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Abstract. We propose a framework in which anonymity protocols are
interpreted as particular kinds of channels, and the degree of anonymity
provided by the protocol as the converse of the channel’s capacity. We
also investigate how the adversary can test the system to try to infer the
user’s identity, and we study how his probability of success depends on
the characteristics of the channel. We then illustrate how various notions
of anonymity can be expressed in this framework, and show the relation
with some definitions of probabilistic anonymity in literature.

1 Introduction

In this paper we present a general approach to measure the degree of anonymity
provided by an anonymity protocol. Such protocols try to hide the link between
a set A of anonymous events and a set O of observable events. Events in A
represent the information that we want to hide from the potential attacker.
Ideally, we would like him to be totally unable to distinguish the events in A,
that is to deduce which of them really happened in a specific execution of the
protocol. Events in O are the ones that the attacker actually observes. They
should model all the possible outcomes of the protocol, from the point of view of
the attacker. We assume that in each execution of the protocol one event a ∈ A
and one event o ∈ O occur, and that o is disclosed to the attacker. An anonymity
system should prevent the attacker from deducing a given the information about
o and the knowledge about how the system works.

For example, a protocol could be designed to allow users to send messages to
each other without revealing the identity of the sender. In this case, A would
be the set of (the identities of) the possible users of the protocol, if only one
user can send a message at a time, or the powerset of the users, otherwise. On
the other hand, O could contain the sequences of all possible messages that the
attacker can observe, depending on how the protocol works.

Probability plays an important role in anonymity protocols. First of all these
protocols are very often probabilistic themselves. They use random primitives
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and the anonymity guarantees are based on the attacker’s inability of determin-
ing the outcome of probabilistic choices. Clearly, the precise analysis of such
protocols requires probabilistic means. Moreover, the analysis performed by the
attacker can be also probabilistic, for example by gathering statistical informa-
tion about the users. The attacker might not be able to find out exactly which
anonymous event happened, but he could obtain a distribution over A and draw
conclusions of the form “user i sent a message with probability 95%”.

In this paper we consider a probabilistic setting, where probability distribu-
tions can be assigned to the elements of A, O. As a consequence we will model
anonymous events by a random variable A on A and observable events by O
on O. From the point of view of the analysis, we are only interested in the dis-
tributions of A, O. In particular, the joint distribution p(a, o) provides all the
information about the conjoint behavior of the protocol and of the users that
we need. From p(a, o) we can derive, indeed, the marginal distributions p(a) and
p(o), and the conditional distributions p(o|a) and p(a|o).

Most of the times, however, one is interested in abstracting from the specific
set of users and its distribution, and proving properties about the protocol it-
self, aiming at universal anonymity properties that will hold no matter how the
users behave (provided they follow the rules of the protocol). To this purpose,
it is worth recalling that the joint distribution p(a, o) can be decomposed as
p(a, o) = p(o|a)p(a). This decomposition singles out exactly the contributions
of the protocol and of the users to the joint probability: p(a), in fact, is the
probability associated to the users, while p(o|a) represents the probability that
the protocol produces o given that the users have produced a. The latter clearly
depends only on the internal mechanisms of the protocol, not on the users.

This view of the protocol in isolation from the users brings us to consider
the protocol as a device that, given a ∈ A as input, it produces an output in O
according to a probability distribution p(·|a). This concept is well investigated in
information theory, where such kind of device is called channel, and it is described
by the matrix whose rows are the elements of A, the columns the elements of
O, and the value in position (a, o) is the conditional probability p(o|a). The
rationale behind this view will be discussed in more details in Section 3.

1.1 Contribution

In this paper we propose a definition of the degree of anonymity of a protocol
in terms of the information-theoretic notion of capacity of the protocol, seen as
channel. We also define a more general notion, that we call relative capacity,
which naturally models the case in which some loss of an anonymity is allowed
by design.

We investigate the relation between the channel’s matrix and the knowledge
that an attacker can gain on the anonymous actions (the channel’s inputs) from
the observables (the channel’s outputs). In particular, we consider attackers fol-
lowing the Bayesian approach to hypothesis testing, and we show bounds on the
Bayesian probability of error regarding the probabilistic information that the
attacker can acquire.
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We then compare our proposal with various probabilistic notions of anonymity
given in the past, in particular perfect anonymity, group anonymity, and probable
innocence. Finally, we show that the condition of probable innocence corresponds
to a certain information-theoretic bound.

1.2 Related Work

Probabilistic definitions of anonymity have been explored in [1,2,3,4,5]. We dis-
cuss the relation with these works in detail in Section 5.

A recent line of work has been dedicated to exploring the notion of anonymity
from an information-theoretic point of view [6,7]. The main difference with our
approach is that in those works the anonymity degree is expressed in terms of
entropy, rather than mutual information. More precisely, the emphasis is on the
lack of information that an attacker has about the distribution of the users,
rather than on the capability of the protocol to conceal this information despite
of the observables that are made available to the attacker. Moreover, a uniform
user distribution is assumed, while in this paper we try to abstract from the user
distribution and make no assumptions about it.

Channel capacity has been already used in an anonymity context in [8,9],
where the ability to have covert communication as a result of non-perfect anony-
mity is examined. The difference with our approach is that in those works the
channels are constructed by the users of the protocol using the protocol mech-
anisms, and the purpose is to measure the amount of information that can be
transfered through these channels. In this paper, we consider the channel to be
the protocol itself, as an abstraction that allows us to measure anonymity.

