
Software of the Future Is the Future of Software?

Paola Inverardi

Dipartimento di Informatica,
Università dell’Aquila
inverard@univaq.it

Abstract. Software in the near ubiquitous future (Softure) will need to
cope with variability, as software systems get deployed on an increasingly
large diversity of computing platforms and operates in different execu-
tion environments. Heterogeneity of the underlying communication and
computing infrastructure, mobility inducing changes to the execution
environments and therefore changes to the availability of resources and
continuously evolving requirements require software systems to be adapt-
able according to the context changes. Softure should also be reliable and
meet the user’s performance requirements and needs. Moreover, due to its
pervasiveness, Softure must be dependable, which is made more complex
given the highly dynamic nature of service provision. Supporting the de-
velopment and execution of Softure systems raises numerous challenges
that involve languages, methods and tools for the systems thorough de-
sign and validation in order to ensure dependability of the self-adaptive
systems that are targeted. However these challenges, taken in isolation
are not new in the software domain. In this paper I will discuss some
of these challenges, what is new and possible solutions making reference
to the approach undertaken in the IST PLASTIC project for a specific
instance of Softure focused on software for Beyond 3G (B3G) networks.

1 Introduction

Software in the near ubiquitous future (Softure) will need to cope with variability,
as software systems get deployed on an increasingly large diversity of computing
platforms and operates in different execution environments. Heterogeneity of
the underlying communication and computing infrastructure, mobility inducing
changes to the execution environments and therefore changes to the availability
of resources and continuously evolving requirements require software systems
to be adaptable according to the context changes. At the same time, Softure
should be reliable and meet the user’s performance requirements and needs.
Moreover, due to its pervasiveness, Softure must be dependable, which is made
more complex given the highly dynamic nature of service provision.

Supporting the development and execution of Softure systems raises numerous
challenges that involve languages, methods and tools for the systems thorough
design and validation in order to ensure dependability of the self-adaptive sys-
tems that are targeted.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 69–85, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

70 P. Inverardi

However these challenges, taken in isolation are not new in the software
domain. Adaptable and re-configurable systems do exist in many software ap-
plication domains from tele-communication to the software domain itself, e.g.
operating systems. Dependable systems have been intensively investigated and
methods and tools exist to develop them. Hence what are the new challenges
for Softure? In this paper I will discuss some of these challenges and possible
solutions making reference to the approach undertaken in the IST PLASTIC [1]
project for the specific instance of Softure as software for Beyond 3G (B3G) net-
works. I will try to highlight what I consider innovative and futurist for software
and what I simply consider software for the future. The ultimate thesis of this
paper is that Softure requires to rethink the whole software engineering process
and in particular it needs to reconcile the static view with the dynamic view.

The paper is structured as follows. In the following section I discuss the Sof-
ture characteristics in order to identify the two key challenges: adaptability and
dependability. Section 3 discusses and compares different notions of adaptability
with different degrees of dependability. This discussion will bring me to consider
the Softure issues in a software process perspective. Section 4 proposes a new
software process and discusses it in the scope of the PLASTIC project [1].

2 Softure Challenges: Setting the Context

Softure is supposed to execute in an ubiquitous, heterogeneous infrastructure
under mobility constraints. This means that the software must be able to carry
on operations while changing different execution environments or contexts. Ex-
ecution contexts offer a variability of resources that can affect the software op-
eration. Context awareness refers to the ability of an application to sense the
context in which it is executing and therefore it is the base to consider (Self-)
adaptive applications, i.e. software systems that have the ability to change their
behavior in response of external changes.

It is worthwhile stressing that although a change of context is measured in
terms of availability of resources, that is in quantitative terms, an application can
only be adapted by changing its behavior, i.e. its functional/qualitative specifi-
cation. In particular, (Physical) Mobility allows a user to move out of his proper
context, traveling across different contexts. To our purposes the difference among
contexts is determined in terms of available resources like connectivity, energy,
software, etc. However other dimensions of contexts can exist relevant to the
user, system and physical domains, which are the main context domains iden-
tified in the literature [2]. In the software development practice when building
a system the context is determined and it is part of the (non-functional) re-
quirements (operational, social, organizational constraints). If context changes,
requirements change therefore the system needs to change. Context changes oc-
cur due to physical mobility, thus while the system is in operation. This means
that if the system needs to change this should happen dynamically. This notion
leads to consider different ways to modify a system at run time that can happen

Software of the Future Is the Future of Software? 71

in different forms namely (Self-)adaptiveness/dynamicity/evolution and at dif-
ferent levels of granularity, from software architecture to line of code.

