

Lecture Notes in Computer Science 4661
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ugo Montanari Donald Sannella
Roberto Bruni (Eds.)

Trustworthy
Global Computing

Second Symposium, TGC 2006
Lucca, Italy, November 7-9, 2006
Revised Selected Papers

13

Volume Editors

Ugo Montanari
Roberto Bruni
University of Pisa
Dipartimento di Informatica
Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
E-mail: {ugo, bruni}@di.unipi.it

Donald Sannella
University of Edinburgh
Laboratory for Foundations of Computer Science
Edinburgh EH9 3JZ, Scotland, UK
E-mail: dts@inf.ed.ac.uk

Library of Congress Control Number: 2007939452

CR Subject Classification (1998): C.2.4, D.1.3, D.2, D.4.6, F.2.1-2, D.3, F.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-75333-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75333-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12166930 06/3180 5 4 3 2 1 0

Preface

Computing technology has become ubiquitous, from worldwide distributed ap-
plications to minuscule embedded devices. Trust in computing is vital to help
protect public safety, national security, and economic prosperity.

A new area of research, known as global computing, has recently emerged. It
aims at defining new models of computation based on code and data mobility
over wide area networks with highly dynamic topologies, and to provide infras-
tructures to support coordination and control of components originating from
different, possibly untrusted, sources.

Trustworthy global computing aims at guaranteeing safe and reliable network
usage, also by providing tools and framework for reasoning about behavior and
properties of applications.

This volume contains the proceedings of the 2nd International Symposium
on Trustworthy Global Computing (TGC 2006), held in Lucca, Italy, November
7–9, 2006. The first edition took place in Edinburgh, UK, as part of ETAPS 2005.
TGC 2005 was the evolution of the previous Global Computing I Workshops held
in Rovereto, Italy, in 2003 and 2004 and of the Foundation of Global Computing
Workshops held as satellite events of ICALP and Concur.

The themes of the workshop addressed issues like theories, models, and al-
gorithms for global computing and service-oriented computing, language-based
security, theories of trust, authentication and anonymity, secure protocol com-
position, resource usage and information flow policies, privacy, reliability and
business integrity, models of disciplined interaction and dynamic components
management, sharing information and computation, self configuration and adap-
tiveness, efficient communication, language concepts and abstraction mecha-
nisms, model-driven development, test generators, symbolic interpreters, and
type checkers.

The above themes were inspired by the activities of the IST/FET proactive
Initiative on Global Computing I and II funded by the European Union. In fact
the FP6 Programme of the European Union launched several projects dedicated
to these themes, whose (first year activity) reviews were co-located with TGC
2006:

– Aeolus: Algorithmic Principles for Building Efficient Overlay Computers
http://www.ceid.upatras.gr/aeolus

– Mobius: Mobility, Ubiquity and Security
http://mobius.inria.fr

– Sensoria: Software Engineering for Service-Oriented Overlay Computers
http://www.sensoria-ist.eu

– Catnets: Catallaxy Paradigm for Decentralized Operation of Dynamic Ap-
plication Networks
http://www.iw.uni-karlsruhe.de/catnets

VI Preface

Three special sessions of TGC 2006 were devoted to presenting and discussing
recent progress within these projects and to the presentation of three FP7 initia-
tives named “Internet of the future,” “Pervasive adaptation” and “ICT forever
yours.” The format of the symposium was not that of a classical conference, but
one structured to leave room for discussions stimulated by a conspicuous number
of invited talks and by the papers selected after standard refereeing.

The Program Committee selected 14 contributed papers out of 32 submissions
after a selective refereeing process (each paper was reviewed by three experts, at
least). These were grouped in five sessions on “Types to discipline interactions,”
“Calculi for distributed systems,” “Flexible modeling,” “Algorithms and systems
for global computing,” and “Security, anonymity and type safety.”

Additionally the program included four keynote speeches by:

– Jayadev Misra (University of Texas at Austin, USA)
“Structured Concurrent Programming”

– Andrei Sabelfeld (University of Goteborg, Sweden)
“Dimensions of Declassification in Theory and Practice”

– Paola Inverardi (University of Aquila, Italy)
“Software of the Future Is the Future of Software?”

– Danny Krizanc (Wesleyan University, USA)
“An Algorithmic Theory of Autonomous Mobile Agent Computing”

Beside regular papers, this volume contains the overviews of FP6 Projects
Aeolus, Mobius, Sensoria and Catnets and invited papers by Paola Inver-
ardi and Danny Krizanc.

It is planned to dedicate a special issue of the Journal of Theoretical Computer
Science to the theme of the workshop, with the extended versions of the best
papers presented at TGC 2006.

We would like to thank all the members of the Program Committee, and
their sub-referees, for their assistance with the selection process. In view of the
importance and the strategic role of trustworthy global computing, the plans are
to organize TGC regularly in the future, and we thank all the members of the
Steering Committee for their past and future efforts.

We also want to thank all the people involved in the local organization of
the event for their help and support, and in particular: Massimo Bartoletti and
Laura Semini from the University of Pisa and Marzia Buscemi, Pietro Carubbi,
Barbara Iacobino, Silvia Lucchesi, Hernán Melgratti and Roberta Zelari from
IMT Alti Studi Lucca.

November 2006 Ugo Montanari
Don Sannella

Roberto Bruni

Organization

TGC Steering Committee

Gilles Barthe INRIA Sophia Antipolis (France)
Rocco De Nicola University of Florence (Italy)
Christos Kaklamanis University of Patras (Greece)
Ugo Montanari (Co-chair) University of Pisa (Italy)
Davide Sangiorgi University of Bologna (Italy)
Don Sannella (Co-chair) University of Edinburgh (Scotland, UK)
Vladimiro Sassone University of Southampton (UK)
Martin Wirsing LMU Munich (Germany)

Program Committee

Gilles Barthe INRIA Sophia Antipolis (France)
Rocco De Nicola University of Florence (Italy)
José Luiz Fiadeiro University of Leicester (UK)
Stefania Gnesi ISTI-CNR, Pisa (Italy)
Manuel Hermenegildo Technical University of Madrid (Spain)
Christos Kaklamanis University of Patras (Greece)
Elias Koutsoupias University of Athens (Greece)
Burkhard Monien University of Paderborn (Germany)
Giuseppe Persiano University of Salerno (Italy)
Ugo Montanari (Co-chair) University of Pisa (Italy)
David Rosenblum University College London (UK)
Davide Sangiorgi University of Bologna (Italy)
Don Sannella (Co-chair) University of Edinburgh (Scotland, UK)
Vladimiro Sassone University of Southampton (UK)
Paul Spirakis University of Patras (Greece)
Martin Wirsing LMU Munich (Germany)
Gianluigi Zavattaro University of Bologna (Italy)

Secondary Referees

Elvira Albert
Puri Arenas
Robert Atkey
Maurice ter Beek
Lorenzo Bettini
Michele Boreale
Gerard Boudol

Roberto Bruni
Marzia Buscemi
Marco Carbone
Manuel Carro
Andrea Corradini
Guillaume Dufay
Alessandro Fantechi

Gianluigi Ferrari
Fabio Gadducci
Flavio Garcia
Klaus Havelund
Alexander Knapp
Ivan Lanese
Frederic Lang

VIII Organization

Michele Loreti
Kenneth MacKenzie
Damiano Macedonio
Sergio Maffeis
Pasquale Malacaria
Patrick Maier
Mieke Massink

Ana Almeida Matos
Catuscia Palamidessi
Marinella Petrocchi
Randy Pollack
Bilel Remmache
Davide Sangiorgi
Paul Spirakis

Rick Thomas
Emilio Tuosto
Irek Ulidowski
Frank Valencia
Carmine Ventre
Cris Walton

Sponsoring Institutions

Fondazione Cassa di Risparmio di Lucca
Tagetik

Table of Contents

FP6 Project Overviews

Project AEOLUS: An Overview . 1
Christos Kaklamanis

MOBIUS: Mobility, Ubiquity, Security . 10
Gilles Barthe, Lennart Beringer, Pierre Crégut, Benjamin Grégoire,
Martin Hofmann, Peter Müller, Erik Poll, Germán Puebla,
Ian Stark, and Eric Vétillard

Sensoria Process Calculi for Service-Oriented Computing 30
Martin Wirsing, Rocco De Nicola, Stephen Gilmore, Matthias Hölzl,
Roberto Lucchi, Mirco Tribastone, and Gianlugi Zavattaro

Global Grids - Making a Case for Self-organization in Large-Scale
Overlay Networks . 51

Torsten Eymann, Werner Streitberger, and Sebastian Hudert

Keynote Speakers

Software of the Future Is the Future of Software? . 69
Paola Inverardi

An Algorithmic Theory of Mobile Agents . 86
Evangelos Kranakis and Danny Krizanc

Types to Discipline Interactions

Spatial-Behavioral Types, Distributed Services, and Resources 98
Lúıs Caires

Integration of a Security Type System into a Program Logic 116
Reiner Hähnle, Jing Pan, Philipp Rümmer, and Dennis Walter

Calculi for Distributed Systems

PRISMA: A Mobile Calculus with Parametric Synchronization 132
Roberto Bruni and Ivan Lanese

On Bisimulation Proofs for the Analysis of Distributed Abstract
Machines . 150

Damien Pous

X Table of Contents

A Typed Calculus for Querying Distributed XML Documents 167
Lucia Acciai, Michele Boreale, and Silvano Dal Zilio

Flexible Modeling

Verification of Model Transformations: A Case Study with BPEL 183
Luciano Baresi, Karsten Ehrig, and Reiko Heckel

A Fuzzy Approach for Negotiating Quality of Services 200
Davide Bacciu, Alessio Botta, and Hernán Melgratti

Algorithms and Systems for Global Computing

Scheduling to Maximize Participation . 218
Ioannis Caragiannis, Christos Kaklamanis,
Panagiotis Kanellopoulos, and Evi Papaioannou

On the Limits of Cache-Oblivious Matrix Transposition 233
Francesco Silvestri

The KOA Remote Voting System: A Summary of Work to Date 244
Joseph R. Kiniry, Alan E. Morkan, Dermot Cochran,
Fintan Fairmichael, Patrice Chalin, Martijn Oostdijk, and
Engelbert Hubbers

Security, Anonymity and Type Safety

Security Types for Dynamic Web Data . 263
Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, and
Jovanka Pantović

Anonymity Protocols as Noisy Channels . 281
Konstantinos Chatzikokolakis, Catuscia Palamidessi, and
Prakash Panangaden

A Framework for Automatically Checking Anonymity with µCRL 301
Tom Chothia, Simona Orzan, Jun Pang, and
Mohammad Torabi Dashti

A Framework for Type Safe Exchange of Mobile Code 319
Sonia Fagorzi and Elena Zucca

Author Index . 339

Project AEOLUS: An Overview

Christos Kaklamanis�

Department of Computer Engineering and Informatics
University of Patras, 26500 Rio, Greece

kakl@ceid.upatras.gr

Abstract. In this paper we give a short overview of the IST FET Inte-
grated Project FP6-015964 AEOLUS “Algorithmic Principles for Build-
ing Efficient Overlay Computers” which is funded by the European Union
as part of the Proactive Initiative on Global Computing. We present the
motivation and our long-term vision behind it and its objectives. We also
give a short description of the research workplan and current activities.

1 Motivation and Vision

The impact of the Internet in our social fabric exceeded even the most optimistic
predictions of only a few years ago. Today, most people in the developed countries
have access to this medium thanks to technological advances on devices such as
the personal computers and wireless devices.

Its success is mainly due to the fact that it supports and makes accessible the
Web, by far the widest data repository available worldwide. Indeed, historically,
the Web has been the main reason for which people are connected to the Internet.
The focus of economic and research activity has concentrated on how to mine
the Web in efficient and user-friendly ways (e.g., search engines), or how to store
and protect the published information from unauthorized access. However, the
Internet should not only be viewed as a medium for information dissemination,
but also as a computing machine: aggregating the computational power even
of a small fraction of the devices connected to the Internet would give rise to
a computing “device” with enormous capabilities which can greatly expand the
concept of “computationally tractable”. Such a system could open new horizons.

Presently there are two important research directions, orthogonal to each
other: efficient resource usage and interoperability. Due to the system size and
inherent complexity, it is practically impossible to completely optimize the usage
of its resources. It is even a challenge to develop ways that improve the usage
of resources at a global scale. To complicate the situation, we have to take into
account that such a goal is usually achieved at the cost of increasing the com-
plexity of the applications. On the other hand, by its own nature, the system is
composed of heterogeneous devices with diverse characteristics and, sometimes,
complementary limitations. In this scenario, the major challenge has been to
allow a complete interoperability among such devices.
� AEOLUS Coordinator.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 1–9, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 C. Kaklamanis

Notwithstanding the problems related to inefficient resource usage and inter-
operability, the increasing number of distributed applications currently devel-
oped and deployed on the Internet show both the success of such a technology
and the increasing need of the society for a global information system which
provides reliable services that can be accessed by diverse means.

In such a scenario, what is really missing is transparency for the user. Indeed,
currently, there exists a variety of service providers providing their own services
that, most of the time, require a sort of ad-hoc proprietary software. The access
to each service is granted using different authorization mechanisms of which the
user has to be aware, while the rules for accessing resources may vary.

The cause of these limitations is the lack of a unique infrastructure on which
different entities may easily develop and deploy software that efficiently exploits
the tremendous storage capacity, computational power, and reliability of large
scale distributed and heterogeneous systems and that, at the same time, guar-
antees privacy of the information and fairness of the resource usage.

In order to obtain real impact from this new global instrument, a key require-
ment is transparency for system designers and developers. Currently, system im-
plementations have to take into account all the issues related to the distributed
nature of information and computation like resource discovery, fault tolerance,
load balancing, security, and so on. All such problems must be tackled in a
heterogeneous system where nodes are owned by different entities that try to
optimize their own objectives and possibly with malicious users. From this very
brief description, it is clear that developing a successful distributed application
that efficiently exploits the capabilities of the Internet is an extremely difficult
task.

The existence of a unique programmable platform virtually overlaid on top
of the existing heterogeneous system, providing a set of functionalities that hide
from the programmer details related to subtle and crucial issues like scalability
and efficiency of resource management as well as automatically and efficiently
solving problems like data replication or recovery would have a great and im-
mediate impact on the way in which distributed applications are developed.
System designers and programmers will be able to concentrate only on the ap-
plication, while leaving to the platform the duty of controlling the underlying
global “device”. The possibility of securing sensitive data while allowing trans-
parent access to them, according to per-site policies, would foster the spread of
a global information system with tremendous effect on everyday life. In other
words, applications will be transparently accessing a unique data repository and
service provider, regardless of the actual device they are running on.

In the long term, we envision the unique infrastructure to be an overlay com-
puter, based on a global computer of grand scale consisting of Internet-connected
computers (possibly mobile, with varying computational capabilities, connected
among them with different communication media including wireless, owned by
different entities optimizing their own objectives, with diverse and even limited
availability, etc.), globally available and able to provide to its users a rich menu

Project AEOLUS: An Overview 3

of high-level integrated services that make transparent and efficient use of the
aggregated computational power, storage space, and information resources.
Based on the growth of the number of nodes of the Internet, the improvements of
computational and communication capabilities of wireless devices and the spread
of use of such devices, it is very likely that a global computer of this kind will be
the main data repository/computational infrastructure that will be widely used
in a few years.

2 Basic Concepts and Objectives

In the context of AEOLUS, we consider a global computer to be composed
of Internet-connected computing entities (small/medium computers, i.e., PCs,
laptops). Possibly, this global computer can be extended through wireless com-
munication (e.g., WiFi, Bluetooth, etc.) to include other computing devices.
These devices will mainly be of similar computing power (i.e., mobile laptops)
but potentially also include others like satellites, palmtops, mobile phones, and
smaller peripherals like sensing devices.

Overlay computers are logical definitions over this global computer and can
be subsets of nodes of the global computer cooperating for providing a service
or running a distributed application. So, the overlay computer is an abstraction
of the global computer on top of which services and applications can be im-
plemented using basic primitives; these primitives are provided by the overlay
computer as “tools to the programmer”. They handle and hide the actual char-
acteristics of the global computer (e.g., topology, computational power of nodes,
communication media, etc.).

The first step towards fulfilling the ambitious goal of realizing such an overlay
computer is a deep understanding of the features that the basic functionalities
of the overlay computer should have. A first, compelling characteristic is related
to the efficiency of such primitives. In any worldwide-deployed architecture with
thousands of heterogeneous nodes, the amplification of the effect of an ineffi-
cient solution could lead to the collapse of the whole system, especially if the
inefficiency is related to a basic functionality, e.g., scheduling or routing. An
algorithmic approach to the design of such an infrastructure brings into focus
the issue of efficiency, by its very nature.

AEOLUS addresses the four issues of scalability, resource usage and man-
agement, security, and distribution transparency that have been stressed by the
Global Computing Proactive Initiative as pivotal to realizing the aim of the ini-
tiative. Although a necessary condition, efficiency by itself does not guarantee
scalability of the proposed solutions. The project participants will specifically
address this issue during the four years of the project.

In a grand-scale overlay computer, resource usage and management become
critical primitives to be addressed. Because of its highly distributed nature,
it is impossible to consider centralized management of resources. In this set-
ting, primitives for resource discovery become crucial for the viability of any

4 C. Kaklamanis

algorithm on an overlay computer. On the other hand, the overlay computer
should guarantee proper usage of resources by implementing appropriate algo-
rithms for scheduling and load balancing. Notice that ensuring fairness of re-
source usage is a prerequisite to guaranteeing that end-users will provide their
resources to the overlay computer since they will be guaranteed they will be
allowed to use other users’ resources when needed. Furthermore, in our vision an
overlay computer is an open system. It is thus unrealistic to assume that users
behave according to some predefined protocol. AEOLUS considers resource man-
agement also for the case in which users act selfishly and try to optimize their
own objectives.

Particular attention has been devoted to the issue of security as it will be
fundamental for determining whether or not the new technology will be accepted
by the end-users. Basic primitives addressing trust management, anonymity,
and privacy are crucial in a distributed open system. Unfortunately, most of
the solutions in literature cannot be applied as is in the context of the overlay
computer since either they are not scalable or they make strong assumptions
that are not realistic in this setting.

Distribution transparency is also a crucial issue in AEOLUS for various
reasons. First of all, a specific feature of the overlay computer is to hide the
distributed nature of resources and computation. Furthermore, AEOLUS specif-
ically addresses the possibility of having wireless devices being part of the global
computer. As explained above, the overlay computer should hide from the ap-
plication the specific communication means by which the node is connected.
Related research in AEOLUS includes problems like stability, topology control,
fault tolerance, etc.

Overall, the goal of this project is to investigate the principles and develop
the algorithmic methods for building an overlay computer that enables efficient
and transparent access to the resources of an Internet-based global computer. In
particular, the main objectives are:

– To identify and study the important fundamental problems and investigate
the corresponding algorithmic principles related to overlay computers run-
ning on global computers defined as above.

– To identify the important functionalities such an overlay computer should
provide as tools to the programmer, and to develop, rigorously analyze and
experimentally validate algorithmic methods that can make these function-
alities efficient, scalable, fault-tolerant, and transparent to heterogeneity.

– To provide improved methods for communication and computing among
wireless and possibly mobile nodes so that they can transparently become
part of larger Internet-based overlay computers.

– To implement a set of functionalities, integrate them under a common soft-
ware platform (the Overlay Computing Platform) in order to provide the
basic primitives of an overlay computer, as well as build sample services on
this overlay computer, thus providing a proof-of-concept for the theoretical
results.

Project AEOLUS: An Overview 5

3 Description of Research Activities

Summarizing the discussion of the previous section, it is clear that in order to
realize the overlay computer, there are several problem areas that have to be
studied:

– Resource usage and management including CPU, disk space, bandwidth,
information, and application-level resources.

– Security including trust management, authentication, privacy, anonymity,
secure distributed computation, etc.

– Overlay computers built on top of the Internet-based global computer should
also be able to deal with wireless devices. Such devices have several special
characteristics. They may be mobile, their existence certainly imposes het-
erogeneity, their computation power is usually limited, their availability is
varying, etc. So, several issues should be addressed in order to allow trans-
parent access to/from these devices so that they can become part of the
overlay computer.

In order to deal with the complexity of the objectives, the research work within
AEOLUS is divided in several vertical and horizontal components. Horizontal
components contain work either on the investigation of general fundamental
aspects or on the development of the overlay computer. Vertical components
focus on specific areas which are important to the realization of the overlay
computer. These components are the following:

– A horizontal component addressing fundamental issues of global computing
with special focus on efficiency, transparency and scalability.

– Four vertical components addressing the issues of resource management,
sharing information and computation, security and trust management and
transparent extensions of overlay computers to include wireless devices,
respectively.

– A horizontal component devoted to the implementation of basic functional-
ities under a common software platform (the Overlay Computing Platform)
and the development of an application on top of it.

These components correspondingly define six subprojects:

Subproject 1. “Paradigms and principles” is devoted to the development of in-
novative theories to cope with new algorithmic problems that arise in global
computing. It studies the structural properties of global/overlay computers, fun-
damental techniques for coping with selfishness and for achieving stability and
fault tolerance, and tackles the challenge of computing with partial (i.e., un-
certain, distributed, or even incomplete) knowledge by blending theories from
economics, game theory and algorithmic theory. A better understanding of these
problems will have a strong impact on the ability to propose scalable, distributed
and dynamic algorithms. That will also allow understanding the efficiency trade-
off between undesirable centralized strategies and anticipated fully distributed
strategies.

6 C. Kaklamanis

Subproject 2. “Resource management” focuses on specific aspects related to the
management of critical resources (like bandwidth), resource discovery, as well
as to the design of mechanisms for accessing resources owned by selfish enti-
ties. Resources can either be of a low-level (i.e., infrastructure-dependent like
bandwidth) or application-level (e.g., currency).

Subproject 3. “Sharing information and computation” considers algorithmic
problems related to the management of resources focusing on computational
and information resources. Issues like distributed data management, load man-
agement and scheduling are addressed here.

Subproject 4. “Security and trust management” explores problems related to
trust management, authentication mechanisms, privacy, anonymity, and secure
distributed computation (including techniques to face malicious behavior). The
main goal of the research work in Subproject 4 is to address fundamental issues
that are crucial to a transparent security layer. In achieving this goal, AEOLUS
adapts concepts from cryptography and economics that have recently shown to
be very successful in modelling adversarial but rational behavior.

Subproject 5. “Extending global computing to wireless users” mainly aims to
transparently include wireless nodes in an Internet-based overlay computer. It
focuses on issues like resource management and quality of service in wireless
sub-networks, network design and topology control under dynamic scenarios,
mobility and fault tolerance. The main objective of this subproject is to provide
efficient and practical algorithmic solutions for high-quality, reliable, stable end-
users services on heterogeneous wireless networks. Due to the specific limitations
of wireless devices, a particular attention is devoted to the efficient usage of
critical resource like energy and spectrum (i.e., frequencies).

Subproject 6. “Design and implementation of components and applications for
programmable overlay computers” is devoted to the implementation and inte-
gration of functionalities produced within Subprojects 1, 2, 3, 4, and 5 into a
common software platform (the Overlay Computing Platform) that will provide
the programmable interface of the overlay computer. Special attention is devoted
to the efficiency of the implementations. An application will be implemented on
top of this overlay computer. Since the Overlay Computing Platform is intended
to be a general purpose programmable computational infrastructure, it should
efficiently support any kind of distributed application. Nonetheless, some types
of applications that would benefit the most include:

– data discovery and processing in scenaria where data is diffused and owned
by different entities, or the object/information is complex and diffused by
itself, or requires processing in order to be retrieved

– large scientific computations especially with unpredictable load running on
unused or idle CPUs

– multi-party transactions (e.g., access on distributed databases, consensus)
requiring distributed security and potentially multi-round transactions (like
auctions and distributed games).

Project AEOLUS: An Overview 7

The Overlay Computing Platform and the demo application will serve as a
proof-of-concept of AEOLUS.

The work within the several Subprojects is further refined into workpackages.
Subproject 1 consists of the following workpackages:

– Workpackage 1.1: Structural Properties, addressing topological properties,
substructures and organization, embeddings.

– Workpackage 1.2: Coping with Incomplete Knowledge, addressing
distributed and robust data structures, transparency and information hiding
and reputation mechanisms.

– Workpackage 1.3: Coping with Selfishness, addressing Price of anarchy, fair-
ness versus efficiency and equilibria selection and mechanisms.

– Workpackage 1.4: Stability and Fault-Tolerance, addressing adversarial
queuing theory and distributed systems.

– Workpackage 1.5: Generic Algorithms, addressing connectivity issues,
multi-criteria optimization and sampling paradigms.

Subproject 2 consists of the following workpackages:

– Workpackage 2.1: Resource Discovery, addressing construction of overlay
networks, query routing in overlay networks, query execution in overlay
networks.

– Workpackage 2.2: Sharing Critical Resources, addressing the transparent
bandwidth sharing in a heterogeneous large-scale global computer in order
to match the quality of service expected by the overlay computer.

– Workpackage 2.3: Mechanism Design, addressing the impact of the user self-
ishness on improving the price of anarchy and in reaching a good global
status in global and overlay computers.

Subproject 3 consists of the following workpackages:

– Workpackage 3.1: Distributed Data Management, addressing replication de-
grees and replica placement, and dynamic load-adaptive adjustments, replica
maintenance and proactive dissemination.

– Workpackage 3.2: Load Management, addressing load balancing for overlay
computers, adaptive software and peer-to-peer-based parallel computing.

– Workpackage 3.3: Scheduling, addressing scheduling computations in overlay
computers and the dynamic situation of scheduling at the application level.

– Workpackage 3.4: Workflow and Services, addressing the use of services for
accessing data in overlay computers, the use of workflow for the definition
and execution of composite web services, and the capabilities of a global
computer and its overlay structures for dynamic self-configuration and au-
tomatic adaptation to system, workload, and applications dynamics.

Subproject 4 consists of the following workpackages:

– Workpackage 4.1: Trust Management, addressing identity-based Authenti-
cation, trust negotiation mechanisms, reputation based authentication and
authorization and access control models and mechanisms.

8 C. Kaklamanis

– Workpackage 4.2: Privacy, Identity and Anonymity, addressing pseudonym
systems, private credentials / anonymous certificates, identity management,
anonymous communications, privacy and individual databases and privacy-
preserving data mining.

– Workpackage 4.3: Secure Distributed Computation, addressing secure dis-
tributed algorithmic mechanism design, composability and further applica-
tions including secure distributed protocols supporting fault-tolerance and
heterogeneity of users and prevention of denial of service attacks.

Subproject 5 consists of the following workpackages:

– Workpackage 5.1: Resource Management and Quality-of-Service (QoS).
– Workpackage 5.2: Dynamical Aspects of Network Design and Topology

Control.
– Workpackage 5.3: Mobility and Fault Tolerance.

Finally, Subproject 6 consists of the following workpackages:

– Workpackage 6.1: Specification and design of the platform.
– Workpackage 6.2: Implementation of platform components.
– Workpackage 6.3: Integration and testing of the platform.
– Workpackage 6.4: Design and implementation of a demo application.

4 Other Information

AEOLUS consortium consists of 21 participants from 10 countries. Grouped
on a country basis, they are: University of Patras, Research Academic Com-
puter Technology Institute, University of Ioannina, and University of Athens
from Greece, Radiolabs, Università degli Studi di Salerno, Università degli
Studi di Roma “La Sapienza”, Università degli Studi di Roma “Tor Vergata”,
Università degli Studi di Padova from Italy, CNRS and INRIA from France,
University of Paderborn, Max-Planck Institut für Informatik, and Christian-
Albrechts-Universität zu Kiel from Germany, University of Geneva and ETH
Zurich from Switzerland, Universitat Politecnica de Catalunya (UPC) from
Spain, Katholieke Universiteit Leuven from Belgium, DIMATIA-Charles Uni-
versity from Czech Republic, University of Cyprus from Cyprus and Cyber-
netica from Estonia.

AEOLUS started in September 2005. It has already completed the first
year and is now continuing in its second year, out of the four years totally
scheduled. So far, at least two hundred publications or technical reports with
project results related to Subprojects 1-6 have been produced. Furthermore,
the project participants are already working towards the development of the
Overlay Computing Platform. They have defined its architecture and main
components and are currently implementing functionalities or stand-alone pro-
totypes in order to demonstrate several of its components. These include a mi-
crobenchmarking software package, a prototype for process migration and load

Project AEOLUS: An Overview 9

balancing in BSP-based P2P systems, a generic engine for specifying computa-
tions in overlay computers, a prototype for anonymous communication, a pro-
totype for secure distributed protocols, and a prototype for protocol security
verification.

The interested reader may visit the web site of AEOLUS for additional and
up to date information (http://aeolus.ceid.upatras.gr).

MOBIUS: Mobility, Ubiquity, Security�

Objectives and Progress Report

Gilles Barthe1, Lennart Beringer2, Pierre Crégut3,
Benjamin Grégoire1, Martin Hofmann2, Peter Müller4,

Erik Poll5, Germán Puebla6, Ian Stark7, and Eric Vétillard8

1 INRIA Sophia-Antipolis, France
2 Ludwig-Maximilians-Universität München, Germany

3 France Télécom, France
4 ETH Zürich, Switzerland

5 Radboud University Nijmegen, the Netherlands
6 Technical University of Madrid (UPM), Spain

7 The University of Edinburgh, Scotland
8 Trusted Labs, France

Abstract. Through their global, uniform provision of services and their dis-
tributed nature, global computers have the potential to profoundly enhance our
daily life. However, they will not realize their full potential, unless the necessary
levels of trust and security can be guaranteed.

The goal of the MOBIUS project is to develop a Proof Carrying Code
architecture to secure global computers that consist of Java-enabled mobile
devices. In this progress report, we detail its objectives and provide a snapshot
of the project results during its first year of activity.

1 Introduction

Global computers are distributed computational infrastructures that aim at providing
services globally and uniformly; examples include the Internet, banking networks, tele-
phone networks, digital video infrastructures, peer-to-peer and ad hoc networks, virtual
private networks, home area networks, and personal area networks. While global com-
puters may deeply affect our quality of life, security is paramount for them to become
pervasive infrastructures in our society, as envisioned in ambient intelligence. Indeed,
numerous application domains, including e-government and e-health, involve sensitive
data that must be protected from unauthorized parties. Malicious attackers spreading
over the network and widely disconnecting or disrupting devices could have devastat-
ing economic and social consequences and would deeply affect end-users’ confidence
in e-society. In spite of clear risks, provisions to enforce security in global computers
remain extremely primitive. Some global computers, for instance in the automotive in-
dustry, choose to enforce security by maintaining devices completely under the control

� Work partially supported by the Integrated Project MOBIUS, within the Global Computing II
initiative.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 10–29, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

MOBIUS: Mobility, Ubiquity, Security 11

of the operator. Other models, building on the Java security architecture, choose to en-
force security via a sandbox model that distinguishes between a fixed trusted computing
base and untrusted applications. Unfortunately, these approaches are too restrictive to
be serious options for the design of secure global computers. In fact, any security ar-
chitecture for global computing must meet requirements that reach beyond the limits of
currently deployed models.

The objective of the MOBIUS project is to develop the technology for establish-
ing trust and security in global computers, using the Proof Carrying Code (PCC)
paradigm [37,36]. The essential features of the MOBIUS security architecture are:

– innovative trust management, dispensing with centralized trust entities, and allow-
ing individual components to gain trust by providing verifiable certificates of their
innocuousness; and

– static enforcement mechanisms, sufficiently flexible to cover the wide range of
security concerns arising in global computing, and sufficiently resource-aware and
configurable to be applicable to the wide range of devices in global computers; and

– support for system component downloading, for compatibility with the view of
a global computer as an evolving network of autonomous, heterogeneous and
extensible devices.

MOBIUS targets are embedded execution frameworks that can run third party applica-
tions which must be checked against a platform security policy. In order to maximize
its chances of success, the MOBIUS project focuses on global computers that consist
of Java-enabled devices, and in particular on devices that support the Mobile Informa-
tion Device Profile (MIDP, version 2) of the Connected Limited Device Configuration
(CLDC) of the Java 2 Micro Edition.

2 MIDP

CLDC is a variant of Java for the embedded industry, and stands between JavaCard
and Java Standard Edition. CLDC is a perfect setting for MOBIUS because it has all
the characteristics of a real language: true memory management, object orientation,
etc., but applications developed for it are still closed: there is no reflection API, no C
interface (JNI) and no dynamic class loading (class loading is done at launch time).
Furthermore, CLDC is widely accepted by the industry as a runtime environment for
downloadable code: on mobile phones (MIDP), set-top-boxes (JSR 242) and smart card
terminal equipment (STIP).

The MIDP profile is a set of libraries for the CLDC platform that provides a
standardized environment for Java applications on mobile phones (so-called midlets). Its
wide deployment (1.2 billion handsets) has lead to a consensus on security objectives.
Moreover, MIDP promotes the idea of small generic mobile devices downloading
services from the network and is an archetypal example of the global computing
paradigm.

MIDP defines a simple connection framework for establishing communications over
various technologies, with a single method to open a connection that takes as argument
a URL which encodes the protocol, the target address, and some of the connection

12 G. Barthe et al.

parameters. MIDP offers a graphical user interface implementing the view/controller
paradigm and provides access to specific mobile phones resources (persistent store,
players, camera, geolocalisation, etc.).

MIDP security policy is based on the approval by the end-user of every method
call that can threaten the security of the user (such as opening a network connection).
Depending on the API, the frequency of security screens varies (from once for all to
once for every call).

This scheme, although simple, has several drawbacks: users accept dangerous calls
one at a time and have no idea of the forthcoming calls necessary for the transaction;
there can be too many screens to perform a simple transaction; moreover even a clearly
malicious action will be statistically accepted by some users if the customer basis is large
enough. To mitigate some of these risks, MIDP2.0 proposes to sign midlets. Signing
changes the level of trust of the midlet and reduces the number of mandatory warning
screens. Signing moves the decision of accepting an API call from the end-user to a
trusted entity (the manufacturer, the operator or an entity endorsed by them), but it does
not provide clues to take the decision. One goal of MOBIUS is to develop the necessary
technology for allowing the developer to supply clues and proofs that can help operators
to validate midlets developed by third parties.

Finally, MIDP dynamic security policy does not provide any control on the informa-
tion flow. This is in contrast with the european legislation that puts information control
at the heart of its requirements for computerized systems [38]. The information flow
analysis reported in Section 5.3 provides a first step to provide a technical enforcement
of those regulations.

Several factors such as handset bugs, different handset capabilities, operational en-
vironment (language, network), etc. lead to a fragmentation of MIDP implementations.
As resources (cpu, memory for heap, code or persistent data) on device are scarce, code
specialization is the only viable alternative to adapt application to handsets. It is not
uncommon to have hundreds of versions of a single application. Whereas some solu-
tions exist for automating the development, the management, and the provisioning to the
handset of so many variants, in practice, validation [32] is still based on a technology
which is unable to cope with multiple versions: black-box testing. Indeed, only the byte-
code is available to test houses, as software companies refuse to disclose their source
code to third parties to protect their intellectual property. MOBIUS outcome should help
to automate the validation process for operators. PCC can be used on the most complex
properties whereas type based techniques could be sufficient on simple ones.

3 PCC Scenarios

Figure 1 shows the basic structure of all certificate-based mobile code security models,
including Proof Carrying Code. This basic model, or scenario, comprises a code
producer and a code consumer. The basic idea in PCC is that the code is accompanied
by a certificate. The certificate can be automatically and efficiently checked by the
consumer and it provides verifiable evidence that the code abides by a given security
policy. The main difference w.r.t. digital signatures is that the latter allows having
certainty on the origin of the code, whereas PCC allows having certainty about the

MOBIUS: Mobility, Ubiquity, Security 13

PRODUCER CONSUMER

Security Policy

Certificate

Code

Security Policy

Fig. 1. Certificate-based Mobile Code Security

behaviour of the code. Different flavours of PCC exist which use different techniques
for generating certificates, ranging from traditional logic-based verification to static
analysis in general and type systems in particular.

In the context of global computing, this initial scenario needs to be extended in a
number of ways to consider the presence of multiple producers, multiple consumers,
multiple verifiers and intermediaries. We have identified a series of innovative scenarios
for applying Proof Carrying Code in the context of global computers [23]; below we
summarize the main scenarios and issues of interest within the context of MOBIUS.

3.1 Wholesale PCC for MIDP Devices

Figure 2 depicts the MOBIUS scenario for MIDP devices. It involves a trusted inter-
mediary (typically the mobile phone operator), code producers that are external to the
phone companies, and code consumers (the end users). PCC is used by developers to
supply phone operators with proofs which establish that the application is secure. The
operator then digitally signs the code before distributing it to the user.

This scenario for “wholesale” verification by a code distributor effectively combines
the best of both PCC and trust, and brings important benefits to all participating actors.
For the end user in particular, the scenario does not add PCC infrastructure complexity
to the device, but still allows effective enforcement of advanced security policies.

From the point of view of phone operators, the proposed scenario enables achieving
the required level of confidence in MIDP applications developed by third parties through
formal verification. Although this process is very costly, which often results in third
party code not being distributed, PCC enables operators to reproduce the program
verification process performed by producers, but completely automatically and at a small
fraction of the cost.

From the software producer perspective, the scenario removes the bottleneck of the
manual approval/rejection of code by the operator. This results in a significant increase
in market opportunity. Of course, this comes at a cost: producers have to verify their
code and generate a certificate before shipping it to the operator, in return for access
to a market with a large potential and which has remained rather closed to independent
software companies.

3.2 Retail PCC and On-Device Checking

Although our main MOBIUS scenario is for wholesale proof-checking by a trusted
intermediary, we are also exploring possibilities for “retail” PCC where checking

14 G. Barthe et al.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Producer 1

Producer 2 Consumer 2

Producer P
Consumer C

Phone Operator/

 Manufacturer

Consumer 1PKI
PCC

Fig. 2. The MOBIUS scenario

takes place on the device itself. Limited computing capabilities rule out full-blown
proof-checking for the moment, but there are other kinds of certificates that support
verification: MIDP already annotates code with basic type information for lightweight
bytecode verification [40], and we aim to extend this with more sophisticated types
to capture security properties, and with the results of other analyses as in abstraction-
carrying code [1]. Complementary to digital signatures, these certificates maintain the
PCC property that clients perform actual verification of received code, by providing rich
type information to make it fast and cheap to do.

3.3 Beyond the MOBIUS Scenarios

Though the MOBIUS scenario concerns networks of mobile devices, we believe that
the concept of trusted intermediary and the use of off-device PCC can have a significant
impact in the quality of the applications developed in other contexts. For the case of
general-purpose computers, we believe that our scenario is also applicable, since the
role of trusted intermediary can be played by other organizations such as end-user
organizations, governmental institutions, non-profit organizations, private companies,
etc. Note that this scenario is radically different from the situation today: though some
organizations play the role of trusted intermediaries, they do not have the technology
for formally verifying code and they have to resort to other techniques such as manual
code inspection. Thus, we argue that PCC holds the promise of bringing the benefits of
software verification to everyone. The fact that verified code becomes available at low
cost will increase the demand on verified code, which will in turn encourage software
companies to produce verified code with certificates.

4 Security Requirements

A fundamental question in developing a security architecture for global computers is the
inventory of the security requirements that we should be able to express and guarantee.
This has been the one of the first step of the project.

MOBIUS: Mobility, Ubiquity, Security 15

The choice to focus on the MIDP framework was very helpful, as it allowed us to
consider concrete examples of various kinds of security requirements. Moreover, as
the framework has been actively used for some time, there is considerable experience
with security requirements for MIDP applications. Although inspired by concrete MIDP
setting, or even concrete MIDP ahpplications, the range of security requirements we
have found is representative of the requirements that are important for any distributed
computing infrastructure.

We have considered two, largely orthogonal ways to analyse and classify security
requirements. In a first deliverable [19], we investigated two important classes of
security requirements, namely resource usage and information flow. In a second one
[20] we considered general security requirements that apply to all applications for
the MIDP framework, so-called framework-specific security requirements, and security
requirements specific to a given application, so-called application-specific security
requirements. Here we summarise the main conclusions of those reports.

4.1 Resources

Any global computing infrastructure naturally raises issues about identifying and
managing the resources required by mobile code. This is especially true on small
devices, where resources are limited.

Central issues for resource policies are: what resources they should describe; how re-
source policies can contribute to security; and what kinds of formalism are appropriate.
Surveying different possible kinds of “resource”, we are looking to identify those that
are both likely to be amenable to formal analysis by current technologies, and are also
clearly useful to real-world MIDP applications. Some of these are classical instances of
computational resources, namely time, where counting bytecodes executed can be a use-
ful estimate of actual runtime, and space, of stack or heap, which may be rather limited
on a mobile device. The focus on MIDP also allows us to address some platform-specific
kinds of resource, namely persistent store, as file storage space will be limited, and bil-
lable events such as text messages (SMS) or network connections (HTTP), which have
real-money costs for the user. Many of these platform-specific resources can be unified
by treating particular system calls as the resource to be managed: how many times they
are invoked, and with what arguments. This fits neatly into the existing MIDP security
model, where certain APIs are only available to trusted applications.

Policies to control resources such as these are useful in themselves, but they also have
a particular impact on security. First, some platform-specific resources are intrinsically
valuable — for example, because an operator will charge money for them — and so
we want to guard against their loss. Further, overuse of limited resources on the device
itself may compromise availability, leading to denial of service vulnerabilities.

4.2 Information Flow

Information policies can track integrity or confidentiality. We concentrated on the
second, as the former is essentially just its dual. The attacker model is a developer
who leaks sensitive information to untrusted parties, either intentionally (in case of
a malicious developer) or by accident. On the MIDP platform sensitive information

16 G. Barthe et al.

is typically information related to the user: sources include the addressbook, audio
or video capture, the permanent store, and textfields where the user typed in private
data. Untrusted information sinks are network connections and the permanent store,
especially if the store is shared between applications.

4.3 Framework-Specific Security Requirements

Framework-specific security requirements describe generic requirements applicable
to all the applications running on a given framework. In industry there is already
considerable experience with framework-specific security requirements for MIDP. [20]
provides a comprehensive listing of all of these requirements.

Many of these requirements concern critical API methods: both the use of certain
methods (does the application uses the network ?) and possibly also the arguments
supplied to them (for example the URL supplied to open a connection defines the
protocol used). Deciding these questions is already an issue in the current MIDP code-
signing scheme: to decide if signing is safe, it is necessary to know statically which
critical APIs are used and to compute an approximation of the possible values of their
key parameters. There are already some dedicated static analysis techniques for this
[16,24], but there is a limit to what such automated analyses can achieve.

More complicated requirements on API methods are temporal properties that involve
the sequencing of actions, such as a requirement that every file that is opened must be
closed before the program exits. Checking these properties requires a deeper insight
of the control flow of a program, which can be complicated by the possibility of
runtime exceptions, the dependency on dynamic data structures, and the influence of
thread synchronization. Finite state automata are a convenient formalism for specifying
temporal requirements. Such automata can be expressed in the program specification
language JML that we plan to use. Moreover, they are easily understandable by
non-experts.1

4.4 Application-Specific Security Requirements

An individual application may have specific security requirements beyond the generic
requirements that apply to all the applications. These application-specific security re-
quirements may simply be more specific instances of framework-specific security prop-
erties, but can also be radically different. Whereas framework-specific requirements
are often about the absence of unwanted behaviour, security requirements for a par-
ticular application may include functional requirements, concerning the correctness of
some functional behaviour. Application-specific properties are usually more complex
than framework-specific properties and less likely to be certified by fully automatic
techniques.

We have selected some archetypical applications representative of classical applica-
tion domains for which interesting security requirements can be expressed. These ap-
plications include a secure private storage provider, an instant messenger client, an SSH

1 In fact, the current industrial standard for testing MIDP applications, the Unified Testing
Criteria [32] already uses finite automata for specification, albeit informally.

MOBIUS: Mobility, Ubiquity, Security 17

client, and an application for remote electronic voting. All of these have strong security
requirements, including information flow requirements, that go beyond the framework-
specific requirements.

The final two applications selected are in fact core services of the MIDP platform
itself rather than applications that run on the platform, namely a bytecode verifier and
a modified access controller. Note that for these components functional correctness is
one of the security requirements. The specification language JML that we will use in
logic-based verification is capable of expressing such functional requirements, although
extensions to conveniently use mathematical structures in specification, as proposed in
[15], may be needed to make this practical.

5 Enabling Technologies

A central component of the technology being developed by MOBIUS is a hierarchy
of mechanisms that allow one to reason about intensional and extensional properties
of MIDP-compliant programs executed on a Java Virtual Machine. The two enabling
technologies that these mechanisms rely on are typing and logic-based verification.
Depending on the security property, and the respective computational resources, code
producer and consumer (or verifier in the case of wholesale PCC) may negotiate about
the level at which the certificate is formulated. For example, the availability of a type
system with an automated inference algorithm reduces the amount of code annotations,
whereas expressive program logics may be applied in cases when type systems are
insufficiently flexible, or when no static analysis is known that ensures the property of
interest. In the sequel, we provide a short overview of the mechanisms developed during
the first year of the project, namely the MOBIUS program logic for sequential bytecode,
and type systems for resources, information flow, and aliasing.

In the following sections we summarise some of the formal systems which we have
developed and outline possible verification approaches.

5.1 Operational Model

The lowest level of our hierarchy of formal systems consists of an operational model
of the Java Virtual Machine that is appropriate for MOBIUS. In particular, as a
consequence of the choice to target the MIDP prifile of the CLDC platform, features
such as reflection and dynamic class loading may safely be ignored, as is the case
for complex data types. In addition, our current model is restricted to the sequential
fragment of the JVM and does not model garbage collection.

The operational model builds the basis for all program verification formalisms to be
developed in MOBIUS: all formal systems considered within the MOBIUS project –
and hence the validity of certificates – may in principle be given interpretations that only
refer to the operational judgments defining the model. Like any mathematical proof,
these interpretations may involve some abstractions and definitional layers, including
some more abstract operational semantics which we have defined and formally proven
compatible with the small-step relation.

18 G. Barthe et al.

In order to guarantee the utmost adherence to the official specification, we have im-
plemented a small step semantics. The corresponding judgement relates two consecu-
tive states during program execution. We keep the same level of detail as the official
description, but with some simplifications due to the fact that we concentrate on the
CLDC platform.

The correctness of an operational model can not be formally proved, we assert it
axiomatically, and have developed a rigorous mathematical description of it, called
Bicolano, in the Coq proof assistant [43]. In order to get more confidence in our
axiomatization we have also developed an executable version of fragments of Bicolano
which can be used to compare evaluation results with other implementations of the
official specification.

5.2 Program Logic

The second layer of our reasoning infrastructure is built by a program logic. This allows
proof patterns typically arising during the verification of recursive program structures
to be treated in a uniform matter. Extending program logics with partial-correctness
interpretations, the MOBIUS logic supports the verification of non-terminating program
executions by incorporating strong invariants [28].

The global specification structure is given by a table M that associates a partial-
correctness method specification Φ and a method invariant ϕ to each defined method,
where the latter relates each state occurring throughout the (finite or infinite) execution
of the method to its initial state. In order to support the modular verification of virtual
methods, the method specification table is required to satisfy a behavioural subtyping
condition which mandates that the specification of an overriding method declaration
must be stronger (i.e. imply) the specification of the overwritten method. In addition,
each program point in a method may be decorated with an assertion that is to be
satisfied whenever the control flow passes through the decorated program point. All
such annotations are collected in a global annotation table Q.

The program logic employs proof judgements of the form G � {A} � {B} (I) where
the program point � (comprising a method identifier M and a label in the definition of
M ’s body) is associated with a (local) precondition A, a local postcondition B, a (strong)
invariant I . The types and intended meanings of these components are as follows.

Whenever the execution of M , starting at label 0 and initial state s0 reaches � with
current state s, and A(s0, s) holds, then

– B(s0, s, t) holds, provided that the method terminates with final state t,
– I(s0, s, H) holds, provided that H is the heap component of any state arising during

the continuation of the current method invocation, including invocations of further
methods, i.e. subframes,

– Q(s0, s
′) holds, provided that s′ is reached at some label �′ during the continuation

of the current method invocation, but not including subframes, where Q(�′) = Q.

Moreover, the judgements are supplied with a proof context G. The latter contains
assumptions typically associated with merge-points in the control flow graph. These
assumptions are used by the logic rules in order to avoid infinite cycling in the proof
derivation. For the technical details of this the reader is referred to [22,9].

MOBIUS: Mobility, Ubiquity, Security 19

In order to give a flavor of what the proof rules look like, we show the rule for basic
instructions (arithmetic operations, load/store,. . .):

INSTR
G � {PreM,l(A)} M, sucM (l) {PostM,l(B)} (InvM,l(I)) ψ

G � {A} M, l {B} (I)

Note that the correctness of l depends on the correctness of its successor. Also, the
rule uses predicate transformers PreM,l(A),PostM,l(A), and InvM,l(I) which relate
the assertions for the successor instruction with the assertions of instruction l. For the
definition of these transformers, see [9]. Finally, the side condition ψ states that the local
precondition A implies the strong invariant I and any annotation that may be associated
with M, l in the annotation table Q:

ψ = ∀ s0 s. A(s0, s) → (I(s0, s, heap(s)) ∧ ∀Q. Q(M, l) = Q → Q(s0, s)).

In addition to rules of similar shape for all instruction forms, the logic is also supplied
with logical rules, such as a consequence rule and an axiom rule that extracts assump-
tions from the proof context.

We have proven a soundness theorem for the proof system which ensures that the
derivability of a judgement G � {A} � {B} (I) entails its semantic validity. The latter
is obtained by formulating the above informal interpretation in terms of Bicolano’s
operational judgements.

This soundness result may subsequently be extended to programs. We first say that
a program has been verified if each entry in the method specification table is justified
by a derivation for the corresponding method body, and similarly for the entries of
local proof contexts G. The soundness result for programs then asserts that all methods
of a verified program satisfy their specifications: whenever M(M) = (Φ, ϕ) holds,
any invocation of M is guaranteed to fulfill the method invariant ϕ, with terminating
invocations additionally satisfying the partial-correctness assertion Φ.

In order to evaluate our logic experimentally, we have implemented a verification
condition generator (VCgen) that applies proof rules in an automatic fashion and emits
verifications conditions stemming from side conditions such as ψ above, and from the
application of the rule of consequence.

In the next period of the project, we will extend the logic by mechanisms for
reasoning about the consumption of resources and incorporate ghost variables and
associated concepts. This will provide a platform for the encoding of some type systems
that defy the current version of the program logic. A typical example are type systems
that track the number of calls to certain API-methods like sending of SMS messages or
opening files.

5.3 Type Systems

In this section we describe MOBIUS work on types for information flow, resources,
and alias control. Classically, types in programming languages are used to check data
formats, but we envisage much broader type-based verification, with specialised systems
to analyse individual security properties. Indeed, Java 5 has annotations that support just
such pluggable type systems [11].

20 G. Barthe et al.

Information flow. Work on information flow has focused on the definition of an
accurate information flow type system for sequential Java bytecode and on its relation
with information flow typing for Java source code, as well as on flexible analyses for
concurrency.

Policies. Our work mainly focuses on termination insensitive policies which assume
that the attacker can only draw observations on the input/output behavior of methods.
Formally, the observational power of the attacker is captured by its security level (taken
from a lattice S of security levels) and by indistinguishability relations ∼ on the semantic
domains of the JVM memory, including the heap and the output value of methods
(normal values or exceptional values).

Then, policies are expressed as a combination of global policies, that attach levels
to fields, and local policies, that attach to methods identifiers signatures of the form

kv
kh−→ kr, where kv sets the security level of local variables, kh is the heap effect of the

method, and kr is a record of security levels of the form {n : kn, e1 : ke1 , . . . en : ken},
where kn is the security level of the return value (normal termination) and each ei is an
exception class that might be propagated by the method, and kei is its corresponding
security level.

A method is safe w.r.t. a signature kv
kh−→ kr if:

1. two terminating runs of the method with ∼kv -equivalent inputs and equivalent
heaps, yield ∼kr -equivalent results and equivalent heaps;

2. the heap effect of the method is greater than kh, i.e. the method does not perform
field updates on fields whose security level is below kh.

The definition of heap equivalence adopted in existing works on information flow for
heap-based language, including [8], often assumes that pointers are opaque, i.e. the
only observations that an attacker can make about a reference are those about the object
to which it points. However, Hedin and Sands [29] have recently observed that the
assumption is unvalidated by methods from the Java API, and exhibited a Jif program
that does not use declassification but leaks information through invoking API methods.
Their attack relies on the assumption that the function that allocates new objects on the
heap is deterministic; however, this assumption is perfectly reasonable and satisfied by
many implementations of the JVM. In addition to demonstrating the attack, Hedin and
Sands show how a refined information flow type system can thwart such attacks for a
language that allows to cast references as integers. Intuitively, their type system tracks
the security level of references as well as the security levels of the fields of the object
its points to.

Bytecode verification for secure information flow. We have defined a lightweight
bytecode verifier that enforces non-interference of JVM applications, and proved
formally its soundness against Bicolano [8]. The lightweight bytecode verifier performs
a one-pass analysis of programs, and checks for every program point that the instruction
verifies the constraints imposed by transition rules of the form

P [i] = ins constraints(ins, st, st′, Γ)

Γ, i � st → st′

MOBIUS: Mobility, Ubiquity, Security 21

where i is an index consisting of a method body and a program point for this body,
and the environment Γ contains policies, a table of security signatures for each method
identifier, a security environment that maps program points to security levels, as well
as information about the branching structure of programs, that is verified independently
in a preliminary analysis. For increased precision, the preliminary analysis checks null
pointers (to predict unthrowable null pointer exceptions), classes (to predict target of
throw instructions), array accesses (to predict unthrowable out-of-bounds exceptions),
and exceptions (to over-approximate the set of throwable exceptions for each method);
the information is then used by a CDR checker that verifies control dependence regions
(cdr), using the results of the PA analyser to minimise the size of regions.

Relation with information flow type system for Java. JFlow [34] is an information
flow aware extension of Java that enforces statically flexible and expressive information
policies by a constraint-based algorithm. Although the expressiveness of JFlow makes
it difficult to characterize the security properties enforced by its type system, sound
information flow type systems inspired from JFlow have been proposed for exception-
free fragments of Java.

JFlow offers a practical tool for developing secure applications but does not address
mobile code security as envisioned in MOBIUS since it applies to source code. In order
to show that applications written in (a variant of) JFlow can be deployed in a mobile code
architecture that delivers the promises of JFlow in terms of confidentiality, [7] proves
that a standard (non-optimizing) Java compiler translates programs that are typable in a
type system inspired from [5], but extended to exceptions, into programs that are typable
in our system.

Concurrency. Extending the results of [8] to multi-threaded JVM programs is necessary
in order to cover MIDP applications, but notoriously difficult to achieve. Motivated
by the desire to provide flexible and practical enforcement mechanisms for concurrent
languages, Russo and Sabelfeld [41] develop a sound information flow type system that
enforces termination-insensitive non-interference in for a simple concurrent imperative
language. The originality of their approach resides in the use of pseudo-commands to
constrain the behavior of the scheduler so as to avoid internal timing leaks. One objective
of the project is to extend their ideas to the setting of the JVM.

Declassification. Information flow type systems have not found substantial applications
in practice, in particular because information flow policies based on non-interference
are too rigid and do not authorize information release. In contrast, many applications
often release deliberately some amount of sensitive information. Typical examples of
deliberate information release include sending an encrypted message through an un-
trusted network, or allowing confidential information to be used in statistics over large
databases. In a recent survey [42], A. Sabelfeld and D. Sands provide an overview of
relaxed policies that allow for some amount of information release, and a classification
along several dimensions, for example who releases the information, and what informa-
tion is released. Type-based enforcement mechanisms for declassification are presented
in [12].

22 G. Barthe et al.

Resource analysis. In §4.1 we identified requirements for MOBIUS resource security
policies, as well as some notions of “resource” relevant to the MIDP application domain.
Here we survey work within the project on analyses to support such policies, with
particular focus on the possibility of formally verifying their correctness: essential if
they are to be a basis for proof-carrying code.

Memory usage. The Java platform has a mandatory memory allocation model: a stack
for local variables, and an object heap. In [9] we introduce a bytecode type system for
this, where each program point has a type giving an upper limit on the number of heap
objects it allocates. Correctness is proved via a translation into the MOBIUS logic,
and every well-typed program is verifiable [21, Thm. 3.1.1]. Using the technique of
type-preserving compilation we can lift this above the JVM: we match the translation
from a high-level program F to bytecode �F � with a corresponding translation of types;
and again for every well-typed program its bytecode compilation is verifiable in the
MOBIUS logic [21, Thm. 3.1.3]. Even without the original high-level source program
and its types, this low-level proof can certify the bytecode for PCC.

Work in the MRG project [4] demonstrated more sophisticated space inference for a
functional language, using Hofmann-Jost typing [30] to give space bounds dependent
on argument size, and with these types used to generate resource proofs in a precursor
of the MOBIUS logic. We have now developed this further, into a space type system for
object oriented programming based on amortised complexity analysis [31].

Billable events. Existing MIDP security policies demand that users individually au-
thorise text messages as they are sent. This is clearly awkward, and the series of con-
firmation pop-up screens is a soft target for social engineering attacks. We propose a
Java library of resource managers that add flexibility without compromising safety[21,
§3.3]: instead of individual confirmation, a program requests authorisation in advance
for a series of activities. Resource security may be assured either by runtime checks,
or a type system for resource accounting, such that any well-typed program will only
attempt to use resources for which it already has authorisation.

We have also used abstract interpretation to model such external resources [10].
From a program control-flow graph, we infer constraints in a lattice of permissions:
whenever some resourceful action takes place, the program must have acquired at least
the permissions required. Automated constraint solving can then determine whether this
condition is satisfiable.

Execution time. Static analysis to count instructions executed can be verified in
bytecode logic using resource algebras [3]. We have recently developed a static
analysis framework [?] which provides a basis for performing cost analysis directly
at the bytecode level. This allows obtaining cost relations in terms of the size of
input arguments to methods. In addition, platform-dependent factors are a significant
challenge to predicting real execution time across varied mobile platforms. We have
shown how parameterised cost models, calibrated to an individual platform by running
a test program, can predict execution times on different architectures [33]. In a PCC
framework, client devices would map certified platform-independent cost metrics into
platform-dependent estimates, based on fixed calibration benchmarks.

MOBIUS: Mobility, Ubiquity, Security 23

Alias control. Alias characterisations simplify reasoning about programs [26]: they
enable modular verification, facilitate thread synchronisation, and allow programmers
to exchange internal representations of data structures. Ownership types [18,17] and
Universe types [35] are mechanisms for characterising aliasing in object oriented
programming languages. They organise the heap into a hierarchical structure of nested
non-overlapping contexts where every object is contained in one such context. Each
context is characterised by an object, which is said to own all the objects contained
directly in that context. Figure 3 illustrates the ownership structure of a linked list with
iterator.

list:

pos:

Iter

next:

prev:

elem:

Node

next:

prev:

elem:

Node

next:

prev:

elem:

Node

next:

prev:

elem:

Node

Object Object

first:

LinkedList

next:

prev:

elem:

Node

Object

Fig. 3. Object structure of a linked list. The LinkedList object owns the nodes of the doubly-
linked list. The iterator is in the same context as the list head. It has a peer reference to the list
head and an any reference to the Node object at the iterator position.

In the Universe Type System [35,26], a context hierarchy is induced by extending
types with Universe annotations, which range over rep, peer, and any. A field
typed with a Universe modifier rep denotes that the object referenced by it must be
within the context of the current object; a field typed with a Universe modifier peer
denotes that the object referenced by it must be within the context that also contains the
current object; a field typed with a Universe modifier any is agnostic about the context
containing the object referenced by the field.

So far, we have concentrated on the following three areas:

– Universe Java: The formalisation and proof of soundness of a minimal object-
oriented language with Universe Types.

– Generic Universe Java: The extension of Universe Java to Generic Java.
– Concurrent Universe Java: The use of Universe Types to administer race conditions

and atomicity in a concurrent version of Universe Java.

UJ - Universe Java. As a basis for the other two work areas, we formalized Universe
Java and proved the following key properties:

24 G. Barthe et al.

– Type safety: The Universe annotations rep and peer correctly indicate the owner
of an object.

– Encapsulation: The fields of an object can only be modified through method calls
made on the owner of that object (owner-as-modifier discipline).

GUJ - Generic Universe Java. We extended Universe Java to handle generics, which
now form part of the official release of Java 1.5. In Generic Java, classes have parameters
which can be bound by types: since in Universe Java, types are made up of a Universe
modifier and a class, GUJ class parameters in generic class definitions are bound by
Universe modifiers and classes. Generic Universe Java provide more static type safety
then Universe Java by reducing the need for downcasts with runtime ownership checks.
We proved that GUJ is type safe and enforces encapsulation.

UJ and Concurrency. The Universe ownership relation in UJ provides a natural way to
characterise non-overlapping nested groups of objects in a heap. We therefore exploit
this structure in a Java with multiple concurrent threads [25] to ensure atomcity and
absence of data races.

6 Towards Certificate Generation and Certificate Checking

An important part of a PCC infrastructure is concerned with certificates. For the code
producer one of the main tasks is to generate a certificate ensuring that his program
meets the security policy of the client. In contrast, the code verifier/consumer needs to
convince himself that the transmitted program respects his security policy.

In the scenario of Fig. 2 we assume that operators send compiled code, i.e. bytecode,
to their customers, but this leaves the question of whether code producers will supply
source code or bytecode to the operator. In MOBIUS, we concentrate on the latter, since
this avoids the inclusion of the compiler in the trusted code base and does not require
code producers to provide access to their source code.

6.1 Certificate Generation

The MOBIUS project focuses on two approaches for the generation of certificates, logic-
based verification and type-based verification. By exploring both approaches, we hope
to complement the rigorousness of our formalization by flexibility and automation.

The first technique (logic-based verification) is the concept of a proof transforming
compiler [6], where properties can be specified and verified at the source code level and
are then guaranteed to be preserved by the compilation, analogously to the way that
type-preserving compilation guarantees the preservation of properties in the context of
type systems. In addition to a program written in the source language, such a compiler
expects a proof that the source program satisfies a (high-level) specification. Its output
consist of the bytecode program and a proof (certificate) that this program satisfies
the translation of the original specification into a formalism appropriate for bytecode.
Logic-based verification is particularly suitable for functional correctness properties, but
we have already shown in previous work how to generate JML annotations for a large

MOBIUS: Mobility, Ubiquity, Security 25

class of high-level security properties [39]. Interactive usage of the proof assistant, for
example in order to discharge side conditions emitted by the VCgen, is also admissible.
To be able to write such a proof transforming compiler for Java programs annotated
with JML, we have developed a dedicated annotation language for Java bytecode: the
Bytecode Modeling Language (BML) [13].

The second technique for the generation of specifications and certificates, type-based
verification, rests on automated (and in general conservatively approximate) program
analysis. Here, certificates are derived from typing derivations or fixed-point solutions
of abstract interpretations, as outlined in the previous section and in the philosophy of
lightweight bytecode verification.

6.2 Certificate Checking

For the code verifier/consumer, the goal is to check that the received program meets its
specification (i.e. check the validity of the certificate) and to ensure that the specification
is compliant with his security policies. Both parts should be fully automatic, and the
machinery employed for this task is part of the trusting computing base (TCB).

The size of TCB is one of the main difficulties in a PCC architecture. Foundational
PCC [2] minimizes the TCB by modeling the operational semantics of the bytecode in a
proof assistant, and by proving properties of programs w.r.t. the operational semantics.
Then deductive reasoning is used to encode program logic rules or typing rules. FPCC
allows to remove the VCgen and type checkers for the application type systems from the
TCB, but the deductive reasoning to encode proof rules or typing rules leads to bigger
certificates than using a VCgen or a type checker.

One ambitious goal is to merge both approaches, and to get a small TCB and small
certificates. Ultimately, a MOBIUS certificate is always a Coq proof of desired property
phrased in terms of semantics. Apart from the proof assistant itself, Bicolano represents
the trusting computing base of MOBIUS reasoning infrastructure. By representing
formal systems in a proof assistant, we firstly increase the confidence in the validity
of our checkers. Secondly, these representations allow us to exploit the infrastructure of
the proof assistant when verifying concrete programs and their certificates.

Based on this, and complementing FPCC, the following two proof methodologies for
type-based verification are considered within MOBIUS.

Derived Assertions. The Derived Assertions-Approach pioneered in MRG associates
with each typing judgement an assertion in the program logic, the derived assertion.
For each (schematic) typing rule one then proves a derived program logic proof rule
operating on these derived assertions and possibly involving semantic, e.g. arithmetic,
side conditions to be discharged by the proof assistant. Given a concrete typing
derivation, a proof of the derived assertion corresponding to its conclusion can then
be obtained by a simple tactic which invokes these derived rules mirroring the typing
derivation. The typing derivation itself will typically be obtained using an automatic
type inference which then need not be part of the TCB.

Reflection. Recent versions of Coq come with a powerful computational engine [27]
derived from the OCAML compiler. This allows computationally intensive tasks to be

26 G. Barthe et al.

carried out within the proof assistant itself. A prominent example thereof is Gonthier-
Werner’s self-contained proof of the four-color theorem within Coq. This feature can be
harnessed for our purposes in the following way using the reflection mechanism:

– we encode a type system T as a boolean-valued function typableT on programs,
and prove that the type system is sound in the sense that it enforces some expected
semantic property interpT . Formally, soundness is established by proving the
lemma

TypeCorrect : ∀P : prog. typableT (P) = true =⇒ interpT (P)

– to prove that interpT (P0) holds for a particular program P0, we just have to apply
the TypeCorrect lemma, and prove that typableT (P0) = true holds.

– if your checker allows you to reason by computation (i.e. two propositions are equal
if they are computationally equal) and if the program P0 is typable, the proposition

typableT (P0) = true

is equal (i.e. reduces) to true = true which is trivial to prove.

The Coq proof assistant allows such a reasoning mechanism. In Coq, the representation
of such a proof is TypeCorrect P (refl equal true), where (refl equal true) is a proof
of true = true.

Similar to this reflectional approach to PCC is the technique we presented in [14],
where lattice abstract interpretation is used to verify bounded memory use. Significantly,
here both the algorithm and its correctness proof are expressed within the Coq proof
assistant, such that we may extract a certified checker from the proof itself. This allows a
novel realisation of proof-carrying code, where a fast program verifier is trusted because
it is obtained from its own proof of correctness.

7 Next Steps

After a year activity, the MOBIUS project is well on tracks. Scientific progress
is proceeding as expected: security requirements and the PCC scenarios for global
computing have been defined, and significant advances in enabling technologies have
been reported in deliverables and scientific publications. For further information, please
consult http://mobius.inria.fr.

References

1. Albert, E., Puebla, G., Hermenegildo, M.V.: Abstraction-carrying code. In: Baader, F.,
Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 380–397. Springer, Heidelberg
(2004)

2. Appel, A.W.: Foundational proof-carrying code. In: Halpern, J. (ed.) Proceedings of the
Sixteenth Annual IEEE Symp. on Logic in Computer Science, LICS 2001 (Invited Talk),
p. 247. IEEE Computer Society Press, Los Alamitos (2001)

http://mobius.inria.fr

MOBIUS: Mobility, Ubiquity, Security 27

3. Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.-W., Momigliano, A.: A program logic for
resource verification. In: TPHOLs 2004. LNCS, Springer, Heidelberg (2004)

4. Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., Stark, I.: Mobile Resource Guarantees
for Smart Devices. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 1–27. Springer, Heidelberg (2005)

5. Banerjee, A., Naumann, D.: Stack-based access control for secure information flow. Jour-
nal of Functional Programming (Special Issue on Language-Based Security) 15, 131–177
(2005)

6. Barthe, G., Grégoire, B., Kunz, C., Rezk, T.: Certificate translation for optimizing compil-
ers. In: SAS’06: Proceedings of Static Analysis Symposium. LNCS, Springer, Heidelberg
(2006)

7. Barthe, G., Naumann, D., Rezk, T.: Deriving an information flow checker and certifying
compiler for java. In: Symposium on Security and Privacy, 2006, IEEE Press, Orlando (2006)

8. Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference java bytecode
verifier. In: Niccola, R.D. (ed.) Proceedings of ESOP’07. LNCS, vol. 4xxx, Springer,
Heidelberg (2007)

9. Beringer, L., Hofmann, M.: A bytecode logic for JML and types. In: Kobayashi, N. (ed.)
APLAS 2006. LNCS, vol. 4279, pp. 389–405. Springer, Heidelberg (2006)

10. Besson, F., Dufay, G., Jensen, T.P.: A formal model of access control for mobile interactive
devices. In: ESORICS 2006. LNCS, Springer, Heidelberg (2006)

11. Bracha, G.: Pluggable type systems. Presented at the OOPSLA 2004 Workshop on Revival
of Dynamic Languages (October 2004)

12. Broberg, N., Sands, D.: Flow locks: Towards a core calculus for dynamic flow policies. In:
Sestoft, P. (ed.) ESOP 2006 and ETAPS 2006. LNCS, vol. 3924, pp. 180–196. Springer,
Heidelberg (2006)

13. Burdy, L., Huisman, M., Pavlova, M.: Preliminary design of BML: A behavioral interface
specification language for Java bytecode. In: TSDM 2000. LNCS, Springer, Heidelberg (to
appear)

14. Cachera, D., Jensen, D.P.T., Schneider, G.: Certified memory usage analysis. In: Fitzgerald,
J.A., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 91–106. Springer,
Heidelberg (2005)

15. Charles, J.: Adding native specifications to JML. In: ECOOP workshop on Formal Tech-
niques for Java-like Programs (FTfJP’2006) (2006)

16. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expressions.
In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer, Heidelberg (2003),
Available from http://www.brics.dk/JSA/

17. Clarke, D.G., Drossopoulou, S.: Ownership, Encapsulation and the Disjointness of Type and
Effect. In: OOPSLA, pp. 292–310 (2002)

18. Clarke, D.G., Potter, J.M., Noble, J.: Ownership Types for Flexible Alias Protection. In:
Proceedings of the 13th Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA-98), ACM SIGPLAN Notices, vol. 33(10), pp. 48–64. ACM
Press, New York (1998)

19. Consortium, M.: Deliverable 1.1: Resource and information flow security requirements
(2006), Available online from http://mobius.inria.fr

20. Consortium, M.: Deliverable 1.2: Framework-specific and application-specific security re-
quirements (2006), Available online from http://mobius.inria.fr

21. Consortium, M.: Deliverable 2.1: Intermediate report on type systems (2006), Available
online from http://mobius.inria.fr

22. Consortium, M.: Deliverable 3.1: Bytecode specification language and program logic (2006),
Available online from http://mobius.inria.fr

http://www.brics.dk/JSA/
http://mobius.inria.fr
http://mobius.inria.fr
http://mobius.inria.fr
http://mobius.inria.fr

28 G. Barthe et al.

23. Consortium, M.: Deliverable 4.1: Scenarios for proof-carrying code (2006), Available online
from http://mobius.inria.fr

24. Crégut, P., Alvarado, C.: Improving the security of downloadable Java applications with static
analysis. In: Workshop on Bytecode Semantics, Verification, Analysis and Transformation
(Bytecode 2005). Electronic Notes in Theoretical Computer Science, vol. 141, Elsevier
Science, Inc, North-Holland (2005)

25. Cunningham, D., Drossopoulou, S., Eisenbach, S., Dietl, W., Müller, P.: CUJ: Universe Types
for Race Safety. Preliminary version at
http://slurp.doc.ic.ac.uk/pubs.html#cuj06

26. Dietl, W., Müller, P.: Universes: Lightweight ownership for JML. Journal of Object Technol-
ogy (JOT) 4(8), 5–32 (2005)

27. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: ICFP’02:
Proceedings of the International Conference on Functional Programming, pp. 235–246.
ACM Press, New York (2002)

28. Hähnle, R., Mostowski, W.: Verification of safety properties in the presence of transactions.
In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004.
LNCS, vol. 3362, pp. 151–171. Springer, Heidelberg (2005)

29. Hedin, D., Sands, D.: Noninterference in the presence of non-opaque pointers. In: Proceed-
ings of the 19th IEEE Computer Security Foundations Workshop, IEEE Computer Society
Press, Los Alamitos (2006)

30. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order functional
programs. In: POPL’03, Proceedings of the 30rd Annual. ACM SIGPLAN - SIGACT.
Symposium. on Principles of Programming Languages, pp. 185–197. ACM Press, New York
(2003)

31. Hofmann, M., Jost, S.: Type-based amortised heap-space analysis. In: Proceedings of
ESOP2006, pp. 22–37 (2006)

32. U.T. Initiative Unified testing criteria for Java technology-based applications for mobile
devices. Technical report, Sun Microsystems, Motorola, Nokia, Siemens, Sony Ericsson,
Version 2.1 (May 2006)

33. Mera, E., López-Garcı́a, P., Puebla, G., Carro, M., Hermenegildo, M.: Combining Static
Analysis and Profiling for Estimating Execution Times. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, Springer, Heidelberg (2006)

34. Myers, A.: JFlow: Practical mostly-static information flow control. In: Myers, A. (ed.)
POPL’99, Proceedings of the 26rd Annual. ACM SIGPLAN - SIGACT. Symposium. on
Principles of Programming Languages, pp. 228–241. ACM Press, New York (1999)

35. Müller, P.: Modular Specification and Verification of Object-Oriented Programs. PhD thesis,
FernUniversität Hagen (2001)

36. Necula, G.C.: Proof-carrying code. In: POPL ’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of programming languages, pp. 106–119. ACM Press,
New York (1997)

37. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In: Proceedings of
Operating Systems Design and Implementation (OSDI), Seattle, WA, USENIX Assoc, pp.
229–243 (October 1996)

38. Parliement, E., Council, E.: Directive 95/46/ec of the european parliament and of the council
of 24 october 1995 on the protection of individuals with regard to the processing of personal
data and on the free movement of such data. Official Journal of the European Communities,
number L 281, 31–50 (october 1995)

39. Pavlova, M., Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L.: Enforcing high-level security
properties for applets. In: Paradinas, P., Quisquater, J.-J. (eds.) Proceedings of CARDIS’04,
Toulouse, France, August 2004, Kluwer Academic Publishers, Boston (2004)

http://mobius.inria.fr
http://slurp.doc.ic.ac.uk/pubs.html#cuj06

MOBIUS: Mobility, Ubiquity, Security 29

40. Rose, E.: Lightweight bytecode verification. Journal of Automated Reasoning 31(3-4), 303–
334 (2003)

41. Russo, A., Sabelfeld, A.: Securing interaction between threads and the scheduler. In: Pro-
ceedings of CSFW’06 (2006)

42. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In: Proceedings of
CSFW’05, IEEE Press, Orlando (2005)

43. The Coq development team. The coq proof assistant reference manual v8.0. Technical Report
255, INRIA, France, mars (2004), http://coq.inria.fr/doc/main.html

http://coq.inria.fr/doc/main.html

SENSORIA Process Calculi for Service-Oriented
Computing�

Martin Wirsing1, Rocco De Nicola2, Stephen Gilmore3, Matthias Hölzl1,
Roberto Lucchi4,��, Mirco Tribastone3, and Gianlugi Zavattaro4

1 Ludwig-Maximilians-Universität München, Germany
2 University of Florence, Italy

3 University of Edinburgh, United Kingdom
4 University of Bologna, Italy

Abstract. The IST-FET Integrated Project SENSORIA aims at developing a
novel comprehensive approach to the engineering of service-oriented software
systems where foundational theories, techniques and methods are fully integrated
in a pragmatic software engineering approach. Process calculi and logical meth-
ods serve as the main mathematical basis of the SENSORIA approach.

In this paper we give first a short overview of SENSORIA and then focus on
process calculi for service-oriented computing. The Service Centered Calculus
SCC is a general purpose calculus which enriches traditional process calculi with
an explicit notion of session; the Service Oriented Computing Kernel SOCK is
inspired by the Web services protocol stack and consists of three layers for ser-
vice description, service engines, and the service network; Performance Eval-
uation Process Algebra (PEPA) is an expressive formal language for modelling
distributed systems which we use for quantitative analysis of services. The calculi
and the analysis techniques are illustrated by a case study in the area of distributed
e-learning systems.

1 Introduction

Service-oriented computing is an emerging paradigm where services are understood as
autonomous, platform-independent computational entities that can be described, pub-
lished, categorised, discovered, and dynamically assembled for developing massively
distributed, interoperable, evolvable systems and applications. These characteristics
push service-oriented computing towards nowadays widespread success, demonstrated
by the fact that many large companies invest efforts and resources in promoting ser-
vice delivery on a variety of computing platforms, mostly through the Internet in the
form of Web services. Soon there will be a plethora of new services as required for
e-government, e-business, and e-science, and other areas within the rapidly evolving
Information Society.

� This work has been partially sponsored by the project SENSORIA, IST-2 005-016004 and by
the DFG project MAEWA.

�� Currently at European Commission, DG Joint Research Centre, Institute for Environment and
Sustainability, Spatial Data Infrastructures Unit.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 30–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

SENSORIA Process Calculi for Service-Oriented Computing 31

However, service-oriented computing and development today is done in a pragmatic,
mostly ad-hoc way. Theoretical foundations are missing, but they are badly needed for
trusted interoperability, predictable compositionality, and for guaranteeing security, cor-
rectness, and appropriate resources usage. Service-oriented software development is not
integrated in a controllable software development process based on powerful analysis
and verification tools and it is not clear whether service-oriented software development
scales up to the development of complete systems.

The IST-FET Integrated Project SENSORIA addresses the problems of service-
oriented computing by building, from first-principles, novel theories, methods and tools
supporting the engineering of software systems for service-oriented overlay computers.
Its aim is to develop a novel comprehensive approach to the engineering of service-
oriented software systems where foundational theories, techniques and methods are
fully integrated in a pragmatic software engineering approach.

The results of SENSORIA will include a new generalised concept of service for global
overlay computers, new semantically well-defined modelling and programming primi-
tives for services, new powerful mathematical analysis and verification techniques and
tools for system behaviour and quality of service properties, and novel model-based
transformation and development techniques. The innovative methods of SENSORIA will
be demonstrated by applying them in the service-intensive areas of e-business, automo-
tive systems, and telecommunications.

A main research strand of SENSORIA is the development of adequate linguistic prim-
itives for modelling and programming global service-oriented systems. This includes
an ontology for service-oriented architectures, UML extensions (see e.g. [35]) and the
declarative language SRML [16] for system modelling over service-oriented architec-
tures. Process calculi serve as the mathematical basis for programming and modelling
dynamic aspects of services and service-oriented systems and for analysing qualita-
tive and quantitative properties of services such as quality of service, security, per-
formance, resource usage, scalability. During the first year of SENSORIA a family of
process calculi for services has been developed which supports complementary as-
pects of service-oriented computing and qualitative and quantitative analysis of service-
oriented systems. The family comprises four core calculi for service description,
invocation and orchestration [6,19,25,9], stochastic and probabilistic extensions of
calculi for global computing [14,15,8], and process calculi and coordination languages
with cost and priority [10,5,3].

In this paper we give first a short overview of SENSORIA and then focus on pro-
cess calculi for service-oriented computing. For reasons of space we present only two
of the SENSORIA core calculi and one stochastic process algebra for analysing quan-
titative properties of service-oriented systems. For the other SENSORIA calculi the
reader is referred to the SENSORIA reports and publications available on the SENSORIA

web site [32].
The Service Centered Calculus SCC is a general purpose calculus based on an ab-

stract notion of service (independent of any specific technology) and aiming at a model
suitable for different technologies and scenarios. SCC enriches the name passing com-
munication mechanism of traditional process calculi, such as the π-calculus [27], with
explicit notions of service definition, service invocation and bi-directional sessioning.

32 M. Wirsing et al.

SCC’s notion of service has been influenced by Cook and Misra’s calculus Orc [28] for
structured orchestration of services, where a service is a function returning a stream of
values.

The Service Oriented Computing Kernel SOCK is a three-layered calculus inspired
by the Web services protocol stack. The service description layer consists of a simple
calculus for service interface description which takes inspiration from WSDL [34] and
the abstract fragment of WS-BPEL [4]. At the service engine layer additional informa-
tion can be added which indicates how a service is actually run; this layer is inspired
by the full (executable) WS-BPEL language. The third service network layer, permits
modeling an overall network of interacting services; the source of inspiration for this
level has been the SOAP [7] protocol for message exchange among Web services.

Finally, we present Jane Hillston’s stochastic Performance Evaluation Process Al-
gebra (PEPA) [22,21]. This is an expressive formal language for modelling distributed
systems which is supported by a flexible workbench [17]. We use PEPA for quantitative
analysis of services. PEPA models are obtained by composing elements which perform
individual activities or cooperate on shared ones. To each activity is attached an esti-
mate of the rate at which it may be performed. The rates associated with activities are
exponentially distributed random variables thus PEPA is a stochastic process algebra
which describes the evolution of a process in continuous time. As an example for scal-
ability analysis, we investigate with PEPA how models of Web service execution scale
with increasing client population sizes.

All three presented calculi and analysis techniques are illustrated by a case study in
the area of distributed e-learning systems.

The paper is organised as follows: In Sect. 2 we present shortly the SENSORIA

project, its approach to service-oriented system development, and the running exam-
ple, i.e., the case study of a distributed e-learning and course management system. We
present the Service Centered Calculus SCC in Sect. 3.1 and the Service-Oriented Com-
puting Kernel SOCK in Sect. 3.2. In Sect. 4 we use PEPA for scalability analysis: we
investigate how models of Web service execution scale with increasing client popula-
tion sizes. We conclude the paper in Sect. 5 with some remarks on further SENSORIA

results.

2 SENSORIA

SENSORIA is one of the three Integrated Projects of the Global Computing Initiative of
FET-IST, the Future and Emerging Technologies action of the European Commission.
The SENSORIA Consortium consists of 12 universities, two research institutes and four
companies (two SMEs) from seven countries1.

1 LMU München (coordinator), Germany; TU Denmark at Lyngby, Denmark; FAST GmbH
München, S and N AG, Paderborn (both Germany); Budapest University of Technology and
Economics, Hungary; Università di Bologna, Università di Firenze, Università di Pisa, Uni-
versità di Trento, ISTI Pisa, Telecom Italia Lab Turino (all Italy); Warsaw University, Poland;
ATX Software SA, Lisboa, Universidade de Lisboa (both Portugal); Imperial College Lon-
don, University College London, University of Edinburgh, University of Leicester (all United
Kingdom).

SENSORIA Process Calculi for Service-Oriented Computing 33

Core Calculi for Service Computing &
Service Computing Platform

Q
u

al
it

at
iv

e
an

d
Q

u
an

ti
ta

ti
ve

A
n

al
ys

is

R
e-

E
n

g
in

ee
ri

n
g

L
eg

ac
y

S
ys

te
m

s

Model-driven
Development

Model-driven
Deployment

Global ComputerLegacy System

Service-Oriented Modeling
(Architectural Design Layer)

Global Computer

Fig. 1. The SENSORIA approach to service-oriented systems development

2.1 Aim and Approach of SENSORIA

The aim of the IST-FET Integrated Project SENSORIA is to develop a novel compre-
hensive approach to the engineering of service-oriented software systems where foun-
dational theories, techniques and methods are fully integrated in a pragmatic software
engineering approach. This includes a new generalised concept of service, new seman-
tically well-defined modelling and programming primitives for services, new powerful
mathematical analysis and verification techniques and tools for system behaviour and
quality of service properties, and novel model-based transformation and development
techniques.

The three main research themes of Sensoria concern

– The definition of adequate linguistic primitives for modelling and program-
ming global service-oriented systems, by building on a category theoretic and
process algebraic framework supporting architectural modelling and programming
for mobile global computing and by formally connecting these linguistic primitives
with UML in order to make the formal approaches available for practitioners;

– The development of qualitative and quantitative analysis methods for global
services, by using powerful mathematical analysis techniques including program
analysis techniques, type systems, logics, and process calculi for investigating the
behaviour and the quality of service of properties of global services;

– The development of sound engineering and deployment techniques for global
services, by providing new mathematical well-founded techniques for model-based
transformation, deployment, and re-engineering, and integrating them into a novel
engineering approach to service-oriented development.

In the envisaged software development process (cf. Fig. 1), services are modelled in a
platform-independent architectural design layer. By using model transformations, these
models are then transformed to the SENSORIA core calculi for qualitative and quanti-
tative analysis; moreover, for constructing operational realisations they are transformed

34 M. Wirsing et al.

 «temporary»

 «temporary»

«Service»

Course Management

«Service»

Tutor Service

 «temporary»

 «temporary»

 «temporary»

«Service»

Undergrad Advisor

«Service»

Multiple Choice

«Service»

Registration

«Service»

Registration Check

 «temporary»

«Service»

Exam

 «temporary»

 «temporary»

«Service»
E-Learning

«temporary»

«Service»

University Portal

Client System

Fig. 2. Architecture of the SENSORIA distributed e-learning and course management system

and/or refined to the service computing platform of SENSORIA which, in turn, can be
used for generating specific implementations over different global computing platforms
in a (semi-)automated way. On the other hand, legacy code is transformed systemati-
cally into service oriented software models (see Fig. 1). In all phases of service-oriented
development formal analysis techniques are used for validating and verifying qualitative
and quantitative properties of services and their interactions.

2.2 The E-Learning and Course Management Case Study

Today’s academic environment poses several challenges for administration, faculty, and
students. Administration has to provide services for more and more students while the
numbers of specialised subjects (e.g., bio-informatics and media informatics in addition
to traditional computer science) increases steadily and hence more courses need to be
scheduled. Faculty members are facing a higher workload and increasing demands from
students, e.g., with regards to the availability of homework sheets, course slides and ad-
ditional teaching aids. Furthermore students are expected to spend parts of their studies
in foreign countries without delaying their exams. To manage these problems efficiently
and cheaply, universities are beginning to use computerised course-management and
e-learning systems. Some of the functionalities performed by typical university soft-
ware systems are: management of curricula and students by a university, manage-
ment of single courses by teaching personnel, management of degrees by students, and
e-learning.

In SENSORIA we build a prototypical service-oriented distributed e-learning and
course management system (DECMS) that satisfies these requirements and is used to
guide SENSORIA research efforts. In order to support distribution, extensibility and
dynamic composition, DECMS has a service-oriented architecture (cf. Fig. 2) consist-
ing of services which are interconnected through ports that are typed by provided and

SENSORIA Process Calculi for Service-Oriented Computing 35

required interfaces (written in a “ball-and-socket” notation). Fig. 2 shows a UML ser-
vice diagram of the DECMS as a first simplified snapshot of an architecture model.

A client service connects to DECMS through a University Portal service which in
turn holds connections to the e-learning and the course management services. A tu-
tor service interacts with both, the e-learning and course management service. The
e-learning service offers an examination facility with multiple choice questions. This
is provided to the e-learning service by a dedicated examination service which in turn
requires an auxiliary multiple choice service. Similarly, the course management service
offers services for enrolling students in courses and querying and updating the current
undergrad advisor. These services are provided by the corresponding auxiliary services.

In the following we use examples concerning the management of single courses and
of degrees for illustrating the different process calculi presented in this article.

3 Core Calculi for Service-Oriented Computing

The core calculi for service specification permit focusing on the foundational aspects
and properties of services, and drive (via operational semantics) the implementation of
prototypes: Moreover they provide a common ground for experiments and for studying
relative expressiveness and lay the basis for extensions to deal with issues such as lin-
guistic primitives (e.g. compensation), quantitative properties (e.g. Quality of Service)
and qualitative properties (e.g. logics and type systems).

During the first year of SENSORIA four core calculi have been developed which put
different stress on and support complementary aspects of service-oriented computing:

SCC. The Service Centered Calculus [6] is a general purpose calculus for services
which focuses on sessions, i.e. client-service bidirectional interactions,

SOCK. The Service-Oriented Computing Kernel [19] proposes a three-layered calcu-
lus inspired by the Web services protocol stack (WSDL, WS-BPEL, SOAP),

COWS. The Calculus for Orchestration of Web services [25] mirrors WS-BPEL con-
structs such as message correlations, fault and compensation handlers, and flow
graphs,

SC. The Signals Calculus [9] considers publish/subscribe service interaction instead
of message-based client-service communication and supports the prototype imple-
mentation of a middleware for programming Long Running Transactions as de-
scribed by the SAGA-calculus.

Two different approaches have been followed in the design of core calculi for SOC:
technology-driven and theory-driven. The technology-driven approach of SOCK and
COWS consists of electing one specific service-oriented technology as the starting
point, and extracting from it a corresponding core model. This permits to crosscheck
whether the proposed general calculi adhere to the specificities of the currently avail-
able service oriented technologies. The opposite theory-driven approach of SCC and
SC consists of designing an abstract model of services that is not bound to a specific
technology; the resulting calculi are general enough to be applied to different global
computers on which services run.

In the following we present informally two of the four calculi, namely SCC and
SOCK.

36 M. Wirsing et al.

P, Q ::= 0 Nil
| a.P Concretion
| (x)P Abstraction
| return a.P Return Value
| a ⇒ (x)P Service Definition
| a{(x)P} ⇐ Q Service Invocation
| r � P Session
| P |Q Parallel Composition
| (νa)P New Name

Fig. 3. SCC: syntax of processes

3.1 A Session-Oriented Process Calculus for Service-Oriented Systems

SCC is a calculus developed around the notions of service definition, service invocation
and bi-directional sessioning; it has been influenced by Cook and Misra’s Orc [28], a
basic programming model for structured orchestration of services. Orc is particularly
appealing due to its simplicity and yet great generality; its three basic composition
operators are sufficient to model the most common workflow patterns, identified by van
der Aalst et al. in [33].

SCC has novel features for programming and composing services, while taking into
account their dynamic behaviour. In particular, SCC supports explicit modeling of ses-
sions both on the client and on the service side, and provides mechanisms for session
naming and scoping, by relying on the constructs of π-calculus [27]. Sessions permit
describing and reasoning about interaction modalities more structured than the simple
one-way and request-response modalities provided by Orc and typical of a producer /
consumer pattern. Moreover, in SCC, sessions can be closed thus providing a mecha-
nism for process interruption and service cancellation and update which has no coun-
terpart in most process calculi.

Summarising, SCC combines the service oriented flavour of Orc with the name pass-
ing communication mechanism of the π-calculus.

Calculus description. Within SCC, services are seen as interacting functions (and even
stream processing functions) that can be invoked by clients. The syntax of (the kill-free
fragment of) SCC is reported in Figure 3. The operational semantics is not reported for
space constraints, it can be found in [6].

Service definitions take the form a ⇒ (x)P , where a is the service name, x is a
formal parameter, and P is the actual implementation of the service. As an example,
consider the service double defined as follows:

double ⇒ (x)x + x

(Here and in the following we omit the trailing 0.) This service receives the value x and
computes its double x+x. Service invocations are written as a{(x)R} ⇐ Q: each new
value v produced by the client Q will trigger a new invocation of service a; for each
invocation, an instance of the process R, with x bound to the actual invocation value

SENSORIA Process Calculi for Service-Oriented Computing 37

v, implements the client-side protocol for interacting with the new instance of a. As an
example, a client for the simple service described above will be written in SCC as

double{(x)(y)return y} ⇐ 5

After the invocation x is bound to the argument 5, the client waits for a value from the
server and the received value 10 is substituted for y and hence returned as the result of
the service invocation.

This is only the simplest pattern of interaction in the context of service oriented com-
puting, the so-called request-response pattern. Differently from object oriented comput-
ing, in service oriented computing clients and services can interact via more complex
patterns activating sessions after the first invocation. Within a session several values
can be exchanged from the service to the client and vice versa. Moreover, also other
services can be involved giving rise to a multi-party conversation.

A service invocation causes activation of a new session. A pair of dual fresh names, r
and r, identifies the two sides of the session. Client and service protocols are instantiated
each at the proper side of the session. For instance, interaction of the client and of the
service described above triggers the session

(νr)
(
r � 5 + 5 | r � (y)return y

)

(in this case, the client side makes no use of the formal parameter). The value 10 is
computed on the service-side and then received at the client side, that reduces first to
r � return 10 and then to 10 | r � 0 (where 0 denotes the nil process).

More generally, communication within sessions is bi-directional, in the sense that the
interacting partners can exchange data in both directions. Values returned outside the
session to the enclosing environment can be used to invoke other services. For instance,
a client may invoke the service double and then print the obtained result as follows:

print{(z)0} ⇐ (double{(x)(y)return y} ⇐ 5)

(in this case, the service print is invoked with vacuous protocol (z)0).
As a more significant example than those reported above, we present a simple orches-

trator used in the course management system whose aim is to invoke a service which
collects the results of two other services.

Example 1 (Service orchestration: email service for course events). A student wants to
be notified via email of all important events for two courses in which he is enrolled.
Assume that the course management system of the university provides the following
services: services Course1Events and Course2Events provide announcements for the
respective courses; the service email expects a value and then sends it to a student’s
address. Then the following process

email{(−)0} ⇐
(

Course1Events{(x)(y)return y} ⇐ •
| Course2Events{(x)(y)return y} ⇐ •)

will send an email for each announcement from either Course1 or Course2 to the
student. Note that we use the names • and − to denote unused names and binders for
unused names, respectively.

38 M. Wirsing et al.

As already anticipated above, another interesting aspect of SCC is that other services
can be invoked during the execution of a session thus giving rise to a multi-party con-
versation. As an example, let us consider the following Course-Registration Check.

Example 2 (Multi-party conversation: registration service). Using a syntax enriched
with the boolean and operator and an if-else construct, we can specify that a course
registration might require the student to satisfy certain requirements, e.g., having com-
pleted a lab in the previous term and passing a selection test.

regCheck ⇒ (x) if((completedLab ⇐ x) and (passedTest ⇐ x))
allow

else deny

This example demonstrates the invocation of other services (completedLab and
passedTest) during the execution of one service.

The full SCC comprises also other more specific operators that permit, for instance,
to interrupt the execution of a session or to cancel/update service definitions. The full
syntax is not reported here for space constraints, but can be found in [6]. Nevertheless
we describe informally how the interruption mechanism can be used.

A protocol, both on client-side and on service-side, can be interrupted (e.g. due to the
occurrence of an unexpected event), and interruption can be notified to the environment.
More generally, the keyword close can be used to terminate a protocol on one side and
to notify the termination to a suitable handler at the partner site. For example, the above
client is extended below for exploiting a suitable service fault that can handle printer
failures:

print{(z)0} ⇐fault (double{(x)(y)return y} ⇐ 5) | fault ⇒ (code)Handler

where Handler is a protocol able to manage printer errors according to their identifier
code.

Suppose that P is the printer protocol and that the keyword close occurs in P . When
invoked by the above client, a service-side session of the form r �fault P [fault/close]
is created, where fault is substituted for close . In case of printer failure the protocol P
should invoke the service close (instantiated to fault), with an error code err as a pa-
rameter. As effect of this invocation, the whole service-side session r is destroyed. The
invocation will instantiate an error recovery session that executes Handler[err/code].

Example 3 (Undergrad advisor service update). Session closing can be used also for
service update. Consider, for instance, the following service from a university manage-
ment system

undergradAdvisor ⇒ (−)Prof. A

that returns the name of current advisor for undergraduates. The service must be updated
as soon as the occupancy of this position changes. In the kill-free fragment of SCC
reported in Figure 3 there is no way to cancel a definition and replace it with a new
one. By contrast, in the full calculus, we can exploit session closing in order to remove

SENSORIA Process Calculi for Service-Oriented Computing 39

services and the interruption handler service can be used to instantiate a new version of
the same service. Consider, for instance,

r �new

(
undergradAdvisor ⇒ (−)Prof. A |
new{(−)0} ⇐new (update ⇒ (y)return y)

)
|

new ⇒ (z)
(

undergradAdvisor ⇒ (−)z |
new{(−)0} ⇐new (update ⇒ (y)return y)

)

The service update, when invoked with a new name z, permits to cancel the currently
active instance of service undergradAdvisor and replace it with a new one that returns
the name z. Notice that the service update is located within the same session r of the
service undergradAdvisor ; this ensures that when it invokes the interruption handler
service new the initial instance of the service undergradAdvisor is removed.

Other examples that assess the expressive power of SCC can be found in [6] and include
also a mapping of Orc into SCC and applications to hotel booking and blog management.

3.2 SOCK: Service Oriented Computing Kernel

SOCK is a three-layered calculus which addresses all the basic mechanisms for ser-
vice interaction and composition. In particular, SOCK permits to separately deal with
all the service design issues, that are decomposed into three fundamental parts: the be-
haviour, the declaration and the composition. In a few words, the behaviour represents
the workflow of a service instance (session), the service declaration introduces the as-
pects pertaining to execution modalities and, finally, composition allows us to reason
about the behaviour of the whole system composed by all the involved services.

One of the main aims of SOCK is to deal with current standards and in particular with
the ones related to Web services technologies (WS-BPEL, WSDL and SOAP). Indeed
SOCK extends more simple calculi [11,12,18] whose aim was to capture and model
the peculiarities of orchestration languages for Web services and, in particular, of WS-
BPEL. Consequently, according to WSDL specification, the basic building blocks for
service interaction are the two interaction forms supported by Web services: the one-
way and the request-response ones. On top of these two simple interaction modalities
we can build more complex interactions among participants by means of correlation
sets. Such a mechanism follows a data-driven approach to correlate many interac-
tions, thus making it possible to program communication sessions among participants.
It is worth noting that communication sessions may involve more than two peers; by
communicating correlation sets new participants can enter the communication session.
Activities in SOCK can be composed by means of well known WS-BPEL workflow
operators like parallel, sequence and two forms of choice, the external one depending
on the behaviour of the other services and the internal one where the selected activ-
ity depends only on the internal state of the service instance. Finally, as in WS-BPEL,
variables are used to track the internal state of SOCK processes.

Example 4 (Course registration service). The following service allows students to reg-
ister for courses. To this end it accepts register messages that contain identifiers
for the student and the course. The service replies to the client with either a cancel

40 M. Wirsing et al.

message (if the course is already fully booked or if the student is not eligible to take
this course), or with a confirmation. If the course was confirmed the student chooses
an exercise group; finally, the registration service notifies the student that he is enrolled
for the course and the exercise group. The interface of the Registration service is
specified in SOCK as follows:

REGISTRATION = register(〈student , courseNr〉);
(cancel@student(〈student , courseNr〉) +

(confirm@student(〈student , courseNr〉);
exerciseGroup(〈student , courseNr , groupNr〉);
enrolled@student(〈student , courseNr〉)))

The above specification is intended to be non-executable. This because further in-
formation must be added in order to indicate how the service interface is actually run
by an actual service executor. The information that must be added specifies if differ-
ent instances of the same service are run either in parallel or sequentially, and how the
variables are managed (they can be either persistent, that is they are kept also after the
execution of a service instance, or they are volatile).

An actual executor of the Registration service can be specified as follows

RegistrationExec = !({student , courseNr} � Registration×)

where ! (the equivalent of the bang operator of the π-calculus) denotes that different
service instances can be run in parallel and the subscript × indicates that variables are
not persistent.

Another relevant information in the specification of the RegistrationExec is the
correlation set, given by {student, courseNr}. Correlation sets are a fundamental in-
formation in case of parallel execution of different instances of the same service. In
fact, when messages are received by the executor of the service, they must be delivered
to the corresponding instance. The correlation set indicates which part of the message
is used to identify the correct instance.

Calculus description. The idea in SOCK is that the service design is divided into three
steps; the service behaviour defines a process describing the behaviour of a service in-
stance, while the service declaration enriches such a process with some additional infor-
mation about the execution modality of the service. Such parameters, that are exploited
by the service engines, describe whether to allow concurrent execution of service in-
stances or to support persistent state of service instances. Finally, the composition is
used to observe the behaviour of services when interacting each other. The SOCK cal-
culus is equipped with an operational semantics expressed by means of a labelled tran-
sition system. For space constraints we do not report here the semantics rules that are
described in [19]. In the following we report the syntax and an informal description of
how SOCK works.

The layer devoted to describe the service behaviour is programmed by using the
syntax reported in Fig. 4. 0 is the nil process. Outputs can be a signal s̄, the invocation
of an operation that can be one-way ō@k(�x) or request-response or@k(�x, �y), where s

SENSORIA Process Calculi for Service-Oriented Computing 41

P, Q ::= 0 (Nil)
| ε (Output)
| ε (Input)
| x := e (Assign)
| χ?P : Q (If-then-else)
| P ; P (Sequence)
| P |P (Parallel)
|
∑+

i∈W εi; Pi (Choice)
| χ � P (Loop)

ε ::= s | o(�x) | or(�x, �y, P)
ε ::= s̄ | ō@k(�x) | or@k(�x, �y)

Fig. 4. SOCK: syntax of processes

is a signal name, o and or are operation names, k represents the receiver location and,
finally, �x and �y are vectors of variables used to store the information passed during the
request and the response phase, respectively. Dually, inputs can be an input signal s, a
one-way o(�x) or a request-response or(�x, �y, P) invocation where s is a signal name, o
and or are operation names, �x and �y are, respectively, the vectors of variables used to
store the received information and the response and, finally, P is the process that has to
be executed between the request and the response. The process x := e assigns the result
of the expression e to the variable x. Also, χ?P : Q is the if-then-else process, where
χ is a logic condition on variables; if it holds then the process P is executed, otherwise,
the process behaves as Q. The processes P ; Q and P | Q are the standard sequential and
concurrent composition of processes P and Q, respectively.

∑+
i∈W εi; Pi represents the

choice operator among input guarded processes and, finally, χ � P is the conditional
loop that stops looping on P when the guard χ does not hold. In order to illustrate how
SOCK works we use some examples (in the following we complete the services with
their corresponding service declaration).

Example 5 (Service behaviour of multiple choice test evaluator). Let us consider the
case of a service which keeps track of the score in a multiple choice test. The ser-
vice suppplies a one-way operation update which is invoked every time a question is
answered and a request-response operation cres that returns the current number of cor-
rectly and incorrectly answered questions. The operation update expects a parameter
indicating whether the question was answered correctly or incorrectly, while cres has
no parameter. We also introduce a one-way operation reset that resets the test results.
The service behaviour is defined by the MultipleChoice process:

MultipleChoice ::=
(update(answer);
(answer = correct) ? nrCorrect := nrCorrect + 1

: nrFalse := nrFalse + 1)
+
cres(〈 〉, 〈nrCorrect, nrFalse〉,0)
+
reset(〈 〉); nrCorrect := 0; nrFalse := 0

42 M. Wirsing et al.

U ::= P× | P• W ::= c � U D ::=!W | W ∗ (Service declaration)

Y ::= D[H] H ::= c � PS PS ::= (P, S) | PS|PS (Service engine)

Fig. 5. SOCK: syntax of service declaration and service engine

As previously mentioned the service behaviour programs session instances, in this case
MultipleChoice supports three possible behaviours depending on the operation that
is invoked: i) update: one of the variables used to count the number of correct or false
answers is updated, the parameter answer determines which one, ii) cres: the vari-
ables nrCorrect and nrFalse, that contain the numbers of correct or false answers,
are returned to the invoker, and iii) reset: the variables nrCorrect and nrFalse are
set to 0.

Example 6 (Service behaviour of orchestration: tutor service). We consider the case of
a matchmaking service for private tuition: This service can be used in a course man-
agement system to match tutors willing to offer private tuition with students requesting
extra tuition. Each offer is identified by an offer id (oId). The process TutorService,
whose definition follows, defines the skeleton of the service behaviour that orchestrates
tutors and students:

TutorService ::=
requestTuition(oId, accept, offerTuition(oId, accept,0))
+
offerTuition(oId, accept, requestTuition(oId, accept,0))

In this process two request-response operations are supported, namely requestTuition
and offerTuition . If the requestTuition (resp. the offerTuition) operation is selected,
the process responds to the invoker when the offerTuition (resp. the requestTuition)
operation is performed and completed. As we will see in the following we exploit oId
as a correlation set, in the service declaration, to drive the sessions and join the student
and the tutor.

