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Abstract. Simulink is a popular tool for model-based development of
control systems. However, due to the complexity caused by the increas-
ing demand for sophisticated controllers, validation of Simulink models
is becoming a more difficult task. To ensure correctness and reliability
of large models, it is important to be able to reason about model parts
and their interactions. This paper provides a definition of contracts and
refinement using the action system formalism. Contracts enable abstract
specifications of model parts, while refinement offers a framework to rea-
son about correctness of implementation of contracts, as well as com-
position of model parts. An example is provided to illustrate system
development using contracts and refinement.

1 Introduction

Simulink / Stateflow [16] is a domain specific programming and simulation lan-
guage that has become popular for development of control- and signal-processing
systems. It enables model-based design of control systems, where a (continuous)
model of the plant can be constructed together with the (discrete) controller.
Simulink offers a wide range of simulation tools, which enables simulation and
evaluation of the performance of the controller. However, it lacks good tools and
development methodologies for reasoning about correctness of models. In partic-
ular, it fails to enforce a structured stepwise development method that becomes
necessary when developing large control systems.

A goal of our work is to establish such a development method by studying
the application of formal analysis techniques to help validate models. The work
is based on the use of assume-guarantee (called pre-post in this paper) contracts
as a form of local specifications. Analysis techniques rely on a notion of refine-
ment of Simulink models. The refinement calculus [6] gives a good theoretical
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framework for developing formal stepwise design methodologies in which abstract
specifications are refined into detailed ones. The advantage with refinement is
that it allows for a seamless design flow where every step in the development
process can be formally validated by comparing the refined model to the more
abstract one. The final implementation is then formally guaranteed to exhibit
the behaviour described by the original specification.

Design-by-contract for embedded controllers. Contract-based design [18]
is a popular software design technique in object-oriented programming. It is
based on the idea that every method in each object is accompanied by (ex-
ecutable) pre- and post- conditions. The approach has also been successfully
applied to reactive programs in [15]. There, a contract is described as a pair of
monitors (A, G) and is associated to each component. The meaning of such a
contract is that ”as long as input values satisfy A, the outputs should satisfy G”.

Contracts in Simulink consists of such pre- and post-conditions for model
fragments [8]. To get a formal semantics of contracts we translate the Simulink
models to action systems. Action systems [5,7] is a formalism based on the re-
finement calculus [6] for reasoning about reactive systems. Contracts are here
viewed as non-deterministic abstract specifications. They cannot be simulated
in Simulink, but they can be analysed by other tools e.g. theorem provers. Con-
formance of an implementation to a specification can be validated by model
checking or testing. The aim to provide an easy to use and lightweight reason-
ing framework for correctness of models. Contracts together with the refinement
definition also enable compositional reasoning [1] about correctness of models.

Other formalisations of Simulink exist [3,10,11,21,22]. Each one of these take
into account different subsets of Simulink. Refinement of Simulink diagrams has
also been considered by Cavalcanti et al. [10]. However, they deal mostly with
refinement of models into code. We are interested in refinement and stepwise
development of models from abstract specifications, which is not the concern of
any of those works. Instead of action systems, a definition of refinement [19] for
Lustre [13] could also be used in conjunction with the translation from Simulink
to Lustre [22]. However, that formalisation can only accommodate discrete mod-
els. Treating continuous models using refinement of continuous action systems
[17] is a rather natural extension of our formalisation. Furthermore, general for-
mal description and refinement rules for process nets (block-diagrams) has also
been investigated [14]. However, we focus specifically on rules for Simulink.

Here we only consider Simulink models that are discrete and use only one
single sampling time. We do not consider all types of blocks, e.g., non-virtual
subsystems or Stateflow. The action system formalism and refinement calculus
is, however, very versatile [6] and can accommodate these features as well.

