

Lecture Notes in Computer Science 4711
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Cliff B. Jones Zhiming Liu
Jim Woodcock (Eds.)

Theoretical Aspects
of Computing –
ICTAC 2007

4th International Colloquium
Macao, China, September 26-28, 2007
Proceedings

13

Volume Editors

Cliff B. Jones
Newcastle University
School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK
E-mail: cliff.jones@ncl.ac.uk

Zhiming Liu
United Nations University
International Institute for Software Technology
Macao, China
E-mail: lzm@iist.unu.edu

Jim Woodcock
University of York
Department of Computer Science
Heslington, York YO10 5DD, UK
E-mail: jim@cs.york.ac.uk

Library of Congress Control Number: 2007935596

CR Subject Classification (1998): F.1, F.3, F.4, D.3, D.2, C.2.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-75290-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75290-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12167203 06/3180 5 4 3 2 1 0

Preface to Colloquium Proceedings

This volume contains the papers presented at ICTAC 2007: The 4th Interna-
tional Colloquium on Theoretical Aspects of Computing held during 26th–28th
September 2007 in Macao. There were 69 submissions, and each was reviewed by
at least three programme committee members; the committee decided to accept
29 papers. The programme also included four invited talks by Dines Bjørner, He
Jifeng, Zohar Manna, and Zhou Chaochen. Online conference management was
provided by EasyChair.

The International Colloquia on Theoretical Aspects of Computing (ICTAC)
is a series of annual events founded in 2003 by the United Nations University
International Institute for Software Technology (UNU-IIST). The three previous
ICTAC events were held in Guiyang (2004), Hanoi (2005), and Tunis (2006). The
aim of each colloquium is twofold:

Scholarship. To bring together the leading international practitioners and re-
searchers from academia, industry, and government to present their research
results, and exchange experience, ideas, and solutions for their problems in
theoretical aspects of computing.

Cooperation. To promote cooperation in research and education between par-
ticipants and their institutions, from developing and industrial countries, as
in the mandate of the United Nations University.

We are happy to acknowledge the generous sponsorship that this year’s Collo-
quium has received from the following organisations.

– Formal Methods Europe, who kindly funded Zohar Manna’s participation.
– The Macao Foundation.
– Macao Polytechnic Institute, who generously provided the conference venue.
– United Nations University International Institute for Software Technology,

who provided local support and conference planning.
– University of York who provided editorial and secretarial support.

As mentioned above, this year’s ICTAC was specially dedicated to Dines Bjørner
and Zhou Chaochen. It was also associated with two other events.

– The School on Domain Modelling and the Duration Calculus, held in Shang-
hai during 17th–21st September 2007.

– The Festschrift Symposium held in Macao on the 24th–25th September 2007.

A further event was timed to coincide with ICTAC :

– 1st Workshop on Harnessing Theories for Tool Support in Software.

July 2007 J.C.P.W.

Organisation

Programme Chairs

Cliff Jones Zhiming Liu Jim Woodcock

Programme Committee

Mı́cheál Mac an
Airchinnigh

Farhad Arbab
Jonathan Bowen
Andrew Butterfield
Ana Cavalcanti
Antonio Cerone
Dang Van Hung
Jim Davies
David Déharbe
Jin Song Dong

Lindsay Groves
Stefan Hallerstede
Michael Hansen
Ian Hayes
Mathai Joseph
Joseph Kiniry
Peter Gorm Larsen
Xuandong Li
Shaoying Liu
Ali Mili
Joe Morris

Leonor Prensa
Anders Ravn
Augusto Sampaio
Emil Sekerinski
Natarajan Shankar
Ji Wang
Hongseok Yang
Naijun Zhan
Huibiao Zhu

Local Organisation

Kitty Chan
Wendy Hoi

Chris George
Violet Pun

External Reviewers

Benjamin Bedregal
Giampaolo Bella
Adalberto Cajueiro
Chunqing Chen
Robert Colvin
Brijesh Dongol
Pascal Fontaine
Robin Green
Radu Grigore
Haifeng Guo
Thai Son Hoang
Mikolas Janota
Padmanabhan Krishnan
Jing Li
Yuan Fang Li

Yang Liu
Ana Matos
Farhad Mehta
Larissa Meinicke
Michal Moskal
Gethin Norman
Joseph Okika
Anjolina Oliveira
Jun Pang
Dirk Pattinson
Cong Vinh Phan
Rodrigo Ramos
Peter Robinson
Rudolf Schlatte
Jeffrey Sanders

Regivan Santiago
Shaikh Siraj
Sergio Soares
Volker Stolz
Martin Strecker
Meng Sun
Francois Terrier
Cao Son Tran
Malcolm Tyrrell
Phan Cong Vinh
James Welch
Min Zhang
Jianhua Zhao
Daniel Zimmerman
Jianhua Zhao

Table of Contents

Domain Theory: Practice and Theories. A Discussion of Possible
Research Topics (Invited Talk) . 1

Dines Bjørner

Linking Semantic Models (Invited Talk) . 18
He Jifeng

Discovering Non-linear Ranking Functions by Solving Semi-algebraic
Systems (Invited Talk) . 34

Yinghua Chen, Bican Xia, Lu Yang, Naijun Zhan, and
Chaochen Zhou

Mobile Ambients with Timers and Types . 50
Bogdan Aman and Gabriel Ciobanu

Automatic Refinement of Split Binary Semaphore . 64
Damián Barsotti and Javier O. Blanco

Stepwise Development of Simulink Models Using the Refinement
Calculus Framework . 79

Pontus Boström, Lionel Morel, and Marina Waldén

Bisimulations for a Distributed Higher Order π-Calculus 94
Zining Cao

A Complete and Compact Propositional Deontic Logic 109
Pablo F. Castro and T.S.E. Maibaum

Verifying Lock-Freedom Using Well-Founded Orders 124
Robert Colvin and Brijesh Dongol

Tree Components Programming: An Application to XML 139
Pascal Coupey, Christophe Fouqueré, and Jean-Vincent Loddo

A Framework for Incorporating Trust into Formal Systems
Development . 154

Fredrik Degerlund and Kaisa Sere

A Higher-Order Demand-Driven Narrowing Calculus with Definitional
Trees . 169

Rafael del Vado Vı́rseda

Distributed Time-Asynchronous Automata . 185
Cătălin Dima and Ruggero Lanotte

X Table of Contents

Skolem Machines and Geometric Logic . 201
John Fisher and Marc Bezem

A Logical Calculus for Modelling Interferences . 216
Christophe Fouqueré

Reflection and Preservation of Properties in Coalgebraic
(bi)Simulations . 231

Ignacio Fábregas, Miguel Palomino, and David de Frutos Escrig

Controlling Process Modularity in Mobile Computing 246
Takashi Kitamura and Huimin Lin

Failures: Their Definition, Modelling and Analysis . 260
Brian Randell and Maciej Koutny

C�WS: A Timed Service-Oriented Calculus . 275
Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi

Regular Linear Temporal Logic . 291
Martin Leucker and César Sánchez

Algebraic Semantics for Compensable Transactions 306
Jing Li, Huibiao Zhu, and Jifeng He

Axiomatizing Extended Temporal Logic Fragments Via Instantiation . . . 322
Wanwei Liu, Ji Wang, Wei Dong, and Huowang Chen

Deciding Weak Bisimilarity of Normed Context-Free Processes Using
Tableau . 337

Xinxin Liu and Haiyan Chen

Linear Context Free Languages . 351
Roussanka Loukanova

FM for FMS: Lessons Learned While Applying Formal Methods to the
Study of Flexible Manufacturing Systems . 366

Andrea Matta, Matteo Rossi, Paola Spoletini, Dino Mandrioli,
Quirico Semeraro, and Tullio Tolio

On Equality Predicates in Algebraic Specification Languages 381
Nakamura Masaki and Futatsugi Kokichi

Data-Distributions in PowerList Theory . 396
Virginia Niculescu

Quasi-interpretation Synthesis by Decomposition - An Application to
Higher-Order Programs . 410

Guillaume Bonfante, Jean-Yves Marion, and Romain Péchoux

Table of Contents XI

Composing Transformations to Optimize Linear Code 425
Thomas Noll and Stefan Rieger

Building Extended Canonizers by Graph-Based Deduction 440
Silvio Ranise and Christelle Scharff

A Randomized Algorithm for BBCSPs in the Prover-Verifier Model 455
K. Subramani

On the Expressive Power of QLTL . 467
Zhilin Wu

Author Index . 483

Domain Theory: Practice and Theories�

A Discussion of Possible Research Topics

Dines Bjørner��

Department of Computer Science and Engineering
Institute of Informatics and Mathematical Modelling

Technical University of Denmark
DK-2800 Kgs. Lyngby, Denmark� � �

Abstract. By a domain we mean a universe of discourse.
Typical examples are (partially) man-made universes of discourse -

such as Air Traffic, Airports, Financial Services (banks, insurance compa-
nies, securities trading [brokers, traders, stock exchanges]), Health Care
(hospitals etc.), Secure IT Systems (according to Intl. ISO/IEC Standard
17799), The Market (consumers, retailers, wholesalers, producers, “the
supply chain”), Transportation (road, air, sea and/or rail transport), etc.

We shall outline how one might describe such (infrastructure compo-
nent) domains, informally and formally - what the current descriptional
limitations appear to be, and, hence, the prospects for future research as
well as practice.

The current paper is based on Part IV, Chaps. 8–16 of [3]. The volume
is one of [1,2,3].

The aim of this paper is to suggest a number of areas of domain
theory and methodology research.

Maybe the title of the paper need be explained: The second part of the title: ‘Practice

and Theories’ shall indicate that there is an engineering practice (i.e., methodology) of

developing domain descriptions and that any such domain description forms the basis

for a specific domain theory. The first part of the title: ‘Theories’ shall indicate that we

need support the practice, i.e., the methodology, by theoretical insight, and that there

probably are some theoretical insight that applies across some or all domain theories.

1 Introduction

1.1 A Preamble

This paper is mostly a computing science paper. This paper is less of a computer
science paper. Computer science is the study and knowledge about the “things”

� Invited paper for ICTAC 2007, The 4th International Colloquium on The-
oretical Aspects of Computing, 26–28 September 2007, Macau SAR, China:
http://www.iist.unu.edu/ictac07/

�� Prof. Emeritus.
� � � Home address: Fredsvej 11, DK-2840 Holte, Denmark.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 1–17, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 D. Bjørner

that can exist “inside” computers, and of what computing is. Computing science
is the study and knowledge about how to construct computers and the “things”
that can exist “inside” computers. Although the main emphasis of ‘Domain
Theory and Practice’ is computing science, some of the research topics identified
in this paper have a computer science nature.

1.2 On Originality

Since this paper is an invited paper and since it basically builds on and extends
a certain part (Part IV Domain Engineering) of Vol. 3, [3], of my book [1,2,3],
I shall not bring a lot of motivation nor putting my possible contributions in a
broader context other that saying this: as far as I can see from the literature
my concept of domain engineering is new. It may have appeared in rudimentary
forms here and there in the literature, but in the nine chapters (Chaps. 8–16) of
Part IV, [3], it receives a rather definitive and fully comprehensive treatment. But
even that treatment can be improved. The present paper is one such attempt.

1.3 Structure of Paper

In a first semi-technical section we briefly express the triptych software engineer-
ing dogma, its consequences and its possibilities. We relate software verification
to the triptych and present a first research topic. Then we list some briefly
explained domains, and we present three more research topics. In the main tech-
nical section of this paper we present five sets of what we shall call domain
facets (intrinsics, support technology, management and organisation, rules and
regulations, and human behaviour). Each of these will be characterised but not
really exemplified. We refer to [3] for details. But we will again list corresponding
research topics. The paper ends first with some thoughts about what a ‘domain
theory’ is, then on relations to requirements, and finally on two rather distinct
benefits from domain engineering. In that final part of the paper we discuss a
programming methodology notion of ‘requirements specific development models’
and its research topics.

2 Domain Engineering: A Dogma and Its Consequences

2.1 The Dogma

First the dogma: Before software can be designed its requirements must be un-
derstood. Before requirements can be prescribed the application domain must
be understood.

2.2 The Consequences

Then the “idealised” consequences: In software development we first describe the
domain, then we prescribe the requirements, and finally we design the software.

Domain Theory: Practice and Theories 3

As we shall see: major parts of requirements can be systematically “derived”1

from domain descriptions. In engineering we can accommodate for less idealised
consequences, but in science we need investigate the “ideals”.

2.3 The Triptych Verification

A further consequence of this triptych development is that

D,S |= R,

which we read as: in order to prove that Software implements the Requirements
the proof often has to make assumptions about the Domain.

2.4 Full Scale Development: A First Suggested �esearch Topic

Again, presupposing much to come we can formulate a first research topic.

� 1. The D,S |= R Relation: Assume that there is a formal description
of the Domain, a formal prescription of the Requirements and a formal
specification of the Software design. Assume, possibly, that there is ex-
pressed and verified a number of relations between the Domain description
and the Requirements prescription. Now how do we express the assertion:
D,S |= R — namely that the software is correct? We may assume, without
loss of generality, that this assertion is in some form of a pre/post condi-
tion of S — and that this pre/post condition is supported by a number of
assertions “nicely spread” across the Software design (i.e., the code). The
research topic is now that of studying how, in the pre/post condition of S
(the full code) and in the (likewise pre/post condition) assertions “within”
S, the various components of R and D “appear”, and of how they relate
to the full formal pre- and descriptions, respectively.

2.5 Examples of Domains

The Examples. Lest we loose contact with reality it is appropriate here, how-
ever briefly, to give some examples of (application) domains.

Air Traffic: A domain description includes descriptions of the entities, functions,
events and behaviours of aircraft, airports (runways, taxi-ways, apron, etc.), air
lanes, ground, terminal, regional, and continental control towers, of (national
[CAA, CAAC, FAA, SLV, etc.] and international [JAA, CAO]) aviation author-
ities, etc.

Airports: A domain description includes descriptions of the flow of people (pas-
sengers, staff), material (catering, fuel, baggage), aircraft, information (boarding
cards, baggage tags) and control; of these entities, of the operations performed
1 By “derivation” we here mean one which is guided by humans (i.e., the domain and

requirements engineers in collaboration with the stakeholders).

4 D. Bjørner

by or on them, the events that may occur (cancellation or delay of flights, lost
luggage, missing passenger), and, hence, of the many concurrent and intertwined
(mutually “synchronising”) behaviours that entities undergo.

Container Shipping: A domain description includes descriptions of containers,
container ships, the stowage of containers on ships and in container yards, con-
tainer terminal (ports), the loading and unloading of containers between ships
and ports and between ports and the “hinterland” (including crances, port truck-
ing and feeder trucks, trains and barges), the container bills of lading (or way
bills), the container transport logistics, the (planning and execution, schedul-
ing and allocation) of voyages, the berthing (arrival and departure) of container
ships, customer relations, etc.

Financial Service Industry: A domain description includes descriptions of banks
(and banking: [demand/deposit, savings, mortgage] accounts, [opening, closing,
deposit, withdrawal, transfer, statements] operations on accounts), insurance
companies (claims processing, etc.), securities trading (stocks, bonds, brokers,
traders, exchanges, etc.), portfolio management, IPOs, etc.

Health care: A domain description includes descriptions of the entities, opera-
tions, events and behaviours of healthy people, patients and medical staff, of
private physicians, medical clinics, hospitals, pharmacies, health insurance, na-
tional boards of health, etc.

The Internet: The reader is encouraged to fill in some details here!

Manufacturing: Machining & Assembly: The reader is encouraged to also fill in
some details here!

“The” Market: A domain description includes descriptions of the entities, op-
erations, events and behaviours of consumers, retailers, wholesalers, producers,
the delivery chain and the payment of (or for) merchandise and services.

Transportation: A domain description includes descriptions of the entities, func-
tions, events and behaviours of transport vehicles (cars/trucks/busses, trains,
aircraft, ships), [multimodal] transport nets (roads, rail lines, air lanes, ship-
ping lanes) and hubs (road intersections [junctions], stations, airports, harbours),
transported items (people and freight), and of logistics (scheduling and allocation
of transport items to transport vehicles, and of transport vehicles to transport
nets and hubs). Monomodal descriptions can focus on just air traffic or on con-
tainer shipping, or on railways.