The service declaration consists of the service behaviour and of some parameters de-
scribing how to execute the service instances. The syntax is reported in Fig. 5. The
term D represents a service declaration while Y represents a service engine. Service
declarations are composed by a service behaviour, a flag describing how to manage the
internal states of service instances, the set of variables which play the role of correlation
set and a flag used to allow concurrent or sequential execution of service instances. In
particular, flag × denotes that P is equipped with a non-persistent state while • denotes
the opposite. Also, c is the correlation set which guards the execution of the sessions
and, finally, !W denotes a concurrent execution of the sessions while W ∗ denotes that
sessions are executed sequentially. Service engines are used to describe the behaviour
of the service during the execution. In particular, they are characterized by a service
declaration and by the process H which represents the execution state of the service
instances that, if the persistent state is not supported, are equipped with their own state
S while, in the opposite case, they refer to a unique state shared among the instances.

SENSORIA Process Calculi for Service-Oriented Computing 43

Example 7 (Service declaration of multiple choice service). Now we recall the
MultipleChoice service behaviour of Example 5 and we conclude its design by de-
scribing the service declaration which follows:

MultipleChoiceDec ::= { } � MultipleChoice∗•

In this case the service supports the sequential execution of service instances, the per-
sistent state and does not exploit correlation sets. The persistent state makes it possible
to use variables to keep track of the test results; this is because service instances inherit
the variables state of the previous service instance execution. It is worth noting that the
sequential execution guarantees that variables nrCorrect and nrFalse are managed in
a consistent way. Indeed, in the case of concurrent update invocations the variables up-
dates are sequentially performed. When we intend to support the concurrent execution
of service instances, the service behaviour must be refined by controlling the access to
the critical section which updates the variables. This could be done by exploiting, for
instance, the internal synchronization primitives.

Example 8 (Service declaration of tutor service orchestration). Now we recall the
TutorService service behaviour of Example 6 and we conclude its design by describ-
ing the service declaration which follows:

TutorServiceDec ::= {oId} � !TutorService×

In this case the service supports the concurrent execution of service instances and non-
persistent state. The correlation set contains oId which is instantiated by the first opera-
tion invocation and is exploited in the second one to select the right invocation call (i.e.
the one associated to the same offer id). As it emerges by this example, the correlation
set mechanism allows to involve a number of peers (in this case the service itself, the
student and the tutor clients) within a service instance.

Concluding, the third layer of the calculus allows us to reason about the behaviour
of the whole system that, essentially, consists of the parallel composition of service
engines. For example, this layer could be used to investigate the behaviour of the system
composed by the tutor and student clients and by a TradingService orchestration service.
Interested readers can find all the details in [19].

4 Stochastic Analysis of Nonfunctional Properties of
Service-Oriented Systems

Well-engineered, safe systems need to deliver reliable services in a timely fashion with
good availability. For this reason, we view quantitative analysis techniques as being as
important as qualitative ones. The quantitative analysis of computer systems through
construction and solution of descriptive models is a hugely profitable activity: brief
analysis of a model can provide as much insight as hours of simulation and mea-
surement. Jane Hillston’s Performance Evaluation Process Algebra (PEPA) [22] is an
expressive formal language for modelling distributed systems. PEPA models are con-
structed by the composition of components which perform individual activities or coop-
erate on shared ones. To each activity is attached an estimate of the rate at which it may

44 M. Wirsing et al.

be performed. The rates associated with activities are exponentially distributed random
variables thus PEPA is a stochastic process algebra which describes the evolution of a
process in continuous time.

Using such a model, a system designer can determine whether a candidate design
meets both the behavioural and the temporal requirements demanded of it. That is: the
service may be secure, but can it be executed quickly enough to perform its function
within a specified time bound, with a given probability of success?

4.1 An Application: Scalability Analysis

A growing concern of Web service providers is scalability. An implementation of a Web
service may be able at present to support its user base, but how can a provider judge
what will happen if that user base grows? We present a modelling approach supported
by the PEPA process algebra which allows service providers to investigate how models
of Web service execution scale with increasing client population sizes. The method has
the benefit of allowing a simple model of the service to be scaled to realistic population
sizes without the modeller needing to aggregate or re-model the system.

One of the most severe problems a Distributed E-learning and Course Management
System (DECMS) has to deal with is the performance degradation occurring when
many users are requesting the service simultaneously. Let us imagine a DECMS is avail-
able for collecting final course projects of a class. Teaching staff usually put a deadline
on those activities, and students are likely to get their projects ready very close to the
due date. The DECMS has to cope with a flash crowd-like effect, as server resources
(i.e. memory, CPU and bandwidth) have to be shared among a large number of users,
thus paving the way for performance penalties experienced by users.

4.2 Setup of the Model

We consider the model in the optimistic scenario where hardware and software failures
are assumed to occur sufficiently infrequently that we will not represent them. Fur-
ther, the server is sufficiently well-provisioned that we may also neglect the possibility
failures caused by out-of-memory errors or overrunning the thread limit on the JVM
hosting the Web container. We will return to review these optimistic assumptions after
we compute performance results from our model.

We conducted experiments to estimate the appropriate numerical values for the pa-
rameters used in our model. We implemented a simple Web Service in which SwA was
enabled to allow it to save a binary file attached by the client. The implementation of the
server interface as well as the method for processing attachments are timed methods, in
order to let us gather measurement data on their invocation.

The client makes a designer-tunable number of service calls, the attachment file size
being passed as application argument. The designer may also set an inter-message idle
period; however, our results were not affected by changes in this parameter.

We restrict our analysis to a case where one single course is being managed. We as-
sume that no other services simultaneously run on the server; thus, the server download
capacity cs as well as server upload capacity μs are fully available for the Web Service.
The clients’ (i.e. students) arrival process is assumed to be well-described by a Pois-
son distribution with rate λ. The system allows a maximum number of students (course

SENSORIA Process Calculi for Service-Oriented Computing 45

size) N . We assume that all students have the same values for download capacity cc and
upload capacity μc. Like the server, we also suppose that no other process but the Web
Service client-side application consumes network resources.

When multiple clients are involved, the server has to share its bandwidth among
them. A model of the behaviour of the network is therefore necessary. We address this
issue by developing a simple model for characterising service performance of the sys-
tem. In this model we assume an ideal network in which no loss occurs and network
nominal capacity means available bandwidth. We also suppose that transmissions are
established on top of TCP connections where fairness against concurrent requests is
perfect.

Given the above assumptions, if we denote i (i > 0) as the number of uploading
clients at any point in time, the uploading rate of each connection request is:

request = min
{cs

i
, μc

}
(1)

Similarly, if j is the number of downloading clients (i.e., clients who are receiving the
response message), the downloading rate of each connection response is:

response = min
{μs

j
, cc

}
(2)

4.3 Model Analysis

Model analysis has been carried out by setting local activity rates as they were obtained
in our experimental tests. Table 1 shows the complete parameter set. It is worthwhile
to observe that network parameters represent bandwidths normalised by the message
size being sent. For instance, cs = 0.001 means that the server is able to get the entire
message completed in 1000 s; this value resembles a realistic situation where a server
equipped with a 10 Mbps connection has to download a file about 1 GB long. We also
would like to point out that server upload capacity is much faster than its download

Table 1. Parameter set for model analysis

Parameter Meaning Rate (s−1)

α create 1689.20
β attach 25000.00
γ processResponse 6493.50
θ save 12.33
η processRequest 1290.32
λ queue 20.00
N Population size 100
cs Server download bandwidth 0.001
μs Server upload bandwidth cs/3
cc Client download bandwidth (cs/10) · 106

μc Client upload bandwidth cc/30

46 M. Wirsing et al.

capacity because of the size of the message being transmitted: here we have assumed
1 KB long SOAP response messages in our parameter set. The value of λ is to consider
flash crowd-like effect, such that triggered for instance by simultaneous service requests
when a deadline is due.

As our model considers client components which perform only one request, tran-
sient analysis has to be carried out for evaluating the performance of the system. The
traditional approach to attempt this numerical evaluation via transient analysis of a
continuous-time Markov chain will not succeed here because the state space of the
system is too large. However, as shown in [21], the ODE-based representation of the
model offers excellent scalability because the size of the space vector does not change
for N varying. The model is shown in Fig. 6.

ClientIdle def= (queue, λ).ClientUploading
ClientUploading def= (request , �).Stop

Server0
def= (queue, �).Server1

Serveri
def= (queue, �).Serveri+1 + (request , min{ cs

i
, μc}).Serveri−1

(0 < i < N)
ServerN

def= (request , min{ cs
N

, μc}).ServerN−1

⎛

⎜
⎝ClientIdle ‖ ClientIdle ‖ · · · ‖ ClientIdle

︸ ︷︷ ︸
N

⎞

⎟
⎠ ��

{queue,request,response}
Server0

Fig. 6. Simplified PEPA model of the DECMS

4.4 Numerical Results

We used the PEPA Workbench [17] to compile the PEPA model to a differential equa-
tion form which we could solve using a fifth-order Runge Kutta numerical integrator.
In the continuous-space representation performance results could be evaluated at low
computational cost. In particular, we required only 0.03 seconds of compute time to
obtain a 106 seconds time series analysis. We considered a maximum number of users
N = 100, requesting service according to a flash crowd-like effect at rate λ = 20.
Server download capacity cs was set to 0.001, and client upload capacity μc = cs/30.

Figure 7 (a) shows a time series plot of the number of client uploading to the server
and Figure 7 (b) the initial burstiness of requests. Figure 7 (c) plots service durations
for different server bandwidths (i.e., cs = 0.01, 0.02, and 0.1) and Figure 7 (d) plots
service durations for different values of N , when cs = 0.1 and μc = cs/30.

Commentary on the results: We note that the system requires a significant amount of
time to get every client request completed. Earlier we outlined a series of assumptions
about the model setup which included the optimistic assumptions of absence of failure
of various kinds, and did not include the possibility of users aborting long-running file
uploads only to restart them again later. Since unsuccessful file transfers (of whatever
kind) will only tend to delay things more we can safely interpret the results presented

SENSORIA Process Calculi for Service-Oriented Computing 47

 0

 20

 40

 60

 80

 100

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

C
lie

nt
 U

pl
oa

di
ng

Time (s)

(a) Evolution of the number of
clients uploading

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

C
lie

nt
 U

pl
oa

di
ng

Time (s)

(b) Flash crowd effect in DECMS

 0

 20

 40

 60

 80

 100

 1000 10000 100000 1e+06

C
lie

nt
 U

pl
oa

di
ng

Time (s)

100MB
50MB
10MB

(c) Time series for different server
bandwidths

 0

 50

 100

 150

 200

 1000 10000 100000 1e+06

C
lie

nt
 U

pl
oa

di
ng

Time (s)

200 clients
100 clients

50 clients

(d) Time series for different num-
ber of users

Fig. 7. Scalability analysis of the e-learning case study

above as saying that even in this very optimistic setting the system is impractical for use
and that an alternative design must be tried to support the expected number of student
users.

5 Concluding Remarks

In this paper we have presented some of the first results of the SENSORIA project on
software Engineering for Service-oriented Overlay Computers. We have focused on
process calculi for service-oriented computing and informally explained the session-
oriented general purpose calculus SCC for service description, the three layered cal-
culus SOCK inspired by the Web Services protocol stack (WSDL, WS-BPEL, SOAP),
and a technique for scalability analysis using the stochastic process calculus PEPA.

But these results represent only a small part of the SENSORIA project. In addition, the
SENSORIA project is developing a comprehensive service ontology and a (SENSORIA)
Reference Modelling Language (SRML) [16] for supporting service-oriented modelling
at high levels of abstraction of “business” or “domain” architectures (similar to the aims
of the service component architecture SCA [31]). Other research strands of SENSORIA

comprise a probabilistic extension of a Linda-like language for service-oriented com-
puting [8], stochastic extensions of KLAIM [30], and beta-binders [15].

48 M. Wirsing et al.

SENSORIA addresses qualitative analysis techniques for security and control of re-
source usage. A first step towards a framework for modelling and analysing security and
trust for services includes trust management and static analysis techniques for crypto-
protocols [26,36], security issues on shared space coordination languages [20], secure
service composition [1], techniques for ensuring constraints on interfaces between ser-
vices [29], and autonomic security mechanisms [23]. The results for control resource
usage by services range from a flow logic for resource access control [20] and model
checking properties of workflow processes [24] to type systems for confining movements
of data and processes [13] and for composing incomplete software components [2].

Moreover, SENSORIA is developing a model-driven approach for service-oriented
software engineering (see also [35]) and a suite of tools and techniques for deploying
service-oriented systems and for re-engineering of legacy software into services. By
integrating and further developing these results SENSORIA will achieve its overall aim:
a comprehensive and pragmatic but theoretically well founded approach to software
engineering for service-oriented systems.

References

1. Bartoletti, M., Degano, P., Ferrari, G.: Security Issues in Service Composition. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 1–16. Springer, Heidelberg
(2006)

2. Bettini, L., Bono, V., Likavec, S.: Safe and flexible objects with subtyping. SAC 2005 4(10),
5–29 (2005)

3. Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based for-
malisms. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proceedings of ECAI
2006, 17th European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence
and Applications, vol. 141, pp. 63–67. IOS Press, Amsterdam (2006)

4. Bloch, B., Curbera, F., Goland, Y., Kartha, N., Liu, C.K., Thatte, S., Yendluri, P., Yiu, A.:
Web services business process execution language version 2.0. Technical report, WS-BPEL
TC OASIS (2005), http://www.oasis-open.org/

5. Bonchi, F., Koenig, B., Montanari, U.: Saturated semantics for reactive systems. In: Pro-
ceedings of LICS 2006, 21st Annual IEEE Symposium on Logic in Computer Science, IEEE
Computer Society, Los Alamitos (to appear, 2006)

6. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins, F., Monta-
nari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V., Zavattaro, G.: SCC: a service centered
calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 38–57. Springer, Heidelberg (2006)

7. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F., Thatte,
S., Winer, D.: Simple Object Access Protocol (SOAP) 1.2. W3C Recommendation (June 24,
2003), http://www.w3.org/TR/SOAP/

8. Bravetti, M., Zavattaro, G.: Service Oriented Computing from a Process Algebraic Perspec-
tive. Journal of Logic and Algebraic Programming 70(1), 3–14 (2006)

9. Bruni, R., Ferrari, G., Melgratti, H., Montanari, U., Strollo, D., Tuosto, E.: From theory
to practice in transactional composition of web services. In: Bravetti, M., Kloul, L., Zavat-
taro, G. (eds.) Formal Techniques for Computer Systems and Business Processes. LNCS,
vol. 3670, pp. 272–286. Springer, Heidelberg (2005)

10. Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for specifying service
level agreements. In: Proc. ESOP’07, volume to appear of LNCS (2007)

http://www.oasis-open.org/
http://www.w3.org/TR/SOAP/

SENSORIA Process Calculi for Service-Oriented Computing 49

11. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and Orchestra-
tion: a synergic approach for system design. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 228–240. Springer, Heidelberg (2005)

12. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and Orchestration
conformance for system design. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION
2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg (2006)

13. De Nicola, R., Gorla, D., Pugliese, R.: Confining data and processes in global computing
applications. Science of Computer Programming 63(1), 57–87 (2006)

14. De Nicola, R., Katoen, J.-P., Latella, D., Massink, M.: STOKLAIM: A Stochastic Extension
of KLAIM. TR 2006-TR-01, ISTI (2006)

15. Degano, P., Prandi, D., Priami, C., Quaglia, P.: Beta-binders for biological quantitative ex-
periments. In: ENTCS - Proceedings of QAPL, 4th Workshop on Quantitative Aspects of
Programming Languages, 2006 (to appear, 2006)

16. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A formal approach to service component architecture.
In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 193–
213. Springer, Heidelberg (2006)

17. Gilmore, S., Hillston, J.: The PEPA Workbench: A Tool to Support a Process Algebra-based
Approach to Performance Modelling. In: Haring, G., Kotsis, G. (eds.) Computer Performance
Evaluation. LNCS, vol. 794, pp. 353–368. Springer, Heidelberg (1994)

18. Guidi, C., Lucchi, R.: Mobility mechanisms in service oriented computing. In: Gorrieri, R.,
Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 233–250. Springer, Heidelberg
(2006)

19. Guidi, C., Lucchi, R., Busi, N., Gorrieri, R., Zavattaro, G.: SOCK: a calculus for service
oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp.
327–338. Springer, Heidelberg (2006)

20. Hansen, R.R., Probst, C.W., Nielson, F.: Sandboxing in myKlaim. In: The First Internat.
Conference on Availability, Reliability and Security, ARES 2006 (2006)

21. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Second In-
ternational Conference on the Quantitative Evaluation of Systems, Torino, Italy, September
2005, pp. 33–43. IEEE Computer Society Press, Los Alamitos (2005)

22. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press, Cambridge (1996)

23. Koshutanski, H., Martinelli, F., Mori, P., Vaccarelli, A.: Fine-grained and history-based ac-
cess control with trust management for autonomic grid services. In: Proceedings of the 2nd
International Conference on Automatic and Autonomous Systems (ICAS’06), Silicon Valley,
California, July 2006, IEEE Press, Orlando (2006)

24. Kovács, M., Gönczy, L.: Simulation and formal analysis of workflow models. In: Bruni,
R., Varro, D. (eds.) Proc. of the Fifth International Workshop on Graph Transformation and
Visual Modeling Techniques. ENTCS, Elsevier, Amsterdam (2006)

25. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. In: Proc.
of ESOP’07, volume to appear of LNCS (2007)

26. Martinelli, F., Petrocchi, M.: A uniform framework for the modeling and analysis of secu-
rity and trust. In: Proc. of 1st Workshop on Information and Computer Security- ICS 2006.
ENTCS, Elsevier, North-Holland (to appear, 2006)

27. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Inform. and Com-
put. 100(1), 1–40 (1992)

28. Misra, J., Cook, W.R.: Computation orchestration: A basis for wide-area computing. Journal
of Software and Systems Modeling (to appear, 2006)

29. Nielson, H.R., Nielson, F.: Data flow analysis for CCS. Festschrift dedicated to Reinhard
Wilhelm’s 60. birthday (2006)

50 M. Wirsing et al.

30. De Nicola, R., Katoen, J.P., Latella, D., Massink, M.: STOKLAIM: A Stochastic Extension
of KLAIM. TR 2006-TR-01, ISTI (2006)

31. SCA Consortium. Service Component Architecture, version 0.9. Specification, 2005 (Last
visited: June 2006), download.boulder.ibm.com/ibmdl/pub/software/dw/
specs/ws-sca/SCA White Paper1 09.pdf

32. SENSORIA. Software Engineering for Service-Oriented Overlay Computers. Web site at
http://www.sensoria-ist.eu

33. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow pat-
terns. Distributed and Parallel Databases 14(1), 5–51 (2003)

34. W3C. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl

35. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N., Schroeder, A.:
Semantic-Based Development of Service-Oriented Systems. In: Najm, E., Pradat-Peyre, J.F.,
Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–45. Springer, Heidel-
berg (2006)

36. Zunino, R., Degano, P.: Handling exp, × (and timestamps) in protocol analysis. In: Aceto,
L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 413–427.
Springer, Heidelberg (2006)

http://www.sensoria-ist.eu
http://www.w3.org/TR/wsdl

Global Grids - Making a Case for
Self-organization in Large-Scale Overlay

Networks

Torsten Eymann, Werner Streitberger, and Sebastian Hudert

Chair of Information Systems Management
Universitätsstrasse 30

University of Bayreuth, Germany
{eymann,streitberger,hudert}@uni-bayreuth.de

Abstract. Grid computing has recently become an important paradigm
for managing computationally demanding applications, composed of a
collection of services. The dynamic discovery of services, and the se-
lection of a particular service instance providing the best value out of
the discovered alternatives, poses a complex multi-attribute n:m alloca-
tion decision problem, which is often solved using a centralized resource
broker. To manage complexity, this article proposes a two-layered ar-
chitecture for decentralized service discovery in such Application Layer
Networks (ALN). The first layer consists of a service market in which
complex services are translated to a set of basic services, which are dis-
tinguished by price and availability. The second layer provides an allo-
cation of services to appropriate resources in order to enact the specified
services. This framework comprises the foundations for a later compar-
ison of centralized and decentralized market mechanisms for allocation
of services and resources in ALNs and Grids in general.

1 Introduction

This article describes an investigation in implementing an electronic Grid market
based on the ”Catallaxy” concept of F.A. von Hayek. Catallaxy describes a ”free
market” economic self-organization approach for electronic services brokerage,
which can be implemented for realizing resource allocation in ALNs. The term
ALN comprises network concepts, such as Grid and Peer-2-Peer (P2P) systems,
which overlay the existing physical Internet topology. In ALNs, participants offer
and request application services and computing resources of different complexity
and value - creating interdependent markets.

In this article, the complex interdependencies are broken down into two types
of interrelated markets:

– a service market - which involves trading of application services, and
– a resource market - which involves trading of computational and data re-

sources, such as processors, memory, etc.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 51–68, 2007.
© Springer-Verlag Berlin Heidelberg 2007

52 T. Eymann, W. Streitberger, and S. Hudert

This distinction between resource and service is necessary to allow different
instances of the same service to be hosted on different resources. It also enables
a given service to be priced based on the particular resource capabilities that are
being made available by some hosting environment. In such interrelated markets,
allocating resources and services on one market inevitably influences the outcome
on the other market.

A common approach of many other Grid market concepts is to allocate re-
sources and services by relying on the presence of centralized resource/service
brokers. However, the complex reality could turn such approaches useless, as
the underlying problem is computationally demanding and the number of par-
ticipants in a worldwide ALN can be huge. The research question taken up in
this article is how to develop a Grid realization of an economic concept, which
describes the ability to trade electronic services in a decentralized fashion, a
free-market economy to adjudicate and satisfy the needs of participants who are
self-organized and follow their own interest.

The Catallaxy concept represents a coordination approach for systems con-
sisting of such autonomous decentralized agents, and is based on constant nego-
tiation and price signalling between agents [7]. Every individual (agent) assigns a
value to service access information, and by exchanging bids for service access, the
price signals carry information between individuals (agents) about the knowl-
edge of others [9]. This exchange of information applies even across markets,
as changing availability on the resource market will be reflected by cascading
price changes for those basic services which rely on such resources. Hayek called
this feature a ”tele-communication” system in its literal sense. The huge size of
Grids to be controlled, and the availability of software agent technology, makes
implementing Hayek’s Catallaxy an alternative to a centralized allocation ap-
proach, using the ensuing ”spontaneous order” as a concrete proposal for both
the design and coordination of information systems. The resulting multi-agent
system will be highly dynamic, thereby leading to Grid networks which behave
in a P2P fashion. The term P2P should be interpreted not as a specific system
architecture, but as a general approach for distributed system design that can
be realized under very different architectures and topologies, ranging from un-
structured distributed networks to very centralized systems [16]. P2P systems
exhibit a set of characteristics that are relevant from the architectural point of
view [23]:

– Decentralization: there is no single or centralized coordination or adminis-
tration point.

– Symmetric interaction between peers: all peers are simultaneously clients
and servers requesting service of, and providing service to, their network
peers.

– Non-deterministic topology: At any moment in time, the set of member nodes
and overall topology of the network is unpredictable.

– Heterogeneity: The devices contributing applications can differ in many
properties such as resource characteristics, performance or trustworthiness.

Global Grids - Making a Case for Self-organization 53

– Communication paths between peers are created dynamically based on var-
ious factors, like network conjunction or intermediate peers’ state.

These characteristics, when considered together, lead to a set of stringent
architectural requirements for self-organization. The dynamic nature of the net-
work prevents an a priori configuration of the peers, or the maintenance of cen-
tralized configuration files. The peers need to continuously discover the network
characteristics and adapt accordingly. This requires a distribution of some im-
portant system functions like resource and topology management, traditionally
reserved to specialized nodes.

2 Principles of the Catallaxy

Friedrich August von Hayek [10] and other Neo-Austrian economists understood
markets as decentralized coordination mechanisms, as opposed to a centralized
command economy control. In addition to macroeconomic thoughts, Hayek’s
work also provides concrete insight into the working mechanisms of economic
coordination. However, a formal description of this self-organizing market mech-
anism does not exist so far. The Catallaxy concept is based on the explicit
assumption of self-interested actions of the participants, who try to maximize
their own utility and choose their actions under incomplete information and
bounded rationality [24]. The term Catallaxy originates from the Greek word
”katallatein”, which means to barter and at the same time to join a community.
The goal of Catallaxy is to arrive at a state of coordinated actions, through the
bartering and communicating of members, to achieve a community goal that no
single user has planned for. The main characteristics of the Catallaxy [11] are
enumerated below. Each property imposes several requirements upon the design
of an information system embodying a Catallactic approach:

– Participants work for their own interest to gain income. Every system ele-
ment is a utility maximizing entity, supporting means to measure and com-
pare income and utility, and to express a desire to reach a defined goal.

– Participants can only estimate the effect of action alternatives on an
income or utility maximization goal, as nobody has total knowledge and
foresight of the environment. Instead, ”constitutional ignorance” of the ra-
tionally bounded participants makes it inevitably impossible to know the
exact environment state. For large and very dynamic information systems,
this observation leads to a design shift. Instead of trying to overcome this
limitation by central means, e.g. through synchronization of the system by
introducing round-based brokerage, the focus shifts to improving the compu-
tational intelligence of the actions to decide under uncertainty, and to adapt
to constantly changing signals from the outside.

– Participants communicate using commonly accessible markets, where they
barter about access to resources held by other participants. The develop-
ment of prices for a specific good, relative to alternatives, and whether they
are increasing or decreasing, leads buyers to look for alternative sources of

54 T. Eymann, W. Streitberger, and S. Hudert

procurement and thus enhances the dynamics of the market. In that view,
a market is simply a communication bus; not a central optimization compo-
nent, or a mechanism or a protocol.

Hayek’s Catallaxy concept is the result of descriptive, qualitative research
about economic decision-making of human participants. In the following section,
its results are taken literally to construct ALN markets with software partici-
pants, who reason about economic decisions using artificial intelligence.

3 Prototyping the Catallaxy

This section will pick up the requirements of the Catallaxy described above and
will present fundamental components to satisfy these requests in ALNs. Starting
with a decomposition of the application scenario into two distinctive markets,
needed functionality and components are identified. A formal model is given de-
scribing how to achieve Catallaxy in a global Grid environment. Subsequently,
a Grid middleware architecture for trading services and resources and a corre-
sponding application scenario are presented.

3.1 A Two Layer ALN of Services and Resources

ALNs encompass heterogeneous resources, computational and data services in
different administrative domains, which are logically coupled. ALNs will depend
on basic services that are dynamically combined to form value-added complex
services [12]. For their enactment, these basic services require a set of resources,
which need to be co-allocated to provide the necessary computing power (like in
computational Grids). The orchestration and configuration of these basic services
and resources itself can be understood as an inherent service. Such orchestration
should be hidden from the application, and managed through the middleware.
The environment is thus divided into two layers, the application layer and the
resource layer presented in Figure 1. These two layers contain three different
roles, which are:

– complex services (application layer),
– basic services (application layer and resource layer), and
– resources (resource layer).

Complex services act as service consumers. They request one or more basic
services for the fulfillment of their tasks. Basic services are service providers at
the application layer. They also provide an interface to access computational
resources used by complex services. Finally, resource providers offer resources,
which basic services acting as resource consumers use for executing their services.
In both layers, the participants have varying objectives which change dynami-
cally and unpredictably over time.

Global Grids - Making a Case for Self-organization 55

Application Layer

Resource Layer

Complex Service Basic Service

Resource

Service Consumer

Resource Provider

Service Provider

Resource Consumer

Resource Allocation

Service Provison

Fig. 1. An application layer network - layers and roles

3.2 Market Model

Current Grid Computing architectures exhibit a fairly static resource infrastruc-
ture, connected by physically stable links. The shift to a pervasive, ubiquitously
accessible Grid demands for a more dynamic consideration of resources and con-
nections. Figure 2 shows a perspective on a two-layered Grid Market, encom-
passing a distinct service and a resource market corresponding to the two-layer
model above.

Complex

Service

Logic

Local

Resource

Manager

m n k

Basic

Service

Logic

Resource

Co-Allocator

Local

Resource

Manager

Service Market Resource Market

Application

Layer

Resource

Layer

Basic Service

Service

Selector

Complex

Service

Fig. 2. Catallaxy-based Grid Market Model

A complex service is represented by a proxy who needs basic service capa-
bilities for execution - supporting a service selector instance. Complex services
are therefore shielded from details of the resource layer implementation. A basic
service is split into the basic service logic and a resource allocator. The logic

56 T. Eymann, W. Streitberger, and S. Hudert

is able to negotiate with the complex service and to translate the requirements
for service execution to resource instances (e.g. CPU, storage and quality of
service requirements). A resource allocator gets the resource specification and
broadcasts the respective demand to the local resource managers. This comprises
bundles and co-allocative negotiations. Bundles are understood as an n-tuple of
resource types (e.g. CPU, storage, and bandwidth); co-allocation describes ob-
taining resources for one single service transaction from various local resource
managers simultaneously. It is expected that a local resource manager hides all
details of the local allocation. On the service market, complex service and basic
service negotiate; an agent managing a complex service acts as a buyer, the basic
service agent as a seller. The same market roles can be found at the resource
layer, the resource allocator is the buyer agent, the local resource manager acts
as a seller agent. Contemplating the second market, it is a n:k market; n basic
service copies are able to bargain with k resource services. This takes dynamic
resources into account. Resources, like basic services, can fail and are subject to
maintenance and inspection procedures.

Integration of the Markets. Offering a basic service within a Catallaxy-based
Grid market, it is necessary to contract the required resources. First the basic
service bargains with the complex service and in a second step, the basic service
negotiates for resources. For service execution the basic service logic requests
a resource bundle. The further process of contracting/allocating the resource is
done by the resource co-allocator. The selection of a resource bundle is analogous
to the selection of a service on the service market, with the exception that
a bundle is requested, whereas on the service market only one service can be
negotiated per request. The local resource managers offer resource bundles. A
resource bundle is a tuple consisting of resources such as bandwidth, CPU, and
storage (for instance). The local resource manager acts as a seller agent of the
resource market, having the ability to negotiate with the resource co-allocator.
The negotiation itself is initiated by the resource co-allocator.

3.3 Components for Realizing Catallaxy

For realization of the Catallaxy paradigm, several components are required. For
the preparation and calculation of price proposals, a negotiation module is mod-
elled and implemented that constitutes the interface between internal perception
of the environment and the surrounding (sensor and effector). The negotiation
strategy uses machine learning algorithms, to react to changes in the environ-
ment and to implement methods that adapt to the behaviour of the surrounding
agents.

Negotiation. As a basic principle, the negotiation strategy constitutes a search
process in a space of potential agreements. The number of search dimensions is
identical to the number of negotiation attributes. Thus, a negotiation comprising
quality of service, delivery time, and price, spans a 3-dimensional search space.
In several cases, it is possible to collapse various attributes into the one criteria

Global Grids - Making a Case for Self-organization 57

”price”, for example when delivery time affects the buyer’s usage and therefore
justifies a change of price.

An automatic negotiation in an electronic market is shaped by an interac-
tion of two or more software agents. These negotiations can be accomplished
by integrative or distributive negotiation [13][18]. In integrative negotiations,
participants exchange information about objectives and priorities to seek a com-
mon solution. This concept is recommended if the opponents have to accept the
negotiation dimensions which cannot be represented by prices. This postulates
a cooperation of the opponents for reaching the agreed target. Distributive ne-
gotiations imply a participant’s step-by-step acceptance of concessions, bringing
both opponents closer in their expectations in every negotiation round. Distribu-
tive negotiations are marked by existence of a common utility space [18] that
can be represented by a price. Thus, distributive negotiations give the option to
reduce the negotiation dimensions and are therefore selected for this work. This
should result in a zero-sum game, where the utility one looses can be gained by
the opponents and the global utility in the systems remains constant. The goal
is a system wide pareto-optimum that can be defined as an acceptable doctrine
of general goodness [20]: A solution X is pareto-optimal if no agent can further
ameliorate the achieved result without discriminating an opponent. That implies
that if solution X is not pareto-optimal, both agents could negotiate a deviating
solution that promises pareto-optimality. Sandholm [21] extends this approach
by introducing various additional criteria for the optimality determination: from
game theory he uses the Nash-equilibrium that emerges if no agent has an incen-
tive to diverge from its chosen selection. Translated to prices, this means that
Pareto-optimality is a state in which no agent can increase its budget without
decreasing the budget of other agents (compare zero-sum game). Utility can be
understood as budget increase per transaction and per period, sales volume or
other metrics are taken from Economics.

The implementation of Catallaxy uses efforts from both agent technology and
economics, notably agent-based computational economics [26]. Autonomous soft-
ware agents negotiate with each other using an alternating offers protocol [20]
and adapt their negotiation strategies using feedback learning algorithms (evolu-
tionary algorithms, Numerical optimization e. g. Nelder/Meads simplex method
[17], hybrid methods e.g. Brenners VID model [3]). Ongoing communication by
using price signalling leads to constant adaptation of the system as a whole and
propagates changes in the scarcity of resources throughout the system. The re-
sulting patterns are comparable to those witnessed in human market negotiation
experiments [14][18][25].

Setup and Variables Definition. The negotiation strategy described here is based
on the AVALANCHE strategy [5][6]. The strategy consists of 5 basic parameters,
which define the individual behavior (genotype) of each agent.

For every tradeable good there are two types of agents, buyers and sellers.
Let agent k be a buyer and agent v a seller of a tradeable good.

58 T. Eymann, W. Streitberger, and S. Hudert

Let ik be the number of negotiations that agent k has started and iv the
number of negotiations that agent v has started. It is irrelevant how many ne-
gotiations were finished successfully.

A genotype defines the behavior of the agents in the negotiation strategy. Let
the genotype of agent k during his negotiation ik be

Gik

k ∈ [0; 1]5

with
Gik

k = (Gik

k,1, . . . , G
ik

k,5)
τ = (aik

k , sik

k , tik

k , bik

k , wik

k)τ

where

aik

k acquisitiveness
sik

k satisfaction
tik

k priceStep
bik

k priceNext
wik

k weightMemory.

Acquisitiveness defines the probability of sticking with the last offer made, and
not to make an unilateral concession in the following negotiation step. The value
interval is between 0 and 1, and will be challenged by a stochastic probe in every
negotiation step. A value of 0.7 means a probability of 70% that the agent will not
make a concession – a highly competitive strategy. An agent with acquisitiveness
value 1.0 will never change his price and an agent with acquisitiveness value 0.0
will always make an unilateral concession. If the probe succeeds, a buyer agent
will rise his offer, a seller agent will lower his price.

The exact change of the bid value is defined by the concession level (priceStep).
The concession level is represented by a percentage of the difference between
the initial starting prices. A value of priceStep = 0.25 means a computation
of the concession level as 1/4 of the first stated difference. If both opponents
are homogenously negotiating and always concede, they meet each other on the
half way in the third negotiation round under the assumption of no negotiation
abortion.

Obviously, with an Acquisitiveness level set high, and a priceStep set low
enough, the opponents might never reach an agreement. The Satisfaction pa-
rameter determines if an agent will drop out from an ongoing negotiation. The
more steps the negotiation takes, or the more excessive the partner’s offers are,
the sooner the negotiation will be discontinued. Effectively, this parameter cre-
ates time pressure. Like for Acquisitiveness, it does this by doing a stochastic
probe against a set value between 0 and 1. A satisfaction value of 0.75 means,
that the agent has a chance of 75% to continue the negotiation process. An
agent with satisfaction = 0.0 will abort all negotiation at once and an agent
with satisfaction = 1.0 will never abort.

The next piece of the strategy is an expression of selfishness. Behind each
successful negotiation lies a future opportunity for gaining more of the utility

Global Grids - Making a Case for Self-organization 59

share, by negotiating harder. priceNext thus modifies the starting bid. A success-
ful seller will increase his offer price, a successful bidder will start with a lower
bid next time.

For a viable strategy, the participants will have a close eye on what others
deem to be the market price. If not, they risk being tagged as ”excessive” and
their bids will fail the satisfaction probe. They thus weigh current price informa-
tion and historic price information in a specified ratio weightMemory, balancing
short-time price fluctuation and longer-term opportunities.

In a formal representation, the genotype of an agent v during his negotiation
iv is

Giv
v ∈ [0; 1]5

with
Giv

v = (Giv
v,1, . . . , G

iv
v,5)

τ = (aiv
v , siv

v , tiv
v , biv

v , wiv
v)τ .

At the beginning of the simulation the genes Gi∗
∗,j for ∗ = k, v and j ∈

{1, . . . , 5} are distributed according to the probabilities:

Ufo
(
[mj − δj ; mj + δj]

)

Thereby, the constants mj and δj for j ∈ {1, . . . , 5} are defined so that [mj −
δj ; mj + δj] ⊂ [0; 1] .

Additionally, the agent k has the following variables:

M ik

k is the market price, which is estimated by
agent k during his negotiation ik.

P ik

k is the price of the the last successful
negotiation 1, 2, . . . , ik of agent k.

Oik

k is the last offer, which the negotiation opponent
has made in negotiation number ik the agent k
before the negotiation ended.

pik

k is the number of stored plumages of agent k
direct after his negotiation ik.

The related variables of agent v are defined in the same way. These variables
build the basis for decision making during a negotiation.

The Negotiation Strategy. When agent k and agent v negotiate, agent k is the
buyer and agent v the seller. The sequence (Pj)j∈IN0 ⊂ [0, ∞[constitutes the
offer in chronological order. The buyer always makes the first offer. This means,
all offers

P2m ∀ m ∈ IN0

originate from the buyer and the offers

P2m+1 ∀ m ∈ IN0

come from the seller, where
m

is the negotiation round.

60 T. Eymann, W. Streitberger, and S. Hudert

At the beginning of a negotiation the buyer k determines his initial price K
and his maximum price K:

K = M ik

k · (1 − bik

k) , K = M ik

k

The seller v determines his starting price V and his minimum price V :

V = M iv
v · (1 + biv

v) , V = M iv
v

The buyer starts with the first bid:

P0 = K

First Case: K ≥ V
Then v offers also

P1 = K

and the negotiation will be closed successfully to the price P1.

Second Case: K < V
Then v offers his initial price

P1 = V .

Both agents determine now her steps δj∗∗ for price concessions:

δi∗∗ = (V − K) · ti∗∗ for ∗ = k, v

In the subsequent negotiation rounds, let A1, A2, A3, . . . and S1, S2, S3, . . . be
stochastic independent randomvariableswith the followingbinomial distributions:

A2m =
{

1 with probability aik

k

0 with probability 1 − aik

k

∀ m ∈ IN

A2m+1 =
{

1 with probability aiv
v

0 with probability 1 − aiv
v

∀ m ∈ IN

S2m =
{

1 with probability sik

k

0 with probability 1 − sik

k

∀ m ∈ IN

S2m+1 =
{

1 with probability siv
v

0 with probability 1 − siv
v

∀ m ∈ IN

• Offer number 2m; it is the buyer’s k turn:
If S2m = 0 and P2m−1 ≥ P2(m−1)−1 with m �= 1, then the buyer k cancels the

negotiation. This means, Oik

k = P2m−1 and Oiv
v = P2(m−1) .

Otherwise, the buyer k makes the following offer:

P2m =
(

min
{
K, (P2(m−1) + δik

k), P2m−1
})1−A2m

·

(
P2(m−1)

)A2m

Global Grids - Making a Case for Self-organization 61

• Bid number 2m + 1; it is the seller’s v turn:
If S2m+1 = 0 and P2m ≤ P2(m−1), then the seller v cancels the negotiation.

That means, Oiv
v = P2m and Oik

k = P2(m−1)+1 .
Otherwise the seller v makes the following offer:

P2m+1 =
(

min
{
V , (P2(m−1)+1 − δiv

v), P2m

})A2m+1

·

(
P2(m−1)

)1−A2m+1

The negotiation ends if either one of the agents cancels the negotiation or the
negotiation ends successfully with

Pj = Pj+1

for a j ∈ IN. In this case, it holds Oik

k = Pj = Oiv
v .

With the end of a successful negotiation to the price Pj the negotiation com-
pute their estimated profit

Πik

k = M ik

k − Pj respectively Πiv
v = Pj − M iv

v . (1)

Additionally, both agents update after every negotiation their estimated mar-
ket price using

M ik+1
k = wik

k · Oik

k + (1 − wik

k) · M ik

k

respectively
M iv+1

v = wiv
v · Oiv

v + (1 − wiv
v) · M iv

v .

This last step is independent of the success of a negotiation.

Gossip Learning. The learning concept used in this simulation is derived
from so-called gossip learning. This means that the agents learn from received
information about other transactions in the market. This information may not
be accurate or complete, but serves as an indication about the gross direction
of the market. In our implementation, this gossip information is created and
broadcast by a successful agent, in analogy to issuing an ad-hoc information in
stock market periodicals.

Let n be an agent and
g1, . . . , gd

the tradeable goods. The agent n has finished his negotiation in successfully
with an estimated profit of Πin

n (g) for the good g ∈ {g1, . . . , gd}. A learning step
according to the learning algorithm (see next paragraph) is performed by agent
n last time at the end of his negotiation jk. This means

Gjn+1
n = Gjn+2

n = · · · = Gin
n .

If agent n with the negotiation numbers

jn + 1, jn + 2, . . . , in

62 T. Eymann, W. Streitberger, and S. Hudert

has successfully completed at least 10 negotiations for every good, he sends a
Plumage

(Gin
n , F in

n)

to all other agents of his type. Then, his updated fitness is F in
n , which is computed

like the following:

(a) For every good gj ∈ {g1, . . . , gd} the next profit value Π(gj) is determined
t: Let be

Π1(gj), . . . , Π10(gj)

the estimated profits of the last 10 successful negotiations of agent n for the
good gj . Then, the fitness is

F in
n (gj) =

1
10

(
Π1(gj) + · · · + Π10(gj)

)
.

(b) The updated fitness F in
n finally is

F in
n =

1
d

(
Π(g1) + · · · + Π(gd)

)
.

The agents used in the simulations for this report are only able to negotiate
one type of good (d = 1).

The Learning Algorithm. It is assumed that the agents show a cooperative
behavior. This means, the agents report truthfully their learning information.

After having received some gossip information message, an agent may modify
his own strategy. Comparing his own results with those of the strategy received,
can lead to recognizing that the other strategy is much better than his own.
In this case, the agent will try to cross both strategies to gain competitive ad-
vantage. In practice, out of a list of received genotype/performance-tuples, the
agent will choose the best performing external genotype, and then mix, cross
and mutate with his own genotype.

Let be n an arbitrary agent at the end of his negotiation in and let be pin
n

the number of plumages, the agent n has stored directly after his negotiation in.
The last learning step was performed by agent n after his negotiation jk. Let be
ein

n the number of negotiations, an agent n of the negotiation numbers

jn + 1, jn + 2, . . . , in

has successfully finished.
Let be

p = 1. (2)

If
pin

n < p or ein
n < 10

applies for agent n after his negotiation in, no learning step will be performed.
This means, his genotype will not change:

Gin+1
n = Gin

n .

Global Grids - Making a Case for Self-organization 63

Hence, if
pin

n ≥ p and ein
n ≥ 10

applies, the agent n performs a learning step. The genotype of agent n changes
like the following:

First, the stored plumage of agent n with the highest fitness is selected. Let
be

Gf = (Gf,1, . . . , Gf,5)τ = (af , sf , tf , bf , wf)τ

the related genotype. Second, a crossover is performed. In doing so, a new geno-
type G̃in+1

n is created, which contains a random mixture of genes of the geno-
types Gin

n and Gf . This process follows a mutation step third: Using the genotype
G̃in+1

n and changing its genes slightly will result in the genotype G
in+1
n .

Crossover. Let be C1, . . . , C5 stochastic independent random variables with the
following binomial distribution:

Cj =
{

1 with probability 0, 5
0 with probability 0, 5 ∀ j ∈ {1, . . . , 5}

Then it is imperative

G̃in+1
n,j = (1 − Cj) · Gin

n,j + Cj · Gf,j ∀ j ∈ {1, . . . , 5} .

Mutation. Let be M1, . . . , M5, X1, . . . , X5 stochastic independent random vari-
ables with the following distributions:

Mj =
{

1 with probability 0, 05
0 with probability 0, 05 ∀ j ∈ {1, . . . , 5}

Xj ∼ N (0 , 1) ∀ j ∈ {1, . . . , 5}

That means, Xj is ∀ j ∈ {1, . . . , 5} standard normal distributed.
Then, it holds

Gin+1
n,j = max

{
0 ; min

{
G̃in+1

n,j +

Mj ·
(
(

1
10

Xj) mod(1)
)
; 1

}}

∀ j ∈ {1, . . . , 5} .

3.4 Middleware Implementation

The Catallactic Grid market middleware has been envisioned as a set of economic
agents that interact with each other using the strategy presented before, and
the software components of the underlying ALN. This acts as a coordination
technique and makes use of economic criteria for the assignment of resources, as
can be seen in Figure 3.

64 T. Eymann, W. Streitberger, and S. Hudert

BS

R

BS

R

BS

R

R

R BS

R

BS

BS

R

R

R

BS RNode Complex Service Basic Service Resource Negotiation

CSCS

CS

CS

Fig. 3. Catallactic Grid market middleware as a network of agents

This high-level middleware structure would be applicable to all P2P network
architectures. Instead of implementing Catallactic agents responsible for both the
self-organization of the system and the management of the negotiation process, a
layered architecture is implemented (see Figure 4). In this architecture, economic
agents are responsible for implementing high level behaviour (negotiation, learn-
ing, adaptation to environment signals, strategies of other agents). Application
services delegate activities such as negotiation to the economic agents. Economic
agents rely on a lower P2P agent layer for self-organization of the system, and
the interaction with the base platform that ultimately manages the resources
being traded.

Applications

Base Platform

Grid Market Middleware

Economic Algorithms

Economic Framework

P2P Agents

Fig. 4. Grid market middleware - Layered architecture

This architectural approach offers the direct benefit of a clear separation of
concerns between the layers, helping in tackling the complexity of the system
and facilitating the construction of a more adaptable system as the upper lay-
ers can be progressively specialized (by means of rules and strategies used in
the negotiations) to specific application domains. A detailed description of the
middleware architecture can be found in [1][8].

Global Grids - Making a Case for Self-organization 65

4 Engineering the Market Scenario

The decentralized negotiation protocols following the Catallaxy paradigm will
be compared with centralized auction protocols. Two extreme scenarios serve
as benchmarks. One scenario is characterized by standardized commodities,
whereas the other allows for highly heterogeneous goods. For a reasonable bench-
mark in the centralized approach, one has to find adequate auction protocols for
both scenarios. Unfortunately, the environment and the underlying auction pro-
tocol exert crucial effects on the outcome. For instance, in a sealed bid auction
the bidders simultaneously submit bids to the auctioneer without knowledge of
the amount bid by other participants. In contrast, all bids under an open cry
auction are available for everyone to see. Thus, in a sealed bid auction the par-
ticipants do not learn as much about the valuations of the other participants as
in an open cry auction. The higher information feedback may affect the bidding
behaviour of the market participants and could therefore lead to different out-
comes. As such, designing a market mechanism that achieves a desired outcome
is extremely difficult, because it entails the anticipation of agent behaviour. In
order to approach this task, a systematic Market Engineering approach guides
the design of tailored market mechanisms by providing a structured and theo-
retically profound procedure. This approach provides a process model which is
divided into four stages:

In the first stage - the environmental analysis - the requirements of the new
market mechanism (i.e. which are the potential participants, what are their
preferences, endowments, and constraints?) are deduced. On base of the require-
ments, a market mechanism is designed and implemented in the second stage.
Having deployed the appropriate market mechanism, it is tested upon its eco-
nomic properties and its operational functionality in the third stage and finally
introduced within the fourth stage. While the market engineering approach has
originally been invented for designing auction markets, many of its findings also
apply for bargaining markets, especially the environmental analysis. The main
difference lies in the second stage, the design of the allocation mechanism.

4.1 A Mechanism for the Service Market

Applying the Market Engineering approach to the service market, the envi-
ronment has to be analyzed in the first step. Subsequently, the corresponding
requirements have to be extracted. The environment comprises the market par-
ticipants. Basically, buyers and sellers are services, such as basic services acting
as sellers and complex services acting as buyers. The basic services offer one
or more specific auxiliary services. Hence, they are responsible for providing the
auxiliary services to the buyers as well as for acquiring the required resources for
the services on the resource market. The products traded on the service market
are completely standardized. For example, an instance of a PDF creator traded
once does not differ from a PDF creator instance traded at a later time. Based
upon the environment definition, the requirements for a market mechanism can
be summarized as follows:

66 T. Eymann, W. Streitberger, and S. Hudert

– Simultaneous trading: The mechanism requires that multiple sellers and mul-
tiple buyers can trade simultaneously.

– Immediate execution: It requires that suitable buyer orders are executed
immediately against suitable seller orders.

– No partial execution: It requires that orders are not partially executed.

Following these requirements, a continuous double auction fits these require-
ments for the centralized market and serves as a comparable mechanism for the
decentralized negotiation schema.

4.2 A Mechanism for the Resource Market

In a resource market, participants are the basic services as resource consumers
(buyers) and resource services (sellers) offering computer resources. The trans-
action objects are computational resources with specific capacity, e.g. processing
power. Capacity is allocated based on time slots, and the same resources (e.g.
CPUs) can differ in their quality attributes, e.g. a hard disk can have 30GB or
200GB of space. Requirements for the resource market are [22]:

– Simultaneous trading: In analogy to the service market, the mechanism has
to support simultaneous trading of multiple buyers and sellers, as well as an
immediate resource allocation.

– Bundle orders: The mechanism has to support bundle orders - i.e.
all-or-nothing orders on multiple resources - as basic services usually de-
mand a combination of computer resources. This is based on the fact that
computer resources (e.g. in the Computational Grid) are complementarities.
Complementarities are resources with super additive valuations, as the sum
of the valuations for the single resources is less than the valuation for the
whole bundle.

– Multi-attribute orders: For comprising the different capacities of the re-
sources (i.e. resources can differ in their quality), the mechanism has to
support bids on multi-attribute resources. Reviewing the requirements and
surveying the literature, no classical auction mechanism is directly applica-
ble to the centralized resource market. Instead, there is a need for a multi-
attribute combinatorial exchange that satisfies the described requirements.

When comparing to the service market, the challenges for the bargaining
mechanism are the high number of messages needed to establish a bundle trade
- this is going to be part of the evaluation, whether the higher communication
overhead will outperform the lacking scalability of the centralized mechanism.

5 Conclusion

This paper has introduced the components of a decentralized market mecha-
nisms for dynamic application layer networks. The Catallaxy by F.A. von Hayek
serves as a basic principle for a decentralized market approach. This approach

Global Grids - Making a Case for Self-organization 67

is translated into the decentralized market model for the CATNETS project.
The comparison of both approaches is on one hand supported by applying a
structured Market Engineering approach to both market designs. On the other
hand, the foundation for the implementation techniques and the middleware are
layered in order to achieve comparable results from both approaches in the fu-
ture. The work is accompanied by reference and application scenarios. Future
work includes the full implementation of both market approaches and a profound
evaluation of the results of both markets. Critical questions are the scalability of
market mechanisms and the allocation efficiency under constraints of the num-
ber of participating entities. As an acceptable system-wide performance matrix
is impossible to define, an economics-based paradigm for the management or
resource allocation and orchestration will be used.

Acknowledgments

This work has partially been funded by the EU in the IST programme ”Future
and Emerging Technologies” under grant FP6-003769 ”CATNETS”.

References

1. Ardaiz, O., Chacin, P., Chao, I., Freitag, F., Navarro, L.: An Architecture for
Incorporating Decentralized Economic Models in Application Layer Networks. In:
Proceedings of the International Workshop in Smart Grid Technologies, Utrecht,
Nederlads (July 25 - 29 2005)

2. Balakrishnan, I., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Looking up
data in P2P systems. Communications of the ACM 46(2), 43–48 (2003)

3. Brenner, T.: A behavioural learning approach to the dynamics of prices. Compu-
tational Economics, pp. 67–94 (2002)

4. Buyya, R.: Economic-based Distributed Resource Management and Scheduling for
Grid Computing; Ph.D. Thesis, Monash University, Melbourne, Australia (2002)

5. Eymann, T., Schoder, D., Padovan, B.: Avalanche - an agent based value chain
coordination experiment. In: Workshop on Artificial Societies and Computational
Markets (ASCMA 98), Minneapolis, pp. 48–53 (1998)

6. Eymann, T.: Decentralized economic coordination in multi-agent systems. In: Buhl,
H.-U., Huther, F., Reitwiesner, A. (eds.) Information Age Economy. Proceedings
WI-2001, pp. 575–588. Physica Verlag, Heidelberg (2001)

7. Eymann, T., Sackmann, S., Müller, G., Pippow, I.: Hayek’s Catallaxy: A Forward-
looking Concept for Information Systems. In: Proc. of American Conference on
Information Systems (AMCIS’03), Tampa, FL (2003)

8. Freitag, F., Navarro, L., Chacin, P., Ardaiz, O., Chao, I.: Integration of Decen-
tralized Economic Models for Resource Self-Management in Application Layer
Networks. In: Proceedings of the Second IFIP TC6 International Workshop on
Autonomic Communication, Athens, Greece (October 3-5, 2005)

9. Hayek, F.A.V.: The Use of Knowledge in Society. American Economic Re-
view XXXV(4), 519–530 (1945)

10. Hayek, F.A.V., Bartley, W.W., Klein, P.G., Caldwell, B.: The collected works of
F.A. Hayek. University of Chicago Press, Chicago (1989)

68 T. Eymann, W. Streitberger, and S. Hudert

11. Hoppmann, E.: Unwissenheit, Wirtschaftsordnung und Staatsgewalt. In: Freiheit,
Wettbewerb und Wirtschaftsordnung, Vanberg, V. (eds.) Haufe Verlag, Freiburg,
pp. 135–169 (1999)

12. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and princi-
ples. IEEE Internet Computing 9(1), 75–81 (2005)

13. Jennings, N.R., Faratin, P., Lomuscio, A.R., Sierra, C., Wooldridge, M.J.: Auto-
mated negotiation: prospects, methods and challenges. International Journal of
Group Decision and Negotiation 10(2), 199–215 (2001)

14. Kagel, J.H., Roth, A.E.: The handbook of experimental economics. Princeton Uni-
versity Press, Princeton (1995)

15. Krauter, K., Buyya, R., Maheswaran, M.: A taxonomy and survey of grid re-
source management systems for distributed computing. Software-Practice & Ex-
perience 32(2), 135–164 (2002)

16. Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard,
B., Rollins, S., Xu, Z.: Peer-to-Peer Computing; Hewlett Packard Labs, Palo Alto
HPL-2002-57 (2002)

17. Press, W.H., Teukolsky, W.H.: Numerical Recipes in C++ - The Art of Scientific
Computing. Cambridge University Press, Cambridge, MA (2002)

18. Pruitt, D.G.: Negotiation behavior. Academic Press, New York (1981)
19. Ripeanu, M., Iamnitchi, A., Foster, I.: Mapping the Gnutella network. Ieee Internet

Computing 6(1), 50–57 (2002)
20. Rosenschein, J.S., Zlotkin, G.: Rules of encounter - designing conventions for au-

tomated negotiation among computers. MIT Press, Cambridge (1994)
21. Sandholm, T.W.: Negotiation Among Self-Interested Computationally Limited

Agents, Ph.D. Thesis. University of Massachusetts, Amherst (1996)
22. Schnizler, B., Neumann, D., Weinhardt, C.: Resource Allocation in Computational

Grids - A Market Engineering Approach. In: Proc. of The 3rd Workshop on e-
Business (WeB), Washington, D.C., US (2004)

23. Sewell, P., Leifer, J., Nestmann, U., Serjantov, A., Wansbrough, K.: Required foun-
dations for peer-to-peer systems; PEPITO Project IST-2001-33234, Cambridge,
UK D1.1, 01.06.2003 (2003)

24. Simon, H.A.: Models of Man - Social and Rational. John Wiley & Sons, New York
(1957)

25. Smith, V.L.: An experimental study of competitive market behavior. Journal of
Political Economy 70, 111–137 (1962)

26. Tesfatsion, L.: How economists can get alife. In: The Economy as a Evolving Com-
plex System II. Arthur, W.B., Durlauf, S., Lane, D.A. (Hrsg.), pp. 533–564 (1997)

27. Weinhardt, C., Holtmann, C., Neumann, D.: Market Engineering. Wirtschaftsin-
formatik 45(6), 635–640 (2003)

28. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: A fault-tolerant wide-area
application infrastructure. Computer Communication Review 32(1), 81–81 (2002)

Software of the Future Is the Future of Software?

Paola Inverardi

Dipartimento di Informatica,
Università dell’Aquila
inverard@univaq.it

Abstract. Software in the near ubiquitous future (Softure) will need to
cope with variability, as software systems get deployed on an increasingly
large diversity of computing platforms and operates in different execu-
tion environments. Heterogeneity of the underlying communication and
computing infrastructure, mobility inducing changes to the execution
environments and therefore changes to the availability of resources and
continuously evolving requirements require software systems to be adapt-
able according to the context changes. Softure should also be reliable and
meet the user’s performance requirements and needs. Moreover, due to its
pervasiveness, Softure must be dependable, which is made more complex
given the highly dynamic nature of service provision. Supporting the de-
velopment and execution of Softure systems raises numerous challenges
that involve languages, methods and tools for the systems thorough de-
sign and validation in order to ensure dependability of the self-adaptive
systems that are targeted. However these challenges, taken in isolation
are not new in the software domain. In this paper I will discuss some
of these challenges, what is new and possible solutions making reference
to the approach undertaken in the IST PLASTIC project for a specific
instance of Softure focused on software for Beyond 3G (B3G) networks.

1 Introduction

Software in the near ubiquitous future (Softure) will need to cope with variability,
as software systems get deployed on an increasingly large diversity of computing
platforms and operates in different execution environments. Heterogeneity of
the underlying communication and computing infrastructure, mobility inducing
changes to the execution environments and therefore changes to the availability
of resources and continuously evolving requirements require software systems
to be adaptable according to the context changes. At the same time, Softure
should be reliable and meet the user’s performance requirements and needs.
Moreover, due to its pervasiveness, Softure must be dependable, which is made
more complex given the highly dynamic nature of service provision.

Supporting the development and execution of Softure systems raises numerous
challenges that involve languages, methods and tools for the systems thorough
design and validation in order to ensure dependability of the self-adaptive sys-
tems that are targeted.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 69–85, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

70 P. Inverardi

However these challenges, taken in isolation are not new in the software
domain. Adaptable and re-configurable systems do exist in many software ap-
plication domains from tele-communication to the software domain itself, e.g.
operating systems. Dependable systems have been intensively investigated and
methods and tools exist to develop them. Hence what are the new challenges
for Softure? In this paper I will discuss some of these challenges and possible
solutions making reference to the approach undertaken in the IST PLASTIC [1]
project for the specific instance of Softure as software for Beyond 3G (B3G) net-
works. I will try to highlight what I consider innovative and futurist for software
and what I simply consider software for the future. The ultimate thesis of this
paper is that Softure requires to rethink the whole software engineering process
and in particular it needs to reconcile the static view with the dynamic view.

The paper is structured as follows. In the following section I discuss the Sof-
ture characteristics in order to identify the two key challenges: adaptability and
dependability. Section 3 discusses and compares different notions of adaptability
with different degrees of dependability. This discussion will bring me to consider
the Softure issues in a software process perspective. Section 4 proposes a new
software process and discusses it in the scope of the PLASTIC project [1].

2 Softure Challenges: Setting the Context

Softure is supposed to execute in an ubiquitous, heterogeneous infrastructure
under mobility constraints. This means that the software must be able to carry
on operations while changing different execution environments or contexts. Ex-
ecution contexts offer a variability of resources that can affect the software op-
eration. Context awareness refers to the ability of an application to sense the
context in which it is executing and therefore it is the base to consider (Self-)
adaptive applications, i.e. software systems that have the ability to change their
behavior in response of external changes.

It is worthwhile stressing that although a change of context is measured in
terms of availability of resources, that is in quantitative terms, an application can
only be adapted by changing its behavior, i.e. its functional/qualitative specifi-
cation. In particular, (Physical) Mobility allows a user to move out of his proper
context, traveling across different contexts. To our purposes the difference among
contexts is determined in terms of available resources like connectivity, energy,
software, etc. However other dimensions of contexts can exist relevant to the
user, system and physical domains, which are the main context domains iden-
tified in the literature [2]. In the software development practice when building
a system the context is determined and it is part of the (non-functional) re-
quirements (operational, social, organizational constraints). If context changes,
requirements change therefore the system needs to change. Context changes oc-
cur due to physical mobility, thus while the system is in operation. This means
that if the system needs to change this should happen dynamically. This notion
leads to consider different ways to modify a system at run time that can happen

Software of the Future Is the Future of Software? 71

in different forms namely (Self-)adaptiveness/dynamicity/evolution and at dif-
ferent levels of granularity, from software architecture to line of code.

Softure needs also to be dependable. Dependability is an orthogonal issue
that depends on Quality of Service (QoS) attributes, like performance and all
other—bilities. Dependability impacts all the software life cycle.

In general dependability is an attribute for software systems that operate in
specific application domains. For Softure I consider dependability in its original
meaning as defined in [3], that is the trustworthiness of a computing system
which allows reliance to be justifiably placed on the service it delivers ... Depend-
ability includes such attributes as reliability, availability, safety, security. Softure
encompasses any kind of software system that can operate in the future ubiqui-
tous infrastructure. The dependability requirement is therefore extended also to
applications that traditionally have not this requirement. Dependability in this
case represents the user requirement that states that the application must op-
erate in the unknown world (i.e. out of a confined execution environment) with
the same level of reliance it has when operating at home. At home means in the
controlled execution environment where there is complete knowledge of the sys-
tem behavior and the context is fixed. In the unknown world, the knowledge of
the system is undermined by the absence of knowledge on contexts, thus the de-
pendability requirement arises also for conventional applications. Traditionally
dependability is achieved with a comprehensive approach all along the software
life cycle from requirements to operation to maintenance by analyzing models,
testing code, monitor and repair execution.

Therefore the overall challenge is to provide dependable assurance for highly
adaptable applications. Since dependability is achieved throughout the life cycle
many software artifacts are involved, from requirements specification to code. In
the rest of this paper I will consider as such artifacts only models that is idealized
view of the system suitable for reasoning, developing, validating a real system.
Models can be functional and non-functional and can represent different level of
abstractions of the real system, from requirements to code. My research bias is
on Software Architecture, therefore I will often consider software architectural
systems’ models. An architectural model allows the description of the static and
dynamic components of the system and explains how they interact. Software
architectures support early analysis, verification and validation of software sys-
tems. Software architectures are the earliest comprehensive system model along
the software lifecycle built from requirements specification. They are increasingly
part of standardized software development processes because they represent a
system abstraction in which design choices relevant to the correctness of the final
system are taken. This is particularly evident for dependability requirements like
security and reliability and quantitative ones like performance.

3 Adaptability: 3 Examples from My Own Bag

In this section I discuss the notion of adaptability. According to what pre-
sented so far, adaptability is the ability to change a system according to context

72 P. Inverardi

variations, e.g. driven by QoS requirements. However, the change should main-
tain the essence of the system that from now on I will call invariant.

In Sections 3.2, 3.3, and 3.4, I will focus on evolving systems that change
through adaptation. In order to classify them I propose to use a 4 dimension
metric: the four Ws.

3.1 The Four Ws

The systems I consider can change through adaptability either their structure
and/or their behavior. The four Ws characterize the nature of the change along
the following four dimensions:

– Why there is the need to change?
– What does (not) change?
– When does the change happen?
– What/Who manages the change?

Why: This dimension makes explicit the need for the change. In a Software
Engineering perspective this change is always done to meet requirements.
It can be because the requirements evolved or it can be that the system
does not behave properly according to the stated requirements. It is also
worthwhile mentioning that requirements can be functional and non func-
tional requirements. The former class captures the qualitative behavior of a
software system, its functional specification. The latter defines the systems’s
quantitative attributes like, performance, reliability, security, etc. In the fol-
lowing I will provide 3 examples of functional and non functional adaptation
that have been developed in the Software Engineering research group at
University of L’Aquila.

What: Here we discuss the part of the system that is affected by the change.
Referring to architectural models, changes can affect the structure and/or the
behavior. For the structure, components can get in and out, new connectors
can be added and removed. For the behavior components can change their
functionality and connectors can change their interaction protocols.

When: This dimension captures the moment during the systems lifetime in which
the change occurs. It does not mean that the change happens necessarily at
run time. This dimension is related with the Static versus Dynamic issue.

What/Who: This is the description of the mechanisms to achieve the change.
It can be a configuration manager or it can be the system itself. Involves
monitoring the system to collect relevant data, evaluating this data, make a
decision about the change alternatives and then perform the actual change.

3.2 Synthesis

Synthesis is a technique equipped with a tool that permits to assemble a com-
ponent based application in a deadlock free way [35,21,34]. Starting from a set
of Commercial Off The Shelf (COTS) components, Synthesis assembles them
together according to a so called connector-based architecture by synthesizing

Software of the Future Is the Future of Software? 73

a connector that guarantees deadlock-free interactions among components. The
code that implements the new component representing the connector is derived,
in an automatic way, directly from the COTS (black-box) components interfaces.
Synthesis assumes a partial knowledge of the components’ interaction behavior
described as finite state automata plus the knowledge of a specification of the
system to assemble given in terms of Message Sequence Charts [18,19,20].

Furthermore it is possible to go beyond deadlock if we have a specification of
the behavioral integration failure to be avoided. This specification is an implicit
failure specification. Actually we assume to specify all the assembled system be-
haviors which are failure-free rather than to explicitly specify the failure. Under
these hypotheses Synthesis automatically derives the assembling code of the con-
nector for a set of components. The connector is derived in such a way to obtain
a failure-free system. It is shown that the connector-based system is equivalent
according to a suitable equivalence relation to the initial one once depurated of
all the failure behaviors.

Component 1

Component 2

Component 3

Connector Free
Architecture

Component 1

Component 2

Component 3

Connector

Connector Based
Architecture

component
local views
generation

deadlock prevention

Component 1

Component 2

Component 3

Deadlock-free Connector

Deadlock-free
Connector Based

Architecture

behavioral property
enforcing

Component 1

Component 2

Component 3

Failure-free Connector

Failure-free
Connector Based

Architecture

code
synthesis

Connector
actual code

(assembly code)

Fig. 1. The Synthesis Application Adaptation

As illustrated in Figure 1, the Synthesis framework realizes a form of system
adaptation. The initial software system is changed by inserting a new component,
the connector, in order to prevent interactions failures.

The framework makes use of the following models and formalisms. An archi-
tectural model, the connector-based architecture that constrains the way com-
ponents can interact, by forcing interaction to go through the connector. A set
of behavioral models for the components that describe each single component’s
interaction behavior with the external context in the form of label transition sys-
tems (LTS). A behavioral equivalence on LTS to establish the equivalence among

74 P. Inverardi

the original system and the adapted one. Temporal logic to specify the behav-
ioral integration failure to be avoided, and then Buchi Automata and model
checking to synthesize the failure-free connector specification. From the connec-
tor specification the actual code can then be automatically derived.

Let us now analyze the Synthesis approach to adaptation by means of the
four Ws metric:

– Why there is the need to change? Here the purpose of the change is to correct
functional behavior. That is to avoid interaction deadlocks and/or enforce
a certain interaction property P . This adaptation is not due to change of
context, since it is not driven by quantitative parameters. The change here
aims at correcting a functional misbehavior.

– What does (not) change? It changes the topological structure and the inter-
action behavior. A new component is inserted in the system and the overall
interaction behavior is changed. The invariant part of the system is repre-
sented by all the correct behaviors. The proof that the adaptation preserves
the invariant is by construction.

– When does the change happen? It happens at assembly time, thus prior
to deployment and execution. Thus it is actually part of the development
process.

– What/Who manages the change? An external entity: The developer through
the Synthesis framework.

3.3 Performance

The work presented in this section, discusses PFM a framework to manage per-
formance of software system at runtime based on monitoring and model-based
performance evaluation [17]. The approach makes use of Software Architectures
as abstractions of the managed application also at run time when the system is
operating.

The framework monitors the performance of the application and, when a per-
formance problem occurs, it decides the new application configuration on the
basis of feedback provided by the on-line evaluation of performance models of
several reconfiguration alternatives. The main characteristic of this approach
is the way such alternatives are generated. In fact, differently from other ap-
proaches we do not rely on a fixed repository of predefined configurations but,
starting from the data retrieved by the on-line monitoring (that represents a
snapshot of the system current state), we generate a number of new configura-
tions by applying the rules defined within the reconfiguration policy. Once such
alternatives have been generated we proceed to the on-line evaluation by pre-
dicting which one of them is most suitable for resolving the problem occurred.
In particular, the choice of the new system configuration might consider sev-
eral factors, such as, for example, security and reliability of the application, and
resources needed to implement the new configuration.

In this approach performance evaluation models are used to predict the sys-
tem performance of the next system reconfiguration alternative. To this aim,

Software of the Future Is the Future of Software? 75

each eligible system configuration is described by means of a predictive model
instantiated with the actual values observed over the system until the moment
of the performance alarm. The models are then evaluated and on the basis of the
obtained results the framework decides the reconfiguration to perform over the
software system. Therefore, the predictive models representing the software sys-
tem alternatives are evaluated at run time and this poses strong requirements on
the models themselves. PMF has been experimented to manage the performance
of the Siena publish/subscribe middleware [7,6]. The experiment shows that the
usage of predictive models improves the decision step. The system reconfigured
with the chosen alternative has better performance than the other alternatives
generated during the reconfiguration process. The configuration alternatives we
experimented all deal with structural changes of the Siena network topology in
order to improve messages routing.

Fig. 2. Adaptation for performance

In Figure 2 the PMF components are represented. It is worthwhile stressing
that all the described 4 steps are carried on at run time, while the system is
operating. Note that predictive models are commonly used to carry on quanti-
tative analysis at development time, while the system is under construction [9].
Their use at execution time raises a number of challenging research issues like:
what data are relevant to collect? The collected data is more fine-grained than
the performance model parameters, how can data be used? Models have to be

76 P. Inverardi

modified and evaluated online this means that they must require fast solution
techniques. However fast solution techniques usually apply for simple predictive
models, then which performance model should be used? How is the decision on
the next configuration taken? The answers to all these questions should consider
different aspects like security, resources availability, and so on.

Let us now consider PMF with the four Ws metric:

– Why there is the need to change? The change aims to correct non-functional
behavior, i.e. adjust Performance. This change is context dependent.

– What does (not) change? In the Siena experiment the topological structure
is going to be modified, while the overall behavior is kept equivalent. That
is the change does not affects the routing capabilities of the Siena network.

– When does the change happen? The change happens at run time, while
the system is operating and it is enacted trough run time monitoring of
performance parameters.

– What/Who manages the change? An external to the system entity, that is
the PMF framework provides support to the whole re-configuration process
as shown in Figure 2.

3.4 Resource Aware Applications

This framework aims at developing and deploying (Java) adaptable application.
It supports the development of applications that are generic and can be correctly
adapted with respect to a dynamically provided context, which is characterized
in terms of available (hardware or software) resources, each one with its own
characteristics. To attack this problem we use a declarative and deductive ap-
proach that enables the construction of a generic adaptable application code
and its correct adaptation with respect to a given execution context [8,10,11].
Inspired by Proof Carrying Code (PCC) [12,15] techniques, we have defined a
formal setting which enables us to reason about Java program adaptability with
respect to resource usage. We use first-order logic formulas to model the code
behavior with respect to the resources which characterize the execution context.
The adaptation process is carried out by using theorem proving techniques that
try to derive a formal proof that the code behavior can be correctly adapted
to the given context. Provided that the proof exists, by construction it gives
information on how the adaptation has to be done. The adapted code is thus
by construction certified to correctly work with respect to the execution context
resources availability. In Figure 3 we show the components of the framework’s
architecture.

The Development Environment is a standard Java development environment
where the developer can write applications. We only assume that the applications
are written according to some framework programming guidelines that easy their
(generic) management. The output of this step is an extended Java program
representing a generic program.

The Abstract Resource Analyzer produces from the application written in the
Development Environment a declarative description of its characteristics in terms

Software of the Future Is the Future of Software? 77

Fig. 3. Adaptation for resource consumption

of resource demands. It is an abstract semantics that interprets the applications
with respect to a well defined Resource Model, and extracts the information
according to that model.

The Customizer carries out the actual adaptation of the application before de-
ploying it in the target environment for execution. This step produces a standard
Java application.

The Execution Environment can be any device that will host the execution
of the application. Typically the Execution Environment will be provided by
Personal Digital Assistants (PDA), mobile phones, smart phones, etc. From this
point of view, the Execution Environment is not strictly part of the framework
we are presenting here. However it must be characterized by a declarative de-
scription of the resources it provides that we assume to be provided by the
component itself.

The Resource Model characterizes resources and provides metrics to allow
reasoning on the adaptation in order to be able to choose the “best” one according
to the adaptation policy.

78 P. Inverardi

Let us analyze the resource aware framework with the four Ws metric:

– Why there is the need to change? The change allows to correctly utilize the
host device resources. Therefore it is driven by non functional requirements
and it is context dependent.

– What does (not) change? The service/application core behavior does not
change. It changes the quantitative semantics (resource consumption) of the
service implementation. The logic of the adaptation has been programmed
by the developer.

– When does the change happen? The framework manages the adaptation at
deployment time. That is as soon as the information on the execution context
becomes available.

– What/Who how is the change managed? The deployment framework car-
ries out the whole adaptation process. The application when in execution is
completely customized and works like a standard Java application.

Summarizing in this section I have presented three examples of adaptation
that differ with respect to several dimensions. One issue that is raised by the when
dimension in the four Ws metric is whether adaptability is static or dynamic.
The system adapts at run time, how and when the adaptation is computed or
carried out does not change the problem, it is just a matter of cost. The cost I
am referring to here is the cost of carrying out the adaptation maintaining the
original integrity of the part of the application that does not change, i.e. the
invariant. Thus if the application A that exhibits property P is changed into an
application A′ and the change is supposed to preserve the property P , then this
means that also A′ must satisfy P . For example the property P could be type
integrity, thus we require that the change does not undermines type integrity
in the changed application. Obviously, in this case, carrying out the change
statically, i.e. before the system is running permits to prove type integrity of A′

in a less expensive way than if done at run time.

4 Softure: The Process View

In this section I cast the above discussed challenges in a process view. The pro-
cess view focusses on the set of activities that characterize the production and
the operation of a software system. These activities are traditionally divided into
activities related to the actual production of the software system and activities
that are performed when the system can be executed and goes into operation.
Specification, Design, Validation, and Evolution activities vary depending on the
organization and the type of system being developed. Each Activity requires its
Language, Methods and Tools and works on suitable artifacts of the system. For
validation purposes each artifact can be coupled with a model. Models are an
idealized view of the system suitable for reasoning, developing, validating a real
system. To achieve dependability a large variety of models are used from behav-
ioral to stochastic. These models represent the systems at very different levels of

Software of the Future Is the Future of Software? 79

abstraction from requirements specification to code. The ever growing complex-
ity of software has exacerbated the dichotomy development/static/compile time
versus execution/dynamic/interpreter time concentrating as many analysis and
validation activities as possible at development time.

Softure puts new requirements on this standard process. The evolutionary
nature of Softure makes unfeasible a standard approach to validation since it
would require before the system is in execution to predict the system behav-
ior with respect to virtually any possible change. Therefore in the literature
most approaches, that try to deal with the validation of dynamic software sys-
tems, concentrate the changes to the structure by using graph and graph gram-
mars formalisms or topological constraints [25,23,22,24,26,27]. As far as changes
to behavior are concerned, only few approaches exist that make use either of
behavioral equivalence checks or of the type system [4,28,29] or through code
certification [12,30]. If dependability has to be preserved through adaptation
whatever the change mechanism is, at the time the change occurs, a validation
check must be performed. This means that all the models necessary to carry on
the validation step must be available at run time and that the actual validation
time becomes now part of the execution time.

Fig. 4. The Future Engineering Process

The Future development process therefore has to explicitly account for com-
plex validation steps at run time when all the necessary information are avail-
able. Figure 4 represents the process development plane delimited on one side
by the standard process and on the other side by the future development one.
The vertical dimension represents the static versus dynamic time with respect to
the analysis and validation activities involved in the development process. The
horizontal axis represents the amount of adaptability of the system, that is its
ability to cope with evolution still maintaining dependability. The standard de-
velopment process carries out most of the development and validation activities
before the system is running that is during development. The result is a running

80 P. Inverardi

system that, at run time, is frozen with respect to evolution. Considering devel-
opment processes that allow increasingly degrees of adaptability permits to move
along the horizontal axis thus ideally tending to a development process that is
entirely managed at run time. In the middle we can place development processes
that allow larger and larger portions of the system to change at run time and
that make use for validation purposes of artifacts that can be produced stati-
cally. In the following section I introduce an instance of the Future Engineering
Process that has been proposed in the scope of the PLASTIC project.

4.1 PLASTIC

The PLASTIC project aims to offer a comprehensive provisioning platform for
software services deployed over B3G networks (see Figure 5). A characteristic of
this kind of infrastructure is its heterogeneity, that is it is not possible to assume
that the variety of its components’ QoS is homogenized through a uniform layer.
PLASTIC aims at offering B3G users a variety of application services exploiting
the network’s diversity and richness, without requiring systematic availability of
an integrated network infrastructure. Therefore the PLASTIC platform needs
to enable dynamic adaptation of services to the environment with respect to
resource availability and delivered QoS, via a development paradigm based on
Service Level Agreements and resource-aware programming.

The provided services should meet the user demand and perception of the
delivered QoS, which varies along several dimensions, including: type of service,
type of user, type of access device, and type of execution network environment.

Fig. 5. B3G Networks

Software of the Future Is the Future of Software? 81

Referring to the challenges discussed in Section 2, this means that services must
be dependable according to the users expected QoS.

This demands for a software engineering approach to the provisioning of ser-
vices, which encompasses the full service life cycle, from development to valida-
tion, and from deployment to execution.

The PLASTIC answer to the above needs is to offer a comprehensive plat-
form for the creation and provisioning of lightweight, adaptable services for the
open wireless environment. Supporting the development of resource-aware and
self-adapting components composing adaptable services requires focusing on the
QoS properties offered by services besides the functional ones. The whole devel-
opment environment is based on the PLASTIC Conceptual Model [1]. Recently,
several approaches to conceptualize the world of services have been proposed.
The PLASTIC model takes the move from the SeCSE conceptual model [31,32]
that it has been suitably extended to reflect all the concepts related to B3G
networks and service provision in B3G networks. In particular it focusses on the
following key concepts:

– Service level agreement that clearly set commitment assumed by consumers
and providers and builds on services descriptions that are characterized
functionally, via a service interface and non-functionally via a Service Level
Specification SLS.

Conceptual Model
(CM)

Service Functional
Specification
(UML sub -set)

Service Level
Specification - SLS

(Slang sub -set)

CM-based editor
Service
Model

Behavioural
Models

Model-To-Model
Transformation

Performance
Models

... Other
Models

Service Model
Projections

Analysis

Core
Code

Self-
Evolving/Adaptive

Code

Self-
Evolving/Adaptive

Service

Model -To -Model
Transformation

PLASTIC Middleware

Service Level
Agreement Models

SSTS

WSDL

UML2WSDL

JAVA Service
Stub

WSDL2JAVA

JAVA Service

Coding

QNMchain Models

Model -To-Model
Transformation

Model -To-Model
Transformation

Fig. 6. The PLASTIC Development Process

82 P. Inverardi

Conceptual Model
(CM)

Service Functional
Specification
(UML sub -set)

Service Level
Specification - SLS

(Slang sub -set)

CM-based editor
Service
Model

Model -To-Model
Transformation

SLA
Monitor

PLASTIC Middleware

Service Level
Agreement Models

Timed
Automata

WSDL

JAVA Service
Stub

QN

Mchain Models

Core
Code

Self-
Evolving/Adaptive

Code

Model -To-Model
Transformation

Customized Code

SSTS

Fig. 7. The PLASTIC Deployment Process

– Context awareness and adaptation as the context is a key feature distinguish-
ing services in the vast B3G networking environment. B3G networking leads
to have diverse user populations, changing availability in system resources,
and multiple physical environments of service consumption and provisioning.
It is then crucial that services adapt as much as possible to the context for
the sake of robustness and to make themselves usable for given contexts.

As illustrated in Figure 6 adaptability is achieved by transferring some of the
validation activities at run time by making available models for different kind
of analysis. In particular stochastic models and behavioral ones will be made
available at run time to allow the adaptation of the service to the execution
context and service on line validation, respectively.

In PLASTIC all the development tools will be based on the conceptual model
exploiting as much as possible model-to-model transformations. The definition of
a service will consists of a functional description and of a Service Level Specifica-
tions that defines the Quality of Service characteristics of the service. The over-
all service description is obtained by means of an iterative analysis specification
phase that makes use of behavioral and stochastic models. These models suit-
ably refined with pieces of information coming from the implementation chain,
will then be made available as artifacts associated to the service specification.

With respect to the spectrum presented in Figure 4 the PLASTIC development
process will present a limited form of adaptability as shown in Figure 7. The com-
ponents implementing PLASTIC services will be programmed using the resource

Software of the Future Is the Future of Software? 83

aware programming approach presented in Section 3 by using Java. In PLASTIC
adaptation happens at the time the service request is matched with a service pro-
vision. This match has to take into account the user’s QoS request and the service
SLS and the result of the match will produce the Service Level Agreement (SLA)
that defines the QoS constraints of the service provision. During this matching
process in order to reach an SLA the service code might need to be adapted, ac-
cording to the resource aware approach, thus resulting in a customized service
code that satisfies the user’s QoS request and results in a SLA.

5 Conclusions

In this paper I have discussed my point of view on software in the future. Adapt-
ability and Dependability will play a key role in influencing models, languages
and methodologies to develop and execute future software applications. In a
broader software engineering perspective it is therefore mandatory to reconcile
the static/compile time development approach to the dynamic/interpreter ori-
ented one thus making models and validation technique manageable lightweight
tools for run time use. There are several challenges in this domain. Program-
ming Language must account in a rigorous way of quantitative concerns, allow-
ing programmers to deal with these concerns declaratively. Models must become
simpler and lighter by exploiting compositionality and partial evaluation tech-
niques. Innovative development processes should be defined to properly reflect
these new concerns arising from software for ubiquitous computing. I presented
the PLASTIC approach to service development and provision in B3G networks
as a concrete instance of the problem raised by Softure. The solutions we are
experimenting in PLASTIC are not entirely innovative per se rather they are
used in a completely new and non trivial fashion. Summarizing my message is
that in the Softure domain it is important to think and research point to point
theories and techniques but it is mandatory to re-think the whole development
process in order to cope with the complexity of Softure and its requirements.

Acknowledgments

The author would like to acknowledge the IST project PLASTIC that partially
supported this work and all the members of the PLASTIC Consortium and of
the SEALab at University of L’Aquila for joint efforts on all the research efforts
reported in this paper.

References

1. PLASTIC IST STREP Project: Home page on line at:
http://www-c.inria.fr:9098/plastic

2. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: IEEE
Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, US
(1994)

http://www-c.inria.fr:9098/plastic

84 P. Inverardi

3. IFIP WG 10.4 on Dependable Computing And Fault Tolerancs
http://www.dependability.org/wg10.4/

4. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Trans-
actions on Software Engineering and Methodology 6(3), 213–249 (1997)

5. Magee, J., Kramer, J.: Concurrency: State models & java programs. Wiley pub-
lisher, Chichester (1999)

6. Caporuscio, M., Carzaniga, A., Wolf, A.L.: Design and evaluation of a support
service for mobile, wireless publish/subscribe applications. IEEE Transactions on
Software Engineering (December 2003)

7. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and Evaluation of a Wide-
Area Event Notification Service. ACM Transactions on Computer Systems 19(3),
332–383 (2001)

8. Inverardi, P., Mancinelli, F., Nesi, M.: A Declarative Framework for adaptable ap-
plications in heterogeneous environments. In: Proceedings of the 19th ACM Sym-
posium on Applied Computing (2004)

9. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based Performance
Prediction in Software Development: A Survey IEEE Transaction on Software En-
gineering (May 2004)

10. Inverardi, P., Mancinelli, F., Marinelli, G.: Correct Deployment and Adaptation
of Software Applications on Heterogenous (Mobile) Devices. In: ACM Proceedings
Workshop on Self-Healing Software (2002)

11. Mancinelli, F., Inverardi, P.: Quantitative resource-oriented analysis of Java
(adaptable) application. In: ACM Proceedings Workshop on Software Performance
(2007)

12. Necula, G.C.: Proof-Carrying Code. In: Jones, N.D. (ed.) Proceedings of the Sym-
posium on Principles of Programming Languages, pp. 106–119. ACM Press, Paris,
France (1997)

13. Necula, G.C., Lee, P.: Proof-Carrying Code. Technical Report CMU-CS-96-165,
School of Computer Science, Carnegie Mellon University (September 1996)

14. Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In: Pro-
ceedings of the Symposium on Operating System Design and Implementation, Seat-
tle, Washington, pp. 229–243 (October 1996)

15. Necula, G.C., Lee, P.: Efficient Representation and Validation of Logical Proofs.
In: Pratt, V. (ed.) Proceedings of the Symposium on Logic in Computer Science,
pp. 93–104. IEEE Computer Society Press, Indianapolis, Indiana (1998)

16. Necula, G.C., Lee, P.: Safe, untrusted agents using proof-carrying code. In: Vi-
gna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 61–91. Springer,
Heidelberg (1998)

17. Caporuscio, M., Di Marco, A., Inverardi, P.: Model-based system reconfiguration
for dynamic performance management. Journal of Systems and Software (to ap-
pear, 2006)

18. Itu telecommunication standardisation sector, itu-t reccomendation z.120. Message
Sequence Charts (msc’96), Geneva

19. Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message sequence
chart specifications. In: ACM Proceedings of the joint 8th ESEC and 9th FSE,
ACM Press, Vienna (2001)

20. Uchitel, S., Kramer, J.: A workbench for synthesising behaviour models from sce-
narios. In: proceeding of the 23rd IEEE International Conference on Software En-
gineering (ICSE’01), Toronto, Canada (May 2001)

Software of the Future Is the Future of Software? 85

21. Inverardi, P., Tivoli, M.: A compositional synthesis of failure-free connectors for
correct components assembly. In: proceedings of the 6th ICSE Workshop on
Component-Based Software Engineering (CBSE6): Automated Reasoning and Pre-
diction at 25th ICSE 2003, Portland, Oregon, USA (May 3-10, 2003)

22. Georgiadis, I., Magee, J., Kramer, J.: Self-organising software architectures for
distributed systems. In: Proc. of the 1st Work. on Self-Healing Systems (WOSS02),
pp. 33–38. ACM Press, New York (2002)

23. Hirsch, D., Inverardi, P., Montanari, U.: Graph grammars and constraint solving
for software architecture styles. In: Proc. of the 3rd Int. Software Architecture
Workshop (ISAW-3), pp. 69–72. ACM Press, New York (1998)

24. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: Proc. of
the 4th ACM SIGSOFT Symp. On Foundations of Software Engineering (FSE-4),
pp. 3–14. ACM Press, New York (1996)

25. Metayer, D.L.: Describing software architecture styles using graph grammars. IEEE
Trans. Software Engineering 24(7), 521–533 (1998)

26. Taentzer, G., Goedicke, M., Meyer, T.: Dynamic change management by dis-
tributed graph transformation: Towards onfigurable distributed systems. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
Springer, Heidelberg (2000)

27. Baresi, L., Heckel, R., Thne, S., Varr, D.: Style-Based Refinement of Dynamic
Software Architectures. WICSA, 155–166 (2004)

28. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting Software Architecture
to Implementation. In: proceedings of ICSE 2002 (May 2002)

29. Aldrich, J.: Using Types to Enforce Architectural Structure. University of Wash-
ington Ph.D. Dissertation (August 2003)

30. Barthe, G.: Mobius, securing the next generation of java-based global computers.
ERCIM News (2005)

31. SeCSE Project, http://secse.eng.it
32. Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., Zuccalá, M.: Speaking a

Common Language: A Conceptual Model for Describing Service-Oriented Systems.
In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
Springer, Heidelberg (2005)

33. Autili, M., Cortellessa, V., Marco, A.D., Inverardi, P.: A conceptual model for
adaptable context-aware services. In: Proc. of International Workshop on Web
Services Modeling and Testing (WS-MaTe2006) (2006)

34. Autili, M., Inverardi, P., Navarra, A., Tivoli, M.: SYNTHESIS: a tool for auto-
matically assembling correct and distributed component-based systems Proc. of
International Conference on Software Engineering (ICSE 2007) - Tool Demos Ses-
sion (to appear)

35. Inverardi, P., Tivoli, M.: Formal Methods for the Design of Computer, Communi-
cation and Software Systems: Software Architecture. In: Bernardo, M., Inverardi,
P. (eds.) SFM 2003. LNCS, vol. 2804, Springer, Heidelberg (2003)

http://secse.eng.it

An Algorithmic Theory of Mobile Agents

Evangelos Kranakis1 and Danny Krizanc2

1 School of Computer Science, Carleton University, Ottawa, ON, Canada
2 Department of Mathematics and Computer Science, Wesleyan University,

Middletown, Connecticut 06459, USA

Abstract. Mobile agents are an extension of multiagent systems in
which the agents are provided with the ability to move from node to
node in a distributed system. While it has been shown that mobility can
be used to provide simple, efficient, fault-tolerant solutions to a number
of problems in distributed computing, mobile agents have yet to become
common in mainstream applications. One of the reasons for this may
be the lack of an algorithmic theory which would provide a framework
in which different approaches can be analyzed and the limits of mobile
agent computing explored. In this paper we attempt to provide such an
algorithmic theory.

1 Introduction

The concept of an agent working on behalf of another entity is a simple yet
powerful abstraction that has been found useful in many areas of computing.
In certain applications adding the capability of movement to an agent can lead
to further simplifications and efficiencies. Consider, for example, the following
scenarios:

– Network Maintenance. In a heterogeneous network it is necessary to regularly
provide nodes with software updates, check for security vulnerabilities, etc.
A simple approach to this would be to have an agent (or team of agents)
regularly visit the nodes to determine what maintenance is required and to
perform it.

– Electronic Commerce. In some situations the success of a given transaction
requires the near simultaneous success of multiple transactions. For example,
when preparing for a trip one may be purchasing airline tickets, making hotel
reservations and scheduling meetings. A mobile agent can move between
applications making sure that all transactions are ready before committing
to any.

– Intelligent Search. When searching for information across multiple sources
it is often the case that queries must be adapted depending on the answers
received. An agent with the ability to filter information locally and adapt
its behavior while moving between sources is potentially more efficient than
one that always has to return to the user for guidance.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 86–97, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Algorithmic Theory of Mobile Agents 87

– Robotic Exploration. In a potentially dangerous environment it makes sense
for robots to be the first to explore a region. A simple and potentially cheap
solution is to have a team of small communicating robots (agents) coopera-
tively explore rather than one expensive human-controlled robot.

In this paper we concentrate on modeling agents as developed in distributed
systems research (see Chapter 13 of [9]) though much of what we discuss could
be applied in other domains such as artificial intelligence (e.g., intelligent multia-
gent systems [20]), robotics (e.g., autonomous mobile robots [13]), computational
economics (e.g., agent-based economic modelling [17]) and networking (e.g., ac-
tive networks [16]). We first informally describe what we mean by a mobile agent
system and discuss the potential advantages and disadvantages of such systems.
We then develop a framework for an algorithmic theory of mobile agents. Finally,
we show how the theory can be applied to analyze the problem of achieving agent
rendezvous in a network.

1.1 What Is a Mobile Agent?

We imagine a mobile agent to be a software entity endowed with the following
properties:

– Autonomy. As is the case for real world agents such as travel agents, software
agents should work with some degree of independence from their creator.
They should be able to make at least some decisions without the need to
consult a central authority.

– Mobility. In the case of mobile agents we insist that they have the ability to
move from node to node in a distributed system. When such an agent moves
it is assumed that it encapsulates some or all of its state to move with it.

Beyond the above, a number of researchers include the following attributes in
their definition of a mobile agent:

– Interactivity. Obviously a agent must be able to interact with its environ-
ment, to make queries of nodes it visits, to report its findings, etc. But in
many (possibly most) applications we imagine that more than one agent is
present and the agents themselves are able to interact. Again in most in-
stances this is likely to be cooperative behavior but competitive behavior is
also possible. The exact form of this interaction depends upon the system
but usually involves some sort of communication either by means of message
passing or shared memory.

– Intelligence. The usefulness of an agent increases significantly with its ability
to adapt to new situations, to learn from previous experience and to model
correctly the intentions of the user who created it as well as those of the
agents it encounters.

It is our goal to develop a flexible framework in which systems exhibiting any
subset of the above properties can be analyzed.

88 E. Kranakis and D. Krizanc

1.2 Why Mobile Agents?

The applications one has in mind for mobile agents can generally be solved
by traditional distributed computing approaches so why use them? While not
a panacea, it can be argued that they offer a number of advantages over the
standard solutions including:

– Efficiency. Assuming that the agents are sufficiently compact (program plus
state) they offer potential savings in both latency and network bandwidth.
In a situation where n sites must be visited in sequential order, where for
instance the output from one site is used as part of the input to the next, a
mobile agent can perform the task by moving along an n edge cycle incurring
the cost of n communication steps whereas the communication pattern of
a centrally located agent would be a star with 2n communication steps (to
and from each site) required. In a situation where parallel access to the sites
is possible then a team of mobile agents (in this case sometimes referred to
as clones) can visit all of the sites faster than a single stationary agent.

– Fault-tolerance. In situations where a user has limited or even intermittent
connectivity to the network (e.g., mobile devices) a mobile agent may over-
come this deficit by acting on behalf of the user during blackout periods and
returning useful information when connectivity returns. In situations where
nodes may go down on a regular basis with limited notice a mobile agent
can potentially move to another node and continue operating.

– Flexibility. It is generally easy to add features to agents that allow them to
adapt their behavior to new conditions. More sophisticated agents may be
designed to incorporate learning from past experience.

– Ease of Use. In many situations it is natural both from the perspective of
the user and the programmer to imagine that they are dealing with au-
tonomous agents. In some instances this improves the user’s experience of
the application. In other instances an agent-based paradigm makes the sys-
tem’s design and implementation easier to perform. While these benefits are
hard to quantify they can be as important as the above.

In order to evaluate (at least theoretically) the above claims, especially those
concerning efficiency and fault-tolerance, a model for analyzing the behavior of
mobile agent algorithms is needed.

1.3 Whither Mobile Agents?

While many have touted the advantages of mobile agents and numerous mobile
agent systems have been developed [3,10,12,18,19], they have yet to become a
ubiquitous element of distributed systems. The reasons cited for this are many.
They are said to lack a so-called “killer app” or to suffer from the “who goes
first” phenomenon. A common objection to introducing mobile agents is security.
There are many who believe that opening up your network to the “invasion” of
potentially harmful mobile agents is not worth the advantages they may provide.

An Algorithmic Theory of Mobile Agents 89

On the other hand, much work has been done to insure that mobile agents can
be implemented in a secure fashion [15].

But perhaps the most common objection to mobile agent systems is that
anything that can be achieved by mobile agents can just as easily be achieved
using traditional means such as static agents. The counter argument to this is
that no one has ever claimed that mobile agents were required to solve any
particular problem only that they would provide a potentially more efficient and
fault-tolerant solution to many common problems. But still some object that
the resulting mobile agents will be too complex to realize the possible savings.
While there has been some experimental work that attempts to verify that such
savings exist [3,4,5], it is our contention that at least in part what is needed is an
algorithmic model in which one can prove that a mobile agent solution achieves
given complexity bounds and can thus provably provide the claimed efficiencies.

2 An Algorithmic Model for Mobile Agents

Work on the design and analysis of algorithms proceeds within the confines of
a given algorithmic model. For example a popular model in which sequential
algorithms are analyzed is the standard RAM model of computing. For parallel
algorithm analysis a number of models, such as the PRAM, are used. For each
paradigm an appropriate algorithmic model is developed. In general, a model
is an abstraction which attempts to capture the most important aspects of a
computational process. It consists of a description of allowable operations (or
transitions) that can be performed by the process. For example the RAM model
allows for read/write operations, arithmetic operations, etc. Once this is estab-
lished one generally defines a set of measurable resources of interest, e.g., time
(number of primitive operations), space (number of registers or potential states),
etc. At this point one is ready to analyze algorithms for well-defined problems
(often expressed as input-output conditions). Assuming the model captures the
computation sufficiently accurately it can be used to:

– analyze the complexity (the amount of a given resource used) of different
algorithms for a problem in order to determine which is most efficient, and

– determine lower bounds on the complexity of any algorithm for a given
problem or relate the complexities of different problems.

In order to model mobile agents we must model both the agents themselves
and the networks that host them. Rather than describe one model we present a
framework for a class of related models for both hosts and agents among which
one may choose a model to be used depending upon the application one has
mind.

2.1 Mobile Agents

We are interested in modeling a set of software entities that act more or less
autonomously from their originator and have the ability to move from node to

90 E. Kranakis and D. Krizanc

node in a distributed network maintaining some sort of state with the nodes of
the network providing some amount of (possibly longterm) storage and compu-
tational support. Either explicitly or implicitly such a mobile (software) agent
is most often modeled using a finite automaton consisting of a set of states and
a transition function. The transition function takes as input the agent’s current
state as well as possibly the state of the node it resides in and outputs a new
agent state, possible modifications to the current node’s state and a possible
move to another node. In some instances we consider probabilistic automata
which have available a source of randomness that is used as part of their input.
Such agents are referred to as randomized agents.

An important property to consider is whether or not the agents are distin-
guishable, i.e., if they have distinct labels or identities. Agents without identities
are referred to as anonymous agents. Anonymous agents are limited to running
precisely the same program, i.e., they are identical finite automata. As the iden-
tity is assumed to be part of the starting state of the automaton, agents with
identities have the potential to run different programs.

The knowledge the agent has about the network it is on and about the other
agents can make a difference in the solvability and efficiency of many problems.
For example, knowledge of the size of the network or its topology or the number
of and identities of the other agents may be used as part of the agent’s program.
If available to the agents, this information is assumed to be part of its starting
state. (One could imagine situations where the information is made available by
the nodes of the network and not necessarily encoded in the agent.)

An important consideration for the case of teams of agents is how they inter-
act. For example, are agents able to detect the presence of other agents at a given
node? Assuming that the agents are designed to interact, the method through
which they communicate is an important aspect of any model. For example one
might consider a case where agents have the ability to read the state of other
agents residing at the same node. Or one might only allow communication via a
shared memory space or via message passing. Other properties that may be con-
sidered include whether or not the agents have the ability to “clone” themselves,
i.e., produce new copies of themselves with the same functionality and whether
or not they have the ability to “merge” upon meeting (sometimes referred to as
“sticky” agents).

2.2 Distributed Networks

The model of a distributed network is essentially inherited directly from the
algorithmic theory of distributed computing (see for example [14]). We model
the network by a graph whose vertices comprise the computing nodes and edges
correspond to communication links.

The nodes of the network may or may not have distinct identities. In an
anonymous network the nodes have no identities. In particular this means that an
agent can not distinguish two nodes except perhaps by their degree. The outgoing
edges of a node are usually thought of as distinguishable but an important
distinction is made between a globally consistent edge-labeling versus a locally

An Algorithmic Theory of Mobile Agents 91

independent edge-labeling. A simple example is the case of a ring where clockwise
and counterclockwise edges are marked consistently around the ring in one case,
and the edges are arbitrarily - say by an adversary - marked 1 and 2 in the
other case. If the labeling satisfies certain coding properties it is called a sense
of direction [7]. Sense of direction has turned out to greatly effect the solvability
and efficiency of solution of a number of problems in distributed computing and
has been shown to be important for the study of mobile agents as well.

Networks are also classified by how they deal with time. In a synchronous
network there exists a global clock available to all nodes. This global clock is
inherited by the agents. In particular it is usually assumed that in a single step
an agent arrives at a node, performs some calculation, and exits the node and
that all agents are performing these tasks “in sync”. In an asynchronous network
such a global clock is not available. The speed with which an agent computes or
moves between nodes, while guaranteed to be finite, is not a priori determined.

We have to consider the resources provided by the nodes to the agents. All
nodes are assumed to provide enough space to store the agent temporarily and
computing power for it to perform its tasks. (The case of malicious nodes refusing
agents or even worse destroying agents - so-called blackholes - is also sometimes
considered.) It is also assumed that the nodes will transport the agents to other
nodes upon request. Beyond these basic services one considers nodes that might
provide some form of long-term storage, i.e., state that is left behind when the
agent leaves. This long-term storage may or may not be shared among all agents
using the services of the node. So for example this memory might be best thought
of as a whiteboard on which an agent can leave messages for themselves or for
other agents. A further service the node may provide to the agents is mechanism
for sending and/or receiving messages via message passing.

Finally, when analyzing fault-tolerance one has to consider how a host network
component might fail. Again, here we inherit the standard network fault models
considered in distributed computing such as crash failures, omission failures,
Byzantine failures, etc. One might also consider failures that do not effect the
working of the network but only the agent subsystem, e.g., loss of shared data.

2.3 Resource Measures

For a given choice of agent plus network model there are a number of resources
of interest for which one can define a complexity measure. Of paramount concern
are measures that reflect the time and bandwidth efficiency of a given algorithm.
In the synchronous setting it is clear that to measure time one should use the
assumed global clock. In an asynchronous setting things are not so clear though
in most instances authors choose to evaluate what the worst case time would be
assuming that time proceeded synchronously. The total bandwidth consumed by
the agent depends upon its size as well as the number of moves it makes during
an execution of its algorithm. Generally the size of an agent is identified with
the number of bits required to encode its states, i.e, it is proportional to the
log base two of the number of possible states. If the agent sends messages then
the size and number of these messages must also count towards any measure

92 E. Kranakis and D. Krizanc

of its bandwidth. Other complexity measurements of interest include the size
of shared memory required at each node assuming the agents communicate via
shared memory, the number of random bits used by a randomized agent and the
number of and kind of faults an algorithm can successfully deal with.

3 An Example: Randomized Rendezvous on the Ring

A natural problem to study for any multiagent mobile system is that of ren-
dezvous. Given a particular agent model and network model a set of agents
distributed arbitrarily over the nodes of the network are said to rendezvous if
after running their programs after some finite time they all occupy the same
node of the network at the same time. As is often the case, researchers are in-
terested in examining cases that expose the limits of the problem being studied.
For rendezvous the simplest interesting case is that of two agents attempting to
rendezvous on a ring network. Of special interest is the highly symmetric case of
anonymous agents on an anonymous network. In particular below we consider
the standard model for an anonymous synchronous oriented ring [2] where

1. the nodes have no identities, i.e., the agents can not distinguish between the
nodes,

2. the computation proceeds in synchronous steps,
3. the edges of each node are labeled left and right in a consistent fashion.

