proprietary methodology. The ideology behind this decision is articulated in
[Ulferts2005] paper: the claim is that the Software Quality Assurance is a built in
feature of UP, but the experiences show that this statement might be valid at large

42 M. Biró and B. Molnár

professional organization specialised in UP / UML like system development but not at
smaller ones where for reasons of cost-effectiveness, it is the quality assurance that is
dropped firstly. The sad and costly consequences of the above mentioned situation is
that the end-users’ organization who had outsourced the system development should
provide a friendly environment for quality assurance and process improvement
opportunity for both for the vendor and the customer organization. The critical issue
is that the quality criteria for each method, tool, technique and procedure applied in
UP / UML development environment are not public, even if they are existent they are
included into the proprietary documentation of the proprietary method owned by
some system development company. The solution for the customer organization is to
assemble quality criteria associated to the artifacts and methods contained in the
customized methodology or set of methods. As the company undertaking software
development was neither willing nor capable to compile a set of quality criteria for
each specific document and artifact of the development processes. The process
improvement has been realized by setting up an independent quality assurance team
that was totally separate form the developer’s organization and practically from the
customer. Measuring the quality of products, the ISO/IEC 9126 quality metrics helped
to demonstrate the discrepancies between the reviewed products of developers and
some widely published results appropriate for international benchmarking. The
tangible result for the customer organization is that quality becomes a measurable
attribute of the artifacts of system development. The right hand-side columns of
Table 2 represent the solution and mappings between the significant end-users’
quality criteria incorporated in the ISO 9126 and some essential set of artifacts
produced by UP / UML methodology. The use of CC has emerged as a must
regarding the privacy of data manipulated by the organization. The CC provides a
framework to evaluate the security requirements of products.

5.1 Application of UP / UML

The developer companies released a set of guides and handbooks following the basic
principles of UP / UML that contained a customized version of the “disciplines” and
documentation standards.

5.1.1 The Business Modelling Discipline
This modelling tool set and method is the imminent conflicting point between the
developer companies and public administration organizations. The public
administration’s basic governing principles come from the legal environment,
primarily laws, decrees, ordinances (government’s, ministries’), other statutory
instruments and then subordinate legislation. Understanding and correctly interpreting
the conceptual framework encoded into the textual rules and the every day practice is
hard task and the dense texture of the rules are hardly penetrable for people or
companies who are not participating day-to-day in the work. The system and software
development methodologies as UP / UML provide the detailed steps, techniques,
diagram techniques, documentation standards both in format and in content as a
feasible and viable tools to control the analysis process and to reflect and describe as
close as possible the business processes in terms of users. The “Use Case” diagram
and textual description is an apt tool for description the real processes in a correct
form in the case of following the rigorous rules of methodology, i.e. depicting the

 Synergies Between the Common Criteria and Process Improvement 43

processes using the standard documentation format that expects the description of the
pre- and post-conditions, the main-stream scenario, the alternative ones including the
“error-prone” branches. The developer company specified the use of the “Business
Use-Case modeling” method as it was abovementioned, however never used this way.
This fact caused twofold problems, on one side incorrect use of the method both
formally and semantically, on the other side the business and system analyst did not
understand the business processes correctly. The quality assurance team raised several
objections, but the developer team was not competent to fulfil the expectations.

5.1.2 The Requirements Discipline
Regarding the complexity of public administration and the ignorance of developer
company, the developers were not able to compile a consistent set of requirements.
The customer collected and edited a requirements catalogue, nevertheless the
developer company and its analyst were not able to correctly interpret the
requirements. The “Use-Case modelling” method was not used correctly within the
modelling exercise as well having the same defects as before.

5.1.3 The Analysis and Design Discipline
The customized methodology contained some significant methods and their
documentation as Data Model, Design Model. The developer team formally created
the documents but keeping a low-profile on the content, i.e. leaving out the detailed
data elements analysis, detailed description of relationship among entity classes as
degree and relationship realizing data element. The customer’s Quality Assurance
team had played and important role checking the artifacts and using measurement
system for the quality of products, namely the ISO 9126 quality metrics, general
criteria for application systems and especially UP conform development. The quality
assurance team experiences point at the opportunities of software process
development in future. Despite the statement that UP immanently contains the quality
control and assurance, there were several problems during the software development
that could be handled only by the customer side quality assurance.

5.1.4 The Test Discipline
The testing method, partly conforming to RUP partly not, were extensively used as
the defects and errors had been produced the previous stages manifested the testing
phase. Enormous number of errors and insufficiencies in requirements specification
came to surface. The assessment and evaluation of errors showed the holes in the
project management and control on the side of developers. There were no categories
for various error types, there were no distinction between errors detected in the alpha
and in the beta test for number crunching statistics to see the quality characteristics of
the software.

5.1.5 The Deployment Discipline
In spite of the customized method handbooks, the deployment related activities were
done in an ad hoc manner and not according to the prescription of RUP. However,
this caused minor problems because the customer had had a good practice for several
years.

44 M. Biró and B. Molnár

5.1.6 The Configuration and Change Management Discipline
A specific handbook among the customized ones treated the change management;
specialized software modules had been acquired to support the related activities.
However, because of the lack of capability and willingness on the side of developers,
the change management was total failure causing several problems on the customer
side and during the acceptance phase. The UP and supporting software modules
demand theoretical and practical pre-requisites, specialized knowledge and skill.
Without the necessary training and commitment on the developer side, the UP method
in itself cannot guarantee any success.

There were no Configuration Management Plan, Configuration Audit. The
handling of “Change Request” was neither systematic nor keeping track.

5.1.7 Project Management Discipline
The developer side hardly used the project management methods proposed by them.
There were no Quality Assurance Plan, Problem Resolution Plan, Risk management
Plan, Product Acceptance Plan, Iteration Plan including Iteration Assessment. On
customer side, having lack of knowledge of UP like project management, they made
up for PRINCE II project management method having wide international acceptance.
By this way, the customer side were able to keep in check their own side the
developer teams project management was rather chaotic.

5.1.8 Process Improvement and UML / UP
The UML / UP is a theoretically sound system and software development method that
have proved its usefulness in practice and in several software projects. In spite of this,
the use of method is not straightforward for a given organization as the method
provides a wide-range of tools and techniques that should be selected in an
appropriate manner in each single iterative phase. This adaptation work is a huge task
and leads to failures if the quality side is not taken into consideration, e.g. through the
application of the readily available process improvement approaches.

6 Conclusion

The analogies discovered between the complex standards and methodologies
described in the paper help those familiar with one of the systems of concepts better
understanding the other system of concepts on the one hand, contribute to the
potential establishment of a cost and resource effective multiple certification process
on the other hand.

Process improvement can be manifested by a mapping approach that meticulously
couples the significant quality criteria and the artifacts produced by either the CC method
or UP / UML. To be successful, an organizational guarantee is required; a quality
assurance team has to be present in the customer organization which ensures that the
quality really becomes an integral part of the processes of systems development for the
satisfaction of the requirements of end-users. We can conclude that the following thesis
has been established: process improvement reflecting higher CMMI levels leads to
potentially higher security levels in the CC sense. The two case studies suggest that this
statement is correct. However, in order to empirically validating this hypothesis, we need

 Synergies Between the Common Criteria and Process Improvement 45

a measurement framework including the CMMI and the CC criteria which should be
cross-referenced. The elaboration of such a framework and the performance of such an
experiment will be the subject of further research.

Nonetheless, we can deduce that process improvement can help both types of
software development approaches investigated in the case studies, whether security-
centred or user requirement-oriented.

References

1. Biró, M., Tully, C.: The Software Process in the Context of Business Goals and
Performance. In: Messnarz, R., Tully, C. (eds.) Better Software Practice for Business
Benefit, IEEE Computer Society Press, Washington, Brussels, Tokyo (1999)

2. Biró, M., Messnarz, R.: Key Success Factors for Business Based Improvement. Software
Quality Professional (ASQ, American Society for Quality) 2(2), 20–31 (2000) (July 11,
2007), http://www.asq.org/pub/sqp/past/vol2_issue2/biro.html

3. Biró, M.: Common Criteria for IT Security Evaluation - SPI Analogies. In: Messnarz, R.
(ed.) Proceedings of the EuroSPI 2003 Conference, pp. IV.13–IV.21. Verlag der
Technischen Universität Graz (2003), ISBN 3-901351-84-1

4. Boegh, J., Rêgo, C.M.: Combining software process and product quality standards. In: The
2nd World Conference on Software Quality, Japan (September 2000)

5. Prieto-Díaz, R.: Understanding the Common Criteria Evaluation Process. Commonwealth
Information Center Technical Report CISC-TR-2002-003 (September 2002)

6. Taylor, C., Alves-Foss, J., Rinker, B.: Merging Safety and Assurance: The Process of Dual
Certification for Software. In: Proc. Software Technology Conference (March 2002)

7. CCTA (Central Computer and Telecommunication Agency): SSADM Version 4+, Version
4.3. London, HMSO, The Stationery Office (1996)

8. Larman, C.: Applying UML and Patterns, 3rd edn. Prentice Hall, Englewood Cliffs (2002)
9. Muller, P.-A.: Instant UML. Wrox Press Ltd., Birmingham, UK (1997)

10. Ulferts, Karen: Why isn’t there a RUP workflow for software quality assurance? (July 11,
2007), http://www-128.ibm.com/developerworks/rational/library/jun05/ulferts/index.html#notes

11. Common Criteria for Information Technology Security Evaluation Introduction and
general model: Version 2.1, CCIMB-99-031, ISO/IEC 15408:1999 (August 1999)

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 46–58, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Determining Practice Achievement in Project
Management Using a Two-Phase Questionnaire on Small

and Medium Enterprises

Garcia Ivan., Calvo-Manzano Jose A., Cuevas Gonzalo, and San Feliu Tomas

Languages and Informatics Systems and Software Engineering Department
Faculty of Computer Science, Polytechnic University of Madrid, Spain

ivan@mixteco.utm.mx, jacalvo@fi.upm.es, gcuevas@fi.upm.es,
tsanfe@fi.upm.es

Abstract. This paper aims to obtain a baseline snapshot of Project Management
processes using a two-phase questionnaire to identify both performed and non-
performed practices. The proposed questionnaire is based on the Level 2 proc-
ess areas of the Capability Maturity Model Integration for Development v1.2. It
is expected that the application of the questionnaire to the processes will help
small and medium software enterprises to identify those practices which are
performed but not documented, which practices need more attention, and which
are not implemented due to bad management or unawareness.

Keywords: Software process improvement, appraisals, questionnaire, project
management processes.

1 Introduction

This research advocates the idea that although project management processes are not
carried out in many organizations there are isolated members or groups that perform
their own project management practices. These practices, however, are usually not
documented and consequently are not spread across the organization. Recent years
have witnessed an increasing demand for software to solve more and more complex
tasks, and with greater added value [27]. Under these circumstances, the following
question can be raised: Is the software industry prepared to deliver the software that is
needed according to client demands in the coming years? According to the Prosoft
Foundation (Program for Develop the Software Process) [28] and researchers such as
Oktaba [25], Brodman [4], and Carreira [8] the answer is unfortunately no. The soft-
ware development process is far from being a mature process.

At the moment, there is a consensus in the software industry sector that such a
complex product as software must be developed with the help of engineering and
management processes and metrics that enable us to effectively predict the risk levels
of software products (primordially, in terms of costs, schedules, and defects) [14].
The fact of the matter, however, is that IT projects usually fail partially or sometimes

 Determining Practice Achievement in Project Management 47

completely [15]. The "software crisis" of 1969 has lasted up to now, with the same
old causes of project failure [20] [31]:

• 30% of software projects are cancelled,
• 50% of software projects are abandoned or their costs are excessive,
• Often, 60% of software projects fail due their poor quality , and
• Software delivery is delayed in 9 out of 10 projects.

The lack of management is confirmed in [30] [11]. Throughout the world, a million
projects are implemented every year. Cairó [7] indicated that a third of these projects
exceed 125% in time and cost. But why is there so much failure? The same study in-
dicates that although there are many reasons, one of the most important is project
management. Jones [19] has identified three principal causes of failure and delays in
software projects: inaccurate estimates, poor communication of project status, and
lack of historical information. These are key issues in the areas of project planning
and project monitoring and control. Furthermore, the Standish Group maintains that
software does not cover all the requirements for which they were created, it must be
modified frequently and is difficult to maintain. Jones also holds that these causes can
be eliminated through an adequate project management process.

A recent Department of Defense (DoD) report on this problem states that: “After
two decades of unfulfilled promises about productivity and quality gains from apply-
ing new software methodologies and technologies, industry and government organi-
zations are realizing that their fundamental problem is the inability to manage the
software process, the low quality in the risk management area specially” [3]. Hence,
having taken into account old and new causes of project failure, we reached the con-
clusion that the causes are still the same.

The objective of this paper is to provide a more accurate picture of the Project Man-
agement Practices (PMP) of an organization by administering a questionnaire. PMP has
been selected because they are considered the cornerstone of the software lifecycle.
There is evidence that suggests that deficient PMP may be one of the principal causes of
many problems related to later stages in the software development process. The ques-
tionnaire proposed in this paper is used as an initial data collection instrument for the
appraisal of PMP. The questionnaire was chosen because it provides a quick fix for a re-
search methodology and because the researcher can determine the questions to be asked
and the range of answers that can be given. This makes it more precise and easy to ana-
lyze from the researcher’s point of view [13]. Besides, it has been argued that the appli-
cation of questionnaires consumes less time, effort and financial resources than other
methods of data collection such as interviews and document reviews [2]. Moreover, it
offers less accurate results and could be misunderstood. The questionnaire is based on
the Capability Maturity Model Integration for Development (CMMI-DEV) [29]. The
CMMI option was selected because it is probably one of the best known software proc-
ess improvement models [1] and because its representation offers flexibility when ap-
plying a process improvement program.

2 Motivations

From the beginning of the 90’s, industry and researchers interested in Software Engi-
neering have been expressing special interest in Software Process Improvement (SPI)

48 G. Ivan et al.

[26] (see Figure 1). An indicator of this interest is the increasing number of interna-
tional initiatives related to SPI, such as CMMI-DEV [29], ISO/IEC 15504:2004 [17],
SPICE [18], and ISO/IEC 12207:2004 [16].

19

96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

0

1

2

3

4

5

6

7

8

P
er

fo
rm

ed
 S

tu
d

ie
s

Years

SPI Publications per year

Fig. 1. SPI Publication's tendency per year

In addition, many methods for evaluating improvements in organizations, such as
SCAMPI [23], ISO 15504 [17] and CBA-IPI [12], and improvement models such as
IDEAL [21] have been developed. This interest in software improvement in large en-
terprises is now being extended to small and medium enterprises. However, the prob-
lem is the high implementation cost, independently of the company size [24]. Because
models have been developed for large enterprises, only a few Small and Medium
software Enterprises are aware of them. In Spain, in April 2006 there were almost 3
million Small and Medium Enterprises (SMEs) that accounted for 99.87 % of all
companies; 10% of which are software enterprises (see Table 1). With this informa-
tion we were able to determine the importance of SMEs at the macroeconomics level.

It is expected that the application of the questionnaire to an organization’s PMP
team can provide useful information related to the current state of the processes and

Table 1. Characteristics of Spanish enterprises (Source: DIRCE 2006)

Micro-
enterprises

(1-20)

Small
(21-50)

Medium
(51-250)

SMEs
(1-250)

Big
(250 and

more)
Total

2.722.003 88.173 25.599 2.835.775 8.533 2.844.308
95,7% 3,1% 0,9% 99,7% 0,3% 100%

 Determining Practice Achievement in Project Management 49

indicate those PMP that require immediate attention. Data derived from the question-
naire can help to identify the people who implement some PMP in order to incorpo-
rate them into the SPI effort. Finally, the questionnaire could be used as a data
collection instrument for a more extensive appraisal method such as SCAMPI [23].

3 The Capability Maturity Model Integration for Development

As CMMI official documentation indicates: “Major systems development today often
requires integrated engineering activities and components. Many organizations have
found several models to be useful: SEI’s Capability Models (Software, Software Ac-
quisition, Systems Engineering, People, etc.), EIA/IS 731.1 (SECM), ISO 9000, ISO
14000, etc. While independently useful, the models had significant overlaps and re-
dundancies, some contradictions and inconsistencies, different levels of detail, and
poorly described or non-explicit interfaces. These issues lead to inefficiency in proc-
ess improvement program implementation and benchmarking. Capability Maturity
Model Integration (CMMI) practices and structure attempt to minimize the issues
with multiple models. The CMMI project work is sponsored by the U.S. DoD, specifi-
cally the Office of the Under Secretary of Defense, Acquisition, Technology, and Lo-
gistics (OUSD/AT&L). Industry sponsorship is provided by the Systems Engineering
Committee of the National Defense Industrial Association (NDIA). Organizations
from industry, government, and the SEI joined forces to develop the CMMI Frame-
work, a set of integrated CMMI models, a CMMI appraisal method, and supporting
products” [29].

According to SEI, “CMMI is a process improvement maturity model for the devel-
opment of products and services. It consists of best practices that address develop-
ment and maintenance activities that cover the product lifecycle from conception
through delivery and maintenance. This latest iteration of the model as represented
herein integrates bodies of knowledge that are essential for development and mainte-
nance. These, however, have been addressed separately in the past, such as software
engineering, systems engineering, hardware and design engineering, the engineering
“-ilities,” and acquisition” [29]. The prior designations of CMMI for systems engi-
neering and software engineering (CMMI-SE/SW) are superseded by the title “CMMI
for Development” to truly reflect the comprehensive integration of these bodies of
knowledge and the application of the model within the organization. CMMI-DEV
provides a comprehensive integrated solution for development and maintenance ac-
tivities applied to products and services.

The CMMI-DEV official report indicates that: “CMMI for Development V1.2 is a
continuation and update of CMMI V1.1 and has been facilitated by the concept of
CMMI “constellations” wherein a set of core components can be augmented by addi-
tional material to provide application-specific models with highly common content.
CMMI-DEV is the first of such constellations and represents the development area of
interest”. There are six capability levels; numbered 0 through 5 (see Figure 2). Each
capability level corresponds to a generic goal and a set of generic and specific prac-
tices providing a framework for organizing the process improvement steps [29].

50 G. Ivan et al.

Fig. 2. CMMI-DEV Capability Levels

3.1 Model’s Structure

According to [29], “CMMI models are designed to describe discrete levels of process
improvement. The capability levels and generic model components focus on building
the organization’s capacity to pursue process improvement in multiple process areas.
Using capability levels, generic goals, and generic practices, organizations can im-
prove their processes, as well as demonstrate and evaluate their progress as they im-
prove. Capability levels in continuous representation provide a recommended order
for approaching process improvement within each process area. For each process
area, a capability level consists of related specific and generic practices that, when
performed, achieve a set of goals that lead to improved process performance. Fur-
thermore, generic practices provide “institutionalization” to ensure that activities re-
lated to the process area will be effective, repeatable, and enduring”.

In continuous representation, a capability level profile is a list of process areas and
their corresponding capacity levels. This profile is used by the organization to track
its capacity level by process area. The profile is an achievement profile when it repre-
sents the organization’s progress for each process area while ascending the capacity
levels. Alternatively, the profile is a target profile when it represents the organiza-
tion’s process improvement objectives. An achievement profile, when compared with
a target profile, enables us not only to track the organization’s process improvement
progress, but also to demonstrate the organization’s progress to management. Main-
taining capacity level profiles is advisable when using a continuous representation.
Before using a CMMI model for improving processes, the organization must map its
processes onto CMMI process areas. This mapping enables it to control process im-
provement by helping it track the organization’s level of conformity to the CMMI
model. Every CMMI process area is not intended to map one to one with the organi-
zation’s processes [29].

4 The Project Management Practices

PMP cover project management activities related to planning, monitoring, and con-
trolling the project. All the causes of project failure analyzed on section 1 can be
mapped onto process areas of CMMI-DEV Level 2 (see Table 2).

 Determining Practice Achievement in Project Management 51

Table 2. A cause vs. process area comparative table

Cause CMMI-DEV process area
“Software projects are cancelled or exceed

the schedule”
Project Planning

“Software projects are abandoned or their
costs are excessive”

Project Planning /
Project Monitoring and Control

“Software projects fail due to their poor
quality”

Product and Process Qualiy
Assurance

“Poor communication of project status, and
lack of historical information”

Project Monitoring and Control /
Supplier Agreement Management

“Software does not cover all the
requirements for which they were created”

Requirements Management

“Software must be modified frequently and is
difficult to maintain”

Configuration Management

Table 2 provides a bird’s-eye view of the process areas included in the assessment
questionnaire. The principal aim in the selection of these process areas is to cover all
causes of failure and provide an evaluation result to improve deficient practices. The
process areas shown in Table 2 are in CMMI-DEV’s capability Level 2.

5 Data Collection Instruments: An Overview

This study has been defined by taking into account the generic SPI model defined by
ISPI (Institute for Software Process Improvement Inc.) with four stages (commitment
to appraisal, assessment, infrastructure and action plan, and implementation). Their
objectives are similar to those of the IDEAL model [21] from the SEI. It must not be
forgotten that this study focuses on phase 2 of the SPI Model: The Software Process
Assessment.

There is a wide number of data collection instruments that can be used for apprais-
als: questionnaires, surveys, interviews, and reviewing documentation, each having its
own advantages and disadvantages. One of the commonly used techniques is a ques-
tionnaire. This is mainly because they can be applied to many people, they are cost ef-
fective, non-invasive, provide quantitative data, and results can be analyzed promptly
[13]. However, it is important to mention that this technique lacks precision and also
is easily open to misinterpretation. Questionnaires can be classified into open and
closed questions. An open-question provides more information than a closed one. The
complexity of analyzing data provided by open questions, however, is higher than
those in closed-questions [32]. Moreover, a closed-question provides less information
but its results can be more easily analyzed and are obtained faster than with the open
one. Consequently, for this research a questionnaire was developed using closed ques-
tions as the main instrument for collecting appraisal data.

In order to propose a new instrument for collecting appraisal data, a review was
performed of the questionnaires available in the literature. The first questionnaire to
be reviewed was the SEI’ Maturity Questionnaire [33]. The major disadvantage with
this questionnaire is that it was developed for the SW-CMM model and cannot, there-
fore, be applied as it is to the CMMI-DEV model. Furthermore, the maturity

52 G. Ivan et al.

questionnaire provides little information about the PMP because it focuses on the ma-
turity of the process without paying attention to finding the weakness of the practices.
Another disadvantage is that this questionnaire is limited in the number of responses
that can be selected: Yes, No, Does not Apply and Don’t Know. In fact, there are only
two options - Yes and No, because Does not Apply and Don't Know are used to vali-
date the application of the questionnaire. Using the maturity questionnaire limits the
information to two extreme ends: Yes, if the practice is performed and No if the prac-
tice is not performed. Therefore, it does not leave room for intermediate points. There
are, for example, no options to pick up cases where practices are performed but rarely
documented or when they are not documented at all. This type of question cannot be
addressed with the options provided in the Maturity Questionnaire.

Questionnaires with limited answer options may provide limited or misleading in-
formation. For example, a project sponsored by the SEI "CMMI Interpretive Guid-
ance Project" supports this argument [9]. The questionnaire was applied to more than
600 people and the results report the following:

“We are not providing the results of the Generic Goals and Practices and Specific
Process Areas sections of the Web-based questionnaire in this preliminary report. In
both of these sections, there were no radio buttons and therefore the responses pro-
vided were in the form of specific comments. Many of these specific comments contain
little information. For example, responses such as ‘none’ or ‘no’ were common” [9].

However, in one question of the same project, the SEI used five possible re-
sponses: Almost always, More often than not, Sometimes, Rarely if ever and Don’t
know. As a result, more distributions of the types of responses were obtained (see
Figure 3). The report does not explain, however, the reasons why this methodology
was not used in the same way for specific and generic practice questions.

Fig. 3. Example of answer distribution

The report of the Process Improvement Program for the Northrop Grumman In-
formation Technology Company [23] proposes a Questionnaire-Based Appraisal with
seven possible responses: Does Not Apply, Don’t know, No, about 25% of the time,
about 50% of the time, about 75% of the time, and Yes. This work proposes more re-
sponse granularity. It does not, however, explain how to apply this questionnaire to

 Determining Practice Achievement in Project Management 53

the PMP. Another disadvantage is that this report used the SA-CMM as a reference
model and it focuses on the Software Acquisition process.

Another study reviewed was the software improvement model proposed by the
ISPI. This model was used by [5] and [6] in their research. For the appraisal stage,
they proposed a questionnaire structure using five types of responses: Always when
the practice is documented and performed between 100% – 75% of the time, More of-
ten when the practice is documented and performed between 74% – 50% of the time,
Sometimes when the practice is not documented and is performed between 49% –
25% of the time. Rarely when the practice could be documented or not and is per-
formed between 25% - 1 of the time. And Never when the practice is not performed in
the organization.

The response granularity is similar to that of Marciniak and Sadauskas [22] and
provides more information about the current state of practices. This study only pro-
vides general information about the process without covering the PMP in full detail
and without proposing precise actions for process improvement. Moreover, this ques-
tionnaire was designed for SW-CMM.

The last study reviewed was the questionnaire proposed by Cuevas and Serrano
[10]. This study proposes an assessment methodology based on a questionnaire to
identify which practices of the requirements management process are performed but
not documented, which practices require to be prioritized and which are not imple-
mented due to bad management or unawareness. Cuevas’s questionnaire is based on
CMMI v1.1 and only covers the requirements management process.

In summary, the questionnaires reviewed here are deficient in their design and do
not obtain relevant information. Furthermore, there is no evidence of a questionnaire
that addresses the PMP in detail and there is no evidence of a questionnaire that cov-
ers both generic and specific practices.

6 An Alternative Data Collection Instrument: The PMP Two
Phase -Questionnaire

Based on the previously reviewed literature, a two-phase questionnaire is proposed.
The questionnaire uses closed questions and limits the number of possible responses
to seven. These are organized as follows:

• Five level-perform-answers: Always, Usually, Sometimes, Rarely if ever,
and Never. These will enable us to know the extent to which each practice is
performed.

• Two validity-answers: Don’t Know and Not Apply. These will be used to
appraise the validation of the questions, to validate the correctness of the
question, and to check the syntaxes of the questions.

• Additional information spaces (Comments) to extract supplementary back-
ground information. It is mandatory to write some comments when checking
any of the validity-answers.

Each possible response has a unique interpretation and indicates the performance
level of a PMP as described in Table 3.

54 G. Ivan et al.

The level-perform-answers determine the percentage in which each practice is per-
formed. This varies from ‘Never’ with a value equal to 0, ‘Rarely if ever’ with a value
equal to 1, ‘Sometimes’ with a value equal to 2, and ‘Usually’ with a value equal to 3,
and ‘Always’ with a value equal to 4. The validity-answers don’t have numerical
value. Giving a specific weight to each response will enable us to easily analyze the
results of the evaluation and to identify which practices are common within the whole
organization and which ones are not performed at all.

Table 3. Perform Level Classification

Possible Answer Perform
Level Description

Always 4
The activity is documented and established in the
organization. It is always realized, between 75 and
100% of the time, in organization software projects

Usually 3
The activity is established in the organization but
rarely documented. It is usually realized, between 50
and 75 % of the time, in organization software projects

Sometimes 2
The activity is weakly established in the organization. It
is realized sometimes, between 25 and 50 % of the
time, in organization software projects

Rarely if ever 1
The activity is rarely performed in the organization. It
is rarely realized, between 1 and 25 % of the time, in
organization software projects

Never 0
The activity is not performed in the organization. No
person or group performs the activity in the
organization.

Don’t Know The person is not sure how to answer the question.
Not Apply The question is not applicable to the organization.

Comments
 This space is for elaborating or qualifying one’s

response to a question, and it is mandatory when one
selects Don’t know or Not Apply options.

6.1 Questionnaire’s Structure

The questionnaire proposed here has been based on the two types of practices estab-
lished by the CMMI-DEV and is divided into two phases. The first-phase is related to
specific practices while the second-phase is related to generic practices. Another rea-
son of this division is to differentiate the type of audience to whom it is applied.

The first-phase is aimed at employees who implement the process and is based on
the specific practices from PMP of the CMMI-DEV [29]. This phase is divided into
six process areas that will be performed to achieve a well established project man-
agement process:

• Project Planning: The purpose of Project Planning is to establish and main-
tain plans that define project activities.

• Project Monitoring and Control: The purpose of Project Monitoring and
Control is to provide an understanding of project progress so that appropriate

 Determining Practice Achievement in Project Management 55

corrective actions can be taken when the project performance deviates sig-
nificantly from the plan.

• Requirements Management: The purpose of Requirements Management is
to manage the requirements of the project products and product components
and to identify inconsistencies between those requirements and project plans
and work products.

• Configuration Management: The purpose of Configuration Management is
to establish and maintain the integrity of work products using configuration
identification, configuration control, configuration status accounting, and
configuration audits.

• Process and Product Quality Assurance: The purpose of Process and Prod-
uct Quality Assurance is to provide staff and management with an objective
insight into processes and associated work products.

• Supplier Agreement Management: The purpose of Supplier Agreement
Management is to handle the acquisition of products from suppliers.

• Measurement and Analysis: The purpose of Measurement and Analysis is to
develop and sustain a measurement capability that is used to support man-
agement information needs. We include this process area because it is as-
sumed that all processes must be measured and controlled.

The second-phase is aimed at higher-level management such as general managers,
system managers, software managers, or team leaders, and is based on the generic
practices from the PMP of the CMMI-DEV [29]. The application of this phase aims to
find those activities for managing the software projects whether they are institutional-
ized or not and if they can support a managed process. A managed process is a
performed (Level 2) process that has the basic infrastructure in place to support the
process. It is planned and implemented in accordance with policy; it employs skilled
people who have adequate resources to produce controlled outputs; it involves rele-
vant stakeholders; it is monitored, controlled, and reviewed; and it is evaluated for
adherence to its process description. To determine if a PMP is institutionalized, it is
necessary to perform the following activities:

• Adhere to organizational policies.
• Track a documented project plan.
• Allocate adequate resources.
• Assign responsibility and authority.
• Train the affected people.
• Be placed under version control or configuration management.
• Be reviewed by the people affected.
• Measure the process.
• Ensure that the process complies with specified standards.
• Review the status with higher-level management.

It is expected that the cross analysis of the responses of both questionnaires will en-
able us to know those PMP practices that have been covered by the software team and
that have been spread throughout the organization as an institutionalized process.

56 G. Ivan et al.

Similarly, this cross analysis can help us to identify other issues related to the combi-
nation of both phases of this questionnaire.

7 Conclusions

Though CMMI and ISO/IEC 15504 have exploded onto the market as models to fol-
low when organizations try to apply process improvements, there are many organiza-
tions that are still not using these models. The CMMI is considered to be one of the
best known models that focus on software process improvement for achieving quality
software. The CMMI-DEV, however, is relatively new, so there is not much research
written about which data collection instruments can be employed when using the
CMMI-DEV approach. This research, therefore, developed an instrument to evaluate
the current status of project management practices. The data collection instrument de-
veloped for the appraisal is a two-phase questionnaire.

The questionnaire proposed here is divided into two phases. This division is mainly
due to the fact that the CMMI-DEV clearly differentiates between specific practices
and generic practices. As well as this, another reason for the division into two phases
is because each section is applied to a different domain of people. The specific-
practices-phase refers to the series of steps that have to be followed to perform the
PMP. Furthermore, it will be applied to those employees who implement the PMP.
The generic-practices-phase refers to the maturity and institutionalization of the PMP.
Institutionalization implies that the process is ingrained in the way the work is per-
formed. In the same way, institutionalization implies the steps that need to be
followed to ensure that the specific practices are spread throughout the entire organi-
zation. This phase will be applied to the employees who manage the PMP. Most of
the literature has focused on which practices need to be implemented to improve a
given process but has barely focused on explaining how to implement these practices.
Identifying only those practices which need to be implemented is not sufficient, and
the description steps of how to implement them are also required for a successful SPI
program. In view of the foregoing, our future research efforts will focus on develop-
ing a methodology to implement the CMMI-DEV PMP practices on SMEs internal
processes. The PMP two-phase questionnaire represents the first step in this research.
The next step is related to the validation of the questionnaire. For this purpose, the
questionnaire will be experimented on 26 SMEs through a project funded by the
Spanish Ministry of Industry, Tourism and Trade. Our future research will concen-
trate on proposing the use of questionnaires for the PMP related to Levels 3 and 4 of
the CMMI-DEV. This research advocates the idea of defining and implementing an
“organizational repository of assets” where our questionnaires could be selected for
any SMEs according to their needs.

Acknowledgement

This paper is sponsored by ENDESA, Everis Consulting Foundation and Sun Micro-
systems companies through "Research Group of Software Process Improvement in
Latin America".

 Determining Practice Achievement in Project Management 57

References

1. Bach, J.: Enough about process: what we need are heroes. IEEE Software 12(2), 96–98
(1995)

2. Brewerton, P.: Organizational research methods. SAGE, London (2001)
3. Brock, S., Hendricks, D., Linnell, S., Smith, D.: A Balanced Approach to IT Project Man-

agement. In: Proceedings of SAICSIT, ACM Publications, New York (2003)
4. Brodman, J., Johnson, D.: Project Planning: Disaster Insurance for Small Software Pro-

jects. In: Proceedings from SEPG 2000: Ways to Make Better Software, March 20-23,
1999, LOGOS International, Inc., Seattle, Washington (1999)

5. Calvo-Manzano, J.A., Cuevas, G., San-Feliu, T., De-Amescua, A., Arcilla, M.M., Cerrada,
J.A.: Lessons Learned in Software Process Improvement. The European Journal for the In-
formatics Professional IV(4), 26–29 (2003)

6. Calvo-Manzano, J.A., Cuevas, G., San-Feliu, T., De-Amescua, A., García, L., Pérez, M.:
Experiences in the Application of Software Process Improvement in SMES. Software
Quality Journal 10(3), 261–273 (2002)

7. Cairó, O.: Proyecto KAMET II. Instituto Tecnológico Autónomo de México (2004)
8. Carreira, M., Román, I.: Estimación del Coste de la Calidad del Software a través de la

Simulación del Proceso de Desarrollo. Revista Colombiana de Computación 2(1), 75–87
(2002)

9. CMMI Interpretive Guidance Project: Preliminary Report (CMU/SEI-2003-SR-007):
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (October
2003)

10. Cuevas, G., Serrano, A., Serrano, A.: Assessment of the requirements management process
using a two-stage questionnaire. In: Quality Software, QSIC 2004. Proceedings of Fourth
International Conference on Software Quality (September 8-9, 2004)

11. Dove, R.: Value Propositioning - Book One - Perception and Misperception in Decision
Making. Iceni Books (2004)

12. Dunaway, D.K., Masters, S.: CMM-Based Appraisal for Internal Process Improvement
(CBA IPI). Method Description, Technical Report CMU/SEI-96-TR-007, Carnegie Mellon
University, Software Engineering Institute, Pittsburgh (1996)

13. Gillham, B.: Developing a Questionnaire. Developing a Questionnaire, London, New York
(2000)

14. Hadden, R.: Effective Planning and Tracking for Small Projects. In: SEPG Conference,
Datatel, Inc. (2002)

15. IBM: Gestión de Proyectos TIC en la Seguridad Social. Asociación Internacional de la
Seguridad Social. Asociación Internacional de la Seguridad Social. Ginebra (2004)

16. ISO/IEC 12207:2002/FDAM 2: Information Technology – Software Life Cycle Processes.
International Organization for Standardization: Geneva (2004)

17. ISO/IEC 155504-2:2003/Cor.1:2004(E): Information Technology – Process Assessment –
Part 2: Performing an Assessment. International Organization for Standardization: Geneva
(2004)

18. ISO/IEC TR 15504:1998(E): Information Technology – Software Process Assessments.
Parts 1-9. International Organization for Standardization: Geneva (1998)

19. Jones, C.: Why Flawed Software Projects Are Not Cancelled in Time. Cutter IT Jour-
nal 16(12), 12–17 (2003)

20. Jones, G.: Software Engineering. John Wiley & Sons, Inc., New York, NY (1990)

58 G. Ivan et al.

21. McFeeley, B.: IDEAL: A User’s Guide for Software Process Improvement. Handbook,
CMU/SEI-96-HB-001, Software Engineering Institute, Carnegie Mellon University (Feb-
ruary 1996), http://www.sei.cmu.edu/pub/documents/96.reports/pdf/hb001.96.pdf

22. Marciniak, J.J., Sadauskas, T.: Use of Questionnaire-Based Appraisals in Process Im-
provement Programs. In: Proceedings of the Second Annual Conference on the Acquisition
of Software-Intensive Systems, Arlington, Virginia, USA, p. 22 (2003)

23. Members of the Assessment Method Integrated Team: Standard CMMI® Appraisal
Method for Process Improvement (SCAMPI), Version 1.1, (CMU/SEI-2001-HB-001).
Pittsburgh, PA, Software Engineering Institute, Carnegie Mellon University (December
2001) (2006), Descripción técnica disponible en: http:// ww.sei.cmu.edu/ pub/ documents/
01.reports/pdf/01hb001.pdf

24. Mondragón, O.: Addressing Infrastructure Issues in Very Small Settings. In: Proceedings
of the First International Research Workshop for Process Improvement in Small Settings,
CMU/SEI-2006-SR-001, pp. 5–10 (2005)

25. Oktaba, H.: MoProSoft: A Software Process Model for Small Enterprises. In: Proceedings
of the First International Research Workshop for Process Improvement in Small Settings,
CMU/SEI-2006-SR-001, pp. 93–100 (2005)

26. Pino, F., García, F., Piattini, M.: Revisión Sistemática de Procesos Software en Micros,
Pequeñas y Medianas Empresas. Revista Española de Innovación, Calidad e Ingeniería del
Software 2(1), 6–23 (2006)

27. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 5th edn - European Ad-
aptation. McGraw-Hill, New York (2004)

28. Programa para el Desarrollo de la Industria Software (ProSoft): Avances al 1er semestre
del 2004. Portal de la Industria del Software. Disponible en: www.software.net.mx

29. Software Engineering Institute: CMMI for Development (CMMI-DEV, V1.2). CMU/SEI-
2006 TR-008, Software Engineering Institute, Carnegie Mellon University (2006)

30. Standish Group International: Extreme Chaos. The Standish Group International, Inc.
(2001)

31. Standish Group International: 2004 Third Quarter Research Report. The Standish Group
International, Inc. (2004)

32. Yamanishi, K., Li, H.: Mining Open Answers in Questionnaire Data. IEEE Intelligent Sys-
tems 17(5), 58–63 (2002)

33. Zubrow, D., Hayes, W., Siegel, J., Goldenson, D.: Maturity Questionnaire (CMU/SEI-94-
SR-7). Pittsburgh, PA, Software Engineering Institute, Carnegie Mellon University (June
1994) (1994), http://www.sei.cmu.edu/pub/documents/94.reports /pdf/sr07.94.pdf

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 59–70, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Using Practice Outcome Areas to Understand Perceived
Value of CMMI Specific Practices for SMEs

Xi Chen and Mark Staples

NICTA, Australia Technology Park, Eveleigh, NSW, 1430, Sydney, Australia
School of Computer Science and Engineering, University of New South Wales, Australia

xi.chen@nicta.com.au, mark.staples@nicta.com.au

Abstract. In this article, we present a categorization of CMMI Specific Prac-
tices, and use this to reanalyze prior work describing the perceived value of
those practices for Small-to-Medium-sized Enterprises (SMEs), in order to
better understand the software engineering practice needs of SMEs. Our catego-
rization is based not on process areas, but on outcome areas (covering organiza-
tional, process, project, and product outcomes) and on the nature of activities
leading to outcomes in those areas (covering planning, doing, checking, and
improvement activities). Our reanalysis of the perceived value of Specific Prac-
tices for the CMMI Level 2 Process Areas shows that SMEs most value prac-
tices for working on project-related outcomes, and for planning and doing work
on product-related outcomes. Our categorization of practices will serve as a
framework for further study about CMMI and other SPI approaches.

Keywords: SME, Software Process Improvement, CMMI, Specific Practice.

1 Introduction

Software process has attracted increasing attention due to its potential impact on the
development and acquisition of software [1, 2, 3, 4]. Software companies have gained
benefits from the introduction and application of software process improvement (SPI)
and assessment models, such as CMMI [5], ISO 9001 series [6, 7], ISO/IEC 15504
[8], and IDEAL [9]. CMMI [5] is one of the most well-known approaches, and the
successful application of CMMI in large organizations has been reported [10, 16] to
reduce development cost and risk, and to improve product quality. However, many re-
searchers and practitioners have expressed concerns [11, 13, 14, 15] about the use of
CMMI in Small-and-Medium-sized Enterprises (SMEs). Complaints about CMMI
from SMEs can include [13] that it results in excessive documentation, interferes with
creativity, costs too much, and is too large and complex. A recent study [17] on com-
panies that have chosen to not adopt CMMI reported that small companies often see
CMMI as too costly and time-consuming, and that this is a barrier for the adoption of
CMMI. Concerns about the use of CMMI by SMEs are recognized by SEI, the own-
ers of CMMI, in their recent efforts to initiate a project on Improving Processes in
Small Settings (IPSS) [14].

60 X. Chen and M. Staples

Conradi and Fugetta [18], in writing about how SPI approaches can be improved to
make them more applicable and relevant to software engineering organizations, call
for the business drivers of those organizations to be better understood, and for SPI
frameworks to become more goal-oriented. Wilkie et al. [15] believe it is important to
better understand the SPI practices in order to develop better appraisal and adoption
approaches for SMEs. As SPI researchers, we also think it is critical to understand the
business and practice needs of SMEs, in order to increase the relevance and benefits
of SPI for SMEs.

Wilkie et al. [15] investigated and appraised the Specific Practices of six process
areas in CMMI maturity level 2 within six small software development companies.
Wilkie et al. ascribed a measure of “perceived value” of the Specific Practices, based
on the activities actually pursued by the companies. This research was important in
delivering a more detailed analysis of CMMI at the level of practices, rather than
working at the higher level of whole process areas or overall maturity levels. The re-
search provided descriptive results about the actual practices of SMEs. However, the
measurement of perceived value of Specific Practices is not an explanatory result – it
does not in itself tell us why SMEs value some practices over others.

In this paper we propose a categorization of Specific Practices based on the kind of
outcomes achieved by the practices and the nature of the activities contributing to
those outcomes. We use this categorization to systematically reanalyze Wilkie et al.’s
results, in order to derive a proposed explanation of why SMEs value some Specific
Practices more than others.

The remainder of this paper is organized as follows. In section 2, we briefly review
Wilkie et al.’s study of perceived value of CMMI Specific Practices. In section 3, we
present our new categorization of CMMI practices according to their outcome areas
and the nature of their activities. In section 4 we reanalyze Wilkie et al.’s results using
our new categorization. We conclude the paper in section 5.

2 Perceived Value of CMMI Specific Practices

Wilkie et al. [15] studied the actual software development practices at six SMEs satis-
fying Specific Practices in the CMMI Level 2 process areas (excluding Supplier
Agreement Management), over a five-month period, using a Class C [19] appraisal
method. The companies had all been in the business of developing software for sev-
eral years, and ranged in size from 8 to 130 software engineers. Of the six companies,
none had prior experience of CMM or CMMI, but half were ISO9001 accredited. For
each company, Wilkie et al. created a score for each Specific Practice by asking a set
of between 1 and 5 questions to identify how well the company met the practice.
These scores were averaged over the companies in the sample, and score thresholds
were set to classify the practices as having a HIGH, MEDIUM or LOW “perceived
value” by the SMEs. The perceived value of these Specific Practices is listed in Table
1 (adapted from [15]). Note that we use an abbreviated name based on the standard
CMMI identifiers, defined as followed,

[Abbreviated Name of Process Areas] [Goal Number].[Practice Sequence Number]-
[Capability Level]

 Using Practice Outcome Areas to Understand Perceived Value of CMMI 61

Table 1. Industry perceived value of CMMI Specific Practices

Perceived Value Specific Practices

REQM 1.1-1, REQM 1.2-1

CM 1.1-1, CM 1.3-1
PP 1.1-1, PP 2.1-1, PP 2.7-1, PP 3.3-1

High

PMC 1.6-1, PMC 1.7-1, PMC 2.1-1, PMC 2.2-1
REQM 1.5-1
CM 1.2-1, CM 2.1-1, CM 2.2-1, CM 3.1-1

 PP 1.3-1, PP 1.4-1, PP 2.2-1, PP 2.3-1, PP 2.4-1
 PP 2.6-1, PP 3.1-1, PP 3.2-1
PMC 1.1-1, PMC 1.2-1, PMC 1.3-1, PMC 1.5-1

Medium

PPQA 1.1-1, PPQA 1.2-1
REQM1.3-1, REQM 1.4-1
CM 3.2-1
PP 1.2-1, PP 2.5-1
PMC 1.4-1, PMC 2.3-1
PPQA 2.1-1, PPQA 2.2-1

Low

MA 1.1-1, MA 1.2-1, MA 1.3-1, MA 1.4-1
MA 2.1-1, MA 2.2-1, MA 2.3-1, MA 2.4-1

Wilkie et al. concluded with some observations emerging from their appraisal

results, including that “…small software companies tend to focus on product quality
assurance rather than process quality assurance…”[15 (p. 199)], and that although
medium-sized companies do rely more on process, they do not use it as much as sug-
gested by CMMI. In section 4 below, we build on Wilkie et al.’s analysis, using a
model of outcomes and activities presented in section 3.

3 Categorization of Specific Practices

CMMI groups its Specific Practices into 25 Process Areas, which are in turn grouped
into four categories: Process Management, Project Management, Engineering, and
Support. These categories are used to help describe high-level interactions between
the Process Areas. CMMI also groups Process Areas by maturity level.

In this paper we present an alternative categorization of Specific Practices. Our
purpose is not to “repackage” CMMI, but instead to use our categorization as an ana-
lytical tool to generate new views of the content of CMMI, to better understand and
support the practice needs of SMEs for software development. In section 3.1 below
we describe our top-level category of outcome areas, and in section 3.2 describe a
second category of the kind of activities that contribute to outcomes in those areas.
Section 3.3 defines and provides examples of activity outcomes within the combina-
tion of these two categories.

3.1 Specific Practice Outcome Areas

Our primary category of Specific Practices is defined according to the kind of outcomes
they generate. This focus on outcomes is consistent with Conradi and Fuggetta’s first
thesis on the improvement of SPI that “SPI frameworks should support improvement

62 X. Chen and M. Staples

strategies that focus on goal orientation and product innovation” [18 (p. 95)]. We claim
that all the CMMI Specific Practices have the ultimate goal of improving companies’
performance in one or more of four outcome areas, namely, organizational outcomes,
process outcomes, project outcomes, and product outcomes. In previous research [12],
we grouped motivations for adopting CMM-based SPI approaches according to these
categories, and two others: customers and people. Our categorization in this paper is
inspired from that, now with customer-related outcomes spread into project and/or prod-
uct outcome areas as appropriate, and with people-related outcomes merged into the or-
ganizational outcome area. The definitions for organization, project and product that we
use are taken from the definitions in CMMI [5, pp. 620-625]. Some Specific Practices
create outcomes that affect more than one outcome area, and so we allow any individual
practice to belong to more than one outcome area. Some Specific Practices (such as
those in the Measurement and Analysis Process Area) can be applied to outcome of any
type.

3.2 Activities for Each Outcome Area

Our secondary category describes the kind of activities performed in a Specific Prac-
tice. This was inspired by both the Plan-Do-Check-Act cycle (also known as the
Shewhart or Deming cycle), and the “V” software lifecycle.

The Plan-Do-Check-Act cycle [21] is an improvement framework widely used in
manufacturing and business. It describes the life of an individual improvement, from
the initial “Plan” (identifying the issue and planning the improvement), to “Do” (im-
plementing the planned improvement on a small scale as a study), to “Check” (moni-
toring and evaluating the study), and to final “Act” (rolling out the improvement
based on the results of the study). This model provided initial inspiration for our ac-
tivity classification. However, we later realized that it is limited in directly describing
improvement activities, and does not describe operational development activities well.

Software
Requirement

Analysis

High Level
Design

Detailed
Design

Coding Unit Testing

Integration
Testing

System
Testing

Acceptance
Testing

Fig. 1. "V" Software Lifecycle

In software engineering, the “V” software lifecycle is one of the most well known
and broadly adopted lifecycle models. It can be seen as a variant of the classical wa-
terfall lifecycle model [20], “bent in the middle”, so that design activities cascade
down, and verification activities cascade up to correspond with each level of design. It
is depicted in Figure 1. The “V” model describes operational development activities,
but does not describe improvement activities well.

 Using Practice Outcome Areas to Understand Perceived Value of CMMI 63

From the perspective of any individual level in the “V” model, we say that the
main types of activity are to “Plan” (planning and specifying the objective), to “Do”
(attempting to achieve the objective), and to “Check” (to confirm that the objective
does meet its requirements). We recognize working to “Improve” work at this level
as another kind of activity, which would encompass all of the activities in the Plan-
Do-Check-Act cycle. Figure 2 show our proposed activity cycle.

Fig. 2. Plan-Do-Check-Improve model of activity

Some activities relate to planning to check objectives and could be classified in a
category “Plan to Check” which could be added to Figure 2 on the dashed line in the
centre of the figure. However, we have chosen to classify these practices into “Plan”,
because sometimes plans for doing and checking work are hard to separate, and be-
cause having a small number of outcome areas can provide a clearer view.

3.3 Combining Outcome Area and Activity Categories

In this section we describe the combination of our two categories of outcome area and
activity, and give examples of each kind of activity contributing to each outcome area.

3.3.1 Working on Organizational Outcomes
Organization-Plan. means management activities for organizational planning for out-
comes such as those related to the creation of strategies, budget, and planning for re-
sourcing, staff, and training. This includes establishment of policies and values that
provide fundamental rules for organizations.

Organization-Do. covers activities for the operation of organization. Examples in-
clude maintaining the work environment, maintaining awareness of current and
emerging technologies, establishing incentive mechanisms, and delivering training.