The Web: The reader is encouraged to “likewise” fill in some details here!
There are many “less grand” domains: railway level crossings, the interconnect

cabling between the oftentimes dozens of “boxes” of some electronic/mechani-
cal/acoustical measuring set-up, a gas burner, etc. These are all, rather one-
sidedly, examples of what might be called embedded, or real-time, or safety
critical systems.

We can refer to several projects at UNU-IIST which have produced domain
specifications for railway systems (China), ministry of finance (Vietnam), tele-

Domain Theory: Practice and Theories 5

phone systems (The Philippines), harbours (India), etc.; and to dozens of MSc
projects which have likewise produced domain specifications for airports, air traf-
fic, container shipping, health care, the market, manufacturing, etc. I give many,
many references in [3]. I also refer the reader to http://www.railwaydomain.org/
for documents, specifically http://www.railwaydomain.org/book.pdf for domain
models of railway systems.

Some Remarks. A point made by listing and explaining the above domains
is the following: They all display a seeming complexity in terms of multitude of
entities, functions, events and interrelated behaviours; and they all focus on the
reality of “what is out there”: no mention is (to be) made of requirements to
supporting computing systems let alone of these (incl. software).

2.6 Domains: Suggested �esearch Topics

From the above list we observe that the ‘transportation item’ “lifts” those of ‘air
traffic’ and ‘container shipping’. Other examples could be shown. This brings us,
at this early stage where we have yet to really outline what domain engineering
is, to suggest the following research topics:

� 2. Lifted Domains and Projections: We observe, above, that the ‘trans-
portation’ domain seems to be an abstraction of at least four more concrete
domains: road, rail, sea and air transportation. We could say that ‘trans-
portation’ is a commensurate “lifting” of each of the others, or that these
more concrete could arise as a result of a “projection” from the ‘trans-
portation’ domain. The research topic is now to investigate two aspects:
a computing science cum software engineering aspect and a computer sci-
ence aspect. The former should preferably result in principles, techniques
and tools for choosing levels of “lifted” abstraction and “projected” con-
cretisation. The latter should study the implied “lifting” and “projection”
operators.

� 3. What Do We Mean by an Infrastructure ? We observe, above, that
some of the domains exemplify what is normally called infrastructure2

components. According to the World Bank: ‘Infrastructure’ is an umbrella
term for many activities referred to as ‘social overhead capital’ by some
development economists, and encompasses activities that share technical
and economic features (such as economies of scale and spillovers from users
to nonusers). The research is now to study whether we can reformulate the
sociologically vague World Bank definition in precise mathematical terms.

2 Winston Churchill is quoted to have said, during a debate in the House of Commons,
in 1946: . . . The young Labourite speaker that we have just listened to, clearly wishes
to impress upon his constituency the fact that he has gone to Eton and Oxford
since he now uses such fashionable terms as ‘infra-structures’. [I have recently been
in communication with the British House of Commons information office enquiries
manager, Mr. Martin Davies in order to verify and, possibly pinpoint, this statement.
I am told that “as the Hansard debates in question are not available electronically, it
could only be found via a manual search of hard copy Hansard”. So there it stands.]

6 D. Bjørner

� 4. What Is an Infrastructure Component ? We observe, above, that
not all of the domains exemplified are what is normally called infrastruc-
ture components.3 The research is now to study whether we can formulate
and formalise some “tests” which help us determine whether some domain
that we are about to model qualifies as part of one or more infrastructure
components.

We bring these early research topic suggestions so that the reader can better
judge whether domain engineering principles and techniques might help in es-
tablishing a base for such research. Throughout the paper we shall “spice it”
with further suggestions of research topics.

• • •

We do not cover the important methodological aspects of stakeholder identifi-
cation and liaison, domain acquisition and analysis, domain model verification
and validation. For that we refer to Vol. 3 Chaps. 9–10 and 12–14 [3].

3 Domain Facets

The rôle, the purpose, of domain engineering is to construct, to develop, and
research domain descriptions. It is both an engineering and a scientific task.
It is engineering because we do know, today, a necessary number of principles,
techniques and tools with which to create domain models. It is scientific, i.e.,
of research nature, because, it appears, that we do not necessarily know, today,
whether what we know is sufficient.

3.1 Stages of Domain Development

By domain development we mean a process, consisting of a number of reason-
ably clearly separable stages which when properly conducted leads to a domain
description, i.e., a domain model. We claim that the following are meaning-
ful and necessary domain development stages of development, each with their
attendant principles, techniques and tools: (i) identification of stakeholders,
(ii) rough domain identification, (iii) domain acquisition, (iv) analysis of rough
domain description units, (v) domain modelling, (vi) domain verification, (vii)
domain validation and (viii) domain theory formation. We shall focus on domain
modelling emphasising the modelling concept of domain facets.

3.2 The Facets

By domain modelling we mean the construction of both an informal, narrative
and a formal domain description.

3 ‘Manufacturing’ and ‘The Market’ appear, in the above list to not be infrastructure
components, but, of course, they rely on the others, the infrastructure components.

Domain Theory: Practice and Theories 7

We claim that the following identified facets (i.e., “steps”) (later to be briefly
explained) are necessary parts of the domain modelling process: (i) intrinsics,
(ii) support technologies, (iii) management and organisation, (iv) rules and regu-
lations, (v) and human behaviour. Ideally speaking one may proceed with these
“steps” in the order listed. Engineering accommodates for less ideal progressions.
Each “step” produces a partial domain description. Subsequent “steps” ‘extend’
partial descriptions into partial or even (relative) complete descriptions.

In this section, Sect. 3, we will not give concrete examples but will rely on
such already given in Chap. 11 of [3].

3.3 Intrinsics

By the intrinsics of a domain we shall understand those phenomena and concepts,
that is, those entities, functions, events and behaviours in terms of which all other
facets are described.

The choice as to what constitutes the intrinsics of a domain is often determined
by the views of the stakeholders. Thus it is a pragmatic choice, and the choice
cannot be formalised in the form of an is intrinsics predicate that one applies
to phenomena and concepts of the domain.

Intrinsics: Suggested �esearch Topic

� 5. Intrinsics: We refer to Sect. 11.3 in [3]. What is, perhaps, needed, is a
theoretically founded characterisation of “being intrinsic”.

3.4 Support Technology

By a support technology of a domain we shall understand either of a set of (one
or more) alternative entities, functions, events and behaviours which “imple-
ment” an intrinsic phenomenon or concept. Thus for some one or more intrinsic
phenomena or concepts there might be a technology which supports those phe-
nomena or concepts.

Sampling Behaviour of Support Technologies. Let us consider intrinsic
Air Traffic as a continuous function (→) from Time to Flight Locations:

type
T, F, L
iAT = T → (F →m L)

But what is observed, by some support technology, is not a continuous function,
but a discrete sampling (a map →m):

sAT = T →m (F →m L)

8 D. Bjørner

There is a support technology, say in the form of radar which “observes” the
intrinsic traffic and delivers the sampled traffic:

value
radar: iAT → sAT

Probabilistic cum Statistical Behaviour of Support Technologies. But
even the radar technology is not perfect. Its positioning of flights follows some
probabilistic or statistical pattern:

type
P = {|r:Real • 0≤r≤1|}
ssAT = P →m sAT-infset

value
radar′: iAT ∼→ ssAT

The radar technology will, with some probability produce either of a set of
samplings, and with some other probability some other set of samplings, etc.4

Support Technology Quality Control, a Sketch. How can we express that
a given technology delivers a reasonable support ? One approach is to postu-
late intrinsic and technology states (or observed behaviours), Θi, Θs, a support
technology τ and a “closeness” predicate:

type
Θ i, Θ s

value
τ : Θ i → P →m Θ s-infset
close: Θ i × Θ s → Bool

and then require that an experiment can be performed which validates the sup-
port technology.

The experiment is expressed by the following axiom:

value
p threshhold:P

axiom
∀ θ i:Θ i •

let pθ ss = τ(θ i) in
∀ p:P • p>p threshhold ⇒

θ s:Θ s • θ s ∈ pθ ss(p) ⇒ close(θ i,θ s) end

The p threshhold probability has to be a-priori determined as one above which
the support technology renditions of the intrinsic states (or behaviours) are
acceptable.
4 Throughout this paper we omit formulation of type well-formedness predicates.

Domain Theory: Practice and Theories 9

Support Technologies: Suggested �esearch Topics.

� 6. Probabilistic and/or Statistical Support Technologies: Some cases
should be studied to illuminate the issue of probability versus statistics.
More generally we need more studies of how support technologies “enter
the picture”, i.e., how “they take over” from other facet. And we need to
come up with precise modelling concepts for probabilistic and statistical
phenomena and their integration into the formal specification approaches
at hand.

� 7. A Support Technology Quality Control Method: The above sketch-
ed a ‘support technology quality control’ procedure. It left out the equally
important ‘monitoring’ aspects. Develop experimentally two or three dis-
tinct models of domains involving distinct sets of support technologies.
Then propose and study concrete implementations of ‘support technology
quality monitoring and control’ procedures.

3.5 Management and Organisation

By the management of an enterprise (an institution) we shall understand a
(possibly stratified, see ‘organisation’ next) set of enterprise staff (behaviours,
processes) authorised to perform certain functions not allowed performed by
other enterprise staff (behaviours, processes) and where such functions involve
monitoring and controlling other enterprise staff (behaviours, processes). By or-
ganisation of an enterprise (an institution) we shall understand the stratification
(partitioning) of enterprise staff (behaviours, processes) with each partition en-
dowed with a set of authorised functions and with communication interfaces
defined between partitions, i.e., between behaviours (processes).

An Abstraction of Management Functions. Let E designate some enter-
prise state concept, and let stra mgt, tact mgt, oper mgt, wrkr and merge
designate strategic management, tactical management, operational management
and worker actions on states such that these actions are “somehow aware” of
the state targets of respective management groups and or workers. Let p be a
predicate which determines whether a given target state has been reached, and
let merge harmonise different state targets into an agreeable one. Then the
following behaviour reflects some aspects of management.

type
E

value
stra mgt, tact mgt, oper mgt, wrkr, merge: E×E×E×E → E
p: E∗ → Bool
mgt: E → E
mgt(e) ≡

let e′ = stra mgt(e,e′′,e′′′,e′′′′),
e′′ = tact mgt(e,e′′,e′′′,e′′′′),

10 D. Bjørner

e′′′ = oper mgt(e,e′′,e′′′,e′′′′),
e′′′′ = wrkr(e,e′′,e′′′,e′′′′) in

if p(e,e′′,e′′′,e′′′′)
then skip
else mgt(merge(e,e′′,e′′′,e′′′′))

end end

The recursive set of e
′..′ = f(e, e′′, e′′′, e′′′′) equations are “solved” by iter-

ative communication between the management groups and the workers. The
arrangement of these equations reflect the organisation and the various func-
tions, stra mgt, tact mgt, oper mgt and wrkr reflect the management. The
frequency of communication between the management groups and the workers
help determine a quality of the result.

The above is just a very crude, and only an illustrative model of management
and organisation.

We could also have given a generic model, as the above, of management and
organisation but now in terms of, say, CSP processes. Individual managers are
processes and so are workers. The enterprise state, e : E, is maintained by one
or more processes, separate from manager and worker processes. Etcetera.

Management and Organisation: Suggested �esearch Topics

� 8. Strategic, Tactical and Operation Management: We made no ex-
plicit references to such “business school of administration” “BA101” topics
as ‘strategic’ and ‘tactical’ management. Study Example 9.2 of Sect. 9.3.1
of Vol. 3 [3]. Study other sources on ‘Strategic and Tactical Management’.
Question Example 9.2’s attempt at delineating ‘strategic’ and ‘tactical’
management. Come up with better or other proposals, and/or attempt
clear, but not necessarily computable predicates which (help) determine
whether an operation (above they are alluded to as ‘stra’ and ‘tact’) is one
of strategic or of tactical concern.

� 9. Modelling Management and Organisation
Applicatively or Concurrently: The abstraction of ‘management and
organisation’ on Page 3.5 was applicative, i.e., a recursive function — whose
auxiliary functions were hopefully all continuous. Suggest a CSP rendition
of “the same idea” ! Relate the applicative to the concurrent models.

3.6 Rules and Regulations

By a rule of an enterprise (an institution) we understand a syntactic piece of
text whose meaning apply in any pair of actual present and potential next states
of the enterprise, and then evaluates to either true or false: the rule has been
obeyed, or the rule has been (or will be, or might be) broken. By a regulation
of an enterprise (an institution) we understand a syntactic piece of text whose
meaning, for example, apply in states of the enterprise where a rule has been
broken, and when applied in such states will change the state, that is, “remedy”
the “breaking of a rule”.

Domain Theory: Practice and Theories 11

Abstraction of Rules and Regulations. Stimuli are introduced in order to
capture the possibility of rule-breaking next states.

type
Sti, Rul, Reg
RulReg = Rul × Reg
Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool
REG = Θ → Θ

value
meaning: Sti → STI, Rul → RUL, Reg → REG
valid: Sti × Rul → Θ → Bool
valid(sti,rul)θ ≡ (meaning(rul))(θ,meaning(sti)θ)

axiom
∀ sti:Sti,(rul,reg):RulReg,θ:Θ •

∼valid(sti,rul)θ ⇒ meaning(rul)(θ,meaning(reg)θ)

Quality Control of Rules and Regulations. The axiom above presents us
with a guideline for checking the suitability of (pairs of) rules and regulations in
the context of stimuli: for every proposed pair of rules and regulations and for
every conceivable stimulus check whether the stimulus might cause a breaking of
the rule and, if so, whether the regulation will restore the system to an acceptable
state.

Rules and Regulations Suggested �esearch Topic

� 10. A Concrete Case: The above sketched a quality control procedure for
‘stimuli, rules and regulations’. It left out the equally important ‘mon-
itoring’ aspects. Develop experimentally two or three distinct models of
domains involving distinct sets of rules and regulations. Then propose and
study concrete implementations of procedures for quality monitoring and
control of ‘stimuli, rules and regulations’.

3.7 Human Behaviour

By human behaviour we understand a “way” of representing entities, perform-
ing functions, causing or reacting to events or participating in behaviours. As
such a human behaviour may be characterisable on a per phenomenon or con-
cept basis as lying somewhere in the “continuous” spectrum from (i) diligent:
precise representations, performances, event (re)actions, and behaviour inter-
actions; via (ii) sloppy: occasionally imprecise representations, performances,
event (re)actions, and behaviour interactions; and (iii) delinquent: repeatedly
imprecise representations, performances, event (re)actions, and behaviour inter-
actions; to (iv) criminal: outright counter productive, damaging representations,
performances, event (re)actions, and behaviour interactions.

12 D. Bjørner

Abstraction of Human Behaviour. We extend the formalisation of rules
and regulations.

Human actions (ACT) lead from a state (Θ) to any one of possible succes-
sor states (Θ-infset) — depending on the human behaviour, whether diligent,
sloppy, delinquent or having criminal intent. The human interpretation of a rule
(Rul) usually depends on the current state (Θ) and can be any one of a possibly
great number of semantic rules (RUL). For a delinquent (...) user the rule must
yield truth in order to satisfy “being delinquent (...)”.

type
ACT = Θ → Θ-infset

value
hum int: Rul → Θ → RUL-infset
hum behav: Sti × Rul → ACT → Θ → Θ-infset
hum behav(sti,rul)(α)(θ) as θs

post θs = α(θ) ∧
∀ θ′:Θ • θ′ ∈ θs ⇒

∃ se rul:RUL • se rul ∈ hum int(rul)(θ) ⇒ se rul(θ,θ′)

Human behaviour is thus characterisable as follows: It occurs in a context of a
stimulus, a rule, a present state (θ) and (the choice of) an action (α:ACT) which
may have either one of a number of outcomes (θs). Thus let θs be the possible
spread of diligent, sloppy, delinquent or outright criminal successor states. For
each such successor states there must exist a rule interpretation which satisfies
the pair of present an successor states. That is, it must satisfy being either
diligent, sloppy, delinquent or having criminal intent and possibly achieving that!