We model the agents as probabilistic finite automata A =< S, δ, s0 > where
S is the set of states of the automata including s0 the initial state and the
special state halt, and δ : S × C × P → S × M where C = {H, T } represents a
random coin flip, P = {present, notpresent} represents a predicate indicating
the presence of the other agent at a node, and M = {left, right} represents the
potential moves the agent may make. During each synchronous step, depending
upon its current state, the answer to a query for the presence of the other agent,
and the value of a independent random coin flip with probability of heads equal
to .5, the agent uses δ in order to change its state and either move across the
edge labeled left or right. We assume that the agent halts once it detects the
presence of the other agent at a node.

The first question one may ask concerning this instance of rendezvous is
whether or not it is solvable. It is fairly easy to see that if the two agents start
at an odd distance apart on an even size ring they can never rendezvous in the
above model as they are forced to move on each step and therefore will remain
an odd distance apart forever. There are number of ways to fix this, the easiest
perhaps being to add a third option to M of stay. For simplicity in the analysis
below we will instead assume that they are an even distance apart on an even
size ring.

For solvable instances of rendezvous one is interested in comparing the ef-
ficiency of different solutions. Much of the research focuses on the number of
moves required to rendezvous or the expected number in the case of randomized
agents (where the expectation is taken over the possible sequences of coin flips).

An Algorithmic Theory of Mobile Agents 93

In the synchronous setting the number of moves is equivalent to the time and is
measured via the global clock. (In some situations, it makes a difference if the
agents begin their rendezvous procedure at the same time or there is possible
delay between start times. Here we will assume a synchronous start.) Also of
interest is the size of the program required by the agents to solve the problem.
This is referred to as the memory requirement of the agents and is considered to
be proportional to the base two logarithm of the number of states required by the
finite state machine encoding the agent. Ideally one would like to design an agent
whose size is constant independent of the size of the ring and which performs
rendezvous in expected linear time (as in the worst case the agents are linear
distance apart initially). As we shall see, achieving both goals simultaneously is
not possible in this case.

3.1 Random Walk Algorithm

Many authors have observed that rendezvous may be solved by anonymous
agents on an anonymous network by having the agents perform a random walk.
The expected time to rendezvous can be shown to be a (polynomial) function of
the (size of the) network and is related to the cover time of the network. (See [11]
for definitions relating to random walks. See [6] for an analysis of the meeting
time for random walks.)

For example consider the following algorithm for rendezvous on the ring:

1. Repeat until other agent present:
2. If heads move right else move left

If we let Ed be the expected time for two agents starting at an (even) distance
d on an a ring of (even) size n to rendezvous using the above algorithm it is easy
to see that E0 = 0, and En/2 = 1+(1/2)En/2+(1/2)En/2−2. The latter equation
gives rise to the recurrence

En/2 = 2 + En/2−2. (1)

More generally, in executing the algorithm one of the following three cases may
occur. The two mobile agents make a single step and either move in the same
direction with probability 1/2, or in opposite direction either towards each other
with probability 1/4 or away from each other with probability 1/4. From this
we derive the identity

Ed = 1 + (1/2)Ed + (1/4)Ed−2 + (1/4)Ed+2, (2)

for d = 2, 4, . . . , n/2 − 2. (Note that the case d = n/2 is special in that they are
always at most distance n/2 apart.) Substituting d + 2 for d in Identity 2 and
solving the resulting equation in terms of Ed we derive that for d ≥ 4,

Ed = 2Ed−2 − Ed−4 − 4. (3)

94 E. Kranakis and D. Krizanc

The initial condition E0 = 0 and Identity 3 yield E4 = 2E2 − 4. More generally,
we can prove the following identity for 2d ≤ n/2,

E2d = dE2 − 2d(d − 1). (4)

We prove by induction that there are sequences ad, bd such that

E2d = adE2 − 4bd.

Indeed,

E2d = 2E2d−2 − E2d−4 − 4
= 2 (ad−1E2 − 4bd−1) − (ad−2E2 − 4bd−2) − 4
= (2ad−1 − ad−2)E2 − 4(2bd−1 − bd−2 + 1),

which gives rise to the recurrences ad = 2ad−1 − ad−2 and bd = 2bd−1 − bd−2 + 1
with initial conditions a0 = b0 = 0, a1 = 1, b1 = 0. Solving the recurrences we
obtain easily that ad = d and bd = − 1

2d+ 1
2d2, which proves Identity 4. To derive

a formula for E2d, it remains to compute E2. Identity 4 yields the values

En/2 =
n

4
E2 − 2

n

4

(n

4
− 1

)

En/2−2 =
(n

4
− 1

)
E2 − 2

(n

4
− 1

)(n

4
− 2

)
,

which when substituted into Identity 1 shows that E2 = n − 2. Finally, substi-
tuting this last value into Identity 4 we derive

E2d = d(n − 2d). (5)

Obviously the above algorithm translates into a finite automaton with a constant
number of states and thus we have demonstrated:

Theorem 1. Consider an n node ring. Two agents with O(1) memory, starting
at even distance d ≤ n/2 can rendezvous in expected d

2 (n − d) steps.

The agents in this algorithm are of optimal (to within a multiplicative con-
stant) size but in the worst case d = Θ(n) and the expected number of steps is
quadratic. One might ask if it is possible to achieve linear time.

3.2 Coin Half Tour Algorithm

It is fairly easy to achieve a linear upper bound on the expected number of steps
using the following algorithm referred to as the “coin half tour” algorithm by
Alpern [1].

1. Repeat until other agent present:
2. If heads move right for n/2 steps else move left for n/2 steps

An Algorithmic Theory of Mobile Agents 95

If we refer to each execution of step 2 as a phase and consider a phase to be a suc-
cess if the two agents choose to travel in opposite directions and a failure otherwise
then it is easy to see that (a) the expected number of failed phases before obtaining
a success is one (b) the number steps in a failed steps is n/2 and (c) the expected
number of steps in a successful phase is n

2 . Therefore the expected number of steps
until the agents rendezvous is n since they are guaranteed to rendezvous on a suc-
cessful phase. Note that this is independent of their starting positions assuming
d > 0. Further note that a finite automaton implementing the above algorithm
requires n/2 + O(1) states and thus we have shown:

Theorem 2. Two agents with O(log n) memory, starting at even distance d > 0
on an even n node ring can rendezvous in expected n steps.

The above algorithm is optimal (to within a multiplicative constant) in its run-
ning time but requires O(log n) bits of memory. Is it possible to achieve linear
running time with less memory?

3.3 Approximate Counting Algorithm

By replacing the exact n/2 steps taken in step 2 of the coin half tour algorithm
with an approximate expected O(n) steps one can reduce the memory require-
ments for rendezvous in this instance. Consider the following algorithm for an
agent with k bits of memory:

1. Repeat until other agent present:
2. (a) If heads set dir = right else set dir = left

(b) Repeat until 2k heads observed in a row: Move in direction dir

By defining a phase correctly and with some analysis it is possible to show
that the phases have expected length O(22k

) and have constant probability of
success and thus we can show (see [8]):

Theorem 3. Two agents with k bits of memory, starting at even distance d > 0

on an even n node ring can rendezvous in expected O

(⌈
n

22k

⌉2
· 22k

)
steps.

In particular, the above theorem implies that with log log n bits of memory
rendezvous can be achieved in linear time. It turns out that this is optimal as it
can be shown that [8]:

Theorem 4. Any algorithm that achieves two agent rendezvous in expected
Θ(n) steps on an n node ring (satisfying the constraints of the model above)
requires Ω(log log n) bits of memory.

4 Conclusions

Distributed applications have relied heavily on the “client/server” paradigm,
whereby a client is making requests from a user machine to a server which

96 E. Kranakis and D. Krizanc

services the requests across the network. Although this model works well for
certain applications it breaks down in highly distributed systems when network
connections are poor, multiple clients and servers are involved, and the applica-
tion requires a predictable response time. By using mobile agents, nodes can have
the dual role of either client or server and the resulting networks scale better
since the flow of control moves across the whole system. An algorithmic theory
of mobile agents, as proposed in the present paper, helps not only to illuminate
these advantages but also understand better the limitations of mobile agents
by looking at, for example, memory/time trade-offs in randomized algorithms
for the rendezvous problem. We believe this theory has the potential to expose
both the effectiveness and the limits of using mobile agents for a host of other
problems.

Acknowledgments

Research of the first author was supported in part by NSERC (Natural Sciences
and Engineering Research Council of Canada) and MITACS (Mathematics of
Information Technology and Complex Systems) grants. The authors would like
to thank the participants of the Workshop on Mobile Computing held on Elba
Island, May 2004. The ideas presented here were developed in cooperation with
all those involved in the meeting.

References

1. Alpern, S.: The Rendezvous Search Problem. SIAM Journal of Control and Opti-
mization 33, 673–683 (1995)

2. Attiya, H., Snir, M., Warmuth, M.: Computing on an anonymous ring. Journal of
the ACM 35, 845–875 (1988)

3. Baumann, J., Hohl, F., Rothermel, K., Strasser, M.: Mole: Concepts of a Mobile
Agent System. World Wide Web 1, 123–137 (1998)

4. Carzaniga, A., Picco, G., Vigna, G.: Designing Distributed Applications with Mo-
bile Code Paradigm. In: Proc. 19th Int. Conf. on Software Engineering, pp. 22–32
(1997)

5. Chia, T., Kannapan, S.: Strategically Mobile Agents. In: Proc. of first Int. Work-
shop on Mobile Agents, pp. 149–161 (1997)

6. Coppersmith, D., Tetali, P., Winkler, P.: Collisions among ramdom walks on a
graph. SIAM Journal of Discrete Mathematics 6, 363–374 (1993)

7. Flocchini, P., Mans, B., Santoro, N.: Sense of direction: definition, properties and
classes, Networks 32 (1998), 29–53. 653–664 (2006)

8. Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendezvous on the Ring, in
preparation

9. Milojicic, D., Douglis, F., Wheeler, R. (eds.): Mobility: Processes, Computers and
Agents. ACM Press, New York (1999)

10. Milojicic, D., Chauhan, D., LaForge, W.: Mobile Objects and Agents (MOA). In:
Proc. of 4th USENIX Conf. on Object-Oriented Technologies, pp. 1–14 (1998)

11. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

An Algorithmic Theory of Mobile Agents 97

12. Peine, H., Stolpmann, T.: The Architecture of the Ara Platform for Mobile Agents.
In: Proc. of First Int. Workshop on Mobile Agents, pp. 50–61 (1997)

13. Roy, N., Dudek, G.: Collaborative robot exploration and rendezvous: Algorithms,
performance bounds and observations. Autonomous Robots 11, 117–136 (2001)

14. Santoro, N.: Design and Analysis of Distributed Algorithms. John Wiley and Sons,
West Sussex (2007)

15. Singelee, D., Preneel, B.: Secure E-commerce using Mobile Agents on Untrusted
Hosts, Computer Security and Industrial Cryptography (COSIC) Internal Report
(May 2004)

16. Tennenhouse, D., Smith, J., Sincoskie, W., Wetherall, D., Minden, G.: A Survey
of Active Network Research. IEEE Communications Magazine 35, 80–86 (1997)

17. Tesfatsion, L.: Agent-Based Computational Economics: Growing Economies From
the Bottom Up. Artificial Life 8, 55–82 (2002)

18. Walsh, T., Paciorek, N., Wong, D.: Security and Reliability in Concordia. In: Proc.
of 31st Hawaii Int. Conf. on System Sciences, pp. 44–53 (1998)

19. White, J.E.: Telescript Technology: Mobile Agents, in Software Agents. MIT Press,
Cambridge (1996)

20. Wooldridge, M. (ed.): Intelligent Agents, in Multiagent Systems: A Modern Ap-
proach to Distributed Artificial Intelligence, Weiss, G (ed.), pp. 27–77. MIT Press,
Cambridge (1999)

Spatial-Behavioral Types,
Distributed Services, and Resources

Luı́s Caires

CITI / Departamento de Informática, Universidade Nova de Lisboa, Portugal

Abstract. We develop a notion of spatial-behavioral typing suitable to discipline
interactions in service-based systems modeled in a distributed object calculus.
Our type structure reflects a resource aware model of behavior, where a parallel
composition type operator expresses resource independence, a sequential com-
position type operator expresses implicit synchronization, and a modal operator
expresses resource ownership. Soundness of our type system is established using
a logical relations technique, building on a interpretation of types as properties
expressible in a spatial logic.

1 Introduction

The aim of this work is to study typing disciplines for service-based systems, with a
particular concern with the key aspects of safety, resource control, and compositionality.
For our current purposes, we consider service-based systems to be certain kinds of
distributed object systems, but where binding between parties is dynamic rather than
static, system assembly is performed on-the-fly depending on discoverable resources,
interactions between parties may involve long duration protocols, and the fundamental
abstraction mechanism is task composition, rather than just remote method invocation.
In this paper, we approach the issue of compositional analysis of distributed services
and resources using a new notion of typing inspired by spatial logics. Technically, we
proceed by introducing a core calculus for distributed services, where clients and servers
are represented by concurrent “objects” (aggregates of operations and state). Services
are called by reference, and references (names) to services may be passed around, as
in π-calculi. New services may also be dynamically instantiated. We then develop and
study a fairly expressive type system aimed at disciplining, in a compositional way,
interactions and resource usage in such systems.

Our type structure is motivated by fundamental features and properties of our in-
tended model. We conceive a service-based system as a layered distributed system,
where service provider objects execute tasks in behalf of client objects, in a coordi-
nated way. Even if the same object may act as client and server, we do not expect intrin-
sic cyclic dependencies to occur in such a system. The main coordination abstractions
for assembling tasks into services are probably parallel (independent) and sequential
composition. Tasks are independent when they never get to compete for resources; in-
dependent tasks appear to run simultaneously, this is the default behavior of the “global
computer”. On the other hand, causality, data flow, and resource competition introduce
constraints in the control flow of computations. We will thus consider tasks and re-
sources as the basic building blocks of service based systems.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 98–115, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Spatial-Behavioral Types, Distributed Services, and Resources 99

Models of concurrent programming usually introduce two kinds of entities in their
universe of concepts: processes (active) and resources (passive). While processes are
the main subject of analysis, resources are considered atomic, further unspecified en-
tities besides being unshareable by definition (with objects such as as files, channels,
etc, memory cells, given as classical examples). We adopt a view where resources and
objects are not modeled a priori by different sorts of entities: but where everything is
an object. Our distinction criteria is observational, and not strict: what distinguishes a
resource among other objects is that resources must be used with care so to avoid mean-
ingless or disrupted computations. For example, a massively replicated service such as
Google behaves pretty much as if every client owned its own private copy of it. On
the other hand, an object handling an e-commerce session with a user, is certainly not
supposed to be shared: if other user gets in the middle and interferes with the session
things may go wrong! We then consider the latter more “resource-like” than the former.
Thus, instead of thinking of resources as external entities, for which usage policies are
postulated, we consider a resource to be any object expressible in our model that must
be used according to a strict discipline to avoid getting into illegal states. Our seman-
tics realizes such illegal states concretely, as standard “message not understood” errors,
rather than as violations of extraneously imposed policies, as e.g., in [14,17,2].

Adopting a deep model of resources as fragile objects brings generality to our ap-
proach. Just as sequentiality in a workflow results from resource competition, resource
competition is problematic in the sense that if a system does not respect precise shar-
ing constraints on objects, illegal computation states may arise. This view allows us
to conceive more general sharing constraints than the special cases usually considered:
e.g., at certain stage of a protocol a resource might be shareable, while at other stage it
may be not. Such an uniform approach also naturally supports a computational model
where resources may be passed around in transactions, buffered in pools, while ensur-
ing that their capabilities are used consistently, by means of typing. Our type system,
we believe, captures the fundamental constraints on resource access present in general
concurrent systems. It is based on the following constructors

U,V ::= stop | U | V | U ∧V | U ;V | U◦ | U � V | l(U)V

to which we add a recursion operator (and type variables). The spatial composition type
U | V states that a service may be used accordingly to U and V by independent clients,
one using it as specified by U , the other as specified by V . This implies, in particular,
that the tasks U and V may be activated concurrently. For example, an object typed with

Travel � (flight | hotel);order
will be able to service the flight (we abbreviate l(stop)stop by l, and so on) and
hotel tasks simultaneously and after that (and only after that), the order task. The
spatial reading of U | V implies further consequences, namely that the (distributed) re-
sources used by U and V do not interfere; this property is important to ensure closure
under composition of certain safety properties of typed systems. Owned types, of the
form U◦, state not only that the service is usable as specified by U , but also that such
usage is completely owned (so that a object possessing a reference of owned type may,
for example, store it for later use). Owned types allow one to distinguish between ser-
vices that must be used according to U , and services that may be used according to U ;

100 L. Caires

this distinction is crucial to control delegation of resources or services between part-
ners. More familiar behavioral types may also be easily expressed. For example, using
sequential composition and conjunction, the usage protocol of a file might be specified

File(V) � (open;(read()V ∧write(V))�;close)�

where U� � rec α.(stop∧ (U ;α)) expresses iteration. By combining recursion with
spatial types, we then define shared types. A shared type U! states of an object that it
may be used according to an unbounded number of independent sessions, each one con-
forming to type U . By combining such operators, we may specify fine grained shared
access protocols, such as standard “multiple readers/unique writer” access pattern:

RW (V) � ((read()V)!;write(V ◦))�

Finally, and crucially, guarantee types, of the form U � V , allows us to compose sub-
systems into systems while preserving the properties ensured by their typings.

The paper is structured as follows. In Section 2, we present our core language and
its operational semantics, and some examples. In Section 3 we introduce our basic type
system, and prove its soundness. Our proof combines syntactical and semantical rea-
soning, in the spirit of the logical relations technique, where types are interpreted as
properties expressed in a spatial logic. In Section 4, we show how to extend our ba-
sic system to cover more general forms of sharing. Finally, Section 5 discusses related
work and draws some conclusions.

2 A Distributed Service Calculus

In this section we present the syntax and operational semantics of our distributed ser-
vice calculus. We assume given an infinite set N of names. Names are used to identify
objects (n,m, p), threads (b,c,d) and state elements (a). We also assume given an in-
finite set X of variables (x,y,z), and an infinite set L of method labels (j,k,l). We
note X = N ∪V and let η range over X (variables and names). We start by introducing
expressions. In the definition of systems, expressions may syntactically occur either in
the body of a method definition, or in a thread.

Definition 2.1 (Values, Expressions, Methods). The sets V of values, E of expres-
sions, and M of methods are defined by the abstract syntax in Fig. 1 (top).

We use the notation ς to denote a sequence of syntactical elements of class ς. The value
nil is an atomic value that stands for the null reference. The call expression n.l(v)
denotes the invocation of the method l of object n, where the value v is passed as ar-
gument. The wait expression n.c() denotes waiting for a reply to a previously issued
method invocation of the form n.l(v), where c is the identifier of the thread which is
serving the request (remotely). The wait construct plays a key technical role in our for-
mulation of the dynamic and static semantics of our language, even if it is not expected
to appear in source programs. The composition construct let x = e in f denotes the
parallel evaluation of the expressions ei, followed by the evaluation of the body f ,

Spatial-Behavioral Types, Distributed Services, and Resources 101

e, f ,h ::= ∈ E (Expressions)
v (Value)

| v.l(v) (Call)
| n.c() (Wait)
| a? (Read)
| a!(v) (Write)
| new [M] (Object Creation)
| let x = e in e (Composition)
| rec x.e (Recursion)

v,r ::= ∈ V (Values)
n (Name)

| x (Identifier)
| nil (Termination)

M ::= ∈ M (Methods)
0 (Empty)

| l(x) = e (Method)
| M | M (Methods)

s ::= ∈ S (Stores)
0

| a〈v〉
| s | s

t ::= ∈ T (Threads)
0

| t | t
| c〈e〉

P,Q,R ::= ∈ P (Network)
0 (Empty)

| (νn)P (Restriction)
| P | Q (Composition)
| n[M ; s ; t] (Object)

Fig. 1. Values, Expressions, Methods, Stores, Threads, Networks

n.l(v)
n.lc(v)−→ n.c() new [M]

n[M]−→ n

n.c()
n.c(v)−→ v

e{x�rec x.e} α−→ e′

rec x.e
α−→ e′

(Rec)

a?
a?(v)−→ v

e
α−→ e′

let · · · ,x = e, · · · in f
α−→ let · · · ,x = e′, · · · in f

a!(v)
a!(v)−→ nil let x = v in e

τ−→ e{x�v}

Fig. 2. Evaluation (Expressions)

e
n.lc(v)−→ e′ [c fresh]

n[l(x) = h ; ;] | m[; ; b〈e〉] → (νc)(n[l(x) = h ; ; c〈h{x�v}〉] | m[; ; b〈e′〉])

e
n.c(r)−→ e′

n[; ; c〈r〉] | m[; ; b〈e〉] → m[; ; b〈e′〉]
e

τ−→ e′

n[; ; c〈e〉] → n[; ; c〈e′〉]

e
a?(v)−→ e′

n[; a(v) ; c〈e〉] → n[; ; c〈e′〉]
e

a!(v)−→ e′

n[; ; c〈e〉] → n[; a(v) ; c〈e′〉]

e
m[M]−→ e′ [m fresh]

n[; ; c〈e〉] → (νm)(m[M ; ;] | n[; ; c〈e′〉])
P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q

P → Q
(νn)P → (νn)Q

P → Q
P | R → Q | R

Fig. 3. Reduction (Networks)

102 L. Caires

where the result of evaluating each ei is bound to the corresponding xi. The xi are dis-
tinct bound variables, with scope the body f . The let construct allows us to express
arbitrary parallel / sequential control flow graphs, in which values may be propagated
between parallel and sequential subcomputations. We use the following abbreviations
(where x1 and x2 do not occur in e1 and e2):

(e1 | e2) � let x1 = e1 , x2 = e2 in nil (e1;e2) � let x1 = e1 in e2

The a? and a!(v) constructs allow objects to manipulate their local store. The read ex-
pression a? picks and returns a value stored under tag a, while the write expression a!(v)
stores value v in the store under tag a. The store conforms to a data space model, where
reading consumes data, and writing adds new data elements. Evaluation of new[M] re-
sults in the allocation of a new object, with set of methods M, and whose identity (a
fresh name) is returned. In the method l(x) = e the parameter x is bound in the scope of
the method body e (for the sake of simplicity, we just consider single parameter meth-
ods). Finally, the rec construct introduces recursion. To keep our language “small”, we
refrain from introducing other useful ingredients, such as basic data types and related
operators, for instance booleans and conditionals. Since it should be straightforward to
formally extend our language with such constructs, we will sometimes use them, mostly
in examples. Having defined expressions, we introduce:

Definition 2.2 (Stores, Threads, Networks). The sets S of stores, T of threads, and P
of networks are given in Fig. 1 (bottom).

A network is a (possibly empty) composition of objects, where composition P | Q and
restriction (νn)P are introduced with their usual meaning (cf., the π-calculus). An object
n[M ; s ; t] encapsulates, under the object name n, some methods M (passive code), a
store s (that holds the object local state), and some threads t (active, running code). A
store s is a bag of pairs tag - value. Each value is recorded in a store under an access
tag (a name), represented by a〈v〉, where a is the tag and v is the value. A store may
possibly record several values under the same name a, so that e.g., a〈1〉 | a〈2〉 is a valid
store. A thread c〈e〉 is uniquely identified by its identifier c and holds a running piece
of code, namely the expression e. Threads are spawned when methods are called, and
may run concurrently with other independent threads in the same object or network.

Objects in a system are given unique names, so that, for instance, the network
n[M ; s ; t] | n[M′ ; s′ ; t ′] denotes the same network as n[M | M′ ; s | s′ ; t | t ′]. Identities
between networks such as this one (the Split law) are formally captured by structural
congruence, defined below. By fn(P) (resp. fn(t), fn(s), etc.) we denote the set of free
names in process P (resp. thread t, store s, etc.), defined as expected. We use A,B,C to
range over M ∪S ∪T ∪P (the | -“composable” entities).

Definition 2.3 (Structural Congruence). Structural congruence, noted ≡, is the least
congruence relation on networks, methods, and threads, such that

A ≡ A | 0 n[M ; s ; t] | n[N ; r ; u] ≡ n[M | N ; s | r ; t | u]
A | (B | C) ≡ (A | B) | C n[M ; s ; t] ≡ n[N ; r ; u] if M ≡ N,s ≡ r, t ≡ u

B | A ≡ A | B (νm)(νn)P ≡ (νn)(νm)P
(νn)0 ≡ 0 (νn)(P | Q) ≡ P | (νn)Q if n#fn(P)

Spatial-Behavioral Types, Distributed Services, and Resources 103

We use n#S (resp. S#S′) to denote that n �∈ S (resp. that S and S′ are disjoint). To lighten
our notation, we avoid writing 0 in objects slots, leaving the corresponding place holder
blank. For example, n[M ; 0 ; 0] will be frequently written simply as n[M ; ;].

The operational semantics of networks is defined by suitable transition relations. The
labeled transition system in Fig. 2 specifies evaluation of expressions. A remote method
call reduces to a wait expression on a fresh (thread) name c. Such wait expression will
reduce to the returned value, upon thread completion. Notice also how let introduced
expressions are evaluated concurrently, until each one reduces to a value. For object
networks, the operational semantics specifies a remote method invocation mechanism
by means of the transition system in Fig. 3. Servicing a method call causes a new thread
to be spawned at the callee object’s location, to execute the method’s body. Meanwhile,
the thread that originated the call suspends, waiting for a reply. Such a reply will be
sent back to the caller, after the handling thread terminates. A n[M] labeled transition,
caused by the evaluation of a new [M] expression, triggers the creation of a new object.
Thus, labels in transitions express the actions that objects may engage into.

Definition 2.4. Labels L are given by: α ::= τ | n.lc(v) | n.c(v) | a?(v) | a!(v) | n[M] .

Definition 2.5 (Evaluation and Reduction). Evaluation, noted e
α−→ e′, is the relation

defined on expressions by the labeled transition system in Figure 2. Reduction, noted
P → Q, is the relation defined on networks by the transition system in Figure 3.

We use ⇒ for the the reflexive transitive closure of →. Notice the role of ≡ in reduction,
in particular the Split law, so that each rule may mention just the parts of objects that
are relevant for each interaction. An idle object may only become active as effect of an
incoming method call, issued by a running thread. An object n[M ; s ; t] such that t ≡ 0,
is said to be idle, since it contains no running threads. Likewise, a network is idle if all
of its objects are idle. We set: idle(P) � For all Q.if P ≡ (νm)(n[; ; t] | Q) then t ≡ 0.

Example 2.6. We sketch a toy scenario of service composition, where several sites co-
operate to provide a travel booking service. First, there is an object F implementing a
service for finding and booking flights. It provides three methods: flight to look for
and reserve a flight, book to commit the booking, and free to release a reservation. A
similar service is provided by object H, used for booking hotel rooms.

F � f [flight() = · · · | book() = · · · | free() = · · · ; ;]
H � h[hotel() = · · · | book() = · · · | free() = · · · ; ;]

G � gw[pay(s) = if bk.debit() then s.book() else s.free() ; ;]

B � br[flight() = f .flight() | hotel() = h.hotel() |
order() = (gw.pay(f);gw.pay(h)) ; ;]

We elide method implementations in F and G, but assume that the operations must
be called in good order to avoid disruption, namely that after calling flight, a client
is supposed to call either book or free. The broker B, that implements the front-end
of the whole system, is client of F and H, and also of a payment gateway G. The
gateway books items if succeeds in processing their payment through a remote bank

104 L. Caires

service named bk. Our travel booking service, available at br, is used by first invoking
the flight and hotel operations in any order. In fact, these operations may be called
concurrently, since they trigger separate computations. Afterwards, the order operation
may be invoked to book and pay for both items, delegating access to f and h to the
gateway. The session will then terminate, and the broker becomes ready for another
round. We will see below how these usage patterns may be specified by typing, and the
type of the whole system compositionally defined from the types of its components.

The operational semantics assumes and preserves some constraints on networks. In an
object n[M ; s ; t] no more than a method with the same label may occur in M, and
no more than a thread with the same name may occur in t. Objects in a network are
uniquely named, also all threads in a system are uniquely named. In general, a network
P is well-defined if all threads occurring in P have distinct names, all methods in objects
have distinct labels, and for each thread name c there is at most one occurrence in P of
a wait expression n.c(). It is immediate that if P is well-defined and P ≡ Q | R then both
Q and R are well-defined. On the other direction, the same does not hold in general,
e.g., P and Q might clash in method and thread names. We then define by ft(P) the set
of free thread names in P, and by lab(P,n) the set of method labels of object n in P:

c ∈ ft(P) iff P ≡ (νm)(n[; ; c〈e〉] | Q) and c#m
l ∈ lab(P,n) iff P ≡ (νm)(n[l(x) = e ; ;] | Q) and n#m

Definition 2.7. We assert P‖Q � f t(Q)# f t(P) and for all n. lab(P,n)#lab(Q,n).

P‖Q means that P and Q are composable, in the sense that if P‖Q, and both P and Q are
well-defined, so is P | Q. Notice that P‖Q does not imply fn(P)#fn(Q). We also have

Lemma 2.8. If P is a well-defined network and P → Q then Q is a well-defined network.

Henceforth, we assume networks to be always well-defined. It is useful to introduce
external action transitions, that extend the reduction semantics with labels n.lc(m) and
n.c(r), to capture incoming method calls from the environment, and their replies.

Definition 2.9. External actions of networks are defined by the labeled transitions:

(νm)(n[l(x) = e ; ;] | R)
n.lc(u)−→ (νm)(n[l(x) = e ; ; c〈e{x�u}〉] | R) [c fresh and n,u#m]

(νm)(n[; ; c〈r〉] | R)
n.c(r)−→ (νm\r)(n[; ;] | R) [c,n#m]

Even well-defined networks may get stuck if a method call is being issued, but the called
object does not offer the requested method. We say P is stuck if stuck(P) holds, where

stuck(P) � Exists m,Q,e,e′. P ≡ (νm)(p[; ; c〈e〉] | Q) and e
n.lc(v)−→ e′ and l �∈ lab(Q,n)

Service based systems, as we are modeling here, may easily get stuck, if not carefully
designed. As in (untyped) object oriented languages, message-not-understood errors
may arise whenever an object does not implement an invoked method. However, in our
present context stuck states may also arise if method calls are not coordinated (do not
respect protocols) and timing errors occur (for example, due to races, e.g., competing
calls to the same non-shareable method). The presence of state in objects creates history
dependencies on resource usage, and introduces a grain of resource sensitiveness in our
model, as discussed in the Introduction, and illustrated in the next example.

Spatial-Behavioral Types, Distributed Services, and Resources 105

Example 2.10. Consider the object S defined thus

S � server[init() = s!(nil)
open() = let r = pool.alloc() in (s?;s!(r))
use() = let r = s? in (r.use();s!(r))
close() = let x = s? in (pool.free(x);s!(nil)) ; ;]

Our server S is a spooler that offers certain specific service by relying on a remote
resource pool to fetch appropriate providers. All resources (e.g., printers) in the pool
(pool) are supposed to implement the operation of interest (use). The server provides
the use service repeatedly to clients, by forwarding it through a locally cached refer-
ence. First, the server is initialized: by calling the init method the local reference is
set to nil. Afterwards, a client must open the service by calling the open method be-
fore using it (so that the server can acquire an available resource), and close it after use
by calling the close method (so that the server may release the resource). The server
implements these operations by accessing the pool through its alloc and free meth-
ods. The internal state of the server, hidden to clients, will always be either of the form
s(nil), or s(r) where r is a reference to an allocated resource. Notice how the idiom
let r = s? in (· · · ;s!(r)) expresses retrieving r from the local state, using it (in the · · ·
part), and storing it back again. The protocols described above must be strictly followed
to avoid runtime errors, due to resource non-availability. This would occur, e.g., if the
use operation is invoked right after close, an attempt to call the use method on a nil
reference will cause the system to crash. Our type system, presented in detail below,
prevents erroneous behaviors of this sort to happen, by ensuring that all services in a
network conform to well-defined resource usage protocols.

3 Spatial-Behavioral Types

In this section, we present a type system to discipline interactions on networks of ob-
jects, as motivated above. A type T in our system describes a usage pattern for an object.
Typically, an assertion of the form n : T states that the object n may be safely used as
specified by the type T . In general, the type of a composite system is expressed by an
assertion n1 : T1 | . . . | nk : Tk, specifying types of various objects. Such an assertion (or
typing environment) states that the system provides independent services at the names
ni, each one able to be safely used as specified by the type Ti respectively.

Definition 3.1 (Types). The set T of types is defined by the following abstract syntax:

T,U,V ::= ∈ T (Types)
stop (Stop) | T | U (Spatial Composition)

| T ∧U (Conjunction) | T ;U (Sequential Composition)
| T ◦ (Owned) | l(U)V (Method)
| α (Variable) | c(n : U)V (Thread)
| rec α.T (Recursion)

We may intuitively explain the meaning of the various kinds of types, by interpreting
them as certain properties of objects. An object satisfies stop if it is idle. An object

106 L. Caires

satisfies n : T | U if it can independently (in terms of resource separation) satisfy both
n : T and n : U . We may also understood such a typing as the specification of two
independent views for the object n. An object satisfies n : T ∧U if it may satisfy both
n : T and n : U , although not concurrently. Such an object may be used either as specified
by n : T or as specified by n : U , being the choice made by the client. An object satisfies
n : T ;U if can satisfy both n : T and n : U , in sequence. In particular, it will only be
obliged to satisfy n : U after being used as specified by n : T . The owned type n : T ◦

means that the object may be used as specified by T , and furthermore that this T view
is exclusively owned. For example, a reference of type n : T ◦ may be stored in the local
state of an object, or returned by a method call, although a reference of type n : T may
not, because of possible liveness constraints associated to the type T . This will become
clearer in the precise semantic definitions below.

An object satisfies n : l(U)V if it offers a method l that whenever passed an argument
of type U is ensured to return back a result of type V , and exercise, during the call, an
use of the argument conforming to type U . Thus, method types specify both safety and
liveness properties. The c(n :U)V types talk about running threads, and are not expected
to type source programs, but are useful to define the semantics of method types, as
explained below. Recursive types are interpreted as usual. We will not address in detail
recursive types in our technical development, for their treatment is fairly independent
from the features we want to focus, and should not raise special difficulties.

A typing environment (A,B,C,σ,δ) is a finite partial mapping from N ∪V to T . We
write η1 : T1, . . . ,ηn : Tn for the typing environment A with domain D(A)= {η1, . . . ,ηn}
such that A(ηi) = Ti, for i = 1, . . . ,n. Type operations stop, (T | U), (T ∧U), (T ;U)
and T ◦ extend to typing environments as follows. stop denotes any typing environment
(including the empty one) that assigns stop to any element in its domain. Given A and
B such that D(A) = D(B), we define environments stop, (A | B), (A;B), (A∧B), and
A◦, all with domain D(A), such that, for all η ∈ D(A), we have

stop(η) � stop (A | B)(η) � A(η) | B(η) (A;B)(η) � A(η);B(η)
(A∧B)(η) � A(η)∧B(η) A◦(η) � A(η)◦

Given a sequence T = T1, . . . ,Tn of types (or typing environments) we denote by Π(T)
the type (or typing environment) (T1 | · · · | Tn). Our type system is based on the follow-
ing forms of formal judgments:

A <: B (Subtyping) e :: A|σ � B|δ [U] (Expressions)
[M;t] :: A|σ � B|δ [U] (Objects) P :: A � B (Networks)

In an expression typing judgment, e is the expression to be typed, A and B are typing en-
vironments, and U is a type. The auxiliary type environments σ and δ keep information
about effects on the local state of objects, and will be further explained below (notice
the | symbol separating the global environments A and B from the state environments σ
and δ in judgments, not to be confused with the | type constructor). For networks, the
typing judgment assigns to the network P an “assume-guarantee” assertion of the form
A � B, cf. the adjunct of the composition operator of spatial logics [8]. If a judgment
P :: A � B is valid, then if P is composed with any network that satisfies the typing A,
one is guaranteed to obtain a network that satisfies the typing B.

Spatial-Behavioral Types, Distributed Services, and Resources 107

A | B <: B | A
(A | B) | C <:> A | (B | C)

(A;B) | (C;D) <: (A | C);(B | D)
A;(B;C) <:> (A;B);C

stop;A <:> A
A;stop <:> A

stop | A <:> A
A∧B <: A
A∧B <: B

η : rec α.U <:> η : U{α�rec α.U}

A <: A

A◦ <: stop
A◦ <: A

A◦ <: A◦◦

stop <: stop◦

(A | B)◦ <:> A◦ | B◦

A◦;B <: A◦ | B

A <: B
A◦ <: B◦

A <: B A <: C
A <: B∧C

A <: B B <: C
A <: C
A <: B

A | C <: B | C

A <: B
A;C <: B;C

A <: B
C;A <: C;B

η : U <: η : V
η : rec α.U <: η : rec α.V

Fig. 4. Subtyping Rules

nil :: A|σ � A|σ [stop]

v :: v : T ◦|σ � |σ [T]

a? :: |σ,a : T � |σ [T]

a!(v) :: v : T ◦|σ � |σ,a : T [stop]

v.l(u) :: v : l(U)V | u : U|σ � |σ [V]

n.c(v) :: n : c(U)V | v : U|σ � |σ [V]

[M;0] :: A◦| � | [T]
new[M] :: A◦| � | [T ◦]

A <: A′ e :: A′|σ � B′|δ [V ′] B′ <: B V ′ <:V
e :: A|σ � B|δ [V]

e :: A|σ � B|δ [U] e :: A|σ � B|δ [V]
e :: A|σ � B|δ [U ∧V]

e :: A|σ � B|δ [V]
e :: A | C|σ,φ � B | C|δ,φ [V]

e :: A|σ � B|δ [V]
e :: A;C|σ � B;C|δ [V]

ei :: Bi|σi � |δi [Vi] ei#D(Π(σ))e j (i �= j)
f :: C,x : V ◦|Π(δ) � E,x : stop|φ [U]
let x = e in f :: Π(B);C|Π(σ) � E|φ [U]

Fig. 5. Typing Rules (Expressions)

[M;0] :: A|σ � A|σ [stop]

M ≡ (N | l(x) = e) e :: A,x : U|σ � B,x : stop|δ [V]
[M;0] :: A|σ � B|δ [l(U)V]

e :: A,x : U|σ � B,x : stop|δ [V]
[M;c〈e{x�m}〉] :: A|σ � B|δ [c(m : U)V]

[M′;t ′] :: A|σ � B|δ [U] [M′′;t ′′] :: C|σ′ � D|δ′ [V]
[M′ | M′′;t ′ | t ′′] :: A | C|σ,σ′ � B | D|δ,δ′ [U | V]

[M;t] :: A|σ � B|δ [U] [M;0] :: B|δ � C|φ [V]
[M;t] :: A|σ � C|φ [U ;V]

[M;0] :: A◦| � | [T]
[M;0] :: A◦| � | [T ◦]

0 :: A � A

[M;t] :: A|si : Vi � B|δ [T]
n[M;si〈ni〉;t] :: A |Π(ni :Vi

◦) � n :T

P :: A � B Q :: C � D P‖Q
P | Q :: A | C � B | C

P :: A � B Q :: B � C P‖Q
P | Q :: A � C

P :: A � B n#A,B
(νn)P :: A � B

A <: A′ P :: A′ � B′ B′ <: B
P :: A � B

Fig. 6. Typing Rules (Objects and Networks)

108 L. Caires

What does it mean for a network to satisfy a typing? As discussed above, types are
interpreted as properties (sets of networks) expressible in a spatial logic. In Section 3.1
below we will present in detail a logical semantics of types, around which our soundness
proofs are organized. First, we present our type system as a formal system, and explain
from an intuitive perspective the various rules and main results. Our type system is com-
posed by four sets of rules, to derive judgments of the four forms listed above. In Fig. 4
we present the subtyping rules. Subtyping, which holds between typing environments, is
motivated by selected natural properties of types, and reflect valid semantic entailments
in our logic (cf. Proposition 3.4). A first set of rules states that (− | −) and stop define
a commutative monoid. The rule (A;B) | (C;D) <: (A | C);(B | D) expresses the basic
interaction principle between sequential and independent composition, allowing us to
derive, e.g., A | B <:A;B, expressing interleaving. The rules for (−)◦ are quite interest-
ing, notice that (−)◦ and (− | −) reveal a familiar algebraic structure. No so familiar is
the rule A◦;B <:A◦ | B, asserting a key principle involving sequential composition and
ownership: the owned usage A◦ is not active (yet), and thus B cannot causally depend
on it. A further set of rules express congruence principles, and unfolding of recursion.

Fig. 5 presents the typing rules for expressions. Intuitively, a expression typing judg-
ment e :: A|σ � B|δ [U] means that e, when given a services conforming to A, in a store
conforming to σ will, after termination, yield a value of type U , while leaving a store
conforming to δ, and the used services in a state where they may be still used as specified
by B. Notice that typing of expressions depends on typing of objects, through the rule
for new [M]. To intuitively grasp the meaning of our rules, we should keep in mind that
in a judgment e :: A|σ � B|δ [U], the return type U , as well as the stored types σ,δ, are
implicitly owned (we avoid writing, e.g., U◦ in the return type [U]). So, in the rule for a
value (name or variable), the value v may be returned only if its type is owned (T ◦). The
same happens in the rule for a write a!(v), where ownership of a T view of v is handed
over from the thread to the store. Notice how read / write effects are recorded in the
left (σ) and right (δ) environments. The rule for method call v.l(u) requires separation
between the method server v and the argument u. However, it does not force them to be
different objects: a general form of non-interference is here ensured by the spatial typ-
ing, stating that the method part and the argument part do not share resources. We also
have some congruence rules, a subtyping rule, and a rule for let. In the let rule, each
expression ei is required not to interfere with a concurrent e j (ei#e j), by reading and
writing in the local store. We assert e#Ne′ whenever e and e′ do not write (a!(v)) or read
(a?) using a common tag name a in N (e.g., we have a!();b? #{a} b!();c?). This condition
will be relaxed in Section 4, after the introduction of shared variables and types. Notice
that the values returned from each ei, whose evaluation depends on separate resources
Bi, are separate owned values, each one of type Vi

◦.
In Fig. 6, we present the typing rules for objects and networks. Intuitively, if the

judgement [M ; t] :: A|σ � B|δ [U] is valid, it states that any object n[M ; s ; t] where
the store s satisfies σ, may be composed with any system satisfying A and be safely
used according to type U . The residuals B and δ reflect the state of the external and
local resources after U has been exercised. Under this intuitive reading, all the rules for
objects are already quite transparent, and the same remark also applies to the rules for
networks. We discuss a bit the rule for object introduction. The rule requires that all state

Spatial-Behavioral Types, Distributed Services, and Resources 109

elements are distinctly named, and that each of the stored values ni is actually owned
by the object (typed by Vi

◦). Although in a perhaps subtle way, subtyping plays a key
role in the derivation of expression, objects and network judgments, the factorization
of a substantial amount of structural reasoning in the subtyping relation contributed to
keep our typing rules reasonably clean (we omit the obvious rule for subtyping object
judgments).

Example 2.6 (continued). We now assign types to the system components. For F and
H we may expect the typings F :: � f : Tf and H :: � h : Th, where we consider Tf �
rec α.flight();(book()∧free());α and Th � rec α.hotel();(book()∧free());α.
For the gateway G, let G :: bk : Tbank � gw : Tgw where Tbk � rec α.debit()bool;α
and Tgw � rec α.pay(book() ∧ free());α. Set Tbr � rec α.(flight() | hotel());
order();α. Now, the following judgment is derivable: (F | H | G | B) :: bk : Tbk � br :
Tbr. It asserts that (F | H | G | B), when composed with any system providing the Tbk

type at bk, will be safe for use at br as specified by Tbr. Such typing may be obtained
compositionally in many ways. A possible factoring is between broker B :: gw : Tgw, f :
Tf ,h : Th � br : Tbr and back-end (G | H | F) :: bk : Tbk � gw : Tgw, f : Tf ,h : Th.

We define the following variant of the Kleene iterator: T ⊗ � rec α.(T ;α)◦. Notice that
we have T⊗ <:> (T ;T ⊗)◦ <: stop∧ (T ;T ⊗). Hence, T ⊗ can be unfolded infinitely
many times into copies of T (as T ∗ does), but also be stored and returned by method
calls, since it is an owned type (while T ∗ may not).

Example 2.10 (continued). For the spooler S, we propose the following typings. First,
we abbreviate Tres � (use())⊗, Trm � rec α.alloc()Tres;free(Tres

◦);α and Tsrv �
recα.open();Tres;close();α. Then the following is derivable: S :: pool : Trm � server :
Tsrv. Notice how owner types (Tres

◦) are used to express ownership transfer of resources
from the pool to the spooler and back. In general, we would expect a resource pool such
as the one expected at pool to be shared by multiple users, while here the Trm type just
captures a very particular sequential usage. We will return to this in Section 4 below.

The safety properties ensured by our type system may be formally expressed in many
ways. The fundamental consequences of typing are stuck-freeness, from which, as dis-
cussed in Section 2, other properties follows, such as race absence for unshareable re-
sources, and conformance to usage protocols. We can thus already hint to our main
soundness result, in a somewhat specific form.

Claim. Let P :: � n : l(stop)stop. Then there is Q such that P
n.lc(nil)−→ Q and for all

R such that Q ⇒ R it is not the case that stuck(R).
This states that any network typed by n : l(stop)stop offers a method l at ob-

ject n that, after invoked, is ensured to induce a well-behaved distributed computation.
More general soundness results follow as direct consequence of the semantics of types
developed in the next section.

3.1 Logical Semantics of Types

The intended semantics for a typing environment A is that it denotes a certain property
�A�, in the sense that if P is assigned type A, then soundness of our type system ensures
that P ∈ �A�, or, in terms of logical satisfaction, that P |= A. In fact, we will not interpret

110 L. Caires

P |= A ∧B iff P |= A and P |= B
P |= A | B iff exists Q,R. P ≡ Q | R and Q |= A and R |= B
P |= A � B iff for all Q. if (P‖Q) and Q |= A then P | Q |= B
P |= ∀x.A iff for all n.P |= A{x�n}
P |= stop iff idle(P)
P |= A◦ iff P |= A and P |= stop
P |= A;B iff exists Q,R. P ≡ Q | R and Q |= A and

for all Q′. if Q
A�−→ Q′ then Q′ | R |= B

P |= n : l(m) iff exists Q. P
n.lc(m)−→ Q

P |= (ν)A iff exists Q. P ≡ (νm)Q and Q |= A and m#fn(A)
P |= n : c(A,r) iff for all R,Q. if R‖P and R |= A and P | R ⇒ Q then

¬stuck(Q) and

for all Q′,r. if Q n.c(r)−→ Q′ then exists R′,P′. Q′ ≡ R′ | P′ and R A−→ R′

P
stop�−→ P

P
U�−→ Q

P
U∧V�−→ Q

P
V�−→ Q

P
U∧V�−→ Q

P
U{x�n}�−→ Q

P
∀x.U�−→ Q

P
n.lc(m)−→ Q

P
n:l(m)�−→ Q

P ≡ (νm)R R
U�−→ Q

P
(ν)U�−→ Q

P ≡ P1 | P2 P1
U�−→ Q1 P2

V�−→ Q2 Q1 | Q2 ≡ Q

P
U | V�−→ Q

P
U�−→ R R

V�−→ Q

P
U;V�−→ Q

P ≡ R | Q R |= U

P
U◦

�−→ Q

R |= U P | R ⇒ n.c(r)−→ Q | R′ R
U�−→ R′

P
n:c(U,r)�−→ Q

Fig. 7. Satisfaction and Typed Usage

types as properties directly, but will rather embed types in a more primitive spatial logic,
so that each typing environment A is interpreted by a certain formula A. The satisfaction
predicate |= is inductively defined on the structure of formulas, in such a way that P |= A
implies that P enjoys certain general safety properties, in particular, stuck-freeness.

Definition 3.2 (Spatial Logic). The set F of formulas is defined by:

A,B,C,U,V ::= A∧ B | ∀x.A | A | B | A � B | stop | A;B | A◦ | n : c(A,r) | n : l(m) | (ν)A

As in [6,7,5], our logic includes (positive) first-order logic, the basic spatial operators
of composition and its adjunct with their standard meanings, and certain specific op-
erators, in particular some behavioral modalities. Instead of including action prefixing
modalities, we introduce a general sequential composition formula of the form A;B,
where A is interpreted both a property, and a usage pattern. Usage patterns are modeled
by typed usage, a transition relation between networks and labeled by formulas, noted
P A�−→ Q. The intuitive meaning of P A�−→ Q is that if P is used as specified by A, it
may evolve to Q. Since satisfaction and typed usage are defined by mutual recursion,
we present them in a single definition, for the sake of clarity.

Definition 3.3. Satisfaction, P |= A, and typed usage, P A�−→ Q are defined in Fig. 7.

To avoid clashes between fresh names introduced in the subsidiary transitions, the rule

for P
U | V�−→Q is subject to the proviso (fn(Q1)\ fn(P1))#(fn(Q2)\ fn(P2)).

Spatial-Behavioral Types, Distributed Services, and Resources 111

The semantics of n : l(m) and n : c(A,r) are defined from external actions of networks
(Def 2.9). Intuitively, a network P satisfies formula n : c(A,r) if it contains a thread c
that whenever passed a resource R satisfying A, is guaranteed to always evolve in a stuck
free way until a value r is returned, while exercising on R an usage as specified by A.
Thus, n : c(A,r) enforces both safety and liveness properties. Using these ingredients,
we now define our interpretation of types. Given a type environment A, we define a
formula �A� by considering the embedding:

�n : stop� � stop �n : U | V� � (ν)(�n : U� | �n : V �)
�n : U◦� � (ν)�n : U�◦ �n : U ;V� � (ν)(�n : U�;�n : V �)
�n : l(U)V � � stop∧∀u . n : l(u);�n : c(u : U)V � �n : U ∧V � � �n : U�∧�n : V�
�n : c(u : U)V� � ∀ r. c(�u : U�,r);�r : V ◦� �A,B� � �A� | �B�

Notice that all types are interpreted quite directly, except method and thread types,
which are interpreted in terms of finer grain primitives. Building on this interpretation,
we define validity of subtyping and typing judgments as follows:

valid(A <: B) � �A� ⊆ �B� valid(P :: A � B) � P ∈ �A � B�

From now on, we will sometimes write typing environments where formulas are ex-
pected, having in mind the interpretation just presented. Our interpretation enjoys sev-
eral nice properties. For example, the property stated in the Claim above (right before
Section 3.1) is a direct consequence of the definition of the logical predicate |=. We can
now state our main results:

Proposition 3.4 (Soundness of Subtyping). For all A, B, if A <: B then �A� ⊆ �B�.

Proof. We may show the result for all properties, not just encodings of types, with the
exception of congruence on the left for sequential composition. For that, we consider a
stronger statement and prove, by induction on the derivation of A <: B, that if A <: B
and �C � ⊆ �D � then �A;C � ⊆ �B;D �.

Theorem 3.5 (Soundness of Typing). If P :: A � B is derivable then P |= A � B.

Proof. The proof requires establishing a few facts about the satisfaction and typed usage
relations, and some Lemmas stating soundness of typing for expressions and objects
with respect to the intended notions of validity, which are given thus:

valid([M;si 〈ni〉; t] :: A|σ � B|δ [T]) �
ForAll n . n[M ; si 〈ni〉 ; t] |= (A | Π(ni : σ(ni)

◦) � (n : T);(B | Π(ni : δ(ni)
◦))

valid(e :: A,x : T|σ � B,x : S|δ [V]) �
Exists C, U . A <: C;B . x : T <: U;x : S . ForAll n,s,v,p .

n[; si 〈ni〉 ; c〈e{x1�p1}· · ·{xk�pk}〉] |=
(A | p : T | Π(ni : σ(ni)◦) � c(C | U,v);(B | p : S | Π(ni : δ(ni)◦) | v : V ◦)

The definition of validity for expression judgments is a bit more involved, as it requires
closure under substitution. Notice how our logic provides a suitable metalanguage in

112 L. Caires

which the properties of interest, explained above in intuitive terms, may be formally
expressed rather succinctly. As in typical semantical soundness proofs of logical sys-
tems, the proof proceeds by checking that each rule preserves validity.

The proof technique we have developed here may be seen as an instance of the general
method of logical relations, well understood in the setting of functional programming,
but still quite unexplored in concurrency. In a similar way, we build on a semantic
interpretation of typed terms, which is defined by induction on types (as formulas),
and then prove soundness by induction on typing derivations. Our result establishing
validity under substitution for derivable expression typing judgments then plays the role
of the so-called Basic Lemma in the logical relations method. Because types are directly
interpreted as properties of networks, our soundness results allows us to conclude:

Proposition 3.6. Let P |= A and A <: B;C. For all Q. if P
B�−→ Q then Q |= C.

Proposition 3.6 is a semantic counterpart of the more familiar syntactic subject reduc-
tion property. In our case, it is an immediate consequence of the soundness of subtyping
and the semantics of B;C. By interpreting the type n : l(U)V , we also have:

Proposition 3.7 (Stuck Freeness). Let P :: � n : l(U)V be derivable. Let R be such

that R |= m : U and R‖P. Then, for all Q such that P | R n.lc(m)−→ ⇒ Q it is not the case

that stuck(Q). Moreover, if Q n.c(r)−→ Q′ for some Q′, then Q′ |= r : V ◦.

4 Resource Sharing and Shared Types

Although our framework already seems fairly powerful, it still prevents useful forms of
sharing to be typable. While race absence may be a desirable correctness property of
concurrent programming in general, in many situations, races are not problematic if the
involved resources may be safely shared (e.g., read only variables). Moreover, many
system resources are deliberately assumed to be raceful (e.g., semaphores, buffers).
Sharing is also particularly useful to allow local communication between different
threads. In this section, we sketch how sharing is accommodated in our framework.
No major extensions to the calculus are needed, we just add replicated methods to the
basic syntax, and enrich structural congruence accordingly:

M ::= · · · | ∗l(x) = e ∗l(x) = e ≡ (∗l(x) = e | ∗l(x) = e)
∗l(x) = e ≡ (∗l(x) = e | l(x) = e)

The operational semantics in kept unmodified. Not surprisingly, more fundamental ex-
tensions relate to typing, and to the need to discipline shared access to the local store of
objects. To that end, we assume that the local state of every object is classified in a un-
shared part (as in our basic model), and a shared part. The intent is that while the types
of the values stored under a given tag in the unshared part may dynamically change
(cf. the spooler example 2.10), values stored under a given tag in the shared part must
satisfy a fixed invariant. Since the shared part may suffer interference from parallel run-
ning threads, we rely on this invariant to ensure soundness. To type such shared usages
it is then useful to introduce shared types, defined U! � rec α.(stop∧U ∧ (α | α)).

Spatial-Behavioral Types, Distributed Services, and Resources 113

Shared types satisfy interesting subtyping principles, namely U! <:>U! | U!, U! <:U
and U! <: stop. The first principle allows a service of type U! to be used simultane-
ously by an unbounded number of clients. We may also derive U! <:U ;(U!).

For a first (trivial) example, consider the object NL � nl[∗null()= nil ; ;]. It offers
a method null that whenever called returns nil. Clearly, the service provided by NL
may be shared by an arbitrary number of clients, without incurring in any execution
error (stuck state). So we expect the typing NL :: � (null()stop)! to be acceptable.
For another example, consider the code: BF � buf [∗put(x) = a!(x) | ∗get() = a? ; ;].
Object BF implements a resource pool, that keeps in its local state a bunch of references
for resources of a given type, say R◦. Provided that the invariant buf .a : R is maintained,
we expect to assign a typing BF :: � buf : (put(R◦)∧get()R)!. This type allows any
number of clients to share the pool, while using both methods, possibly concurrently.
Another possible typing for BF is BF :: � buf : put(R◦)! | (get()R)!. This latter typing
allows BF to be used as an (unordered) queue, in a context where a bunch of writers use
the buf : put(R◦)! view, while a bunch of readers use the buf : (get()R)! view of BF.
Notice that although the methods put and get interfere through the store, according to
our intended semantics their are still separable by (− | −) (up to changes in the store
conforming to the sharing invariant buf .a : R).

Example 2.10 (continued). Given an implementation of a resource pool RP similar to
BF above, typed by RP :: � pool : Tp where Tp � (free(Tres

◦)∧alloc()R)!, we expect
then to type S with S :: pool : Tp � server : Tsrv.

We now illustrate the technical development needed to introduce sharing in our type
system. Basically, we extend typing judgments with a further extra component (ε), that
specifies (by typing) the invariants on admissible interferences through the stores. We
illustrate our general approach with a few key rules.

a? :: |σ|ε,a : T � |σ [T] a!(v) :: v : T ◦|σ|ε,a : T � |σ [T]

[M;t] :: A|si : Vi|pi : Ui � B;δ [T]

n[M;si〈ni〉 | pi j

〈
ri j

〉
;t] :: A | Π(ni : Vi

◦) | Π(ri j : Ui
◦)|n.pi : Ui � n : T

The n.pi : Ui (or pi : Ui) slot in the judgments specifies admissible interference from the
environment, meaning that the store of object n may well be modified on cells pi 〈−〉
provided that they will always contain values of type Ui

◦. To interpret the extended
judgments, the logical predicate |= is modified so that the interpretation of c(A,v) also
takes into account interferences through the local store. Soundness proofs then follow
the same lines of those above; a full treatment of these issues is left for an extended
version of this paper.

5 Related Work and Discussion

We have presented a distributed object calculus able to model some essential aspects
of service-based systems. However, the main focus of this work is on notions of
spatial-behavioral typing, and their use to discipline interactions in distributed systems.
Although the design of our calculus was influenced by several object calculi and re-
lated models [1,3,13], the distributed remote method invocation semantics adopted has

114 L. Caires

not been much explored, even if it seems a natural choice when modeling distributed
services [12,18]. In our case, such a model seemed to be fundamental for our spatial
interpretation of types. Our type system enforces several safety properties, in particular
availability (method calls are always served), and race absence with respect to unshare-
able resource access. Such properties result from the fact that our types are able to
specify constraints on sequentiality of behavior, separation of resources, and dynamic
propagation of ownership, in a compositional way. Compositionality is certainly a de-
sirable property of any verification method, but it seems absolutely critical when one
considers distributed service based systems, which are by nature open-ended, and dy-
namically assembled by relying on local interface specifications.

Formally, our type system can be seen as a fragment of a spatial logic for concur-
rency [6,7,5], where the composition operator plays a key role in ensuring resource
control and non-interference. In our model, separation, up to structural congruence,
cuts across the structure of objects, in order to separate both global and local resources.
Our work draws inspiration on some specification techniques for the separation log-
ics [20,19], in particular our use of | to talk about a form of resource separation, even
if in the case of dynamic spatial logics the “resources” are active processes, quite un-
like with the separation logics, that talk about the passive state (the heap). We have also
introduced a sequential type composition operator and a owned type operator in our
type structure. The owned type constructor, as we have studied here, seems to be new.
Different notions of ownership and associated type systems have been proposed [4,11],
where ownership is considered a structural rather than a dynamic capability. The spatial
interpretation of composition, together with owned types, also distinguishes our ap-
proach from other type systems for concurrent calculi that also include a composition
operation [16,10]. In those approaches, parallel composition is interpreted behaviorally,
rather than as spatial separation, and subtyping corresponds to behavioral simulation,
rather than to logical entailment; the same observation applies to [17]. Protocols defin-
able in our type system are also reminiscent of session types [15], it would be interesting
to see how sessions might be represented in this setting.

Unlike most works on type systems for concurrent and distributed calculi, we have
adopted a semantic view of typing, and build on a logical relations technique to prove
soundness. The (original) understanding of types as properties has not always been a
common guiding principle in the design of types for concurrent calculi, where a syn-
tactical view seems to be dominant (for an exception, we must refer to [9]). It would
be also challenging to investigate how the compositional approach we have followed
might also be applicable to (at least) certain kinds of security properties [2].

Acknowledgments. This work was supported by IST Sensoria IP (IST-3-016004-IP-09
2005-2008), SpaceTimeTypes (POSI/EIA/55582/2004), and CITI.

References

1. Abadi, M., Cardelli, L.: A theory of primitive objects: Untyped and first-order systems. Inf.
Comput. 125(2) (1996)

2. Bartoletti, M., Degano, P., Ferrari, G.: Enforcing secure service composition. In: 18th IEEE
Computer Security Foundations Workshop (CSFW-18 2005), pp. 211–223. IEEE Computer
Society, Los Alamitos (2005)

Spatial-Behavioral Types, Distributed Services, and Resources 115

3. Di Blasio, P., Fisher, K.: A calculus for concurrent objects. In: Sassone, V., Montanari, U.
(eds.) CONCUR 1996. LNCS, vol. 1119, pp. 655–670. Springer, Heidelberg (1996)

4. Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation. In: Conference
Record of POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (2003)

5. Caires, L.: Behavioral and Spatial Properties in a Logic for the Pi-Calculus. In: Walukiewicz,
I. (ed.) FOSSACS 2004. LNCS, vol. 2987, Springer, Heidelberg (2004)

6. Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part I). Information and Computa-
tion 186(2), 194–235 (2003)

7. Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part II). Theoretical Computer
Science 3(322), 517–565 (2004)

8. Cardelli, L., Gordon, A.D.: Anytime, Anywhere. Modal Logics for Mobile Ambients. In:
27th ACM Symp. on Principles of Programming Languages, pp. 365–377. ACM, New York
(2000)

9. Castagna, G., De Nicola, R., Varacca, D.: Semantic subtyping for the π-calculus. In: 20th
IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 92–101. IEEE Computer
Society, Los Alamitos (2005)

10. Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: model checking message-passing
programs. In: Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 45–57 (2002)

11. Clarke, D.G., Drossopoulou, S.: Ownership, encapsulation and the disjointness of type and
effect. In: Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, OOPSLA 2002, pp. 292–310 (2002)

12. Boreale, M., et al.: SCC: a Service Centered Calculus. In: WS-FM 2006. LNCS, Springer,
Heidelberg (2006)

13. Gordon, A.D., Hankin, P.D.: A concurrent object calculus: Reduction and typing. Electr.
Notes Theor. Comput. Sci. 16(3) (1998)

14. Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Inf. Com-
put. 173(1), 82–120 (2002)

15. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for struc-
tured communication-based programming. In: Hankin, C. (ed.) ESOP 1998 and ETAPS
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

16. Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. In: POPL 2001: 28th
Annual Symposium on Principles of Programming Languages (2001)

17. Igarashi, A., Kobayashi, N.: Resource usage analysis. In: POPL 2002: The 29th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 331–342 (2002)

18. Misra, J., Cook, W.R.: Computation orchestration: A basis for wide-area computing. Journal
of Software and Systems Modeling (2006)

19. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Gardner, P., Yoshida, N.
(eds.) CONCUR 2004. LNCS, vol. 3170, pp. 49–67. Springer, Heidelberg (2004)

20. Reynolds, J.C.: Separation Logic: A Logic for Shared Mutable Data Structures. In: Third
Annual Symposium on Logic in Computer Science, Copenhagen, Denmark, IEEE Computer
Society, Los Alamitos (2002)

Integration of a Security Type System into a
Program Logic�

Reiner Hähnle1, Jing Pan2, Philipp Rümmer1, and Dennis Walter1

1 Department of Computer Science and Engineering,
Chalmers University of Technology and Göteborg University

2 Department of Mathematics and Computer Science,
Eindhoven University of Technology

Abstract. Type systems and program logics are often conceived to be at
opposing ends of the spectrum of formal software analyses. In this paper
we show that a flow-sensitive type system ensuring non-interference in
a simple while language can be expressed through specialised rules of a
program logic. In our framework, the structure of non-interference proofs
resembles the corresponding derivations in a recent security type system,
meaning that the algorithmic version of the type system can be used as
a proof procedure for the logic. We argue that this is important for
obtaining uniform proof certificates in a proof-carrying code framework.
We discuss in which cases the interleaving of approximative and precise
reasoning allows us to deal with delimited information release. Finally, we
present ideas on how our results can be extended to encompass features
of realistic programming languages like Java.

1 Introduction

Formal verification of software properties has recently attracted a lot of interest.
An important factor in this trend is the enormously increased need for secure
applications, particularly in mobile environments. Confidentiality policies can
often be expressed in terms of information flow properties. Existing approaches
to verification of such properties mainly fall into two categories: the first are
type-based security analyses ([20] gives an overview), whereas the second are
deduction-based employing program logics (e.g. [13, 5, 9]).

It is often noted that type-based analyses have a very logic-like character:
A language for judgements is provided, a semantics that determines the set of
valid judgments, and finally type rules to approximate the semantics mechan-
ically. Type systems typically can trade a precise reflection of the semantics
of judgments for automation and efficiency: many valid judgments are rejected.

� This work was funded in part by a STINT institutional grant and by the Information
Society Technologies programme of the European Commission, Future and Emerging
Technologies under the IST-2005-015905 MOBIUS project. This article reflects only
the authors’ views and the Community is not liable for any use that may be made
of the information contained therein.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 116–131, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Integration of a Security Type System into a Program Logic 117

For program logics, the situation is quite the opposite: Calculi try to capture the
semantics as precisely as possible and therefore have significantly higher com-
plexity than type systems. Furthermore, due to the richer syntax of program
logics – compared to the judgments in the type world – the framework is more
general and the same program logic can be used to express and reason about
different kinds of program properties.

The main contributions of this paper are: we construct a calculus for a pro-
gram logic that naturally simulates the rules of a flow-sensitive type system for
secure information flow. We prove soundness of the program logic calculus with
respect to the type system. The so obtained interpretation of the type system in
dynamic logic yields increased precision and opens up ways of expressing proper-
ties beyond pure non-interference. Concretely, we are able to prove the absence
of exceptions in certain cases, and we can express delimited information release.
Therefore, we can speak of an integration of a security type system into program
logic.

A crucial benefit of the integration is that we obtain an automatic proof
procedure for non-interference formulae: because of the similarity between the
program logic calculus and the type rules, it is possible to mechanically translate
type derivations to deduction proofs in the program logic. At the same time,
certain advantages over the type system in terms of precision (Sect. 5) come for
free without sacrificing automation.

The paper is organised as follows. In Section 2 we argue that a formal con-
nection between type systems and program logics fits nicely into a verification
strategy for advanced security policies of mobile Java programs based on proof-
carrying-code (PCC). Section 3 introduces the terminology used in the rest of
the paper. In Section 4 we define and discuss our program logic tailored to non-
interference analysis. Our ideas for increasing the precision of the calculus and
for covering delimited information release are given in Section 5. Due to lack of
space, we could not include proofs in this paper. An extended version with all
proofs is provided at [10].

2 Integrating Type Systems and Program Logics

We think that the integration of type systems and program logics is an important
ingredient to make security policy checks scale up to mobile code written in
modern industrial programming languages.

Certificates for Proof-Carrying Code. For the security infrastructure of mobile,
ubiquituous computing it is essential that security policies can be enforced lo-
cally on the end-user device without requiring a secure internet connection to a
trusted authentication authority. In the EU project Mobius

1 this infrastructure
is based on the proof-carrying code (PCC) technology [16]. The basic idea of
PCC is to provide a formal proof that a security policy holds for a given appli-
cation, and then to hand down to the code consumer (end user) not only the

1 mobius.inria.fr/twiki/bin/view/Mobius

mobius.inria.fr/twiki/bin/view/Mobius

118 R. Hähnle et al.

application code, but also a certificate that allows to reconstruct the security
proof locally with low overhead. Therefore, the end user device must run a proof
checker, and, in a standard PCC architecture [16], also a verification condition
generator, because certificates do not contain aspects of programs. The latter
makes the approach unpractical for devices with limited resources. In addition,
the security policies considered in Mobius [14] are substantially more complex
than the safety policies originally envisioned in PCC. In foundational PCC [4]
this is dispensed with at the price of including the formal semantics of the target
language in the proof checker. The size of the resulting proof certificates makes
this approach impractical so far. In the case of an axiomatic semantics as used
in the verification system employed in the present paper [1], it seems possible to
arrive at a trusted code base that is small enough. In the type-based version of
PCC the trusted code base consists of a type checker instead of a proof checker.
The integration of a type system for secure information flow into a program logic
makes it possible to construct uniformly logic-based certificates, and no hybrid
certificates need to be maintained. As a consequence, the PCC architecture is
simplified and the trusted code base is significantly reduced. Efforts that go into
similar directions in the sense that the scope of certificates is extended include
Configurable PCC [17] and Temporal Logic PCC [8].

Synergies from Combining Type-Based and Deduction-Based Verification. The
possibility to combine type-based and deduction-based reasoning in one frame-
work leads to a number of synergies. In an integrated type- and deduction-based
framework it is possible to increase the precision of the analysis dynamically on
demand. Type systems ignore the values of variables. In a deduction framework,
however, one can, e.g., prove that in the program “if (b) y = x ; if (¬b) z = y ;”
the variables z and x are independent, because the value of b always excludes the
path through one of the conditionals. Note that it is not necessary to track the
values of all variables to determine this: only the value of b matters in the ex-
ample. More realistic examples are in Sect. 5.

A further opportunity offered by the integration of type-based analysis into an
expressive logical framework is the formulation of additional security properties
without the need for substantial changes in the underlying rule system or the
deduction engine. To illustrate this point we show in Sect. 5 that it is possible
to express delimited information release in our program logic.

3 Background and Terminology

3.1 Non-interference Analysis

Generally speaking, a program has secure information flow if no knowledge about
some given secret data can be gained by executing this program. Whether or not
a program has secure information flow can hence only be decided according to a
given security policy discriminating secret from public data. In our considerations
we adopt the common model where all input and output channels are taken to
be program variables. The semantic concept underlying secure information flow

Integration of a Security Type System into a Program Logic 119

then is that of non-interference: nothing can be learned about a secret initially
stored in variable h, by observing variable l after program execution, if the initial
value of h does not interfere with the final value of l. Put differently, the final
value of l must be independent of the initial value of h.

This non-interference property is commonly established via security type sys-
tems [20, 12, 21, 2], where a program is deemed secure if it is typable according
to some given policy. Type systems are used to perform flow-sensitive as well
as flow-insensitive analyses. Flow-insensitive approaches (e.g. [21]) require every
subprogram to be well-typed according to the same policy. Recent flow-sensitive
analyses [12, 2] allow the types of variables to change along the execution path,
thereby providing more flexibility for the programmer. Like these type systems,
the program logic developed in this paper will be termination insensitive, mean-
ing that a security guarantee is only made about terminating runs of the program
under consideration.

The type system of Hunt & Sands [12] is depicted in Fig. 1. The type p repre-
sents the security level of the program counter and serves to eliminate indirect
information flow. The remaining components of typing judgments are a program
α and two typing functions ∇, ∇′ : PVar → L mapping program variables to their
respective pre- and post-types. The type system is parametric with respect to
the choice of security types; it only requires them to form a (complete) lattice L.
In this paper, we will only consider the most general2 lattice P(PVar). One may
thus think of the type ∇(v) of a variable v as the set of all variables that v’s value
may depend on at a given point in the program. A judgment p �HS ∇ { α } ∇′

states that in context p the program α transforms the typing (or dependency
approximation) ∇ into ∇′. We note that rule Assign

HS gives the system its
flow-sensitive character, stating that variable v’s type is changed by an assign-
ment v = E to E’s type as given by the pre-typing ∇ joined with the context
type p. The type t of an expression E in a typing ∇ can simply be taken to be
the join of the types ∇(v) of all free variables v occurring in E, which we denote
by ∇ � E : t. Joining with the context p is required to accomodate for leakage
through the program context, as in the program “if (h) {l = 1} {l = 0)}”, where
the initial value of h is revealed in the final value of l. A modification of the con-
text p can be observed, e.g., in rule If

HS, where the subderivation of the two
branches of an if statement must be conducted in a context lifted by the type of
the conditional.

3.2 Dynamic Logic with Updates

Following [9], the program logic that we investigate is a simplified version of
dynamic logic (DL) for JavaCard [6]. The most notable difference to standard
first-order dynamic logic for the simple while-language [11] is the presence of
an explicit operator for simultaneous substitutions (called updates [19]). While
updates become particularly useful when more complicated programming lan-
guages (with arrays or object-oriented features) are considered, in any case, they
enable a more direct relation between program logic and type systems.
2 In the sense that any other type lattice is subsumed by it, see [12, Lem. 6.8].

120 R. Hähnle et al.

p �HS ∇ { } ∇ Skip
HS

∇ � E : t

p �HS ∇ { v = E } ∇[v �→ p � t]
Assign

HS

p �HS ∇ { α1 } ∇′ p �HS ∇′ { α2 } ∇′′

p �HS ∇ { α1 ; α2 } ∇′′ Seq
HS

∇ � b : t p � t �HS ∇ { αi } ∇′ (i = 1, 2)

p �HS ∇ { if b α1 α2 } ∇′ If
HS

∇ � b : t p � t �HS ∇ { α } ∇
p �HS ∇ { while b α } ∇ While

HS

p1 �HS ∇1 { α } ∇′
1

p2 �HS ∇2 { α } ∇′
2

Sub
HS

p2 � p1, ∇2 � ∇1, ∇′
1 � ∇′

2

Fig. 1. Hunt & Sands’ flow-sensitive type system for information flow analysis

A signature of DL is a tuple (Σ, PVar, LVar) consisting of a set Σ of function
symbols with fixed, non-negative arity, a set PVar of program variables and of
a countably infinite set LVar of logical variables. Σ, PVar, LVar are pairwise
disjoint. Because some of our rules need to introduce fresh function symbols, we
assume that Σ contains infinitely many symbols for each arity n. Further, we
require that a distinguished nullary symbol TRUE ∈ Σ exists. Rigid terms tr,
ground terms tg, terms t,3 programs α, updates U and formulae φ are then
defined by the following grammar, where f ∈ Σ ranges over functions, x ∈ LVar
over logical variables and v ∈ PVar over program variables:

tr ::= x | f(tr, . . . , tr) tg ::= v | f(tg, . . . , tg)
t ::= tr | tg | f(t, . . . , t) | { U } t U ::= ε | v := t, U

φ ::= φ ∧ φ | ∀x. φ | . . . | t = t | [α] φ | { U } φ

α ::= α ; . . . ; α | v = tg | if tg α α | while tg α

For the whole paper, we assume a fixed signature (Σ, PVar, LVar) in which the
set PVar = {v1, . . . , vn} is finite, containing exactly those variables occurring in
the progam under investigation.

A structure is a pair S = (D, I) consisting of a non-empty universe D and
an interpretation I of function symbols, where I(f) : Dn → D if f ∈ Σ has ar-
ity n. Program variable assignments and variable assignments are mappings
δ : PVar → D and β : LVar → D. The space of all program variable assignments
over the universe D is denoted by PAD = PVar → D, and the corresponding flat
domain by PAD

⊥ = PAD ∪ {⊥}, where δ
 δ′ iff δ = ⊥ or δ = δ′.

3 Both rigid terms and ground terms are terms.

Integration of a Security Type System into a Program Logic 121

While-programs α are evaluated in structures and operate on program variable
assignments. We use a standard denotational semantics for such programs

[[α]]S : PAD → PAD
⊥

and define, for instance, the meaning of a loop “while b α” through

[[while b α]]S =def

⊔

i

wi, wi : PAD → PAD
⊥

w0(δ) =def ⊥, wi+1(δ) =def

{
(wi)⊥([[α]]S(δ)) for valS,δ(b) = valS(TRUE)
δ otherwise

where we make use of a ‘bottom lifting’: (f)⊥(x) = if (x = ⊥) then ⊥ else f(x).
Likewise, updates are given a denotation as total operations on program vari-

able assignments. The statements of an update are executed in parallel and
statements that literally occur later can override the effects of earlier statements:

[[U]]S,β : PAD → PAD

[[w1 := t1, . . . , wk := tk]]S,β(δ) =def
(· · · ((δ[w1 �→ valS,β,δ(t1)])[w2 �→ valS,β,δ(t2)]) · · ·)[wk �→ valS,β,δ(tk)]

where (δ[w �→ a])(v) = if (v = w) then a else δ(v) are ordinary function updates.
Evaluation valS,β,δ of terms and formulae is mostly defined as it is common for

first-order predicate logic. Formulas are mapped into a Boolean domain, where
tt stands for semantic truth. The cases for programs and updates are

valS,β,δ([α] φ) =def

{
valS,β,[[α]]S(δ)(φ) for [[α]]S(δ) �= ⊥
tt otherwise

valS,β,δ({ U } φ) =def valS,β,[[U]]S,β(δ)(φ)

We interpret free logical variables x ∈ LVar existentially: a formula φ is valid
iff for each structure S = (D, I) and each program variable assignment δ ∈ PAD

there is a variable assignment β : LVar → D such that valS,β,δ(φ) = tt. Likewise,
a sequent Γ �dl Δ is called valid iff

∧
Γ →

∨
Δ is valid.

The set of unbound variables occurring in a term or a formula t is denoted by
vars(t) ⊆ PVar ∪ LVar. For program variables v ∈ PVar, this means v ∈ vars(t)
iff v turns up anywhere in t. For logical variables x ∈ LVar, we define x ∈ vars(t)
iff x occurs in t and is not in the scope of ∀x or ∃x.

We note that the semantic notion of non-interference can easily be expressed
in the formalism of dynamic logic: One possibility [9] is to express the variable
independence property introduced above as follows. Assuming the set of program
variables is PVar = {v1, . . . , vn}, then vj only depends on v1, . . . , vi if variation
of vi+1, . . . , vn does not affect the final value of vj :

∀u1, . . . , ui. ∃r. ∀ui+1, . . . , un. { vi := ui }1≤i≤n [α] (vj = r) . (1)

122 R. Hähnle et al.

The particular use of updates in this formula is a standard trick to quantify
over program variables which is not allowed directly: in order to quantify over
all values that a program variable v occurring in a formula φ can assume, we
introduce a fresh logical variable u and quantify over the latter. In the following
we use quantification over program variables as a shorthand, writing ∀̇v. φ for
∀u. { v := u } φ. One result of this paper is that simple, easily automated proofs
of formulae such as (1) are viable in at least those cases where a corresponding
derivation in the type system of Hunt and Sands exists.

4 Interpreting the Type System in Dynamic Logic

We now present a calculus for dynamic logic in which the rules involving pro-
gram statements employ abstraction instead of precise evaluation. The calculus
facilitates automatic proofs of secure information flow. In particular, when prov-
ing loops the burden of finding invariants is reduced to the task of providing a
dependency approximation between program variables. There is a close corre-
spondence to the type system of [12] (Fig. 1). Intuitively, state updates in the
DL calculus resemble security typings in the type system: updates arising dur-
ing a proof will essentially take the form { v := f(. . . vars . . .) }, where the vars
form the type of v in a corresponding derivation in the type system. To put
our observation on a formal basis, we prove the soundness of the calculus and
show that every derivation in the type system has a corresponding proof in our
calculus.

The Abstraction-based Calculus. We introduce extended type environments
as pairs (∇, I) consisting of a typing function ∇ : PVar → P(PVar) and an
invariance set I ⊆ PVar used to indicate those variables whose value does not
change after execution of the program. We write ∇v for the syntactic sequence
of variables w1, . . . , wk with arbitrary ordering when ∇(v) = {w1, . . . , wk} and
∇C

v for a sequence of all variables not in ∇(v). Ultimately, we want to prove
non-interference properties of the form

{ α } ⇓ (∇, I) ≡def

∧

v∈PVar

{
∀̇v1 · · · vn. ∀u. { v := u }[α] v = u , v ∈ I

∀̇∇v. ∃r. ∀̇∇C
v . [α] v = r , v �∈ I

(2)

where we assume PVar = {v1, . . . , vn}. Validity of a judgment { α } ⇓ (∇, I)
ensures that all variables in the invariance set I remain unchanged after exe-
cution of the program α, and that any variable v of the rest only depends on
variables in ∇(v). The invariance set I corresponds to the context p that turns
up in judgments p �HS ∇ { α } ∇′: while the type system ensures that p is a
lower bound of the post-type ∇′(v) of variables v assigned in α, the set I can
be used to ensure that variables with low post-type are not assigned (or, more
precisely, not changed). The equivalence is formally stated in Lem. 2.

In the proof process we want to abstract program statements “while b α”
and “if b α1 α2” into updates modelling the effects of these statements. Thus

Integration of a Security Type System into a Program Logic 123

we avoid having to split up the proof for the two branches of an if-statement, or
having to find an invariant for a while-loop. Extended type environments capture
the essence of these updates: the arguments for the abstraction functions and
the unmodified variables. They are translated into updates as follows:

upd(∇, I) =def { v := fv(∇v) }v∈PVar\I

ifUpd(b, ∇, I) =def { v := fv(b, ∇v) }v∈PVar\I

The above updates assign to each v not in the invariance set I a fresh function
symbol fv whose arguments are exactly the variables given by the type ∇(v).
In a program “if b α1 α2” the final state may depend on the branch condition
b, so the translation ifUpd ‘injects’ the condition into the update. This is the
analogon of the context lifting present in If

HS. For the while-rule, we transform
the loop body into a conditional, so that we must handle the context lifting only
in the if-rule.

Figs. 2 and 3 contain the rules for a sequent calculus. We have only included
those propositional and first-order rules (the first four rules of Fig. 2) that are
necessary for proving the results in this section; more rules are required to make
the calculus usable in practice. The calculus uses free logical variables X ∈ LVar
(ex-right

dl) and unification (close-eq
dl) for handling existential quantifica-

tion, where the latter rule works by applying the unifier of terms s and t to
the whole proof tree. We have to demand that only rigid terms (not containing
program variables) are substituted for free variables, because free variables can
also occur in the scope of updates or the box modal operator. Skolemisation
(all-right

dl) has to collect the free variables that occur in a quantified formula
to ensure soundness. By definition of the non-interference properties (2) and by
the design of the rules of the dynamic logic calculus it is sufficient to define
update rules for terms, quantifier-free formulae, and other updates. Such rules
can be used at any point in a proof to simplify expressions containing updates.

Rule Abstract
dl can be used to normalise terms occuring in updates to the

form f(. . . vars . . .). In rules If
dl and While

dl the second premiss represents
the actual abstraction of the program statement for a suitably chosen typing ∇
and invariance set I. This abstraction is justified through the first premiss in
terms of another non-interference proof obligation. The concretisation operator
γ∗ (cf. [12]) of rule While

dl is generally defined as

γ∗
∇1

(∇2)(x) =def {y ∈ PVar | ∇1(y) ⊆ ∇2(x)} (x ∈ PVar) . (3)

Together with the side condition that for all v we require v ∈ ∇(v), a clo-
sure property on dependencies is ensured: w ∈ γ∗

∇(∇)(v) implies γ∗
∇(∇)(w) ⊆

γ∗
∇(∇)(v): if a variable depends on another, the latter’s dependencies are in-

cluded in the former’s. This accounts for the fact that the loop body can be
executed more than once, which, in general, causes transitive dependencies.

Function Arguments Ensure Soundness. A recurring proof obligation in a non-
interference proof is a statement of the form ∀̇∇v. ∃r. ∀̇∇C

v . [α] v = r. To prove
this statement without abstraction essentially is to find a function of the variables

124 R. Hähnle et al.

Γ �dl φ, Δ Γ �dl ψ, Δ

Γ �dl φ ∧ ψ, Δ
and-right

dl

Γ �dl φ[x/f(X1, . . . , Xn)], Δ

Γ �dl ∀x. φ, Δ
all-right

dl {X1, . . . , Xn} = vars(φ) ∩ LVar\{x},
f fresh

Γ �dl φ[x/X], ∃x. φ, Δ

Γ �dl ∃x. φ,Δ
ex-right

dl

X fresh

∗
[s ≡ t]

Γ �dl s = t, Δ
close-eq

dl

s, t unifiable (with rigid unifier)

(Γ �dl Δ)[x/f(vars(t))]

(Γ �dl Δ)[x/t]
abstract

dl

f fresh

Γ �dl { U } φ,Δ

Γ �dl { U } [] φ,Δ
Skip

dl
Γ �dl { U } { v := E } [. . .] φ, Δ

Γ �dl { U } [v = E ; . . .] φ, Δ
Assign

dl

�dl { αi } ⇓ (∇, I) (i = 1, 2)
Γ �dl { U } { ifUpd(b,∇, I) } [. . .] φ, Δ

Γ �dl { U } [if b α1 α2 ; . . .] φ, Δ
If

dl

�dl { if b α {} } ⇓ (γ∗
∇(∇), I)

Γ �dl { U } {upd(∇, I) } [. . .] φ, Δ

Γ �dl { U } [while b α ; . . .] φ, Δ
While

dl

v ∈ ∇(v) for all v ∈ PVar

Fig. 2. A dynamic logic calculus for information flow security. In the last four rules
the update { U } can also be empty and disappear.

∇v that yields the value of v under α for every given pre-state: one must find the
strongest post-condition w.r.t. v’s value. Logically, one must create this function
as a term for the existentially quantified variable r in which the ∇C

v do not occur.
In a unification-based calculus the occurs check will let all those proofs fail where
an actual information flow takes places from ∇C

v to v. The purpose of function
arguments for fv is exactly to retain this crucial property in the abstract version
of the calculus. We must make sure that a function fv – abstracting the effect
of α on v – gets at least those variables as arguments that are parts of the term
representing the final value of v after α.

Theorem 1 (Soundness). The rules of the DL calculus given in Figs. 2 and 3
are sound: the root of a closed proof tree is a valid sequent.

Simulating Type Derivations in the DL Calculus. In order to show
subsumption of the type system in the logic, we first put the connection be-
tween invariance sets and context on solid ground. It suffices to approximate the

Integration of a Security Type System into a Program Logic 125

{ w1 := t1, . . . , wk := tk } wi →dl ti if wj �= wi for i < j ≤ k

{ w1 := t1, . . . , wk := tk } t →dl t if w1, . . . , wk �∈ vars(t)

{ U } f(t1, . . . , tn) →dl f({ U } t1, . . . , { U } tn)

{ U } (t1 = t2) →dl { U } t1 = { U } t2

{ U } ¬φ →dl ¬{ U } φ

{ U } (φ1 ∗ φ2) →dl { U } φ1 ∗ { U } φ2 for ∗ ∈ {∨, ∧}

{ U } { w1 := t1, . . . , wk := tk } φ →dl { U, w1 := { U } t1, . . . , wk := { U } tk } φ

Fig. 3. Application rules for updates in dynamic logic, as far as they are required for
Lem. 6. Further application and simplification rules are necessary in general.

invariance of variables v with the requirement that v must not occur as left-hand
side of assignments (Lhs(α) is the set of all left-hand sides of assignments in α).

Lemma 2. In the type system of [12], see Fig. 1, the following equivalence holds:

p �HS ∇ { α } ∇′ iff ⊥ �HS ∇ { α } ∇′ and f.a. v ∈ Lhs(α) : p
 ∇′(v)

Furthermore, we can normalize type derivations thanks to the Canonical Deriva-
tions Lemma of [12]. The crucial ingredient is the concretisation operator γ∗

defined in (3).

Lemma 3 (Canonical Derivations)

⊥ �HS ∇ { α } ∇′ iff ⊥ �HS Δ0 { α } γ∗
∇(∇′) where Δ0 = λx. {x}

For brevity, we must refer to Hunt and Sands’ paper for details, but in the
setting at hand one can intuitively take Lemma 3 as stating that any typing
judgment can also be understood as a dependency judgment: the typing on the
left-hand side is equivalent to the statement that the final value of x may depend
on the initial value of y only if y appears in the post-type, or dependence set,
γ∗
∇(∇′)(x).
The type system of Fig. 4 only mentions judgments with a pre-type Δ0 as

depicted on the right-hand side of the equivalence in Lemma 3. Further, the
context p has been replaced by equivalent side conditions (Lemma 2), and rule
Seq

HS is built into the other rules, i.e., the rules always work on the initial
statement of a program. Likewise, rule Sub

HS has been integrated in Skip
cf and

While
cf . The type system is equivalent to Hunt and Sands’ system (Fig. 1):

Lemma 4

⊥ �HS Δ0 { α } ∇ if and only if �cf Δ0 { α } ∇

The proof proceeds in multiple steps by devising intermediate type systems,
each of which adds a modification towards the system in Fig. 4 and which is
equivalent to Hunt and Sands’ system.

126 R. Hähnle et al.

Obviously, due to the approximating character of If
dl and While

dl (and the
lack of arithmetic), our DL calculus is not (relatively) complete in the sense of
[11]. For the particular judgements { α } ⇓ (∇, I) the calculus is, however, not
more incomplete than the type system of Fig. 1: every typable program can also
be proven secure using the DL calculus4.

Theorem 5

⊥ �HS Δ0 { α } ∇ implies �dl { α } ⇓ (∇, ∅)

The proof of the theorem is constructive: A method for translating type deriva-
tions into DL proofs is given. The existence of this translation mapping shows
that proving in the DL calculus is in principle not more difficult than typing
programs using the system of Fig. 1.

The first part of the translation is accomplished by Lem. 4, which covers
structural differences between type derivations and DL proofs. Applications of
the rules of Fig. 4 can then almost directly be replaced with the corresponding
rules of the DL calculus:

Lemma 6

�cf Δ0 { α } ∇ implies �dl { α } ⇓ (∇, ∅)

5 Higher Precision and Delimited Information Release

Many realistic languages feature exceptions as a means to indicate failure. The
occurrence of an exception can also lead to information leakage. Therefore, an
information flow analysis for such a language must, at each point where an
exception might possibly occur, either ensure that this will indeed not happen at
runtime or verify that the induced information flow is benign. The Jif system [15]
which implements a security type system for a large subset of the Java language
employs a simple data flow analysis to retain a practically acceptable precision
w.r.t. exceptions. The data flow analysis can verify the absence of null pointer
exceptions and class cast exceptions in certain cases. However, to enhance the
precision of this analysis to an acceptable level one is forced to apply a slightly
cumbersome programming style.

The need for treatment of exceptions is an example showing that we actually
gain something from the fact that our analysis is embedded in a more general
program logic: there is no need to stack one analysis on top of the other to scale
the approach up to larger languages, but we can coherently deal with added
features, in this case exceptions, within one calculus. In the precise version of the
calculus for JavaCard – as implemented in the KeY system [1] – exceptions are
handled like conditional statements by branching on the condition under which
4 The converse of Theorem 5 does not hold. In the basic version of the calculus of

Fig. 2, untypable programs like “if (h) {l = 1} {l = 0}” can be proven secure. Sect. 5
discusses how the precision of the DL calculus can be further augmented.

Integration of a Security Type System into a Program Logic 127

�cf Δ0 { } ∇ Skip
cf

v ∈ ∇(v) for all v ∈ PVar

Δ0 � E : t �cf Δ0 { . . . } γ∗
Δ0[v �→t](∇)

�cf Δ0 { v = E ; . . . } ∇ Assign
cf

Δ0 � b : t �cf Δ0 { . . . } γ∗
∇(∇′)

�cf Δ0 { αi } ∇ (i = 1, 2)

�cf Δ0 { if b α1 α2 ; . . . } ∇′ If
cf f.a. v ∈ Lhs(α1). t � ∇(v)

f.a. v ∈ Lhs(α2). t � ∇(v)

Δ0 � b : t �cf Δ0 { . . . } γ∗
∇(∇′)

�cf Δ0 { α } γ∗
∇(∇)

�cf Δ0 { while b α ; . . . } ∇′ While
cf v ∈ ∇(v) for all v ∈ PVar

f.a. v ∈ Lhs(α). t � γ∗
∇(∇)(v)

Fig. 4. Intermediate flow-sensitive type system for information flow analysis

∗
[f ′

l (TRUE) ≡ R]

odd(fh(R)) �dl f ′
l (TRUE) = R

close-eq
dl

odd(fh(R)) �dl f ′
l (odd(fh(R))) = R

apply-eq
dl

odd(fh(R)) �dl { l := fl(R), h := fh(R) } { l := f ′
l (odd(h)) } l = R

∗→dl

D

· · ·

∗
�dl { l = 0 } ⇓ (∇, {h})

∗
�dl { l = 1 } ⇓ (∇, {h}) D

odd(fh(R)) �dl { l := fl(R), h := fh(R) } [α] l = R
If

dl

�dl { l := fl(R), h := fh(R) } (odd(h) → [α] l = R)
∗→dl , imp-right

dl

�dl ∃r. ∀̇l. ∀̇h. (odd(h) → [α] l = r)
ex-right

dl,all-right
dl

�dl { α } ⇓ (∇, {h}, odd(h))
(Def),and-right

dl

Fig. 5. Non-interference proof with delimited information release: The precondition
odd(h) entails that (only) the parity of h is allowed to leak into l. A similar proof is
required for ¬odd(h). For sake of brevity, we use odd both as function and predicate,
and only in one step (apply-eq

dl) make use of the fact that odd(fh(R)) actually
represents the equation odd(fh(R)) = TRUE .

an exception would occur. An uncaught exception is treated as non-termination.
As an example, the division v1/v2 would have the condition that v2 is zero
(“.. ...” denotes a context possibly containing exception handlers):

v2 �= 0 �dl { w := v1/v2 } [.. ...] φ v2 = 0 �dl [.. throw E ...] φ

�dl [.. w = v1/v2 ...] φ .

If we knew v2 �= 0 at this point of the proof, implying that the division does
in fact not raise an exception, the right branch could be closed immediately.

128 R. Hähnle et al.

Because our DL calculus stores the values of variables (instead of only the type)
as long as no abstraction occurs, this information is often available: (i) rule
Assign

dl does not involve abstraction, which means that sequential programs
can be executed without loss of information, and (ii) invariance sets I in non-
interference judgments allow to retain information about unchanged variables
also across conditional statements and loops.

This can be seen for a program like “v = 2 ; while b α ; w = w/v” in which α
does not assign to v. By including v in the invariance set for “while b α” we can
deduce v = 2 also after the loop, and thus be sure that the division will succeed.
This is a typical example for a program containing an initialisation part that
establishes invariants, and a use part that relies on the invariants. The pattern
recurs in many flavours: examples are the initialisation and use of libraries and
the well-definedness of references after object creation. We are optimistic to
gather empirical evidence of our claim that the increased precision is useful in
practice through future experiments.

Increasing Precision. While our DL calculus is able to maintain state infor-
mation across statements, the rules If

dl and While
dl lose this information in

the first premisses, containing non-interference proofs for the statement bodies.
This makes it impossible to deduce that no exceptions can occur in the program
“v = 2 ; while b {w = w/v}”. As another shortcoming, the branch predicate is
not taken into account, so that absence of exceptions cannot be shown for a
program like “if (v �= 0) {w = 1/v} ”.

One way to remedy these issues might be to relax the first premisses in If
dl

and While
dl. The idea is to generalise non-interference judgments and introduce

preconditions φ under which the program must satisfy non-interference.

{ α } ⇓ (∇, I, φ) ≡def

∧

v∈PVar

{
∀̇v1 · · · vn. (φ → [α] v = u) , v ∈ I

∀̇∇v. ∃r. ∀̇∇C
v . (φ → [α] v = r) , v �∈ I

In an extended rule for if-statements, for instance, such a precondition can be
used to ‘carry through’ side formulae and state information contained in the
update U , as well as to integrate the branch predicates: we may assume arbitrary
preconditions φ1, φ2 in the branches if we can show that they hold before the
if-statement:

�dl { α1 } ⇓ (∇, I, φ1) �dl { α2 } ⇓ (∇, I, φ2)
Γ, { U } b = TRUE �dl { U } φ1, Δ Γ, { U } b �= TRUE �dl { U } φ2, Δ

Γ �dl { U } { ifUpd(b, ∇, I) } [. . .] φ, Δ

Γ �dl { U } [if b α1 α2 ; . . .] φ, Δ

Probably more interestingly, preconditions allow us to handle delimited infor-
mation release in the style of [9], i.e. situations in which non-interference does
not strictly hold and some well-defined information about secret values may be
released. Fig. 5 shows parts of a non-interference proof with delimited informa-
tion release for the program “α = if (odd(h)) {l = 0} {l = 1}”, in which one can
learn the parity of h by reading l. The typing ∇ is given by ∇(l) = ∅, ∇(h) = {h},
indicating that only declassified information flows into l.

Integration of a Security Type System into a Program Logic 129

6 Conclusion, Related and Future Work

In this paper we made a formal connection between type-based and logic-based
approaches to information flow analysis. We proved that every program that is
typeable in Hunt & Sands’ type system [12] has a proof in an abstract version
of dynamic logic whose construction is not more expensive than the type check.
We argued that an integrated logic-based approach fits well into a proof-carrying
code framework for establishing security policies of mobile software. In order to
support this claim we showed how to increase the precision of the program logic,
for example, to express declassification.

Related Work. The background for our work are a number of recent type-based
and logic-based approaches to information flow [20, 2, 9, 12]. Our concrete start-
ing points were the flow-sensitive type system of Hunt & Sands [12] and the
characterisation of non-interference in [9]. Amtoft & Banerjee [2] devised an
analysis with a very logic-like structure, that is however not more precise than
the type system by Hunt & Sands. In an early paper Andrews & Reitman [3]
developed a flow logic – one may also consider it a security type system – for
proving information flow properties of concurrent Pascal programs. They outline
a combination of their flow logic with regular Hoare logic, but keep the formulae
for both logics separated. Joshi & Leino [13] give logical characterisations of the
semantic notion of information flow, and their presentation in terms of Hoare
triples is similar in spirit to our basic formulation. Their results do, however, not
provide means to aid automated proofs of these triples. Finally, Beringer et al.
[7] presented a logic for resource consumption whose proof rules and judgements
are derived from a more general program logic; both logics are formalised in the
Isabelle/HOL proof assistant. Their approach is similar in spirit to the one pre-
sented here, since the preciseness of their derived logic is compared to an extant
type system for resource comsumption.

Future Work. On a technical level, we have not investigated the complexity of
the translation of HS type derivations to DL proofs (Theorem 5) and the size of
resulting proofs in detail. We believe that both can be linear in the size of type
derivations, although this requires a more efficient version of proof obligations
{ α } ⇓ (∇, I). Conceptually, the present work is only a starting point in the
integration of type-based and logic-based information-flow analysis. In addition
to non-interference and declassification, more complex security policies need to
be looked at. It has to be seen how well the notion of abstraction presented in
this paper is suited to express these. We also want to extend the program logic to
cover at least JavaCard, based on the axiomatisation in [6], as implemented in our
program verifier KeY. Ideas towards this goal have been worked out in [18], parts
of which are also presented in [10]. Finally, a suitable notion of proof certificate
and proof checking for proof-carrying code must be derived for dynamic logic
proofs of security policies. This is a substantial task to which a whole Work
Package within Mobius is devoted.

130 R. Hähnle et al.

Acknowledgments

We would like to thank Dave Sands for inspiring discussions and Andrei Sabelfeld
for reminding us of declassification. Thanks to Tarmo Uustalu for pointing
out [3].

References

[1] Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel,
W., Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool: in-
tegrating object oriented design and formal verification. Software and System
Modeling 4(1), 32–54 (2005)

[2] Amtoft, T., Banerjee, A.: Information flow analysis in logical form. In: Giacobazzi,
R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 100–115. Springer, Heidelberg (2004)

[3] Andrews, G.R., Reitman, R.P.: An axiomatic approach to information flow in
programs. ACM Transactions on Programming Languages and Systems 2(1), 56–
76 (1980)

[4] Appel, A.W.: Foundational Proof-Carrying code. In: Proc. 16th Annual IEEE
Symposium on Logic in Computer Science, pp. 247–258. IEEE Computer Society,
Los Alamitos, CA (2001)

[5] Barthe, G., D’Argenio, P.R., Rezk, T.: Secure Information Flow by Self-
Composition. In: Foccardi, R. (ed.) Proceedings of CSFW’04, pp. 100–114. IEEE
Press, Pacific Grove, USA (2004)

[6] Beckert, B.: A dynamic logic for the formal verification of Java Card programs. In:
Attali, I., Jensen, T. (eds.) JavaCard 2000. LNCS, vol. 2041, pp. 6–24. Springer,
Heidelberg (2001)

[7] Beringer, L., Hofmann, M., Momigliano, A., Shkaravska, O.: Automatic certifica-
tion of heap consumption. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS
(LNAI), vol. 3452, pp. 347–362. Springer, Heidelberg (2005)

[8] Bernard, A., Lee, P.: Temporal logic for proof-carrying code. In: Voronkov, A.
(ed.) CADE-18. LNCS (LNAI), vol. 2392, pp. 31–46. Springer, Heidelberg (2002)

[9] Darvas, A., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS,
vol. 3450, pp. 193–209. Springer, Heidelberg (2005)

[10] Hähnle, R., Pan, J., Rümmer, P., Walter, D.: On the integration of security type
systems into program logics. Technical report, Chalmers University of Technology
(2006), Preliminary version at www.cs.chalmers.se/∼philipp/IflowPaper.pdf

[11] Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. In: Foundations of Computing,
MIT Press, Cambridge (2000)

[12] Hunt, S., Sands, D.: On flow-sensitive security types. In: Symp. on Principles of
Programming Languages (POPL), ACM Press, New York (2006)

[13] Joshi, R., Leino, K.R.M.: A semantic approach to secure information flow. Science
of Computer Programming 37(1-3), 113–138 (2000)

[14] MOBIUS Project Deliverable D 1.1, Resource and Information Flow Security
Requirements (March 2006),
URL mobius.inria.fr/twiki/pub/DeliverablesList/WebHome/Deliv1-1.pdf

[15] Myers, A.C.: JFlow: Practical mostly-static information flow control. In: Sympo-
sium on Principles of Programming Languages, pp. 228–241 (1999)

www.cs.chalmers.se/~philipp/IflowPaper.pdf
mobius.inria.fr/twiki/pub/DeliverablesList/WebHome/Deliv1-1.pdf

Integration of a Security Type System into a Program Logic 131

[16] Necula, G.C., Lee, P.: Safe, untrusted agents using proof-carrying code. In: Vi-
gna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 61–91. Springer,
Heidelberg (1998)

[17] Necula, G.C., Schneck, R.R.: A sound framework for untrustred verification-
condition generators. In: Proc. IEEE Symposium on Logic in Computer Sci-
ence LICS, Ottawa, Canada, pp. 248–260. IEEE Computer Society, Los Alamitos
(2003)

[18] Pan, J.: A theorem proving approach to analysis of secure information flow using
data abstraction. Master’s thesis, Chalmers University of Technology (2005)

[19] Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
422–436. Springer, Heidelberg (2006)

[20] Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

[21] Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
Journal of Computer Security 4(3), 167–187 (1996)

PRISMA: A Mobile Calculus with Parametric
Synchronization�

Roberto Bruni1 and Ivan Lanese2

1 Computer Science Department, University of Pisa, Pisa, Italy
bruni@di.unipi.it

2 Computer Science Department, University of Bologna, Bologna, Italy
lanese@cs.unibo.it

Abstract. We present PRISMA, a parametric calculus that can be in-
stantiated with different interaction policies, defined as synchronization
algebras with mobility of names (SAMs). We define both operational
semantics and observational semantics of PRISMA, showing that the
second one is compositional for any SAM. We give examples based on
heterogeneous SAMs, a case study on Fusion Calculus and some simple
applications. Finally, we show that basic categorical tools can help to
relate and to compose SAMs and PRISMA processes in an elegant way.

1 Introduction

Since the pioneering papers by Robin Milner [16] and Tony Hoare [10], the use
of process description languages has kept proliferating at an impressive rate.
Though nowadays the most prominent calculus is the π-calculus [17], many vari-
ants of it exist (see, e.g., the nice commented survey in [4]), exploiting different
communication primitives and focusing on different aspects, but where interac-
tion is a key issue [18,8,3,1].

While process calculi are used for modeling different kinds of systems, ranging
from computer networks to biological systems, at different levels of abstraction,
typically each calculus relies on just one fixed communication mechanism. When
a different communication protocol is needed, either it is encoded using the avail-
able mechanism, and this may be quite difficult and may obfuscate the model,
or a new ad hoc calculus providing this primitive is developed. For instance, [7]
introduces a broadcast variant of π-calculus, while [6] proves that there is no
uniform encoding of it into the π-calculus.

