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Abstract. The execution of OBJ algebraic specification languages is
based on the term rewriting system (TRS), which is an efficient theory
to perform equational reasoning. We focus on the equality predicate im-
plemented in OBJ languages. The equality predicate is used to test the
equality of given terms by TRS. Unfortunately, it is well known that the
current execution engine of OBJ languages with the equality predicate
is not sound. To solve this problem, we define a modular term rewrit-
ing system (MTRS), which is suitable for the module system of OBJ
languages, and propose a new equality predicate based on MTRS.

1 Introduction

We propose a new equality predicate for algebraic specification languages that
support a module system and a rewrite engine. The principals of the module
system for algebraic specifications were first realized in the Clear language [7] and
have been inherited by OBJ languages [9,12,3,5,2]. The theory of the CafeOBJ
module system updates the original concepts of Clear or other OBJ languages
to a more sophisticated situation [8], which helps describe the specifications of
a large and complex system by using several types of module imports, built-
in modules and the loose and tight denotation for each module. The execution
of OBJ languages is based on the term rewriting system (TRS) [14,15], which
is a useful notion for realizing equational reasoning, the most basic building
block of the verification of OBJ specifications. Using a rewriting engine based
on TRS, we obtain a powerful semi-automatic verification system. Although OBJ
languages support a sophisticated module system for specification description,
the specification verification, however, does not benefit greatly from the module
system. Actually, in the current implementation of CafeOBJ, the rewrite engine
treats all equations equally. OBJ languages support the equality predicate, which
is a special operation symbol used to test the equality of terms. However, the use
of the equality predicate in a specification makes its verification unsound [11].

We present an example of CafeOBJ modules to show that the current equality
predicate is problematic. The following specification Z denotes the set of integers.
The constant operator 0 stands for 0, and the unary operators s and p are the
successor and predecessor functions. The equations mean that the successor of
the predecessor, and the predecessor of the successor, of an integer is the integer
itself, where X is a variable that denotes an arbitrary integer.
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mod! Z{ [Zero < Int]
op 0 : -> Zero
ops s p : Int -> Int
eq s(p(X:Int)) = X .
eq p(s(X:Int)) = X .}

The equality predicate == is used for checking the equality of terms, for exam-
ple, s(p(X)) == p(s(X)) means the predecessor of the successor is equivalent
to the successor of the predecessor for any integer. The equational reasoning
with the CafeOBJ system is performed as follows: the system first reduces the
both sides of the equation, and returns true if the results are the same, and
otherwise returns false. Here, terms are reduced according to the equations
in the specification where the equations are regarded as left-to-right oriented
rewrite rules. For the above equation, the both sides are reduced into X, and
the CafeOBJ system returns true. The equality predicate has a problem when
being inside the specification. The following specification tt ZERO specifies the
predicate that tests whether an integer is zero or not.

mod! ZERO{ pr(Z)
op zero : Int -> Bool
eq zero(X:Int) = (X == 0) .}

The equation in the specification defines the predicate zero(X) as the result of X
== 0. We next try to prove the equation zero(s(X)) == false. The left-hand
side is reduced into false as follows: zero(s(X))→ s(X) == 0 → false, and
the CafeOBJ system returns true for the above equation, however, it is not true
in the case of X = p(0). Thus, the current CafeOBJ system is unsound if the
equality predicate is used inside a specification. In the following sections, we
discuss the reason for the unsoundness problem. We propose a term rewriting
system based on the module system, called the modular term rewriting system
(MTRS), and define a new equality predicate by using the MTRS to solve the
unsoundness problem.

In the next section, we briefly introduce CafeOBJ algebraic specification lan-
guage. We focus on the module system. In Section 3, we propose a modular
equational proof system (MEPS) for the module system of the CafeOBJ speci-
fication language. In Section 4, we propose MTRS. In Section 5, we discuss the
problems of the existing equality predicate and propose a new equality predicate.
In Section 6, we discuss applications of our research, and we present conclusions
in Section 7.

2 Preliminaries

We introduce OBJ algebraic specification languages [8,9,12,13,16] with the nota-
tions and definitions from CafeOBJ [8]. To simplify the discussion, we treat only
a subset of CafeOBJ, which does not include, for example, conditional equations,
parameterized modules and transition rules. However, the present results can be
applied straightforwardly to full CafeOBJ specifications.
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2.1 Algebraic Specification