Another approach close in spirit to ours is the one of [10]. In this work,
the authors use the notion of relative entropy to perform a metric analysis of
anonymity. In our work, we use the notion of mutual information, which is
a special case of relative entropy. However, the specific application of relative
entropy in [10] is radically different from ours. We use it to compare the entropy
of the input of an anonymity protocol before and after the observation. They
use it to establish a sort of distance between the traces of an anonymity system.

In the field of information flow and non-interference there is a line of research
which is closely related to ours. There have been various works [11,12,13,14,15]
in which the the high information and the low information are seen as the input
and output respectively of a channel. From an abstract point of view, the set-
ting is very similar; technically it does not matter what kind of information we
are trying to conceal, what is relevant for the analysis is only the probabilistic
relation between the input and the output information. The conceptual and tech-
nical novelties of this paper w.r.t. the above works are explained in Section 1.1.
We believe that our results are applicable more or less directly also to the field
of non-interference.

The relation between the adversary’s goal of inferring a secret from the ob-
servables, and the field of “hypothesis testing”, has been explored in other papers
in literature, see in particular [16,17,18]. To our knowledge, however, this is the
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first time that it is investigated in connection with the matrix of conditional
probabilities determined by the protocol.

1.3 Plan of the Paper

Next section recalls some basic notions about information theory. In Section 3 we
justify our view of protocols as channels and (loss of) anonymity as capacity and
relative capacity, and we give a method to compute these quantities in special
symmetry cases. In Section 4 we consider the tests that an attacker can make
on the protocol in order to gain knowledge about the anonymous actions, and
we discuss the probability of error that limits the inferences based on such tests.
Finally, in Section 5, we relate our framework to other probabilistic approaches
to anonymity.

The proofs of all the results can be found on line at the URL:
www.lix.polytechnique.fr/∼catuscia/papers/Anonymity/Channels/full.pdf.

2 Preliminaries on Information Theory

Being in a purely probabilistic setting gives us the ability to use tools from
information theory to reason about the uncertainty of a random variable and
the information that it can reveal about another random variable. In particular
the notions we will be interested in are entropy, mutual information and channel
capacity. In this section we briefly revise these notions. We refer to [19] for more
details.

In general, we will use capital letters X, Y to denote random variables and
the corresponding calligraphic letters X , Y for their set of values. We will also
use small letters x, y to represent values of these variables, p(x), p(y) to denote
the probability of x and y respectively and p(x, y) to denote the joint probability
of x and y.

Let X be a random variable. The entropy H(X) of X is defined as H(X) =
−

∑
x∈X p(x) log p(x). The entropy measures the uncertainty of a random vari-

able. It takes its maximum value log |X | when X ’s distribution is uniform and
its minimum value 0 when X is constant. We usually take the logarithm with a
base 2 and measure entropy in bits. Roughly speaking, m bits of entropy means
that we have 2m values to choose from, assuming a uniform distribution.

The relative entropy or Kullback Leibler distance between two probability
distributions p, q on the same set X is defined as D(p ‖ q) =

∑
x∈X p(x) log p(x)

q(x) .
It is possible to prove that D(p ‖ q) is always non-negative, and it is 0 if and
only if p = q.

Now let X, Y be random variables. The conditional entropy H(X |Y ) is
H(X |Y ) = −

∑
y∈Y p(y)

∑
x∈X p(x|y) log p(x|y). Conditional entropy measures

the amount of uncertainty of X when Y is known. It can be shown that 0 ≤
H(X |Y ) ≤ H(X). It takes its maximum value H(X) when Y reveals no infor-
mation about X , and its minimum value 0 when Y completely determines the
value of X .
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Comparing H(X) and H(X |Y ) gives us the concept of mutual information
I(X ; Y ), which is defined as I(X ; Y ) = H(X) − H(X |Y ). Mutual information
measures the amount of information that one random variable contains about
another random variable. In other words, it measures the amount of uncertainty
about X that we lose when observing Y . It can be shown that it is symmetric
(I(X ; Y ) = I(Y ; X)) and that 0 ≤ I(X ; Y ) ≤ H(X).

A communication channel is a tuple 〈X , Y, p(·|·)〉 where X , Y are the sets of
input and output symbols respectively and p(y|x) is the probability of observing
output y ∈ Y when x ∈ X is the input. Given an input distribution p(x) over X
we can define the random variables X, Y for input and output respectively. The
maximum mutual information between X and Y over all possible distributions
p(x) is known as the channel’s capacity: C = maxp(x) I(X ; Y ). The capacity of a
channel gives the maximum rate at which information can be transmitted using
this channel.

3 Loss of Anonymity as Channel Capacity

The notions discussed in previous section can be used to reason about the in-
formation that the adversary obtains from the protocol. The entropy H(A) of
A gives the amount of uncertainty about the anonymous events, before execut-
ing the protocol. The higher the entropy is the less certain we are about the
outcome of A. After the execution, however, we also know the actual value of
O. Thus, the conditional entropy H(A|O) gives the uncertainty of the attacker
about the anonymous events after performing the observation. To compare these
two entropies, we consider the mutual information I(A; O) which measures the
information about A that is contained in O. This measure is exactly what we
want to minimize. It the best case it is 0, meaning that we can learn nothing
about A by observing O (in other words H(A|O) is equal to H(A)). In the worst
case it is equal to H(A) meaning that all the uncertainty about A is lost after
the observation, thus we can completely deduce the value of A (H(A|O) is 0).