In Service Oriented Computing (SOC) it is commonly understood that ser-
vices come with their own invocation policies (e.g., one-way or request-response),
so that calculi for SOC should face the coexistence of several interaction poli-
cies within the same model. We want to overcome the limitation of previous
proposals by allowing processes to interact using synchronization models tai-
lored to the specific application in mind. For instance, take a news server S
that interacts with news providers using a message passing protocol, but then
� Research supported by the Project FET-GC II IST 16004 Sensoria.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 132–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

PRISMA: A Mobile Calculus with Parametric Synchronization 133

uses broadcast to send the news to subscribed recipients. We consider basic
actions of the form xa�y where x is the channel where the interaction is per-
formed, a an action specifying the contribution to the interaction and �y a tuple
of parameters. Note the separation between the channel name and the action
executed on it, which is a distinctive feature of our approach. In particular, we
consider actions in and out respectively as input and output primitives for mes-
sage passing, and inb and outb for broadcast. Also, we use publish and news
as communication channels: the first is used for the interaction between the
news provider and the server, and the latter for sending news to their recipients.
Channel info is used as news value instead. Thus the server can be modeled as
S =!(x)publish in〈x〉.(news outb〈x〉|S′[x]) where (−) is name restriction, | is par-
allel composition, . is prefixing and ! is replication. Here S′[x] is a generic context
exploiting x. A news provider instead has the form P = (info)publish out〈info〉.
Consider the system P |S|C1|C2, where Ci = (y)news inb〈y〉.Usei [y] is a suitable
client, for each i. The components P and S can interact on channel publish, lead-
ing to S|(info)(news outb〈info〉|S′[info])|C1|C2. Then, a broadcast interaction
among three different components (a sender and two receivers) delivers the news
to the clients, leading in one step to S|(info)(S′[info]|Use1[info]|Use2[info]).

In the paper we show that many different protocols can be formalized as
synchronization algebras with mobility (SAMs) and how the above defined in-
teractions can be specified in a general framework. For the sake of presentation,
the set of primitives is kept to a minimal extent, but we conjecture that other
features (e.g., locations, ambients, encryption, probability) can be likely trans-
ferred from the literature. The main advantage of having a uniform framework
for expressing high-level synchronization mechanisms is that their formalization
becomes simpler, since SAMs are tools dedicated to that purpose, and there is
no need of, e.g., introducing special processes implementing the required syn-
chronization patterns on top of the available ones. Also, PRISMA allows for de-
veloping general theories and tools (i.e., independent from the synchronization
model). Finally, when expressed in a uniform framework, different synchroniza-
tion models can be more easily compared and integrated (e.g., the compound use
of different policies is rather straightforward). The name PRISMA (the Italian
for prism) is intended to expose the many communication facets of our calculus.

Although PRISMA is based on name fusion, it is reductive to see it just as an
extension of Fusion Calculus [18], because much more general interactions are
allowed in PRISMA. We have chosen fusion as the key primitive for mobility
since Fusion Calculus inherits the expressive power of π-calculus, while making
the communication primitive more symmetric and easy to generalize. In fact, in
π-calculus, input and output are treated ad hoc, and this gives no hint on how to
deal with actions that are neither inputs nor outputs, such as in the Hoare SAM
(Example 2). Anyway we think that our approach can capture most interaction
calculi, and in particular the π-calculus, but this complicates the technicalities
of the approach (see e.g. the approach in [3] to deal with distinctions).

SAMs improve in a crucial way synchronization algebras [19] (which stem
from ACP communication functions [2]), which were tailored for calculi such as

134 R. Bruni and I. Lanese

CCS and CSP, to keep them in line with more sophisticated mobile calculi for
scenarios such as Global Computing.

SAMs were first defined in [13], in the context of a graph transformation
framework called Synchronized Hyperedge Replacement (SHR) [5,9], to provide
a uniform presentation of two existing synchronization models. PRISMA is not
a mere translation of SHR. Like PRISMA, also SHR is a unifying framework for
modeling systems, but SHR is more suitable for architectural models since the
structure of the system is explicitly represented. Instead, PRISMA focuses on
the linguistic aspect of interaction, and is more useful to analyze the interactions
between synchronization patterns and other primitives, since process calculi can
be easily extended with specific features (e.g., probabilities, pattern matching).
Our presentation of SAMs is also more general and polished w.r.t. the one in [13].

As main results: (i) we prove that the observational semantics of PRISMA,
called hyperbisimilarity, is a congruence under any SAM, (ii) we discuss how to
build complex SAMs by composing basic ones and (iii) we show how to prove
properties for general classes of synchronization protocols. The expressiveness of
our calculus is demonstrated via original examples on a news server (already out-
lined), on communications with accounting, on interoperability between different
synchronization policies, and via the case study on Fusion Calculus.

Structure of the paper. § 2 recalls SAMs and shows some examples. In § 3 we
define the PRISMA calculus, analyze its operational and abstract semantics and
prove the congruence theorem for hyperbisimilarity. The case study on Fusion
Calculus is detailed in § 4, while § 5 analyzes the relationships among different
SAMs using basic concepts from category theory, which can be found, e.g., in [15].
All the material in § 3–5 is original to this contribution. Finally, § 6 contains some
conclusions and plans for future work. A full discussion on PRISMA calculus and
related topics can be found in the Ph.D. thesis of the second author [12].

2 Synchronization Algebra with Mobility (SAM)

Notation. We write A � B to denote the disjoint union of A and B, with inj1 :
A → A � B and inj2 : B → A � B the left and right inclusions, respectively.
When no confusion can arise we write inji(x) simply as x. If inji(x) ∈ A � B we
denote with comp(inji(x)) the element inj3−i(x) in B �A. We denote with n the

set {1, . . . , n} (where 0 def= ∅), while idn is the identity function on it. Given two
functions f : A → C and g : B → D we denote with [f, g] : A � B → C � D the
function that applies f to the elements in A and g to the ones in B. Given a
function f , the function f |S (resp. f |\S) is obtained by restricting f to S (resp.
to dom(f) \ S). Also, when set operations (e.g., ∪) are used on function f , it is
implicitly assumed that f is seen as a set of pairs (a, f(a)). We use ◦ to denote
the standard composition of functions, i.e. (g ◦f)(x) = g(f(x)). Given a vector �v
and an integer i we denote with �v[i] the i-th element of �v while Set(�v) is the set
of elements in �v. Finally, we denote with mgu(E) any idempotent substitution
resulting from computing the most general unifier on the set of equations E,
when it exists.

PRISMA: A Mobile Calculus with Parametric Synchronization 135

In this section we present SAMs, which are an extension of Winskel’s syn-
chronization algebras (SAs) [19] able to deal with name mobility, local resource
handling and nondeterminism. SAMs can be used to specify the interactions
among different actions, each carrying a tuple of arguments which are names of
channels. Each allowed synchronization pattern is modeled by an action synchro-
nization triple, whose first and second components are the interacting actions
and whose third component is the result of the synchronization. This is com-
posed by three different fields: (1) the resulting action, (2) a function specifying
how the arguments attached to the resulting action are computed (the compo-
nent Mob in Definition 2), (3) a relation determining which names are merged
(the component .= in Definition 2).

Definition 1 (Action signature). An action signature A is a tuple (Act, ar, ε)
where Act is the set of actions, ar : Act → N is the arity function specifying the
number of arguments of each action and ε ∈ Act has ar(ε) = 0.

The action ε stands for “not taking part in synchronization”, and it allows to
deal in a uniform way with synchronization and with asynchronous execution of
actions, the latter being modeled as synchronization with ε.

Definition 2 (Action synchronization set). An action synchronization set
AS on A is a set of triples of the form (a, b, (c, Mob,

.=)) where a, b, c ∈ Act,
Mob : ar(c) → ar(a) � ar(b) and .= is an equivalence relation on ar(a) � ar(b).

The Mob component assigns to each argument of c an argument of either a or b,
i.e. it specifies how the arguments of the resulting action are obtained from the
arguments of the component actions. Since actual arguments are not known at
SAM-definition time, the correspondence is defined according to the positions
in the tuple: for instance Mob(1) = inj2(1) means that the first parameter of
the resulting action comes from the first parameter of the second action, as
it is in the left part of Figure 1, that represents the action synchronization
(a, a, (a, Mob1,

.=)).
For .=, the idea is to define equivalence classes over incoming parameters:

parameters in the same class are then merged. Again, a positional notation is
used. For instance, according to the action synchronization in the left part of
Figure 1, a〈x〉 can interact with a〈y〉. Then x and y are merged, and the result
is a〈y〉 (if y is chosen as representative of the equivalence class).

Action synchronizations (a, b, (c, Mob1,
.=)) and (a, b, (c, Mob2,

.=)) such that
Mob1(n) .= Mob2(n) for each n (see the example in Figure 1) are semantically
equivalent (we will show in § 5 that they are isomorphic).

Next definition introduces a notion of composition on action synchroniza-
tions. In the general case, synchronization among n different processes must be
specified. However, SAMs guarantee that the order in which synchronization is
achieved is not important. Our approach allows to specify synchronization in a
compositional way, i.e. by considering the interaction between two processes at
the time. In particular, in order to express associativity we find it convenient to
consider the synchronization of three actions, which arises as the composition of
two binary synchronizations.

136 R. Bruni and I. Lanese

a

=.

Mob

=.
Mob

a aaaa
1

2

Fig. 1. Action synchronization

Definition 3 (Action synchronization composition)
Given α = (a1, b1, (c1, Mob1,

.=1)) and β = (a2, b2, (c2, Mob2,
.=2)) with c1 = a2,

the composition α �L β of α and β is the tuple (a1, b1, b2, (c2, Mob3,
.=3)) where

Mob3 = [Mob1, idar(b2)] ◦ Mob2 : ar(c2) → ar(a1) � ar(b1) � ar(b2), and the
equivalence relation .=3 on ar(a1)� ar(b1)� ar(b2) is defined as the projection on
the above specified domain of the least equivalence relation R on ar(a1)�ar(b1)�
ar(c1) � ar(b2) such that xR y if x

.=1 y ∨ x
.=2 y ∨ Mob1(x) = y.

A similar composition α �R β is defined when c1 = b2 instead of c1 = a2.

Definition 4 (Action synchronization relation)
Given an action signature A = (Act, ar, ε), an action synchronization relation
AS on A is an action synchronization set such that:

1. (a, b, (ε, Mob,
.=)) ∈ AS ⇒ a = b = ε;

2. (a, ε, (c, Mob,
.=)) ∈ AS ⇒ (c = a ∧ Mob = inj1 ∧ .= = id);

3. (a, b, (c, Mob,
.=)) ∈ AS ⇒ (b, a, (c, Mob′, .=′)) ∈ AS, where for each x, y

Mob′(x) = comp(Mob(x)) and x
.=′

y iff comp(x) .= comp(y);
4. if α1 = (a, b, (c, Mob,

.=)) ∈ AS and α2 = (c, d, (e, Mob′, .=′)) ∈ AS then
∃f ∈ Act, ∃β1 = (b, d, (f, Mob′′, .=′′)), β2 = (a, f, (e, Mob′′′, .=′′′)) ∈ AS such
that α1 �L α2 = β1 �R β2.

Condition 1 (already present in SAs) specifies that no action can disappear
producing ε. Also, interaction of ε with any action just propagates the other
action (condition 2). Conditions 3 and 4 ensure commutativity and associativity
of synchronization respectively, by specifying that the composed actions take the
same parameters and force the same merges.

Definition 5 (SAM). A synchronization algebra with mobility is a triple S =
(A, F in, AS) which includes an action signature A = (Act, ar, ε), a set Fin ⊆
Act of final actions and an action synchronization relation AS on A.

Final actions are used to deal with local channels: since no process from outside
can interact with a bound channel, only actions corresponding to successful in-
teractions that do not require additional contributions can take place on bound
channels. Those actions are in Fin. For instance in message passing synchro-
nization an input is not in Fin, while the result of the synchronization between
one input and one output is in Fin.

We present three simple examples of SAMs, taken from [13,14] (albeit with
different notation). Below, MPi,j (for message passing) is a shorthand for the
function from max(i, j) to (any superset of) i� j such that MPi,j(m) = inj1(m)
if m ≤ i, and inj2(m) otherwise, while EQi denotes the least equivalence relation
on (any superset of) i � i containing {(inj1(m), inj2(m))|m ≤ i}.

PRISMA: A Mobile Calculus with Parametric Synchronization 137

Remark 1. From now on, to simplify the presentation, we will not write ex-
plicitly the triples obtained by commutativity and we assume that the triple
(ε, ε, (ε, MP0,0, EQ0)) is omnipresent. We also assume that a ranked set of labels
L is given such that L ∩ {ε, τ} = ∅, with rank ar : L → N.

Example 1 (Milner SAM). The SAM MilnerL is given by:

- Act = {τ, ε} ∪
⋃

a∈L{a, a}, ar(a) = ar(a) for each a ∈ L, ar(τ) = 0;
- Fin = {τ};
- (λ, ε, (λ, MPar(λ),0, EQ0)) ∈ AS for each λ ∈ Act,

(a, a, (τ, MP0,0, EQar(a))) ∈ AS for each a ∈ L.

MilnerL represents message passing à la π-calculus: one input a interacts with
one output a, and parameters in the same position are merged. Action τ repre-
sents a complete message exchange, and thus belongs to Fin. Here we are more
general than π-calculus, since it allows just one output action, while we allow
many (each with corresponding input), and this corresponds to introducing a
simple form of typing.

Example 2 (Hoare SAM). The SAM HoareL is given by:

- Act = Fin = {ε} ∪ L;
- (λ, λ, (λ, MPar(λ),ar(λ), EQar(λ))) ∈ AS for each λ ∈ Act.

Hoare synchronization models a global agreement on the action to perform. As
before, corresponding parameters are merged, but now they are carried over the
result of the interaction.

Example 3 (Broadcast SAM). The SAM BdcL is given by:

- Act = {ε} ∪
⋃

a∈L{a, a}, ar(a) = ar(a) for each a ∈ L;
- Fin =

⋃
a∈L{a};

- (a, a, (a, MPar(a),ar(a), EQar(a))) ∈ AS for each a ∈ L,
(a, a, (a, MPar(a),ar(a), EQar(a))) ∈ AS for each a ∈ L.

The above SAM models broadcast. When used in PRISMA, it forces an output a
from a sequential PRISMA process to synchronize with all the listening sequen-
tial processes in parallel, which have to perform an input a. Notice that, if one
wants to have a multicast MulL, where some listening process may not synchro-
nize with the output, it is enough to add the triples (λ, ε, (λ, MPar(λ),0, EQ0))
for each λ ∈ Act to AS.

We present now a more complex (and original) example: a SAM for commu-
nication with priority that allows many senders to synchronize with just one
receiver, which takes only the message with the highest priority. This SAM can
be used, e.g., to model communication in sensor networks, where the base station
acquires at each step the most important available information. In the example
we consider just one input action in of arity 1, but the generalizations to many
actions and different arities are straightforward.

138 R. Bruni and I. Lanese

- Act = {in, ε} ∪ {(out, n)|n ∈ N} ∪ {(out+, n)|n ∈ N} ∪ {(out−, n)|n ∈ N};
- ar(a) = 0 for all a ∈ {ε} ∪ {(out+, n)|n ∈ N}, and ar(a) = 1 otherwise;
- Fin = {(out+, n)|n ∈ N};
- (a, ε, (a, MPar(a),0, EQ0)) ∈ AS for each a ∈ Act,

(in, (out, n), ((out+, n), MP0,0, EQ1)) ∈ AS for each n,
(in, (out, n), ((out−, n), MP1,0, EQ0)) ∈ AS for each n,
((out, n), (out, m), ((out, n), MP1,0, EQ0)) ∈ AS for each n ≥ m,
((out, n), (out−, m), ((out+, n), MP0,0, EQ1)) ∈ AS for each n ≥ m,
((out, n), (out−, m), ((out−, n), MP0,1, EQ0)) ∈ AS for each n ≥ m,
((out, m), (out−, n), ((out−, n), MP0,1, EQ0)) ∈ AS for each n ≥ m,
((out+, n), (out, m), ((out+, n), MP0,0, EQ0)) ∈ AS for each n ≥ m.

Fig. 2. The priority SAM Pri

Example 4 (Priority SAM). The SAM Pri is defined in Figure 2. The basic idea
is that the result of the synchronization of an action in and an action (out, n),
i.e. an output with priority n, is guessed: either we guess that n is the highest
priority, we merge the parameters and the result is (out+, n), or we guess the
opposite, we propagate the input variable and the result is (out−, n). The first
guess, if wrong, is discarded when an output with higher priority is found, the
second one is checked when the channel is declared local, since (out−, n) /∈ Fin.
Here nondeterminism is useful for the guess, but also needed to choose which
output to propagate when two with the same priority interact.

3 The PRISMA Calculus

We can now present the syntax and the semantics of PRISMA. Action prefixes
in PRISMA are parametric on a given SAM S = ((Act, ar, ε), F in, AS).

Definition 6 (PRISMA). The syntax for PRISMA processes is:

P : : = 0 (Inaction) xa�y.P (Prefix)
P1|P2 (Parallel composition) P1 + P2 (Nondeterministic sum)
(x)P (Restriction) !P (Replication)

where x is a channel name, a ∈ Act is an action and �y is a vector of channel
names whose length is ar(a). Channel x is the subject of xa�y.

In PRISMA, restriction (x) is the only binder for x. As usual, processes are taken
up to α-conversion of restricted names, and fn(P) denotes the set of free names
in P . The intrinsic compositionality of action synchronization in SAMs makes
the LTS operational semantics more natural for PRISMA than semantics in the
reduction style, where all possible global synchronizations, involving an unbound
number of processes, should be considered explicitly (think, e.g., of broadcast).
Roughly, reductions would correspond to “closed” synchronizations, according
to Fin.

PRISMA: A Mobile Calculus with Parametric Synchronization 139

Table 1. Rule for synchronization

P1
(Y1)xa1�y1,π1−−−−−−−−−→ P ′

1 P2
(Y2)xa2�y2,π2−−−−−−−−−→ P ′

2 (a1, a2, (c, Mob,
.=)) ∈ AS Φ

P1|P2
(W)xc�w,π|\(Y1∪Y2)−−−−−−−−−−−−−→ (�s)(P ′

1|P ′
2)π

(2)

where the premise Φ is the conjunction of the following five side conditions:

freshness of extruded names: Y1 ∩ Y2 = ∅, (Y1 ∪ Y2) ∩ (fn(P1) ∪ fn(P2)) = ∅;
forced fusions: π = mgu({�yi1 [j1] = �yi2 [j2]| inji1(j1)

.= inji2(j2)}∪{x = y|xπ1 = yπ1∨
xπ2 = yπ2}) where we choose elements not in Y1 ∪ Y2 as representatives for the
equivalence classes of names in π, whenever possible;

arguments of c: �w[k] = (�yi[j])π iff Mob(k) = inji(j);
names extruded by c: W = Set(�w) ∩ (Y1 ∪ Y2);
closed names: Set(�s) = (Y1 ∪ Y2)π \ W (any order can be chosen for �s).

We present now the inference rules defining the semantics of PRISMA pro-
cesses, in an incremental way. The rules are parametric on the SAM S that fixes
the allowed interaction policies. Interestingly the rules exploit just α-conversion
as structural law, and this simplifies the proofs of process properties. However,
the kind of axioms usually used in structural congruence equate processes which
are also equivalent according to our observational semantics (see Lemma 1).
One could avoid α-conversion too, but this would unnecessarily complicate the
inference rules. The first rule we examine is the one for prefix:

xa�y.P
xa�y,id−−−−→ P (1)

The transition simply executes the corresponding action. Note that the label
contains a substitution too (the identity substitution in this case): this is used
to trace fusions of global names performed by the synchronization, since they
must be applied to parallel processes (see, e.g., rule 9).

The most important, but also the most complex, rule allows to synchronize
two actions performed by parallel processes (rule 2 in Table 1). Its complexity
is due to the great degree of flexibility of PRISMA, which allows to specify
both action synchronization and (name) mobility patterns. Also, we deal with
slightly more complex actions than the ones seen so far, since a set of extruded
names appears (when empty, such as in rule 1, it is deleted from the label).
Extruded names are names that were bound before, but become global after
being used as parameters in the label. Extruded names must be traced, since
when they are removed from the tuple of parameters, restrictions for them have
to be reintroduced (as in π-calculus (close) rule).

The rule for synchronization allows two actions a1 and a2 performed on the
same channel x to synchronize. The main effect of the synchronization is to
produce a new substitution π, which combines the previous substitutions traced
by π1 and π2 with the new substitution π determined by taking into account
the equivalence classes defined by .=. The substitution π is applied to the two
interacting processes P ′

1 and P ′
2 and to the tuple �w of parameters of the resulting

action c, and, as far as global names are concerned, it is traced in the label as

140 R. Bruni and I. Lanese

π|\(Y1∪Y2). The set W is the new set of extruded names. Finally, names that were
extruded (Y1 ∪ Y2), still exist ((Y1 ∪ Y2)π) and are no longer appearing in the
label ((Y1 ∪ Y2)π \ W) must be closed by inserting them into �s (in any order).

Two additional aspects must be considered to deal with parallel composition.
In some SAMs, such as the Milner one, no process is forced to participate to the
synchronization, while in others, such as in broadcast, the processes in a given
set must participate. This is specified in SAMs by allowing or disallowing the
interaction with ε, which can be executed for free by any process using rule:

x ∈ N

P
xε〈〉,id−−−−→ P

(3)

However, also in broadcast, we want to allow processes which are not inter-
ested in the synchronization to stay idle. We consider that a process is interested
in a synchronization at x if it has an active prefix with subject x. Thus, follow-
ing the approach of [7], we introduce a label ¬x which can be executed by any
process which has no active prefix with subject x. This can be modeled with:

x is not an active subject of P

P
¬x−−→ P

(4)

It is easy to give an inductive definition of this rule to allow proofs by induction
(not shown here just for space constraints). A dedicated rule (and its symmetric)
are required to allow this action to interact with a normal action:

P1
(Y)xa�y,π−−−−−−→ P ′

1 P2
¬x−−→ P2 Y ∩ fn(P2) = ∅

P1|P2
(Y)xa�y,π−−−−−−→ P ′

1|P2π
(5)

Restriction is dealt with rules 6–10 in Table 2. Rule 6 says that restriction
on channel z does not influence actions where z is neither the subject nor a
parameter. If the equivalence class of z according to π is not a singleton, we
have to remove z from π, since it is not visible outside its scope. If z is one of

Table 2. Rules for restriction

P
(Y)xa�y,π−−−−−−→ P ′ z /∈ Set(�y) ∪ {x} z /∈ Im(π)

(z)P
(Y)xa�y,π|\{z}−−−−−−−−−→ (z)P ′

(6)

P
(Y)xa�y,π−−−−−−→ P ′ z ∈ Set(�y) \ {x} \ Y z /∈ Im(π)

(z)P
({z}∪Y)xa�y,π|\{z}−−−−−−−−−−−−→ P ′

(7)

P
(Z)xa�y,π−−−−−−→ P ′ a ∈ Fin x /∈ Im(π) Set(�z) = Z

(x)P
√

,π|\{x}−−−−−−→ (x�z)P ′
(8)

P
√

,π−−→ P ′

P |Q
√

,π−−→ P ′|Qπ
(9) P

√
,π−−→ P ′ x /∈ Im(π)

(x)P
√

,π|\{x}−−−−−−→ (x)P ′
(10)

PRISMA: A Mobile Calculus with Parametric Synchronization 141

the parameters instead (rule 7), then it is marked as extruded in the label (as
in π-calculus rule (open)). Rule 8 closes the channel on which the action a is
done, reintroducing the restriction for names that were extruded by a. This is
allowed only if a ∈ Fin. This rule introduces a further form of label, namely
(
√

, π), which states that an action has been performed on a bound channel, and
that substitution π is its effect on global names. The simpler rules 9 (and its
symmetric) and 10 deal with this kind of labels.

Finally, (almost) standard rules can be added to deal with nondeterministic
sum (rule 11 and its symmetric) and replication (rule 12):

P1
λ−→ P ′

1 λ �= xε〈〉, id λ �= ¬x

P1 + P2
λ−→ P ′

1

(11)
P |!P λ−→ P ′

!P λ−→ P ′
(12)

In the above rules, λ denotes a general label. The only peculiarity is that
actions ε and ¬x, which can be executed for free and thus do not represent real
process activities, should not force the choice of one branch of a sum.

Example 5. Take the priority SAM Pri of Example 4. The
√

-labeled transitions
for the process S = (x)(x in〈y〉.P | x(out, 3)〈z〉.Q | x(out, 2)〈w〉.R) are:

S
√

,{z/y}−−−−−→ (x)(P | Q | x(out, 2)〈w〉.R){z/y}
S

√
,{w/y}−−−−−−→ (x)(P | x(out, 3)〈z〉.Q | R){w/y}

S
√

,{z/y}−−−−−→ (x)(P | Q | R){z/y}
together with a transition where y is chosen as representative instead of z or w.
Here the last transition is the most interesting, since it features an interaction
between two outputs and one input, with the output with the lowest priority,
(out,2), being discarded. The only other admissible transitions are from S to
itself with labels of the form uε〈〉, id or ¬u for any u.

Example 6 (News server and PRISMA). The transitions described in the Intro-
duction for the news server can be derived, with suitable labels, in PRISMA by
considering a SAM with six actions: in and out interacting using Milner synchro-
nization and producing τ as a result, inb and outb interacting using broadcast
synchronization, and ε. Such a SAM can also be built using a coproduct con-
struction in the category of SAMs, as we will show in Section 5.

Also, more complex scenarios can be considered. For instance the broadcast ac-
tion canbe taggedwith some additional informationon the contentof the news, and
different input actions can be chosen to receive only some of them. For instance we
canhave actions out−CS for computer science news and out−math formathemat-
ical news. Correspondingly we can have actions in−CS and in−math, retrieving
the corresponding news, and in− all retrieving both of them. A process interested
only in some kind of news must however explicitly use actions to discard the others,
since broadcast enforces reception of the information by all the listening processes.

We study the observational properties of processes using hyperbisimilarity, as
done in Fusion Calculus. This is required since standard bisimilarity is not a
congruence w.r.t. composition operators.

142 R. Bruni and I. Lanese

Definition 7 (Hyperbisimilarity). A bisimulation is a relation ∼S such that
P ∼S Q implies:

– P
¬x−−→ P ⇒ Q

¬x−−→ Q,

– P
√

,π−−→ P ′ ⇒ Q
√

,π−−→ Q′ ∧ P ′ ∼S Q′,

– P
(Y)xa�y,π−−−−−−→ P ′ ∧ Y ∩ fn(Q) = ∅ ⇒ Q

(Y)xa�y,π−−−−−−→ Q′ ∧ P ′ ∼S Q′

and vice versa, where all the transitions are derived using SAM S. A hyperbisim-
ulation is a substitution-closed bisimulation. We denote with ≈S the maximal
hyperbisimulation. If P ≈S Q, we say that P and Q are hyperbisimilar. We shall
drop S from the notation when clear from the context.

We present now some properties of hyperbisimilarity. Note that properties that
hold for any SAM (or for any SAM satisfying suitable requirements, see, e.g.,
Lemma 2) can be proved once and for all. Next lemma, in particular, shows
that hyperbisimilarity abstracts away from certain syntactic features of processes
which are intuitively not important from an observational point of view. (We say
that an axiom P = Q on processes bisimulates if, for each instance of the axiom,
the two equated processes are hyperbisimilar.)

Lemma 1. The axioms below bisimulate for any SAM and for any P , Q, R:
P |Q = Q|P (P |Q)|R = P |(Q|R) P |0 = P P + P = P

P + Q = Q + P (P + Q) + R = P + (Q + R) P + 0 = P
(x)(y)P = (y)(x)P (x)P |Q = (x)(P |Q) if x /∈ fn(Q)

Proof (Sketch). Each axiom requires a coinductive proof. Axioms concerning
parallel composition exploit the properties of SAMs. The proof for P + 0 = P
uses the fact that transitions with source 0 cannot force a branch of the sum to
be taken. Proofs for other axioms are standard. ��

Lemma 2. The axiom (x)0 = 0 bisimulates iff ε /∈ Fin.

In fact, including ε in Fin corresponds to observe internal idle steps as
√

.
Next theorem proves that abstract semantics is compositional. This result is

fundamental to compute the abstract semantics of large complex systems from
the abstract semantics of their components. It extends in a non-trivial way an
analogous result for Fusion Calculus [18]: the interesting point is that it holds
for PRISMA over any SAM.

Theorem 1. Hyperbisimilarity ≈S is a congruence for any SAM S w.r.t. all
the operators in PRISMA.

Proof (Sketch). For each unary (resp. binary) operator op, we have to prove that
for each SAM S and for each P1, P2, Q1, Q2 processes, P1 ≈S Q1 and P2 ≈S Q2
implies op(P1)≈S op(Q1) (resp. op(P1, P2)≈S op(Q1, Q2)). The proof is by rule
induction on the derivation of the transition of op(P1) (resp. op(P1, P2)), and each
step requires a coinductive proof. However, rule induction is needed just for repli-
cation, while in the other cases it is enough to consider each operator in isolation.

PRISMA: A Mobile Calculus with Parametric Synchronization 143

We show the proofs for prefix, parallel composition and replication as exam-
ples. The other cases are similar. We will not consider transitions with labels ε
and ¬x since they can always be trivially simulated.

Case prefix): We have to prove that for each SAM S, each prefix xa�y and each
pair of processes P and Q such that P ≈S Q we also have xa�y.P ≈S xa�y.Q. Thus
we have to prove that, for each substitution σ, (xa�y.P)σ and (xa�y.Q)σ can per-
form the same transitions, going into hyperbisimilar states. The only transitions
to consider are the ones from rule 1, which have the same label as required and
lead to states Pσ and Qσ which are hyperbisimilar by hypothesis. In general,
we have not to consider explicitly the substitution σ, since this corresponds to
choosing P ′ = Pσ and Q′ = Qσ.

Case |): Suppose that P1 ≈S Q1 and P2 ≈S Q2. To show P1|P2 ≈S Q1|Q2 we have
three rules to check. Let us consider rule 2. Most of the conditions deal only with
the labels, thus they are verified for P1 and P2 iff they are verified for Q1 and
Q2. The only condition to check is (Y1 ∪Y2)∩ (fn(P1)∪ fn(P2)) = ∅. This can be
satisfied since names in Y1 ∪ Y2 are bound, thus they can be α-converted if nec-
essary. We have to prove that the two resulting processes, namely (�s)(P ′

1|P ′
2)σ

and (�s)(Q′
1|Q′

2)σ are hyperbisimilar. Thanks to α-conversion, we can suppose
that �s is the same in both the cases. By hypothesis P ′

1 ≈S Q′
1 and P ′

2 ≈S Q′
2.

By coinductive hypothesis, P ′
1|P ′

2 ≈S Q′
1|Q′

2. Thanks to the closure under substi-
tutions of hyperbisimilarity (P ′

1|P ′
2)σ ≈S(Q′

1|Q′
2)σ. Finally, using closure under

restriction contexts, (�s)(P ′
1|P ′

2)σ ≈S(�s)(Q′
1|Q′

2)σ. The cases for rules 5 and 9 are
simpler than the one just shown.

Case !): We have to prove that if P ≈S Q, then !P ≈S !Q. We have to use rule
induction for that case. If !P λ−→ P ′, then we also have P |!P λ−→ P ′, which is a
premise. By inductive hypothesis on the context •|!•, Q|!Q λ−→ Q′ with Q′ ≈S P ′.
Since also !Q has the same transition, the thesis follows. ��

4 A Case Study: Fusion Calculus

Let L = {inn|n ∈ N} with ar(inn) = n. We will show that PRISMA over
MilnerL is essentially Fusion Calculus [18] (as expected), and we suggest a new
channel-located semantics for it. We consider the subset of Fusion Calculus whose
processes are defined by:

P : : = 0 | u�x.P | u�x.P | P1|P2 | P1 + P2 | (u)P | !P

We do not allow fusion prefixes, but {�x = �y}.P can be encoded as (z)(z�x.P |z�y.0)
for z /∈ fn(P). We denote with ≡ the structural congruence on Fusion processes
and with ≈f Fusion hyperbisimilarity. We refer to [18] for full details on Fusion
Calculus and on its semantics.

We define the uniform encoding function �−� from Fusion processes into
PRISMA processes as the homomorphic extension to the whole calculus of
�u�x.P � = u in|�x| �x.�P � and �u�x.P � = u out|�x| �x.�P � where inn and outn = inn

144 R. Bruni and I. Lanese

are complementary actions. The mapping can be extended to communication
labels by defining �(�y)u�x� = (Set(�y))u in|�x| �x, id and similarly for outputs. The
translation loses the order of extruded names, but this is unimportant, since in
Fusion all different orderings can be obtained thanks to structural congruence.

The following theorem shows the relationship between the behaviors of Fusion
processes and of their translations into PRISMA.

Theorem 2. Let P be a Fusion process. P
α−→ P ′ iff:

1. α is a communication action, �P �
�α�−−→ �P1� and P1 ≡ P ′ or;

2. α is a fusion action, �P �
λ−→ �P1π� and P1π ≡ P ′π where λ can be either

(
√

, π) or (xτ〈〉, π) for some x ∈ fn(�P �) and where π is a mgu of α.

Proof (Sketch). The proof is by structural induction on Fusion processes, and has
a case for each operator. One must prove that Fusion transitions correspond to
PRISMA transitions of the two forms above (but PRISMA can have transitions
with labels ε and ¬x too, since these ones have no Fusion correspondence).

Notably, Fusion structural congruence can be simulated since translations of
structural congruent processes are hyperbisimilar (see lemmas 1 and 2).

As far as parallel composition is concerned, Fusion synchronization is simu-
lated by rule 2 using synchronization (a, a, (τ, MP0,0, EQar(a))). Asynchronous
execution of Fusion actions can be simulated instead using synchronization
(a, ε, (a, MPar(a),0, EQ0)). Finally fusion propagation can be simulated by rule 9.

For restriction operator different rules have to be chosen according to the kind
of actions: rule 6 to deal with actions on other channels, rule 7 for extrusions,
rule 8 to move from the representation of fusions as xτ〈〉, π to (

√
, π) (note in

fact that τ ∈ Fin) and 10 if the label is already in this form.
The proofs for other operators are similar. Likewise, PRISMA rules can be

simulated by Fusion rules for labels which are translations of Fusion labels. ��
In PRISMA each process can always do idle steps to itself, with labels of the
form xε〈〉 or ¬x, which have no Fusion correspondence. In particular, the second
kind of labels allows to identify the active names of a process.

Corollary 1. �P � ≈MilnerL �P ′� ⇒ P ≈f P ′.

The main difference between Fusion Calculus and PRISMA over MilnerL is
that in our more general form the τ is a normal action and thus it is located.
The corresponding semantics can be defined also for Fusion Calculus, by adding
located fusions xφ to the set of transition labels. Rules can be updated to take
care of these labels.

The corresponding hyperbisimilarity is in general finer than the standard one,
as the following examples illustrate (the examples are written in the Fusion Cal-
culus syntax, but one can use the translation �−� to have them in the PRISMA
setting).

Example 7. One can easily find two processes that are bisimilar with the stan-
dard (non-located) semantics, but not with the PRISMA one, e.g.:

x | x ≈f (y)(x + y) | (x + y)

PRISMA: A Mobile Calculus with Parametric Synchronization 145

The right process can perform unlocated actions
√

by making y and y react,
while the left one cannot. A similar example can be written using replication:

x | !x.x ≈f (y)y | y | x | !x.x

(In both the examples the two members have the same set of active names.)

We think that the located semantics for τ can be useful, since, for accounting
or performance reasons, synchronizations performed on different free channels
may not be equivalent. Suppose for instance that channel x is provided by some
company while channel y is local and owned by the user: a process performing
a synchronization on y is cheaper than a process performing the same synchro-
nization using x. Local channels are instead all equivalent, since any interaction,
including traffic check (see Example 8), must happen inside the scope of the
channel. For a more detailed description of a semantics of this kind see [11].

5 A Category of SAMs

We want to analyze now how different SAMs can be combined and interact, in
order to allow interoperability among calculi based on different synchronization
primitives. We use basic tools from category theory [15] to this end.

SAs form a category SA [19] whose objects are SAs and whose morphisms
are functions h : ActA → ActB such that h(εA) = εB and (a, b, c) ∈ ASA ⇒
(h(a), h(b), h(c)) ∈ ASB. The morphism h is called synchronous (strict using
Winskel’s terminology) if h(a) = εB ⇔ a = εA. SAs with synchronous morphisms
form the subcategory sSA of SA. We want to extend these definitions to SAMs.

Definition 8 (Morphism between action signatures)
Let AA = (ActA, arA, εA) and AB = (ActB , arB, εB) be action signatures. An
asynchronous morphism H : AA → AB is a function h : ActA → ActB such that
h(εA) = εB, together with a family of functions ha : ar(h(a)) → ar(a) indexed by
actions. Synchronous morphisms additionally require that h(a) = εB ⇔ a = εA.

Each component of identity morphisms is an identity. We define morphism com-
position as (h, {ha}a∈ActA); (k, {kb}b∈ActB) = (k ◦ h, {ha ◦ kh(a)}a∈ActA). Note
that the functions {ha}a∈ActA and morphism H are in opposite directions.

Definition 9 (Morphism between SAMs)
Let (AA, F inA, ASA) and (AB, F inB, ASB) be two SAMs. A morphism H from
the first to the second is a morphism H : AA → AB between the corresponding
action signatures such that:

1. a ∈ FinA ⇒ h(a) ∈ FinB;
2. (a1, a2, (c, MobA,

.=A)) ∈ ASA ⇒ (h(a1), h(a2), (h(c), MobB,
.=B)) ∈ ASB

and
– if MobA(hc(n)) = inji(m) then ∃j, m′ such that MobB(n) = injj(m

′)
and injj(haj (m′)) .=A inji(m);

– inji(n) .=B injj(m) if and only if inji(hai(n)) .=A injj(haj (m)).

146 R. Bruni and I. Lanese

A SAM morphism is synchronous iff the corresponding morphism between
action signatures is synchronous.

Essentially actions are mapped to other actions implementing them, and a map-
ping between parameters (in the opposite direction) is provided. Morphisms can
remove parameters or add new synchronizations, but they must provide corre-
sponding elements for the existing ones, preserving their behavior (i.e., action
composition, computation of parameters and merges among them) on the re-
maining parameters.

Lemma 3. SAMs with asynchronous morphisms form the category ASYNC,
SAMs with synchronous morphisms form the subcategory SYNC of ASYNC.

Processes on a SAM S1 can be translated into processes on a SAM S2 according
to a morphism H : S1 → S2.

Definition 10. Given a morphism H = (h, {ha}a∈Act), we define the corre-
sponding translation of PRISMA processes as the homomorphic extension of the
prefix translation mapping xa�y to xh(a)�w where �w[i] = �y[ha(i)].

In general morphisms neither preserve nor reflect process behavior, but some
classes of them, such as isomorphisms, do.

Lemma 4. An isomorphism between SAMs can only rename actions, permute
their parameters, and change for each action synchronization triple the repre-
sentative chosen by Mob inside a .=-equivalence class.

Corollary 2. Let P and Q be two processes and H(P) and H(Q) be their
translations according to SAM isomorphism H : S1 → S2. Then P ≈S1 Q iff
H(P)≈S2 H(Q).

Products and coproducts exist and can be used to combine SAMs.

Lemma 5. Let ((Act1, ar1, ε1), F in1, AS1) and ((Act2, ar2, ε2), F in2, AS2) be
two SAMs. The product in ASYNC, which we call asynchronous product, has
the form ((Act⊗, ar⊗, ε⊗), F in⊗, AS⊗) where:

– Act⊗ = Act1 × Act2 with ar⊗((a, b)) = ar1(a) + ar2(b);
• without loss of generality, we can assume that for each (a1, a2), the first

ar(a1) parameters correspond to the ones of a1, and the other ones are
from a2;

– ε⊗ = (ε1, ε2);
– Fin⊗ = Fin1 × Fin2;
– AS⊗ = {((a1, a2), (b1, b2), ((c1, c2), Mob⊗,

.=⊗))| for each i ∈ {1, 2} there is
(ai, bi, (ci, Mobi,

.=i)) ∈ ASi};
• Mob⊗ and .=⊗ are defined as the union of the corresponding relations in

the component objects on the respective parameters.

The two projection maps are the obvious ones.

PRISMA: A Mobile Calculus with Parametric Synchronization 147

Proof (Sketch). If we consider just the part of morphisms that deals with actions,
then we have a product in the category of sets and functions, which is cartesian
product. If we fix an action and we consider its images, as far as parameters are
concerned we obtain a coproduct diagram in the category of finite sets and func-
tions, and this coproduct is the disjoint union. These diagrams can be extended
to diagrams in ASYNC by choosing the different elements as described in the
lemma. ��

Lemma 6. The product in SYNC, which we call synchronous product, is like
the asynchronous one, but it has no actions of the form (aA, εB) and (εA, bB)
except (εA, εB).

Proof (Sketch). The proof is an easy modification of the one above. ��

Lemma 7. Let ((Act1, ar1, ε1), F in1, AS1) and ((Act2, ar2, ε2), F in2, AS2) be
two SAMs. The coproduct in ASYNC coincides with that in SYNC and it has
the form ((Act+, ar+, ε+), F in+, AS+) where:

– Act+ = ((Act1 \ {ε1}) � (Act2 \ {ε2}) ∪ {ε+}) with ar+(inji(a)) = ari(a);
– a ∈ Fini ⇒ inji(a) ∈ Fin+, ε+ ∈ Fin+ iff ∃i ∈ {1, 2}.εi ∈ Fini;
– (a, b, (c, Mob,

.=)) ∈ ASi ⇒ (inj+i(a), inj+i(b), (inj+i(c), Mob,
.=)) ∈ AS+

where inj+i(x) = inji(x) for each x �= εi, inj+i(εi) = ε+.

The two injection maps are the obvious ones.

Proof (Sketch). Here we have as underlying diagram a coproduct diagram in the
category of pointed sets and point-preserving functions (where ε is the point).
The coproduct is the disjoint union with merged points. This diagram can be
extended to diagrams in both ASYNC and SYNC by choosing the different
elements as described in the lemma. ��

We provide now some examples on how to exploit these constructions. Products
have pairs of actions with one element for each of the component SAMs as
actions, with the union of parameters. For instance, the asynchronous product
of two Milner SAMs is a message passing communication where at most two
communications can be performed at each step. Also, the synchronous product
of HoareL1 and HoareL2 is HoareL1×L2 . Coproduct allows to merge two SAMs in
a unique one preserving the behavior of each action, as proved by the following
lemma.

Lemma 8. Let P , Q be processes and H(P), H(Q) be their translations accord-
ing to SAM injection H : S1 → S1 + S2. Then P ≈S1 Q iff H(P)≈S1+S2 H(Q).

For instance, the SAM used in Example 6 is a coproduct of two SAMs,
one isomorphic to Milner{in} and the other to Bdc{inb}. The coproduct of
Milner{ini|i∈254} and Bdc{in255} can be used to model normal TCP/IP pro-
tocol, where address 255 is used for broadcast. Clearly this is just an intuition,
since far more refined techniques are needed to model TCP/IP in full details.

148 R. Bruni and I. Lanese

We conclude by presenting some interesting applications of our framework.
Notice that in the examples the modeling effort is required only to choose a suit-
able SAM to model the desired interaction. After that, the primitives available
in the model are in strict correspondence with the desired ones.

Example 8 (Introducing accounting on synchronization). Take the SAM account
with actions {ε, c} of arity 0 with Fin = {c} and where (c, ε, (c, Mob0,0,

.=0)) is
the only non trivial synchronization. The asynchronous product of account with
any SAM S allows a controller process Pc to count the number of synchroniza-
tions performed by a process P . Not accounted actions can be added via a co-
product with another SAM. Let P be a process without restrictions and let x
be one of its free names. Let H be the inclusion morphism mapping each ac-
tion a from S to (a, ε). Suppose that S contains an action $ of arity 0. Then
(x)(H(P)|!x(ε, c)〈〉.y($, c)〈〉.0) with the product synchronization behaves as (x)P
(up to translation of actions) with the synchronization specified by S, but it sends
a message ($, c) on channel y for each synchronization performed by P on channel
x. In fact, synchronization with (ε, c) is required to get a final action on x.

Example 9 (Using Fusion in a priority scenario). Consider an infrastructure
built for priority communication as specified in Example 4. Suppose that one
wants to run a Fusion process PF in that framework. Suppose for simplicity
that PF uses just unary prefixes. We will show how PF can be made to interact
with the other processes (although, clearly, it will not be able to fully exploit
the priority mechanism). The translation from Fusion to PRISMA can be used
to have a corresponding PRISMA process PM on the SAM Milner{in1}. In the
category ASYNC there is a morphism Hn : Milner{in1} → Pri that maps in1
to in, out1 to (out, n) and τ to (out+, n) for any statically chosen priority n.
The corresponding translation allows to automatically produce a priority process
PP = Hn(PM). The process essentially has all the outputs at the fixed priority
n, and it inputs the message with the highest priority as specified by the priority
synchronization. Notice that to have priority communication with many different
actions we can just extend the priority SAM (by considering the coproduct with
other copies of itself with different actions) and then apply the same procedure.

6 Conclusion

We have presented PRISMA, a SAM-based process calculus with parametric
communication patterns. This helps the modeling phase, when the desired syn-
chronization policy can be specified directly instead of being implemented using
“low-level” primitives. Different domain-specific SAMs can provide the right level
of abstraction for prototyping and analysis. We have also shown that simple cate-
gorical tools allow to compare and compose SAMs. Furthermore, interoperability
analysis can be easily performed, since different SAMs can be embedded in the
same framework using the coproduct construction and related using morphisms.
We have defined an observational semantics for PRISMA which is a congruence
w.r.t. all the operators in the language, thus allowing compositional analysis of
system behavior. Note that the congruence result holds for any SAM.

PRISMA: A Mobile Calculus with Parametric Synchronization 149

As future work, we want to test our model on some case studies taken from real
distributed protocols. On a more theoretical side, we want to exploit PRISMA
to compare processes based on different synchronization models. Furthermore,
we want to see how other existing calculi can be related to PRISMA, starting
from bπ-calculus [7].

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proc. of POPL’01, pp. 104–115. ACM Press, New York (2001)

2. Baeten, J.C.M., Weijland, W.P.: Process algebra. Cambridge University Press,
Cambridge (1990)

3. Boreale, M., Buscemi, M.G., Montanari, U.: D-fusion: A distinctive fusion calcu-
lus. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 296–310. Springer,
Heidelberg (2004)

4. Dal Zilio, S.: Mobile processes: A commented bibliography. In: MOVEP 2000.
LNCS, vol. 2067, pp. 206–222. Springer, Heidelberg (2000)

5. Degano, P., Montanari, U.: A model for distributed systems based on graph rewrit-
ing. Journal of the ACM 34(2), 411–449 (1987)

6. Ene, C., Muntean, T.: Expressiveness of point-to-point versus broadcast communi-
cations. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 258–268.
Springer, Heidelberg (1999)

7. Ene, C., Muntean, T.: A broadcast-based calculus for communicating systems. In:
Proc. of IPDPS’01, IEEE Computer Society, Los Alamitos (2001)

8. Fournet, C., Gonthier, G.: The reflexive chemical abstract machine and the Join
calculus. In: Proc. of POPL’96, pp. 372–385. ACM Press, New York (1996)

9. Hirsch, D., Montanari, U.: Synchronized hyperedge replacement with name mo-
bility. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp.
121–136. Springer, Heidelberg (2001)

10. Hoare, C.A.R.: A model for communicating sequential processes. In: On the Con-
struction of Programs, Cambridge University Press, Cambridge (1980)

11. Lanese, I.: Concurrent and located synchronizations in π-calculus. In: Proc. of
SOFSEM’07, LNCS (to appear)

12. Lanese, I.: Synchronization strategies for global computing models. PhD thesis,
Computer Science Department, University of Pisa, Pisa, Italy (2006)

13. Lanese, I., Montanari, U.: Synchronization algebras with mobility for graph trans-
formations. In: Proc. of FGUC’04, ENTCS 138, pp. 43–60. Elsevier Science, North-
Holland (2004)

14. Lanese, I., Tuosto, E.: Synchronized hyperedge replacement for heterogeneous
systems. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS,
vol. 3454, pp. 220–235. Springer, Heidelberg (2005)

15. MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg
(1971)

16. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

17. Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I and II Inform.
and Comput. 100(1) 1–40, 41–77 (1992)

18. Parrow, J., Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile
processes. In: Proc. of LICS ’98, pp. 176–185. IEEE Computer Society Press, Los
Alamitos (1998)

19. Winskel, G.: Synchronization trees. Theoret. Comput. Sci. 34, 33–82 (1984)

On Bisimulation Proofs for the Analysis
of Distributed Abstract Machines

Damien Pous

ENS Lyon, France

Abstract. We illustrate the use of recent, non-trivial proof techniques
for weak bisimulation by analysing a generic framework for the definition
of distributed abstract machines based on a message-passing implemen-
tation. The definition of the framework comes from previous works on
a specific abstract machine; however, its new presentation, as a para-
metrised process algebra, makes it suitable for a wider range of calculi.

A first version of the framework can be analysed using the standard
bisimulation up to expansion proof technique. We show that in a second,
optimised version, rather complex behaviours appear, for which more so-
phisticated techniques, relying on termination arguments, are necessary
to establish behavioural equivalence.

Introduction

Recently, many calculi encompassing distribution and mobility have been stud-
ied as a basis for programming languages. Examples include Join [4], Nomadic
Pict [11], Kells [1], Ambients [2], Klaim [7], Seals [3]. The expressive power
supplied by the primitives underlying such models raises the question of imple-
mentability in a distributed framework. In [10], a distributed abstract machine
is defined, to implement the Safe Ambient Calculus [6]: the PAN. The main
ingredients in the definition of this machine are locations – where local pro-
cesses are executed – and forwarders, that transmit messages between locations.
In [5], we defined an optimised version of this machine where useless forwarders
can be garbage collected, and less messages are transmitted along the network.
We proved that the resulting abstract machine is weak barbed bisimilar to the
original one; however due to the lack of adequate up-to techniques or composi-
tionality results, this proof is quite tedious, and cannot easily be used as a basis
for further studies.

Motivated by these difficulties, we developed new up-to techniques for weak
bisimulation [8]. These techniques improve on previously known techniques; how-
ever, they are developed in a completely abstract setting and their applicability
has not yet been evaluated beyond rather simple illustrative examples.

Before focusing on behavioural equivalences and proof techniques, we present
the first main contribution of this work, the definition of a framework to rea-
son about distributed implementations of process algebras with mobility. In this

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 150–166, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Bisimulation Proofs for the Analysis of Distributed Abstract Machines 151

framework, a network is represented by a set of locations, or hosts, where arbi-
trary local processes are executed. The behaviour of local processes is specified
by a given LTS, whose labels correspond to the following possible actions:

– sending arbitrary messages to other locations,
– spawning local processes, inside new locations,
– migrating to another location.

While this framework is the basis of the PAN abstract machine [10], we dropped
most of the hypotheses that were related to the implementation of an Ambient-
based calculus. Therefore, it should be suitable to analyse a rather wide range
of calculi (this is discussed in Remark 2.1).

We then move to the analysis of this framework, which serves as support
for our second main contribution: illustrating a non-trivial use of recent proof
techniques to reason about a rather complex system.

A forwarder from location h to location k acts like a substitution that re-
places any occurrence of h by k in the whole network: a message sent to h will
actually reach k. Accordingly, we prove that a net with a forwarder expands the
corresponding substituted net (expansion is the standard behavioural preorder
that leads to the correct weak bisimulation up to expansion technique [9]). This
result allows one to abstract over the communication framework when validating
possible optimisations of local processes.

The main drawback of this framework is the creation of forwarder chains,
that slow down the communications between local processes. To address this
inefficiency, we introduce an optimisation, inspired from [5], that consists in
defining a forwarder relocation mechanism, that contracts forwarder chains. Like
in [5], this mechanism breaks the initial proof strategy, as the expansion result
does no longer hold. We show in details how the techniques we developed in [8]
make it possible to give nevertheless a modular proof of correctness, where the
bisimulation candidates that we manipulate remain tractable and express only
local properties of processes.

Being able to work with small bisimulation candidates is quite important: they
are much easier to check, and when a small part of the system is refined, there is
hope that only some of the proofs will need to be updated. Even more important
is the fact that the relations focus on local properties, since this allows one to
write explicitly the slight differences between related processes and to reason
syntactically about these.

We actually allude in [8] to an example derived from [5]. It turned out that the
development made in a corresponding technical report missed a crucial step in the
proof, and, more importantly, contained a mistake. Moreover, the proof presented
here for the optimised system is less specific and aims at giving a better illustration
of the benefits given by the general techniques of [8], and of their flexibility.

Outline of the paper. In Sect. 1, we introduce our notations and the notions used
in the sequel. We define the initial framework in Sect. 2, and we analyse it in
Sect. 3. Section 4 is devoted to the definition of the optimisation, and to the
corresponding correctness proof. We conclude with some remarks in Sect. 5.

152 D. Pous

1 LTS, Bisimilarity

We consider labelled transition systems (LTS) 〈P , L, →〉, with domain P , labels
or actions in L and transition relation → ⊆ P × L × P . The elements of P are
called processes and are denoted by P, Q in this section. L will always implicitly
contain a distinguished silent action, noted τ . We let α, β (resp. a, b) range over
actions, in L (resp. visible actions, in L\{τ}).

We let R, S, B, E range over binary relations (simply called relations in the
sequel) between processes. We denote respectively by R+, R=, R� the transi-
tive, reflexive, transitive and reflexive closures of a relation R. PRQ means
〈P, Q〉∈R. The composition of two relations R and S, written RS, is defined by
RS � {〈P, Q〉 /PRT and TSQ for some process T}. We also define the inverse
of a relation: R−1 � {〈P, Q〉 /QRP}. I is the identity relation, defined by I �
{〈P, P 〉 /P ∈ P}. We say that R contains S (alternatively, that S is contained
in R), written S ⊆ R, if PSQ implies PRQ. Given an action α, the set of tran-
sitions along α induces a relation denoted by α→: α→� {〈P, Q〉 / 〈P, α, Q〉 ∈ →}.
Its inverse is written using a reversed arrow: a← = (a→)−1, and similarly for other
forms of arrows, defined below.

Definition 1.1 (Termination). A relation R terminates if there is no infinite
sequence (Pi)i∈N such that ∀i, PiRPi+1.

The definitions of behavioural equivalences and preorders will make use of the
following weak transition relations.

Definition 1.2 (Weak transitions)

α̂→ �
{

τ→
=

if α = τ
a→ if α = a ∈ L\{τ}

α⇒ � τ→
� α→ τ→

�

α̂⇒ � τ→
� α̂→ τ→

�

We can remark the following properties: τ̂⇒ = τ→
�
, τ⇒= τ→

+
, â⇒ = a⇒ (note in

particular the difference between τ̂⇒ and τ⇒).

Definition 1.3 (Evolution of relations). Let α be an action and R, S two

relations. We say that R α-evolves to S if PRQ, P
α→ P ′ implies Q

α̂⇒ Q′ and
P ′SQ′ for some Q′. We say that R evolves silently to S when R τ-evolves to S,
and that R evolves visibly to S when R a-evolves to S for any a ∈ L\{τ}.

Definition 1.4 (Simulation, Bisimulation, Bisimilarity). Let R be a re-
lation. R is a simulation if it evolves to itself. A bisimulation is a symmetric
simulation. Bisimilarity, denoted by ≈, is the union of all bisimulations.

2 A Framework for Distributed Computation

We let h, k range over a given set of locations. We denote by [k/h] the function
that replaces location h by location k. We let σ range over such substitutions,

On Bisimulation Proofs for the Analysis of Distributed Abstract Machines 153

that are naturally extended to the various syntactical categories defined in the se-
quel. We furthermore assume two sets of (local) processes and messages, denoted
respectively by P, Q and M, N . Processes may contain messages, and vice-versa.
In order to represent this, we require two operations on these sets:

– the addition of a message M to a process P , denoted by “P | {M}”,
– the embedding of a process P into a message, denoted by “reg P”.

These operations are supposed to satisfy the following equations:

(P | {M}) | {N} = (P | {N}) | {M} (1)
P | {reg (Q | {M})} = (P | {reg Q}) | {M} (2)

(P | {M})σ = Pσ | {Mσ} (3)

Nets combine localised processes and messages with a destination:

U ::= 0 (empty net) | h[P] (process located at h)
| U ‖ U (parallel composition) | h{M} (pending message)
| (νh)U (location restriction) | h � k (forwarder located at h)

Definition 2.1 (Structural congruence)
Structural congruence is the smallest congruence ≡ such that:

1. parallel composition (‖) forms an abelian monoid, with neutral element 0;
2. (νh)U ≡ (νk)(U [k/h]) if k not free in U ;
3. (νh)U ‖ V ≡ (νh)(U ‖ V) if h not free in V ;
4. (νh)(νk)U ≡ (νk)(νh)U ; and (νh)0 ≡ 0.

ΠiUi will denote the parallel composition of the nets Ui. The notation for tuples
is x̃ and (x, x̃) will denote the addition of an element x to x̃. Our notations are
naturally extended using tuples; for example, h{M̃} and h̃ � k will respectively
denote Πi h{Mi} and Πi hi � k.

Definition 2.2 (Dependency relation). Let U be a net. We call dependency
relation of U the relation ≺U �

{
〈h0, hn〉

/
U ≡ V ‖ Πi<n hi � hi+1

}
.

An agent is either a localised process h[P], or a forwarder h�k. We let a, b range
over an arbitrary set of visible actions, and we define an LTS over nets:

[Loc]
P ↪

h,a,U−−−→ P ′

h[P] a→ h[P ′] ‖ U
P ↪

h,a,mig k−−−−−−→ P ′

h[P] a→ h � k ‖ k{reg P ′}
[Mig]

[Fwd] h{M} ‖ h � k
τ→ h � k ‖ k{M} h{M} ‖ h[P] τ→ h[P | {M}] [Rcv]

[New]
U

α→ U ′ h not free in U, U ′

(νh)U α→ (νh)U ′
U

α→ U ′

U ‖ V
α→ U ′ ‖ V

[Par]

[Cong]
U ≡ U ′ α→ V ′ ≡ V

U
α→ V

154 D. Pous

h′, a, mig k

k′ h′

hk

a

[Mig]

τ

[Fwd]k

k′

h′

h
h{M}

τ

[Fwd]k

k′

h′

h
h′{M}

k

k′

h′

h

k′{M} τ

[Rcv] k

h′

h

k′ {M}2

h{M}

Fig. 1. Nets, Migration, Routing of Messages

This definition depends on a localised LTS, describing the behaviour of local
processes: P ↪

h,a,K−−−−→ P ′ stands for “process P , when located at h, evolves to
P ′ by performing a visible action a and emitting a request K”. Such requests
correspond to the primitives granted to local processes. They can be either:

– a net U (rule [Loc]), containing messages to send or new localities to spawn;
– or a migration request mig k (rule [Mig]): the local process wants to suspend

its execution and to send its state to k. In that case, the local process gets
replaced by a forwarder that will transmit further messages to k.

The two silent transition rules are concerned with the routing of messages:
rule [Fwd] defines the behaviour of forwarders: they transmit the messages;
and rule [Rcv] performs the actual reception of a message at its final location.
A sequence of transitions is depicted in Fig. 1, where squares and triangles rep-
resent respectively localised processes and forwarders; the process located at h′

migrates to k and the message h′{M} is routed to its final destination, k′.
We assume the two properties below about the localised LTS:

If P ↪
h,a,K−−−−→ P ′, then for any message M, P | {M} ↪

h,a,K−−−−→ P ′ | {M}. (4)

P ↪
h,a,K−−−−→ P ′ iff for any substitution σ, Pσ ↪

hσ,a,Kσ−−−−−→ P ′σ. (5)

(4) expresses the fact that an additional message should not prevent a process
from doing some localised transition. (5) prevents local processes from testing
the equality of two locations. In some sense, this means that local processes
should not be aware of the implementation details of the framework.

Definition 2.3 (Well-formedness). A net is well-formed if for any of its
reducts U , we have U ≡ (νh̃)V for some h̃, V such that:

1. any agent of V is located at a location mentioned in h̃;
2. for any location h in h̃, there is exactly one agent located at h in V ; and
3. the dependency relation ≺V is a partial order, whose maximal elements are

the locations hosting localised processes.

In the sequel, we shall often omit the restrictions on locations that should appear
in front of a well-formed net (νh̃)V : they can be guessed from V .

Hypothesis 2.4. We assume that we are given only well-formed nets.

On Bisimulation Proofs for the Analysis of Distributed Abstract Machines 155

Remark 2.1 (On the expressiveness of the framework). Locations express only
the logical distribution of processes. Hence, the second condition in our defini-
tion of well-formedness does not rule out the case where several locations are
thought of as residing physically on the same device. Also, unlike in [10,5], the
processes are not required to be distributed along a tree structure, and there is
no constraint on the communication topology: since messages may contain loca-
tions, π-calculus-like mobility of links is provided by the model. Independently,
migration is subjective in our model: the process itself decides to migrate. Objec-
tive migration mechanisms (like the passivation available in the Kell-calculus [1])
may be simulated by using messages to trigger migrations.

The main constraint imposed by the well-formedness hypothesis comes from
the third point: the graph of the dependency relation is a forest whose roots
are the localised processes, and no cycle of forwarders should be generated. This
could happen, for example, if a process located at h migrates to some location
pointing to h. We discuss the role of this hypothesis in Sect. 5. One possibility
to prevent the creation of such cycles is to define a partial ordering of the local
processes, and insure that all migration requests respect this ordering (this is
the case in models like Ambients [2], Kells [1], or Seals [3]).

3 Reasoning Up to Forwarders

In this section, we validate the behaviour of forwarders, by showing that be-
havioural equivalence is not sensitive to silent transitions (τ→ ⊆ ≈) and to the
replacement of a forwarder by a substitution.

Even though this property happens to be sufficient for our needs in the sequel
(see Sect. 4.2), it does not allow one in general to reason modulo forwarders in
other bisimulation proofs: it is well known that weak bisimulation up to ≈ is not
a correct technique [9]. Therefore, we prove a stronger result using expansion
(�), the standard behavioural preorder that leads to the correct “bisimulation
up to �” technique. Interestingly, this allows us to use the up to transitivity
technique enjoyed by expansion, so that our proof is actually easier.

Definition 3.1 (Expansion). An expansion relation is a relation R such that
for any α ∈ L, whenever PRQ we have:

– if P
α→ P ′ then Q

α̂→ Q′ and P ′RQ′ for some Q′,
– if Q

α→ Q′ then P
α̂⇒ P ′ and P ′RQ′ for some P ′.

Expansion, denoted by �, is the union of all expansion relations.

Theorem 3.2 (Bisimulation up to Expansion [9]). Let R be a symmetric
relation. If R evolves to �R�, then R ⊆ ≈.

Theorem 3.3 (Expansion up to Transitivity). Let R be a relation. If for
any α ∈ L, whenever PRQ we have:

156 D. Pous

– if P
α→ P ′ then Q

α̂→ Q′ and P ′R�Q′ for some Q′,
– if Q

α→ Q′ then P
α̂⇒ P ′ and P ′RQ′ for some P ′,

then R ⊆ �.

Notice that transitivity is allowed only on one side in the previous theorem.
Nevertheless, this is sufficient for the proof of the following proposition:

Proposition 3.4. Let U, V be two nets. If U
τ→ V then U � V .

Proof. We show that the following relation is an expansion up to transitivity:

R � τ→ ∪ {〈h{reg P} ‖ h{M} ‖ W, h{reg (P | {M})} ‖ W 〉} .

We need the up to transitivity technique to analyse the two cases below:

U ≡ h{M} ‖ h[P] ‖ W R h[P | {M}] ‖ W ≡ V [Rcv]

U
a→ h{M} ‖ h � k ‖ k{reg P ′} ‖ W [Mig]

R h � k ‖ k{M} ‖ k{reg P ′} ‖ W [Fwd]

R h � k ‖ k{reg P ′ | {M}} ‖ W
a← V [R, Mig]

U ≡ h{reg P ′} ‖ h{M} ‖ h � k R h{reg (P ′ | {M})} ‖ h � k ≡ V

U
τ→ h{M} ‖ h � k ‖ k{reg P ′} [Rcv]

R h � k ‖ k{M} ‖ k{reg P ′} [Fwd]

R h � k ‖ k{reg (P ′ | {M})} τ← V [R, Rcv]

The other cases are similar or straightforward. ��

The smallest bisimulation relation containing τ→ is τ̂⇒. Hence, proving the weaker
result τ→ ⊆ ≈ without using this expansion-based technique would require to
check that τ̂⇒ is a bisimulation, which is less tractable: while U and V differ only
slightly when U

τ→ V , this is no longer the case when U
τ̂⇒ V .

We now define a forwarder erasure relation, that replaces a forwarder by the
corresponding substitution and we show that this relation is contained in �.

Definition 3.5 (Forwarder erasure). We call forwarder erasure the following
relation:

E � {〈(νh)(h � k ‖ U), U [k/h]〉} .

Proposition 3.6. Let U, V be two nets. If UEV , then U � V .

Proof. We check that E is an expansion relation: let U = (νh)(W ‖ h � k) and
V = W [k/h].

On Bisimulation Proofs for the Analysis of Distributed Abstract Machines 157

– If U
α→ U ′, by using Hypothesis (5), we obtain V

α→ V ′ with U ′EV ′, except
in the following case, corresponding to the rule [Fwd]:

U ≡ (νh)(W ′ ‖ h{M} ‖ h � k) τ→ (νh)(W ′ ‖ h � k ‖ k{M}) ≡ U ′,

where we just check that U ′EV .
– If V

α→ V ′, again, by using Hypothesis (5), we obtain U
α→ U ′ with U ′EV ′,

except in the two following cases:

V ≡ W ′[k/h] ‖ k{M} ‖ k[P]
τ→ W ′[k/h] ‖ k[P | {M}] ≡ V ′

[Rcv]

U ≡ (νh)(W ′ ‖ h{M} ‖ h � k ‖ k[P])
τ→ (νh)(W ′ ‖ h � k ‖ k{M} ‖ k[P]) [Fwd]

τ→ (νh)(W ′ ‖ h � k ‖ k[P | {M}]) E V ′
[Rcv]

V ≡ W ′[k/h] ‖ k � k′ ‖ k{M}
τ→ W ′[k/h] ‖ k � k′ ‖ k′{M} ≡ V ′

[Fwd]

U ≡ (νh)(W ′ ‖ h{M} ‖ h � k ‖ k � k′)
τ→ (νh)(W ′ ‖ h � k ‖ k{M} ‖ k � k′) [Fwd]

τ→ (νh)(W ′ ‖ h � k ‖ k � k′ ‖ k′{M}) E V ′
[Fwd]

��

E and τ→ are confluent and terminating relations (for the termination of τ→, we
rely on the fact that the dependency relation of a well-formed net is a partial
order). This allows us to define normal forms of nets, that will be used in Sect. 4:

Definition 3.7 (Normalisation). We denote respectively by U↓ and e(U) the
normal forms of U w.r.t. τ→ and E. We say that a net U is normal (resp. E-
normal) if U = U↓ (resp. U = e(U↓)).

By the two previous propositions, we have that a net expands its E-normal form.
This makes it possible to restrict to E-normal nets in bisimulation proofs (see
the proof of Theorem 4.17 for an example).

Theorem 3.8. For any well-formed net U , we have:

U � e(U↓).

Proof. By definition of U↓ and e(U), this follows from Props. 3.4 and 3.6. ��

Notice that (τ→∪E) is terminating and confluent, and that E preserves τ→-normal
forms. In particular, we have e(U↓) ≡ e(U)↓. The strategy that we impose in this
theorem to compute the normal form of U is hence somehow arbitrary. However,
this will ease the development in Sect. 4.

158 D. Pous

4 Optimisations of the Behaviour of Forwarders

The forwarder chains that are generated along the evolution of a net are the
source of inefficiencies. For example, the message {M} in Fig. 1 will have to go
trough three locations before reaching its final destination. In this section, we
define an optimisation of the framework, that contracts such forwarder chains,
and we prove the correctness of this optimisation, by showing that simple for-
warders, as defined in the previous section, are behaviourally equivalent to the
optimised ones.

4.1 Definition of the Optimisation

Optimised nets extend the syntax of nets by

– annotating pending messages with a list of locations: h{M}k̃;
– introducing blocked forwarders : h � k;
– adding a second kind of messages: relocation messages h〈go� k〉.

Intuitively, the list that decorates a pending message contains the set of forwarder
locations the message did pass through. Messages emitted by the underlying local
processes will have an empty list, which will allow us to omit their annotation.
Relocation messages are received only by blocked forwarders. Their effect is to
redirect such forwarders to a destination closer to the location they indirectly
point to.

We shall use the terminology ‘simple net’ to denote a net as defined in Sect. 2.
Structural congruence is extended to optimised nets in the obvious way. We
define over this extended syntax an optimised LTS, written α→o, by taking the
rules of the initial LTS and replacing the silent transition rules ([Fwd] and [Rcv])
with the three rules below.

h{M}h̃ ‖ h � k
τ→o h � k ‖ k{M}h,h̃ [OFwd]

h{M}h̃ ‖ h[P] τ→o h[P | {M}] ‖ h̃〈go� h〉 [ORcv]

h〈go� k′〉 ‖ h � k
τ→o h � k′

[OUpd]

When a forwarder transmits a message, it registers its location (rule [OFwd]),
and enters a blocked state so that it will temporarily block further potential
messages. Upon reception at the final location, a relocation message is broad-
casted to the locations registered in the message (rule [ORcv]). The blocked
forwarders located at these locations will finally update their destination ac-
cordingly (rule [OUpd]). This behaviour is illustrated in Fig. 2, where reversed,
grey triangles correspond to blocked forwarders. Notice that forwarders have to
block until they receive the relocation message: otherwise, a timestamps mech-
anism would be required, so that a forwarder can cleverly chose between two
possibly distinct relocation messages.

The definition of dependency relation is adapted by considering all forwarders
uniformly, be they blocked or not. We have:

On Bisimulation Proofs for the Analysis of Distributed Abstract Machines 159

{N}

{M}

[OFwd]

τ 2

{N}{M}

τ

[OFwd]

{N}

{M}
τ

[ORcv]

{N}

{M}

〈go�〉 [OUpd]

τ 3 {M}
{N}

{N}

{M} τ

[OFwd]

Fig. 2. Optimised Forwarder Behaviour

Proposition 4.1. In the optimised LTS, for any reduct U of a simple, well-
formed net, there exist h̃, V such that U ≡ (νh̃)V and the following conditions
hold:

1. the properties required in Def. 2.3 are satisfied;
2. for any blocked forwarder h�k, h appears exactly once in the annotation of a

pending message (h′{M}h̃, with h ∈ h̃), or as the destination of a relocation
message (h〈go� h′〉); in both cases, we have h ≺V h′;

3. any location registered in a pending message, or appearing as the target of a
relocation message hosts a blocked forwarder.

In the sequel, we shall implicitly assume that any optimised net that we manip-
ulate satisfies these hypotheses.

4.2 Correctness of the Optimisation

Unlike in the previous section, we cannot rely on expansion-based up-to tech-
niques: neither silent transitions, nor the erasure of forwarders are contained
in expansion. This comes from the race conditions introduced by the blocking
behaviour of forwarders: for example, in Fig. 2, the message {N} has to wait for
arrival of {M}. The very ‘controlled’ nature of expansion – the right-hand-side
process has to be as fast as the left-hand-side process, at each step – cannot take
into account the fact that {N} is closer to its destination at the end.

However, by proving that in the optimised setting, a net is bisimilar to its E-
normal form (Theorem 4.16), the following restricted version of the bisimulation
up to ≈ technique will be sufficient to prove the equivalence between the two
systems (Theorem 4.17): we can restrict to τ→-normal forms, so that there is no
silent challenge to play.

Theorem 4.2 (Bisimulation up to Bisimilarity). Let R be a symmetric
relation, if R evolves silently to itself and visibly to ≈ R ≈, then R ⊆ ≈.

Like in Sect. 3, the smallest bisimulation relations containing τ→o or E contain at
least τ̂⇒o, so that we need some bisimulation proof technique in order to be able
to work with small and local candidate relations. We use for that the following
technique from [8].

Definition 4.3 (Controlled relation). A relation B is a controlled relation
if the following conditions hold:

160 D. Pous

1. B evolves to B�,
2. B+ τ⇒ terminates,
3. B ⊆ ≈.

Theorem 4.4 (Bisimulation up to a Controlled relation [8]). Let B be a
controlled relation, if a symmetric relation R evolves to B�R ≈, then R ⊆ ≈.

The following proposition will be used to prove the third point of Def. 4.3.

Proposition 4.5. If B is a relation evolving to B� and such that B+ τ⇒ termi-
nates, then B� is a simulation.

We now have enough technical devices to embark in the proof of correctness. We
first prove a lemma that will allow us to route messages to their destination.

Lemma 4.6. Let U ≡ V ‖ h0{M}h̃ be a net. Then we have:

U ≡ V ′ ‖ h0{M}h̃ ‖ Πi<nFi(hi, hi+1) ‖ hn[P]

U
τ⇒o V ′ ‖ h̃〈go� hn〉 ‖ Πi<nhi � hn ‖ hn[P | {Ñ} | {M}] ‖ k̃ � hn

where Fi(h, k) is either:

– a forwarder: h � k, or
– a blocked forwarder, together with a relocation message: h� k′ ‖ h〈go� k〉, or
– a blocked forwarder whose location is registered in a message blocking some

other forwarders: h � k′ ‖ k{N}h,k̃ ‖ k̃ � k̃′.

Ñ and k̃ are the messages and forwarder locations collected in Πi<nF (hi, hi+1).

Proof. The decomposition of U comes from the well-formedness hypothesis. We
prove the reduction by induction over n: if n = 0 we just apply the rule [ORcv],
otherwise we reason by case analysis on the shape of F0(h0, h1):

– a simple forwarder: h0�h1: we transmit the message with rule [OFwd], apply
the induction hypothesis (IH), and relocate the forwarder using rule [OUpd]:

U
τ→o V ′ ‖ h0 � h1 ‖ h1{M}h0,h̃ ‖ Π0<i<nF (hi, hi+1) ‖ hn[P] [OFwd]

τ⇒o V ′ ‖ h0 � h1 ‖ (h0, h̃)〈go� hn〉 ‖ Π0<i<nhi � hn

‖ hn[P | {Ñ} | {M}] ‖ k̃ � hn (IH)
τ→o V ′ ‖ h0 � hn ‖ Πi<nhi � hn ‖ hn[P | {Ñ} | {M}] ‖ k̃ � hn [OUpd]

– a blocked forwarder with a relocation message: h0 � k′ ‖ h0〈go� h1〉: we
relocate the forwarder with rule [OUpd] and fall back into the previous case.

On Bisimulation Proofs for the Analysis of Distributed Abstract Machines 161

– h0 �k′ ‖ h1{N1}h0,k̃1
‖ k̃1 � k̃′

1: we apply the induction hypothesis to the mes-
sage at h1, and transmit the initial message trough the relocated forwarder:

U
τ⇒o V ′ ‖ h0{M}h̃ ‖ h0 � h1 ‖ h0〈go� hn〉 ‖ Π0<i<nhi � hn

‖ hn[P | {N1, Ñ}] ‖ k̃1 � k̃′
1 ‖ k̃ � k̃′ (IH)

τ→o V ′ ‖ h0{M}h̃ ‖ Πi<nhi � hn ‖ hn[P | {N1, Ñ}] ‖ k̃1 � k̃′
1 ‖ k̃ � k̃′

[OUpd]

τ→o
3 V ′ ‖ h̃〈go� hn〉 ‖ Πi<nhi � hn ‖ hn[P | {N1, Ñ} | {M}]

‖ k̃1 � k̃′
1 ‖ k̃ � k̃′

[OFwd,ORcv,OUpd]

��
τ→o does not commute with visible actions: some relocation of forwarders is
involved. To handle this, we introduce the following relation, that allows one to
reorganise step by step the forwarder structure of a net.

Definition 4.7. We denote by S the swapping relation, defined as the symmet-
ric closure of the following relation:

{〈h � h′ ‖ h′ � k ‖ U, h � k ‖ h′ � k ‖ U〉} .

Our goal is to prove that (S ∪ τ→o) is a controlled relation: this entails τ→o ⊆ ≈,
but also makes it possible to give a nice proof of E ⊆ ≈ (Prop. 4.13), by using
Theorem 4.4. The three following lemmas establish progressively that (S ∪ τ→o)
evolves to (S ∪ τ→o)�, so that this relation satisfies the first point of Def. 4.3.
Again, thanks to the up-to technique, we avoid manipulation of complex rela-
tions, and focus on nets that differ only slightly (as in Def. 4.7).

Lemma 4.8. If U
τ→o V and U

a→o U ′ then U ′ τ̂⇒o S� τ̂⇐o
a←o V .

Proof. It holds that U ′ τ→o
a←o V , except in the following case:

U ≡ W ‖ h{M}h̃ ‖ h[P] τ→o W ‖ h[P | {M}] ‖ h̃〈go� h〉 ≡ V [ORcv]

U
a→o W ‖ h{M}h̃ ‖ h � k ‖ k{reg P ′} ≡ U ′

[Mig]

where we have

V
a→o W ‖ h � k ‖ k{reg P ′ | {M}} ‖ h̃〈go� h〉 ≡ V ′. [Mig]

We reason by case analysis on the agent located at k:

– a localised process k[Q]: by routing to k the messages exhibited in U ′ and
V ′, we obtain:

U ′ τ⇒o W ′ ‖ (h, h̃) � k ‖ k[Q | {reg P ′} | {M}]

V ′ τ⇒o W ′ ‖ h̃ � h ‖ h � k ‖ k[Q | {reg P ′ | {M}}]

162 D. Pous

(the only message to route in V ′ is almost at its final destination, and the
relocation message has already been sent to the blocked forwarders located
at h̃, so that the latter gets relocated under h instead of k).

Finally, we relocate these forwarders with n applications of the swapping
relation, n being the length of h̃: U ′ τ̂⇒o Sn τ̂⇐o V ′.

– a forwarder k � k′: like in the previous case, we first route the available
messages to their destination, say k′′:

U ′ τ⇒o W ′ ‖ (h, k, h̃) � k′′ ‖ k′′[Q | {reg P ′} | {M}],

V ′ τ⇒o W ′ ‖ h̃ � h ‖ h � k ‖ k � k′′ ‖ k′′[Q | {reg P ′ | {M}}].

Here we need an additional application of the swapping relation to relocate h

to k′′, before being able to relocate the forwarders at h̃: U ′ τ̂⇒o Sn+1 τ̂⇐o V ′.
– a blocked forwarder k�k′. We reason like in the previous case by first routing

the message that blocks this forwarder to its destination. ��

Lemma 4.9. If USV and U
α→o U ′ then U ′ τ⇒o S� α̂⇐o V .

Proof. It is immediate for visible challenges α = a: we have U ′S a←o V . When
α = τ , the interesting cases are those where the silent transition U

τ→o U ′ is the
transmission of a message trough one of the two forwarders being swapped:

– U ≡ W ‖ h{M}h̃ ‖ h � h′ ‖ h′ � k
τ→o W ‖ h � h′ ‖ h′{M}h,h̃ ‖ h′ � k ≡ U ′.

By routing the messages, we obtain:

U ′ τ⇒o W ′ ‖ h � k′ ‖ h′ � k′ ‖ k′[Q | {M}],

V
τ⇒o W ′ ‖ h � k ‖ h′ � k′ ‖ k′[Q | {M}] ≡ V ′.

If k = k′, we are done. Otherwise, there is a forwarder k � k′, and we need
one application of the swapping relation in order to relocate the forwarder
located at h in V ′.

– U ≡ h � h′ ‖ h′{M}h̃ ‖ h′ � k
τ→o h � h′ ‖ h′ � k ‖ k{M}h′,h̃ ≡ U ′

By routing the messages, we obtain:

U ′ τ⇒o W ′ ‖ h � h′ ‖ h′ � k′ ‖ k′[Q | {M}] ≡ U ′′,

V
τ⇒o W ′ ‖ h � k ‖ h′ � k′ ‖ k′[Q | {M}] ≡ V ′.

If k = k′, we are done. Otherwise, there is a forwarder k � k′, and we need
two applications of the swapping relation in order to relocate the forwarder
located at h in both nets:

U ′′ ≡ W ′′ ‖ h � h′ ‖ k � k′ ‖ h′ � k′ ‖ k′[Q | {M}]
S W ′′ ‖ h � k′ ‖ k � k′ ‖ h′ � k′ ‖ k′[Q | {M}]
S W ′′ ‖ h � k ‖ k � k′ ‖ h′ � k′ ‖ k′[Q | {M}] ≡ V ′

This analysis also applies for the symmetric cases, where the silent transitions
are played by the net with ‘flat’ forwarders. ��

On Bisimulation Proofs for the Analysis of Distributed Abstract Machines 163

Lemma 4.10. τ→o is locally confluent.

Proof. Using Prop. 4.1, the only critical pair is U = V ‖ h{M}h̃ ‖ h{N}k̃ ‖ h�k,

U
τ→o V ‖ h{M}h̃ ‖ h � k ‖ k{N}h,k̃ = U1 [OFwd]

U
τ→o V ‖ h{N}k̃ ‖ h � k ‖ k{M}h,h̃ = U2 [OFwd]

By using Lemma 4.6 on U1, we can route the message {N} to some location k′:

U1
τ̂⇒o V ′ ‖ h{M}h̃ ‖ h � k ‖ (h, k̃)〈go� k′〉 ‖ k′[P | {N}] (Lemma 4.6)

τ→o V ′ ‖ h{M}h̃ ‖ h � k′ ‖ k̃〈go� k′〉 ‖ k′[P | {N}] [OUpd]

τ→o
3 V ′ ‖ (k̃, h̃)〈go� k′〉 ‖ h � k′ ‖ k′[P | {N} | {M}] ≡ U ′

[OFwd,ORcv,OUpd]

The same reasoning about U2 leads to U2
τ⇒o U ′. ��

Lemma 4.11. S� τ⇒o terminates.

Proof. We call size of a net U the triple s(U) = 〈n, r, l〉, where n is the number
of pending messages, r the number of relocation messages, and l the number of
forwarders that are not blocked. These triples are ordered lexicographically. We
check that USV implies s(U) = s(V), and that this size strictly decreases along
silent transitions (recall that τ⇒o contains at least one transition). ��

Proposition 4.12. (S ∪ τ→o) is a controlled relation.

Proof. First we check that (S∪ τ→o) satisfies the first two requirements of Def. 4.3:
(1) comes from Lemmas 4.8, 4.9, and 4.10; by remarking that (S ∪ τ→o)+

τ⇒o =
(S� τ⇒o)+, Lemma 4.11 gives (2).

For (3), by Prop. 4.5, we have that (S ∪ τ→o)� is a simulation. Moreover, τ̂←o
is a simulation (as is always the case). By combining these two results we obtain
that the symmetric relation (S ∪ τ↔o)� = ((S ∪ τ→o)� ∪ τ̂←o)� is a simulation, and
hence a bisimulation, so that (S ∪ τ→o) ⊆ (S ∪ τ↔o)� ⊆ ≈. ��

We now show that E ⊆ ≈. In order to avoid confusion, we consider in the sequel
bisimilarity as a relation between rooted LTSs that share the same set of labels:
〈U, →〉 ≈ 〈V, �〉 will denote the fact that U with labelled transition relation →,
is bisimilar to V , with labelled transition relation �.

Notice that we do not extend the erasure relation E to optimised nets; like
e(.) it will only be used to reason about simple nets.

Proposition 4.13. Let U, V be simple nets.

If UEV then 〈U, →o〉 ≈ 〈V, →o〉.

Proof. We show that the symmetric closure of the erasure relation E is a bisim-
ulation up to the controlled relation (S ∪ τ→o) (Theorem 4.4).

164 D. Pous

– If U
a→o U ′, then U ′ is a simple net, and we check that V

a→o V ′ with U ′EV ′.
– If U

τ→o U ′, the interesting case is the following, when n > 1:

U ≡ (νh0)(W ‖ h0{M} ‖ Πi<nhi � hi+1 ‖ hn[P])

U
τ→o U ′ ≡ (νh0)(W ‖ h0 � h1 ‖ h1{M}h0 ‖ Π0<i<nhi � hi+1 ‖ hn[P])
U E V ≡ W [h1/h0] ‖ h1{M [h1/h0]} ‖ Π0<i<nhi � hi+1 ‖ hn[P [h1/h0]])

By routing the message in both processes, we obtain:

U ′ τ⇒o U ′′ ≡ (νh0)(W ‖ Πi<nhi � hn ‖ hn[P | {M}])

V
τ⇒o V ′ ≡ W [h1/h0] ‖ Π0<i<nhi � hn ‖ hn[P [h1/h0] | {M [h1/h0]}])

These processes are not related by E , we need first to relocate in U ′′ the
forwarder located at h0 under h1, using a ‘reversed’ application of S:

U ′ τ⇒o U ′′ S (νh0)(W ‖ h0 � h1 ‖ Π0<i<nhi � hn ‖ hn[P | {M}]) E V ′ τ⇐o V.

– The cases where V
α→o V ′ are handled similarly. ��

Remark that we can also prove that (E ∪ S ∪ τ→o) is a controlled relation. This
would be useful if we had to reason up to E on some silent transitions.

Lemmas 4.11 and 4.10 ensure that τ→o defines a unique normal form for any
net (termination of S� τ⇒o entails termination of τ→o).

Definition 4.14. Let U be an optimised net.
We denote by U↓o the normal form of U w.r.t. τ→o.

Notice that U↓o is always a simple net: it does not contain any blocked forwarder,
relocation message, nor pending, annotated messages. Furthermore, we have that
an optimised net U is a normal net iff U = U↓o.

The normalisation of a simple net by τ→ and τ→o does not necessarily lead to
the same net: U↓ �≡ U↓o. However, these nets differ only by some rearrangement
of their forwarders: they are related by S�. As expressed by the proposition
below, in order to obtain the same net, we just need to erase all the forwarders.

Proposition 4.15. For any simple net U , we have:

e(U↓) ≡ e(U↓o).

Proof. USV entails e(U) ≡ e(V), therefore it is sufficient to prove that U↓S�U↓o.
We proceed by well-founded induction on U , using the termination of τ→:

– If U is a normal net, we have U↓ = U = U↓o.
– If U

τ→ U ′, since U is simple, U ≡ V ‖ h0{M} ‖ Πi<nhi � hi+1 ‖ hn[P] and:

U
τ→ U ′ τ⇒ V ‖ Πi<nhi � hi+1 ‖ hn[P | {M}] ≡ U1

U
τ⇒o V ‖ Πi<nhi � hn ‖ hn[P | {M}] ≡ U2 (Lemma 4.6)

On Bisimulation Proofs for the Analysis of Distributed Abstract Machines 165

We check that U1SnU2, and we have U1
τ̂⇒o U1↓o so that from Prop. 4.12,

U2
τ̂⇒o U ′

2 with U1↓o(S ∪ τ→o)�U ′
2. Furthermore, since S preserves normal

forms, U1↓oS�U ′
2, and U ′

2 = U2↓o

Finally, by induction, U1↓S�U1↓o and U↓ = U1↓S�U1↓oS�U2↓o = U↓o. ��

It follows that a net is bisimilar to its E-normal form, which leads to the final
proof of correctness.

Theorem 4.16. Let U be an optimised net, we have:

〈U, →o〉 ≈ 〈e(U↓), →o〉 .

Proof. From Prop. 4.12, τ→o ⊆ ≈, and U ≈ U↓o. We conclude with Props. 4.13
and 4.15: U↓o ≈ e(U↓o) ≡ e(U↓). ��

Theorem 4.17 (Correctness of the optimisation). For any simple net U ,
we have:

〈U, →o〉 ≈ 〈U, →〉 .

Proof. Using Theorems 4.16 and 3.8, we can suppose w.l.o.g. that U is E-normal.
Let R �

{
〈〈U, →o〉 , 〈U, →〉〉

/
U is E-normal

}
. We show that the symmetric

closure of R is a bisimulation up to ≈ (Theorem 4.2): since U is normal, there
are only visible challenges to play. Suppose U

a→o U ′. The LTSs do not differ on
visible actions, hence we have U

a→ U ′. U ′ is not necessarily E-normal, so that
〈U ′, →o〉R 〈U ′, →〉 does not hold. However, by Theorems 4.16 and 3.8, we have:
〈U ′, →o〉 ≈ 〈e(U ′↓), →o〉 R 〈e(U ′↓), →〉 ≈ 〈U ′, →〉.

The challenges offered by 〈U, →〉 are handled symmetrically. ��

5 Concluding Remarks

The bisimilarity proof in [5]. In the GCPAN [5], which is an optimisation of
the PAN [10], we actually add counters to the forwarders and garbage collect
forwarders whose counter is 0, to which no message will be sent anymore.

We can build on the results presented here to give a complete correctness
proof, by validating each optimisation step. Because in PAN local processes
satisfy the requirement of our framework, the PAN with relocating forwarders is
equivalent to the original machine. Furthermore, adding counters to the machine
does not affect this. We then show that the relation that removes a forwarder
with counter 0 is a strong bisimulation. Finally, correctness of the GCPAN is
established by checking that the identity relation is a bisimulation up to strong
bisimilarity relating the previous nets and GCPAN nets.

Forwarder cycles. In this paper, we assumed that no forwarder cycles can appear
during the evolution of a net (Hyp. 2.4). However, Theorem 4.17, that states the
correctness of the optimisation, holds without this assumption. Indeed, in both
systems, all forwarders belonging or pointing to a cycle, and messages routed
along such forwarders, will get trapped in the cycle, rendering this part of the
net behaviourally equivalent to the empty net:

166 D. Pous

– In the initial system, any message trapped in a cycle will keep moving in-
definitely along the cycle, producing infinitely many silent transitions (the
relation τ→ remains confluent, but does no longer terminate).

– In the optimised system, messages reaching the cycle will progressively block
its forwarders (τ→o still terminates, but it is no longer confluent: the shape
of the final blocked cycle depends on the order of the reductions).

Furthermore, cycles can only be created by the visible rule [Fwd], and we can
check that the set of messages and forwarders trapped in a cycle does not depend
on the setting we chose. Hence, in the proof of Theorem 4.17, we could safely
remove the cycles and lost messages that appear on both sides, the same way as
we normalise processes along the bisimulation game.

Acknowledgements. I would like to thank Daniel Hirschkoff, whose great help
and comments have been essential during the preparation of this paper.

References

1. Bidinger, P., Stefani, J.-B.: The Kell Calculus: Operational Semantics and Type
System. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS,
vol. 2884, pp. 109–123. Springer, Heidelberg (2003)

2. Cardelli, L., Gordon, A.: Mobile Ambients. In: Nivat, M. (ed.) ETAPS 1998 and
FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

3. Castagna, G., Nardelli, F.Z.: The Seal Calculus Revisited. In: Agrawal, M., Seth,
A.K. (eds.) FST TCS 2002: Foundations of Software Technology and Theoretical
Computer Science. LNCS, vol. 2556, pp. 85–96. Springer, Heidelberg (2002)

4. Fournet, C., Le Fessant, F., Maranget, L., Schmitt, A.: JoCaml: A Language for
Concurrent Distributed and Mobile Programming. In: Jeuring, J., Jones, S.L.P.
(eds.) AFP 2002. LNCS, vol. 2638, pp. 129–158. Springer, Heidelberg (2003)

5. Hirschkoff, D., Pous, D., Sangiorgi, D.: In: Jacquet, J.-M., Picco, G.P. (eds.) CO-
ORDINATION 2005. LNCS, vol. 3454, Springer, Heidelberg (2005)

6. Levi, F., Sangiorgi, D.: Mobile Safe Ambients. In: ACM Trans. on Progr. Lang.
and Sys. vol. 25(1), pp. 1–69. ACM Press, New York (2003)

7. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: A Kernel Language for Agents
Interaction and Mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)

8. Pous, D.: Up-to Techniques for Weak Bisimulation. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
730–741. Springer, Heidelberg (2005)

9. Sangiorgi, D., Milner, R.: The problem of Weak Bisimulation up to. In: Cleaveland,
W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 32–46. Springer, Heidelberg (1992)

10. Sangiorgi, D., Valente, A.: A Distributed Abstract Machine for Safe Ambients. In:
Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076,
Springer, Heidelberg (2001)

11. Unyapoth, A., Sewell, P.: Nomadic pict: Correct Communication Infrastructure for
Mobile Computation. In: Proc. 28th POPL, pp. 116–127. ACM Press, New York
(2001)

A Typed Calculus for Querying
Distributed XML Documents�

Lucia Acciai1, Michele Boreale2, and Silvano Dal Zilio1

1 Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS and Université de Provence, France

2 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy

Abstract. We study the problems related to querying large, distributed XML
documents. Our proposal takes the form of a new process calculus in which XML
data are processes that can be queried by means of concurrent pattern-matching
expressions. What we achieve is a functional, strongly-typed programming model
based on three main ingredients: an asynchronous process calculus that draws
features from π-calculus and concurrent-ML; a model where both documents and
expressions are represented as processes, and where evaluation is represented as a
parallel composition of the two; a static type system based on regular expression
types.

1 Introduction

There is by now little doubt that XML will succeed as a lingua franca of data inter-
change on the Web. As a matter of fact, XML is a building block in the development of
new models of concurrent applications, often referred to as Service-Oriented Architec-
ture (SOA), where computational resources are made available on a network as a set of
loosely-coupled, independent services.

The SOA model is characterized by the need to exchange and query XML docu-
ments. In this paper, we concentrate on the specific problems related to querying large,
distributed XML documents. This is the case, for example, of applications interacting
with distributed heterogeneous databases or that process data acquired dynamically,
such as those originating from arrays of sensors (in this case, we can assume that the
document is in effect infinite). For another example, consider the programs involved in
the maintenance of the big Web indexes used by search engines [9]. A typical example
is the computation of a reverse web-link graph, that is a list of web pages which contain
a link to a common target URL. Distribution, concurrency and dynamic acquisition of
data must be explicitly taken into account when designing an effective computational
model for this kind of applications.

We most particularly pay attention to the processing model needed in this situation.
Our proposal takes the form of a process calculus in which XML data are processes that
can be queried by means of concurrent pattern-matching expressions. In this model, the

� The first and third author are supported by the French government research grant ACI
TRALALA. The second author is supported by the EU within the FET-GC2 initiative, project
SENSORIA.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 167–182, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

168 L. Acciai, M. Boreale, and S. Dal Zilio

evaluation of patterns is distributed among locations, in the sense that the evaluation
of a pattern at a node triggers concurrent evaluation of sub-patterns at other nodes,
and actions can be carried out upon success or failure of (sub-)patterns. The calculus
also provides primitives for storing and aggregating the results of intermediate com-
putations and for orchestrating the evaluation of patterns. In this respect, we radically
depart from previous works on XML-centered process calculi, see e.g. [2,6,11], where
queries would be programmed as operations invoked on (servers hosting) Web Services,
and XML documents would be exchanged in messages. In contrast, we view queries as
code being dispatched to the locations “hosting” a document. This shift of view is mo-
tivated by our target application domain. In particular, our model is partly inspired by
the MapReduce paradigm described in [9], that is used to write programs to be executed
on Google’s large clusters of computers in a simple functional style. Continuing with
the “reverse web-link graph example” above (developed in Section 5), assume that the
documents of interest are cached on different, perhaps replicated, servers. A query that
accomplishes the aforementioned task would dispatch sub-queries to every server and
create a dedicated reference cell to aggregate the partial results from each server. Sub-
queries sift the local documents and transmit to the central reference cell sequences of
pages with a link to the target URL, so as to eventually produce the global reverse web-
link graph. To achieve reliability, sub-queries may have to report back periodically with
status updates while the “master query” may decide to abort or reinstate queries in case
of servers failure.

Another important feature of our model is the definition of a static type system based
on regular expression types, an approach that matches well with Document Type Def-
initions (DTD) and other XML schema languages. What we achieve is a functional,
strongly-typed programming model for computing over distributed XML documents
based on three main ingredients: a semantics defined by an asynchronous process cal-
culus in the style of the π-calculus [16] and proposed semantics for concurrent-ML [10];
a model where documents and expressions are both represented as processes, and where
evaluation is represented as a parallel composition of the two; a type system based on
regular expression types (the soundness of the static semantics is proved via a subject
reduction property, Theorem 1). Each of these choices is motivated by a feature of the
problem: the study of service-oriented applications calls for including concurrency and
explicit locations; the need to manipulate large, possibly dynamically generated, doc-
uments calls for a streamed model of processing; the documents handled by a service
should often obey a predefined schema, hence the need to check that queries are well-
typed, preferably before they are executed or “shipped”.

The rest of the paper is organized as follows. Section 2 presents the core compo-
nents of the calculus — documents, types and patterns — and Section 3 gives the
formal semantics of the calculus and an example of pattern-matching evaluation. In
Section 4 we define a first-order type system with subtyping based on regular expression
types and prove the soundness of our type discipline. Before concluding, we develop
the example of the reverse web-link graph (Section 5) and we study possible exten-
sions of our model (Section 6). Omitted proofs may be found in a long version of this
paper [3].

A Typed Calculus for Querying Distributed XML Documents 169

2 Documents, Types and Patterns

We consider a simple language of first-order functional expressions enriched with refer-
ences and recursive pattern definitions that are used to extract values from documents.
Patterns are built on top of a syntax for defining regular tree grammars [8], which is
also at the basis of our type system.

Documents. An XML document may be seen as a simple textual representation for
nested sequences of elements <a>. . .. In this paper, we follow notations simi-
lar to [15] and choose a simplified version of documents by leaving aside attributes
among other things. We assume an infinite set of tag names, ranged over by a, b,
A document is an ordered sequence of elements a1[v1] . . . an[vn], where v1, . . . , vn are
documents. Documents may be empty, denoted (), and can be concatenated, denoted
v, v′ (the composition operator “, ” is associative with identity ()).

In the following we consider distributed documents, meaning that each element
aj[vj] is placed in a given location, say ıj . Locations are visible only at the level of
the operational semantics, in which the contents of a document is represented by the in-
dex ı1 . . . ın (the list of locations) of its elements. For simplicity, locations and indexes
are the only values handled in our calculus and we leave aside atomic data values such
as characters or integers.

Document Types. Applications that exchange and process XML documents rely on
type information, such as DTD, to describe structural constraints on the occurrences of
elements in a “valid” document. In our model, types take the form of regular tree expres-
sions [8], which are sets of recursive definitions of the form A := Reg(ai[Ai])i∈1..n,
where Reg is a regular expression and A, A1, . . . , An are type variables. A regular ex-
pression Reg(αi)i∈1..n can be an atom αi with i ∈ 1..n; it can be the constant All,
which matches everything, or Empty, which matches the empty sequence; it can be a
choice Reg1 Reg2, a sequential composition Reg1,Reg2, or an iteration Reg∗. For
instance, the declaration below defines the type L of family trees, which are sequences
of male or female people such that each person has a name element, and two elements,
d and s, for the list of his daughters and sons:

L := (man[P] woman[P])∗ P := name[All], d[WL], s[ML]
WL := woman[P]∗ ML := man[P] ∗ .

There is a natural notion of subtyping A <: B between regular expression types,
meaning that every document in A is also in B. The type system is close to what is
defined in functional languages for manipulating XML, see e.g. XDuce [13,14,15] or
the review in [7], hence we stay consistent with actual frameworks used in sequential
languages for processing XML data.

Selectors and Patterns. The core of our programming model is a system of distributed
pattern matching expressions that concurrently sift through documents to extract infor-
mation. Basically, patterns are types enhanced with parameters and capture variables.
However, like functions, patterns are declared and have a name.

We assume a countable set of names, partitioned into locations ı, j, �, . . . and vari-
ables x, y, . . . We use the vector notation x for tuples of names. The declaration p(x) :=

170 L. Acciai, M. Boreale, and S. Dal Zilio

(
Reg(ai[pi(yi)])i∈1..n

)
as y defines a pattern called p, with parameters x, that collects

matched documents in the reference y (where y, the capture variable of p, should occur
in x). For instance, the following patterns can be used to collect the names of male and
female people occurring in a document of type L (see example in the next subsection):

names(x, y) :=
(
man[p(x, y, x)] woman[p(x, y, y)]

)
∗

p(x, y, z) := name[all (z)], d[names(x, y)], s[names(x, y)]
all (z) := All as z.

In its most general form, a pattern declaration also allows let definitions and setting
continuations to be evaluated upon success or failure of the pattern. (These optional
continuations make it possible to add basic exception and transaction mechanisms to the
calculus.) Hence, a pattern declaration is of the following form, where S is a selector
Reg(ai[pi(yi)])i∈1..n.

p(x) := let z1 = e′1, . . . , zm = e′m in
(
S as y

)
then e1 else e2.

An important feature of our model is that patterns may extract multiple sets of values
from documents in one pass, which contrasts with the monadic queries expressible with
technologies such as XPath. Also, types appears clearly as a particular kind of patterns
(patterns declared without parameters, let definitions and continuations), and every
pattern p can be associated with the type A obtained by erasing these extra information.
In this case, A is exactly the type of all documents that are matched by p.

Witness and Unambiguous Patterns. It is standard in XML to restrict to expressions
that denote sequences of elements unequivocally. We define formally what it means for
a pattern to match an index and define a notion of unambiguous patterns.

Assume S is the selector Reg(ai[pi(vi)])i∈1..n. The sequence ai1 . . .aim matches
S if and only if it is a word in the language of Reg(ai)i∈1..n. This relation is denoted
ai1 . . . aim �S pi1(vi1) . . . pim(vim) and we call the sequence (pij(vij))j∈1..m a witness
for S of ai1 . . . aim . We write ai1 . . . aim ��S if the sequence has no witness for S.

We say that a pattern with selector S is unambiguous if each sequence of tags has at
most one witness for S. Assume that (pij(vij))j∈1..m is the witness of S for b1 . . .bm.
When a document b1[v1] . . . bm[vm] is matched against a pattern with selector S, each
sub-document vj is matched against pij(vij). If b1 . . .bm has no witness then pattern-
matching fails.

For instance, when matching the “pattern-call” names(ı, �) against a list of people,
the contents of elements tagged man is matched by p(ı, �, ı), which involves that the
value of the name element inside man is matched by all (ı). From the capture variable
in all , this results in storing the name in (the reference located at) ı. More generally, a
call to names(ı, �) stores the names of men in ı and women in �. A call to names(�, �)
stores all the names in �.

3 The Calculus

The presentation of the calculus can be naturally divided into two fragments: a lan-
guage of functional expressions, or programs, that are used in the body of pattern and

A Typed Calculus for Querying Distributed XML Documents 171

function declarations; and a language of processes, or configurations, that models dis-
tributed documents and the concurrent execution of programs. Typically, expressions
are “program sources” that should be evaluated (they do not contain references to ac-
tive locations), while a configuration represents the running state of a set of processes.