Softure needs also to be dependable. Dependability is an orthogonal issue
that depends on Quality of Service (QoS) attributes, like performance and all
other—bilities. Dependability impacts all the software life cycle.

In general dependability is an attribute for software systems that operate in
specific application domains. For Softure I consider dependability in its original
meaning as defined in [3], that is the trustworthiness of a computing system
which allows reliance to be justifiably placed on the service it delivers ... Depend-
ability includes such attributes as reliability, availability, safety, security. Softure
encompasses any kind of software system that can operate in the future ubiqui-
tous infrastructure. The dependability requirement is therefore extended also to
applications that traditionally have not this requirement. Dependability in this
case represents the user requirement that states that the application must op-
erate in the unknown world (i.e. out of a confined execution environment) with
the same level of reliance it has when operating at home. At home means in the
controlled execution environment where there is complete knowledge of the sys-
tem behavior and the context is fixed. In the unknown world, the knowledge of
the system is undermined by the absence of knowledge on contexts, thus the de-
pendability requirement arises also for conventional applications. Traditionally
dependability is achieved with a comprehensive approach all along the software
life cycle from requirements to operation to maintenance by analyzing models,
testing code, monitor and repair execution.

Therefore the overall challenge is to provide dependable assurance for highly
adaptable applications. Since dependability is achieved throughout the life cycle
many software artifacts are involved, from requirements specification to code. In
the rest of this paper I will consider as such artifacts only models that is idealized
view of the system suitable for reasoning, developing, validating a real system.
Models can be functional and non-functional and can represent different level of
abstractions of the real system, from requirements to code. My research bias is
on Software Architecture, therefore I will often consider software architectural
systems’ models. An architectural model allows the description of the static and
dynamic components of the system and explains how they interact. Software
architectures support early analysis, verification and validation of software sys-
tems. Software architectures are the earliest comprehensive system model along
the software lifecycle built from requirements specification. They are increasingly
part of standardized software development processes because they represent a
system abstraction in which design choices relevant to the correctness of the final
system are taken. This is particularly evident for dependability requirements like
security and reliability and quantitative ones like performance.

3 Adaptability: 3 Examples from My Own Bag

In this section I discuss the notion of adaptability. According to what pre-
sented so far, adaptability is the ability to change a system according to context

72 P. Inverardi

variations, e.g. driven by QoS requirements. However, the change should main-
tain the essence of the system that from now on I will call invariant.

In Sections 3.2, 3.3, and 3.4, I will focus on evolving systems that change
through adaptation. In order to classify them I propose to use a 4 dimension
metric: the four Ws.

3.1 The Four Ws

The systems I consider can change through adaptability either their structure
and/or their behavior. The four Ws characterize the nature of the change along
the following four dimensions:

– Why there is the need to change?
– What does (not) change?
– When does the change happen?
– What/Who manages the change?

Why: This dimension makes explicit the need for the change. In a Software
Engineering perspective this change is always done to meet requirements.
It can be because the requirements evolved or it can be that the system
does not behave properly according to the stated requirements. It is also
worthwhile mentioning that requirements can be functional and non func-
tional requirements. The former class captures the qualitative behavior of a
software system, its functional specification. The latter defines the systems’s
quantitative attributes like, performance, reliability, security, etc. In the fol-
lowing I will provide 3 examples of functional and non functional adaptation
that have been developed in the Software Engineering research group at
University of L’Aquila.

What: Here we discuss the part of the system that is affected by the change.
Referring to architectural models, changes can affect the structure and/or the
behavior. For the structure, components can get in and out, new connectors
can be added and removed. For the behavior components can change their
functionality and connectors can change their interaction protocols.

When: This dimension captures the moment during the systems lifetime in which
the change occurs. It does not mean that the change happens necessarily at
run time. This dimension is related with the Static versus Dynamic issue.

What/Who: This is the description of the mechanisms to achieve the change.
It can be a configuration manager or it can be the system itself. Involves
monitoring the system to collect relevant data, evaluating this data, make a
decision about the change alternatives and then perform the actual change.