Let S be a set. An S-sorted set A is a family {As | s ∈ S} of sets indexed by
elements of S. We may write a ∈ A if a ∈ As for some s ∈ S. S∗ is the set of
sequences of elements of S. The empty sequence is denoted by ε. S+ is the set of
non-empty sequences, i.e., S+ = S∗ \ {ε}. An (order-sorted) signature (S,≤, Σ)
is a triple of a set S of sorts, a partial order ≤⊆ S × S, and S+-sorted set Σ of
operation symbols, where for f ∈ Σw s (w ∈ S∗ and s ∈ S), w s is referred to as
the rank of f . When w = ε, f is referred to as a constant symbol. (S,≤, Σ) is
occasionally abbreviated as Σ. Let (S,≤, Σ) be a signature and X an S-sorted
set of variables. An S-sorted set T (Σ, X) (abbr. T ) of terms is defined as the
smallest set satisfying the following: (1) Σs ⊆ Ts for any s ∈ S, (2) Xs ⊆ Ts

for any s ∈ S, (3) f(t1, . . . , tn) ∈ Ts if f ∈ Σs1···sn s and ti ∈ Tsi (i = 1, . . . , n).
(4) Ts′ ⊆ Ts if s′ ≤ s. An equation is denoted by (∀X)t = t′, where X is a
set of variables, t, t′ ∈ T (Σ, X)s for some sort s ∈ S. We may omit (∀X) if
no confusion exists. An (equational) specification is a pair of a signature and an
axiom (a set of equations): SP = (Σ, E). We write SSP , ≤SP , ΣSP , and ESP for
the sets of the sorts, the partial order, the operation symbols, and the axiom of
a specification SP . In addition, we also write s ∈ SPCf ∈ SPCe ∈ SPCt ∈ SP
if s ∈ SSP , f ∈ ΣSP , e ∈ ESP , t ∈ T (ΣSP , X), respectively. We may omit
the signature of a specification and the specification is referred to as simply the
axiom E.

Example 1. The following specification SPZ denotes integers.

SSPZ
= {Zero, Int}

≤SPZ
= {(Zero, Zero), (Zero, Int), (Int, Int)}

ΣSPZ
:= (ΣSPZ

)Zero = {0}, (ΣSPZ
)Int Int = {s, p}

ESPZ
= {s(p(X)) = X, p(s(X)) = X}

For a signature (S,≤, Σ), a Σ-algebra M is an algebra that consists of (1) an
S-sorted carrier set M such that Ms ⊆Ms′ if s ≤ s′, (2) an element Mc ∈Ms for
each c ∈ Σs, and (3) an operation (or a function) Mf : Ms1 × · · · ×Msn → Ms

for each f ∈ Σs1···sn s. An assignment a : X → M is a map from an S-sorted
variables set X to an S-sorted carrier set M such that a(x) ∈ Ms if x ∈ Xs.
By an assignment a : X → M , a term t ∈ T (Σ, X) can be interpreted as an
element of M , denoted by a(t), as follows: a(t) = a(x) if t = x ∈ X , a(t) = Mc if
t = c ∈ Σ, and a(t) = Mf (a(t1), . . . , a(tn)) if t = f(t1, . . . , tn). For a Σ-algebra
M and an equation e : (∀X)t = t′, we declare that M satisfies e, denoted by
M |= e, iff a(t) = a(t′) for any assignment a : X → M . For SP = (Σ, E), a Σ-
algebra that satisfies all equations in E is called an SP -algebra (or SP -model).
We may omit SP - if no confusion exists. The set of all SP -algebras is denoted
by M(SP ). For algebras A and B, a Σ-homomorphism h : A → B is an S-
sorted homomorphism, which is a family of {hs : As → Bs}s∈S , that satisfies the
following: (M1) hs(x) = hs′(x) for each x ∈ As if s ≤ s′. (M2) hs(Af (a1, . . . , an))
= Bf (hs1(a1), . . . , hsn(an)) if f ∈ Σs1···sn s and ai ∈ Asi(i = 1, . . . , n). The set
of all Σ-homomorphisms is denoted by HA,B. An initial SP -algebra is an SP -
algebra I that has the unique Σ-homomorphism h : I → A for any SP -algebra
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A. The set of all initial algebras is denoted by IM(SP ). Since initial algebras
are isomorphic, we often identify one of the initial algebras with the set IM(SP )
of all initial algebras. Roughly speaking, an initial algebra I has the following
properties: any element in I should be described in the signature of SP (no junk)
and any equation in I should be deduced from the axiom of SP (no confusion).

Example 2. The following Z is an SPZ-algebra: ZZero = {0}, ZInt = Z, Z0 = 0,
Zs(n) = n + 1, Zp(n) = n − 1, where Z is the set of all integers. Z is initial
(Z ∈ IM(SPZ)). The real number algebra R with same interpretations and the
Boolean algebra B with B0 = false Bs = Bp = ¬ can be SPZ-algebras; however,
they are not initial. There is no term corresponding to the real number 3.1415,
and although B |= s(0) = p(0), it cannot be deduced from the axiom of Z.