Programs. The calculus embeds a first-order functional language with references,
pattern-matching and constructs for building documents. In the following, we assume
that every function identifier f has an associated arity n � 0 and a unique definition
f(x) := e where the variables in x are distinct and include the free variables of e. We
take similar hypotheses for patterns. The syntax of expressions e, e′, . . . is given below:

u, v ::= results
x name: variable or location
ı1 . . . ın index (with n � 0)

e ::= expressions
u result
a[u] element creation
u, v result composition
f(u1, . . . , un) function call
let x = e1 in e2 let
newref u new reference (with initial value u)
!u dereferencing
u += v update (adds v to the values stored in u)
try u p(u1, . . . , un) pattern matching call
wait u(x) then e1 else e2 wait matching

A result is either a name or an index. Expressions include results, operators for cre-
ating new elements a[u], for concatenating indexes u, v, and for creating, accessing
and updating references. Expressions also include operators for applying a pattern to a
document index (try) and for branching on the result of pattern-matching (wait).

Configurations. The syntax of processes P, Q, . . . is as follows:

P, Q, R ::= processes
e expression
let x = P in Q let
〈 ı �→ d 〉 location
P � Q parallel composition
(νı)P restriction

d ::= resources
ref u reference with value u
node a(u) node, element tagged a with index u
try ı p(u1, . . . , un) try matching
test ı u vk test matching
ok ı successful match
fail ı failed match

The calculus features operators from the π-calculus: restriction (νı)P specifies the
scope of a name ı local to P ; parallel composition P � Q represents the concurrent
evaluation of P and Q. Overall, a process is a sequence of let expressions, describing

172 L. Acciai, M. Boreale, and S. Dal Zilio

threads execution, and locations 〈 ı �→ d 〉, that describes a resource d located in ı. Hence
the syntax of configurations is very expressive as it unifies the notions of expression,
store, thread and processes.

The calculus is based on an abstract notion of location that is, at the same time,
the minimal unit of interaction and the minimal unit of storage. Failures are not part
of this model (they can be viewed as an orthogonal feature) but could be added, e.g.
in the style of [4]. Locations store resources. The main resources are ref u, to store
the current state of a reference, and node a(u), to describe an element of the form
a[u]. The calculus explicitly takes into account the distribution of document nodes and,
for example, the document a[b[] c[]] can be represented (at runtime) by the process:
(νı1ı2)

(
〈 ı �→node a(ı1 ı2) 〉 �〈 ı1 �→ node b() 〉 �〈 ı2 �→ node c() 〉

)
. The other

resources arise in the evaluation of pattern-matching and correspond to different phases
in its execution: scheduling a “pattern call” (try); waiting for the result of sub-patterns
(test); stopping and reporting success (ok) or failure (fail).

Syntactic conventions: The operators let, wait and ν are name binders. Notions of α-
equivalence and of free and bound names arise as expected. We denote fv(P) the set of
variables that occur free in P and fn(P) the set of free names. We identify expressions
and terms up-to α-equivalence. Substitutions are finite partial maps from variables to
results: we write P{x←u} for the simultaneous, capture-avoiding substitution of all
free occurrences of x in P with u. Assume σ is the substitution {x1←u1} . . . {xn←un}
and u = (u1, . . . , un). We write f(u) := e′ if f(x) := e and e′ = σ(e) and we write
p(u) := S′ if the selector of p(x) is S and S′ = σ(S). Finally, we make use of the
following abbreviations: if u = ı1 . . . ın then (νu)P is a shorthand for (νı1) . . . (νın)P ;
the term (ν�)P �Q stands for ((ν�)P) � Q; the term let x = P in Q �R stands for
(let x = P inQ) �R; and wait �(x) then e1 stands for wait �(x) then e1 else ()
(and similarly for omitted then clause).

Reduction Semantics. The semantics of our calculus follows the chemical style found
in the π-calculus [16]: it is based on structural congruence and a reduction relation.
Reduction represents individual computation steps and is defined in terms of structural
congruence and evaluation contexts.

Structural congruence ≡ allows the rearrangement of terms so that reduction rules may
be applied. It is the least congruence on processes to satisfy the following axioms:

(Struct Par Assoc)

(P � Q) � R ≡ P �(Q � R)

(Struct Par Let)
x /∈ fn(P)

P � let x = Q in R ≡ let x = (P � Q) in R

(Struct Par Com)

(P � Q) � R ≡ (Q � P) � R

(Struct Res Let)
� /∈ fn(Q)

(ν�)let x = P in Q ≡ let x = (ν�)P in Q

(Struct Res Res)

(νı)(ν�)P ≡ (ν�)(νı)P

(Struct Res Par R)
ı /∈ fn(P)

(νı)(P � Q) ≡ P �(νı)Q

(Struct Res Par L)
ı /∈ fn(Q)

(νı)(P � Q) ≡ ((νı)P) � Q

A Typed Calculus for Querying Distributed XML Documents 173

(Struct Let Assoc)
x /∈ fn(R)

let y = (let x = P in Q) in R ≡ let x = P in (let y = Q in R)

Since processes may return values, we take the convention that the result of a com-
position P1 � . . . �Pn is the result of its rightmost term Pn. The values returned by
the other processes are discarded. This entails that the order of parallel components
is relevant. For this reason, unlike the situation in most process calculi, parallel com-
position is “left commutative” but not commutative: we have (P �Q) �R equivalent
to (Q � P) �R but not necessarily P �Q ≡ Q �P . This choice is similar to what is
found in calculi introduced for defining the semantics of concurrent-ML [10] and for
concurrent extensions of object calculi [12]. An advantage of this approach is that we
directly include sequential composition of processes: the term P ; Q can be interpreted
by let x = P in Q, where x /∈ fv(Q). We also obtain a more direct style of program-
ming since the operation of returning a result does not require using continuations and
sending a message on a result channel, as in the π-calculus.

Reduction → is the least binary relation on closed terms to satisfy the rules in Table 1.
The rules for expressions are similar to traditional semantics for first-order languages,
with the difference that the resources in a configuration play the role of the store. Like-
wise, the rules for operators that return new values (the operators newref, a[] and try)
yield reductions of the form e → (ν�)(〈 � �→ d 〉 � �), which means that new values are
always allocated in a fresh location. Actually a quick inspection of the rules shows that
resources are created in fresh locations and are always used in a linear way: an expres-
sion cannot discard a resource or create two different resources at the same location.

Informal Semantics. We can divide the rules in Table 1 according to the locations in-
volved in the reduction. A location 〈 � �→ refw 〉 is a reference at � with value w. Ref-
erence access, rule (Red Read), replaces a top-level occurrence of !� with the value w.
Reference update � += v, rule (Red Write), has a slightly unusual semantics since its
effect is to append v to the value stored in �. Actually, we could imagine that each refer-
ence is associated with an “aggregating function” (denoted op in Table 1) that specifies
how the sequence of values stored in the reference has to be combined1.

A location 〈 ı �→ node a(u) 〉 is created by the evaluation of an element creation ex-
pression a[u], where u is an index, (Red Node). A location 〈 � �→ try ı p(v) 〉 is created
by the evaluation of a try operator. The expression try u p(v) applies the pattern p
to the index u = ı1 . . . ın, rule (Red Try). A try expression returns at once with the
index � of the fresh location where the matching occurs. It also creates a document node
〈 ı �→node o(u) 〉 that points to the index u that is processed (we use the reserved name
o for the root tag of this node). Assume that S is the selector of p, the try resource will
trigger evaluation of sub-patterns selected from a witness of S. If there is no witness,
the matching fails, rule (Red Try Error). If a witness exists, the try resource spawns

1 For example, assume � is an “integer reference” that increments its value by one on every
assignment. Then, in the example of Section 2, a call to names(�, �) counts the number of
people in a document of type L. For the sake of simplicity, we only consider index composition
in this work.

174 L. Acciai, M. Boreale, and S. Dal Zilio

Table 1. Reductions

(Red Fun)
f declared as f(x) := e

f(u1, . . . , un) → e{x1←u1} . . . {xn←un}

(Red Let)

let x = u in P → P{x←u}

(Red Struct)
P ≡ Q, Q → Q′, Q′ ≡ P ′

P → P ′

(Red Context)(�)

P → P ′

E[P] → E[P ′]

(Red Ref)
u = ı1 . . . ın

newref u → (ν�)(〈 � �→ ref u 〉 � �)

(Red Read)

〈 � �→ ref u 〉 �!� → 〈 � �→ ref u 〉 � u

(Red Write)(��)

w = u, v

〈 � �→ ref u 〉 � � += v → 〈 � �→ ref w 〉 � ()

(Red Node)
u = ı1 . . . ın

a[u] → (νı)(〈 ı �→ node a(u) 〉 � ı)

(Red Comp)
u1 = ı1 . . . ık u2 = ık+1 . . . ın

u1, u2 → ı1 . . . ın

(Red Try)
u = ı1 . . . ın ı, � fresh names

try u p(v) → (νı)(ν�)(〈 ı �→ node o(u) 〉 �〈 � �→ try ı p(v) 〉 � �)

(Red Try Match)
P = 〈 ı �→ node a(ı1 . . . ın) 〉 �

Q
l∈1..n〈 ıl �→ node al(wl) 〉

p(v) := S as vk a1 . . . an 	S p1(v1) . . . pn(vn) w = j1 . . . jn fresh names

P �〈 � �→ try ı p(v) 〉 → P � (νw)
`Q

l∈1..n〈 jl �→ try ıl pl(vl) 〉 �〈 � �→ test ı w vk 〉
´

(Red Try Error)
P = 〈 ı �→ node a(ı1 . . . ın) 〉 �

Q
k∈1..n〈 ık �→ node ak(wk) 〉 p(v) := S as vk a1 . . . an
	S

P �〈 � �→ try ı p(v) 〉 → P �〈 � �→ fail ı 〉

(Red Test Ok)
P = 〈 ı �→ node a(ı1 . . . ın) 〉 �

Q
k∈1..n〈 jk �→ ok ık 〉 w = j1 . . . jn x fresh name

P �〈 � �→ test ı w vk 〉 → P � let x = (vk += (ı1 . . . ın)) in 〈 � �→ ok ı 〉

(Red Test Fail)
P = 〈 ı �→ node a(ı1 . . . ın) 〉 �

Q
k∈1..n〈 jk �→ dk 〉 w = j1 . . . jn

∀k ∈ 1..n : dk ∈ {ok ık, fail ık} ∃j ∈ 1..n : dj = fail ıj

P �〈 � �→ test ı w vk 〉 → P �〈 � �→ fail ı 〉

(Red Wait Ok)
P = 〈 ı �→ node a(u) 〉 �〈 � �→ ok ı 〉

P � wait �(x) then e1 else e2 → P � e1{x←u}

(Red Wait Fail)
P = 〈 ı �→ node a(u) 〉 �〈 � �→ fail ı 〉

P � wait �(x) then e1 else e2 → P � e2{x←u}
(�) where E ::= Q � E | E � P | [.] | (ν�)E | let x = E in P
(��) in the general case we have w = op(u, v), where op is some “aggregating” function

A Typed Calculus for Querying Distributed XML Documents 175

new try resources and turns into a test, rule (Red Try Match), waiting for the results
of these evaluations. Upon termination of all the sub-patterns, a test resource turns
into ok or fail, rules (Red Test Ok) and (Red Test Fail). The ok and fail resources
are immutable.

The remaining rules are related to the evaluation of a wait expression. The status of
a pattern evaluation can be checked with the expression wait �(x) then e1 else e2,
see rules (Red Wait Ok) and (Red Wait Fail). If the resource at � is ok ı then the wait
expression evaluates to e1{x←v}, where v is the index of the node located at ı. If the
resource is fail ı then the expression evaluates to e2{x←v}. In all the other cases the
expression is stalled.

Remark. In rule (Red Try Match), we compute the witness for all the children of an
element in one go. This is not always realistic since the size of the children’s index can
be very large (actually, in real applications, big documents are generally shallow and
have a large number of children). It is possible to refine the operational semantics so
that each sub-pattern is fired independently, not necessarily following the order of the
document. For instance, we should be able to start the evaluation on an element without
necessarily matching all its preceding siblings beforehand. Also, we can imagine that
indexes are implemented using streams or linked lists. We have chosen this presentation
for the sake of simplicity.

Example: pattern-matching evaluation. As an example of pattern-matching evalu-
ation, consider the pattern p below, which extracts all the sub-elements tagged a and
discards elements tagged b.

p(x) := (a[p(x)] as x | b[p(x)])∗

Let d be the document a[b[a[]]] b[]. We assume that the elements of d are stored at
the indexes (ı1ı4), that is d is represented by the process:

(νı2ı3)
(
〈 ı1 �→ node a(ı2) 〉 �〈 ı2 �→ node b(ı3) 〉�〈 ı3 �→ node a() 〉 �〈 ı4 �→node b() 〉

)
.

The following expression starts the pattern-matching evaluation of p against d:

let x = newref () in try (ı1ı4) p(x).

In what follows we show the matching evaluation step-by-step. By rules (Red Ref) and
(Red Let), a new location containing a new reference (a “capture” reference) is created
and substituted to x in the pattern invocation. By applying structural equivalence we
obtain

→ (ν�′)
(
〈 �′ �→ ref () 〉 � try (ı1ı4) p(�′)

)
.

By rule (Red Try), two fresh locations are created: �, where the pattern-matching is
evaluated, and ı, where the index of the document to analyze is stored

→ (νı, �, �′)
(
〈 �′ �→ ref () 〉 �〈 ı �→ node o(ı1ı4) 〉 �〈 � �→ try ı p(�′) 〉 � �

)
.

Note that the “result” of the try evaluation is the location �, which will contain ok
or fail at the end of the evaluation. This location can be captured by using a let
construct, and can be used e.g. in a wait expression.

176 L. Acciai, M. Boreale, and S. Dal Zilio

Rule (Red Try Match) is now applied. Let’s call S the selector of p(�′); a b �S

p(�′) p(�′), thus two sub-evaluations are started (between documents at ı1 and ı4 and
p(�′)). The try resource at � becomes a test resource which waits for the sub-
evaluation results

→ (νı, �, �′, �1, �4)
(
〈 �′ �→ ref () 〉 �〈 ı �→ node o(ı1ı4) 〉 �〈 �1 �→ try ı1 p(�′) 〉
�〈 �4 �→ try ı4 p(�′) 〉 �〈 � �→ test ı(�1�4) 〉 � �

)
.

Sub-evaluations are concurrently started. By rule (Red Try Match) applied twice,
two sub-evaluations are triggered, because b �S p(�′) and a �S p(�′)

→∗ (νı, �, �′, �1, �2, �4, �5)
(
〈 �′ �→ ref () 〉 �〈 ı �→ node o(ı1ı4) 〉 �〈 �2 �→ try ı2 p(�′) 〉
�〈 �5 �→ try () p(�′) 〉 �〈 �4 �→ test ı4(�5) 〉
�〈 �1 �→ test ı1(�2)�′ 〉 �〈 � �→ test ı(�1�4) 〉 � �

)
.

Note that in location �1 we take note about the reference �′ where the index ı1 will
be stored in case of successful evaluation.

The evaluation at �5 ends, because the empty document is accepted by p, and there
are no triggered sub-evaluations. While evaluation at �2 continues

→∗ (νı, �, �′, �1, �2, �3, �4, �5)
(
〈 �′ �→ ref () 〉 �〈 ı �→ node o(ı1ı4) 〉
�〈 �3 �→ try ı3 p(�′) 〉 �〈 �2 �→ test ı2(ı3) 〉
�〈 �5 �→ ok () 〉 �〈 �4 �→test ı4(�5) 〉
�〈 �1 �→ test ı1(�2)�′ 〉 �〈 � �→test ı(�1�4) 〉 � �

)
.

By (Red Test Ok) evaluation at �4 ends successfully. Moreover, for evaluation at �3
we can reason as previously seen for �4, and obtain a success. Note that ı3 contains a
document tagged a, thus by (Red Test Ok) location �′ is updated by adding ı3 to its
content

→∗ (νı, �, �′, �1, �2, �3, �4, �5)
(
〈 �′ �→ref (ı3) 〉 �〈 ı �→node o(ı1ı4) 〉 �〈 �3 �→ok ı3 〉
�〈 �2 �→ test ı2(ı3) 〉 �〈 �5 �→ ok () 〉 �〈 �4 �→ ok ı4 〉
�〈 �1 �→ test ı1(�2)�′ 〉 �〈 � �→ test ı(�1�4) 〉 � �

)
.

By (Red Test Ok) applied twice, evaluation at �1 ends and location �′ is updated:

→∗ (νı, �, �′, �1, �2, �3, �4, �5)
(
〈 �′ �→ref (ı3) 〉 �〈 ı �→node o(ı1ı4) 〉 �〈 �3 �→ok ı3 〉
�〈 �2 �→ ok ı2 〉 �〈 �5 �→ok () 〉 �〈 �4 �→ ok ı4 〉
� let _ = (�′ += ı1) in

〈 �1 �→ ok ı1 〉 �〈 � �→ test ı(�1�4) 〉 � �
)
.

Finally, the evaluation ends by (Red Write), (Red Let) and (Red Test Ok)

→∗ (νı, �, �′, �1, �2, �3, �4)
(
〈 �′ �→ ref (ı3ı1) 〉 �〈 ı �→ node o(ı1ı4) 〉 �〈 �3 �→ ok ı3 〉
� . . . �〈 �1 �→ok ı1 〉 �〈 � �→ ok ı 〉 � �

)
.

4 Static Semantics

The types of document indexes are the same as the types for documents defined in
Section 2. Apart from regular expressions types A, the type t of a process can also be:

A Typed Calculus for Querying Distributed XML Documents 177

the resource type � (a constant type for terms that return no values); a reference type
refA; a node type node a(u) (the type of a location holding an element a[u]); or a try
type loca(A) (the type of locations hosting the evaluation of a pattern of type A on the
contents of an element tagged a).

t ::= type
� no value
A regular expression type
ref A reference
node a(u) node location
loc a(A) try location

We can easily adapt the definition of witness to types (a type is some sort of selec-
tor). Assume A is declared as A := Reg(ai[Ai])i∈1..n. We say that there is a witness
for A of ai1 . . . aim , denoted ai1 . . .aim �A Ai1 . . . Aim , if and only if the sequence
of tags ai1 . . . aim is in the language of the regular expression Reg(ai)i∈1..n. We can
define the language of a type A as the set of documents that are matched by the pat-
tern Reg(ai[Ai])i∈1..n. Based on this definition, we obtain a natural notion of subtyping
A <: B, meaning that the language of A is included in the language of B. We write
A

.= B if the languages of A and B are equal. We write A for some chosen regular
expression type whose language is the complement of A. (We will not need the type A
when A

.= All, which means that we do not need to introduce a type with an empty
language.) In the case of type witness, we have ai1 . . .aim ��A if and only if there is a
witness for A of ai1 . . .aim .

The type system is given in Table 2. A type environment E is a finite mapping x1 :
t1, . . . , xn : tn between names and types. The type system is based on a single type
judgment, E � P : t, meaning that the process P has type t under the hypothesis
E. We assume that there is a given, fixed set of type declarations of the form A :=
Reg(ai[Ai])i∈1..n. We assume that functions and patterns are (explicitly) well-typed,
which is denoted f : t → t0 and p : t → A. The types t1, . . . , tn in t are the types of
the parameters, while t0 is the type of the body of f and A is the type of the selector of
p. The type of a selector S = Reg(ai[pi(xi)])i∈1..n is obtained from S by substituting
to every pattern pi in the selector its corresponding type Ai. Hence the type of S is
equivalent to some type variable A such that A := Reg(ai[Ai])i∈1..n. Note that if a
pattern p(x) := S as xk has type t → A, then the type tk is compatible with A, which
means that tk = refB and B, A <: B.

The typing rules for the functional part of the calculus are standard. In what follows,
we consider that references can only hold document values (a reference can be of type
refA but not reft). Note that, for every assignment of a value of type B into a reference
of type refA, rule (Type Write), we check that A,B <: A. This is to take into account
that references combine the sequence of values that are assigned to them.

The remaining typing rules are for resources and pattern-matching operators. The
type of an expression try u p(v) is loc o(A) if the pattern p matches documents of
type A, see rule (Type Try Doc). Indeed the effect of this expression is to return a fresh
location hosting the evaluation of p on an element of the form o[u]. Correspondingly,
a wait expression is well typed only if it is blocking on a location of type loc a(A),

178 L. Acciai, M. Boreale, and S. Dal Zilio

Table 2. Typing Rules

(Type x)

E,x : t, E′ 	 x : t

(Type Sub)
A <: B

E 	 P : A

E 	 P : B

(Type Fun)
f : (t1, . . . , tn) → t0
E 	 ui : ti i ∈ 1..n

E 	 f(u) : t0

(Type Let)

E 	 P : t E, x:t 	 Q : t′

E 	 let x = P in Q : t′

(Type Doc)
E 	 ık : node ak(uk) E 	 uk : Bk k ∈ 1..n

E 	 ı1 . . . ın : a1[B1], . . . , an[Bn]

(Type Node)
E 	 u : A

E 	 a[u] : a[A]

(Type Comp)
E 	 ui : Ai i ∈ {1, 2}

E 	 u1, u2 : A1, A2

(Type Ref)
E 	 u : A

E 	 newref u : ref A

(Type Read)
E 	 u : ref A

E 	 !u : A

(Type Write)
E 	 u : ref A E 	 v : B A, B <: A

E 	 u += v : Empty

(Type Res)
E, �1 : t1, . . . , �n : tn 	 P : t {�1, . . . , �n} ∩ fn(E) = ∅

E 	 (ν�1) . . . (ν�n)P : t

(Type Par)

E 	 P : t′ E 	 Q : t

E 	 P � Q : t

(Type Try Doc)
p : (t1, . . . , tn) → A

E 	 vi : ti i ∈ 1..n E 	 u : B

E 	 try u p(v1, . . . , vn) : loc o(A)

(Type Wait)
E 	 u : loc a(A)

E, x : A 	 e1 : t E, x : A 	 e2 : t

E 	 wait u(x) then e1 else e2 : t

(Type Loc Ref)
E 	 � : ref A E 	 u : A

E 	 〈 � �→ ref u 〉 : �

(Type Loc Node)
E 	 � : node a(ı1 . . . ın)

E 	 〈 � �→ node a(ı1 . . . ın) 〉 : �

(Type Loc Ok)
E 	 � : loc a(A) E 	 ı : node a(u)

u = ı1 . . . ın E 	 u : A

E 	 〈 � �→ ok ı 〉 : �

(Type Loc Fail)
E 	 � : loc a(A) E 	 ı : node a(u)

u = ı1 . . . ın E 	 u : A

E 	 〈 � �→ fail ı 〉 : �

(Type Try Loc)
E 	 � : loc a(A) E 	 ı : node a(ı1 . . . ın) p : (t1, . . . , tn) → A E 	 vi : ti i ∈ 1..n

E 	 〈 � �→ try ı p(v) 〉 : �

(Type Test Loc)
E 	 � : loc a(A) E 	 ı : node a(u) E 	 jk : loc ak(Ak)

w = (j1 . . . jn) a1 . . . an 	A A1 . . . An E 	 vk : tk tk = ref B B, A <: B

E 	 〈 � �→ test ı w vk 〉 : �

that is the location of a resource that can eventually turn into ok or fail. The important
aspect of this rule is that, while the continuations e1 and e2 of the wait expression must
have the same type, they are typed under different typing environment: the expression

A Typed Calculus for Querying Distributed XML Documents 179

e1 is typed with the hypothesis x : A while e2 is typed with the hypothesis x : A. This
leads to more precise types for filtering expressions.

The typing rules for locations are straightforward. Since a resource returns no value
it has type �. By rule (Type Try Loc), a location � containing a try resource, evaluating
a pattern p of type A, is well typed if � is of type loc a(A) and the root tag of the
evaluated document is a. Note that no assumption is made on (ı1, . . . , ın), which might
well not be of type A. Finally, the rule for node location, (Type Loc Node), states that
a location containing node a(u) has only one possible type, namely node a(u) itself.
Hence this rule avoids the presence of two node resources with the same location but
containing different elements. Actually, we could extend our type system in a simple
way to ensure that a well-typed configuration cannot have two resources at the same
location: we say such a configuration is well-formed (see e.g. [12] for an example of
how to extend the type system).

An important feature of our calculus is that every pattern is strongly typed: its type
is the regular expression obtained by erasing capture variables. Likewise we can type
locations, expressions and processes using a combination of regular expression types
and ref types. Since we have a strongly typed language, we need to prove that well-
typedness of processes is preserved by reduction.

Theorem 1 (subject reduction). Suppose that P is well formed and contains only un-
ambiguous patterns and t contains only unambiguous types. If E � P : t and P → Q
then E � Q : t.

The proof of Theorem 1 is more involved than in “traditional proofs” for subject reduc-
tion. A reason for this is the need to take into account complement types and the fact
that it is not possible to reason on a whole document at once (its content is scattered
across distinct resource locations.)

We do not state a progress theorem in connection with Theorem 1. Indeed, there ex-
ists no notion of errors in our calculus (like e.g. the notion of “message not understood”
in object-oriented languages) as it is perfectly acceptable for a pattern matching to fail
or to get blocked on a wait statement. Nonetheless the subject reduction theorem is
still useful. For instance, we can use it for optimizations purposes, like detecting trivial
patterns (i.e. matching expressions that will always fail).

5 Example: The Reverse Web-Link Graph

We study the reverse web-link graph application [9], used e.g. in Google’s search-
engine to compute page ranks. The goal is to build a list of all pages containing a link
to a given URL. We consider a calculus enriched with an atomic type for strings and a
construct if x = y then . . . to test equalities between strings, these extensions are
straightforward to accommodate. We assume that web pages in the index are stored as
documents of type WP = pg[B], where B is the type (url[String], link[URL∗],
text[String]) and URL is a shorthand for url[String], meaning that for each page
we have its location (url), a list of its hyperlinks (link) and its textual content (text).
For simplicity, assume that each list contains no duplicate hyperlinks. The following
patterns are used for building a reverse web-link graph:

180 L. Acciai, M. Boreale, and S. Dal Zilio

revWL(t, r) :=
(
pg[revWL′(t, r)]

)
∗

revWL′(t, r) := let x = newref () , y = newref () in(
url[String as x], link[URL∗ as y], text[String]

)

then
(
try !y sift(t, !x, r)

)

sift(t, t′, r) :=
(
url[sift ′(t, t′, r)]

)
∗

sift ′(t, t′, r) := let z = newref () in
(
String as z

)

then
(
if z = t then r += url[t′]

)
.

The main pattern is revWL(t, r), where t is the string representing the target URL, and
r is a (global) reference cell for t’s reverse-index. revWL visits each indexed page and
invokes revWL′, which extracts the page’s location and list of links, and stores them
in two fresh references x and y. Then the pattern sift is used to test whether the list of
URL in y contains the target location t. If true, the result r is updated by adding to it
the value of x (that is passed as the second parameter of sift). In each pattern, the “lo-
cation” parameters t and t′ have type String while the final result, held in the param-
eter r, is a reference holding values of type URL∗. Hence the pattern revWL has type
(String, ref (URL∗)) → WP∗ and sift has type (String, String, ref (URL∗)) →
URL∗. Assume ı1 . . . ın are the indexes of the web pages of interest, possibly stored in
different physical locations, we can create a reverse index for the target location ta with
the expression: let z = newref() in try (ı1 . . . ın) revWL(ta, z). Note that patterns
and functions are evaluated locally at each site, while the result reference z is “global”
(it is local to the caller, but is accessed by every site for storing the results.).

6 Extensions

We study how to interpret two interesting programming idioms in our model: spawning
an expression in a new thread, and handling user-defined exceptions.

Concurrency. We show how to model simple threads, that is, we want to encode an
operator spawn such that the effect of spawn e1; e2 is to evaluate e1 in parallel with e2,
yielding the value of e2 as a result. The simplest solution is to interpret spawn e1; e2 by
the configuration e1 � e2. A disadvantage of this solution is that it is not possible to test
in e2 whether the evaluation of e1 has ended. Another simple approach is to rely on the
pattern-matching mechanism. Let p be the pattern p() := (Empty then e1). We can
interpret the statement spawn e1; e2 with the expression let x = (try () p()) in e2.
Indeed we have:

let x = (try () p()) in e2 →∗ (νı�)
(
〈 ı �→ node o() 〉 �(

let z = e1 in 〈 � �→ ok ı 〉
)
� e2{x←�}

)
.

In the resulting process, e1 and e2 are evaluated concurrently and the resource 〈 � �→ok ı 〉
cannot interact with e2 until the evaluation of e1 ends. Hence we can use the expression
(wait x(y) then e) in e2 to block the execution until e1 returns a value. (We can in
fact improve our encoding so that the result of e1 is bound to z in e.) It emerges from
this example that a try location can be viewed as a future, that is a reference to the

A Typed Calculus for Querying Distributed XML Documents 181

“future result” of an asynchronous computation. More generally, we can liken a pro-
cess (〈 ı �→node a(u) 〉 �〈 � �→ ok ı 〉) to an (asynchronous) output action �!〈ok, u〉 as
found in process calculi such as the π-calculus. Similarly, we can compare an expression
wait �(x) then e1 else e2 with an input action.

Exceptions. We show how to model a simple exception mechanism in our calculus.
Suppose we need to check that a document u of type L (the type of family trees, see
Section 2) contains only women. This can be achieved using the pattern declarations
p() := woman[q()]∗ and q() := name[All], d[p()], s[Empty] and a matching expres-
sion try u p(). A drawback of this approach is that we need to wait for the completion
of all sub-patterns to terminate before completing the computation, even if the matching
trivially fails because we find an element tagged man early in the matching. A solution
is to encode a basic mechanism for handling exceptions using the following derived
operators, where ıe is a default name associated to the location 〈 ıe �→ node o() 〉:

exception = (ν�)� creates a fresh (location) exception
throw � = 〈 � �→ok ıe 〉 �() raises an exception at �

catch � e = wait �(x) then e catches exception � and runs e (x /∈ fv (e)).

For instance, it is possible to raise the exception in the compensation part of a pattern
declaration, to catch this exception and avoid to wait the end of the pattern-matching
evaluation. E.g. the pattern p above can be redefined in: p′(x) := woman[q()]∗ else
throw x.

7 Conclusions and Related Work

We study a formal model for computing over large (even dynamic) distributed XML
documents. We extend the functional approach taken in e.g. XDuce and define a typed
process calculus which supports a first-order type system with subtyping based on reg-
ular expression types, a system compatible with DTD and other schema languages for
XML.

This work may be compared with recent proposals for integrating XML data into
π-calculus, where pattern-matching plays a fundamental role: Iota [5] is a concurrent
XML scripting language with channel-based communications that relies on types to
guarantee the well-formedness (not the validity) of documents; XPi [2] is a typed π-
calculus extended with XML values in which documents are exchanged during com-
munications; PiDuce [6] features asynchronous communications and code mobility and
includes pattern matching expressions with built-in type checks. In all these proposals,
documents are first class values exchanged in messages, which make these approaches
inappropriate in the case of very large or dynamically generated data.

The goal of this paper is not to define a new programming language. We rather
try to provide formal tools for the study of concurrent computation models based on
service composition and streamed XML data. However our calculus could be a basis
for developing concurrent extensions of strongly typed languages for XML, such as
XDuce. To this end, we will also need to answer questions concerning observational
equivalences that we intend to study in future work. Our approach could also be used

182 L. Acciai, M. Boreale, and S. Dal Zilio

to provide the semantics of systems in which XML documents contain active code that
can be executed on distributed sites (i.e. processes and document text are mixed), like
in the Active XML system for example [1]. Although, for this, it will be necessary to
add an “eval/quote” mechanism, as in e.g. LISP, and to revise our static type checking
approach. Finally, another avenue to investigate is the encoding of other concurrency
primitives, especially channel-based synchronization and distributed transactions.

References

1. Abiteboul, S., Benjelloun, O., Milo, T., Manolescu, I., Weber, R.: Active XML: Peer-to-Peer
Data and Web Services Integration. In: Proc. of VLDB (2002)

2. Acciai, L., Boreale, M.: XPi: a typed process calculus for XML messaging. In: Steffen, M.,
Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, Springer, Heidelberg (2005)

3. Acciai, L., Boreale, M., Dal Zilio, S.: A Typed Calculus for Querying Distributed XML
Documents. LIF Research Report 29 (2006)

4. Amadio, R.: An Asynchronous Model of Locality, Failure And Process Mobility. In: Garlan,
D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, Springer, Heidelberg
(1997)

5. Bierman, G., Sewell, P.: Iota: A concurrent XML scripting language with applications to
Home Area Networking. TR 577, Computer Lab. Cambridge (2003)

6. Brown, A., Laneve, C., Meredith, G.: PiDuce: a process calculus with native XML datatypes.
In: Proc. of Workshop on Web Services and Formal Methods (2005)

7. Castagna, G.: Pattern and types for querying XML documents. In: Proc. of DBPL, XSYM
2005 joint keynote talk (2005)

8. Comon, H., Dauchet, M., Jacquemard, F., Tison, S., Lugiez, D., Tommasi, M.: Tree Automata
on their application (1999),
http://www.grappa.univ-lille3.fr/tata/

9. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Cluster. In: Proc.
of OSDI (2004)

10. Ferreira, W., Hennessy, M., Jeffrey, A.S.: A theory of weak bisimulation for core CML. J.
Functional Programming 8(5) (1998)

11. Gardner, P., Maffeis, S.: Modelling dynamic web data. Theor. Comput. Sci. 342(1) (2005)
12. Gordon, A.D., Hankin, P.D.: A concurrent object calculus: reduction and typing. In: Proc. of

HLCL. Electr. Notes Theor. Comput. Sci. 16(3) (1998)
13. Hosoya, H., Vouillon, J., Pierce, B.J.: Regular expression types for XML. ACM Transactions

on Programming Languages and Systems, 27(1) (2004)
14. Hosoya, H., Pierce, B.J.: Regular expression pattern matching for XML. In: Proc. of POPL

(2001)
15. Hosoya, H., Pierce, B.J.: XDuce: A Statically Typed XML Processing Language. In: Proc.

of ACM Transaction on Internet Technology (2003)
16. Milner, R.: Communicating and Mobile Systems: The π-Calculus. CUP (1999)

http://www.grappa.univ-lille3.fr/tata/

Verification of Model Transformations: A Case
Study with BPEL�

Luciano Baresi1, Karsten Ehrig2, and Reiko Heckel2

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
baresi@elet.polimi.it

2 Department of Computer Science, University of Leicester, United Kingdom
{karsten,reiko}@mcs.le.ac.uk

Abstract. Model transformations, like refinement or refactoring, have
to respect the semantics of the models transformed. In the case of be-
havioural models this semantics can be specified by transformations, too,
describing an abstract interpreter for the language. Both kinds of trans-
formations, if given in a rule-based way, can formally be described as
graph transformations.

In this paper, we present executable business processes, their opera-
tional semantics and refactoring, as an example of this fact. Using results
from graph transformation theory about critical pairs and local conflu-
ence, we show that our transformations preserve the semantics of pro-
cesses. The analysis is performed by means of the graph transformation
tool AGG.

1 Introduction

Transformations of models are the key technology of Model-driven Development
(MDD), an approach to software development where graphical models (rather
than programs) are the focus and primary technical artefact. Model transforma-
tions can serve a variety of purposes, including the refinements of models, their
mapping to implementations, consistency management, or evolution. In many of
these examples, a semantic compatibility between the artefacts before and after
the transformation is desired.

With the semiformal nature of most visual models, and the corresponding
lack of formal semantics, this relation is often not easy to describe. And if for-
mal semantics exist for both source and target models, they are often given in
different semantic domains and using different formal techniques.

It seems that the only general solution to this problem consists in adopting
a formalism powerful enough to describe both the intended semantics and the
transformation of the models involved, and which provides techniques and tools

� Work supported in part by the IST-2005-16004 Integrated Project SENSORIA: Soft-
ware Engineering for Service-Oriented Overlay Computers and by the European
Community’s Human Potential Programme under contract HPRN-CT-2002-00275,
[SegraVis].

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 183–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

184 L. Baresi, K. Ehrig, and R. Heckel

to demonstrate the relation between them. Since we are dealing with visual
models whose abstract syntax is often expressed by means of graphs, we are
opting for graph transformation as one such approach.

In this paper we are demonstrating the idea by means of the transformation
of executable business processes inspired by BPEL4WS, the Business Process
Execution Language for Web Services [13], and presented using the notation of
UML activity diagrams. Normally BPEL assumes a centralised approach, where
a single entity—usually called orchestrator— controls the execution flow and
coordinates the interactions with selected services. Centralised execution is easy
to describe, but not always adequate if the system is distributed by nature, for
example, in the case of inter-organisational business processes, where each party
is in charge of a particular fragment of the process.

With this motivation, Baresi et al [3,4] use transformations to partition a
monolithic process into a coordinated set of sub-processes. However, although
the distribution is described formally by means of graph transformation rules,
no verification of its semantic correctness is given. The present paper addresses
this issue and discusses the conceptual and software tools required to

– formalise a notion of semantic compatibility between the distributed and the
original process, taking into account that not all features of one may exist
in the other;

– verify that this compatibility holds for all processes obtained through appli-
cation of the proposed transformation rules.

The first aim is achieved using typed attributed graph transformation rules to
define the operational semantics of centralised and distributed processes. To this
end, a meta model captures the abstract syntax of executable processes, extended
by information about their execution state. This meta model, formally represented
as a type graph with inheritance, is the basis of a set of operational semantics
rules. This approach allows us to specify the operational semantics and transfor-
mations in the same formalism, thus simplifying the analysis. The semantic rela-
tion is established by associating observations with operational rules, generating
the labelled transition systems of processes, and applying the standard notion of
bisimilarity modulo a suitable projection of transitions onto common labels.

The proof that the semantic relation holds for all processes obtained from each
other by application of transformation rules realising the distribution is based
on the idea of mixed confluence [8]: If transformation rules are exchangeable
with operational rules, the application of a transformation does not reduce the
operational semantics. Mixed confluence is shown by critical pair analysis [9] of
model transformation vs. semantic rules. This allows us to establish a simulation
relation between the given and the derived process. Since graph transformation
rules are invertible, the same technique can be used to show bisimilarity.

The paper is organized as follows. After introducing in Section 2 those fea-
tures of the BPEL language that are relevant to our model, Section 3 describes
the BPEL meta model and the transformation from centralised into distributed
processes. Section 4 sketches the operational semantics and Section 5 discusses
the correctness of the transformation. Section 7 concludes the paper.

Verification of Model Transformations: A Case Study with BPEL 185

2 Executable Business Processes as Activity Diagrams

BPEL4WS (Business Process Execution Language for Web Services, [13]) based
on WSDL (Web Services Description Language, [6]) is an XML-based language
designed to enable the coordination and composition —using a workflow-based
approach— of a set of Web services. BPEL defines a number of activities to
describe the interaction of the process with its partners. Activities can be basic or
structured. Basic activities define the interaction capabilities of BPEL processes:
invoke activities call operations of external services and (in their synchronous
version) wait for the response message to arrive, receive activities wait for
suitable messages (invocations), reply activities answer invocations, etc.

Structured activities can comprise both basic and other structured activities.
Examples include switch defining branches, flow allowing for parallel threads,
and pick defining branches whose selection is based on the receipt of suitable
messages.

In this paper, we consider a subset of the language, ignoring some of the con-
trol constructs and features such as asynchronous communication, fault handlers,
etc., see [13] for an in-depth presentation. We illustrate the approach by means
of the example in Fig. 1, using UML activity diagrams to visualise a process
that manages orders received from clients in cooperation between an office and
a warehouse. We assume that the Office receives the order through a receive
activity and implicitly validates it. If it is acceptable, the Warehouse invokes
shipment, otherwise the Office proceeds with a basic (local) undo operation.
The two orchestrators are distinguished by so-called swimlanes.

<<receive>>
order

<<basic>>
undo

<<invoke>>
shipment

Warehouse Office

<<receive>>
order

<<basic>>
undo

<<invoke>>
delegate

Warehouse Office

<<receive>>
delegate

<<reply>>
delegate

monolithic process transformed sub-processes

<<invoke>>
shipment

Fig. 1. Example BPEL Processes

186 L. Baresi, K. Ehrig, and R. Heckel

3 Transformations

This section demonstrates the use of transformation rules to partition a process
into a main process and a set of independent sub-processes. The presentation
starts from a simple meta-model introducing the types of nodes and edges re-
quired to represent processes. Then, we introduce a sample transformation rule.

The presentation is based on the algebraic double-pushout approach to the
transformation of typed and attributed graphs [9]. For a more compact presen-
tation of metamodel and rules we use subtyping as well as negative application
conditions.

3.1 Meta-model

The meta-model of Fig. 2, which borrows some concepts from the work proposed
in [11], only comprises elements that are used by the example in this paper.

Edge Node
id: String

Basic
op: String

Structured

Orch
name: String
id: String

Msg
op: String
id: String

Flow
degree: Nat

Switch Pick Invoke Receive

src
tar

to/infrom

partner

request

Reply

response

Elem

corresp

current

resp

Fig. 2. Our BPEL metamodel

A business process comprises Elements, which are distinguished into Nodes
and Edges, linked by means of associations source (src) and target (tar). More-
over, Nodes are further classified into

– Basic nodes corresponding to Invoke, Reply, and Receive activities1.
1 In this paper, we do not consider Assign activities since the propagation of data

values is not addressed here.

Verification of Model Transformations: A Case Study with BPEL 187

– Structured nodes corresponding to the typical constructs of workflow lan-
guages, like Switch, Flow, and Pick.

Each structured activity is presented by two Structured nodes —related by
association corresponding— to identify the start and the end of the composed
activity. The same association is also used to relate the first and last nodes of a
sequence of basic action nodes.

Each Node is characterised by the Orchestrator that is responsible for it (that
shall execute it). Before starting the application of partitioning rules, the de-
signer must decide how to split the process by assigning the responsibilities for
the different nodes to available orchestrators.

Each Orchestrator has an element (currently) under execution, which is ren-
dered using association current in Fig. 2. By partner links we point to
Orchestrator intended as recipients of invoke messages. Messages (Msg) specify
their sender (from), recipient (to), whether they are already received but not
yet fully processed (in), or if they are the (response) to an earlier invocation
message.

: Edge

P: Receive
op=“order”
id= ID.order

: Basic
op=“undo”
id= ID.undo

P: Invoke
op=“shipment”
id= ID.shipment

S: Switch

E: Switch

WH: Orch
name=“warehouse”
id= ID.warehouse

O: Orch
name=“office”
id= ID.office

: Edge
:tar

:src

:tar
:resp

:resp

: Edge

: Edge

: Edge

: Edge

:src :src

:tar :tar

:tar :tar
:src :src

:resp

:corresp

:resp

:current

:resp

: Edge

:src

Fig. 3. The example of Fig. 1 as an instance of the metamodel of Fig. 2

The meta-model of Fig. 2 is incomplete, missing both a number of constraints
and further types, but sufficient to represent the example process in Fig. 1. The
corresponding metamodel instance is shown in Fig. 3.

188 L. Baresi, K. Ehrig, and R. Heckel

3.2 The Partitioning Rule

The partitioning identifies parts of the original process which can be externalised
and redirects the execution flow accordingly. Consider the rule in Fig. 4 dele-
gating the execution of a block of activities that are in the domain of a dif-
ferent orchestrator. The part to be delegated is situated between 1:Node and
2:Node in the left-hand side of the rule. The corresp edge, removed in the
transformation, represents the derived information that these two nodes are in-
deed connected by a workflow. It has to be set accordingly before executing the
rule.

In our example model in Fig. 3 the part to be delegated consists of a single
activity P:invoke only. In this case both 1:Node and 2:Node are mapped to
P:invoke.

The delegation subprocess is started by the first orchestrator 8:Orch via
:Invoke. The second orchestrator 3:Orch executes the process between the
pair of :Receive and :Reply nodes, activated by the new :current edge.
The negative application condition NAC ensures that the subprocess to be del-
egated is not already under execution by 3:Orch. Since it is invoked
synchronously, the invoking process has to wait for a reply of the executed
subprocess.

: Invoke
op=delegate
id=getid()

6: Node

7: Node

3: Orch
8: Orch

11:resp

: Edge

: Edge

:src

:tar

:tar

:src

12:resp

: Receive
op=delegate
id=getid()

4: Edge
:src

15:tar

: Edge
:tar

5: Edge

:tar

17:src

: Reply
op=delegate
id=getid()

: Edge
:src

:resp

:resp

:partner

:current

:resp

1: Node

2: Node

13:resp

14:resp

6: Node

7: Node

3: Orch 8: Orch

11:resp

12:resp

4: Edge

15:tar

5: Edge

17:src

1: Node

2: Node

13:resp

14:resp

:tar

:src

:corresp

9: Edge

10:current

9: Edge

10:current

NAC

9: Edge 3: Orch

: Node
:resp

:src / :tar

Fig. 4. Transformation rule delegate

Verification of Model Transformations: A Case Study with BPEL 189

: Edge

P: Receive
op=“order”
id= ID.order

: Basic
op=“undo
id=ID.undo

D: Invoke
op=delegate
id=ID.delegate

S: Switch

E: Switch

WH: Orch
name=“warehouse”
id= ID.warehouse

O: Orch
name=“office”
id= ID.office

: Edge
:tar

:src

:tar
:resp

:resp

: Edge

: Edge

: Edge

: Edge

:src :src

:tar :tar

:tar tar
:src :src

:resp

corresp

:resp

:current

:resp

: Edge

:src

D: Receive
op=delegate
id=ID.delegate.receive

: Edge

:src

:tar

: Edge

:tar

P: Invoke
op=“shipment”
id= ID.shipment

: Edge :tar

:src

D: Reply
op=delegate
id=ID.delegate.reply

: Edge

:src

:resp

:resp

:partner

:current

:resp

Fig. 5. Resulting subprocesses

4 Operational Semantics

Graphical operational semantics has been introduced as an extension of meta
modelling (the specification of abstract syntax and/or static semantic by means
of class diagrams) to deal with the dynamic aspect of modelling languages [10].
In this section we are using the approach to model the operational semantics of
executable business processes, based on their graphical representation from their
previous section. We focus on the rules needed for explaining the behaviour of
the example (represented by the meta model instance in Fig. 1), briefly sketching
the remaining rules. Then we define observations and derive a labelled transition
system.

4.1 Operational Rules

Fig. 6 shows the operational rule for executing the 1:Invoke action, sending mes-
sage :Msg. The operation mentioned by the message is the same of the action
node i, as described by the condition op = i.op in the :Msg node. A new unique
identifier is supplied by getid(). As specified be the partner edge from the in-
voke node, the message is created by the orchestrator 3:Orch for the orchestrator
4:Orch.

190 L. Baresi, K. Ehrig, and R. Heckel

5:tar 1: Invoke
op=i.op

3: Orch

2: Edge

7:current

5:tar 1: Invoke
op=i.op

3: Orch

2: Edge

7:current

4: Orch

6:partner

4: Orch

6:partner

:Msg
op=i.op
id=getid()

:from :to

:request

Fig. 6. Operational rule invoke

Fig. 7 shows the rule by which orchestrator 3:Orch executes the 1:Receive
action, accepting a message 4:Msg with the operation name r.op of 1:Receive.
The current edge, previously pointing to the Edge before the next action Node
is advanced from 2:Edge to 5:Edge.

7:tar 1: Receive
op=r.op

3: Orch 4: Msg
op=r.op

5: Edge

:to

2: Edge

:current

6:src
7:tar 1: Receive

op=r.op

3: Orch

5: Edge

:in

2: Edge

:current

6:src

4: Msg
op=r.op

8:resp 8:resp

Fig. 7. Operational rule receive

Fig. 8 shows the rule by which orchestrator 3:Orch is replying to message
4:Msg with the new message :Msg which is sent to the invoking orchestrator
10:Orch.

Fig. 9 shows the rule by which orchestrator 5:Orch is handling the response
of orchestrator 6:Orch by deleting the request and response messages and ad-
vancing the :current edge.

The rule switch in Fig. 10 represent an example of how the semantics of
control structures are described. The rule implements both the split opera-
tion, moving the :current edge to one of several branches outgoing from the
1:Switch node, and the joining of several alternative branches. Notice that split
is non-deterministic because, due to the lack of data types in our model, we
do not specify any guards. In practice we can expect that switches are
deterministic.

Verification of Model Transformations: A Case Study with BPEL 191

7:tar 1: Reply
op=r.op

3: Orch 4: Msg
op=r.op

5: Edge

8:in

2: Edge

:current

6:src 7:tar 1: Reply
op=r.op

3: Orch

5: Edge

8:in

2: Edge

:current

6:src

4: Msg
op=r.op

10: Orch
9:from

10: Orch
9:from

: Msg
op=r.op
id=getid()

:to
:response

:from

Fig. 8. Operational rule reply

1: Invoke
op=r.op

5: Orch

3: Edge
2:src

1: Invoke
op=r.op

5: Orch

3: Edge

:from

:current

2:src

: Msg
op=r.op

6: Orch

6: Orch
:in

: Msg
op=r.op

:from
:response

:to

:request
4:partner

4:partner

7:tar2: Edge

7:current 7:tar2: Edge

Fig. 9. Operational rule response

7:tar 1: Switch 5: Edge2: Edge

:current

6:src
7:tar 1: Switch 5: Edge2: Edge

:current

6:src

4: Orch

8:resp

4: Orch

8:resp

Fig. 10. Operational rule switch

The rule partner in Fig. 11 selects a partner orchestrator in a non-deterministic
way. This is an under-specification of a potentially complex protocol for selecting
services. Like the non-deterministic switch rule this will lead to extra transitions,
which do not conflict with our aim of demonstrating the preservation of the oper-
ational semantics.

192 L. Baresi, K. Ehrig, and R. Heckel

1: Invoke 1: Invoke

2: Orch 2: Orch

:partner

NAC1

1: Invoke

: Orch

:partner

NAC2

1: Invoke

2: Orch

:partner

Fig. 11. Operational rule partner

Finally the rule reinit in Fig. 12 sets the :current edge from the end to
the beginning after a subprocess has completed its execution to allow a new
execution in another context.

6:tar 1: Node 5: Edge2: Edge

:current

6:tar 1: Node 5: Edge2: Edge

:current

3: Orch

4:resp

3: Orch

4:resp

:src : Node2: Edge :tar : Node5: Edge

NAC1 NAC2

Fig. 12. Operational rule reinit

Additional operational rules considered in the complete version of the model
include

– flow (fork and sync): the creating and synchronisation of concurrent flows of
control;

– pick (split and join): like guarded/external choice in process calculi, where
the incoming message determines which of a number of alternative paths is
chosen;

– init and final: dealing with the start and termination of processes;

4.2 Labels and Transition System

Observations on rules define the labels of the transition system representing the
operational semantics of processes. They contain the name of the rule and list
the id attributes of some key elements. For example, inv(i.id, m.id) refers to

Verification of Model Transformations: A Case Study with BPEL 193

the application of the rule invoke and observes the identity of the invoke action
i executed and the message m created. Similarly, the remaining labels include

– rec(r.id, m.id) performing receive action r on message m;
– reply(r.id, m1.id, m2.id) replying to m1 with m2;
– resp(i.id, m2.id) receiving response message m2 for invocation i;

Control flow rules like switch represent internal steps and are uniformly labelled
with the silent action τ .

In transformations, formal parameters from the rules are replaced by identities
of the actual nodes in the graphs representing system states. Given a transfor-

mation G
p(o)
=⇒ H with, for example rule p = invoke (see Fig. 6) and match o,

the label inv(i.id, m.id) produces the observation inv(o(i).id, o(m).id)
using the values of the id attributes for the images of nodes i and m under
occurrence o.

Given a graph transformation system G = (TG, P) with start graph G0,
we derive a labelled transition system LTS(G, G0) = (S, L, →) with all graphs
reachable from G0 by applications of rules as states S, observations on rules as
labels L, and transformations as transitions.

The set O of observations excluding τ is potentially infinite. Those that can
actually be produced by a transformation system G from a given graph G are
limited to such expressions rule(params) where params is a list of id attribute
values that already occur in G. We call this the alphabet alph(G) of graph G.

5 Verification

Based on the definitions in the previous section we are now able to define a
relation of semantic compatibility between processes. The idea is to require weak
bisimilarity after hiding all labels that are not in the intersection of the alphabets
of the two processes. On a labelled transition system, the operation of hiding
replaces all occurrences of a given label by a silent action τ .

Definition 1 (semantic compatibility). Given a graph transformation sys-
tem GOP = 〈TG, OP 〉 (specifying operational semantics), two graphs G1 and G2
(representing processes) are semantically compatible if they are weakly bisimilar
after hiding all labels not in alph(G1) ∩ alph(G2).

In our case O1, the set of observations produced by a centralised process, will
be a subset of O2, the observations of the distributed process. This is because of
the additional communication actions required to coordinate the different local
processes. The following theorem establishes a condition for semantic compati-
bility. For a regular expression r, by s

r−→ t we denote a sequence of transitions
s

l1−→ · · · ln−→ t such that l1 . . . ln is in the language described by r.

Theorem 1 (semantic compatibility of transformations). Assume graph
transformation systems GOP = 〈TG, OP 〉 (operational semantics) and GT =
〈TG, T 〉 (model transformations) such that for all operational steps P1

l−→ Q1
and transformation steps P1 =⇒ P2

194 L. Baresi, K. Ehrig, and R. Heckel

1. l ∈ alph(P2) implies that there exist P2
τ∗lτ∗
−→ Q2 and Q1 =⇒ Q2;

2. l �∈ alph(P2) implies that there exist P2
τ∗

−→ Q2 and Q1 =⇒ Q2;

and the same is true for the inverse of GT , obtained by reversing all productions.

P1 ��

��

Q1

��
P2 �� Q2

Then, whenever there exists a transformation G1 =⇒ G2 in GT , typed graphs
G1 and G2 are semantically compatible.

Proof. Recall that a weak bisimulation is a relation R on states such that
P1 R P2 implies

1. P1
l−→ Q1 implies P2

τ∗lτ∗
−→ Q2 and Q1 R Q2

2. P1
τ−→ Q1 implies P2

τ∗
−→ Q2 and Q1 R Q2

while the same is true for the inverse R−1. The relation R on TG-typed graphs
is defined by G1 R G2 iff G1 =⇒ G2. It is easy to see that this satisfies the
properties 1 and 2 above.

The inverse transformation system produces the inverse of the transformation
relation R, thus making the above true for the symmetric closure of the relation.

Notice that Theorem 1 is based on a notion of local confluence, restricted by
assumptions on the labels of derived transitions. Such a property, called mixed
confluence in [8], can be verified statically by critical pair analysis and search:
First we check if all pairs consisting of a model transformation rule and a seman-
tic rule are parallel independent, i.e. there are no critical pairs between them. If
this fails, we have to demonstrate confluence for all critical pairs, searching for
compatible transformation sequences with the right labels that lead to a common
successor state.

For our case study, this means that we have to analyse the critical pairs
between delegate and the operational semantic rules: Critical pair analysis
is supported by the attributed graph grammar tool environment AGG [22,23].
Critical pairs formalise the idea of a minimal example of a conflicting situation.
From the set of all overlapping graphs the objects and links are extracted which
cause conflicts or dependencies.

Fig. 13 shows the critical pair analysis in AGG where the model transforma-
tion rule delegate is indeed independent of all operational semantics rules (last
row). The opposite is not true since we have critical pairs in the last column
which are all caused by a delete-use-conflict between 10:current in delegate
and the semantic rules.

According to [17] two direct graph transformations G
(p1,m1)=⇒ H1 and G

(p2,m2)=⇒
H2 are in delete-use-conflict (resp. use-delete-conflict) if rule p1 (resp. p2) deletes
part of the graph G, which is used by rule p2 (resp. p2) in the second (resp. first)

Verification of Model Transformations: A Case Study with BPEL 195

Fig. 13. Critical Pair Analysis in AGG

Fig. 14. Critical Pair between invoke and delegate

direct transformation. Fig. 14 shows one of these critical pairs between invoke
and delegate. (Note that the critical pairs between operational semantics rules,
or of rule delegate with itself, are not relevant for mixed confluence.)

Intuitively, the problem is that rule delegate carries an application condition
to check that the subprocess to be separated from the main one is not currently

196 L. Baresi, K. Ehrig, and R. Heckel

active. Therefore it is obvious that this should be in conflict with semantic
rules advancing the control flow of the process, thus potentially entering the
subprocess.

The solution to this problem consists in providing additional transformation
rules to deal with the delegation in the case that the subprocess is indeed active.
But for its application condition, this rule coincides with delegate, with the
additional effect that a request message would be created to represent the fact
that the (then delegated) subprocess has been invoked from the main one by a
message, rather than just by advancing the control flow.

Such an extension of the transformation system to deal with non-confluent
cases can be seen as a variant of Knuth-Bendix completion for non-confluent
critical pairs in term rewriting. With this extension, the resulting system enjoys
the mixed-confluence property.

As a result we obtain mixed confluence, consequently, the compatibility of
distributed process with the centralised ones they have been obtained from using
rule delegate.

6 Related Work

The problem of workflow partitioning has been studied in the field of business
process design for some ten years. It still offers interesting issues to study because
of mobile information systems and web services, and the novel problems that
come with them. In [15], the authors present a comparison among the different
approaches to workflow distribution.

Cross-Flow [12] aims at providing high-level support to workflows in dynami-
cally-created virtual organisations. High-level support is obtained by abstracting
services and offering advanced cooperation support. Virtual organisations are
created dynamically by contract-based match-making between service providers
and consumers. Agent Enhanced Workflows [16] adopt the interesting approach,
inspired by agent-oriented systems, of building execution plans from predefined
goals. Event-based Workflow Process Management [7] use an event-based infras-
tructure and support modelling constructs for addressing the timing issues of
process management. The main feature of ADEPT [20] is the possibility of mod-
ifying workflow instances at run-time. MENTOR [19] provides an autonomous
workflow engine. In this approach the workflow management system is based on
a client-server architecture. The workflow itself is orchestrated by appropriately
configured servers, while the applications that invoke workflow activities are exe-
cuted on the client sites. The METEOR (Managing End to End OpeRations) [2]
system leverages Java, CORBA, and Web technologies to provide support for the
development of enterprise applications that require workflow management and
application integration. It enables the development of complex workflow appli-
cations which involve legacy information systems and that have geographically
distributed and heterogeneous hardware and software environments, spanning
multiple organisations. It also provides support for dynamic workflow processes,

Verification of Model Transformations: A Case Study with BPEL 197

error and exception handling, recovery, and QoS management. Exotica [18] is
characterised by the possibility of disconnected operations. It does not permit
complete decentralisation because it maintains a central unit and all operations
obey a client/server paradigm. WISE [1] exploits the Web for its engine and
offers an embedded fault handler. WAWM [21] focuses on the problems related
to the workflow management in wide area networks. Mobile [14] is developed to
support inter-organisational workflows and is strongly based on modularity. This
characteristic alleviates change management and also allows users to customise
and extend aspects individually.

The analysis of presented models suggests two different and dual approaches
to the problem of workflow coordination. The first approach supports the in-
tegration of autonomous and preexisting workflows and it aims mainly at the
coordination of different and independent actors. The second approach supports
the decomposition of single workflows to support their autonomous execution by
means of different engines. Cross-Flow, Agent Enhanced Workflow, Event-based
Workflow process Management, Adept, WISE and WAWM belong to the first
approach; Mentor, Exotica and Mobile belong to the second one.

The systems described offer three different solutions for the definition of par-
titioning and allocation rules. The first solution proposes specific definition lan-
guages (Cross-Flow, Agent enhanced workflow, Mentor, Exotica). The second
approach proposes the extension of workflow languages with distribution rules
(Cross-Flow, ADEPT, WISE, WAWM, Mobile). The third approach does not
consider the language for distribution rules (Event-based, Workflow Process
Management). Cross-Flow belongs to more than one class because the distri-
bution rules are split into several definition parts.

Our delegation model supports disconnected components like Exotica, the in-
dependence of workflow engines like MENTOR, and the possibility of modifying
the workflow instance at run-time like ADEPT. Moreover, we argue that the
mobile environment needs a language strongly oriented to the automatic execu-
tion like BPEL, but we do not forget the need for lightness that is a mandatory
feature if the system runs on portable devices in ad-hoc networks. As far as the
definition of rules is concerned, our approach defines partitioning rules, but does
not define allocation rules. It defers them to the specific business process and
application domain.

Many of the cited approaches do not consider web services as available in-
struments for decentralising business processes. An exception is made by [5],
which presents an approach very similar to ours. The authors use BPEL as
workflow model and use the term Composite Web Service to refer to a standard
workflow. However, they focus on the problem of assigning workflow portions
to specific orchestrators to minimise the traffic among nodes, but they do not
provide any specific information about the partitioning rules and/or any proof of
their validity. They introduce the concepts of Control Flow Graph and Program
Dependence Graph without providing how they refer to BPEL constructs and
activities.

198 L. Baresi, K. Ehrig, and R. Heckel

7 Conclusion

Reporting on an application of the mixed confluence method to show semantic
correctness of a transformation from centralised to distributed BPEL processes,
the motivation of this paper was two-fold. First, the correctness of the trans-
formation is a practical problem which arose independently and whose solution
is potentially relevant to the acceptance of the idea of distributed processes for
web services. Second, the problem represents an interesting case for the method
of mixed confluence, whose feasibility was validated in the process.

It turns out that, specifying the operational semantics required a non-trivial
refinement (and we like to believe improvement) of the meta model over the
originally proposed one, which was only used to describe the transformation.
Also, the importance of efficient tool support became evident, in particular with
respect to the scalability to non-trivial examples.

As future work we intend to consider more transformations consisting of sev-
eral steps as part of a transaction, which will allow us to consider more complex
transformation scenarios.

References

1. Alonso, G., Fiedler, U., Hagen, C., Lazcano, A., Schuldt, H., Weiler, N.: WISE:
Business to business e-commerce. In: RIDE, pp. 132–139 (1999)

2. Anyanwu, K., Sheth, A., Cardoso, J., Miller, J., Kochut, K.: Healthcare enter-
prise process development and integration. Journal of Research and Practice in
Information Technology, 35(2) (2003)

3. Baresi, L., Maurino, A., Modafferi, S.: Workflow partitioning in mobile information
systems. In: Kluwer, editor. In: Proc. of IFIP TC8 Working Conference on Mobile
Information Systems. IFIP International Federation for Information Processing,
vol. 158 (2004)

4. Baresi, L., Maurino, A., Modafferi, S.: Partitioning rules for bpel processes. Tech-
nical report, Politecnico di Milano. In preparation (2006)

5. Chafle, G.B., Chandra, S., Mann, V., Nanda, M.G.: Decentralized orchestration
of composite web services. In: Proc. of the Int. World Wide Web conference on
Alternate track papers & posters, pp. 134–143. ACM Press, New York, USA (2004)

6. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) version 1.1. W3C (March 2001),
http://www.w3.org/TR/wsdl

7. Eder, J., Panagos, E.: Towards distributed workflow process management. In: proc.
of Workshop on cross-Organizational Workflow Management and Coordination,
San Francisco, USA (1999)

8. Ehrig, H., Ehrig, K.: Overview of Formal Concepts for Model Transformations
based on Typed Attributed Graph Transformation. In: Proc. International Work-
shop on Graph and Model Transformation (GraMoT’05). Electronic Notes in The-
oretical Computer Science, vol. 152, Elsevier Science, Tallinn, Estonia (2005)

9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer,
Heidelberg (2006)

http://www.w3.org/TR/wsdl

Verification of Model Transformations: A Case Study with BPEL 199

10. Engels, G., Heckel, R., Sauer, St.: Dynamic meta modeling: A graphical approach to
operational semantics. In: Proc. OOPSLA’99 Workshop on Rigorous Modeling and
Analysis with the UML: Challenges and Limitations, Denver, CO, USA (November
2, 1999)

11. Gardner, T., al.: Draft UML 1.4 profile for automated business processes with a
mapping to the BPEL 1.0. IBM alphaWorks (2003)

12. Grefen, P., Aberer, K., Hoffner, Y., Ludwig, H.: Crossflow: Cross-organizational
workflow management in dynamic virtual enterprises. International Journal of
Computer Systems Science & Engineering 15(5), 277–290 (2000)

13. IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. Business Process Execu-
tion Language for Web Services version 1.1 (May 2003),
http://www.ibm.com/developerworks/library/ws-bpel/

14. Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architec-
ture and Implementation. International Thomson (1996)

15. Jablonski, S., Schamburger, R., Hahn, C., Horn, S., Lay, R., Neeb, J., Schlundt,
M.: A comprehensive investigation of distribution in the context of workflow man-
agement. In: proc. of International Conference on Parallel and Distributed Systems
ICPADS, Kyongju City, Korea (2001)

16. Judge, D., Odgers, B., Shepherdson, J., Cui, Z.: Agent enhanced workflow. BT
Technical Journal (16) (1998)

17. Lambers, L., Ehrig, H., Orejas, F.: Conflict Detection for Graph Transformation
with Negative Application Conditions. In: Corradini, A., Ehrig, H., Montanari, U.,
Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 61–76. Springer,
Heidelberg (2006)

18. Mohan, C., Alonso, G., Gunthor, R., Kamath, M.: Exotica: A research perspective
of workflow management systems. Data Engineering Bulletin 18(1), 19–26 (1995)

19. Muth, P., Wodtke, D., Weisenfels, J., Kotz Dittrich, A., Weikum, G.: From central-
ized workflow specification to distributed workflow execution. Journal of Intelligent
Information Systems 10(2), 159–184 (1998)

20. Reichert, M., Dadam, P.: Adeptflex − supporting dynamic changes of workflows
without losing control. Journal of Intelligent Information Systems 10(2), 93–129
(1998)

21. Riempp, G.: Wide Area Workflow Management. Springer, London, UK (1998)
22. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-

idation of Software. In: Pfaltz, J.L., Nagl, M., Boehlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 446–456. Springer, Heidelberg (2004)

23. Technical University of Berlin, Department of Computer Science. AGG Version
1.4.1 - (2006), http://tfs.cs.tu-berlin.de/agg

http://www.ibm.com/developerworks/library/ws-bpel/
http://tfs.cs.tu-berlin.de/agg

A Fuzzy Approach for Negotiating Quality of Services

Davide Bacciu, Alessio Botta, and Hernán Melgratti

IMT Lucca Institute for Advanced Studies, Italy
{davide.bacciu,alessio.botta,hernan.melgratti}@imtlucca.it

Abstract. A central point when integrating services concerns to the description,
agreement and enforcement of the quality aspect of service interaction, usually
known as Service Level Agreement (SLA). This paper presents a framework for
SLA negotiation based on fuzzy sets. We propose (i) a request language for clients
to describe quality preferences, (ii) a publication language for providers to define
the qualities of their offered services, and (iii) a decision procedure for granting
any client request with a SLA contract fitting the requestor requirements. We start
with a restricted framework in which the different qualities of a service are han-
dled independently (as being orthogonal) and then we propose an extension that
allows clients and providers to express dependencies among different qualities.

1 Introduction

Service Level Agreement (SLA) concerns the description, negotiation and enforcement
of non-functional aspects of service behaviors. Typical examples are the bounds on ser-
vice response time and availability, the number of accepted requests by unit of time,
and the availability of resources such as storage and bandwidth. In this context, service
providers advertise their functionalities by associating different service levels or guar-
anties about the qualities of their offered services. For instance, a storage service may be
published with, e.g., three different service levels, namely, Basic, Gold, and Platinum,
associating to any of them an increasing amount of communication bandwidth. In this
kind of scenario, a client (or service consumer) C is able to use (or interact with) a par-
ticular service provider P only after C and P have agreed on a particular service level.
Therefore, any interaction of C with P should be preceded by a negotiation or agree-
ment creation phase. The negotiation phase is started when the client makes a specific
request to the provider containing its quality expectations. After a negotiation, if they
reach an agreement, a particular contract binding the provider and the client with a par-
ticular service level is signed by both parties. After that, a second phase is started: the
utilization phase. During the utilization phase, the client makes requests to the provider
under a particular agreement or signed contract. It is assumed that the service provider
will perform a service accordingly to the agreed conditions. Hence, the runtime infras-
tructure should provide ways for monitoring and checking whether the execution meets
contract obligations, and to take corrective actions when the execution deviates from
the agreed conditions.

The web services realm have gave birth to some proposals for standards, like Web
Service Level Agreement (WSLA) [6] and Web Service Agreement Specification (WS-
Agreement) [13], that specify the way in which services describe their quality levels (or

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 200–217, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Fuzzy Approach for Negotiating Quality of Services 201

SLA parameters), the protocols to be used for reaching agreements, how contracts are
written, and how systems are monitored. As usual for these kind of specifications, they
are long documents exposing the XML syntax of definitions and informally defining
the semantics of the different constructs. This paper is aimed at proposing a formal
approach for negotiating SLA based on fuzzy set theory.

Fuzzy set theory and fuzzy logic were introduced by Zadeh [14] to provide math-
ematical tools that could deal with the vagueness and the uncertainty that are typical
of the human perception and reasoning process. The basic idea of the fuzzy approach
is to allow an element s to belong to a set ϕ with degrees of membership ranging in
the continuous real interval [0,1], rather than in {0,1}. The use of fuzzy descriptions
intuitively corresponds to the vagueness that can be always found in service level re-
quests. For instance, suppose that C is looking for a FTP service with a bandwidth of
“about 5 Mbps”: what happens if the offered bandwidth is just 4.9 Mbps? If the con-
straint is expressed in a standard crisp way such as Bandwidth ≥ 5 Mbps (i.e. traditional
non-fuzzy approach), this almost acceptable solution would be immediately discarded,
while it could turn out that actually this is the best solution from a cost-similarity trade-
off viewpoint. Placing a lower threshold on the minimum required bandwidth (e.g. 4.5
Mbps) does not solve the problem, since an almost acceptable solution could always
be found (trivially, 4.4 Mbps) and since this constraint does not discriminate very good
solutions like 5 Mbps from just acceptable solutions like 4.6 Mbps.

In this paper we focus on the contract creation phase, in which

1. service providers should be able to publish a description of the quality levels they
may provide,

2. clients should be able to precisely describe their quality requirements,
3. a decision procedure allows clients and providers to reach agreements.

In particular, we propose a SLA framework based on fuzzy sets for supporting
those activities. The proposed framework is presented by describing the following four
elements:

– The negotiation language, called the SLA-calculus, that models the negotiation
phase of the SLA and accounts for the creation and revocation of contracts. SLA-
calculus is parametric with respect to the languages used for publishing services and
making requests, and to the decision procedure used for reaching an agreement. Its
main scope is to identify the key concepts involved in the negotiation phase.

– The publication language for specifying the offered service levels.
– The request language for specifying the quality levels desired by the user.
– The agreement procedure that allows a client C and service provider P to reach an

agreement.

We remark that the negotiation language is orthogonal to the remaining elements. In
particular, we provide two different instantiations of the framework. Fistly, we propose
two basic languages for publications and requests in which all SLA parameters are han-
dled independently. Then, we extend those languages (and consequently the agreement
procedure) by allowing the definition of dependencies among different SLA parameters
(for instance to say that the storage service never provide a low bandwidth and a large
disk space).

202 D. Bacciu, A. Botta, and H. Melgratti

Related works. Several approaches in the literature [7,11,5] have used the theory of
fuzzy sets for studying the problem of finding suitable compositions of services (i.e.,
discovering appropriate services) that meet certain user-defined QoS requirements. We
remark that our approach has a different aim, since it provides a mechanism that allows
two specific services (i.e., the client and the provide) to negotiate a particular QoS
level — a phase that takes place after the candidate provider has been identified. The
work in [10] presents a process calculus accounting for QoS. The main idea is that any
interaction is enriched with a constraint that describes its associated QoS. We envisage
this approach as an appropriate model for the utilization phase, i.e., once the agreement
has been reached. A calculus for dealing with negotiations, called cc-pi, is introduced
in [2]. Differently from our approach, a client request and the offered service levels
are described in cc-pi as constraints. There is an agreement when both constraints are
consistent.

Paper Organization. Section 2 presents an overview of fuzzy set theory. Section 3
introduces the negotiation language, while Sections 4 and 5 describe two different in-
stantiations for the publication and request languages and the corresponding decision
procedure.

2 Background

This Section summarizes the basics of the fuzzy set theory. A fuzzy set is defined as

Definition 2.1 (Fuzzy set [14]). Given a space of objects S ranged over by s, a fuzzy
set ϕ in S is characterized by a membership function µϕ(s) : S → [0,1] ⊂ R. µϕ(s) is the
fuzzy degree of membership to which a generic element s belongs to ϕ.

Given the fuzzy sets ϕ, φ, and ω defined on the same universe S, the usual concepts of
set theory can be generalized by the following definitions.

Definition 2.2 (Empty fuzzy set). ϕ = ∅ ⇔ ∀s ∈ S,µϕ(s) = 0.

Definition 2.3 (Equality). ϕ = φ ⇔ ∀s ∈ S,µϕ(s) = µφ(s).

Definition 2.4 (Intersection). Let ω = ϕ∩φ, µω(s) = min{µϕ(s),µφ(s)}.

Definition 2.5 (Union). Let ω = ϕ∪φ, µω(x) = max{µϕ(s),µφ(s)}.

The similarity operator Sim(·, ·) measures the degree to which two fuzzy sets are equal.
This operator is more powerful than the binary equality in Def. 2.3, and it will be used
in the following sections to compare fuzzy sets. Intuitively, the operator Sim(·, ·) is
defined such that Sim(ϕ,φ) = 0 ⇔ ϕ∩φ = ∅ and Sim(ϕ,φ) = 1 ⇔ ϕ = φ. Intermediate
values in [0,1] should be associated to gradually overlapping fuzzy sets. We choose the
following definition for Sim(·, ·):

Sim(ϕ,φ) =
∑
s∈S

µϕ∩φ(s)

∑
s∈S

µϕ∪φ(s)
. (1)

A Fuzzy Approach for Negotiating Quality of Services 203

Note that many similarity operators are available in the literature [12]. Likewise,
there is no unique definition for intersection and union in fuzzy set theory: for the sake
of simplicity, we select the most popular and simple implementation, but actually any
t-norm ⊗ could be used as intersection and any t-conorm ⊕ could be used as union [3].

An important property of fuzzy sets is the possibility of extending traditional crisp
functions to work on fuzzy sets, via the extension principle [3].

Definition 2.6 (Extension principle). Let f (s) : S → T be a crisp function and ϕ a fuzzy
set in S. Then, ψ = f (ϕ) is a fuzzy set in T such that ∀t ∈ T,µψ(t) = sups|t= f (s) µϕ(s).

Conversely, sometimes we may want to “defuzzify” fuzzy sets and to extract a crisp
value that could serve as a prototype of the whole fuzzy set in crisp applications. To
this aim, we need one of the many defuzzification methods that can be found it the
literature. We will use the well known center of gravity method (defined as in [1]),
which is particularly suitable for managing sets of numerical elements

cog(ϕ) =
∑
s∈S

s ·µϕ(s)

∑
s∈S

µϕ(s)
. (2)

In the rest of the paper we will use the following notion of linguistic variable.

Definition 2.7 (Linguistic variable). A linguistic variable is a variable whose values
are linguistic terms. A linguistic variable V is a quintuple (x,T,S,G,M), where:

1. x is the name of the variable (e.g., Age);
2. T is the set of linguistic terms of variable x (e.g., {young, old});
3. S is the universe of discourse of the base variable;
4. G is a syntactic rule for generating composed terms of x (e.g., “very old”);
5. M : F(S) → T is a semantic rule mapping a fuzzy set ϕ defined over the universe

of discourse S of the base variable with each element t ∈ T.

Even thought we will not use the syntactic rule G in the following, we included it in
Def. 2.7 for the sake of completeness. Note that this definition of linguistic variable is
slightly different from the ones that can be found in the literature [15], which actually
defines M : T → F(S). In fact, as it will be clear in Section 5.1, in some special cases
we may want to associate a linguistic term with more than one fuzzy set. This anyway
does not change the essence of M , which is to capture the semantic mapping between
linguistic terms and fuzzy sets.

3 SLA-Calculus

In this Section we provide an operational model for the agreement phase, which is
parametric with respect to the languages used for describing services and for making
quality requests. Its main scope is to expose the ingredients of the model, by showing
how contracts are created, used and then revoked. A main assumption of this model is

204 D. Bacciu, A. Botta, and H. Melgratti

that the quality levels offered by a provider do not depend on the provider’s internal state
or, in other words, on the contracts it has already signed. For instance, the bandwidth
offered by the storage server do not decrease as new contracts are signed. Moreover, we
assume that providers do not revoke contracts. The following are the main entities of
the model:

– Service descriptions, any of them declares the SLA parameters offered by a par-
ticular provider. Any service description may be thought as an entry on a UDDI
registry. We rely on an infinite set S of service names ranged over by s,s0,
Moreover, we assume SLA parameters to be described by a provider descriptor
DP , which is a valid document of the publication language.

– Service states, we associate any service with a state. In our basic version, a service
state collects the information of all active contracts signed by the provider. We
assume Q to be the infinite set of contract names ranged over by c,c0,

– Clients describe the behavior of applications attempting to sign and revoke con-
tracts with providers. As explained before, a client initiates a negotiation with a
provider by sending a request descriptor DC specifying the desired qualities of the
service. The request descriptor is any valid document of the request language. If
the requested SLA parameters can be assured by the provider, then the client will
obtain a signed contract. Otherwise, the negotiation phase will fail.

Syntax. The following grammar defines the terms of the SLA-calculus:

(NET) N ::= s[DP] | s{c0, . . . ,cn} | C | N|N | (νc)N

(CLIENT) C ::= 0 | c := s〈DC ,A〉?C : C | † c.C | C|C

A net (system) is either a service description s[DP], where: (i) s is the service name
and DP is a description of the SLA parameters (the definition of provider descriptors are
in the following Sections); (ii) a service state s{c0, . . . ,cn}, denoting that the provider
s has signed the active contracts c0, . . . ,cn; (iii) a client C, (iv) the parallel composition
of nets, and (iv) the declaration (νc)N of a fresh contract c to be used in N.

A client is either (i) the inert process 0; (ii) a process c := s〈DC ,A〉?C1 : C2 that
attempts to create a new contract c by negotiating with s for the qualities described by
DC and accepting under conditions A, if the negotiation succeeds then C1 is executed
(otherwise C2 is activated); (iii) a process †c.C that revokes a signed contract c and then
behaves like C; and (iv) the parallel composition C1|C2.

The only bound names are the occurrences of c in either c := s〈D,A〉?C1 : C2 or
in (νc)N. All other occurrences are considered free. We will refer to terms up-to α-
equivalence (denoted by ≡α), i.e., up-to the renaming of bound names.

Operational Semantics. The reduction semantics of SLA-calculus is given up-to struc-
tural equivalence given by the the rules defining ‘|’ as an associative and commutative
operator with 0 as identity and the following ones.

s{c} | s{c1, . . . ,cn} ≡ s{c,c1, . . . ,cn} N1 ≡ N2 if N1 ≡α N2

(νc1)(νc2)N ≡ (νc2)(νc1)N N1|(νc)N2 ≡ (νc)(N1|N2) if c �∈ f n(N1)

A Fuzzy Approach for Negotiating Quality of Services 205

The reduction semantics is inductively defined by the following rules.

(AGREEMENT)

DP ≈A DC

s[DP] | c := s〈DC ,A〉?C1 : C2 → s[DP] | (νc)(C1 | s{c})

(PAR)

N1 → N′
1

N1 | N2 → N′
1 | N2

(DISAGREEMENT)

DP �≈A DC

s[DP] | c := s〈DC ,A〉?C1 : C2 → s[DP] | C2

(RESTRICTION)

N1 → N′
1

(νc)N1 → (νc)N′
1

(REVOKE) (νc)(†c.C | s{c}) → C

Rule AGREEMENT stands for the creation of a contract. In this case there is a client
c := s〈DC ,A〉?C1 : C2 starting a negotiation with the provider s by requiring the ser-
vice level DC and accepting the negotiation under conditions A. Since the levels DP
offered by the provider satisfy the user requirement (premise DP ≈A DC), a new con-
tract c (known only by the provider and the client) is created. Note this rule abstracts
away from the actual agreed conditions, they are represented just by a contract name.
Moreover, the service description s[DP] is persistent. Rule DISAGREEMENT handles
the cases in which the provided qualities DP do not match the client requirements DC
and A. In this cases the exceptional flow C2 is activated. Rule REVOKE handles the
termination of a contract by decision of a client. Rules PAR and RESTRICTION are the
standard ones.

Note the rules are parametric with respect to the relation DP ≈A DC , which stands
for the decision procedure. Examples of such relation are in the following Sections.

4 The Fuzzy Agreement Process (FAP)

This Section instantiates the SLA-calculus presented in the previous Section by propos-
ing specific publication and requirement languages and a decision procedure. We called
this particular instance the FAP. The aim of the FAP is to mimic the complex SLA
interactions performed by humans, by means of a process in which (i) tolerance and
vagueness are admitted both in request and offer specifications, and (ii) the matching of
request and offers is evaluated with respect to the trade-offs between similarity metrics
and cost considerations.

The following example illustrates the main ingredients of FAP. Let us assume a
provider P offering a FTP service, which is described by a set of K qualities or re-
sources. Any quality xi is associated with ki different service levels. Each service level
has an associated cost, which is determined by a secret policy of the provider.

Example 4.1. The provider P offers a FTP service, characterized by the resources x1 =
Storage and x2 = Bandwidth, any of them offered with three different service lev-
els, namely {Basic,Gold,Platinum} for Storage (k1 = 3) and {Slow,Medium,Fast} for
Bandwidth (k2 = 3).

A service configuration associates a service level to any resource of the service. For the
FTP example, PlatinumStorage∧FastBandwidth is a valid service configuration for our

206 D. Bacciu, A. Botta, and H. Melgratti

Fig. 1. Linguistic variables and fuzzy sets for the FTP service example

FTP service. In our approach, each resource is modeled by a linguistic variable, while
service levels and expected qualities are expressed by using fuzzy sets defined on the
universes of discourse of those linguistic variables.

Example 4.2. Fig. 1 shows the fuzzy sets describing the service levels offered by P
(solid lines) and those corresponding to the requirements of a client C (dotted lines).
All fuzzy sets are defined on the universes of discourse of the corresponding linguistic
variables Storage and Bandwidth.

The following definitions formalize the publication language (i.e., the provider descrip-
tors), the request language (i.e., the client descriptors) and the decision procedure (i.e.,
the relation ≈A) for the FAP instantiation.

Definition 4.1 (Provider descriptor). A provider descriptor DP is a pair (V,C). V is
a set of K linguistic variables V1, ...,VK. C is a set of K cost functions ⇓1, ...,⇓K, such
that ⇓i: Si → U, where Si is the universe of discourse of the i-th linguistic variable Vi

and U is the target cost universe.

As aforementioned, linguistic variables describe resources. The name xi of the linguistic
variable Vi gives the name of the resource. We write Σ = {xi, ...,xK} for the set of
names of all linguistic variables. The service levels associated to the resource xi are the
linguistic terms Ti of Vi, which are associated by Mi to the fuzzy sets ϕ1

i , ...,ϕ
ki
i defined

on the corresponding universe of discourse Si (as stated in Def. 2.7).

Example 4.3. In our FTP service, we define service levels T1={Basic,Gold,Platinum}
and T2 = {Slow,Medium,Fast}. Some examples of set-label associations are M1(ϕ3

1) =
Platinum and M2(ϕ1

2) = Slow.

Cost functions ⇓1, ...,⇓K are used to map each resource into a common reference uni-
verse U , and they will be used during the decision procedure to compute a global cost of
a service configuration. Cost can be expressed in terms of money, time, availability or
any other business-related meaningful measure. Different shapes of cost functions can
represent different cost models: for instance, an important resource may have a steeper
cost function than a less critical resource.

Definition 4.2 (Client descriptor). A client descriptor DC is a pair (F,A). F is a
set of K pairs {(x1| f1), ...,(xK | fK)}, where fi is a fuzzy set defined on the universe
of discourse Vi of the linguistic variable named xi ∈ Σ. A is an acceptance function
U × [0,1] → {0,1}.

A Fuzzy Approach for Negotiating Quality of Services 207

F describes the configuration desired by the client. Indeed, a pair (xi| fi) states that the
client expects the service level described by fuzzy set fi for the resource xi. In this way a
client C may formulate a vague request such as “I want a bandwidth of about 5 Mbps”.
Note that, since fuzzy set theory extends classic set theory, it is still possible to express
precise and mandatory constraints such as “I want a bandwidth of at least 2 Mbps” or
“I want a bandwidth of exactly 4 Mbps”.

The acceptance function A is used as a classifier to discriminate acceptable from
unacceptable service configurations offered by P . In other words, A measures the trade-
off between the cost and the similarity of the proposed configuration with respect to the
original service request and decides if that solution is acceptable or not.

We remark that a client only needs the following information to be able to build a
request descriptor:

1. the resource names Σ = {x1, ...,xK};
2. the universes of linguistic variable {S1, ...,SK};
3. the cost reference universe U .

In a real implementation, this information should be exposed by P in its service de-
scription, e.g., in its corresponding WSDL description. We remark that a client C needs
no information about available service levels nor cost policies used by the provider.
Hence, they can be kept private by the provider.

Finally, we define the decision procedure of FAP. Roughly, we say DC ≈A DP if and
only if there exists (at least) a service configuration on which the client and the provider
agree.

Definition 4.3 (Evaluation of ≈A). Given DC = (F,A) and DP = (V,C):

Step 0. For each resource xi (i = 1...K), and for each service level ϕ j
i of xi (j = 1...ki),

let φ j
i =⇓i (fi ∩ ϕ j

i) be the projection on U of the overlapping between the offered

level ϕ j
i and the requested level fi. Furthermore, let s j

i = Sim(fi,ϕ j
i) be the simi-

larity measure of the same couple of fuzzy sets.
Step 1. Let Π = {π|π = (φ j1

1 , ...,φ jK
K),∀i = 1...K,∀ ji = 1...ki ∧ s ji

i �= 0} be the set of
all K-tuples representing eligible service configurations offered by P that have
non-empty intersection with the request descriptor. Then, ∀π ∈ Π, let σ(π) =
cog(

⋃K
i=1 φ ji

i) and Simπ(π) = ∏K
i=1 s ji

i be respectively the crisp global cost and the
global similarity measure of π.

Step 2. Let Π′ = {π ∈ Π|A(σ(π),Simπ(π)) = 1} be the set of eligible service configu-
rations accepted by C .

Step 3.a. If Π′ �= ∅ then DC ≈A DP and let π∗ = choose(Π′) be the service configura-
tion selected by P ś choice function.

Step 3.b. If Π′ = ∅ then ¬(DC ≈A DP).

Note that we can pass from the fuzzy sets to the linguistic description of each π at any
time by simply applying

∧K
i=1 Mi(ϕ ji

i).

Example 4.4. We compute ≈A for the descriptors in Fig. 1. As stated in Section 2, we
use the min function as t-norm ⊗ and the max function as t-cornorm ⊕ in the imple-
mentation of ∩ and ∪, respectively (see Defs. 2.4 and 2.5).

208 D. Bacciu, A. Botta, and H. Melgratti

Fig. 2. The cost function of resource Storage and a sample application

Step 0. Fig. 2 shows the application of Step 0 to resource Storage. First, fuzzy sets
resulting from f1 ∩ ϕ1

1, f1 ∩ ϕ2
1 and f1 ∩ ϕ3

1 are obtained in the original universe
of discourse of Storage and their similarity measure is computed. Note that, as
we could expect by observing Fig. 1, f1 ∩ ϕ1

1 = ∅ and thus s(f1,ϕ1
1) = 0, while

s(f1,ϕ3
1) � s(f1,ϕ2

1) > 0. Then, we use the cost function ⇓1 and the extension prin-
ciple of Def. 2.6 to project the intersections from the universe S1 to U and thus to
obtain φ2

1 and φ3
1 (since ϕ1

1 is empty, φ1
1 is also empty). The same procedure is re-

peated for Bandwidth using a very steep linear cost function ⇓2 (i.e., Bandwidth is a
very costly resource), obtaining s(f2,ϕ1

2) = 0.34, s(f2,ϕ2
2) = 0.22 and s(f2,ϕ3

2)= 0.
Step 1. Since s(f1,ϕ1

1) = s(f2,ϕ3
2) = 0, we have four eligible service configurations to

include in Π: πa = (φ2
1,φ

1
2),πb = (φ2

1,φ
2
2),πc = (φ3

1,φ
1
2) and πd = (φ3

1,φ
2
2), which

correspond to the linguistic descriptions GoldStorage ∧ SlowBandwidth, GoldStor-
age ∧ MediumBandwidth, PlatinumStorage ∧ SlowBandwidth and PlatinumStor-
age ∧ MediumBandwidth, respectively. We compute σ(πa) = cog(φ2

1 ∪ φ1
2) = 9.6

and Simπ(πa) = s2
1 · s1

2 = 0.06 ·0.34 = 0.0204, and similarly for the remaining con-
figurations of Π.

Step 2. As shown in Fig. 3, we apply the acceptance function A(σ(π),Simπ(π)) pro-
vided by C to discriminate acceptable from unacceptable service configurations,
thus obtaining Π′ = {πb,πd}. In the figure, we can see that, for instance, πa is dis-
carded because its similarity with respect to the request descriptor is poor, even
though it has the lowest cost. Differently, πb falls in the acceptance region, thanks
to the good trade-off between cost and similarity.

Step 3.a. Since Π′ �= ∅, DC ≈A DP is true. The final step is performed by P using its
internal policies coded in the choose(Π′) function to select a particular configura-
tion π∗. For instance, P could alternatively select the most similar configuration
(πb), or the most costly one (πd), or the first one in Π′ (again πb). Assuming P
selects π∗ = πb, the FTP service will give to C the following service guaranties
GoldStorage ∧ SlowBandwidth.

A Fuzzy Approach for Negotiating Quality of Services 209

Fig. 3. Eligible configurations and the acceptance function A

Additionally, once a configuration is selected, the provider P may want to fix a crisp
value for each resource rather than determining only the service level, e.g., it may want
to assign a SlowBandwidth of exactly 2 Mbps. This additional step can be performed in
several ways depending on the internal policies of P . For instance, P could defuzzify
each fi ∩ϕ j

i of π∗, or select a prototype point for each service level, or choose the crisp
value with the highest membership degree in each fi ∩ ϕ j

i of π∗. This is a minor issue
and, for the sake of simplicity, we will not enter in further details.

5 Contract Descriptors as Finite State Automata and Transducers

The FAP model cannot express complex policies such as

Client C requests either a large amount of disk space with an high access
throughput or a small amount of disk space with no particular limitation on the
access throughput.

In order to describe the non-deterministic choice (either ... or ...) of quality con-
figurations and the dependencies among the service levels of different resources, we
extend the previous FAP model. In particular, we use weighted automata [9] to define
client descriptors and weighted transducers [9] to define complex provider descriptors.
We start by recalling the definition of semirings taken from [8], which will be used as
weights in client automata and provider transducers.

Definition 5.1. A system (K,⊕,⊗,0,1) is a semiring if

1. (K,⊕,0) is a commutative monoid with identity element 0;
2. (K,⊗,1) is a monoid with identity element 1;
3. ⊗ distributes over ⊕;
4. 0 is an annihilator for ⊗ : ∀e ∈ K, e ⊗ 0 = 0 ⊗ e = 0.

We will write K as a shorthand for (K,⊕,⊗,0,1) when the operators are clear from
the context. In our framework we use the elements of fuzzy-set semiring to represent

210 D. Bacciu, A. Botta, and H. Melgratti

service levels. In particular, we choose the semiring whose elements are fuzzy sets and
whose operators are the fuzzy intersection ∩ and union ∪. The identity and annihilator
elements are chosen accordingly to the properties of the semirings. For instance, if we
consider the semiring (K,∪,∩,0,1), then 0 is the empty fuzzy set of Def. 2.2, while 1
is the fuzzy set with membership value 1 ∀x ∈ R, where R is the support of the fuzzy
sets.

5.1 Request Descriptor

This Section introduces the notion of weighted automata and their utilization as client
descriptors.

Definition 5.2. A client automaton is a 6-tuple AC = (Σ,Q, I,F,T,K) where

1. Σ is the finite input alphabet;
2. Q is a finite set of states;
3. I ⊆ Q is the set of the initial states;
4. F ⊆ Q is the set of the final states;
5. T ⊆ Q× Σ×K× Q is a finite set of weighted transitions;
6. K is a semiring over which transitions weights are defined.

Given a transition ti ∈ T , p(ti) denotes the origin of ti and n(ti) the destination. For
instance, let ti be defined as follows

ti = (qi,xi, f l
i ,q

′
i) with qi,q

′
i ∈ Q,xi ∈ Σ, f l

i ∈ K (3)

then p(ti) = qi and n(ti) = q′
i. A path π = t1 . . .tK ∈ T ∗ is defined as the composition of

transitions ti ∈ T such that n(ti−1) = p(ti) with i = 2, . . . ,K. We extend the definitions
of p(·) and n(·) to paths such that p(π) = p(t1) and n(π) = n(tK). In addition, we
define a labeling function λ : T → Σ × K over a transition ti = (qi,xi, f l

i ,q
′
i) such that

λ(ti)= (xi| f l
i). The labeling function can be extended to paths by defining λ(π)= λ(t1)◦

. . .◦ λ(tK), where ◦ is the concatenation operator.
Consider the automaton in Fig. 4, where Σ = {x1,x2,x3,x4,x5}, Q = {q0, . . . ,q5}, I =

{q0}, F = {q5}, f l
j ∈ K, and T = {(q0,x1, f 1

1 ,q2),(q0,x2, f 2
1 ,q2), . . . ,(q4,x5, f 5

2 ,q5)}.

The labeling function applied on π = t1t3t5 produces λ(π) = (x1| f 1
1)(x3| f 1

3)(x5| f 1
5).

Similarly to [4], we define the acceptance set Acp for the client automaton AC as the
set of weighted strings generated by the labeling function λ on all paths π leading from
an initial state q0 ∈ I to a final state q f ∈ F , that is

Acp(AC) = {λ(π)| π is a path in AC , p(π) ∈ I, n(π) ∈ F}. (4)

In our interpretation, each automaton AC represents a service request from a client C .
The input alphabet of AC contains the names of service qualities or resources, while K

is the set of fuzzy sets that are used to define the service levels requested by the client.
In this interpretation, the set Acp(AC) defines all the possible compositions of qualities
that are acceptable for the client C together with a soft measure of the service level
requested for each service.

Now, we refine the Def. 4.2 of the client descriptors as

A Fuzzy Approach for Negotiating Quality of Services 211

Fig. 4. A client automaton

Definition 5.3 (Client descriptor). A client descriptor DC is a couple (F,A). F is the
acceptance set Acp(AC) of the acyclic weighted automaton AC = {Σ,Q, I,F,T,K}, hav-
ing transitions ti ∈ T of the form (qi,xi, f l

i ,q
′
i), where each f l

i ∈ K is a fuzzy set defined
on the universe of discourse Si of the linguistic variable named xi ∈ Σ. A is an accep-
tance function U × [0,1] → {0,1}.

Consequently, clients may define more expressive contract descriptors in which the set
F of alternative desired configurations is defined by a weighted automaton.

Example 5.1. Consider the automaton in Fig. 5 defining a request descriptor for the
FTP service. The choice between a BasicStorage service and a LargeStorage service
is expressed by the two transitions that start from the initial state q0. Moreover, this
automaton expresses that the requested level for the bandwidth depends on level offered
for the storage. In particular, the client is satisfied by a large-storage service only if
it is delivered together with a fast bandwidth access (path q0 → q1 → q3 in Fig. 5),
whereas it can accept a slow bandwidth service if it is offered in conjunction with a
basic-storage service (path q0 → q2 → q4). Note that the client requires different levels
for the same resource depending on the path followed in the automaton. For instance,
the two transitions in Fig. 5 ending in q3 associate two different fuzzy sets (Fast1 and
Fast2) to the same resource Bandwidth.

5.2 The Provider Descriptor

In what follows we recall the definition of weighted finite state transducer (FST) of [9],
which will be used for formalizing the notion of provider descriptors.

Definition 5.4. A weighted finite state transducer is a 7-tuple

FSTP = (ΣP ,CP ,QP , IP ,FP ,TP ,K),

where

1. ΣP is the finite input alphabet;
2. CP is the finite output alphabet;
3. QP is a finite set of states;
4. IP ⊆ QP is the set of the initial states;
5. FP ⊆ QP is the set of the final states;

212 D. Bacciu, A. Botta, and H. Melgratti

Fig. 5. Client automaton for the FTP service example

Fig. 6. A server transducer

6. TP ⊆ QP × ΣP ×CP × K × QP is a finite set of weighted transductions from the
input alphabet ΣP to the output alphabet CP ;

7. K is a semiring over which transductions weights are defined.

A weighted transducer is shown in Fig. 6, where the input alphabet is ΣP = {x1,x2,
x3,x4,x5}, the states are QP = {q0, . . . ,q8}, the initial states are IP = {q0}, the final
states are FP = {q8} and the semiring weights are φi j

l ∈ K, where i denotes the i-th
element of the input alphabet, l is the index of the l-th output symbol for a given input
symbol and j (optional) is used to differentiate semiring weights for the same combi-
nation of input-output pairs.

Given a weighted FST, a path π is the composition of transitions (or transductions)
tdi ∈ TP . We also use the operators n(·) and p(·) to refer to the origin and destination
of transductions and transduction paths. The labeling function λ(·) is defined such that
λ(tdi) = xi for a transition tdi = (qi,cl

i,xi,ϕl
i,q

′
i) ∈ Ts, and λ(π) = λ(t1)◦ . . .◦ λ(tK) for

a path π = t1 . . . tK . In addition, the set of the paths from q to q′ is

P(q,q′) = {π|p(π) = q,n(π) = q′}, (5)

A Fuzzy Approach for Negotiating Quality of Services 213

while the set of paths from q to q′ for the label x ∈ Σ∗ is

P(q,x,q′) = {π|p(π) = q,n(π) = q′, λ(π) = x}. (6)

Then, the provider descriptor is expressed in terms of a weighted transducer by re-
fining the Definition 4.1.

Definition 5.5 (Provider descriptor). A provider descriptor DP is a couple (FSTP ,C)
where FSTP = (ΣP ,CP ,QP , IP ,FP ,TP ,K) is a weighted transducer, and where

1. ΣP is the set containing the names xi of the linguistic variables (or resources);
2. CP is the set of linguistic terms cl

i corresponding to service levels;
3. K is the semiring whose elements are fuzzy sets;
4. C is the set of cost projection functions ⇓i.

As for FAP, we have that ∀i = 1, . . . ,K ∧∀l = 1, . . . ,ki ∧∀ j = 1, . . . ,k′
l: ϕl j

i ∈ K is a fuzzy
set defined on the universe of discourse Si of the linguistic variable named xi ∈ ΣP and
related to the linguistic term cl

i ∈ CP representing a class of service.

5.3 The Decision Procedure

In this new setting, we use the FSTP of a provider descriptor to translate the request
made by a client C to the service levels offered by the provider P . Note that any
weighted string x in the request descriptor denotes a possible quality configuration de-
sired by the client. In particular, each (xi| fi) ∈ x requires the resource xi with quality
level f l

i . Conversely, a transduction ti = (qi,cl
i ,xi,ϕ j

i ,q
′
i) describes an offer of the re-

source xi with the service level cl
i defined by the fuzzy set ϕ j

i . More formally, cl
i is

a linguistic term associated to the linguistic variable xi, on the universe Si, such that
Mi(ϕl

i) = cl
i . The provider FST translates the client requests, expressed in terms of the

input alphabet Σs = Σ, to an output alphabet CP whose elements represent the concrete
service levels offered by the provider P . Moreover, the agreement procedure calculates
the degree of compliance of requested levels with the offered levels.

The translation from the input alphabet ΣP to the output alphabet CP is formalised
by the following transduction relation τ : Σ× TP −→ CP such that

τ(xi,tdi) =
{

cl
i if tdi = (qi,cl

i,xi,ϕl
i,q

′
i)

ε otherwise
(7)

where ε denotes the empty element of the output alphabet. The transduction relation
(Equation 7) is extended to strings x = x1 . . .xK ∈ Σ∗ and legal paths π ∈ P(q0,x,q f) as
follows

τ(x,π) = ©K
i=1τ(xi,tdi) (8)

where © denotes the concatenation operator and tdi are the transductions in π. Note
that τ(x,π) translates a service request x to the service classes offered by the
provider.

214 D. Bacciu, A. Botta, and H. Melgratti

Similarly, we define a weighting function over strings x = (x1| f 1
i) . . . (xK | f l

k) and
legal paths π ∈ P(q0,x,q f) as

σ(x,π) = δ

(
K⊕

i=1

⇓i (f l
i ⊗ ϕ j

i)

)

(9)

where f l
i ∈ K is the service level requested by the client for the resource xi, ϕ j

i ∈ K is the
weight assigning by the transduction tdi = (qi,cl

i,xi,ϕ j
i ,q

′
i),

⊕
and ⊗ are the operators

on the semiring K, ⇓i are the cost functions, while δ is the output function defined as
the defuzzyfication operator cog : K → U .

Finally, the following similarity function calculates the similarity of the requested
configuration x with the offered path π as a combination of the similarities between f l

i

and ϕ j
i (i.e., the requested and offered levels) for each resource xi. (Sim is in Equation 1)

Simπ(x,π) =
K

∏
i=1

Sim(f l
i ,ϕ

j
i) (10)

The transduction relation in Equation 8 does not take into consideration the trans-
duction weights. We extend its definition to weighted strings x = (x1| f 1

i) . . . (xK | f l
k) and

paths π ∈ P(q0,x,q f) by using the weighting and similarity function defined so far, i.e.

τw(x,π) =
{

〈τ(x,π),σ(x,π),Simπ(x,π)〉 if Simπ(x,π) �= 0
〈·〉 otherwise

(11)

where 〈·〉 is the empty triplet.
Equation 11 is limited to the transduction of a single string x on a single path π. The

full model takes into consideration all the requests modeled by the client automaton AC ,
translating them over all eligible paths defined by the provider FST, i.e.

RFST (Acp(AC)) = ∪x∈Acp(AC) ∪π∈P(IP ,x,FP) τw(x,π), (12)

where P(IP ,x,FP) is the set of paths starting from an initial state q ∈ IP , ending in a
final state q′ ∈ FP and labeled by x ∈ Σ∗, that is

P(IP ,x,FP) = ∪q∈IP , q′∈FP P(q,x,q′). (13)

Finally, the agreement procedure is formalized as follows.

Definition 5.6 (Evaluation of ≈A). Given DC = (Acp(AC),A) and DP = (FST,C):

Step 1. Let Π = RFST (Acp(AC)) be the set of all triplets 〈τ,σ,Sim〉 representing avail-
able service configurations τ having compliance between request and offer ex-
pressed by σ and Sim.

Step 2. Let Π′ = {〈τ,σ,Sim〉 ∈ Π|A(σ,Sim) = 1} be the set of available service con-
figurations accepted by the client.

Step 3.a. If Π′ �= ∅ then DC ≈A DP and let π∗ = choose(Π′) be the service configura-
tion selected by the provider choice function.

Step 3.b. If Π′ = ∅ then (DC �≈A DP).

A Fuzzy Approach for Negotiating Quality of Services 215

Fig. 7. Provider transducer for the FTP service example

Example 5.2. Consider the provider descriptor defined in terms of the weighted FST
in Fig. 7. The provider can now express complex service allocation policies such as
providing a FastBandwidth service only to clients requesting either a GoldStorage or
PlatinumStorage service. Moreover, the provider may want to allocate GoldStorage
clients preferentially to the FastBandwidth service: this can be expressed by placing
a more restrictive condition on the qP

2 → qP
4 edge than on the qP

2 → qP
5 edge, that is

reducing the support of ϕs2
2 with respect to ϕ f1

2 .
Consider the client automaton described in Fig. 5, whose acceptance set is

Acp(AC) =
{

(St| flarge)(Bw| f f ast1),(St| fbasic)(Bw| fslow),(St| fbasic)(Bw| f f ast2)
}

where we substitute St to Storage and Bw to Bandwidth to ease the notation. The client
descriptor is DC = (Acp(AC),A), where A is a suitable acceptance function.