Human Behaviour Suggested �esearch Topics. Section 11.8 of Vol. 3 [3]
elaborates on a number of ways of describing (i.e., modelling) human behaviour.

� 11. Concrete Methodology: Based on the abstraction of human behaviour
given earlier, one is to study how one can partition the set, α(θ), of out-
comes of human actions into ‘diligent’, ‘sloppy’, ‘delinquent’ and ‘criminal’
behaviours — or some such, perhaps cruder, perhaps finer partitioning —
and for concrete cases attempt to formalise these for possible interactive
“mechanisation”.

� 12. Monitoring and Control of Human Behaviour: Based on possi-
ble solutions to the previous research topic one is to study general such
interactive “mechanisation” of the monitoring and control of human be-
haviour.

3.8 Domain Modelling: Suggested �esearch Topic

� 13. Sufficiency of Domain Facets: We have covered five facets: intrinsics,
support technology, management and organisation, rules and regulations
and human behaviour. The question is: are these the only facets, i.e., views

Domain Theory: Practice and Theories 13

on the domain that are relevant and can be modelled? Another question is:
is there an altogether different set of facets, “cut up”, so-to-speak, “along
other lines of sights”, using which we could likewise cover our models of
domains?

One might further subdivide the above five facets (intrinsics, support technology,
management and organisation, rules and regulations and human behaviour) into
“sub”-facets. A useful one seems to be to separate out from the facet of rules
and regulations the sub-facet of scripts.

• • •

We have finished our overview of domain facets.

4 Domains: Miscellaneous Issues

4.1 Domain Theories

– By a domain theory we shall understand a domain description together with
lemmas, propositions and theorems that may be proved about the description
— and hence can be claimed to hold in the domain.

To create a domain theory the specification language must possess a proof sys-
tem. It appears that the essence of possible theorems of — that is, laws about —
domains can be found in laws of physics. For a delightful view of the law-based
nature of physics — and hence possibly also of man-made universes we refer to
Richard Feynman’s Lectures on Physics [4].

Example Theorem of Railway Domain Theory. Let us hint at some do-
main theory theorems: Kirchhoff’s Law for Railways: Assume regular train
traffic as per a modulo κ hour time table. Then we have, observed over a κ
hour period, that the number of trains arriving at a station minus the number
of trains ending their journey at that station plus the number of trains starting
their journey at that station equals the number of trains departing from that
station.

Why Domain Theories ? Well, it ought be obvious ! We need to understand
far better the laws even of man-made systems.

Domain Theories: Suggested �esearch Topics:.

� 14. Domain Theories: We need to experimentally develop and analyse a
number of suggested theorems for a number of representative domains in
order to possibly ‘discover’ some meta-theorems: laws about laws !

14 D. Bjørner

4.2 Domain Descriptions and Requirements Prescriptions

From Domains to Requirements. Requirements prescribe what “the ma-
chine”, i.e., the hardware + software is expected to deliver. We show, in Vol. 3,
Part V, Requirements Engineering, and in particular in Chap. 19, Sects. 19.4–
19.5 how to construct, from a domain description, in collaboration with the
requirements stakeholders, the domain (i.e., functional) requirements, and the
interface (i.e., user) requirements.

Domain requirements are those requirements which can be expressed only
using terms from the domain description. Interface requirements are those re-
quirements which can be expressed only using terms from both the domain
description and the machine — the latter means that terms of computers and
software are also being used.

Domain requirements are developed as follows: Every line of the domain de-
scription is inspected by both the requirements engineer and the requirements
stakeholders. For each line the first question is asked: Shall this line of descrip-
tion prescribe a property of the requirements ? If so it is “copied” over to the
requirements prescription. If not it is “projected away”. In similar rounds the fol-
lowing questions are then raised: Shall the possible generality of the description
be instantiated to something more concrete ? Shall possible non-determinism of
the description be made less non-deterministic, more deterministic ? Shall the
domain be “extended” to allow for hitherto infeasible entities, functions, events
and behaviours ? Shall the emerging requirements prescription be “fitted” to
elsewhere emerging requirements prescriptions ? Similar “transformation” steps
can be applied in order to arrive at (data initialisation and refreshment, GUI,
dialogue, incremental control flow, machine-to-machine communication, etc.) in-
terface requirements.

Domain and Interface Requirements: Suggested �esearch Topics

� 15. Domain and Interface Requirements: Vol. 3, Part V, Sects. 19.4–
19.5 give many examples of requirements “derivation” principles and tech-
niques. But one could wish for more research in this area: more detailed
principles and techniques, on examples across a wider spectrum of prob-
lem frames.

4.3 Requirements-Specific Domain Software Development Models

A long term, that one: ‘requirements-specific domain software development mod-
els’ ! The term is explained next.

Software “Intensities”. One can speak of ‘software intensity’. Here are some
examples. Compilers represent ‘translation’ intensity. ‘Word processors’, ‘spread
sheet systems’, etc., represent “workpiece” intensity. Databases represent ‘in-
formation’ intensity. Real-time embedded software represent ‘reactive’ intensity.
Data communication software represent connection intensity. Etcetera.

Domain Theory: Practice and Theories 15

“Abstract” Developments. Let ′′R′′ denote the “archetypal” requirements
for some specific software ‘intensity’. Many different domains {D1,D2, . . . ,Di, . . . ,
Dj , . . .} may be subject to requirements ′′R′′-like prescriptions. For each such a
set of possible software may result. The “pseudo-formula” below attempts, albeit
informally, to capture this situation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1

D2

. . .
Di

. . .
Dk

. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
∼ ′′R′′ �→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

{S11 ,S12 , . . . ,S1j1
, . . .}

{S11 ,S12 , . . . ,S1j2
, . . .}

. . .
{Si1 ,Si2 , . . . ,Siji

, . . .}
. . .

{Sk1 ,Sk2 , . . . ,Skjk
, . . .}

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Several different domains, to wit: road nets and railway nets, can be given the
“same kind” of (road and rail) maintenance requirements leading to information
systems. Several different domains, to wit: road nets, railway nets, shipping lanes,
or air lane nets, can be given the “same kind” of (bus, train, ship, air flight)
monitoring and control requirements (leading to real-time embedded systems).
But usually the specific requirements skills determine much of the requirements
prescription work and especially the software design work.

Requirements-Specific Devt. Models: Suggested �esearch Topics

� 16j. Requirements-Specific Development Models, RSDMj : We see
these as grand challenges: to develop and research a number of
requirements-specific domain (software) development models RSDMj .

The “pseudo-formal”
∏

(
∑...

i Di) ′′R′′ ∑...
i,j Sij expression attempts to capture

an essence of such research: The
∏

“operator” is intended to project (that is, look
at only) those domains, Di, for which ′′R′′ may be relevant. The research explores
the projections

∏
, the possible ′′R′′s and the varieties of software

∑...
i,j Sij .

4.4 On Two Reasons for Domain Modelling

Thus there seems to be two entirely different, albeit, related reasons for domain
modelling: one justifies domain modelling on engineering grounds, the other on
scientific grounds.

An Engineering Reason for Domain Modelling. In an e-mail, in response,
undoubtedly, to my steadfast, perhaps conceived as stubborn insistence, on do-
main engineering, Sir Tony Hoare summed up his reaction, in summer of 2006,
to domain engineering as follows, and I quote5:

“There are many unique contributions that can be made by domain modelling.

5 E-Mail to Dines Bjørner, CC to Robin Milner et al., July 19, 2006.

16 D. Bjørner

1. The models describe all aspects of the real world that are relevant for any good
software design in the area. They describe possible places to define the system
boundary for any particular project.

2. They make explicit the preconditions about the real world that have to be made
in any embedded software design, especially one that is going to be formally
proved.

3. They describe6 the7 whole range of possible designs for the software, and the
whole range of technologies available for its realisation.

4. They provide a framework for a full analysis of requirements, which is wholly
independent of the technology of implementation.

5. They enumerate and analyse the decisions that must be taken earlier or later
in any design project, and identify those that are independent and those that
conflict. Late discovery of feature interactions can be avoided.”

All of these issues are dealt with, one-by-one, and in some depth, in Vol. 3 [3] of
my three volume book.

A Science Reason for Domain Modelling. So, inasmuch as the above-
listed issues of Sect. 4.4, so aptly expressed in Tony’s mastery, also of concepts
(through his delightful mastery of words), are of course of utmost engineering
importance, it is really, in our mind, the science issues that are foremost: We
must first and foremost understand. There is no excuse for not trying to first
understand. Whether that understanding can be “translated” into engineering
tools and techniques is then another matter. But then, of course, it is nice that
clear and elegant understanding also leads to better tools and hence better en-
gineering. It usually does.

DomainsVersusRequirements-SpecificDevelopmentModels. SirTony’s
five statements are more related, it seems, to the concept of requirements-specific
domain software development models than to merely the concept of domain mod-
els. His statements help us formulate the research programme � 16 of require-
ments specific domain software development models. When, in his statements,
you replace his use of the term ‘models’ with our term ‘requirements-specific de-
velopment models based on domain models’, then “complete harmony” between
the two views exists.

5 Conclusion

5.1 What Has Been Achieved ?

I set out to focus on what I consider the crucial modelling stage of describing
domain facets and to identify a number of their research issues. I’ve done that.
Cursorily, the topic is “near-holistic”, so an overview is all that can be done.
The issue is that of that of a comprehensive methodology. Hence the “holism”
challenge.
6 read: imply.
7 read: a.

Domain Theory: Practice and Theories 17

5.2 What Needs to Be Achieved ?

Well, simply, to get on with that research. There are two sides to it: the 16
research topics mentioned above, and the ones mentioned below. The latter
serves as a carrier for the former research.

Domain Theories: Grand Challenge �esearch Topics. The overriding
research topic is that of:

� 17i. Domain Models: Di: We see this as a set of grand challenges: to
develop and research a family of domain models Di.

Acknowledgements

I thank the organisers for inviting me to present a (this ?) talk. I thank UNU-
IIST for inviting me and my wife back to Macau to a place where I spent great
years. I consider UNU/IIST (as we spelled it in those days) one of my main
achievements, so I also thank all those people who made it possible. They may
have suffered then. But they too can be very proud now. I thank Sir Tony for
fruitful discussions during the writing of this paper.

References

1. Bjørner, D.: Software Engineering. In: Abstraction and Modelling. Texts in Theo-
retical Computer Science, the EATCS Series, vol. 1, Springer, Heidelberg (2006)

2. Bjørner, D.: Software Engineering. In: Specification of Systems and Languages.
Texts in Theoretical Computer Science, the EATCS Series, vol. 2, pp. 12–14.
Springer, Heidelberg (2006) (Chapters 12–14 are primarily authored by Madsen,
C.K.)

3. Bjørner, D.: Software Engineering. In: Domains, Requirements and Software De-
sign. Texts in Theoretical Computer Science, the EATCS Series, vol. 3, Springer,
Heidelberg (2006)

4. Feynmann, R., Leighton, R., Sands, M.: The Feynmann Lectures on Physics, vol. I–
II–II. Addison-Wesley, California Institute of Technology (1963)

Linking Semantic Models

He Jifeng�

Software Engineering Institute
East China Normal University, Shanghai

Abstract. A theory of programming is intended to help in the construc-
tion of programs that provably meet their specifications. It starts with
a complete lattice of specifications, used as a domain for the semantics
of the programming language. The operators of the language are defined
as monotonic functions over this domain. This paper presents a method
which enables us to derive an enriched semantics for the imperative lan-
guages. We show that the new definition of the primitive commands can
be recast as the weakest solution of the embedding equation, and demon-
strate how the operators of the programming language are redefined from
the homomorphic property of the embedding and the healthiness condi-
tions imposed on “real” programs.

1 Introduction

How are we to understand complicated programming languages, and thereby
use them with greater reliability? Surely the answer is to start with the core
of a language and simply add to it, one at a time, a number of new features
that are required. Ideally, the properties of programs established in the simpler
theories of programming can remain valid in the enriched ones. In this way, our
understanding of complexity is cumulative; nothing that has been learnt in the
simpler cases needs to be unlearnt for the most complex combinations.

The most general possible way of defining a link between theories of program-
ming is as a function which maps all elements from one theory into a subset of
the elements from the other. An example familiar in computing is a compiler,
which translates a program in a high level language to one expressed in a lower
level language, executed directly by the hardware of a machine. In addition to
these practical purposes, the link can reveal a lot about the structure of the
theories which it is used to compare.

The general case of a link is a function that maps between disjoint semantic
domains. Since the domains are usually lattices, monotonicity is still an impor-
tant property. Suppose that D1 and D2 are two semantic domains, and L a
programming language. Let

sem1 : L→ D1 and sem2 : L→ D2

be semantic functions. A link ∗ from D1 to D2 is required to satisfy
� This work was supported by the National Basic Research Program of China (Grant

No. 2005CB321904).

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 18–33, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Linking Semantic Models 19

sem2(P) = sem1(P)∗ for all the program P of L (1)

In order to preserve the algebraic laws that have already been proved in the
domain D1, we require ∗ to be a homomorphism, i.e., for all the operators op

(sem1(P) op sem1(Q))∗ = sem2(P) op sem2(Q) (2)

For decades, the relational model has been used widely in formalising the im-
perative sequential languages [3,4,6]. Each extension of the languages usually
elaborates the structure of the underlying observation space. The following ta-
bles exemplifies how to model the behaviour of assignment and non-deterministic
choice in a variety of semantic frameworks

Definition of x := 0

States of variables x′ = 0

where x and x′ denote the initial and final values

of program variable x.

Termination ok ⇒ (ok′ ∧ (x′ = 0))

where ok′ is true if and only when a program terminates.

Probability ok ⇒ (ok′ ∧ prob′({x �→ 0}) = 1)

where prob′ is a distribution over the final states.

Definition of x := 0 � x := 1

States of variables x′ = 0 ∨ x′ = 1

Termination ok ⇒ (ok′ ∧ (x′ = 0 ∨ x′ = 1))

Probability ok ⇒ (ok′ ∧ (prob′({x �→ 0} ∪ {x �→ 1}) = 1))

This paper presents an equation-solving approach to derivation of enriched se-
mantics, which consists of two steps

1. Let D1 be the family of binary relations over the base type S

D1 =df S ↔ S

20 H. Jifeng

and sem1 a semantic function of the language L over the domain D1. To
introduce a new feature to L we construct an enriched type

T =df extend(S)

and its link with the original type S

ρ : S ↔ T

Let D2 =df T ↔ T . The semantic function sem2 : L → D2 is required to
establish the commuting diagram

sem1(P); ρ = ρ; sem2(P) (3)
2. The second step is to characterise the defining properties of programs in the

enriched domain D2. Such algebraic laws, often called healthiness conditions,
are only valid for real programs. sem2(P) is selected among the healthy
solutions of the equation (3).

The rest of this paper illustrates how to calculate sem2 directly from the equa-
tion (3) and the healthiness conditions by investigating a number of well-known
programming features, including nontermination, deadlock, communication and
probability.