As explained in the introduction, each execution of an anonymity protocol is
associated to the join probability p(a, o) of the particular values taken by A, O
in that execution. This probability can be written as p(a, o) = p(a)p(o|a). In our
view, among these two values, p(o|a) can be considered as a characteristic of
the protocol, while p(a) depends only on the users. For instance, in a protocol
for sender anonymity, A takes values on the set A of users, and p(a) is the
probability of user a being the sender. In some cases all users might have the
same probability of being the sender, in other cases a particular user might send
messages more often than the others. Since the design of the protocol should
be independent from the particular users who will use it, the analysis of the
protocol should make no assumptions about the distribution on A. On the other
hand p(o|a) gives the probability of o when a is the sender, so it depends only on
the internal mechanisms of the protocol, not on of how often a sends messages.

To abstract from the probabilities of the anonymous events, we view an
anonymity protocol as a channel 〈A, O, p(·|·)〉 where the sets of anonymous
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Fig. 1. An anonymity channel

events A and observable events O are the input and output alphabets respec-
tively, and the matrix p(o|a) gives the probability of observing o when a is the
input. An anonymity channel is shown in Figure 1. Different distributions of the
input will give different values of I(A; O). We are interested in the worst possi-
ble case, so we define the loss of anonymity as the maximum value of I(A; O)
over all possible input distributions, that is the capacity of the corresponding
channel.

Definition 1. Let 〈A, O, p(·|·)〉 be an anonymity protocol. The loss of anonymity
C of the protocol is defined as

C = max
p(a)

I(A; O)

where the maximum is taken over all possible input distributions.

The loss of anonymity measures the amount of information about A that can be
learned by observing O in the worst possible distribution of anonymous events.
If it is 0 then, no matter what is the distribution of A, the attacker can learn
nothing more by observing the protocol. In fact, as we will see in section 5.1,
this corresponds exactly to notions of perfect anonymity in literature [1,2,3].
However, as we discuss in section 5.3, our framework also captures weaker notions
of anonymity.

As with entropy, channel capacity is measured in bits. Roughly speaking, 1 bit
of capacity means that after the observation A will have one bit less of entropy,
in another words the attacker will have reduced the set of possible users by a
factor 2, assuming a uniform distribution.

3.1 Relative Anonymity

So far, we have assumed that ideally no information about the anonymous events
should be leaked. However, there are cases where some information about the
anonymous events is allowed to be revealed by design, without this leak be
considered as a flaw of the protocol. Consider, for example, the case of a simple
elections protocol, displayed in figure 2. For simplicity we assume that there
are only two candidates c and d, and that each user always votes for one of
them, so an anonymous event can be represented by the subset of users who
voted for candidate c. In other words, A = 2V where V is the set of voters.
The output of the protocol is the list of votes of all users, however, in order
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Fig. 2. A simple elections protocol

to achieve anonymity, the list is randomly reordered, using for example some
MIX technique1. As a consequence, the attacker can see the number of votes
for each candidate, although he should not be able to find out who voted for
whom. Indeed, determining the number of votes of candidate c (the cardinality
of a), while concealing the vote expressed by each individual (the elements that
constitute a), is the purpose of the protocol.

So it is clear that after the observation only a fraction of the anonymous events
remains possible. Every event a ∈ A with |a| �= n where n is the number of votes
for candidate c can be ruled out. As a consequence H(A|O) will be smaller than
H(A) and the capacity of the corresponding channel will be non-zero, meaning
that some anonymity is lost. In addition, there might be a loss of anonymity due
to other factors, for instance, if the reordering technique is not uniform. However,
it is undesirable to confuse these two kinds of anonymity losses, since the first is
by design and thus acceptable. We would like a notion of anonymity that factors
out the intended loss and measures only the loss that we want to minimize.

In order to cope with the intended anonymity loss, we introduce a random
variable R whose outcome is the revealed information. In the example of the
elections protocol, the value of R is the cardinality of a. Since we allow to reveal
R by design, we can consider that R is known even before executing the protocol.
So, H(A|R) gives the uncertainty about A given that we know R and H(A|R, O)
gives the uncertainty after the execution of the protocol, when we know both
R and O. By comparing the two we retrieve the notion of conditional mutual
information I(A; O|R) defined as

I(A; O|R) = H(A|R) − H(A|R, O)

So, I(A; O|R) is the amount of uncertainty on A that we lose by observing O,
given that R is known. Now we can define the notion of relative loss of anonymity.

Definition 2. Let 〈A, O, p(·|·)〉 be an anonymity protocol and R a random vari-
able defined by its set of values R and a probability matrix p(r|a, o). The relative
loss of anonymity of the protocol with respect to R is defined as

C|R = max
p(a)

I(A; O|R)

where the maximum is taken over all possible input distributions.
1 In MIX protocols an agent waits until it has received requests from multiple users

and then forwards the requests in random order to hide the link between the sender
and the receiver of each request.
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Partitions: a special case of relative anonymity. An interesting special
case of relative anonymity is when the knowledge of either an anonymous event
or an observable event totally determines the value of R. In other words, both A
and O are partitioned in subsets, one for each possible value of R. The elections
protocol of the previous section is an example of this case. In this protocol, the
value r of R is the number of votes for candidate A. This is totally determined
by both anonymous events a (r is the cardinality of a) and observable events o
(r is the number of c’s in o). So we can partition A in subsets A0, . . . , An such
that |a| = n for each a ∈ An, and similarly for O. Notice that an anonymous
event a ∈ Ai produces only observables in Oi, and vice versa.