2.2 CafeOBJ Algebraic Specification Language

We introduce CafeOBJ algebraic specifications language. Although in this pa-
per we treat only CafeOBJ, other OBJ languages can be treated. The CafeOBJ
specifications are described in a modular manner. The CafeOBJ module Z in
Section 1 corresponds to SPZ in Example 1: The declaration [Zero < Int] in
Z corresponds to the sort set {Zero, Int} and the reflexive transitive closure
of the described order. An operation symbol is declared as op f : A B -> C,
which stands for f ∈ ΣA B C. By ops, we can declare two or more operation
symbols with the same rank. ΣA B C is the set of all operation symbols with the
rank A B C. An equation is declared as eq s(p(X:Int)) = X, which stands for
(∀X) s(p(X)) = X, where XInt = {X} and Xs = ∅ for any other s ∈ S. For
a module MOD, the corresponding specification is denoted as SPMOD. Deno-
tations of CafeOBJ specifications represent the class of their algebras. In this
section, we introduce specifications without explicit imports, called basic speci-
fications (or basic modules). CafeOBJ basic specifications can be classified into
specifications with a tight denotation and specifications with a loose denotation.
A specification with a tight denotation is denoted as mod! and a loose speci-
fication is denoted as mod*. Hereinafter, each specification is assumed to have
its denotation declaration and is referred to as d(SP ) = tight or loose. The
denotation [SP ] of SP is defined as IM(SP ) if d(SP ) = tight and M(SP ) if
d(SP ) = loose. We refer to an element of [SP ] as a denotational model. We write
SP |= e if M |= e for any M ∈ [SP ]. Since Z is tight, [SPZ] = IM(SPZ). Thus,
Z essentially denotes only the integer algebra Z. We next present an example of
loose modules:

mod* FUN{ [Elt]
op f : Elt -> Elt}

Since FUN is loose, [SPFUN] = M(SPFUN). Thus, FUN denotes all algebras, including
at least one function on a set, e.g., they interpret f into, for example, the identity
function on natural numbers, the sort function on arrays, a code refactoring, and
a document editing.
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The execution of CafeOBJ is based on the term rewriting system (TRS). The
CafeOBJ system [3] is interactive. When starting CafeOBJ, we meet a prompt
CafeOBJ>. After inputting a CafeOBJ module, e.g., mod! TEST{...}, by hand or
through a file, we can select or open the module by select TEST or open TEST.
A prompt will be changed to TEST> or %TEST>. We can then use the CafeOBJ
reduction command red. Here, red takes a term constructed from the selected
or opened module, and returns its normal form (in the default strategy) with
respect to the TRS, the rewrite rules of which are left-to-right-oriented equations
in the module. For example, red s(p(p(0))) returns s(0) for Z:

CafeOBJ> mod! Z{ ... }
-- defining module! Z...._..* done.
CafeOBJ> select Z
Z> red s(p(p(0))) .
-- reduce in Z : s(p(p(0)))
p(0) : Int

A special operation symbol == can be used for equational reasoning. The equality
predicate == takes a pair of terms belonging to the same sort and returns true
or false. When inputting red s == t, CafeOBJ reduces both terms into s′ and
t′, and returns true if s′ and t′ are the same, and otherwise returns false:

Z> red s(p(0)) == p(s(0)) .
-- reduce in Z : s(p(0)) == p(s(0))
true : Bool

The equational reasoning with red (or red == ) is sound, which means that
if red t returns t′ (or red t == t′ returns true), then SP |= t = t′ holds. The
equational reasoning is not complete for several reasons, for example, TRS may
not be confluent, terms may include a variable, and a specification may not be
tight. These reasons are discussed in Sections 3, 4, and 5.

2.3 Structured Specification

We briefly introduce the notion of specification imports. Details can be found
in [8]. A specification can import a sub specification 1. There are three import
relations �p, �e, and �u, called protecting, extending, and using imports, re-
spectively. SP ′ �x SP means that SP imports SP ′ with mode x. We may use
� as one of the three imports. Each imported specification is assumed to be
declared with either the tight or loose denotation declaration. We present the
properties of imports related to our research: (1) when SP imports SP ′ with
protecting mode, any sort or operation symbol x in SP ′ is protected in SP , i.e.
for any M ∈ [SP ], Mx = M ′

x for some M ′ ∈ [SP ′], (2) the import relation is
transitive, and the mode of the composed import is the weakest mode, where
�p is strongest and �u is weakest, e.g., if SP �p SP ′ �e SP ′′, then SP �e SP ′′.
1 SP ′ is a sub specification of SP , denoted by SP ′ ⊆ SP , iff SSP ′ ⊆ SSP , ≤SP ′⊆≤SP ,

ΣSP ′ ⊆ ΣSP and ESP ′ ⊆ ESP .
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In CafeOBJ, an import relation SP ′ �p SP (or SP ′ �e SP , SP ′ �u SP )
is described as pr(SP ′) (or ex(SP ′), us(SP ′)). Note that import declarations
should be irreflexive, e.g., CafeOBJ does not allow, for example, mod! MOD{
pr(MOD)· · ·} and mod! A{pr(B)· · ·} · · · mod! B{pr(A)· · ·}. For a module with
imports, SPMOD includes, for example, the sorts, the operation symbols, and
the equations described in the imported modules, as well as MOD itself. When
declared only in MOD itself, the above are denoted as SMOD, ΣMOD, and
EMOD, respectively. Thus, when MOD imports −−−−→MODi

2, ESPMOD = EMOD ∪⋃
i ESPMODi

, for example.