Organization-Check. includes monitoring, analyzing, and assessing the status, struc-
ture, and operation of the organization and its performance relative to its goals.
Organization-Improve. are activities intended to improve the organization’s planning,
operations, and governance, to improve organizational performance.

64 X. Chen and M. Staples

3.3.2 Working on Process Outcomes
Process-Plan. includes the definition and selection of processes, as well as providing
resources and establishing the environment for process management. Typical out-
comes generated by these activities include definitions of an organization’s process
needs, process definitions, life-cycle model descriptions, tailoring criteria and guide-
lines, process assets libraries, and process measurement repositories.

Process-Do. activities cover the tailoring and implementation of defined processes,
and also the instrumentation of the process environment to monitor the use of process.

Process-Check. covers process monitoring, reviews, appraisals, investigations into
the causal reasons for discrepancies between defined and actual processes and the
evaluation of process performance.

Process-Improve. covers activities directly concerned with the improvement of proc-
ess to advance process performance. This can include collecting and analyzing im-
provement proposals, and selecting, managing, and measuring process improvements.

3.3.3 Working on Project Outcomes
Project-Plan. is one of the largest categories including activities such as:
• Acquiring, reviewing, analyzing, and validating project requirements (including

internal and external project constraints). This could include high level “user re-
quirements” (also known as “business requirements”). Activities related to lower-
level product requirements are only included in the Product-Plan category, below.

• Determining the scope and schedule, estimation, and resource allocation.
• Predicting skills and knowledge required for the project.
• Assessing and planning mitigations for project risks.
• Determining the types of acquisition to be used for the products to be acquired.
• Collecting and coordinating stakeholders’ needs.
• Project acceptance test planning.

Project-Do. is concerned with managing and implementing the project, including:
• Implementing the project plan.
• Managing the involvement of stakeholders.
• Selecting suppliers, establishing and executing supplier agreements.
• Managing requirement changes.
• Enacting risk mitigations if required.
• Establishing the project working environment.

Project-Check .activities assess the progress and status of the project, including:
• Monitoring project planning parameters, commitments, project risks data

management, project progress indicators, and stakeholder involvement.
• Monitoring relevant supplier agreement and relationships and their processes
• Analyzing the results based on the outcomes achieved.
• Conducting progress and milestone reviews.
• Project acceptance testing.
Project-Improve. activities involve taking and managing corrective actions after
finding and analyzing any problems. Other activities include post-project reviews, and

 Using Practice Outcome Areas to Understand Perceived Value of CMMI 65

synthesizing and recording experiences gained from project to incorporate into
organization’s experience library for reference in future projects.

3.3.4 Working on Product Outcomes
Product-Plan. includes determining the functional and non-functional requirements
of the product, and planning how the product will be constructed to meet those
requirements. Examples activities include:
• Establishing, analyzing, and validating system requirements.
• Establishing the configuration management environment and test environment.
• Identifying products to be acquired from suppliers.
• System and software test planning.
• Developing and selecting among alternative solutions.

Product-Do. activities cover the construction of the product, including:
• Developing and selecting among alternative solutions.
• System design, program design, coding, and integration.
• Tracking changes and the creation and modification of configuration items.
• Developing and maintaining product documentation.

Product-Check. activities test whether the product works properly, and include:
• Performing validation and verification
• Identifying inconsistencies between products and requirements.
• Performing configuration audits.
• Analyzing products acquired from suppliers.

Product-Improve. means taking any corrective action (typically redesign and/or
recoding in software development) to resolve any issue related to the functionality of
the product. Product-Improve also includes activities related to advanced technology
improvement to support the organization’s product and/or service quality objectives.

4 Analyzing Specific Practices Using Outcome Area and Activity

4.1 Classifying Specific Practices by Outcome Area and Activity

The two authors each independently classified each CMMI Level 2 Specific Practice
into one or more of the categories described in section 3.3 above. We then compared
our results in a meeting, and came to a joint agreement on points of difference. Table
2 shows the results of this classification exercise.

Note that some Specific Practices address outcomes and cover activities of more
than one type, and so are placed in more than one category. For clarity, we have in-
cluded an outcome area “Any” for Specific Practices that can apply to any outcome
area. In CMMI Level 2, these are the Specific Practices in the Measurement and
Analysis process area.

An initial observation from this grouping is that the Specific Practices of CMMI
maturity level 2 process areas do not focus on organizational outcomes, and have little

66 X. Chen and M. Staples

Table 2. CMMI Level 2 Specific Practices categorized by Outcome Area and Activity

 Plan Do Check Improve

Process PPQA 1.1-1
PPQA 2.2-1

PPQA 2.1-1

Project

PP 1.1-1, PP 1.2-1
PP 1.3-1, PP 1.4-1
PP 2.1-1, PP 2.2-1
PP 2.3-1, PP 2.4-1
PP 2.5-1, PP 2.6-1
PP 2.7-1, PP 3.1-1
PP 3.2-1, PP 3.3-1
REQM 1.1-1

PP 3.1-1
PP 3.2-1
PP 3.3-1
REQM 1.2-1
REQM 1.3-1
REQM 1.4-1
REQM 1.5-1

PMC 1.1-1
PMC 1.2-1
PMC 1.3-1
PMC 1.4-1
PMC 1.5-1
PMC 1.6-1
PMC 1.7-1

PMC 2.1-1
PMC 2.2-1
PMC 2.3-1

Product

CM 1.1-1
CM 1.2-1
PP 1.2-1
REQM 1.1-1

CM 1.3-1
CM 2.1-1
CM 2.2-1
CM 3.1-1
REQM 1.3-1
REQM 1.4-1

CM 3.2-1
PPQA 1.2-1
PPQA 2.2-1
REQM 1.5-1

PPQA 2.1-1

Any

MA 1.1-1
MA 1.2-1
MA 1.3-1
MA 1.4-1

 MA 2.1-1
MA 2.2-1
MA 2.3-1
MA 2.4-1

focus on process outcomes – their primary focus is instead on project outcomes and
product outcomes. This observation is consistent with the view in CMMI that level 2
processes are characterized for projects and are managed – the process areas in level 2
include basic project management process and also supporting processes for project
management and product development.

4.2 Re-analysis of the Perceived Value of Specific Practices for SMEs

After classifying Specific Practices using the new categorization, we factored in
Wilkie et al.’s [15] results. Table 3 presents the combined view of Table 1 (Wilkie
et al.’s results on the perceived value of Specific Practices) and Table 3 (our classifi-
cation of Specific Practices by Outcome Area and Activity).

Table 3. Combining Cateories of Outcome and Activity

 Perceived
Value Plan Do Check Improve

High
Medium PPQA 1.1-1 Process
Low PPQA 2.2-1 PPQA 2.1-1

High
PP 1.1-1, PP 2.1-1
PP 2.7-1, PP 3.3-1
REQM 1.1-1

PP 3.3-1
REQM 1.2-1

PMC 1.6-1
PMC 1.7-1

PMC 2.1-1
PMC 2.2-1

Medium

PP 1.3-1, PP 1.4-1
PP 2.2-1, PP 2.3-1
PP 2.4-1, PP 2.6-1
PP 3.1-1, PP 3.2-1

PP 3.1-1
PP 3.2-1
REQM 1.5-1

PMC 1.1-1
PMC 1.2-1
PMC 1.3-1
PMC 1.5-1

Project

Low
PP 1.2-1, PP 2.5-1 REQM 1.3-1

REQM 1.4-1
PMC 1.4-1 PMC 2.3-1

 Using Practice Outcome Areas to Understand Perceived Value of CMMI 67

Table 3. (continued)

High
CM 1.1-1
REQM 1.1-1

CM 1.3-1
REQM 1.2-1

Medium
CM 1.2-1 CM 2.1-1

CM 2.2-1
CM 3.1-1

PPQA 1.2-1
REQM 1.5-1 Product

Low
PP 1.2-1 REQM 1.3-1

REQM 1.4-1
CM 3.2-1
PPQA 2.2-1

PPQA 2.1-1

High
Medium

Any
Low

MA 1.1-1
MA 1.2-1
MA 1.3-1
MA 1.4-1

 MA 2.1-1
MA 2.2-1
MA 2.3-1
MA 2.4-1

From Table 3, we can see that SMEs do not perceive that the CMMI level 2 prac-
tices related to process outcomes are highly valuable, but that some project and prod-
uct outcomes are highly valuable. For the product outcomes, SMEs tend to perceive
the activities for planning and developing as being more relevant than those for
checking and improving the product. In order to derive a more detailed explanation
of the reason why SMEs find some Specific Practices more valuable than others, we
have looked at the work products associated with the practices. We present this analy-
sis for the project and product outcome areas in Table 4 and Table 5 respectively.

Table 4. Analysis for the Project Outcome Area

Activity SMEs Do
(High Perceived Value)

SMEs Don’t
(Low & Med. Perceived Value)

Plan

• Estimating the scope, budget and sched-
ule of the project

• Establishing a plan for the project ob-
taining commitment for project plan

• Obtain a correct understanding and con-
cise and complete description about the
requirement

• Preparing estimation in terms of effort,
cost, resources, risks, especially in work
products, task attributes, needed knowl-
edge and skills

Do

• Obtaining relevant project participants’
commitment both to the requirement
and plan.

• Reconciling work and resource levels at
the beginning of the project

• Reviewing the plans as projects evolve
• Testing and validating project work

against requirements
• Managing changes of requirements, as

well as their bidirectional traceability

Check
• Reviewing progress and milestones

• Monitoring project planning parameters,
commitments, risks, and stakeholder in-
volvement

• Managing data

Improve • Analyzing problems and issues before
taking corrective actions

• Managing corrective actions

68 X. Chen and M. Staples

Table 5. Analysis for the Product Outcome Area

Activity SMEs Do
(High Perceived Value)

SMEs Don’t
(Low & Med. Perceived Value)

Plan

• Obtain a correct understanding and con-
cise and complete description about the
requirement

• Identifying configuration items

• Preparing estimation in terms of effort,
cost, resources, risks, especially in work
products, task attributes, needed knowl-
edge and skills

• Establishing a configuration manage-
ment system

Do

• Creating or releasing baselines of work
product for further development

• Controlling configuration items
• Establishing configuration management

records

Check

 • Performing configuration audit
• Objectively evaluating work product
• Managing to identify inconsistencies be-

tween product and requirement
• Establish records, such as evaluation

logs, quality assurance reports, status
reports of corrective actions, and reports
of quality trends etc.

Improve

 • Communicating and ensuring resolution
of noncompliance issues

• Reporting corrective action, evaluation
• Foreseeing quality trends

For activities supporting project outcomes, we can see from Table 4 that SMEs are
interested in estimation at the project level, but are less interested in more detailed es-
timation activities that might nonetheless support overall project estimation. SMEs
are interested in obtaining commitment to the project from stakeholders, and in
conducting progress and milestone reviews, but are less interested in detailed man-
agement and monitoring tasks that might nonetheless support project control and pro-
gress, such as reviewing plans, reconciling estimated resource demands with actual
resources, and managing changes to requirements. When problems or issues arise in
the project, they are more interested in analyzing those problems than in managing
subsequent corrective actions.

For activities supporting product outcomes, we can see from Table 5 that SMEs are
interested in understanding and documenting requirements. SMEs are interested in ini-
tially identifying configuration items and in finally creating release baselines, but are
less interested in the detailed control and recording of changes to configuration items.
Although SMEs have an interest in testing and validating project work overall, they are
less interested in the details of product-level quality monitoring and assurance.

Broadly, we claim SMEs tend to be interested in the “high level” activities of pro-
ject management and product planning and development, but are less interested in the
more detailed practices that may support those high level activities.

5 Conclusion

We have developed two categories to classify SPI practices according to the outcome
areas influenced by the practices, and the nature of the activity performed in the

 Using Practice Outcome Areas to Understand Perceived Value of CMMI 69

practices. We classified the Specific Practices of CMMI Maturity Level 2 process ar-
eas (excluding Supplier Agreement Management). We have used this classification to
systematically reanalyze Wilkie et al.’s results on the perceived value of those Spe-
cific Practices by SMEs. Based on the result and analysis, we can conclude that SMEs
tend to focus on high-level project-related outcomes and on planning and doing work
on product-related outcomes, rather than being process-focused. When developing
software products, they try to ensure projects progress as planed and meet their dead-
lines. However, some activities that are intended to support project and product out-
comes are lacking, especially for estimation, evaluation, verification, and validation.

Work is still needed in order to help SMEs to improve their software process. Our
new framework may be used to better understand SMEs’ needs, which may be more
variable than large organizations. The development of approaches to tailor standards
such as CMMI to meet the requirements of specific organizations is still a challenging
topic, both for small and large companies.

Research is still needed to investigate the costs and benefits of implementing indi-
vidual Specific Practices. In order to mitigate their risk of project failure and improve
product quality assurance, SPI researchers should consider changing or providing al-
ternative practices for Specific Practices with medium or low perceived value, to re-
duce the costs of those practices without significantly reducing their benefits.

We will conduct future research to further validate and apply our practice catego-
ries, to better understand relationships between existing SPI approaches, and to
develop outcome-based approaches for tailoring and adopting improved software en-
gineering practices.

Acknowledgements

NICTA is funded by the Australian Government's Department of Communications,
Information Technology, and the Arts and the Australian Research Council through
Backing Australia's Ability and the ICT Research Centre of Excellence programs.

References

1. Diaz, M., Sligo, J.: How Software Process Improvement Helped Motorola. IEEE Soft-
ware 14, 75–81 (1997)

2. Basili, V.R., McGarry, F.E., Pajerski, R., Zelkowitz, M.V.: Lessons Learned From 25
Years of Process Improvement: The Rise and Fall of the NASA Software Engineering
Laboratory. In: Proceedings of the 24th International Conference of Software Engineering,
pp. 69–79 (2002)

3. Haliey, T.J.: Software Process Improvement at Raytheon. IEEE Software 13, 32–41 (1996)
4. Humphrey, W.S., Snyder, T.R., Willis, R.R.: Software Process Improvement at Hughes

Aircraft. IEEE Software 8, 11–23 (1991)
5. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI: Guidelines for Process Integration and

Product Improvement. Addison Wesley, Boston, MA, USA (2003)
6. ISO 9001:2000: Quality Management System – Requirement. International Organization

for Standardization, Geneva, Switzerland (2000)

70 X. Chen and M. Staples

7. ISO/IEC 90003: Software Engineering – Guidelines for the application of ISO 9001:2000
to computer software. International Organization for Standardization, Geneva, Switzerland
(2004)

8. ISO/IEC 15504:2005: Information technology – Process assessment, Part 1-5. Internati-
onal Organization for Standardization, Geneva, Switzerland (2005)

9. Gremba, J., Myers, C.: The IDEAL(SM) Model: A Practical Guide for Improvement. In:
Bridge, Software Engineering Institute (SEI), Pittsburgh, PA, USA (1997)

10. Reifer, D.J.: The CMMI: it’s formidable. The Journal of Systems and Software 50, 97–98
(2000)

11. Desharnais, J.M., Laporte, C.Y., Abouelfattah, M.M., Bamba, J.C., Renault, A., Habra, N.:
Initiating Software Process Improvement in SMEs: Experiments with Micro-Evaluation
Framework. In: Proceedings of the SWDC-REK International Conference on Software
Development, Reykjavik, Iceland (2005)

12. Niazi, M., Staples, M.: Systematic Review of Organizational Motivations for Adopting
CMM-based SPI. Technical Report PA005957, NICTA (2006)

13. Turgeon, J.: CMMI on the Sly for the CMMI Shy - Implementing Software Process Im-
provement in Small Teams and Organizations. Presentation in SEPG (2006)

14. Improving Processes in Small Settings (IPSS): white paper, the International Process Re-
search Consortium (IPRC). Software Engineering Institute, Pittsburgh, PA (2006)

15. Wilkie, F.G., McFall, D., McCaffery, F.: An Evaluation of CMMI Process Areas for
Small-to Medium-sized Software Development Organizations. Software Process: Improve-
ment and Practice 10, 189–201 (2005)

16. Gibson, D.L., Goldenson, D.R., Kost, K.: Performance Results of CMMI-Based Process
Improvement. Technical Report, Software Engineering Institute, CMU (2006)

17. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An Exploratory
Study of Why Organizations do not Adopt CMMI. Journal of Systems and Software 80(6),
883–895 (2007)

18. Conradi, R., Fuggetta, A.: Improving Software Process Improvement. IEEE Software,
92–99 (July/August 2002)

19. SEI: Appraisal Requirements for CMMI, Version 1.1. Technical Report CMU/SEI-2001-
TR-034, Software Engineering Institute, Pittsburgh, PA (2001)

20. Royce, W.: Managing the Development of Large Software Systems. In: Proceedings of
IEEE WESCON, pp. 328–338. IEEE Computer Society Press, Los Alamitos (1970)

21. Shewart, W.A.: Statistical Method from the Viewpoint of Quality Control. Dover (1986)

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 71–81, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SPI with Lightweight Software Process Modeling in a
Small Software Company

Paula Savolainen, Hanna-Miina Sihvonen, and Jarmo J. Ahonen

Department of Computer Science, University of Kuopio
P.O. Box 1627, FI-70211 Kuopio, Finland

{paula.savolainen,hanna-miina.sihvonen,jarmo.ahonen}@uku.fi

Abstract. In small growing software companies, it is important to pay attention
to software process improvement (SPI) in order to be successful and
competitive in both domestic and foreign markets. However, limited resources
and lack of knowledge about process culture may hinder the improvement
efforts in small companies. In this paper, we present development activities
done in a small growing software company in order to establish basis for SPI.
Familiarizing to processes and SPI is done by modeling company’s processes
using a lightweight software process modeling technique. The modeling
combined with external consulting provides the company with capability to
visualize their processes and to identify the problems in the processes. The
improvement activities have been triggered by pointing out the problems. In the
presented case, the company has independently implemented quite significant
improvements for identified problems by acquiring needed knowledge and by
implementing new tools to support workflows.

1 Introduction

Small software companies (SC)1 play in important role in the software industry,
because they are innovative, exploit new technologies, create job opportunities and
keep established firms on their toes as described in [1] [2] [3] [4]. Some of these
innovative SCs seek constantly new business opportunities and new market areas. In
countries where domestic software markets are quite limited, such as Finland, the SCs
with desire to grow and pursue greater turnover are compelled to become
international. Rapid growth implies increasing the personnel, creating new job
descriptions, coping with cultural differences and business opportunities. SCs face the
inevitable challenge of modifying their processes to match new and changing
circumstances [5]. They are forced to notice the importance of processes and
improving them, in order to become competitive and successful on international
market. On the other hand, improved processes may result in expanding staff, new
international sales, and pressure for more intensive release schedules.

However, introducing the concept of software process improvement (SPI) in SCs
may not be possible, because the organization’s maturity can be low. Organization

1 A common abbreviation used for small companies with less than 50 employees [6].

72 P. Savolainen, H.-M. Sihvonen, and J.J. Ahonen

structure is often informal, implicitly defined processes evolve based on daily work
and actions may not be planned beforehand [7]. Work is trust-based thus not often
formally documented, and there is lack of knowledge about process culture. In
addition, there is often lack of resources, skills, experience, and qualified and SPI
motivated staff. Due to the reasons listed above, it can be very challenging for SCs to
establish an efficient and competitive process culture and furthermore, concurrently
manage the growth. One possibility to start preparations for SPI is to make processes
visible by modeling them.

In this paper, we describe development project activities done in a small rapidly
growing software company. In this case, CMMI, ISO 15504, CBA-IBI or other
massive SPI approaches were not suitable choices, because they are designed for large
organizations and require specialized SPI personnel. Instead, we chose to combine
and adapt lightweight process modeling techniques [8] [9] that conform to
characteristics required from a model used in SCs [10] [11]. The techniques are easy
to use, flexible, applicable, and adapt to SCs limited resources. Usage of this
combined modeling technique enables to visualize processes, to identify the flaws and
problems in the process and deficiencies of knowledge and skills. Furthermore, more
importantly using this lightweight modeling and carrying out related activities,
promotes future formal SPI with measures and techniques that best serve the
company’s own operations. In this paper, we present our experiences of using a
lightweight process modeling technique in familiarizing a small software company
with SPI by visualizing their software development process and identifying problems
in the process.

2 Objectives and Context

In this development project, the objectives were to explore how the lightweight
process modeling contributes to small software company’s SPI activities and how the
process modeling can be initiated in a small low maturity software company.

The development project was carried out in a small growing Finnish software
company. The company has been involved in the development project was founded at the
beginning of 2000. The employees were also founders and part owners of the company.
In the beginning, there were less than 10 employees, but the personnel expanded quite
fast to 15 employees. By the end of 2006, there were 20 employees and during 2007, the
company has estimated to hire 10 employees more. Despite earlier and planned growth,
the company is still a SC and likely will be SC for some years.

The company started on domestic market. During past two years, the company has
steadily expanded its operations to three foreign countries and will expand foreign
business further during 2007. The company’s offices are distributed around Finland
and abroad. The company is now divided in two separate companies. Another
company concentrates on product development and other one on sales and marketing.

The organization and hierarchy of the company are not clearly defined, though an
informal structure exists. The company’s management concentrates only on business
decisions and running the company. The software development team and other employees
work independently and the communication with management is informal and is done in
ad hoc manner. The development team’s varying work assignments and situations have an
influence on employees’ work methods. However, they have established working

 SPI with Lightweight Software Process Modeling in a Small Software Company 73

practices though those are not documented in detail. A considerable amount of knowledge
and skills that the employees possess is tacit knowledge, which is not generally distributed
within the company. This has inflicted on blocks in information flows. The growth of the
company has increased the awareness of need for SPI and establishing process culture.

3 Process Modeling Technique and Practical Implementation

In this case, we needed a modeling technique, which conforms to SCs limited
resources. The technique itself serves as a tool for the company in order to analyze
their own work in a structured manner and initiate discussion about their processes.
We apply the techniques described in [8] and [9], which we use for modeling and
making the process, its roles, and information flows visible. The techniques were
chosen because they are flexible, easy to learn, understandable for non-experts and
require minimal resources. We have combined and applied the techniques as follows:

• First Phase

− Model the information flows of selected process with wall-chart technique
− Analyze the gathered information and define the problems and points of

improvement
− Create an electronic version of the information flows
− Inspect and approve the electronic version
− Analyze and enhance the approved model

• Second phase
− Model the selected process with wall-chart technique
− Analyze the gathered information and define the problems and points of

improvement
− Create an electronic version of the process and its phases
− Inspect and approve the electronic version
− Analyze and enhance the approved model

• Third phase
− Inspect the results and plan follow-up

The phases are carried out in chronological order. The first phase is now

completed. In the first phase, the aim was to create an information flow diagram of
the selected process. This information flow diagram describes who participate in the
process and in what roles, and determines the information flows between the roles
Problematic information flows were marked with red. By analyzing the diagram and
by discussing with the employees, the problems of passing information from role to
another can be perceived and analyzed. The discussions also assist in discovering
deficiencies of knowledge and skills that relate to roles participating in the process. In
the second phase, the aim is to make the actual process visible by defining the process
phases in detail and define problems that relate to the process and its phases. In the
third phase, the aim is to evaluate the modeling process, inspect the results, and plan
future SPI activities.

Each phase includes modeling sessions, which are carried out as follows.
Researchers, in this context referred as consultants, attend each modeling session.

74 P. Savolainen, H.-M. Sihvonen, and J.J. Ahonen

They instruct the modeling technique to company‘s employees who participate in
sessions, and guide and follow through the session. The employees participating in
session are those who are involved in the process, which will be modeled. Modeling
sessions last about three to four hours. Each modeling session functions also as a
checkpoint for assessing what changes may have occurred.

The software process modeling sessions of the first phase began in February 2006.
In the first phase, we have carried out three software process modeling sessions and
had consulting meetings with the company’s employees after each modeling session.
In meetings, the training needs were discussed, prioritized, and defined them as
described in [12] to support the company’s independent SPI initiatives. The company
has freedom to decide what problems they want to concentrate on and how to
prioritize them. The company is also in charge of what improvement actions and steps
will be taken. In order to carry out the necessary improvements, the employees are
entitled to focused training and consulting through the development project, described
in [13]. Taking advantage of training and actually implementing corrective measures
is the company’s responsibility. However, these measures are discussed with
employees and consultants at the beginning of new modeling session.

3.1 The First Modeling Session

The first session was carried out in February 2006. There were three consultants
guiding the session and five employees from the company’s software engineering
group, each responsible for different areas of software development process. First, the
aim of the session was explained and the concept of process discussed and defined.
Second, the employees were familiarized with wall-chart technique, and the main
features of the modeling technique were explained. Third, the employees were
instructed to choose the process that they wanted to model. They chose their software
development process for modeling, which is the core activity of the company. For this
most important and critical process from company’s point of view, all roles, and
information flows were modeled.

All participating employees were actively involved in modeling and there was
much discussion and interaction between them. They noticed and pointed out the
problem of acting various roles. In SC, one employee has many roles and
responsibilities and due to this, he or she should be able to assess the process and
information flows from different perspectives. Despite this, there was not much
disagreement about the roles or information flows between them and the problem
areas were quickly identified. As an output from the first session, a wall-chart, an
electronic diagram of the wall-chart and a draft text document describing roles and
information flows were produced.

3.2 The Second Modeling Session

The second session was carried out in August 2006. Between the first and second
session, the employees had a chance to inspect and approve the information flow model
from the first session. There were two consults guiding and three employees
participating in the session. The model from first session had been approved unchanged.
However, the participating employees wanted to specify the modeling to software
product development process. The wall-chart model was recreated to represent the roles
and information flows of the software product development process.

 SPI with Lightweight Software Process Modeling in a Small Software Company 75

The second session was easy to follow through, because the employees were
already familiar with modeling technique and had already thought through the roles
and information flows of the process. It was essential for the employees to go through
the modeling and analyzing the wall-chart in tight collaboration with the consultants.
Their motivation to proceed with the modeling and improvements had remained and
even increased. As an output from the session, a new version of the wall-chart, an
electronic diagram of the wall-chart, and a formal detailed text document describing
roles were produced.

3.3 The Third Modeling Session

The third session was carried out in February 2007. Between the second and third
session, the employees had a chance to inspect and approve the electronic version of
model created from second session wall-chart. The model had been approved with
slight modifications. The aim in the third sessions was to revise and enhance the
approved model. There were two consultants and two employees attending to the
session. However, during the session, analyzing the existing information flows, new
problems occurred from the flows that had been considered functional.

There was no modeling with wall-chart included in the third session. Concentration
was on extracting detailed information about the information flows, both problematic
and functional ones, in the electronic wall-chart diagram. Each information flow and
related roles were analyzed individually. Information flows, their contents and way of
distribution, were defined in detail. The enhanced electronic version of the wall-chart
was inspected and approved. As an output from the session, a formal document
describing information flows was produced.

4 Key Points and Identified Problems

In this section, some of the noteworthy key points from the sessions are presented and
the most important identified problems of the process are described at general level.
These are summarized in Table 1.

In the first session, it was extremely important to create a confidential relationship
between the consultants and employees, and among the employees themselves. The
employees were able to recognize the roles quickly and there were not many conflicts
about the roles. Concluding from this, the daily work in the company is reasonably
organized and responsibilities in the process are defined at some level. However,
adding the information flows between roles caused hesitation, but the problems that
related to those were readily highlighted. The most problematic information flows
concentrated on the critical design and implementation phase. Some noteworthy
problems were related to project management. For example, the company had
previously worked on only few projects simultaneously and now the growth has
enabled to work on several projects at the same time, which has caused problems in
resource management and the working hours follow up has been inadequate.
Requirements and design documents are structured but the contents and the depth of
documentation are fuzzy. There were also problems related to testing assignments and
especially testing documents. Managing customer requirements was considered a
problem, since the requirement documents were too detailed and exhausting to read.

76 P. Savolainen, H.-M. Sihvonen, and J.J. Ahonen

Table 1. Key points from sessions and problems at general level

 Key points Problems at general level

Session I Confidential relationship
 Software development process
chosen for modeling

 Identified roles and information
flows of the process

 Identified problem spots
 Problem area in critical design and
implementation

 Project management
 Managing requirements and design
documents

 Testing
 Managing customer requirements
 Working hours follow-up

Session II Software product development
process specified for modeling

 Clearly better structured and
specified view of the software
development process

 Identified problem spots
 Software process improvement
manager (SPIM)

 Product manager

 Managing requirements and design
documents

 Managing customer requirements
 Assignments between some roles
unclear

 Documentation maintenance

Session III Understanding distribution of work
and what matters need attention

 All roles identified
 All information flow identified
 Process visibility
 Tacit knowledge to explicit
knowledge

 Managing requirements and design
documents

 Managing customer requirements
 Assignments between some roles
unclear

 Product manager’s role
 Documentation maintenance
 Undistributed tacit knowledge

In the second session, the employees specified the modeling to concern their

software product development process and a new information flow diagram was
created. Participating employees were already familiar with the modeling technique
and the session was carried out smoothly. The model was better structured in the
design and implementation phase. Concluding from this, the employees had given
thought to the process between the sessions. However, even though the whole model
was clearly more structured than the previous one, the process itself was not
stabilized, some problems remained, and new ones occurred. The employees pointed
out the importance of making the roles and their responsibilities clear for themselves.
Some new roles had emerged, though the distribution of work between new roles is
not yet completely defined. Two of the roles will have significant impact on the
process. First role is a software process improvement manager’s role (SPIM), whose
responsibility is to assess current practices and to explore what actions can be taken
for improving processes. Second role is a product manager’s role, whose
responsibility is to manage customer requirements in the future. The problems in
managing the requirements and design phase’s documentation and the exhausting

 SPI with Lightweight Software Process Modeling in a Small Software Company 77

customer requirements documentation remained. In this session, the document
maintenance was identified as a problem.

In the third session, one of the most important points the employees highlighted,
was the need for converting the tacit knowledge of their common work methods to
explicit knowledge. The distribution of organization to different geographical
locations will bring further problems, if formal and documented working methods do
not exist. The interfaces between companies’ units need to be defined accurately, so
that there would not be blocks on information flows and the employees would have a
common way to communicate and work in a distributed organization. The third
session was very important for revising the roles and especially the information flows
in order to produce a well-defined and clear document of what these contain. The
mere information flow modeling and specifying roles was valuable from the
employees’ perspective for visualizing their process. The process flows were also at
this point becoming structured for the employees, and the point where the actual
process modeling can begin was reached. There were still problems in the depth of
documentation in definition stage, the assignments between some roles are not clear,
document maintenance is not adequate, and the product manager for managing the
customer requirements is not yet role of which some person would be in charge of.

5 SPI Actions Taken

As the process has been recognized, the improvement actions can be taken. The
company is in charge of the improvement actions and the actual implementation. The
company carries out the SPI activities the way that best suits their schedule and serves
their business goals. The motivation for improvements is strong and it compensates
the common SPI barriers and failed success factors presented in literature [14] [15]
[16] [17] [18] [19]. The development project is used for supporting the SPI by
modeling the process, by consulting and by organizing needed training for
improvements.

The development project has encouraged the company for taking certain
improvement steps, but additionally improvement actions have been carried out
unprompted. Nonetheless, that some problems remain after modeling sessions and
new ones occur, the improvements have been done and improvement work carries on.
Some major improvements have been done in project management, testing and in
documentation. Most recent improvements are related to managing customer
requirements and are currently under strict definition. Project management has been
improved by enhancing resource management policies and implementing a working
hours follow-up system. Implementation of these has been quite successful and has
provided clear advantages in project planning, scheduling, and resourcing. Document
management and maintenance has been improved by defining document policies and
by implementing document management software and document repository. The
decisions made in meetings are also documented and followed that those will be
carried out by the person in charge and this has improved traceability. Testing has
been improved by applying IEEE standards of software testing (IEEE 829, IEEE
1008) and by implementing better software testing tool. Few employees have also
qualified their testing capabilities by completing the ISEB foundation certificate in
software testing.

78 P. Savolainen, H.-M. Sihvonen, and J.J. Ahonen

Managing customer requirements is ongoing improvement effort, and now there is
a clear role and job description for the person who will be in charge of this. For this
role, the company is currently hiring new employees. The information documented
during the development project has greatly clarified the capabilities and
characteristics required from the person for the job. However, for the person in this
role, they will need training, and this training is currently under definition. The
decision to establish the role of software process improvement manager has also been
an important improvement activity that the company has implemented. Now they
have a person in charge of evaluating what improvements need to be done.
Additionally, the person in this role is highly motivated, has academic and business
experience, and can consider the SPI from both perspectives.

The company’s employees have attended project management, testing, and
technical documentation training, which have supported them in applying the
improvements. Additionally, they have acquired general technical training in order to
maintain and improve the quality of the products and the whole software process in
general. These trainings have covered some of the identified minor process problems
too. Altogether, the company has used 52 person-days for training within one year.

It is not possible to carry out a large number of improvements in a short period and
it takes several months to implement one improvement effectively [20], as it is in this
case too. The company has implemented quite exhausting number of small but
significant improvements considering the effectiveness of their software product
development process. The improvements have a direct affect to their daily business
and indicate a change in work methods. The company has assimilated the importance
and benefits of SPI work and established a role of a software process improvement
manager. The company has prepared for the problems that growth will inevitably
bring. They have the roles and information flows of their software product
development process formally documented, thus having better knowledge of what
characteristics and capabilities are required from new employees. The current
employees have now clarified the process also for themselves and that will facilitate
training and including a new employee in the process. They also have observed the
need to convert tacit knowledge to explicit knowledge and the need for formal
documentation and distribution of knowledge.

6 Discussion

SPI can be exhausting with all assessments, modeling, measuring, evaluating maturity
levels and capabilities as presented in literature [20] [21]. SPI is resource consuming
in large companies and it is that even more for small companies. SPI models for small
companies are often based on some existing model that is originally targeted for large
organizations [22] [23] [24] [25]. Furthermore, several factors affect the success of
actual implementation SPI [14] [26] [27] and the period during which the SPI
activities are carried out can be too short.

In this paper, we have presented case of lightweight software process modeling in a
small software company and we have explored the usability of the model. The factors
that contributed to success of the process modeling in this case were the initial
awareness of the need for improvements and the employees’ motivation and
commitment to be involved in improvement efforts.

 SPI with Lightweight Software Process Modeling in a Small Software Company 79

Small companies need some method for systematically going through their
processes, work methods, roles, and information flows. However, the tool for this
does not have to be a standard oriented and in-depth, since the most important thing is
to make processes visible, identify problems in the processes, and initiate the SPI
discussions in the company. This enables establishing the process culture and
enhancing the SPI awareness. The modeling method has to be lightweight, applicable
to current processes and relate improvement goals to business goals. The modeling
work done in close cooperation with the company’s employees and consultants,
forces the employees to think about their own work, work methods, and skill
deficiencies.

In presented case, the company has done needed groundwork for future SPI. In the
beginning of the development project, the company did not have a clear concept of
their information flows and roles of their software product development process.
During this project, their knowledge about processes, process flaws and problems,
own work methods and internal work distribution have enhanced greatly. The
company has determinately followed through improvements for the selected
problems. Improvement plans have been initiated by identifying problems using a
lightweight process modeling technique, and the company has carried out the
improvements with continuous motivation.

The second phase is now beginning with systematic modeling of the selected
process. Prior to the development project, the company worked with the “experience
and tacit knowledge”, but now the process is structured for the employees so that it
can be represented formally. The company has achieved the maturity needed for
process modeling, the process culture is familiarized, and the selected process is
structured. During the first phase, the company was not provided with clear guidelines
and instructions what improvements and how they should implement. The second
phase concentrates on defining a set of process phases. In the third phase, the
improvements can be based on the results from the previous phases and at that point,
follow-up and metrics can be used.

References

1. Baskerville, R., Pries-Heje, J.: Knowledge Capability and Maturity in Software
Management. Data Base for Advances in Information Systems 30, 26–40 (1999)

2. Wheelen, T.L., Hunger, D.J.: Strategic Management and Business Policy, 9th edn.
Prentice-Hall, Englewood Cliffs (2003)

3. Chin In Sing, A.: 10 Factors on Fostering Innovation in Small and Medium-sized
Organizations. In: ICMIT 2000. International Conference on Management of Innovation
and Technology, pp. 473–478 (2000)

4. Vähäniitty, J., Rautiainen, K.: Towards an Approach Managing the Development Portfolio
in Small Product-oriented Software Companies. In: International Conference on System
Sciences HICSS ’05 (2005)

5. Ward, R.P., Fayad, M., Laitinen, M.: Software Process Improvement in the Small.
Communications of the ACM 44, 105–107 (2001)

6. European Commission: Commission Recommendation of 6 May 2003 Concerning the
Definition of Micro, Small and Medium-sized Enterprises. Official Journal of the
European Union, pp. 36–41 (2003)

80 P. Savolainen, H.-M. Sihvonen, and J.J. Ahonen

7. Järvi, A., Mäkilä, T., Hakonen, H.: Changing Role of SPI - Opportunities and Challenges
of Process Modeling. In: Richardson, I., Runeson, P., Messnarz, R. (eds.) Software
Process Improvement. LNCS, vol. 4257, pp. 135–146. Springer, Heidelberg (2006)

8. Karjalainen, A., Päivarinta, T., Tyrväinen, P., Rajala, J.: Genre-based Metadata for
Enterprise Document Management. In: HICSS’00. International Conference on System
Sciences, pp. 3013–3022. IEEE Computer Society, Washington, DC, USA (2000)

9. Ahonen, J.J., Forsell, M., Taskinen, S.: A Modest but Practical Software Process Modeling
Technique for Software Process Improvement. Software Process Improvement and
Practice 7, 33–44 (2002)

10. Richardson, I.: SPI models: What Characteristics Are Required for Small Software
Development Companies? In: Kontio, J., Conradi, R. (eds.) ECSQ 2002. LNCS, vol. 2349,
pp. 100–113. Springer, Heidelberg (2002)

11. Richardson, I.: SPI models: What Characteristics Are Required for Small Software
Development Companies? Software Quality Journal 10, 101–114 (2002)

12. Sihvonen, H.-M., Savolainen, P.: Towards Improved Software Engineering in Small and
Medium-sized Software Companies through Focused Training. In: Proceedings of the 10th
IASTED International Conference on Software Engineering and Applications, pp. 346–
351 (2006)

13. Sihvonen, H.-M., Savolainen, P., Ahonen, J.J.: The Craving for External Training in Small
and Medium-sized Software Companies - A Trigger Effect Towards Software Process
Improvement. In: Richardson, I., Runeson, P., Messnarz, R. (eds.) Software Process
Improvement. LNCS, vol. 4257, Springer, Heidelberg (2006)

14. Dybå, T.: Factors of Software Process Improvement Success in Small and Large
Organizations: An Empirical Study in the Scandinavian Context. In: Proceedings of
(ESEC) and SIGSOFT Symposium, Helsinki, Finland, pp. 148–157 (2003)

15. Dybå, T.: An Empirical Investigation of the Key Factors for Success in Software Process
Improvement. IEEE Transactions on Software Engineering 31, 410–424 (2005)

16. Lepasaar, M., Kalja, A., Varkoi, T., Jaakkola, H.: Key Success Factors of a Regional
Software Process Improvement Programme. In: PICMET’01. Management of Engineering
and Technology, p. 432 (2001)

17. Lepasaar, M., Varkoi, T., Jaakkola, H.: Models and Success Factors of Process Change.
In: International Conference on Product Focused Software Process Improvement, pp. 68–
77 (2001)

18. Baddoo, N., Hall, T.: De-motivators for Software Process Improvement: an Analysis of
Practitioners’ Views. Journal of Systems and Software 66, 23–33 (2003)

19. Baddoo, N., Hall, T.: Motivators of Software Process Improvement: an Analysis of
Practitioners’ Views. Journal of Systems and Software 62, 85–96 (2002)

20. Zahran, S.: Software Process Improvement: Practical Guidelines for Business Success.
Addison-Wesley, London (1998)

21. Humphrey, W.S.: Managing the Software Process. Addison-Wesley, Reading, Mass
(1989)

22. Cater-Steel, A.P.: Process Improvement in Four Small Software Companies. In:
ASWEC’01. Australian Software Engineering Conference, pp. 262–272. IEEE Computer
Society, Los Alamitos (2001)

23. Allen, P., Ramachandran, M., Abushama, H.: PRISMS: an Approach to Software Process
Improvement for Small to Medium Enterprises. In: QSIC’03. International Conference on
Quality Software, pp. 211–214. IEEE Computer Society, Los Alamitos (2003)

 SPI with Lightweight Software Process Modeling in a Small Software Company 81

24. Demirörs, O., Demirörs, E.: Software Process Improvement in a Small Organization:
Difficulties and Suggestions. In: Gruhn, V. (ed.) EWSPT 1998. LNCS, vol. 1487, pp. 1–
12. Springer, Heidelberg (1998)

25. Calvo-Manzano Villaló, J.A., Cuevas Agustin, G., San Feliu Gilabert, T., De Amescua
Seco, A., García Sánchez, L., Perez Cota, M.: Experiences in the Application of Software
Process Improvement in SMES. Software Quality Journal 10, 261–273 (2002)

26. Niazi, M., Wilson, D., Zowghi, D.: Critical Success Factors for Software Process
Improvement Implementation: an Empirical Study. Software Process: Improvement-and-
Practice 11, 193–211 (2006)

27. Niazi, M., Wilson, D., Zowghi, D.: A Framework for Assisting the Design of Effective
Software Process Improvement Implementation Strategies. Journal of Systems and
Software 78, 204–222 (2005)

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 82–93, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Practitioner Experiment in Understanding Software
Process Improvement Using Systems Modular Analysis

Narciso Cerpa1, Javier Pereira2, and June Verner3

1 Departamento de Ciencias de la Computación, Universidad de Talca, Curicó, Chile
2 Escuela de Ingeniería Informática, Universidad Diego Portales, Santiago, Chile

3 NICTA, Locked Bag 9013, Alexandria, NSW 1435, Australia
ncerpa@utalca.cl, javier.pereira@udp.cl,

june.verner@nicta.com.au

Abstract. Software process improvement (SPI) models can be difficult to
understand, principally because they lack visual representations relating
concepts to text. Some models do not provide guidelines to help us understand
their properties: i.e., their modular structure, the control-regulation config-
uration of common features in a key process area, and the arrangement of key
process areas at each level. We propose Systems Modular Analysis (SMA) as a
graphical modelling approach to facilitate understanding of SPI models. Using
SMA, we reveal the internal structure of a key process area (KPA) in CMM-
SW as a non-redundant configuration of common features. When the Level 2
KPAs of CMM-SW are modelled using SMA, a normative structure which
shows a modular and recursive arrangement of process areas is obtained. We
conduct an experiment to show how SMA helps in understanding CMM-SW.
We conclude that SMA significantly improves understanding of the properties
and structure of CMM-SW Level 2.

Keywords: Software Process Improvement, Systems Modular Analysis, Mod-
elling tool, CMM-SW Level 2, Feedback loop structure of KPA.

1 Introduction

Software process improvement (SPI) aims to improve software development
processes [16]. Different approaches have been proposed to SPI [3] in particular, the
Capability Maturity Model for Software (CMM-SW) [15]. The benefits of
implementing CMM-SW in software organizations have been well documented [6]-
[8] indicating a sustained reduction of cost, improvement in productivity and quality,
reduction in cycle time and increased business value. CMM-SW is characterized by
two structures: staged organization of knowledge areas, i.e., key process areas (KPA),
and an internal structure of each KPA organized by common features. Some
researchers have proposed the idea of scaling CMM-SW in order to have successful
SPIs for different project sizes and in different organizations [11], while other studies
indicate that implementation difficulties relative to organizations or project sizes are
due to wrong interpretations of CMM [8],[14], [17],[18]. CMM-SW can be difficult

 A Practitioner Experiment in Understanding Software Process Improvement 83

to understand, principally because it lacks visual representations relating concepts to
text [1], [13]. In addition, CMM models do not provide guidelines to help us
understand its properties [4], [5], [15]: i.e., its modular structure, the control-
regulation configuration of common features in a KPA, and the arrangement of KPAs
at each level. Once these properties are recognized, several implementation aspects
become obvious and alternative configurations become easier to represent and
understand.

The literature is scarce on the subject of SPI graphical representations although
some techniques have been used in order to show different aspects of SPI models
[10]-[12]. In the CMMI models, for example [2], the SEI has included some data flow
diagrams to explain how the process areas are related, but these are still very general
and do not provide a clear view of the modular structure of the KPAs. However,
there are some structural properties which have not been represented to date.
Particularly, the requirement for feedback loops in SPI models where its parts make
sense only in a control-regulation system. This permits an arrangement of common
features facilitating software process management at each level of the SPI model.

In this research we investigate the use of Systems Modular Analysis (SMA) to
model an SPI approach in order to facilitate understanding of the configuration of
common features of a KPA and the structure of KPAs at each level.

Our specific research question is “Does the use of SMA really facilitate an
understanding of the configuration of common features of a KPA and the structure of
KPAs at each level for a SPI model.

In Section 2, Systems Modular Analysis (SMA) is introduced, Section 3 is used to
represent the modular and feedback structure implied by the set of common features
in a generic KPA and in Section 4, an experiment is described which shows that SMA
enhances the learning of modular and structural properties of CMM-SW Level 2.
Finally, conclusions are provided in Section 5.

2 Introduction to Systems Modular Analysis (SMA)

Systems Modular Analysis represents an organizational activity as a system with two
well defined and interrelated components [9]: a technological module, where a
transformation is performed; and a steering module, which controls the technological
module (see Figure 1). While SMA has extensive semantic definitions, we only
reference those appropriate to our model. Concepts in an activity model are defined as
follows:

• Primary and secondary technological flows represent inputs/outputs to/from the
technological module and characterize primary/secondary transformations on it. In
Figure 1, a primary technological flow is represented by a thick vertical arrow
whilst the secondary technological flow is a thin vertical arrow.

• Operational flows are information triggering actions in both types of module;
without this type of flow, no transformations or decisions could be made. In
Figure 1, an operational flow is represented by a segment-dot vertical arrow.

• Informative flows contain useful information for decision making processes;
shown by a segmented arrow in Figure 1.

84 N. Cerpa, J. Pereira, and J. Verner

• Control variables are goals and objectives defined for technological and steering
modules. In Figure 1, they are symbolized by thick horizontal arrows.

• Essential variables characterize measures of the technological module’s perf-
ormance; they are quantifiable variables related to defined objectives for the
module. In the SMA approach, three kinds of essential variables are set: activity
level, cost level and effectiveness. Essential variables are retrieved by the steering
module in order to regulate the technological module’s behaviour.

P
rim

ary
technological output

S
econdary

technological output

O
perational output

Inform
ative output

O
perational output

Inform
ative output

TECHNOLOGICAL MODULE

INTERNAL FACTORS:

• Material resources
• Human resources
• Economic resources
• Operational rules
• Programming degree
• Internal control factors

STEERING MODULE

INTERNAL FACTORS:

• Material resources
• Human resources
• Economic resources
• Operational rules
• Modeling degree

Control variables

Essential variables measures

Internal Information

Superior
control variables

regulation action

Activity,
cost,
effectiveness

P
rim

ary
technological input

S
econdary

technological input

O
perational input

Inform
ative inputO

perational input

Inform
ative input

P
rim

ary
technological output

S
econdary

technological output

O
perational output

Inform
ative output

O
perational output

Inform
ative output

TECHNOLOGICAL MODULE

INTERNAL FACTORS:

• Material resources
• Human resources
• Economic resources
• Operational rules
• Programming degree
• Internal control factors

STEERING MODULE

INTERNAL FACTORS:

• Material resources
• Human resources
• Economic resources
• Operational rules
• Modeling degree

Control variables

Essential variables measures

Internal Information

Superior
control variables

regulation action

Activity,
cost,
effectiveness

P
rim

ary
technological input

S
econdary

technological input

O
perational input

Inform
ative inputO

perational input

Inform
ative input

TECHNOLOGICAL MODULE

INTERNAL FACTORS:

• Material resources
• Human resources
• Economic resources
• Operational rules
• Programming degree
• Internal control factors

STEERING MODULE

INTERNAL FACTORS:

• Material resources
• Human resources
• Economic resources
• Operational rules
• Modeling degree

Control variables

Essential variables measures

Internal Information

Superior
control variables

regulation action

Activity,
cost,
effectiveness

P
rim

ary
technological input

S
econdary

technological input

O
perational input

Inform
ative inputO

perational input

Inform
ative input

Fig. 1. Activity model in the SMA [9]

• Regulation information is used to adjust processes in the technological module as
a consequence of deviations as described by the essential variables found among
objectives and real performances.

• Internal factors are material, human, informative and economic infrastructures
indicating resources, and rules to use those resources, available to perform
activities in the technological and steering modules.

Let us assume that a KPA is a particular organizational activity. Thus, in terms of
SMA, there will be a steering module managing the activity and a technological
module carrying out the activity processes. From this point of view, the common
features (CF) may be interpreted as follows:

• Commitments are of two kinds, those involving the technological module and
those involving the steering module. The former are policies set by the manager of
the technological module using control variables. The latter are policies and

 A Practitioner Experiment in Understanding Software Process Improvement 85

support for the steering module given by a representative at a higher level of an
organizational hierarchy.

• Abilities are internal factors in the technological or steering module. They are
preconditions for implementing a software process; abilities are represented by
equipment, personnel and operational rules.

• Activities are internal factors in the technological or steering module, and are
procedures depending on the operational rules (abilities). Activities are the
transformation, regulation and control tasks in both modules.

• Measurement and analysis: measurements are performed on essential variables
while analysis is the comparative process between the measurement of one
essential variable and its associated objectives or standards.

• Verification: reviews are established when the steering module performs an
inspection on the technological module, retrieving information about internal
activities from the technological module; corrective actions defined in a KPA are
represented by regulation information (waved arrow in Figure 1). However, audits
have not been explicitly considered, although modelling of the structure,
organization and behaviour of an activity facilitates a comparison between rules
and actual practices.