In this section we show that such systems can be viewed as the composition
of smaller, independent sub-systems, one for each value of R.

We say that R partitions a random variable X if p(r|x) is 0 or 1 for all r ∈ R
and x ∈ X . In this case we can partition X as follows

Xr = {x ∈ X | p(r|x) = 1}

Clearly the above sets are disjoint and their union is X .

Theorem 1. Let 〈A, O, p(·|·)〉 be an anonymity protocol and R a random vari-
able defined by its set of values R = {r1, . . . , rl} and a probability matrix p(r|a, o).
If R partitions both A and O then the transition matrix of the protocol is of the
form

Or1 Or2 · · · Orl

Ar1 Mr1 0 . . . 0
Ar2 0 Mr2 . . . 0
...

...
...

. . .
...

Arl
0 0 . . . Mrl

and
C|R ≤ d ⇔ Ci ≤ d, ∀i ∈ 1..l

where Ci is the capacity of the channel with matrix Mri .

3.2 Computing the Channel’s Capacity

In general, there is no formula to compute the capacity of an arbitrary channel.
In practice, however, channels have symmetry properties that can be exploited
to compute the capacity in an easy way. In this section we define classes of
symmetry and discuss how to compute the capacity for each class. Two classic
cases are the symmetric and weakly symmetric channels.

Definition 3. A matrix is symmetric if all rows are permutations of each other
and all columns are also permutations of each other. A matrix is weakly sym-
metric if all rows are permutations of each other and the column sums are equal.

The following result is from literature:
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Theorem 2 ([19], page 189). Let 〈A, O, p(·|·)〉 be a channel. If p(·|·) is weakly
symmetric then the channel’s capacity is given by a uniform input distribution
and is equal to

C = log |O| − H(r)

where r is a row of the matrix and H(r) is the entropy of r.

Note that symmetric channels are also weakly symmetric so Theorem 2 holds
for both classes.

In anonymity protocols, we expect all rows of the protocol’s matrix to be
permutations of each other since all users are executing the same protocol. On
the other hand, the columns are not necessarily permutations of each other.
Some symmetry is expected: if an observable o1 is produced with probability
p under user a1, it is reasonable to assume that under a2 there will be some
other observable o2 produced with the same probability. However, we can have
observables that are produced with equal probability by all users. Clearly, these
“constant” columns cannot be the permutation of a non-constant one so the
resulting channel matrix will not be symmetric (and not even weakly symmetric).

To cope with this kind of channels we define a more relaxed kind of symmetry
called partial symmetry. In this class we allow some columns to be constant and
we require the sub-matrix, composed only by the non-constant columns, to be
symmetric. A weak version of this symmetry can also be defined.

Definition 4. A matrix is partially symmetric (resp. weakly partially symmet-
ric) if some columns are constant (possibly with different values in each column)
and the rest of the matrix is symmetric (resp. weakly symmetric).

Now we can extend Theorem 2 to the case of partial symmetry.

Theorem 3. Let 〈A, O, p(·|·)〉 be a channel. If p(·|·) is weakly partially symmet-
ric then the channel’s capacity is given by

C = ps log
|Os|
ps

− H(rs)

where Os is the set of symmetric output values, rs is the symmetric part of a
row of the matrix and ps is the sum of rs.

Note that Theorem 3 is a generalization of Theorem 2. A (weakly) symmetric
channel can be considered as (weakly) partially symmetric with no constant
columns. In this case Os = O, rs = r, ps = 1 and we retrieve Theorem 2 from
Theorem 3.

4 Testing Anonymous Events

In this section we illustrate the relation between the channel’s matrix and the
possibility for the attacker of guessing the anonymous event from the consequent
observable event. This problem is known in statistics literature as hypothesis
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testing. The idea is that we have a set of data or outcomes of an experiment, and
a set of possible alternative explanations (hypotheses). We have to infer which
hypothesis holds from the data, possibly by repeating the experiment, and try to
minimize the probability of guessing the wrong hypothesis (probability of error).

We assume that the same hypothesis holds through the repetition of the ex-
periment, which corresponds to allowing the attacker to force the user to redo
the action. For instance, in Crowds, the attacker can intercept the message and
destroy it, thus obliging the sender to resend it. We also assume that the ran-
dom variables corresponding to the outcomes of the experiments are indepen-
dent. This corresponds to assuming that the protocol is memoryless, i.e. each
time it is reactivated, it works according to the same probability distribution,
independently from what happened in previous sessions.

In statistics there are several frameworks and methods for hypothesis testing.
We consider here the Bayesian approach, which requires the knowledge of the
matrix of the protocol and of the a priori distribution of the hypotheses, and
tries to infer the a posteriori probability of the actual hypothesis w.r.t. a given
observation or sequence of observations. The first assumption (knowledge of the
matrix of the protocol) is usually granted in an anonymity setting, since the way
the protocol works is public. The second assumption may look too strong, since
the attacker does not usually know the distribution of the anonymous actions. We
show, however, that under certain conditions the a priori distribution becomes
less and less relevant with the repetition of the experiment, and, at the limit, it
does not matter at all.