2 Action Systems

Action systems [4,5,7] are used for describing reactive and distributed systems.
The formalism was invented by Back and Kurki-Sounio and later versions of it
use the refinement calculus [6].
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Table 1. Program statements with their predicate transformer semantics

〈f〉.q.σ = q.f.σ (Functional update)
{p}.q = p ∧ q (Assertion)
[p].q = p ⇒ q (Assumption)
(S1; S2).q = S1.(S2.q) (Sequential composition)
[R].q.σ = ∀σ′.(R.σ.σ′ ⇒ q.σ′) (Demonic relational update)
(S1 � S2).q = S1.q ∧ S2.q (Demonic choice)
skip.q = q (Skip)
abort.q = false (Aborted execution)
magic.q = true (Miraculous execution)

Before introducing action systems, a short introduction to the refinement
calculus [6] is needed. The refinement calculus is based on Higher Order Logic
(HOL) and lattice theory. The state-space of a program in the refinement calculus
is assumed to be of type Σ. Predicates are functions from the state-space to the
type Boolean, p : Σ → bool. A predicate corresponds to the subset of Σ where p
evaluates to true. Relations can be thought of as functions from elements to set of
elements, R : Σ → (Σ → bool). A program statement is a predicate transformer
from predicates on the output state-space Σ to predicates on the input state-
space Γ , S : (Σ → bool) → (Γ → bool). Here we will only consider conjunctive
predicate transformers [6,7]. Note also that conjunctivity implies monotonicity.
A list of conjunctive predicate transformers are given in Table 1.The functional
update consists of assignments of the type (〈f〉 =̂ x := e), where the value of
variable x in state-space σ is replaced by e. The relational update R is given in
the form R =̂ (x := x′|P.x.x′). The predicate P gives the relation between the
old values of variable x in σ and the new values x′ in σ′. Other variables than x
in σ remains unchanged in the updated state-space σ′.

An action system has the form:
A =̂ |[ var x; init A0; do A od ]| : 〈z〉

Here x (resp. z) denotes the local (resp. global) variables. A0 is a predicate giving
the initialisation action. All actions can be grouped as one single action A that
consists of conjunctive predicate transformers, without loss of generality [7].

2.1 Trace Semantics

The execution of an action system gives rise to a sequence of states, called be-
haviours [5,7]. Behaviours can be finite or infinite. Finite behaviours can be
aborted or miraculous, since we do not consider action systems that can termi-
nate normally. In order to only consider infinite behaviours, aborted or mirac-
ulous behaviours are extended with infinite sequences of ⊥ or �, respectively.
These states are referred to as improper states.

Action A can be written as {tA}; [nA], where tA is a predicate and nA is a
relation that relates the old and the new state-spaces. This can again be done
without loss of generality [7]. Then σ = σ0, σ1, . . . is a possible behaviour of A
if the following conditions hold [5,7]:
– The initial state satisfies the initialisation predicate, A0.σ0

– if σi is improper then σi+1 is improper
– if σi is proper then either:
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• the action system aborts, ¬tA.σi and σi+1 = ⊥, or
• it behaves miraculously, tA.σi ∧ (nA.σi = ∅) and σi+1 = �, or
• it executes normally, tA.σi ∧ nA.σi.σi+1

Behaviours contain local variables that cannot be observed. Only a trace of a
behaviour consisting of global variables can be observed. Furthermore, all finite
stuttering has been removed from the result and finally all infinite stuttering
(internal divergence) has been replaced with an infinite sequence of ⊥. Stuttering
refers to steps where the global variables are left unchanged. The semantics of
action system A is now a set of observable traces [5,7].

2.2 Refinement

Refinement of an action system A means replacing it by another system that is
indistinguishable from A by the environment [5,7]. An ordering of traces σ and
τ , σ ≤ τ , is first defined on the extended state-space Σ ∪ {⊥,�} as:

(σ0, σ1, . . .) ≤ (τ0, τ1, . . .) =̂ (∀i · σi = ⊥ ∨ σi = τi ∨ τi = �)

Consider two action systems A and A′. Refinement is then defined as:

A 	 A′ =̂ (∀σ′ ∈ tr(A′) ⇒ (∃σ ∈ tr(A) · σ ≤ σ′))

This means that for each trace in the refined system A′ there exists a corre-
sponding trace in the abstract system A. Data refinement rules corresponding
to this refinement semantics can be found in [5,7].

3 Encoding Simulink Diagrams in the Refinement
Calculus

The structure of a Simulink block diagram can be described as a set of blocks
containing ports, where ports are related by signals. Simulink has a large library
of different blocks for mathematical and logical functions, blocks for modelling
discrete and continuous systems, as well as blocks for structuring diagrams.
Simulink diagrams can be hierarchical, where subsystem blocks are used for
structuring.