Additionally, goals are represented in an activity model as the control variables
(horizontal arrows in Figure 1) corresponding to goals in a KPA.

3 Modular Structure of a KPA Using SMA

A KPA is a specific well-defined organizational activity. Some best practices defined
in a KPA could be placed in the steering module and others in the technological
module. In Figure 2, a generic activity model for a KPA has been represented.
Abilities and Activities are embedded in modules whilst Goals and Commitments are
control variables. Measurement and Analysis are related to essential variables,
representing metrics. Note that Verification is constituted by a Review task, where the
KPA manager inspects implemented practices from a KPA, and a Correction task
where a corrective (regulatory) action is required.

However, not all KPAs can be modelled by an activity model. Indeed, in CMM-
SW the purpose of the Software Project Tracking and Oversight KPA is to help
identify and define corrective action when project development practices deviate from
the project plan. An activity model meets this requirement through the measurement,
analysis and verification cycle. Thus, Software Project Tracking and Oversight does
not correspond to an activity, as defined by SMA, but only to the regulation
component of an activity model.

An interesting aspect of SMA activity models is the visual representation of the
PDCA (Plan-Do-Check-Act) cycles of KPAs such as in a CMM-SW level. Actually,
the Plan step is clearly modelled by control variables; the Do step corresponds to
abilities and activities from modules; the Check step is related to the regulation
process concerning measurement and review flows (segmented arrows in Figure 2);
the Act step are directives and activities implementing corrective actions based on the
results of the Check step.

86 N. Cerpa, J. Pereira, and J. Verner

Metrics

KPA

• Abilities
• Activities

KPA MANAGER

• Management abilities
• Management activities

KPA goals

Process performance measurements

Review (Verification)

Reviews to senior
management level Corrective action

Process performance measurements

KPA

• Abilities
• Activities

Superior
ommitments

 Goals
C
and

Analysis

Review (Verification)

KPA MANAGER

• Management abilities
• Management activities

KPA goals

Reviews to senior
management level Corrective action

perior
ommitments

 Goals

Analysis

Su
C
and

Fig. 2. Using SMA to represent a KPA generic model

3.1 Modelling Requirements Management and Software Project Planning KPAs

Requirements Management involves establishing and maintaining an agreement with
the customer in order to set requirements for a software project. This agreement is
called “system requirements assigned to software”. The agreement is the basis for
estimating, planning, executing and tracking software project activities over the
software life cycle.

Software Project Planning includes steps for estimating product size and required
resources, producing a schedule, identifying and evaluating the software risks and
negotiating commitments. Software planning begins with a work order and goals
defining and delimiting the software project. In order to create a software project plan,
the steps may be iterated. This plan sets the basis for executing and managing project
activities. It also includes customer resource agreements, and restrictions of the software
project.

In Figures 3(a) and 3(b), two configurations relating Requirements Management
and Software Project Planning are shown, both compliant with CMM-SW. Only the
control variables and regulation flows have been represented.

In Figure 3(a), both requirements analysis and project planning are coordinated by
the software project manager. In Fig 3(b), there are task leaders to coordinate and
control the respective KPA activities. In CMM-SW, those activities are performed by
the software engineering group reporting to the software project manager; the
configuration shown in Figure 3(b) clearly takes account of this. Figure 3(b)
illustrates the recursive character of the activity models in SMA. It is worth noting
that these models are not necessarily equivalent to organizational units, but to
processes.

 A Practitioner Experiment in Understanding Software Process Improvement 87

Fig. 3 (a). Relationships between Requirement Management and Software Project Planning KPAs
represented by SMA model

Fig. 3 (b). Relationships between Requirement Management and Software Project Planning KPAs
represented by SMA models

In CMM-SW, the software project plan (SPP) is based on the software
requirements and is reviewed by a task leader and the software project manager
before approval. In Figure 4, part of this process is shown. It begins when a work
order is received by the software project manager who sends it to the requirements
manager responsible.

These requirements are also reviewed by the software project planning group.In
Figure 5, requirements management and software project planning are assigned to the
same group and consequently there are no specific task leaders. Thus, the software
project manager coordinates both processes. Figure 5 could model a small project
where team size does not permit assignment of a specific person as task leader.

Software engineering group

Software
Project
Manager

Software
Project
Planning
Task leader

Reqs.
Management
Task leader

Requirements
Management

Software
Project
Planning

Requirements
Management

Software
Project
Planning

Software
Project
Manager

88 N. Cerpa, J. Pereira, and J. Verner

interviews

Req. proposal

SPP proposal

SPP proposal

Work Order

Work Order

Reviewed
SPP
proposal

Software
Project
Manager

Reqs.
Management
Task leader

Software
Project
Planning
Task leader

Reviewed
SPP
proposal

Reviewed
Req.
proposal

Software
Project
Planning

Software
Project
Planning

Fig. 4. Software Project Planning (SPP) process model

Work Order

/

SPP proposal

Req. proposal

Work Order Software
Project
Manager

Requirements
Management

Software
Project
Planning

Reviewed
Req. proposal

Reviewed SPP
proposal

Fig. 5. An example showing the relationship between requirements management and software
project planning in small projects

3.2 A SMA Model for the Normative Structure of CMM-SW Level 2

CMM-SW Level 2 KPAs are organized in a normative structure in order to distribute
responsibilities, activities and roles. The high level manager coordinates software
project development globally in order to solve business conflicts and issues
influencing software project life cycle. The project manager coordinates all areas
related to product development. The software project manager coordinates
engineering activities enabling software product development. The quality assurance
manager coordinates quality assurance activities (auditing and reviewing); directly
reporting to high level management.

 A Practitioner Experiment in Understanding Software Process Improvement 89

We have a normative structure when relating CMM-SW Level 2 KPAs as shown in
Figure 6. The input and output flows have been omitted from modules with only the
control variables shown. The software project manager is responsible for
requirements management and software project planning tasks.

Software subcontract management, software configuration management and
software quality assurance management tasks are assigned to their specific managers.
The project manager is responsible for the coordination of affected areas:
requirements, planning, subcontracting and configuration, but has no responsibility
over quality assurance.

Fig. 6. The SMA normative structure of the Level 2 in CMM-SW

4 Experiment

The aim of this experiment is to test the hypothesis that the SMA modelling approach
helps developers to understand the structure and organization of CMM-SW, based on
the representation capabilities of the SMA technique.

4.1 Method

We advertised a Software Process Improvement seminar for IT professionals and
participants in the experiment were those who registered for the seminar. Participants
were thirteen software developers from a variety of organizations starting with
different levels of knowledge about CMM-SW. While thirteen software developers

Superior
Manager

Software
Quality
Assurance
Manager

Software
Quality
Assurance

Software
Project
Manager

Project
Manager

Requirements
Management

Software
Project
Planning

Software
Subcontract
Management

Software
Configuration
Management

Software
Configuration
Manager

Software
Subcontract
Manager

Requirements
Management
Task Leader

Software
Project
Planning
Task Leader

90 N. Cerpa, J. Pereira, and J. Verner

may be a small sample in other fields, in this case it is reasonable considering the
difficulties encountered in gathering such participants. The aim of this experiment is
to compare participant understanding of CMM-SW before and after training in SMA.
The experiment consisted of four phases: introduction to CMM-SW (20 minutes);
pre-test (20 minutes); introduction to SMA with CMM-SW examples (20 minutes);
post-test (same as pre-test) to assess participants structural knowledge of CMM-SW
(20 minutes).

The introduction to CMM-SW ensures the same structural knowledge of CMM-
SW for all participants. The aspects discussed included general software process
improvement issues, CMM-SW structure, all CMM-SW level structures, their KPAs
and components, and specifically the level 2 KPAs.

Pre-test consisted of questions designed to measure basic and structural knowledge
of participants regarding CMM-SW and its KPAs. The pre-test included:

1. KPA Structure (Level 2). Could you please indicate:
q1.1. a control or regulation feature that you visualize for a KPA of CMM-SW.
q1.2. two common features of a KPA of CMM-SW level 2, and the relationship(s)

between them.
q1.3. if the definition of a KPA lacks of a common feature which could permit its

correct implementation. Which one(s)?
q1.4. if the definition of a KPA has a common feature which is not necessary. Which

one(s)?
q1.5. in which order would you implement the common features of a KPA.

2. CMM-SW (Level 2). Could you please use:
q2.1. a diagram to show the relationships between the CMM-SW level 2 KPAs
q2.2. the diagram proposed in the previous question (q2.1) to show how the CMM-

SW level 2 KPAs are organized for different organizational sizes.
q2.3. the diagram proposed in question q2.1 to show how the CMM-SW level 2

KPAs would be organized for different project sizes.
q2.4. the diagram in question q2.3 to identify those elements representing the

objectives of a KPA, and those verifying that these objectives are met.
q2.5. the diagram in question q2.3 to identify those elements representing the

relationships between KPAs.
q2.6. the diagram in question q2.3 to identify those elements representing the

deliverables of each KPA.

Introduction to SMA consisted of SMA structure, general example, interpretation
of CMM-SW’s common features, modular structure of a KPA using SMA, and
examples. In this phase participants learned about SMA and its potential use.

To measure the structural knowledge of CMM-SW gained by participants after
SMA training the same questions were asked in both pre- and post-test. Participants
had exactly the same time (20 minutes) to answer all the questions. The answers to
questions were evaluated using a seven point Likert scale, where the anchors for the
scale are: 1 = no knowledge, and 7 = excellent knowledge.

Introduction to SMA is expected to produce important benefits for the participants.
Levels of CMM-SW, common features understanding, and KPA structural knowledge

 A Practitioner Experiment in Understanding Software Process Improvement 91

are expected to increase as a result of training. Therefore, the associated hypothesis
tested is:
• Null hypothesis - H0: From pre-test to post-test, participants will not have a

significant improvement in CMM-SW structural knowledge.
• Alternative hypothesis - H1: From pre-test to post-test, participants will have a

significant improvement in CMM-SW structural knowledge.

4.2 Results and Discussion

The variables are the test scores from the pre- and post-tests. Statistical significance is
indicated at p=0.05. Table 1 shows the median values of the pre- and post-test
responses and significance levels (two related samples, i.e. Wilcoxon signed rank
test). For each question, we show in bold the higher performance, and significant
differences. Overall, the participants show a significantly better structural knowledge
of CMM-SW for eight questions during the post-test; as these tests yield p-values of
less than 0.05, we reject the null hypothesis.

Table 1. Performance difference for pre- and post test questions

Question Pre-test
Median

Post-test
Median

Significance (p)

Q1.1 5 7 0.143
Q1.2 2. 5 0.005
Q1.3* 1 1 0.068
Q1.4 1 7 0.149
Q1.5 3 5 0.026
Total Q1 1 5 0.001
Q2.1* 1 1 0.041
Q2.2 1 5 0.033
Q2.3 1 2 0.039
Q2.4 1 7 0.007
Q2.5* 1 1 0.041
Q2.6 1 5 0.016
Total Q2 1 2.5 0.000

 * Note: Although the median has not changed, values above the median went from 3 to 5 or 7.

The signed-rank test provides evidence that in general participant levels of
structural knowledge of CMM-SW are greater during the post-test than in the pre-test
for topics tested. These results suggest that the use of the SMA approach improves
software developers’ structural knowledge of CMM-SW.

5 Conclusions

We have shown that SMA is a useful tool for modelling CMM-SW Level 2. At the
KPA level SMA allows us to:

o understand how common features of each KPA are organized, defining a feedback
structure for some KPAs in CMM-SW Level 2;

92 N. Cerpa, J. Pereira, and J. Verner

o visualize relationships among common features of a KPA;
o observe that the set of common features is exhaustive, in the sense that we do not

need other features to implement a control-regulation structure for a KPA;
o show that common features have well defined purposes without redundancy; all

the common features are necessary to implement the control-regulation structure;
each common feature in a KPA is the complement of the others;

o show that a KPA is organized as a PDCA cycle.

At CMM-SW Level 2, SMA allows us to understand the normative organization of
the set of KPAs; gain a perspective on the multi-layer configuration of management
responsibilities; propose alternate configurations: among the KPAs, for different sizes
of businesses; for different sizes of projects; of control activities in level 2 as
represented by different management layers; as well as visualize the complexity of
communications, regulations and deliverables required to implement the relationships
among the KPAs; and also permit the visual representation of the recursive structure
embedded in the CMM-SW Level 2.

Additionally, SMA models of CMM-SW show that the Software Tracking and
Oversight KPA cannot be represented by a single steering-transformation module pair
because this key area is contained in the regulation components of an activity model.

We show that SMA is a useful modelling tool that helps us understand the structure
of CMM-SW. Practitioners were capable of rapidly understanding the concepts of
CMM-SW and were able to associate them to an activity model of SMA. This is
shown through improvements in performance. We are continuing to use SMA with
practitioners in several software development projects, and in future research we will
use SMA for modelling other SPI models.

Organizations must properly understand the software process improvement model
they intend to implement. Our research shows that using a graphical approach such as
SMA facilitates practitioners understanding of such models.

Acknowledgement. This research has been fully supported by the Chilean grant
FONDECYT 1030785.

References

[1] Brodman, J., Johnson, D.: The LOGOS tailored CMM for small business, small
organizations and small projects. LOGOS International Inc., Needham, Ma. (1995)

[2] CMMI Development Team: CMMISM-SE/SW, V1.0, Capability Maturity Model
Integrated for Systems Engineering/Software Engineering Version 1.0. Continuous
representation, Technical Report CMU/SEI-2000-TR-019, ESC-TR-2000-019 (2002)

[3] Coallier, F.: TRILLIUM: A model for the assessment of telecom product development &
support capability. Software Process Newletter 2, 3–8 (1995)

[4] Cooper, J., Fisher, M. (eds.): Software Acquisition Capability Maturity Model (SA-
CMM) - Version 1.03. Software Engineering Institute, Carnegie Mellon University,
Technical Report CMU/SEI-2002-TR-010, ESC-TR-2002-010 (2002)

[5] Curtis, B., Hefley, W., Miller, S.: People Capability Maturity Model (P-CMM) - Version
2.0. Software Engineering Institute, Carnegie Mellon University, Technical Report
CMU/SEI-2001-MM-01 (2001)

 A Practitioner Experiment in Understanding Software Process Improvement 93

[6] Diaz, M., Sligo, J.: How Software Process Improvement helped Motorola. IEEE
Software, 75–81 (September-October 1997)

[7] Goldenson, D., Herbsleb, J.: After the appraisal: a systematic survey of process
improvement, its benefits, and factors that influence success. Software Engineering
Institute, Carnegie Mellon University Technical Report, CMU/SEI-95-TR-009, ESC-TR-
95-009 (1995)

[8] Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., Zubrow, D.: Benefits from CMM-based
software process improvement: initial results. Software Engineering Institute, Carnegie
Mellon University Technical Report, CMU/SEI-94-TR-013, ESC-TR-94-013 (1994)

[9] Mélèse, J.: L’analyse modulaire des systèmes: une méthode efficace pour appliquer la
théorie des systèmes au management. Les Éditions D’Organisation, Paris (1991)

[10] Oktaba, H., Irbaguengoitia, G.: Software processes modeled with objects: static siew.
Computación y Sistemas. Iberoamerican Journal of Computer Science 1(4), 228–238
(1998)

[11] Orci, T., Laryd, A.: CMM for small organizations, level 2. Umea University, Technical
Report UMINF-00.20 (2000)

[12] Orci, T., Laryd, A.: Dynamic CMM for small organizations - implementation aspects. In:
Proceedings of European Software Process Improvement Conference, Copenhagen,
Denmark (November 7-9, 2000)

[13] Otoya, S., Cerpa, N.: A Small Software Company Attempting to Improve Its Process. In:
Proceedings of Ninth International Workshop on Software Technology and Engineering
Practice, Pittsburgh, USA (September 1999)

[14] Paulk, M.: Using the Software CMM in Small Organizations. In: The Joint 1998
Proceedings of the Pacific Northwest Software Quality Conference and the Eighth
International Conference on Software Quality, Portland, Oregon, October 13-14, 1998,
pp. 350–361 (1998)

[15] Paulk, M., Curtis, B., Chrissis, M., Weber, C.: The Capability Maturity Model for
Software, version 1.1. Software Engineering Institute, Carnegie Mellon University
Technical Report, CMU/SEI-93-TR-024 (1993)

[16] Paulk, M., Weber, C., Garcia, S., Chrissis, M., Bush, M.: Key practices of the Capability
Maturity Model, version 1.1. Software Engineering Institute, Carnegie Mellon University
Technical Report, CMU/SEI-93-TR-025 (1993)

[17] Software Engineering Measurement and Analysis Team: Process maturity profile of the
software community 2001 year end update. Software Engineering Institute, Carnegie
Mellon University (2002)

[18] Wiegers, K.: Software process improvement: ten traps to avoid. Software Development
Magazine, 51–60 (May 1996)

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 94–105, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Organizing Improvement Work: A Longitudinal Case

Jan Pries-Heje1 and Malene M. Krohn2

1 Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
janph@ruc.dk, www.ruc.dk

2 SimCorp, Oslo Plads 12, DK-2100 Copenhagen O, Denmark
Malene.M.Krohn@simcorp.com, www.simcorp.dk

Abstract. Organizing improvement work is a decision that is often made in
vain. There is no standardized way to do things that works for every improve-
ment effort. A more contingent approach is needed. Experience from seven
years of improvement work at SimCorp shows that different types of improve-
ment work requires different ways of organizing. We identify five ways of
organizing for five types of improvement work. We use 9 case studies from
SimCorp to show how they fit together. The resulting framework can be used to
find a suitable way of organizing for a given type of improvement work.

Keywords: SPI, governance, organizing improvement work.

1 Introduction

How to organize improvement in an organization has been an urgent question ever
since organizations started to improve. Badly organized improvement plans may in-
hibit communication, insulate improvers from practice, and create significant barriers
to improvement. A very common answer to the question of how to organize im-
provement is an SEPG—a software engineering process group—at the core of your
improvement organization.

What is an SEPG and what can it do for you? An SEPG should “drive and facili-
tate” the improvement process in an organization [2]. Humphrey [3, p. 2] states: “The
SEPG has two basic tasks that are done simultaneously: initiating and sustaining proc-
ess change and supporting normal operations”. Furthermore, the SEPG should work
as a change agent, providing “the energy, enthusiasm, and direction needed to over-
come resistance and cause change”.

How many people should be involved in improvement? The answer that Humphrey
[3, p. 295] gives is that an SEPG should aim at having “full-time assignments to the
SEPG of about 2 percent of the software professionals”. Furthermore, the SEPG
should be led by an experienced and competent manager “with a demonstrated ability
to make things happen”.

In the literature, the roles and responsibilities for establishing, monitoring, and en-
forcing process activities is often called the process infrastructure. Zahran [9] distin-
guishes between (1) A sponsorship role, including budgets and responsibility for
benefits, (2) A management role, including guidance and strategies for SPI activities;

 Organizing Improvement Work: A Longitudinal Case 95

(3) A coordination role, providing guidance to the groups or teams carrying out im-
provement activities; and finally (4) The improvement teams them selves.

Another issue is where to place the ownership of processes. Any process in an or-
ganization goes through a life-cycle. It is initiated, described, implemented, and then
it needs to evolve continuously maybe for many years. Someone needs to take owner-
ship of all four activities. “Without ownership the process will deteriorate” [9]. Typi-
cally the ownership of processes is the responsibility of the SEPG. Zahran [9] has
composed a list of tasks that an organization needs to take care of in any effective
process environment: (1) Effectively perform the process activities; (2) Maintain and
update the process definition; (3) Monitor the process performance; and (4) Imple-
ment corrective actions as necessary.

Zahran [9] further argues that an organization should have an improvement frame-
work consisting of a process improvement roadmap, a software process assessment
method, process improvement plans, and a process infrastructure.

Caputo [2] emphasize that an SEPG should have not only visible activities such as
performing assessments, developing action plans, and defining and implementing
processes, but also what she calls “invisible activities”, such as redirecting organiza-
tional focus towards long-term benefits (of improvement). But none of these tasks can
be solved by the SEPG alone. An SEPG “can help managers and engineers focus”,
but the SEPG “cannot develop an overall perspective without the involvement of the
managers and engineers” [2].

 The idea that different environments require their own organizational design is not
new. Burns and Stalker [1]) argues that in dynamic economic sectors, firms with or-
ganic structure are more effective than those with more mechanistic structure. Wood-
ward [7] continues this line of thinking and looks at ways technology and technical
complexity shape the organizational structure. And Lawrence and Lorsch [4] explore
the connection between conditions in the environment and organizational structure.
Thus from this early start, contingency theory was born—building on the assumption
that organizations whose internal structures are best fit with the surrounding environ-
ments will perform better.

Within IS research the discussion of organizational structure is one of the classic
issues. At the core of the discussion is whether one should centralize or decentralize.
Centralization has a number of advantages—economy-of-scale, coordination of data
and applications, and optimal use of limited resources. But decentralization also has
its advantages—a proper and fast response to business needs and the involvement of
managers in IT decisions. Willcocks and colleagues [6] talks about five combinations
of centralization and decentralization in structuring the IS work in an organization: (1)
corporate service, (2) internal bureau, (3) business venture, (4) decentralized, and (5)
federal.

More recently Weill and Ross [5] did a study of different ways of organizing what
is now called IT governance in an organization. They identify six different ways of
organizing IT, ranging from the centralized business, or “IT monarchy”, to the totally
decentralised “user-driven anarchy”, with a federal, feudal, or “IT duopol” organiza-
tion representing other combinations of centralization and decentralization.

96 J. Pries-Heje and M.M. Krohn

2 Organizing SPI

Having in mind the two ways of organizing work we can ask: In which structure will
the SPI tasks perform best, or which structure is most supportive? To begin answering
that we derived a characterization of five SPI tasks (inspired by [2], [3], and [9]):

1. Deciding the overall direction of SPI is typically a management task, focusing on
the long-term benefits and drivers of SPI, but also covering the invisible activities for
influencing culture that Caputo [2] talked about.

2. Creating processes and facilitating process improvement is about building new
processes based on careful study and analysis of organizational needs and experi-
ences. One could say that this task is about knowledge elicitation and storage in the
form of process descriptions. But it is also about identifying best practices on the one
hand and identifying weaknesses in processes on the other.

3. Deploying and implementing processes is about getting people to use the new
processes. This often involves change management, handling resistance to change,
and helping the users of a process to work in a new and hopefully improved way. It
also involves selecting a deployment strategy and deployment means, such as infor-
mation, communication, training, and evaluation.

4. Monitoring and measuring process performance is about following up and en-
suring that the processes actually work and deliver the benefits expected. Process
assessments using models such as CMMI or SPICE can be part of measuring process
performance. Establishing a metrics program can be another way. No matter what is
measured, or how a measurement is made, this task will often provide input for neces-
sary process improvements.

5. Maintaining and updating processes is the major task for most process improve-
ment work. It may take a few weeks or months to create and implement a process, but
using the process is often a matter of years. Therefore the most important part of this
task is the assignment of ownership—someone in the organization needs to think:
“This is my process”, and “I am making sure that it is updated and kept alive”.
Among others, Zahran [9] described the necessity of this process ownership.

Further, we can look at the organization of work. Inspired by Willcocks and col-
leagues [6] and Weill and Ross [5] we derived five different ways to organize SPI:

A. Centralized SEPG is the classic way of organizing SPI, as recommended by
Humphrey [3] and several others. Thus in one organization there is one central organ-
izational unit having sole responsibility for improvement work.

B. Decentralized SPI work attempts to take advantage of decentralization. Position-
ing oneself close to the customer—the users themselves—is one example. Another
way is to dispatch SPI personnel or process consultants to the projects; yet another is
to delegate process related tasks to the existing project team.

C. Cross-organizational teams is a strategy for getting people from different organ-
izational units together to share knowledge, prioritize improvements, or solve prob-
lems. A team is continuous and a visible entity in the organization, whereas projects
are more temporary. A cross-organizational team can be a valuable communication
channel and link to the organization for management or a central SEPG.

 Organizing Improvement Work: A Longitudinal Case 97

D. Knowledge agents is a structure built on the fact that key knowledge resides in the
minds of people. Therefore it is often recommended to rotate individuals between SPI
and traditional IS development, partly to bring new experience into SPI work, but also
to bring updated SPI knowledge into development practice.

E. Targeted SPI projects, or Process Improvement Teams (PITs), are also a widely
recommended way to carry out improvements in organizations (e.g. [9]). The projects
are initiated and completed according to the organization’s improvement plan. De-
pending on the scope of the improvement (and the scope of the project), different
competencies are required, thereby calling upon different members of the organiza-
tion.

3 SimCorp Cases of Organizing SPI

For our research we have used a longitudinal, embedded, single case setting [8]. The
research study took place within the Danish company SimCorp. SimCorp delivers
standard software for investment management and has more than 30 years of experi-
ence in delivering solutions for the financial market. The main product is SimCorp
Dimension, developed and maintained primarily by the 200 person IMS Development
Department in Copenhagen. SimCorp Dimension is developed in a standardized de-
velopment life-cycle, releasing a new version of the product SimCorp Dimension
every six months. In 1998 SimCorp started using the Capability Maturity Model
(CMM) as a guideline and framework for improving the software development proc-
esses. In 2000 a group was established to facilitate the SPI work and in 2001 CMM
level 2 was achieved.

The study took place during the 10-year period 1998–2007. One of the authors was
responsible for SPI in SimCorp for most of that study period. The other author was
never involved in any of the improvements reported and was able to look at the or-
ganization and the improvement results with neutral eyes. In that sense, it has been an
action-research undertaking. Data were collected by the author working in the organi-
zation—less systematically in the beginning, and more elaborately and systematically
towards the end. In this section, we elaborate the answer to our research question by
way of case stories from SimCorp. The case stories describe how various SPI tasks
were carried out in different organizational set-ups, and evaluate the respective advan-
tages and disadvantages—how well the chosen set-up supported the different SPI
tasks. In total we present nine case stories. The first four concerns what we have
called a Centralized SEPG. We will present the cases one by one. Shortly discuss
each case after it has been presented, and give a longer more elaborate analysis and
evaluation after case 4 as well as after case 9.

3.1 Case 1: Central SEPG/SPI Group Takes Ownership

When SimCorp initiated improvement work based on CMM back in 2000, it was
natural to establish one central organisational group to be responsible for the process
improvement work. This centralised SEPG/SPI group was established as a staff func-
tion within the SimCorp development department, with dedicated employees to per-
form SPI.

98 J. Pries-Heje and M.M. Krohn

The group’s goal was - and is - to facilitate process improvement in the department
in other words act as project managers on improvement projects, measure process
performance, evaluate best practices, maintain processes, and verify compliance to
established standards. Over the years, the group has had between 7 and 11 employees
(approx. 5% of total engineering staff), depending on the number of projects running.
CMM has been used as a guideline and framework for the process improvements,
though the intensity of the focus on CMM has varied during the years due to other
large organisational projects. As the improvements were deployed, it was natural that
the central SEPG/SPI group took ownership of the deployed processes and standards.
An example of this is the process library.

Evaluation of Case 1: The main advantage of establishing an organizational unit is
having dedicated persons to perform process improvement work. The ownership of an
established organizational process library is clear.

3.2 Case 2: Establishing an SPI Steering Group

When the central SPI group was established at SimCorp, a SPI steering group was
also established. The main way of showing management commitment to SPI work at
SimCorp was through the steering group. The Director of Development and the head
of the Development Department have represented management in the steering group
for many years. The head of the SPI group and the head of SQA also participated.

Recently, the steering group has been expanded to better represent all the activities
in the development department, as the Application Development manager, System
Development manager, Test manager, Product Support manager, and the Planning &
Production manager have all joined the steering group. The purpose of the steering
group was and is to act as sponsor for the SPI activities in the organisation, and to
monitor progress and results of the SPI work. The steering group meets once every
month.

Evaluating Case 2, we see that process improvement often represents long-term or-
ganizational benefits; it is important that management supports a long-term strategy
and prioritizes accordingly. Discussions regarding the overall direction and strategy
for process improvement are handled well by an SPI steering group. Furthermore, the
steering group makes it possible to demonstrate management commitment and make
visible their responsibility for process improvement. And finally, the steering group
acts as a continuous management forum for raising issues and discussing process
improvement issues.

3.3 Case 3: Central SPI Group to Measure and Follow Up

When the central SPI group was established at SimCorp, it was decided to include the
Software Quality Assurance (SQA) function in the group. Two persons have been
more or less dedicated to perform SQA over the years, and they have had success
with it. The focus of the SQA function was and is to: (1) track the quality of product
and processes, (2) perform “supportive SQA”, where best practices are shared, and (3)
report to management and the organisation.

One way to verify compliance has been to carry out so-called “focused assess-
ments”, whereby a specific process area is evaluated and a recommendation for

 Organizing Improvement Work: A Longitudinal Case 99

improvement is made. Tracking quality has been implemented by establishing quality
checkpoints for the main development phases—planning, development, testing—at
which times SQA participates. SQA objectively evaluates the status, and decides with
management whether a phase is complete. An important part of this evaluation is
standardised measurements.

Measuring process performance has also been an integrated part of the SPI group’s
work during the years. In the beginning it was very difficult, as processes were imma-
ture and limited data existed. But over the years, a metrics programme has been estab-
lished: a standardised, online collection of measurements used to determine the status
of the product’s quality, check the progress of the production activities, and perform
analysis. SPI members are also encouraged to define new metrics when improving
processes.

Evaluation of Case 3: It was an advantage to have the responsibility for developing
and maintaining a metrics programme placed in one group, the SPI group. However,
input to the metrics programme should come from the organization, because the pro-
ject managers and management who are supposed to use the metrics in their work
must feel comfortable in doing so. CMM knowledge and process focus, which are
available in the SPI group, are beneficially used in compliance assessments of the
organization. However, it is important that the group’s members be continuously
informed about the practices in the organization. Because it is an independent group
(e.g. independent from the software projects), the Centralized SEPG/SPI group can
remain neutral and make recommendations to management on the basis of its own
analysis.

3.4 Case 4: Design and Deploy New Processes

In SimCorp the SEPG/SPI group has been responsible, to some extent, for the design
and deployment of new and improved processes. This responsibility has been imple-
mented through participation in SPI projects, by participating in cross-organisational
teams, and by undertaking the tasks in the SPI group.

The way the SEPG has carried out the design of new processes has been by collect-
ing information about current practices, learning about best practices, designing the
process, and having it reviewed.

The SEPG/SPI group has also participated in deployment in the form of frequent
communication, “road shows”, and the like.

Evaluation of case 4: The people working full-time with SPI possess or develop
skills necessary for successful SPI development and deployment, such as communica-
tion, change management, and project management skills. From studying best prac-
tices and industry recommendations, the SPI personnel have the necessary knowledge
for introducing new practices. Of course this knowledge is not exclusively available
for SPI personnel, but often they have an external network and have been studying
best practices regarding processes. Knowledge of the process library is an advantage
when designing new processes that depend on other processes. One challenge is that
the Centralized SEPG/SPI group might only have limited knowledge of current prac-
tices in the organization and therefore designs a process that is too academic or too
difficult to deploy.

100 J. Pries-Heje and M.M. Krohn

3.5 Evaluating the First Four SimCorp Cases

The first four cases concerned different ways of working that all can characterized as
Centralized SEPG. If we take the five tasks on “#1 - Deciding the overall direction of
SPI” worked quite well for a Centralized SEPG especially after a steering group (Case
2) was established.

For “#2 - Creating processes and facilitating process improvement” it also seems
that a Centralized SEPG can do a fairly god job. Especially if one succeeds in attract-
ing knowledgeable and experienced developers to the SEPG group.

However, for “#3 - Deploying and implementing processes” the outcome is not as
positive. Case 4 clearly illustrated that processes may become too academic when
designed centrally, and that a central group may be too removed to really facilitate the
deployment of new processes “in the trenches”.

For “#4 - Monitoring and measuring process performance” the combination of a
Central SEPG with responsibility for Quality and the use of quality assurance tech-
niques seem to work fairly well as illustrated by case 3.

And then for “#5 - Maintaining and updating processes” we again seems to run into
a weakness for a Centralized SEPG. Being central means that you are removed from
daily work and it becomes hard to capture the small changes and desires for updating
processes. Doing quality assurance means that you often are seen as a control mecha-
nism checking the daily work, more than helping and facilitating. Thus a Centralized
SEPG is probably not the best way of organizing the maintenance and updating of
processes.

So it seems that a centralized SEPG group is good at providing overall direction,
good at creating new processes, but not as effective in deploying processes, and defi-
nitely not as good in maintaining and updating processes.

3.6 Case 5: Decentralized SPI Work

We now turn to other ways of organizing SPI work; not using a Centralized SEPG.
The Development department in SimCorp has tripled its size during the past 8–10

years. More specialised functions have been established, such as a Test department, a
Product Support department, a Planning and Production group, a SPI group, and
more. All departments have grown in size and scope. The growth was made possible
by stable growth in SimCorp’s business—more customers and also a more complex
product. Growth in business, the development organisation, and the system also natu-
rally implies new or improved processes to improve efficiency and quality.

Defining new and improving existing processes has been an integral part of ongo-
ing organisational development, and the responsibility has often been decentralised.
For example, the Test department has been responsible for establishing and improving
test processes; the Product Support department has been responsible for establishing
and improving the support processes, and so on.

When decentralising, the role of the central SEPG/SPI group has been to make sure
that the departmental processes are compliant with the established standards; it also is
responsible for the overall process improvement plan for the department.

 Organizing Improvement Work: A Longitudinal Case 101

Evaluating Case 5, we see that it is an advantage to place “#3 - Deploying and im-
plementing processes” with the department performing those processes. The
advantage comes from the feeling that something close to you is important to you.
The knowledge of current practices is right at hand, and is valuable input for further
process improvement. Furthermore, the task of deploying improvements is often more
effectively performed by the people performing the processes, as they will be able to
spot potential pitfalls.

The challenge is to establish and maintain the necessary long-term process focus
and “#1 - Deciding the overall direction of SPI” in a department that is often meas-
ured on more production related output, such as completed test cases, meeting mile-
stones, and so on. The role of a central SEPG/SPI group can also be difficult to
distinguish when the SPI work is decentralized. Top management also often expects
and requires standardized ways of following up, and this can be difficult to accom-
modate when the responsibility is decentralized.

“#2 - Creating processes and facilitating process improvement” is probably diffi-
cult to make work in a Decentralized SPI group; again because the main objective is
the daily production thus time for creating new processes often becomes second prior-
ity.

“#4 - Monitoring and measuring process performance” is definitely not a good task
to take on for a Decentralized SPI. The temptation to measure only when the outcome
is positive will be too obvious.

Finally, for “#5 - Maintaining and updating processes” the Decentralized SPI group
has the advantage of being close to the daily work making it easy to capture the small
changes and desires for updating processes. Whether a Decentralized SPI group can
find and dedicate the time for maintaining and updating processes is more question-
able.

3.7 Case 6: Cross-Organizational Teams to Facilitate Improvement

During the years of SPI work at SimCorp, several cross-organisational teams have
been established for support. One goal was to involve more people in the SPI work;
another has been to involve practitioners from the organisation.

The Training team, which has existed for seven years as a training council in the
department, consisted of approximately 6 members representing Development, Test,
Support, and SPI. Their purpose was (1) to arrange internal courses, (2) to make sure
that knowledge is shared in the department e.g. by arranging “Seminars of the month”
and “New functionality presentation”, publishing “Hints of the month”, and (3) main-
taining the department’s education plan for new employees.

The TAP team (Tools and Practices) existed for a couple of years as a forum
whereby ideas and knowledge were shared, and improvements discussed and imple-
mented. The team consisted of a developer from each development team. The purpose
of the team was (1) to collect, suggest, and evaluate ideas for improvement in the
development environment and process, (2) to suggest and support the roll-out of pro-
cedures affecting the development environment and the development process, and (3)
to arrange workshops on specific tools and practices.

102 J. Pries-Heje and M.M. Krohn

3.8 Case 7: Cross-Organizational Teams to Deploy Processes and Take
Ownership

As described in Case 6, different cross-organisational teams have been established
during the years in SimCorp. For the Training team it was natural to take ownership
of the department’s training related processes. For some years it has done so success-
fully thereby implementing improvements. Enabling this was the task of the Training
coordinator, located in the department and responsible for the team’s activities. The
Training coordinator was placed in the central SPI group.

For the TAP team, the situation was a bit different. Because it represents the devel-
opment processes (design, code, review, unit test), its scope is relatively broad. The
TAP team has not taken ownership of any of the processes, although it has been sug-
gested and discussed. However, the central SPI group has successfully used the TAP
team to review new or revised processes before deployment, and it has also used the
team to do the actual deployment in the development groups.

Evaluating Case 6 and 7: The main advantage of cross-organizational teams is the
involvement of practitioners from all over SimCorp in improvement work. Participa-
tion in the teams is voluntary, which is a very sound basis for improvement and im-
plies a natural drive. Thus task “#2 – “Creating processes and facilitating process
improvement” seems to be well taken care of by a Cross-organizational team.

A Cross-organizational team can be responsible for “#1 - Deciding the overall di-
rection of SPI”. In fact the steering group (case 2) could be seen as cross-functional.
However, it requires a very special kind of team consisting of (top) managers.

“#3 - Deploying and implementing processes” also works fairly well for a Cross-
functional team. There will always be a team member close to each organizational
unit ensuring that the deployment takes into account local oddness’s. However, it is a
challenge to get the cross-functional teams to take ownership of the processes. More
successfully, SimCorp experienced that the teams can be used for input and reviewing
as they represent different functions in the department. Finally, the team is not neces-
sarily skilled at performing successful deployments—it cannot be expected to find
good communication skills, experience with change management, or other attributes
itself.

Cross-functional teams are as useless in monitoring themselves as was a Decentral-
ized SPI group. In fact a Cross-functional team may be even worse in doing “#4 -
Monitoring and measuring process performance” because the members may start
blaming each other to be certain that blame does not come to their own department.

And then for “#5 - Maintaining and updating processes” a Cross-functional team
has the advantage of being close to the daily work making it easy to capture the small
changes and desires for updating processes. But again it is doubtful whether a Cross-
functional team can dedicate the time for maintaining and updating processes.

3.9 Case 8: Rotation Scheme for Knowledge Agents

For some years, SimCorp has had a rotation scheme for the central SPI group: for six
months a developer or tester participates in an improvement project with the SPI
group, and then returns to his or her own group for six months.

 Organizing Improvement Work: A Longitudinal Case 103

Examples: (1) A concrete SPI project on establishing a unit test framework for the
application developers. A developer with programming experience and interest in unit
tests is assigned for this task in a 6 months project. (2) To mature the configuration
management processes, an experienced developer, responsible for configuration man-
agement, is assigned to investigate best practices, document the practices, and make
sure that they are CMM level 2 compliant in relation to configuration management.
An alternative to this full-time rotation of the SPI group has been to appoint three
developers to serve for 10–20% of their time for a six-month period, in order to share
best practices and help the less experienced developers with standards, inspections,
and so on.

Evaluation of Case 8 on Knowledge agents: The clear advantage of this work set-
up is that specialist knowledge from the practitioners is used for process improve-
ment. The practitioners add value to the process improvement work and to the SPI
group, and they become positive ambassadors after they rotate back to their own de-
partment. A rotation, whereby an individual is moved away from his or her everyday
tasks and organizational unit, offers a real advantage, as this person’s skills are dedi-
cated to process improvement work. Thus task “#2 - Creating processes and facilitat-
ing process improvement” and task “#3 - Deploying and implementing processes”
seem to be very well taken care of by Knowledge agents.

A more challenging aspect of this set-up is the ownership of the devel-
oped/improved solutions when the practitioner is off to new assignments. Thus for
task “#5 - Maintaining and updating processes” Knowledge agents are unsuitable.

As for “#1 - Deciding the overall direction of SPI” we find that Knowledge agents
are too fickle and transient to undertake that task.

Finally, for task “#4 - Monitoring and measuring process performance” Knowledge
agents may be suitable in that they can come in with their specialized knowledge in
another functional department and do good jobs of monitoring and measuring and at
the same time pass on some their specialized knowledge.

3.10 Case 9: Targeted SPI Projects

SPI work in SimCorp has traditionally been organised in targeted projects with well-
defined scopes, milestones, allocation, etc. The purpose of Targeted SPI projects has
been to implement improvements—either within a specific process area or within a
specific part of the organisation. Of course, it has been necessary to be flexible in the
SPI group when organizing SPI projects, as key personnel from the organization often
are requested to participate on these projects.

The SPI group at SimCorp has the following guidelines for Targeted SPI projects:

(1) Establish project with goals, scope, members, and major milestones. (2) Plan
activities with tasks, estimates, allocations, and detailed milestones. (3) Provide train-
ing using best practices from other companies and studies. (4) Gather data to evaluate
current processes in one’s own organisation. (5) Develop new and current processes.
(6) Pilot new processes and evaluate process performance. (7) Revise the new proc-
esses on the basis of pilot study. (8) Implement new processes in full scale throughout
the organisation. (9) Monitor, evaluate, and improve processes.

Evaluation of Case 9 (Targeted SPI projects): First, Targeted SPI projects are a
structured way to work with improvements. Securing management commitment to a

104 J. Pries-Heje and M.M. Krohn

well-defined project is often easier than more ad-hoc improvement tasks. It is also
possible to allocate key personnel or persons with the necessary competencies to a
project for a shorter or longer period. Furthermore, having project plans and deadlines
makes it easier to track progress and follow up on deliverables. Thus task “#2 - Creat-
ing processes and facilitating process improvement” seem to be very well taken care
of by Targeted SPI projects.

On the other hand, it can be difficult to compete for resources for long-term SPI pro-
jects when you are up against shorter-term projects that include delivery to customers. It
is also common that the last few activities in a project—such as deployment in the or-
ganization, training, following up on the actual improvement—become compromised as
new projects start before the old one is completed. Thus task “#3 - Deploying and im-
plementing processes” may be only partly suited for a Targeted SPI project.

Another shortcoming of SPI projects is that they are temporary; project members
split up after completion. Therefore it is a challenge to anchor the ownership of the
project deliveries (e.g. an improved process). Thus task “#5 - Maintaining and updat-
ing processes” is unsuitable for a Targeted SPI project.

As for “#1 - Deciding the overall direction of SPI” we find that a Targeted SPI pro-
ject is too short-term to undertake that task.

- [9](+) [9](+) [9]+ [9]- [9]
Targeted SPI
projects

- [8](+) [8]+ [8]+ [8]- [8]
Knowledge
agents

(+) [6-7]- [6-7]+ [6-7]+ [6-7](+) [6-7]
Cross-
organizational
teams

(+) [5]- [5]+ [5](+) [5](+) [5]
Decentralized
SPI

- [1-4]+ [1-4](+) [1-4]+[1-4]+[1-4]
Centralized
SEPG

Main-
taining

Monito-
ring &
measuring

Deploying
processes

Creating
processes

Deciding
overall
direction

Fig. 1. Relationship between SPI tasks (columns) and organizational set-ups (rows). A “+” indi-
cates a well-suited match. A “(+)” indicates partly suited. And a “-”means not suited. In squared
brackets are shown from which case(s) the evaluation result is derived from.

4 Conclusion on Organizing SPI Work

In this paper we have analyzed the data from a longitudinal study at SimCorp, seeking
an answer to our research question about the relationship between tasks and structure.

 Organizing Improvement Work: A Longitudinal Case 105

We were able to fill out the matrix that these two dimensions distend (see Figure 1),
and we were able to come up with recommendations on which organizational forms
seem suited for different tasks—at least for our case study organization SimCorp.

Naturally variations of the five organizational set-ups exist. Organizing SPI work
in a company is also contingent on different factors, such as company culture, mana-
gerial style, and the current economical situation. One way of organizing does not
necessarily preclude another, and the different ways may well complement each other.
The need for different organizations of SPI work reflects the dynamics in an organiza-
tion. Nevertheless we believe that our results in Figure 1 can be very useful in other
organizations for SPI governance.

References

1. Burns, T., Stalker, G.M.: The Management of Innovation, p. 269. Tavistock Publications,
London (1961)

2. Caputo, K.: CMM Implementation Guide: Choreographing Software Process Improvement,
p. 319. Addison-Wesley, Reading, MA, USA (1998)

3. Humphrey, W.: Managing the Software Process, p. 494. Addson-Wesley, Reading, MA,
USA (1989)

4. Lawrence, P., Lorsch, J.: Differentiation and integration in complex organizations. Admin-
istrative Science Quarterly 12, 1–30 (1967)

5. Weill, P., Ross, J.W.: IT Governance: How top performers manage IT decision rights for
superior results, p. 269. Harvard Business School Press, Boston, MA, USA (2004)

6. Willcocks, L., Feeny, D., Islei, G.: Managing IT as a Strategic Resource. McGraw-Hill,
London (1997)

7. Woodward, J.: Industrial Organization: Theory and Practice, p. 281. Oxford University
Press, London (1965)

8. Yin, R.K.: Case Study Research: Design and Methods, 2nd edn., p. 170. Sage Publications,
Thousand Oaks, CA, USA (1994)

9. Zahran, S.: Software Process Improvement: Practical Guidelines for Business Success, p.
480. Addison-Wesley, Upper Saddle River, NJ, USA (1998)

An Experiment with a Release Planning Method

for Web Application Development

Sven Ziemer and Ilaria Canova Calori

Department of Computer and Information Science,
Norwegian University of Science and Technology,

NO-7491 Trondheim, Norway
{svenz,canovaca}@idi.ntnu.no

Abstract. Web application development is under certain circumstances
such as a strong emphasis on time-to-market characterised by the usage
of informal and ad-hoc development practices and a lot of tacit knowl-
edge. Here we present an experiment that has been carried out in order
to evaluate a recently proposed release planning method for web appli-
cation development. This method aims at bringing stakeholders together
to share knowledge and to decide on a configuration for the next release
that satisfies all stakeholders. The method has been evaluated in terms
of its effect on factors such as knowledge sharing, understanding, support
to reach a consensus and stakeholders satisfaction.

1 Introduction

Developing software systems is a knowledge intensive endeavour, and the quality
of a software application is limited by the quality of the knowledge that is avail-
able to the development team. Improving the amount and quality of knowledge
is therefor a central activity in software process improvement. The first refers to
having as much knowledge as possible from multiple stakeholder’s, and the later
refers to having more precise knowledge. Depending oh the context of a software
development project, the knowledge about the development effort will either be
explicit or implicit, and quantitative or qualitative. In the case of development
projects that apply informal and ad-hoc development practises, and that have a
strong focus on time-to-market the knowledge is mostly implicit and qualitative.
Improving both the amount and quality of knowledge here is as important as
for all software development projects. This can be achieved by using the avail-
able tacit knowledge. Bringing the involved stakeholders together and sharing
the available knowledge to create a common understanding, is an improvement
of knowledge, and a potential first step to systematic software process improve-
ment activities. Sharing knowledge in such an environment involves sharing the
opinions, beliefs and expert judgements of the stakeholders.

In a recent paper [1] we presented a method for release planning to be used in
web application development projects under such conditions. In order to validate
the proposed release planning method and to learn how it works in development

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 106–117, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Experiment with a Release Planning Method 107

projects, this method was tested empirically. Among several options, it was de-
cided to use a student experiment. This paper presents the experiment, and the
lessons learnt.

The rest of the paper is organised as follows: The background from web ap-
plication development for the release planning method is given in section 2 and
related work is shortly described in section 3. The next sections, experiment
definition and goal (section 4), experiment planning and operation (section 5),
and the questionnaire and experiment analysis (section 6) are presenting the
experiment. The results from the experiments are shown in section 7, and a dis-
cussion and further work is presented in section 8. Finally, conclusions are given
in section 9.

2 Background

The way web applications are developed depends on such factors as the applica-
tions maturity, the number of returning users and the competition with similar
web applications. Some web applications have a strong focus on time-to-market,
that in some cases can be described as a rush-to-market focus. The development
of such web applications can be best described by the usage of informal devel-
opment practices, the use of implicit and tacit knowledge, by the involvement
of a group of stakeholders that have diverse and possibly conflicting interests,
and the iterative nature of the development activities [2]. That is not to say that
these characteristics can not be found elsewhere, but when the main focus of the
development efforts of a web application is on rush-to-market, they constitute a
special combination.

Requirement specification and release planning for web application develop-
ment is in many cases done in an ad-hoc way, with no assessment of the potential

S1

S3

S4

S2

S1

S3

S4

S2

A B

Fig. 1. The diverse knowledge of stakeholders

108 S. Ziemer and I.C. Calori

consequences, of selecting one configuration over another. The focus is on the
short-time satisfaction of the stakeholders and not on having a long-time strat-
egy. Even if this may be a common approach with acceptable results, it can
result in unbalanced decisions – satisfying only one stakeholder – that turn out
to be bad for the web application. In order to be able to assess the consequences
of candidate configurations and to prioritise them, a release planning method,
that is using the tacit knowledge of all the stakeholders as input, is needed.

The release planning method that is used in this paper is described in [1]. In
projects with the aforementioned development practices, stakeholders knowledge
is limited to their own involvement and interests in the project (see part A of
figure 1). The proposed release planning methods aims at bringing together
the knowledge from all stakeholders in a development project and at creating
a common understanding among stakeholders reflecting the knowledge of each
individual stakeholder. This shared knowledge can be thought of as the union of
all stakeholders knowledge (see part B of figure 1).

The communication and knowledge sharing that is expected to be introduced
into a development team by the proposed release planning method will thus con-
tribute to increase both the amount and quality of knowledge for the stakeholders
that are involved in the decision making on the next release.

3 Related Work

There has been a lot of research into release planning. There is an increasing
number of research planning methods published, such as [3], [4], [5] and [6]. In
[7] seven existing release planning methods are evaluated with respect to ten
dimensions, such as stakeholder involvement, prioritization mechanism, resource
constraints, and tool support. None of these methods is designed to use the
stakeholders belief and opinion as only input.