Example 3. The following is an example of specifications with imports:

mod! FUNN{ pr(Z) pr(FUN)
op fn : Int Elt -> Elt
var E : Elt var X : Int
eq fn(0, E) = E .
eq fn(s(X), E) = f (fn(X, E)) .}

FUNN imports Z and FUN with the protecting mode. Thus, for example, MInt

is the set of integers (or its isomorphism) for any M ∈ [SPFUNN]. The operation
symbol fn is interpreted into a function Mfn from MInt×MElt to MElt satisfying
Mfn(n, e) = fn(e) if n ≥ 0. Note that Mfn(n, e) can be any integer for n < 0.

3 Modular Equational Proof System

We next present an axiomatic semantics (Section 3) and an operational seman-
tics (Section 4) for a modular algebraic specification language. The semantics
presented in Sections 3 and 4 are similar to ordinary semantics, such as those pre-
sented in [8]. The difference is that we prepare notations to extract the part that
corresponds to each submodule. The target language is the subset of CafeOBJ
introduced in Section 2. The congruence relation =E for a set E of equations is
defined as follows: t =E t′ iff t = t′ can be derived from the reflexive, symmetric,
transitive, congruent, and substitutive laws from E [8]. We redefine this congru-
ence relation while maintaining the module structure. We define the congruence
relation =MOD for each module MOD.

Definition 1. For a module MOD, the congruence relation (∀X) =MOD

on T (ΣSPMOD , X) (abbr. T ) is defined as the smallest relation satisfying the
following laws:

[reflexivity] [symmetry] [transitivity] For s, t, u ∈ T ,

(∀X)t =MOD t

(∀X)s =MOD t

(∀X)t =MOD s

(∀X)s =MOD u (∀X)u =MOD t

(∀X)s =MOD t

[congruence] For f ∈ (ΣSPMOD )s1···sn s and ti, t
′
i ∈ Tsi (i ∈ {1, . . . , n}),

(∀X)t1 =MOD t′1 · · · (∀X)tn =MOD t′n
(∀X)f(t1, . . . , tn) =MOD f(t′1, . . . , t′n)

2 We write −→ai instead of a1, a2, . . . , an.
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[substitutivity] For (∀Y )t = t′∈ EMOD and θ : Y → T ,

(∀X)θ(t) =MOD θ(t′)

[import] For modules MOD that import MOD′ and s, t ∈ T ,
if (∀X)s =MOD′ t, then

(∀X)s =MOD t

The last two laws can be a leaf of a proof tree. [substitutivity] is an instance of
an equation e that belongs to MOD itself. By [import], any equation derived
from the submodule is also derivable.

Example 4. Figure 1 is a proof tree for (∀∅)mod2(s(s(p(s(0))))) =FUNN 0. We omit
(∀X) for each equation, where XElt = {E}. Note that the left-most leaf comes
from s(p(s(0))) =Z s(0).

s(p(s(0)))) =FUNN s(0)

fn(s(p(s(0))), E) =FUNN fn(s(0), E)

fn(s(0), E) =FUNN f(fn(0, E))

fn(0, E) =FUNN E

f(fn(0, E)) =FUNN f(E)

fn(s(0), E) =FUNN f(E)

fn(s(p(s(0))), E) =FUNN f(E)

Fig. 1. A proof tree for fn(s(p(s(0))), E) =FUNN f(E)

3.1 Soundness and Completeness of MEPS

We show the soundness of the modular equational proof system (abbr. MEPS),
i.e., s =MOD t ⇒ SPMOD |= s = t, and gives a sufficient condition under which
MEPS is complete, s =MOD t ⇐ SPMOD |= s = t. Let MOD be a module,
and let E be the set of all equations in MOD and its imported modules, i.e.,
ESPMOD . It is trivial that =MOD and =E are exactly the same binary relation.
Thus, the following properties hold [8].

Proposition 1. Let MOD be a module, s, t ∈ T (ΣSPMOD , X). If (∀X)s =MOD

t, then SPMOD |= s = t.

Proposition 2. Let MOD be a tight and basic, i.e., with no explicit imports,
module. Let s, t ∈ T (ΣSPMOD , ∅). Then, SPMOD |= s = t ⇔ s =MOD t.