The provider FST is defined on the signature ΣP = {St,Bw} and on the output al-
phabet CP = {Basic,Gold,Platinum}∪{Slow,Fast}, where the former set refers to the
Storage universe and the latter to the Bandwidth universe. Moreover, the FST has states
QP = {qP

0 ,qP
1 ,qP

2 ,qP
3 ,qP

4 ,qP
5 }, with IP = {qP

0 } and FP = {qP
4 ,qP

5 } as initial and final
states, respectively. Hence, sparing the details of the transductions set TP , we obtain
the provider-side contract descriptor DP = (FST,{⇓St ,⇓Bw}), where ⇓St ,⇓Bw are two
suitable cost-projection functions on the Storage and Bandwidth universes.

By performing Step 1 of definition 5.6, we generate the set Π of triplets containing,
e.g.,

τw(x,π) = 〈Basic ◦ Slow,cog
(
⇓St (ϕb

1 ⊗ flarge)⊕ ⇓Bw (ϕs1
2 ⊗ f 1

f ast)
)

,

Sim(ϕb
1, flarge) ·Sim(ϕs1

2 , f 1
f ast)〉

which is obtained by considering x = (St| flarge)(Bw| f 1
f ast) and π = qP

0 qP
1 qP

4 . The oper-
ators on the fuzzy set (⊕, ⊗), the cost-projection ⇓i and the defuzzyfication functions
behave as described in Section 4. Therefore, after the application of Step 1 we ob-
tain a set of triplets whose elements are a service configuration (e.g. BasicStorage∧

216 D. Bacciu, A. Botta, and H. Melgratti

SlowBandwidth) and two reals describing the similarity between the client request and
the provider offer. These triplets are filtered by the acceptance function A as detailed
in Step 2 and, eventually, the provider selects a solution amongst the elements of the
acceptable set Π′ by means of the choice function in Step 3 of Definition 5.6.

6 Conclusion and Future Works

This paper presents a general framework for handling SLA negotiation in which agree-
ments rely on the fuzzy approach: required and offered quality levels are described
by fuzzy sets. The described framework is at an initial phase in which many aspects
deserve further investigation. In particular, we envisage the following lines:

– Adjustment of provided service levels: Currently, published service levels do not
depend on the state of the provider. Hence, it would be interesting to resort to fuzzy
theory tools for allowing the dynamic modification of the shape and position of the
fuzzy sets. For instance, linguistic hedges could be used for dynamically adapting
a provider descriptor when new contracts are signed, removing such adjustments
when contracts are revoked by applying the corresponding inverse linguistic hedge.

– Contract enforcement: The SLA-calculus accounts only for SLA negotiation. We
plan to extend the framework for dealing with contract enforcement, i.e., to for-
mally explain how clients interact with providers under already signed contracts
and how agreed service levels are enforced.

– Cost models: We plan to derive a set of off-the-shelf cost models that can help the
providers in defining cost functions for their resources. For instance, cost models
could be derived from usage or availability of resources. Since cost functions in-
fluence the way fuzzy sets are projected in the reference universe, each cost model
should be associated with a proper aggregation and defuzzification operator.

– Automata and transducers properties: Our definition of weighted automata and
transducers differ from the ones that can be found in the literature [9]. We plan
to determine suitable composition operators, similar to those described in [9] for
standard automata and FST, that can be used to define a modular approach for con-
structing complex client and provider descriptors by composing simpler service
requests and offers.

– Implementation: We plan to investigate how the proposed framework can be em-
bedded into current web service infrastructure. In particular, whether the different
elements can be mapped to the de facto standards WSDL, SOAP and UDDI.

References

1. Babuska, R.: Fuzzy systems, modeling and identification. Technical report, Delft University
of Technology (2001)

2. Buscemi, M., Montanari, U.: CC-Pi: A constraint-based language for specifying service level
agreements. Manuscript (2006)

3. Dubois, D., Prade, H.: Fuzzy Sets and Systems - Theory and Applications. Academic Press,
New York (1980)

A Fuzzy Approach for Negotiating Quality of Services 217

4. Gorla, D., Hennessy, M., Sassone, V.: Security policies as membranes in systems for global
computing. Logical Methods in Computer Science, 1(3) (2005)

5. Huang, C.-L., Chao, K.-M., Lo, C.-C.: A moderated fuzzy matchmaking for web services. In:
CIT 2005: Proceedings fo the Fifth International Conference on Computer and Information
Technology, pp. 1116–1122. IEEE Computer Society, Los Alamitos (2005)

6. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service level
agreements for web services. Journal of Network and Systems Management, 11(1) (2003)

7. Lin, M., Xie, J., Guo, H., Wang, H.: Solving qos-driven web service dynamic composition
as fuzzy constraint satisfaction. In: EEE ’05: Proceedings of the 2005 IEEE International
Conference on e-Technology, e-Commerce and e-Service (EEE’05) on e-Technology, e-
Commerce and e-Service, pp. 9–14. IEEE Computer Society, Washington, DC, USA (2005)

8. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems. Journal of
Automata Languages and Combinatorics 7(3), 321–350 (2002)

9. Mohri, M.: Weighted finite-state transducer algorithms: An overview. In: Martı́n-Vide, C.,
Mitrana, V., Paun, G. (eds.) Formal Languages and Applications. LNCS, vol. 148, Springer,
Heidelberg (2004)

10. De Nicola, R., Ferrari, G., Montanari, U., Pugliese, R., Tuosto, E.: A formal basis for reason-
ing on programmable qos. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS,
vol. 2772, pp. 436–479. Springer, Heidelberg (2003)

11. Di Penta, M., Troiano, L.: Using fuzzy logic to relax constraints in GA-based service com-
position. In: GECCO ’05: Proceedings of the 2005 Genetic and Evolutionary Computation
Conference (2005)

12. Setnes, M., Babuska, R., Kaymak, U., van Nauta Lemke, H.R.: Similarity measures in fuzzy
rule base simplification. IEEE Transactions on Systems, Man, and Cybernetics, Part B 28(3),
376–386 (1998)

13. Web services agreement specification (ws-agreement). version 2005/09 (2005)
14. Zadeh, L.A.: Fuzzy Sets. Information and Control 3(8), 338–353 (1965)
15. Zimmermann, H.-J.: Fuzzy set theory and its applications, 3rd edn. Kluwer Academic Pub-

lishers, Norwell, MA, USA (1996)

Scheduling to Maximize Participation�

Ioannis Caragiannis, Christos Kaklamanis, Panagiotis Kanellopoulos,
and Evi Papaioannou

Research Academic Computer Technology Institute &
Department of Computer Engineering and Informatics

University of Patras, 26500 Rio, Greece
{caragian,kakl,kanellop,papaioan}@ceid.upatras.gr

Abstract. We study a problem of scheduling client requests to servers.
Each client has a particular latency requirement at each server and may
choose either to be assigned to some server in order to get serviced pro-
vided that her latency requirement is met or not to participate in the
assignment at all. From a global perspective, in order to optimize the
performance of such a system, one would aim to maximize the number
of clients that participate in the assignment. However, clients may be-
have selfishly in the sense that each of them simply aims to participate
in an assignment and get serviced by some server where her latency re-
quirement is met with no regard to the overall system performance. We
model this selfish behavior as a strategic game, show how to compute
equilibria efficiently, and assess the impact of selfishness on system per-
formance. We also show that the problem of optimizing performance is
computationally hard to solve, even in a coordinated way, and present
efficient approximation and online algorithms.

1 Introduction

We are motivated by the following scenario where clients aim to retrieve some
objects (e.g., video/audio files) from servers (each server can be thought of as
an electronic store). Each client requests one object which may exist in some
of the servers. In order to get serviced, the client has to connect to the server
and download the object. The service time (or latency) for a client connected
to a server is proportional to the number of simultaneous connections to that
server. Clients may value differently the service received from each server in the
sense that if the latency is high enough, the client may decide not to receive
the object from that server and close the connection. A client may connect to
a server and download the requested object if the current load of the server
is within her valuation criterion; of course, this action could regret some other
client connected to the server who will decide not to get serviced by that server
and will make another choice. A client may decide not to get serviced at all if
no server meets her valuation criterion.
� This work was partially supported by the European Union under IST FET Integrated

Project 015964 AEOLUS.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 218–232, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Scheduling to Maximize Participation 219

Naturally, such a scenario of selfish behavior can be modeled using the notion
of a strategic game from game theory. We define a particular class of games called
SMP games. In an SMP game, we have a set of clients C and a set of servers
M . Each client c ∈ C has a non-negative finite integer latency bound �k

c at each
server k ∈ M . Clients are non-cooperative in the sense that each client wishes
to be assigned to some server where her latency bound is satisfied; otherwise,
she prefers not to be assigned to any server. Given an assignment of some of the
clients to servers, an SMP game is defined by the following payoff function for
each client: a client assigned to a server k together with nk − 1 other clients has
payoff 1 if �k

c ≥ nk and payoff −1 otherwise. A client that is not assigned to any
server has zero payoff. We say that an assignment is valid if no client has payoff
−1. An assignment is a pure Nash equilibrium (or, simply, an equilibrium) for
an SMP game if no client has an incentive to unilaterally change her strategy.
Clearly, any equilibrium is a valid assignment. The benefit of an assignment for
an SMP game is the sum of the payoffs of all clients. Hence, the benefit of a
valid assignment equals the number of clients accommodated in servers. We use
the notion of the price of anarchy introduced in [20] (see also [16]) to assess the
quality of equilibria of SMP games. The price of anarchy of an SMP game is
defined as the ratio of the benefit of an optimal assignment for the SMP game
over the benefit of the worst equilibrium.

Selfish behavior could be bypassed by having a scheduler which knows the load
of each of the available servers, receives the requests of the clients for objects
together with their latency bound for each server, and coordinates the assignment
of clients to servers. Although such an approach would be inappropriate and
unrealistic in a networked environment, it is important to consider it in order to
compare it with the uncoordinated case and assess selfish behavior. Furthermore,
it gives rise to an interesting combinatorial optimization problem which we call
scheduling to maximize participation (SMP). Although scheduling optimization
problems (focusing mainly on minimizing some function of the server latencies
when all clients must be assigned to a server, e.g., see [17]) and corresponding
games (such as load balancing [6,8,12,13,15,16,18] and congestion games [1,7,21])
have been extensively studied in the literature, to the best of our knowledge, SMP
has not been studied before.

Our main motivating question concerns the efficient construction of equilibria
in SMP games. In Section 2, we first present a Nashification technique which,
starting from a valid assignment, converges to an equilibrium by making a poly-
nomial number of client moves. This is motivated by [12] where a similar in spirit
technique has been applied to a different scheduling game. We also show that
the price of anarchy of any SMP game is at most 2. Hence, the Nashification
technique provides an algorithm for approximating both the best and the worst
equilibrium within a factor of 2; these two problems are proved to be APX-hard.
An important property of our Nashification technique is that the benefit of the
equilibrium computed is not smaller than the benefit of the initial assignment.
So, in order to compute equilibria of large benefit, it suffices to compute valid
assignments of large benefit. We use the term SMP to refer to the optimization

220 I. Caragiannis et al.

problem that corresponds to the problem of computing a valid assignment of
maximum benefit.

In Section 3, we present a e
e−1 ≈ 1.58-approximation SMP algorithm based

on linear programming and randomized rounding. SMP can be thought of as a
special case of combinatorial auctions. In the problem of combinatorial auctions,
we have a set of players and a set of items. A feasible allocation assigns every
item to at most one player. For every player, her utility function wi is defined
over the set of items that she receives. The goal is to find a feasible allocation
that maximizes social welfare

∑
i wi(Si), where Si is the set of items allocated

to player i. In SMP, the servers correspond to players and the clients correspond
to items; the utility of a set of clients for a server is the maximum number of
clients from this set that can be assigned to the server in any valid assignment.
Recent work [9,10,11] presents e

e−1 -approximation algorithms (also based on lin-
ear programming and randomized rounding) for combinatorial auctions when
the utility functions have special properties (e.g., subadditivity). However, these
techniques are rather impractical since they make use of the ellipsoid method
in order to solve the corresponding linear programming relaxation which is of
exponential size. The LP corresponding to SMP has also an exponential number
of variables. In this paper, for SMP, we exploit the structure of the problem and
prove that SMP is equivalent to a constrained integral flow problem whose LP
relaxation is of polynomial size and, hence, it can be solved by practical linear
programming algorithms. Then, randomized rounding in our case is simpler com-
pared to [9,10,11]. On the negative side, we show that the problem is APX-hard
by showing an explicit inapproximability result of 368/367 using a reduction
from multidimensional matching (this result also implies the APX-hardness of
the problem of computing the best equilibrium for an SMP game).

In Section 4, we consider the online version of SMP where clients (together
with their latency bound vector) appear online and an irrevocable decision has
to be made when each client c appears. This means that client c can either be
rejected or put in a server so that neither the latency bounds of previously as-
signed clients nor the latency bound of c herself is violated. This can be thought
of as the problem of computing an efficient valid assignment for an SMP game
when information about the game is gradually revealed to the algorithm. Here,
we assess the quality of the solution in terms of the competitive ratio [4] (or
competitiveness) defined as the maximum over all SMP sequences of the ratio
of the optimal benefit over the expected benefit of the assignment computed by
the algorithm. In general, we assume that sequences are generated by oblivious
adversaries which may have knowledge of the probability distribution that may
be used by the algorithm but have no access to its random choices (if any). The
online version is inherently more difficult to approximate since, as we prove, no
deterministic algorithm is better than T -competitive while no randomized algo-
rithm can be better than HT -competitive against oblivious adversaries, where
T is the ratio of the maximum over the minimum non-zero latency bound over
all clients and servers and H is the harmonic function. On the positive side, we
show an asymptotically tight upper bound by presenting an O(ln T)-competitive

Scheduling to Maximize Participation 221

randomized algorithm that needs to know T in advance. In the case where no in-
formation about T is known in advance, a slightly inferior competitiveness bound
is obtained. Our online algorithms are based on the classify-and-randomly-select
paradigm (see [4]) which has been proved to be useful in other problems (e.g.,
call admission control in communication networks [2,3], online independent set
problems [5], etc.).

2 Equilibria and Price of Anarchy

We begin by presenting our Nashification technique. We describe algorithm
Nashify which starts from a valid assignment for an SMP game consisting of
a set C of n clients and a set M of m servers and works as follows. It proceeds in
rounds. Denote by ni

k the number of clients assigned to server k at the beginning
of round i. In each round, algorithm Nashify performs one step for each server
k ∈ M . In each step of a round i, at most two moves are performed. If there
exists a client c not assigned to any server which has latency bound lkc > ni

k, c
moves to server k. If there exists another client c′ in server k with lkc′ = ni

k (i.e.,
her latency bound is violated by the move of client c), then client c′ moves out of
server k (and is not assigned to any server). Algorithm Nashify terminates when
no move is performed during a whole round. We prove the following statement.

Theorem 1 (Nashification). For any SMP game with n clients and m servers,
algorithm Nashify computes an equilibrium of benefit not smaller than the benefit
of the initial assignment by performing at most 2nm moves.

Proof. The assignment produced by algorithm Nashify is valid since the condition
that the number of clients in any server is not greater than the latency bound of
each client assigned to this server remains true after each step of the algorithm.
It is also an equilibrium since, by the termination criterion, no unassigned client
has an incentive to move to any server. Furthermore, during a step, a client may
move out of a server only if another client moves to this server. Hence, the benefit
of the final assignment is not smaller than the benefit of the initial one. In order
to prove the upper bound on the total number of moves, observe that a client
c that moves out of a server k at some round i has lkc = ni

k. Since the number
of clients at server k never decreases in later rounds, client c will never move to
server k again. So, the total number of moves each of the n clients can make is
at most 2m (one move in and one move out for each of the m servers). ��

Implicitly, in the proof of Theorem 1 we also prove that SMP games always have
equilibria. The next result states that their benefit is fairly large.

Theorem 2. The price of anarchy of any SMP game is at most 2.

Proof. Consider an equilibrium for an SMP game on a set of servers M and an
optimal assignment. We denote by oj the number of clients that are in server
j in the optimal assignment. Let nj be the number of clients in server j in
the equilibrium and Rj be the set of clients that are in server j in the optimal

222 I. Caragiannis et al.

assignment but are not assigned to any server in the equilibrium. Consider a
client c ∈ Rj for some server j. Since c is in server j in the optimal assignment,
it holds that �j

c ≥ oj . Since c is not assigned to any server in the equilibrium,
it holds that �j

c ≤ nj , otherwise c would have an incentive to move to server j.
Thus, oj ≤ nj for any server j for which Rj �= ∅. It holds that
∑

j∈M

oj =
∑

j∈M :Rj=∅
oj +

∑

j∈M :Rj �=∅
oj ≤

∑

j∈M :Rj=∅
oj +

∑

j∈M :Rj �=∅
nj

≤
∑

j∈M

nj +
∑

j∈M :Rj �=∅
nj ≤ 2

∑

j∈M

nj ��

The above result is tight since there exists a simple matching lower bound con-
sisting of two servers a, b and two clients x, y with �a

x = �b
x = �a

y = 1 and �b
y = 0.

In the optimal solution, x is assigned to b and y is assigned to a, while the
assignment where x is assigned to a and y is not assigned to any server is an
equilibrium.

Algorithm Nashify is essentially a 2–approximation algorithm for computing
the best equilibrium for SMP games. Starting from any initial valid assignment
for an SMP game, it computes an equilibrium which (by Theorem 2) has benefit
at least half the optimal benefit. In Section 3, we present an algorithm that com-
putes a valid assignment of benefit at most 1.58 times smaller than the optimal
benefit. Combined with algorithm Nashify, this yields a 1.58–approximation al-
gorithm for computing the best equilibrium for SMP games. Clearly, algorithm
Nashify is also a 2–approximation algorithm for computing the worst equilibrium
for SMP games.

Concerning the hardness of approximation of the problem of computing the
best equilibrium for SMP games, this follows by a statement in the next section
where we show that the problem of computing the best valid assignment is
APX-hard. The next theorem shows that the problem of computing the worst
equilibrium is APX-hard as well.

Theorem 3. The problem of computing the worst equilibrium for SMP games
is APX-hard.

Proof. We will show that there are instances of the problem which are equiva-
lent to instances of Minimum Maximal Bipartite Matching which is known
to be APX-hard [22]. An instance of Minimum Maximal Bipartite Match-

ing consists of a bipartite graph G(U, V, E) and the objective is to compute a
maximal matching of minimum size. A matching is called maximal if we can-
not obtain another matching by adding one extra edge to it. Consider such an
instance consisting of a bipartite graph G(U, V, E) and construct an SMP game
consisting of a client for each node of U and a server for each node of V . The
latency bound of a client corresponding to a node u ∈ U is 1 to each server
corresponding to a node v ∈ V such that (u, v) ∈ E and 0 otherwise. We will
show that there exists a maximal matching in G of size K if and only if the
SMP game has an equilibrium of benefit K. Consider a maximal matching in

Scheduling to Maximize Participation 223

G consisting of K edges. Then, an equilibrium for the SMP game is defined as
follows. For each edge (u, v) in the matching, the client corresponding to node u
is assigned to the server corresponding to node v. The fact that M is a matching
guarantees that each client is assigned to at most one server and each server
receives at most one client, i.e., the assignment is valid. In order to prove that
it is also an equilibrium, observe that since the matching is maximal there is no
edge (u, v) ∈ E\M such that neither u nor v is an endpoint of an edge in M .
Hence, no client that is not assigned to any server has an incentive to move to
some server. Similarly, consider an equilibrium for the SMP game. Each client is
assigned to at most one server and, by the definition of the latency bounds, each
server contains at most one client. Hence, the set consisting of the edges (u, v)
where v ∈ V corresponds to a server containing the client corresponding to node
u ∈ U is a matching in G. Since the assignment is an equilibrium, no client c
among those not assigned to any server has an incentive to move to some server
k such that �k

c = 1 because server k already contains some other client. This
implies that all edges in E\M are adjacent to some edge in M which means that
M is maximal. ��

3 Computation of Efficient Valid Assignments

In this section, we present an algorithm that computes valid assignments for
SMP instances. The algorithm is based on linear programming and randomized
rounding and achieves an approximation guarantee of e

e−1 ≈ 1.58.
Given an instance of SMP consisting of a set C of n clients and a set M of m

servers, we say that a set of clients A ⊆ C is valid for server k ∈ M if �k
c ≥ |A|

for each client c ∈ A. Hence, a valid set for server k is a set of clients which can
be accommodated in server k in a solution of SMP. Now, SMP is to select one
valid set of clients for each server so that the valid sets selected are disjoint and
the total number of clients in valid sets selected is maximized. This is equivalent
to the following integer linear program:

(ILP) maximize
∑

k∈M

∑

A∈Ak

xk
A|A|

subject to
∑

k∈M

∑

A∈Ak:c∈A

xk
A ≤ 1, for any c ∈ C

∑

A∈Ak

xk
A ≤ 1, for any k ∈ M

xk
A ∈ {0, 1}, for any k ∈ M and A ∈ Ak.

where A denotes the set of all valid sets and Ak denotes the set of valid sets for
server k. The variable xk

A denotes whether the valid set A is selected at server k.
The constraints guarantee that each client is assigned to at most one server (i.e.,
it belongs to at most one valid set) and that at most one valid set is selected for
each server.

224 I. Caragiannis et al.

We will first show that (ILP) is equivalent to a constrained integral flow
problem in a particular polynomially sized network N presented in the following.
For each server k = 1, ..., m the network has three nodes sk (called the source
node associated with server k), s′k, and tk (called the sink node associated with
server k) and, for each i = 1, ..., n, it has two nodes uk

i and vk
i . For each server

k = 1, ..., m, node sk is connected through a directed link to node s′k, and for each
i = 1, ..., n, node s′k is connected through a directed link to node uk

i , while node
vk

i is connected through a directed link to node tk. For each server k = 1, ..., m,
each i = 1, ..., n, each j = 1, ..., i, and each client c ∈ C, the network has two
nodes wk

i (c, j) and zk
i (c, j). For each server k = 1, ..., m and each i = 1, ..., n, node

uk
i is connected through a directed link to all nodes wk

i (c, 1) for each client c such
that �k

c ≥ i. All nodes zk
i (c, i) are connected through a directed link to node vk

i .
For each server k = 1, ..., m, each i = 1, ..., n, and each j = 1, ..., i, node wk

i (c, j)
is connected to node zk

i (c, j). For each server k = 1, ..., m, we fix an ordering
πk of the clients in C (i.e., πk assigns a distinct integer in {1, 2, ..., n} to each
client) such that πk(c′) > πk(c) implies �k

c′ ≥ �k
c . For each server k = 1, ..., m,

each i = 2, ..., n, and each j = 1, ..., i − 1, node zk
i (c, j) is connected to nodes

wk
i (c′, j + 1) for all clients c′ with πk(c′) > πk(c). All edges have unit capacity.

The edge connecting nodes wk
i (c, j) and zk

i (c, j) (for some client c ∈ C, each
server k = 1, ..., m, each i = 1, ..., n, and each j = 1, ..., i) belongs to the edge-set
Ec of client c. Such edges are called client edges. An example of this construction
is presented in Figure 1.

We observe that there is an 1 − 1 correspondence between valid sets of
clients and source-sink paths in N . Indeed, consider a valid set of clients A =
{c1, c2, ..., ci} for server k and assume without loss of generality that πk(cj) <
πk(cj+1), for j = 1, ..., i − 1. Then, nodes sk and tk are connected through the
path

〈
sk, s′k, uk

i , wk
i (c1, 1), zk

i (c1, 1), wk
i (c2, 2), zk

i (c2, 2), ..., wk
i (ci, i), zk

i (ci, i), vk
i , tk

〉
.

Similarly, consider a path p from node sk to node tk in network N . By the
definition of the network, the path consists of the subpath

〈
sk, s′k, uk

i

〉
, a subpath

p′ =
〈
uk

i , wk
i (c1, 1), zk

i (c1, 1), wk
i (c2, 2), zk

i (c2, 2), ..., wk
i (ci, i), zk

i (ci, i), vk
i

〉

connecting node uk
i to node vk

i , and the subpath
〈
vk

i , tk
〉

for some i. The client
edges in subpath p′ belong to different clients since an edge connecting node
zk

i (cj , j) to wk
i (cj+1, j + 1) implies that πk(cj) < πk(cj+1). Consequently, it

holds that �k
cj

≤ �k
cj+1

for j = 1, ..., i − 1. Furthermore, an edge connecting node
uk

i to wk
i (c1, 1) implies that �k

c1
≥ i. So, it holds that �k

cj
≥ i for j = 1, ..., i, i.e.,

the set of clients {c1, c2, ..., ci} is valid.
Now, SMP can be thought of as the following constrained integral flow prob-

lem: the objective is to push flow f from the source nodes to the sink nodes so
that the flow fe carried by each edge e is integral, the capacity constraints
are maintained (i.e., fe ≤ 1 for each edge e), the total flow carried by all
edges in the edge-set Ec is at most 1 for each client c ∈ C, and the quantity

Scheduling to Maximize Participation 225

s
1 1

s’

u
1
1

2
u1

u
3
1

1(c ,1)
1 1

1(c ,1)w
1 1

z

1
1
(c ,1)

3
z

1
(c ,1)1

3
w

1
(c ,1)1

2
z(c ,1)

2
w

1
1

(c ,1)
2
1

1
z(c ,1)

2
1w

1 1
1w (c ,2)
2

1
1

(c ,2)
2

z

1z (c ,2)
3232

1(c ,2)w(c ,1)
2
1

3
z(c ,1)

2
1w

3

2
1(c ,1)

2
z

2
w 1(c ,1)

2 2
z

2
1

22
w 1(c ,2) (c ,2)

z
3
1

1
(c ,3)

3
1

1
w (c ,3)

3
1

1
z

3
1

1
w (c ,2)

1
(c ,1)

3
1z

3
1

1
(c ,1)w (c ,2)

3 3
1z (c ,3)

3
w 1

3
(c ,3)

3
1z
3

1
3

w
3
(c ,2)

3
(c ,1)1

3
z

3
(c ,1)w 1

3
(c ,2)

(c ,1)1
3 2

(c ,1)w 1
3 2

z
2

(c ,3)1
3

zw 1
3 2
(c ,3)w (c ,2)

3
z1

2
1
3 2

(c ,2)

3
v1

1
t

2
v1

v
1
1

(c ,1)w 2
3 1

(c ,1)2
3 1

z 2
3

zw (c ,3)2
3 1 1

w
3

z(c ,2) 2
1

2
3 1

(c ,2) (c ,3)

(c ,1)
3

2
3

z
33

w 2 (c ,1) w
3

2
3
(c ,3)

3 3
2z (c ,3)2

3
w

3
(c ,2)

3
2z
3
(c ,2)

3 2
w (c ,1)2

23
2z (c ,1) w

3
2

2
z

3
2

2
(c ,3)(c ,3)

3
2

2
w (c ,2)

3
2

2
z (c ,2)

(c ,1)
2
2

2
z

2
w 1(c ,1)

1 12
w 2

1
z

2
2(c ,2) (c ,2)

32
2(c ,2)w

3
2z (c ,2)
2

(c ,1)
2
2w

3 2
2

3
z (c ,1)

2
2w

2 22
2(c ,2) z(c ,1)

2
2w

2 2
2

2
z (c ,1) (c ,2)

(c ,1)w
1
2

1 1 1
z2(c ,1)

1
(c ,1)2

3
w 2

1
(c ,1)

3
z

(c ,1)1 2z2(c ,1)1 2w 2

1
v2

2
v2

3
v2

t
2

s
2

s’
2 2

u2

1
u2

3
u2

Fig. 1. The corresponding network constructed by the algorithm of Section 3 for
an instance of SMP with two servers 1 and 2 and three clients c1, c2, c3 with la-
tency bounds �1c1 = 0, �2c1 = 3, �1c2 = 2, �2c2 = 0, �1c3 = 1, and �2c3 = 2. The
ordering in each server is defined as π1(c1) = 1, π1(c2) = 3, π1(c3) = 2 and
π2(c1) = 3, π2(c2) = 1, π2(c3) = 2. An optimal solution to the corresponding con-
strained integral flow problem consists of the paths 〈s1, s

′
1, u

1
1, w

1
1(c2, 1), z1

1(c2, 1), v1
1 , t1〉

and 〈s2, s
′
2, u

2
2, w

2
2(c3, 1), z2

2(c3, 1), w2
2(c1, 2), z2

2(c1, 2), v2
2 , t2〉 corresponding to the as-

signment of client c2 to server 1 and clients c1 and c3 to server 2.

226 I. Caragiannis et al.

∑
k∈M

∑n
i=1 i · f(vk

i ,tk) is maximized. The constraints imply that the solution to
the constrained integral flow problem will consist of at most one path connect-
ing each source node to its corresponding sink node so that the client edges in
these paths belong to different clients. The quantity to be maximized equals the
number of client edges that carry some flow. Equivalently, we obtain at most
one valid set of clients per server so that the valid sets are disjoint and contain
a maximum number of clients for the original SMP instance.

Since, as we show later in this section, SMP is APX-hard, we cannot hope
to solve optimally the constrained integral flow problem. Instead, we relax the
integrality constraint and solve the corresponding constrained fractional flow
problem by transforming it to a linear program. Here, the variables of the linear
program represent the flow fe carried by each edge e and the constraints of the
linear program are either flow conservation constraints at the network nodes, or
capacity constraints at the network edges, or require that the total flow carried
by the edges of the edge-set of any client is at most 1. Note that, although (ILP)
has an exponential number of variables, the constrained fractional flow prob-
lem can be expressed as a linear program with polynomial number of variables
and constraints since the network constructed has at most O(n3m) nodes and
O(n4m) edges.

Once we have a solution to the constrained fractional flow problem, we can
obtain a solution to the linear programming relaxation of (ILP) obtained by
relaxing the integrality constraint to xk

A ≥ 0. This can be done by decomposing
the flow into flow paths using a folklore path stripping technique. For k = 1, ..., m,
we pick the edge e carrying the smallest non-zero amount of flow between nodes
sk and tk and compute a path p from sk to tk that contains e and consists of edges
carrying non-zero amounts of flow. We set the flow carried by the flow path p to
f̂p = fe and decrease the flow on each edge in p by fe. We repeat this procedure
and decompose all flow between nodes sk and tk into flow paths. Note that the
number of paths obtained in this way is not greater than the number of edges
in the network since, in each step, the flow variable of some edge is decreased
to zero. After performing path stripping, we obtain a fractional solution to the
linear programming relaxation of (ILP) by setting xk

A = f̂p for each valid set of
clients A corresponding to a flow path p carrying a non-zero amount of flow f̂p

between nodes sk and tk and implicitly setting all other variables to 0.
In order to obtain an integral feasible solution to (ILP), we will use random-

ized rounding. Due to the special structure of SMP, randomized rounding and
its analysis are simpler compared to [9,10,11]. We cast a die for each server k
having one face for each valid set A ∈ Ak with xk

A > 0 (with probability that this
face is the outcome of the die-casting equal to xk

A) and an additional face corre-
sponding to the fact that no client is accepted at server k (with the probability
that this face is the outcome of the die-casting equal to 1 −

∑
A∈Ak

xk
A). After

performing the die-castings for all servers, we perform a correction procedure
by assigning each client c to that server k (if any) where a set containing client
c is the outcome of the die-casting for server k; if more than one die-castings
have outcomes containing the same client, then client c is assigned to one of the

Scheduling to Maximize Participation 227

corresponding servers arbitrarily. The assignment produced is valid since the
first set of constraints of (ILP) is guaranteed by the correction procedure while
the second set of constraints is guaranteed by randomized rounding. Clearly, all
sets produced by the correction procedure are valid since removing a client from
a valid set still gives a valid set of clients.

Lemma 1. Given an instance of SMP, the algorithm computes a valid assign-
ment with expected benefit at least 1 − 1

e times the optimal benefit.

Proof. Denote by Yc the 0/1 random variable denoting whether client c is con-
tained in some of the valid sets selected after the application of randomized
rounding. The probability that a client is contained in some of the valid sets
for server k selected after the randomized rounding is

∑
A∈Ak:c∈A xk

A and, since
die-castings are performed independently, the probability that a client c ∈ C is
contained in some of the valid sets selected after the randomized rounding is

Pr[Yc = 1] = 1 −
∏

k∈M

(

1 −
∑

A∈Ak:c∈A

xk
A

)

≥ 1 − exp

(

−
∑

k∈M

∑

A∈Ak:c∈A

xk
A

)

where the inequality follows since
∏n

i=1 (1 − xi) ≤ exp (−
∑n

i=1 xi) when
xi ∈ [0, 1].

Denote by x̂k
A the solution obtained after the application of the correction

procedure. Since a client that is contained in some valid set selected by the
randomized rounding procedure also appears in exactly one valid set after the
correction procedure, the benefit of the final solution is

∑
k∈M

∑
A∈Ak

x̂k
A|A| =∑

c∈C Yc. Hence, we obtain that the expected benefit of the final solution is

E
[

∑

k∈M

∑

A∈Ak

x̂k
A|A|

]

= E
[
∑

c∈C

Yc

]

=
∑

c∈C

Pr[Yc = 1]

≥
∑

c∈C

(

1 − exp

(

−
∑

k∈M

∑

A∈Ak:c∈A

xk
A

))

≥
∑

c∈C

(
1 − e−1) ∑

k∈M

∑

A∈Ak:c∈A

xk
A

=
(
1 − e−1) ∑

c∈C

∑

k∈M

∑

A∈Ak:c∈A

xk
A

=
(
1 − e−1) ∑

k∈M

∑

A∈Ak

xk
A|A|

≥
(
1 − e−1) ∑

k∈M

∑

A∈Ak

x∗k
A |A|

where x∗ denotes the optimal integral SMP solution. The second inequality fol-
lows since 1 − exp(−x) ≥ (1 − e−1)x when x ∈ [0, 1] and due to the constraint
of the linear program. ��

228 I. Caragiannis et al.

The algorithm can be forced to obtain a ratio which is within any constant ε > 0
close to e

e−1 with high probability by applying the randomized rounding proce-
dure O(1/ε) times; this follows by a simple application of the Markov inequality
[19]. The next statement summarizes the discussion in this section.

Theorem 4. There exists an e
e−1 ≈ 1.58-approximation algorithm for SMP.

On the negative side, we show that SMP is APX-hard.

Theorem 5. For any ε > 0, it is NP-hard to approximate SMP within 368/367−ε.

Proof. We use a reduction from 6-dimensional matching which is known to
be APX-hard. An instance of 6-dimensional matching consists of a 6-uniform
6-partite hypergraph G and the objective is to compute a matching of maxi-
mum size in G (i.e., a set of hyperedges of maximum cardinality in which no
two of them share any node). In particular, [14] shows that there exist instances
of 6-dimensional matching consisting of a 6-uniform 6-partite hypergraph with
n nodes and n/2 edges for which, for any ε ∈ (0, 1/46), it is NP-hard to decide
whether the maximum matching has size at least (1− ε)n

6 or at most
(22

23 + ε
)

n
6 .

Given such an instance I6DM of 6-dimensional matching consisting of a hy-
pergraph G, we construct the instance ISMP of SMP that contains a server for
each hyperedge of G, a client for each node of G and 5n

2 additional clients. Each
of the additional clients has latency bound 5 at all servers while the client cor-
responding to node v of G has latency bound 6 at each server corresponding to
hyperedges of G containing v and latency bound 5 at all other servers.

We say that a solution to ISMP is maximal if it contains at least 5 clients
per server. Note that given a solution to ISMP , we can compute a maximal
solution of at least the same benefit by accommodating additional clients to the
servers that contain less than 5 clients. We observe that any solution for I6DM

of cardinality K can be converted to a maximal solution for ISMP of benefit
5n
2 +K by assigning to each server corresponding to a hyperedge in the solution

of I6DM the clients corresponding to nodes contained in the hyperedge and 5 of
the additional clients to any other server. Similarly, any maximal solution for
ISMP of benefit 5n

2 + K can be converted to a solution for I6DM of cardinality
K by simply considering the hyperedges corresponding to servers with 6 clients.
Hence, if for some ε ∈ (0, 1/46) we could decide whether the optimal benefit for
ISMP is above

(368
23 − ε

)
n
6 or below

(367
23 + ε

)
n
6 then we could decide whether the

maximum matching in I6DM has cardinality at least
(368

23 − ε
)

n
6 − 5n

2 = (1− ε)n
6

or at most
(367

23 + ε
)

n
6 − 5n

2 =
(22

23 + ε
)

n
6 . ��

4 Online Algorithms

In this section we consider the online version of SMP. Observe that deterministic
online algorithms for SMP are at least T -competitive, where T is the ratio of the
maximum over the minimum latency bound over all clients. To see this, consider
an instance of SMP where a single server is available, a deterministic algorithm

Scheduling to Maximize Participation 229

A and an offline adversary ADV working as follows. First, the adversary presents
one client of latency bound 1. If the algorithm A rejects the client, the adversary
stops the sequence; in this case A has no benefit. Otherwise (i.e., if A accepts the
client of latency bound 1), the adversary presents T clients each with latency
bound T . In this case, the benefit of the algorithm A is 1, while the optimal
benefit is T .

In what follows, using Yao’s Minimax Principle (see [4,19]), we prove a lower
bound on the competitive ratio of any randomized online SMP algorithm against
oblivious adversaries. In our proof, we use the following lemma.

Lemma 2 (Minimax Principle [4,19]). Given a probability distribution P
over sequences of clients, denote by EP [BA] and EP [BOPT] the expected benefit
of a deterministic algorithm A and the expected optimal benefit on sequences
of clients generated according to P. Define the competitiveness cPA of A under
P to be

cPA =
EP [BOPT]
EP [BA]

and let c be the minimum of cPA over all deterministic algorithms A. Then, c is
a lower bound on the competitiveness of any randomized algorithm AR against
an oblivious adversary.

Our lower bound is the following.

Theorem 6. Any (possibly randomized) online SMP algorithm has competitive
ratio at least HT against oblivious adversaries, where T is the ratio of the max-
imum over the minimum latency bound over all clients and servers.

Proof. We will prove that there exists an adversary ADV that presents sequences
of clients with latency bounds between 1 and T according to a probability dis-
tribution P in such way that no deterministic algorithm can be better than
HT –competitive under P . Then, the theorem will follow by Lemma 2.

The adversary ADV runs at most T phases at a single server. At phase i,
1 ≤ i ≤ T , it presents i clients of latency bound i. The adversary ADV starts
with phase 1. After running phase i with 1 ≤ i ≤ T − 1, ADV tosses a coin
with probability Pr[heads] = 1

i+1 . On heads, it stops the sequence; on tails, it
proceeds to phase i+1. After having run phase T , the adversary ADV stops the
sequence.

Consider an algorithm and assume that the first client it accepts belongs to
phase i. Since the latency bound of this client is i, the algorithm cannot accept
more than i−1 additional clients. So, the best the algorithm can do is to accept
all clients of phase i. Thus, in order to prove the lower bound, it suffices to
consider the deterministic algorithm At (for t = 1, ..., T) that waits for the first
t − 1 phases of the sequence accepting no clients and (if phase t is run) accepts
all t clients of phase t. Clearly, algorithm A1 has benefit 1. The probability that
the adversary runs phase t is 1

t (which is the probability that the adversary
ADV continues after each of the first t − 1 phases). So, At has benefit t with

230 I. Caragiannis et al.

probability 1
t and no benefit with probability 1− 1

t . Hence, the expected benefit
of At under P is 1.

The optimal benefit for a sequence produced by ADV is obtained by accepting
all clients of the last phase of the sequence. Denote by pi the probability that
phase i is the last phase the adversary runs. It is pT = 1

T while for i = 1, ..., T −
1 it is pi = 1

i(i+1) . We obtain that the expected optimal benefit under P is

EP [BOPT] =
∑T

i=1 i · pi =
∑T

i=1
1
i = HT . ��

In the following, we present the randomized online SMP algorithm Classify. As-
sume that the algorithm knows in advance the values �min and �max of the min-
imum and maximum non-zero latency bounds of any client of the sequence at
any server. Let T = �max/�min. The algorithm uses a parameter γ (to be defined
later) and equiprobably selects an integer i from 0 to �logγ T �−1. When a client
appears, the algorithm checks whether her latency bound at some server is in
the interval

[
�minγ

i, �minγ
i+1

)
and whether assigning the client to this server

is feasible in the sense that neither the latency bound of previously accepted
clients at this server nor the latency bound of the client herself at this server are
violated. If such a server exists, the algorithm assigns the client to this particular
server (ties are broken arbitrarily); otherwise, it rejects the client. We prove the
following theorem.

Theorem 7. Algorithm Classify has competitive ratio at most 1 + γ + 1+γ
ln γ ln T

against oblivious adversaries.

Proof. Denote by OPT the optimal set of clients of the sequence. We define a par-
tition of OPT in �logγ T � disjoint subsets OPTi of OPT for i = 0, ..., �logγ T �−1.
For each client c and integer i = 0, ..., �logγ T �−1, denote by F i

c the set of servers
at which the client c has latency bound in the interval [�minγ

i, �minγ
i+1). A client

c belongs to OPTi if it is accepted at a server in F i
c in the optimal solution.

Assume that algorithm Classify has selected integer i. Then, it considers the
original sequence as a new sequence σi where each client c has latency bound
�

′k
c = �k

c if k ∈ F i
c and �

′k
c = 0, otherwise. Denote by Oi the optimal set of clients

for σi. By the definition of the sequence σi and the set OPTi, it is |Oi| ≥ |OPTi|.
First, we show that the benefit Bi of the algorithm Classify when it selects

integer i is Bi ≥ 1
γ+1 |Oi| ≥ 1

γ+1 |OPTi|. Denote by A and R the sets of clients
accepted and rejected, respectively, by the algorithm Classify when it selects
integer i. For each server k, denote by Ak the set of clients accepted at server
k by algorithm Classify and by Ok

i the set of clients accepted at server k in the
optimal solution for σi. Since the latency bound of any client in Ak at server
k is at most γ times smaller than the latency bound of any client in R ∩ Ok

i

at server k and since no client from R ∩ Ok
i can fit in server k, it holds that

|Ak| ≥ 1
γ |R ∩ Ok

i |. So, for the benefit Bi we have

Bi = |A| ≥ 1
γ + 1

|A| +
γ

γ + 1

∑

k

|Ak| ≥ 1
γ + 1

|A ∩ Oi| +
1

γ + 1

∑

k

|R ∩ Ok
i |

=
1

γ + 1
(|A ∩ Oi| + |R ∩ Oi|) =

1
γ + 1

|Oi| ≥ 1
γ + 1

|OPTi|.

Scheduling to Maximize Participation 231

Now, by linearity of expectation, we obtain that the expected benefit of the
algorithm is

E[B] =
�logγ T	−1∑

i=0

(Pr[i is selected] · Bi) ≥ 1
(1 + γ) �logγ T �

�logγ T	−1∑

i=0

|OPTi|

≥ 1
(1 + γ)

(
1 + logγ T

) |OPT |.

Hence, the competitive ratio of the algorithm is 1 + γ + 1+γ
lnγ ln T . ��

The expression in Theorem 7 is minimized to approximately 4.6 + 3.59 lnT for
γ = 3.6. Note that we have assumed that algorithm Classify knows the maxi-
mum and minimum over the non-zero latency bounds of all clients at all servers
�max and �min in advance (and, consequently, it knows their ratio T). If it
only knows T , when the first client appears, it may assume �max = �T and
�min = max{1, �/T } where � is any non-zero latency bound of the first client
appeared at some server. Then, the analysis proceeds along very similar lines
to the proof of Theorem 7 and yields a competitive ratio only a constant factor
worse than that of Theorem 7.

If T is not known in advance, we can adapt algorithm Classify by applying a
recent technique from [5] to obtain an algorithm with slightly worse competi-
tiveness.

Theorem 8. There exists a randomized online SMP algorithm with competitive
ratio at most O

(∏log∗ T
i=1 log(i) T

)
against oblivious adversaries that does not

require knowledge of T in advance.

Note that function log(i) is defined as log(i) T = log (log(i−1) T) for i > 1 and
log(1) T = log T while log∗ T denotes the number of times we have to apply log
to T in order to get a result smaller than 2.

References

1. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In:
Proc. of the 37th Annual ACM Symposium on Theory of Computing (STOC ’05),
pp. 57–66 (2005)

2. Awerbuch, B., Azar, Y., Fiat, A., Leonardi, S., Rosen, A.: Online competitive
algorithms for call admission in optical networks. Algorithmica 31(1), 29–43 (2001)

3. Awerbuch, B., Bartal, Y., Fiat, A., Rosen, A.: Competitive nonpreemptive call con-
trol. In: Proc. of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’94), pp. 312–320 (1994)

4. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-
bridge University Press, Cambridge (1998)

5. Caragiannis, I., Fishkin, A., Kaklamanis, C., Papaioannou, E.: Randomized online
algorithms and lower bounds for computing large independent sets in disk graphs.
Discrete Applied Mathematics 155(2), 119–136 (2007)

232 I. Caragiannis et al.

6. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli,
L.: Tight bounds for selfish and greedy load balancing. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 311–322.
Springer, Heidelberg (2006)

7. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: Proc. of the 37th Annual ACM Symposium on Theory of Computing
(STOC ’05), pp. 67–73 (2005)

8. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In: Proc. of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’02), pp.
413–420 (2002)

9. Dobzinski, S., Schapira, M.: An improved approximation algorithm for combinato-
rial auctions with submodular bidders. In: Proc. of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’06), pp. 1064–1073 (2006)

10. Feige, U.: On maximizing welfare when utility functions are subadditive. In: Proc.
of the 38th Annual ACM Symposium on Theory of Computing (STOC ’06), pp.
41–50 (2006)

11. Feige, U., Vondrak, J.: The allocation problem with submodular utility functions.
In: Proc. of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’06) (to appear)

12. Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and
the coordination ratio for a selfish routing game. In: Baeten, J.C.M., Lenstra, J.K.,
Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526.
Springer, Heidelberg (2003)

13. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The
structure and complexity of Nash equilibria for a selfish routing game. In: Wid-
mayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

14. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-
dimensional matching. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.)
RANDOM 2003 and APPROX 2003. (Extended version as ECCC Report TR03-
020) LNCS, vol. 2764, pp. 83–97. Springer, Heidelberg (2003)

15. Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate equilibria and ball
fusion. Theory of Computing Systems 36(6), 683–693 (2003)

16. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 99. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

17. Leung, J.Y-T. (ed.): Handbook of scheduling: algorithms, models, and performance
analysis. CRC Press, Boca Raton (2004)

18. Mavronicolas, M., Spirakis, P.: The price of selfish routing. In: Proc. of the 33rd
Annual ACM Symposium on Theory of Computing (STOC ’01), pp. 510–519 (2001)

19. Motwani, R., Raghavan, B.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

20. Papadimitriou, C.: Algorithms, Games and the Internet. In: Proc. of the 33rd
Annual ACM Symposium on Theory of Computing (STOC ’01), pp. 749–753 (2001)

21. Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2),
236–259 (2002)

22. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM Journal on
Applied Mathematics 38(3), 364–372 (1980)

On the Limits of Cache-Oblivious Matrix
Transposition�

Francesco Silvestri

Dipartimento di Ingegneria dell’Informazione, Università di Padova
Via Gradenigo 6/B, I-35131 Padova, Italy
francesco.silvestri@dei.unipd.it

Abstract. Intuitively, a cache-oblivious algorithm implements an adap-
tive strategy which runs efficiently on any memory hierarchy without re-
quiring previous knowledge of the parameters of the hierarchy. For this
reason, cache-obliviousness is an attractive feature of an algorithm meant
for a global computing environment, where software may be run on a va-
riety of different platforms for load management purposes. In this paper
we present a negative result on cache-obliviousness, namely, we show
that an optimal cache-oblivious algorithm for the fundamental primitive
of matrix transposition cannot exist without the tall cache assumption,
which forces the (unknown) parameters of the memory hierarchy to sat-
isfy a certain technical relation. Our contribution specializes the result
of Brodal and Fagerberg for general permutations to matrix transpo-
sition, and provides further evidence that the tall cache assumption is
often necessary to attain optimality in the context of cache-oblivious
algorithms.

1 Introduction

A global computer infrastructure may be employed to provide dependable and
cost-effective access to a number of platforms of varying computational capabil-
ities, irrespective of their physical location or access point. This is, for example,
the case of grid environments which enable sharing, selection, and aggregation
of a variety of geographically distributed resources. In such a scenario, many
different platforms can be available to run applications. For load management
reasons, the actual platform(s) onto which an application is ultimately run, may
be not known at the time when the application is designed. Hence, it is useful
to design applications which adapt automatically to the actual platform they
run on.

A typical modern platform features a hierarchical cascade of memories whose
capacities and access times increase as they grow farther from the CPU. In order
to amortize the larger cost incurred when referencing data in distant levels of the
hierarchy, blocks of contiguous data are replicated across the faster levels, either

� This work was supported in part by the EU/IST Project “AEOLUS”, and by MIUR
of Italy under project “ALGONEXT”.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 233–243, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

234 F. Silvestri

automatically by the hardware (e.g., in the case of RAM-cache interaction) or by
software (e.g., in the case of disk-RAM interaction). The rationale behind such
a hierarchical organization is that the memory access costs of a computation
can be reduced when the same data are frequently reused within a short time
interval, and data stored at consecutive addresses are involved in consecutive
operations, two properties known as temporal and spatial locality of reference,
respectively.

Many models have been proposed to explicitly account for the hierarchical
nature of the memory system. A two-level memory organization, intended to
represent a disk-RAM hierarchy, is featured by the External Memory (EM) model
of Aggarwal and Vitter [1], which has been extensively used in the literature to
develop efficient algorithms that deal with large data sets, whose performance is
mainly affected by the number of disk accesses (see [2] for an extensive survey on
external memory algorithms). In this model, operations can only be performed
on data residing in RAM, and data are transfered between the RAM and the disk
in blocks of fixed size, under the explicit control of the program which decides
where the blocks loaded from disk are placed in RAM and chooses the eviction
policy.

Another popular model featuring a two-level memory organization, intended
to represent a RAM-cache hierarchy, is the Ideal Cache (IC) model, introduced in
[3]. As in the EM model, in the IC operations can only be performed on data re-
siding in the fast level, the cache, and data are moved in fixed-size blocks (cache
lines) between the RAM and the cache. However, unlike the EM model, block
transfers are performed automatically by the hardware whenever an operand is
referenced which is not in cache, and an optimal eviction policy is assumed. Algo-
rithm design on the IC aims at minimizing the number of RAM-cache transfers,
called misses, and the number of operations performed. The model has received
considerable attention in the literature as the base for the design of so called
cache-oblivious algorithms, which run efficiently without knowledge of the cache
parameters, namely the cache size and the cache line size. Most importantly,
cache-oblivious algorithms attaining an optimal number of misses on the IC can
be shown, under certain circumstances, to attain optimal number of misses at
all levels of any multi-level cache hierarchy [3].

For these reasons, efficient cache-oblivious algorithms are attractive in a global
computing environment since they run efficiently on platforms featuring differ-
ent memory hierarchies without requiring previous knowledge of the hierarchy
parameters. A number of optimal cache-oblivious algorithms [3,4] and data struc-
tures [5] have been proposed in literature for important problems, e.g. sorting,
matrix transposition and searching.

In several cases, optimality of cache-oblivious algorithms is attained under the
so-called tall cache assumption which requires that the cache size in words be
at least the square of the cache line size in words. In [3] the authors raised the
natural question of whether there is a gap in asymptotic complexity between
cache-oblivious algorithms and algorithms which know the parameters of the
memory hierarchy. Only few works in the literature have investigated this issue.

On the Limits of Cache-Oblivious Matrix Transposition 235

Recently, Brodal and Fagerberg [6] have proved that an optimal cache-oblivious
algorithm for sorting cannot exist without the tall cache assumption, and that
an optimal cache-oblivious algorithm for general permutations does not exist
regardless of the tall cache assumption. Impossibility results of a similar flavor
have been proved by Bilardi and Peserico [7] in the context of DAG computations
on a model of memory hierarchy which does not account for the spatial locality
of reference, namely the HMM [8].

In this work, we specialize the results of [6] by showing that an optimal cache-
oblivious algorithm for matrix transposition cannot exist without the tall cache
assumption. To this purpose we follow a similar approach as the one employed
in [6]. Specifically, let A be a cache-oblivious algorithm for matrix transposition
and consider the two sequences of misses generated by the executions of A on two
different ICs, where one model satisfies the tall cache assumption while the other
does not. We simulate these two executions on the EM model and obtain a new
EM algorithm for the matrix transposition problem. By adapting the argument
used in [1] to bound from below the number of disk accesses of transposition in
the EM model, we conclude that A cannot be optimal in both ICs.

The rest of the paper is organized as follows. In Section 2 we give a formal
definition of the IC and EM models, and of the matrix transposition problem.
Next, Section 3 describes the simulation technique while Section 4 applies this
technique to prove the limits of cache-oblivious transposition. Section 5 concludes
with some final remarks.

2 Preliminaries

2.1 The Models

Two models of memory hierarchy are used in this work. The first one is the Ideal
Cache IC(M, B), introduced by Frigo et al. in [3], which consists of an arbitrarily
large main memory and a (data) cache of M words. The memory is split into
blocks of B adjacent words called B-blocks, or simply blocks if B is clear from
the context. The cache is fully associative and organized into M/B lines of B
words: each line is empty or contains a B-block of the memory. The processor
can only reference words that reside in cache: if a referenced word belongs to
a block in a cache line, a cache hit occurs; otherwise there is a cache miss and
the block has to be fetched into a line, replacing the line’s previous content. The
model adopts an optimal off-line replacement policy, i.e. it replaces the block
whose next access is furthest in the future. We denote as work complexity the
running time of an algorithm in the conventional RAM model, and as cache
(miss) complexity the number of misses.

The concept of cache-oblivious algorithm is also introduced in [3], as an al-
gorithm whose specifications are independent of cache parameters (M and B);
it is easy to see that a cache-oblivious algorithm is formulated as a traditional
RAM algorithm. We restrict our attention to optimal cache-oblivious algorithms,
which reach the best cache complexity when executed on each IC model. Most of
the cache-oblivious algorithms proposed in literature are optimal only under the

236 F. Silvestri

tall cache assumption, i.e. M ≥ B2. On the contrary, we denote a cache where
M < B2 as short cache.

The second model is the External Memory EM(M, B) of Aggarwal and Vitter
[1]; it features two levels of memory: a (fast) RAM memory of M words and
a (slow) disk of unbounded size. As the memory in the IC, the disk storage is
partitioned into blocks of B adjacent words called B-blocks, or simply blocks if
B is clear from the context. The processor can only reference words that reside
in memory. The movements between the memory and the disk are performed
as follows: an input operation moves a B-block of the disk into B words of the
memory, and an output operation moves B words of the memory into a B-
block of the disk. The input/output operations (I/Os) are directly controlled by
the algorithm through fetch and eviction operations, which is the main difference
between IC and EM. We denote as I/O complexity of an algorithm the number of
I/Os performed by the algorithm. We require an algorithm to store its output in
the slow memory at the end of its execution; this will increase the I/O complexity
of O (M/B) I/Os, which is negligible when the input size is sufficiently large. It
is easy to see that there is a relation between an I/O and a miss: a miss requires
the fetching of a B-block from memory and the eviction of a B-block from cache
if there is no empty line; hence a miss is equivalent to at most two I/Os in the
EM, and for these reasons we will intentionally mix the two terms.

2.2 The Matrix Transposition Problem

Let G be a p × q matrix and H = GT its transpose; specifically, H is a q × p
matrix where H(j, i) = G(i, j), 0 ≤ i < p and 0 ≤ j < q. Without loss of
generality, we suppose the size of each entry be one machine word; therefore the
overall sizes of G and H are N = pq words each. Since we are only interested to
the limits of cache-oblivious matrix transposition, we may safely assume that p
and q are much greater than M .

Lemma 1. Any algorithm for matrix transposition requires at least1

Ω

(
N log M

B log(1 + M/B)

)

I/Os (resp., misses) on EM(M, B) (resp., IC(M, B)) if min{p, q} ≥ M .

Proof. (Sketch) The proof is presented in [1] and the same argument carries
through on the IC(M, B) model.

In [1] an optimal algorithm for matrix transposition is described which is para-
metric in B and M . Moreover, in [3] a cache-oblivious algorithm is presented, but
its optimality is guaranteed only under the tall cache assumption. The interest-
ing question arises of whether there exists an optimal cache-oblivious algorithm
without the tall cache assumption, i.e. for each value of M and B. In the following
sections, we will prove that such an algorithm does not exist.
1 We use the following notation: log for base 2 logarithms and ln for natural logarithms.

On the Limits of Cache-Oblivious Matrix Transposition 237

3 The Simulation Technique

In this section we describe a technique for obtaining an EM algorithm from
two executions of a cache-oblivious algorithm on two different IC models. The
technique is presented in a general form and is a formalization of the ad-hoc one
employed in [6] for proving the impossibility result for general permutations.

More precisely, consider two models C1=IC(M, B1) and C2 = IC(M, B2) where
B1 < B2. Let A be a cache-oblivious algorithm for an arbitrary problem and let
t1 and t2 be its cache complexities on the two models, respectively. We define
an algorithm A′ for EM(2M, B2) which emulates in parallel the executions of A
on both C1 and C2 and solves the same problem of A.

Let us regard the RAM in EM(2M, B2) as partitioned into two contiguous
portions of size M each, which we refer to as M1 and M2, respectively. In turn,
portion M1 is subdivided into blocks of B1 words (which we call B1-rows), and
portion M2 is subdivided into blocks of B2 words (which we call B2-rows), so
that we can establish a one-to-one mapping between the cache lines of C1 and
the B1-rows of M1, and a one-to-one mapping between the cache lines of C2 and
the B2-rows of M2. Algorithm A′ is organized so that its I/Os occur exclusively
between disk and M2 and coincide (except for some slight reordering) with the
movements of cache lines between RAM and cache performed by A in C2; on
the other hand, all operations prescribed by A are executed by A′ on data in
M1

2. The movements of cache lines between RAM and cache performed by A
in C1 will be emulated by movements of B1-rows between M1 and M2. (For
convenience, we assume that B2 is a multiple of B1.)

Let us now see in detail how the execution of A′ on EM(2M, B2) develops.
Initially all words in both M1 and M2 are empty, that is, filled with NIL values,
and the EM disk contains the same data of C2 memory (or C1 indistinguishably)
with the same layout (a one-to-one relation between B2-blocks of C2 and B2-
blocks of the disk can be simply realized). Let αi be the ith operation of A,
i = 1 . . . h. The execution of A on Ci, 1 ≤ i ≤ 2, can be seen as a sequence Li of
operations interleaved with I/Os. Since operations in L1 and L2 are the same,
we build a new sequence L=Γ 2

1 Γ 1
1 α1 . . . Γ 2

j Γ 1
j αj . . . Γ 2

hΓ 1
hαhΓ 2

h+1Γ
1
h+1. Each Γ i

j ,
1 ≤ j ≤ h + 1 and 1 ≤ i ≤ 2, is defined as follows:

– Γ i
1 is the sequence of I/Os that precedes α1 in Li.

– Γ i
j , 1 < j ≤ h, is the sequence of I/Os which are enclosed between αj−1 and

αj in Li.
– Γ i

h+1 is the sequence of I/Os performed after αh in Li.

Note that a Γ i
j can be empty. The length of L, denoted as |L|, is the sum of the

number h of operations and the size of all Γ i
j with 1 ≤ j ≤ h and 1 ≤ i ≤ 2. Let

A′ be divided into |L| phases. The behaviour of the jth phase is determined by
the jth element lj of L:

2 Note that the operations of A do not include I/Os since block movements are au-
tomatically controlled by the machine. Moreover, A’s operations are the same no
matter whether execution is on C1 or C2.

238 F. Silvestri

– lj is an operation: A′ executes the same operation on M1.
– lj is an input of a B2-block (i.e. an input of L2): A′ fetches the same B2-

block from the disk and moves it into the B2-row of M2 associated with the
line used in C2.

– lj is an input of a B1-block (i.e. an input of L1): let x be such B1-block and
x′ be the B2-block containing x. Since there is no prefetch in the IC model,
the following operation of A requires an element in x; thus x′ must be in
C2 cache too. For this reason, we can assume that x′ was, or has just been,
fetched into a B2-row of M2. A′ copies the block x in the right B1-row of
M1 and replaces the copy of x in M2 with B1 NIL values.

– lj is an output of a B2-block (i.e. an output of L2): A′ moves the respective
B2-row of M2 to the disk, replacing it with B2 NIL values.

– lj is an output of a B1-block (i.e. an output of L1): let x be such B1-block
and x′ be the B2-block containing x. If x′ is still in M2, then A′ copies
x from M1 into x′ and replaces x’s row with B1 NIL values. The second
possibility (i.e. x′ is not in M2) can be avoided since no operations are
executed between the evictions of x′ and x. If some operations had been
executed, both blocks x and x′ must be kept in cache (and so in M1 and
M2). Therefore, we can suppose x was removed just prior to the eviction of
x′; exactly, x is moved into x′, x’s row is filled with B1 NIL values, and x′ is
evicted from M2 (see previous point).

It is easy to see that every operation of A can be executed by A′ on M1, since
there is a one to one relation between cache lines and matrix rows (excluding
the B1-blocks whose evictions from cache were anticipated, see fifth point). M2
is a “semimirror” of C2, in the sense that it contains the same B2-blocks of C2
while A is being executed, except for those sub B1-blocks which are also in M1.
By rules 2 and 4, the I/O complexity of A′ is Θ (t2).

Let K = t1B1/t2; it is easy to see that K ≤ B2. Indeed, if K was greater than
B2, an algorithm for C1 which requires t2B2/B1 < t1 IOs would be built from
the execution of A on C2; but this is a contradiction since t1 is optimal.

A′ can be changed so that there are at most K words exchanged between
M1 and a B2-block in M2 before this block is removed from cache. It is suffi-
cient to insert a dummy eviction/insertion of the B2-block: in this way the I/O
complexity is increased by a constant factor: T = Θ (t2) + 2t1B1/K = Θ (t2).

We define the working set W (t) after t I/Os as the content of M1 plus the
words in the B2-blocks of M2 that will be used by A′ (moved to M1) before
the large blocks are evicted. When A′ fetches a B2-block from the disk, we can
suppose that at most K elements, which will be moved between M1 and the
block, are immediately included in the working set.

4 Matrix Transposition

In this section we prove that an optimal cache-oblivious algorithm for the matrix
transposition problem does not exist without the tall cache assumption.

On the Limits of Cache-Oblivious Matrix Transposition 239

Let A be a cache-oblivious algorithm for matrix transposition and assume,
for the sake of contradiction, that it attains optimal cache complexity with-
out requiring the tall cache assumption. In particular, consider two models
C1=IC(M, B1) and C2 = IC(M, B2) where B1 < B2 and let t1 and t2 be the
cache complexities of A on the two models, respectively. We will show that B1
and B2 can be suitably chosen so that the tall cache assumption holds for C1
but not for C2, and that t1 and t2 cannot be both optimal, thus reaching a
contradiction. To achieve this goal, we apply the simulation technique described
in the previous section to A, and we obtain an algorithm A′ for EM(2M, B2)
which solves the matrix transposition problem. We then apply an adaptation of
the lower bound argument by [1] to A′, and we prove the impossibility of the
simultaneous optimality of A on the two IC models.

More precisely, let the ith target group ti, 1 ≤ i ≤ N/B2, be the records that
will ultimately be in the ith B2-block of the output matrix H (remember that H
must be in the disk at the end of A′). We define the following convex function:

f(x) =
{

x log x if x > 0;
0 if x = 0.

Let y be a B2-block of the disk or a B2-row of M2; the togetherness rating of y
after t I/Os is defined as:

Cy(t) =
N/B2∑

i=1

f(xi,y),

where xi,y denotes the number of elements in y belonging to the ith target group.
These elements are not included in the working set W (t) and are not NIL symbol.
We also define the togetherness rating for the working set W (t):

CW (t) =
N/B2∑

i=1

f(mi),

where mi is the number of elements in the working set W (t) which belong to
the ith target group and are not NIL symbol. The potential function of A′ after
t I/Os is defined as:

POT (t) = CW (t) +
∑

y∈disk

Cy(t) +
∑

y∈M2

Cy(t).

At the beginning of the algorithm, POT (0) = 0 since N > min{p, q} > B2; at
the end of A′, POT (T) = N log B2, where T is the I/O complexity of A′.

Note that the above potential function is slightly different from the one defined
in [1]: there, the potential function is given by the sum of disk and memory’s to-
getherness ratings. We cannot use such definition because the real transposition
is realized only in the working set (precisely in M1). Actually, if a block of the
disk is moved to M2 and then brought back to the disk without its elements have
been exchanged with M1’s elements, the potential function does not change.

240 F. Silvestri

We now analyze how an I/O made by A′ improves the potential function.
Suppose the tth I/O is an input and the B2-block x is fetched into a B2-row of
M2. Before the tth input, the intersection between the block x and the working
set W (t−1) is empty; after the input, at most K elements of x are inserted into
W (t − 1). We use the following notation:

– mi: number of elements in the working set W (t − 1) belonging to the ith
target group at time t − 1;

– xi: number of elements in block x belonging to the ith target group at time
t − 1;

– wi: number of elements in the (at most) K words, inserted in W (t − 1),
belonging to the ith target group.

The mi, xi and wi values are limited by the constraints below:

N/B2∑

i=1

mi ≤ 2M − K

N/B2∑

i=1

xi ≤ B2

N/B2∑

i=1

wi ≤ K.

The potential increases of ∇POT (t) compared to POT (t − 1):

∇POT (t) = POT (t) − POT (t − 1) = CW (t) + Cx(t) − CW (t − 1) − Cx(t − 1)

=
N/B2∑

i=1

f(mi + wi) + f(xi − wi) − f(mi) − f(xi).

Since f(xi−wi)+f(wi) = (xi−wi) log(xi−wi)+wi log wi ≤ (xi−wi+wi) log xi =
f(xi),

∇POT (t) ≤
N/B2∑

i=1

f(mi + wi) − f(mi) − f(wi)

≤
N/B2∑

i=1

(mi + wi) log(mi + wi) − mi log mi − wi log wi

≤
N/B2∑

i=1

mi log
mi + wi

mi
+ wi log

mi + wi

wi
.

By a convexity argument, the increase in potential function is maximized when
mi = (2M − K)/(N/B2) and wi = K/(N/B2), hence:

∇POT (t) ≤ (2M − K) log
2M − K + K

2M − K
+ K log

2M − K + K

K

≤ K log
(

1 +
K

2M − K

) 2M−K
K

+ K log
(

2M

K

)

≤ K

ln 2
+ K log

2M

K
∈ O

(
K log

M

K

)
.

On the Limits of Cache-Oblivious Matrix Transposition 241

Suppose now that the tth I/O is an output and the B2-block x is evicted from
a B2-row of M2. Before the tth output, the intersection between the block x
and the working set W (t − 1) contains at most K elements; after the output,
at most K elements are removed from W (t − 1). As above, we use the following
notation:

– mi: number of elements in the working set W (t − 1) belonging to the ith
target group at time t − 1;

– xi: number of elements in block x belonging to the ith target group at time
t − 1;

– wi: number of elements in the (at most) K words, removed from W (t − 1),
belonging to the ith target group.

The mi, xi and wi values are limited by the constraints below:

N/B2∑

i=1

mi ≤ 2M

N/B2∑

i=1

xi ≤ B2 − K

N/B2∑

i=1

wi ≤ K.

The potential increases of ∇POT (t) compared to POT (t − 1):

∇POT (t) = POT (t) − POT (t − 1) = CW (t) + Cx(t) − CW (t − 1) − Cx(t − 1)

=
N/B2∑

i=1

f(mi − wi) + f(xi + wi) − f(mi) − f(xi)

≤
N/B2∑

i=1

(xi + wi) log(xi + wi) − xi log xi − wi log wi,

since f(mi−wi)+f(wi) ≤ f(mi). The increase in potential function is maximized
when xi = (B2 − K)/(N/B2) and wi = K/(N/B2), hence:

∇POT (t) ≤ K

ln 2
+ K log

B2

K
∈ O

(
K log

B2

K

)
= O

(
K log

M

K

)
.

Let C1 and C2 be a tall and a short cache respectively, and let d, f, g be suitable
positive constants. Since the I/Os of A′ are T = Θ (t2) and t1 = Θ (N/B1),

T ∇POT ≥ POT (T) =⇒ dt2K log
M

K
≥ N log B2

dt2
t1B1

t2
log

Mt2
t1B1

≥ N log B2 =⇒ fN log
gMt2

N
≥ N log B2

gMt2
N

≥ B
1/f
2 =⇒ t2 ∈ Ω

(

N
B

1/f
2

M

)

.

If B2 = αM for a suitable constant 0 < α < 1, the above inequality becomes

t2 ∈ Ω

(
N

M1−1/f

)
∈ ω

(
N

log M

M

)
.

242 F. Silvestri

The miss complexity in C2 of an optimal algorithm for matrix transposition is
Θ

(
N log M

M

)
, thus t2 is not optimal. However, by the initial hypothesis on A, we

can deduce that t2 is optimal and so we have a contradiction. We can conclude
that a cache-oblivious algorithm for matrix transposition does not exist without
the tall cache assumption.

5 Conclusions

In this work we have presented a simulation technique to yield an EM algo-
rithm from two executions of the same cache-oblivious algorithm on different
instantiations of the IC model. Our technique can be envisaged as a formal-
ization and a generalization of the ad-hoc approach employed in [6] to prove
negative results on cache-oblivious permuting. Successively, we have applied
the simulation technique to matrix transposition. By further using an adap-
tation of the potential function employed in [1] to bound the I/O complexity of
matrix transposition on EM, we were able to conclude that an optimal cache-
oblivious algorithm for matrix transposition cannot exist without the tall cache
assumption.

Apart from the result presented in this paper, to the best of the author’s
knowledge the only other impossibility results in the literature on optimal cache-
obliviousness concern sorting and general permuting [6]. An interesting avenue
for further research would be to address other fundamental problems, such as
matrix multiplication, the Discrete Fourier Transform, or the realization of ra-
tional permutations, to expose any limitation intrinsic in their cache-oblivious
realization. Moreover, a more profound understanding is still required of why
the tall cache assumption is so crucial to obtain optimal cache-oblivious
algorithms.

Acknowledgments

This paper benefited from useful discussions with Andrea Pietracaprina, Geppino
Pucci and Gianfranco Bilardi.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related prob-
lems. Cacm 31(9), 1116–1127 (1988)

2. Vitter, J.S.: External memory algorithms and data structures. ACM Comput.
Surv. 33(2), 209–271 (2001)

3. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: Proc. of 40th IEEE Symp. on Foundations of Computer Science, pp.
285–298 (1999)

4. Demaine, E.D.: Cache-oblivious algorithms and data structures. In: Lecture Notes
from the EEF Summer School on Massive Data Sets. Lecture Notes in Computer
Science, BRICS, University of Aarhus, Denmark (to appear, 2002)

On the Limits of Cache-Oblivious Matrix Transposition 243

5. Arge, L., Brodal, G.S., Fagerberg, R.: Cache-oblivious data structures. In: Mehta,
D., Sahni, S. (eds.) Handbook of Data Structures and Applications, vol. 27, CRC
Press, Boca Raton (2005)

6. Brodal, G.S., Fagerberg, R.: On the limits of cache-obliviousness. In: Proc. of the
35th ACM Symp. on Theory of Computing, pp. 307–315 (2003)

7. Bilardi, G., Peserico, E.: A characterization of temporal locality and its portability
across memory hierarchies. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.)
ICALP 2001. LNCS, vol. 2076, pp. 128–139. Springer, Heidelberg (2001)

8. Aggarwal, A., Alpern, B., Chandra, A.K., Snir, M.: A model for hierarchical memory.
In: Proc. of the 19th ACM Symp. on Theory of Computing, pp. 305–314 (1987)

The KOA Remote Voting System:
A Summary of Work to Date

Joseph R. Kiniry1, Alan E. Morkan1, Dermot Cochran1, Fintan Fairmichael1,
Patrice Chalin2, Martijn Oostdijk3, and Engelbert Hubbers3

1 School of Computer Science and Informatics
University College Dublin
Belfield, Dublin 4, Ireland

2 Department of Computer Science and Software Engineering
Concordia University

Montreal, Quebec, H3G 1M8, Canada
3 Nijmegen Institute of Information and Computing Sciences

Radboud University Nijmegen
Postbus 9010, 6500GL Nijmegen, The Netherlands

Abstract. Remote internet voting incorporates many of the core challenges of
trusted global computing. In this paper, we present the Kiezen op Afstand1 (KOA)
system. KOA is a Free Software, remote voting system developed for the Dutch
government in 2003/2004. In addition to being Open Source, it is also partially
formally specified and verified. This paper summarises the work carried out to
date on the KOA system. It charts the evolution of the system, from its initial con-
ception by the Dutch Government, through to its current status. It also describes
a roadmap of milestones towards completing its next release: a Free Software,
general-purpose, formally specified and verified internet voting system, that in-
corporates Proof Carrying Code technology for software update and allows trust-
worthy voting from a mobile phone. We propose that the KOA system should be
used as an experimental platform for research in electronic and internet voting;
we are not saying that we have solved any of the major problems inherent in
voting with computers.

1 Introduction

The Netherlands is known for its forward-thinking and progressive government, laws,
and policies. Unfortunately, a government’s progressiveness, particularly with respect
to the adoption of new technology, is sometimes contrary to the good of its citizens.

Accordingly, in order to help avoid such a situation in the adoption of remote voting
technology in the Netherlands, the Security of Systems (SoS) Group at Radboud Uni-
versity Nijmegen became directly involved in the evaluation and development of the
KOA system in 2004.

1.1 Voting Machines in the Netherlands

The introduction of such a system was not as radical a development as it might be
considered elsewhere. Electronic voting machines (EVMs) were introduced without

1 “Kiezen op Afstand” is literally translated from Dutch as “Remote Voting.”

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 244–262, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The KOA Remote Voting System: A Summary of Work to Date 245

controversy in the Netherlands around 1998. They have been widely used in local and
national elections ever since. The primary supplier of these machines is Nedap2, the
same supplier as in Ireland.

Part of the reason that EVMs were so readily accepted is historical. The Nether-
lands has used digital voting machines3 since the 1980s. Therefore, Dutch citizens are
comfortable with the idea of using technology for voting. The security and reliability
issues of the new generation of machines was not a serious problem at the time of their
introduction, much like their adoption by other governments in the late 1990s.

Unfortunately, many aspects of these systems have not been made public, contrary to
the requests of concerned parties in the Netherlands. The internals of such systems are
secret and are only exposed to evaluators. Each system must be examined, according
to an unknown set of criteria, before being accepted by the Dutch parliament for use in
elections. Evaluation reports compiled by the national reviewer, TNO4, are also secret.

However, as attention has been focused the world over on EVMs, the Dutch parlia-
ment has begun to re-evaluate its approach. Changes to the current systems are likely to
be mandated soon, particularly with respect to voter verifiable paper trails.

In keeping with this reassessment, the Dutch parliament decided to conduct experi-
ments with the next natural step in the use of technology for voting: remote voting using
both the internet and telephone. The main inspiration is that, nowadays, many personal
transactions (e.g., banking), can be carried out from arbitrary locations, so why not
voting?

Indeed, it is believed by some that a remote voting system will increase electoral
participation by making the process more convenient. Currently, Dutch citizens must
find time during the extended business hours (08:00 to 20:00) of a single day of the
working week. Furthermore, each individual must vote in a particular location near
their home, which may be far from their workplace.

However, given what we know about the unreliability and vulnerability of software
and networks, do the risks inherent in the introduction of such a system outweigh such
benefits?

These risks, together with the methods adopted in eliminating and minimising them
in the KOA system form the basis for the rest of this paper. It is organised as follows.
Section 2 presents some background information on the genesis of the KOA project.
Past academic work on the system up to the end of 2005 is presented in Section 3. A
security assessment of the KOA system is put forward in Section 4. Current work is
discussed in Section 5. Related work is compared and contrasted in Section 6. Future
work is considered in Section 7 and Section 8 concludes.

2 Kiezen op Afstand (KOA)

The genesis of KOA stemmed from a promise made by the Dutch government to par-
liament that they would investigate possible developments to the Dutch voting system.

2 Nedap — http://www.nedap.com/
3 The previous-generation systems with little-to-no software.
4 TNO — Netherlands Organisation for Applied Scientific Research —
http://www.tpd.tno.nl/tno/index.xml

http://www.nedap.com/
http://www.tpd.tno.nl/tno/index.xml

246 J.R. Kiniry et al.

This promise was fulfilled in the KOA experiment by allowing expatriates to vote in the
elections to the European Parliament via the internet and by telephone.

However, Dutch national election law is quite explicit about what is permitted with
respect to how votes may be cast. Therefore, in order to conduct an experiment in voting
over the internet, some amendments to this general law were formulated. This formed
the legal foundation for the KOA project.

Apart from the general rules governing internet voting, it also included some addi-
tional rules detailing a citizen’s right to vote from a different polling booth other than
the one originally appointed. However, in this paper we will refer to the KOA project
as if it consisted purely as an internet voting experiment.

2.1 Internet Voting in the Netherlands

The elections to the European Parliament of June 2004 allowed remote voting via the
internet and telephone. It was limited to expatriates who were required to explicitly
register beforehand. It was thought that such a small-scale use (thousands of voters)
would provide a useful real-world test for the technology.

The main reason why it was thought that an internet-based solution was suitable
is decidedly non-technical. Essentially, by significantly constraining the remote voting
problem, particularly with respect to the registration and voting process itself, it was
believed that a “sufficiently secure” and reliable system could be constructed. In partic-
ular, the system needed to be at least as secure and reliable as the existing remote voting
system which was based upon postal ballots.

The Remote Voting Process. When a citizen registers to use KOA, the voter chooses
their own personal access code (a PIN). Some time later, a customised information
packet is mailed to the voter. This packet contains general information about the vote
itself (date, time, etc.), as well as voter-customised details that are known to only that
voter. These details include information for voter authentication, including an identifi-
cation code and the previously chosen access code.

Also included is a list of all candidates. Each candidate is assigned a large set of
unique random numbers5, and exactly one of those numbers is given to each voter. The
set of codes per voter is determined randomly but is not unique.

To vote, a registered voter logs in to a web site with their voter code and access
code. They then step through a series of simple web pages, typing in their candidate
codes as appropriate for their choices. The system shows the voter the actual names and
parties of the candidates in question to confirm the accuracy of the vote. When a voter
is finished, a transaction code is provided. This code can later be used to check in a
published list that the voter’s choices were included correctly in the final tally.

Communication with the voting web site is secured with SSL. All votes are stored in
a doubly-encrypted fashion; each vote is encrypted by a symmetric key per voter6 and
the public key of the voting authority.

5 1,000 codes were generated for each candidate for the elections to the European Parliament in
2004.

6 This symmetric key is generated by hashing the assigned identification code.

The KOA Remote Voting System: A Summary of Work to Date 247

2.2 Use and GPL Release

The trial during the elections to the European Parliament in June, 2004 was restricted to
roughly 16,000 eligible Dutch expatriates. Expatriates could vote either via the internet
or by telephone. The telephone votes were fed into the KOA tally system. 5,351 people
used one or other system.

Subsequently, in July 2004, the Dutch Government released the majority of the
source code for the KOA system under the GNU General Public License (GPL) making
it the first Open Source internet voting system in the world.

3 Academic Past Work

3.1 External Security Evaluation

In late 2003 Prof. Bart Jacobs of the Security of Systems (SoS) group at Radboud
University Nijmegen participated in an external review of the requirements and design
of this application. One of the recommendations made by the panel was that the system
should not be designed, implemented and tested all by the same company.

The system itself was designed and implemented by LogicaCMG7. Although even-
tually the government decided to make the system open source, during implementation
it was not. In order to improve its quality, the Dutch company Software Improvement
Group8 performed a code review of the system. However, they were only allowed to
do so after signing Non-Disclosure Agreements (NDAs). In fact, it was unexpected that
the government ultimately opted for an Open Source solution.

The SoS group did not take part in the design or implementation of the system.
However, the group took an active part in the final stages of the project. The group
performed two tasks: it wrote an independent tally application which will be explained
in detail in Section 3.2 and it performed a penetration test on the vote servers.

The penetration test was set up as a black box test. In particular the SoS group had
virtually no knowledge regarding the actual hardware, software, networks or personnel
involved with the server system. Indeed, the information it did possess could have been
considered public information since it could easily be obtained by standard available
analysis tools.

The main goal was to break into the system and try to compromise its integrity. The
second goal was to test whether the system was vulnerable to denial of service attacks.

Two evaluations were conducted. The first was unsolicited and took place during a
private beta test of the system. The second was requested by the government, primarily
because of the results of the first evaluation.

During the first unsolicited evaluation the subnet running the service was gently
probed and mapped using nmap, a more detailed evaluation of specific machines was
then conducted, specifically with regards to machines running inappropriate services,
weaker operating systems, etc., and finally, on the last afternoon of the test, a denial-of-
service attack on the machines was conducted.

7 http://www.logicacmg.com/
8 http://www.sig.nl/

http://www.logicacmg.com/
http://www.sig.nl/

248 J.R. Kiniry et al.

The main discovery of the first evaluation was that the system was not “tightened
down” insofar as test and management machines which were running insecure versions
of particular operating systems (e.g., Microsoft Windows) were on the deployed subnet,
no hardware or software firewall was in place on the system, machines has likely exter-
nal exploits available, and nearly all systems had inappropriate services running (e.g.,
unused mail servers, databases, file sharing, etc.). Also, the SoS group was able to sig-
nificantly harm their service quality with our (admittedly very small) denial-of-service
attack.

After the authorities realized the SoS group was responsible for this attack they asked
us for a report of our findings. Given the feedback and analysis, they then asked the
SoS group to perform an “official” external evaluation once they incorporated all of our
suggestions and tightened-down the network.

The second evaluation found that their systems were adequately hosted, monitored
and configured, their software was up-to-date, and no unnecessary services were run-
ning. Furthermore, adequate measures were in place for detecting basic probes by ad-
versaries. Thus, in the end, the SoS group did not find any problem with the system
that would have caused the Dutch Ministry to reject it for an experimental run, and the
external evaluation significantly improved the security and reliability of the system.

3.2 Vote Counting System

As seen in the previous section, one of the results of the recommendation to split the
responsibilities of the parties involved, was that the government decided to accept bids
for the creation of a separate vote counting subsystem, to be implemented in isolation
by a third party. This separate tally application would allow the vote counting to be
independently verified. The SoS group put forward a proposal to write this application,
and were successful in this bid. The key idea behind their tender was that the vote
counting program should be formally verified using the JML [2] and ESC/Java29 [10]
tools.

The vote counting system formed a small but important part of the whole KOA sys-
tem. This provided the SoS group with a suitable opportunity to test the use of some
of the formal techniques and practices that they had been developing. Given the severe
time constraints placed upon them due to the impending election, the application was
built by three members of the group over a barely-sufficient period of four weeks. Java
was chosen as the programming language in which to implement the system so that
JML could be used as the formal specification language. Due to the time constraints,
verification was only attempted with the core modules.

Counting votes within KOA proceeds offline using a separate tally application. The
input to this application consists of two XML files (one containing the list of candidates
and their codes, and one containing the encrypted votes), and a public/private keypair
used to decrypt the votes.

9 ESC/Java2 is a programming tool that attempts to partially verify JML annotated Java pro-
grams by static analysis of the program code and its formal annotations. It translates the spec-
ifications into verification conditions that are modularly discharged by an automatic theorem
prover.

The KOA Remote Voting System: A Summary of Work to Date 249

As the informal requirements of vote-counting are obvious (for every candidate in
the candidate list count the number of votes for that candidate), the functional specifica-
tion [12] (in Dutch) mostly prescribes details of file formats and encryption algorithms
to be used.

Nevertheless, the functional specification does impose some requirements that
greatly influence the structure of the Java application and its JML specification. First,
the different tasks that need to be performed in order to count the votes (reading in
the two files, reading in the keys, decrypting the contents of the votes file, counting the
votes, generating reports) are made explicit in this document and, more importantly, the
order in which they have to be performed is specified. Second, the document provides
a rough sketch of the user interface and its contents. Finally, the document gives some
bounds on the data, such as the lengths of fields or the maximum number of candidates
in each list, which are incorporated in the JML specifications of the data structures.

In accordance with the above high-level specification, the resulting tally application
consists of some 30 classes, which can be grouped into three categories: the data struc-
tures, the user interface, and the tasks.

The data structure classes form an excellent opportunity to write JML specifications.
Typical concepts from the domain of voting, such as candidate, district and municipal-
ity can be modeled with detailed JML specifications. An example invariant in Candi-
date.java is:

/*@ invariant my_gender == MALE ||
@ my_gender == FEMALE ||
@ my_gender == UNKNOWN;

*/

The different tasks associated with counting votes were mapped to individual classes.
After successful completion of a task, the application state is changed. A task can only
be started if the application is in an appropriate state. The life-cycle model of the appli-
cation that therefore emerges is maintained in the main class of the application inside
a simple integral field. This life-cycle model can be specified in JML using invari-
ants and constraints, essentially stating that on successful completion of the applica-
tion, the application went from “initial state” to “votes counted state”. The state of
attributes associated with the individual tasks can be linked to the application life-cycle
state using invariants. For instance, such an invariant could read: ‘after the application
reaches the “keys imported state”, the private key field is no longer null’. This is stated
in MenuPanel.java as follows:

/*@ invariant
@ (state >= PRIVATE_KEY_IMPORTED_STATE
@ ==> privateKey != null);

*/

A graphical user interface is usually not very amenable to formal specification.
Nonetheless, some light-weight specifications were written. One of the requirements
defined in the original informal specification was that users should not be allowed to
start certain tasks before certain other tasks are successfully completed. For instance,

250 J.R. Kiniry et al.

a user should (by means of the user interface) not be able to start decrypting votes
before the votes are read in from file. In the graphical user interface, this demand is
met by only enabling certain buttons when the application reaches certain states in
the life-cycle model. The fact that the graphical user interface complies with the life-
cycle model can be neatly specified in the GUI classes by referring to the application
state.

3.3 Process

As already stated, ESC/Java2 was only used to verify the core of the tally application.
This means that it was used to verify reading in the XML-files with the candidates and
the votes, decryption of the votes and counting the votes. The final generation of the
reports is not checked with JML.

Using JML on reading XML files is quite straightforward. Essentially, for every ob-
ject that is read, some methods are called that specify that the total number of objects
will be increased by exactly one. Naturally, in order to verify code that uses function-
ality provided in external libraries, some of the corresponding APIs must also be spec-
ified. The JML community has provided specifications for most of the APIs that come
with Sun’s standard edition of Java. However, APIs dealing with cryptography, XML
parsing, and PDF generation, as used by the tally application had not previously been
specified. These APIs were specified in a light-weight manner: the specifications mostly
deal with purity and non-null references in the API methods which makes verification
of client code using ESC/Java2 much easier.

Naturally, the counting process is likewise formally specified in JML, which ensures
that each valid vote is counted for exactly one candidate. This also implies that specifi-
cations are easy to check to make sure that the total number of votes a party list receives
is equal to the sum of votes for each candidate10 on this party list.

The JML run-time assertion checker was also used in the development process. First,
for testing the data structure classes, the checker was used to generate unit tests. Second,
we ran the full application, including user interface, using the checker.

3.4 Analysis of KOA

In the Dependable Software Research Group at Concordia University, the KOA source
code was used as a subject of a study in the frequency of occurrences of non-null ref-
erence type declarations [3]. This work consisted in adding nullity annotations (or con-
straints) and then verifying their correctness by making use of ESC/Java2. The results
were similar to those of Fähndrich and Leino [13], that is to say, it was found that even a
simple specification exercise of adding nullity annotations can help uncover non-trivial
bugs both in the code and in the specifications.

For example, in the sos.koa.CounterAdapter class in the Tally Application
it was found that the field named errors is declared nullable and yet the method
getErrors, which uses this field, assumes that the field is non-null (i.e., a Null-
PointerException will not be thrown).
10 Including the ‘blanco’ or ‘blank ballot’ candidate.

The KOA Remote Voting System: A Summary of Work to Date 251

3.5 Reverse Engineering Missing Components

The version of KOA released under the GPL was not complete. A number of pieces of
functionality, constituting roughly 10% of the deployed KOA system, were proprietary
and owned by LogicaCMG. Moreover, certain other changes were made for publication
purposes (e.g., the length of public/private key pairs in the source code).

In addition, the released KOA system contains no high-level design documentation
and very little information on how to build the system. This means that it is only possible
to inspect the (partial) source, not to compile and run it. Therefore, it was necessary to
perform a full analysis of the released system [14].

One of the most beneficial aspects of this analysis was that errors were found in the
KOA system. One such error was found in the Java Server Pages (JSPs) whereby a
button that should have guided the user back to the interface homepage had, in fact, the
same action as that of the “submit” button that processed and saved a list of candidates to
the database. This was due to a trivial mistake: placing the HTML tags for the “Return
Home” button within the FORM tag block. This error was discovered during a trivial
“click through” of the user interface followed by an examination of the code.

Such a basic mistake in the design of the user interface of a critical system is unac-
ceptable. The fact that such a mistake could be made, remain unnoticed in the testing
and evaluation phase of the software, and actually be used in the elections to the Eu-
ropean Parliament, would suggest that there is in all likelihood further errors in this
software.

Once the analysis was complete, the missing functionality was reverse engineered.
59 additional classes, together with some properties files, were added to the system.
These classes carry out the base functionality of the servlets, error reporting, logging
functionality, event handling, etc.

3.6 Full Open Source Foundations

One of the major goals in the redevelopment of the KOA system was that it would be
entirely composed of, and dependent upon, Open Source software. The original system
was developed in, deployed upon and tightly coupled to the IBM WebSphere IDE. Dur-
ing the reimplementation, the KOA system was ported to an Open Source alternative.
This foundation consisted of a MySQL database server backend paired with a JBoss ap-
plication server front-end, the latter of which incorporated the Tomcat servlet container.
The other major restriction in terms of making the system fully GPL-compliant was its
use of proprietary security and encryption utilities developed by IAIK and Sun. These
were seamlessly replaced using the BouncyCastle Open Source alternatives.

3.7 Formal Specification and Extended Static Checking Review

As has already been stated, the Vote Counting Application of the KOA system was
specified with formal methods, extensively tested and partially verified to the extent that
was possible within the given time-frame. Subsequently, efforts were made to complete
the specification and verification [8].

252 J.R. Kiniry et al.

Table 1. KOA initial release system summary

File I/O Graphical I/O Core
Classes 8 13 6
Methods 154 200 83
NCSS 837 1599 395
Specs 446 172 529
Specs:NCSS 1:2 1:10 5:4

When the KOA vote counting system was being designed, precedence was given
to verifying the core units. These were designed by contract and as result have good
specification coverage. The remaining parts, however, were only lightly annotated with
JML notation.

Table 1 summarizes the size (in number of classes and methods), complexity (non-
comment size of source (NCSS)), and specification coverage of the three subsystems,
as measured with the JavaNCSS tool version 20.40 during the week of 24 May, 2004.
This is the version of the program that was released and used in the elections to the
European Parliament in June 2004.

At the time of its initial release, verification coverage of the core subsystem was
good, but not 100%. Approximately 10% of the core methods (8 methods) were unver-
ified due to issues with ESC/Java’s Simplify theorem prover (i.e., either the prover did
not terminate or terminated abnormally). Another 31% of the core methods (26 meth-
ods) had postconditions that could not be verified, typically due to completeness issues
in ESC/Java, and 12% of the methods (10 methods) failed to verify due to invariant
issues, most of which are due to suspected inconsistencies in the specifications of the
core Java class libraries or JML model classes. The remaining 47% (39 methods) of the
core verified completely. Since 100% verification coverage was not possible in the time-
frame of the original project, to ensure the KOA application was of the highest quality
level possible, a large number unit tests were generated11 for all core classes with the
jmlunit [4] tool, which is part of the JML suite. A total of nearly 8,000 unit tests were
generated, focusing on key values of the various datatypes and their dependent base
types. These tests cover 100% of the core code and are 100% successful.

After this analysis was completed, the specifications were gradually augmented. As
an example, consider the AuditLog class. This class records information about the
vote counting as the application proceeds. This information is then used at the end of
the vote counting to help fill in the details for two of the reports that are generated.
This class keeps track of the program’s progress in a similar manner to that which
was used for the overall program state. There were multiple invariants used to ensure
the program and auditing proceeded in the correct fashion. Several corrections were
required for this class, the bulk of which were modifications to the behaviours of the
methods that allowed the audit log’s state to change. The original specifications allowed

11 The tool generates unit tests that deal with interesting values. Interesting values are generally
boundary values for a given data type. For example, -1, 0, 1, n and n+1 for an array of integers.
Users are also free to handwrite their own test cases, in the case where the jmlunit tool does
not test all important values.

The KOA Remote Voting System: A Summary of Work to Date 253

the possibility that the variables could be changed to a state where the invariants would
not hold. The changes made to this class’ specifications disallowed any actions that
would violate the object invariants.

3.8 Documentation Writing and Translation

The vast majority of the voting system, including high-level documentation, web in-
terfaces, Java comments and variable names are in Dutch. Furthermore, much of the
voting system is sparsely commented and unspecified. This clearly poses an obstacle to
the understanding and adoption of such a system by a wider, international audience. It
was therefore decided at an early stage that a complete translation of the system into
an international language such as English, together with the production of additional
documentation, was necessary in order to facilitate a larger number of people to carry
out the necessary specification, development and testing. Consequently, the major high-
level specification document and all of the JSPs have been translated from Dutch into
English.

3.9 Other Voting Systems

Naturally, there are relatively considerable variations in electoral systems between
countries. This is the case between the Netherlands and Ireland. Not only are these
differences linguistic, but more significantly there are different vote counting proce-
dures in the Netherlands and in Ireland. The Dutch Voting system is list based while
Ireland uses Proportional Representation with a Single Transferable Vote (PR-STV).

The Irish Voting System. The Dáil, Ireland’s lower house of parliament, is com-
posed of 166 members representing 41 constituencies. Each constituency elects mul-
tiple members to parliament. The average constituency elects four representatives with
every constituency electing at least three representatives. The system used is PR-STV.
This combination is considered to increase the representativeness of the Dáil.

Irish voters, by ranking the candidates, give instructions as to who should receive
their support should the first choice candidate be eliminated or elected. Surplus votes
are the number of votes in excess of the threshold of election a candidate receives.
Surplus votes are transferred proportionally to the remaining candidates according to
the indicated second preference of the voters. If the election is undecided after counting
the first preferences and transferring surplus votes, then the lowest polling candidate
is eliminated. The ballots cast initially in support of this candidate are now counted
according to their indicated second preference. If any candidate has more than a quota
of votes then he or she is elected and his or her surplus votes are transferred to the next
preference candidate. If there are more candidates than seats and all surpluses have been
transfered, then the candidate with least votes is excluded and his or her votes transfered
to the next preference on each ballot paper. This process is repeated until the number of
candidates remaining equals the number of seats remaining.

Formal Specification. Votáil is the Irish word for voting. The Votáil specification
is a JML specification for the Irish vote counting system [5]. This formal specifica-
tion is derived from the complete functional specification for the Dáil election count
algorithm [6,7].

254 J.R. Kiniry et al.

Thirty nine formal assertions were identified in the Commentary on Count Rules
published by the Irish Department of Environment and Local Government. Each as-
sertion expressed in JML was identified by a Javadoc comment. In addition, a state
machine was specified so as to link all of the assertions together. Java classes were
specified for the vote counting algorithm, to represent the ballot papers and candidates.
A concrete example of how the methodology was applied will clarify this work.

Section 7, item 3.2 on page 25 of [6] states:

As a first step, a transfer factor is calculated, viz. the number of votes in the
surplus is divided by the total number of transferable votes in the last set of
votes. This transfer factor is multiplied in turn by the total number of votes in
each sub-set of next available preferences for continuing candidates (note that
the transfer factor is not applied to the sub-set of non-transferable votes in the
set of votes).

The requirement is translated into formal natural language as follows:

The number of votes in the surplus is divided by the total number of trans-
ferable votes in the last set of votes. This transfer factor is multiplied in turn
by the total number of votes in each sub-set of next available preferences for
continuing candidates.

Finally, this formal natural language is formally specified in the architecture as a
JML postcondition for the method that is specifically for this requirement (the get-
ActualTransfers method). The Javadoc and JML specification for this method
follows.

/**
* Determine actual number of votes to transfer to

* this candidate, excluding rounding up of

* fractional transfers

*
* @see requirement 25 from section 7 item 3.2

* on page 25

*
* @design The votes in a surplus are transfered in

* proportion to the number of transfers available

* throughout the candidates ballot stack. The

* calculations are made using integer values

* because there is no concept of fractional votes

* or fractional transfer of votes, in the existing

* manual counting system. If not all transferable

* votes are accounted for the highest remainders

* for each continuing candidate need to be examined.

*
* @param fromCandidate Candidate from which to

* count the transfers

* @param toCandidate Continuing candidate eligible

* to receive votes

The KOA Remote Voting System: A Summary of Work to Date 255

* @return Number of votes to be transfered,

* excluding fractional transfers

*/

//@ ensures
//@ \result ==
//@ (getSurplus(fromCandidate) *
//@ getPotentialTransfers(fromCandidate,
//@ toCandidate.getCandidateID()) /
//@ getTotalTransferableVotes(fromCandidate);

The Votáil specification was typechecked and checked for consistency using ESC/-
Java212.

4 Security Assessment

Issues of security and correctness are paramount in any voting system. This is especially
the case for a remote internet voting system due to the inherent vulnerabilities of the
architecture. Any such system must be as secure as the system it is designed to replace.
Otherwise, trust in the electoral and democratic systems of a country can be severely
damaged.

The KOA system was designed to replace absentee postal ballots. It has always been
accepted that postal voting is not as secure as voting in a polling booth. KOA follows all
of the standard security mechanisms and also introduces some novel approaches. These
security mechanisms are focused on attack prevention and, where this is impossible, on
detection of intrusion. This section discusses these security mechanisms.

4.1 Data Integrity

The most significant method used in the KOA system to ensure data integrity is the
use of candidate codes. 1,000 codes are generated for each candidate and only one of
these is randomly assigned to each voter. Therefore, even if a malicious agent (e.g., a
worm, virus or Trojan horse) can access a ballot, all the attacker can see are the encoded
candidate and party IDs, which in the optimal case are unique to the voter in question.
Consequently, it will be virtually impossible to substitute the ballot by choosing the
appropriate code for a different candidate.

In addition, the votes are doubly-encrypted. The only way to decrypt these votes on
the server side is to close the polls. Closing the polls is an irreversible action. Conse-
quently, altering the votes at the server-side is precluded.

In the case where the voter tries to cast multiple votes at once (e.g., via both telephone
and internet) there will always be one first vote. This vote will be stored. The second
attempt will fail because the voter has already cast his/her vote.

12 The consistency of JML specifications is checked using an experimental extension to
ESC/Java2 that manipulates the JML abstract syntax tree in order to determine whether certain
combinations of assertions are inherently unsatisfiable.

256 J.R. Kiniry et al.

Finally, the KOA system has the capability to take snapshots of the candidate and
voter lists called “electronic fingerprints.” These fingerprints can be generated at any
time to ensure that these lists have not been maliciously altered. One possible extension
to the system is to automate the generation of these fingerprints at regular intervals to
ensure a regular verification of data integrity.

4.2 Verifiability

Voters using the KOA system are able to verify that their vote is recorded correctly and
is included in the final tally of the election using the transaction code they receive upon
casting their ballot. This is possible due to the publication of a list of the transaction
codes of votes for each candidate after the election. Such a check can identify any
compromised PCs and in the worst case invalidate the election.

4.3 Insider Threats

The power to change the state of the system and to decrypt the votes is restricted to a
small number of polling station officials. These officials hold the private key for the sys-
tem and each has a PIN code to use this private key. One of these officials is designated
as the current “president” or “chairman.”

In order to change the state of the system (e.g., open/close the polls, decrypt the
votes, etc.), the chairman and one other official must enter their PIN codes. If the role
of chairman is alternated at set time intervals among random officials (or some simi-
lar mechanism), then all officials need to be in collusion in order to tamper with the
system. Even then, access to the decrypted ballots is precluded, as is mentioned in
Section 4.1.

In addition, an insider attack would require massive, undetectable client and/or net-
work subversion (e.g., large numbers of client computers and/or network web proxies
being compromised by a virus written by attacker’s henchmen). Given the scale and
complexity of such an attack, it is nearly inconceivable that it is possible. Such an at-
tack would be (many) orders of magnitude more difficult to pull off than any attack on
existing electronic or manual voting hardware/mechanisms due to its scale: millions of
PCs versus thousands of voting machines, and millions of individuals (many of which
are experts like network service providers, IT workers voting from home, etc.) partici-
pating and monitoring the election versus thousands of volunteers running the election.
This is analogous to the Open Source “thousands of eyeballs” argument, but applied to
voting.

4.4 Other Security Features

A part from the use of SSL, there are a couple of further noteworthy security features.
Firstly, random data is added to the votes when they are encrypted. This ensures

that votes within the same voter district and for the same candidate have a different
encryption result for each vote, making it impossible to interpret encrypted votes.

Secondly, the votes are decrypted in a random order in order to making tracing voters
by the order in which they voted impossible.

The KOA Remote Voting System: A Summary of Work to Date 257

4.5 Problems

Despite the best efforts to make KOA as secure as possible, certain security flaws still
remain. These need to be addressed before further use of the system.

Firstly, if the electronic fingerprints of the system are not identical at a particular
point in time, the chairman can overrule and allow the election to continue. This should
not be permitted.

Like other forms of remote voting (e.g., postal voting), KOA does not provide pro-
tection for voter anonymity in the case where another person is in the vicinity of the
voter during the voting process or if another person gains access to a voter’s transaction
code. However, due to the use of candidate codes, excluding these two scenarios, it is
virtually impossible to connect a voter to his/her vote.

Denial of Service Attacks (DoS). As has already been stated in Section 3.1, the KOA
system is vulnerable to DoS Attacks. This is practically impossible to prevent and is a
feature of all remote internet voting systems.

One feature of the KOA system that lessens some of the problems caused by DoS
attacks is that the system can be interrupted. When this state change happens, an elec-
tronic fingerprint of all the system data is taken and this can be checked against a sub-
sequent fingerprint on system resumption. Clearly, this does not solve the problem of
potential temporary disenfranchisement, but it does ensure data integrity in the face of
a such an attack.

4.6 Summary

As has been described, all of the standard security mechanisms have been used together
with some innovative techniques to ensure data integrity and verifiability. However,
obviously the issue of security is one of the open questions of remote internet voting
and there are a number of problems yet to be overcome. We believe these problems can
be addressed by research and experimentation on a verified open source framework,
like the one which KOA aims to provide.

5 Academic Current Work

5.1 Generalisation of System for Non-dutch Voting Systems

The Java code for Votáil was written in JML using a kind of “verification-centric” De-
sign by Contract methodology. This means that not only are we writing each method
implementation according to its JML specification, but we are checking each method’s
correctness with ESC/Java2 and automatically generating thousands of unit tests using
JML-JUnit [4].