There are a few empirical studies on release planning methods. In [8], two case
studies of a release planning process are presented. In [9] and [10] the authors
present a family of empirical studies to compare ad-hoc based and systematic
release planning. The focus of these experiment is on confidence, understanding
and trust related to the research planning practise applied. In [11] the authors
present an industrial case study to stress the advantages of employing an in-
telligent decision support system compared with an ad hoc approach. With the
proposed system the satisfaction of the stakeholder priorities is maximized, and
the time spent in pre-planning activities is reduced and channeled on the delivery
process to include more requirements in a release.

There are also some studies on knowledge sharing. In [12] it has been pointed
out how important is for multidisciplinary team members working on complex
problems to share their knowledge in order to cope with different prospectives
on the problem and different individual knowledge and skills. The stakeholders
are therefore encouraged to make their beliefs and values explicit. Another study
has investigated the motivation factors for knowledge sharing to take place [13].
The result of this study is that two factors – ”Development of organisation” and

An Experiment with a Release Planning Method 109

”Development of individuals” – are the most motivating factors for knowledge
sharing to take place.

4 Experiment Definition and Goal

The objective of the proposed release planning method is to facilitate better
communication and knowledge sharing between the stakeholders of a small web
application development project. The goal of the experiment is to validate if
this indeed is the case. The experiment definition – using the definition template
based on GQM and shown in [14] – is:
Object of study: The object studied in this experiment is a release planning

method, presented in [1].
Purpose: To evaluate the release planning method with respect to:

– understanding of the overall development project situation and of the
consequences of potential decisions

– enabling and contributing to increased shared knowledge
– prioritising the requirements and candidate configurations
– reaching a consensus among the stakeholders
– the stakeholders satisfaction after a decision is taken

Quality focus: The quality focus is the stakeholders satisfaction, the increased
shared knowledge, better understanding, prioritisation and an easier reached
consensus.

Perspective: The development teams point of view.
Context: The context is a student experiment with 63 students, forming groups

of 3 or 4 members. The study is conducted as Multi-test within object study.

5 Experiment Planning and Operation

To test the release planning method and to evaluate its effect on knowledge
sharing, understanding, reaching a concensus, prioritisation of requirements and
stakeholder satisfaction, we decided to create a scenario with a release planning
problem and to use groups of students – divided into treatment and control
groups – to solve this problem by using either the proposed release planning
method (treatment groups) or by using an ad-hoc practise (control group).

5.1 Planning

Context and subject selection. Due to limited resources the experiment is run with
volunteer students. They will receive a modest economic compensation to partici-
pate in the experiment. After initial contact was made with a student organisation
63 students in their 3rd year of a industrial economy class signed up for the exper-
iment. They all filled in a pre-experiment questionnaire to assess their skills.

The experiment is off-line. A scenario with a release planning task is used and
the students take on roles that are described in the scenario. The task is to decide
on the next release that can be implemented within a given time constraint and
that satisfies all stakeholders.

110 S. Ziemer and I.C. Calori

Hypothesis formulation. Based on this expectation we formulated the formal
hypothesis. The hypothesis will be tested for each factor defined in the purpose
section of the experiment definition.

H0: The release planning method will not improve the overall development
process.
H1: The release planning method will improve the overall development process.

Variables and design. The experiment is a one factor experiment with two treat-
ments. The independent variable is the decision process used and can take on
two values: using the proposed release planning method or using an ad-hoc based
decision process.

The dependent variables are the degree or amount of (1) shared knowledge, (2)
understanding the overall development process, (3) requirement prioritisation,
(4) reaching a consensus, and (5) stakeholder satisfaction. These variables are
measured with a post-experiment questionnaire.

Instrumentation. The instrumentation of the experiment includes objects and
guidelines that are handed out to the subjects. These are (1) a pre-experiment
questionnaire to assess the participants skills, (2) general instructions on the
experiment, such as a description of the scenario, a requirement list, and a de-
scription of each role, (3) a release form, where the groups can write down the
release they decided on, (4) a post-experiment questionnaire that is handed out
to the groups after the release form has been delivered to the experiment su-
pervisors, and that contains questions used to measure the dependent variables,
and (5) an instruction on how to use the proposed release planning method (only
handed out to the treatment groups).

Validity evaluation. There is not enough space here to present a full discussion of
the validity evaluation. This section is therefore narrowed down to a discussion
concerning the construct and internal validity.

Using no method as the second treatment may pose a threat to the validity. It
is not possible to control how the control groups are solving their task, whether
they use a release planning method or not. But given that the subjects are
students in their 3rd year, they will probably have no knowledge about release
planning methods, and will just try to solve the problem as best they can. With
more experienced subjects – like professional developers and project managers
– this could pose a threat to validity, but in the case of our student experiment
we believe that it is allowable to ignore this threat.

The members of the the treatment groups are receiving only a short introduc-
tion to the release planning method. It is therefore the chance that they may not
use the method totally as instructed. This may pose a threat to the internal va-
lidity, as not using the method correctly may have an impact on the results. The
time that is available for training in a students experiment is limited. To cope
with this problem we decided to observe how the students used the method, and
in case we observe a misuse of the method we have to consider if this threatens
the validity. We were also available to answer questions from the subjects.

An Experiment with a Release Planning Method 111

5.2 Operation

Sampling: 63 students had signed on to participate in the experiment. We di-
vided them into 20 groups, 10 treatment groups and 10 control groups. Each
group had 3 students, with one subject taking on the role as project manager,
another as marketing director and a third as programmer. Three groups had to
have 4 students, and the fourth subject had to take on the role of a programmer.

The participants filled in a pre-experiment questionnaire, where they answered
questions about their skills, experience and preferred role in a group setting.
Before the experiment started we decided on what role each participant was to
take on. We found this necessary since the subjects were studying industrial
economy and only a small number of the students had skills and/or experience
in programming and marketing. This way we insured that all subjects had some
knowledge of the role they had to play in the experiment and were able to look
at the task from the corresponding viewpoint.

We proceeded by drawing for each group a project manager, a marketing
director and a programmer. In the end, we had to assign three programmers to
three groups, and we did assign groups to them by drawing a group for them.
After we had populated the 20 groups, we assigned them either to the treatment
group or the control group by chance.

Running the experiment: On the day of the experiment we used two large rooms,
one for the treatment groups and one for the control groups. We gathered all
students in one room to give them an introduction to the experiment (ca. 15
minutes), and to hand over all handouts. After the control group had left for
the other room we gave the treatment groups a 10 minutes introduction to the
release planning method and also presented a small example. The experiment
took about two hours in total.

When the groups delivered their final release form and the questionnaires, the
experiment supervisors controlled that all questions in the questionnaires had
been answered. If this was not the case, the subjects were asked to complete the
questionnaire.

In the discussion of validity threats we found that using the method in a not
intended way may disturb the results. However, observing the students during
the experiment showed that they mostly were using the method as intended. We
observed cases where groups had small deviations in the use of the method, but
we considered them not to be so serious that they posed a threat to the validity
of the experiment.

6 The Questionnaire and Experiment Analysis

The questionnaire consisted of 23 statements, divided into five groups, one group
for each purpose of the experiment. For each statement the subjects had to
express their attitude to the statement. To measure the subjects’ attitude we
used a five point Lickert-scale [15].

112 S. Ziemer and I.C. Calori

t-test Wilcoxon

X S2 X S2 p-value p-value

1 3.16 0.94 3.41 0.64 0.27874 0.33200

2 3.16 1.21 3.53 0.58 0.12726 0.13900

3 3.48 0.59 3.91 0.67 0.03872 0.03161

4 3.52 0.79 3.72 0.79 0.36935 0.24570

5 2.74 1.60 3.59 0.70 0.00276 0.00421

6 3.03 0.83 3.66 0.81 0.00829 0.00726

7 3.94 0.66 3.88 1.02 0.79391 0.95780

8 4.00 0.53 3.94 0.71 0.75351 0.83800

9 3.32 0.56 3.78 0.50 0.01510 0.01468

10 3.97 0.90 4.28 0.40 0.13016 0.21840

11 3.74 0.53 3.53 0.90 0.32650 0.48600

12 3.84 0.54 3.28 0.60 0.00467 0.00247

13 3.81 0.49 3.56 0.71 0.21569 0.20050

14 3.52 0.72 3.38 0.95 0.54260 0.76450

15 3.94 0.93 3.88 0.69 0.79104 0.61780

16 2.10 0.89 3.38 1.40 0.00001 0.00005

17 2.23 1.05 3.53 1.10 0.00001 0.00002

18 1.94 0.66 2.81 0.87 0.00018 0.00034

19 4.00 0.47 3.72 0.79 0.16352 0.20840

20 3.97 0.70 3.91 0.60 0.76357 0.66380

21 3.23 1.38 2.72 0.72 0.05556 0.09244

22 3.84 0.34 3.47 0.77 0.05350 0.10160

23 3.90 0.36 3.53 0.52 0.02893 0.02518

X = mean value, S2 = variance

Tr group C group#

Fig. 2. Mean value, variance and p-value for each questionnaire item

The data collected using the Lickert-scale are data of type interval scale [16].
This is not a straight forward decision, as there exists several opinions on the
measurement scale of data collected by using a Lickert-scale. Some will treat the
data collected from a Lickert-scale only as ordinal scale, and some will ask for a
Lickert-scale consisting of at least seven points before they will treat data from
it as interval scale. Our view is that we find it helpful to treat the data collected
by using a Lickert-scale as interval scale. This allows us to use the Student t-test
in the analysis. Beyond the argument of measurement scale, we consider it to be
pragmatic to use parametic tests on this data. There is a lot of evidence showing
that this is a good practice, even if the data is of a so-called non-applicable
measurement scale [17].

The responses in the questionnaire were coded (1-dissagree strongly, . . . , 5-
agree strongly). For every question we calculated the mean value and the variance
from all responses both for the treatment groups and for the control groups.
Using the mean values, we applied the Student t-test. We have chosen a sig-
nificance level of 0.10. Given the discussion above, we also chose to perform a

An Experiment with a Release Planning Method 113

non-parametric test, the Wilcoxon test. As can be seen in figure 2, the results
were mostly the same.

We have chosen to reject the null hypothesis when the difference is statistically
significant for at least half of all questions for each group of questions.

7 Results

The results will be discussed separately for each group of questions. The results
for each item from the questionnaire are shown in figure 2.

Understanding: Items 7 – 10 in figure 2.
The results are not what we expected. As can be seen from the results, the

control groups perform better then the treatment groups, and thus, the null
hypothesis can not be rejected.

The main reason for this result is, in our opinion, the lack of discussions within
the treatment groups. They were more focused on using the method (with the
provided artifacts) and on using the method correctly. This will be discussed in
more detail in section 8.

Shared knowledge: Item 1 – 6 in figure 2.
The results for these items show that the control group performed better then

the treatment group. Three out of six questions have a significant difference. The
null hypothesis can thus not be rejected. This is – as is the case with the previous
topic – not an expected result.

The main reason for this unexpected result is – as for the previous topic –
the lack of communication between the group members in the treatment groups.
Using the method for the first time, the focus was on using the method and
on the requirement list. The control group did not have a method that took
away there focus and discussed the importance of requirements and candidate
configurations.

We think that the communication between the group members of the treat-
ment group will improve with more experience with using the new method, and
by changing the communication pattern in the groups (see section 8).

Reaching a consensus Items 15 – 18 in figure 2.
On all four items the treatment groups performed better, and on three of the

items the difference between treatment groups and control groups is significant.
Hence, the null hypothesis can be rejected.

There are two possible explanations for this result. First, due the lack of
communication there are not so many conflicts, or the conflicts are not really
understood. Second, once the requirements and candidate configurations had
been assessed, and the mean values had been calculated, finding a common
decision seems to be quite straightforward.

Requirement prioritisation: Items 11 – 14 in figure 2.
The results are as expected, as the treatment groups perform better than the

control groups. However, only on one item is the difference between the groups
significant. The null hypothesis can thus not be rejected.

114 S. Ziemer and I.C. Calori

Using the method made it easy for the treatment groups to prioritise the
requirements and candidate configurations. They could simply sort the require-
ments and configurations according to the assessment they had given to the re-
quirements. However, due to the lack of communication and discussion it seems
that the consequences of choosing one candidate configurations over the others
were not discussed. The same is true for the written justification of each assess-
ment. The release planning method has simplified the prioritisation process, but
has not improved the communication among the stakeholders.

Stakeholder satisfaction: Items 19 – 23 in figure 2.
The treatment groups perform better on all five questions, and the difference

between the treatment groups and the control groups is below the 0.1 level on
three of the five questions. Therefore, the null hypothesis can be rejected.

The better stakeholder satisfaction in the treatment group most likely stem
from the better performance on requirement prioritisation. When all stakeholders
can identify their top priorities it is ok to find a configuration that satisfies most
stakeholders.

8 Discussion and Further Work

The results of the experiment have been surprising because of the treatment
groups performance on understanding and knowledge sharing. Whereas we ex-
pected the treatment group to perform better on these issues, in fact the control
group performed better. In our opinions there are two contributing factors that
could have been controlled if we had been aware of them from the beginning. The
first contributing factor is the treatment groups focus on using a new method.
The release planning method used in the experiment was unknown to the stu-
dent volunteers, and they focused mainly on using the method correctly. Whereas
the method is meant to be a tool for supporting communication between stake-
holders in this type of web application development, using the method correctly
became the main activity and focus.

The other contributing factor has been the instrumentation of the experiment.
For the convenience of the treatment group, the requirement list received by each
student had columns for writing down the assessment and a small justification. Ad-
ditional columns on the requirement list allowed the project manager to collect all
groups members’ assessment. Each member of the treatment group worked on his
own copy of the requirement list, writing down his assessments and justifications.
Bringing the assessments together on the project managers copy became a mere
mechanical activity. This is shown as situation A in figure 3.

The result can be improved by introducing two changes to the experiment
layout:

– Repeating the experiment with the treatment group using the release plan-
ning method two or three times, using a different scenario each time. The
students would gain some experience using the method. This should result in
a larger focus on the problem to solve and not so much on the method. The

An Experiment with a Release Planning Method 115

BA

Roles: PR = Project Manager,
MD = Marketing Director,
PR = Programmer

PR MD

PM

Method

Method

Method

PR MD

PM

Method

Fig. 3. Communication patterns when introducing a new method

method would become a tool that supports the communication between sev-
eral stakeholders and enables a better common understanding of the problem
to solve.

There is a chance that this may introduce a learning bias on the subjects
of the treatment groups. The scenarios will not be so different from time to
time, and the students may respond in a way they think is expected from
the experiment organisers.

– The instrumentation for the treatment group can be changed by only let-
ting the group’s project manager write down the stakeholders assessment
and justification. This situation is depicted as situation B in figure 3. The
project manager will work sequential on the requirements, and will ask the
stakeholders for their assessment and a short justification. This will increase
the communication within the group, at least between the project manager
and the other group members.

We will conduct two new series of experiments, where the effect of the two
suggested changes will be implemented and studied. This will be done in the
near future, and will give us some indication on how important the learning
effect of using a new software development method will be with respect to the
communication of its users, and what effect changing the communication pattern
when using a method will have on the results.

Another direction for future work is to study and understand how tacit knowl-
edge is transformed into explicit knowledge in a rush-to-market type of develop-
ment environment. A general model for Knowledge Sharing is for instance given
in [18] or [19]. What practices are enabling knowledge sharing and learning in
a web application development project with its short deadlines and informality,
and how can they be applied in a practical setting?

116 S. Ziemer and I.C. Calori

9 Conclusions

In this paper we have presented the details and results from a student exper-
iments using a new release planning method. The objective of the experiment
was to study the effect of the release planning method on factors like knowledge
sharing, understanding and stakeholder satisfaction. The experiment consisted
of 20 groups of students that participated in a role play, where half of the groups
used the described release planning method and the other half had to solve the
problem at hand in an ad-hoc style. The results of the experiment were not as ex-
pected for all of the factors. The members of the control group did communicate
more and achieved better results on two out of five factors. Possible explana-
tions for the unexpected results have been identified and discussed, together with
changes that can be applied to the next experiment.

The lesson learned from this work is that it is necessary to have a even greater
focus on how new software engineering methods should be used. Still, even if not
all results are as expected, the experiment shows that the use of the proposed
release planning method is suitable and that it achieves reasonable results on
three out of five factors.

Acknowledgements

We would like to thank our colleagues Tuulikki Gyllensvärd, Tor St̊alhane and
Jianyun Zhou for their help with the experiment.

References

1. Ziemer, S., Sampaio, P., St̊alhane, T.: A decision modelling approach for analysing
requirements configuration trade-offs in time-constrained web application develop-
ment. In: Proceedings of SEKE 2006 (2006)

2. Ziemer, S., St̊alhane, T.: Web application development and quality - observations
from interviews with companies in norway. In: Proceedings of Webist 2006 (2006)

3. Karlsson, J., Ryan, K.: A cost-value approach for prioritizing requirements. IEEE
Software, 67–74 (September/October 1997)

4. Jung, H.W.: Optimizing value and cost in requirement analysis. IEEE Soft-
ware 15(4), 74–78 (1998)

5. Penny, D.A.: An estimation-based management framework for enhancive mainte-
nance in commercial software products. In: 18th International Conference on Soft-
ware Maintenance (ICSM 2002), Maintaining Distributed Heterogeneous Systems,
Montreal, Quebec, Canada, 3-6 October 2002 (2002)

6. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative ap-
proach. Information and Software Technolgy 46(4), 243–253 (2004)

7. Saliu, O., Ruhe, G.: Supporting software release planning decisions for evolving sys-
tems. In: Software Engineering Workshop, 2005. 29th Annual IEEE/NASA (2005)

8. Karlsson, L., Regnell, B., Thelin, T.: Case studies in porcess improvement through
retrospective analysis of release planning decisions. International Journal of Soft-
ware Engineering and Knowledge Engineering 16(6), 885–915 (2006)

An Experiment with a Release Planning Method 117

9. Du, G., McElroy, J., Ruhe, G.: Ad hoc versus systematic planning of software
releases – a three-staged experiment. In: Münch, J., Vierimaa, M. (eds.) PROFES
2006. LNCS, vol. 4034, pp. 12–14. Springer, Heidelberg (2006)

10. Du, G., McElroy, J., Ruhe, G.: A family on empirical studies to compare informal
and optimization-based planning of software releases. In: ISESE ’06: Proceedings
of the 2006 ACM/IEEE international symposium on International symposium on
empirical software engineering, pp. 212–221 (2006)

11. Momoh, J., Ruhe, G.: Release planning process improvement – an industrial case
study. Software Process: Improvement and Practice 11(3), 295–307 (2006)

12. Beers, P.J., Boshuizen, H.P.A., Kirschner, P.A., Gijselaers, W.H.: Common ground,
complex problems and decision making. Group Decision and Negotiation 15(6)
(2006)

13. Ye, N., Zhi-Ping, F., Bo, F.: Motivation factors that make knowldge workers share
their tacit knowledge in universities: an empirical research. In: Services Systems
and Services Management, 2005. Proceedings of ICSSSM ’05. 2005 International
Conference (2005)

14. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Dordrecht (2000)

15. Robson, C.: Real World Research. Blackwell Publishers, Malden (2002)
16. Cooper, D.R., Schindler, P.S.: Business Research Methods, 8th edn. McGraw-Hill,

New York (2003)
17. Velleman, P.F., Wilkinson, L.: Nominal, ordinal, interval, and ratio typologies are

misleading. The American Statistican 47(1), 65–72 (1993)
18. Nonaka, I., Takeuchi, H.: The Knowledge Creating Company. Oxford University

Press, Oxford (1995)
19. Argyris, C.: Overcoming Organizational Defences: Facilitating Organizational

Learning. Prentice-Hall, Englewood Cliffs (1990)

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 118–123, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Defining a Legal Risk Management Strategy:
Process, Legal Risk and Lifecycle

Ricardo J. Rejas-Muslera1, Juan. J. Cuadrado-Gallego2, and Daniel Rodriguez2

1 Universidad Francisco de Vitoria
2 Universidad de Alcalá

Abstract. All systems during their lifecycle, no matter how simple, will
generate legal implications that need to be managed. The potential cost of an
inadequate management of legal aspects can even imply the failure of the
project. As a consequence, legal risk management should not only be a major
activity of the development lifecycle, but it needs to be performed by qualified
personnel following well-defined procedures and standards. However, current
software process improvement models do not properly include processes for
legal audits and more concretely legal risks management for each phase of the
software development lifecycle. Neither in industry related to manage legal
risks of software projects is possible to find well-defined and standardised
projects. This lack of standardised process means that legal risks are handled
reactively instead of proactively. This work presents a process for managing
legal risks. It is organised by a series of activities to be performed at each stage
of the software development lifecycle to eliminate or minimize the risk of
project failures for legal reasons.

Keywords: Legal Risk, Software Process, Software Systems, CMMI, ISO 15504,
Software Lifecycle.

1 Introduction

The ever increasing importance of software systems in all economic and social sectors
implies an important increment of legal aspects in the software lifecycle.

An inadequate management of such risk can increment the possibility of failure of
a project, for example, not having a clear ownership of the product when the product
has been developed by a third-party, other cases can related to legal claims by third-
parties or even public administrations.

The most important software process improvement and assessment models (CMMI
– Capability Maturity Model Integration [1] – or ISO 15504 [2]) do not properly
include processes for legal audits and more concretely legal risks management for
each phase of the software development lifecycle. Only in CMMI, it is possible to
find scattered mentions to contractual or legal aspects in the requirements section.

Neither in industry related to manage legal risks of software projects is possible to
find well-defined and standardised projects. Activities performed in this area depend
on the perception of the risk by management. Generally such activities do not follow
any temporal pattern to systematically perform them but the most common activity

 Defining a Legal Risk Management Strategy: Process, Legal Risk and Lifecycle 119

consists of performing a Due Diligence or legal audit before marketing the product.
This lack of standardised process means that legal risks are handled reactively instead
of proactively.

This work presents legal audit activities to be performed as part of software
process assessment and improvement models. The aim is to provide industry with a
framework for efficiently manage legal risks inherent to all software projects. Such a
framework allows us to move from a reactive risk strategy to a proactive one.

The organisation of the paper is as follows. Section 2 identifies the most common
legal risks involving software projects. In Section 3 is analysed, on the one hand, how
risks are treated by major software assessment and improvement processes, and on the
other hand, how those are actually managed in industry. Section 4 provides an
standardised framework for legal audits to manage legal risks. Finally, Section 5
concludes the paper and future work is outlined.

2 Legal Risks for Software Projects

With the aim of providing a high level view of legal risks and not being completely
exhaustive (a comprehensive coverage of all risks is impossible), we provide a Web
project as an example. In such type of project, we could find legal risk in the
following areas:

2.1 Intellectual Property Area

The design and development of a Web site needs protection in two different ways:

1. As a graphical representation, it is an artistic creation and therefore, it is
protected by royalties.

2. As a computer program. it contains source code, e.g., XML HTML, Visual
Basic JavaScript, etc. that are also protected by intellectual property rights.

In this area, there are two groups of legal risks:

1. Legal Risks related to the ownership of the product. Deficiencies or the lack
of a proper contract with developers can generate claims about its ownership.

2. Legal risks related to the infringement of a third party intellectual property.
On the one hand, a Web site can include content or design developed by a
third party with their rights. Not acting with caution and ignoring audits to
check such infringements can generate legal claims involving expensive
settlements and even penal offences.

2.2 Aspects Related to Current Regulations

Designs and contents included in a Web site can violate a large number of juridical
regulations designed to protect all kind of activities related to the Web. This can
generate legal claims by third parties or penalties by public administration with fines,
expedients or even penal actions. These risks can be classified in the following areas:

120 R.J. Rejas-Muslera, J.J. Cuadrado-Gallego, and D. Rodriguez

1. Related to the publication of products or services via Web with the
infringement of:

a. Regulations about advertising.
b. Regulations about users’ rights.
c. Trading standards
d. Intellectual property rights

2. In the commercialization of products or services, it is possible the
infringement of:

a. Regulations about electronic business.
b. General legislations about contracts.
c. User’s rights and obligations

3. In relation data protection, i.e., to how user’s personal data are used and
treated.

4. In relation to services properly registered, i.e., certain service providing sites
must be registered properly by public administrations to carry out the
intended business. Not doing so can generate penalties form public
administration bodies.

5. Some Web sites and specially those that belong to public administrations
must comply with certain level of accessibility defined by the W3C [13] or
the European Union.

The previous points highlight the fact of the variety and large possible risks that
must be considered when carrying out a software project. Some of those are serious
risks that need to be managed properly to avoid the failure of the project.

3 Risk Management in Software Process Assessment and
Improvement Models

After commenting the seriousness and importance of a proper management of legal
risks in a software project, it is of paramount importance to have procedures and
activities defined beforehand to minimize or eliminate such risks. We now analyse
how those activities are taken into account by the most important assessment and
improvement models, and in particular those related to software engineering. In this
analysis we have taken into account the CMMI model [1].

After analysing the CMMI model, we concluded that there is no process area
containing legal aspects in a systematic and organised way. There are, however,
scattered references to legal aspects of the project mainly in relation to contractual
rights and obligations. These references include:

1 Basic Management Process Area: The Supplier Agreement Management
process area. This process area consider the assumption in which “a product
component is identified and the supplier who Hill produce it is selected , a
supplier agreement is established and maintenance…”, “The purpose of
Supplier Agreement Management is to manage the acquisition of products
from suppliers for which there exists a formal agreement.” and it includes as
Specific Goal (SG1) “Establish Supplier Agreements”.

 Defining a Legal Risk Management Strategy: Process, Legal Risk and Lifecycle 121

2 Advanced Management Process Area: Project Management, Integrated
Project Management for IPPD. The SG 2 Coordinate and Collaborate with
Relevant Stakeholders in the SP 2.2-1 Manage Dependencies establish in its
subpractice - 4 point-: “Review and get agreement on the commitments to
address each critical dependency with the people responsible for providing
the work product and the people receiving the work product”.

3 Advanced Management Process Area: Project Management, Integrated
Supplier Management. The SG 2 Coordinate Work with Suppliers dedicate
the SP 2.3-1 to “Revise the Supplier Agreement or Relationship”

4 Engineering, Requirements Management. The SG 1 Manage Requirements
include in its points SP 1.1-1 and SP 1.2-2 to “Obtain an Understanding of
Requirements” and “Obtain commitment to Requirements”, respectively.

4 A Legal Risk Management Process

The first step to consider as a process all activities to manage legal risks related to
software projects consist of locating such a process in the CMMI scheme; more
specifically, we need to define which of the Process Areas could include legal audits.

First, we need to define which category of the CMMI Process Areas (Process
Management, Project Management, Engineering and Support) is the most appropriate.
After analyzing the scope of each Process Area, we believe that the most suitable
place to locate such activities is the Project Management area, as it is defined:
“Project Management process areas cover the project management activities related
to planning, monitoring, and controlling the project”.

The process of legal audit is a set of activities related to both the planning and
control of the project. Legal audits are related to planning as it must include activities
and resources to minimize legal risks. More concretely, legal audits must include
control activities; such activities need to control the legal aspects and avoid any risk
during its life-cycle.

The next step, following the categories defined by CMMI v1.1, consists of locating
the most suitable Process Area with within Project Management for the legal audits
activities. The Process area Risk Management aim is “to identify potential problems
before they occur, so that risk-handling activities may be planned and invoked as
needed across the life of the product or project to mitigate adverse impacts on
achieving objectives.”

According to this definition, the audit process must be integrated in the process
area Risk Management; it complies with its aim, concretely, to identify potential legal
problems before they occur. The legal activities and measures must be planned and
invoked as needed across the life of the product or project to avoid or mitigate adverse
legal impacts on achieving objectives.

Finally, with the objective of structuring the legal audit process in the Risk
Management Process Area, it is necessary to divide it into 3 parts following the
Introductory Notes:

• Defining a legal risk management strategy. It defines a legal audit process
for legal risk management inherent to all software projects. A generic
definition will consider two main issues: (i) the type of software to be

122 R.J. Rejas-Muslera, J.J. Cuadrado-Gallego, and D. Rodriguez

developed because the activities will depend on it (for instance, we will need
to carry out different activities depending on if the systems is an invoice
system or a Web site); (ii) the software development lifecycle, as it is the
cornerstone of all project activities and it will be necessary to locate the legal
audit activities.

• Identifying and analyzing legal risk. For identifying and analysing the legal
risks that can endanger a project, it is also necessary to take into account
both the type of software to be developed in technical terms, i.e., its design
and development, and its functionality, what the system is suppose to do.
These considerations will allow us the identification and posterior analysis of
the legal risk related to the project. With knowledge about the technical
aspects, it will be possible to identify and associated legal risks, i.e.,
intellectual property. On the other hand, if we take into account its
functionality, we will be able to identify legal risks derived from its use in
the market or when the system is in production, for example, legal risks
associated with current regulations.

• Handling identified risk. As a consequence of the risks that need to be
managed, legal audits need to follow a structured process with omnipresence
throughout the software development lifecycle. It cannot be an autonomous
process but on the contrary, it needs to have relationships with other
activities that need to be audited in a proactive way. In this way, once legal
risks and the activities have been identified, it is needed to analyse the
software development lifecycle, establish its phases and set the legal
activities in the most appropriate place. For example, in a project where legal
risks related the intellectual property have been identified as a result of
subcontracting part of the product, the legal activities related to minimize
such risk must be set up in the software lifecycle. In this case, those will be
mainly contractual at the beginning of the project (planning) because once
the product is being developed; the ownerships of the project can generate
legal conflicts.

5 Conclusions and Future Work

In all software projects, a proper management of legal activities is a key area for a
successful project. It will mitigate legal risks associated to the project and also it will
increment its quality (a project with legal or potential conflicts is a serious defect in
terms of quality). However, the most important process improvement and assessment
models such as (CMMI o ISO 15504) do not include legal audit processes to manage
during the software development lifecycle legal activities. Neither, current practices
in industry do manage such issues properly.

This work tries to provide a framework to minimize such risks within the software
industry. It presents legal audit activates as an extra process to be implemented in the
software assessment and improvement processes inherent to all software processes.
Such a way of dealing with risk is a proactive way of instead of reactive. In the
CMMI model, the legal audit process should be included as part of Project
Management and more concretely, within the Risk Management area.

 Defining a Legal Risk Management Strategy: Process, Legal Risk and Lifecycle 123

Future research work will be the detailed description of the audit process in terms
of generic and specific goals. Also, the benefits of such audit process will need to be
evaluated in a quantitative way.

Acknowledgements

We would like to thank the Spanish Ministry of Science and Technology for suppo-
rting this research (Project CICYT TIN2004-06689-C03) and Prof Javier Dolado for
his useful comments.

References

1. CMMI-SE/SW/IPPD/SS: V1.1 Capability Maturity Model Integration. CMMISM for
Systems Engineering, Software Engineering, Integrated Product and Process Development,
and Supplier Sourcing

2. SPICE – ISO 15504: Information Technology - Software Process Assessment
3. Directive 2001/84/EC of the European Parliament and of the Council on the Resale Right

for the Benefit of the Author of an Original Work of Art
4. Directive 91/250/EEC of the European Parliament and of the Council on the legal

protection of computer programs
5. WIPO International Forum on the Exercise and Management of Copyright and

Neighboring Rights in the Face of the Challenges of Digital Technology (1997)
6. Directive 91/250/EEC of the European Parliament and of the Council relating to the

approximation of the laws, regulations and administrative provisions of the Member States
concerning misleading advertising

7. Directive 98/6/EEC of the European Parliament and of the Council on consumer protection
in the indication of the prices of products offered to consumers

8. Directive 97/7/EEC of the European Parliament and of the Council on the protection of
consumers in respect of distance contracts

9. WIPO Intellectual Property Handbook: Policy, Law and Use (2004)
10. Directive 2000/31 of the European Parliament and of the Council on certain legal aspects

of information society services
11. Directive 97/66 of the European Parliament and of the Council concerning the processing

of personal data and the protection of privacy in the telecommunications sector
12. Directive 2002/58 of the European Parliament and of the Council concerning the

processing of personal data and the protection of privacy in the electronic communications
sector

13. W3C World Wide Web Consortium. Web Site: http://www.w3c.org/

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 124–135, 2007.
© Springer-Verlag Berlin Heidelberg 2007

iCharts: Charts for Software Process Improvement
Value Management

Román López-Cortijo, Javier García Guzmán, and Antonio Amescua Seco

Computer Science Department
Carlos III University

Avda. Universidad, 30, 28911, Leganés, Madrid (Spain)
rlopez@progresion.net, jgarciag@inf.uc3m.es, amescua@inf.uc3m.es

Abstract. Software Process Improvement Programs provide many benefits to
the companies investing in this type of activities. One of the main problems in
relation with SPI Value Management consists of the difficulty to convince
senior management to invest in this type of programs. This issue is solved by
means of benchmarking with successful histories by means of case studies. The
information of current of SPI case studies is very heterogeneous, making this
task so difficult. This paper presents a technique to formalize the information
enclosed in an SPI case study providing an easy access to the relevant
information of a SPI case study. Moreover, the results, obtained from its
application with pre-existing case studies are provided. This work has been
partially supported by the Spanish National Project "Software Process
Management Platform: modeling, reuse and measurement" (TIN2004-07083).

Keywords: Software Process Improvement, Improvement Benefits, Improve-
ment Monitoring, SPI value management.

1 Introduction

This paper deals with issues related to determination of the added value obtained as a
consequence of a Software Process Improvement (SPI) program.

The continuous process improvement, widely studied in the bibliography [2], [12],
[1], [11], [9], [10] is an imperative for the survival and sustainability of software
intensive organizations, since the advances of the competitors make be them in a
continuous race in which the winner is that one who offers lower prices and greater
quality. Therefore, the present question is not why is necessary to improve, because it
seems clear that the best organizations are continuously improving [12], obtaining
more than satisfactory results [4]. Currently, the most important question is: How to
obtain the greater benefit from the investments done in relation with SPI.

One of the main problems in relation with SPI Value Management consists of the
difficulty to convince those that must put money and expend resources why (stimulus
for change) and how (in what direction) they must put money and expend resources.

Software Engineering Institute (SEI) at Carnegie Mellon University (USA) carried
out a study in response to a demand for information on the results of software process

 iCharts: Charts for Software Process Improvement Value Management 125

improvement efforts [8]. This study covered 13 organizations that represent a variety
of maturity levels. The results showed that the average yearly cost of software process
improvement was $245,000 and the average number of years engaged in software
process improvement was 3.5.

This cost is high and the investment period is not short, so these expenditures are
very critical to software companies. The senior managers need comprehensive
information to decide the resources to employ, to identify the target areas and to
estimate the benefits expected.

Case Studies are the most popular tool to obtain the commitment of the senior
management to employ the needed resources to begin a SPI program, because show
what activities have been done by others and the benefits that were obtained.

Nevertheless, using Software Process Improvement Case Studies, it is difficult
compare the experiences from others, because the information, the structure and the
indicators (if used) considered in the cases studies are very informal (normally text
without indicators, figures (numbers) not well reported), so the usefulness to perform
benchmarking activities of these case studies is very limited.

Based on this evidences, it is believed that if SPI case studies were simpler,
formalized and rigorous, they will be very useful tools: to achieve the commitment of
the senior management for a SPI program; and to serve as standard for documenting
and reviewing case studies to the community dedicated to SPI.

In order to study and analyze this hypothesis, the objectives of this research work are:

• To define a technique that show: key success factors, events, improvement
investments & actions, values and evolution of improvement indicators and
cause-effect information from events and actions to indicators value

• To analyze the feasibility and to define the steps to apply the technique defined
to pre-existing case studies.

• To determine the steps apply the technique defined to prepare new case
studies.

• To evaluate the usefulness of the technique define in terms of: usefulness of
the information provided; difficult to prepare case study charts for new case
studies and for pre-existing case studies; and determination of the added value
in comparison with traditional case studies

The rest of the paper is structured as follows:

Section 2 presents a state of the art in relation with Software Process Improvement
Case Studies, including: a discussion of the case study technique, a classification of
types of case studies and a discussion related to how case study techniques has been
used describing process improvement programs.

Section 3 provides the definition of iChart Technique, identifying its information
elements and the steps to apply the technique by means of the adaptation of pre-
existing case studies or the preparation of new case studies.

Section 4 provides examples of the technique application for formalizing pre-
existing SPI case studies.

Section 5 discusses the usefulness and added value provided by case study chart
technique, identifying the main problems and lessons learned discovered during the
application of the technique.

Finally, section 6 presents the conclusions of this research work and next steps.

126 R. López-Cortijo, J.G. Guzmán, and A.A. Seco

2 State of the Art

A case study is a particular method of qualitative research. Rather than using large
samples and following a rigid protocol to examine a limited number of variables, case
study methods involve an in-depth, longitudinal examination of a single instance or
event: a case. They provide a systematic way of looking at events, collecting data,
analyzing information, and reporting the results. As a result the researcher may gain a
sharpened understanding of why the instance happened as it did, and what might
become important to look at more extensively in future research. Case studies lend
themselves to both generating and testing hypotheses [5].

The types of case studies considered in the bibliography are:

• Illustrative case studies. Illustrative case studies describe a domain; they use
one or two instances to analyze a situation. Their usefulness in related to the
interpretation of other data, especially when the case studies are directed to
beginners in the knowledge area.

• Critical instance case studies. This type of case studies examines one or a few
sites for one of two purposes. A very frequent application involves the
examination of a situation of unique interest, not able to be generalized. A
second utility is the application that entails the demonstration or testing of a
highly generalized assertion in one instance. This method particularly suits
answering cause-and-effect questions about the instance of concern.

• Exploratory case studies. Exploratory case studies condense the case study
process: researchers may undertake them before implementing a large-scale
investigation. Where considerable uncertainty exists about program operations,
goals, and results, exploratory case studies help identify questions, select
measurement constructs, and develop measures; they also serve to safeguard
investment in larger studies.

• Program effect case studies. This type of case studies is useful to determine
the impact of programs and provide inferences about reasons for success or
failure.

• Prospective case studies. In a prospective case study design, the researcher
formulates a set of theory-based hypotheses in relation with the evolution of an
on-going process and then tests these hypotheses at a pre-determined follow-
up time by comparing these hypotheses with the observed information using
"pattern matching" or similar technique

• Cumulative case studies. Cumulative case studies aggregate information from
several sites collected at different times. The cumulative case study can have a
retrospective focus, collecting information across studies done in the past, or a
prospective outlook, structuring a series of investigations to be considered for
the future.

• Narrative case studies. This type of case studies present findings in a narrative
format. This involves presenting the case study as events in an unfolding plot
with actors and actions.

In SPI value management, analysis based on case studies contributes to the
elaboration of a business case with the purpose of determine whether to proceed and
how or not with an investment.

 iCharts: Charts for Software Process Improvement Value Management 127

SPI case studies usually are a mix between Program Implementation and Narrative
Case Studies that are published by means of:

• Specific Technical Reports. Periodically, Software Engineering Institute
publishes technical reports including case studies of the Software Improvement
Programs reported to SEI [6], [7].

• Papers presented in specialized journals. The main representative of this case
studies source is Software Process Improvement and Practice edited by
Elsevier.

After an analysis of a great amount of this type of case studies, it can be concluded
that, the information provided in the most common case studies is, generally:

• A brief description of the company and software organization
• Improvement objective, but not all the cases and including only qualitative

information
• An imprecise description of the result obtained as a consequence of the

improvement activities
• A fuzzy chronology of the improvement activities
• A brief description of the improvement activities performed

In the most part of cases, there is not any information related to the initial
operational model of the software organization.

As a conclusion of the analysis of SPI case studies, it can be concluded that more
formalization would be very useful to perform benchmarking activities.

3 Definition of iChart Technique

iChart is a technique that pretends to formalize the information enclosed in an SPI
case study and present all the elements related to SPI value management in way that
enables a rapid reading and performing benchmarking and comparison activities
based on an standardized (or common) information between the cases to be
considered.

The definition of the technique has to parts:

• The specification of the information required to formalize a SPI case study by
means of iCharts.

• The sequence of steps to prepare an iChart by means of analyzing existing SPI
case studies or gathering information from on-going SPI programs.

A) Information elements of an iChart
An iChart has two sections:

1. Context Information
The context information is an organization description sheet including
information related to: Number of employees, Range of turnover, Business
sector, Capability Level before and after the improvement program, the
reference model to determine the capability level and the process areas
affected by the improvement program.

128 R. López-Cortijo, J.G. Guzmán, and A.A. Seco

Moreover, information related to improvement objectives must be provided
by means of a textual description.

Finally, information regarding to the human and technical resources emplo-
yed in the improvement program should be provided by means of a textual
description.

2. Chart
The chart section provides information related to:
- Indicators measuring the benefits obtained from the process improvement,

including:
 Measures and unit
 Evolution over the time (textual and graphical): Previous to the process

improvement, at the moment when the improvement program begun
and several times, during the execution of the improvement program

- Activities performed in the scope of the improvement program by means of
a Gantt chart with the same time scale than the indicators graphic,
including:
 Identification of the scope of the activity
 Identification of the beginning and ending dates of the activity

B) Process to create an iChart
iCharts can be elaborated in several circumstances. Currently, they have been applied
using two types of information sources: a document describing a SPI case study or
from an on-going case study. The steps to prepare an iChart using both information
sources are presented below.

B.1) A document describing a Software Process Improvement Case Study
The steps to elaborate iCharts using existing case studies are:
1. The purpose of the first reading is to extract the information related to the

improvement journey. In order to elaborate this improvement journey, it is
necessary to:
- Establish the time scale regarding to the improvement program: months,

trimesters or semesters.
- Identify the activities performed by means of a work brake down structure.
- Infer the information relative to the beginning and ending dates of the

activities.
- Identify the milestones or important dates in relation with the improvement

program.
2. The second reading is oriented to search for the information related to the

improvement benefits based on indicators.
In order to compile this information, it is necessary to:
- Identify the indicators used to determine the improvement results and

benefits
- Identify the improvement objectives. In case of having enough information

in the case study, it is necessary to link the improvement objectives and the
indicators provided

- Identify the values of the mentioned indicators

 iCharts: Charts for Software Process Improvement Value Management 129

In some circumstances, the case study text does not provide enough explicit
information, but good deductions can be done. In several case studies, neither explicit
nor implicit information is provided, so these case studies are not apt to be formalized
by means of iChart.

B.2) Using data compiled during an on-going SPI program
In this case, the information is compile as the improvement program advances.
The most important milestones required to gather iChart information are:

1. During commitment phase, it is necessary to gather information related to:
improvement objectives; improvement action plan, including activities (with
the beginning and ending dates), milestones and important dates that will
configure the improvement journey; and indicators to measure the results and
benefits obtained as a consequence of the improvement activities.

This information is not always available at this stage, but it should be
identified at this moment or as soon as possible from this moment.

2. During diagnosis phase, it is necessary to gather information related to:
- Initial values of the indicators defined (only, if enough information is

available).
So, it is important to select indicators that can be stated (without a huge
effort) at the beginning of the improvement program

- Information regarding to the actual activities performed (updated set of
activities performed with their beginning and ending dates) and milestones
and important dates, in order to update the improvement journey

3. During improvements implementation and deployment, it is necessary to
gather information related to:
- Periodic values of the indicators defined
- Information regarding to the actual activities performed (updated set of

activities performed with their beginning and ending dates) and milestones
and important dates, in order to update the improvement journey

4. When the improvement program finishes and it is being evaluated, it is
necessary to obtain the final indicators figures and actual improvement journey

The main purpose of this paper is to show the added value of iCharts technique
versus SPI text case studies. We had worked in new SPI initiatives where iCharts
were employed as a technique for controlling the results obtained in the project, but
due to space restrictions its presentation is not included in the paper.

4 Application of iChart Technique

The iChart technique has been applied by paper authors for formalizing many SPI
case studies and for compiling information of on-going SPI programs in order to
present periodic reports to senior management.

On order to show the results obtained from the application of iChart technique,
several cases from [6] have been selected.

The selection of SPI case studies from [6] was decided because these SPI case
studies can be obtained free of charge, so the readers of this paper can check easily
how the authors apply the method and the results obtained. For this purpose, for each

130 R. López-Cortijo, J.G. Guzmán, and A.A. Seco

case study considered, it is provided the reference to the text in SEI's report, a list of
the items used to prepare the iChart and the iChart obtained. Only the chart is
provided, so the contextual information of each case study is not described due to
space restrictions. If considered necessary, this information is available for each case
in the original document from SEI.

A) iChart Example: 3H Technology
As case study information says: “3H Technology (3HT) is an information technology
company offering a wide range of products and technical services. These include
performing custom software development, systems integration, and product
implementation”.

Fig. 1. iChart for 3H Technology

The 3HT had no real experience with process improvement prior to starting its ISO
and quality assurance initiatives. The CMMI based program was initiated as a way to
deploy continuous improvement activities stated in the quality policy of the company.

The information provided in this case study is related to Project Planning, Project
Monitoring and Control and Risk Management.

The most useful information provided in this SPI Case Study to prepare iChart
was:

• Process Improvement History section (see page 32 at [6]) that provides
information related to improvement phases and the temporal scale of the case
study.

• CMMI Based Improvement section (see page 32 at [6]) that provides
information related to the main stages of the program, but not detailed

 iCharts: Charts for Software Process Improvement Value Management 131

information is provided. This information can be deduced by means of text
interpretation.

• Performance Results section (see page 33 at [6]) provides quantitative results
related to the level of implementation of generic and specific practices of the
process areas considered (Project Planning, Project Monitoring and Risk
Management).

The final iChart including the improvement journey and benefits assessment based
on indicators is shown in figure 2.

B) iChart Example: Motorola GSG China
As case study information says: “the primary business of the GSG China Center is to
provide software development services and solutions to other Motorola business
units. GSG China’s products include various embedded systems in cellular, network
system, and other telecommunication devices”.

0

10

20

30

40

Cost of Quality (%) 35,5 25 23

Faults/KLOC 11,9 8,5 7

Ef fort Estimation Accuracy 20 18 14

Sched. Estimation Accuracy 24 8 4

Customer Satisfaction 8,8 9,13 9,11 9,11 9,03

2000 2001 2002 2003 2004 2005

Id Nombre de tarea

1 Appraisal SW-CMM L5
2 Appraised L5 CMMI
3 CMMI Task Force Establishe

4 Gap Analisys

5 Begin piloting and start train
in new practices (Managem
and Engineering PAs)

6 Full s cale planning and
modif ication of s tandard
process

7 START CMMI Transition Proj

8 FINNISH CMMI Transition
Project

01/09
01/11

01/04

03/02

01/12

01/12

01/09

tr i 4 tr i 1 tr i 2 tr i 3 tr i 4 tr i 1 tr i 2 tr i 3 tr i 4 tr i 1 tr i 2 tr i 3 tr i 4 tr i 1 tr i 2 tr i 3 tr i 4 tr i 1 tr i 2 tr i 3 tr i 4 tr i 1 tr i 2 tr i 3 tr i 4
2000 2001 2002 2003 2004 2005

Fig. 2. iChart for Motorola GSG China

One of Motorola GSG China was to achieve the CMM maturity level 5 (that was
satisfied), but with the publication of CMMI, the fulfillment of the maturity
requirements specified by this reference model was the new objective to achieve.

The information provided in this case study is related to Project Planning, Project
Monitoring and Control, Requirements Management, and Verification.

The most useful information provided in this SPI Case Study to prepare iChart was:

• Process Improvement History section (see page 47 at [6]) that provides
information related to improvement phases and the temporal scale of the case
study.

132 R. López-Cortijo, J.G. Guzmán, and A.A. Seco

• CMMI Based Improvement section (see page 48 at [6]) that provides
information related to the improvement journey, including general information
on the resources and efforts spent in the improvement program.

• Performance Results section (see page 49 at [6]) that provides information
related to improvement benefits based on indicators (cost of quality, errors
rate, effort estimation accuracy, schedule estimation accuracy, and customer
satisfaction).

The final iChart including the improvement journey and benefits assessment based
on indicators is shown in figure 2.

C) iChart Example: ABB
As case study information says: “ABB is a leader in power and automation
technologies. It enables utility and industry customers to improve performance while
lowering environmental impact. ABB’s products help operate utilities, process
industries, manufacturing plants, and other industries. ABB has representation in
over 120 countries and employs 110,000 people. A vast majority of ABB’s products
have software and hardware components”.

Fig. 3. iChart for ABB SPI case study

The ABB software and systems process initiative process improvement (ASPI)
group addresses processes for the full product life cycle (systems and software
process initiatives), but the information provided in this case study is related to
Requirements Development, Requirements Management and Measuring and Analysis
processes.

 iCharts: Charts for Software Process Improvement Value Management 133

The most useful information provided in this SPI Case Study to prepare iChart was:

• Process Improvement History section (see page 38 at [6]) that provides
information related to the temporal scale of the case study.

• CMMI Based Improvement section (see page 38 at [6]) that provides
information related to the improvement journey.

• Performance Results section (see page 40 at [6]) that provides information
related to improvement benefits based on indicators (cost of quality and Return
on Investment).

The final iChart including the improvement journey and benefits assessment based
on indicators is shown in figure 3.

5 Evaluation of iChart Technique

The evaluation of iChart technique is performed in terms of its usefulness and its
added value in comparison with already existing techniques for documenting SPI case
studies. Moreover, problems found by the authors during the application of iChart
Technique and lessons learned gathered from the experience are also presented.

5.1 Evaluation of Usefulness and Added Value

Case study chart provides the most relevant information for benchmarking related to
targets and benefits of process improvement programs.

Although, the most part of current SPI case studies have a predefined format
(Background (Organization Background, Process Improvement History), CMMI-
Based Process Improvement, Results Performance), this format is very generic and
the content of each section is heterogeneous, being to much complicated by means of
a simple reading exercise, to have a common insight of case study.

In this sense, iChart provides a formalization basis to provide homogeneous
information of SPI based on objective evidences. Moreover, iChart provides an easy
way to compare different SPI initiatives in the same or different organizations.

ICharts also can be used as a tool to benchmark SPI case studies, because
schedules are completely comparable. In order to compare indicators, it is essential
that two iCharts indicators will be comparable, concretely, they will express measures
of the same type; i.e.: investment or organizational performance indicators, etc.