Let us introduce some notation. Given an anonymous event a, consider the
situation in which the attacker forces the users to execute the protocol n times
with the same a as input event, and tries to infer a from the n observable outputs
of the protocol executions. Let O1, O2, . . . , On represent the random variables
corresponding to the observations made by the attacker, and let o denote a
sequence of observed outputs o1, o2, . . . on. As stated above, we assume that O1,
O2, . . . , On are independent, hence the distribution of each of them is given by
p(·|a), and their conjoint distribution p : On → [0, 1] is given by

p(o|a) =
n∏

i=1

p(oi|a) (1)

Let fn : On → A be the decision function adopted by the adversary to infer the
anonymous action from the sequence of observables. Let Efn : A → On be the
function that gives the error region of fn when a ∈ A has occurred, namely:

Efn(a) = {o ∈ On | fn(o) �= a}

Finally, let ηn : A → [0, 1] be the function that associates to each a ∈ A the
probability of inferring the wrong input event on the basis of fn when a ∈ A has
occurred, namely:

ηn(a) =
∑

o∈Efn (a)

p(o|a)
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We are now ready to introduce the probability of error associated to anonymous
action testing on a given anonymity protocol, following the lines of the Bayesian
approach (see for instance [19], Section 12.8).

Definition 5. Given an anonymity protocol 〈A, O, p(·|·)〉, a sequence of n ex-
periments, and a decision function fn, the Bayesian probability of error Pfn is
defined as the probability weighted sum over A of the individual probabilities of
error. Namely:

Pfn =
∑

a∈A

p(a)ηn(a)

In the Bayesian framework, the best possible decision function is given by the
so-called maximum a posteriori rule, which, given the sequence of observables
o ∈ On, tries to maximize the a posteriori probability of the hypothesis a w.r.t.
o. The a posteriori probability of a w.r.t. o is given by Bayes theorem (aka Bayes
Inversion Rule):

p(a|o) =
p(o|a)p(a)

p(o)
We now define a class of decision functions based on the above approach.

Definition 6. Given an anonymity protocol 〈A, O, p(·|·)〉, and a sequence of n
experiments, a decision function fn is a Bayesian decision function if for each
o ∈ On, fn(o) = a implies p(o|a)p(a) ≥ p(o|a′)p(a′) for every a′ ∈ A.

The above definition is justified by the following result which is a straightforward
consequence of known results in literature.

Proposition 1. Given an anonymity protocol 〈A, O, p(·|·)〉, a sequence of n ex-
periments, and a Bayesian decision function fn, for any other decision function
hn we have that Pfn ≤ Phn .

4.1 Independence from the Input Distribution

The definition of the Bayesian decision functions depends on the a priori proba-
bility distribution on A. This might look artificial, since in general such distribu-
tion is unknown. We will show, however, that under a certain condition on the
matrix of the protocol, for n large enough, the Bayesian decision functions and
the associated Bayesian probability of error do not depend on the distribution
on A.

The following definition establishes the condition on the matrix.

Definition 7. Given an anonymity protocol 〈A, O, p(·|·)〉, we say that such pro-
tocol is Bayesian-determinate iff all rows are pairwise different, i.e. the proba-
bility distributions p(·|a), p(·|a′) are different for each pair a, a′ with a �= a′.

We will now show that if a protocol is Bayesian-determinate, then in the def-
inition of the decision functions the distribution on A eventually washes out.
The intuition is that, in the comparison between p(o|a)p(a) and p(o|a′)p(a′),
the factor p(a)p(a′) is dominated by the factor p(o|a)p(o|a′), for n large enough,
provided that the latter is different from 1.
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Proposition 2. Given aBayesian-determinate anonymity protocol 〈A, O, p(·|·)〉,
for any distribution p(·) on A, anyBayesian decision functions fn, and any decision
function gn : On → A such that gn(o) = a implies p(o|a) ≥ p(o|a′) for all a′ ∈ A,
we have that gn approximates fn. Namely, for any ε > 0, there exists n such that
the probability of the set {o ∈ On | fn(o) �= gn(o)} is smaller than ε.

Proposition 2 allows us to define a decision function, for n sufficiently large, by
comparing only the probabilities p(o|a) for different a’s. These probabilities are
determined uniquely by the matrix and therefore no knowledge of the a priori
probability on A is required.

4.2 Bounds on the Bayesian Probability of Error

In this section we discuss some particular cases of matrices and the corresponding
bounds on the error that can be introduced by the Bayesian decision functions.
Some more cases will be considered in the next section.

We start with the bad case (from the anonymity point of view), which is when
the matrix is Bayesian-determinate:

Proposition 3. Given aBayesian-determinate anonymity protocol 〈A, O, p(·|·)〉,
for any distribution p(·) on A, and for any ε, there exists n such that the property

gn(o) = a implies p(o|a) ≥ p(o|a′) for all a′ ∈ A

determines a unique decision function gn on a set of probability greater than
1 − ε, and the Bayesian probability of error Pgn is smaller than ε.

Proposition 3 and its proof tell us that, in case of Bayesian-determinate matrices,
there is essentially only one decision function, and it is value is determined, for
n sufficiently large, by the a for which p(o|a) is greatest.