3.2 Synthesis

Synthesis is a technique equipped with a tool that permits to assemble a com-
ponent based application in a deadlock free way [35,21,34]. Starting from a set
of Commercial Off The Shelf (COTS) components, Synthesis assembles them
together according to a so called connector-based architecture by synthesizing

Software of the Future Is the Future of Software? 73

a connector that guarantees deadlock-free interactions among components. The
code that implements the new component representing the connector is derived,
in an automatic way, directly from the COTS (black-box) components interfaces.
Synthesis assumes a partial knowledge of the components’ interaction behavior
described as finite state automata plus the knowledge of a specification of the
system to assemble given in terms of Message Sequence Charts [18,19,20].

Furthermore it is possible to go beyond deadlock if we have a specification of
the behavioral integration failure to be avoided. This specification is an implicit
failure specification. Actually we assume to specify all the assembled system be-
haviors which are failure-free rather than to explicitly specify the failure. Under
these hypotheses Synthesis automatically derives the assembling code of the con-
nector for a set of components. The connector is derived in such a way to obtain
a failure-free system. It is shown that the connector-based system is equivalent
according to a suitable equivalence relation to the initial one once depurated of
all the failure behaviors.

Component 1

Component 2

Component 3

Connector Free
Architecture

Component 1

Component 2

Component 3

Connector

Connector Based
Architecture

component
local views
generation

deadlock prevention

Component 1

Component 2

Component 3

Deadlock-free Connector

Deadlock-free
Connector Based

Architecture

behavioral property
enforcing

Component 1

Component 2

Component 3

Failure-free Connector

Failure-free
Connector Based

Architecture

code
synthesis

Connector
actual code

(assembly code)

Fig. 1. The Synthesis Application Adaptation

As illustrated in Figure 1, the Synthesis framework realizes a form of system
adaptation. The initial software system is changed by inserting a new component,
the connector, in order to prevent interactions failures.

The framework makes use of the following models and formalisms. An archi-
tectural model, the connector-based architecture that constrains the way com-
ponents can interact, by forcing interaction to go through the connector. A set
of behavioral models for the components that describe each single component’s
interaction behavior with the external context in the form of label transition sys-
tems (LTS). A behavioral equivalence on LTS to establish the equivalence among

74 P. Inverardi

the original system and the adapted one. Temporal logic to specify the behav-
ioral integration failure to be avoided, and then Buchi Automata and model
checking to synthesize the failure-free connector specification. From the connec-
tor specification the actual code can then be automatically derived.

Let us now analyze the Synthesis approach to adaptation by means of the
four Ws metric:

– Why there is the need to change? Here the purpose of the change is to correct
functional behavior. That is to avoid interaction deadlocks and/or enforce
a certain interaction property P . This adaptation is not due to change of
context, since it is not driven by quantitative parameters. The change here
aims at correcting a functional misbehavior.

– What does (not) change? It changes the topological structure and the inter-
action behavior. A new component is inserted in the system and the overall
interaction behavior is changed. The invariant part of the system is repre-
sented by all the correct behaviors. The proof that the adaptation preserves
the invariant is by construction.

– When does the change happen? It happens at assembly time, thus prior
to deployment and execution. Thus it is actually part of the development
process.

– What/Who manages the change? An external entity: The developer through
the Synthesis framework.

3.3 Performance

The work presented in this section, discusses PFM a framework to manage per-
formance of software system at runtime based on monitoring and model-based
performance evaluation [17]. The approach makes use of Software Architectures
as abstractions of the managed application also at run time when the system is
operating.

The framework monitors the performance of the application and, when a per-
formance problem occurs, it decides the new application configuration on the
basis of feedback provided by the on-line evaluation of performance models of
several reconfiguration alternatives. The main characteristic of this approach
is the way such alternatives are generated. In fact, differently from other ap-
proaches we do not rely on a fixed repository of predefined configurations but,
starting from the data retrieved by the on-line monitoring (that represents a
snapshot of the system current state), we generate a number of new configura-
tions by applying the rules defined within the reconfiguration policy. Once such
alternatives have been generated we proceed to the on-line evaluation by pre-
dicting which one of them is most suitable for resolving the problem occurred.
In particular, the choice of the new system configuration might consider sev-
eral factors, such as, for example, security and reliability of the application, and
resources needed to implement the new configuration.