4 Modular Term Rewriting System

For a specification (Σ, E) and an equation l = r ∈ E, if l is not a variable and all
variables in r occur in l, (Σ, E) (or just E) is called a TRS. In a TRS, equations
are used as left-to-right rewrite rules. We may write l→ r and R instead of l = r
and E when emphasizing rewrite rules. We propose an extension of TRSs for
the module system, called a modular TRS (or MTRS), and an MTRS rewrite
relation.
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Definition 2. MTRSs are defined recursively as follows: an MTRS R is a pair
((Σ, R), A) of a TRS R and a set A of MTRSs satisfying the following: Σ′ ⊆ Σ
for each MTRS ((Σ′, R′), A′) ∈ A.

For a module MOD, the set EMOD of equations described in MOD corresponds
to the TRS of the first argument (Σ, R), and imported modules correspond to
the second argument A. Since the rewrite rules (equations) in a module are con-
structed from the operation symbols declared in the module itself and imported
modules, the condition Σ′ ⊆ Σ is needed. Basic modules correspond to MTRSs
in which the second arguments are empty.

In order to assign an MTRS rewrite relation →R, we introduce a positions
set O(t), a subterm t|p and a replacement term t[u]p as follows: O(x) = {ε} and
O(f(t1, . . . , tn)) = {ε} ∪ {i.p ∈ N+

∗ | p ∈ O(ti)}. t|ε = t and f(t1, . . . , tn)|i.p =
ti|p. t[u]ε = u and f(t1, . . . , tn)[u]i.p = f(. . . , ti−1, ti[u]p, ti+1, . . .). The set of all
maps from A to B is denoted by BA. The reflexive transitive closure of → is
denoted by →∗.

Definition 3. Let R = (R, {Ri}i=1,...,n) be an MTRS. The MTRS rewrite re-
lation →R is defined as follows:

s→R t
def⇐⇒

{∃(∀X)l → r ∈ R, θ ∈ T X , p ∈ O(s).(s|p = θ(l) ∧ t = s[θ(r)]p)
or ∃i ∈ {1, . . . , n}.s→Ri t.

The first part is the definition of the ordinary TRS rewrite relation →R for a
TRS R, and the latter part (∃i ∈ {1, . . . , n}.s→Ri t) corresponds to the rewrite
relation of the imported modules.

Example 5. MTRSs RZ = ((ΣZ, EZ), ∅) and RFUN = ((ΣFUN, ∅), ∅) correspond to
modules Z and FUN. MTRSRFUNN = ((ΣFUNN∪ΣZ∪ΣFUN, EFUNN), {RZ,RFUN}) corre-
sponds to the modules FUNN. s(p(s(0)))→RZ

s(0) holds. Thus, fn(s(p(s(0))), E)
→RFUNN

fn(s(0), E) →RFUNN
f(fn(0, E)) →RFUNN

f(E) holds.

Let MOD be a module importing −−−−→MODi. MTRS RMOD is defined as the pair
(EMOD,

−−−−−→RMODi ). We write R,
−→Ri instead of RMOD,

−−−−−→RMODi if no confusion
exists. We hereinafter assume the existence of a corresponding module for each
MTRS.

4.1 Soundness and Completeness of MTRS

When a (possibly infinite) sequence −→si of terms satisfies si →R si+1 for each
i = 0, 1, 2, . . ., the sequence is referred to as a rewrite sequence, denoted by
s0 →R s1 →R s2 →R · · ·. If (s →∗ t andjt → u does not hold for any u ∈ T ,
t is called a →-normal form (of s). We often omit →. For a binary relation
→ written as an arrow, we define ←= {(a, b) | b → a} and ↔=→ ∪ ←. The
reflexive and transitive closure of ↔R coincides with =MOD. Terms a and b are
joinable, and are denoted by a ↓ b when there exists c such that a →∗ c and
b →∗ c. → is confluent iff b ↓ c whenever a →∗ b, a →∗ c. → is terminating



On Equality Predicates in Algebraic Specification Languages 389

iff there is no infinite rewrite sequence s0 → s1 → · · ·. → is convergent iff it
is confluent and terminating. We define equational reasoning by MTRS as the
following procedure: take terms s and t, reduce them into their →R normal
forms, and return true if they are the same, and otherwise return false.

We show the soundness of the MTRS equational reasoning (s ↓R t⇒ s =MOD

t) and the sufficient condition under which the MTRS equational reasoning is
complete (s ↓R t ⇐ s =MOD t). Let R be a MTRS, and let R the TRS union of
all TRSs, including R. It is trivial that the MTRS rewrite relation→R and the
ordinary TRS rewrite relation →R are exactly the same binary relation. Thus,
the following properties hold [14,15].

Proposition 3. If s ↓RMOD t, then (∀X)s =MOD t.