Consider now the opposite case, i.e. when there are at least two identical rows
in the matrix, in correspondence of a1 and a2. In such case, for the sequences
o ∈ On such that p(o|a1)(= p(o|a2)) is maximal, the value of gn is not uniquely
determined, because we could choose either a1 or a2. Assuming that we choose
arbitrarily between them, and that the probability of choosing the wrong one is
uniformly distributed, we have that the Bayesian probability of error is bound
from below as follows2: Pgn =

∑
a∈A p(a)ηn(a) ≥ p(a1)1/2 + p(a2)1/2.

More in general, if there are k identical rows a1, a2, . . . , ak, the lower bound
to the Bayesian probability of error is Pgn =

∑
a∈A p(a)ηn(a) ≥ p(a1)(k−1)/k+

p(a2)(k − 1)/k + . . . + p(ak)(k − 1)/k.
The situation is slightly different if we know the a priori distribution and we

define the function fn. In this case, the criterion of maximizing p(a)p(o|a) reduces
to maximizing p(a). Hence, observing the outcome of the protocol does not add
2 Note that this bound is strict. In fact, using the strong law of large numbers it is

possible to prove that, when either a1 or a2 is the actual input, the probability of
the set of the sequences o ∈ On for which p(o|a1) (and p(o|a2)) is maximal goes to
1 as n goes to ∞.
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any information to what we already know. However, the a priori knowledge can
help to make a sensible guess about the most likely a. This is not the case, of
course, if in addition to rows a1 and a2 being identical we also have p(a1) = p(a2).

5 Relation with Existing Anonymity Notions

In this section we consider some particular channels, and we illustrate the rela-
tion with probabilistic (non information-theoretic) notions of anonymity existing
in literature.

5.1 Capacity 0: Strong Anonymity

The case in which the capacity of the anonymity protocol is 0 is by definition
obtained when I(A; O) = 0 for all possible input distributions of A. From infor-
mation theory we know that this is the case iff A and O are independent (cfr.
[19], page 27). Hence we have the following characterization:

Proposition 4. Given an anonymity system 〈A, O, p(·|·)〉, the capacity of the
corresponding channel is 0 iff all the rows of the channel matrix are the same,
i.e. p(o|a) = p(o|a′) for all o, a, a′.

The condition p(o|a) = p(o|a′) for all o, a, a′ has been called strong probabilistic
anonymity in [3] and it is equivalent to the condition p(a|o) = p(a) for all o, a.
The latter was considered as a definition of anonymity in [1] and it is called
conditional anonymity in [2].

Capacity 0 is the optimal case, of course, also w.r.t. the capability of the
adversary of testing the anonymous events (cfr. Section 4): All the rows are the
same, hence p(o|a1) = p(o|a2) for all a1, a2 ∈ A, and o ∈ On. Consequently
the observations are of no use for the attacker to infer the anonymous event, i.e.
to define the “right” gn(o), since all p(o|a) are maximal. Assuming a uniform
distribution in assigning a value to gn(o), the Bayesian probability of error is
bound from below by (|A| − 1)/|A| (cfr. Section 4.2).

An example of protocol with capacity 0 is the dining cryptographers in a
connected graph [1], under the assumption that it is always one of the cryptog-
raphers who pays, and that the coins are fair.

5.2 Relative Capacity 0: Strong Group Anonymity

Group anonymity usually indicates the situation in which the users are divided
in groups, and the protocol allows to figure out the group which the culprit
belongs to, although it tries to conceal which user in the group is the culprit.

Such situation corresponds to having a partition on A and O, see Section 3.1.
The case of relative capacity 0 is obtained when each Mri has capacity 0, namely
when in each group ri the rows are identical.

From the point of view of testing the anonymous events we note the following:
given a o ∈ On, there exists exactly one group ri of a’s such that p(o|a) > 0, and
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p(o|a1) = p(o|a2) for all a1, a2 in ri. Hence the attacker knows that the “right”
value of gn(o) is an a in ri, but he does not know exactly which one. In other
words, on the basis of the observations the attacker can get complete knowledge
about the group, but remains completely uncertain about the exact event a in
the group, as expected. The lower bound on the Bayesian probability of error is
(|Ar| − 1)/|Ar| where r ∈ R determines the set of maximal cardinality in A.

An example of protocol with relative capacity 0 is the dining cryptographers
in a generic graph [1], under the assumption that the coins are fair. The groups
correspond to the connected components of the graph.

The notion of strong group anonymity seems also related to the notion of
equivalence classes in [20]. Exploring this connection is left for future work.

5.3 Probable Innocence: Weaker Bounds on Capacity

Probable innocence is a weak notion of anonymity introduced by Reiter and Ru-
bin [4] for Crowds, a system based on communicating a message from the origi-
nator to the receiver through a sequence of users acting as forwarders. Probable
innocence was verbally defined as “from the attacker’s point of view, the sender
appears no more likely to be the originator of the message than to not be the
originator”. In literature there are three different definitions [4,2,5] that try to
formally express this notion, see [5] for details. In this section we discuss the
relation between these definitions and the channel capacity.

Definition of Reiter and Rubin. In [4] Reiter and Rubin give a formalization
of probable innocence for the Crowds protocol, which limits the probability of
detection, that is the probability of a certain observable that reveals each sender.
The definition requires the probability of these observables to be less than one
half. A protocol satisfies RR-probable innocence if p(o|a) ≤ 1

2 ∀o ∈ O, ∀a ∈ A.
In [5] it is argued that this definition is not suitable for arbitrary protocols. We
now show that RR-probable innocence imposes no bound on the capacity of the
corresponding channel. Consider, for example, the protocol shown in figure 3.
The protocols satisfies RR-probable innocence since all values of the matrix are
less than or equal to one half. However the channel capacity is (the matrix is
symmetric) C = log |O| − H(r) = log(2n) − log 2 = log n which is the maxi-
mum possible capacity, equal to the entropy of A. Indeed, users can be perfectly
identified by the output since each observable is produced by exactly one user.