In this approach performance evaluation models are used to predict the sys-
tem performance of the next system reconfiguration alternative. To this aim,

Software of the Future Is the Future of Software? 75

each eligible system configuration is described by means of a predictive model
instantiated with the actual values observed over the system until the moment
of the performance alarm. The models are then evaluated and on the basis of the
obtained results the framework decides the reconfiguration to perform over the
software system. Therefore, the predictive models representing the software sys-
tem alternatives are evaluated at run time and this poses strong requirements on
the models themselves. PMF has been experimented to manage the performance
of the Siena publish/subscribe middleware [7,6]. The experiment shows that the
usage of predictive models improves the decision step. The system reconfigured
with the chosen alternative has better performance than the other alternatives
generated during the reconfiguration process. The configuration alternatives we
experimented all deal with structural changes of the Siena network topology in
order to improve messages routing.

Fig. 2. Adaptation for performance

In Figure 2 the PMF components are represented. It is worthwhile stressing
that all the described 4 steps are carried on at run time, while the system is
operating. Note that predictive models are commonly used to carry on quanti-
tative analysis at development time, while the system is under construction [9].
Their use at execution time raises a number of challenging research issues like:
what data are relevant to collect? The collected data is more fine-grained than
the performance model parameters, how can data be used? Models have to be

76 P. Inverardi

modified and evaluated online this means that they must require fast solution
techniques. However fast solution techniques usually apply for simple predictive
models, then which performance model should be used? How is the decision on
the next configuration taken? The answers to all these questions should consider
different aspects like security, resources availability, and so on.

Let us now consider PMF with the four Ws metric:

– Why there is the need to change? The change aims to correct non-functional
behavior, i.e. adjust Performance. This change is context dependent.

– What does (not) change? In the Siena experiment the topological structure
is going to be modified, while the overall behavior is kept equivalent. That
is the change does not affects the routing capabilities of the Siena network.

– When does the change happen? The change happens at run time, while
the system is operating and it is enacted trough run time monitoring of
performance parameters.

– What/Who manages the change? An external to the system entity, that is
the PMF framework provides support to the whole re-configuration process
as shown in Figure 2.

3.4 Resource Aware Applications

This framework aims at developing and deploying (Java) adaptable application.
It supports the development of applications that are generic and can be correctly
adapted with respect to a dynamically provided context, which is characterized
in terms of available (hardware or software) resources, each one with its own
characteristics. To attack this problem we use a declarative and deductive ap-
proach that enables the construction of a generic adaptable application code
and its correct adaptation with respect to a given execution context [8,10,11].
Inspired by Proof Carrying Code (PCC) [12,15] techniques, we have defined a
formal setting which enables us to reason about Java program adaptability with
respect to resource usage. We use first-order logic formulas to model the code
behavior with respect to the resources which characterize the execution context.
The adaptation process is carried out by using theorem proving techniques that
try to derive a formal proof that the code behavior can be correctly adapted
to the given context. Provided that the proof exists, by construction it gives
information on how the adaptation has to be done. The adapted code is thus
by construction certified to correctly work with respect to the execution context
resources availability. In Figure 3 we show the components of the framework’s
architecture.

The Development Environment is a standard Java development environment
where the developer can write applications. We only assume that the applications
are written according to some framework programming guidelines that easy their
(generic) management. The output of this step is an extended Java program
representing a generic program.

The Abstract Resource Analyzer produces from the application written in the
Development Environment a declarative description of its characteristics in terms

Software of the Future Is the Future of Software? 77

Fig. 3. Adaptation for resource consumption

of resource demands. It is an abstract semantics that interprets the applications
with respect to a well defined Resource Model, and extracts the information
according to that model.

The Customizer carries out the actual adaptation of the application before de-
ploying it in the target environment for execution. This step produces a standard
Java application.

The Execution Environment can be any device that will host the execution
of the application. Typically the Execution Environment will be provided by
Personal Digital Assistants (PDA), mobile phones, smart phones, etc. From this
point of view, the Execution Environment is not strictly part of the framework
we are presenting here. However it must be characterized by a declarative de-
scription of the resources it provides that we assume to be provided by the
component itself.

The Resource Model characterizes resources and provides metrics to allow
reasoning on the adaptation in order to be able to choose the “best” one according
to the adaptation policy.