Finally, it is important to mention that authors have applied this technique during
the Initiating Phase of a SPI program. The main benefits if its use in this phase were
related to:

• Enable senior management to understand the need for software process
improvement (SPI), commit to a SPI program, and define the context for SPI.

• Recognize and understand the stimulus for improvement.

5.2 Problems Found and Lessons Learned

The main lessons learned and problems found during iChart application are:

• It is difficult to become an idea of all the history of the case without a first
reading for being introduced to the whole case study. The greater effort

134 R. López-Cortijo, J.G. Guzmán, and A.A. Seco

consists of “finding out” the chronology of events and activities. The iCharts
help to order the main SPI activities or events.

• It is difficult to locate in the time the events and to relate them to the
improvement indicators to become an idea of the times of maturation and
consolidation of the improvements. In this sense, the authors are developing
inside a SPI value management framework to isolate causes and effects, using
Activity Based Costing models. In other ongoing SPI programs, the authors
used cause-effect diagrams adapted to iCharts (Ishikawa diagrams, fishbone
diagrams). It is important to indicate, that in the case of translating existing SPI
case studies to iCharts, if the original case study does not provide base
information, of course, this cause-effect relation cannot be derived;

• Sometimes, it is difficult or impossible to make a graph of the Results
Performance. Moreover, the Results Performance is very heterogeneous from
case to case.

• Those derived from not having the suitable tool. For the first cases, Microsoft
Project was used for describing the project journey and Microsoft Excel was
used to compile and present information related to indicators.

Currently, there is a software tool available to apply iChart technique, which main
functionalities are:

• Creation an SPI improvement program, including the introduction of the iChart
contextual information, that is: type of organization, dimension in terms of
employees, types of software-services provided, Organization’s SPI Objectives
and indicators measuring the consecution of the improvement objectives

• Management of the evolution of the improvement programs, including
information related to actual activities executed during the improvement
program and temporal evolution of the indicators selected.

• Information search capabilities in order to find case studies with similar types
of organization; improvement objectives or indicators to measure the benefit of
the improvement program.

The functionalities that will be available at the next version will be related to
simulation and capabilities to compare SPI programs.

6 Conclusions and Future Work

iChart technique to formalize the information enclosed in an SPI case study. This
technique has been applied to formalize the information of several pre-existing SPI
case studies.

iChart technique can be used as a tool to validate the quality of a software process
improvement case study provided by a company.

Moreover, iChart has been applied to create new SPI case studies and it can be
very useful as a simple and costless way to create standardized SPI case studies.

A validation of the application of iChart technique has been performed and authors
have concluded that this technique provides the key information required by senior
management to analyze other initiatives in order to take decisions related to: the
investments required by an improvement program; and the benefits that can be

 iCharts: Charts for Software Process Improvement Value Management 135

obtained. This key information is: summarized information of the history of the SPI
program; hey success factors of the SPI program; most relevant events of the SPI
program; improvement investments and actions; and cvlues and evolution of
improvement indicators.

The future research works in this area are directed to design a framework for SPI
value management that will enable to:

• Increase the understanding and transparency of cost, risks and benefits
resulting in much better informed management decisions.

• Increase the probability of selecting investments that have the potential to
generate the highest return.

• Increase the likelihood of success of executing selected investments such that
they achieve or exceed their potential return.

• Reduce the surprises relative to SPI cost and delivery, increasing business
value, reducing unnecessary costs and increasing the overall level of
confidence in SPI.

• Reduce the risk of failure, especially high-impact failure.

References

[1] CMMI Product Team: CMMI for Development, Version 1.2, CMU/SEI-2006-TR-008
(Agosto 2006)

[2] Cuevas Agustín, G.: Gestión del proceso software. Editorial Centro de Estudios Ramón
Areces SA (2002)

[3] Capell, P.: Benefits of Improvement Efforts. SEI SPECIAL REPORT CMU/SEI-2004-
SR-010 (Septiembre 2004)

[4] Ferguson, P., et al.: SEI TR- 99-TR-027. Software Process Improvement Works! AIS
(1999)

[5] Flyvbjerg, B.: Five Misunderstandings About Case Study Research. Qualitative
Inquiry 12(2), 219–245 (2006)

[6] Gibson, D.L., Goldenson, D.R., Kost, K.: Performance Results of CMMI-Based Process
Improvement. SEI TECHNICAL REPORT CMU/SEI-2006-TR-004 (Augost 2006)

[7] Goldenson, D.R., Gibson, D.L.: Demonstrating the Impact and Benefits of CMMI: An
Update and Preliminary Result. SEI SPECIAL REPORT CMU/SEI-2003-SR-009
(Octubre 2003)

[8] Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., Zubrow, D.: Benefits of CMM-Based
Software Process Improvement: Initial Results (CMU/SEI-94-TR-013). Software
Engineering Institute. Carnegie Mellon University (August 1994)

[9] ISO/IEC 15504-4:2004: Information Technology. Process Assessment. Guidance on use
for process improvement and process capability determination (2004)

[10] ISO/IEC 12207: Information technology- Software life cycle processes
[11] McFeeley, R.: IDEAL: A User’s Guide for Software Process Improvement (CMU/SEI-

96-HB-001, ADA305472). Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA (1996)

[12] Mutafelija, B., Stromberg, H.: Sistematic Process Improvement using ISO 9001:2000 and
CMMI. ArtechHouse Pub. (2003)

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 136–147, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Organizational Learning Through Project Postmortem
Reviews – An Explorative Case Study

Torgeir Dingsøyr1, Nils Brede Moe1, Joost Schalken2, and Tor Stålhane3

1 SINTEF Information and Communication Technology
2 Vrije Universiteit Amsterdam
jjp.schalken@few.vu.nl

3 Department of Computer and Information Science,
Norwegian University of Science and Technology

Abstract. A central issue in knowledge management and software process
improvement is to learn from experience. In software engineering, most
experience is gathered in projects, which makes project experience a prime
source for learning. Many companies conduct postmortem reviews, but we have
found few companies that analyze the outcome of several reviews to facilitate
learning on an organizational level. This paper reports an explorative study of
what we can learn from analyzing postmortem review reports of twelve projects
in a medium-size software company.

1 Introduction

Knowledge management has received much attention in the software engineering
field during the past years, as a promising field for software process improvement
with focus on increasing quality and decrease costs in software development.

Software process improvement has its roots in bottom-up improvement philosophies
like total quality management, which has been tailored to software engineering in the
Quality Improvement Paradigm [1], and in top-down standardization approaches like
the ISO 9001 and the Software Engineering Institute’s Capability Maturity Model [15].

A common factor in knowledge management and software process improvement is to
learn from past successes and failures in order to improve future software development.
Experience Factory [2] has been a central term in focusing organizational learning on
improving software development processes.

Most companies that develop software organize the development in projects. In the
Experience Factory, the projects are seen as the main arena for learning, and experience
which appears in the projects is to be shared with other projects. Experience from
completed projects can be collected through postmortem reviews [5] or project
retrospectives [11].

Postmortem reviews can have a learning effect on an individual level, team-level
and also on an organizational level. There are few empirical studies addressing the
organizational level [6].

 Organizational Learning Through Project Postmortem Reviews 137

1.1 Organizational Learning and Postmortem Reviews

Garvin defines a learning organization as “an organization skilled at creating,
acquiring, and transferring knowledge, and at modifying its behavior to reflect new
knowledge and insight” [9]. Huber gives advice on what managers can do to make
their organizations more “learning” [10]:

• Learn from experience - systematically capture, store, interpret and distribute
 relevant experience gathered from projects; and also to investigate new ideas by
 carrying out experiments.
• Use a computer-based organizational memory - to capture knowledge obtained from
 experts to spread it throughout the organization.

One way to collect experience from projects is to perform postmortem reviews
[3, 5]. By a postmortem review, we mean a collective learning activity which can be
organized for projects either when they end a phase or are terminated. The main
motivation is to reflect on what happened in the project in order to improve future
practice – for the individuals that have participated in the project and for the
organization as a whole. The tangible outcome of a meeting is a postmortem report.

Researchers in organizational learning sometimes use the term “reflective
practice”, which can be defined as “the practice of periodically stepping back to
ponder on the meaning to self and others in one’s immediate environment about what
has recently transpired. It illuminates what has been experienced by both self and
others, providing a basis for future action” [16]. This involves uncovering and making
explicit the results of planning, observation and achieved practice. It can lead to
understanding of experiences that have been overlooked in practice.

1.2 Related Work

Most work on organizational learning or knowledge management in software
engineering address technical systems for distributing experience in an organization
[6]. There is little work on the effects of gathering experience on software
development issues over time.

Schalken et al. [17] reports on an analysis of 55 postmortem reports from an
information technology department of a large financial institution with 1500
employees in The Netherlands. The 55 postmortem reports were selected from more
than 600 evaluation reports on completed projects based on how the projects scored
on a selected set of success criteria. The work reports candidate relationships between
project characteristics and project success criteria.

Dingsøyr et al. [7] studied the difference between experience reports and
postmortem review reports in two medium-sized companies in Norway. They found
that the postmortem reports and the experience reports documented very little of the
same experience. Experience reports written by project managers tended to focus on
contract issues, design and technology, while the postmortem reports tended to focus
more on experience related to implementation, administration, developers and
maintenance.

The rest of this paper is organized as follows: We first describe the research questions,
the research method, data collection and data analysis. Then we present findings from our
explorative study, and finally discuss our research questions and conclude.

138 T. Dingsøyr et al.

2 Research Questions and Method

The research reported here is an explorative case study [21] of twelve projects in a
medium-size software company. We ask the following research question: what can
we learn from analyzing postmortem reports that are accumulated over time? More
specifically, we ask:

1. What characterizes the projects selected for postmortem review?
2. Do information sources provide consistent information about the projects? If not,
 how can this be explained?
3. Do we get similar results when analyzing data about projects with different
 perspectives? If not, how can the discrepancies be explained?
4. Which challenges should be considered when analyzing postmortem data from an
 academic perspective and from an industry perspective?

We now describe the company chosen for the study, what data we collected and
how the data was analyzed.

2.1 The Case Company

Kongsberg Spacetec AS (”Spacetec”) of Norway is one of the leading producers of
receiving stations for data from meteorological and Earth observation satellites.
Spacetec has expertise in electronics, software development and applications. 80% of
the 60 employees in the company have a master’s degree in physics or computer
science.

A change from engineering projects to developing generic products through
internally financed and managed projects, and the fact that several of their big
projects had problems, motivated Spacetec to focus on learning from experience. The
company has conducted postmortem reviews since 2000.

2.2 Data Collection

The data used in this paper are collected from twelve software development projects
which were finished between 2000 and 2005 at Spacetec. The projects that are
analyzed are not a random sample of the company’s projects, but projects singled out
because they had cost overruns – 8 to 155 percent, see Table 1.

We have used three data sources which we briefly describe:

Postmortem review reports. Three of the reports were written by researchers
participating in carrying out the review, while nine were written by the company’s
quality department. In Table 1, the project overrun is given as a percentage, size is
either large (>5000 h) or medium (<5000, >1000), duration in years and we have
indicated whether we have an extensive (long) or brief (short) postmortem report. The
postmortems were carried out after project completion for 10 projects, and after
finishing the main part of the project for the remaining two projects.

Three of the postmortem reports were long reports written by researchers (17-23
pages). The researchers used the following, postmortem review process [3]:

• Use the KJ [18] process for brainstorming to identify what went well and what when
 wrong in the project.

 Organizational Learning Through Project Postmortem Reviews 139

Table 1. Projects selected for postmortem review

Overrun (%) Project size Duration Report
1 99 Large 3Y Short
2 31 Large 3Y Short
3 155 Large 0,5Y Short
4 8 Large 0,5Y Long
5 15 Large 1Y Short
6 100 Large 1Y Short
7 114 Medium 1Y Short
8 85 Large 1,5Y Short
9 18 Large 3Y Long

10 23 Large 2Y Short
11 79 Medium 1Y Long
12 79 Large 4Y Short

• Root cause analyses [19] to identify the root causes for the most important reasons
 for success and for failures.
• Prioritize improvement actions based on the results from the root cause analysis.
• Write a postmortem report, summing up all important points. In addition, the mee-
 tings were taped and transcribed as part of the report.
• The report was reviewed by all participants and misunderstandings were corrected.

Nine reports were written by the company’s quality department. They wrote short
reports (3-8 pages) and their process differed in that they:

• Only collected the negative experiences, because of the project sample and time
 limitation.
• Did not tape the meeting and later make a transcript.
• Did not circulate the postmortem report for commenting and to correct possible
 misunderstandings.

Questionnaire-based evaluation. This was sent to two members of the quality
department as well as the person responsible for all software projects, and the person
responsible for the software products. This was done in order to get an opinion on the
project quality as perceived from these roles. We asked them to rank the projects
according to the following factors: Strategic importance, Customer satisfaction,
Software quality and Software productivity. In addition, we asked them to indicate
what they thought was most important in the project: Quality, productivity or
customer satisfaction. We also gathered information on the project size, duration and
project cost overrun.

Workshop. This was done with five persons from the company, who were either from
the quality department, or project managers from the projects who also had
participated in one or more projects as developers. All participants had participated in
one or more postmortem reviews on the selected projects.

In the workshop we asked them to express which events or “project factors” they
thought occurred most frequently in the projects under study, and which factors would
correlate with productivity, overrun, quality and customer satisfaction. Further, we

140 T. Dingsøyr et al.

asked them what they thought would be the dominant factors within a classification
framework for analysis: “knowledge”, “management”, “deliverables”, “people
effects” and “process effects”. Finally, we asked each participant to comment on the
correlations between causes and effects found in a statistical analysis on project
factors and success factors.

2.3 Data Analysis

To analyze the data from the postmortem reports, we chose to 1) Code the reports into
a predefined set of project factor categories and 2) analyze the most occurring factors
through a bottom-up qualitative analysis, inspired by grounded theory [20]. We
describe these two steps in the following:

Step 1: To code the data from the postmortem reviews, we used a predefined frame-
work inspired by McConnel [14], which covers most topics that are relevant in a
postmortem review.

We coded all negative project factors from the postmortem reviews by the
categories listed in the coding framework (axial coding). Each review was coded by
two researchers independently, and we discussed disagreements until we reached
consensus on the coding.

This coding resulted in a matrix with project factors and occurrences in projects.
We combined this matrix with success factors from the quality department and from
the questionnaire-based evaluation.

Step 2: For factors that happened in more than nine projects in our sample, we did a
bottom-up analysis of the text by importing the text into the NVivo tool for analysis
of qualitative data and used open coding. Based on the researchers’ experience and
knowledge, both of software development in general and of this special company,
each of the main categories were split up into five to ten new categories. During the
coding process, some of the items in the postmortem reports were moved from one
main category to another.

3 Results

We now present the key findings from our explorative study. First we present findings
from the quantitative analysis and then the qualitative analysis:

3.1 Quantitative Analysis

Qualitative information from postmortem reports was combined with quantitative
information, which was obtained separately from the company. As the company had
no formal metrics program in place, we relied on subjective measures to get an insight
into the quantitative performance of each project. From the development manager,
product manager and the QA staff (2 employees), we obtained rankings and ratings of
the projects on project focus, strategic importance, customer satisfaction, software
quality, and productivity.

A postmortem collects data on many project factors. If we are going to combine
these data and, in addition, combine them with other data that the company collects,

 Organizational Learning Through Project Postmortem Reviews 141

Table 2. Projects with project factors, resulting from step 1 of the coding. Projects are ranked
by the number of negative project factors registered in postmortem report.

 P
ro

jec
t #

 co
un

t o
f n

eg
at

ive
 re

mar
ks

 co
op

er
at

ion
it.n

eg

 p
ro

ce
ss

pr
od

uc
tiv

ity
.n

eg

 kn
ow

led
ge

ef
fe

cts
.ne

g

 va
lid

at
ion

to
ol.

ne
g

 h
ar

dw
ar

ec
om

p.
ne

g

 su
bc

on
tra

cto
r.n

eg

 co
op

er
at

ion
.n

eg

 te
am

sta
bil

ity
.n

eg

 va
lid

at
itio

np
ro

ce
ss

.n
eg

 q
a.

ne
g

 to
ole

ffe
cts

.n
eg

 co
m

m
itm

en
t.n

eg

 te
ch

de
sig

n.
ne

g

 re
qu

ire
m

en
ts.

ne
g

 so
ftw

ar
ed

es
ign

.n
eg

 p
ro

ce
ss

ou
tco

m
es

.n
eg

 e
ffe

cts
qa

.n
eg

 p
eo

ple
ef

fe
cts

.n
eg

 d
eli

ve
ra

ble
s.n

eg

 m
an

ag
em

en
t.n

eg

 kn
ow

led
ge

.n
eg

 p
ro

ce
ss

ef
fe

cts
.n

eg

11 5 1 1 1 1 1
10 7 1 1 1 1 1 1 1
7 8 1 1 1 1 1 1 1 1
4 9 1 1 1 1 1 1 1 1 1
6 9 1 1 1 1 1 1 1 1 1
9 10 1 1 1 1 1 1 1 1 1 1
2 11 1 1 1 1 1 1 1 1 1 1 1
3 12 1 1 1 1 1 1 1 1 1 1 1 1
8 13 1 1 1 1 1 1 1 1 1 1 1 1 1
5 13 1 1 1 1 1 1 1 1 1 1 1 1 1
1 13 1 1 1 1 1 1 1 1 1 1 1 1 1
12 13 1 1 1 1 1 1 1 1 1 1 1 1 1
SUM 0 0 0 1 1 2 5 5 5 5 5 6 6 7 7 7 8 9 10 11 11 12

we need to use every opportunity to check their quality. Important points to check are
for instance whether a participant always records the same information in the same
way –intra-rater reliability – and whether different participants record the same
information in the same way – inter-rater reliability. If the data that are supposed to
agree really do, it increase our confidence in the results, thus increasing the
confidence we can have in them and the value they will have when we use them in a
decision.

As a basis for this we have used two analysis methods: Kendall’s τ [20], which
measures inter-rater reliability, and the Krippendorff’s α [12, 13], which is a measure
of the agreement between two or more classification schemes or classifiers– the intra-
rater reliability.

To understand the impact of project characteristics (the project factors) on the
failure of projects (as indicated by the success factors), we need to do more than
merely collect data. We can gain understanding by studying the regularities in absent
project factors and the resulting values for the success factors of these projects.

To study the regularities, we use R to construct a matrix of correlation coefficients
between project factors and success factors.

The correlations in Table 3 are based on the factors, as reported by the Quality
Assurance staff. Only correlations which are significant at the 5% level are indicated.

We looked at the data from the postmortems for the following success factors:

• Project focus – what was the main aim or goal for this project?
• The satisfaction score – how satisfied were the customer?
• The productivity score – how efficient were the teams when working at the project?
• The quality score – what was the product’s quality?

The project focus factor was left out since this measure had neither intra-rater nor
inter-rater reliability.

When we look at the customer satisfaction score we find a τ of -0.6, which
indicates that satisfaction is an intra-rater reliable score but we find a Krippendorff’s
α of -0.3, indicating a low inter-rater reliability.

142 T. Dingsøyr et al.

If we instead look at the productivity score we find a τ of -0.5, which indicates that
satisfaction is an intra-rater reliable score and a Krippendorff’s α of -0.8, indicating a
high inter-rater reliability.

Lastly, we look at the quality score. Here we find a τ of -0.8, which indicates that
satisfaction is an intra-rater reliable score but a Krippendorff’s α of -0.3, again
indicating a low inter-rater reliability.

Table 3. Correlation table based on factors reported by the Quality Assurance staff

Productivity Overrun Quality Satisfaction

Project management -0.57
0.58 0.49

 -0.57

Inadequate initial project planning 0.64
Inadequate contract -0.42

Missing or inadequate priorities -0.52 -0.57

Inadequate project control 0.46

2.6 QA * 0.69

 0.50
-0.51 -0.54

 -0.50

Resources -0.45
Low priority -0.50

Design -0.45

-0.68
Internal product quality judged by the 0.77

Customer relations -0.45 -0.62

B.2 QA * -0.70

Lack of technical skills -0.46 0.52

Inexperienced project participants 0.52
Inexperienced project manager 0.45

-0.58 0.46

A.2 Deliverables *

B.1 Process *

B.3 People *

B.4 Tooling *

3.1 Validation and Verificaton *
4.1 Software design *

5.3 Hardware components*
A.1 Process outcomes *

2.1 Management process *

2.2 Subcontractor management *

2.4 Requirements engineering *
2.5 Technical design *

1.1 Knowledge *

1.2 Cooperation *

1.3 Commitment *

1.4 Team stability *

As investigators, we were curious to know whether the correlations between
project factors and success factors, as calculated in Table 3, bear any resemblance on
the real state of practice within the company. Unfortunately there is no such
independent, objective data about the relationship between project factors (the causes
of the problems) and success factors (e.g. productivity and satisfaction). Lacking
objective data that can be used to verify the correlation matrix, we take a triangulation
approach.

In a workshop at the company, we asked developers and managers to give an
independent assessment of the impact of project factors on success factors. We used
the results of this workshop to see how well the answers generated by the objective,
quantitative approach matched the subjective opinions from the people involved. This

 Organizational Learning Through Project Postmortem Reviews 143

comparison leads to a ranking of correlations vs workshop scores, which we compare
using correlations.

When we look at the customer satisfaction score the workshop votes for which
project factors that are important in order to develop a product that satisfies the
customer and compare this to the correlations, we find that factors like management
process and requirements engineering both are considered to have a high importance
but do not correlate with the customer satisfaction at all.

If we instead look at the productivity score we observe that the workshop votes for
which project factors that are important in order to get a high productivity, we find
that factors identified by the correlation matrix and the factors identified by the
developers have a Kendall’s τ of -0.5.

Lastly, we look at the quality score. When we look at the developers’ votes for
which project factors that are important in order to develop a high quality product and
compare this to the correlations, we find that the factor identified by the correlation
matrix and the factors identified by the developers have a Kendall’s τ of -0.3.

We see from this analysis that only for the success factor productivity the insights
of the correlation table match the insights from the workshop. This might be
explained by the fact that productivity is a reliable measure (high intra- and inter-rater
reliability), whereas satisfaction and quality measures are unreliable.

3.2 Qualitative Analysis

The five categories that were coded in almost all projects (the five factors on the right
in Table 2) were analyzed in detail by a qualitative analysis. The categories were
“People effects”, “Deliverables”, “Management”, “Knowledge” and “Process
effects”. In the following, we discuss what subcategories we found in these main
categories.

In the material that was coded as “People effects”, we found the subcategory “lack
of technical skills” to be present in five projects. Further, “people unavailable” was a
negative issue in four projects, inexperienced project participants in two and also
inexperienced project manager in two projects.

An analysis of the category “Deliverables” revealed that the product quality
received a negative evaluation by the customer in two projects, and by the company
itself in three projects – two project that had not got a negative customer evaluation.
In one project, this was described as “system not ready for delivery”. Also, seven
projects mention customer relations as a negative issue related to the deliverables, like
“the customer expects to get a lot for free”.

The category coded as “Management” was split into “inadequate initial project
planning” which occurred in six projects. An example of a statement related to this
was “not planned for unforeseen expenses and work”. “Bad estimation process” also
occurred in six projects. An example statement of this is “risk not taken into account
when estimating”. The subcategories “missing or inadequate priorities” and
“inadequate project control” occurred in five projects, “inadequate project
management” and “inadequate risk analysis” in four projects, “inadequate contract” in
three projects. “Process not followed” occurred in two projects.

A lack of “Knowledge” in the projects was mainly related to project management
knowledge. “We lack knowledge on planning” was a statement in one report. This

144 T. Dingsøyr et al.

subcategory was found in six of the eleven projects. Knowledge related to technology
was seen as a problem in four of the eleven projects, for example “little experience
with antenna installation”. Lack of knowledge of the customer was seen as a problem
in only one project.

For the “Process effects”, we found four subcategories. Process effects related to
requirements was mentioned in four projects, related to project management in three
projects, external relations and resources in two projects and design, low priority and
unclear process were negative issues in one project.

When we asked the participant in the workshop to indicate which events (or project
factors) they thought would occur most frequently, they ranked them as shown in
Table 4, together with the occurrence taken from the postmortem reports. Some
factors that occurred frequently in the reports matched the belief amongst the
participants: process effects and management and deliverables were among the top in
both ratings. However, process outcome, cooperation, team stability and validation
process were factors that were believed to be fairly frequent, but only seldomly
appeared in the reports.

Table 4. Reported and believed ranking of factors for the selected projects

Event Report

ranking

Workshop

ranking

Rank

difference

Process effects 1 1 0

Knowledge 1 10 9

Management 3 1 2

People effects 4 10 6

Deliverables 4 4 0

QA effects 6 13 7

Process outcome 7 1 6

Software design 7 13 6

Tech design 9 10 1

Requirements engineering 9 4 5

Tool effects 11 13 2

QA 11 13 2

Validation process 11 4 7

Team stability 11 4 7

Commitment 11 9 2

Cooperation 11 4 7

The workshop participants commented that the large difference for “knowledge”
was that the postmortem reports were written at a time when there were many new
employees in the company. Another comment was that developing software for space
applications, there is always new technology involved, which means that there must
always be time allocated for learning. At the time of the workshop “Knowledge” was
not seen as a problem anymore, but as a constant challenge in all new projects.

 Organizational Learning Through Project Postmortem Reviews 145

4 Discussion

In this article, our main research question is: what can we learn from analyzing
postmortem reports that have accumulated over time? We discuss our research
question through our more detailed questions in the following:

1. What characterizes the projects selected for postmortem review?
From the qualitative analysis, we found five main characteristics of the projects

selected for postmortem review. All postmortem reports recorded negative
experiences related to lack of knowledge, people effects, process effects, deliverables
and management (See Table 4).

If we are even more precise and focus on the projects that have the largest cost
overruns, we can identify what characterize these projects. According to the statistical
analyses on the relation between project factors and cost overrun, the following
characteristics/failures lead to the highest cost overrun: inadequate initial project
planning, inadequate quality assurance, insufficient validation and verification, poor
design and code quality (as noted by internal product quality judged by the workshop
or the company's management) and inexperienced project participants.

This can be an important finding in order for the company to focus it’s software
process improvement initiatives.

2. Do information sources provide consistent information about the projects? If
not, how can this be explained?

We compared the results from the qualitative analysis with perceptions of the
workshop participants. The following project factors had a short distance in ranking
between reports and workshop (2 or less):
• Process effects, Deliverables, Tech design, Management, Tool effects, QA,
 Commitment

The following factors occurred frequently in the reports, but were not ranked high
in the workshop:
• Knowledge, QA effects

The following factors occurred infrequently in the reports, but were ranked high in
the workshop:
• Validation process, Team stability, Cooperation

As for the quantitative data, except for productivity, where Krippendorff's α=0.76,
the other subjective ratings on success factors (quality and customer satisfaction)
shows that the data are unreliable. For quality and customer satisfaction, the ratings
differ wildly between the different observers. This difference in ratings, or lack in
interrater agreement, means that the measurements should not be used.

3. Do we get similar results when analyzing the data with different perspectives? If
not, how can this be explained?

There are notable differences between the results of the quantitative analysis and
the workshop. Part of this difference might be explained by the fact that the data for
the quantitative analysis originated from management, whereas the input for
workshop came from both management and developers.

4. Which challenges should be considered when analyzing postmortem data (from
an academic perspective and from an industry perspective)?

146 T. Dingsøyr et al.

Having observed the discrepancies in point of view between different stakeholders
with respect to project success (such as quality and customer satisfaction) it helps to
more clearly define the key success indicators of a project. This will help both in
achieving the desired results and in analyzing these results afterwards. If at all
possible, we should define objective measurement procedures for quality, productivity
and customer satisfaction.

5 Conclusion

We have analyzed twelve postmortem review reports from a medium-size software
company in a qualitative and quantitative analysis, focusing on negative experiences.
In addition, we have gathered opinions on the projects analyzed through a
questionnaire and through a workshop discussion. We have identified some
characteristics of the projects selected for postmortem reviews. Qualitative and
quantitative findings indicate different characteristics. We have also found that it was
little agreement on project success factors, which made statistical analysis
challenging.

For the company, we have identified some issues that employees who participated
in workshops were not aware of. We have also found that some issues identified in
the postmortem reports were no longer relevant. This emphasizes the importance on
multiple data sources in software process improvement.

We have found that analysis of postmortem data gives new insight into projects
than what company participants think. However, a broad explorative analysis such as
we have performed comes with a cost, which is probably too high for small and
medium-size software companies. We should seek more efficient ways in analyzing
data from larger collection of software projects.

Acknowledgement

This work was supported by the Research Council of Norway under Grant
174390/I40, as a part of the Evidence-based Improvement of Software Engineering.

References

[1] Victor, R.B.: Quantitative Evaluation of Software Engineering Methodology. In:
Proceedings of the First Pan Pacific Computer Conference, Melbourne, Australia (1985)

[2] Victor, R.B., Caldiera, G., Dieter Rombach, H.: The Experience Factory. In: Marciniak,
J.J. (ed.) Encyclopedia of Software Engineering, vol. 1, pp. 469–476. John Wiley,
Chichester (1994)

[3] Birk, A., Dingsøyr, T., Stålhane, T.: Postmortem: Never leave a project without it. IEEE
Software, special issue on knowledge management in software engineering 19(3), 43–45
(2002)

[4] Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psychological
Measurement 20, 37–46 (1960)

 Organizational Learning Through Project Postmortem Reviews 147

[5] Dingsøyr, T.: Postmortem reviews: Purpose and Approaches in Software Engineering.
Information and Software Technology 47(5), 293–303 (2005)

[6] Dingsøyr, T., Conradi, R.: A Survey of Case Studies of the Use of Knowledge
Management in Software Engineering. International Journal of Software Engineering and
Knowledge Engineering 12(4), 391–414 (2002)

[7] Dingsøyr, T., Moe, N.B., Nytrø, Ø.: Augmenting Experience Reports with Lightweight
Postmortem Reviews. In: Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2001. LNCS,
vol. 2188, pp. 167–181. Springer, Heidelberg (2001)

[8] El Emam, K.: Benchmarking Kappa: Interrater Agreement in Software Process Assess-
ments. Empirical Software Engineering 4(2), 113–133 (1999)

[9] Garvin, D.: Building a Learning Organization. Harvard Business Review, pp. 78–91
(July-August 1993)

[10] Huber, G.P.: Organizational Learning: The Contributing Processes and the Literatures.
Organizational Science 2(1), 88–115 (1991)

[11] Norman, L.K.: Project retrospectives: a handbook for team reviews. Dorset House
Publishing, New York (2001)

[12] Krippendorff, K.: Content Analysis, an Introduction to Its Methodology. Sage
Publications, Thousand Oaks, CA (1980)

[13] Krippendorff, K.: Computing Krippendorff’s alpha-reliability (2006)
[14] McConnell, S.: Rapid Development: Taming Wild Software Schedules. Microsoft Press,

Redmond, WA, USA (1996)
[15] Paulk, M.C., Weber, C.V., Curtis, B., Chrissis, M.B.: The Capability maturity model:

guidelines for improving the software process. Addison-Wesley, Boston (1995)
[16] Raelin, J.A.: Public Reflection as the Basis of Learning. Management Learning 32(1),

11–30 (2001)
[17] Schalken, J.J.P., Brinkkemper, S., van Vliet, J.C.: A Method to Draw Lessons from

Project Postmortem Databases. Software Process: Improvement and Practice 79(1), 120–
131 (2006)

[18] Scupin, R.: The KJ Method: A Technique for Analyzing Data Derived from Japanese
ethnology. Human Organization 56(2), 233–237 (1997)

[19] Straker, D.: A Toolbook for Quality Improvement and Problem Solving. Prentice hall
International (UK) Limited (1995)

[20] Strauss, A., Corbin, J.: Basics of Qualitative Research, 2nd edn. Sage Publications,
Thousand Oaks (1998)

[21] Yin, R.K.: Case Study Research: design and methods, 5th edn. Sage Publications,
Thousand Oaks (2003)

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 148–159, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modelling Software Processes as Human-Centered
Adaptive Work Systems

Levent Yilmaz

M&SNet: Auburn Modeling and Simulation Group
yilmaz@auburn.edu

Computer Science and Software Engineering
Auburn University
Auburn, AL, USA

Abstract. The lack of conceptualization and inclusion of human, social, and
organizational dynamics in software process simulation models is a critical
obstacle in (1) exploring the impact of socio-technical dimensions in software
development and (2) measuring the performance of software processes. This
paper presents a conceptual multi-resolution modeling and simulation
framework that delineates various dimensions of organizational behavior as
they relate to software development. The framework conceptualizes software
development as a transformation system from the perspective of knowledge
acquisition and cognitive systems engineering. Explicit distinctions between the
strategy, operational, and technical views are clearly presented. Specifically, the
paper formulates a preliminary conceptual model and elaborates on design
space of the operational and technical views that focus on organizational, social,
and human dynamics in process performance modeling and simulation.

1 Introduction

Software processes entail a coherent set of policies, procedures, technologies that are
used within an organizational structure to produce and maintain software products
(Yilmaz and Phillips 2006). The process involves knowledge acquisition activity
phases, during which teams of engineers collaborate and coordinate within the
constraints imposed by the management, as well as organizational norms, technology,
culture, and policies. The human activity is at the core of the software development
practice, as decisions and control actions are not taken by organizations or systems,
but rather by a number of decision makers carrying out their activities at various
levels and locations within the work system (Constantine 1993) that involves people
engaging in activities over time.

Existing simulation-based exploration of dynamics of software processes often
involve focusing on flows of products and data through the process using discrete-
event and continuous models (Abdel-Hamid and Madnick 1991). However, the lack
of conceptualization and incorporation of strategic change, adaptive human, team,
organizational, and cultural factors into models of software processes pose special
problems:

• Software processes are goal-directed and adaptive: In well-adapted
software development organizations goals and constraints are often

 Modelling Software Processes as Human-Centered Adaptive Work Systems 149

implicit and embedded in the work practice and norms associated with
the organization. Goals vary, requirements change, and employee
turnover is common. Hence, in a dynamically changing environment,
an effective organizational work depends on self-organizing and
adaptive mechanisms that are in place to change properties of the
process to meet the current needs.

• Processes improve over time: In software development, management
frequently modifies the structure and mechanisms of the process to
keep some measure (e.g., defect density) related to the relevant
performance objective (e.g., reliability) near an optimum. Control of
adaptation, however, is distributed across all teams, engineers, and
organizational subsystems. A useful and credible model for the analysis
of the process and prediction of responses to changes in the
circumstances must reflect the mechanisms underlying the evolution of
work practice.

• Software processes are human-centered work practices: Human actors
that manage and coordinate software processes are adaptive and goal-
directed agents. What people actually do, how they communicate and
collaborate, how they solve problems, resolve conflicts, and learn
behavior matters in the outcome of a project. Therefore, simulating
human activities requires modeling communication, collaboration, team
work, conflict resolution, and tool and technology usage. Decision
making strategies and mental models of humans, as well as various
forms of team archetypes (Yilmaz and Phillips 2006) influence the
performance and effectiveness of software processes.

Given the above observations, the position advocated in this paper is that there is a

need for a software process simulation framework that represents not only technical
activities, policies, and procedures, but also the resources, preferences, and cognition
of staff members, together with functional and social organization and strategic
management, all in unified and coherent terms. A cross disciplinary framework
should support coordinating findings and models from several fields.

Various researchers have developed alternative work system modeling and design
approaches. Business or enterprise process modeling is an active area of research that
uses formal specifications of business process to facilitate business process
reengineering (Mayer et al. 1998). There exist cognitive modeling frameworks that
are based on unified theories of cognition to explore mental processes (Newell 1990).
The field of distributed artificial intelligence provided contributions in modeling
collaboration of teams of people in complex uncertain environments. Advances in
computational organization theory (Carley 1999) enable modeling organizational
structure and dynamics in terms of intelligent agent organizations. Such models
enable exploring the impact of human and social dynamics on the effectiveness and
efficiency of organizations. Human-centered work practice modeling is also
advocated to improve fidelity of simulations using activity theory. This paper builds
on the observations that depict software development as an adaptive human-centered
work system to develop a framework that integrates operational (human, social, and
organizational dynamics) and strategic levels in a multiresolution multiaspect

150 L. Yilmaz

multimodeling context. Specifically, the framework presents the conceptualization of
the critical elements of each level (e.g., operation, strategic), as well as different
aspects that simultaneously co-exist (e.g., social dimension, human behavior
dimension, organizational dimension) in the context of software processes.

The rest of the paper is organized as follows. In section 2, an organization-theoretic
framework that explicitly delineates the following assumptions is presented: (1)
organizational structure, functions, and work activities imposed by the process
technology and (2) social work organization. Section 3 focuses on the issues that
pertain to modeling human behavior. Finally, in section 4, the paper concludes by
discussing potential avenues of further research.

2 Modeling Processes as Human-Centered Work Systems – The
Cognitive Systems Engineering Perspective

Software development is a knowledge acquisition activity (Armour 2003) that
involves the transformation of the user needs into a software product that realizes the
requirements elicited from these needs. Figure 1 depicts the elements of the proposed
organization-theoretic framework for software process simulation.

Fig. 1. Organization-theoretic Framework for Software Process Simulation

The transformation processes are influenced by inputs such as resources, the
organizational culture (i.e., decision making styles – consensus vs. centralized),
norms, values, budget, and objectives. Objectives include product differentiation,
innovation, market expansion, and risk reduction. Environmental inputs entail
turbulence (e.g., task uncertainty, turnover, requirements change), the impact of
customers, technology, and available information regarding the attainment of
objectives. The inputs are transformed by a multiresolution process. Three levels
interplay to represent the organizational, human, and social dynamics that shape the
behavior during software development.

 Modelling Software Processes as Human-Centered Adaptive Work Systems 151

• The strategy level can be viewed as the meta-level control mechanism
that models the behavior of the management. It is responsible for
monitoring, controlling, and adapting the operational level via dynamic
model updating. It is also responsible to (re)organize the social and
physical structure of the organization.

• The operational level consists of three dimensions that collectively
model the process, associated activities and tasks, the social and
physical structure and interaction in the organization, and the
communication mechanism among the actors that carry out the process.

• The technical level refers to the human-activity level. In particular, the
human activity is based on the Human Information Behavior (HIB)
perspective (Wilson 2000) that examines the human behavior in
relation to sources and channels of information via information
seeking, searching, and uses mechanisms. The knowledge acquisition
view of software development in conjunction with the human
information behavior model provides an accurate representation of how
humans actually work in practice. The HIB model is supported by the
human behavior subsystem. Modeling personality traits, cognitive
complexity factors (Yilmaz and Oren 2007), as well as affective factors
enable representing individual differences to bring variability and
credibility to process simulations.

The outputs depicted by the framework include performance metrics such as
productivity (e.g., effectiveness and efficiency), project cost and duration, product
quality, and turnover. Attitudinal behavior outputs measure engineering team and
human cognition factors such as trust, motivation, and cohesion, which further impact
the inputs and the transformation processes.

2.1 Operational Level – Organizational Subsystem

The formal organizational subsystem defines such things as specification of
workflow, activities, work breakdown and organization structure (including
authority), task structure (representation of formal requirements), and job satisfaction.
Figure 2 presents the conceptual elements of the organization subsystem of the
operational level of transformation system shown in Figure 1. The work domain
model specifies the means-ends structure of the process in terms of goals/constraints,
abstract functions, general functions, and work activities. The highest level of
abstraction in the means-ends structure is the set of constraints and goals, which are
the policies that govern the interaction between the work system and its environment.
For software development processes, productivity, cost, quality, as well as production
within the constraints of the financial resources are potential constraints. Abstract
functions of the organizational system in our context denote the representation of
concepts that are necessary for allocating resources to general functions and the
activities. Departmental functions such as quality assurance, product development,
controlling, planning, and human resource management (Abdel-Hamid and Madnic
1990 pp. 22) are abstract functions, for which general work activities are defined.
General work functions are at a lower-level of abstraction and are defined in terms of
activities and task sequence of groups and individual agents.

152 L. Yilmaz

Work Domain ModelAbstract Function

General Function

Goal/Constraint

Activity

Composite ActivityAtomic Action

Organizational Structure Model

Task Model

Authority

Task

1..*

realized-by

1..*

1..*

defined-by

1..*

allocated-to

Fig. 2. Conceptual Model for the Organization Subsystem

The organizational structure model depicts the physical form and configuration of
the organization. The set of linkages that connect agents, tasks, and resources
constitute the structure of an organization. There can be many structures. The
authority (e.g., centralized vs. decentralized) and communication structures are the
most common ones (Galbraith 1977).

2.2 Operational Level – Social Subsystem

A course-grain and high-level conceptual model for the social subsystem is shown in
Figure 3. The focus of the social subsystem is the meta-organization model that
specifies the relations between actors, resources, artifacts, tasks, and teams. The
relations define multiple networks as shown in Table 1. The meta-organization model
specifies the architecture of cooperative work and the criteria for division of work
between teams. It is important to distinguish between the work organization (i.e.,
organization subsystem) perspective and the social organization aspect depicted by
the meta-organization model within the social subsystem.

The work domain model of the organization subsystem analyzes and specifies the
coordination activities determined by the interaction of control requirements of the
work domain and the behavior of teams and engineers. On the other hand, social
organization perspective imposed on the interactions among teams and engineers
depend on the management style, culture, norms, values, and configuration of the
social networks presented in Table 1.

 Modelling Software Processes as Human-Centered Adaptive Work Systems 153

Team Model Meta-organization Model

Agent

Resource Artifact (Knowledge)

Task

Team Cognition Model

Status Roles

Change Conflict

depends-on

1..*

1..*

located-at

1..*

uses

needs

1..*

defines

effects
1..*

creates

generates 1..*

addressed-by

performs 1..*

knows1..*

1..*

substitutes

precedes

Fig. 3. Conceptual Model for the Social Subsystem

The team model embodies the team composition, structure, and explicit coordina-
tion and collaboration styles. Common coordination mechanisms in organization
theory are rules, plans, hierarchy, and mutual agreement (Donaldson 1993). Various
team archetypes also influence the behavior of teams (Yilmaz and Phillips 2006). The
team cognition model incorporates elements such as trust, motivation, and cohesion
that are effective in the performance of a software development team. The team
cognition mode constitutes mechanisms that suggest specific changes and adaptation
requests that may cause conflicts that have to be resolved by the strategy subsystem of
the overall framework. The meta-organization model makes use of role and status
information to improve coordination among teams and update team cognition
parameters, respectively. For instance, the role of team leader is critical in allocating a
specific task to a team via its leader. Also, the status information assigned to
individual agents help assign weights to decisions made by the members of a team to
derive a team decision.

2.3 Operational Level – Integration of Organization and Social Subsystems

The operational level can be considered as a distributed control subsystem that serves
to a loosely coupled software process simulation that is viewed as a work system. The
cooperation among the actors evolves from two directions. The work activities
specified by the organization subsystem affect the control activities bottom-up, while

154 L. Yilmaz

Table 1. Social Networks

Agents Knowledge Resource Task Team
Social
interaction
network

Knowledge
acquisition
network

Capacity
network

Task
allocation
network

Employment
network

Agents who knows
who

who knows
what

who has
what

who is
assigned to
what

who is
assigned to
what team

Knowledge what
knowledge
is needed to
derive X

What
knowledge
is needed to
use Y

What
knowledge
is needed to
complete Z

What
knowledge
is located
where

Resource what
resources
can be used
with
resource Y

what
resources
are needed
to complete
task Z

what
resources
are located
where

Task what task
precedes
task Z

what tasks
are
performed
where

Team which teams
work with
which teams

the social organization and its cooperation mechanism propagating top-down. The
software development work organization emerges as a result of the interaction
between the social practice and management style depicted by the social subsystem
and the control requirements of the work domain model. Figure 4 depicts the
mechanism by which the interaction ensues. The work activities level at the bottom
involves the problem solving activities that carry out the tasks assigned to individual
team members. The ways these activities carried out are influenced not only by the
constraints of the work-domain model, but also the strategies imposed by the HIB
model that is discussed in section 3. The human behavior subsystem affects the
performance of individuals by inducing human behavior variability in terms of
cognitive, affective, and personality traits and factors. The social interaction control
level is driven by the social subsystem of the operational level. The form of
communication and interaction styles are governed by the team archetypes,
organizational culture, and decision making styles at the social organization level. The
structure of the communication net and the content of the communication are based
on the functional work organization, and hence they are determined by the control
requirements of the work domain. The social interaction control level along with the
work activities determines the shape of the coordination of work activities.

Specifically, the constraints of the work domain model (i.e., software process
technology) and the structure of the organization (i.e., authority, hierarchy) explicitly

 Modelling Software Processes as Human-Centered Adaptive Work Systems 155

Fig. 4. Integrating Social and Organization Subsystems

delineates how team members need to coordinate to fulfill tasks in accordance with
the standards and process guidelines. The management style and social practice of the
organization further constrain the flow of information and interaction among team
members.

3 The Technical Level

The technical level (HIB and human behavior system) of the proposed framework not
only effects the coordination effectiveness at the work activity coordination level (see
Figure 4), but also influence the performance of team members, as they carry out
work activities.

3.1 Human Information Behavior (HIB) Model

Modeling the activities of humans as they carry out tasks require realistic
representations of the domain-independent behavior regarding how humans solve
problems in real life. Unfortunately, modeling and simulation of software processes is
often done at an abstract level that individual and social work practice involving
collaboration, communication, ‘off-task’ behaviors, multitasking, interrupted and
resumed activities, and informal interactions are not captured (Acuna and Juristo
2005; Sierhuis and Clancey 2002). Work activities imposed by the processes can be
viewed as knowledge acquisition activities that require engineers to seek, search, use,
and synthesize information to derive knowledge (i.e., design constraints and models)
that are eventually embodied in the software artifact.

The HIB model (Wilson 2000) elaborates on the common characteristics of
information behavior. Information behavior is defined as the human behavior as it

156 L. Yilmaz

pertains to sources and channels of information. Information seeking requires
interacting not only with computers but also other manual and natural sources (e.g.,
face-to-face communication between team members) to reach information to satisfy a
goal. Information search involves micro-level behavior involving the interaction with
information systems to locate information. Information use consists of mental and
physical human acts hat pertain to incorporating the discovered information to one’s
knowledge-base. Definition of each specific work activity in terms of primitive
information seeking, search, use, and synthesis operations constitutes the foundation
of the application of HIB within the context of the proposed framework.

3.2 Human Behavior Subsystem

Not every team member performs and interacts the same way. According to
personality psychologists (Bem 1983), the fundamental task in human behavior
analysis is to translate observations of persons with particular traits behaving in
specific manners in particular situations into patterns (assertions) that certain kinds of
people behave in certain kinds of ways in certain kinds of situations. Others also
emphasized the importance of human behavior in terms of sound and predictable
patterns that specify well-defined groups of behavior in relation to groups of
situations.

To have a realistic basis to simulate software development, one should consider
individual behaviors as part of the human aspect. In this article, we stress the role of
cognitive complexity of individuals and its relationship with one of the five traits of
human personality, i.e., openness to the success of software teams (Yilmaz and Oren
2007). Even a brief review of the basic concepts of cognitive complexity and
openness will cast light on their relevance to the success of software teams.

3.2.1 Cognitive Complexity
In software engineering, as it is the case in many other complex systems, ability of
coping with complexity is a fundamental issue and influences the quality of the
decisions. As early as 1970s, based on Athey’s work (Athey 1976) elaborated on the
importance of increasing cognitive complexity of an individual to increase his/her
effectiveness in coping with complex situations. Figure 5 (left) shows different levels
of information processing of an individual depending on the situational complexity.
For a low situational complexity, the individual may need to have low level of
information processing to cope with the situation. If the situational complexity
increases, his/her information processing level may also increase. However, for each
individual there is a critical point beyond which the level of processed information,
hence the individual’s information processing effectiveness is decreased. After the
critical point, an increase in the situational complexity may worsen the individual’s
ability to cope with complexity.

The information processing curves of two types of individuals, i.e., high and low
cognitive complexity individuals are compared in Figure 5 (right) where two
important points are shown: First, ch, the critical point of high cognitive complexity
individual is higher than cl, critical point of low cognitive complexity individual. Thus

 Modelling Software Processes as Human-Centered Adaptive Work Systems 157

Fig. 5. Relationship between situational and behavioral complexities (Yilmaz and Oren 2007)

increasing the cognitive complexity of an individual –within the applicable limits of
course– may increase the range of situational complexity within which he/she can
perform effectively. Or depending on the task, it may be advisable to assign an
individual with cognitive complexity commensurate with the task. Second, for a given
situational complexity, the level of information processed by a high cognitive com-
plexity individual ih is greater than il which corresponds to a low cognitive complexity
individual. Additional characteristics of high and low cognitive complexity indivi-
duals (with relevance to managers) are summarized in Table 2, based on Streufert and
Swezey (1986).

Table 2. Characteristics of high cognitive complexity individuals

Characteristics High cognitive complexity individuals

Information More open to new information, search across more
categories of information, and rely on their integrative
efforts

Problem solving Tend to search for more information;
often less certain after a decision, especially if

verification is unavailable.
Strategic planning Better strategic planners due to:

- consideration of more information, from more
perspectives,

- greater flexibility in considering alternatives.
Communication More effective at a communication-dependent task.

More resistant to persuasive attacks, especially if
trained in counter arguments.

Creativity Able to generate more novel, unusual, and potentially
remote views and actions.

Leadership Show leadership;
High integrators in which they are able to relate

complex patters of many elements.

158 L. Yilmaz

3.2.2 Characteristics of Individuals with High and Low Cognitive Complexity
The following characteristics of individuals are affected by the value of their
cognitive complexity: information, attraction, flexibility, social influence, problem
solving, strategic planning, communication, creativity, and leadership. For high
cognitive complexity, the characteristics (with relevance to managers) are
summarized in Table 2; all these characteristics are highly desirable for leaders of
software teams. For low cognitive complexity individuals, the characteristics are just
the opposites. The following two characteristics need to be elaborated on: Low
cognitive complexity individuals are attracted to low cognitive complexity people
with similar attitude. They are also more stable in attitudes; more prone to polarize on
an issue; less affected by environmental changes. Attitude change can be easier if
information is made highly salient. Hence, a software team leader with low cognitive
complexity may not communicate with colleagues with high cognitive complexity
and may not adapt to dynamically changing conditions.