3.1 The Steam Boiler Example

To illustrate the formalisation and stepwise development of Simulink, we use
a simplified version of the steam boiler case study [2] as a running example
throughout the paper. This system consists of a boiler for producing steam.
Water is delivered to the system using a pump that can be switched on or off.
Steam is taken from the boiler using a valve that is either fully opened or fully
closed. The goal of the controller is to maintain the water level between the lower
limit L1 and upper limit L2. It can read the current water level using the sensor
w level and it controls both the pump and the out-valve of the boiler through
the actuators pump on and out open.
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Fig. 1. A simple Simulink model consisting of a part from the steam boiler example.
Diagram (b) shows the content of subsystem (a).

3.2 Translating Simulink Model Elements

To introduce the Simulink diagram notation, a small example is shown in Fig. 1.
The diagram contains the part of the steam boiler controller that controls if the
pump is switched on or off. The diagram contains source blocks switch on and
switch off for defining constants giving the state of the pump. There are three
in-blocks that provides Booleans stating whether the water level is too high, ok
or too low. If the water level is too low the pump is switched on and if it is
too high the pump is switched off by the switch-blocks, switch1 , switch2 and
switch3 . If the water level is between the limits, the current state of the pump is
maintained using the memory in the block already on . The desired state of the
pump is delivered from the subsystem by the out block pump on.

A Simulink model is defined as a tuple M = (B, root, subh, P, blk, ndep, C).
– B is the set of blocks in the model. We can distinguish between the following

types of blocks; subsystem blocks Bs, in-blocks in subsystems Bi, out-blocks
in subsystems Bo and blocks with memory Bmem. When referring to other
types of ”basic” blocks, Bb is used in this paper. Subsystems Bs, in-blocks
Bi and out-blocks Bo are referred to as virtual blocks, since they are used
purely for structuring and have no effect on the behavioural semantics.

– root ∈ Bs is the root subsystem.
– subh : B → Bs is a function that describes the subsystem hierarchy. For

every block b, subh.b gives the subsystem b is in;
– P is the set of ports for input and output of data to and from blocks. The

ports P i is the set of in-ports and P o is the set of out-ports, P = P i ∪ P o;
– blk : P → B is a relation that maps every port to the block it belongs to;
– ndep : P i �→P o is a partial function that maps in-ports in non-virtual blocks

to the ports in other non-virtual blocks they depend on. An in-port depends
on an out-port, if there is a signal or sequence of ports in virtual blocks con-
nected by signals between them. Since we need to be able to analyse model
fragments, all in-ports in non-virtual blocks are not necessarily connected.
This function can be defined in terms of signals and ports, but for brevity it
is given directly.
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Table 2. Overview of the translation from Simulink to refinement calculus

Simulink construct Requirements Refinement calculus translation
Port, p: p ∈ P∧

blk.p /∈ (Bi ∧ Bo ∧ Bs)
ν.p

Constant, c: true c
Dependency, ndep: p1 = ndep.p2 ν.p2 := ν.p1

Normal block, b: b ∈ Bb ∧ blk.po = b ∧ po ∈ P o∧
blk.pi = b ∧ pi ∈ P i

ν.po := fb.(ν.pi).cb

Memory block, b: b ∈ Bmem ∧ blk.po = b ∧ po ∈ P o∧
blk.pi

f = b ∧ pi
f ∈ P i∧

blk.pi
g = b ∧ pi

g ∈ P i

ν.po := fb.pi
f .xb.cb

xb := gb.pi
g.xb.cb

– C is the set of block parameters of the model. The block parameters are a
set of constants defined in the Matlab workspace of the model.

There are several constraints concerning these functions and relations in order to
only consider valid Simulink models, e.g., valid hierarchy of subsystems. In this
paper we assume that we only deal with syntactically correct Simulink models
(ones that can be drawn).

Consider the Simulink block diagram given in Fig. 1. The blocks are de-
fined as B =̂ {root ,Pump controller , too high , ok , too low , switch1 , . . .}. The
subsystems are given as Bs =̂ {Pump controller , root} and the hierarchy as
subh =̂ {(Pump controller , root), (too high, Pump controller ), . . .}. Names of
ports are usually not shown in diagrams. Here we have the following ports,
P =̂ {pi1, . . . , pi10} ∪ {po1, . . . , po9}. The function describing to which block
each port belongs to is then given as blk =̂ {(po1, switch off ), (po2, already on),
(po3, switch on), . . .}. The connections between the ports are defined as ndep
=̂ {(pi1, po3), (pi3, po2), (pi4, po2), . . .}. Note that e.g. (pi2, po6) is not in ndep,
since pi2 is only connected to a virtual block. There are no configurable para-
meters C in this diagram.