The KOA system has a state machine similar to that used in the Votáil specifica-
tion. This allows KOA to make calls to the appropriate part of the Votáil code. The
ElectionAlgorithm class in Votáil will be invoked from within the KOA system
using the following four method calls: setup, which defines election parameters such
as candidate list and number of seats, load, which loads all valid ballots and then cal-
culate quota and deposit saving thresholds, count, which assign votes to candidates,

258 J.R. Kiniry et al.

distribute surpluses and exclude candidates until finished, and report, which reports
the election results. These methods must be called in the order shown, and this fact
is captured by the invariants of the state machine. Only the report method is called
more than once for each instance of the ElectionAlgorithm class.

The user interface is being designed in a flexible fashion so as to present non-Dutch
ballot papers to the voter. The original KOA system was designed for use with a party-
list system with a single national constituency. Its user interface is being extended in
line with the guidelines for the Irish voting system. The KOA system allows the voter
to select a list of candidates. In the Irish system each candidate is in a list of size one.
The KOA system allows only one selection by the voter. In the Irish system the voter
makes multiple selections in order of preference.

6 Related Work

6.1 A Security Analysis of SERVE

The security analysis of the SERVE project [9] is one of the best known examinations
of remote internet voting. It is very critical of current efforts and advises against any use
of such methods given the current state of technology, due to its inherent vulnerabilities.

Two main arguments against internet voting can be distinguished in the report.
Firstly, it is argued that the system allows for vote buying and selling. However, this
holds for any voting system in which voters vote at home. Internet voting can only be
fairly compared to postal ballots, not to voting at polling stations. If we want to intro-
duce remote voting on a large scale, measures can be taken (technical, organisational,
and legal) that make it unattractive to buy or sell votes.

A second argument against internet voting is that the technology is vulnerable to
attacks. Unfortunately, despite claiming to have examined alternatives to the SERVE
system, it ignores systems that have overcome some, but not all, of the problems men-
tioned. Although, the KOA system was not fully developed at the time of writing, the
recommendations presented in 2002 by Dr. Rolf Oppliger13 for the use of a remote in-
ternet voting system in Geneva14, describe security mechanisms, such as code sheets,
that the authors of the SERVE report do not mention.

KOA is a much more secure system than SERVE in that it uses code lists for data
integrity, transaction codes for verifiability and is not closed and proprietary.

6.2 The RIES System

The RIES system was developed for elections for public water management authorities
in the Netherlands. It has two main features which create confidence in the limited
possibilities of attacking the system. First of all, a reference table is published before
the elections, including (anonymously) for each voter the hashes of all possible votes,
linking those to the candidates. It is possible to compare the number of voters in this

13 How to Address the Secure Platform Problem for Remote Internet Voting in Geneva — avail-
able from http://www.ifi.unizh.ch/∼oppliger/Docs/sis 2002.pdf

14 http://www.geneve.ch/evoting/english/welcome.asp

http://www.ifi.unizh.ch/~oppliger/Docs/sis_2002.pdf
http://www.geneve.ch/evoting/english/welcome.asp

The KOA Remote Voting System: A Summary of Work to Date 259

table with the number of registered voters. After the elections, a document with all
received votes is published. This allows for two important verifications:

1. A voter can verify his/her own vote, including the correspondence to the chosen
candidate.

2. Anyone can do an independent calculation of the result of the elections, based on
this document and the reference table published before the elections.

If your vote has been registered incorrectly, or not at all, it can be detected. And
if the result is incorrect given the received votes, this can also be detected. The main
technique that achieves this is the clever use of hash functions. Whereas the hashes of
all possible votes are public, it is impossible to deduce valid votes from them without
the required voter key. Of course, the relation between voter and voter key should not
be stored anywhere, as is the case for bank access codes. The system has worked well
in an actual election with 70,000 voters.

A disadvantage of the RIES system in comparison with the KOA system is that a
voter needs to compute hash values in order to verify that a vote has been correctly
recorded. This is far more complicated than simply checking a transaction code in the
list of votes after the election.

7 Future Work

Several pieces of future work have been identified and some of them are currently un-
derway by researchers at UCD.

7.1 Development of a Mobile E-Voting Application

The EU MOBIUS Project15, of which UCD and Nijmegen are both members, focuses
on several topics including the specification and verification of security properties at
several levels.

As part of this work, the security properties, including a functional specification, for
a MIDP-based remote voting application are in the process of being defined. An exam-
ple of such a security property is: “The application must not have access to personal
information (e.g., phone book) on the mobile phone”.

Additionally, a MIDP-based remote voting applet has been developed at UCD. This
application has been reviewed and will be refactored, including the security and func-
tional requirements expressed in JML, for incorporation into KOA.

7.2 Full-Blown Verification

We intend to fully specify and verify critical subsystems of the KOA system as a case
study for the new MOBIUS Integrated Verification Environment (IVE) that is being de-
veloped by UCD and others. This goal is much more ambitious than simply performing
extended static checking on various critical classes.
15 The MOBIUS Project — http://mobius.inria.fr/

http://mobius.inria.fr/

260 J.R. Kiniry et al.

7.3 Just-in-Time Deployment with PCC

One of the primary problems with electronic voting systems is that new software up-
dates, at both operating system and application levels, are typically installed in the field
without any certification [11]. One technology that can help solve this deployment is-
sue is Proof-Carrying Code (PCC) [1,15], the primary underlying formal foundation
and technology used by the MOBIUS IVE.

Using a PCC technology foundation, new system and application patches could be
just-in-time deployed to the thousands of voting machines used in an election with
complete assurance. Developing such a foundation is part of the MOBIUS project’s
mandate, so the KOA system may be used as a deployment case study in the coming
years.

7.4 American Voting System

The American voting system is the focus of an intense amount of discussion and work,
given the ongoing fiasco in electronic voting we have witnessed in the U.S. over the
past several years.

After integrating the Votáil Irish voting subsystem, we would be interested in col-
laborating to formally specify and verify a voting subsystem for use in American presi-
dential and/or congressional elections using the same verification-centric methodology
we have followed thus far.

7.5 Electronic Voting Systems

An electoral-system independent, formally specified and verified remote voting system
can be used in an electronic voting system, as the latter is just a trivial, non-remote
version of the former. It is our intention to build and demonstrate such a system, incor-
porating a new formally specified and verified voter-verifiable paper trail subsystem.

7.6 Reflections and Future Plans

Many of these plans are “just” a matter of good software engineering and thus can be
accomplished by undergraduate and postgraduate students as case studies, theses work,
etc. Others are much more difficult. In particular, attempting verification in any form
and incorporating PCC techniques into the system are quite difficult, time consuming,
and even require new research to be conducted. This work will take several years to
accomplish, and only if the number of individuals and groups working on and with the
system grows over time.

8 Conclusion

The availability of an American voting subsystem will make KOA the first general-
purpose, formally specified and verified remote and local voting system available in
the world, and furthermore it will be available under the GPL license. Furthermore, the
KOA system is being donated to the UK Grand Challenge Verified Code Repository as

The KOA Remote Voting System: A Summary of Work to Date 261

a major case study for the application of formal methods to critical, large-scale software
development.

It is unclear how to compare such a system to the current commercial and Free/-
Libre/Open Source Software (FLOSS) voting systems being proposed by others, given
that none of them, to our knowledge, even write formal specifications, let alone perform
verification. We hope that this work will encourage other similar projects to seriously
consider the use of lightweight formal methods in such critical systems development.

While integrating the Votáil subsystem into the KOA system, and prior to/during the
new full FLOSS foundation release of KOA, a number of new pieces of English doc-
umentation and functional specification must be written. Given that remote voting is a
key case study in verified computing, we hope that the availability of such documenta-
tion and specification will provide additional motivation for researchers and developers
to seriously consider using the KOA system as a foundation for Verified Verifiable Vot-
ing (VVV).

We propose that the KOA system should be used as an experimental platform for
research in electronic and internet voting; we are not saying that we have solved any
of the major problems inherent in voting with computers. We encourage researchers
interested in electronic and internet voting to contact us and join this effort.

Acknowledgments

This work is being supported by the European Project Mobius within the frame of IST
6th Framework, national grants from the Science Foundation Ireland and Enterprise
Ireland and by the Irish Research Council for Science, Engineering and Technology.
This paper reflects only the authors’ views and the Community is not liable for any use
that may be made of the information contained therein.

References

1. Albert, E., Arenas, P., Puebla, G.: An Incremental Approach to Abstraction-Carrying Code.
In: LPAR 2006. LNCS, Springer, Heidelberg (2006)

2. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Rustan, K., Leino, M.,
Poll, E.: An Overview of JML Tools and Applications. International Journal on Software
Tools for Technology Transfer (February 2005)

3. Chalin, P., Rioux, F.: Non-null References by Default in the Java Modeling Language. In:
Proceedings of the Workshop on the Specification and Verification of Component-Based
Systems (SAVCBS 2005) (September 2005)

4. Cheon, Y., Leavens, G.T.: A Simple and Practical Approach to Unit Testing: The JML and
JUnit Way. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 231–255. Springer,
Heidelberg (2002)

5. Cochran, D.: Secure Internet Voting in Ireland using the Open Source Kiezen op Afstand
(KOA) Remote Voting System. Master’s thesis, University College Dublin (March 2006)

6. Department of Environment and Local Government, Commission on Electronic Voting.
Count requirements and commentary on count rules, (June 2000)

7. Department of Environment and Local Government, Commission on Electronic Voting.
Count requirements and commentary on count rules, update no. 7: Available surpluses and
candidates with zero votes (April 2002)

262 J.R. Kiniry et al.

8. Fairmichael, F.: Full Verification of the KOA Tally System. Final Year Undergraduate Project
Thesis (March 2005)

9. Jefferson, D., Rubin, A.D., Simons, B., Wagner, D.: Analyzing Internet Voting Security.
Communication of the ACM 47(10), 59–64 (2004)

10. Kiniry, J.R., Cok, D.R.: ESC/Java2: Uniting ESC/Java and JML: Progress and issues in build-
ing and using ESC/Java2 and a report on a case study involving the use of ESC/Java2 to verify
portions of an Internet voting tally system. In: Barthe, G., Burdy, L., Huisman, M., Lanet,
J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, Springer, Heidelberg (2005)

11. Kitcat, J.: Source availability and e-voting: an advocate recants. Communications of the
ACM 47(10), 65–67 (2004)

12. LogicaCMG. Kiezen op Afstand: Hertellen Stemmen. Functional specifications (2004)
13. Fähndrich, M., Rustan, K., Leino, M.: Declaring and Checking Non-Null Types in an Object-

Oriented Language. In: Proceedings of the 18th Annual ACM SIGPLAN Conference on
Object-Oriented Programing, Systems, Languages, and Applications (OOPSLA 2003), pp.
302–312. ACM Press, New York, USA (2003)

14. Morkan, A.E.: KOA Evaluation, Demonstration Installation and Implementation. Final Year
Undergraduate Project Thesis (March 2005)

15. Necula, G.C.: Proof-Carrying Code. In: Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 1997), pp. 106–119. ACM
Press, New York, USA (1997)

Security Types for Dynamic Web Data�

Mariangiola Dezani-Ciancaglini1, Silvia Ghilezan2, and Jovanka Pantović2

1 Dipartimento di Informatica, Università di Torino, Italy
dezani@di.unito.it

2 Faculty of Engineering, University of Novi Sad, Serbia
{gsilvia,pantovic}@uns.ns.ac.yu

Abstract. We describe a type system for the Xdπ calculus, introduced in [8].
An Xdπ-network is a network of locations, where each location consists of both
a data tree (which contains scripts and pointers to nodes in trees at different lo-
cations) and a process, for modelling process interaction, process migration and
interaction between processes and data. Our type system is based on types for
locations, trees and processes, expressing security levels. The type system enjoys
type preservation under reduction (subject reduction). In consequence of sub-
ject reduction we prove the following security properties. In a well-typed Xdπ-
network, data in a location are accessible only to processes in locations of equal
or higher security level. Moreover, processes originating in a location can only
go to locations of equal or less security level, with the exception of movements
which are returns to the “source” location.

1 Introduction

Information systems have evolved into open distributed systems that include decentral-
ized peer-to-peer networks. An essential role of such systems is management of data,
which appear to be semi-structured and distributed. Data-sharing applications require
to integrate mobile processes and semi-structured data.

As information networks become more open and dynamic, the need for security and
privacy grows stronger. Systems must be able to exchange data and processes while
preserving security. One solution is to ground them on typed models. In such models,
a well-typed network must reduce only to well-typed networks, assuring access and
movement rights.

In this paper we describe a type system for the Xdπ calculus, introduced in [8]. An
Xdπ-network is a network of locations, where each location consists of both a data tree
(which contains scripts and pointers to nodes in trees of different locations) and of a
process, for modelling process interaction, process migration and interaction between
processes and data.

We decorate location names with security levels taken from a partially ordered set of
security levels with a bottom element. Therefore a location in a well-formed network
will be of the shape:

lh[T ‖ P]
� This work was partly funded by the project MMIT 1438 of PSNTR, by FP6-2004-510996

Coordination Action TYPES, by MIUR Cofin’04 project McTafi, and by the project GLORA
144029 of MSEP.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 263–280, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

264 M. Dezani-Ciancaglini, S. Ghilezan, and J. Pantović

where l is a location name, h is its security level, T is a tree of data and P is a running
process. Both the tree T and the process P agree with the level h as explained below.

The tree T can contain pointers to nodes in trees at locations different from l, but only
if the security levels of these locations are less than or equal to h. The tree T moreover
can contain scripts, i.e. static processes, which can be activated. In turn scripts, pointers
and trees can occur inside scripts and running processes, always respecting the security
levels.

Processes migrate thanks to the go command. The go command can only move a pro-
cess from one location to a location of equal or lower security level, unless the process
is “going home”, i.e. migrating to the location where it was in the initial configuration.

The security levels of the communicated data inside a location will always be less
than or equal to the security level of the location itself.

Running processes can activate scripts in the local tree by the command runp, where
p is a path expression which identifies a set of nodes. In a well-typed network all scripts
in a tree agree with the security level of the enclosing location, and so they can run
inside the location itself without breaking the security constraints.

Running processes can also modify the local tree and use the information in that tree
by means of the command update. Well-formedness assures that the so obtained trees
and processes respect the security level of the enclosing location.

By means of pointers from a tree in a location to a tree in another location, running
processes can also copy and activate scripts of lower security level than the level of the
enclosing location, but this is safe since a process which can run at a given security level
can also run at all bigger security levels (but in general not at lower or incomparable
security levels).

Related Work. The Xdπ calculus [8,12] models both localised, mobile processes and
distributed, dynamic, semi-structured data, allowing to represent data-sharing applica-
tions. It can be seen as an extension of the Active XML model [1].

The locations and the processes of Xdπ are essentially those of dπ [9] enriched
with capabilities for data manipulation. The only difference is that a process in dπ
can migrate to a location independently from the existence of the location itself in the
current network, while in Xdπ such an existence is a necessary condition for migration.
The data trees of Xdπ are related to those in [2,4] and the treatment of shared distributed
data is inspired by [16]. We refer to [8] for further references related to the calculus
design.

Many type systems controlling the use of resources and the mobility of processes
have been proposed for the dπ calculus [9] and for related calculi [14,6,5]. The types
discussed here are essentially inspired by the security types checking access rights for
π-calculus of [10]. For simplicity we do not distinguish between reading, writing and
mobility rights, but our type system can be extended to take them into account. Another
simplification is to have elements of a partially ordered set with a bottom element as
security levels instead of elements of a lattice as it is usual [17], this choice being
justified by the fact that we do not use meets and joins. We formalise the network
properties assured by our type system using the notions of network invariant and initial
network as in [3].

Security Types for Dynamic Web Data 265

Outline of the paper Section 2 and Section 3 introduce the syntax, the reduction
rules, and the typing rules of typed Xdπ, exemplified by the examples in Section 4. The
properties of the calculus are stated in Section 5. Section 6 contains a few final remarks.

2 Syntax and Operational Semantics

The Xdπ calculus we consider here is essentially a typed version of the calculus intro-
duced in [8], with two simplifications.

In order to simplify the syntax we only allow monadic instead of polyadic communi-
cation and we do not distinguish between public channels (which cannot be restricted)
and session channels (which must be restricted in the scripts)1. These features of the
original Xdπ are handled easily by our type system.

To pave the way to the type system of next section we decorate the location names
with security levels and the channel names with value types. We could avoid these
decorations by fixing an environment giving these mappings.

The main difference between the original Xdπ and the present one is the use of a
typed matching function instead of an untyped one. In order to have type preservation
under reduction the matching needs to take types into account.

2.1 Syntax

Networks A network is a parallel composition (|) of locations consisting of a tree and
a process, where processes at different locations can share communication channels. In
a well-formed network the locations have different names. The syntax of networks is
given in Table 1. We use l, m to range over location names, and h, j, i over security
levels. The location lh[T ‖ P] is well-formed if both the tree T and the process P
do not contain occurrences of free variables. We use c to range over channel names and
tv denotes a value type as defined in Table 7. The binder ν is, as usual, the restriction
operator.

Table 1. Syntax of networks

N ::= 0 || N | N || lh[T ‖ P] || (νctv)N

Trees The data model is an unordered edge-labelled rooted tree with leaves contain-
ing scripts and pointers. The syntax of trees is presented in Table 2, using a to denote
an edge label.

A script is a static process embedded in a tree that can be activated by a process
from the same location. We use Π to range over processes and variables, and a script is
denoted by �Π .

1 The distinction between public and session channels is important for implementation since oth-
erwise one needs to alpha-convert the whole data tree of a location when a process, restricting
a channel name, migrates.

266 M. Dezani-Ciancaglini, S. Ghilezan, and J. Pantović

A path identifies nodes in a tree. Table 3 gives the formation rules of paths, using p
to range over paths. In a path, “a” denotes a step along an edge a, “ // ” denotes any
node, “..” a step back, “.” the path from the root to the current node, x a variable and
“/ ” the path composition. We will say that a path is a local path if it contains “.”2.

Table 2. Syntax of trees

T ::= ∅ empty rooted tree

|| x tree variable

|| T | T composition of trees, joining the roots

|| a[T] edge labeled a with subtree T

|| a[�Π] edge labeled a with script �Π

|| a[p@λ] edge labeled a with pointer p@λ

Table 3. Syntax of paths

p ::= a || // || .. || . || x || p / p

We use λ to range over variables and location names super-scripted by security lev-
els. A pointer p@λ refers to the set of nodes in the tree at location λ identified by the
path p.

Processes The processes that we are concerned with are essentially dπ-calculus pro-
cesses [9], where the local communication modelled by π-calculus processes [13], [18]
is extended with migration between locations (command go). There are two more com-
mands for local communication between processes and data: one for updating (copy,
paste, cut, etc.) the data tree (update) and the other one that activates the execution
of scripts that are embedded in local data tree (run). We use P, Q, R to range over
processes, and γ to range over channel names (decorated by value types) and variables.

A value is either a channel name super-scripted with a value type, a tree, a script,
a location name super-scripted with a security level, or a path. Using v to range over
values, the syntax of values is:

v ::= ctv || T || �P || lh || p.

The syntax of processes is given in Table 4.
The argument of go is a location name (super-scripted with a security level) or a

variable, or the symbol �, which denotes the enclosing location.

2 The path syntax allows also meaningless paths, like “./ ./ .”: this could be clearly avoided
either by typing or by refining the syntax.

Security Types for Dynamic Web Data 267

The two arguments of the update command are respectively a pattern χ and a data
term V . Patterns have the form

χ ::= xj || y�@xj || �xj

where j is a security level and � ∈ {Local, ε} 3 indicates whether y stands for a local
path or for a path without occurrences of “.”. Data terms can be trees, pointers, or
scripts:

V ::= T || p@λ || �Π.

In updatep(χ, V).P the variables of χ can occur both in V and in P and they are
bound. For this reason we allow variable occurrences in trees, scripts and pointers.

Table 4. Syntax of processes

P ::= 0 the nil process
|| P | P composition of processes
|| (νctv)P declare new channel name c
|| γ̄〈v〉 output value v on a channel γ
|| γ(x).P input parameterized by a variable x
|| !γ(x).P replication of an input process
|| go λ.P migrate to location λ, continue as P
|| go � .P migrate home, continue as P
|| runp run the processes identified by the path expression p
|| updatep(χ,V).P update command

The structural congruence for Xdπ calculus is the least equivalence relation on net-
works that satisfies alpha-conversion, the commutative monoid properties for (∅, |)
on trees, for (0, |) on processes and for (0, |) on networks, the scope extrusion for
restricted names, and it is preserved by the calculus constructs.

2.2 Reduction Rules

The reduction relation describes three forms of interactions: communication inside a
location ((com), and (com!)), process movement between locations ((stay) and (go))
and local communication between processes and data ((update) and (run)). The reduc-
tion relation is the least relation on networks which is closed with respect to structural
congruence, reduction rules given in Table 5 and reduction contexts, given by

C ::= − || C | N || (νctv)C.

The first two rules, (com) and (com!) are the communication rules from the π-
calculus [13], [18]. Processes can communicate if they are in the same location.

3 Here and in the following we use ε to denote the empty string, so we get either yLocal@xj or
y@xj .

268 M. Dezani-Ciancaglini, S. Ghilezan, and J. Pantović

Table 5. Reduction rules

(com) lh[T || c̄tv〈v〉 | ctv(z).P | Q] → lh[T || P{v//z} | Q]

(com!) lh[T || c̄tv〈v〉 |!ctv(z).P | Q] → lh[T || !ctv(z).P | P{v//z} | Q]

(stay) lh[T || go lh.P | Q] → lh[T || P | Q]

(go) lh[T1 || go mj .P | Q] | mj [T2 || R] → lh[T1 || Q] | mj [T2 || P | R]

(run)
p(T) �p,lh,�xh,�x T, {{�P1//�x}, . . . , {�Pn//�x}}

lh[T || runp | Q] → lh[T || P1 | . . . | Pn | Q]

(update)
p(T) �p,lh,χ,V T ′, {s1, . . . ,sn}

lh[T ‖ updatep(χ, V).P | Q] → lh[T ′ ‖ Ps1 | . . . | Psn | Q]

Table 6. Definition of the update function �

(Empty tree) ∅ �θ ∅, ∅
(Script) �P �θ �P, ∅
(Pointer) p@lh �θ p@lh, ∅

(Node)
T �θ T ′, Θ

a[T] �θ a[T ′], Θ

(Par)
T �θ T ′, Θ1 S �θ S′, Θ2

T |S �θ T ′|S′, Θ1 ∪ Θ2

(Up)
match(U, χ) = s V s �θ V ′, Θ θ = p, lh, χ, V

a[U] �θ a[V ′], {s{lh// �, p//.}} ∪ Θ

There are two kinds of rules for migration. Rule (go) describes migration to a distinct
location, which might be the home location. The other rule, (stay), describes staying at
the location where you are, being it home location or not.

The command runp finds all the scripts in the local tree identified by the path p and
activates their parallel execution, after replacing � and . by the enclosing location and
the path p, respectively.

The update command updatep(χ, V).P traversing top-down the local tree finds all
the data terms Vk given by the path p and pattern matches these data terms with χ to
obtain substitutions sk when they exist. For each successful pattern matching it replaces
the Vk with V sk and starts Psk in parallel. The match function, in order to check if
a data term agrees with a pattern, requires not only the data term to be, respectively, a
tree, a pointer or a script according to the three shapes of the pattern (as in [8]), but it
requires also the data terms to satisfy the type information given by the pattern. This
means that:

(1) if the pattern is xj , then the data term must be a tree of level j in a “home” location
of level j too,

Security Types for Dynamic Web Data 269

(2) if the pattern is y�@xj , then the data term must be a pointer in which the path can
be a local path only if � = Local and the location must be of level j,

(3) if the pattern is �xj , then the data term must be a script of level j in a “home”
location of level j too.

These conditions are enforced by using the type assignment system of next section.
If the typed match is successful the function returns a substitution which replaces the
variables in the pattern by the corresponding data terms. More precisely the definition
of the match function is:

(1) match(T, xj) = {T//x} if �j T : Tree(j)
(2) match(p@lj , y�@xj) = {lj//x, p//y} if � p : Path�

(3) match(�P, �xj) = {�P//�x} if �j P : ProcLocal(j).

The reduction rules for update and run are based on the definition of the update func-
tion �, parametrized on p, lh, χ, V , which applied to a tree or to a node label returns a
data term and a set of substitutions. Table 6 defines the function �. The only interesting
rule is (Up): it matches the selected (underlined) U in p(T) with χ obtaining a substitu-
tion s. Then it continues updating V s obtaining the data term V ′ and the set of substi-
tutions Θ. Finally it replaces U with V ′ and adds to Θ the substitution s{lh// �, p//.},
solving in this way the references to the enclosing location and to the current path.

3 Type Assignment

The main goals of our type system are to control communication of values, access to
data and migration of processes between locations. We will formalise this in Section 5.

We rely on a notion of security levels, and therefore we assume a fixed partial order
(L, ≤) of security levels with a bottom ⊥. As already said in Section 2 we use h, j, i to
range over elements of L.

Table 7. Syntax of types

ch(tv) type of channels communicating values of type tv
Loc(i) type of locations at security level i
Script(i) type of scripts at security level i
Path type of paths, not containing “.”
PathLocal type of paths, possibly containing “.”
Pointer(i) type of pointers, not containing local paths, at security level i
PointerLocal(i) type of pointers, possibly containing local paths, at security level i
T ree(i) type of trees, not containing local paths, at security level i
T reeLocal(i) type of trees, possibly containing local paths, at security level i
P roc(i) type of processes, not containing local paths, at security level i
P rocLocal(i) type of processes, possibly containing local paths, at security level i
Net type of networks

where i ∈ L and tv ranges over value types defined by

tv ::= ch(tv) || Loc(i) || Script(i) || Path� || Tree�(i)

270 M. Dezani-Ciancaglini, S. Ghilezan, and J. Pantović

The syntax of types is the content of Table 7. Clearly the types correspond to the
syntactic categories of previous section. We use the suffix Local when we allow local
paths. This distinction is useful since a run or an update command containing a local
path as index cannot be executed, but it can appear inside a script.

We will use Path� as short for Path or PathLocal and similarly for the other types.
When more than one � appears in a typing rule we always assume that all of them are
replaced either by ε or by Local.

We introduce the turnstile both with and without the decoration of a security level.
This decoration gives the security level of the enclosing location and it is used only in
the typing rule for the go � command (see rule (procIgohome) in Table 10). Since
channel names, location names, and paths do not contain processes, we type them using
the turnstile alone, while we use the decorated turnstile in typing scripts, pointers and
trees. For scripts and trees the decoration is necessary, and we choose to use it also
for pointers in order to have a uniform typing judgement for data terms. For typing
processes we need both turnstiles, since a process containing a go � command cannot
be executed, but it can play the role of a script. We will say more on this introducing
the typing rules for processes and networks.

An environment Σ gives the association between:
– variables and value types
– variables and local process types

i.e. we define:
Σ := ∅ || Σ, x : tv || Σ, x : ProcLocal(i).

We distinguish two sets of types which can be predicates in environments. The first set
contains ch(tv), Loc(i) and Path�: we use σ to range over them. For these types we
have typing judgements where the turnstile has no decoration. The second set contains
the remaining types, i.e. Script(i), Tree�(i) and ProcLocal(i): we use τ to range over
them. For these types we have typing judgements where the turnstile is decorated by a
security level. To each type τ we associate in a natural way a security level (notation |τ |):

|Script(i)| = |Tree�(i)| = |ProcLocal(i)| = i.

We get therefore two axioms for using the environment, one for each set of types:

(axiomCLP)
Σ, x : σ � x : σ

|τ | ≤ h
(axiomSTPL)

Σ, x : τ �h x : τ

where the condition |τ | ≤ h enforces the policy that a location at level h can only
contain values at level less than or equal to h.

The typing rules for channels, locations and scripts are as expected (recall that Π
ranges over processes and variables):

(chan)
Σ � ctv : ch(tv)

(loc)
Σ � li : Loc(i)

Σ �h Π : Proc�(i)
(script)

Σ �h �Π : Script(i)

Paths are typed according to the rules in Table 8: a local path always gets the type
PathLocal instead of Path.

Security Types for Dynamic Web Data 271

The typing rule for pointers

Σ � λ : Loc(i) Σ � p : Path� i ≤ h
(pointer)

Σ �h p@λ : Pointer�(i)

gives a Pointer or a PointerLocal type according to the path type. The security level
of the pointer is the security level of the pointed location. The security level of the
enclosing location is required only to be bigger than or equal to the one of the pointer.

According to the typing rules for trees in Table 9 the security level of a tree is bigger
than or equal to the security levels of all its leaves. A tree that has at least one node
labelled by a local pointer will be typed by TreeLocal.

Table 8. Typing of paths

(patha)
Σ 	 a : Path

(path//)
Σ 	 // : Path

(path..)
Σ 	 .. : Path

(path.)
Σ 	 . : PathLocal

Σ 	 p : Path� Σ 	 p′ : Path�

(path/)
Σ 	 p / p′ : Path�

Σ 	 p : Path
(pathL)

Σ 	 p : PathLocal

Table 9. Typing of trees

i ≤ h
(treeEmpty)

Σ 	h ∅ : Tree(i)

Σ 	h T1 : Tree�(i) Σ 	h T2 : Tree�(i)
(tree|)

Σ 	h T1 | T2 : Tree�(i)

Σ 	h T : Tree�(i)
(treea)

Σ 	h a[T] : Tree�(i)

Σ 	h �Π : Script(i) i ≤ h
(treeScript)

Σ 	h a[�Π] : Tree(i)

Σ 	h p@λ : Pointer�(i) i ≤ h
(treePointer)

Σ 	h a[p@λ] : Tree�(i)

Σ 	h T : Tree(i)
(treeL)

Σ 	h T : TreeLocal(i)

Σ 	h T : Tree�(j) j ≤ i ≤ h
(treeUp)

Σ 	h T : Tree�(i)

We have two sets of typing rules for processes, with and without the security level of
the enclosing location as decoration of the turnstile. We call the first rules initial and the
second rules ongoing, since we use the first set of rules for typing the initial networks,
while we use both sets of rules for typing the networks obtained by reducing the initial
ones. Table 10 gives the initial typing rules for processes.

272 M. Dezani-Ciancaglini, S. Ghilezan, and J. Pantović

In typing channel restrictions, inputs and outputs we define:

– the security levels of channel types as the security levels of the transmitted values
and

– the security levels of path types as ⊥.

In rule (procIout) we take into account that a value can be:

– either a channel, a location, a path, and in this case it is typed with the turnstile
without decoration (i.e. � = ε)

– or a tree, a script, and in this case it is typed with the decorated turnstile (i.e. � = i).

Rule (procIgo) allows a process in a location at security level i to migrate to a location
at security level j only if j ≤ i. Rule (procIgohome) instead does not compare the
security levels of the source and target locations, but it requires the security level of
the target location to be the decoration of the turnstile. In the sequel, we will see that the
typing rule (netIloc) for “initial” networks (see Table 11) assures that the target location
at run time will always be the “source” location of the process (as defined at page 278).

Table 10. Initial typing of processes

i ≤ h
(procI0)

Σ 	h 0 : Proc�(i)

Σ 	h P1 : Proc�(i) Σ 	h P2 : Proc�(i)
(procI |)

Σ 	h P1 | P2 : Proc�(i)

Σ 	h P : Proc�(i) |tv| ≤ i
(procIν)

Σ 	h (νctv)P : Proc�(i)

Σ 	� v : tv Σ 	 γ : ch(tv) |tv| ≤ i ≤ h � ∈ {ε, i}
(procIout)

Σ 	h γ̄〈v〉 : Proc�(i)

Σ, x : tv 	h P : Proc�(i) Σ 	 γ : ch(tv) |tv| ≤ i
(procIinput)

Σ 	h γ(x).P : Proc�(i)

Σ, x : tv 	h P : Proc�(i) Σ 	 γ : ch(tv) |tv| ≤ i
(procI!input)

Σ 	h !γ(x).P : Proc�(i)

Σ 	h P : Proc�(j) Σ 	 λ : Loc(j) j ≤ i ≤ h
(procIgo)

Σ 	h go λ.P : Proc�(i)

Σ 	h P : Proc�(h)
(procIgohome)

Σ 	h go � .P : Proc�(i)

Σ 	 p : Path� i ≤ h
(procIrun)

Σ 	h runp : Proc�(i)

Σ 	 p : Path� Σ ∪ Σ0 	h P : Proc�(i) Σ0 	i V : SPT (j) j ≤ i
(procIupdate)

Σ 	h updatep(χ, V).P : Proc�(i)

In the typing rule for update we assume that χ ∈ {xj , y�@xj , �xj}, and we add the
environment Σ0 for associating types to the variables bound by the pattern. I.e. we put

Security Types for Dynamic Web Data 273

Σ0 =

⎧
⎨

⎩

x : Tree(j) if χ = xj ,
x : Loc(j), y : Path� if χ = y�@xj ,
x : ProcLocal(j) if χ = �xj

In this rule SPT stands for Script or Pointer� or Tree�.
The set of the ongoing typing rules is obtained by:

– rewriting each initial rule for processes (except the rules (procIgo) and (procIgo
home)) without the decoration on the turnstile in the process judgements and with-
out the relative conditions and

– replacing the (procIgo) and (procIgohome) rules by:

Σ � P : Proc�(j)
(procOgo)

Σ � go lj.P : Proc�(i)

Notice that we erase decorations on the turnstile only in the process judgements4. This
implies that, in the ongoing rule for typing the update command, the judgement about
the data term V preserves the decorated turnstile. The judgement about the value v in
the ongoing rule for typing the output preserves the decorated turnstile too.

Clearly, the rule (procOgo) could violate the security policy of process migration.
For this reason we allow to use it only in running processes, where if i < j, then go lj

has been obtained from go � by replacing � with the enclosing location lj .
One can easily check that if Σ �� P : Proc�(i) and i ≤ j, then Σ �� P : Proc�(j),

with � ∈ {ε, h}, so we do not need a typing rule for increasing the security level of
processes.

Table 11. Typing of networks

	i T : Tree(i) 	i P : Proc(i)
(netIloc)

	 li[T ‖ P{li// �}] : Net

	i T : Tree(i) 	 P : Proc(i)
(netOloc)

	 li[T ‖ P] : Net

(net0)
	 0 : Net

	 N : Net
(netν)

	 (νctv)N : Net

	 N1 : Net 	 N2 : Net N (N1) ∩ N (N2) = ∅
(net|)

	 N1 | N2 : Net

For typing a location in a network (see Table 11) we have two typing rules: the
initial rule (netIloc) and the ongoing rule (netOloc). Both rules require the tree and
the process to have the same security level of the enclosing location. Moreover, the

4 This is sound since in the initial typing rules for processes the judgements whose subjects are
not processes have turnstiles decorated by the security level of the process which is the subject
of the conclusion.

274 M. Dezani-Ciancaglini, S. Ghilezan, and J. Pantović

first rule enforces the condition that only the enclosing location can be the target of
movements in which the security level of the target location is bigger than the security
level of the source location. Notice that the initial and the ongoing rules for networks
use respectively the initial and the ongoing rules for processes in typing P and its sub-
processes which are not inside scripts, while both rules use the initial rules for processes
in typing scripts occurring inside the tree T or in process P .

The function N associates to a network the set of its location names:

N (0) = ∅ N (li[T ‖ P]) = {l} N (N1 | N2) = N (N1) ∪ N (N2).

It is used in rule (net|) to assure that each location name occurs at most once in a typed
network.

4 Examples

4.1 A Simple Example

Taking naturals as security levels, let us consider the following network:

l4[a[b[�S]] ‖ runa/b] | m2[c[T] ‖ 0]

where S = go m2.update//(x2, ∅).go � .P , the process P is any process with secu-

rity level 4, and T is any tree with security level 2.
The process runa/b at location l with security level 4 will activate the execution of

process S. Since location l has greater security level than location m, then l has access
to the data of m, and execution will continue at location m by cutting subtrees (which
match the tree pattern with given security level) of data tree and going back home to
location l. We can prove that the given network is well-typed (see Figure 1).

This network can be reduced as shown in Figure 2, where P ′ = P{l4// �, a/b//.},
T ′ = T {m2/ �, ////.} and P ′′ = P ′{T ′//x}. Every network in Figure 2 is also ty-
pable. Proofs are similar to the one for the initial network, except that for typing the
running processes we use the ongoing typing rules instead of the initial ones.

For example, in order to show that

l4[a[b[�S] ‖ go m2.update//(x2, ∅).go l4.P ′] | m2[c[T] ‖ 0] : Net

we need to prove that � go m2.update//(x2, ∅).go l4.P ′ : Proc(4). This is the

content of Figure 3.
In Figure 4, we present how the command update works in this example. We may

update the data in the local tree only if the data identified by a path matches the typed
pattern.

4.2 Remote Voting System

The next example models a remote voting for election of a leader from a given list of
candidates, inspired by [11]. In this example we allow tree nodes to contain integers, in
order to represent the count of votes. A pattern too can be a variable of type Integer.

Security Types for Dynamic Web Data 275

� // : Path

. . .

x : Tree(2) �4 P : Proc(4)

x : Tree(2) �4 go � .P : Proc(2) x : Tree(2) �2 ∅ : Tree(2)

�4 update//(x2, ∅).go � .P : Proc(2) � m2 : Loc(2)

�4 go m2.update//(x2, ∅).go � .P : Proc(4)

�4 �go m2.update//(x2, ∅).go � .P : Script(4)

�4 b[�go m2.update//(x2, ∅).go � .P] : Tree(4)

�4 a[b[�go m2.update//(x2, ∅).go � .P]] : Tree(4)

�4 a[b[�go m2.update//(x2, ∅).go � .P]] : Tree(4)

� a : Path � b : Path

� a/b : Path

�4 runa/b : Proc(4)

� l4[a[b[�go m2.update//(x2, ∅).go � .P]] ‖ runa/b] : Net

� l4[a[b[�go m2.update//(x2, ∅).go � .P]] ‖ runa/b] : Net

�2 T : Tree(2)

�2 c[T] : Tree(2) �2 0 : Proc(2)

� m2[c[T] ‖ 0] : Net

� l4[a[b[�go m2.update//(x2, ∅).go � .P]] ‖ runa/b] | m2[c[T] ‖ 0] : Net

Fig. 1. Typing of l4[a[b[�go m2.update//(x2, ∅).go � .P]] ‖ runa/b] | m2[c[T] ‖ 0]

l4[a[b[�S]] ‖ runa/b] | m2[c[T] ‖ 0] →

l4[a[b[�S] ‖ go m2.update//(x2, ∅).go l4.P ′] | m2[c[T] ‖ 0] →

l4[a[b[�S] ‖ 0] | m2[c[T] ‖ update//(x2, ∅).go l4.P ′] →

l4[a[b[�S] ‖ 0] | m2[c[∅] ‖ go l4.P ′′] →
l4[a[b[�S] ‖ P ′′] | m2[c[∅] ‖ 0]

Fig. 2. Reduction of l4[a[b[�S]] ‖ runa/b] | m2[c[T] ‖ 0]

� // : Path

. . .

x : Tree(2) � P ′ : Proc(4)

x : Tree(2) � go l4.P ′ : Proc(2) x : Tree(2) �2 ∅ : Tree(2)

� update//(x2, ∅).go l4.P ′ : Proc(2) � m2 : Loc(2)

� go m2.update//(x2, ∅).go l4.P ′ : Proc(4)

Fig. 3. Typing of S{l4// � , a/b//.} ≡ go m2.update//(x2, ∅).go l4.P ′

276 M. Dezani-Ciancaglini, S. Ghilezan, and J. Pantović

By assumption 	2 T : Tree(2) and therefore, by the definition of typed matching,
match(T, x2) = {T//x}.

match(T, x2) = {T//x} ∅ �//,m2,x2,∅ ∅, ∅

c[T] �//,m2,x2,∅ c[∅], {T ′//x}, T ′ = T{m2/ �, ////.}

m2[c[T] ‖ update//(x2, ∅).go l4.P ′] → m2[c[∅] ‖ go l4.P ′′]

Fig. 4. An application of the command update

The network consists of an authority location, a register location and a fixed number
of voter locations. The authority and register locations have level 2, while all the voter
locations have level 1.

We describe the initial configuration of the network.
The register location contains no data and one process for each voter. These processes

go to the voters to collect their identifiers, then go back to communicate these identifiers
to the authority.

register2[∅ || . . . | go voter1.aPath(x).go register2.āPath〈x〉 | . . .]

A voter location contains an empty candidate list and two processes: the first process
communicates the voter identifier and the second process waits to receive a channel
along which he will communicate his vote:

voter1[candList[∅] || āPath〈voterId〉 | bch(Path)(x).Choice(y).x̄Path〈y〉]

When the candidate list with the candidate names is the data of the voter location, the
Choice(y) process is supposed to choose a candidate name, and to assign this name to
the variable y.

The authority location contains as data the candidate list (of security level 1), the
candidate and vote list (of security level 2), and the voter list (of security level 2). The
candidate list has for each candidate an edge labelled by the candidate name pointing
to the empty tree. The candidate and vote list has for each candidate an edge labelled
by the candidate name pointing to an integer (the vote counter, initially 0). The voter
list has for each voter an edge labelled by the voter identifier pointing to the script
process �P described below. The process in the authority location starts the elections
by going to the register location, collecting the voter identifiers, going back and running
the scripts corresponding to the voter identifiers.

authority2[T || go register2.!aPath(x).go authority2.runvoterList//x]

where

T = candList[T1] | candVoteList[T2] | voterList[. . . | voterId[�P] | . . .]

with
T1 = . . . | name[∅] | . . . and T2 = . . . | name[0] | . . .

We assume the candidate names, voter locations and voter identifiers to be all different.
In writing the process P we use the following abbreviations, already defined in [8]:

Security Types for Dynamic Web Data 277

cutp(xj).Q := updatep(x
j , ∅).Q

copyp(x
j).Q := updatep(x

j , x).Q
pastep〈T 〉.Q := updatep(x

j , x|T).Q where x does not occur in T, Q

and �j T : Tree(j)

The process P erases the edge pointing to its script, copies the candidate list, goes to
the voter, pastes locally the candidate list, communicates a private channel c, receives
along this channel one candidate name, goes home and increases by 1 the corresponding
candidate counter.

P = (νcPath)(cutvoterList//voterId(x2).copycandList(y
1).

go voter1.pastecandList〈y〉.b̄ch(Path)〈cPath〉.cPath(z).
go � .updatecandVoteList//z(t

Integer , t + 1))

Notice that a malicious voter cannot vote more than once, since the process P de-
stroys his identifier, and if he would send the identifier of another voter, the other voter
would receive the candidate list. Moreover a malicious voter cannot change the candi-
date or voter lists in the authority location, since the authority location has security level
2, while the voters have security level 1. For the same reason a voter cannot modify the
processes inside the register location.

A malicious voter can send to the location of another voter a process which modifies
the voter list or which votes in place of the voter itself. We do not know how to avoid
this kind of attacks, which model a voter steeling the position of another voter during
the voting act.

5 Safety

The present section is devoted to state the properties of well-typed networks. Since
reducing a well-typed network only produces well-typed networks, it is enough to for-
mulate the access and movement rights policy assured by our type system.

Theorem 1 (Subject reduction). If � N : Net and N → N′, then � N′ : Net.

More meaningful than the subject reduction theorem are the following properties of
well-typed networks:5

P0 a channel in a location of level h can communicate only values whose security level
is less than or equal to h;

P1 a pointer from a tree in a location of level h to a tree in a location of level j implies
j ≤ h;

P2 a process can migrate from a location of level h to a location of level j only if either
j ≤ h or it “goes home” (i.e. it is the “descendent” of a process originating from
that location).

Property P0 certifies that value communication respects the security levels. Property
P1 assures that the data in a location are accessible only to processes in locations of

5 Notice that P0, P1 and P2 are network invariants in the sense of [3].

278 M. Dezani-Ciancaglini, S. Ghilezan, and J. Pantović

equal or higher security level. Property P2 assures that the processes originating in a
location can only go to locations of equal or less security level, with the exception of
movements which are returns to the “source” location. As a consequence a process that
originates from a location of a certain security level will never get hold of data of higher
security level. Instead a process in a location of security level h can acquire data which
reside in a location of security level j with j > h, but only if:

– the data itself are of security level h and
– the data transfer is done by a process whose “source” location has a security level

bigger than or equal to j.

This is exemplified in Subsection 4.2 by the process which copies the candidate list
from the data tree of the authority location and pastes it to the tree of the voter location.

Properties P0 and P1 can be formalised as follows (ν is a possibly empty sequence
of channel restrictions):

Proposition 2

1. If � ν(lh[T || c̄tv〈v〉 | P] | N) : Net, then |tv| ≤ h.
2. If � ν(lh[T || P] | N) : Net and p@mj is the label of a node in T , then j ≤ h.

The proof of the above proposition follows from Generation Lemmas which exploit
the invertibility of the rules (netIloc), (netOloc), (procIout), (procOout), and
(treePointer).

In order to discuss property P2 we need to formalise the notion of “source” loca-
tion of a process, and when a process is an “ancestor” of another process. Roughly by
“source” location of a process we mean the location where the process or an ancestor
of the process was in the initial net or where the process or an ancestor of the process
was created by a run or by an update command.

We say that a network is initial when its locations can be typed by means of the
initial typing rules. We use � to denote the reflexive and transitive closure of →. If N
is an initial network and N � ν(lh[T || P |Q] | N′), then the source location of the
process P in this reduction is defined by induction on the reduction � and by cases:

– if N ≡ ν(lh[T || P | Q] | N′), then the source location of P is lh;
– if N � ν(lh[T || runp | Q′] | N′) → ν(lh[T || P | Q] | N′) since

p(T) �p,lh,�xh,�x T, {{�R1//�x}, . . . , {�Rn//�x}} and R1 ≡ P | R and
Q ≡ R | R2 | . . . | Rn | Q′, then the source location of P is lh;

– if N � ν(lh[T ′ || updatep(χ, V).P ′ | Q′] | N′) → ν(lh[T || P | Q] | N′)
since p(T ′) �p,lh,χ,V T, {s1, . . . ,sn} and P ′s1 ≡ P | R and Q ≡ R | P ′s2 | . . .
|P ′sn | Q′, then the source location of P is lh;

– if N � ν(lh[T || ctv〈v〉 | ctv(z).P ′ | Q′] | N′) → ν(lh[T || P | Q] | N′)
and P ′{v//z} ≡ P | R and Q ≡ R | Q′, then the source location of P is the
source location of ctv(z).P ′ in the reduction without the last step;

– if N � ν(lh[T ‖ ctv〈v〉 | !ctv(z).P ′ | Q′] | N′) → ν(lh[T ‖ P | Q] | N′) and
P ′{v//z} ≡ P | R and Q ≡ !ctv(z).P ′ | R | Q′, then the source location of P is
the source location of !ctv(z).P ′ in the reduction without the last step;

Security Types for Dynamic Web Data 279

– if N � ν(lh[T || go lh.P ′ | Q′] | N′) → ν(lh[T || P | Q] | N′) and
P ′ ≡ P | R and Q ≡ R | Q′, then the source location of P is the source location
of go lh.P ′ in the reduction without the last step;

– if N � ν(lh[T ‖ Q′] | mj [T ′ ‖ go lh.P ′ | R] | N′′) → ν(lh[T ‖ P | Q] | N′)
and P ′ ≡ P | R′ and Q ≡ R′ | Q′ and N′ ≡ mj [T ′ || R] | N′′, then the
source location of P is the source location of go lh.P ′ in the reduction without the
last step;

– if N � ν(lh[T ′ || P | Q′] | N′′) → ν(lh[T || P | Q] | N′), then the
source location of P is the source location of P in the reduction without the last
step.

The first three cases are the basic cases, in which the process P takes the current
location as source location: in the first one the network is initial, in the other two the
process P is generated by the last reduction step. In the last case the reduction does not
modify the process P , which preserves its source location. In all other cases an action
prefixing the process P (possibly in parallel with other processes and/or modulo the
substitution of a value for a variable) is consumed and the source location of P is the
source location of the process starting with that action in the reduction without the last
step.

The proof of the following proposition follows by induction on reductions.

Proposition 3. In every network obtained by reducing an initial network each go com-
mand in a process either can be typed using the rule (procIgo) or it is followed by the
source location of the process.

We are now able to show that a process can migrate without respecting the security
levels of the locations only if it goes back to its source location.

Proposition 4. If N is an initial network and N � ν(lh[T || go mj .P | Q] | N′),
then either j ≤ h or mj is the source location of the process go mj .P .

Proof. (Sketch) By Proposition 3 go mj .P can be either typed by rule (procIgo), and
then j ≤ h, or the source location of go mj .P must be mj .

6 Conclusion

We discussed a typed version of the Xdπ calculus in which the access to resources
and the mobility of processes must respect a security policy. Since we used a typed
pattern matching which includes a dynamic type checking we will investigate both type
checking and type inference for this calculus, taking into account [7].

We plan to study modifications of our type system which allow:

– to associate different security levels to different branches in the tree,
– to regulate process migration on the basis of the source locations of processes, in-

stead of the current locations,
– to prevent illegal flow of information [15], also in presence of dynamic flow poli-

cies [19].

We will use the behavioural equivalence studied in [12,8] in order to compare networks.

280 M. Dezani-Ciancaglini, S. Ghilezan, and J. Pantović

Acknowledgements. We thank Philippa Gardner and Sergio Maffeis for their careful
reading of an earlier version of the paper and for many useful remarks on it. We also
thank the anonymous referees for detailed and appropriate comments. The final version
of the paper strongly improved due to their suggestions.

References

1. Abiteboul, S., Benjelloun, O., Cautis, B., Milo, T.: Active XML, Security and Access Con-
trol. In: Lifschitz, S. (ed) SBBD’04, pp. 13–22 (2004)

2. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured
Data and XML. In: Data Management Systems, Morgan Kaufmann, Seattle (1999)

3. Ahern, A., Yoshida, N.: Formalising Java RMI with Explicit Code Mobility. In: Gabriel, R.P.,
Johnson, R. (eds.) OOPSLA’05, pp. 403–422. ACM Press, New York (2005)

4. Cardelli, L., Ghelli, G.: A Query Language Based on the Ambient Logic. In: Sands, D.
(ed.) ESOP 2001 and ETAPS 2001. LNCS, vol. 2028, pp. 1–22. Springer, Heidelberg (2004)
(Invited Paper)

5. Cardelli, L., Ghelli, G., Gordon, A.D.: Types for the Ambient Calculus. Information and
Computation 177(2), 160–194 (2002)

6. Castagna, G., Vitek, J., Nardelli, F.Z.: The Seal Calculus. Information and Computa-
tion 201(1), 1–54 (2005)

7. Coppo, M., Cozzi, F., Dezani-Ciancaglini, M., Giovannetti, E., Pugliese, R.: A Mobility Cal-
culus with Local and Dependent Types. In: Middeldorp, A., van Oostrom, V., van Raams-
donk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity.
LNCS, vol. 3838, pp. 404–444. Springer, Heidelberg (2005)

8. Gardner, P., Maffeis, S.: Modelling Dynamic Web Data. Theoretical Computer Science 342,
104–131 (2005)

9. Hennessy, M., Riely, J.: Resource Access Control in Systems of Mobile Agents. Information
and Computation 173, 82–120 (2002)

10. Hennessy, M., Riely, J.: Information Flow vs Resource Access in the Asynchronous π-
calculus. ACM Transactions on Programming Languages and Systems 5, 566–591 (2003)

11. Kiniry, J., Morkan, A., Fairmichael, F., Cochran, D., Chalin, P., Oostdijk, M., Hubbers, E.:
The KOA Remote Voting System: A Summary of Work To-Date. In These Proceedings
(2007)

12. Maffeis, S., Gardner, P.: Behavioural Equivalencies for Dynamic Web Data. In: Lévy, J.-J.,
Mayr, E.W., Mitchell, J.C. (eds.) TCS’04, pp. 541–554. Kluwer, Dordrecht (2004)

13. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I-II. Information and
Computation 100(1), 1–77 (1992)

14. De Nicola, R., Ferrari, G., Pugliese, R., Venneri, B.: Types for Access Control. Theoretical
Computer Science 240(1), 215–254 (2000)

15. Sabelfeld, A., Myers, A.C.: Language-Based Information-Flow Security. IEEE Journal on
Selected Areas in Communications 21(1), 5–19 (2003)

16. Sahuguet, A.: ubQL: A Distributed Query Language to Program Distributed Query Systems.
PhD thesis, Penn University (2002)

17. Sandhu, R.S.: Lattice-based Access Control Models. IEEE Computer 26(11), 9–19 (1993)
18. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge Uni-

versity Press, Cambridge (2001)
19. Zdancewic, S.: Challenges for Information-flow Security. In: Giacobazzi, R. (ed.) PLID’04

(2004) (Invited Paper)

Anonymity Protocols as Noisy Channels�

Konstantinos Chatzikokolakis1, Catuscia Palamidessi1,
and Prakash Panangaden2

1 INRIA and LIX, École Polytechnique, Palaiseau, France
{kostas,catuscia}@lix.polytechnique.fr

2 School of Computer Science, McGill University, Montreal, Quebec, Canada
prakash@cs.mcgill.ca

Abstract. We propose a framework in which anonymity protocols are
interpreted as particular kinds of channels, and the degree of anonymity
provided by the protocol as the converse of the channel’s capacity. We
also investigate how the adversary can test the system to try to infer the
user’s identity, and we study how his probability of success depends on
the characteristics of the channel. We then illustrate how various notions
of anonymity can be expressed in this framework, and show the relation
with some definitions of probabilistic anonymity in literature.

1 Introduction

In this paper we present a general approach to measure the degree of anonymity
provided by an anonymity protocol. Such protocols try to hide the link between
a set A of anonymous events and a set O of observable events. Events in A
represent the information that we want to hide from the potential attacker.
Ideally, we would like him to be totally unable to distinguish the events in A,
that is to deduce which of them really happened in a specific execution of the
protocol. Events in O are the ones that the attacker actually observes. They
should model all the possible outcomes of the protocol, from the point of view of
the attacker. We assume that in each execution of the protocol one event a ∈ A
and one event o ∈ O occur, and that o is disclosed to the attacker. An anonymity
system should prevent the attacker from deducing a given the information about
o and the knowledge about how the system works.

For example, a protocol could be designed to allow users to send messages to
each other without revealing the identity of the sender. In this case, A would
be the set of (the identities of) the possible users of the protocol, if only one
user can send a message at a time, or the powerset of the users, otherwise. On
the other hand, O could contain the sequences of all possible messages that the
attacker can observe, depending on how the protocol works.

Probability plays an important role in anonymity protocols. First of all these
protocols are very often probabilistic themselves. They use random primitives
� This work has been partially supported by the INRIA DREI Équipe Associée

PRINTEMPS. The work of Konstantinos Chatzikokolakis and Catuscia Palamidessi
has been also supported by the INRIA ARC project ProNoBiS.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 281–300, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

282 K. Chatzikokolakis, C. Palamidessi, and P. Panangaden

and the anonymity guarantees are based on the attacker’s inability of determin-
ing the outcome of probabilistic choices. Clearly, the precise analysis of such
protocols requires probabilistic means. Moreover, the analysis performed by the
attacker can be also probabilistic, for example by gathering statistical informa-
tion about the users. The attacker might not be able to find out exactly which
anonymous event happened, but he could obtain a distribution over A and draw
conclusions of the form “user i sent a message with probability 95%”.

In this paper we consider a probabilistic setting, where probability distribu-
tions can be assigned to the elements of A, O. As a consequence we will model
anonymous events by a random variable A on A and observable events by O
on O. From the point of view of the analysis, we are only interested in the dis-
tributions of A, O. In particular, the joint distribution p(a, o) provides all the
information about the conjoint behavior of the protocol and of the users that
we need. From p(a, o) we can derive, indeed, the marginal distributions p(a) and
p(o), and the conditional distributions p(o|a) and p(a|o).

Most of the times, however, one is interested in abstracting from the specific
set of users and its distribution, and proving properties about the protocol it-
self, aiming at universal anonymity properties that will hold no matter how the
users behave (provided they follow the rules of the protocol). To this purpose,
it is worth recalling that the joint distribution p(a, o) can be decomposed as
p(a, o) = p(o|a)p(a). This decomposition singles out exactly the contributions
of the protocol and of the users to the joint probability: p(a), in fact, is the
probability associated to the users, while p(o|a) represents the probability that
the protocol produces o given that the users have produced a. The latter clearly
depends only on the internal mechanisms of the protocol, not on the users.

This view of the protocol in isolation from the users brings us to consider
the protocol as a device that, given a ∈ A as input, it produces an output in O
according to a probability distribution p(·|a). This concept is well investigated in
information theory, where such kind of device is called channel, and it is described
by the matrix whose rows are the elements of A, the columns the elements of
O, and the value in position (a, o) is the conditional probability p(o|a). The
rationale behind this view will be discussed in more details in Section 3.

1.1 Contribution

In this paper we propose a definition of the degree of anonymity of a protocol
in terms of the information-theoretic notion of capacity of the protocol, seen as
channel. We also define a more general notion, that we call relative capacity,
which naturally models the case in which some loss of an anonymity is allowed
by design.

We investigate the relation between the channel’s matrix and the knowledge
that an attacker can gain on the anonymous actions (the channel’s inputs) from
the observables (the channel’s outputs). In particular, we consider attackers fol-
lowing the Bayesian approach to hypothesis testing, and we show bounds on the
Bayesian probability of error regarding the probabilistic information that the
attacker can acquire.

Anonymity Protocols as Noisy Channels 283

We then compare our proposal with various probabilistic notions of anonymity
given in the past, in particular perfect anonymity, group anonymity, and probable
innocence. Finally, we show that the condition of probable innocence corresponds
to a certain information-theoretic bound.

1.2 Related Work

Probabilistic definitions of anonymity have been explored in [1,2,3,4,5]. We dis-
cuss the relation with these works in detail in Section 5.

A recent line of work has been dedicated to exploring the notion of anonymity
from an information-theoretic point of view [6,7]. The main difference with our
approach is that in those works the anonymity degree is expressed in terms of
entropy, rather than mutual information. More precisely, the emphasis is on the
lack of information that an attacker has about the distribution of the users,
rather than on the capability of the protocol to conceal this information despite
of the observables that are made available to the attacker. Moreover, a uniform
user distribution is assumed, while in this paper we try to abstract from the user
distribution and make no assumptions about it.

Channel capacity has been already used in an anonymity context in [8,9],
where the ability to have covert communication as a result of non-perfect anony-
mity is examined. The difference with our approach is that in those works the
channels are constructed by the users of the protocol using the protocol mech-
anisms, and the purpose is to measure the amount of information that can be
transfered through these channels. In this paper, we consider the channel to be
the protocol itself, as an abstraction that allows us to measure anonymity.

Another approach close in spirit to ours is the one of [10]. In this work,
the authors use the notion of relative entropy to perform a metric analysis of
anonymity. In our work, we use the notion of mutual information, which is
a special case of relative entropy. However, the specific application of relative
entropy in [10] is radically different from ours. We use it to compare the entropy
of the input of an anonymity protocol before and after the observation. They
use it to establish a sort of distance between the traces of an anonymity system.

In the field of information flow and non-interference there is a line of research
which is closely related to ours. There have been various works [11,12,13,14,15]
in which the the high information and the low information are seen as the input
and output respectively of a channel. From an abstract point of view, the set-
ting is very similar; technically it does not matter what kind of information we
are trying to conceal, what is relevant for the analysis is only the probabilistic
relation between the input and the output information. The conceptual and tech-
nical novelties of this paper w.r.t. the above works are explained in Section 1.1.
We believe that our results are applicable more or less directly also to the field
of non-interference.

The relation between the adversary’s goal of inferring a secret from the ob-
servables, and the field of “hypothesis testing”, has been explored in other papers
in literature, see in particular [16,17,18]. To our knowledge, however, this is the

284 K. Chatzikokolakis, C. Palamidessi, and P. Panangaden

first time that it is investigated in connection with the matrix of conditional
probabilities determined by the protocol.

1.3 Plan of the Paper

Next section recalls some basic notions about information theory. In Section 3 we
justify our view of protocols as channels and (loss of) anonymity as capacity and
relative capacity, and we give a method to compute these quantities in special
symmetry cases. In Section 4 we consider the tests that an attacker can make
on the protocol in order to gain knowledge about the anonymous actions, and
we discuss the probability of error that limits the inferences based on such tests.
Finally, in Section 5, we relate our framework to other probabilistic approaches
to anonymity.

The proofs of all the results can be found on line at the URL:
www.lix.polytechnique.fr/∼catuscia/papers/Anonymity/Channels/full.pdf.

2 Preliminaries on Information Theory

Being in a purely probabilistic setting gives us the ability to use tools from
information theory to reason about the uncertainty of a random variable and
the information that it can reveal about another random variable. In particular
the notions we will be interested in are entropy, mutual information and channel
capacity. In this section we briefly revise these notions. We refer to [19] for more
details.

In general, we will use capital letters X, Y to denote random variables and
the corresponding calligraphic letters X , Y for their set of values. We will also
use small letters x, y to represent values of these variables, p(x), p(y) to denote
the probability of x and y respectively and p(x, y) to denote the joint probability
of x and y.

Let X be a random variable. The entropy H(X) of X is defined as H(X) =
−

∑
x∈X p(x) log p(x). The entropy measures the uncertainty of a random vari-

able. It takes its maximum value log |X | when X ’s distribution is uniform and
its minimum value 0 when X is constant. We usually take the logarithm with a
base 2 and measure entropy in bits. Roughly speaking, m bits of entropy means
that we have 2m values to choose from, assuming a uniform distribution.

The relative entropy or Kullback Leibler distance between two probability
distributions p, q on the same set X is defined as D(p ‖ q) =

∑
x∈X p(x) log p(x)

q(x) .
It is possible to prove that D(p ‖ q) is always non-negative, and it is 0 if and
only if p = q.

Now let X, Y be random variables. The conditional entropy H(X |Y) is
H(X |Y) = −

∑
y∈Y p(y)

∑
x∈X p(x|y) log p(x|y). Conditional entropy measures

the amount of uncertainty of X when Y is known. It can be shown that 0 ≤
H(X |Y) ≤ H(X). It takes its maximum value H(X) when Y reveals no infor-
mation about X , and its minimum value 0 when Y completely determines the
value of X .

Anonymity Protocols as Noisy Channels 285

Comparing H(X) and H(X |Y) gives us the concept of mutual information
I(X ; Y), which is defined as I(X ; Y) = H(X) − H(X |Y). Mutual information
measures the amount of information that one random variable contains about
another random variable. In other words, it measures the amount of uncertainty
about X that we lose when observing Y . It can be shown that it is symmetric
(I(X ; Y) = I(Y ; X)) and that 0 ≤ I(X ; Y) ≤ H(X).

A communication channel is a tuple 〈X , Y, p(·|·)〉 where X , Y are the sets of
input and output symbols respectively and p(y|x) is the probability of observing
output y ∈ Y when x ∈ X is the input. Given an input distribution p(x) over X
we can define the random variables X, Y for input and output respectively. The
maximum mutual information between X and Y over all possible distributions
p(x) is known as the channel’s capacity: C = maxp(x) I(X ; Y). The capacity of a
channel gives the maximum rate at which information can be transmitted using
this channel.

3 Loss of Anonymity as Channel Capacity

The notions discussed in previous section can be used to reason about the in-
formation that the adversary obtains from the protocol. The entropy H(A) of
A gives the amount of uncertainty about the anonymous events, before execut-
ing the protocol. The higher the entropy is the less certain we are about the
outcome of A. After the execution, however, we also know the actual value of
O. Thus, the conditional entropy H(A|O) gives the uncertainty of the attacker
about the anonymous events after performing the observation. To compare these
two entropies, we consider the mutual information I(A; O) which measures the
information about A that is contained in O. This measure is exactly what we
want to minimize. It the best case it is 0, meaning that we can learn nothing
about A by observing O (in other words H(A|O) is equal to H(A)). In the worst
case it is equal to H(A) meaning that all the uncertainty about A is lost after
the observation, thus we can completely deduce the value of A (H(A|O) is 0).

As explained in the introduction, each execution of an anonymity protocol is
associated to the join probability p(a, o) of the particular values taken by A, O
in that execution. This probability can be written as p(a, o) = p(a)p(o|a). In our
view, among these two values, p(o|a) can be considered as a characteristic of
the protocol, while p(a) depends only on the users. For instance, in a protocol
for sender anonymity, A takes values on the set A of users, and p(a) is the
probability of user a being the sender. In some cases all users might have the
same probability of being the sender, in other cases a particular user might send
messages more often than the others. Since the design of the protocol should
be independent from the particular users who will use it, the analysis of the
protocol should make no assumptions about the distribution on A. On the other
hand p(o|a) gives the probability of o when a is the sender, so it depends only on
the internal mechanisms of the protocol, not on of how often a sends messages.

To abstract from the probabilities of the anonymous events, we view an
anonymity protocol as a channel 〈A, O, p(·|·)〉 where the sets of anonymous

286 K. Chatzikokolakis, C. Palamidessi, and P. Panangaden

Fig. 1. An anonymity channel

events A and observable events O are the input and output alphabets respec-
tively, and the matrix p(o|a) gives the probability of observing o when a is the
input. An anonymity channel is shown in Figure 1. Different distributions of the
input will give different values of I(A; O). We are interested in the worst possi-
ble case, so we define the loss of anonymity as the maximum value of I(A; O)
over all possible input distributions, that is the capacity of the corresponding
channel.

Definition 1. Let 〈A, O, p(·|·)〉 be an anonymity protocol. The loss of anonymity
C of the protocol is defined as

C = max
p(a)

I(A; O)

where the maximum is taken over all possible input distributions.

The loss of anonymity measures the amount of information about A that can be
learned by observing O in the worst possible distribution of anonymous events.
If it is 0 then, no matter what is the distribution of A, the attacker can learn
nothing more by observing the protocol. In fact, as we will see in section 5.1,
this corresponds exactly to notions of perfect anonymity in literature [1,2,3].
However, as we discuss in section 5.3, our framework also captures weaker notions
of anonymity.

As with entropy, channel capacity is measured in bits. Roughly speaking, 1 bit
of capacity means that after the observation A will have one bit less of entropy,
in another words the attacker will have reduced the set of possible users by a
factor 2, assuming a uniform distribution.

3.1 Relative Anonymity

So far, we have assumed that ideally no information about the anonymous events
should be leaked. However, there are cases where some information about the
anonymous events is allowed to be revealed by design, without this leak be
considered as a flaw of the protocol. Consider, for example, the case of a simple
elections protocol, displayed in figure 2. For simplicity we assume that there
are only two candidates c and d, and that each user always votes for one of
them, so an anonymous event can be represented by the subset of users who
voted for candidate c. In other words, A = 2V where V is the set of voters.
The output of the protocol is the list of votes of all users, however, in order

Anonymity Protocols as Noisy Channels 287

Fig. 2. A simple elections protocol

to achieve anonymity, the list is randomly reordered, using for example some
MIX technique1. As a consequence, the attacker can see the number of votes
for each candidate, although he should not be able to find out who voted for
whom. Indeed, determining the number of votes of candidate c (the cardinality
of a), while concealing the vote expressed by each individual (the elements that
constitute a), is the purpose of the protocol.

So it is clear that after the observation only a fraction of the anonymous events
remains possible. Every event a ∈ A with |a| �= n where n is the number of votes
for candidate c can be ruled out. As a consequence H(A|O) will be smaller than
H(A) and the capacity of the corresponding channel will be non-zero, meaning
that some anonymity is lost. In addition, there might be a loss of anonymity due
to other factors, for instance, if the reordering technique is not uniform. However,
it is undesirable to confuse these two kinds of anonymity losses, since the first is
by design and thus acceptable. We would like a notion of anonymity that factors
out the intended loss and measures only the loss that we want to minimize.

In order to cope with the intended anonymity loss, we introduce a random
variable R whose outcome is the revealed information. In the example of the
elections protocol, the value of R is the cardinality of a. Since we allow to reveal
R by design, we can consider that R is known even before executing the protocol.
So, H(A|R) gives the uncertainty about A given that we know R and H(A|R, O)
gives the uncertainty after the execution of the protocol, when we know both
R and O. By comparing the two we retrieve the notion of conditional mutual
information I(A; O|R) defined as

I(A; O|R) = H(A|R) − H(A|R, O)

So, I(A; O|R) is the amount of uncertainty on A that we lose by observing O,
given that R is known. Now we can define the notion of relative loss of anonymity.

Definition 2. Let 〈A, O, p(·|·)〉 be an anonymity protocol and R a random vari-
able defined by its set of values R and a probability matrix p(r|a, o). The relative
loss of anonymity of the protocol with respect to R is defined as

C|R = max
p(a)

I(A; O|R)

where the maximum is taken over all possible input distributions.
1 In MIX protocols an agent waits until it has received requests from multiple users

and then forwards the requests in random order to hide the link between the sender
and the receiver of each request.

288 K. Chatzikokolakis, C. Palamidessi, and P. Panangaden

Partitions: a special case of relative anonymity. An interesting special
case of relative anonymity is when the knowledge of either an anonymous event
or an observable event totally determines the value of R. In other words, both A
and O are partitioned in subsets, one for each possible value of R. The elections
protocol of the previous section is an example of this case. In this protocol, the
value r of R is the number of votes for candidate A. This is totally determined
by both anonymous events a (r is the cardinality of a) and observable events o
(r is the number of c’s in o). So we can partition A in subsets A0, . . . , An such
that |a| = n for each a ∈ An, and similarly for O. Notice that an anonymous
event a ∈ Ai produces only observables in Oi, and vice versa.

In this section we show that such systems can be viewed as the composition
of smaller, independent sub-systems, one for each value of R.

We say that R partitions a random variable X if p(r|x) is 0 or 1 for all r ∈ R
and x ∈ X . In this case we can partition X as follows

Xr = {x ∈ X | p(r|x) = 1}

Clearly the above sets are disjoint and their union is X .

Theorem 1. Let 〈A, O, p(·|·)〉 be an anonymity protocol and R a random vari-
able defined by its set of values R = {r1, . . . , rl} and a probability matrix p(r|a, o).
If R partitions both A and O then the transition matrix of the protocol is of the
form

Or1 Or2 · · · Orl

Ar1 Mr1 0 . . . 0
Ar2 0 Mr2 . . . 0
...

...
...

. . .
...

Arl
0 0 . . . Mrl

and
C|R ≤ d ⇔ Ci ≤ d, ∀i ∈ 1..l

where Ci is the capacity of the channel with matrix Mri .

3.2 Computing the Channel’s Capacity

In general, there is no formula to compute the capacity of an arbitrary channel.
In practice, however, channels have symmetry properties that can be exploited
to compute the capacity in an easy way. In this section we define classes of
symmetry and discuss how to compute the capacity for each class. Two classic
cases are the symmetric and weakly symmetric channels.

Definition 3. A matrix is symmetric if all rows are permutations of each other
and all columns are also permutations of each other. A matrix is weakly sym-
metric if all rows are permutations of each other and the column sums are equal.

The following result is from literature:

Anonymity Protocols as Noisy Channels 289

Theorem 2 ([19], page 189). Let 〈A, O, p(·|·)〉 be a channel. If p(·|·) is weakly
symmetric then the channel’s capacity is given by a uniform input distribution
and is equal to

C = log |O| − H(r)

where r is a row of the matrix and H(r) is the entropy of r.

Note that symmetric channels are also weakly symmetric so Theorem 2 holds
for both classes.

In anonymity protocols, we expect all rows of the protocol’s matrix to be
permutations of each other since all users are executing the same protocol. On
the other hand, the columns are not necessarily permutations of each other.
Some symmetry is expected: if an observable o1 is produced with probability
p under user a1, it is reasonable to assume that under a2 there will be some
other observable o2 produced with the same probability. However, we can have
observables that are produced with equal probability by all users. Clearly, these
“constant” columns cannot be the permutation of a non-constant one so the
resulting channel matrix will not be symmetric (and not even weakly symmetric).

To cope with this kind of channels we define a more relaxed kind of symmetry
called partial symmetry. In this class we allow some columns to be constant and
we require the sub-matrix, composed only by the non-constant columns, to be
symmetric. A weak version of this symmetry can also be defined.

Definition 4. A matrix is partially symmetric (resp. weakly partially symmet-
ric) if some columns are constant (possibly with different values in each column)
and the rest of the matrix is symmetric (resp. weakly symmetric).

Now we can extend Theorem 2 to the case of partial symmetry.

Theorem 3. Let 〈A, O, p(·|·)〉 be a channel. If p(·|·) is weakly partially symmet-
ric then the channel’s capacity is given by

C = ps log
|Os|
ps

− H(rs)

where Os is the set of symmetric output values, rs is the symmetric part of a
row of the matrix and ps is the sum of rs.

Note that Theorem 3 is a generalization of Theorem 2. A (weakly) symmetric
channel can be considered as (weakly) partially symmetric with no constant
columns. In this case Os = O, rs = r, ps = 1 and we retrieve Theorem 2 from
Theorem 3.

4 Testing Anonymous Events

In this section we illustrate the relation between the channel’s matrix and the
possibility for the attacker of guessing the anonymous event from the consequent
observable event. This problem is known in statistics literature as hypothesis

290 K. Chatzikokolakis, C. Palamidessi, and P. Panangaden

testing. The idea is that we have a set of data or outcomes of an experiment, and
a set of possible alternative explanations (hypotheses). We have to infer which
hypothesis holds from the data, possibly by repeating the experiment, and try to
minimize the probability of guessing the wrong hypothesis (probability of error).

We assume that the same hypothesis holds through the repetition of the ex-
periment, which corresponds to allowing the attacker to force the user to redo
the action. For instance, in Crowds, the attacker can intercept the message and
destroy it, thus obliging the sender to resend it. We also assume that the ran-
dom variables corresponding to the outcomes of the experiments are indepen-
dent. This corresponds to assuming that the protocol is memoryless, i.e. each
time it is reactivated, it works according to the same probability distribution,
independently from what happened in previous sessions.

In statistics there are several frameworks and methods for hypothesis testing.
We consider here the Bayesian approach, which requires the knowledge of the
matrix of the protocol and of the a priori distribution of the hypotheses, and
tries to infer the a posteriori probability of the actual hypothesis w.r.t. a given
observation or sequence of observations. The first assumption (knowledge of the
matrix of the protocol) is usually granted in an anonymity setting, since the way
the protocol works is public. The second assumption may look too strong, since
the attacker does not usually know the distribution of the anonymous actions. We
show, however, that under certain conditions the a priori distribution becomes
less and less relevant with the repetition of the experiment, and, at the limit, it
does not matter at all.

Let us introduce some notation. Given an anonymous event a, consider the
situation in which the attacker forces the users to execute the protocol n times
with the same a as input event, and tries to infer a from the n observable outputs
of the protocol executions. Let O1, O2, . . . , On represent the random variables
corresponding to the observations made by the attacker, and let o denote a
sequence of observed outputs o1, o2, . . . on. As stated above, we assume that O1,
O2, . . . , On are independent, hence the distribution of each of them is given by
p(·|a), and their conjoint distribution p : On → [0, 1] is given by

p(o|a) =
n∏

i=1

p(oi|a) (1)

Let fn : On → A be the decision function adopted by the adversary to infer the
anonymous action from the sequence of observables. Let Efn : A → On be the
function that gives the error region of fn when a ∈ A has occurred, namely:

Efn(a) = {o ∈ On | fn(o) �= a}

Finally, let ηn : A → [0, 1] be the function that associates to each a ∈ A the
probability of inferring the wrong input event on the basis of fn when a ∈ A has
occurred, namely:

ηn(a) =
∑

o∈Efn (a)

p(o|a)

Anonymity Protocols as Noisy Channels 291

We are now ready to introduce the probability of error associated to anonymous
action testing on a given anonymity protocol, following the lines of the Bayesian
approach (see for instance [19], Section 12.8).

Definition 5. Given an anonymity protocol 〈A, O, p(·|·)〉, a sequence of n ex-
periments, and a decision function fn, the Bayesian probability of error Pfn is
defined as the probability weighted sum over A of the individual probabilities of
error. Namely:

Pfn =
∑

a∈A

p(a)ηn(a)

In the Bayesian framework, the best possible decision function is given by the
so-called maximum a posteriori rule, which, given the sequence of observables
o ∈ On, tries to maximize the a posteriori probability of the hypothesis a w.r.t.
o. The a posteriori probability of a w.r.t. o is given by Bayes theorem (aka Bayes
Inversion Rule):

p(a|o) =
p(o|a)p(a)

p(o)
We now define a class of decision functions based on the above approach.

Definition 6. Given an anonymity protocol 〈A, O, p(·|·)〉, and a sequence of n
experiments, a decision function fn is a Bayesian decision function if for each
o ∈ On, fn(o) = a implies p(o|a)p(a) ≥ p(o|a′)p(a′) for every a′ ∈ A.

The above definition is justified by the following result which is a straightforward
consequence of known results in literature.

Proposition 1. Given an anonymity protocol 〈A, O, p(·|·)〉, a sequence of n ex-
periments, and a Bayesian decision function fn, for any other decision function
hn we have that Pfn ≤ Phn .

4.1 Independence from the Input Distribution

The definition of the Bayesian decision functions depends on the a priori proba-
bility distribution on A. This might look artificial, since in general such distribu-
tion is unknown. We will show, however, that under a certain condition on the
matrix of the protocol, for n large enough, the Bayesian decision functions and
the associated Bayesian probability of error do not depend on the distribution
on A.

The following definition establishes the condition on the matrix.

Definition 7. Given an anonymity protocol 〈A, O, p(·|·)〉, we say that such pro-
tocol is Bayesian-determinate iff all rows are pairwise different, i.e. the proba-
bility distributions p(·|a), p(·|a′) are different for each pair a, a′ with a �= a′.

We will now show that if a protocol is Bayesian-determinate, then in the def-
inition of the decision functions the distribution on A eventually washes out.
The intuition is that, in the comparison between p(o|a)p(a) and p(o|a′)p(a′),
the factor p(a)p(a′) is dominated by the factor p(o|a)p(o|a′), for n large enough,
provided that the latter is different from 1.

292 K. Chatzikokolakis, C. Palamidessi, and P. Panangaden

Proposition 2. Given aBayesian-determinate anonymity protocol 〈A, O, p(·|·)〉,
for any distribution p(·) on A, anyBayesian decision functions fn, and any decision
function gn : On → A such that gn(o) = a implies p(o|a) ≥ p(o|a′) for all a′ ∈ A,
we have that gn approximates fn. Namely, for any ε > 0, there exists n such that
the probability of the set {o ∈ On | fn(o) �= gn(o)} is smaller than ε.

Proposition 2 allows us to define a decision function, for n sufficiently large, by
comparing only the probabilities p(o|a) for different a’s. These probabilities are
determined uniquely by the matrix and therefore no knowledge of the a priori
probability on A is required.

4.2 Bounds on the Bayesian Probability of Error

In this section we discuss some particular cases of matrices and the corresponding
bounds on the error that can be introduced by the Bayesian decision functions.
Some more cases will be considered in the next section.

We start with the bad case (from the anonymity point of view), which is when
the matrix is Bayesian-determinate:

Proposition 3. Given aBayesian-determinate anonymity protocol 〈A, O, p(·|·)〉,
for any distribution p(·) on A, and for any ε, there exists n such that the property

gn(o) = a implies p(o|a) ≥ p(o|a′) for all a′ ∈ A

determines a unique decision function gn on a set of probability greater than
1 − ε, and the Bayesian probability of error Pgn is smaller than ε.

Proposition 3 and its proof tell us that, in case of Bayesian-determinate matrices,
there is essentially only one decision function, and it is value is determined, for
n sufficiently large, by the a for which p(o|a) is greatest.

Consider now the opposite case, i.e. when there are at least two identical rows
in the matrix, in correspondence of a1 and a2. In such case, for the sequences
o ∈ On such that p(o|a1)(= p(o|a2)) is maximal, the value of gn is not uniquely
determined, because we could choose either a1 or a2. Assuming that we choose
arbitrarily between them, and that the probability of choosing the wrong one is
uniformly distributed, we have that the Bayesian probability of error is bound
from below as follows2: Pgn =

∑
a∈A p(a)ηn(a) ≥ p(a1)1/2 + p(a2)1/2.

More in general, if there are k identical rows a1, a2, . . . , ak, the lower bound
to the Bayesian probability of error is Pgn =

∑
a∈A p(a)ηn(a) ≥ p(a1)(k−1)/k+

p(a2)(k − 1)/k + . . . + p(ak)(k − 1)/k.
The situation is slightly different if we know the a priori distribution and we

define the function fn. In this case, the criterion of maximizing p(a)p(o|a) reduces
to maximizing p(a). Hence, observing the outcome of the protocol does not add
2 Note that this bound is strict. In fact, using the strong law of large numbers it is

possible to prove that, when either a1 or a2 is the actual input, the probability of
the set of the sequences o ∈ On for which p(o|a1) (and p(o|a2)) is maximal goes to
1 as n goes to ∞.

Anonymity Protocols as Noisy Channels 293

any information to what we already know. However, the a priori knowledge can
help to make a sensible guess about the most likely a. This is not the case, of
course, if in addition to rows a1 and a2 being identical we also have p(a1) = p(a2).

5 Relation with Existing Anonymity Notions

In this section we consider some particular channels, and we illustrate the rela-
tion with probabilistic (non information-theoretic) notions of anonymity existing
in literature.

5.1 Capacity 0: Strong Anonymity

The case in which the capacity of the anonymity protocol is 0 is by definition
obtained when I(A; O) = 0 for all possible input distributions of A. From infor-
mation theory we know that this is the case iff A and O are independent (cfr.
[19], page 27). Hence we have the following characterization:

Proposition 4. Given an anonymity system 〈A, O, p(·|·)〉, the capacity of the
corresponding channel is 0 iff all the rows of the channel matrix are the same,
i.e. p(o|a) = p(o|a′) for all o, a, a′.

The condition p(o|a) = p(o|a′) for all o, a, a′ has been called strong probabilistic
anonymity in [3] and it is equivalent to the condition p(a|o) = p(a) for all o, a.
The latter was considered as a definition of anonymity in [1] and it is called
conditional anonymity in [2].

Capacity 0 is the optimal case, of course, also w.r.t. the capability of the
adversary of testing the anonymous events (cfr. Section 4): All the rows are the
same, hence p(o|a1) = p(o|a2) for all a1, a2 ∈ A, and o ∈ On. Consequently
the observations are of no use for the attacker to infer the anonymous event, i.e.
to define the “right” gn(o), since all p(o|a) are maximal. Assuming a uniform
distribution in assigning a value to gn(o), the Bayesian probability of error is
bound from below by (|A| − 1)/|A| (cfr. Section 4.2).

An example of protocol with capacity 0 is the dining cryptographers in a
connected graph [1], under the assumption that it is always one of the cryptog-
raphers who pays, and that the coins are fair.

5.2 Relative Capacity 0: Strong Group Anonymity

Group anonymity usually indicates the situation in which the users are divided
in groups, and the protocol allows to figure out the group which the culprit
belongs to, although it tries to conceal which user in the group is the culprit.

Such situation corresponds to having a partition on A and O, see Section 3.1.
The case of relative capacity 0 is obtained when each Mri has capacity 0, namely
when in each group ri the rows are identical.

From the point of view of testing the anonymous events we note the following:
given a o ∈ On, there exists exactly one group ri of a’s such that p(o|a) > 0, and

294 K. Chatzikokolakis, C. Palamidessi, and P. Panangaden

p(o|a1) = p(o|a2) for all a1, a2 in ri. Hence the attacker knows that the “right”
value of gn(o) is an a in ri, but he does not know exactly which one. In other
words, on the basis of the observations the attacker can get complete knowledge
about the group, but remains completely uncertain about the exact event a in
the group, as expected. The lower bound on the Bayesian probability of error is
(|Ar| − 1)/|Ar| where r ∈ R determines the set of maximal cardinality in A.

An example of protocol with relative capacity 0 is the dining cryptographers
in a generic graph [1], under the assumption that the coins are fair. The groups
correspond to the connected components of the graph.

The notion of strong group anonymity seems also related to the notion of
equivalence classes in [20]. Exploring this connection is left for future work.

5.3 Probable Innocence: Weaker Bounds on Capacity

Probable innocence is a weak notion of anonymity introduced by Reiter and Ru-
bin [4] for Crowds, a system based on communicating a message from the origi-
nator to the receiver through a sequence of users acting as forwarders. Probable
innocence was verbally defined as “from the attacker’s point of view, the sender
appears no more likely to be the originator of the message than to not be the
originator”. In literature there are three different definitions [4,2,5] that try to
formally express this notion, see [5] for details. In this section we discuss the
relation between these definitions and the channel capacity.

Definition of Reiter and Rubin. In [4] Reiter and Rubin give a formalization
of probable innocence for the Crowds protocol, which limits the probability of
detection, that is the probability of a certain observable that reveals each sender.
The definition requires the probability of these observables to be less than one
half. A protocol satisfies RR-probable innocence if p(o|a) ≤ 1

2 ∀o ∈ O, ∀a ∈ A.
In [5] it is argued that this definition is not suitable for arbitrary protocols. We
now show that RR-probable innocence imposes no bound on the capacity of the
corresponding channel. Consider, for example, the protocol shown in figure 3.
The protocols satisfies RR-probable innocence since all values of the matrix are
less than or equal to one half. However the channel capacity is (the matrix is
symmetric) C = log |O| − H(r) = log(2n) − log 2 = log n which is the maxi-
mum possible capacity, equal to the entropy of A. Indeed, users can be perfectly
identified by the output since each observable is produced by exactly one user.

Note, however, that in Crowds there are some special symmetries under which
RR-probable innocence is equivalent to CP-probable innocence so a bound on
the capacity can be obtained.

Definition of Halpern and O’Neill. In [2] Halpern and O’Neill give a def-
inition of probable innocence that focuses on the attacker’s confidence that a
particular anonymous event happened, after performing an observation. It re-
quires that the probability of an anonymous event should be at most one half,
under any observation. A protocol satisfies HO-probable innocence if p(a|o) ≤
1
2 ∀o ∈ O, ∀a ∈ A. This definition looks like the one of Reiter and Rubin but

Anonymity Protocols as Noisy Channels 295

o1 o2 o3 o4 · · · o2n−1 o2n

a1 1/2 1/2 0 0 . . . 0 0
a1 0 0 1/2 1/2 . . . 0 0
...

...
. . .

...
an 0 0 0 0 . . . 1/2 1/2

Fig. 3. A maximum-capacity channel which satisfies RR-probable innocence

its meaning is very different. It does not limit the probability of observing o.
Instead, it limits the probability of an anonymous event a given the observation
of o.

As discussed in [5], the problem with this definition is that it depends on the
probabilities of the anonymous events which are not part of the protocol. As
a consequence, HO-probable innocence cannot hold for all input distributions.
If we consider a distribution where p(a) is very close to 1, then p(a|o) cannot
possibly be less than 1/2. So we cannot speak about the bound that HO-probable
innocence imposes to the capacity, since to compute the capacity we quantify
over all possible input distributions and HO-probable innocence cannot hold for
all of them. However, if we limit ourselves to the input distributions where HO-
probable innocence actually holds, then we can prove the following proposition.

Proposition 5. Let 〈A, O, p(·|·)〉 be a channel and p(a) a fixed distribution over
A. If the channel is symmetric and satisfies HO-probable innocence for this input
distribution then I(A; O) ≤ H(A) − 1.

Note that we consider the mutual information for a specific input distribution,
not the capacity, for the reasons explained above.

Definition of Chatzikokolakis and Palamidessi. The definition of [5] tries
to combine the other two by considering both the probability of producing some
observable and the attackers confidence after the observation. This definition
considers the probability of two anonymous evens a, a′ producing the same ob-
servable o and does not allow p(o|a) to be too high or too low compared to
p(o|a′). A protocol satisfies CP-probable innocence if

(n − 1) ≥ p(o|a)
p(o|a′)

∀o ∈ O, ∀a, a′ ∈ A (2)

where n = |A|. In [5] it is shown that this definition overcomes some drawbacks
of the other two definitions of probable innocence and it is argued that it is
more suitable for general protocols. In this section we show that CP-probable
innocence imposes a bound on the capacity of the corresponding channel, which
strengthens our belief that it is a good definition of anonymity.

Since the purpose of this definition is to limit the fraction p(o|a)
p(o|a′) we could

generalize it by requiring this fraction to be less than or equal to a constant γ.

296 K. Chatzikokolakis, C. Palamidessi, and P. Panangaden

Definition 8. An anonymity protocol 〈A, O, p(·|·)〉 satisfies partial anonymity
if there is a constant γ such that

γ ≥ p(o|a)
p(o|a′)

∀o ∈ O, ∀a, a′ ∈ A

A similar notion is called weak probabilistic anonymity in [21].
Note that partial anonymity generalizes both CP-probable innocence (γ =

n−1) and strong probabilistic anonymity (γ = 1). The following theorem shows
that partial anonymity imposes a bound to the channel capacity:

Theorem 4. Let 〈A, O, p(·|·)〉 be an anonymity protocol. If the protocol is sym-
metric and satisfies partial anonymity with γ > 1 then

C ≤ log γ

γ − 1
− log

log γ

γ − 1
− log ln 2 − 1

ln 2

This bound has two interesting properties. First, it depends only on γ and not
on the number of input or output values or on other properties of the channel
matrix. Second, the bound converges to 0 as γ → 1. As a consequence, due to the
continuity of the capacity as a function of the channel matrix, we can retrieve
Proposition 4 about strong probabilistic anonymity (γ = 1) from Theorem 4. A
bound for probable innocence can be obtained by taking γ = n−1, so Theorem 4
treats strong anonymity and probable innocence in a uniform way. Note that this
bound is proved for the special case of symmetric channels, we plan to examine
the general case in the future.

Concerning the testing of the anonymous events, it is interesting to note that,
if the attacker has the possibility of repeating the test with the same input an
arbitrary number of times, then probable innocence does not give any guarantee.
In fact, condition 2 does not prevent the function p(o|·) from having a maximum
with probability close to 1, for a sufficiently long sequence of observables o. So we
can define gn(o) to be such maximum, and we have that the Bayesian error cor-
responding to gn goes to 0. The only exception is when two (or more) raws a1, a2
are equal and correspond to maximals. Imposing this condition for all anony-
mous actions is equivalent to require strong anonymity. In conclusion, possible
innocence maintains an upper bound on anonymity through protocol repetition
only if the system is strongly anonymous. This result generalizes the one ex-
pressed by Proposition 17 in [5]: In the latter, the same conclusion is drawn, but
the tests are limited to the observable sequences of the form o, o, . . . , o.

6 Computing the Degree of Anonymity of a Protocol

In this section we discuss how to compute the channel matrix and the degree of
anonymity for a given protocol, possibly using automated tools. We illustrate our
ideas on a simple, well-known anonymity problem from the literature, namely
the dining cryptographers, proposed by Chaum in [1].

Anonymity Protocols as Noisy Channels 297

In this problem three cryptographers are dining together. At the end of the
dinner, the bill will be paid by either one of them or another agent called the
master. The master decides who will pay and then informs each cryptographer
individually about whether the latter has to pay or not. The cryptographers
would like to find out whether the payer is one of them or the master. However, in
the case in which one of them is the payer, they also wish to maintain anonymity
over the identity of the payer. To achieve this, each cryptographer tosses a coin
which is visible to himself and his neighbor to the right. Each cryptographer
observes the two coins that he can see and announces agree if they are the same
or disagree otherwise. However, the paying cryptographer will say the opposite.
It can be proved that if the number of disagrees is even, then the master is
paying; otherwise, one of the cryptographers is paying. Furthermore, the payer
stays anonymous to both an external observer and the other cryptographers.

To measure the degree of anonymity of a system, we start by identifying
the set of anonymous events, which depend on what the system is trying to
hide. In protocols where one user performs an action of interest (like paying
in our example) and we want to protect his identity, the set A would be the
same as the set I of the users of the protocol. In the dining cryptographers, we
take A = {c1, c2, c3, m} where ci means that cryptographer i is paying and m
that the master is paying. In protocols where k users can perform the action of
interest simultaneously at each protocol execution, A would contain all k-tuples
of elements of I. Another interesting case are MIX protocols, in which we are
not interested in protecting the fact that someone sent a message (this is indeed
detectable), but instead, the link between the sender and the receiver, when k
senders send messages to k receivers simultaneously. In that case we consider
the sets Is, Ir of senders and receivers respectively, and take A to contain all
k-tuples of pairs (a, a′) where a ∈ Is, a

′ ∈ Ir.
Then the set of observable events should also be defined, based on the visible

actions of the protocol and on the various assumptions made about the attacker.
In the dining cryptographers, we consider for simplicity the case where all the
cryptographers are honest and the attacker is an external observer (the case
of corrupted cryptographers can be treated similarly). Since the coins are only
visible to the cryptographers, the only observables of the protocol are the an-
nouncements of agree/disagree. So the set of observable events will contain all
possible combinations of announcements, that is O = {aaa, aad, . . . , ddd} where
a means agree and d means disagree.

If some information about the anonymous events is revealed intentionally then
we should consider using relative anonymity (see Section 3.1). In the dining
cryptographers, the information about whether the payer is a cryptographer or
not is revealed by design (this is the purpose of the protocol). If, for example,
the attacker observes aaa then he concludes that the anonymous event that
happened is m since the number of disagree is even. To model this fact we use
relative anonymity and we take R = {m, c} where m means that the master is
paying and c that one of the cryptographers is paying.

298 K. Chatzikokolakis, C. Palamidessi, and P. Panangaden

daa ada aad ddd aaa dda dad add

c1 0.25 0.25 0.25 0.25 0 0 0 0

c2 0.25 0.25 0.25 0.25 0 0 0 0

c3 0.25 0.25 0.25 0.25 0 0 0 0

m 0 0 0 0 0.25 0.25 0.25 0.25

daa ada aad ddd aaa dda dad add

c1 0.37 0.21 0.21 0.21 0 0 0 0

c2 0.21 0.37 0.21 0.21 0 0 0 0

c3 0.21 0.21 0.37 0.21 0 0 0 0

m 0 0 0 0 0.37 0.21 0.21 0.21

Fig. 4. The channel matrices for probability of head p = 0.5 (left) and p = 0.7 (right)

After defining A, O, R we should model the protocol in some formal prob-
abilistic language. In our example, we modeled the dining cryptographers in
the language of the PRISM model-checker, which is essentially a formalism to
describe Markov Decision Processes. Then the channel matrix of conditional
probabilities p(o|a) must be computed, either by hand or using an automated
tool like PRISM. In the case of relative anonymity, the probabilities p(o|r) and
p(o|a, r) are needed for all a, o, r. However, in our example, R partitions A and O,
so by Theorem 1 we can compute the relative loss of anonymity as the maximum
capacity of the sub-channels for each value of R individually. For R = m the
sub-channel has only one input value, hence its capacity is 0. Therefore the only
interesting case is when R = c. In our experiments, we use PRISM to compute
the channel matrix, while varying the probability p of each coin giving head.
PRISM can compute the probability of reaching a specific state starting from a
given one. Thus, each conditional probability p(o|a) is computed as the proba-
bility of reaching a state where the cryptographers have announced o, starting
from the state where a is chosen. In Fig. 4 the channel matrix is displayed for
p = 0.5 and p = 0.7.

Finally, from the matrix, the capacity can be computed in two different ways.
Either by using the general Arimoto-Blahut algorithm (see for instance [19]),
or by using Theorem 3 which can be applied because the matrix is partially
symmetric. The resulting graph is displayed in Fig. 5. As expected, when p = 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1

C
ha

nn
el

 c
ap

ac
ity

Probability of heads

Fig. 5. The degree of anonymity in the Dining Cryptographers as a function of the
coins’ probability to give head

Anonymity Protocols as Noisy Channels 299

the protocol is strongly anonymous and the relative loss of anonymity is 0.
When p approaches 0 or 1, the attacker can deduce the identity of the payer
with increasingly high probability, so the capacity increases. In the extreme case
where the coins are totally biased the attacker can be sure about the payer, and
the capacity takes its maximum value of log 3.

References

1. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. Journal of Cryptology 1, 65–75 (1988)

2. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent
systems. Journal of Computer Security 13, 483–512 (2005)

3. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de
Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidel-
berg (2005), http://www.lix.polytechnique.fr/∼catuscia/papers/Anonymity/
concur.pdf

4. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for Web transactions. ACM Trans-
actions on Information and System Security 1, 66–92 (1998)

5. Chatzikokolakis, K., Palamidessi, C.: Probable innocence revisited. Theoreti-
cal Computer Science 367, 123–138 (2006), http://www.lix.polytechnique.fr/
~catuscia/papers/Anonymity/reportP I.pdf

6. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53.
Springer, Heidelberg (2003)

7. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68.
Springer, Heidelberg (2003)

8. Moskowitz, I.S., Newman, R.E., Crepeau, D.P., Miller, A.R.: Covert channels and
anonymizing networks. In: Jajodia, S., Samarati, P., Syverson, P.F. (eds.) WPES,
pp. 79–88. ACM, New York (2003)

9. Moskowitz, I.S., Newman, R.E., Syverson, P.F.: Quasi-anonymous channels. In:
IASTED CNIS, pp. 126–131 (2003)

10. Deng, Y., Pang, J., Wu, P.: Measuring anonymity with relative entropy. In: Pro-
ceedings of the 4th International Workshop on Formal Aspects in Security and
Trust. LNCS, Springer, Heidelberg (to appear, 2006)

11. McLean, J.: Security models and information flow. IEEE Symposium on Security
and Privacy, 180–189 (1990)

12. Gray III, J.W.: Toward a mathematical foundation for information flow security.
In: Proceedings of the 1991 IEEE Computer Society Symposium on Research in
Security and Privacy SSP ’91, Washington - Brussels - Tokyo, pp. 21–35. IEEE,
Los Alamitos (1991)

13. Clark, D., Hunt, S., Malacaria, P.: Quantitative analysis of the leakage of confi-
dential data. In: Proc. of QAPL 2001. Electr. Notes Theor. Comput. Sci, vol. 59
(3), pp. 238–251. Elsevier Science B.V., Amsterdam (2001)

14. Clark, D., Hunt, S., Malacaria, P.: Quantified interference for a while language.
In: Proc. of QAPL 2004. Electr. Notes Theor. Comput. Sci, vol. 112, pp. 149–166.
Elsevier Science B.V., Amsterdam (2005)

15. Lowe, G.: Quantifying information flow. In: Proc. of CSFW 2002, pp. 18–31. IEEE
Computer Society Press, Los Alamitos (2002)

http://www.lix.polytechnique.fr/$sim $catuscia/papers/Anonymity/concur.pdf
http://www.lix.polytechnique.fr/$sim $catuscia/papers/Anonymity/concur.pdf
http://www.lix.polytechnique.fr/~catuscia/papers/Anonymity/reportP I.pdf
http://www.lix.polytechnique.fr/~catuscia/papers/Anonymity/reportP I.pdf

300 K. Chatzikokolakis, C. Palamidessi, and P. Panangaden

16. Maurer, U.M.: Authentication theory and hypothesis testing. IEEE Transactions
on Information Theory 46, 1350–1356 (2000)

17. Pierro, A.D., Hankin, C., Wiklicky, H.: Approximate non-interference. Journal of
Computer Security 12, 37–82 (2004)

18. Pierro, A.D., Hankin, C., Wiklicky, H.: Measuring the confinement of probabilistic
systems. Theoretical Computer Science 340, 3–56 (2005)

19. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons,
Inc, Chichester (1991)

20. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.
In: Proc. of CSFW 2000, pp. 200–214. IEEE Computer Society Press, Los Alamitos
(2000)

21. Deng, Y., Palamidessi, C., Pang, J.: Weak probabilistic anonymity. In: Proc. of
SecCo 2005. Electronic Notes in Theoretical Computer Science, Elsevier Science
Publishers, Amsterdam (2005), http://www.lix.polytechnique.fr/∼catuscia/
papers/Anonymity/report wa.pdf

http://www.lix.polytechnique.fr/$sim $catuscia/papers/Anonymity/report_wa.pdf
http://www.lix.polytechnique.fr/$sim $catuscia/papers/Anonymity/report_wa.pdf

A Framework for Automatically Checking
Anonymity with μCRL

Tom Chothia1, Simona Orzan2,1, Jun Pang3, and Mohammad Torabi Dashti1

1 Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands
2 Technische Universiteit Eindhoven, Eindhoven, The Netherlands
3 Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany

Abstract. We present a powerful and flexible method for automatically
checking anonymity in a possibilistic general-purpose process algebraic
verification toolset. We propose new definitions of a choice anonymity
degree and a player anonymity degree, to quantify the precision with
which an intruder is able to single out the true originator of a given event
or to associate the right event to a given protocol participant. We show
how these measures of anonymity can be automatically calculated from a
protocol specification in μCRL, by using a combination of dedicated tools
and existing state-of-the-art μCRL tools. To illustrate the flexibility of
our method we test the Dining Cryptographers problem and the FOO 92
voting protocol. Our definitions of anonymity provide an accurate picture
of the different ways that anonymity can break down, due for instance
to coallitions of inside intruders. Our calculations can be performed on
a cluster of machines, allowing us to check protocols for large numbers
of participants.

1 Introduction

Anonymity, as a security property, refers to the ability of a user to own some
data or take some actions without being tracked down. This property is essential
in protocols that might involve sensitive personal data, like electronic auctions,
voting, anonymous broadcasts, file-sharing etc. Due to its relevance and subtle
nature, anonymity has been given many definitions [3,16,17,26] and has been
the subject of many theoretical studies and formal analysis [19,21]. However,
automatic approaches to the formal verification of anonymity have only treated
small examples of individual protocols [10,20,28,30]. We address this situation
by investigating the possibility of using a powerful general-purpose explicit-state
verification toolset, μCRL [4], to automatically verify anonymity properties. We
define two measures of anonymity and set up a framework to calculate them
from process specifications.

Our definitions of anonymity are based on a notion of secret choices for par-
ticipants. These choices may signify actions (e.g., accessing a certain web server)
or data (e.g., votes in a voting protocol). We represent a protocol as a com-
position of a number of players (participants), each given a secret choice. The
two types of anonymity that we propose quantify the ability of an intruder to

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 301–318, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

302 T. Chothia et al.

deduce the right association of players and choices. Consider a voting protocol
with 50 candidates and 1000 voters. There are two types of questions that the in-
truder may ask: 1) who voted for a particular candidate, for instance candidate3
and 2) what was the vote of a particular player, for instance player1 . In the
first case, a choice is fixed (candidate3) and the originator(s) of that choice are
sought, in the second case a player is fixed and determining their choice is the
object of intruder’s attention. The answers obtained are usually not precise, but
rather in the form of a set of possibilities — the smaller the set of possibili-
ties, the more exact the intruder’s guess and therefore the smaller the degree of
anonymity. Namely, there is a quantitative difference between the situation in
which the intruder reaches the conclusion that the vote of player1 is in the set
{candidate3, candidate49} and the situation in which the intruder considers all
50 candidates as possible choices of player1 . Based on these observations, we say
that if the intruder considers more than one secret choice possible for a given
player then the player has choice anonymity and the number of possible choices
for the player is the choice anonymity degree. In a similar fashion, if the intruder
considers more than one player as a possible owner of a given secret choice then
that choice has player anonymity and the number of possible players for the
choice is the player anonymity degree.

Our definitions allow for corrupted players that will share their information
with the intruder. This means that we can measure the effect of coalitions of cor-
rupted players and the intruder on the anonymity of honest players. We formally
define these metrics in terms of bisimulation between processes and provide tool
support to compute them automatically, starting from an abstract description of
the protocol in the process-algebraic language μCRL. Trace equivalence has also
been proposed as an equivalence for checking anonymity [22,28]. Bisimulation is
a more discriminating relation than trace equivalence; while it is possible that
we will detect false positives, these are better than the possible false negatives.
Bisimulation also has the advantage of being more efficient to compute than
trace equivalence [18].