2 Linear Equation and Its Solution

This section deals with two issues related to the equation (3) of Section 1:

1. Under which condition on the relation P , the linear equation

P ;X = R

has solutions.
2. Properties of solutions of linear equations

Let P, Q and R be predicates with free variables s and s′ of the type S, repre-
senting binary relations over the set S. The notation idS denotes the identity
relation on S. We use P̆ to denote the converse of the relation P

P̆ =df P [s, s′/s′, s]

We use P �Q�R to stand for the conditional

(P ∧ Q) ∨ (¬Q ∧ R)

The notation P ;Q stands for the sequential composition of P and Q

P ;Q =df ∃m • (P [m/s′] ∧ Q[m/s])

where the substitution P [m/s′] gives a version of P where all occurrences of s′

have been replaced by the free variable m. The notation P\R denotes the weak-
est postspecification [5] of P with respect to R, which is defined by the Galois
connection

(P ;X) ⇒ R if and only if X ⇒ P\R for all X : S ↔ S

Linking Semantic Models 21

where the symbol ⇒ stands for logical implication, i.e., validity for all values of
free variables contained in either side. The weakest prespecification R/P is de-
fined in a dual way

(X ;P) ⇒ R if and only if X ⇒ R/P for all X : S ↔ S

Theorem 2.1 (Existence of solution of linear equation)

P ;X = R has solutions if and only if P ; (P\R) = R

Proof. P ;X = R {Def of P\R}
⇒ X ⇒ P\R {; is monotonic}
⇒ (P ;X)⇒ (P ; (P\R)) {P ;X = R}
⇒ R⇒ (P ; (P\R)) {P ; (P\R) ⇒ R}
⇒ P ; (P\R) = R �

Theorem 2.2

If there exists Q such that P ;Q;R = R, then P ; (P\R) = R

Proof. (P ;Q;R) = R {Def of \}
⇒ (Q;R)⇒ (P\R) {; is monotonic}
⇒ P ; (Q;R) ⇒ P ; (P\R) {P ;Q;R = R}
⇒ R ⇒ P ; (P\R) {P ; (P\R)⇒ R}
⇒ R = P ; (P\R) �

Corollary. ∀R • P ; (P\R) = R if and only if P ; (P\idS) = idS

Proof. (=⇒): Let R =df idS

(⇐=): From Theorem 2.2 and the fact that for all R

P ; (P\idS);R = R �

Theorem 2.3

If P ; (P\idS) = idS then

P\R = ¬(P̆ ; true) ∨ (P̆ ;R)

Proof. From the assumption it follows that P ; P̆ = idS , i.e. P̆ represents an
injective function

P̆ ; true⇒ ∃!s′ • P̆ (♠)

P\R {Def of \}
= ∀t • (P (t, s)⇒ R(t, s′)) {case analysis}
= (P̆ ; true) ∧ ∀t • (P (t, s)⇒ R(t, s′)) ∨
¬(P̆ ; true) ∧ ∀t • P (t, s)⇒ R(t, s′) {; is monotonic}

22 H. Jifeng

= (P̆ ; true) ∧ ∀t • (P (t, s)⇒ R(t, s′)) ∨
¬(P̆ ; true) {Conclusion (♠)}

= P̆ ;R ∨ ¬(P̆ ; true) �

Corollary. (Disjunctivity)

If P ; (P\idS) = idS , then for any nonempty set I

P\(
∨

i∈I Ri) =
∨

i∈I (P\Ri)

Proof. From Theorem 2.3 and the disjunctivity of sequential composition. �

Theorem 2.4. (Distributivity)

If P ; (P\idS) = idS , then

P\(R1;R2;P) = (P\(R1;P)); (P\(R2;P))

Proof. RHS {Theorem 2.3}
= (¬(P̆ ; true) ∨ P̆ ;R1;P);

(¬(P̆ ; true) ∨ P̆ ;R2;P) {P ;¬(P̆ ; true) = false}
= ¬(P̆ ; true) ∨ P̆ ;R1;P ; P̆ ;R2;P {P ; P̆ = idS}
= ¬(P̆ ; true) ∨ P̆ ;R1;R2;P {Theorem 2.3}
= LHS �

Beware that

(P ;Q)� = Q̆; P̆

which leads to the observation that the equation X ;P = R has solutions if and
only if P̆ ;X = R̆ does so.

Theorem 2.5

The equation X ;P = R has solutions if and only if (R/P);P = R

Proof. X ;P = R has solutions {(P ;Q)� = Q̆; P̆}
≡ P̆ ;X = R̆ has solutions {Theorem 2.1}
≡ P̆ ; (P̆\R̆) = R̆ {P\R = ¬(P̆ ;¬R)}
≡ P̆ ;¬(P ;¬R̆) = R̆ {(P ;Q)� = Q̆; P̆}
≡ P̆ ;¬(¬R; P̆)� = R̆ {R/P = ¬(¬R; P̆)}
≡ (R/P);P = R �

Theorem 2.6

∀R • (R/P);P = R if and only if ((idS/P);P) = idS

Proof. From the duality between \ and / we conclude that

R̆/P̆ = (P\R)�

Linking Semantic Models 23

∀R • (R/P);P = R {(P ;Q)� = Q̆; P̆}
≡ ∀R • P̆ ; (P̆\R) = R {Theorem 2.2}
≡ P̆ ; (P̆\idS) = idS { ˘idS = idS}
≡ (idS/P);P = idS �

Theorem 2.7

If (idS/P);P = idS then

R/P = ¬(true; P̆) ∨ R; P̆ �

Theorem 2.8. (Distributivity)

If (idS/P);P = idS , then

(1) (R1 � b(s) �R2)/P = (R1/P) � b(s) � (R2/P)

(2) (
∨

i∈I Ri)/P =
∨

i∈I (Ri/P) for all nonempty set I �

3 Termination

Let S =df (V AR → V AL) be the base type. A program can be modelled by
a predicate which represents a binary relation on S identifying the relationship
between the initial and final states of program variables. The following table
gives the definition of a simple programming language in this framework

Program Meaning

x := e x′ = e ∧ y′ = y ∧ ... ∧ z′ = z

skip x′ = x ∧ y′ = y ∧ ... ∧ z′ = z

P � Q P ∨ Q

P � b(x) �Q P ∧ b(x) ∨ ¬b(x) ∧Q

P ;Q ∃m • (P [m/s′] ∧Q[m/s])

where

– x and x′ are used to represent the initial and final values of program variable
x respectively.

– The execution of x := e assigns the value of e to variable x and leaves other
variables unchanged.

– The empty command skip has no effect at all. It leaves the values of all
variables unchanged.

24 H. Jifeng

– The program P �Q is executed by executing either P or Q.
– The conditional P � b �Q behaves like P if the initial value of b is true, or

like Q if the initial value of b is false.
– P ;Q is executed by first executing P , and when P is finished then Q is

started. The final state of P is passed on as the initial state of Q, but this
is only an intermediate state of (P ;Q), and cannot be directly observed. All
we know is that it exists.

This simple model can not distinguish the terminating execution of a program
from the non-terminating ones. To specify non-termination behaviour we intro-
duce a pair of Boolean variables to denote the relevant observation:

1. ok records the observation that the program has been started.
2. ok′ records the observation that the program has terminated. When the

program fails to terminate, the value of ok′ is not determinable.

We extend the base type S by adding the logical variable ok

T 1 =df S × ({ok} → Bool)

The original state of S will be seen as a terminating state in the extended type
T 1, and we thereby define the embedding ρ from S to T 1 by

ρ =df ok′ ∧ (x′ = x) ∧ ... ∧ (z′ = z)

Let P and Q be predicates not containing ok and ok′. For notational convenience
we use P � Q to represent the predicate

(ok ∧ P)⇒ (ok′ ∧Q)

which called a design [6].

We mention here some logical properties of designs that will be useful in later
calculation; they are proved elsewhere [6]

Theorem 3.1

(1) (b1 � R1); (b2 � R2) = (b ∧ ¬(R1;¬b2)) � (R1;R2)

(2) (b1 � R1) ∨ (b2 � R2) = (b1 ∧ b2) � (R1 ∨R2)

(3) (b1 � R1) ∧ (b2 � R2) = (b1 ∨ b2) � ((b1 ⇒ R1) ∧ (b2⇒ R2))

(4) (b1 � R1) � b� (b2 � R2) = (b1 � b� b2) � (R1 � b�R2) �

For any predicate P representing a binary relation on S, we define its image P ∗

on the enriched domain T ↔ T as the weakest solution of the equation

ρ;X = P ; ρ �

Theorem 3.2 (Weakest solution)

The equation ρ;X = P ; ρ has the weakest solution

P ∗ = true � P

Linking Semantic Models 25

Proof. It is clear that

ρ; (x′ = x ∧ ... ∧ z′ = z) = (x′ = x ∧ ... ∧ z′ = z)

¿From Theorems 2.1 and 2.2 it follows that the weakest solution of the equation
is

ρ\(P ; ρ) {Def of ; }
= ρ\(P ∧ ok′) {Theorem 2.3}
= ¬(ρ̆; true) ∨ ρ̆; (P ∧ ok′) {Def of ; }
= ¬ok ∨ (P ∧ ok′) {Def of P � Q}
= true � P �

The new definition of primitive commands of our programming language is
given by the following table.

Program Meaning

skip (x′ = x ∧ ... ∧ z′ = z)∗ = true � (x′ = x ∧ ... ∧ z′ = z)

x := e (x′ = e ∧ ... ∧ z′ = z)∗ = true � (x′ = e ∧ ... ∧ z′ = z)

The linking function ∗ is a homomorphism from the original domain S ↔ S to
the enriched domain T 1↔ T 1

Theorem 3.3

(1) (P ;Q)∗ = P ∗;Q∗

(2) (P ∨Q)∗ = P ∗ ∨Q∗

(3) (P ∧Q)∗ = P ∗ ∧Q∗

(4) (P � b�Q)∗ = P ∗ � b�Q∗

Proof (1) : From Theorem 1.4.

(2) : From Corollary of Theorem 1.3.

(3) : From the conjunctivity of \ and the fact that

(P ∧ Q); ρ = (P ; ρ) ∧ (Q; ρ)

(4) : From the fact that

ρ̆; (P � b�Q) = (ρ̆;P) � b� (ρ̆;Q) �

26 H. Jifeng

4 Deadlock

For reactive programming paradigms (such as shared-variable concurrency), we
are required to distinguish a complete terminated computation from an incom-
plete one that is suspended. The former is used to specify the case where the
program has finished its execution, but the latter suggests that the program can-
not proceed further without an interaction with its environment. For example,
a synchronisation command

wait(v = 0)

can not be executed unless the value of v is set to zero, perhaps by some other
programs in its environment.

We introduce a Boolean variable wait into the type T 1 defined in Section 3,

T 2 =df T 1 × ({wait} → Bool)

The variable wait takes the value false if and only when the program has com-
pleted its execution.

The introduction of waiting states has implication for sequential composition:
all the waiting observation of P are of course also waiting observations of P ;Q.
Control can pass from P to Q when P is in final state, distinguished by the fact
that wait′ is false. Rather than change the definition of sequential composition
of our programming language, we enforce these rules by means of a healthiness
condition. If a program Q is asked to start in a waiting state of its predecessor,
it leaves the state unchanged.

Q = II � wait�Q (H1)

where the predicate II adopts the following meaning in this section

II =df true � (wait′ = wait ∧ x′ = x ∧ ... ∧ z′ = z)

A predicate representing a binary relation on T 2 is healthy it it satisfies the
condition (H1).

The embedding from T 1 to T 2 is defined by

ρ =df true � (¬wait′ ∧ x′ = x ∧ ... ∧ z′ = z)
which leaves divergent observation unchanged and maps terminating states to
complete ones in the extended space T 2.

For any design d = b(v) � R(v, v′) in the domain T 1 ↔ T 1, we define its
image d∗ in the extended domain T 2 ↔ T 2 as the weakest healthy solution of
the equation

ρ;X = d; ρ �

Theorem 4.1

d∗ = II � wait� (ρ\(d; ρ))

Linking Semantic Models 27

Proof. Let I =df true � (x′ = x ∧ ... ∧ z′ = z). We can show using Theorem
3.1 that

ρ; I; d = I; d = d

from which and Theorem 2.2 we conclude that

ρ; (ρ\(d; ρ)) = d; ρ (♣)

Furthermore

ρ; d∗ {Def of d∗}
= ρ; (II � wait� ρ\(d; ρ)) {assignment distributes over � b�}
= (ρ; II) � false� (ρ; (ρ\(d; ρ))) {Conclusion (♣)}
= d; ρ

which indicates d∗ is the weakest healthy solution of the equation. �

Corollary

(b � R)∗ = II � wait� (b � (R ∧ ¬wait′))

Proof. From Theorems 2.3 and 4.1. �

The link ∗ is also a homomorphism.

Theorem 4.2

(1) (d1; d2)∗ = d1∗; d2∗

(2) (d1 ∨ d2)∗ = d1∗ ∨ d2∗

(3) (d1 ∧ d2)∗ = d1∗ ∧ d2∗

(4) (d1 � b� d2)∗ = d1∗ � b� d2∗

Proof. The conclusion follows from Corollary of Theorem 4.1 and Theorem 3.1.
�

5 Communication

A communicating sequence process may perform many successive actions and
we assume that they can be recorded sequentially in the order in which they
occur. We use A to represent the set of all actions which are logically possible
for the processes. The sequence of interactions recorded to some given moment
in time in called a trace; this is abbreviated to tr and is included in the state
space

T 3 =df T 1 × ({tr} → seq(A))

We use <> to represent the empty trace. For s, t ∈ seq(A), we use s ·t to denote
the catenation of s and t, and s ≤ t to indicate s is a prefix of t.

28 H. Jifeng

Since the execution of a process can never undo any action performed previ-
ously, the trace can only get longer. The current value of tr must therefore be
an extension of its initial value. The predicate which describes a communicating
process must therefore imply this fact. So it satisfies the healthiness condition

P = P ∧ (tr ≤ tr′) (H2)

Note that the sequence tr′−tr represents the trace of actions in which the process
itself has engaged from the moment that it starts to the moment of observation.

The purpose of the undashed variable tr is to permit reuse in the theory
of communicating processes of the same definition of sequential composition
as in the models of the previous sections. In fact this variable plays no other
significant role. In particular it has no inference on the behaviour of the process.
So a communicating process also satisfies a second healthiness condition

P (tr, tr′) = P (<>, (tr′ − tr)) (H3)

A predicate representing a binary relation on T 3 is healthy if it satisfies the
conditions (H2) and (H3).

The embedding from T 1 to T 3 is defined by

ρ =df true � (tr′ =<> ∧ x′ = x ∧ ... ∧ z′ = z)
which ascribes tr to the empty sequence, and keeps the values of program vari-
ables unchanged.

For any design d = b(v) � R(v, v′) in the domain T 1 ↔ T 1, we define its
image d∗ in the extended domain T 2 ↔ T 2 as the weakest healthy solution of
the equation

ρ;X = d; ρ �

Theorem 5.1

(b � R)∗ = (b � (R ∧ tr = tr′)) ∧ (tr ≤ tr′)

Proof. It is routine to show that the predicate U =df (b � (R ∧ tr =
tr′)) ∧ (tr ≤ tr′) is a healthy solution of the equation ρ;X = (b � R); ρ.
We are going to prove that it is the weakest healthy solution. Let P be a healthy
solution of the equation, and V = b � (R ∧ (tr′ = tr)), and W = (b ∧ tr =<>
) � (R ∧ tr′ =<>).

ρ;P = (b � R); ρ {Def of \}
⇒ P (tr, tr′) ⇒ ρ\((b � R); ρ) {X\Y = ¬(X̆ ;¬Y)}
≡ P (tr, tr′) ⇒W {Let tr, tr′ = <>, tr′ − tr}
⇒ P (<>, tr′ − tr) ⇒ V {P satisfies H2}
⇒ P (<>, tr′ − tr) ⇒ U {P satisfies H3}
⇒ P (tr, tr′) ⇒ U �

Linking Semantic Models 29

The link ∗ enjoys the same properties as the links presented in the previous
sections.

Theorem 5.2

(1) (d1; d2)∗ = d1∗; d2∗

(2) (d1 ∨ d2)∗ = d1∗ ∨ d2∗

(3) (d1 ∧ d2)∗ = d1∗ ∧ d2∗

(4) (d1 � b� d2)∗ = d1∗ � b� d2∗

Proof. Similar to Theorem 4.2. �

6 Probability

For probabilistic programming, an observation is a probability distribution over
the final states of program variables. The set of all distribution functions is

T 4 =df {prob : S → [0, 1] | Σs∈S prob(s) = 1}

The difference between the model of Section 3 and the probabilistic semantics
is that the former tells us which final states are or are not possible, whereas
the latter tells us the probability with which they may occur. To relate these
frameworks we take the view that a final state is possible in the relational de-
scription of a program in Section 3 if it has positive probability of occurrence
in the probabilistic model. The mapping χ from T 4 to T 1 relates a probabilistic
distribution prob to a set of standard states s′ according to the definition

χ(ok, prob, ok′, s′) =df true � prob(s′) > 0

For any design d = b � R representing a binary relation on T 1, its embedding
d∗ is defined as the weakest solution of the equation

X ; χ = d �

Theorem 6.1

(b � R)∗ = b � (prob′(R) = 1)

where prob′(R) abbreviates prob′({t |R(s, t)}).