4 Conclusions

Since large and complex software development is inherently an organizational-effort,
we need to find ways to understand the influence of alternative organizational
structures, strategies, and operational mechanisms on the effectiveness of
development processes. Developing simulation models to analyze performance of
processes for such large complex system development endeavors require principled
development of simulation models. Such principles should embody realistic
assumptions that pertain to (1) strategic management of the organization in an
adaptive goal-directed manner, (2) organizational structure, functions, and work
activities imposed by the process technology, (3) social work organization that
reflects the social practice, norms, management style, and culture, and (4) human
work activities and behavioral traits.

Future work includes the further development and formalization of the framework.
The formalization is expected to lead to development of simulation models of
software processes that will explicitly focus on management of human, social, and
organizational dynamics. There is an increasing demand for successful software
project managers; therefore, efforts are needed to develop management-related
knowledge and skills of the future software workforce. As the lower tiers of software
and IT work become more commoditized, project management skills, as well as
creativity and innovation, will become even more important, particularly in countries
that experience the loss of programming work.

References

1. Abdel-Hamid, T., Madnick, S.: Software Project Dynamics: An Integrated Approach.
Prentice Hall, Upper Saddle River, NJ (1991)

2. Acuna, T.S., Juristo, N.: Software Process Modeling. p. xix, Springer Science and
Business Medias Inc. (2005)

3. Armour, G.P.: The Laws of Software Process: A New Model for the Production and
Management of Software. Auerbach Publications (2003)

 Modelling Software Processes as Human-Centered Adaptive Work Systems 159

4. Athey, T.H.: Training the Systems Analysts to Solve Complex Real World Problems. In:
Willoughby, T.C. (ed.) Proceedings of the 14th Annual Computer Personnel Research
Conference, July 29-30, 1976. The Special Interest Group on Computer Personnel
Research (SIGCPR) of the ACM, pp. 103–120 (1976)

5. Bem, D.J.: Constructing a Theory of the Triple Typology: Some Thoughts on Nomothetic
and Idiographic Approaches to Personality. Journal of Personality 53, 566–577 (1983)

6. Carley, M.K., Gasser, L.: Computational Organization Theory. In: Weiss, G. (ed.) Multi-
Agent Systems: A Modern Approach to Distributed Artificial Intelligence, The MIT Press,
Cambridge (1999)

7. Constantine, L.: Work Organization: Paradigms for Project Management and
Organization. Communications of the ACM 36(10), 35–43 (1993)

8. Donaldson, L.: Design Structure to Fit Strategy. In: Locke, A.E. (ed.) Handbook of
Principles of Organizational Behavior, pp. 291–303. Blackwell Publishing, Oxford (1993)

9. Galbraith, R.J.: Organization Design. Addison-Wesley, Reading (1977)
10. Mayer, J.R., et al.: Framework and a Suite of Methods for Business Process Reengineering. In:

Grover, V., Kettinger, W.J. (eds.) Business Process Change: Reengineering Concepts,
Methods and Technologies, Idea Group, Hershey, Pa (1998)

11. Newell, A.: Unified Theories of Cognition. Harvard Univ. Press, Cambridge, Mass (1990)
12. Streufert, S., Swezey, R.W.: Complexity, managers, and organizations. Academic Press,

New York (1986), http://www.css.edu/users/dswenson/web/Cogcompx.htm
13. Wilson, D.T.: Human Information Behavior. Informing Science, Special Issue on

Information Science research 3(2) (2000)
14. Yilmaz, L., Phillips, J.: Organization-theoretic Perspective for Simulation Modeling of

Agile Software Processes. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.)
Software Process Change. LNCS, vol. 3966, pp. 234–241. Springer, Heidelberg (2006)

15. Yilmaz, L., Oren, T.: On Multiresolution Simulation Modeling of Team and Human
Behavior for Software Process Design. In: Invited paper. Proceedings of the Tenth World
Conference on Integrated Design and Process technology (to appear, 2007)

Performance Comparison of Software

Complexity Metrics in an Open Source Project

Min Zhang and Nathan Baddoo

Systems and Software Research Group
School of Computer Science
University of Hertfordshire

Hatfield, UK

Abstract. Software complexity measures are essential aspects of soft-
ware engineering. Relatively few studies have been conducted to compare
the performance of different complexity metrics. This paper describes
an experimental investigation, which compares the performance of three
different software complexity metrics; McCabe’s cyclomatic complexity,
Halstead’s complexity measures and Douce’s spatial complexity, by us-
ing data from an Open Source project Eclipse JDT. The results of this
investigation indicate that in different situation these complexity met-
rics show different performance. However, Halstead’s effort measure and
Douce’s spatial complexity are highly correlated, showing bigger correla-
tion coefficient values. This leads us to suggest that because Halstead’s
complexity measure is more mature and has better supporting tools, it
may be a good idea to replace Douce’s spatial complexity metric with
Halstead’s effort measure in practice.

1 Introduction

In this paper we present an experimental investigation into three complexity
metrics, McCabe’s cyclomatic complexity, Halstead’s complexity measures and
Douce’s spatial complexity, using data from Eclipse JDT Open Source project.
Using software measurement to quantify the characteristics of software systems is
an essential part of good software engineering. A complexity metric is an impor-
tant measure for capturing some of these characteristics. By using complexity
metrics, software development teams have the capability to indicate potential
problems of a software system, guide software testing and estimate maintenance
efforts[1]. In the past three decades several software complexity metrics have been
introduced[2][3][4][5], but relatively few studies have been conducted to compare
the performance of these metrics in order to judge their efficacy at predicting
the complexity and performance of software systems. We therefore conducted
an investigation to compare the performance of different complexity metrics.
We chose the Open Source portal as a source of data because such projects are
often developed incrementally over long time scales[6], and their resources are
freely accessed. All the data used in this study comes from the Eclipse JDT
Open Source project, which is hosted on open source community Eclipse.org.

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 160–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Performance Comparison of Software Complexity Metrics 161

In order to couch a succinct hypothesis, we needed to scope a definition for a
good metric. In this study, our definition for a good metric is predicated on the
following assumptions:

� Complexity metrics should indicate Lehman and Belady’s law of software
evolution, which states that software evolution increase the complexity of a
software system[7].

� Complexity metrics should have the capability to predict the fault prone
modules. The more complex a module is, the more faults are found in this
module.

� Complexity metrics should capture the fact that the more complex a software
module, the more frequently it would be changed.

� The proportion of code change may not cause the same proportion of change
in the complexity of a software module.

From the above assumptions, we designed studies to test the following hypotheses:

� Hypothesis A: Software updates lead to positive increase of values of the
software complexity metrics.

� Hypothesis B: Complexity measures of software components have a posi-
tive correlation with the number of faults found in these components.

� Hypothesis C: Complexity metrics of software components have a negative
correlation with the time between updates of these components.

� Hypothesis D: The proportion of complexity metrics changes is not
strongly correlated to the proportion of number of lines changes.

To test the above hypotheses, we used data from the CVS system of Eclipse
JDT project. We wrote programs to capture this data and calculate the metrics
automatically. Finally, we conducted statistical analyses to compare the perfor-
mance of the complexity metrics. The following is the methodology followed to
test each of the hypotheses:

Hypothesis A

CVS version update log is dumped from project’s CVS repository. After that,
based on the comments information from the log file, log entries about bug
fixing updates are picked up for investigation. Then complexity metrics about
the selected entries are calculated and statistical analysis is applied to examine
whether these updates lead to an increase in positive complexity.

Hypothesis B

Here, we are focused on the relationship between complexity metrics and “num-
ber of bugs” measure. Certain versions of software components from Eclipse
JDT project are randomly selected for study. On one hand, “number of bugs”
measure is calculated by using the information from CVS log file. On the other
hand, related source codes are checked out to calculate the complexity metrics.

162 M. Zhang and N. Baddoo

Finally, a correlation coefficient analysis is performed to study relations between
these two variables.

Hypothesis C

Here, we want to establish whether more complex software can be prone to
more frequent changes. We randomly choose certain bug fixing updates. The
time periods of the bug fixing are captured for investigation. The related source
codes are also checked for complexity metrics calculation. At the end, correlation
coefficient analyses are conducted to examine which complexity metric indicates
negative relationship between these two variables.

Hypothesis D

In the investigation of hypothesis D, bug fixing updates are randomly picked up
and the related source codes are checked out from the CVS system. After that,
the percentage of LOC change is calculated based on the source codes. Then the
percentage of complexity metric value changes about the related source code is
also calculated. Finally, based on these two sets of data correlation coefficient
analysis is conducted to examine which complexity measures can better support
this hypothesis.

The rest of this paper is structured as follows: In Section Two we provide some
background to software complexity metrics and review previous studies that have
used open source project data in software engineering analysis. Section Three
describes our research methods, describing in particular, the experimental design
adopted in this study. Section Four presents our results of the study. In Section
Five we discuss our results. We conclude in Section Six.

2 Complexity Metrics and Open Source SE Research

There are several software complexity metrics in software engineering, such
as McCabe’s cyclomatic complexity[2][8][9], which is based on measuring the
number of linear independent paths in a software module, Halstead’s com-
plexity measures[3] which measures the computational complexity of source
code, Douce’s Spatial Complexity Metrics[4] and Chhabra’s Spatial Complex-
ity Metrics[5], which sees software complexity as the cognitive capability of a
program.

2.1 Previous Researches

Several studies have been conducted to study the performance of the above
metrics. Curtis et al.[1] conducted a study to investigate the performance of
McCabe’s cyclomatic complexity metric, Halstead’s complexity metrics and the
simple line of code measurement. Their results indicate that in small size pro-
grams all of these three measures predict the actual efforts well, but in larger
size programs Halstead’s complexity metrics proved a better predictor than the
others.

Performance Comparison of Software Complexity Metrics 163

Gold et al.[10] also examined the performance between Douce’s spatial com-
plexity metrics and Chhabra’s complexity metrics. Their study showed that
Douce’s SC spatial complexity was a better predictor of effort than his RC
spatial complexity definition and Chhabra’s spatial complexity metrics. On the
contrary, Douce’s RC spatial complexity measure and Chhabra’s spatial com-
plexity metric were shown to be unable to capture any more information than
the simple line of code measurement.

In this respect, few studies have been performed to compare the performance
between McCabe’s cyclomatic complexity, Halstead’s complexity metrics and
Douce’s SC spatial complexity. This paper tries to address this question.

2.2 Open Source Projects

Open Source projects have received great attention recently. They are thought
of as a fundamentally new way for software development[11]. One of the main
features of open source projects is their incremental development. Instead of
building the whole software system in one phase, open source projects tend to
gradually increase their functionality over a long period[6]. So that, over time,
a lot of information about these projects becomes available in Open Source
repositories. Also, the project source code and related maintenance data can be
freely accessed. This makes Open Source projects a great source for software
engineering studies.

Massey, Mockus et al. and Sliwerski et al. have successfully conducted software
engineering researches by using the data from open source projects[6][11][12]. In
Sliwerski et al.’s research, they investigated the CVS repositories from Eclipse
open source project and Mozilla open source project, and found that bug fix-
ing updates can be located by using the CVS comment information. They also
developed a method of building links between an open source projects’ version
control system - CVS - and its bug maintenance system - Bugzilla - to support
their experiential researches[12]. This method can act as a guideline for using
open source projects data in software engineering research.

3 Research Methodology

In order to examine the four hypotheses listed in the introduction, we conducted
three main tasks in this study. The first is capturing data from the CVS reposi-
tories; the second is calculating the complexity metrics by using automatic tools;
the third is using a statistical tool to analyse the results. We expand on these
tasks in the rest of this section.

3.1 Data Capturing

Data capturing is the most important part of this investigation. Although the
CVS system is one of the most popular version control systems in software in-
dustry, there are still relatively few tools to support extracting information from

164 M. Zhang and N. Baddoo

it for software engineering analyses. Moreover, the analysis tools for CVS sys-
tem are often built for specific usage and they are difficult to apply to common
research[6]. So, in this study, we developed several customized programs to re-
solve this problem. All of these programs were developed in Java and Apache
Ant scripts.

Data Filtering. The first step in capturing data from CVS system is to filter
out the useless information. In our studies we focus on the bug fixing updates of
Eclipse JDT project. Sliwerski’s research[12] found that in Eclipse and Mozilla
open source projects source code check in often links with meaningful comments
and these comments can be used as filters to pick up useful information. Sliwerski
also suggests the following methodology for discovering the bug fixing updates:

1. Translating comments information into list of tokens. There are four kinds
of tokens (presented in FLEX syntax).

– Bug number: A bug number is an expression that matches one of the
following formats:

• bug[# \t]*[0-9]+,
• pr[# \t]*[0-9]+,
• show\ bug \.cgi \?id=[0-9]+, or
• \[[0-9]+ \]

– Plain number: A string of digits 0-9.
– Keyword: A keyword matches the following expression:

fix(e[ds])?|bugs?|defects?|patch
– Word: A word is a string of alphanumeric characters.

2. A comment for bug fixing updates should meet at least one of the following
criteria.
(a) The number is bug number.
(b) The log message contains a keyword, or the log message contains only

plain or bug numbers.

(Source: Sliwerski et al., 2005[12])
In this study, we made two changes in the method suggested in order to

improve. Firstly, the rules are changed so that instead of meeting one of the
criteria listed in step 2, we only pick up the entries that match both criteria.
Also, we dropped entries that contained “copyright” keyword, because we suggest
that if the bug fixing updates only change the information about copyright, it
is impossible to cause complexity change. After these processes 122 bug fixing
updates were located in Eclipse JDT project.

Source Code Gathering. After the data filtering process, a list of file entries
about bug fixing updates was prepared. The source code versions before or after
these bugs fixed updates were collected for analysis. Consequently, 244 versions
of source code were captured in our experiments. We developed a customized
program to automatically check out these source code from the CVS repository.

Performance Comparison of Software Complexity Metrics 165

Number of Bugs. The “number of bugs” metric is employed to test hypothesis
B. We define “number of bugs” as the total number of bug fixing updates after
a certain version of source code.

Time between Updates. For hypothesis C, the definition of “time between
updates” measure for a source file is:

TX − TX−1 (1)

Where X indicates the version number and TX represents the committing time
of version X of a certain source file. If a bug fixing update has more than one
source file, the “time between updates” measure of this bug fixing is defined as:

max
i=1∼n

(T i
X) − min

j=1∼n
(T j

X−1) (2)

Where n is the number of updated files of this bug fixing.

Proportion of Code Change. In this study the proportion of source code
change is defined as:

diff(X−1toX)/LOCX−1 (3)

In the above definition, LOC is the number of lines of code measure of a source
file; X indicates the version number of the source code; diff(X−1toX) represents
number of lines of code either added or altered between two versions. If a bug
fixing update has more than one source file, the proportion of code change mea-
sure of this bug fixing update should sum up all the proportion of code change
measure of each source file in this update.

We do not ignore comment lines and blank lines in the calculation of LOC
measure, because in Douce’s spatial complexity definition comment lines and
blank lines should also affect the complexity values. Consequently, in order to
keep constant the calculations of all measures in this study, we include comment
lines and blank lines.

The code difference (diff(X−1toX)) values were calculated by using the “an-
notate” function of CVS. Figure 1 shows part of a CVS “annotate” result. Com-
paring this annotation result with the standard java source files, it can be found
that, each line of the result contains three more bits of information. They are the
version number of the last modification, author name of the modification and
the date of the modification. The code difference measure can be calculated by
counting how many version numbers equal current version number in annotation
result files.

Proportion of Complexity Metrics Changes. The proportion of complexity
values’ change of a bug fixing update is defined as:

(Complexityafter − Complexitybefore)/Complexitybefore (4)

In this formula, Complexityafter indicates the complexity measure value of the
source codes after bug fixings. Complexitybefore indicates the complexity value
before bug fixing.

166 M. Zhang and N. Baddoo

Fig. 1. CVS “annotate” result

3.2 Complexity Metrics Calculation

We used several programs in this study to support metrics calculation.
We used an open source tool JavaNCSS[13] to calculate McCabe’s cyclomatic

complexity. JavaNCSS is a command line based metrics utility developed by
Christoph Clemens. It can measure two standard measures, non-commenting
source statements (NCSS) and cyclomatic complexity number (CCN), of java
source codes.

Our studies of Halstead’s complexity measure focus on its “Effort” measure-
ment. Here, also, we used an open source utility, Lachesis[14], to calculate Hal-
stead’s complexity measures.

Spatial complexity studies are based on Douce’s simple function spatial com-
plexity definition in this study. Unlike the other two complexity metrics, spatial
complexity metric is a new concept in software engineering domain. As a result
there are few existing tools to support its calculation. In order to fill in this gap,
we developed a program to capture this metric. In this program JavaCC[15] is
used as the grammar analysis tools.

Finally, all of the complexity metrics used in this investigation are at the bug
fixing level. If a bug fixing update has more than one source file, the complexity
value should add up to all the complexity values of the source files.

3.3 Statistical Analysis

Sampling. As discusses earlier, 122 bug fixing updates and 244 version entries
of source code were captured in Eclipse JDT project. In order to maintain 95%
level of certainty and 5% margin of error, 100 random samples were chosen for
the studies on bug fixing updates, such as Hypothesis A and Hypothesis C, and
150 samples were randomly chosen for the studies on source code versions, such
as Hypothesis B. The only exception is the study of Hypothesis D. According
to our definition of ”proportion of complexity change”, if the complexity value

Performance Comparison of Software Complexity Metrics 167

for a previous version of a source code is zero, then the measure is considered
meaningless. This led to some samples being dropped in this study. As a conse-
quence, in order to keep more confidence of our study 110 random samples were
chosen.

Correlation Measure. In our studies, Pearson’s product moment correlation
is chosen as the correlation measure[16]. Microsoft Excel 2003 is employed as a
tool for statistic calculation.

4 Results

In this section, we present the results of our studies, outlying how the study
results conformed or refuted our hypotheses.

4.1 Hypothesis A

100 random samples of bug fixing updates were investigated in the testing of
hypothesis A, Table 1 sums up the number of different change directions for
each complexity metric.

Table 1. Numbers of different change directions for each complexity metric

Positive Negative No Changes
McCabe’s Cyclomatic Complexity 56 13 31

Halstead’s Effort Measure 67 24 9

Douce’s Spatial Complexity 64 18 18

Table 1 shows that the numbers of positive changes are much bigger than the
negative changes. Moreover, for all of these metrics about 60% of the total num-
bers of changes are positive. So it can be thought that all of these metrics can
support the Lehman and Belady’s law[7]. In addition, in this study Halstead’s ef-
fort measure and Douce’s spatial complexity measure show similar results of 67%
and 64% positive entries. They all show better performance than the cyclomatic
complexity measure, which reports 56% positive entries.

4.2 Hypothesis B

150 random version source code files were selected from the source code pool to
test this hypothesis. The results are presented in Table 2.

Table 2 shows that McCabe’s cyclomatic complexity measure has a stronger
correlation with ”number of bugs” measure than the other two complexity met-
rics; 0.5817 against 0.2848 and 0.3083. Table 2 also shows that all of the corre-
lation coefficient values are significant. From these results, it can be suggested
that the cyclomatic complexity metric is best for supporting Hypothesis B. How-
ever, it can also be suggested that because the correlation coefficients in all three
instance are not very strong, with the highest being 0.5817, it is possible that
complexity of software is not the only source of bugs.

168 M. Zhang and N. Baddoo

Table 2. Correlating Complexity measure with number of bug fixes

Correlation
Coefficient

Significance?

α = 0.05 α = 0.01
sample = 150 sample = 150
min r = 0.1603 min r = 0.2097

McCabe’s Cyclomatic Complexity 0.5817 Y Y

Halstead’s Effort Measure 0.2848 Y Y

Douce’s Spatial Complexity 0.3083 Y Y

4.3 Hypothesis C

100 random samples of bug fixing updates were used to test hypothesis C. Table 3
is a summary of the results of this test.

Table 3. Correlating Complexity measure with time between updates

Correlation
Coefficient

Significance? Power

α = 0.05
sample = 100
min r = 0.1965

McCabe’s Cyclomatic Complexity -0.0488 N 0.0077

Halstead’s Effort Measure -0.1146 N 0.0012

Douce’s Spatial Complexity -0.1305 N 0.0007

Table 3 shows that all of the complexity metrics are negatively correlated
with the time between updates. However, it can also be found that all of these
correlations are weak, and all correlations are insignificant when α equals to 0.05.
It means that all this correlations are rejected. For this situation, a power test was
conducted to see how confidence to reject these hypotheses without cause type
II errors. The results of this power test show that there is a higher probability
of correctly rejecting the negative correlation of cyclomatic complexity than the
other two complexity metrics, 0.0077 against 0.0012 and 0.0007. So in this case
Douce’s simple function spatial complexity metric and Halstead’s effort measure
can be thought as having more significant negative correlations with the “time
between updates” measure.

4.4 Hypothesis D

We randomly chose 110 bug-fixing samples from the source code pool to test this
hypothesis. According to our definition of ”proportion of complexity change”,
if the complexity value for a previous version of a source code is zero, then the
measure is considered as meaningless. Which means that when we calculated the
complexity metrics, we dropped the bug fixing updates which had one or more

Performance Comparison of Software Complexity Metrics 169

Table 4. Correlation coefficients for proportion of line changes

Correlation
Coefficient

Significance?

α = 0.05 α = 0.01
sample = 99 sample = 99

min r = 0.1975 min r = 0.2578

McCabe’s Cyclomatic Complexity 0.4998 Y Y

Halstead’s Effort Measure 0.4039 Y Y

Douce’s Spatial Complexity 0.4537 Y Y

complexity values equal to zero from this analysis. This resulted in 11 samples
being dropped. We conducted our analysis with the remaining 99.

Table 4 shows the correlation coefficient and significance test results for this
hypothesis. Table 4 shows that all the metrics are positively correlated to pro-
portion of line changes. Table 4 also shows that all the correlation coefficients
are significant at α values of 0.05 and 0.01, indicating that the correlations
are not chance occurrences. However, all the values are between 0.4 and 0.5,
which indicates that they are not very strong correlations. We may speculate
that even though all of these complexity metrics have correlation with the LOC
measure, the change in lines of code is not the only reason for the change in
the value of the complexity metric. Also, that complexity metrics can capture
more information than the simple LOC measurement. In addition, we find that
the differences between these correlation coefficient values are under 0.1, which
means that between them there is not much difference in terms of the correla-
tions with proportion changes in LOC. In summary, the above results show that
the three complexity metrics studied here can capture more information than
the LOC measure, but they do not show great difference between each other.

5 Discussion

In this section we discuss our findings from our study. There are some very
interesting findings from the results in Section 4.

Firstly, we found that there are a mixture of weak and strong points for using
the three metrics chosen in this study. We found that Halstead’s effort metric
and Douce’s spatial complexity show better performance in hypothesis A and
hypothesis C, whilst McCabe’s cyclomatic complexity can supports hypothesis
B better.

Secondly, we found a common feature amongst the metrics in this study. We
found that Halstead’s effort measure shows very similar results to Douce’s spatial
complexity metric in all of the four studies that we carried out. The two metrics
show similar results in the testing of all four hypotheses. This leads us to predict
that Halstead’s measure may be equivalent of Douce’s spatial complexity metric.
However, in order to support this assumption we performed another experiment
to find out whether strong correlation can be found between Halstead’s effort

170 M. Zhang and N. Baddoo

measure and Douce’s spatial complexity metric. In this experiment we reused the
100 bug fixing samples first used in the studies on hypothesis A and hypothesis
C. For each of these bug fixing samples two version source codes were collected
giving us 200 source code samples altogether. Then we conducted a cross cor-
relation analysis between the three complexity metrics - McCabe’s cyclomatic
complexity, Halstead’s effort measure and Douce’s spatial complexity - using the
complexity values obtained for the 200 samples. Table 5 presents the results of
this experiment. Figure 2 plot the cross-correlation values.

Table 5. Cross-correlation analysis of three complexity metrics

Correlation
Coefficient

Significance?

α = 0.01
sample = 200
min r = 0.1818

Cyclomatic complexity vs. Halstead’s effort 0.6965 Y

Cyclomatic complexity vs. Spatial complexity 0.7445 Y

Halstead’s effort vs. Spatial complexity 0.8686 Y

From Table 5 and Figure 2, we find that correlation between Halstead’s effort
measure and Douce’s spatial complexity metric is the strongest relation. We
suggest that this evidence support our initial assertion that the two metrics are
equivalent. We further suggest that one of these two metrics with the other would
not present too many difference in the values that we obtain for complexity.

We also suggest from our findings that because all of these metrics can be
shown to be useful in different situation and because there are no metrics which
show significantly better performance than others, it may be a good idea to com-
bine these metrics when we want to show the complexity features of software.
Also, although Halstead’s effort measure and Douce’s spatial complexity metric
show similar results in these studies, Halstead’s effort measure has longer history
and its usability has been validated in several previous studies[1][17]. In this case,
we can think that Halstead’s effort measure is more mature. In addition, many
CASE tools[14][18][19] have been developed to capture Halstead’s measure. So it
will be prudent to use Halstead’s effort measure in place of Douce’s spatial com-
plexity measure. Therefore using McCabe’s cyclomatic complexity metric and
Halstead’s effort metric should be a good combination of metrics for capturing
the complexity of a software system. But we may have to further exploit this
area of research.

Other interesting findings worthy of discussion are as follows:
Why does Halstead’s effort measure show strong correlation with Douce’s spa-

tial complexity metric in this study? Why does McCabe’s cyclomatic complexity
show significantly different results from the other two complexity metrics? These
are questions that present opportunities for further research, However we may
suggest that these symptoms may be caused by their correlations with the size
of source code. From the definition of Halstead’s complexity metrics, it can be

Performance Comparison of Software Complexity Metrics 171

Fig. 2. Cross-correlation analysis of three complexity metrics

found that the value of Halstead’s effort measure depends on the numbers of op-
erators and operands of the source code. So when source code size increases, it
is most likely to add new operators or operands into the software modules. Con-
sequently, it increases the value of Halstead’s effort measure. Similarly, Douce’s
spatial complexity metric is calculated by summing up the distance between
function definitions and function calls. Increasing source code size has great
chance to increase the distance. Hence, the value of Douce’s spatial complexity
metric is also increased. So it may be the internal reason for the strong correla-
tion between Halstead’s effort measure and Douce’s spatial complexity metric.
In contrast, McCabe’s cyclomatic complexity is a metric to measure the number
of linearly independent paths. To increase the source code size has less chance
to increase the number of linear independent paths in a software module. As
a consequence, McCabe’s cyclomatic complexity shows weak correlations with
Halstead’s effort measure and Douce’s spatial complexity.

We found some differences in the results of our study with the results of
Curtis’s study[1]. In Curtis’s research Halstead’s effort measure shows better
performance than McCabe’s cyclomatic complexity. But in our study McCabe’s
cyclomatic complexity metrics have better performance in some situations. There
are several reasons for this difference. Firstly, in Curtis’s research they just fo-
cused on the correlation between the maintenance effort and complexity metrics,
but in our study several different fields are studied. Secondly, Curtis’s research

172 M. Zhang and N. Baddoo

strongly depends on programmers’ feedback. This may cause errors. Thirdly, the
source code samples used in Curtis’s research are quite small, just varying from
25 to 225 lines of code. There is a great gap between these samples and the ac-
tual practice. In contrast, the samples used in this study are randomly selected
from a developing open source project Eclipse JDT, so they better represent
the actual environment. Finally, in our opinion, the greatest different is between
the programming languages. In Curtis’s research samples are developed by a
function oriented programming language FORTRAN. But in this investigation
samples are developed in Java, an OO (object oriented) language. Some features
of OO languages, such as encapsulation and inheritance, tend to break the source
codes down into small components. So, it is unlikely to have a lot of operator
and operands in a single software function developed in an OO language. So in
OO based programs Halstead’s effort metric may not provide as good a result
as it does in function oriented programs.

We do need to add though, that although Curtis’ research has some limita-
tions, it still provides some useful ideas. One of them is that complexity metrics
show different performance in different size of source codes. This leads to a
questioning of our research, because our studies are just based on bug fixing.
According to Curtis’ research, the result may be different if the research had
been performed at a total program level. We suggest that this may merit further
research.

6 Conclusion

In this paper, we have described a study that compared the performance of three
software complexity metrics, McCabe’s cyclomatic complexity metric, Halstead’s
effort complexity measure and Douce’s spatial complexity measure. We used
data from the CVS version control system of Eclipse JDT open source project.
In order ably conduct this comparison, we formulated four hypotheses.

The results of our study show that McCabe’s cyclomatic complexity metric,
Halstead’s effort measure and Douce’s spatial complexity show different per-
formance in different situation. In testing hypothesis B, McCabe’s cyclomatic
complexity shows better performance, however when testing hypothesis A and
hypothesis C Halstead’s effort measure and Douce’s spatial complexity met-
ric seemed better. Furthermore, Halstead’s effort measure and Douce’s spatial
complexity metric appeared to be strongly correlated in this study. When we
consider maturity and supporting utilities, we suggest that it should be a good
idea to replace Douce’s spatial complexity metric with Halstead’s effort measure
in practice. We also recommend that combining McCabe’s cyclomatic complex-
ity metric and Halstead’s effort measure to measure software complexity can
help to better adjudge the complexity of software systems, than using a single
complexity metric.

We plan further research to follow up this study that would include stud-
ies that compare the combination of McCabe’s cyclomatic complexity metric
and Halstead’s complexity measure with a single metric to investigate whether

Performance Comparison of Software Complexity Metrics 173

such combination can show better performance. We also plan to conduct studies
that compare the features of complexity metrics at total project level and single
source file level. Finally, we propose a programme of studies to capture inter-
nal reasons why Halstead’s complexity measure shows strong correlation with
Douce’s spatial complexity metric.

Biography

Min Zhang is a PhD candidate in the School of Computer Science at the
University of Hertfordshire, UK. His research interests include design patterns,
refactoring, software metrics and open source software. He received an MSc in
software engineering from University of Hertfordshire. He is a member of the
Systems and Software Research (SSR) group.

Dr Nathan Baddoo is a senior lecturer in the School of Computer Science
at the University of Hertfordshire, UK. He is also a researcher in the Systems
and Software Research (SSR) group. His research focuses on human factors in
software processes. He holds many publications in this area. Nathan completed
a PhD in Motivators and De-motivators in Software Process Improvement, in
2001. His current research interests are in the general areas of software quality,
software process improvement and software practitioner motivation. Recent work
includes the development of an empirical model of software engineers’ motivators
and exploratory work on prediction models of software engineers’ motivation,
using agent-based simulation and fuzzy logic. Nathan is a Programme Committee
Chair of EUROSPI 2007.

References

1. Curtis, B., Shepperd, S., Milliman, P.: Third time charm: Stronger prediction of
programmer performance by software complexity metrics. In: Proceeding of the
fourth International Conference on Software Engineering, pp. 356–360 (1979)

2. McCabe, T.J.: A complexity measure. Software Engineering, IEEE Transactions
on 2(4), 308–320 (1976)

3. Halstead, M.H.: Elements of Software Science, Operating, and Programming Sys-
tems Series, vol. 7. Elsevier, New York (1977)

4. Douce, C., Layzell, P., Buckley, J.: Spatial measures of software complexity. In:
Proc. 11th Meeting of Psychology of Programming Interest Group (1999)

5. Chhabra, J., Aggarwal, K., Singh, Y.: Code and data spatial complexity: Two
important software understandability measures. Information and software Tech-
nology 45(8), 539–546 (2003)

6. Massey, B.: Longitudinal analysis of long-timescale open source repository data.
In: International Conference on Software Engineering. Proceedings of the 2005
workshop on Predictor models in software engineering, pp. 1–5 (2005)

7. Lehman, M., Belady, L.: Program Evolution, Processes of Software Change. Aca-
demic Press, London (1985)

174 M. Zhang and N. Baddoo

8. McCabe, T.J., Butler, C.W.: Design complexity measurement and testing. Com-
munications of the ACM 32(12), 5–9 (1989)

9. McCabe, T.J., Watson, A.H.: Software complexity. Journal of Defense Software
Engineering 7, 5–9 (1994)

10. Gold, N.E., Mohan, A.M., Layzell, P.J.: Spatial complexity metrics: an investiga-
tion of utility. Software Engineering, IEEE Transactions on 31(3), 203–212 (2005)

11. Mockus, A., Fielding, R., Herbsleb, J.: Two case studies of open source software
development: Apache and mozilla. ACM Transactions on Software Engineering and
Methodology 11(3), 309–346 (2002)

12. Sliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: ACM
SIGSOFT Software Engineering Notes, Proceedings of the 2005 international work-
shop on mining software repositories MSR ’05, vol. 30 (2005)

13. JavaNCSS: http://www.kclee.de/clemens/java/javancss/index.html
14. Lachesis: http://lachesis.sourceforge.net/
15. JavaCC: https://javacc.dev.java.net
16. Black, T.R.: Doing quantitative research in the social sciences: an integrated ap-

proach to research design, measurement and statistics. SAGE, London (1999)
17. Jones, C.: Software metrics: good, bad and missing. Computer 27(9), 98–100 (1994)
18. Oman, P.: HP-MAS: A Tool for Software Maintainability, Software Engineering.

University of Idaho, Moscow (1991)
19. CMT++/CMTJava: http://www.verifysoft.com/en halstead metrics.html
20. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous & Practical Approach,

2nd edn. PWS Publishing Company, Boston (1997)

http://www.kclee.de/clemens/java/javancss/index.html
http://lachesis.sourceforge.net/
https://javacc.dev.java.net
http://www.verifysoft.com/en_halstead_metrics.html

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 175–186, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Methodology for Identifying Critical Success Factors
That Influence Software Process Improvement Initiatives:

An Application in the Brazilian Software Industry

Mariano Montoni and Ana Regina Rocha

COPPE/UFRJ – Universidade Federal do Rio de Janeiro
P.O. BOX 68511 – ZIP 21945-970 – Rio de Janeiro, Brazil

{mmontoni,darocha}@cos.ufrj.br

Abstract. Continuous improvement of software development capability is fun-
damental for organizations to thrive in competitive markets. Nevertheless,
Software Process Improvement (SPI) initiatives have demonstrated limited re-
sults because SPI managers usually fail to cope with factors that have influence
on the success of SPI. In this paper, we present the results of a multi-strategy
approach aiming to identify critical success factors (CSF) that have influence on
SPI. The study results were confirmed by the literature review. The CSF were
identified through a combination of qualitative and quantitative analyses of the
results of a survey we conducted with SPI practitioners involved in Brazilian
software industry experiences. We also identified the relationships of major fac-
tors that emerged from the survey. We expect that the major CSF presented in
this paper can be used by SPI managers in the definition of SPI strategies aim-
ing to enhance SPI initiatives success.

1 Introduction

Continuous improvement of software development capability is fundamental for or-
ganizations to thrive in competitive markets. Nevertheless, Software Process Im-
provement (SPI) initiatives have demonstrated limited results because SPI managers
usually fail to cope with factors that have influence on the success of SPI [22]. There-
fore, there is an urge in the SPI field to develop a knowledge-body related to critical
success factors (CSF) that affect SPI. Moreover, it is also important to understand
how these factors relate to each other and how SPI implementation strategies can be
defined, monitored and controlled to provide adequate treatment to critical success
factors since the conception of a SPI program and throughout the life of each SPI
project [24].

A great number of studies have analyzed SPI initiatives aiming to identify the fac-
tors that have positive or negative influence on the success of SPI programs. Despite
the fact that many of these studies were conducted following rigorous research meth-
odologies and that statistical significant results are provided, the majority of the stud-
ies are context dependent and lack of information on how to generalize the results and

176 M. Montoni and A.R. Rocha

how to efficiently consider the factors in the establishment of SPI implementation
strategies. In this context, we have conducted an empirical study to develop a knowl-
edge-body of factors that influence SPI initiatives in the context of Brazilian software
industry. We have used a multi-strategy approach for this study: firstly, by reviewing
empirical studies in the SPI field aiming to identify factors that have positive and
negative impact on SPI; secondly, by combining qualitative and quantitative tech-
niques to collect and to analyze data related to factors that have positive and negative
impact on SPI in the context of Brazilian software industry. The methods and tech-
niques used in this study have been largely applied by other SPI studies aiming to
address the same research goal, but focusing on different software industry contexts.

This work is part of a broader investigation of SPI implementation approaches. We
are currently examining the requirements for a general SPI implementation approach
that supports: (i) the collaboration of SPI managers constituting a Community of
Practice in the SPI field; (ii) the development of a knowledge-body of critical success
factors that influence SPI initiatives success; (iii) the definition of SPI implementation
strategies; (iv) the monitoring and control of SPI implementation initiatives; and (v)
the packaging and dissemination of SPI empirical results. In order to provide a com-
putational infrastructure to this approach, we are also integrating Community of Prac-
tice Environments (CoPE), Process-centered Software Engineering Environments
(PSEE) and Knowledge Management Environments (KME).

The remainder of the paper is organized as follows. Section 2 reviews empirical
studies that have investigated factors that influence SPI implementation initiatives and
outlines methodological issues of these studies. Section 3 describes the research
method of our study. Section 4 discusses the qualitative and quantitative analysis
results of a survey we conducted with SPI practitioners involved in Brazilian software
industry experiences. We also describe in section 4 the relationship of some of the
major factors that emerged from the survey results. Finally, section 5 presents conclu-
sions and points out future work.

2 Background

The focus of the literature review conducted as part of the study presented in this
paper is to synthesize empirical results of empirical studies aiming to address the
following research question: What factors, as identified in the empirical studies, have
influence on SPI? Next, we briefly described these studies. The correlations among
the CSF identified by each study are presented in the appendix.

Wilson et al. [16] developed a SPI success evaluation framework of questions and
validated it with group interviews in seven UK companies in the point of view of
developers, supervisors/team leaders, senior managers and SPI coordinator. The au-
thors identified specific questions within this framework that appear to be significant
indicators of the difference between the successful and unsuccessful companies.

Baddoo and Hall [17] present findings from a study of SPI motivators involving
almost two hundred software practitioners in 13 UK companies in the point of view of
developers, project managers and senior managers. From the analysis of the collected
data, the authors suggest that SPI implementation can be improved by appropriate
management of the common motivators across practitioners groups. Baddoo and Hall

 A Methodology for Identifying CSF That Influence SPI Initiatives 177

[18] also analyzed the data collected from that study aiming to identify the relation-
ship between motivators that SPI managers should consider when designing SPI im-
plementation strategies. Moreover, the authors reported another point of view of the
same survey study focusing on the de-motivators for SPI [19]. We observed that the
SPI de-motivators presented by this work are actually representing the lack of pres-
ence of the motivators presented in [18] suggesting that some of the motivators and
de-motivators can be interpreted as part of the same CSF.

Rainer and Hall [20] report the results of a survey conducted to investigate the CSF
that have major impact or no impact on SPI in the point of view of SPI managers of
the UK and multi-national companies. The data for the survey was collected from 84
self-administered questionnaires grouped according to the respondent organization
appraisal status. The authors identified that organizations with different process ma-
turity capabilities consider different CSF to have major impact on SPI. Rainer and
Hall also report the results of another exploratory study aiming to gain more insight
into the factors that practitioners think affect SPI [21].

El-Emam et al. [22] presents the results of a study of factors that influence the suc-
cess of SPI involving organizations that have performed process assessment, and was
conducted from 1 to 3 years after the assessment. The study analyzed data extracted
from 138 questionnaires according to the respondents’ role in the organizations (pro-
ject level software manager, senior developer, and SEPG manager). Through the
application of statistical analysis techniques, the authors identified CSF components
that relate relevant factors influencing SPI success.

Niazi et al. [24] present findings of an empirical study of the CSF for SPI imple-
mentation with 34 SPI practitioners. The authors identified eight CSF. These findings
were confirmed by comparing it with results from a literature survey of CSF that
impact SPI. Besides confirming the survey results, the authors identified two new
CSF that were not identified in the literature. Niazi et al. [23] also describes a matur-
ity model for the implementation of SPI developed from this study results.

Dybå [25] developed an instrument for measuring CSF in SPI based on data col-
lected from 120 software organizations. The instrument was evaluated and consid-
ered to have satisfactory psychometric properties. This instrument is constituted of
statements organized in six groups of CSF.

Other important studies conducted to investigate factors that affect SPI are fre-
quently included in the literature review of the studies described above. For instance,
Goldenson and Herbsleb [26] conducted a survey with 138 respondents who were
involved in 56 CMM appraisals aiming to identify factors associated to both success-
ful and less successful SPI programs. El-Emam et al. [27] analyzed data collected
through the ministration of questionnaires in 14 companies involved in SPICE trials.
From this study, the relationships of factors to two identified variables of success
were investigated. Stelzer and Mellis [28] reviewed experience reports from the litera-
ture and case studies of 56 companies that had gone through a successful SPI pro-
gram. Ten factors that affect SPI success were identified from this review.

Some of the works described above neither distinguish the effect that CSF have on
SPI success nor provide concrete information on how to manage the factors. This lack
of information in the studies inhibits the consideration of such CSF in the definition
and monitoring of SPI strategies. Moreover, the empirical studies that have investi-
gated CSF do not have a uniform interpretation of the concepts related to SPI.

178 M. Montoni and A.R. Rocha

cd CSF Concept Map

CSF_Finding_Data_Source

CSF_Finding

CSF_Finding_TypeCSF_Property

CSFCSF_Component
relates

has

is evidenced by

is of

is grounded on

Fig. 1. CSF concept map

Therefore, it is important to define a concept map before investigating factors that
affect SPI aiming to compare and aggregate SPI study results and to guarantee that
people involved in the studies have the same understanding of SPI concepts. In order
to achieve this goal, we developed the CSF concept map depicted in Figure 1.

We initially stated that each instance of CSF concept relate to each other in some
way that the group of related CSF constitute a CSF Component. Considering that CSF
is an abstract concept, we related CSF to an observable concept named CSF Property.
Each CSF Property can be directly evidenced by CSF Findings. The CSF Finding
must be classified according to the CSF Finding Type of evidence it provides (evi-
dence of CSF presence or absence). Since CSF theory emerges from empirical stud-
ies, each CSF Finding must be grounded in a CSF Finding Data Source. This concept
map was used as a framework for identifying and associating the survey study results
presented in the next section.

3 Research Method

In order to initiate the study of issues that influence SPI implementation in the Brazil-
ian industry context, we first set out to explore the following research question: What
factors have influence on SPI in the context of Brazilian software industry?

We also defined a context and scope for the study aiming to answer this research
question. The study was restricted to analyze experiences of a selected group of SPI
practitioners that participated on SPI initiatives based on software process reference
models and standards (like ISO/IEC 12207 [2], ISO/IEC 15504 [3] and CMMI [4]).
We were concerned about identifying CSF under two points of view in this study. The
first point of view is of SPI practitioners that participated as consultants in SPI pro-
jects. The second point of view is of organizations’ members involved in SPI projects.

Software development is a complex activity and software process relies heavily on
human compliance for its deployment [5]. Considering that software development is
social-cultural in nature, any research must provide the basis for interpreting social,
psychological and cultural issues [6]. Therefore, we chose the approach Grounded
Theory (GT) as the method of investigation of the study for the following reasons: (i)
GT is a qualitative technique indicated to study human behavior and organizational
cultures, (ii) GT allows theory to emerge based on individual experiences, and (iii)
GT provides the techniques for conducting inductive, theory-generating research
[5, 7]. The steps executed in this study are described next.

 A Methodology for Identifying CSF That Influence SPI Initiatives 179

Step 1: Data Collection
The objective of this step is to collect the data necessary for the study. The data was
collected through the application of two types of questionnaires aimed to identify
factors that have influence on SPI implementation. The first type of questionnaire was
sent to a selected group of experienced SPI practitioners that participated as consult-
ants on SPI projects executed by diverse types of Brazilian organizations. The second
type of questionnaire was send to members of those organizations that were involved
in the SPI projects. The questionnaires did not contain any pre-determined item and
the participants filled them out separately. In total, 25 questionnaires were returned
containing general descriptions about factors that had influenced the SPI initiatives.
These descriptions are the basis from which the theory is grounded.

Step 2: Open Coding
The objective of this step is to analyze the data collected and allocate codes to the
text. These codes represent findings of Critical Success Factors (CSF) that have influ-
ence on SPI implementation. Since each code can be linked to quotations within the
questionnaires, they provide support and rich explanation for the results. In total, 66
different codes were identified through the analysis of the questionnaires.

Step 3: Axial Coding
The objective of this step is to document properties and dimension of codes (CSF
findings) identified in the last step. The codes are grouped according to their proper-
ties forming concepts that represent categories of CSF. These categories are analyzed
and subcategories are identified aiming to provide more clarification and specifica-
tion. Finally, the categories and subcategories are related to each other. Since the
categories are merely descriptions of the data, they must be further developed to con-
stitute the building blocks of the theory. The association between a finding and a CSF
property were classified as a finding representing the presence of one CSF property or
a finding representing the absence of one CFS property in a specific context of analy-
sis. The list of identified CSF is presented in the appendix along with correlations to
previous empirical studies that also identified the same factors as critical. The proper-
ties related to each identified CSF are presented in Table 1.

Once we identified all the data related to CSF derived from the coded texts, we
continued the axial coding by linking categories (i.e. CSF) at the level of properties
and dimensions. The axial coding process proposed by [7] indicates that categories
are related to each other along the lines of their properties and dimension. During
axial coding we looked for answers to questions such as why or how come, where,
when, how, and with what results, and in so doing we tried and uncover relationships
among categories. In order to achieve this goal, we applied the multidimensional
scaling (MDS) technique to examine the relationships between CFS. MDS is a social
science data analysis technique designed to generate a rich visual understanding of
human issues [10]. The result of the application of the MDS technique is a set of
points in space, arranged in such a way that the distances between the points reflect
the empirical relationship, also known as MDS Graph [11]. We also applied the
Principal components analysis (PCA) technique [12] to identify the CSF properties
plotted in the MDS Graph with statistical significant relationship. PCA provides us a

180 M. Montoni and A.R. Rocha

Table 1. CSF properties

ID Property CSF
P1 Existence of acknowledgement politics to SPI collaboration F1
P2 Frequency of SPI consultants' follow-up during SPI implementation F9
P3 Degree of changes acceptance F2
P4 Degree of adequate conciliation of SPI interests F3
P5 Degree of adequate organization structure F4
P6 Degree of adequate SPI project management F5
P7 Degree of adequate SPI push-pull implementation relation F5
P8 Degree of adequate supporting tools F6
P9 Degree of adequate processes and procedures F7
P10 Degree of alignment of SPI implementation with organization strategic goals F3
P11 Degree of higher management support, commitment and involvement F8
P12 Degree of SPI consultants' competences F10
P13 Degree of organization members' software engineering competences F9
P14 Degree of organization members' commitment and involvement F8
P15 Degree of trustfulness of organization members in the SPI consultants F10
P16 Degree of organization members' awareness of SPI benefits F11
P17 Degree of software and hardware availability to support processes execution F6
P18 Degree of financial resources availability to SPI F6
P19 Degree of organization members' time availability to SPI F6
P20 Degree of organizational internal stability F4
P21 Degree of SPI institutionalization F7
P22 Degree of organization members' motivation to SPI F12
P23 Degree of relationship among organization members and SPI consultants F10
P24 Degree of people turnover F4
P25 Degree of organization members' satisfaction F12

systematic way for identifying a reduced set of CSF components relative to the origi-
nal set of variables. This reduction facilitates the combination of CSF that relate to the
same construct into one composite dimension.

Step 4: Selective Coding
The objective of this step is to integrate and refine the theory. This step involves iden-
tifying a core category as a central category to the study and its correlation to other
categories. The links between categories and the core category provide the theory. As
the core category acts as the link for all other categories, they must relate to it and it
must appear frequently in the data [7].

The last steps were executed iteratively for each questionnaire. The objective was
to try and emerge the theory since the beginning and constantly comparing it with
new data until ‘theoretical saturation’ has been reached, i.e., were additional data
being collected is providing no new knowledge about the categories. This iterative
process of collecting, coding and analyzing data whilst simultaneously generating
theory is also known as Theoretical Sampling [7]. The ‘saturated’ categories and the
relationships were then combined to form the theoretical framework.

Step 5: Memoing
The objective of this step is to make annotations of ideas, observations and questions
that occur during the last steps. These memos may take the form of statements,

 A Methodology for Identifying CSF That Influence SPI Initiatives 181

hypotheses or questions. The memos annotated in step 4 (Selective Coding) become
increasingly theoretical and act as the building blocks for the theory.

4 Qualitative and Quantitative Analysis Results

Once the respondents returned the questionnaires, we extracted the CSF findings from
the respondents’ statements and proceeded to the application of statistical techniques
(MDS and PCA) to derive and aggregate the major CSF. The first step to execute the
MDS analysis was to establish a content category dictionary of all CSF properties
(presented in Table 1). Next, we created a data matrix based upon how many occur-
rences of the CSF properties were identified by each participant of the survey. We
used the matrices to calculate multivariate correlations between the CSF properties.
Finally, we used these correlations to plot the geometric distances between CSF in the
MDS Graph.

The PCA technique was applied on the data matrix of CSF properties aiming to
identify the properties with statistical significant relationship. By applying the PCA
analyses, the properties receive a final loading on each CSF component extracted.
These loadings are the correlations between properties and CSF components. The
final loading value helps to interpret how “good” the obtained factor loadings are.
According to Comrey [13], factor loading value of 0.45 would be considered fair,
more than 0.55 is good, those of 0.63 is very good, and those of 0.71 are excellent. In
our study we considered 0.55 as the cutoff value given the limited size of sample. The
results of the PCA are shown in Table 2. Nine CSF components were extracted from
the data analysis. In order to assist in deciding how many CSF components to extract
we used the eigenvalue rule. The eigenvalue rule is based on retaining only CSF com-
ponents that explain more variance than the average amount explained by one of the
original items (i.e. CSF components with eigenvalue > 1). Approximately 85% of the
variation is explained by these nine CSF components. This is a very good value given
the exploratory nature of this study.