Note, however, that in Crowds there are some special symmetries under which
RR-probable innocence is equivalent to CP-probable innocence so a bound on
the capacity can be obtained.

Definition of Halpern and O’Neill. In [2] Halpern and O’Neill give a def-
inition of probable innocence that focuses on the attacker’s confidence that a
particular anonymous event happened, after performing an observation. It re-
quires that the probability of an anonymous event should be at most one half,
under any observation. A protocol satisfies HO-probable innocence if p(a|o) ≤
1
2 ∀o ∈ O, ∀a ∈ A. This definition looks like the one of Reiter and Rubin but
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o1 o2 o3 o4 · · · o2n−1 o2n

a1 1/2 1/2 0 0 . . . 0 0
a1 0 0 1/2 1/2 . . . 0 0
...

...
. . .

...
an 0 0 0 0 . . . 1/2 1/2

Fig. 3. A maximum-capacity channel which satisfies RR-probable innocence

its meaning is very different. It does not limit the probability of observing o.
Instead, it limits the probability of an anonymous event a given the observation
of o.

As discussed in [5], the problem with this definition is that it depends on the
probabilities of the anonymous events which are not part of the protocol. As
a consequence, HO-probable innocence cannot hold for all input distributions.
If we consider a distribution where p(a) is very close to 1, then p(a|o) cannot
possibly be less than 1/2. So we cannot speak about the bound that HO-probable
innocence imposes to the capacity, since to compute the capacity we quantify
over all possible input distributions and HO-probable innocence cannot hold for
all of them. However, if we limit ourselves to the input distributions where HO-
probable innocence actually holds, then we can prove the following proposition.

Proposition 5. Let 〈A, O, p(·|·)〉 be a channel and p(a) a fixed distribution over
A. If the channel is symmetric and satisfies HO-probable innocence for this input
distribution then I(A; O) ≤ H(A) − 1.

Note that we consider the mutual information for a specific input distribution,
not the capacity, for the reasons explained above.

Definition of Chatzikokolakis and Palamidessi. The definition of [5] tries
to combine the other two by considering both the probability of producing some
observable and the attackers confidence after the observation. This definition
considers the probability of two anonymous evens a, a′ producing the same ob-
servable o and does not allow p(o|a) to be too high or too low compared to
p(o|a′). A protocol satisfies CP-probable innocence if

(n − 1) ≥ p(o|a)
p(o|a′)

∀o ∈ O, ∀a, a′ ∈ A (2)

where n = |A|. In [5] it is shown that this definition overcomes some drawbacks
of the other two definitions of probable innocence and it is argued that it is
more suitable for general protocols. In this section we show that CP-probable
innocence imposes a bound on the capacity of the corresponding channel, which
strengthens our belief that it is a good definition of anonymity.

Since the purpose of this definition is to limit the fraction p(o|a)
p(o|a′) we could

generalize it by requiring this fraction to be less than or equal to a constant γ.
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Definition 8. An anonymity protocol 〈A, O, p(·|·)〉 satisfies partial anonymity
if there is a constant γ such that

γ ≥ p(o|a)
p(o|a′)

∀o ∈ O, ∀a, a′ ∈ A

A similar notion is called weak probabilistic anonymity in [21].
Note that partial anonymity generalizes both CP-probable innocence (γ =

n−1) and strong probabilistic anonymity (γ = 1). The following theorem shows
that partial anonymity imposes a bound to the channel capacity:

Theorem 4. Let 〈A, O, p(·|·)〉 be an anonymity protocol. If the protocol is sym-
metric and satisfies partial anonymity with γ > 1 then

C ≤ log γ

γ − 1
− log

log γ

γ − 1
− log ln 2 − 1

ln 2

This bound has two interesting properties. First, it depends only on γ and not
on the number of input or output values or on other properties of the channel
matrix. Second, the bound converges to 0 as γ → 1. As a consequence, due to the
continuity of the capacity as a function of the channel matrix, we can retrieve
Proposition 4 about strong probabilistic anonymity (γ = 1) from Theorem 4. A
bound for probable innocence can be obtained by taking γ = n−1, so Theorem 4
treats strong anonymity and probable innocence in a uniform way. Note that this
bound is proved for the special case of symmetric channels, we plan to examine
the general case in the future.

Concerning the testing of the anonymous events, it is interesting to note that,
if the attacker has the possibility of repeating the test with the same input an
arbitrary number of times, then probable innocence does not give any guarantee.
In fact, condition 2 does not prevent the function p(o|·) from having a maximum
with probability close to 1, for a sufficiently long sequence of observables o. So we
can define gn(o) to be such maximum, and we have that the Bayesian error cor-
responding to gn goes to 0. The only exception is when two (or more) raws a1, a2
are equal and correspond to maximals. Imposing this condition for all anony-
mous actions is equivalent to require strong anonymity. In conclusion, possible
innocence maintains an upper bound on anonymity through protocol repetition
only if the system is strongly anonymous. This result generalizes the one ex-
pressed by Proposition 17 in [5]: In the latter, the same conclusion is drawn, but
the tests are limited to the observable sequences of the form o, o, . . . , o.