Proof. LHS {Theorem 2.6}
= (b � R)/χ {(b � R)/(true � Q) = b � (R/Q)}
= b � (R/prob(s′) > 0) {X/Y = ¬(¬X ; Y̆)}
= b � prob′(t |R(s, t)) = 1 �

30 H. Jifeng

The new definition of primitive commands is given by calculation

Primitive command Meaning

skip true � prob′(s) = 1

x := e true � prob′(s[e/x]) = 1

The linking function ∗ distributes over conditional.

Theorem 6.2

(d1 � b� d2)∗ = d1∗ � b� d2∗

Proof. From Theorem 2.8. �

We now use the linking function ∗ to discover the appropriate definition for de-
monic choice between probabilistic programs.

Theorem 6.3. (New definition for demonic choice)

(d1 ∨ d2)∗ = d1∗ ∨ d2∗ ∨
∨

0<r<1(d1
∗‖Mrd2∗)

where Mr is a coupling predicate in the style of [6] used in this case as

(b1 � R1)‖Mr(b2 � R2) =df

((b1 ∧ b2) � (R1(s, 1.prob′) ∧R1(s, 2.prob′)) ; Mr

and Mr =df true � (prob′ = r × 1.prob+ (1 − r)× 2.prob).

Proof. Let d1 = b1 � R1 and d2 = b2 � R2, and R = R1 ∨R2.

RHS {Theorem 3.1}
= b1 � (prob′(R1) = 1) ∨ (b2 � prob′(R2) = 1) ∨∨

0<r<1(b1 ∧ b2) � ∃1.prob, 2.prob •
= 1.prob(R1) = 1 ∧ 2.prob(R2) = 1 ∧
prob′ = r × 1.prob+ (1− r) × 2.prob {prob′(R) = 1}

⇒ b1 � (prob′(R1) = 1) ∨ (b2 � prob′(R2) = 1) ∨
(b1 ∧ b2) � prob′(R) = 1 {Theorem 3.1}

= (b1 ∧ b2) � prob′(R) = 1 {Theorem 6.1}
= ((b1 ∧ b2) � R)∗ {Theorem 3.1}
= LHS {Theorem 6.1}

Linking Semantic Models 31

= (b1 ∧ b2) � {let r = α/(α+ β)

(prob′(R1) = 1 ∨ prob′(R2) = 1 ∨ 1.prob(R1 ∧ ¬R2) = α+ β

∃α, β > 0 • prob′(R) = 1 ∧ 1.prob(R1 ∧R2) = 1− (α+ β)

prob′(R1 ∧ ¬R2) = α ∧ 2.prob(R2 ∧ ¬R1) = α+ β

prob′(R2 ∧ ¬R1) = β 2.prob(R1 ∧R2) = 1− (α+ β)}
⇒ (b1 ∧ b2) �

(prob′(R1) = 1 ∨ prob′(R2) = 1 ∨
∃r ∈ (0, 1), 1.prob, 2.prob•
1.prob(R1) = 1 ∧ 2.prob(R2) = 1 ∧
prob′ = r × 1.prob+ (1− r)× 2.prob {Def of ‖M}

= RHS �

For sequential composition we follow the Kleisli-triple approach to semantics
of programming languages [8], introducing a function ↑ to deal with sequential
composition, which maps a predicate representing a member of T 1 ↔ T 4 to a
‘lifted’ one representing a binary relation on T 4

↑ (b(s) � U(s, prob′)) =df

(prob(b) = 1) � ∃Q ∈ (S → T 4)•
∀s • (prob(s) > 0 ⇒ U(s, Q(s)) ∧ prob′ = Σt∈S (prob(t) ×Q(t))

Theorem 6.4. (Distributivity of the linking function)

(d1; d2)∗ = d1∗ ; ↑ d2∗

Proof. Let d1 = b1 � R1, d2 = b2 � R2, and define

V (s, t, v) =df R1(s, t) ∧R2(t, v)

RHS {Theorem 6.1}
= (b1 � prob′({t | R1(s, t)}) = 1) ;

prob(b2) = 1 � ∃Q •
∀t • (prob(t) > 0 ⇒ Q(t)({s′ | R2(t, s′)}) = 1) ∧
prob′ = Σt(prob(t) ×Q(t))) {Theorem 3.1}

= b1 ∧ ¬(prob′({t | R1(s, t)}) = 1 ; prob(b2) < 1)

�
∃φ • φ({t | R1(s, t)}) = 1 ∧
prob′ = Σs{φ(t)×Q(t) |
φ(t) > 0 ∧ Q(t)({s′ | R1(t, s′)}) = 1} {Simplification}

32 H. Jifeng

= b1 ∧ ¬(R1;¬b2) �
∃φ • φ({t | R1(s, t)}) = 1 ∧
prob′ = Σs{φ(t)×Q(t) | {prob′(R1;R2) =

φ(t) > 0 ∧ Σt{φ(t)×Q(t)({s′|R2(t, s′)}) |
Q(t)({s′ | R1(t, s′)}) = 1} R1(s, t) ∧ φ(t) > 0}}

⇒ b1 ∧ ¬(R1;¬b2) �
prob′(R1;R2) = 1 {Theorem 6.1}

= LHS {let f(u, v) = prob′(v)/(#{t|V (s, t, v)})
�V (u) � 0,

φ(u) = Σvf(u, v),

Q(u)(v) = f(u, v)/φ(u) if φ(u) > 0}
⇒ b1(s) ∧ ¬(R1;¬b2) �
∃φ • φ({t | R1(s, t)}) = 1 ∧
prob′ = Σs{φ(t)×Q(t) |
φ(t) > 0 ∧
Q(t)({s′ | R2(t, s′)}) = 1} {Theorems 3.1 and 6.1}

= RHS �

7 Conclusion

The commuting diagram approach has been used for support of data refinement
in the state-oriented development methods [1,7,9,10], where the embedding ρ is
designed to connect abstract data type with its concrete representation. It is
also used for data abstraction in model checking by dramatically reducing the
size of state space. This paper illustrates another way of using the commuting
diagram to derive enriched semantics.

References

1. Back, R.-J.R.: A calculus for program derivations. Acta Informatica 25, 593–624
(1988)

2. Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the Guarded Command
Language. Science of Computer Programming 28, 171–192 (1997)

3. Hehner, E.C.R.: Predicative Programming: Part 1 and 2. Communications of the
ACM 27(2), 134–151 (1984)

4. Hehner, E.C.R., Hoare, C.A.R.: A more complete model of communicating
processes. Theoretical Computer Sciences 26(1), 105–120 (1983)

5. Hoare, C.A.R., Jifeng, H.: Weakest prespecifications. Fundamenta Informaticae IX,
51–84, 217–252 (1986)

6. Hoare, C.A.R., Jifeng, H.: Unifying theories of programming. Prentice-Hall, En-
glewood Cliffs (1998)

Linking Semantic Models 33

7. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall, Engle-
wood Cliffs (1986)

8. Moggi, E.: Notations of computation and monads. Information and Computa-
tion 93, 55–92 (1986)

9. Morris, J.M.: A theoretical basis for stepwise refinement and the programming
calculus. Science of Computer Programming 9(3), 287–306 (1987)

10. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-oriented Proof Methods
and Their Comparison. Cambridge University Press, Cambridge (1998)

Discovering Non-linear Ranking Functions by

Solving Semi-algebraic Systems�

Yinghua Chen1, Bican Xia1, Lu Yang2, Naijun Zhan ��,3, and Chaochen Zhou3

1 LMAM & School of Mathematical Sciences, Peking University
2 Institute of Theoretical Computing,, East China Normal University

3 Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences

Abstract. Differing from [6] this paper reduces non-linear ranking func-
tion discovering for polynomial programs to semi-algebraic system solv-
ing, and demonstrates how to apply the symbolic computation tools,
DISCOVERER and QEPCAD, to some interesting examples.

Keywords: Program Verification, Loop Termination, Ranking Function,
Polynomial Programs, Semi-Algebraic Systems, Computer Algebra, DIS-
COVERER, QEPCAD.

1 Introduction

The design of reliable software is a grand challenge in computer science [17] in the
21st century, as our modern life becomes more and more computerized. One of the
bases for designing reliable software is the correctness of programs. The dominant
approach to automatic program verification is the so-calledFloyd-Hoare-Dijkstra’s
inductive assertion method [8,10,11], by using pre- and post- conditions, loop in-
variants and proving loop termination through ranking functions, etc. Therefore,
the discovery of loop invariants and ranking functions plays a central role in prov-
ing the correctness of programs and is also thought of as the most challenging part
of the approach.

The classical method for establishing termination of a program is the use
of well-founded domain together with so-called ranking function that maps the
state space of the program to the domain. Termination is then concluded by
demonstrating that each step as the program moves forwards decreases the mea-
sure assigned by the ranking function. As there can be no infinite descending
chain of elements in a well-founded domain, any execution of the program must
eventually terminate. Clearly, the existence of such a ranking function for any
given program implies its termination. Recently, the synthesis of ranking func-
tions draws increasing attention, and some heuristics concerning how to automat-
ically generate linear ranking functions for linear programs have been proposed
� The work is in part supported by the projects NKBRPC-2002cb312200,

2004CB318003, 2005CB321902, and NSFC-60493200, 60421001, 60573007.
�� The corresponding author: South Fourth Street, No. 4, Zhong Guan Cun, Beijing,

100080, P.R. China, znj@ios.ac.cn

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 34–49, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Discovering Non-linear Ranking Functions 35

[7,5,13]. [7] proposed a heuristic strategy to synthesize a linear ranking function
according to the syntax of a linear program. Since in many cases there does
not exist obvious correlation between the syntax of a program and its ranking
functions, this approach is very restrictive. Notably, [5] utilized the theory of
polyhedra to synthesize linear ranking function of linear programs, and [13] first
presented a complete method to find out linear ranking functions for a class of
linear programs that have only single path without nested loop, in the sense
that if there exists a linear ranking function for a program in the class, then the
method can eventually discover it.

Existence of ranking function is only a sufficient condition on the termination
of a program. It is easy to construct programs that terminate, but have no ranking
functions. Furthermore, even if a (linear)programhas ranking functions, itmaynot
have a linear ranking function. we will show this point by an example later in the
paper. Besides, it is well-known that the termination of programs is undecidable
in general, even for the class of linear programs [16] or a simple class of polynomial
programs [2]. In contrast to the above approach, [16,1] tried to identify decidable
subclasses andproved the decidability of the terminationproblem for a special class
of linear programs over reals and integers, respectively. [27] further developed the
work of [16] by calculating symbolic (sufficient) conditions for the termination of
its subclasses through computer algebra tool, DISCOVERER.

Linear programs with linear ranking functions compose a very small class
of programs. As to polynomial programs, [2] proposed an incomplete method to
decide whether a polynomial program terminates by using the technique of finite
difference tree. However, [2] can only tackle very simple polynomial programs,
that have ‘polynomial behaviour’.

In 2005, [6] presented a very general approach to ranking function discovery
as well as invariant generation of polynomial programs by parametric abstrac-
tion, Lagrangian relaxation and semidefinite programming. The basic idea of
the approach is: first the program semantics is expressed in polynomial form;
then the unknown ranking function and invariants are abstracted in paramet-
ric form; the verification conditions are abstracted as numerical constraints of
the parameters through Lagrangian relaxation; the remaining universal quan-
tifications are handled by semidefinite programming; finally the parameters are
computed using semidefinite programming solvers. [6] does not directly use the
first-order quantifier elimination method due to its bad complexity of doubly ex-
ponential1. Therefore the approach of [6] is incomplete in the sense that for some
program that may have ranking functions and invariants of the predefined form,
however applying the approach cannot find them, as Lagrangian relaxation and
over-approximation of the positive semi-definiteness of a polynomial are applied.

We here use semi-algebraic transition system (SATS), which is an extension
of algebraic transition systems in [14], to represent polynomial programs. Then,
for a loop in a given SATS (i.e. a given polynomial program), we can first assume

1 [6] does not provide information about complexity of its own approach. But we are
afraid that the complexity of the semidefinite programming, in particular, when the
Gram Matrix method is involved, is also bad.

36 Y. Chen et al.

to be a ranking function a polynomial in its program variables with parametric
coefficients. In order to determine the parameters, we translate the definition of
ranking functions in regard with the predefined polynomial into several SASs,
and prove that the polynomial is a ranking function of the loop if and only if
each of these SASs has no real solutions. After the translation we apply the func-
tions of root classification for parametric SASs [22,23,24] (and real root isolation
for constant SASs [20] if needed) of DISCOVERER to each of these SASs to
generate conditions on the parameters. If some universally quantified program
variables remain in the resulted conditions, in order to acquire a condition only
on the parameters, we can apply QEPCAD to eliminate the remaining quan-
tifiers. In case that the final condition on parameters is still very complicated,
applying PCAD (partial cylindrical algebra decomposition [4]) included in both
DISCOVERER and QEPCAD, we can conclude whether the condition can be
satisfied. If yes, we can further apply PCAD to get the instantiations of these
parameters, and therefore achieve a specific polynomial ranking function as nec-
essary. If not, we can define another polynomial template and repeat the above
procedure. So our approach does not compromise its completeness. As to the
complexity of the approach, DISCOVERER functions on root classification and
real root isolation for SASs include algorithms, such as Wu’s triangularization
[18], to eliminate variables through equalities in SASs with a cost of singly ex-
ponential in the number of variables and parameters. Hence, the application of
these algorithms can dramatically ease the application of other algorithms of
DISCOVERER, QEPCAD and/or PCAD, although they still cost doubly ex-
ponential but in the number of remaining variables and parameters. A detailed
analysis of the complexity will be published in a later paper. In this paper, by
briefing the theories behind DISCOVERER we show why the tool works and
by applying to examples we show how the tool discovers ranking functions for
polynomial programs.

The rest of this paper is structured as follows: Section 2 presents a brief review
of the theories and tools of semi-algebraic systems, in particular, the theories on
root classification of parametric semi-algebraic systems and on real root isola-
tion of constant SASs, and their implementations in the computer algebra tool
DISCOVERER; We extend the notion of algebraic transition systems of [14] to
semi-algebraic transition system to represent polynomial programs in Section
3; In Section 4, we use examples to illustrate the reduction of non-linear rank-
ing function discovering to SAS solving; and Section 5 draws a summary and
discusses future work.

2 Theories and Tools on Solving Semi-algebraic Systems

In this section, we introduce the theories and the tool DISCOVERER 2 on
solving SASs.

2 DISCOVERER can be downloaded at http://www.is.pku.edu.cn/∼xbc/ discoverer.
html

Discovering Non-linear Ranking Functions 37

2.1 Semi-algebraic Systems

Let K be a field, X = {x1, · · · , xn} a set of indeterminates, and K[x1, ..., xn] the
ring of polynomials in the n indeterminates with coefficients in K, ranged over
p(x1, . . . , xn) with possible subscription and superscription. Let the variables be
ordered as x1 ≺ x2 ≺ · · · ≺ xn. Then, the leading variable of a polynomial p is the
variable with the biggest index which indeed occurs in p. If the leading vari-
able of a polynomial p is xk, p can be collected w.r.t its leading variable as
p = cmxm

k + · · · + c0 where m is the degree of p w.r.t. xk and cis are polynomials
in K[x1, ..., xk−1]. We call cmxm

k the leading term of p w.r.t. xk and cm the lead-
ing coefficient. For example, let p(x1, . . . , x5) = x6

2x3 + 2x4
1x

4
4 + (3x2x3 + x1)x

5
4, so,

its leading variable, term and coefficient are x4, (3x2x3 + x1)x
5
4 and 3x2x3 + x1,

respectively.
Anatomic polynomial formula over K[x1, ..., xn] is of the form p(x1, . . . , xn) � 0,

where � ∈ {=, >,≥, �=}, while a polynomial formula overK[x1, ..., xn] is constructed
from atomic polynomial formulae by applying the logical connectives. Conjunc-
tive polynomial formulae are those that are built from atomic polynomial formulae
with the logical operator ∧. We will denote by PF ({x1, . . . , xn}) the set of polyno-
mial formulae and by CPF ({x1, . . . , xn}) the set of conjunctive polynomial formu-
lae, respectively.