Proposition 4. Let MOD be a module such that →RMOD is convergent. Let
s, t ∈ T (ΣSPMOD , X). Then, (∀X)s =MOD t ⇔ s ↓RMOD t.

5 Equality Predicate

In CafeOBJ, we can use the equality predicate == not only in verification,
but also in description as an operation symbol. t1 == t2 is a term for t1, t2 ∈
Ts. The equality predicate is included in a built-in module BOOL. The built-in
module BOOL has a sort Bool, constants true and false, and operations such
as and , or , and == . 3. The rank of == is s s -> Bool for any sort s. It
is not an ordinary operation symbol because it is polymorphic. In addition, the
equality predicate == has another special quality in that it cannot be defined
by equations or a TRS (even if the target sorts are fixed). Although we can give
eq X:s == X = true for true cases, eq X:s == Y:s = false does not give false
cases because t == t can be an instance of X == Y. The reduction command for a
term including == is defined as follows: for a pattern s == t, reduce both terms,
i.e., red s and red t, and replace the term with true if the results are same,
and otherwise replace the term with false. The equality predicate denotes the
equality of model values, i.e., M==(x, y) = (x = y) [8]. If we use the equality
predicate as an operation symbol in the axiom, the equational reasoning is no
longer sound because Propositions 2 and 4 do not hold without the assumptions.
We next show examples in which SP |= s = t does not hold, even if red s ==
t returns true.
Confluence: Consider SP with eq a = b and eq a = c. red b == c returns
false because b and c are normal forms. Thus, red (b == c) == false returns
true. However, SP |= b == c = false do not hold because b = a = c.

Denotation: For the loose module FUN (See Section 2.2), red (f(E:Elt) == E)
== false returns true because f(E) and E are normal forms. However, SPFUN �|=
3 We define a basic module (or specification) as a module without explicit imports.

The explicit import means that the module has no import declaration, and does not
use anything belonging to BOOL, i.e., the sort Bool, operations true, false, and ,
etc. Such modules can be considered as modules with no imports.
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(∀{E}) (f(E) == E) = false because there exists M ∈ [SPFUN], which interprets
f into the identity function, i.e., Mf(x) = x for all x ∈MElt.

Verification: Even if the specification is convergent as a TRS and is declared
with a tight denotation, equational reasoning is still unsound for a specification
with the equality predicate. Before showing a problematic example, we introduce
a proof score, which is a basis for CafeOBJ verifications. Consider the following
module: mod! PROOF{ pr(Z) op n : -> Int }. Since Z is protected, the constant n
should be an integer. Then, the reduction command red s(p(n)) == p(s(n))
in PROOF returns true, which means that M |= s(p(n)) = p(s(n)) for any M ∈
[SPPROOF] from Proposition 1 and 3. For any integer n ∈ ZInt, there exists M ∈
[SPPROOF] such that Mn = n. Thus, Zs(Zp(n)) = Zp(Zs(n)) holds for any n ∈ ZInt.
The theory of a proof using a constant as an arbitrary element, called Theorem
of Constants, can be found in [11]. By the open command, we can declare a
nameless module that imports the opened module with the protect mode. The
following code, called a proof score, has the same meaning as the above proof:

CafeOBJ> open Z
-- opening module Z.. done.
%Z> op n : -> Int .
%Z> red s(p(n)) == p(s(n)) .
-- reduce in %Z : s(p(n)) == p(s(n))
true : Bool

Consider the following proof score for the module ZERO with the equality
predicate (Section 1).

CafeOBJ> open ZERO
-- opening module ZERO.. done.
%ZERO> op n : -> Int .
%ZERO> red zero(n) == false .
-- reduce in %ZERO : zero(n) == false
true : Bool

The proof score means that zero(n) = false for any integer n. However, this
does not hold because 0 is an integer. The literature [11] mentions the problem
of the equality predicate (Section 2.1.1). One solution given by [11] is to give a
user-defined equality predicate for each sort needed. For example, the equality
predicate is on Nat, which is defined as 0 : -> Nat and s : Nat -> Nat, is
defined by the four equations: (0 is 0) = true, (s(N) is 0) = false, (0 is
s(N)) = false, and (s(M) is s(N)) = M is N, where M and N are variables
[11]. However, it is not always possible for the user to find a suitable definition.
For example, how should is be defined on Int for the specification Z? The
equation (s(N) is 0) = false does not hold for N = p(0) on Int. Moreover,
the user should prove that each user-defined equality predicate actually denotes
the equality on its target set.
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5.1 Local Equality Predicate

To solve the problems of the equality predicate, we propose a new equality
predicate, called the local equality predicate (LEP). The equality predicate im-
plemented in CafeOBJ is hereinafter referred to as the global equality predicate
(GEP). The LEP is defined for the specification language without the global
equality predicate, which we introduced in Section 2, 3 and 4. For a module
MOD, the specification SPMOD is redefined as follows:

Definition 4. Assume that MOD imports −−−−→MODi. The specification SPMOD is
redefined by replacing the definition of ΣSPMOD as follows: ΣSPMOD = ΣMOD ∪⋃

i ΣMODi ∪ {op =MODi= : s s -> Bool | s ∈ SMODi}. ESPMOD = EMOD

∪ ⋃
i EMODi ∪ {eq (X:s =MODi= X) = true | s ∈ SMODi}. The other parts,

such as SSPMOD , are not changed.