78 P. Inverardi

Let us analyze the resource aware framework with the four Ws metric:

– Why there is the need to change? The change allows to correctly utilize the
host device resources. Therefore it is driven by non functional requirements
and it is context dependent.

– What does (not) change? The service/application core behavior does not
change. It changes the quantitative semantics (resource consumption) of the
service implementation. The logic of the adaptation has been programmed
by the developer.

– When does the change happen? The framework manages the adaptation at
deployment time. That is as soon as the information on the execution context
becomes available.

– What/Who how is the change managed? The deployment framework car-
ries out the whole adaptation process. The application when in execution is
completely customized and works like a standard Java application.

Summarizing in this section I have presented three examples of adaptation
that differ with respect to several dimensions. One issue that is raised by the when
dimension in the four Ws metric is whether adaptability is static or dynamic.
The system adapts at run time, how and when the adaptation is computed or
carried out does not change the problem, it is just a matter of cost. The cost I
am referring to here is the cost of carrying out the adaptation maintaining the
original integrity of the part of the application that does not change, i.e. the
invariant. Thus if the application A that exhibits property P is changed into an
application A′ and the change is supposed to preserve the property P , then this
means that also A′ must satisfy P . For example the property P could be type
integrity, thus we require that the change does not undermines type integrity
in the changed application. Obviously, in this case, carrying out the change
statically, i.e. before the system is running permits to prove type integrity of A′

in a less expensive way than if done at run time.

4 Softure: The Process View

In this section I cast the above discussed challenges in a process view. The pro-
cess view focusses on the set of activities that characterize the production and
the operation of a software system. These activities are traditionally divided into
activities related to the actual production of the software system and activities
that are performed when the system can be executed and goes into operation.
Specification, Design, Validation, and Evolution activities vary depending on the
organization and the type of system being developed. Each Activity requires its
Language, Methods and Tools and works on suitable artifacts of the system. For
validation purposes each artifact can be coupled with a model. Models are an
idealized view of the system suitable for reasoning, developing, validating a real
system. To achieve dependability a large variety of models are used from behav-
ioral to stochastic. These models represent the systems at very different levels of

Software of the Future Is the Future of Software? 79

abstraction from requirements specification to code. The ever growing complex-
ity of software has exacerbated the dichotomy development/static/compile time
versus execution/dynamic/interpreter time concentrating as many analysis and
validation activities as possible at development time.

Softure puts new requirements on this standard process. The evolutionary
nature of Softure makes unfeasible a standard approach to validation since it
would require before the system is in execution to predict the system behav-
ior with respect to virtually any possible change. Therefore in the literature
most approaches, that try to deal with the validation of dynamic software sys-
tems, concentrate the changes to the structure by using graph and graph gram-
mars formalisms or topological constraints [25,23,22,24,26,27]. As far as changes
to behavior are concerned, only few approaches exist that make use either of
behavioral equivalence checks or of the type system [4,28,29] or through code
certification [12,30]. If dependability has to be preserved through adaptation
whatever the change mechanism is, at the time the change occurs, a validation
check must be performed. This means that all the models necessary to carry on
the validation step must be available at run time and that the actual validation
time becomes now part of the execution time.

Fig. 4. The Future Engineering Process

The Future development process therefore has to explicitly account for com-
plex validation steps at run time when all the necessary information are avail-
able. Figure 4 represents the process development plane delimited on one side
by the standard process and on the other side by the future development one.
The vertical dimension represents the static versus dynamic time with respect to
the analysis and validation activities involved in the development process. The
horizontal axis represents the amount of adaptability of the system, that is its
ability to cope with evolution still maintaining dependability. The standard de-
velopment process carries out most of the development and validation activities
before the system is running that is during development. The result is a running

80 P. Inverardi

system that, at run time, is frozen with respect to evolution. Considering devel-
opment processes that allow increasingly degrees of adaptability permits to move
along the horizontal axis thus ideally tending to a development process that is
entirely managed at run time. In the middle we can place development processes
that allow larger and larger portions of the system to change at run time and
that make use for validation purposes of artifacts that can be produced stati-
cally. In the following section I introduce an instance of the Future Engineering
Process that has been proposed in the scope of the PLASTIC project.