In what follows, we will use Q to stand for rationales and R for reals, and fix
K to be Q. In fact, all results discussed below can be applied to R.

In the following, the n indeterminates are divided into two groups: u =
(u1, ..., ud) and x = (x1, ..., xs), which are called parameters and variables, re-
spectively, and we sometimes use “,” to denote the conjunction of atomic for-
mulae for simplicity.

Definition 1. A semi-algebraic system is a conjunctive polynomial formula of
the following form: ������

�����

p1(u,x) = 0, ..., pr(u,x) = 0,

g1(u,x) ≥ 0, ..., gk(u,x) ≥ 0,
gk+1(u,x) > 0, ..., gt(u,x) > 0,
h1(u, x) �= 0, ..., hm(u,x) �= 0,

(1)

where r > 1, t ≥ k ≥ 0, m ≥ 0 and all pi’s, gi’s and hi’s are in Q[u,x] \ Q. An SAS
of the form (1) is called parametric if d �= 0, otherwise constant.

An SAS of the form (1) is usually denoted by a quadruple [P, G1, G2, H], where
P = [p1, ..., pr], G1 = [g1, ..., gk], G2 = [gk+1, ..., gt] and H = [h1, ..., hm].

For a constant SAS S, interesting questions are how to compute the number
of real solutions of S, and if the number is finite, how to compute these real
solutions. For a parametric SAS, the interesting problem is so-called real solution
classification, that is to determine the condition on the parameters such that the
system has the prescribed number of distinct real solutions, possibly infinite.

38 Y. Chen et al.

2.2 Real Solution Classification

In this subsection, we give a sketch of our theory for real root classification of
parametric SASs. For details, please be referred to [23,26].

A finite set of polynomials T : [T1, ..., Tk] is called a triangular set if it is in
the following form

T1 = T1(x1, ..., xi1),

T2 = T2(x1, ..., xi1 , ..., xi2),

· · · · · ·
Tk = Tk(x1, ..., xi1 , ..., xi2 , ..., xik),

where xi is the leading variable of Ti and x1 � xi1 ≺ xi2 ≺ · · · ≺ xik � xs. For any
given SAS S in the form of (1), where the variables in the order x1 ≺ · · · ≺ xs and
all polynomials in S are viewed as polynomials in Q(u)[x], we first decompose
the equations in S into triangular sets, that is, we transform the polynomial
set P = [p1, ..., pr] into a finite set T = {T1, ..., Te} where each Ti is a triangular
set. Furthermore, this decomposition satisfies Zero(P) =

�e
i=1 Zero(Ti/Ji), where

Zero(P) denotes the set of common zeros (in some extension of the field of rational
numbers) of p1, ..., pr, Zero(Ti/Ji) = Zero(Ti) \ Zero({Ji}), where Ji is the product
of leading coefficients of the polynomials in Ti for each i. It is well-known that
the decomposition can be realized by some triangularization methods such as
Wu’s method [18].

Example 1. Consider an SAS RS : [P, G1, G2, H] in Q[a, x, y, z] with P = [p1, p2, p3],
G1 = [a − 1], G2 = ∅, H = ∅, where

p1 = x2 + y2 − xy − 1, p2 = y2 + z2 − yz − a2, p3 = z2 + x2 − zx − 1,

The equations P can be decomposed into three triangular sets in Q(a)[x, y, z]

T1 : [x2 − ax + a2 − 1, y − a, z − a],
T2 : [x2 + ax + a2 − 1, y + a, z + a],
T3 : [2x2 + a2 − 3, 2y(x − y) + a2 − 1, (x − y)z + xy − 1].

To simplify our description, let us suppose the number of polynomials in each
triangular set is equal to the number of variables as in the above example. For
discussion on the other cases of T , please be referred to [19]. That is to say, we
now only consider triangular system

�����
����

f1(u, x1) = 0,
...

fs(u, x1, ..., xs) = 0,
G1, G2, H.

(2)

Second, we compute a so-called border polynomial from the resulting systems
[Ti, G1, G2, H]. We need to introduce some concepts. Suppose F and G are poly-
nomials in x with degrees m and l, respectively. Thus, they can be written in the
following forms

F = a0x
m + a1x

m−1 + · · · + am−1x + am, G = b0x
l + b1x

l−1 + · · · + bl−1x + bl.

Discovering Non-linear Ranking Functions 39

The following (m + l)× (m + l) matrix (those entries except ai, bj are all zero)

�
�������������

a0 a1 · · · am
a0 a1 · · · am

. . .
. . .

. . .

a0 a1 · · · am

b0 b1 · · · bl

b0 b1 · · · bl

. . .
. . .

. . .

b0 b1 · · · bl

	

�

���
��� l

���
���m

,

is called the Sylvester matrix of F and G with respect to x. The determinant of
the matrix is called the Sylvester resultant or resultant of F and G with respect
to x and is denoted by res(F, G, x).

For system (2), we compute the resultant of fs and f ′
s w.r.t. xs and denote it

by dis(fs) (it has the leading coefficient and discriminant of fs as factors). Then we
compute the successive resultant of dis(fs) and the triangular set {fs−1, ..., f1}. That
is, we compute res(res(· · · res(res(dis(fs), fs−1, xs−1), fs−2, xs−2) · · ·), f1, x1) and de-
note it by res(dis(fs); fs−1, ..., f1) or simply Rs. Similarly, for each i (1 < i ≤ s), we
compute Ri = res(dis(fi); fi−1, ..., f1) and R1 = dis(f1).

For each of those inequalities and inequations, we compute the successive
resultant of gj (or hj) w.r.t. the triangular set [f1, ..., fs] and denote it by Qj

(resp. Qt+j).

Definition 2. For an SAS T as defined by (2), the border polynomial of T is

BP =
s�

i=1

Ri

t+m�
j=1

Qj .

Sometimes, with a little abuse of notation, we also use BP to denote the square-
free part or the set of square-free factors of BP .

Example 2. For the system RS in Example 1, the border polynomial is

BP = a(a − 1)(a + 1)(a2 − 3)(3a2 − 4)(3a2 − 1).

From the result in [23,26], we may assume BP �≡ 0. In fact, if any factor of BP is
a zero polynomial, we can further decompose the system into new systems with
such a property. For a parametric SAS, its border polynomial is a polynomial in
the parameters with the following property.

Theorem 1. Suppose S is a parametric SAS as defined by (2) and BP its border
polynomial. Then, in each connected component of the complement of BP = 0 in
parametric space Rd, the number of distinct real solutions of S is constant.

Third, BP = 0 decomposes the parametric space into a finite number of con-
nected region. We then choose sample points in each connected component of
the complement of BP = 0 and compute the number of distinct real solutions of
S at each sample point. Note that sample points can be obtained by the partial
cylindrical algebra decomposition (PCAD) algorithm [4].

40 Y. Chen et al.

Example 3. For the system RS in Example 1, BP = 0 gives a = 0, ± 1, ±√
3

3
, ± 2

√
3

3
, ±

√
3. The reals are divided into several open intervals by these

points. Because a ≥ 1, we only need to choose, for example, 9/8, 3/2 and 2 from
(1,

√
3

3
), (

√
3

3
, 2

√
3

3
) and (2

√
3

3
,
√

3), respectively. Then, we substitute each of the
three values for a in the system, and compute the number of distinct real solu-
tions of the system, consequently obtain the system has respectively 8, 4 and 0

distinct real solutions.

The above three steps constitute the main part of the algorithm in [23,26,19],
which, for any input SAS S, outputs the so-called border polynomial BP and a
quantifier-free formula Ψ in terms of polynomials in parameters u (and possible
some variables) such that, provided BP �= 0, Ψ is the necessary and sufficient
condition for S to have the given number (possibly infinite) of real solutions.

Finally, if we want to discuss the case when parameters are on the “boundary”
BP = 0, we put BP = 0 (or some of its factors) into the system and apply a
similar procedure to handle the new SAS.

Example 4. By the steps described above, we obtain the necessary and sufficient
condition for RS to have 4 distinct real solutions is 3a2 − 4 > 0 ∧ a2 − 3 < 0

provided BP �= 0. Now, if 3a2 − 4 = 0, adding the equation into the system, we
obtain a new SAS [[3a2 − 4, p1, p2, p3], [a − 1], [], []]. By the algorithm in [20,21],
we know the number of distinct real solutions of the system is 6.

2.3 DISCOVERER

In this section, we will give a short description of the main functions of DIS-
COVERER which includes an implementation of the algorithms presented in
the previous subsection with Maple. The reader can refer to [23,26] for details.
The prerequisite to run the package is Maple 7.0 or a later version of it.

The main features of DISCOVERER include

Real Solution Classification of Parametric Semi-algebraic Systems

For a parametric SAS T of the form (1) and an argument N , where N is one
of the following three forms:
– a non-negative integer b;
– a range b..c, where b, c are non-negative integers and b < c;
– a range b..w, where b is a non-negative integer and w is a name without

value, standing for +∞,
DISCOVERER can determine the conditions on u such that the number of
the distinct real solutions of T equals to N if N is an integer, otherwise falls
in the scope N . This is by calling

tofind([P], [G1], [G2], [H], [x1, ..., xs], [u1, ..., ud], N),

and results in the necessary and sufficient condition as well as the border
polynomial BP of T in u such that the number of the distinct real solutions
of T exactly equals to N or belongs to N provided BP �= 0. If T has infinite

Discovering Non-linear Ranking Functions 41

real solutions for generic value of parameters, BP may have some variables.
Then, for the “boundaries” produced by “tofind”, i.e. BP = 0, we can call

Tofind([P, BP], [G1], [G2], [H], [x1, ..., xs], [u1, ..., ud], N)

to obtain some further conditions on the parameters.

Real Solution Isolation of Constant Semi-algebraic Systems

For a constant SAS T (i.e., d = 0) of the form (1), if T has only a finite
number of real solutions, DISCOVERER can determine the number of dis-
tinct real solutions of T , say n, and moreover, can find out n disjoint cubes
with rational vertices in each of which there is only one solution. In addi-
tion, the width of the cubes can be less than any given positive real. The
two functions are realized through calling

nearsolve([P], [G1], [G2], [H], [x1, ..., xs]) and
realzeros([P], [G1], [G2], [H], [x1, ..., xs], w),

respectively, where w is optional and used to indicate the maximum size of
the output cubes.

Comparing with other well-known computer algebra tools like REDLOG [9]
and QEPCAD [4], DISCOVERER has distinct features on solving problems
related to root classification and isolation of SASs through the complete dis-
crimination system [24].

3 Polynomial Programs

A polynomial program takes polynomials of R[x1, . . . , xn] as its only expressions,
where x1, . . . , xn stands for the variables of the program. Polynomial programs
include expressive class of loops that deserves a careful analysis.

For technical reason, similar to [14], we use algebraic transition systems (ATSs)
to represent polynomial programs. An ATS is a special case of standard transition
system, in which the initial condition and all transitions are specified in terms of
polynomial equations. The class of polynomial programs considered in this paper
is more general than the one given in [14] by allowing each assignment inside a loop
body to have a guard and its initial and loop conditions possibly with polynomial
inequalities.We therefore accordingly extend thenotion of algebraic transition sys-
tems in [14] by associating with each transition a conjunctive polynomial formula
as guard and allowing the initial condition possibly to contain polynomial inequal-
ities. We call such an extension semi-algebraic transition system (SATS). It is easy
to see that ATS is a special case of SATS.

Definition 3. A semi-algebraic transition system is a quintuple 〈V, L, T, �0, Θ〉,
where V is a set of program variables, L is a set of locations, and T is a set of
transitions. Each transition τ ∈ T is a quadruple 〈�1, �2, ρτ , θτ 〉, where �1 and �2
are the pre- and post- locations of the transition, ρτ ∈ CPF (V, V ′) is the transition
relation, and θτ ∈ CPF(V) is the guard of the transition. Only if θτ holds, the

42 Y. Chen et al.

transition can take place. Here, we use V ′ (variables with prime) to denote the
next-state variables. The location �0 is the initial location, and Θ ∈ CPF (V) is
the initial condition.

Note that in the above definition, for simplicity, we require that each guard
should be a conjunctive polynomial formula. In fact, we can drop such a restric-
tion, as for any transition with a disjunctive guard we can split it into multiple
transitions, each of which takes a disjunct of the original guard as its guard.

A state is an evaluation of the variables in V and all states are denoted by
V al(V). Without confusion we will use V to denote both the variable set and an
arbitrary state, and use F (V) to mean the (truth) value of function (formula)
F under the state V . The semantics of SATSs can be explained through state
transitions as usual.

A transition is called separable if its relation is a conjunctive formula of equa-
tions which define variables in V ′ equal to polynomial expressions over variables
in V . It is easy to see that the composition of two separable transitions is equiv-
alent to a single separable one. An SATS is called separable if each transition
of the system is separable. In a separable system, the composition of transitions
along a path of the system is also equivalent to a single separable transition. We
will only concentrate on separable SATSs as any polynomial program can easily
be represented by a separable SATS (see [12]. Any SATS in the rest of the paper
is always assumed separable.

For convenience, by l1
ρτ ,θτ→ l2 we denote the transition τ = (l1, l2, ρτ , θτ), or

simply by l1
τ→ l2. A sequence of transitions l11

τ1→ l12, . . . , ln1
τn→ ln2 is called com-

posable if li2 = l(i+1)1 for i = 1, . . . , n − 1, and written as l11
τ1→ l12(l21)

τ2→ · · · τn→ ln2.
A composable sequence is called transition circle at l11, if l11 = ln2. For any com-
posable sequence l0

τ1→ l1
τ2→ · · · τn→ ln, it is easy to show that there is a transition

of the form l0
τ1;τ2;··· ;τn→ ln such that the composable sequence is equivalent to the

transition, where τ1; τ2 · · · ; τn, ρτ1;τ2;··· ;τn and θτ1;τ2;··· ;τn are the compositions of
τ1, τ2, . . . , τn, ρτ1 , . . . , ρτn and θτ1 , . . . , θτn , respectively. The composition of transi-
tion relations is defined in the standard way, for example, x′ = x4 + 3; x′ = x2 + 2

is x′ = (x4 + 3)2 + 2; while the composition of transition guards have to be
given as a conjunction of the guards, each of which takes into account the past
state transitions. In the above example, if we assume the first transition with the
guard x + 7 = x5, and the second with the guard x4 = x + 3, then the composition
of the two guards is x + 7 = x5 ∧ (x4 + 3)4 = (x4 + 3) + 3. That is,

Theorem 2. For any composable sequence l0
τ1→ l1

τ2→ · · · τn→ ln, it is equivalent to
the transition l0

τ1;τ2;··· ;τn→ ln.

Example 5. Consider the SATS P �= {V = {x}, L = {l0, l1}, T = {τ1 = 〈l0, l1, x′ =

x2 + 7, x = 5〉, τ2 = 〈l1, l0, x′ = x3 + 12, x = 12〉}, l0, Θ = x = 5}. According to
the definition, P is separable and l0

τ1→ l1
τ2→ l0 is a composable transition circle,

which is equivalent to 〈l0, l0, x′ = (x2 + 7)3 + 12, x = 5 ∧ x2 + 7 = 12〉.