6 Computing the Degree of Anonymity of a Protocol

In this section we discuss how to compute the channel matrix and the degree of
anonymity for a given protocol, possibly using automated tools. We illustrate our
ideas on a simple, well-known anonymity problem from the literature, namely
the dining cryptographers, proposed by Chaum in [1].
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In this problem three cryptographers are dining together. At the end of the
dinner, the bill will be paid by either one of them or another agent called the
master. The master decides who will pay and then informs each cryptographer
individually about whether the latter has to pay or not. The cryptographers
would like to find out whether the payer is one of them or the master. However, in
the case in which one of them is the payer, they also wish to maintain anonymity
over the identity of the payer. To achieve this, each cryptographer tosses a coin
which is visible to himself and his neighbor to the right. Each cryptographer
observes the two coins that he can see and announces agree if they are the same
or disagree otherwise. However, the paying cryptographer will say the opposite.
It can be proved that if the number of disagrees is even, then the master is
paying; otherwise, one of the cryptographers is paying. Furthermore, the payer
stays anonymous to both an external observer and the other cryptographers.

To measure the degree of anonymity of a system, we start by identifying
the set of anonymous events, which depend on what the system is trying to
hide. In protocols where one user performs an action of interest (like paying
in our example) and we want to protect his identity, the set A would be the
same as the set I of the users of the protocol. In the dining cryptographers, we
take A = {c1, c2, c3, m} where ci means that cryptographer i is paying and m
that the master is paying. In protocols where k users can perform the action of
interest simultaneously at each protocol execution, A would contain all k-tuples
of elements of I. Another interesting case are MIX protocols, in which we are
not interested in protecting the fact that someone sent a message (this is indeed
detectable), but instead, the link between the sender and the receiver, when k
senders send messages to k receivers simultaneously. In that case we consider
the sets Is, Ir of senders and receivers respectively, and take A to contain all
k-tuples of pairs (a, a′) where a ∈ Is, a

′ ∈ Ir.
Then the set of observable events should also be defined, based on the visible

actions of the protocol and on the various assumptions made about the attacker.
In the dining cryptographers, we consider for simplicity the case where all the
cryptographers are honest and the attacker is an external observer (the case
of corrupted cryptographers can be treated similarly). Since the coins are only
visible to the cryptographers, the only observables of the protocol are the an-
nouncements of agree/disagree. So the set of observable events will contain all
possible combinations of announcements, that is O = {aaa, aad, . . . , ddd} where
a means agree and d means disagree.

If some information about the anonymous events is revealed intentionally then
we should consider using relative anonymity (see Section 3.1). In the dining
cryptographers, the information about whether the payer is a cryptographer or
not is revealed by design (this is the purpose of the protocol). If, for example,
the attacker observes aaa then he concludes that the anonymous event that
happened is m since the number of disagree is even. To model this fact we use
relative anonymity and we take R = {m, c} where m means that the master is
paying and c that one of the cryptographers is paying.
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daa ada aad ddd aaa dda dad add

c1 0.25 0.25 0.25 0.25 0 0 0 0

c2 0.25 0.25 0.25 0.25 0 0 0 0

c3 0.25 0.25 0.25 0.25 0 0 0 0

m 0 0 0 0 0.25 0.25 0.25 0.25

daa ada aad ddd aaa dda dad add

c1 0.37 0.21 0.21 0.21 0 0 0 0

c2 0.21 0.37 0.21 0.21 0 0 0 0

c3 0.21 0.21 0.37 0.21 0 0 0 0

m 0 0 0 0 0.37 0.21 0.21 0.21

Fig. 4. The channel matrices for probability of head p = 0.5 (left) and p = 0.7 (right)

After defining A, O, R we should model the protocol in some formal prob-
abilistic language. In our example, we modeled the dining cryptographers in
the language of the PRISM model-checker, which is essentially a formalism to
describe Markov Decision Processes. Then the channel matrix of conditional
probabilities p(o|a) must be computed, either by hand or using an automated
tool like PRISM. In the case of relative anonymity, the probabilities p(o|r) and
p(o|a, r) are needed for all a, o, r. However, in our example, R partitions A and O,
so by Theorem 1 we can compute the relative loss of anonymity as the maximum
capacity of the sub-channels for each value of R individually. For R = m the
sub-channel has only one input value, hence its capacity is 0. Therefore the only
interesting case is when R = c. In our experiments, we use PRISM to compute
the channel matrix, while varying the probability p of each coin giving head.
PRISM can compute the probability of reaching a specific state starting from a
given one. Thus, each conditional probability p(o|a) is computed as the proba-
bility of reaching a state where the cryptographers have announced o, starting
from the state where a is chosen. In Fig. 4 the channel matrix is displayed for
p = 0.5 and p = 0.7.

Finally, from the matrix, the capacity can be computed in two different ways.
Either by using the general Arimoto-Blahut algorithm (see for instance [19]),
or by using Theorem 3 which can be applied because the matrix is partially
symmetric. The resulting graph is displayed in Fig. 5. As expected, when p = 0.5
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the protocol is strongly anonymous and the relative loss of anonymity is 0.
When p approaches 0 or 1, the attacker can deduce the identity of the payer
with increasingly high probability, so the capacity increases. In the extreme case
where the coins are totally biased the attacker can be sure about the payer, and
the capacity takes its maximum value of log 3.
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