4.1 PLASTIC

The PLASTIC project aims to offer a comprehensive provisioning platform for
software services deployed over B3G networks (see Figure 5). A characteristic of
this kind of infrastructure is its heterogeneity, that is it is not possible to assume
that the variety of its components’ QoS is homogenized through a uniform layer.
PLASTIC aims at offering B3G users a variety of application services exploiting
the network’s diversity and richness, without requiring systematic availability of
an integrated network infrastructure. Therefore the PLASTIC platform needs
to enable dynamic adaptation of services to the environment with respect to
resource availability and delivered QoS, via a development paradigm based on
Service Level Agreements and resource-aware programming.

The provided services should meet the user demand and perception of the
delivered QoS, which varies along several dimensions, including: type of service,
type of user, type of access device, and type of execution network environment.

Fig. 5. B3G Networks

Software of the Future Is the Future of Software? 81

Referring to the challenges discussed in Section 2, this means that services must
be dependable according to the users expected QoS.

This demands for a software engineering approach to the provisioning of ser-
vices, which encompasses the full service life cycle, from development to valida-
tion, and from deployment to execution.

The PLASTIC answer to the above needs is to offer a comprehensive plat-
form for the creation and provisioning of lightweight, adaptable services for the
open wireless environment. Supporting the development of resource-aware and
self-adapting components composing adaptable services requires focusing on the
QoS properties offered by services besides the functional ones. The whole devel-
opment environment is based on the PLASTIC Conceptual Model [1]. Recently,
several approaches to conceptualize the world of services have been proposed.
The PLASTIC model takes the move from the SeCSE conceptual model [31,32]
that it has been suitably extended to reflect all the concepts related to B3G
networks and service provision in B3G networks. In particular it focusses on the
following key concepts:

– Service level agreement that clearly set commitment assumed by consumers
and providers and builds on services descriptions that are characterized
functionally, via a service interface and non-functionally via a Service Level
Specification SLS.

Conceptual Model
(CM)

Service Functional
Specification
(UML sub -set)

Service Level
Specification - SLS

(Slang sub -set)

CM-based editor
Service
Model

Behavioural
Models

Model-To-Model
Transformation

Performance
Models

... Other
Models

Service Model
Projections

Analysis

Core
Code

Self-
Evolving/Adaptive

Code

Self-
Evolving/Adaptive

Service

Model -To -Model
Transformation

PLASTIC Middleware

Service Level
Agreement Models

SSTS

WSDL

UML2WSDL

JAVA Service
Stub

WSDL2JAVA

JAVA Service

Coding

QNMchain Models

Model -To-Model
Transformation

Model -To-Model
Transformation

Fig. 6. The PLASTIC Development Process

82 P. Inverardi

Conceptual Model
(CM)

Service Functional
Specification
(UML sub -set)

Service Level
Specification - SLS

(Slang sub -set)

CM-based editor
Service
Model

Model -To-Model
Transformation

SLA
Monitor

PLASTIC Middleware

Service Level
Agreement Models

Timed
Automata

WSDL

JAVA Service
Stub

QN

Mchain Models

Core
Code

Self-
Evolving/Adaptive

Code

Model -To-Model
Transformation

Customized Code

SSTS

Fig. 7. The PLASTIC Deployment Process

– Context awareness and adaptation as the context is a key feature distinguish-
ing services in the vast B3G networking environment. B3G networking leads
to have diverse user populations, changing availability in system resources,
and multiple physical environments of service consumption and provisioning.
It is then crucial that services adapt as much as possible to the context for
the sake of robustness and to make themselves usable for given contexts.

As illustrated in Figure 6 adaptability is achieved by transferring some of the
validation activities at run time by making available models for different kind
of analysis. In particular stochastic models and behavioral ones will be made
available at run time to allow the adaptation of the service to the execution
context and service on line validation, respectively.

In PLASTIC all the development tools will be based on the conceptual model
exploiting as much as possible model-to-model transformations. The definition of
a service will consists of a functional description and of a Service Level Specifica-
tions that defines the Quality of Service characteristics of the service. The over-
all service description is obtained by means of an iterative analysis specification
phase that makes use of behavioral and stochastic models. These models suit-
ably refined with pieces of information coming from the implementation chain,
will then be made available as artifacts associated to the service specification.