To reason about Simulink models in the refinement calculus framework, all
Simulink constructs are mapped to a corresponding construct in the refinement
calculus, as shown in Table 2. The column requirements gives the required con-
dition for a construct to be translated, while the column refinement calculus
translation gives the actual translation.

Ports in Simulink corresponds to variables in the refinement calculus frame-
work. The function ν : P �→V describes this mapping, where V is a set of variable
names. Only necessary ports are translated to variables, i.e., ports that can be in
(dom .ndep∪ran .ndep). The constant block parameters are translated directly to
variables c. The connections between blocks, p1 = ndep.p2, are modelled as as-
signments. A block can contain in-ports, out-ports, and block parameters. Each
block b ∈ Bb is associated with a function fb that updates its out-ports based
on the value of the in-ports pi and the parameters of the block cb. In blocks
that contain memory b ∈ Bmem, the value on the out-ports depends also on the
memory in the block xb. The memory is updated (using a function gb). These
functions do not need to depend on all in-ports.
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3.3 Ordering the Assignments Obtained from Simulink

Now that the translation of the individual constructs have been determined we
can give the order in which to execute them. There are several different orderings,
since diagrams can have blocks that do not depend on each other. To find an
ordering, the dependency between ports in the Simulink diagram need to be
determined. We define a relation totdep that describes this.

totdep =̂ λp1 : P · {p2 ∈ P |
((p1 ∈ P i ⇒ p2 ∈ ndep.p1)∧
(p1 ∈ P o ⇒ p2 ∈ fdep.p1))}

The relation totdep considers both the relation between ports as given by the
signals and subsystem hierarchy (ndep), as well as the relations between out-
ports and in-ports inside blocks (fdep). The relation fdep, fdep : P o → P(P i), can
sometimes not be determined syntactically on the graphical part of the Simulink
diagram. However, the data dependency for different blocks is documented in the
Simulink documentation [16]. The relation totdep need to be a partial order that
forms a directed acyclic graph for deterministic models. Hence, we can always
find an order in which to update the ports in the model and ensure predictable
behaviour and execution time. This is automatically ensured by Simulink, if the
check for algebraic loops is activated. The order in which the translated Simulink
model elements are executed can now be defined.

Definition 1 (Ordering of assignments). Consider two ports p1 and p2 such
that p1 depends on p2, p2 ∈ totdep∗.p1. In the refinement calculus representation
ν.p1 is updated in the substitution S1 and ν.p2 in S2. Then there exists a (possibly
empty) sequence of substitutions S such that S2; S; S1.

The ordering given in Def. 1 can be achieved by topologically sorting the assign-
ments to ports. Note that this ensures that a port is never read before it has
been updated.

Consider again the model in Fig. 1. The data dependency inside blocks is given
by fdep =̂ {(po7, pi1), (po7, pi2), (po7, pi3), (po8, pi4), . . .}, since the output of a
switch block depends on all its inputs and the output of the memory block
already on does not depend on its input. The complete ordering of ports is then,
totdep =̂ ndep∪ fdep. The refinement calculus representation refCalc.M of model
M becomes:

refCalc.M =̂ ν.po1 := 0; ν.pi7 := ν.po1; ν.po2 := x; ν.pi3 := ν.po2;
ν.po3 := 1; ν.pi1 := ν.po3; ν.po7 := (if ν.pi2 then ν.pi1 else ν.pi3 end); . . .
x := ν.po9

Here x denotes the memory in block already on. The memories are updated
after the ports in the diagram have been updated. Hence, refCalc.M returns
the sequential composition of a permutation satisfying the ordering rules of the
individual translated statements, as well as the memory updates. Note that all
in-ports are not assigned, since some in-ports are not connected to non-virtual
blocks.
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Table 3. Refinement calculus semantics of contract conditions

Contract condition Refinement calculus semantics
Qparam(c) Qparam(c)

Qpre(pi, c) {Qpre(ν.pi, c)}

Qpost(po, pi, c) [ν.po := vo|Qpost(vo, ν.pi, c)]

4 Specification of Simulink Models

When developing Simulink models, we want to start with an abstract overview
of the system that is then refined in a stepwise manner. We use contracts to give
this abstract description.

The blocks in a Simulink diagram usually use parameters from the Matlab
workspace. These parameters are required to have certain properties, here de-
scribed by the predicate Qparam. In the refinement calculus this translates (see
3) into a condition describing the valid parameter values.