Denotation: For any SPMOD-algebra M , LEP op =MODi= : s s -> Bool
is interpreted in the equality on Ms.
MEPS: Add the following to Definition 1:

[LEP] For module MOD, which imports MOD′ and s, t ∈ T (ΣSPMOD , ∅),
if (∀X)s �=MOD′ t, then

(∀X)(s =MOD′= t) =MOD false

MTRS: Add the following condition to Definition 2: MTRS ((Σ, R), A) satisfies
the following: op =MODi= : s s -> Bool ∈ Σ for each s ∈ SMODi and
Ri ∈ A, and eq (X:s =MODi= X) = true ∈ R for each Ri ∈ A for each
s ∈ SMODi and Ri ∈ A. Replace Definition 3 with the following:

s→R t
def⇐⇒

⎧
⎨

⎩

∃(∀X)l → r ∈ R, θ ∈ T X , p ∈ O(s).(s|p = θ(l) ∧ t = s[θ(r)]p)
or ∃i ∈ {1, . . . , n}.s→Ri t
or ∃p ∈ O(s).(s|p = (u =MODi= v) ∧ t = s[false]p ∧ u �↓Ri v)

Note that for both MEPS and MTRS, the true cases are given by simply adding
an ordinary equation eq X =MODi= X = true.

5.2 Soundness of the Local Equality Predicate

Here, we present properties on the soundness of LEP. These properties can be
proved from Proposition 2 and 4, and the proofs are omitted.

Theorem 1. [Soundness of MEPS with LEP] Let MOD be a module such
that for any occurrence of =MODi= in MOD, the module MODi is basic,
tight, and imported with the protecting mode. Let s, t ∈ T (ΣSPMOD , X). Then,
SPMOD |= s = t if (∀X)s =MOD t.

Theorem 2. [Soundness of MTRS with LEP] Let MOD be a module such
that for any occurrence of =MODi= in MOD, the rewrite relation →Ri is con-
vergent. Let s, t ∈ T (ΣSPMOD , X). Then, (∀X)s =MOD t if s ↓R t.

Corollary 1. Equational reasoning by MTRS for specifications with LEP is
sound under the assumption of Theorems 1 and 2.
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5.3 Sound Verification System

We next introduce a sound verification system (or rewrite engine) for specifica-
tions with LEP. Consider the assumption of Corollary 1 (i.e., Theorems 1 and 2).
The tight denotation, the basic module, and the protecting import can be easily
checked. Consider an MTRS (R, ∅) corresponding to a basic module. (R, ∅) can
be regarded as an ordinary TRS R. For an ordinary TRS, many useful sufficient
conditions and tools for termination have been proposed [14,15,10,1,4,6], and
when assuming termination, the confluence property is decidable and can be
proved using the critical pair method [14,15]. Thus, we can obtain a decidable
procedure P to check the assumption of Corollary 1 by using termination provers.
The reduction command for LEP is defined as follows. s =MODi= t is rewritten
as follows: Reduce s and t into their normal forms s′ and t′, respectively. If s′ and
t′ are same, then replace the equation with true. If s′ and t′ are not same, then
check the conditions (1) s′, t′ ∈ T (ΣSPMODi

, ∅) and (2) P (MODi). If the conditions
hold, then replace the equation with false, and otherwise return the equation
as is. Then, from Corollary 1, the obtained reduction command is sound.

Example 6. We show the experiences of the reduction command for specifica-
tions with local equality predicates 4. We modify ZERO as follows:

mod! ZERO{ pr(LEP-Z)
op zero : Int -> Bool
eq zero(X:Int) = (X =Z= 0) .}

where LEP-Z is the module having the local equality predicate =Z= on Z (Omit
the definition). In the new ZERO, the global equality predicate == has been
replaced with =Z= . For the terms zero(s(p(0))) and zero(s(p(s(0)))), the
CafeOBJ system returns the correct answers true and false. We again try the
proof score shown in Section 5 as follows:

CafeOBJ> open ZERO
-- opening module ZERO.. done.
%ZERO> op n : -> Int .
%ZERO> red zero(n) == false .
-- reduce in %ZERO : zero(n) == false
false : Bool

As a result of the LEP, an incorrect true is not returned for the above proof
score. Note that false does not mean a disproof. The following is a proof score of
n �= 0⇒ zero(n) = false, and returns true. Thus, it holds for any M ∈ [SPM2].