We specify the protocols we wish to check in μCRL. This is an expressive
language that comes with an extensive toolset and has a long history of successful
protocol checking [5,25]. The μCRL toolset includes tools for performing state
space reduction modulo bisimulation [6], which we use along with some purpose-
built scripts and C programs to generate all possible cases of the model and to
calculate our measures of anonymity. The μCRL toolset allows us to distribute
the checking over a cluster of machines. Unlike other approaches, we support
automatic generation of μCRL models for any given number of participants and
any given coalition of corrupt participants.

Our verification approach is possibilistic, rather than probabilistic, i.e., we
consider two processes the same if there is the possibility of them performing
the same actions. We do not take into account the probability of the actions
occurring. While the possibilistic approach may still allow the intruder to make
a good guess at the identity of a guilty player, the metrics are much easier

A Framework for Automatically Checking Anonymity with μCRL 303

to calculate and it avoids the problem of combining probabilities with non-
deterministic choices, such as how often a given player will use the system.

We illustrate our approach by two examples: the Dining Cryptographers
problem [7] and the FOO voting protocol [13]. These systems have already
been analysed with formal methods, but not within one framework. The Din-
ing Cryptographers problem has been used as a test case for many tools; the
largest protocol instance that has been verified, to the best of our knowledge,
contains 8 participants, by using symbolic model checking on an epistemic spec-
ification [20]. Our approach can check more than 15 cryptographers in a few
hours. In contrast, the FOO voting protocol has not previously been checked in
a fully automated framework.

The contribution of this paper is threefold: 1) a framework for checking
anonymity including the definitions of choice anonymity degree and player
anonymity degree, with a treatment of coalitions of corrupt players, 2) demon-
strating the flexibility of this framework by testing examples of two well known
anonymous systems, 3) demonstrating the power of this framework by showing
how we can automatically check the anonymity degrees of our examples on a
single machine or on a cluster.

The structure of the paper. We discuss related work in the rest of this section.
In Section 2, we define two notions of anonymity degrees, and we present our
verification framework. We apply our approach to the analysis of two exam-
ples in Sections 3 and 4. The results of the experiments are gathered together
in Section 5. Finally, Section 6 concludes the paper and discusses possible fu-
ture extensions. The code for the examples and the scripts for calculating the
anonymity degrees are available online [9].

Related work. Using process equivalences to model anonymity dates back to
Meritt [23], whose work was inspired by information flow analysis. Chaum [7]
uses the size of an anonymity set to indicate the degree of anonymity provided
by a network based on Dining Cryptographers (DC nets). An anonymity set is
defined as the set of participants who could have sent a particular message as
observed by the intruder. Pfitzmann and Hansen [26] investigate a similar idea.
Berthold, Pfiztmann and Standtke [2] define the degree of anonymity as ln(N),
where N is the number of users of the protocols. Our metrics can be thought of
as the anonymity set for players and the anonymity set for choices, defined via
a behavioural equivalence.

Reiter and Rubin [27] define the degree of anonymity as the probability that
an intruder can assign to a player of being the original sender of a message.
This metric does not take into account the number of players in a system. Bhar-
gava and Palamidessi [3] propose a similar definition of anonymity that makes
a careful distinction between non-deterministic and probabilistic actions. Deng,
Palamidessi and Pang [10] define “weak probabilistic anonymity” and use a prob-
abilistic model checker (PRISM) to analyse the Dining Cryptographers problem.
Serjantov and Danezis [29] define an information theoretic anonymity metric

304 T. Chothia et al.

based entropy and Dı́az et al. [11] provide a similar metric that is normalised by
the number of users.

The FOO voting protocol has been analysed by Kremer and Ryan in the
applied pi-calculus [19] and Chothia [8] uses bisimulation to test the anonymity
of an anonymous file-sharing system. Also on the possibilistic side, Schneider
and Sidiropoulos [28] use FDR to check anonymity via trace equivalence in CSP,
and Garcia et al. [14] develop a formal framework for proving anonymity based
on epistemic logic.

2 Anonymity Formalisation and Verification Methodology

Anonymity as a security property comes in many flavours. We take the rather
general view that when participants in a protocol wish to remain anonymous they
wish to hide parts of their behaviour and data. That is, an intruder should not be
able to find out what choices, regarding control as well as data, that particular
participant has made. We consider the environment as an active attacker that
observes protocol runs, hence we need not model the intruder explicitly. We
also consider the possibility of a number of corrupt insiders that may leak their
observations to the attacker.

The protocol model. Group protocols can usually be written as a parallel
composition of participants and an environment process:

Protocol(x) = P1(x1)‖P2(x2)‖ . . . ‖Pn(xn)‖Q(n) (1)

Here x = (x1, x2, . . . , xn) is the vector of secret choices (e.g., votes in a voting
protocol). The choice xi comes from a known domain and the anonymity refers
to the link between this value and the identity of the participant using it. Each
Pi (1 ≤ i ≤ n) describes the behaviour of a single player. Process Q(n) represents
the environment, made up from entities that ‘oversee’ the protocol and, by the
nature of their role, do not need to be anonymous. Examples of such entities
are the auction house in an auction protocol, or the ballot counter in a voting
protocol. In this paper, P1, . . . , Pn, Q are models written in the process-algebraic
specification language μCRL, a short description of which is given later in this
section.

The possible behaviours in our model are grouped in three levels:

1. A choice defines the behaviour of a single player. In the Dining Cryptogra-
phers protocol, for instance, the possible choices are T, to indicate that a
player is the payer, and F, to indicate that the player is not going to pay.

2. A choice vector is an ordered list of choices. It defines one behaviour of
the entire system. The vector’s ith element defines the behaviour of the ith
player.

3. A choice vector set is a set of choice vectors that represent all possible
behaviours of a system.

A Framework for Automatically Checking Anonymity with μCRL 305

A short introduction to μCRL. The specification language μCRL [15] is an
extension of the process algebra ACP [1] with abstract data types, which are very
handy when describing real-life applications. Processes are built from atomic ac-
tions by the ACP operators for sequential composition (.), non-deterministic
choice (+) and parallel compositions (‖). Synchronisation in ACP is governed
by a communication function γ. E.g., synchronisation of actions a and b yields
the action γ(a, b). There is also an encapsulation operator ∂H , that forces pro-
cesses to communicate, by making the actions in the set H act exclusively in
communication. The hiding operator τI turns all occurrences of actions from
the set I into the internal action τ . The renaming operator ρR renames actions
according to the renaming rules in R. In fact, the precise form of Equation 1 in
μCRL is

Protocol(x) = τIρR∂H(P1(x1)‖P2(x2)‖ . . . ‖Pn(xn)‖Q(n)) (2)

There are two special actions: δ represents deadlock, and τ the internal ac-
tion. In order to incorporate abstract data types in a specification, a signature of
multiple sorts and functions can be declared, and axiomatised by equations. A
number of connectives tie processes up with abstract data types. First, atomic ac-
tions can be parameterised with data elements, as in send(x). Then,

∑
x:D P (x)

denotes alternative (possibly infinite) choice over data domain D, i.e. for any
value x0 ∈ D, the process can behave as P (x0). Finally, if b is a term of data
domain Bool and p and q are processes, then the conditional construct p � b � q
is the process ‘p if b, else q’.

Groups of corrupted players. Since it is not uncommon that the intruder
manages to persuade or blackmail some of the participants into revealing their
secrets, our models take into account the presence of groups of corrupted players.
We use Obs to denote the set of observer that join forces with an external
intruder. Protocol(x) specifies the behaviour of a protocol under the assumption
that all participants are honest, i.e. Obs = ∅. If Obs �= ∅, it means that the
intruder has access to some extra inside information, namely all the secret choices
and hidden actions of the players in Obs. Therefore, in order to obtain the
behaviour corresponding to this situation, we need to cancel the effect of the
action hiding and renaming applied to processes in Obs. The resulting process
is denoted by ProtocolObs(x),

ProtocolObs(x) = τ(I/AO)ρ(R/AO)∂H(P1(x1)‖P2(x2)‖ . . . ‖Pn(xn)‖Q(n)) (3)

where AO are the actions observed by the members of Obs. We note that,
Protocol∅(x) = Protocol(x).

Anonymity formalisation. We distinguish two ways to look at anonymity
requirements, in a protocol specified as above, both are in terms of participants
with secret choices: (1) for a given participant P , can the intruder find out its

306 T. Chothia et al.

secret choice, as in “for whom did P vote?”, and (2) for a given choice c, can the
intruder find out which of the participants owns it, namely “who voted for c?”.
Following the same two-fold view, we define anonymity notions that are sensitive
to quantitative nuances: (1) given a participant P , how many possibilities for the
participant’s secret choice will the intruder consider, and (2) given a secret choice
c, how many participants will the intruder consider as possibly having taken that
secret choice? These notions can be thought of as defining the anonymity degree
for players in terms of choices (cad) and the anonymity degree for choices in
terms of players (pad).

The equivalence used in the verification of anonymity models the observation
power of the intruder. Our definitions of anonymity degree can use any equiva-
lence relation; in our case studies we use bisimulation (≈) to equate process. In
particular we use branching bisimulation when we are modelling processes with
hidden actions and for efficiency we use strong bisimulation when there are no
hidden actions. This is in contrast to some previous work on anonymity that used
trace equivalence [22,28]. While it is often possible, in an asynchronous setting,
to implement processes in such a way that an intruder cannot tell the difference
between two processes that are trace equivalent but not bisimilar, there also
exist reasonable implementations in which the intruder can tell the difference.
For instance, the two processes a.(b + c) and a.b + a.c are trace equivalent but
not bisimilar. A reasonable implementation of these processes might use sockets
for communication, in which case the first process would listen on port “a” for a
message and then listen on ports “b” and “c” and accept only the first message
that arrives. The second process could be implemented by either listening on
port “a” and then port “b” or listening on port “a” and then port “c”. All an
intruder has to do to tell these processes apart is to send on port “a” and then
on port “b”. If the intruder then gets a message sent to port “b” rejected they
may conclude that they are dealing with the second process. In this sense, using
bisimulation rather than trace equivalence is a conservative decision; while it is
possible for processes that are trace equivalent, but not bisimilar, to be safe, we
cannot guarantee that they do not reveal information to the intruder.

A second advantage of using bisimulation is that it can be much more efficient
to check. The added restrictions on bisimilar processes mean that we can reject
certain paths as not bisimilar long before we could detect that they are not trace
equivalent. In the most extreme cases checking a particular pair of processes for
trace equivalence can take exponential time while checking the same processes
for bi-simulation can take linear time.

Definition 1 (choice indistinguishability). Let Protocol be the specifica-
tion of a protocol, v1 and v2 two choice vectors, and Obs an observer set.
The set of all possible choice vector is denoted by CVS. Then the relation
≈Obs : CVS × CVS is defined as:

v1 ≈Obs v2 iff ProtocolObs(v1) ≈ ProtocolObs(v2).

Definition 2 (choice anonymity degree). The choice anonymity degree
(cad) of participant i w.r.t. an observer set Obs under the choice vector x is:

A Framework for Automatically Checking Anonymity with μCRL 307

cadx(i) = |{c ∈ Choices, ∃v ∈ CVS such that
vi = c and v ≈Obs x and (∀j ∈ Obs.vj = xj)}|

where |·| denotes the cardinality of a set, Choices is the set of all possible choices,
CVS is the choice vector set, v = 〈v1, . . . , vn〉 and x = 〈x1, . . . , xn〉. We define
the choice anonymity degree of participant i w.r.t. Obs as

cad(i) = min
x∈CVS

cadx(i)

The set in the above formula for cadx(i) is the set of all choices c that could
be assigned to player i, as part of a choice vector v that is indistinguishable
from a fixed choice vector x. The “∃v ∈ CVS” and “vi = c” conditions ensure
that v is a choice vector which assigns choice c to player i. The choice vector
x can be thought of as defining the observable behaviour of a particular run of
the protocol and the choice vector v defines the observable behaviour of another
run, which the observers represented by Obs, cannot distinguish from the x-run.
We look for a value of x that gives the smallest possible number of choices, i.e.,
we are looking for the worst case anonymity. Our measure of choice anonymity
degree for player i is then the size of the set of possible choices that player i
may have been assigned. The condition ∀j ∈ Obs.vj = xj captures the fact that
the choice for Obs is fixed. This is because the players in Obs share their choice
values with the attacker.

Definition 3 (player anonymity degree). The player anonymity degree
(pad) of secret choice c, in a protocol with n players, w.r.t. an observer set
Obs and the choice vector x is:

padx(c) = |{i ∈ {1, . . . , n} \ Obs, ∃v ∈ CVS such that
vi = c and v ≈Obs x and (∀j ∈ Obs.vj = xj)}|.

The player anonymity degree of secret choice c w.r.t. an observer set Obs is

pad(c) =

⎧
⎨

⎩

0, if max
x∈CVS

padx(c) = 0

min
x∈CVS:padx(c)>0

padx(c), otherwise

The set in the definition of padx is the set of all honest players that might, from
the perspective of the intruder, have been assigned the choice c. We define the
pad(c) to be the lowest non-zero value assuming that such a value exists. This
is because, in some systems, it is possible for a given choice vector to rule out
certain choices values, so making the minimum pad value zero, while at the same
time any choice vector that allows the choice to happen may allow the choice to
be assigned to a number of different players. For instance, if the intruder can see
the total number of messages sent then a choice c that results in four messages
being sent rules out a choice vector that would only send three messages. So
pad(c) defines the anonymity for a choice c that results from only considering
choice vectors that are compatible with c.

308 T. Chothia et al.

st
ar
t(1

022
)

st
ar
t(

21
02

)
st
ar
t(

13
10

)

s
t
a
r
t
(2

12
0)

start(1021)
start(3010)

start(1111)

st
ar
t(1

022
)

st
ar
t(

21
02

)

st
ar
t(

13
10

)

start(2120)

start(1021)
start(3010)

start(1111)

State space reduction modulo
a behavioral equivalence

1 3 1 0
2 1 0 2
1 0 2 2

2 1 2 0

1 0 2 1
3 0 1 0

1 1 1 1

player: 1 2 3 4

Equivalence classes

cad2102(2) = 3/4
cad1021(2) = 1/4
cad1111(2) = 1/4
cad(2) = 1/4

pad(0) = 2/4
pad1111(0) = 0/4

Computing cad for player 2:

Computing pad for choice 0:
pad2102(0) = 3/4
pad1021(0) = 2/4

Fig. 1. Left: Computing the equivalence classes of ≈Obs, for a ProtocolObs. The
choices come from the set {0, 1, 2, 3}, there are 4 players and CVS is the set
{1022, 2102, 1310, 2120, 1021, 3010, 1111}. The end state of every start(x) transition
is the start state of ProtocolObs(x). After reduction modulo ≈Obs, the transition
start(x) and start(y) have the same end state iff x ≈Obs y. The equivalence classes
of ≈Obs, listed on the right, are generated in this way. Right: Extracting cad and pad
information from the equivalence classes, by just applying the definitions.

We believe that these measures give a good impression of the anonymity
provided by a protocol. In the rest of the paper, we will write cad and pad
together with the actual number of possible choices (i.e., |Choices|) and with
the number of players (n), respectively. For instance, we will write cad(2) = 3:5
instead of cad(2) = 3, if 5 is the size of the choices’ domain. Note that the
maximum possible cad or pad are not always of the form m:m; in fact, this is
never the case whenever we consider Obs �= ∅, since the intruder knows whether
those participants belonging to Obs have performed a certain action and what
choices those participants have made.

Verification method. Our goal is to make verification of anonymity properties
just as easy as verification of safety or liveness properties. Two difficulties have
to be overcome. Firstly, anonymity depends on the point of view of the intruder,
therefore new protocol models should be written for every new observer set.
Secondly, anonymity is not a properity of a single trace that can be written as a
logic formula to be verified via model checking, but requires equivalence checking
of several protocol instances. Note that both of these problems are specific to
the general verification method of writing process specifications and then model
checking temporal properties on the generated behaviour model. For instance,
approaches based on epistemic logics [12,24] are able to express anonymity more
naturally and do allow its verification by model checking, but they encounter
other, mainly modelling, problems and are not supported by such powerful tools
as we use here.

A Framework for Automatically Checking Anonymity with μCRL 309

We solve these problems by automating the generation of new protocol spec-
ifications depending on the observer set and on the different protocol instances.
We also support the analysis of anonymity as described above, by automatically
generating the equivalence classes of ≈Obs and computing the anonymity degrees
cad and pad.

All the tool support is available on our website [9]. We start from a base spec-
ification Protocol(x) describing the behaviour of the protocol for a parameter
choice vector x. Then a .rn file will define, for a generic participant, how its
actions are seen from the outside. We choose to implement ρR from (2) like this,
rather than explicitly using it in the μCRL specification, in order to better con-
trol the effects of having a set of corrupted players Obs. The renaming is done
by means of rules like assign(i,x,true)->assign(i). This example rule says
that the action of i of assigning a true value to its variable x will be observed
by the other players and the environment only as an assignment executed by i.
Just like the modelling process itself, choosing what the appropriate renamings
should be is a subjective task. The actions executed by the observing parties
are not renamed, while from the actions executed by the other, honest parties,
all private information should be hidden. All information for action renaming
are gathered into one .rn file, which will be used to automatically generate re-
namings for particular protocol instances. In order to avoid interferences with
this automatically generated renamings, we require the Pi processes to not con-
tain any further renaming operators. Then the tools will generate, for this given
μCRL model Protocol(x), the given set of renaming rules, a given set Obs and
a given choice vector set CVS, the μCRL specification corresponding to

∑
v∈CVS:∀j∈Obs.vj=xj

start(v).ProtocolObs(v),

namely the sum of all protocol instances corresponding to choice vectors which
are in CVS and coincide with x on the Obs positions. After that, the μCRL
toolset is used to generate the state space of this new process and reduce it
modulo a behavioural equivalence. The end states of the start actions are the
start states of the protocol instances compared, therefore the equivalence classes
of these states are exactly the equivalence classes of the relation ≈Obs on choice
vectors (from Definition 1). See also Figure 1 for a scheme of this procedure.
Our tools will show these equivalence classes and extract the choice and player
anonymity degrees according to Definitions 2 and 3.

In Sections 3 and 4, we will apply our approach to the analysis of the Din-
ing Cryptographers problem and the FOO 92 voting protocol, respectively. Our
method can also be used to check the anonymity that protocols provide over a
number of rounds, by using choices that represent the behaviour of a participant
over a number of rounds. We have tested a simple possibilistic version of Reiter
and Rabin’s Crowds protocol [27] and shown that, over a number of rounds,
an external observer cannot work out which nodes have originated messages,
and the observer cannot work out how many of the messages were sent by the
same node. Due to page limit, we omit the detailed analysis here. The interested
readers can find the μCRL specification of this example online [9].

310 T. Chothia et al.

3 The Dining Cryptographers Problem

The Dining Cryptographers protocol is probably the most well-known example
of a protocol where anonymity is the main requirement [7]. The story, which
is a metaphor for anonymous broadcast, starts with three cryptographers sit-
ting down at a table to have dinner together. At the end of their meal, they
learn that the bill has been paid anonymously by one of them, or perhaps by a
shadowy government organisation (the National Security Agency). They respect
each other’s right to anonymity, but they wish to find out whether the payer
was the NSA or not. To achieve this, they come up with the following protocol:
each neighbouring pair of cryptographers generates a shared bit, by flipping a
coin; then each cryptographer computes the exclusive or (XOR) of the two bits
shared with the neighbours, then announces the result - or the opposite result,
if that cryptographer was the payer. The XOR of the three publicly announced
results indicates whether the payer was an insider or the NSA.

The μCRL model. We specify the behaviour of a cryptographer as a μCRL
process Crypt and the behaviour of the whole Dining Cryptographers system
as a parallel composition of Crypts. With three participants, the global process
looks like this:

DC(x:ChoiceVector) = ∂{tell,recv}(Crypt0(x0)||Crypt1(x1)||Crypt2(x2))

A choice is in this case the decision to pay or not (we will call it the paying bit),
represented by the Boolean values xi ∈ {T, F}. A cryptographer process executes
a series of actions corresponding to the three main steps of the protocol: decide
whether to pay or not, flip the coins together with the neighbours, and announce
the result of XOR-ing the two coins and the own paying bit. The first step is
modelled as a statement pay(n, i, xi). In other models of this protocol [28,3], the
shared coins are represented by separate processes, but we merge the behaviour
of ith coin with the behaviour of the ith cryptographer, in order to keep the
number of processes small. That is, process Crypti will execute a flip action
and then share the result with the right hand neighbour, by executing an action
tell while its right hand cryptographer in the ring can get to know the result
of this coin flipping by executing the action recv. The synchronisation of these
two actions results into the communication action com.

Crypti(xi : Bool) = pay(n, i, xi).
∑

coin left:Bool(flip(i, coin left).
(tell(next(i), coin left) ‖

∑
coin right:Bool recv(i, coin right)).

CryptAnnounce(n, 0, id, ch ⊕ coin right ⊕ coin left))

CryptAnnounce models broadcasting the result of one’s computation and receiv-
ing the results from all the others. Since the broadcast implementation is not an
actual part of the protocol, we do not discuss CryptAnnounce here. The renaming
rules specifying how much of a cryptographer’s actions is visible for another cryp-
tographer or the intruder are {com(i, X)− > com(i), pay(n, i, X)− > pay(i)}. For

A Framework for Automatically Checking Anonymity with μCRL 311

any given observers set Obs, DCObs will be obtained from the model of DC
above, by applying the renaming rules to all Crypti processes which are not in
Obs, as explained in Section 2 (verification method).

Anonymity verification. Consider an external intruder observing a run of
the Dining Cryptographers protocol with 3 participants and trying to conclude
who the payer was (in case one of the cryptographers paid). Let us suppose that
cryptographer 0 is the payer and let us check whether their anonymity will not
be broken. For this, as described in Section 2, we automatically generate the
state space corresponding to

∑
v∈CVS start(v).DC∅(v), where CVS is in this

case Π(TFF), the set of permutations of the sequence TFF, since it is a publicly
known fact that there is exactly one payer among the cryptographers. Therefore,
the above expression becomes start(TFF).DC∅(TFF) + start(FTF).DC∅(FTF) +
start(FFT).DC∅(FFT). Note that we exclude FFF from CVS, because there is no
anonymity claim for this case. The obtained state space will then be reduced
modulo strong bisimulation equivalence and one equivalence class will result:
{FFT, FTF, TFF}, meaning that the intruder cannot distinguish between the three
possible choice vectors and thus considers that any of the three cryptographers
might have been the payer. This situation of maximum anonymity is reflected
both by the pad measure pad(T) = 3:3, and the cad measure cad(0) = 2:2; the
first one says that any of the three players might be the owner of the T paying
bit, and the second says that any of the two values T, F might have been assigned
to cryptographer 0.

For 5 participants, two of which are corrupted (1 and 3), the state space
for

∑
v∈Π(TFFFF):v1=v3=F start(v).DC{1,3}(TFFFF) will automatically be gener-

ated and reduced, resulting into the equivalence classes {FFFFT,TFFFF} {FFTFF}.
Note that, consistent with the verification method explained in the end of Sec-
tion 2, the vectors FTFFF and FFFTF are automatically excluded from this check,
since it is already known to the intruder that these cannot be the case (because 1
and 3 show their secret paying bit F to the intruder). The computed anonymity
degree pad(T) = 1:5, indicating that in at least one of the scenarios, the payer
becomes known to the intruder (namely, when the choice vector is FFTFF). The
anonymity degree restricted to the case when 0 pays padTFFFF(T) = 2:5, which
is much lower than in the case of no corrupted players, indicating that, even if
anonymity of 0 is not broken, the set of suspects is reduced to 2 players. The
cad and pad degrees give the complete picture of the anonymity of the 3 honest
cryptographers {0, 2, 4} with respect to the coalition {1, 3} of dishonest cryptog-
raphers, when cryptographer 0 pays. The conclusion is that 0 remains partially
anonymous, that is the intruder doesn’t know that 0 paid, but does know that
one of {0, 4} paid and 2 didn’t.

4 The FOO 92 Electronic Voting Protocol

In this section, we analyse a more complex protocol, that involves choices (votes)
from a larger than binary domain and elaborated cryptographic mechanisms like

312 T. Chothia et al.

anonymous channels, encryption and blind signatures. These mechanisms are
very naturally expressible with the abstract datatypes of μCRL.

FOO involves voters, an administrator and a collector and has four stages:
registration, voting, opening and counting. During the registration stage, a voter
idi prepares his ballot as follows: (1) he chooses a vote vi and creates the ballot
xi = ξ(vi, ki) using the secure bit-commitment ξ and the randomly chosen key
ki; (2) he computes the message ei = χ(xi, ri) using the blinding technique χ
and a random blinding factor ri; (3) he signs si = σi(ei) and sends (idi, ei, si)
to the administrator , who signs it di = σA(ei) and sends it back to the voter as
his certification, if the voter is authorised to vote, otherwise the administrator
rejects the signature. In the end of the registration stage, the administrator
gets to know the number of eligible voters, and publishes the list of (idi, ei, si).
During the voting stage, a voter idi will perform the following steps: (1) he
receives di and obtains the desired signature yi of the ballot xi using the un-
blinding technique yi = δ(di, ri); (2) if yi is not the administrator’s signature
of xi, he claims that (xi, yi) is not valid; otherwise (3) he sends (xi, yi) to the
collector using an anonymous communication channel. The collector receives
(xi, yi) and verifies the signature yi of xi using the administrator’s verification
key. If this succeeds, the collector enters (
, xi, yi) onto a list as the
-th item.
After all voters have voted, the collector publishes the list. During the opening
stage, each voter will send the key ki and the number
 to the collector using
an anonymous communication channel, if his vote is on the list, Otherwise, he
claims this by revealing the valid ballot xi and its signature yi. Finally, during
the counting stage, the collector opens the ballot xi, obtains the vote vi using
ki, counts the votes, and publishes the voting result.

The μCRL model. As in the case of the Dining Cryptographers problem,
we will present the μCRL model of FOO at a rather abstract level and only
give details on the interesting modelling points. The complete specification is
available online [9].

We chose to model the clear and encrypted votes, as well as clear or blinded
or signed ballots by one data type: Data, with the extension to lists DataList .
The votes come from a set V ⊆ Data of size N . We model bit commitment using
classical symmetric-key encryption and we use the voter’s index i to model both
key ki and the blinding factor ri. This does not introduce problems, since we
encode the various laws and restrictions corresponding to ki, ri as equations
that the functions using them: commit , open , blind , unblind have to satisfy. For
instance, the cancelling property of the signing procedure is captured by the
equation unblind(i, sign(blind(j, x))) = if eq(i, j) then sign(x) else err.

Each voter, the administrator and the collector are modelled as parallel pro-
cesses communicating by pairs of synchronising actions like (VfromA, AfromV).
The administrator waits for blinded ballots from the voters, signs them using the
function sign and sends them back. We assume that checks by the administrator
in the registration stage are always successful.

Admin =
∑

i:Nat

∑
m:Data AfromV(i, m).AtoV(i, sign(m)).Admin

A Framework for Automatically Checking Anonymity with μCRL 313

A voter builds the ballot xi = commit(vi, i), blinds it as ei = blind(xi, i), and
sends (i, ei) to the administrator. Then he receives a signed ballot m from the
administrator, retrieves the desired signature of his ballot using unblind(idi, m)
and sends xi with the signature to the collector. Then the voter waits for the
collector to publish the final list and finally sends ki (i.e. i) to the collector.

Voter i(vi : Data) =
Vdecided(vi).VtoA(i, blind(i, commit(i, vi))).∑

m:Data VfromA(i, m).(VtoC(commit(i, vi), unblind(i, m)).∑
�:DataList VfromClist(�).VtoC(find(�, unblind(i, m)), i).δ

� issigned(unblind(i, m)) � δ)

Note that the construct
∑

d:D P (d) � f(d) � δ, with f being a Boolean function
of d, forces choosing only the values of d that satisfy f . We model the collector
with the knowledge of the number n of voters. The action NVoters(n), below,
indicates the end of the registration stage. He receives the committed votes as
(xi, yi), adds them into a list
 and stops receiving when the counter ncv reaches
n. Then he publishes
 by sending it (CtoVlist) to all voters. After receiving ki

for each item in the list
, he opens the vote vi and publishes the voting result
by the actions numberof(v) (v ∈ V).

Collector =
∑

n:Nat NVoters(n).Collecting([], n, 0)
Collecting(� : DataList , n : Nat, ncv : Nat) =∑

xi:Data

∑
yi:Data CfromV(xi, yi).Collecting(add(xi, yi, �), n, ncv + 1)

� ncv < n ∧ issigned(yi) � δ + Opening(�, n, 0) � ncv > n � δ
Opening(� : DataList , n : Nat, nv : Nat) =

CtoVlist.Opening(�, n, nv + 1) � nv < n � Opening2 (�, n, 0)
Opening2 (� : DataList , n : Nat, nv : Nat) =∑

label :Nat

∑
ki:Nat CfromV(label , ki).Opening2 (openvote(�, label , ki), n, nv + 1)

� nv < n � Counting(�, 0)
Counting(� : DataList , v : Nat) =

numberof(v, count(�, v)).Counting(�, next(v)) � v ∈ V � δ.

The collector waiting for all n ballots before publishing
 is essential for the
correctness of the protocol. As noted in [19], the anonymity is broken if the
collector were allowed to publish
 and continue interacting with the voters before
actually having completed collecting all ballots. (In [19], the problem is addressed
by introducing synchronisation points between voters after the registration stage.
This is equivalent to forcing the collector to wait, because the voters cannot
continue without the cooperation of the collector.) We reproduced this problem
by modelling a bad collector, which does not wait (see the file voting.mcrl
at [9]), but we do not insist on this modelling detail here, since our goal is rather
to illustrate the anonymity measures on a correct model of the FOO protocol.

Anonymity verification. Let V be the set of possible votes. Then CVS, the
allowed set of choice vectors, which is in fact the allowed set of vote outcomes, will

314 T. Chothia et al.

be V n. Note that since the outcomes become public in the end of the protocol,
and thus known to the intruder, the equivalence classes of ≈Obs will be subclasses
of the permutation equivalence relation. Note also that for an external observer,
cad(i) = 1:n, because a choice vector for a unanimous election leaves no doubt
as to how anyone voted. So, for this protocol, it is more informative to look
at particular instances of choice vectors (x) and evaluate cadx(v) and padx(i).
In the bottom table of Figure 2, a number of experiments are shown, involving
various numbers of voters and various vote vectors. The votes are taken from
the set {0, 1, 2}.

In the Dining Cryptographers problem, the question was “who pays?”, trans-
lated to “which of the players has the choice T?”; padTFF(T) was in that case
the appropriate anonymity measure, since it indicates the number of players
(worst case: 1) who, according to the intruder, might possibly be associated
with the choice T. In voting protocols however it is more relevant how many
different votes the intruder might associate to a given voter, so cad(voter) is
a more realistic measure of anonymity. It is possible to get padx(v) > 1 and
cadx(i) = 1, for a voter i who voted v; this indicates that player anonymity is
not a sensitive enough measure, while choice anonymity detects that the intruder
precisely knows which candidate voter i chose. This situation is illustrated by
x = 1121, Obs = {2}, i = 0, v = 1.

5 Experiences with the Distributed Toolset

In order to assess the efficiency of our approach, we ran some experiments with
both examples, various number of players and various coalition sizes. We gener-
ated and reduced the state spaces both with the sequential and the distributed
tools. For the latter, a cluster with 16 machines (32 processors) was used.

Our initial DC specification gives a very realistic model of the protocol, allow-
ing maximal action interleaving and including a handshake implementation of
the final broadcast announcements. Unfortunately, this leads to a fast explosion
of the state space, limiting the number of cryptographers that can be handled to
10. Note however, that this is already a larger instance than ever been formally
analysed before; Schneider and Sidiropoulos [28] analyse four players, and the
maximum we could find in the literature was 8, by means of symbolic epistemic
model checking [20]. In order to deal with even larger instances in our explicit
tool, we also experimented with a simpler DC model, where an order is imposed
on the cryptographers’ actions, and a synchronisation of all cryptographers takes
place between the three protocol phases (flipping the coins, sharing the coins,
broadcasting the XOR results). This requires some more computing effort during
generation (and thus more time), but the state spaces resulted are much smaller,
and therefore verification of instances with 17 players and more can be achieved.
This simplified version occurs in Figure 2 as DCso.

Note also that using the distributed tool is not always more efficient. For small
state spaces like DC11so, communication between the machines consuming much
of the overall time and therefore the sequential tool actually performs better.

A Framework for Automatically Checking Anonymity with μCRL 315

Size Size after red. Time cad(0) pad(T)

DC3, Obs = ∅ 229
469

65
112

1.5s 2:2 3:3

DC3, Obs = {1} 184
362

71
132

1.3s 2:2 2:3

DC5, Obs = {1, 3} 5189
14679

1620
4567

4.9s 2:2 2:5

DC7, Obs = ∅ 185 769
695 551

27 180
85 763

8m53s 2:2 7:7

DC9, Obs = ∅ 5 194 659
22 961 789

1 034 142
4 088 977

(s) -
(db) 7h5m 2:2 9:9

DC10, Obs = ∅ 27 436 022
130 031 220

5 002 490
21 535 547

(db) 17h20m 2:2 10:10

DC11so, Obs = ∅ 33 876
41 035

6 156
7 188

(s) 6m
(db) 11m 2:2 11:11

DC12so,
Obs = {1, 3, 5, 7, 9, 11}

58 749
67 612

17 467
21 219

(s) 7m 1:2 1:12

DC15so, Obs = ∅ 606 388
721 067

98 320
114 716

(s) 7h2m
(db) 44m 2:2 15:15

DC17so, Obs = ∅ 2 556 144
3 014 887

393 234
458 784

(s) -
(db) 5h40m 2:2 17:17

Size Size after red. Time cad pad

FOO4, Obs = {2} 58 749
67 612

17 467
21 219

17s cad1121(0) = 1:3 pad1121(1) = 3:4

FOO6, Obs = {2} 3 423 841
10 518 810

29 451
92 835

22m36s cad010102(0) = 3:3 pad010102(1) = 5:6

FOO7, Obs = {2} 65 282 690
221 299 564

3 676 249
9 628 686

(db) 4h48m cad0101022(0) = 3:3 pad0101022(1) = 6:7

Fig. 2. Experiments with various protocol and coalition instances. The sizes are given
as pairs (no. states, no. transitions). The times include both state space generation
and reduction. (db) marks that the distributed toolset was used. (s) - marks that on a
single-machine, the state-space generation ran out of memory or didn’t stop within 10
hours. For the FOO experiments, votes are taken from the set {0, 1, 2}.

6 Conclusions

Whether a protocol satisfies an anonymity requirement depends not only on
the protocol itself, but also on the particular scenarios in which the protocol
is used. Namely, there are two influential factors: the strength of the intruder
(that is, if/how many participants it has corrupted) and the exact data or ac-
tions that need to be protected (in DC, if the NSA pays, the intruder learns
that no cryptographer paid; in voting protocols, if the vote is unanimous, there
is obviously no choice anonymity). We captured these observations into two def-
initions of anonymity degrees, parameterised with the aforementioned factors.
Player anonymity measures the number of participants that the intruder might

316 T. Chothia et al.

consider guilty for a given event, and choice anonymity measures the number of
different pieces of data or events that the intruder might consider as belonging
to or being generated by a given participant. We have built tool support for tai-
loring generic protocol specifications to particular instantiations and coalitions
of corrupted participants.

We demonstrated the use of a modern powerful verification toolset, μCRL,
to automatically check the anonymity of the generated models. Due to the dis-
tributed state space generation and reduction tools, we were able to analyse
large instances of known protocols.

Our definitions of anonymity may be based on any equivalence relation. One
interesting future direction may be to attempt to model probabilistic systems
using our definitions with a probabilistic bisimulation. Finding the right defini-
tion of probabilistic bisimulation would be key to making this work. We know
of no tools for checking probabilistic bisimulation, so automatically calculating
probabilistic anonymity degrees would not be trivial.

We model intruders by making their private communications visible to the
attacker. This is done by removing the actions that the intruders see from the sets
of actions that are hidden and renamed. We do not remove any actions from those
that are encapsulated, i.e., those that are forced to synchronise. If we did remove
names from this set too then the communications that were forced to happen
with the intruder could instead happen with the outside environment. This would
allow us to model active inside attackers that deviate from the protocol. However
as actions can in general synchronise with a range of other actions care would
have to be taken to ensure that the communications that the attacker is given
access to are exactly those that are used by the intruder.

Another possible extension of our framework would be to automatically search
for the worst anonymity for a fixed number of intruders. For instance, in the
Dining Cryptographers protocol the intruders can be much more effective when
spaced out, rather than when they are direct neighbours. We could generate
all possible placements of intruders and then test each system to find the low-
est anonymity degrees. Such an analysis might help to identify weak points in
anonymity protocols that could be strengthen to make inside attacks harder.

The μCRL toolset includes state space optimisation tools that we haven’t
yet taken into account. Confluence reduction, for instance, has been successfully
employed in keeping state spaces manageable [5] and might be useful in our case
as well.

References

1. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction.
Theoretical Computer Science 37(1), 77–121 (1985)

2. Berthold, O., Pfiztmann, A., Standtke, R.: The disavantages of free mix routes and
how to overcome them. In: Federrath, H. (ed.) Proc. Workshop on Design Issues in
Anonymity and Unobservability. LNCS, vol. 2009, pp. 30–45. Springer, Heidelberg
(2001)

A Framework for Automatically Checking Anonymity with μCRL 317

3. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de Al-
faro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg
(2005)

4. Blom, S.C.C., Fokkink, W.J., Groote, J.F., van Langevelde, I., Lisser, B., van de
Pol, J.C.: μCRL: A toolset for analysing algebraic specifications. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 250–254. Springer,
Heidelberg (2001)

5. Blom, S.C.C., Groote, J.F., Mauw, S., Serebrenik, A.: Analysing the BKE-security
protocol with μCRL. In: Proc. 6th AMAST Workshop on Real-Time Systems.
ENTCS, vol. 139, pp. 49–90 (2004)

6. Blom, S.C.C., Orzan, S.M.: A distributed algorithm for strong bisimulation reduc-
tion of state spaces. Software Tools for Technology Transfer 7(1), 74–86 (2005)

7. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. Journal of Cryptology 1, 65–75 (1988)

8. Chothia, T.: Analysing the mute anonymous file-sharing system using the pi-
calculus. In: Najm, E., Pradat-Peyre, J.F., Donzeau-Gouge, V.V. (eds.) FORTE
2006. LNCS, vol. 4229, pp. 115–130. Springer, Heidelberg (2006)

9. Chothia, T., Orzan, S.M., Pang, J.: μCRL specifications.
http://www.win.tue.nl/∼sorzan/anonymity

10. Deng, Y., Palamidessi, C., Pang, J.: Weak probabilistic anonymity. In: Proc. 3rd
Workshop on Security Issues in Concurrency (2005)

11. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In:
PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2002)

12. van Eijck, J., Orzan, S.M.: Epistemic verification of anonymity. In: Proc. Views
On Designing Complex Architectures (VODCA’06) (2006)

13. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg
(1992)

14. Garcia, F.D., Hasuo, I., Pieters, W., van Rossum, P.: Provable anonymity. In: Proc.
3rd ACM Workshop on Formal Methods in Security Engineering, pp. 63–72. ACM
Press, New York (2005)

15. Groote, J.F., Reniers, M.A.: Algebraic process verification. In: Bergstra, J.A.,
Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, North-Holland, pp.
1151–1208 (2001)

16. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent
systems. Journal of Computer Security, 483–514 (2005)

17. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: A modular
approach. Journal of Computer Security 12(1), 3–36 (2004)

18. Hüttel, H., Shukla, S.: On the complexity of deciding behavioural equivalences and
preorders - a survey. Technical Report RS-96-39, BRICS (1996)

19. Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied pi-
calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer,
Heidelberg (2005)

20. Lomuscio, A., Raimondi, F.: MCMAS: A tool for verifying multi-agent systems. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920,
pp. 450–454. Springer, Heidelberg (2006)

21. Mauw, S., Verschuren, J., de Vink, E.P.: A formalization of anonymity and onion
routing. In: Samarati, P., Ryan, P.Y A, Gollmann, D., Molva, R. (eds.) ESORICS
2004. LNCS, vol. 3193, pp. 109–124. Springer, Heidelberg (2004)

22. Mauw, S., Verschuren, J., de Vink, E.P.: Data anonymity in the FOO voting
scheme. In: Proc. Views On Designing Complex Architectures (VODCA’06) (2006)

http://www.win.tue.nl/~sorzan/anonymity

318 T. Chothia et al.

23. Meritt, M.J.: Cryptographic Protocols. PhD thesis, Georgia Institute of Technology
(1983)

24. van der Meyden, R., Su, K.: Symbolic model checking the knowledge of the dining
cryptographers. In: Proc. 17th IEEE Computer Security Foundations Workshop,
pp. 280–291. IEEE Computer Society Press, Los Alamitos (2004)

25. Pang, J.: Analysis of a security protocol in μCRL. In: George, C.W., Miao, H.
(eds.) ICFEM 2002. LNCS, vol. 2495, pp. 396–400. Springer, Heidelberg (2002)

26. Pfitzmann, A., Hansen, M.: Anonymity, unobservability, and pseudonymity: A pro-
posal for terminology, draft v0.23 (August 2005)

27. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for Web transactions. ACM Trans-
actions on Information and System Security 1(1), 66–92 (1998)

28. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Martella, G., Kurth,
H., Montolivo, E., Bertino, E. (eds.) Computer Security - ESORICS 96. LNCS,
vol. 1146, pp. 198–218. Springer, Heidelberg (1996)

29. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53.
Springer, Heidelberg (2003)

30. Shmatikov, V.: Probabilistic model checking of an anonymity system. Journal of
Computer Security 12(3/4), 355–377 (2004)

A Framework for Type Safe Exchange
of Mobile Code�

Sonia Fagorzi and Elena Zucca

DISI - Università di Genova
Via Dodecaneso, 35, 16146 Genova (Italy)

{fagorzi,zucca}@disi.unige.it

Abstract. We present a simple parametric calculus of processes which
exchange mobile code, where type safety is ensured by a combination
of static and dynamic checks. That is, internal consistency of each pro-
cess is locally verified before starting execution, by only relying on type
assumptions on missing code; then, at execution time, when locally type-
checked code is sent from a process to another, a run-time check based on
a subtyping relation ensures that it can be successfully received, without
requiring to inspect code again.

The calculus is defined in a parametric way, that is, we do not fix
some ingredients which can vary depending on the specific language or
system. Notably, we abstract away from the specific nature of the code
to be exchanged, and of the static and dynamic checks. We formalize
the notion of type safety in our general framework and provide sufficient
conditions on the above ingredients which guarantee this property.

We illustrate our approach first on a simple lambda-calculus with
records, and then on a calculus of mixin modules which generalizes the
previous one.

Keywords: parametric calculus, mobile code, static and dynamic type-
checking, subtyping.

Introduction

In a distributed scenario, code can be exchanged among processes, possibly run-
ning on different sites. Hence, it is not possible to perform a global static analysis;
still we would like to guarantee that execution will never crash.

A convenient, modular way for doing this, advocated for instance in [7] in the
context of a coordination language for mobile processes that exchange object-
oriented code, is by a combination of local static checks and dynamic checks,
more precisely:

– Internal consistency of each process is locally verified before starting execu-
tion, by only relying on assumptions on missing code (formally expressed by
types).

� Partially supported by APPSEM II - Thematic network IST-2001-38957, and MIUR
EOS - Extensible Object Systems.

U. Montanari, D. Sannella, and R. Bruni (Eds.): TGC 2006, LNCS 4661, pp. 319–338, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

320 S. Fagorzi and E. Zucca

– Mobile code exchanged among processes is equipped with its type, obtained
by the previous phase.

– At execution time, when locally typechecked code is sent from a process to
another, it is accepted only if it satisfies the expected requirements; formally,
this is expressed by a subtyping relation between the expected type and the
provided type.

– The combination of static type system and dynamic checks via subtyping
ensures that, whenever code is accepted, it can be safely composed with
local code without any need of being inspected again.

Though the schema above is clearly desirable and very abstract, few attempts
have been made until now of formalization and investigation of related problems
in a general framework. In this paper, we give a contribution in this direction,
by presenting a simple parametric calculus of processes which exchange mobile
code in a type safe manner, relying on a combination of static and dynamic type
checks. In other words, we do not present a single calculus, but a schema which
models the above described situation abstracting from the ingredients which
can vary depending on the specific language or system we are considering. These
ingredients are, more in detail:

– code to be exchanged, formalized here by an underlying core calculus,
– static checks, formalized by a type judgment for the core calculus satisfying

the usual subject reduction property w.r.t. to a static subtyping relation,
– dynamic checks, formalized by a dynamic subtyping relation and an associ-

ated coercion function, which models the fact that received code could need
to be manipulated in some way before to be safely incorporated in local code.

We formalize the notion of type safety in our general framework and provide
sufficient conditions on the above ingredients which guarantee this property.

We illustrate our approach by first taking as core calculus a simple lambda-
calculus with records, and then a calculus of mixin modules which generalizes
the previous one. In both cases, the key problem in guaranteeing type safe ex-
change of mobile code concerns conflicts due to fields (components) which were
not explicitly required. We consider two different solutions which can be consid-
ered paradigmatic. The former uses simple dynamic checks based on standard
subtyping, that is, a record (mixin module) can be safely received if it pro-
vides the expected fields (components), and all additional fields (components)
are removed (hidden), thus avoiding conflict problems. The latter preserves the
semantics (no coercion is inserted), but requires a more involved type system
based on constraints, where dynamic checks prevent conflicts. Moreover, while
the former solution only allows additional fields (components) at the top level
of a received record (mixin module), constraints uniformly prevent conflicts at
any level. Both solutions verify the conditions which guarantee type safety.

The paper is structured as follows. In Sect.1 we informally discuss the prob-
lem of guaranteeing type safety in a distributed context where mobile code is
exchanged. In Sect.2 we formally define our parametric process calculus and the
related notion of type safety. In Sect.3 we define two instantiations which take

A Framework for Type Safe Exchange of Mobile Code 321

as core calculus a simple lambda-calculus with records, and in Sect.4 we extend
both of them to a calculus of mixin modules. Finally, in 5 we summarize our
contribution and briefly discuss related and further work.

1 Type Safety in a Distributed Context

In a distributed scenario, software components used by an application may be not
all available from the beginning, but retrieved later during execution, possibly
from another application running on a different site. Hence, local code can be
typechecked only relying on type assumptions for missing code. For instance,
considering a simple process calculus with standard send/receive primitives, and
records as toy example of mobile code, the following process

p1 = receive(x :{f1 : int}).send({f2 �→ 2} + x).nil

first receives a record with a field f1 of type int, and then sends the sum1 of the
received record with another with a field f2 having value 2. Even though record
x is not statically available, assuming it has the specified type, process code can
be typechecked and the type {f1 : int,f2 : int} can be inferred for the sent record.

At run-time, we expect a receive action in a process receive(x : T).p to be
synchronized with a send action of a process running in a parallel, which provides
the required code, assumed to travel with its type.2

If a send/receive synchronization step is legal (that is, code can safely be
accepted, see below), then both the send and the receive actions are performed
and the variable x is replaced by the record sent by the other process. For
instance, we can run the process p1 in parallel with the process

p2 = send({f1 �→ −1}).nil

and the parallel composition reduces by an internal step as follows:

p1‖p2
τ� send({f2 �→ 2} + {f1 �→ −1}).nil‖nil

since p1
?{f1 �→−1}:{f1:int}� and p2

!{f1 �→−1}:{f1:int}� . The type annotations in the send
and receive actions allow to perform a run-time check. Indeed, received code is
accepted only if it provides the expected functionalities, formally expressed by
its accompanying type. Note that in this way code is never reinspected, since
dynamic checks are performed on types only.

However, requiring an exact match between required and dynamically avail-
able type, as in the above example, would be a too restrictive constraint, forcing
to reject in many cases code which could be safely composed with local code. A
less restrictive requirement which seems rather natural is to accept dynamically

1 Also called “record concatenation” or “join” in literature. Here we prefer “sum” for
uniformity with module operations later on.

2 As discussed more in detail later, we assume here to trust the incoming type infor-
mation to be correct.

322 S. Fagorzi and E. Zucca

available code whose type T ′ is a subtype, in a suitable sense, of the required
type T. We will model this by a dynamic subtyping relation ≤d.

For instance, assuming a width/depth subtyping relation on records, in the
previous example one could safely run the process p1 in parallel with the process
p3 = send({f1 �→ 1,f3 �→ 0}).nil, which sends a record of type {f1 :posint,f3 :posint},
which is a subtype of the required type (since it has more fields and of more
specific types), obtaining

p1‖p3
τ� send({f2 �→ 2} + {f1 �→ 1,f3 �→ 0}).nil‖nil

which is a well-typed expression.
However, assuming the simple semantics by replacement of the receive prim-

itive described above, a dynamic check based on depth/width subtyping would
not be type safe. Indeed, as it is well-known in record, object and module
calculi [18,2,7,4], there is the problem of unintentional clashes. For instance,
if in the example above we run the process p1 in parallel with the process
p4 = send({f1 �→ 1,f2 �→ 0}).nil, which also sends a record of a subtype of the
required type, then we have

p1‖p4
τ� send({f2 �→ 2} + {f1 �→ 1,f2 �→ 0}).nil‖nil

which is not well-typed since there are two conflicting definitions for f2.
In other words, in the static type system width/depth subtyping is not safe,

in the sense that a term of a subtype cannot be safely used in a context where a
supertype is expected. However, in the context of mobile code exchange it is also
important, besides guaranteeing type safety, to reject communication in as few
cases as possible. For instance, in our example, we can still obtain type safety if
we assume to remove all fields which were not explicitly required from a received
record. In general, we assume the dynamic subtyping relation to be equipped
with a coercion function � �T ′≤dT on terms, that intuitively allows to bridge the
gap between the provided type T ′ and the required type T.

By using this coercion function we can rewrite the previous two examples in
the following way:

p1‖p3
τ� send({f2 �→ 2} + �{f1 �→ 1,f3 �→ 0}�{f1:posint,f3:posint}≤d{f1:int}).nil‖nil

where �{f1 �→ 1,f3 �→ 0}�{f1:posint,f3:posint}≤d{f1:int} = {f1 �→ 1}

p1‖p4
τ� send({f2 �→ 2} + �{f1 �→ 1,f2 �→ 0}�{f1:posint,f2:posint}≤d{f1:int}).nil‖nil

where �{f1 �→ 1,f2 �→ 0}�{f1:posint,f2:posint}≤d{f1:int} = {f1 �→ 1}

Note that non required fields are removed regardless of the fact they would
cause conflict problems or not.

Another possible solution is to use a more sophisticated type system, with a
dynamic subtyping relation which exactly detects when a conflict would arise.
In this case, no coercion is needed (formally, coercion is the identity), since such
a subtyping relation allows safe replacement. Both solutions will be formally
presented on records and mixin modules in Sect.3 and Sect.4, respectively.

A Framework for Type Safe Exchange of Mobile Code 323

2 Formalization

In this section we define a parametric calculus of processes which formalizes type
safe exchange of mobile code as described informally in the previous section. The
calculus is parametric in the sense that we leave unspecified some ingredients
which will depend on the specific language or system.

First of all, we assume mobile code to be formalized by an underlying core
calculus, consisting of the following ingredients:

– variables x, y, z, . . . ∈ Var,
– expressions e ∈ Expc ::= x | . . .,
– (capture-avoiding) substitution e[e′/x] of the free occurrences of x in e by e′,
– reduction relation e c� e′.

On top of these ingredients, we can define an extended calculus modeling pro-
cesses which exchange code relying on a simple coordination mechanism3, and
where type safety relies on a combination of static type system and dynamic
checks.

To define the extended calculus, we need the following additional ingredients
which formalize the static type system and the exchange of mobile code:

– types t ∈ Typec,
– type judgment Γ �c e : t, where Γ is a type context, that is, a mapping from

variables into types, written xi : ti∈I
i ,

– (static) subtyping relation ≤s, required to be a preorder,
– dynamic subtyping relation ≤d,
– coercion family of functions � �t′≤dt : Expc → Expc, one for each pair t′≤d t.

We will use the following notations for mappings (e.g., type contexts): dom(Γ)
is the domain of Γ ; Γ [t/x] is the mapping obtained by updating Γ with the
association from x to t.

We assume the following standard properties.

Assumption 1. If Γ �c e : t, x �∈ dom(Γ), then e[e′/x] = e.

Assumption 2 (SR-core). If Γ �c e : t and e c� e′, then Γ �c e′ : t′ for some
t′≤s t.

Syntax, reduction and typing rules for the extended calculus are in Fig.1.
The focus of our framework is on dynamic retrieval and typechecking, hence we

consider a very simple coordination mechanism based on standard synchronous
send/receive primitives. Reduction semantics of process terms is modeled by a
labelled relation p λ� p′ where the label is either τ , denoting an internal
step, or !E : T, ?E : T, denoting, respectively, sending and dynamic retrieval
of expression E of type T, where E is either a core expression or a process. An

3 For simplicity, we consider here anonymous communications, but the approach could
be easily adapted to named forms of communication, e.g., through channels.

324 S. Fagorzi and E. Zucca

p ∈ Proc ::= x | nil | send(E :T).p | receive(x :T).p | p1‖p2 process
E ∈ Exp ::= e | p mobile code
λ ::= τ | !E : T | ?E : T label
T ::= t | � type

!E : T =?E : T �≤s � �p��≤d� = p
?E : T =!E : T �≤d �

(core)

e c� e′

send(e : t).p τ� send(e′ : t).p
(send)

send(E :T).p !E:T� p

(rcv)

receive(x :T).p ?E:T ′� p[�E�T ′≤dT
/x]

T ′ ≤d T (par-left)

p1
λ� p′

1

p1‖p2
λ� p′

1‖p2

(par-right)

p2
λ� p′

2

p1‖p2
λ� p1‖p′

2

(sync)

p1
λ� p′

1 p2
λ� p′

2

p1‖p2
τ� p′

1‖p′
2

(t-var-proc)

Γ �x :�
Γ (x) = � (t-nil)

Γ �nil :�
(t-send)

Γ �E :T ′ Γ �p :�
Γ � send(E :T).p :�

T ′ ≤s T

(t-core)

Γ c �c e : t
Γ �e : t

(t-rcv)

Γ [T/x]�p :�
Γ � receive(x :T).p :�

(t-par)

Γ �p1 :� Γ �p2 :�
Γ �p1‖p2 :�

Fig. 1. Coordination calculus

internal step occurs as effect of either a reduction step at the core level, or an
exchange of code in a parallel composition of processes.

Note that core code in a send(e : t).p process can be either sent or further
reduced, in a non deterministic way. Assuming to have a distinguished set of
values among the ingredients of the core calculus, an alternative approach could
be to send only (core) values; however, this would make no difference from the
point of view of dynamic typechecking, so we keep here the simpler approach. In
other words we do not care about where core mobile code is executed, either by
the sender or the receiver, even though this will of course make a difference in
practice, e.g., in case of non termination. Sending a process term, instead, intu-
itively means sending coordination code to be executed by the receiver. Finally,
note that we keep the language as simple as possible, hence do not consider
additional syntactic constructs (e.g., let-in) which could be useful in practice,
but are not significant to our aim.

We denote by λ the complement of λ, defined in the usual way. Static and
dynamic subtyping relation are extended to the process type in the trivial way.

Reduction rules are straightforward, except for (rcv), which is the key rule
illustrating our approach. We denote by p[E/x] the capture-avoiding substitution
of the free occurrences of x in p with E, defined in the obvious way in terms of
core substitution e[e′/x]. The side condition expresses the fact that incoming
code E can be retrieved only if its type T ′ is compliant with the required type
T, in a sense which is formally specified by the subtyping relation ≤d. In this

A Framework for Type Safe Exchange of Mobile Code 325

case, a coercion driven by the subtyping relation T ′ ≤d T is inserted before
combining E with local code, to bridge the gap between provided and required
type.4

Typing rules are straightforward as well; a context Γ now maps variables into
either core types or the process type. In rule (t-send), Γ � E : T ′ can be either
Γ � p : �, if E is a process p, or Γ � e : t, as defined by rule (t-core), if E and T ′

are a core expression e and type t, respectively. We denote by Γ c the subset of
a context Γ which maps variables into core types.

We do not care here about how type annotation in send(E :T).p and receive(x :
T).p are produced (that is, either written by the programmer or inferred dur-
ing compilation). In practice, we expect the annotation in send(E : T).p to be
inferred by the compiler, whereas the programmer should be totally or partially
responsible for the task of writing annotation in receive(x :T).p (indeed, even in
case the requirements on x needed to typecheck local code can be automatically
inferred, the programmer should be allowed to write stronger requirements for
methodological purpose).

The combination of the static type system and the dynamic checks should
ensure type safety, that is, that internal steps can never lead to ill-formed process
terms (for steps of communication with the “external world” this requires to be
confident on the fact that received code complies with its accompanying type,
see below).5

Definition 1 (Type safety). Exchange of mobile code (≤d, � �) is type safe if
the following (SR) property holds:

If Γ �p :� and p τ� p′, then Γ �p′ :�.

We introduce now an assumption which will be shown to be a sufficient condition
for type safe exchange of mobile code. Informally, the assumption states that,
whenever the dynamic check on core mobile code succeeds (that is, its declared
type is in the dynamic subtyping relation with the required type), this code can
be safely incorporated with local code via the corresponding coercion function.

Assumption 3 (Core-� �≤d
-substitution). If Γ [tx/x]�c e : t, Γ �c e′ : t′′x , t′′x ≤s t′x,

and t′x ≤d tx, then Γ �c e[�e′�t′
x≤dtx/x] : t

′, for some t′ ≤s t.

Here tx is the required type, t′x the type declared by the mobile code and t′′x its
actual type.

Lemma 1 (� �≤d
-substitution). Under assumption 3, if Γ [Tx/x] �E : T, Γ �

E ′ : T ′′
x , T ′′

x ≤s T ′
x, and T ′

x ≤d Tx, then Γ � E[
�
E ′�

T ′
x≤dTx

/x] : T ′, for some
T ′≤s T.
4 For simplicity, here an attempt at communicating code of a wrong type corresponds

to no reduction at all; a more realistic model should include reduction into a distin-
guished error term of either the receiver only or the communicating pair.

5 Note that in distributed scenarios type safety, usually expressed by subject reduction
(SR) and progress properties [11], reduces to SR (as in, e.g., [17,13]), since ensuring
progress would require a sophisticated static analysis (deadlock detection).

326 S. Fagorzi and E. Zucca

Proof. By induction on typing rules. We show the most interesting cases.

(t-send) We have that Γ [Tx/x] � send(E : T).p : �, Γ [Tx/x] � E : T ′, T ′ ≤s T, and
Γ [Tx/x]�p :�. By inductive hypothesis we get Γ �E[

�
E ′�

T ′
x≤dTx

/x] :T ′′, for

some T ′′≤s T ′, and Γ �p[
�
E ′�

T ′
x≤dTx

/x] :�. Since ≤s is a preorder T ′′≤s T,
hence we get the thesis by applying typing rule (t-send).

(t-core) We have that Γ [Tx/x]�e : t. Moreover, if Tx = � then Γ core �c e : t, hence by
Assumption 1 e[

�
E ′�

T ′
x≤dTx

/x] = e and the thesis follows by applying rule

(t-core). Otherwise, Tx is a core type tx, hence Γ core[tx/x]�c e : t. Then, T ′
x must

be a core type t′x as well, and E ′ a core expression e′, and by Assumption 3
we get Γ core �c e[�e′�t′x≤dtx/x] : t

′, for some t′ ≤s t. Hence, we ge the thesis by
applying typing rule (t-core).

(t-rcv) We have that Γ [Tx/x] � receive(y : T).p : �, and Γ [Tx/x][T/y] � p : �. If
x �= y, then Γ [Tx/x][T/y] = Γ [T/y][Tx/x], by inductive hypothesis Γ [T/y]�
p[

�
E ′�

T ′
x≤dTx

/x] :�, and we get the thesis by applying typing rule (t-rcv); oth-

erwise, Γ [Tx/x][T/y] = Γ [T/y], (receive(y :T).p)[
�
E ′�

T ′
x≤dTx

/x] = receive(y :
T).p, and Γ [T/y]�p :�, and the thesis follows by applying typing rule (t-rcv).

	

Proposition 1. If assumption 3 holds, then exchange of mobile code is type
safe.

We prove type safety as a case of the following generalized type safety which takes
into account communication steps with the outside world. Intuitively, when re-
ceiving code E, safety is guaranteed only if E actually complies its accompanying
type T. We assume here that the receiver process just trusts the incoming type
information to be correct: a more sophisticated approach would require a proof,
as in [16]. Conversely, we can prove that code sent to the external world always
complies the declared type (this is inductively used to prove safety of internal
steps).

We assume here for simplicity that code exchanged among processes is closed
w.r.t. the current type context; in particular, considering a ground process, only
ground code is exchanged. Retrieval of open code with free variables which can
be dynamically bound to local code is an interesting subject of further work.

Proposition 2. Under assumption 3:

– If Γ �p :� and p τ� p′, then Γ �p′ :�.
– If Γ �p :� and p !E:T� p′, then Γ �p′ :� and Γ �E :T ′, for some T ′≤sT.
– If Γ �p :�, p ?E:T� p′, and Γ �E :T ′, T ′≤s T, then Γ �p′ :�.

Proof. By induction on reduction rules. We show the most interesting cases.

(core) We have that send(e : t).p τ� send(e′ : t).p, e c� e′, and, since we must
have applied typing rules (t-send) and (t-core), Γ �send(e : t).p :�, Γ core �c e : t, and
Γ � p : �. Since SR holds for the core calculus (Assumption 2), we get that
Γ core �c e′ : t, hence by applying typing rule (t-send) the thesis follows.

A Framework for Type Safe Exchange of Mobile Code 327

(send) We have that send(E :T).p !E:T� p, and, since we must have applied typing
rule (t-send), Γ � send(E : t).p : �, Γ � E : T ′, T ′ ≤s T, and Γ � p : �, hence the
thesis follows.

(rcv) We have that receive(x : T).p ?E:T ′� p[�E�T ′≤dT/x], T ′ ≤d T, and, since we
must have applied typing rule (t-rcv), Γ � receive(x :T).p : � and Γ [T/x]� p : �.
Moreover, by hypothesis Γ � E : T ′′, T ′′ ≤s T ′, hence by Lemma 1 we get
Γ �p[�E�T ′≤dT/x] :�. 	

In the next sections we will formally define instantiations of the framework on
record/module calculi. We briefly mention here some other possible instantia-
tions.

Taking as core calculus the polymorphic lambda calculus with the primitive
type int and instantiation of type variables as (both static and dynamic) sub-
typing relation, the process receive(f : int → int).send(. . . f(1) . . .).nil could receive
a function λx.x of type α → α, where the coercion function � �α→α≤dint→int would
simply be the identity.

Another example, taken from [15], is “auto-boxing” from value types to ob-
ject types as, e.g., in Java. Assume the subtyping relation to be such that int ≤d

Object. Then, the process receive(x :Object).send(. . . x.toString() . . .).nil could ac-
cept in input the expression 1 of type int, which would be transformed into an
object by the coercion function; for instance, �1�int≤dObject

= new Integer(1). Note
that the resulting term is not required to exactly have the expected type; it is
sufficient that Integer ≤s Object (see assumption 3).

3 A Case Study: Lambda Calculus with Records

In this section we present two different instantiations of the parametric coor-
dination calculus introduced in the previous section, denoted by MoRecdel and
MoReccnstr (for “mobile records”), respectively, which both take as core calcu-
lus a simple lambda calculus with records. These two instantiations are mainly
reported as a preliminary step towards those on mixin modules which will be
presented in the next section, useful to illustrate the problem and the proposed
solutions in a simpler setting.

3.1 Core Calculus

The syntax of the calculus is given in Fig.2. We assume, besides variables, an
infinite set Field of field names f. Terms of the calculus are built by (unspecified)
operators of basic types, standard operators of (simply typed) lambda calculus,
and records with three operators: sum, delete and selection. A record is a map
from field names to expressions. Sum performs the union of fields if their sets
of names are disjoint, delete removes a field (if present), selection returns an
existing field. We omit standard reduction rules (see rules for corresponding
operators on mixin modules in next section).

328 S. Fagorzi and E. Zucca

f ∈ Field field name
e ∈ Expc ::= expression

. . . basic operators
| x | λx :t. e | e1 e2 lambda calculus operators
| {fs} record
| e1 + e2 sum
| e \ f delete
| e.f selection

fs := fi
i∈I�→ ei fields

Fig. 2. λ-calculus with records: syntax

3.2 Type Safety by Deleting Unexpected Fields

Types, ranged over by t ∈ Typec, include (unspecified) basic types, functional
types t1 → t2 and record types {Σ}, where Σ is a signature, that is, a map
fi : ti

i∈I from field names to types. We omit standard typing rules (see rules for
corresponding operators on mixin modules in next section).

In Fig.3 we define the subtyping relations and the coercion functions. Both

basic

subtyping rules

. . .

t1 → t2 ≤dpt t′1 → t′2
t1 → t2 ≤d t′1 → t′2

Σ1|dom(Σ2) ≤dpt Σ2

{Σ1} ≤d {Σ2}

t′1 ≤dpt t1 t2 ≤dpt t′2
t1 → t2 ≤dpt t′1 → t′2

Σ1 ≤dpt Σ2

{Σ1} ≤dpt {Σ2}
ti ≤dpt t′i, i ∈ I

fi : ti
i∈I ≤dpt fi : t

′
i
i∈I

�e�t1≤dt2
=

{
e \ (dom(Σ1) \ dom(Σ2)) if ti = {Σi} , i ∈ {1, 2}
e otherwise

≤s ≡ ≤dpt

Fig. 3. Subtyping relations and coercion functions for MoRecdel

static and dynamic subtyping are defined in terms of the relation ≤dpt, which
is usual subtyping on functional types (that is, contravariant in the input and
covariant in the output) and depth subtyping on record types. Static subtyping
≤s just coincides with ≤dpt, whereas dynamic subtyping ≤d also allows width
subtyping only at the top level of record types (see the premise of the left top
rule). Coercion functions remove all (top level) unexpected fields on expressions
of record types (that is, for pairs {Σ} ≤d {Σ′}, those fields which are in dom(Σ)
but not in dom(Σ′)), and are the identity on expressions of other types.

For instance, if the expected type is {f1:{f2: int}}, then the type {f1:{f2: int},f : int}
is accepted (and f is removed regardless it would cause conflict or not), while
{f1:{f2: int,f : int}} is rejected.

Defining a dynamic subtyping relation and the associated coercion functions
corresponding to hierarchical removal of fields is not trivial and will be subject
of future work.

A Framework for Type Safe Exchange of Mobile Code 329

We state now that MoRecdel satisfies all assumptions required in Sect.2.

Theorem 1

1. If Γ �c e : t, x �∈ dom(Γ), then e[e′/x] = e.
2. If Γ �c e : t and e c� e′, then Γ �c e′ : t′ for some t′≤s t.
3. If Γ [tx/x] �c e : t, Γ �c e′ : t′′x , t′′x ≤s t′x, and t′x ≤d tx, then Γ �c e[�e′�t′x≤dtx/x] : t

′, for
some t′ ≤s t.

3.3 Type Safety by Detecting Conflicts

We describe now a more sophisticated type system for the simple lambda calculus
with records. Before giving its formal definition, we illustrate the idea on a simple
example.

Let us consider again the process p1 = receive(x :{f1 : int}).send({f2 �→ 2} + x).nil.
To avoid conflicts with local code, the type of the expression to be retrieved,
besides being a subtype of {f1 : int}, should have no field named f2. This can be
formally expressed by a constrained record type of shape f2 : int# r ⇒ {f1 : int,r},
where r is a row variable [20] which models an unknown additional signature
and the constraint f2 : int # r means that f2 : int and r have disjoint domain6.
Consequently, the expression to be sent has type f2 : int# r ⇒ {f1 : int,f2 : int,r}.
When receiving a record, the row variable r is replaced by the unexpected part of
its signature. For instance, if we run p1 in parallel with p3 = send({f1 �→ 1,f3 �→ 0} :
{f1 :posint,f3 :posint}).nil, then r is replaced by f3 :posint. This replacement is safe
since the ground constraint f2 : int# f3 :posint is valid. On the contrary, if we run
p1 in parallel with p4 = send({f1 �→ 1,f2 �→ 0} : {f1 :posint,f2 :posint}).nil, then the
synchronization step is not legal since f2 : int # f2 :posint is not valid. Note that no
coercion is needed (formally, coercion is the identity).

Types and typing rules are given in Fig.4. Types are (unspecified) basic types,
functional types and constrained polymorphic record types, consisting of a se-
quence of constraints and a polymorphic record type, where the signature con-
tains a (possibly empty) sequence of row variables, conventionally written at
the end. We denote by RV(Σ) the set of row variables inside Σ, defined in the
obvious way, and analogously for C. Standard record types are obtained by tak-
ing empty constraint and row variable sequences. A constraint Σ1,R1 # Σ2,R2
requires two polymorphic signatures to have disjoint domains. Hence, similarly
to [12], the form of constraint we consider allows to express negative informa-
tion. The condition RV(Σ1) ∩ RV(Σ2)=∅ prevents row variable clashes. In rule
(sum), the side-condition requires the constraints of the two arguments to imply
(written �, defined in Fig.5) that their signatures have disjoint domain.

In Fig.5 we define the subtyping relations and the coercion functions.
The relation ≤σ

d is the usual subtyping relation on functional types. On con-
strained record types, it requires constraints in the subtype to imply those in
the supertype, modulo the substitution σ which maps the row variables in the
6 Even though this constraints does not depend on types, we write a signature rather

than just a set of names for uniformity with row variables which vary on signatures.

330 S. Fagorzi and E. Zucca

t ∈ Type ::= type
. . . basic types

| t1 → t2 functional type
| C ⇒{Σ,R} constrained polymorphic record type

Σ ::= fi : ti
i∈I signature

R ::= ri
i∈I row variables

C ::= ci
i∈I constraints

c ::= Σ1,R1 #Σ2,R2

(RV(Σ1)∩RV(Σ2)=∅) constraint

(var)

Γ �c x :Γ (x)
(lambda)

Γ [t1/x] �c e : t2
Γ �c λx :t1. e : t1 → t2

(app)

Γ �c e1 : t2 → t1
Γ �c e2 : t′2
Γ �c e1 e2 : t1 {σ}

t′2 ≤σ
s t2

(record)

Γ �c ei : ti, i ∈ I

Γ �c
{
fi

i∈I�→ ei

}
:∅⇒

{
fi : ti

i∈I
}

(sum)

Γ �c ei :Ci ⇒{Σi,Ri} , i ∈ 1, 2

Γ �c e1 + e2 :C1,C2 ⇒{Σ1,Σ2,R1,R2}
C1,C2�Σ1,R1 # Σ2,R2

(sel)

Γ �c e :C ⇒{Σ,R}
Γ �c e.f :Σ(f)

(del)

Γ �c e :C ⇒{Σ,R}
Γ �c e \ f :C ⇒{Σ \ f,R}

Fig. 4. Type system for MoReccnstr

supertype to the unexpected signature part of the subtype; moreover, depth
subtyping is allowed on the matching part of the signatures. Intuitively, the
implication C � C′ holds if ground constraints in C′ are valid and non-ground
constraints are included in C. In the last rule, the side-condition Σ1 # Σ2 means
that the two signatures have disjoint domains. Coercion functions are identities
and, correspondingly, static subtyping coincides with dynamic subtyping.

Note that, differently from what happen in MoRecdel, here width subtyp-
ing is allowed at any level, provided that no conflicts arise. For instance, if
the expected type is ∅ ⇒ {f1 :∅⇒{f2 : int,r2} ,r1}, then both the types ∅ ⇒
{f1 :∅⇒{f2 : int} ,f : int} and ∅⇒{f1 :∅⇒{f2 : int,f : int}} are accepted. On the other
hand, the former is not a subtype of f : int# r1 ⇒ {f1 :∅⇒{f2 : int,r2}} and the
latter is not a subtype of ∅⇒{f1 : f : int # r2 ⇒{f2 : int,r2} ,r1} (compare with the
example in the previous subsection).

We now state that MoReccnstrsatisfies all assumptions required in Sect.2.

Theorem 2

1. If Γ �c e : t, x �∈ dom(Γ), then e[e′/x] = e.
2. If Γ �c e : t and e c� e′, then Γ �c e′ : t′ for some t′ ≤σ

s t.
3. If Γ [tx/x]�c e : t, and Γ �c e′ : t′′x , t′′x ≤σ

s t′x, and t′x ≤σ
d tx, then Γ �c e[�e′�t′x≤σ

d tx /x] :
t′, for some t′ ≤σ

s t.

A Framework for Type Safe Exchange of Mobile Code 331

basic

subtyping rules

. . .

t′1 ≤σ
d t1 t2 ≤σ

d t′2
t1 → t2 ≤σ

d t′1 → t′2

Σ1 ≤σ
d Σ2

C1 ⇒{Σ1,Σ,R1} ≤σ
d C2 ⇒{Σ2,R2}

σ(R2) = Σ,R1
C1�C2 {σ}

ti ≤σ
d t′i, i ∈ I

fi : ti
i∈I ≤σ

d fi : t
′
i

i∈I

C �∅
C �C1 C �C2

C �C1,C2 C,c�c
c ::= Σ #R

| R1 #R2

C � Σ1 #R2,Σ2 # R1,R1 #R2

C �Σ1,R1 # Σ2,R2
Σ1 # Σ2

�e�t≤σ
d t′ = e ≤σ

s =≤σ
d

Fig. 5. Subtyping relations and coercion functions for MoReccnstr

4 A Calculus of Mixin Modules

In this section we present other two instantiations of the parametric coordination
calculus, denoted by MoMixdel and MoMixcnstr (for “mobile mixin modules”),
respectively, which both take as core calculus the calculus of mixin modules
CMS [2].

4.1 Core Calculus

The syntax of the calculus if given in Fig.6. Besides variables, we assume an
infinite set Name of names (X, Y, Z, . . .). A basic mixin has the form [ι; o; ρ]

X, Y, Z, . . . ∈ Name component name
e ∈ Expc ::= expression

| x variable
| [ι; o; ρ] (dom(ι)∩dom(ρ)=∅) basic mixin
| e1 + e2 sum
| e\X delete
| freezeXe freeze
| e.X selection

ι := xi: ti
i∈I�→ Xi (Xi = Xj =⇒ ti = tj) input part

o := Xj
j∈O�→ ej output part

ρ := xl: tl
l∈L�→ el local part

Fig. 6. Mixin calculus: syntax

where: ι, the input part, is a map from deferred variables to input names, o, the
output part, is a map from output names to expressions and ρ, the local part, is
a map from local variables to expressions. Names are used to refer to a compo-
nent from outside the mixin (hence they are used by module operators), while
variables, which are annotated with types7, are used to refer to a component
7 We will omit type annotations when not necessary.

332 S. Fagorzi and E. Zucca

from the inside. A basic mixin, e.g., [x �→ X, z �→ Z; X �→ 0, Y �→ x + y; y �→ 2 + z], de-
clares four kinds of components: Z is deferred, since its name is only input;
among components defined inside the mixin, X is virtual, since its name is both
input and output; Y is frozen, since its name is only output; finally, y is local,
since it has no name, hence is only internally available. Mixins can be combined
by the three operators of sum, delete, and freeze.

The main novelties of mixin modules w.r.t. records are that they also declare
input components, whose definitions must be provided from the outside (by sum
and freeze) and that components can mutually refer to each other (through
variables).

In Fig.7 we give the semantics of the calculus, where we omit standard con-
textual closure.

(sum)

[ι1; o1; ρ1] + [ι2; o2; ρ2] c� [ι1,ι2; o1,o2; ρ1,ρ2]

dom(ι1,ρ1) ∩ FV[ι2; o2; ρ2] = ∅
dom(ι2,ρ2) ∩ FV[ι1; o1; ρ1] = ∅
dom(o1) ∩ dom(o2) = ∅

(del)

[ι; o; ρ]\X
c� [ι; o\X; ρ]

(freeze)

freezeX [ι; o; ρ] c�
[
ι\F ; o; ρ, x

x∈F�→ o(X)
] F = {x | ι(x) = X}

F �= ∅ =⇒ X∈dom(o)

(sel) [
; o; xl

l∈L�→ el

]
.X c� o(X)

[[
; Y �→ eh; xl

l∈L�→ el

]
.Y

/
xh

h∈L
]

Fig. 7. Mixin calculus: semantics

The sum operator has the effect of gluing together two mixins, performing the
union of deferred components and the disjoint union of virtual, frozen and local
components, see rule (sum). Conflicts among variables are solved by α-renaming.

In rule (del), the delete of an output name from a mixin has the effect of
removing the corresponding definition: as a consequence, a virtual component
becomes deferred, whereas a frozen component just disappears.

Freezing a component means that its input name (if any) disappears, and
all variables mapped into it become local, taking as defining expression the
current component definition. As a consequence, a virtual component becomes
frozen, see rule (freeze). Finally, rule (sel) allows to access an output component of
a closed (that is, with no input components) mixin. The result is the expression
defining the selected output name where, to take into account mutual recursion,
all (necessarily local) variables are replaced by their definitions.

4.2 Type Safety by Hiding Unexpected Output Components

In Fig.8 we describe a standard type system for CMS. Types include (unspecified)
basic types and mixin types. A mixin type consists of an input signature πι and
an output signature πo. A signature is a map from component names into types.

A Framework for Type Safe Exchange of Mobile Code 333

t ∈ Type ::= type
. . . basic types

| [πι; πo] mixin type
π := Xi: tii∈I signature

(var)

Γ �c x :Γ (x)

(basic)

{
Γ

[
ti/ xi

i∈I∪L
]

�c eh : th | h ∈ O ∪ L
}

Γ �c
[
xi: ti

i∈I�→ Xi; Xj
j∈O�→ ej ; xl: tl

l∈L�→ el

]
:
[
Xi: tii∈I ; Xj: tjj∈O

] Xi: tii∈I ‖Xj: tjj∈O

(sum)

Γ �c ei : [πι
i ; πo

i] , i ∈ 1, 2

Γ �c e1 + e2 : [πι
1,π

ι
2; πo

1 ,πo
2]

πι
1 ‖πι

2
πo
1 # πo

2
πι
1 ‖πo

2
πι
2 ‖πo

1

(del)

Γ �c e : [πι; πo]

Γ �c e\X : [πι; πo\X]

(freeze)

Γ �c e : [πι; πo]
Γ �c freezeXe : [πι\X; πo]

X∈dom(πι) =⇒ X∈dom(πo) (sel)

Γ �c e : [∅; πo]
Γ �c e.X :πo(X)

Fig. 8. Type system for MoMixdel

In rules (basic) and (sum) the side-condition πι
1 ‖ πι

2 means that the two input
signatures agree on their common domain; while πι

1 # πι
2 means that the two

signatures have disjoint domains.

basic

subtyping rules

. . .

πι
1 ≤dpt πι

2

πo
2 |dom(πo

1) ≤dpt πo
1

[πι
1; πo

1] ≤d [πι
2; πo

2]
πι

2 ≤dpt πι
1 πo

1 ≤dpt πo
2

[πι
1; πo

1] ≤dpt [πι
2; πo

2]
ti ≤dpt t′i, i ∈ I

Xi: tii∈I ≤dpt Xi: t′i
i∈I

�e�t1≤dt2
=

{
(freezeHe) \H , H = dom(πo

1)\dom(πo
2) if ti = [πι

i ; πo
i] , i ∈ {1, 2}

e otherwise
≤s≡≤dpt

Fig. 9. Subtyping relations and coercion functions for MoMixdel

In Fig.9 we define the subtyping relations and the coercion functions. They
are analogous to those given in Fig.3 for records, except for the fact that unex-
pected components are hidden rather than just deleted. The hiding operator is,
as usual in module calculi [2], a combination of freeze and delete; indeed, vir-
tual components need to be frozen before being deleted, making their definitions
local, since they could be referred by other components.

Note that the classical problem in object calculi of conflict between depth
subtyping and inheritance [1,6] is not present in module calculi. Assume to have
objects which are like records in the previous section where fields —now called
methods— can be mutually recursive. The conflict arises when an object, in-
ternally referring to one of its methods, say N of type t, is used in a context

334 S. Fagorzi and E. Zucca

expecting a method N with a less specific type, say t′, which then redefines N
with a body of type t′. Indeed, in this case, the internal reference to N is no
longer safe.

We illustrate the problem by the following example from [6], adapted to our
syntax.

receive(x : [M : int,N : int]).send((x ⇐ [N �→ −1]) .M).nil

Here, ⇐ is the overriding operator (expressible as a combination of delete and
sum), used to redefine method N in x with −1. Taking depth subtyping, an
incoming object [M �→ log(N),N �→ 1] of type [M : int,N :posint] could be accepted;
however, the execution of the resulting process would raise a run-time error.

The key point is that an exported method which is also internally referred
acts as a virtual (both input and output) component, but this twofold role is
not made explicit in the type. Differently, in module calculi, self-reference is
made through variables rather than names, and the type indicates whether a
component is input and/or output. For instance, a module analogous to the in-
coming object above can only be written as [n �→ N ; M �→ log(n),N �→ 1;] of type
[N :posint; M : int,N :posint]8. Hence, a context using this module should specify an
expected input component N :posint, and the analogous of the previous process

receive(x : [N :posint; M : int,N :posint]).send((x ⇐ [N �→ −1]) .M).nil

would be ill-typed. On the other hand, if the type [N : int; M : int,N : int] was
expected, making the above process well-typed, then the incoming module could
not be accepted. The solution given in [6] corresponds in practice to recover
what is automatically guaranteed by the type system in module calculi: that is,
in [6] they specify, for each receive parameter of mixin or class type, besides the
required type (that acts as an upper bound), also a “lower bound” statically
inferred which records the (most general) type of all redefining methods (in the
previous example N : int). In our terminology, this is the expected input type of
the parameter.

4.3 Type Safety by Detecting Conflicts

We now give a type system for mixin modules similar to that given in Sect.3.3
for records, which uses constraints to prevent conflicts.

Types and typing rules are in Fig.10. Types are (unspecified) basic types
and constrained polymorphic mixin types, consisting of a sequence of constraints
and a polymorphic mixin type, where the output signature contains a (possibly
empty) sequence of row variables. On polymorphic signatures we use the same
conventions and notations introduced in Sect.3.3. We need a new kind of con-
straint: π1 ‖ π2,R requires a non-polymorphic (input) signature to be compatible
with a polymorphic (output) signature.

In Fig.11 we define the subtyping relations and the coercion functions. Their
definitions are analogous to those seen in Sect.3.3, with the difference that here
8 Recall that an input and an output component with the same name are considered

as a unique (virtual) component, hence their types must agree.

A Framework for Type Safe Exchange of Mobile Code 335

t ∈ Type ::= type
. . . basic types

| C ⇒ [πι; πo,R] constrained polymorphic mixin type
π := Xi: tii∈I signature
R ::= ri

i∈I row variables
C ::= ci

i∈I constraints
c ::= π1 ‖ π2,R

| π1,R1 #π2,R2 (RV(π1)∩RV(π2)=∅) constraint

(var)

Γ �c x :Γ (x)

(basic)

{
Γ

[
ti/ xi

i∈I∪L
]

�c eh : th | h∈O ∪ L
}

Γ �c
[
xi: ti

i∈I�→ Xi; Xj
j∈O�→ ej ; xl: tl

l∈L�→ el

]
: ∅⇒

[
Xi: tii∈I ; Xj: tjj∈O

] Xi: tii∈I ‖Xj: tjj∈O

(sum)

Γ �c ei :Ci ⇒ [πι
i ; πo

i ,Ri] , i ∈ 1, 2
Γ �c e1 + e2 : C1,C2 ⇒ [πι

1,π
ι
2; πo

1 ,πo
2 ,R1,R2]

πι
1 ‖ πι

2

C1,C2� πo
1 ,R1 # πo

2 ,R2,
πι
1 ‖πo

2 ,R2,
πι
2 ‖πo

1 ,R1

(del)

Γ �c e :C ⇒ [πι; πo,R]

Γ �c e\X :C ⇒ [πι; πo\X,R]
(freeze)

Γ �c e :C ⇒ [πι; πo,R]

Γ �c freezeXe :C ⇒ [πι\X; πo,R]
X∈dom(πι) =⇒

X∈dom(πo)

(sel)

Γ �c e :C ⇒ [∅; πo,R]

Γ �c e.X :πo(X)

Fig. 10. Type system for MoMixcnstr

basic

subtyping rules

. . .

πι
2 ≤σ

d πι
1 πo

1 ≤σ
d πo

2

C ⇒ [πι
1; πo

1 ,πo,R1] ≤σ
d C′ ⇒ [πι

2; πo
2 ,R2]

σ(R2) =
πo,R1

C�C′ {σ}
ti ≤σ

d t′i, i ∈ I

Xi: tii∈I ≤σ
d Xi: t′i

i∈I

C �∅
C �C1 C �C2

C �C1,C2 C,c�c
c ::= πι ‖R

| πo #R
| R1 #R2

C � πo
1 # R2,π

o
2 # R1,R1 # R2

C �πo
1 ,R1 # πo

2 ,R2
πo
1 # πo

2

C �πι ‖ R
C �πι ‖ πo,R

πι ‖πo
�e�t≤σ

d t′ = e ≤σ
s =≤σ

d

Fig. 11. Subtyping relation and coercion functions for MoMixcnstr

we also have contravariant subtyping on input signatures and that we have to
ensure the validity of the new kind of constraint πι ‖ πo,R.

The instantiations MoMixdel and MoMixcnstr satisfy Assumptions 1, 2 and 3 of
Sect.2; we omit the formal statements for lack of space.

5 Conclusion

The contribution of the paper is twofold. First, we have provided a simple and
general formal framework for reasoning about the problem of guaranteeing type

336 S. Fagorzi and E. Zucca

safety in a distributed context where mobile code is exchanged. The inspira-
tion for this work has been MoMi [6,5,7,4], a coordination language for mobile
processes that exchange object-oriented code (more precisely, classes or mixin
classes). The framework we have presented, indeed, abstracts away from all the
aspects of MoMi which are dependent on the specific language chosen for mo-
bile code or the specific mechanism chosen for static and dynamic checks, and
formalizes their key idea of ensuring type safety by a combination of static type-
checking of local code and dynamic checks via subtyping (see below for a more
detailed comparison).

Moreover, we have applied our general framework to a concrete case study, in
which exchanged mobile code is written in a language based on records/mixin
modules, and the key problem in guaranteeing type safety concerns conflicts
due to fields (components) which were not explicitly required. We have defined
two instantiations of the framework which solves this problem in two different
ways. The former keeps dynamic checks simple, and solves interference problems
by removing/hiding functionalities which were not explicitly required. The latter
solution, on the contrary, preserves the semantics we would get in the static case,
by means of a more involved type system based on constraints, where dynamic
checks prevents conflicts. Moreover, in the latter solution width subtyping is
allowed at any level, provided that no conflicts arise, while it is not trivial to
generalize the former solution in order to delete/hide inner fields (components).
Our aim here is not to defend either choice, but rather to show that both can
be proved to be type safe in a simple way by showing that they satisfy some
general assumptions. Moreover, we believe that the two presented solutions are
paradigmatic in the sense that they correspond to two opposite approaches for
allowing mobile code exchange as often as possible: either to introduce a more
involved semantics, or a more sophisticated type system.

Compared with work on MoMi, the framework we present in Sect.1 does not
consider a fixed syntax for the mobile code, but can be instantiated on an arbi-
trary language satisfying some natural assumptions (see the end of Sect.2 for an
outline of instantiations different from those presented in this paper). In MoMi,
instead, they consider a standard class-based object-oriented language Sool

supporting mixin-based class hierarchies (see, e.g., [7] Sect.3.1), which however
abstracts from the nature of method bodies. Analogously, the framework we
present in Sect.1 does not consider a fixed definition of static and dynamic
checks, whereas in MoMi they consider a fixed type system for mixin classes
which prevents mixin application in case of conflicts, and a fixed definition of
dynamic checks based on hiding. In summary, the MoMi framework roughly cor-
responds to the first solution we present in Sect.4, with the difference that we
consider mixin modules rather than mixin classes, hence we do not have the
classical problem of interference between depth subtyping and inheritance (see
the end of Sect.4). On the contrary, the second solution we propose is novel w.r.t.
the MoMi approach.

This paper continues the work in [10], where we considered the problem of
guaranteeing type safety for a calculus of mixin modules where code can be

A Framework for Type Safe Exchange of Mobile Code 337

dynamically retrieved during execution. The language and the two solutions to
the problem of avoiding conflicts due to unexpected components are essentially
those presented in Sect.4. However, in [10] we did not allow higher-order mod-
ules. Moreover, in this paper we studied the same problem first in the more
foundational context of lambda-calculus with records, what led somewhere to a
cleaner formalization. The definition of an explicit process layer where code can
be both sent and received and the formalization of the problem in an abstract
general framework are new issues not considered in [10].

Besides the work on MoMi, an important source of inspiration has been [15],
in particular for the idea of coercion driven by a subtyping relation. Other work
which has directly influenced our approach is that on dynamic software updating
in, e.g., [8,9,19]. However, here we consider arbitrary core calculi rather than
lambda-calculi, and an explicit language for the process layer, whereas in [8,9,19]
the basic primitive is an update primitive which when performed changes some
parts of the local code in a less controlled way.

The type system based on constraints used in the latter solution is similar to
that defined in [14] for getting principal typings for mixin modules. However,
here we do not deal with the problem of type inference.

There are many interesting directions for further work. Concerning the general
framework, we would like to investigate other properties besides type safety. For
instance, we would like to formalize notions like how often code is rejected and
whether the original language semantics is preserved. Moreover, we plan to study
exchange of code with free variables which can be dynamically rebound in the
receiver, like in [9]. On the more specific topic of interference in record/mixin
calculi, a problem we did not solve in this paper is the definition of hierarchical
coercion functions allowing to delete/hide inner fields/components. We also plan
a more precise comparison with the type system defined in [14]. Finally, we would
like to investigate implementation aspects, possibly taking as starting point the
work in [3].

Acknowledgments. We warmly thank Viviana Bono for many useful discus-
sions and suggestions, and the anonymous referees for their comments.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Monographs in Computer Science.
Springer, Heidelberg (1996)

2. Ancona, D., Zucca, E.: A calculus of module systems. Journ. of Functional Pro-
gramming 12(2), 91–132 (2002)

3. Bettini, L.: A Java package for class and mixin mobility in a distributed setting.
In: FIDJI 2003. LNCS, vol. 2952, pp. 12–22. Springer, Heidelberg (2003)

4. Bettini, L., Bono, V., Likavec, S.: Safe and flexible objects with subtyping. SAC
2005 10(4), 5–29 (2005) (Special Issue: OOPS Track at SAC 2005)

5. Bettini, L., Bono, V., Venneri, B.: O’Klaim: a coordination language with mobile
mixins. In: De Nicola, R., Ferrari, G.L., Meredith, G. (eds.) COORDINATION
2004. LNCS, vol. 2949, pp. 20–37. Springer, Heidelberg (2004)

338 S. Fagorzi and E. Zucca

6. Bettini, L., Bono, V., Venneri, B.: Subtyping-inheritance conflicts: The mobile
mixin case. In: Lévy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS’04 - IFIP Int.
Conf. on Theoretical Computer Science, pp. 451–464. Kluwer Academic, Boston
(2004)

7. Bettini, L., Venneri, B., Bono, V.: MOMI: a calculus for mobile mixins. Acta In-
formatica 42(2-3), 143–190 (2005)

8. Bierman, G., Hicks, M.W., Sewell, P., Stoyle, G.: Formalizing dynamic software
updating (extended abstract). In: USE’03 - the Second International Workshop on
Unanticipated Software Evolution (2003)

9. Bierman, G., Hicks, M.W., Sewell, P., Stoyle, G., Wansbrough, K.: Dynamic rebind-
ing for marshalling and update, with destruct-time λ. In: Runciman, C., Shivers,
O. (eds.) Intl. Conf. on Functional Programming 2003, pp. 99–110. ACM Press,
New York (2003)

10. Fagorzi, S., Zucca, E.: A calculus of components with dynamic type-checking. Elec-
tronic Notes in Theoretical Computer Science, Formal Aspects of Component Soft-
ware (FACS’06) (to appear, 2006)

11. Felleisen, M., Friedman, D.P.: Control operators, the SECD-machine, and the
lambda-calculus. In: 3rd Working Conference on the Formal Description of Pro-
gramming Concepts, Ebberup, Denmark, pp. 193–219 (August 1986)

12. Harper, R., Pierce, B.C.: A record calculus based on symmetric concatenation. In:
ACM Symp. on Principles of Programming Languages 1991, pp. 131–142. ACM
Press, New York (1991)

13. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. In: ACM
Symp. on Principles of Programming Languages 1996, pp. 358–371. ACM Press,
New York, USA (1996)

14. Makholm, H., Wells, J.B.: Type inference, principal typings, and let-polymorphism
for first-class mixin modules. In: Danvy, O., Pierce, B.C. (eds.) Intl. Conf. on
Functional Programming 2005, pp. 156–167. ACM Press, New York (2005)

15. Meijer, E., Drayton, P.: Static typing where possible, dynamic typing when needed:
The end of the cold war between programming languages. In: OOPSLA’04 Work-
shop on Revival of Dynamic Languages (2004)

16. Necula, G.C.: Proof-carrying code. In: George, C. (ed.) ACM Symp. on Principles
of Programming Languages 1997, pp. 106–119. ACM Press, New York (1997)

17. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. In: Pro-
ceedings 8th IEEE Logics in Computer Science, Montreal, Canada, pp. 376–385
(1993)

18. Riecke, J.G., Stone, C.A.: Privacy via subsumption. Information and Computa-
tion 172(1), 2–28 (2002)

19. Stoyle, G., Hicks, M.W., Bierman, G., Sewell, P., Neamtiu, I.: Mutatis mutandis:
safe and predictable dynamic software updating. In: ACM Symp. on Principles of
Programming Languages 2005, pp. 183–194. ACM Press, New York (2005)

20. Wand, M.: Complete type inference for simple objects. In: Proc. IEEE Symp. on
Logic in Computer Science 1987, pp. 37–44, 1987. A corrigendum appeared at LICS
(1988)

Author Index

Acciai, Lucia 167

Bacciu, Davide 200
Baresi, Luciano 183
Barthe, Gilles 10
Boreale, Michele 167
Botta, Alessio 200
Bruni, Roberto 132

Caires, Lúıs 98
Caragiannis, Ioannis 218
Chalin, Patrice 244
Chatzikokolakis, Konstantinos 281
Chothia, Tom 301
Cochran, Dermot 244
Crégut, Pierre 10

Dal Zilio, Silvano 167
De Nicola, Rocco 30
Dezani-Ciancaglini, Mariangiola 263

Ehrig, Karsten 183
Eymann, Torsten 51

Fagorzi, Sonia 319
Fairmichael, Fintan 244

Ghilezan, Silvia 263
Gilmore, Stephen 30
Grégoire, Benjamin 10

Hähnle, Reiner 116
Heckel, Reiko 183
Hofmann, Martin 10
Hölzl, Matthias 30
Hubbers, Engelbert 244
Hudert, Sebastian 51

Inverardi, Paola 69

Kaklamanis, Christos 1, 218
Kanellopoulos, Panagiotis 218

Kiniry, Joseph R. 244
Kranakis, Evangelos 86
Krizanc, Danny 86

Lanese, Ivan 132
Lennart, Beringer 10
Lucchi, Roberto 30

Melgratti, Hernán 200
Morkan, Alan E. 244
Müller, Peter 10

Oostdijk, Martijn 244
Orzan, Simona 301

Palamidessi, Catuscia 281
Pan, Jing 116
Panangaden, Prakash 281
Pang, Jun 301
Pantović, Jovanka 263
Papaioannou, Evi 218
Poll, Erik 10
Pous, Damien 150
Puebla, Germán 10

Rümmer, Philipp 116

Silvestri, Francesco 233
Stark, Ian 10
Streitberger, Werner 51

Torabi Dashti, Mohammad 301
Tribastone, Mirco 30

Vétillard, Eric 10

Walter, Dennis 116
Wirsing, Martin 30

Zavattaro, Gianlugi 30
Zucca, Elena 319

	Title Page
	Preface
	Organization
	Table of Contents
	Project AEOLUS: An Overview
	Motivation and Vision
	Basic Concepts and Objectives
	Description of Research Activities
	Other Information

	MOBIUS: Mobility, Ubiquity, Security Objectives and Progress Report
	Introduction
	MIDP
	PCC Scenarios
	Wholesale PCC for MIDP Devices
	Retail PCC and On-Device Checking
	Beyond the MOBIUS Scenarios

	Security Requirements
	Resources
	Information Flow
	Framework-Specific Security Requirements
	Application-Specific Security Requirements

	Enabling Technologies
	Operational Model
	Program Logic
	Type Systems

	Towards Certificate Generation and Certificate Checking
	Certificate Generation
	Certificate Checking

	Next Steps
	References

	SENSORIA Process Calculi for Service-Oriented Computing
	Introduction
	Sensoria
	Aim and Approach of Sensoria
	The E-Learning and Course Management Case Study

	Core Calculi for Service-Oriented Computing
	A Session-Oriented Process Calculus for Service-Oriented Systems
	SOCK: Service Oriented Computing Kernel

	Stochastic Analysis of Nonfunctional Properties of Service-Oriented Systems
	An Application: Scalability Analysis
	Setup of the Model
	Model Analysis
	Numerical Results

	Concluding Remarks
	References

	Global Grids - Making a Case for Self-organization in Large-Scale Overlay Networks
	Introduction
	Principles of the Catallaxy
	Prototyping the Catallaxy
	A Two Layer ALN of Services and Resources
	Market Model
	Components for Realizing Catallaxy
	Middleware Implementation

	Engineering the Market Scenario
	A Mechanism for the Service Market
	A Mechanism for the Resource Market

	Conclusion
	References

	Software of the Future Is the Future of Software?
	Introduction
	Softure Challenges: Setting the Context
	Adaptability: 3 Examples from My Own Bag
	The Four Ws
	Synthesis
	Performance
	Resource Aware Applications

	Softure: The Process View
	PLASTIC

	Conclusions
	References

	An Algorithmic Theory of Mobile Agents
	Introduction
	What Is a Mobile Agent?
	Why Mobile Agents?
	Whither Mobile Agents?

	An Algorithmic Model for Mobile Agents
	Mobile Agents
	Distributed Networks
	Resource Measures

	An Example: Randomized Rendezvous on the Ring
	Random Walk Algorithm
	Coin Half Tour Algorithm
	Approximate Counting Algorithm

	Conclusions
	References

	Spatial-Behavioral Types, Distributed Services, and Resources
	Introduction
	A Distributed Service Calculus
	Spatial-Behavioral Types
	Logical Semantics of Types

	Resource Sharing and Shared Types
	Related Work and Discussion
	References

	Integration of a Security Type System into a Program Logic
	Introduction
	Integrating Type Systems and Program Logics
	Background and Terminology
	Non-interference Analysis
	Dynamic Logic with Updates

	Interpreting the Type System in Dynamic Logic
	Higher Precision and Delimited Information Release
	Conclusion, Related and Future Work
	References

	PRISMA: A Mobile Calculus with Parametric Synchronization
	Introduction
	Synchronization Algebra with Mobility (SAM)
	The PRISMA Calculus
	A Case Study: Fusion Calculus
	A Category of SAMs
	Conclusion
	References

	On Bisimulation Proofs for the Analysis of Distributed Abstract Machines
	LTS, Bisimilarity
	A Framework for Distributed Computation
	Reasoning Up to Forwarders
	Optimisations of the Behaviour of Forwarders
	Definition of the Optimisation
	Correctness of the Optimisation

	Concluding Remarks
	References

	A Typed Calculus for Querying Distributed XML Documents
	Introduction
	Documents, Types and Patterns
	The Calculus
	Static Semantics
	Example: The Reverse Web-Link Graph
	Extensions
	Conclusions and Related Work
	References

	Verification of Model Transformations: A Case Study with BPEL
	Introduction
	Executable Business Processes as Activity Diagrams
	Transformations
	Meta-model
	The Partitioning Rule

	Operational Semantics
	Operational Rules
	Labels and Transition System

	Verification
	Related Work
	Conclusion
	References

	A Fuzzy Approach for Negotiating Quality of Services
	Introduction
	Background
	sla-Calculus
	The Fuzzy Agreement Process (FAP)
	Contract Descriptors as Finite State Automata and Transducers
	Request Descriptor
	The Provider Descriptor
	The Decision Procedure

	Conclusion and Future Works
	References

	Scheduling to Maximize Participation
	Introduction
	Equilibria and Price of Anarchy
	Computation of Efficient Valid Assignments
	Online Algorithms
	References

	On the Limits of Cache-Oblivious Matrix Transposition
	Introduction
	Preliminaries
	The Models
	The Matrix Transposition Problem

	The Simulation Technique
	Matrix Transposition
	Conclusions
	References

	The KOA Remote Voting System: A Summary of Work to Date
	Introduction
	Voting Machines in the Netherlands

	Kiezen op Afstand (KOA)
	Internet Voting in the Netherlands
	Use and GPL Release

	Academic Past Work
	External Security Evaluation
	Vote Counting System
	Process
	Analysis of KOA
	Reverse Engineering Missing Components
	Full Open Source Foundations
	Formal Specification and Extended Static Checking Review
	Documentation Writing and Translation
	Other Voting Systems

	Security Assessment
	Data Integrity
	Verifiability
	Insider Threats
	Other Security Features
	Problems
	Summary

	Academic Current Work
	Generalisation of System for Non-dutch Voting Systems

	Related Work
	A Security Analysis of SERVE
	The RIES System

	Future Work
	Development of a Mobile E-Voting Application
	Full-Blown Verification
	Just-in-Time Deployment with PCC
	American Voting System
	Electronic Voting Systems
	Reflections and Future Plans

	Conclusion
	References

	Security Types for Dynamic Web Data
	Introduction
	Syntax and Operational Semantics
	Syntax
	Reduction Rules

	Type Assignment
	Examples
	A Simple Example
	Remote Voting System

	Safety
	Conclusion
	References

	Anonymity Protocols as Noisy Channels
	Introduction
	Contribution
	Related Work
	Plan of the Paper

	Preliminaries on Information Theory
	Loss of Anonymity as Channel Capacity
	Relative Anonymity
	Computing the Channel's Capacity

	Testing Anonymous Events
	Independence from the Input Distribution
	Bounds on the Bayesian Probability of Error

	Relation with Existing Anonymity Notions
	Capacity 0: Strong Anonymity
	Relative Capacity 0: Strong Group Anonymity
	Probable Innocence: Weaker Bounds on Capacity

	Computing the Degree of Anonymity of a Protocol
	References

	A Framework for Automatically Checking Anonymity with μCRL�
	Introduction
	Anonymity Formalisation and Verification Methodology
	The Dining Cryptographers Problem
	The FOO 92 Electronic Voting Protocol
	Experiences with the Distributed Toolset
	Conclusions
	References

	A Framework for Type Safe Exchange of Mobile Code
	Type Safety in a Distributed Context
	Formalization
	A Case Study: Lambda Calculus with Records
	Core Calculus
	Type Safety by Deleting Unexpected Fields
	Type Safety by Detecting Conflicts

	A Calculus of Mixin Modules
	Core Calculus
	Type Safety by Hiding Unexpected Output Components
	Type Safety by Detecting Conflicts

	Conclusion
	References

	Author Index