A contract for a Simulink model fragment consists of a pre-condition and a
post-condition that state properties about its inputs and outputs. In practise
this means that we give a specification block that can then be refined to a de-
sired implementation. A specification block, Ms, contains in-ports (pi), out-ports
(po), a pre-condition (Qpre) and a post-condition (Qpost). The semantics of the
specification Ms is given by its translation to the refinement calculus shown in
Table 3. Statements with this semantics cannot be simulated by the solvers in
Simulink. However, other tools can be used to analyse these abstract specifica-
tions. The fact that an implementation satisfies its specification can be tested
also in Simulink.

Consider again the steam boiler example. An overview of the complete sys-
tem is given in Fig. 2. This model consists of a specification of the controller,
Controller, and a specification of the plant, Steam boiler. The model has block
parameters giving the maximum and minimum water levels L1 and L2, respec-
tively. Water levels are positive and the upper level L2 is higher than the lower
level L1, Qparam =̂ L1 > 0 ∧ L2 > L1. The following safety requirements are
then given for the water level in the controller:
– When it is above L2, the pump is switched off and the out valve is opened.
– When it is below L1, the pump is switched on and the valve is closed.

The contract of the controller is then derived from the safety requirements.

Qpre
c =̂ true

Qpost
c =̂ (w level > L2 ⇒ ¬pump on ∧ out open)∧

(w level < L1 ⇒ pump on ∧ ¬out open)

pump_on

out_open
w_level

Steam boiler

w_level

pump_on

out_open

Controller

Fig. 2. The diagram in gives an overview of the complete steam boiler system
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The plant has no pre-condition, Qpre
p =̂ true, and it can assign any positive value

to the current water level, Qpost
p =̂ w level ≥ 0.

Since the ordering rules for statements in Def. 1 only concerns statements
that updates variables, the assert statement needs a separate rule.

Definition 2 (Ordering of assert statements). Consider an arbitrary assert
statement {Q(p1, . . . , pn)}. The assert statement is evaluated as soon as possible.
This means that all statements Sj that updates ν.pj, where pj ∈ {p1, . . . , pn},
have already been evaluated. Furthermore, the last such update statement S is
directly followed by the assert statement, S; {Q(p1, . . . , pn)}.
The diagram in Fig. 2 contains cyclic dependencies between blocks, i.e., feedback.
Since this is a common pattern for connections between specification blocks, we
also deal with it here. A cycle can be treated as a fix-point [14].

Definition 3 (Cyclic dependencies). Assume that Ms is any specification
block in a cycle. Let the in-port pi

s of Ms be connected to the out-port po of an-
other block in the same cycle. In order to be able to use the ordering rules in
Definitions 1 and 2, this connection is considered broken when ordering state-
ments. The refinement calculus translation of Ms gives the statements ([ν.pi

s :=
v|true], [ν.po

s := v|Qpost]). The rest of the constructs in the cycle are translated
as in Tables 2 and 3. These statements are then followed by the assumption that
the value of pi

s and the value of po are equal and by the translated pre-condition
Qpre of the specification, [ν.pi

s = ν.po]; {Qpre}.
The treatment of feedback here is similar to the one by Mahony [14]. It enables
us to prove that the pre-condition is guaranteed by its preceding blocks. Using
this technique, the diagram in Fig. 2 can now be translated:

refCalc.System =̂
[w level′ := v|true]; [pump on, out open := vp, vo|Qpost

c ]; pump on′ := pump on;
out open′ := out open; {Qpre

p }; [w level := v|Qpost
p ]; [w level′ = w level]; {Qpre

c }

Cycles are not allowed in the implementation and new features have to be added
during the refinement process to make the cyclic dependencies disappear.

4.1 Action System Semantics of Simulink Models

We have now given the semantics of all the needed parts of Simulink in the refine-
ment calculus framework. The behaviour of the complete diagram is given as an
action system. Assume that the constructs in the Simulink model is translated
to the refinement calculus statements (S1, . . . , Sn). This involves both standard
Simulink constructs and contract statements. However, the execution order of
these statements given in Def. 1-3 is not unique. Consider two arbitrarily chosen
execution orders Sk; . . . ; Sl and Sr; . . . ; Ss satisfying the ordering constraints.
The following results are then possible:

1 (Sk; . . . ; Sl).false ∧ ¬(Sr; . . . ; Ss).true
2 ¬(Sk; . . . ; Sl).true ∧ (Sr; . . . ; Ss).false

3 ∀q · (Sk; . . . ; Sl).q = (Sr; . . . ; Ss).q
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Due to the different order of statements, one sequence of statements might ex-
ecute a miraculous statement before an abort statement or vice-versa (cases 1
and 2). Otherwise, the result is the same for both orderings (case 3).