With respect to the spectrum presented in Figure 4 the PLASTIC development
process will present a limited form of adaptability as shown in Figure 7. The com-
ponents implementing PLASTIC services will be programmed using the resource

Software of the Future Is the Future of Software? 83

aware programming approach presented in Section 3 by using Java. In PLASTIC
adaptation happens at the time the service request is matched with a service pro-
vision. This match has to take into account the user’s QoS request and the service
SLS and the result of the match will produce the Service Level Agreement (SLA)
that defines the QoS constraints of the service provision. During this matching
process in order to reach an SLA the service code might need to be adapted, ac-
cording to the resource aware approach, thus resulting in a customized service
code that satisfies the user’s QoS request and results in a SLA.

5 Conclusions

In this paper I have discussed my point of view on software in the future. Adapt-
ability and Dependability will play a key role in influencing models, languages
and methodologies to develop and execute future software applications. In a
broader software engineering perspective it is therefore mandatory to reconcile
the static/compile time development approach to the dynamic/interpreter ori-
ented one thus making models and validation technique manageable lightweight
tools for run time use. There are several challenges in this domain. Program-
ming Language must account in a rigorous way of quantitative concerns, allow-
ing programmers to deal with these concerns declaratively. Models must become
simpler and lighter by exploiting compositionality and partial evaluation tech-
niques. Innovative development processes should be defined to properly reflect
these new concerns arising from software for ubiquitous computing. I presented
the PLASTIC approach to service development and provision in B3G networks
as a concrete instance of the problem raised by Softure. The solutions we are
experimenting in PLASTIC are not entirely innovative per se rather they are
used in a completely new and non trivial fashion. Summarizing my message is
that in the Softure domain it is important to think and research point to point
theories and techniques but it is mandatory to re-think the whole development
process in order to cope with the complexity of Softure and its requirements.

Acknowledgments

The author would like to acknowledge the IST project PLASTIC that partially
supported this work and all the members of the PLASTIC Consortium and of
the SEALab at University of L’Aquila for joint efforts on all the research efforts
reported in this paper.

References

1. PLASTIC IST STREP Project: Home page on line at:
http://www-c.inria.fr:9098/plastic

2. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: IEEE
Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, US
(1994)

http://www-c.inria.fr:9098/plastic

84 P. Inverardi

3. IFIP WG 10.4 on Dependable Computing And Fault Tolerancs
http://www.dependability.org/wg10.4/

4. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans-
actions on Software Engineering and Methodology 6(3), 213–249 (1997)

5. Magee, J., Kramer, J.: Concurrency: State models & java programs. Wiley pub-
lisher, Chichester (1999)

6. Caporuscio, M., Carzaniga, A., Wolf, A.L.: Design and evaluation of a support
service for mobile, wireless publish/subscribe applications. IEEE Transactions on
Software Engineering (December 2003)

7. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and Evaluation of a Wide-
Area Event Notification Service. ACM Transactions on Computer Systems 19(3),
332–383 (2001)

8. Inverardi, P., Mancinelli, F., Nesi, M.: A Declarative Framework for adaptable ap-
plications in heterogeneous environments. In: Proceedings of the 19th ACM Sym-
posium on Applied Computing (2004)

9. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based Performance
Prediction in Software Development: A Survey IEEE Transaction on Software En-
gineering (May 2004)

10. Inverardi, P., Mancinelli, F., Marinelli, G.: Correct Deployment and Adaptation
of Software Applications on Heterogenous (Mobile) Devices. In: ACM Proceedings
Workshop on Self-Healing Software (2002)

11. Mancinelli, F., Inverardi, P.: Quantitative resource-oriented analysis of Java
(adaptable) application. In: ACM Proceedings Workshop on Software Performance
(2007)

12. Necula, G.C.: Proof-Carrying Code. In: Jones, N.D. (ed.) Proceedings of the Sym-
posium on Principles of Programming Languages, pp. 106–119. ACM Press, Paris,
France (1997)

13. Necula, G.C., Lee, P.: Proof-Carrying Code. Technical Report CMU-CS-96-165,
School of Computer Science, Carnegie Mellon University (September 1996)

14. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In: Pro-
ceedings of the Symposium on Operating System Design and Implementation, Seat-
tle, Washington, pp. 229–243 (October 1996)