We used the extracted factors to construct CSF components. For each CSF compo-
nent we calculated its Crombach alpha coefficient [14], a measure commonly used to
evaluate the reliability of subjective measurement scales. The coefficient can vary
from 0 to 1 where 1 is perfect reliability and 0 is maximum unreliability. Nunnally
has suggested that for the early stages of research a Cronbach alpha coefficient ap-
proaching 0.7 is acceptable [15]. Factor 1 has a Cronbach alpha coefficient of value
0.81 demonstrating that CSF component has a very good reliability. Despite the fact
that Factor 2 has too few variables for calculating the Cronbach alpha coefficient, the
higher rotated factor loadings of the exploratory factor analysis for this component
indicate the higher correlation of Factor 2 variables. Factor 3 has a Cronbach alpha
coefficient of value 0.56. Even though this number is not high, the higher rotated
factor loadings for this component also indicate the higher correlation of Factor 3
variables. Factor 4 has a Cronbach alpha coefficient of value 0.81 demonstrating that
CSF component has a very good reliability. Factor 5 has a Cronbach alpha coefficient
of value 0.58. Even though this number is not high, it is actually good for a variable
consisting of only 3 variables. These five CSF factors alone explains 65% of total
variance which is a very good value given the reduced set of cases analyzed. The

182 M. Montoni and A.R. Rocha

Table 2. Results of the PCA with Varimax normalized as the factor rotation method

CSF
Prop

Factor
1

Factor
2

Factor
3

Factor
4

Factor
5

Factor
6

Factor
7

Factor
8

Factor
9

P1 0.980 0.072 0.009 0.123 0.043 0.050 0.014 0.044 -0.046
P2 -0.112 0.091 -0.089 0.016 0.242 -0.099 0.055 -0.818 0.225
P3 -0.091 -0.135 0.114 -0.026 -0.811 0.197 0.026 0.039 0.070
P4 0.708 -0.208 -0.259 0.105 -0.046 -0.390 -0.060 -0.131 0.128
P5 -0.033 0.011 0.070 -0.008 0.094 -0.950 -0.071 0.023 -0.077
P6 -0.105 -0.750 -0.356 -0.096 0.231 -0.249 0.058 0.211 0.155
P7 0.421 0.193 -0.595 0.350 0.151 0.156 -0.355 0.025 0.135
P8 0.055 -0.398 -0.262 0.130 -0.004 0.257 -0.211 -0.582 -0.332
P9 0.011 -0.279 -0.612 -0.436 -0.048 0.103 0.111 -0.220 0.340
P10 -0.079 -0.068 -0.050 0.124 -0.054 0.029 0.006 -0.016 0.848
P11 0.174 -0.131 0.055 0.840 0.052 0.059 -0.119 0.030 -0.083
P12 0.033 -0.221 0.137 -0.405 0.136 0.181 0.134 -0.310 0.538
P13 0.605 -0.160 -0.282 0.603 0.031 -0.002 -0.057 0.041 0.031
P14 0.448 0.255 -0.100 -0.095 -0.479 -0.230 -0.555 -0.063 0.033
P15 -0.018 0.158 0.036 -0.057 -0.678 0.018 -0.035 0.205 0.004
P16 -0.098 -0.892 0.193 0.128 -0.003 0.145 0.096 -0.083 0.090
P17 -0.087 0.054 0.101 0.063 0.079 -0.026 -0.911 0.001 -0.075
P18 0.258 0.085 -0.071 0.814 -0.006 -0.011 0.060 -0.193 0.156
P19 0.074 -0.440 0.051 0.594 0.251 -0.015 0.094 0.535 0.018
P20 0.980 0.072 0.009 0.123 0.043 0.050 0.014 0.044 -0.046
P21 0.137 0.110 -0.621 0.467 0.114 -0.075 0.312 0.122 -0.005
P22 -0.120 0.206 -0.234 -0.017 -0.645 -0.431 0.188 -0.252 -0.170
P23 0.980 0.072 0.009 0.123 0.043 0.050 0.014 0.044 -0.046
P24 -0.029 -0.007 -0.932 -0.009 -0.017 -0.011 0.016 -0.163 -0.108
P25 0.980 0.072 0.009 0.123 0.043 0.050 0.014 0.044 -0.046

Factors 6 to 9 has too few variables to calculate a Cronbach alpha coefficient and do
not have high rotated factor loadings of the exploratory factor analysis. Therefore, we
consider the Factors 1 to 5 as the major CSF components.

Figure 2 presents the graph of these components and the respective variables as a
result of the application of MDS technique on the multivariate correlations calculated
for the CSF properties. The major CSF components with statistical reliability identi-
fied through the application of PCA are also depicted on the graph.

Factor 1 was labeled “Environment” since all variables measure the organizational
environment capability to establish and maintain SPI initiatives. These variables
measure if there are favorable conditions for initiating and sustaining an SPI initiative
with two points of view: the individual and the organization. The individual measures
are related to members’ satisfaction and relationship among members and the SPI
team. The organization measures are related to conciliation of strategic goals and SPI
interests and to organization internal stability.

Factor 2 is labeled “Efficient SPI Implementation Strategy” and indicates that an
efficient SPI strategy is concerned on guaranteeing that organization members are
aware of the potential benefits that can be achieved by implementing SPI.

We named Factor 3 component as “Solid SPI Implementation” since the variables
of this factor measure the solidification of SPI implementation initiatives across the

 A Methodology for Identifying CSF That Influence SPI Initiatives 183

Scatterplot 2D

Final Configuration, dimension 1 vs. dimension 2

P1

P2

P3

P4

P5

P6

P7P8
P9

P10
P11

P12
P13

P14

P15

P16

P17

P18

P19

P20

P21

P22

P23

P24

P25

-1,6 -1,4 -1,2 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0

Dimension 1

-1,4

-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

D
im

en
si

on
 2

Factor 1

Factor 2

Factor 3

Factor 4

Factor 5

Fig. 2. Graph of major CSF components as a result of the application of MDS and PCA

organization by characterizing the processes and procedures institutionalization resis-
tance degree to organizational structure changes, for instance, people turnover, and to
inherent difficulties of implementing SPI in different organizational levels.

Since all variables of Factor 4 component are considered indicators of commitment
to SPI, we labeled this factor as “Commitment”. A higher management committed to
SPI provides adequate financial resources since the conception of an SPI program and
throughout the SPI projects. Moreover, a committed senior management guarantees
that organization members have adequate competences and available time to effi-
ciently execute process changes.

Factor 5 is termed “SPI motivation and acceptance” and indicates that the SPI team
is a facilitator of organization members’ acceptance to institutionalization of process
changes promoted by SPI initiatives.

It is importance to notice that no analyses have been conducted to identify the type
of relationships among the CSF that compound a CSF component. Therefore, we
expect to extend the presented work by conducting cause and effect analyses aiming
to identify what are the reasons why two or more factors correlate.

5 Conclusions

This paper presented the results of a study conducted with the purpose of identifying
critical success factors that influence SPI initiatives in the context of Brazilian
software industry. As part of this study, we reviewed the literature related to factors

184 M. Montoni and A.R. Rocha

that influence SPI. We also conducted a survey study and applied a combination of
qualitative and quantitative methods and techniques aiming to identify the major CSF
components that influence SPI success. Although our findings confirm the CSF that
impact SPI cited in the literature, we also present a research methodology for investi-
gating CSF that influence SPI adequate to investigate CSF in the context of Brazilian
software industry.

The next short-term goal of our studies is to develop and validate an instrument for
assessing the readiness of an organization to initiative an SPI program and for predict-
ing the success of SPI implementation based on the results of the presented work. A
second short-term goal is to conduct another study to investigate how the influence of
CSF can be appropriately managed aiming to increase the success of SPI initiatives. A
mid-term goal of our studies is to replicate the study presented in this paper and to
apply the instrument for measuring SPI success in a larger context (we expect to ana-
lyze approximately 200 SPI initiatives conducted in Brazilian software industries). A
pre-requisite for achieving this last goal is to evolve the SPI concept map presented in
this paper in a complete SPI ontology aiming to guarantee that people involved in the
studies have the same understanding of SPI concepts. As a long-term goal of our
study, we expect to construct a knowledge-base of CSF and to develop a computa-
tional system to support SPI managers to make decisions aiming to enhance the defi-
nition and control of SPI strategies.

References

1. Goldenson, D.R., Gibson, D.L.: Demonstrating the Impact and Benefits of CMMI: An
Update and Preliminary Results. SEI Special Report, CMU/SEI-2003-SR-009 (October
2003)

2. ISO/IEC 12207:1995/Amd 1:2002/Amd 2:2004. Information Technology – Software Life
Cycle Processes

3. ISO/IEC 15504: Information Technology – Process Assessment. Part 1 – Concepts and
vocabulary, part 2 – Performing an assessment, part 3 – Guidance on performing an as-
sessment, part 4 – Guidance on use for process improvement and process capability de-
termination, and part 5 – An exemplar process assessment model

4. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI: Guidelines for Process Integration and
Product Improvement. Addison-Wesley, Reading (2003)

5. Coleman, G., O’Connor, R.: Software Process in Practice: A Grounded Theory of the Irish
Software Industry. In: Richardson, I., Runeson, P., Messnarz, R. (eds.) EuroSPI 2006.
LNCS, vol. 4257, pp. 28–39. Springer, Heidelberg (2006)

6. Berstelsen, O.W.: Towards a Unified Field of SE Research and Practice. IEEE Software ,
87–88 (November/December 1997)

7. Strauss, A., Corbin, J.M.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory, 2nd edn. Sage Publications, Thousand Oaks (1998)

8. Dyba, T.: An Empirical Investigation of the Key Factors for Success in Software Process
Improvement. IEEE Trans. on Software Eng. 31(5), 410–424 (2005)

9. Niazi, M., Wilson, D., Zowghi, D.: Critical Success Factors for Software Process Im-
provement Implementation: An Empirical Study. Software Process Improvement and
Practice 11(2), 193–211 (2006)

10. Shye, S., Elizur, D., Hoffman, M.: Introduction to Facet Theory. Sage, Thousand Oaks,
CA (1994)

 A Methodology for Identifying CSF That Influence SPI Initiatives 185

11. Guttman, L.: A general nonmetric technique for finding the smallest coordinate space for a
configuration of points. Psychometrika 33, 469–506 (1968)

12. Kim, J., Mueller, C.: Factor Analysis: Statistical Methods and Practical Issues. Sage Publi-
cations, Thousand Oaks (1978)

13. Comrey, A.: A First Course on Factor Analysis. Academic Press, London (1973)
14. Cronbach, L.J.: Coefficient Alpha and the Internal Consistency of Tests. Psychomet-

rica 16, 297–334 (1951)
15. Nunnally, J.C.: Psychometric Theory, 2nd edn. McGraw-Hill, New York (1978)
16. Wilson, D.N., Hall, T., Baddoo, N.: A framework for evaluation and prediction of soft-

ware process improvement success. J. of Sys. & Soft. 59(2), 135–142 (2001)
17. Baddoo, N., Hall, T.: Motivators of Software Process Improvement: an analysis of practi-

tioners’ views. J. of Sys. and Software 62(2), 85–96 (2002)
18. Baddoo, N., Hall, T.: Software Process Improvement Motivators: An Analysis using Mul-

tidimensional Scaling. Journal of Empirical Software Engineering 7(2), 93–114 (2002)
19. Baddoo, N., Hall, T.: De-motivators for software process improvement: an analysis of

practitioners’ views. J. of Sys. and Soft. 66(1), 23–33 (2003)
20. Rainer, A., Hall, T.: Key success factors for implementing software process improvement:

a maturity-based analysis. J. of Sys. and Soft. 62(2), 71–84 (2002)
21. Rainer, A., Hall, T.: A quantitative and qualitative analysis of factors affecting software

processes. J. of Systems and Software 66(1), 7–21 (2003)
22. El-Emam, K., Goldenson, D., Mccurley, J., Herbsleb, J.: Modelling the Likelihood of

Software Process Improvement: An Exploratory Study. Journal of Empirical Software En-
gineering 6(3), 207–229 (2001)

23. Niazi, M., Wilson, D., Zowghi, D.: A maturity model for the implementation of software
process improvement: an empirical study. Journal of Systems and Software 74(2), 155–
172 (2005)

24. Niazi, M., Wilson, D., Zowghi, D.: Critical Success Factors for Software Process Im-
provement Implementation: An Empirical Study. Software Process Improvement and
Practice 11(2), 193–211 (2006)

25. Dybå, T.: An Instrument for Measuring the Key Factors of Success in Software Process
Improvement. J. of Emp. Soft. Eng. 5(4), 357–390 (2000)

26. Goldenson, D.R., Herbsleb, J.D.: After the Appraisal: A Systematic Survey of Process Im-
provement, its Benefits and Factors that Influence Success. Software Engineering Institute,
CMU/SEI-95-TR-009 (1995)

27. El-Emam, K., Smith, B., Fusaro, P.: Success factors and barriers for software process im-
provement: An empirical study. In: Tully, C., Messnarz, R. (eds.) Better Software Practice
for Business Benefit: Principles and Experience, IEEE Computer Society Press, Silver
Spring, MD (1999)

28. Stelzer, D., Mellis, W.: Success factors of organizational change in software improvement.
Software process – Improvement and Practice 4(4), 227–250 (1998)

186 M. Montoni and A.R. Rocha

Appendix: CSF Identified in the Study and Correlations to
Previous Empirical Studies

Table 3. CSF and correlations to previous empirical studies

ID CSF Previous empirical studies
F1 Politics El-Emam et al. [22], Niazi et al. [24]

F2 Acceptance to changes
Baddoo and Hall [19], Rainer and Hall [21], Dybå [25],
Stelzer and Mellis [28]

F3 Conciliation of interests
El-Emam et al. [22], Niazi et al. [24], Dybå [25], Gold-
enson and Herbsleb [26], El-Emam et al. [27], Stelzer
and Mellis [28]

F4 Organization structure El-Emam et al. [22]

F5 SPI implementation strategy
Baddoo and Hall [19], El-Emam et al. [22], Niazi et al.
[24], Dybå [25], Stelzer and Mellis [28]

F6 Resources
Baddoo and Hall [17, 19], El-Emam et al. [22], Niazi et
al. [24], Goldenson and Herbsleb [26], El-Emam et al.
[27]

F7 Processes
Wilson et al. [16], Rainer and Hall [20, 21], Niazi et al.
[24], Stelzer and Mellis [28]

F8
Support, commitment and
involvement

Wilson et al. [16], Baddoo and Hall [17], Rainer and
Hall [20, 21], El-Emam et al. [22],
Niazi et al. [24], Dybå [25], Goldenson and Herbsleb
[26], El-Emam et al. [27], Stelzer and Mellis [28]

F9
Organization members'
competences

Baddoo and Hall [19], Rainer and Hall [20, 21], Niazi et
al. [24], Dybå [25]

F10 Respect for SPI consultants
Wilson et al. [16], El-Emam et al. [22], Goldenson and
Herbsleb [26], El-Emam et al. [27]

F11 Awareness of SPI benefits
Wilson et al. [16], Baddoo and Hall [17, 19], El-Emam et
al. [22], Niazi et al. [24], Stelzer and Mellis [28]

F12
Organization members'
motivation and satisfaction

Baddoo and Hall [17]

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 187–199, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Quality Impact of Introducing Component-Level Test
Automation and Test-Driven Development

Lars-Ola Damm* and Lars Lundberg

School of Engineering, Blekinge Institute of Technology
Box 520, SE-372 25 Ronneby, Sweden

{lars-ola.damm,lars.lundberg}@bth.se

Abstract. Companies spend significant efforts on testing their products to
achieve a sufficient quality level. This paper presents results from evaluating
the quality impact of implementing a framework for component-level test
automation and Test-Driven Development. The evaluation comprised six
projects for two products at a software development department at Ericsson.
The paper suggests how an existing measurement approach can be used for
evaluating the quality impact of improvements in early phases, i.e. by
classifying faults reported on released products after which phase they should
have been caught in. Based on this measurement approach, the evaluation
determined that the ratio of reported faults in the released products decreased
significantly after implementing the framework. That is, the ratio of faults
belonging to component-level testing decreased from between 60-70 percent to
less than 20 percent in the two studied products.

1 Introduction

Companies constantly seek better processes and tools to shorten lead-time, reduce
costs, and improve the quality of delivered products. To ensure that a product has
reached a sufficient level, significant efforts are spent on testing and fault removal,
commonly at least 50 percent of the total development time [18]. Still, the impact of
faults in released software has been estimated to be as much as one percent of the
U.S. gross domestic product [20]. Additionally, it is widely recognized that faults are
significantly cheaper to find early [24].

A software development department belonging to the telecom provider Ericsson
develops component based software to be used in mobile networks. To become better
at early fault detection, the department implemented a framework for automated
component testing in two products. Additionally, Test-Driven Development (TDD)
was introduced to further aid in achieving a successful implementation. A previous
publication evaluated the impact on the development cost of the framework after one
release of each product [11]. The evaluation concluded that the implementation
resulted in significant efficiency improvements, i.e. a reduction in the number of
faults slipping to function/system test that reduced the development cost. The

* Is also an employee at Ericsson.

188 L.-O. Damm and L. Lundberg

company also wanted to evaluate the impact the framework had on the quality of
delivered products, but that aspect was not yet possible to evaluate at that time.
Therefore, the quality aspect is in focus in this paper.

When evaluating the impact of improvements in early phases, e.g. regarding code
inspections or unit testing, researchers commonly evaluate the impact on later fault-
finding activities such as functional tests [4]. However, the impact on the quality of
the delivered product is not taken into consideration. Fig. 1 illustrates the difference
between the two perspectives. A reason for why the customer perspective is not
commonly evaluated is simply because it is hard to do. That is, much of the research
in the area is conducted as experiments where customer deliveries are not made.
Additionally, when evaluating the impact on customer faults, the effectiveness of
function/system test also influences the number of customer faults, thus making it
hard to ensure internal validity. This paper attempts to address these short-comings by
not only studying the total number of customer faults but also by sorting them after
which phase they should have been found in. Since the implemented test framework
was expected to improve the unit/component test phase, special attention was gives to
faults related to that phase.

Fig. 1. Early Fault Detection Impact on Efficiency and Quality

As in the previous study [11], a concept called Faults-Slip-Through (FST)
measurement was considered the most appropriate approach for determining the
origin of different faults. That is, the FST concept assesses in which phase it would
have been most cost-effective to find each fault [12]. However, an adaptation of the
method was required for the quality-oriented evaluation performed in this study.
Therefore, the purpose of the study was not only to evaluate the quality impact of the
implemented framework but also to determine the applicability of using FST
measurement for the evaluation. The evaluation comprised six consecutive projects of
two products and the studied data includes the faults found in operation and the faults
found internally after the product was delivered to customers.

The remainder of this paper is outlined as follows. First, Section 0 provides an
overview of related work. Then, Section 0 describes the applied evaluation method
and the context of the study. Section 0 presents the obtained results and Section 0
analyzes the results. Finally, Section 0 concludes the work.

2 Related Work

This section describes related work to the study presented in this paper. Section 1.1
presents related work to the implemented framework. Section 1.2 describes possible
approaches for evaluating the field-quality impact of improvements in early phases.

 Quality Impact of Introducing Component-Level Test Automation and TDD 189

2.1 Test-Driven Development and Component Testing

Several widely used techniques for testing units based on their internal structure exist,
e.g. path testing, random testing and partition testing [3]. Some unit test techniques
implement assertions directly in the product code. Test-Driven Development (TDD) is
one technique that has such an approach [2]. The main difference between TDD and a
typical test process is that in TDD, the developers write the tests before the code.

TDD has been successfully used in several cases within agile development
methods such as eXtreme Programming (XP) [2]. As described below, a few
experiments and case studies on the quality and productivity effects of TDD have
been performed. Although the studies have been performed either in experimental
settings or as isolated small-scale case studies, some trends have been observed. In
[17], TDD had little or no impact on productivity. In [4], the required development
time increased by 15 and 35 percent in two studied projects resulting in about 2-4
times lower defect density. The most apparent effect that TDD seems to bring is that
it increases the amount of unit testing performed [13][16]. Thus, it is not surprising
that at least one study has shown that TDD tends to increase the quality of the
developed code [21]. However, neither of these studies considered the impact on
customer faults.

Within the area of component testing, several techniques are suggested and
implemented [15]. Although, component testing more or less could be managed as
ordinary black box testing, some of the more advanced techniques attempt to
incorporate the tests in the components more like how unit testing is performed, e.g.
using concepts such as XML based component testing [5].

Regarding the variant evaluated in this study, i.e. component-level TDD, little
experience exists. Teiniker et al. suggest a framework for component testing and TDD
[25]. However, no practical results from applying this framework exist.

2.2 Measurements for Early Fault Detection

Measuring the quality of a delivered product is very hard. In the context of fault
detection effectiveness, one can at least in theory compare the number of reported
customer faults before and after the introduction of the improvement. However, the
result would not be very reliable since the researchers then have to ensure that other
quality assurance activities were performed in exactly the same way so that they did
not influence the result. In practice, this setup is more or less impossible since
industrial environments constantly change.

Several approaches for improving the ability to identify faults early have been
suggested and evaluated, e.g. different approaches to code reviews and various test
techniques. Such studies commonly evaluate the ability of an approach to find faults
in overall [23]. In some cases, they also assess the effect the studied approach had on
integration testing before delivery to customers [4], [8], [21]. Studies on the impact
early phases have on reported customer faults is however rare, at least when the
effects of an implemented approach is studied.

One research area which looks at the relationship between faults and phases is the
‘trigger’ concept in Orthogonal Defect Classification (ODC) [6]. The idea is basically
to classify all faults after the type of review or test activity that should uncover it. For
example, one industrial study determined that about one third of all customer faults
should have been found in code inspections [1]. However, unit test and integration

190 L.-O. Damm and L. Lundberg

test activities where not separated to be able to distinguish the degree of fault
slippages from unit test activities. Additionally, no matter how defined, fault triggers
are very hard to assign to unique development phases [10]. Thus, making them
impossible to use for the type of evaluation required in this paper.

Another view of fault origins is to classify them after which phase they were
inserted in, i.e. phase containment metrics [19]. In one study, Hevner concluded that
71 percent of the customer faults were inserted in design/implementation [19].
However, from a test perspective, it is not always most cost-effective to find all faults
when they are inserted [12]. That is, to distinguish which customer faults should have
been found in for example design, unit tests or integration tests, another measurement
approach is required. One approach matching these requirements is the approach
mentioned in the introduction called faults-slip-through (FST), i.e. as defined in [12].
The primary purpose of measuring FST is as described in our previous work to make
sure that the right faults are found in the right phase, i.e. in most cases early [12]. The
norm for what is considered ‘right’ should be defined in the verification strategy of
the organization. That is, if the verification strategy states that certain types of tests
are to be performed in different phases, the FST measure determines to which extent
the applied verification process adheres to this strategy. This means that all faults that
are found later than when the verification strategy stated are considered slips [12].

When having faults classified after when they were found and when they should
have been found, it is possible to generate a matrix such as the example provided in
 Table 1 (the phase abbreviations in the table are defined in Section 1.3). In the table,
one can for example see that 30 faults were found in UT that should have been found
during reviews in the design phase. The cells with a zero value are cases when a fault
in fact should have been found later than when it were. Although this situation is
technically possible, it is rare in practice. Further, the Op-Op cell has no value since it
in most companies is not okay to find any faults in operation.

From Table 1, it is possible to investigate and calculate relationships between
slipping and non-slipping faults in several different ways. In the context of this paper,
the values of interest are in the ‘Op’ column to the right since it is there one can see
from which phase each of the faults slipping to Operation should have been found.
The FST measurement approach has previously been used for efficiency evaluations,
i.e. by measuring slippages between internal test phases [11]. However, its ability to
assess the impact on customer faults has never been evaluated.

Table 1. FST matrix

3 Method

This section outlines the conducted evaluation including the industrial context of the
case study, an overview of the evaluated component test framework, and how to
measure the impact of the framework implementation.

 Quality Impact of Introducing Component-Level Test Automation and TDD 191

3.1 Case Study Setting

The results of this paper are obtained through a case study at Ericsson AB. The
department runs several projects in parallel and consecutively. The projects developed
software to be included in new releases of existing products used in operators’ mobile
networks. Each project lasted about 1-1.5 year and had on average about 50
participants. Further, the products were built on a shared platform where the platform
provides a component-based architecture and a number of platform components.
Thus, the projects built components using the same component architecture and reuse
platform components when needed. The components were built in C++ except for a
smaller Java-based graphical user interface. Each component contains about 5-30
classes and the components communicate mainly through a common socket
connection interface and the data sent between the components are in XML format. In
the studied projects, each product had a code base of about 70 Kilo Lines of Code
(KLoC) and most of the changes in the studied projects were modifications of existing
code. Further, the product testing was divided into four phases: Unit Test (UT), Basic
Node Test (BNT), Function Test (FT), and System Test (ST). Since the products
operate in large mobile networks, verification against other product nodes in the
mobile networks is an important part of ST. When ST is completed, the project is
considered ‘Ready For Acceptance’ (RFA), i.e. the project is ready for customer
release. When the test framework was introduced, most functional testing was
conducted manually. However, a test automation tool was introduced in some of the
studied releases. Section 1.9 discusses the potential impact this tool might have had
on the study in this paper.

3.2 Overview of the Implemented Framework

A previous study determined that better tool and process support was needed in the
UT phase [13]. In particular, it was concluded that a large reason for insufficient
component testing before delivery to integration tests was due to the deadline pressure
that commonly occur shortly before the deliveries [9]. During such time pressure,
people tend to deliver the code with less quality assurance. To address this problem, a
central part of the process change was to introduce component-level Test-Driven
Development (TDD).). The reason why TDD could make developers test more is that
when writing the test cases before the code it is more likely that the written tests are
executed before delivery [7]. From this analysis, a proposal for a framework
consisting of component-level test automation and TDD was made [9].

The framework was based on an in-house implemented tool that could send
requests to a component’s interfaces, i.e. simulating the surrounding components.
Commercial tools for TDD such as CppUnit were not applicable since they operate on
a class level [9]. The implemented tool provided library routines to use when writing
the tests. Then it could control and monitor the execution of the implemented test
cases, and finally analyze if the tests passed and log the result in an XML file [9].
Further, applying TDD on a component level meant that some modifications to
traditional TDD were required. That is, the test cases were not developed for each
class/method but instead for each component interface [9].

192 L.-O. Damm and L. Lundberg

The framework was introduced for managing unit level quality assurance of two
products, further on denoted as product ‘G’ and ‘S’. This paper evaluates the impact
the concept had on 12 months of customer usage in two subsequent releases of each
product. The project releases included features with similar characteristics and
complexity. Therefore, the releases can be considered comparable. It should be noted
that in the first release of one of the products (release 6 of product G as denoted in
Section 0), the framework was only partially implemented.

3.3 Evaluation Method

As described in Section 1.2, FST measurements were considered most appropriate to
base the evaluation method on. As illustrated in Table 1, the customer faults should be
classified after in which phase they should have been found. The general procedure
for FST measurements is described in detail in [13], i.e. it applies in the same way for
both faults found in development and operation.

As mentioned in the previous section, faults from 12 months of operation from two
releases of two products were possible to include in the evaluation. However, some of
the reported faults were excluded from the analysis because they were false positives
or they did not affect the operability of the products, e.g. opinion about function, not
reproducible faults, and documentation faults. The next task in the evaluation was to
count the number of real faults reported from each release. Due to confidentiality
reasons, the absolute number of faults cannot be provided in this paper. Instead, the
number of faults reported in each release are in Section 0 reported as a percentage of
the total number of faults from all studied releases of both products. However, as
mentioned in Section 1.2, just comparing the number of faults found in different
releases is not very reliable when evaluating the impact of a change (even if
accounting for size differences). Fortunately, since the implemented concept was
supposed to improve a particular test phase (UT), it was possible to measure the
amount of fault slippages from UT to customers, i.e. as provided by the FST measure.
Thus, to address this major validity threat, the evaluation separates the ratio of FST
from specific phases (Section 1.6 illustrates how this was done).

An identified issue with the studied faults was that not all of them were reported by
customers, i.e. although they were reported after the project was released to
customers, some faults were reported in internal maintenance activities. Although
these faults were delivered with the released product as well, their impact could be
considered significantly less when not bothering the customers. Therefore, the
evaluation needed to distinguish these two types of faults in order to ensure that the
right conclusions would be drawn. That is, in Section 0, the faults reported in
operation are presented separately as well.

Another possible threat to doing a correct interpretation of the fault distributions is
if the size of the evaluated projects differs significantly, i.e. a larger project is likely to
report more faults. Therefore, size is also accounted for in the evaluation. However,
the most commonly used size measure, i.e. KLoC was not considered reliable enough.
That is, KLoC is in overall a poor size measure [14], and the studied projects mostly
modified existing code that made the obtained values even less relevant to compare.
Function point measurements were not available either. The only remaining size
measure considered feasible to use was the effort spent (hours) on implementation

 Quality Impact of Introducing Component-Level Test Automation and TDD 193

and test in each project since that measure was thoroughly tracked. Therefore, the
study in this paper accounts for size differences by dividing the number of faults
found with the relative effort differences between the projects. The effort-adjusted
fault data are presented separately in Section 1.7 so that it is possible to compare them
with the unadjusted data in Section 1.6.

4 Results

This section presents the data obtained from the evaluation specified in Section 0. As
described in Section 1.5, the measurements below are presented as relative fault
distributions divided after which phase each fault slipped from. Section 1.6 presents
these distributions and Section 1.7 presents them in the same way except that they are
effort-adjusted. Finally, Section 1.8 visualizes the ratio of FST (Faults-Slip-Through)
from UT in relation to the total FST. In all figures, the fault distributions are divided
after three releases of the two products, i.e. where release R5 of both products serve
as a baseline measure before the test framework was implemented. Further, as
motivated in Section 1.5, the fault distributions are in the figures below presented first
as a total percentage faults found after the date when the project was considered ready
for customer delivery (RFA) and then as the percentage of faults reported by
customers, i.e. faults found in internal maintenance activities were excluded. Note that
faults reported after RFA only regards faults related to the implemented features, all
requests for enhancements were handled in new development projects.

4.1 FST to After RFA

Figure 2A presents the distribution for all faults found after RFA. In the figure, the
trend for both products is that the number of faults decreased in each release, i.e. due
to a decrease in the number of UT faults. The number of FT faults also decreased
significantly between ‘S R5’ and ‘S R6’. Figure 2B presents only the faults reported
by customers and the trend is similar as in Figure 2A with the exception that ‘S R6’
had a higher total ratio of customer faults than ‘S R5’. When comparing ‘S R5’ and ‘S
R6’, it is possible to observe that ST caused the increase, i.e. in Figure 2B, the ST part
of the ‘S R6’ column is significantly taller than it is in ‘S R5’.

Fig. 2A. FST to after RFA Fig. 2B. FST to Customers

194 L.-O. Damm and L. Lundberg

4.2 Effort-Adjusted FST to After RFA

As input to the effort-adjusted FST data, Table 2 shows the relative difference in
efforts spent on the studied project. This data is used as input in the figures below. A
notable observation in the table is that release 5 of product ‘G’ was significantly
smaller than the subsequent projects. Additionally, release 6 of product ‘S’ was
significantly smaller than the other releases of that product.

Table 2. Effort/project

Project G R5 G R6 G R7 S R5 S R6 S R7
Relative effort 1.0 2.2 2.1 3.7 1.4 3.2

Figure 3A presents the effort-adjusted variant of Figure 2A, i.e. the fault
distribution for all faults found after RFA adjusted according to the relative
differences presented in Table 2. The distribution in Figure 3A is similar to Figure 2A
with the exceptions that ‘G R5’ and ‘S R6’ as expected now have a larger proportion
of the faults. As displayed in Figure 3B, the effort-adjusted fault data from customers
follow the same pattern as Figure 2B and with the same type of difference for ‘G R5’
and ‘S R6’ as in Figure 3A, e.g. almost 60 percent of all faults here belongs to ‘G R5’.
However, this figure also shows an important effect of adjusting with the effort data,
i.e. ‘S R6’ does not only in total have more faults than ‘S R5’ - the proportion of UT
faults is now also larger in ‘S R6’. The reason for this deviation is further discussed in
Section 1.9.

 Fig. 3A. Effort-adjusted FST (RFA) Fig. 3B. Effort-adjusted FST (customers)

4.3 UT FST in Relation to Total FST

This section visualizes the ratio of FST from UT in relation to the total FST of all
phases. This specific relationship is included since it is important to the objective of
the study but not clearly visible in the previous sections.

Figure 4A presents the ratio of fault slippages from UT to after RFA in relation to
the total number of slippages to after RFA. As can be seen in the figure, the ratio of

 Quality Impact of Introducing Component-Level Test Automation and TDD 195

 Fig. 4A. UT ratio of total FST (RFA) Fig. 4B. UT ratio of total FST (customers)

UT faults is declining for each release from when the framework was implemented.
That is, from about 60 percent in release five to about ten and zero percent in release
seven.

Figure 4B presents the same type of distribution as Figure 4A with the exception
that only customer faults are included in Figure 4B. In the figure, the ratio of UT
faults decreases for each release as in Figure 4A. The only significant difference is
that the ratio of UT faults in release seven of product G did not decrease as much.

5 Discussion

This section discusses the results presented in the previous section. First, Section 1.9
analyzes the fault distributions. After that, Section 1.10 outlines potential validity
threats and Section 1.11 estimates the cost savings from the obtained improvements.

5.1 Interpretation of the Results

The evaluation results presented in the previous section provided some interesting
trends. In overall, the trend was that the number of faults found after RFA decreased
after the test framework was implemented. However, some findings require an
evaluation in the context of the conducted study to determine whether the positive
trend was due to the implemented framework or not.

As could be seen in Figure 2A in Section 0, the fault ratios were in overall
declining for each release. However, the trend for customer faults indicated a
deviation for release 6 of product ‘S’. As mentioned in Section 1.6, ST appeared to
cause the most part of the deviation. The reason for this was because in this project
ST had problems executing all tests necessary to assure the quality before customer
delivery, i.e. due to limited availability of a new technology that the system was
supposed to operate together with. This part instead had to be tested more thoroughly
together with the first customer. Nevertheless, the ST faults do not explain the whole
deviation because as observed in Section 1.7, UT also had fewer customer faults in
R5 than in R6 (when accounting for effort differences). In a post-analysis, it could be
concluded that the deviation occurred due to problems with the memory checking
tools used by the project during UT, i.e. most customer faults that belonged to UT
were of this type. Regarding the fact that G R6 only implemented the framework
partially (as stated in Section 1.4), it appeared not to have had a significant negative
effect. In the fault analysis, it was unfortunately not possible to distinguish which of

196 L.-O. Damm and L. Lundberg

the faults that belonged to features that used the framework and not. Thus, an
evaluation against a control group was unfortunately not possible to perform.

As mentioned in Section 1.3, the studied organization also implemented another
change that should be assessed here to, i.e. the increased usage of automated tests in
Function Test (in S R6 and in G R7). As especially can be seen in Section 1.7, the tool
appeared to have no impact on the FT faults in ‘G R7’ and in ‘S R6’ the impact on FT
was only significant for the internal faults reported after RFA. This can primarily be
explained by the fact that the tests executed automatically at least initially were
focused on replacing tests that otherwise would have been executed manually, i.e. not
to increase the test coverage.

To conclude, the implemented framework appeared to have a strong positive
impact on the amount of faults found after customer release, especially the overall
ratio of UT faults decreased significantly for each subsequent release. An interesting
implication of this result is that it confirms that it is not only increased test efficiency
that is a motive for investing in early fault detection, it can also be used as a motive
for decreased maintenance costs and increased customer satisfaction. That is, many
faults that are not caught early tend to slip all they way to operation since they are
hard to catch in integration tests. The next section discusses possible threats to the
validity of the conclusion drawn in this section.

5.2 Validity Threats

The main validity threats concern reliability, internal, and external validity [22].

Reliability. The primary reliability threat regards accuracy of the conducted FST
measurements. First, when determining which phase each fault belonged to, all faults
were post-validated by one researcher, which thereby minimized the risk for
respondent bias, e.g. inconsistent classifications. Additionally, to prevent researcher
bias, a test manager and a test leader afterwards analyzed a subset of the classified
faults to determine if the classifications were correct. Some incorrect classifications
were identified in the post-analysis but it turned out that they tended to even each
other out. Another reliability threat relates to the fact that some faults are more severe
than others, i.e. they cost more to correct or have a larger negative impact on
customer satisfaction. Although not possible to prevent fully, this threat was
addressed by sorting out low-severity faults and to distinguish customer faults and
other faults reported after RFA.

Internal validity. A major threat to internal validity is whether certain events that
occurred during the studied projects affected the fault distribution, i.e. events that the
researchers were not aware of. Since the research was conducted in close cooperation
with the projects, the awareness of eventual disturbing events was very high. Thus,
the major events that could have an impact on the results presented in this paper have
been identified and assessed in the paper. Further, since two projects were measured,
the likelihood of special events that affected the results without being noticed
decreased. The usage of phase differentiation also increased the internal validity, i.e.
since the evaluation could isolate the effect on the UT phase where the new concept
was implemented.

 Quality Impact of Introducing Component-Level Test Automation and TDD 197

External validity. Since a case study was conducted, the results are only
generalizable within the context of the study, i.e. they are dependent on the studied
department having certain products, processes, and tools. However, the applied
method should be generalizable to other environments as well.

5.3 Estimated Cost Savings

The case study evaluation in this paper has due to its quality focus not considered
costs and benefits. However, since cost remains an important factor, this section
estimates the impact the implemented test framework had on maintenance costs.

First of all, it is important to distinguish internal costs for the local organization
and external costs, i.e. increased cost of sales from reported customer faults. These
costs can be estimated as average cost per fault, which are available at the studied
company. However, since these figures are confidential, only relative figures can be
presented, i.e. the internal cost of a fault reported in maintenance is 30 times more
expensive than when found in UT and a fault reported by customers is about 700
times more expensive than in UT. When using the average fault cost figures on the
effort-adjusted difference in fault distributions between release 7 and release 5 of the
two products, the cost savings in product maintenance correspond to 4 percent of the
development effort spent on ‘G R7’ and 8 percent of the total effort spent on ‘S R7’.
When also including increased cost of sales from customer originated faults, the total
cost savings correspond to 22 percent of the development effort spent on ‘G R7’ and
26 percent of the total effort spent on ‘S R7’. Additionally if comparing cost savings
to the investment costs estimated in our previous study [11], the investment cost
corresponded to 39 percent of the saved internal costs and 8 percent of the total saved
costs for R7 of the two products, which means a significant return on investment.

6 Conclusions

This paper describes results from implementing a component-level test framework
together with Test-Driven Development (TDD). The evaluation comprises three
subsequent projects of two products. The evaluation determined the impact the
framework had on faults found after the products were put into operation. To
determine the impact of the implemented framework, the study also suggested how to
use a certain measurement approach for such evaluations, i.e. a measurement
approach that classifies the faults after which phase they should have been caught in.

The evaluation determined that the number of faults decreased significantly after
the framework was implemented, both regarding the total number of faults and the
number of faults related to the unit test phase where the framework was introduced.
That is, the ratio of faults found in operation that belonged to unit test decreased from
between 60-70 percent in release five of the products to between 0-20 percent in
release seven (depending on perspective). Further, when comparing the fault
reductions to the effort spent on the development projects, the cost savings in
maintenance comprised up to about 25 percent of the development cost for a project.
Additionally, the study determined that faults that should have been found early but
slip through that test level tend to slip all the way to operation, i.e. they are hard to

198 L.-O. Damm and L. Lundberg

catch in function/system tests if not found in for inspections or unit tests.
Nevertheless, replicated studies in other contexts are required to determine the degree
of generalizability of this trend.

Acknowledgments

This work was funded jointly by Ericsson AB and The Knowledge Foundation in
Sweden under a research grant for the project "Blekinge - Engineering Software
Qualities (BESQ)" (http://www.bth.se/besq).

References

[1] Bassin, K.A., Kratschmer, T., Santhanam, P.: Evaluating Software Objectively. IEEE
Software 15(6), 66–74 (1998)

[2] Beck, K.: Test Driven Development - by example. Addison-Wesley, Boston, MA (2003)
[3] Beizer, B.: Software Testing Techniques, 2nd edn. Van Nostrand Reinhold Company,

New York (1990)
[4] Bhat, T., Nagappan, N.: Evaluating the Efficacy of Test-Driven Development: Industrial

Case Studies. In: Proceedings of the 5th International Symposium on Empirical Software
Engineering, pp. 356–363. ACM Press, New York (2006)

[5] Bundell, G.A., Lee, G., Morris, J., Parker, K., Peng, L.: A software component
verification tool. In: Proceedings of International Conference on Software Methods and
Tools, pp. 137–146. IEEE Computer Soc, Los Alamitos

[6] Chillarege, R., Bhandari, I., Chaar, M., Halliday, D., Moebus, B., Ray, B., Wong, M.Y.:
Orthogonal Defect Classification-A concept for In-Process Measurement. IEEE
Transactions on Software Engineering 18, 943–956 (1992)

[7] Cockburn, A.: Agile Software Development. Addison-Wesley, Boston, MA (2002)
[8] Crispin, L.: Driving Software Quality: How Test-Driven Development Impacts Software

Quality. IEEE Software 23(6), 70–71 (2006)
[9] Damm, L.-O., Lundberg, L.: Introducing Test Automation and Test-Driven Development:

An Experience Report. In: Proceedings of the International Workshop on Test and
Analysis of Component-Based Systems. Electronic Notes in Theoretical Computer
Science, vol. 316, pp. 3–15. Elsevier, Amsterdam (2004)

[10] Damm, L.-O., Lundberg, L.: Identification of Test Process Improvements by Combining
ODC Triggers and Faults-Slip-Through. In: Proceedings of the 4th International
Symposium on Empirical Software Engineering, pp. 152–161. IEEE, Los Alamitos
(2005)

[11] Damm, L.-O., Lundberg, L.: Results from Introducing Component-Level Test
Automation and Test-Driven Development. Journal of Systems and Software 79, 1001–
1014 (2006)

[12] Damm, L.-O., Lundberg, L., Wohlin, C.: Faults-Slip-Through - A Concept for Measuring
the Efficiency of the Test Process. Wiley Journal of Software: Process Improvement and
Practice 11, 47–59 (2006)

[13] Erdogmus, H., Morisio, M.: On the Effectiveness of the Test-First Approach to
Programming. IEEE Transactions on Software Engineering 31(3), 226–237 (2005)

[14] Fenton, N., Pfleeger, S.L.: Software Metrics: A Rigorous Approach. PWS Publishing
Company (1997)

 Quality Impact of Introducing Component-Level Test Automation and TDD 199

[15] Gao, J., Tsao, J., Wu, Y.: Testing and Quality Assurance for Component-Based Software.
Artech House Publishers (2003)

[16] George, B., Williams, L.: A structured experiment of test-driven development.
Information and Software Technology 46, 337–342 (2004)

[17] Geras, A., Smith, M.R., Miller, J.: A Prototype Empirical Evaluation of Test Driven
Development. In: Proceedings of the 10th IEEE International Software Metrics
Symposium, pp. 405–416. IEEE Computer Society, Los Alamitos (2004)

[18] Harrold, J.: Testing: a roadmap. In: International Conference on Software Engineering,
pp. 61–72. ACM, New York (2000)

[19] Hevner, A.R.: Phase Containment for Software Quality Improvement. Information and
Software Technology 39, 867–877 (1997)

[20] Howles, T., Daniels, S.: Widespread Effects of Defects. Quality Progress 36(8), 58–62
(2003)

[21] Maximilien, E.M., Williams, L.: Assessing Test-Driven Development at IBM. In:
Proceedings of the 25th International Conference on Software Engineering, pp. 564–569.
IEEE Computer Soc. Press, Los Alamitos (2003)

[22] Robson, C.: Real World Research, 2nd edn. Blackwell Publishers, Oxford, UK (2002)
[23] Runeson, P., Andersson, C., Thelin, T., Andrews, A., Berling, T.: What Do We Know

about Defect Detection Methods? IEEE Software 23(3), 82–90 (2006)
[24] Shull, F., Basili, V., Boehm, B., Brown, W., Costa, P., Lindwall, M., Port, D., Rus, I.,

Tesoriero, R., Zelkowitz, M.: What We Have Learned About Fighting Defects. In:
Proceedings of the Eight IEEE Symposium on Software Metrics, pp. 249–258. IEEE, Los
Alamitos (2002)

[25] Teiniker, E., Mitterdorfer, S., Johnson, L.M., Johnson, L.M., Kreiner, C., Kovacs, Z.,
Weiss, R.: A Test-Driven Component Development Framework Based On The Corba
Component Model. In: Proceedings of the 27th Annual International Computer Software
and Applications Conference, pp. 400–405. IEEE, Los Alamitos (2003)

The Impact of Test-Driven Development on

Software Development Productivity — An
Empirical Study

Lech Madeyski and �Lukasz Sza�la

Institute of Applied Informatics, Wroc�law University of Technology,
Wyb.Wyspiańskiego 27, 50370 Wroc�law, Poland

Lech.Madeyski@pwr.wroc.pl, Lukasz.Szala@e-informatyka.pl

Abstract. Test-driven development (TDD) is entering the mainstream
of software development. We examined the software development process
for the purpose of evaluation of the TDD impact, with respect to soft-
ware development productivity, in the context of a web based system
development. The design of the study is based on Goal-Question-Metric
approach, and may be easily replicated in different industrial contexts
where the number of subjects involved in the study is limited. The study
reveals that TDD may have positive impact on software development
productivity. Moreover, TDD is characterized by the higher ratio of ac-
tive development time (described as typing and producing code) in total
development time than test-last development approach.

1 Introduction

Experimentation in software engineering is a relatively young field. Neverthe-
less, relevance of experimentation to software engineering practitioners is grow-
ing because empirical results can help practitioners make better decisions and
improve their products and processes. Beck suggests treating each software de-
velopment practice as an experiment in improving effectiveness, productivity
etc. [1]. Productivity is usually defined as output divided by the effort required
to produce that output [2]. An interesting survey of productivity measures is
also presented by Fowler [3]. Test-driven development (TDD) practice [4], also
called test-first programming (TFP) [1], is a software development practice that
has recently gained a lot of attention from both software practitioners and
researchers, and is becoming a primary means of developing software world-
wide [5,6,7,8,9,10,11,12,13,14]. Moreover, one of the most important advantages
of TDD is high coverage rate. In this paper, we present how we evaluated the
impact of TDD practice on software development productivity and activity. The
design of the study is based on Goal-Question-Metric (GQM) approach [15],
and can be easily replicated in different industrial contexts, where the number
of subjects that may be involved in an empirical study is often limited and the
generalization of the results is not the key issue.

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 200–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Impact of TDD on Software Development Productivity 201

2 Related Work

Several empirical studies have focused on TDD, as promising alternative to tra-
ditional, test-last development (TLD), also called test-last programming (TLP).
Some of them concern productivity. Müller and Hagner [5] report that TDD does
not accelerate the implementation, and the resulting programs are not more re-
liable, but TDD seems to support better program understanding. George and
Williams [6,7] show that TDD developer pairs took 16% more time for develop-
ment. However, the TDD developers produced higher quality code, which passed
18% more functional black box test cases. Other empirical results obtained by
Williams et al. [8,9] are more optimistic, as TDD practice had minimal impact
on developer productivity, while positive one on defect density. Geras et al. [10]
report that TDD had little or no impact on developer productivity. However,
developers tended to run tests more frequently when using TDD. Erdogmus
et al. [16] conclude that students using test-first approach on average wrote
more tests than students using test-last approach and, in turn, students who
wrote more tests tended to be more productive. Madeyski [11] conducted a large
experiment in academic environment with 188 students and reports that solo
programmers, as well as pairs using TDD, passed significantly fewer acceptance
tests than solo programmers and pairs using test-last approach, (p = .028 and
p = .013 respectively). Bhat and Nagappan [12] conducted two case studies
in Microsoft and report that TDD slowed down the development process 15%-
35%, and decreased defects/KLOC 2.6-4.2 times.. Canfora et al. [13] report that
TDD significantly slowed down the development process. Müller [14] conducted
a unique empirical study and concludes that the TDD practice leads to better-
testable programs.

Summarizing, existing studies on TDD are contradictory. The differences in
the context in which the studies were conducted may be one explanation for
such results. Thus, case study conducted and valid in a project’s specific context
is a possible solution that can be applied in industrial projects.

3 Empirical Study

It is important to present the context of the project. Java and AspectJ program-
ming languages, and hence aspect-oriented programming (AOP) [17], were used
to implement the web-based system. The presentation tier was provided by Java
Server Pages and Servlets. The persistence layer was used to store and retrieve
data from XML files. An experienced programmer, with 8 years of programming
experience and recent industrial experience, classified as E4 according to Höst et
al. [18] classification scheme (i.e. recent industrial experience, between 3 months
and 2 years), was asked to develop a web-based system for academic institution.

The whole development project consisted of 30 user stories. Additionally, three
phases (with random number of users stories in each phase) could be distin-
guished. The first phase (10 user stories) was developed with traditional, TLD
approach, the second (14 user stories) with TDD and the last 6 user stories again
with TLD approach, see Figure 1.

202 L. Madeyski and �L. Sza�la

Fig. 1. User stories divided into development phases

3.1 User Requirements

The project was led with the eXtreme Programming (XP) methodology, as TDD
is a key practice of XP. Therefore, it seems reasonable to evaluate TDD practice
in the context of XP. Although some practices (such as pair programming) were
neglected, user stories were used for introducing requirements concerning the
developed system. The whole set of 30 user stories was prepared to outline the
system, which is a web-based paper submission and review system. It defines
different user roles such as Author, Reviewer, Chair and Content Manager, and
specifies multi-level authentication functionality. The system involves the man-
agement of papers and their reviews on each step in their life cycle. Additionally
the application provides access to accepted and published papers to all registered
and unregistered users allowing users to select lists of articles based on earlier
defined set of criteria (e.g. published, accepted works). The system supports
a simple repository of articles with uploading of text files and versioning.