Since a model should be non-terminating both miraculous and aborting behav-
iour are considered erroneous and should be avoided. Hence, we can consideran
arbitrary ordering of the statements. The action system is then:

M =̂ |[ var x1, . . . , xm, c;
init Qparam(c) ∧ Init(x1, . . . , xm);
do

Sk; . . . ; Sl; R1; . . . ; Rm; t := t + ts

od
]| : 〈ν.p1, . . . , ν.pn, t〉

The global variables giving the observable behaviour are given by the ports,
p1, . . . , pn, in the model. This way it is possible to track that the behaviour of
the initial model is preserved. The time t is considered to be a global variable, to
ensure that we have no infinite stuttering. The memory of the blocks, x1, . . . , xm,
and constant block parameters c are local variables to the action system. The
action consists of a sequence of statements Sk; . . . ; Sl satisfying the ordering
rules in Def. 1-3 that updates ports. This sequence is followed by statements
R1; . . . ; Rm updating the memory variables x1, . . . , xm. The order is not impor-
tant, since these statements are deterministic and independent of each other.
The system is correct, if all pre- and post-conditions are satisfied at all times.
Correctness can be verified by checking that the system is non-terminating,
∀t · t ∈ tr(MV ) ⇒ t /∈ {⊥,�}.

4.2 Correctness of Simulink Models

The aim of this paper is to be able to define and verify correctness properties
of Simulink models. Furthermore, since proofs might not always be feasible, we
like to be able to have correctness criteria that can be model checked or tested.

Assume that we have a Simulink model M with a pre-condition Qpre that
should maintain a condition Qpost. Assume further that pi

f denotes in-ports that
are free and pi

b denotes in-ports in Qpre that are already connected. The trans-
lation of constructs of M with the pre-condition Qpre and post-condition Qpost

is given by the refinement calculus statements (S1, . . . , Sn, {Qpre}, {Qpost}, R1,
. . . , Rm):

refCalc.M = Sk; . . . ; Sj ; . . . ; {Qpost}; . . . ; Sl; R1; . . . ; Rm , for k, j, l ∈ 1..n

The assert {Qpre} cannot be included, since not all in-ports are connected. Model
M is therefore a partial model. However, we are interested in the model behaviour
in the environment where it is used, i.e., for inputs, where the pre-condition holds.
We create a validation model for obtaining a complete model that provides the
most general environment of such type.

Definition 4 (Validation model). A validation model is created by adding a
non-deterministic assignment to the model that assigns the free in-ports pi

f in
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M values satisfying the precondition. The model contains the refinement calcu-
lus statements: (S1, . . . , Sn, {Qpre}, {Qpost}, [ν.pi

f := v|Qpre], R1, . . . , Rm). The
validation model for M is given as

refCalc.MV =̂ Sk; . . . ; [ν.pi
f := v|Qpre]; . . . ; {Qpre}; . . . ; Sj ; . . . ; {Qpost}; . . . ; Sl; R1; . . . ; Rm

The behaviour of the validation model refCalc.MV is given as an action system.
The model M is correct, if the action system MV has no improper traces.

If the model M is deterministic, the correctness of the validation model can be
checked using model checking, other verification tools or testing. A test case for
M is a model where the statement [ν.pi

f := v|Qpre(v, ν.pi
b)] has been refined to a

deterministic statement. Note that we need to show that there is always a test
case in order to ensure that the validation model does not behave miraculously.

If the model M is given as a set of specification blocks M1, . . . , Mm, where
all the models Mj consists of a pre-condition Qpre

j and post-condition Qpost
j ,

the correctness constraints can be simplified. In this case, there is no need to
iterate the system over time, since the execution of the graph is independent
of the number of times it has been executed before (see Def. 1-3). This lead to
compositional reasoning about correctness for different model fragments similar
to composition of specifications in [1], i.e., we do not have to know anything
about the implementation of the specifications to prove that the connections
between them are correct. We need to verify that 1) the validation model does
not behave miraculously, ¬MV .false and that 2) the pre-conditions are not
violated, MV .true.