Definition 4 (Ranking Function). Assume P = 〈V, L, T , l0, Θ〉 is an SATS. A
ranking function is a function γ : V al(V) → R+ such that the following conditions
are satisfied:

Discovering Non-linear Ranking Functions 43

Initial Condition: Θ(V0) |= γ(V0) ≥ 0.
Decreasing Condition: There exists a constant C ∈ R+ such that C > 0 and

for any transition circle at l0 l0
τ1→ l1

τ2→ · · ·
τn−1→ ln−1

τn→ l0,

ρτ1;τ2;··· ;τn(V, V ′) ∧ θτ1;τ2;··· ;τn(V) |= γ(V) − γ(V ′) ≥ C ∧ γ(V ′) ≥ 0,

where V, V ′ denote the starting and ending states of the transition circle,
respectively.

Condition 1 says that for any initial state satisfying the initial condition, its
image under the ranking function must be no less than 0; Condition 2 expresses
the fact that the value of the ranking function decreases at least c as the program
moves back to the initial location along any transition circle, and is still greater
than or equal to 0.

According to Definition 4, for any SATS, if we can find such a ranking function,
the system will not go through l0 infinitely often.

4 Discovering Non-linear Ranking Function

In Definition 4, if γ is a polynomial, we call it a polynomial ranking function.
In this section, we show how to synthesize polynomial ranking functions of an
SATS with the techniques for solving SASs.

We will not present a rigorous proof of the approach to synthesize polyno-
mial ranking function, but use the following program as a running example to
demonstrate this. We believe, readers can follow the demonstration to derive a
proof by their own if interested in.

Example 6. Consider a program shown in Fig.1 (a).

x = m, m > 0
l0 : while x �= 0 do

if x > 0 then
x := m1 − x

else
x := −x − m2

end if
end while
where m, m1, m2 are integers.

P = {
V = {x}
L = {l0}
T = {τ1, τ2}
Θ = {x = m, m > 0}
where

τ1 : 〈l0, l0, x′ + x − m1 = 0, x ≥ 1〉
τ2 : 〈l0, l0, x′ + x + m2 = 0, x ≤ −1〉}

}
(a) (b)

Fig. 1.

We can transform the program to an SATS as in Fig.1 (b).

Step 1. Predetermine a template of ranking functions. For example, we can
assume a template of ranking functions of P in Example 6 in the form
γ({x}) = ax + b, where a, b are parameters.

44 Y. Chen et al.

Step 2– Encoding Initial Condition. According to the initial condition of
ranking function, we have Θ |= γ ≥ 0 which means that each real solution
of Θ must satisfy γ ≥ 0. In other words, Θ ∧ γ < 0 has no real solution. It
is easy to see that Θ ∧ γ < 0 is a semi-algebraic system according to Defini-
tion 1. Therefore, applying the tool DISCOVERER, we get a necessary and
sufficient condition of the derived SAS having no real solution. The condi-
tion may contain the occurrences of some program variables. In this case,
the condition should hold for any instantiations of these variables. Thus,
by introducing universal quantifications of these variables (we usually add a
scope to each of these variables according to different situations) and then
applying QEPCAD, we can get a necessary and sufficient condition only on
the presumed parameters.

Example 7. In Example 6, Θ |= γ({x}) ≥ 0 is equivalent to that the following
parametric SAS has no real solution

x = m, m > 0, γ({x}) < 0. (3)

By calling

tofind([x − m], [], [−γ({x}), m], [], [x], [m, a, b], 0),

we get that (3) has no real solution iff

b + ma ≥ 0. (4)

By using QEPCAD to eliminate ∀m > 0 over (4), we get

a ≥ 0 ∧ b ≥ 0. (5)

Step 3–Encoding Decreasing Condition. From Definition 4, there exists a
positive constant C such that for any transition circle l0

τ1→ l1
τ2→ · · · τn→ l0,

ρτ1;τ2;··· ;τn ∧ θτ1;τ2;··· ;τn |= γ(V) − γ(V ′) ≥ C ∧ γ(V ′) ≥ 0. (6)

(6) is equivalent to

ρτ1;τ2;··· ;τn ∧ θτ1;τ2;··· ;τn ∧ γ(V ′) < 0 and (7)

ρτ1;τ2;··· ;τn ∧ θτ1;τ2;··· ;τn ∧ γ(V) − γ(V ′) < C (8)

both have no real solution. It is easy to see that (7) and (8) are parametric
SASs according to Definition 1, so applying the tool DISCOVERER, we
obtain some conditions on the parameters. Subsequently, similar to Step 2,
we may need to exploit the quantifier elimination tool QEPCAD to simplify
the resulted condition in order to get a necessary and sufficient condition
only on the presumed parameters.

Discovering Non-linear Ranking Functions 45

Example 8. In Example 6, suppose C > 0 such that
– For the transition circle l0

τ1→ l0,
– firstly, ρτ1 ∧ θτ1 |= γ({x′}) ≥ 0 iff

x′ + x − m1 = 0, x − 1 ≥ 0, γ({x′}) < 0 (9)

has no solution. Calling

tofind([x′ + x − m1], [x − 1], [−γ({x′})], [], [x′], [x,m1, a, b], 0),

it follows that (9) has no real solution iff

b + am1 − ax ≥ 0. (10)

(10) should hold for any x ≥ 1. Thus, by applying QEPCAD to eliminate
the quantifier ∀x ≥ 1 over (10), we get

a ≤ 0 ∧ am1 + b − a ≥ 0. (11)

– secondly, ρτ1 ∧ θτ1 |= γ({x}) − γ({x′}) ≥ C iff

x′ + x − m1 = 0, x − 1 ≥ 0, γ({x}) − γ({x′}) < C (12)

has no solution. By calling

tofind([x′ + x − m1], [x − 1], [γ({x′}) − γ({x}) + C, C], [], [x′],

[x, m1, a, b, C], 0),

it results that (12) has no real solution iff

2ax − C − am1 ≥ 0. (13)

Also, (13) should hold for any x ≥ 1. Thus, by applying QEPCAD to
eliminate the quantifier ∀x ≥ 1 over (13), we get

a ≥ 0 ∧ C + am1 − 2a ≤ 0 ∧ C > 0. (14)

– Similarly, by encoding the decreasing condition w.r.t. the transition circle
l0

τ2→ l0, we get a condition

a ≥ 0 ∧ am2 − b − a ≤ 0 ∧ a ≤ 0 ∧ C − am2 + 2a ≤ 0. (15)

Step 4. According to the results obtained from Steps 1, 2 and 3, we can get
the final necessary and sufficient condition only on the parameters of the
ranking function template. If the condition is still complicated, we can utilize
the function of PCAD of DISCOVERER or QEPCAD to prove whether
the condition can be satisfied. If yes, the tool can produce instantiations
of these parameters. Thus, we can get a specific ranking function of the
predetermined form by replacing the parameters with the instantiations,
respectively.

46 Y. Chen et al.

Example 9. Obviously, for any positive constant C, C > 0 always contradicts
to (14) and (15). This means that there is no linear ranking functions for
the program P .

Note that the above procedure is complete in the sense that for any given tem-
plate of ranking function, the procedure can always give you an answer: yes or
no, while an incomplete one (such as the one proposed in [6]) is lack of the ability
to produce a negative conclusion.

Example 10. Now, let us consider nonlinear ranking functions of the program in
Example 6 in the form γ = ax2 + bx + c. For simplicity, we assume C = 1.

Applying the the above procedure, we get the condition on m1, m2, a, b, c as

a ≥ 0 ∧ c ≥ 0 ∧ (b ≥ 0 ∨ 4ac − b2 ≥ 0) ∧ am2
1 + bm1 − 2am1 + c − b + a ≥ 0 ∧

(4ac − b2 ≥ 0 ∨ 2am1 + b − 2a ≤ 0) ∧ am2
1 + bm1 − 2am1 − 2b + 1 ≤ 0 ∧

am2
2 − bm2 − 2am2 + c + b + a ≥ 0 ∧ (4ac − b2 ≥ 0 ∨ 2am2 − b − 2a ≤ 0) ∧

am1 + b ≥ 0 ∧ am2 − b ≥ 0 ∧ am2
2 − bm2 − 2am2 + 2b + 1 ≤ 0. (16)

For (16), according to m1 and m2, we can discuss as follows:

– Let m1 = m2 = 1, there are quadratic ranking functions for the program, for
example γ = x2 or γ = 4x2 + x + 2;

– Let m1 = 1, m2 = 2, it is clear that (16) does not hold from its last conjunct.
Therefore, the program has no quadratic ranking functions. In fact, the pro-
gram does not terminate e.g. initializing m = 2.

– In the case where m = 3n ∨ m = 3n + 1 for any positive integer n, the program
terminates, and we can also compute a quadratic ranking function 4x2 − x + 2

for it.

In the following, we show how to apply this approach to finding ranking
functions of a non-linear program.

Example 11. Find a polynomial ranking function for the polynomial program
given in Fig.2 (a).

Real x = A
where 1 < A < 10

l0 : while x > 1 ∧ x < 10 do
if x > 1 ∧ x < 3 then

x := x(5 − x)
else

x := x + 1
end if

end while

P = {
V = {x}
L = {l0}
T = {τ1, τ2}
Θ = x = A ∧ A > 1 ∧ A < 10
where

τ1 : 〈l0, l0, x′ − 5x + x2 = 0, x > 1 ∧ x < 3〉
τ2 : 〈l0, l0, x′ − x − 1 = 0, x ≥ 3 ∧ x < 10〉

}
(a) (b)

Fig. 2.

Discovering Non-linear Ranking Functions 47

In order to find a ranking function of the program, we first transform the
program to an SATS represented in Fig.2 (b). Then, assume a ranking function
template with degree 1 in the form γ({x}) = ax + b.

After encoding the initial condition and then applying DISCOVERER and
QEPCAD, we get a condition on a and b is

b + 10 a ≥ 0 ∧ b + a ≥ 0. (17)

Afterwards, encoding the decreasing condition w.r.t. the transition circle l0
τ1→ l0

and then applying DISCOVERER and QEPCAD, we obtain

b + 4 a ≥ 0 ∧ 4 b + 25 a ≥ 0 ∧ C + 4 a ≤ 0 ∧ C + 3 a ≤ 0. (18)

Similarly, encoding the decreasing condition w.r.t. the transition circle l0
τ2→ l0

and then applying DISCOVERER and QEPCAD, we get a condition

b + 11 a ≥ 0 ∧ b + 4 a ≥ 0 ∧ C + a ≤ 0. (19)

Thus, a necessary and sufficient condition on these parameters is obtained as

C > 0 ∧ a + C ≤ 0 ∧ b + 11 a ≥ 0.

So, if we assume C = 1, we can get a linear ranking function 11 − x.
For this example, if we assume a ranking function template with degree 2 in

the form γ({x}) = ax2 + bx + c, and let C = 1, we get a necessary and sufficient
condition on a, b, c as

c + 10 b + 100 a ≥ 0 ∧ c + b + a ≥ 0 ∧ b + 9 a + 1 ≤ 0 ∧ b + 21 a + 1 ≤ 0 ∧
(b + 2 a ≥ 0 ∨ b + 20 a ≤ 0 ∨ 4 ac − b2 ≥ 0) ∧ 16 c + 100 b + 625 a ≥ 0 ∧

c + 4 b + 16 a ≥ 0 ∧ (b + 8 a ≥ 0 ∨ 2 b + 25 a ≤ 0 ∨ 4 ac − b2 ≥ 0) ∧
3 b + 15 a + 1 ≤ 0 ∧ c + 11 b + 121 a ≥ 0 ∧ c + 4 b + 16 a ≥ 0 ∧

(b + 8 a ≥ 0 ∨ b + 22 a ≤ 0 ∨ 4 ac − b2 ≥ 0) ∧ b + 7 a + 1 ≤ 0. (20)

For (20), applying PCAD in DISCOVERER we get a sample point (1,−22, 150),
we therefore obtain a non-linear ranking function x2 − 22x + 150.

5 Conclusions and Future Work

This paper uses the techniques on solving semi-algebraic systems to discover non-
linear ranking functions of polynomial programs. This paper also shows how to
use computer algebra tools, DISCOVERER and QEPCAD, to synthesize ranking
functions for two interesting programs.

The paper represents a part of the authors’ efforts to use DISCOVERER to
verify programs. We have used it to verify reachability of linear hybrid systems
and generate symbolic termination conditions for linear programs in [27], and
to discover ranking functions for polynomial programs here. Similar to Cousot’s
approach [6], DISCOVERER can also be applied to invariant generation for
polynomial programs. We will report this in another paper.

48 Y. Chen et al.

Comparing with the well-known tools REDLOG and QEPCAD, DISCOV-
ERER has distinct features on solving problems related to root classification and
isolation of SASs through the complete discrimination system. We will analyze
its complexity in another paper. The results of the efforts to apply DISCOV-
ERER to program verification are encouraging so far, and we will continue our
efforts. The successful story of TERMINATOR [3] also encourages us to develop
a program verification tool based on DISCOVERER when we have sufficient
experience.

References

1. Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006)

2. Bradley, A., Manna, Z., Sipma, H.: Terminaition of polynomial programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 113–129. Springer, Heidel-
berg (2005)

3. Cook, B., Podelski, A., Rybalchenko, A.: TERMINATOR: Beyond safety. In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidel-
berg (2006)

4. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. of Symbolic Computation 12, 299–328 (1991)

5. Colón, M., Sipma, H.B.: Synthesis of linear ranking functions. In: Margaria, T., Yi,
W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer,
Heidelberg (2001)

6. Cousot, P.: Proving program invariance and termination by parametric abstrac-
tion, Langrangian Relaxation and semidefinite programming. In: Cousot, R. (ed.)
VMCAI 2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

7. Dams, D., Gerth, R., Grumberg, O.: A heuristic for the automatic generation of
ranking functions. In: Workshop on Advances in Verification (WAVe’00), pp. 1–8
(2000)

8. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

9. Dolzman, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. ACM
SIGSAM Bulletin 31(2), 2–9

10. Floyd, R.W.: Assigning meanings to programs. In: Proc. Symphosia in Applied
Mathematics, vol. 19, pp. 19–37 (1967)

11. Hoare, C.A.R.: An axiomatic basis for computer programming. Comm.
ACM 12(10), 576–580 (1969)

12. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
Heidelberg (1995)

13. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

14. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant genera-
tion using Gröbner bases. In: ACM POPL’04, pp. 318–329 (2004)

15. Tarski, A.: A Decision for Elementary Algebra and Geometry. University of Cali-
fornia Press, Berkeley (1951)

16. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004)

Discovering Non-linear Ranking Functions 49

17. International Conference on Verified Software: Theories, Tools and Experiments,
ETH Zürich (October 10-13, 2005)

18. Wu, W.-T.: Basic principles of mechanical theorem proving in elementary geome-
tries. J. Syst. Sci. Math. 4, 207–235 (1984)

19. Xia, B., Xiao, R., Yang, L.: Solving parametric semi-algebraic systems. In: Pae,
S.-i., Park, H. (eds.) ASCM 2005. Proc. the 7th Asian Symposium on Computer
Mathematics, Seoul, December 8-10, pp. 8–10 (2005)

20. Xia, B., Yang, L.: An algorithm for isolating the real solutions of semi-algebraic
systems. J. Symbolic Computation 34, 461–477 (2002)

21. Xia, B., Zhang, T.: Real Solution Isolation Using Interval Arithmetic. Comput.
Math. Appl. 52, 853–860 (2006)

22. Yang, L.: Recent advances on determining the number of real roots of parametric
polynomials. J. Symbolic Computation 28, 225–242 (1999)

23. Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering of a
class of inequality-type theorems. Sci. in China (Ser. F) 44, 33–49 (2001)

24. Yang, L., Hou, X., Zeng, Z.: A complete discrimination system for polynomials.
Science in China (Ser. E) 39, 628–646 (1996)

25. Yang, L., Xia, B.: Automated Deduction in Real Geometry. In: Chen, F., Wang,
D. (eds.) Geometric Computation, pp. 248–298. World Scientific, Singapore (2004)

26. Yang, L., Xia, B.: Real solution classifications of a class of parametric semi-
algebraic systems. In: Proc. of Int’l Conf. on Algorithmic Algebra and Logic, pp.
281–289 (2005)

27. Yang, L., Zhan, N., Xia, B., Zhou, C.: Program verification by using DISCOV-
ERER. In: Proc. VSTTE’05, Zürich (October 10-October 13, 2005) (to appear)

Mobile Ambients with Timers and Types

Bogdan Aman2 and Gabriel Ciobanu1,2

1 “A.I.Cuza” University, Faculty of Computer Science
Blvd. Carol I no.11, 700506 Iaşi, Romania

2 Romanian Academy, Institute of Computer Science
Blvd. Carol I no.8, 700505 Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. Mobile ambients calculus is a formalism for mobile comput-
ing able to express local communications inside ambients. Ambients mo-
bility is controlled by capabilities: in, out, and open. We add timers to
communication channels, capabilities and ambients, and use a typing
system for communication. The passage of time is given by a discrete
global time progress function. We prove that structural congruence and
passage of time do not interfere with the typing system. Moreover, once
well-typed, an ambient remains well-typed. A timed extension of the cab
protocol illustrates how the new formalism is working.