3.2 Procedure

The Theme/Doc approach [19] provides support for identifying crosscutting be-
haviour and was used to decompose the system into aspects and classes. Themes
are encapsulations of concerns and therefore are more general than classes and
aspects. They may represent a core concept of a domain or behaviour triggered
by other themes. The procedure used during the TLD phase is presented in
Figure 2, and the analogous one for the TDD phase in Figure 3. In TLD phase
the participant chooses a user story and then develops its themes (only these
parts which are valid for a specified user story). After finishing each theme, a set
of unit tests is written. When the whole user story is complete, the participant
may perform a system refactoring. The TDD phase differs in first steps. After
choosing a user story, the participant chooses a theme and writes tests as well
as production code to the specified theme in small test first, then code cycles.
The activity is repeated (for other themes related to the selected user story)
until the user story is completed. From this point the procedure is the same as
in traditional approach.

3.3 Validity Evaluation

There are always threats to the validity of an empirical study. In evaluating the
validity of the study, we follow the schema presented in [20].

The Impact of TDD on Software Development Productivity 203

Fig. 2. Development procedure in the TLD phase

As a statistical conclusion validity threat, we see the lack of inferential sta-
tistics in the analysis of the results. However, the points at which TDD is intro-
duced and withdrawn are randomly determined to facilitate analysis. As with
most empirical studies in software engineering, an important threat is process
conformance, represented by the level of conformance of the subject (i.e. devel-
oper) to the prescribed approach. Process conformance is a threat to statistical
conclusion validity, through the variance in the way the processes are actually
carried out [21]. It is also a threat to construct validity, through possible discrep-
ancies between the processes as prescribed, and the processes as carried out [21].
Process conformance threat was handled by monitoring possible deviations, with
the help of ActivitySensor plugin integrated with Eclipse IDE (Integrated Devel-
opment Environment). ActivitySensor controlled how development approaches
(i.e. TDD or TLD) were carried out (e.g. whether tests were written before re-
lated pieces of a production code). Moreover, the subject was informed of the
importance of following assigned development approach in each phase.

The mono-operation bias is a construct validity threat, as the study was
conducted on a single requirements set. Using a single type of measures is a

204 L. Madeyski and �L. Sza�la

Fig. 3. Development procedure in the TDD phase

mono-method bias threat. To reduce this threat, different measures (e.g. num-
ber of acceptance tests, user stories, lines of code per unit of effort) were used
in the study, as well as the post-test questionnaire was added to enable quali-
tative validation of the results. It appeared that the subject was very much in
favour of TDD approach, which is in line with the overall results. Interaction of
different treatments is limited, due to the fact that the subject was involved in
one study only. Other threats to construct validity are social threats (e.g. hy-
pothesis guessing and experimenter’s expectances). As neither the subject, nor
the experimenters have any interest in favour of one approach or another, we do
not expect it to be a large threat.

Internal validity of the experiment concerns the question whether the effect
is caused by independent variables, or by other factors. A natural variation
in human performance, as well as maturation, is a threat. Possible diffusion,
or imitation of treatments were under control with the help of ActivitySensor
Eclipse plugin.

The Impact of TDD on Software Development Productivity 205

The main threat to the external validity is related to the fact that subject
population may not be representative to the population we want to generalize.
However, the programmer’s experience is typical of a young programmer, with
solid software engineering academic background and recent industrial experience.
Thus, it seems to be relatively close to the population of interest.

4 Measurements Definition

The empirical study was conducted using the GQM method, described in [15].
The measurement definition relates to the programmer’s productivity (in terms
of source code lines written, implemented user stories, and number of acceptance
tests passed).
Goal: The analysis of the software development process for the purpose of eval-
uation of the TDD approach impact, with respect to software development pro-
ductivity and activity, from the point of view of the researchers, in the context
of a web based, aspect-oriented system development.
Questions:

– Question 1: How does TDD affect the programmer’s productivity in terms
of the source code lines written per unit of effort?
Metrics: NCLOC (Non Comment Lines Of Code) per unit of effort (program-
ming time) is one of productivitymeasures. However,NCLOC per unit of effort
tend to emphasize longer rather than efficient, or high-qualityprograms.Refac-
toring effort may even results in negative productivity measured by NCLOC.
Therefore, better metrics of a programmer’s productivity will be used.

– Question 2: How does TDD affect a programmer’s productivity in terms of
user stories provided per unit of effort?

Metrics: Because in XP methodology the user requirements are introduced
as user stories, the implementation time of a single user story may be con-
sidered as a productivity indicator. Therefore, the number of user stories
developed by a programmer per hour is measured.

– Question 3: How does TDD affect a programmer’s productivity in terms of
Number of Acceptance Tests Passed per unit of effort?

Metrics: Because user stories have diverse sizes, we decided to measure
the programmer’s productivity using acceptance tests, as NATP (Number
of Acceptance Tests Passed) per hour better reflects the project’s progress
and programmer’s productivity. There were 87 acceptance tests specified for
the system.

– Question 4: How does TDD affect a programmer’s activity in terms of
passive time, compared with the total development time?

Metrics: The programmer’s productivity may be expressed as a relation of
active time TA to the total time (sum of active and passive times TA + TP)
spent on a single user story implementation. The active time may be described

206 L. Madeyski and �L. Sza�la

as typing and producing code, whilst the passive time is spent on reading the
source code, looking for a bug etc. The ActivitySensor plugin [22] integrated
with Eclipse IDE allows to automatically collect development time, as well as
to divide total development time into active and passive times. A switch from
active to passive time happens after 15 seconds of a programmer’s inactiv-
ity (the threshold was proposed by the activity sensor authors). To separate
passive time from breaks in programming the passive time counter is stopped
(after 15 minutes of inactivity) until a programmer hits a key.

5 Results

The whole development process took 112 hours. The finished system was com-
prised of almost 4000 lines of source code (without comments, imports etc.). The
system had 89 interfaces, classes, and aspects. There were 156 unit tests written
to cover the functionality. Branch coverage was over 90%.

5.1 Productivity Metrics Analysis

Although the XP methodology puts pressure on source code quality (program-
ming is not just typing!), the differences in software development productivity
are essential. Table 1 contains a comparison of productivity metrics in TLD1,
TDD and TLD2 phases. TLD1 and TLD2 phases shown in Figure 1 are treated
jointly in the last column named TLD.

Table 1. Productivity comparison in all development phases

TLD1 TDD TLD2 TLD (TLD1 and
TLD2 combined)

Implementation time/US [h] 6.42 2.32 2.50 4.97

Lines of code/US 159.70 107.21 133.17 149.75

Lines of code/h 24.76 46.18 53.27 30.14

It appeared that the implementation time of a single user story during the
TLD phase took, on average, almost 5 hours, while during the TDD phase only
2.32 hours, see Table 1. User stories are common units of requirements, but their
size and complexity level are not equal. The average size (expressed in lines of
code) of a user story, developed with TLD approach, was almost 1.5 times bigger
than a user story developed during the TDD phase, see Table 1. It may mean
that the code written in TDD phase is more concise than its TLD equivalent.

The next comparison concerns the number of lines of code written per one
hour. The results favour the TDD approach with average 46.18 lines above the
TLD with 30.14 lines per hour, see Table 1 and Figure 4.

More deatailed observation of boxplots, in Figures 4 and 5, allows to reveal an
interesting regularity. Although the TDD phase is characterised by higher pro-
ductivity in juxtaposition with TLD phase (TLD1 and TLD2 treated jointly),

The Impact of TDD on Software Development Productivity 207

Fig. 4. Boxplot of average number of
lines of code per hour in TLD, and
TDD phases

Fig. 5. Boxplot of average number of
lines of code per hour in TLD1, TDD,
and TLD2 phases

when comparing all three phases, the productivity increases with the system’s
evolution. It may be explained by gaining skills and experience by the program-
mer, as well as making the programmer more familiar with the requirements,
with each completed user story.

The productivity may be measured as a number of passed acceptance tests
that cover added functionality, divided by number of hours spent on implemen-
tation. When looking at the development cycle divided into two phases (TDD
vs. TLD), we measured the following values of passed acceptance tests per hour:
1.44 for TDD and 0.99 for TLD (TDD approach is characterised by a faster
functionality delivery, see Figure 6). But when analysing the development cycle
as 3 phases (TLD1, TDD and TLD2, see Figure 7), we found that the last two
phases were similar while TLD1 phase was considerably worse.

Fig. 6. Boxplot of the number of ac-
ceptance tests passed per hour in TLD,
and TDD phases

Fig. 7. Boxplot of the number of accep-
tance tests passed per hour in TLD1,
TDD, and TLD2 phases

208 L. Madeyski and �L. Sza�la

0%

10%

20%

30%

40%

50%

60%

70%

80%

2 1 3 10 4 6 12 20 11 7 27 22 18 9 8 5 13 14 15 16 17 19 21 25 28 29 26 24 23 30

User story number

P
as

si
ve

 t
im

e
to

 t
o

ta
l d

ev
el

o
p

m
en

t
ti

m
e

ra
ti

o `
TLD1 TDD TLD2

Fig. 8. The passive time to total development time proportion during the project

5.2 Analysis of Programming Activities

Figure 8 presents a proportion of passive time to total development time. We can
observe that in first (TLD1) phase the passive time took the majority of total
time (over 50%). This rule changed when the testing metohod was switched (the
passive time only once exceeded 50% level).

The boxplots of active and passive times are presented in Figures 9 and 10.
We can observe that the passive time is higher in TLD phase. However, the

Fig. 9. Boxplot of the proportion of
passive to overall development time in
TLD, and TDD phases

Fig. 10. Boxplot of the proportion of
passive to overall development time in
TLD1, TDD, and TLD2 phases

The Impact of TDD on Software Development Productivity 209

difference is not so obvious when we analyse each phase separately, as results of
TDD and TLD2 phases are similar.

6 Conclusions

If we analyse the development process divided into two phases (TLD and TDD),
the programmer’s productivity in TDD phase is definitely higher. A possible
explanation is that TDD approach limits the feedback cycle length to minutes.
Thus, the extent of potential bug is usually limited (a programmer knows ex-
actly where should look for an improper system behaviour). Another plausible
explanation, why TDD may increase software development productivity, is that
improving quality by fixing defects at the earliest possible time (by means of
continuous and rigorous testing and refactoring) costs up front but it pays off in
the long run.

However, when the process is divided into three phases (TLD1, TDD, TLD2)
a different pattern appears. In the case of source code lines written per unit
of effort (Question 1) the productivity increases with the project development
progress. The proportion of passive to overall development time (Question 4)
falls in TDD phase, but in the last two phases (TDD and TLD2) is similar. In
the case of user stories per unit of effort (Question 2), as well as acceptance
tests per unit of effort (Question 3) the programmer’s productivity increases in
TDD phase, whilst in the last two phases (TDD and TLD2) is similar as well.
A plausible explanation, why productivity in TLD2 phase does not fall, may be
that the programmer gains experience, as well as knowledge of the application
domain, during the course of the project. Thus not only TDD, but also experience
and knowledge of the application domain would drive productivity.

The study can benefit from several improvements before replication is at-
tempted. The most significant one is to replicate the study finishing with TDD
in the fourth phase. In order to conclude that TDD has in fact positive impact on
productivity, it might be advisable to conduct an experiment securing a sample
of large enough size to guarantee a high-power design.

Acknowledgements

The authors thank Adam Piechowiak for ActivitySensor Eclipse plugin develop-
ment.

This work has been financially supported by the Ministry of Education and
Science as a research grant 3 T11C 061 30 (years 2006-2007).

References

1. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley, Reading (2004)

2. Maxwell, K., Forselius, P.: Benchmarking Software-Development Productivity -
Applied Research Results. IEEE Software 17(1), 80–88 (2000)

210 L. Madeyski and �L. Sza�la

3. Fowler, M.: Cannot Measure Productivity (accessed March 2007),
http://www.martinfowler.com/bliki/CannotMeasureProductivity.html

4. Beck, K.: Test Driven Development: By Example. Addison-Wesley, Reading (2002)
5. Müller, M.M., Hagner, O.: Experiment about test-first programming. IEE Pro-

ceedings - Software 149(5), 131–136 (2002)
6. George, B., Williams, L.A.: An Initial Investigation of Test Driven Development

in Industry. In: SAC 2003, Proceedings of the 2003 ACM Symposium on Applied
Computing. pp. 1135–1139. ACM, New York (2003)

7. George, B., Williams, L.A.: A structured experiment of test-driven development.
Information and Software Technology 46(5), 337–342 (2004)

8. Williams, L., Maximilien, E.M., Vouk, M.: Test-Driven Development as a Defect-
Reduction Practice. In: ISSRE ’03. Proceedings of the 14th International Sympo-
sium on Software Reliability Engineering, Washington, DC, USA, pp. 34–48. IEEE
Computer Society Press, Los Alamitos (2003)

9. Maximilien, E.M., Williams, L.A.: Assessing Test-Driven Development at IBM. In:
ICSE ’03. Proceedings of the 25th International Conference on Software Engineer-
ing, pp. 564–569. IEEE Computer Society Press, Los Alamitos (2003)

10. Geras, A., Smith, M.R., Miller, J.: A prototype empirical evaluation of test driven
development. In: METRICS ’04. Proceedings of the 10th International Symposium
on Software Metrics, pp. 405–416. IEEE Computer Society Press, Los Alamitos
(2004)

11. Madeyski, L.: Preliminary Analysis of the Effects of Pair Programming and Test-
Driven Development on the External Code Quality. In: Zieliński, K., Szmuc, T.
(eds.) Software Engineering: Evolution and Emerging Technologies. Frontiers in
Artificial Intelligence and Applications, vol. 130, pp. 113–123. IOS Press, Amster-
dam (2005), http://madeyski.e-informatyka.pl/download/Madeyski05b.pdf

12. Bhat, T., Nagappan, N.: Evaluating the efficacy of test-driven development: in-
dustrial case studies. In: ISESE ’06. Proceedings of the 2006 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering, pp. 356–363. ACM Press,
New York (2006)

13. Canfora, G., Cimitile, A., Garcia, F., Piattini, M., Visaggio, C.A.: Evaluating ad-
vantages of test driven development: a controlled experiment with professionals.
In: ISESE ’06. Proceedings of the 2006 ACM/IEEE International Symposium on
Empirical Software Engineering, pp. 364–371. ACM Press, New York (2006)

14. Müller, M.M.: The Effect of Test-Driven Development on Program Code. In: Abra-
hamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044, pp. 94–103.
Springer, Heidelberg (2006)

15. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach.
In: Encyclopedia of Software Engineering, pp. 528–532 (1994)

16. Erdogmus, H., Morisio, M., Torchiano, M.: On the Effectiveness of the Test-First
Approach to Programming. IEEE Transactions on Software Engineering 31(3),
226–237 (2005)

17. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier,
J.M., Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

18. Höst, M., Wohlin, C., Thelin, T.: Experimental Context Classification: Incentives
and Experience of Subjects. In: ICSE ’05. Proceedings of the 27th International
Conference on Software Engineering, pp. 470–478. ACM Press, New York (2005)

19. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Ap-
proach. Addison-Wesley, Reading (2005)

http://www.martinfowler.com/bliki/CannotMeasureProductivity.html
http://madeyski.e-informatyka.pl/download/Madeyski05b.pdf

The Impact of TDD on Software Development Productivity 211

20. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Norwell, MA, USA (2000)

21. Sørumg̊ard, L.S.: Verification of Process Conformance in Empirical Studies of Soft-
ware Development. PhD thesis, The Norwegian University of Science and Technol-
ogy (1997)

22. ActivitySensor project (accessed March 2007),
http://www.e-informatyka.pl/sens/Wiki.jsp?page=Projects.ActivitySensor

http://www.e-informatyka.pl/sens/Wiki.jsp?page=Projects.ActivitySensor

P. Abrahamsson et al. (Eds.): EuroSPI 2007, LNCS 4764, pp. 212–223, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Investigating the Software Fault Profile of Industrial
Projects to Determine Process Improvement Areas: An

Empirical Study

Jon Arvid Børretzen and Jostein Dyre-Hansen

Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU),

NO-7491 Trondheim, Norway
{borretze,dyrehans}@idi.ntnu.no

Abstract. Improving software processes relies on the ability to analyze previ-
ous projects and derive which parts of the process that should be focused on for
improvement. All software projects encounter software faults during develop-
ment and have to put much effort into locating and fixing these. A lot of infor-
mation is produced when handling faults, through fault reports. This paper
reports a study of fault reports from industrial projects, where we seek a better
understanding of faults that have been reported during development and how
this may affect the quality of the system. We investigated the fault profiles of
five business-critical industrial projects by data mining to explore if there were
significant trends in the way faults appear in these systems. We wanted to see if
any types of faults dominate, and whether some types of faults were reported as
being more severe than others. Our findings show that one specific fault type is
generally dominant across reports from all projects, and that some fault types
are rated as more severe than others. From this we could propose that the or-
ganization studied should increase effort in the design phase in order to improve
software quality.

1 Introduction

Improving software quality is a goal most software development organizations aim
for. This is not a trivial task, and different stakeholders will have different views on
what software quality is. In addition, the character of the actual software will influ-
ence what is considered the most important quality attributes of that software. For
many organizations, analyzing routinely collected data could be used to improve their
process and product quality. Fault report data is one possible source of such data, and
research shows that fault analysis can be a good approach to software process
improvement [1].

The Business-Critical Software (BUCS) project [2] is seeking to develop a set of
techniques to improve support for analysis, development, operation, and maintenance
of business-critical systems. Aside from safety-critical systems, like air-traffic control
and health care systems, there are other systems that we also expect will run correctly
because of the possibly severe effects of failure, even if the consequences are mainly

 Investigating the Software Fault Profile of Industrial Projects 213

of an economic nature. This is what we call business-critical systems and software. In
these systems, software quality is highly important, and the main target for developers
will be to make systems that operate correctly [2]. One important issue in developing
these kinds of systems is to remove any possible causes for failure, which may lead to
wrong operation of the system. In a previous study [3], we investigated fault reports
from four business-critical industrial software projects. Building on the results of that
study, we look at fault reports from five further projects. The study presented here in-
vestigated fault reports from five industrial software projects. It investigates the fault
profiles in two main dimensions; Fault type and fault severity.

The rest of this paper is organized as follows. Section 2 gives our motivation and re-
lated work. Section 3 describes the research design and research questions. Section 4
presents the results found, and Section 5 presents analysis and discussion of the results.
The conclusion and further work is presented in Section 6.

2 Motivation and Related Work

The motivation for the work described in this paper is to further the knowledge gained
from a previous study on fault reports from industrial projects. We also wanted to pre-
sent empirical data on the results of fault classification and analysis, and show how
this can be of use in a software process improvement setting.

When considering quality improvement in terms of fault analysis, there are several
related topics to consider. Several issues about fault reporting are discussed in [4] by
Mohagheghi et al. General terminology in fault reporting is one problem mentioned,
validity of use of fault reports as a means for evaluating software quality is another.
One of its conclusions is that “There should be a trade-off between the cost of repair-
ing a fault and its presumed customer value. The number of faults and their severity
for users may also be used as a quality indicator for purchased or reused software.”

Software quality is a notion that encompasses a great number of attributes. The
ISO 9126 standard defines many of these attributes as sub-attributes of the term
“quality of use” [5]. When speaking about business-critical systems, the critical qual-
ity attribute is often experienced as the dependability of the system. In [6], Laprie
states that “a computer system’s dependability is the quality of the delivered service
such that reliance can justifiably be placed on this service.” According to Littlewood
and Strigini [7], dependability is a software quality attribute that encompasses several
other attributes, the most important are reliability, availability, safety and security.
The term dependability can also be regarded subjectively as the “amount of trust one
has in the system”.

Much effort is being put into reducing the probability of software failures, but this
has not removed the need for post-release fault-fixing. Faults in the software are det-
rimental to the software’s quality, to a greater or lesser extent dependent on the nature
and severity of the fault. Therefore, one way to improve the quality of developed
software is to reduce the number of faults introduced into the system during develop-
ment. Faults are potential flaws in a software system, that later may be activated to
produce an error. An error is the execution of a "passive fault", leading to a failure. A
failure results in observable and erroneous external behaviour, system state or data

214 J.A. Børretzen and J. Dyre-Hansen

state. The remedies known for errors and failures are to limit the consequences of an
active error or failure, in order to resume service. This may be in the form of duplica-
tion, repair, containment etc. These kinds of remedies do work, but as Leveson states
in [8], studies have shown that this kind of downstream (late) protection is more ex-
pensive than preventing the faults from being introduced into the code.

Faults that have been introduced into the system during implementation can be dis-
covered either by inspection before the system is run, by testing during development
or when the application is run on site. The discovered faults are then reported in a
fault reporting system, to be fixed later. Faults are also commonly known as defects or
bugs, while another, similar but more extensive concept is anomalies, which is used
in the IEEE 1044 standard [9].

Orthogonal Defect Classification – ODC – is one way of studying defects in soft-
ware systems, and is mainly suited to design and coding defects. [10, 11, 12, 13, 14]
are some papers on ODC and using ODC in empirical studies. ODC is a scheme to
capture the semantics of each software fault quickly.

It has been discussed in several papers if faults can be tied to the reliability in a
more or less cause-effect relationship. Some papers like [12, 14, 15] indicate that this
kind of connection is valid, while others like [16] are more critical to this approach.

Even if many of the studies point towards a connection being present between
faults and reliability, they also emphasize that it is not easy to tie faults to reliability
directly. Thus, it is not given that a system with a low number of faults necessarily
has a higher reliability than a system with a high number of faults. Still, reducing the
number of faults in a system will make the system less prone to failure, so if you can
remove the faults you find without adding new ones, there is a good case for the reli-
ability of the system being increased. This is called “reliability-growth models”, and
is discussed by Hamlet in [16] and by Paul et al. in [15].

Avizienis et al. state [17] that the fault prevention and fault tolerance aim to pro-
vide the ability to deliver a service that can be trusted, while fault removal and fault
forecasting aim to reach confidence in that ability by justifying that the functional and
the dependability and security specifications are adequate and that the system is likely
to meet them. Hence, by working towards techniques that can prevent faults and re-
duce the number and severity of faults in a system, the quality of the system can be
improved in the area of dependability.

An example of results in a related study is the work done in Vinter and Lauesen
[18]. This paper used a different fault taxonomy as proposed by Bezier [19], and re-
ports that in their studied project close to a quarter of the faults found were of the type
“Requirements and Features”.

3 Research Design

This paper builds on a previous study [3] where we investigated the fault profiles of
industrial projects, and this paper expands on those findings, using a similar research
design. We want to explore the fault profiles of the studied projects with respect to
fault types and fault severity. In order to study the faults, we categorized them into
fault types as described in Section 3.2.

 Investigating the Software Fault Profile of Industrial Projects 215

3.1 Research Questions

Initially we want to find which types of faults which are most frequent, and also the
distribution of faults into different fault types:

RQ1: Which types of faults are most common for the studied projects?
When we know which types of faults dominate and where these faults appear in the
systems, we can choose to concentrate on the most serious ones in order to identify
the most important issues to target in improvement work (note that the severity of the
faults are judged by the developers who report the faults):

RQ2: Which fault types are rated as the most severe faults?
We also want to compare the results from this study with the results we found in the
previous study on this topic [3]:

RQ3: How do the results of this study compare with our previous fault report
study?

3.2 Fault Categorization

There are several taxonomies for fault types, two examples are the ones used in the
IEEE 1044 standard [9] and in a variant of the Orthogonal Defect Classification
(ODC) scheme by El Emam and Wieczorek [12]. The fault reports we received were
already categorized in some manner by the developers and testers, but using a very
broad categorization scheme, which mainly placed the fault into categories of “fault
caused by others”, “change request”, “test environment fault”, “analysis/design fault”,
“test fault” and “coding fault”. The fault types used in this study is shown in Table 1.
This is very similar to the ODC scheme used in [12], but with the addition of a GUI
fault type. The reason this classification scheme was used, is that it is quite simple to
use but still discerns the fault types well. Further descriptions of the fault types used
can be found in Chillarege et al. [13].

Table 1. Fault types used in this study

Fault types
Algorithm Function
Assignment GUI
Checking Interface
Data Relationship
Documentation Timing/serialization
Environment Unknown

The categorization of faults in this investigation has been performed by the authors

of this paper, based on the fault reports’ textual description and partial categorization.
In addition, grading the faults’ consequences upon the system and system envi-

ronment enables fault severities to be defined. All severity grading was done by the
developers and testers performing the fault reporting in the projects. In the projects
under study, the faults have been graded on a severity scale from 1 to 5, where 1 is
“critical” and 5 is “change request”. The different severity classifications are shown in
Table 2.

216 J.A. Børretzen and J. Dyre-Hansen

Table 2. Fault severity classification

Fault severity classification
1 Critical
2 Can not be circumvented
3 Can be circumvented
4 Cosmetic
5 Change request

3.3 The Data Sample

The data collected for this study comes from five different projects, all from the same
company, but from variously located development groups. The software systems de-
veloped in these projects are all on-line systems of a business-critical nature, and they
have all been put into full or partial production. Altogether, we classified and ana-
lyzed 981 fault reports from the five projects. Table 3 contains information about the
participating projects. The fault reports consisted of fault summary, severity rating, a
coarse fault categorization, description of fault and comments made by testers and de-
velopers after the fault had been reported, while fixing the fault.

Table 3. Information about the participating projects

Project P1 P2 P3 P4 P5
Project de-
scription

Registering
data

Administra-
tion tool

Merging of
applications

Administra-
tion tool

Transaction
tool

Technical
platform

J2EE J2EE Unix, Oracle J2EE, Unix,
Oracle

N/A

Development
language

Java Java Java Java Java

Development
effort (hours)

N/A 7900 14000 6000 2100

Number of
fault reports

490 212 42 34 123

4 Results

4.1 RQ1 – Which Types of Faults Are Most Frequent?

To answer RQ1, we look at the distribution of the fault type categories for the differ-
ent projects. Table 4 shows the distribution of faults types across all projects studied,
Table 5 shows distribution of faults for each project. A plot of Table 5 is shown in
Figure 1.

We see that “function” and “GUI” faults are the most common fault types, with
Assignment also being quite frequent. Some faults like “documentation”, “relation-
ship”, “timing/serialization” and “interface” faults are not frequent.

If we focus only on the faults that are rated with “critical” severity (7.6% of all
faults), the distribution is as shown in Figure 2. “Function” faults do not just dominate

 Investigating the Software Fault Profile of Industrial Projects 217

Table 4. Fault type distribution across all projects

Fault type # of faults %
Function 191 27,0 %
GUI 138 19,5 %
Unknown 87 12,3 %
Assignment 75 10,6 %
Checking 58 8,2 %
Data 46 6,5 %
Algorithm 37 5,2 %
Environment 36 5,1 %
Interface 11 1,6 %
Timing/Serialization 11 1,6 %
Relationship 9 1,3 %
Documentation 8 1,1 %

Table 5. Fault type distribution for each project

Fault type P1 P2 P3 P4 P5
Algorithm 1,1 % 12,0 % 4,9 % 6,7 % 8,6 %
Assignment 9,5 % 7,4 % 14,6 % 26,7 % 14,0 %
Checking 6,3 % 15,4 % 2,4 % 0,0 % 7,5 %
Data 1,9 % 15,4 % 2,4 % 3,3 % 10,8 %
Documentation 1,4 % 0,6 % 0,0 % 0,0 % 2,2 %
Environment 4,6 % 7,4 % 2,4 % 3,3 % 4,3 %
Function 25,3 % 24,0 % 53,7 % 36,7 % 24,7 %
GUI 29,9 % 5,7 % 14,6 % 6,7 % 10,8 %
Interface 0,3 % 1,1 % 0,0 % 10,0 % 5,4 %
Relationship 0,3 % 1,7 % 0,0 % 3,3 % 4,3 %
Timing/Serialization 1,4 % 2,3 % 2,4 % 0,0 % 1,1 %
Unknown 18,2 % 6,9 % 2,4 % 3,3 % 6,5 %

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

P1 P2 P3 P4 P5

Unknow n

Timing/Serialization

Relationship

Interface

GUI

Function

Environment

Documentation

Data

Checking

Assignment

Algorithm

Fig. 1. Fault type distribution for each project

218 J.A. Børretzen and J. Dyre-Hansen

0,00 %

5,00 %

10,00 %

15,00 %

20,00 %

25,00 %

30,00 %

35,00 %

40,00 %

Fun
ct

ion

Unk
no

wn

Ass
ig

nm
en

t

Env
iro

nm
en

t

Alg
or

ith
m

Dat
a

Rel
at

ion
sh

ip

Tim
in

g/
Seria

liz
at

io
n

Che
ck

in
g

G
UI

In
te

rfa
ce

Doc
um

en
ta

tio
n

Fig. 2. Distribution of faults rated as critical

the total distribution, but also the distribution of “critical” faults. A very similar
distribution is also the case for “can not be circumvented” severity rated faults.

When looking at the distribution of faults, especially for the high severity faults,
we see that “function” faults dominate the picture, We also see that for all faults,
“GUI” faults have a large share (19.5% in total) of the reports, while for the critical
severity faults the share of “GUI” faults are strongly reduced to 1.5%.

4.2 RQ2 – What Types of Faults Are Rated as Most Severe?

As for the severity of fault types, Figure 3 illustrates how the distribution of severities
was for each fault type. The “relationship” fault type has the highest share of “criti-
cal” faults, and also the highest share when looking at both “critical” and “can not be
circumvented” severity faults. The most numerous fault type “function”, does not
stand out as a particularly severe fault type compared with the others. The fault types
that show themselves to be rated as least severe, are “GUI” and “data” faults.

0 %

20 %

40 %

60 %

80 %

100 %

Fun
ct

ion GUI

Unk
no

wn

Ass
ign

men
t

Che
ck

ing Data

Algo
rith

m

Env
iro

nm
en

t

Int
er

fac
e

Tim
ing

/S
eria

liz
ati

on

Rela
tio

ns
hip

Doc
um

en
ta

tio
n

5 - Enhancement

4 - Cosmetic

3 - Can be circumvented

2- Can not be circumvented

1- Critical

Fig. 3. Distribution of severity with respect to fault types for all projects

 Investigating the Software Fault Profile of Industrial Projects 219

4.3 RQ3 – How Do the Results Compare with the Previous Study?

Previously, we conducted a similar study of fault reports from industrial projects,
which is described in [3]. In the previous study, “function” faults were the dominant
fault type, making out 33.3% to 61.3% of the reported faults in the four investigated
projects. The percentage of “function” faults is lower for the five projects studied for
this paper, but is still the dominant fault type making out 24.0% to 53.7% of the re-
ported faults in P1 to P5 as shown in Table 5.

When looking at the highest severity rated faults reported, this study also shows
that “function” faults are the most numerous of the “critical” severity rated faults as
shown in Figure 2 with 35.8%. This is in line with the previous study where “func-
tion” faults were also dominant among the most severe faults reported, with 45.3%.

5 Analysis and Discussion

5.1 Implications of the Results

The results found in this study coincide with the results of the previous fault study we
performed with different development organizations. In both studies the “function”
faults have been the most numerous, both in general and among the faults rated as most
severe. As “function” faults are mainly associated with the design process phase, as
stated by Chillarege et al. in [13] and also by Zheng et al. in [20] as shown in Table 6,
this indicates that a large number of faults had their origin in early phases of develop-
ment. This is a sign that the design and specification process is not working as well as
it should, making it the source of faults that are demanding and expensive to fix, as
“function” faults will generally involve larger fixing efforts than pure code errors like
“checking” and “assignment” types of faults. This means that we can recommend the
developers in the projects that have been studied to increase the effort used during de-
sign in order to reduce the total number of effort demanding faults in their products.
This finding is also similar to the one from the study of Vinter and Lauesen [18], where
“Requirements and Features” faults were the dominating fault type.

When looking at each fault type in Figure 3, we see which fault types that tend to
produce the most severe faults. One observation here is that although “function” faults
dominate the picture for critical severity faults in Figure 2, it is the “relationship” and
“timing/serialization” fault types that consist of the most critical severity rated faults.

Table 6. ODC fault types and development process phase associations [20]

Process Association Fault types
Design Function
Low Level Design Interface, Checking, Timing/Serialization, Algorithm
Code Checking, Assignment
Library Tools Relationship
Publications Documentation

220 J.A. Børretzen and J. Dyre-Hansen

It can therefore be argued that the fault types “relationship” and “tim-
ing/serialization” fault types are important to prevent, as it is likely that these types of
faults have greater consequences than those of for instance “GUI” and “data” type
faults. “Function” faults show themselves to be important to focus on preventing due
to the sheer number of them, both in general and for the “critical” severity rated
faults. Although “function” faults do not stand out as a fault type where most faults
are rated as “critical”, it is still the biggest contributor to “critical” severity rated
faults.

When informing the organization involved of the results of this study, the feedback
was anecdotal confirmation of our findings, as they informed us that they were indeed
having issues with design and specification, even though their own fault statistics
showed most faults to be coding faults. We would like to study this issue further in
our future work on the subject.

In many cases, fault reporting is performed with one goal in mind, to fix faults that
are uncovered through inspection and testing. Once the fault has been corrected, the
fault report information is not used again. The available information can be employed
in a useful fashion as long as future development projects are similar to, or based on
previous projects. By reusing the information that has been accumulated during fault
discovery through testing and during production, we are able to learn about possible
faults for new similar projects and further development of current projects.

Measuring quality and effects on quality in a software system is not a trivial mat-
ter. As presented in Section 2, the opinion on how and if this can be done is divided.
One of the means Avizienis et al. suggests for attaining better dependability in a sys-
tem is fault removal in order to reduce the number and severity of faults [17]. By
identifying common fault types, developers can reduce a larger number of faults by
focusing their efforts on preventing these types of faults. Also, identifying the most
severe fault types makes developers able to focus on preventing those faults that have
the biggest detrimental impact on the system.

5.2 Further Issues Concerning Fault Reporting in This Organization

In addition to our quantitative study results, we were able to identify some points of
possible improvement in the studied organization's fault reporting. Two attributes that
we found lacking, which should be possible to include in fault reporting are Fault Lo-
cation and Fault Fixing Effort. The location of a fault should be readily known once a
fault report has been dealt with, as fault fixing must have a target module or software
part. This information would be very helpful if the organization wants to investigate
which software modules produce the most serious faults, and they can then make a
reasoned argument if these modules are of a particularly critical type (like infrastruc-
ture or server components), or if some modules are simply of a poorer quality than
others. Including fault fixing effort into the fault reports is also an issue that could be
of great benefit when working to improve fault prevention processes. By recording
such information, we can see which fault types that produce the most expensive faults
in terms of effort when fixing them. These are issues that will be presented to the
organization under study. Their current process of testing and registering faults in a
centralized way hinders the testers and developers from including this valuable infor-
mation from the fault reports. The testers who initially produce the fault reports do not

 Investigating the Software Fault Profile of Industrial Projects 221

necessarily know which software modules the fault is located in, and developers fix-
ing the fault do not communicate the location it was found in after it has been found
and fixed.

5.3 Threats to Validity

When performing an empirical study on industrial projects, it is not possible to con-
trol the environment or data collected as we would do in an experiment. The follow-
ing is a short presentation of what we see as the main validity threats.

Internal validity. An issue here might be factors affecting the distribution of fault
types. When the fault data was collected the intention of use was solely for fault fix-
ing, it was not intended to be studied in this way. The coarse classification given by
the developers could have been biased. Such bias or other inconsistencies were hope-
fully reduced by us classifying the fault reports with new fault types.

External validity. The small number of projects under investigation is a threat to ex-
ternal validity. However, the results of this study support the findings of a previous
similar study of fault reports from other software development organizations. The
projects under study may also not necessarily be the most typical, but this is hard to
verify in any way.

Conclusion validity. One possible threat here is the reliability of measures, as the
categorization of faults into fault types is a subjective task. To prevent categorizing
faults we were unsure of into the wrong category, we used a type “unknown” to filter
out the faults we were not able to confidently categorize.

6 Conclusion and Future Work

In this paper we have described the results of a study of fault reports from five soft-
ware projects from a company developing business-critical software. The fault reports
have been categorized and analyzed according to our research questions. From the re-
search questions we have found that "function" faults, closely followed by "GUI"
faults are the fault types that occur most frequently in the projects. To reduce the
number of faults introduced in the systems, the organization should focus on improv-
ing the processes which are most likely to contribute to these types of faults, namely
the specification and design phases of development. Faults of the fault types "docu-
mentation", "relationship", "timing/serialization" and "interface" are the least frequent
occurring fault types.

The fault types that are most often rated as most severe are "relationship" and "tim-
ing/serialization" faults, while the fault types "GUI" and "documentation" are consid-
ered the least severe. Although “function” faults are not rated as the most severe type
of fault, this fault type still dominates when looking at the distribution of highly se-
vere faults only.

In additions to these results, we observed that the organization’s fault reporting
process could be improved by adding some information to the fault reports. This
would facilitate more effective targeting of fault types and locations in order to better
focus future efforts for improvement.

222 J.A. Børretzen and J. Dyre-Hansen

In terms of future work, we want to continue studying the projects explored in this
paper, using qualitative methods to further explain our quantitative results. Feedback
from the developers’ organization would aid us understand the source of these results,
and help us suggest concrete measures for process improvement in the organization.

Acknowledgements

The authors would like to thank Reidar Conradi for careful reviewing and valuable
input. We also thank the organization involved for their participation and cooperation
during the study.

References

1. Grady, R.: Practical Software Metrics for Project Management and Process Improvement.
Prentice Hall, Englewood Cliffs (1992)

2. Børretzen, J.A., Stålhane, T., Lauritsen, T., Myhrer, P.T.: Safety activities during early
software project phases. In: Proceedings, Norwegian Informatics Conference (2004)

3. Børretzen, J.A., Conradi, R.: Results and Experiences From an Empirical Study of Fault
Reports in Industrial Projects. In: Münch, J., Vierimaa, M. (eds.) PROFES 2006. LNCS,
vol. 4034, pp. 389–394. Springer, Heidelberg (2006)

4. Mohagheghi, P., Conradi, R., Børretzen, J.A.: Revisiting the Problem of Using Problem
Reports for Quality Assessment. In: ICSE’06. Proc. the 4th Workshop on Software Qual-
ity, Shanghai, May 21, 2006, pp. 45–50 (2006)

5. ISO: ISO/IEC 9126 - Information technology - Software evaluation – Quality characteris-
tics and guide-lines for their use. ISO (December 1991)

6. Laprie, J.-C.: Dependable computing and fault tolerance: Concepts and terminology. In:
Twenty-Fifth International Symposium on Fault-Tolerant Computing. Highlights from
Twenty-Five Years (June 27-30, 1995)

7. Littlewood, B., Strigini, L.: Software reliability and dependability: a roadmap. In: Proceed-
ings of the Conference on The Future of Software Engineering, Limerick, Ireland, pp.
175–188 (2000)

8. Leveson, N.: Safeware: System safety and computers. Addison-Wesley, Boston (1995)
9. IEEE: IEEE Standard Classification for Software Anomalies. IEEE Std 1044-1993

(December 2, 1993)
10. Bassin, K.A., Kratschmer, T., Santhanam, P.: Evaluating software development objec-

tively. IEEE Software 15(6), 66–74 (1998)
11. Bassin, K., Santhanam, P.: Managing the maintenance of ported, outsourced, and legacy

software via orthogonal defect classification. In: Proceedings. IEEE International Confer-
ence on Software Maintenance (November 7-9, 2001)

12. El Emam, K., Wieczorek, I.: The repeatability of code defect classifications. In: Proceed-
ings. The Ninth International Symposium on Software Reliability Engineering, pp. 322–
333 (November 4-7, 1998)

13. Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K.,
Wong, M.-Y.: Orthogonal defect classification-a concept for in-process measurements.
IEEE Transactions on Software Engineering 18(11), 943–956 (1992)

14. Lutz, R.R., Mikulski, I.C.: Empirical analysis of safety-critical anomalies during opera-
tions. IEEE Transactions on Software Engineering 30(3), 172–180 (2004)

 Investigating the Software Fault Profile of Industrial Projects 223

15. Paul, R.A., Bastani, F., Ling Yen, I., Challagulla, V.U.B.: Defect-based reliability analysis
for mission-critical software. In: COMPSAC 2000. The 24th Annual International Com-
puter Software and Applications Conference, pp. 439–444 (October 25-27, 2000)

16. Hamlet, D.: What is software reliability? In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.)
Recent Trends in Data Type Specification. LNCS, vol. 906, pp. 169–170. Springer, Hei-
delberg (1995)

17. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on Dependable and Secure Com-
puting 1(1) (January-March 2004)

18. Vinter, O., Lauesen, S.: Analyzing Requirements Bugs. Software Testing & Quality Engi-
neering Magazine 2-6 (November/December 2000)

19. Beizer, B.: Software Testing Techniques, 2nd edn. Van Nostrand Reinhold, New York
(1990)

20. Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J.P., Vouk, M.A.: On the
value of static analysis for fault detection in software. IEEE Transactions on Software En-
gineering 32(4), 240–253 (2006)

Author Index

Abrahamsson, Pekka 1
Ahonen, Jarmo J. 71

Baddoo, Nathan 1, 160
Biró, Miklós 31
Bjørnson, Finn Olav 7
Børretzen, Jon Arvid 212

Calori, Ilaria Canova 106
Cerpa, Narciso 82
Chen, Xi 59
Cuadrado-Gallego, Juan.J. 118

Damm, Lars-Ola 187
Dingsøyr, Torgeir 136
Dyre-Hansen, Jostein 212

Gonzalo, Cuevas 46
Guzmán, Javier Garćıa 124

Hanssen, Geir Kjetil 7

Ivan, Garcia 46

Jose A., Calvo-Manzano 46

Krohn, Malene M. 94

López-Cortijo, Román 124
Lundberg, Lars 187

Madeyski, Lech 200
Messnarz, Richard 1

Moe, Nils Brede 136
Molnár, Bálint 31
Montoni, Mariano 175
Münch, Jürgen 19

Pereira, Javier 82
Pries-Heje, Jan 94

Rejas-Muslera, Ricardo J. 118
Rocha, Ana Regina 175
Rodriguez, Daniel 118

Savolainen, Paula 71
Schalken, Joost 136
Seco, Antonio Amescua 124
Sihvonen, Hanna-Miina 71
Soto, Mart́ın 19
St̊alhane, Tor 136
Staples, Mark 59
Sza�la, �Lukasz 200

Tiziana, Margaria 1
Tomas, San Feliu 46

Verner, June 82

Westerheim, Hans 7

Yilmaz, Levent 148

Zhang, Min 160
Ziemer, Sven 106

	Title Page
	Preface
	Organization
	Table of Contents
	Software Process Improvement– EuroSPI 2007 Conference
	EuroSPI Overview
	Board Members
	EuroSPI Scientific Programme Committee
	EuroSPI Scientific Chairs

	How to Read the Proceedings
	Research Contents
	Recommended Further Reading

	References

	Tailoring and Introduction of the Rational Unified Process
	Introduction
	Background: Method Tailoring
	Method
	Results
	Discussion
	Conclusions
	References

	Maintaining a Large Process Model Aligned with a Process Standard: An Industrial Example
	Introduction
	Aligning a Customized Process Model with a Standard
	The German V-Modell XT
	A Customized Version of the V-Modell XT
	Difference Identification in the V-Modell

	The DeltaProcess Approach
	Description of the Approach
	Implementation
	Related Approaches

	An Alignment Viability Analysis
	Conclusions and Future Work
	References

	Synergies Between the Common Criteria and Process Improvement
	Introduction
	The Common Criteria
	Enlightening Analogies
	CC in Software Development as Process Improvement Tool
	Software Quality Standards in Iterative, Object-Oriented Development
	Application of UP / UML

	Conclusion
	References

	Determining Practice Achievement in Project Management Using a Two-Phase Questionnaire on Small and Medium Enterprises
	Introduction
	Motivations
	The Capability Maturity Model Integration for Development
	Model’s Structure

	The Project Management Practices
	Data Collection Instruments: An Overview
	An Alternative Data Collection Instrument: The PMP Two Phase -Questionnaire
	Questionnaire’s Structure

	Conclusions
	References

	Using Practice Outcome Areas to Understand Perceived Value of CMMI Specific Practices for SMEs
	Introduction
	Perceived Value of CMMI Specific Practices
	Categorization of Specific Practices
	Specific Practice Outcome Areas
	Activities for Each Outcome Area
	Combining Outcome Area and Activity Categories

	Analyzing Specific Practices Using Outcome Area and Activity
	Classifying Specific Practices by Outcome Area and Activity
	Re-analysis of the Perceived Value of Specific Practices for SMEs

	Conclusion
	References

	SPI with Lightweight Software Process Modeling in a Small Software Company
	Introduction
	Objectives and Context
	Process Modeling Technique and Practical Implementation
	The First Modeling Session
	The Second Modeling Session
	The Third Modeling Session

	Key Points and Identified Problems
	SPI Actions Taken
	Discussion
	References

	A Practitioner Experiment in Understanding Software Process Improvement Using Systems Modular Analysis
	Introduction
	Introduction to Systems Modular Analysis (SMA)
	Modular Structure of a KPA Using SMA
	Modelling Requirements Management and Software Project Planning KPAs
	A SMA Model for the Normative Structure of CMM-SW Level 2

	Experiment
	Method
	Results and Discussion

	Conclusions
	References

	An Experiment with a Release Planning Method for Web Application Development
	Introduction
	Background
	Related Work
	Experiment Definition and Goal
	Experiment Planning and Operation
	Planning
	Operation

	The Questionnaire and Experiment Analysis
	Results
	Discussion and Further Work
	Conclusions
	References

	Organizing Improvement Work: A Longitudinal Case
	Introduction
	Organizing SPI
	SimCorp Cases of Organizing SPI
	Case 1: Central SEPG/SPI Group Takes Ownership
	Case 2: Establishing an SPI Steering Group
	Case 3: Central SPI Group to Measure and Follow Up
	Case 4: Design and Deploy New Processes
	Evaluating the First Four SimCorp Cases
	Case 5: Decentralized SPI Work
	Case 6: Cross-Organizational Teams to Facilitate Improvement
	Case 7: Cross-Organizational Teams to Deploy Processes and Take Ownership
	Case 8: Rotation Scheme for Knowledge Agents
	Case 9: Targeted SPI Projects

	Conclusion on Organizing SPI Work
	References

	iCharts: Charts for Software Process Improvement Value Management
	Defining a Legal Risk Management Strategy: Process, Legal Risk and Lifecycle
	Introduction
	Legal Risks for Software Projects
	Intellectual Property Area
	Aspects Related to Current Regulations

	Risk Management in Software Process Assessment andImprovement Models
	A Legal Risk Management Process
	Conclusions and Future Work
	References

	Introduction
	State of the Art
	Definition of iChart Technique
	Application of iChart Technique
	Evaluation of iChart Technique
	Evaluation of Usefulness and Added Value
	Problems Found and Lessons Learned

	Conclusions and Future Work
	References

	Organizational Learning Through Project Postmortem Reviews – An Explorative Case Study
	Introduction
	Organizational Learning and Postmortem Reviews
	Related Work

	Research Questions and Method
	The Case Company
	Data Collection
	Data Analysis

	Results
	Quantitative Analysis
	Qualitative Analysis

	Discussion
	Conclusion
	References

	Modelling Software Processes as Human-Centered Adaptive Work Systems
	Introduction
	Modeling Processes as Human-Centered Work Systems – The Cognitive Systems Engineering Perspective
	Operational Level – Organizational Subsystem
	Operational Level – Social Subsystem
	Operational Level – Integration of Organization and Social Subsystems

	The Technical Level
	Human Information Behavior (HIB) Model
	Human Behavior Subsystem

	Conclusions
	References

	Performance Comparison of Software Complexity Metrics in an Open Source Project
	Introduction
	Complexity Metrics and Open Source SE Research
	Previous Researches
	Open Source Projects

	Research Methodology
	Data Capturing
	Complexity Metrics Calculation
	Statistical Analysis

	Results
	Hypothesis A
	Hypothesis B
	Hypothesis C
	Hypothesis D

	Discussion
	Conclusion
	References

	A Methodology for Identifying Critical Success Factors That Influence Software Process Improvement Initiatives: An Application in the Brazilian Software Industry
	Introduction
	Background
	Research Method
	Qualitative and Quantitative Analysis Results
	Conclusions
	References

	Quality Impact of Introducing Component-Level Test Automation and Test-Driven Development
	Introduction
	Related Work
	Test-Driven Development and Component Testing
	Measurements for Early Fault Detection

	Method
	Case Study Setting
	Overview of the Implemented Framework
	Evaluation Method

	Results
	FST to After RFA
	Effort-Adjusted FST to After RFA
	UT FST in Relation to Total FST

	Discussion
	Interpretation of the Results
	Validity Threats
	Estimated Cost Savings

	Conclusions
	References

	The Impact of Test-Driven Development on Software Development Productivity — An Empirical Study
	Introduction
	Related Work
	Empirical Study
	User Requirements
	Procedure
	Validity Evaluation

	Measurements Definition
	Results
	Productivity Metrics Analysis
	Analysis of Programming Activities

	Conclusions
	References

	Investigating the Software Fault Profile of Industrial Projects to Determine Process Improvement Areas: An Empirical Study
	Introduction
	Motivation and Related Work
	Research Design
	Research Questions
	Fault Categorization
	The Data Sample

	Results
	RQ1 – Which Types of Faults Are Most Frequent?
	RQ2 – What Types of Faults Are Rated as Most Severe?
	RQ3 – How Do the Results Compare with the Previous Study?

	Analysis and Discussion
	Implications of the Results
	Further Issues Concerning Fault Reporting in This Organization
	Threats to Validity

	Conclusion and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