We can then derive a condition of the following type for checking
pre-conditions in the model MV using the refinement calculus:

([Qparam(c)]; [ν.pi
f := v|Qpre]; {Qpre

1 }; [ν.po
1 := v|Qpost

1 ]; . . . ;
{Qpre

m }; [ν.po
m := v|Qpost

m ]; {Qpost}).true

Hence, the post-conditions of the predecessors have to imply the pre-condition
of the successors and the final post-condition Qpost. Using weakest precondition
calculations simple conditions can be derived. To show the absence of miraculous
behaviour is similar.

5 Refinement

To get a definition of refinement we use the translation of Simulink to the Action
Systems formalism. The abstract specifications given by contracts are refined to
more concrete models. The properties of the block parameters were stated using
an initialisation condition. Refinement of the block parameters follow standard
rules for refinement of initialisation [5,7] and is not discussed here.

Consider specification block Ms with in-ports P i
s , out-ports P o

s , pre-condition
Qpre and post-condition Qpost in a model M = (B, root, subh, P, blk, ndep, C).
This specification is refined by the model fragment Mn = (Bn, rootn, subhn, Pn,
blkn, ndepn, Cn) with pre-condition Qpre

n . The refinement is illustrated in Fig. 3.
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Fig. 3. Illustration of refinement of abstract specification M into refinement M ′

The specification Ms is replaced by Mn, while the ports P i
s and P o

s of Ms are
replaced by ports from Mn.

First we need to determine how ports in the old model M relates to ports in
the new model M ′, in order to relate the variables refCalc.M to the variables in
refCalc.M ′. The mapping of ports to variables is denoted by ν in the abstract
model and by ν′ in the refined model.
1. Every block except Ms in M is preserved in M ′. Hence, each port p from

these blocks are also preserved, which means that they are mapped to the
same variables in the refinement calculus representation, ν′.p = ν.p.

2. For every in-port p from Ms in M there is an in-port pn from Mn in M ′ such
that they depend on the same port, ndep.p = ndep′.pn (see Fig. 3). The port
pn that replaces port p is mapped to the same variable in the refinement
calculus representation, ν′.pn = ν.p.

3. For every in-port p such that it depends on an out-port ps in the speci-
fication block Ms there is a corresponding port pn in Mn that p depends
on, ps = ndep.p ∧ pn = ndep′.p (see Fig. 3). The port pn that replaces
port ps is mapped to the same variable as before in the refinement calculus
representation, ν′.pn = ν.ps.

We need to show that the replacement of Ms with pre-condition Qpre
n and

model fragment Mn is a correct refinement. First we note that we can add
an assert statement {Qpost} after the statement [ν.po

s1, . . . , ν.po
sn := v|Qpost] in

the abstract specification. In the refinement, the contract statements ({Qpre},
[ν.po

s1, . . . , ν.po
sn := v|Qpost]) are replaced by the translated Simulink model con-

structs ({Qpre
n }, S1, . . . , Sm, R1, . . . , Rt) obtained from Mn. We use a validation

model to check the correctness of this refinement. This validation model uses the
refinement calculus statements ([ν.pi

s1, . . . , ν.pi
sm := v|Qpre], {Qpost}, {Qpre

n },
S1, . . . , Sm, R1, . . . , Rt). This model, refCalc.MV

n , is constructed of the state-
ments above ordered according to the rules in Def. 1-3. Note that statement
[ν.pi

s1, . . . , ν.pi
sm := v|Qpre] assign the in-ports and, hence, appears in the be-

ginning of the translation. The assert statement {Qpost} that depends on the
out-ports is placed towards the end.

refCalc.MV
n =̂ Sk; [ν.pi

s1, . . . , ν.pi
sm := v|Qpre]; . . . ; {Qpre

n }; . . . ; Sl; {Qpost}; R1; . . . ; Rt
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Fig. 4. This diagram shows the refinement of the controller

Theorem 1 (Correctness of refinement). The model Mn refines Ms, Ms �
Mn, if ∀t · t ∈ tr(MV

n ) ⇒ t �= ⊥ and Mn does not behave miraculously.

Proof. There are two constructs to consider {Qpre} � {Qpre
n } and

[ν.po
s1, . . . , ν.po

sn := v|Qpost] � refCalc.Mn.
– If {Qpre} � {Qpre

n } does not hold {Qpre
n } will contribute with aborted traces,

due to the assignment to in-ports, [ν′.pi
s1, . . . , ν

′.pi
sm := v|Qpre].