ZERO> open ZERO
-- opening module ZERO.. done.
%ZERO> op n : -> Int .
%ZERO> eq n =Z= 0 = false .

4 We have implemented each local equality predicate in CafeOBJ manually by using
order sorts.
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%ZERO> red zero(n) == false .
-- reduce in %ZERO : zero(n) == false
true : Bool

6 Applications

6.1 Application to Full CafeOBJ

The CafeOBJ specifications in the above sections are restricted in order to focus on
the essential part of the problem of GEP. LEP can be applied to full CafeOBJ (or
OBJ languages) straightforwardly, which include, for example, conditional equa-
tions, parameterizedmodules, behavioral specifications, and rewrite specifications.

6.2 Application of LEP

The assumption of Corollary 1 is not so restrictive. The tight denotation and
the protecting import are necessary conditions. The convergence property is
one of the properties that any algebraic specification is expected to satisfy. In
particular, Maude, one of the OBJ languages, requires its functional modules
(corresponding to CafeOBJ tight modules specifying a data type of a target
system) to be convergent in order to obtain a sound rewriting engine for system
specifications [5]. Since the import relation is transitive, the basic module is not
so restrictive. For example, =Z= can be used in a module, which imports FUNN
with the protecting mode, where FUNN imports Z with the protecting mode. The
following TREE is an example outside the assumption:

mod! TREE{ pr(Z) [Int < Tree]
op __ : Tree Tree -> Tree }

This is a specification of trees having leaves that are integers: Term s(0) is a
tree from [Int < Tree]. Term (p(0) s(0)) p(0) is another example of trees.
TREE is not basic, and Tree is defined in TREE. The LEP on trees is outside
the assumption of Corollary 1. However, if necessary, we can describe the corre-
sponding basic specification satisfying the assumption as follows:

mod! TREE{ [Zero < Int < Tree]
op 0 : -> Zero
op s p : Int -> Int
op __ : Tree Tree -> Tree
eq s(p(X:Int)) = X .
eq p(s(X:Int)) = X .}

6.3 Applications of MEPS and MTRS

MEPS and MTRS are useful not only for dealing with the equality predicates,
but also for the introduction of several functions to modular specification lan-
guages. For example, built-in modules are treated well by our framework rather
than the ordinary framework. Some built-in modules have only signatures and
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do not have equations (axioms), thus, the ordinary TRS does not treat them
directly. The meaning of operation symbols are implemented in other low-level
languages, e.g., Common Lisp for CafeOBJ built-in modules. For example, a
built-in module NAT has constants 0, 1, 2, . . ., operation symbols, such as + , * ,
and the expression x + y, for example, is reduced to the result of the evaluation
of the Common Lisp expression (+ x y). In our modular framework, we simply
define =NAT and →NAT from the implementation of NAT in order to obtain the
axiomatic and operational semantics of specifications with the built-in module
NAT. Similarly, our framework can be used while implementing a specification.
When we have implemented submodules of a given large specification, we may
obtain a specification combined with those implementations and can perform
some execution tests for the ongoing implementation, or verifications for the
semi-implemented specification. Integrating other verification techniques, such
as model-checking, with a rewriting-based verification is another possible use of
our framework.

7 Conclusion

We proposed the modular equational proof system and the modular term rewrit-
ing system, which are suitable for algebraic specification languages with a module
system. We also proposed the local equality predicate and showed its soundness
(Corollary 1 and Section 5.3). The problem of the global equality predicate is well-
known in the CafeOBJ community, and it has not been used in the recent practical
specifications. The current CafeOBJ system also supports another equality pred-
icate =, which is implemented by simply eq (X = X) = true, where X is a variable.
Many case studies have been succeeded with the above simple equality predicate.
However, because it does not support false cases, we have to manually provide
false cases needed for verification. The local equality predicate solves the problem
of the equality predicate while maintaining its advantages.

For the TRS area, MTRS with LEP is related to the conditional TRS (CTRS)
with negative conditions. A conditional rewrite rule in CTRS is written as l →
r if

∧
li = ri. When li ↓R ri, an instance of l is replaced with the instance

of r (there are several definitions of CTRS rewrite relations. See [14,15]). If a
negative equation is included in the condition part, it is not easy to prove the
soundness of the CTRS. A conditional rewrite rule can be described in CafeOBJ
as a conditional equation in which the condition is a term of the sort Bool.
We can give a Bool condition term as (u1= M1 =v1) and · · · and (un= Mn =vn)
for positive equations and not(u′1= M1′ =v′1) and · · · and not(u′n= Mn′ =v′n) for
negative equations. We can say that MTRS with the local equality predicate
gives one solution of the difficulty of dealing with negative conditions in CTRS.
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