15. Necula, G.C., Lee, P.: Efficient Representation and Validation of Logical Proofs.
In: Pratt, V. (ed.) Proceedings of the Symposium on Logic in Computer Science,
pp. 93–104. IEEE Computer Society Press, Indianapolis, Indiana (1998)

16. Necula, G.C., Lee, P.: Safe, untrusted agents using proof-carrying code. In: Vi-
gna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 61–91. Springer,
Heidelberg (1998)

17. Caporuscio, M., Di Marco, A., Inverardi, P.: Model-based system reconfiguration
for dynamic performance management. Journal of Systems and Software (to ap-
pear, 2006)

18. Itu telecommunication standardisation sector, itu-t reccomendation z.120. Message
Sequence Charts (msc’96), Geneva

19. Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message sequence
chart specifications. In: ACM Proceedings of the joint 8th ESEC and 9th FSE,
ACM Press, Vienna (2001)

20. Uchitel, S., Kramer, J.: A workbench for synthesising behaviour models from sce-
narios. In: proceeding of the 23rd IEEE International Conference on Software En-
gineering (ICSE’01), Toronto, Canada (May 2001)

Software of the Future Is the Future of Software? 85

21. Inverardi, P., Tivoli, M.: A compositional synthesis of failure-free connectors for
correct components assembly. In: proceedings of the 6th ICSE Workshop on
Component-Based Software Engineering (CBSE6): Automated Reasoning and Pre-
diction at 25th ICSE 2003, Portland, Oregon, USA (May 3-10, 2003)

22. Georgiadis, I., Magee, J., Kramer, J.: Self-organising software architectures for
distributed systems. In: Proc. of the 1st Work. on Self-Healing Systems (WOSS02),
pp. 33–38. ACM Press, New York (2002)

23. Hirsch, D., Inverardi, P., Montanari, U.: Graph grammars and constraint solving
for software architecture styles. In: Proc. of the 3rd Int. Software Architecture
Workshop (ISAW-3), pp. 69–72. ACM Press, New York (1998)

24. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: Proc. of
the 4th ACM SIGSOFT Symp. On Foundations of Software Engineering (FSE-4),
pp. 3–14. ACM Press, New York (1996)

25. Metayer, D.L.: Describing software architecture styles using graph grammars. IEEE
Trans. Software Engineering 24(7), 521–533 (1998)

26. Taentzer, G., Goedicke, M., Meyer, T.: Dynamic change management by dis-
tributed graph transformation: Towards onfigurable distributed systems. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
Springer, Heidelberg (2000)

27. Baresi, L., Heckel, R., Thne, S., Varr, D.: Style-Based Refinement of Dynamic
Software Architectures. WICSA, 155–166 (2004)

28. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting Software Architecture
to Implementation. In: proceedings of ICSE 2002 (May 2002)

29. Aldrich, J.: Using Types to Enforce Architectural Structure. University of Wash-
ington Ph.D. Dissertation (August 2003)

30. Barthe, G.: Mobius, securing the next generation of java-based global computers.
ERCIM News (2005)

31. SeCSE Project, http://secse.eng.it
32. Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., Zuccalá, M.: Speaking a

Common Language: A Conceptual Model for Describing Service-Oriented Systems.
In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
Springer, Heidelberg (2005)

33. Autili, M., Cortellessa, V., Marco, A.D., Inverardi, P.: A conceptual model for
adaptable context-aware services. In: Proc. of International Workshop on Web
Services Modeling and Testing (WS-MaTe2006) (2006)

34. Autili, M., Inverardi, P., Navarra, A., Tivoli, M.: SYNTHESIS: a tool for auto-
matically assembling correct and distributed component-based systems Proc. of
International Conference on Software Engineering (ICSE 2007) - Tool Demos Ses-
sion (to appear)

35. Inverardi, P., Tivoli, M.: Formal Methods for the Design of Computer, Communi-
cation and Software Systems: Software Architecture. In: Bernardo, M., Inverardi,
P. (eds.) SFM 2003. LNCS, vol. 2804, Springer, Heidelberg (2003)

http://secse.eng.it

	Software of the Future Is the Future of Software?
	Introduction
	Softure Challenges: Setting the Context
	Adaptability: 3 Examples from My Own Bag
	The Four Ws
	Synthesis
	Performance
	Resource Aware Applications

	Softure: The Process View
	PLASTIC

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