– If [ν.po
s1, . . . , ν.po

sn := v|Qpost] � refCalc.Mn does not hold, then either,
• the model fragment refCalc.Mn aborts, or
• the output from refCalc.Mn does not satisfy Qpost.

Both cases contribute with aborted traces.
Since we show that MV

n does not abort we can conclude that {Qpre} � {Qpre
n }

and [ν.po
s1, . . . , ν.po

sn := v|Qpost] � refCalc.Mn must hold. ��

Due to monotonicity we have Ms � Mn ⇒ M � M ′.
The controller in the steam boiler example is refined in a stepwise manner

to obtain an implementation. Here we do the development in one single model,
such that each level in the subsystem hierarchy is a new refinement step. Each
subsystem is associated with a contract. When the system is refined, the details
of the subsystem are added. First we refine the specification of the controller into
three different subsystem as shown in Fig. 4. The first one, Decision, decides if
the water level is too high (too high), suitable (ok) or too low (too low). The
second one, Pump Controller, computes if the pump should be on, while the third
one, Out Controller, computes if the out valve should be opened. The contract
for the specification Decision states that the water level should be between L1

and L2 to be acceptable, otherwise it is too high or too low.

Qpre
d =̂ true

Qpost
d =̂ (w level > L2 ⇒ too high ∧ ¬ok ∧ ¬too low)∧

(w level < L1 ⇒ ¬too high ∧ ¬ok ∧ too low)∧
(w level ≥ L1 ∧ w level ≤ L2 ⇒ ¬too low ∧ ok ∧ ¬too high)

The specification block Pump Controller requires that the water level is either
too low, acceptable or too high. It guarantees that the pump is switched on if
the water level is too low and switched off if it is too high.

Qpre
pump =̂ too high ∨ ok ∨ too low

Qpost
pump =̂ (too high ⇒ ¬pump on) ∧ (too low ⇒ pump on)
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The contract for the last specification, Out Controller, is defined similarly. Note
that we do not say anything about the situation when the level is between L1

and L2. The implementation can choose the best alternative in that case.
To validate that the system in Fig. 4 refines the specification Controller we

create a validation model:

refCalc.ControllerV =̂

[w level := v|Qpre
c (v)]; {Qpre

d
}; [too high, ok, too low := vh, vo, vl|Qpost

d
];

{Qpre
pump}; [pump on := v|Qpost

pump]; {Qpre
out}; [out open := v|Qpost

out ]; {Qpost
c }

We first need to show that the validation model does not behave miraculously,
¬(refCalc.ControllerV ).false. It is easy to see that values can always be given
to the in-ports and that the post-conditions are feasible. The refinement is then
correct if the validation model does not abort. By systematically computing the
weakest precondition (refCalc.ControllerV ).true from this program we get the
following conditions:

(Qparam ∧ Qpre
c ⇒ Qpre

d )∧
(Qparam ∧ Qpre

c ∧ Qpost
d ⇒ Qpre

pump)∧
(Qparam ∧ Qpre

c ∧ Qpost
d ⇒ Qpre

out)∧
(Qparam ∧ Qpre

c ∧ Qpost
d ∧ Qpost

pump ∧ Qpost
out ⇒ Qpost

c )

The refinement of the Controller is still abstract and not executable. To illus-
trate the final implementation consider the implementation of the specification
Pump Controller in Fig. 1. Here we have taken the approach to only switch on
or off the pump when a water level limit is reached. Other control strategies can
also be used. The implementation of Pump Controller uses memory and we have
to validate its behaviour over time to ensure correct behaviour. This is again
done by creating a validation model.

6 Conclusions and Future Work

In this paper we have presented a definition of refinement of Simulink diagrams
using contracts and an action systems semantics. First we gave a translation
from Simulink to refinement calculus and provided a definition of contracts us-
ing pre- and post-conditions in specification blocks. The action systems formalism
provided semantics to these contracts. We then showed how an abstract speci-
fication given as a contract could be refined into an implementation satisfying
the contract. Furthermore, validation of the refinement can be performed by
model checking or testing a validation model. These ideas have been tried on a
larger case study [8] and the initial experience with contracts and Simulink are
positive. An extended version of the paper is also available as a technical report
[9].

We believe this refinement-based development provides a convenient design
method even for developers not familiar with formal methods. These methods
are not limited to Simulink: they can be applied to other similar languages like
SCADE [12] and Scicos [20] as well.
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