1 Introduction

Ambient calculus is a formalism for describing distributed and mobile computing
in terms of ambients. In contrast with other formalisms for mobile systems such
as CCS and π-calculus [12] whose computation model is based on communication,
the ambient calculus is based on the notion of movement. An ambient, which is
a named location, is the unit of movement. Ambients mobility is controlled by
capabilities: in, out, and open. Inside an ambient we have processes which may
exchange messages.

The definition of mobile ambients is related in [4] to the network communi-
cation. Ambient calculus can model communication protocols. So far the timing
properties have not been considered in the framework of mobile ambients. How-
ever timing properties are important in network communication. For instance, a
Time to Live (TTL) value is used to indicate the timeout for a communication
package before it should be discarded. Servers do not apply a single fixed timeout
for all the communication packages. Simple Network Manage Protocol (SNMP)
could implement its own strategy for timeout and retransmission in TCP/IP.

TTL value and strategies for retransmission in TCP/IP protocol provide a
good motivation to add timers to ambients. In this paper we associate timers
not only to ambients, but also to capabilities and communication channels. The
resulting formalism is called mobile ambients with timers (tMA), and represent a
conservative extension of the ambient calculus. Inspired by [5] we introduce types
for ambients in tMA. The type system associates to each ambient a set of types
in order to control its communication by allowing only well-typed messages. For

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 50–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Mobile Ambients with Timers and Types 51

instance, if a process inside an ambient sends a message of a type which is not
included in the type system of the ambient, then the process fails. In mobile
ambients with timers, by using timers, the process may continue its execution
after the timer of the corresponding output communication expires.

The structure of the paper is as follows. Section 2 presents the mobile am-
bients. Section 3 gives the description of the mobile ambients with timers and
types. First we provide a static semantic given by a typing system, and an oper-
ational semantics of the new calculus given by a reduction relation. The passage
of time is given by a discrete global time progress function. We prove that struc-
tural congruence and passage of time do not interfere with the typing system. A
subject reduction result ensures that once well-typed, a timed mobile ambient re-
mains well-typed. In Section 4 a cab protocol with timers illustrates some of the
timing features of the new formalism. Conclusion and references end the paper.

2 Mobile Ambients

In this section we provide a short description of the mobile ambients; more
details could be found in [4]. The following table describes the syntax of mobile
ambients.

Table 1. Mobile Ambients Syntax
c channel name P, Q ::= processes
n, m ambient names 0 inactivity
x variable M.P movement
M ::= capabilities n[P] ambient

in n can enter n P |Q composition
out n can exit n (νn)P restriction
open n can open n c!〈m〉.P output action

c?(x).P input action
∗P replication

Process 0 is an inactive process (it does nothing). A movement M.P is pro-
vided by the capability M , followed by the execution of process P . An ambient
n[P] represents a bounded place labelled by n in which a process P is executed.
P |Q is a parallel composition of processes P and Q. (νn)P creates a new unique
name n within the scope of process P . An output action c!〈m〉.P releases a name
m on channel c, and then behaves as process P . An input action c?(x). P cap-
tures a name from channel c, and binds it to a variable x within the scope of
process P . ∗P denotes the unbounded replication of a process P , producing as
many parallel replicas of process P as needed.

The semantics of the ambient calculus is given by two relations: structural
congruence and reduction. The structural congruence P ≡ Q relates different
syntactic representations of the same process; it is also used to define the reduc-
tion relation. The reduction relation P → Q describes the evolution of processes.
We denote by →∗ the reflexive and transitive closure of →.

52 B. Aman and G. Ciobanu

The structural congruence is defined as the least relation over processes sat-
isfying the axioms presented in Table 2. The rules from the left side of the table
describe the commuting/association of parallel components, unfolding recursion,
stretching of a restriction scope, renaming of bounded names. The rules from the
right side describe how structural congruence is propagated across processes.

Table 2. Structural Congruence
P |Q ≡ Q |P P ≡ P P ≡ Q implies Q ≡ P
(P |Q) |R ≡ P | (Q |R) P ≡ Q, Q ≡ R implies P ≡ R
∗P ≡ P | ∗ P P ≡ Q implies (νn)P ≡ (νn)Q
(νn)(νm)P ≡ (νm)(νn)P if n �= m P ≡ Q implies P |R ≡ Q |R
(νn)(P |Q) ≡ P | (νn)Q if n /∈ fn(P) P ≡ Q implies ∗P ≡ ∗Q
(νn)m[P] ≡ m[(νn)P] if n �= m P ≡ Q implies n[P] ≡ n[Q]
P |0 ≡ P P ≡ Q implies M.P ≡ M.Q
(νn)0 ≡ 0 ∗0 ≡ 0 P ≡ Q implies c?(x).P ≡ c?(x).Q

The set fn(P) of free names of a process P is defined as:

fn(P) =

��������
�������

∅ if P = 0
fn(R) ∪ {n} if P = in n.R or P = out n.R or P = open n.R

or P = n[R] or P = c!〈n〉.R
fn(R) ∪ fn(Q) if P = R | Q
fn(R) − {n} if P = (νn)R
fn(R) if P = c?(x).R or P = ∗R

The reduction relation is defined as the least relation over processes satisfying
the following set of axioms:

Table 3. Reduction Rules
(In) n[in m. P |Q] |m[R] → m[n[P |Q] |R]
(Out) m[n[out m. P |Q] |R] → n[P |Q] |m[R]
(Open) open n. P |n[Q] → P |Q
(Com) c!〈m〉. P | c?(x). P ′ → P |P ′{m/x}
(Res) P → Q implies (νn)P → (νn)Q
(Amb) P → Q implies n[P] → n[Q]
(Par) P → Q implies P |R → Q |R
(Struct) P ′ ≡ P, P → Q, Q ≡ Q′ implies P ′ → Q′

The first four rules are the one-step reductions for in, out, open and communi-
cation. In the rule (Com) we write P ′{m/x} for the substitution of name m for
each free occurrence of variable x in process P ′. The next three rules propagate
reductions across scopes, ambient nesting and parallel composition. The final
rule allows the use of structural congruence during reduction.

3 Mobile Ambients with Timers and Types

In mobile ambients with timers (shortly, tMA) communication channels (input
and output channels), capabilities and ambients are used as temporal resources.

Mobile Ambients with Timers and Types 53

A timer Δt of each temporal resource makes the resource available only for a
period of time t.

The novelty of this approach results from the fact that a location, represented
by an ambient, can disappear. We denote by nΔt[P]μ the fact that an ambient
n has a timer Δt, while the tag μ is a neutral tag that indicates if an ambient
is active or passive. If t > 0, the ambient nΔt[P]μ behaves exactly as the un-
timed ambient n[P]. Since the timer Δt can expire (i.e., t = 0) we use a pair
(nΔt[P]μ, Q), where Q is a safety process. If no open n capability appears in t
units of time, the ambient nΔt[P]μ is dissolved, the process P is cancelled, and
the safety process Q is executed. If Q = 0 we can simply write nΔt[P]μ instead
of (nΔt[P]μ, Q). If we want to simulate the behaviour of an untimed mobile
ambient, then we use ∞ instead of Δt, i.e., n∞[P]μ.

Similarly, we add a safety process for the input and output communications
and the movement processes. The process openΔtn.(P,Q) evolves to process P
if before the timer Δt expires, the capability openΔtn is consumed; otherwise
evolves to process Q. The process cΔt!〈m〉.(P,Q) evolves to process P if before
the timer Δt expires, a process captures name m from channel c; otherwise
evolves to process Q.

Since messages are undirected, it is possible for a process cΔt!〈m〉.(P,Q) to
send a message which is not appropriate for any receiver. To restrict the com-
munication and be sure that m reaches an appropriate receiver, we add types
expressed by Amb[Γ] and write cΔt!〈m : Amb[Γ]〉.(P,Q). We use types inspired
by [5]; the set of types is defined in Table 4. We use types for communication
in order to validate the exchange of messages, namely that if we expect to com-
municate integers, then we cannot communicate boolean values. B represents a
set of base types. The intuitive meaning of the subtyping relation is that <:
represents the inverse the set inclusion relation (Γ <: Γ ′ for types means Γ ⊃ Γ ′
for sets and Γ � Γ ′ for types means Γ ∪ Γ ′ for sets).

Table 4. Types
Set of types:

Γ ::= B | Amb[Γ] | Γ � Γ ′

Amb[Γ] ambient name allowing Γ exchanges

If an appropriate message is received before the timer Δt expires, then process
cΔt?(x : Amb[Γ]).(P,Q) evolves to process P ; otherwise evolves to process Q.
According to the syntax of tMA presented in Table 5, Amb[Γ] can be used in
a restriction (νn : Amb[Γ])P , which means that n of type Amb[Γ] is new in
process P . A variable x is bounded only in process P when we consider the
process cΔt?(x : Amb[Γ]).(P,Q).

If it does not matter if an ambient is passive or active, we simple use μ as the
tag of the ambient. When we describe initially the ambients, we consider that
all ambients are active, and we associate the tag a to them.

54 B. Aman and G. Ciobanu

Table 5. Syntax of Mobile Ambients with Timers and Types
a, p ambient tags P, Q::= processes
c channel name 0 inactivity
n, m ambient names MΔt.(P, Q) movement
x variable (nΔt[P]μ, Q) ambient
M ::= capabilities P |Q composition

in n can enter n (νn : Amb[Γ])P restriction
out n can exit n cΔt!〈m : Amb[Γ]〉.(P, Q) output action
open n can open n cΔt?(x : Amb[Γ]).(P, Q) input action

∗P replication

3.1 Operational Semantics

The passage of time is described by a discrete global time progress function φΔ

defined over the set P of mobile ambients with timers. The actions are performed
at every tick of a universal clock. The opened ambients, the channels involved in
a communication and the consumed capabilities disappear together with their
timers. If a channel, capability or ambient has the timer equal to ∞ we use the
equality ∞− 1 = ∞ when applying the function φΔ. This function modifies a
process accordingly with the global passage of time. Another property of the
function φΔ is that the passive ambients can become active in the next unit of
time in order to participate in other reductions.

Definition 1. (Global time progress function) We define φΔ : P → P, by:

φΔ(P) =

�������������������
������������������

MΔ(t−1).(R, Q) if P = MΔt.(R, Q), t > 0
Q if P = MΔt.(R, Q), t = 0

cΔ(t−1)!〈m : Amb[Γ]〉.(R,Q) if P = cΔt!〈m : Amb[Γ]〉.(R, Q), t > 0

Q if P = cΔt!〈m : Amb[Γ]〉.(R, Q), t = 0

cΔ(t−1)?(x : Amb[Γ]).(R,Q) if P = cΔt?(x : Amb[Γ]).(R, Q), t > 0
Q if P = cΔt?(x : Amb[Γ]).(R, Q), t = 0
φΔ(R) | φΔ(Q) if P = R |Q
(νn : Amb[Γ])φΔ(R) if P = (νn : Amb[Γ])R

(nΔ(t−1)[φΔ(R)]a, Q) if P = (nΔt[R]μ, Q), t > 0

Q if P = (nΔt[R]μ, Q), t = 0
P if P = ∗R or P = 0

For the processes cΔt!〈m : Amb[Γ]〉.(P,Q), cΔt?(x : Amb[Γ]).(P,Q) and
MΔt.(P,Q), the timer of process P is activated only after the consumption
of cΔt!〈m : Amb[Γ]〉, cΔt?(x : Amb[Γ]) and MΔt (in at most t units of time).
Reduction rules (Table 7) shows how the time function φΔ is used.

Processes are grouped into equivalence classes by the equivalence relation ≡
called structural congruence. This relation provides a way of rearranging expres-
sions such that interacting parts can be brought together.

Mobile Ambients with Timers and Types 55

Table 6. Structural Congruence
(S-Refl) P ≡ P (S-Sym) P ≡ Q implies Q ≡ P
(S-Trans) P ≡ R, R ≡ Q implies P ≡ Q
(S-Res) P ≡ Q implies (νn : Amb[Γ])P ≡ (νn : Amb[Γ])Q
(S-Par) P ≡ Q implies P |R ≡ Q |R
(S-Repl) P ≡ Q implies ∗P ≡ ∗Q
(S-Amb) P ≡ Q and R ≡ S implies (nΔt[P]μ, R) ≡ (nΔt[Q]μ, S)
(S-Cap) P ≡ Q and R ≡ S implies MΔt.(P, R) ≡ MΔt.(Q, S)
(S-Input) P ≡ Q and R ≡ S

implies cΔt?(x : Amb[Γ]).(P, R) ≡ cΔt?(x : Amb[Γ]).(Q,S)
(S-Output) P ≡ Q and R ≡ S implies

cΔt!〈m : Amb[Γ]〉.(P, R) ≡ cΔt!〈m : Amb[Γ]〉.(Q,S)

(S-Par Com) P |Q ≡ Q |P (S-Par Assoc) (P |Q) |R ≡ P | (Q |R)
(S-Res Res) (νn : Amb[Γ])(νm : Amb[Γ ′])P ≡

(νm : Amb[Γ ′])(νn : Amb[Γ])P if Γ �= Γ ′

(S-Res Par) (νn : Amb[Γ])(P |Q) ≡ P | (νn : Amb[Γ])Q if (n : Amb[Γ]) /∈ fn(P)
(S-Res Amb Dif) (νn : Amb[Γ])(mΔt[P]μ, Q) ≡ (mΔt[(νn : Amb[Γ])P]μ, Q)

if m �= n and n /∈ fn(Q)
(S-Res Amb Eq) (νn : Amb[Γ])(mΔt[P]μ, Q) ≡ (mΔt[(νn : Amb[Γ])P]μ, Q)

if m = n, n /∈ fn(Q) and Γ �= Γ ′ where m : Amb[Γ ′]
(S-Zero Par) P |0 ≡ P (S-Repl Par)∗P ≡ P | ∗ P
(S-Zero Res) (νn : Amb[Γ])0 ≡ 0 (S-Zero Repl) ∗0 ≡ 0

The rule (S-Res Amb Eq) states that if an ambient n : Amb[Γ ′] is in the scope
of a restriction (νn : Amb[Γ]) and Γ �= Γ ′, then the scope of (νn : Amb[Γ]) is re-
stricted to the process running inside ambient n : Amb[Γ ′]. This rule is able to dis-
tinguish between two ambients having the same name (m = n), but different types.

We denote by �→ the fact that none of the rules (R-In), (R-Out), (R-Open),
(R-Com)canbeapplied.Thebehaviourofprocesses isgivenbythereductionrules:

Table 7. Reduction Rules

(R-GTProgress)
P �→

P → φΔ(P)

(R-In)
(nΔt′ [inΔtm.(P, P ′) |Q]a, S′) | (mΔt′′ [R]μ, S′′) →

(mΔt′′ [(nΔt′ [P |Q]p, S′) |R]μ, S′′)

(R-Out)
(mΔt′ [(nΔt′′ [outΔtm.(P, P ′) |Q]a, S′′) |R]μ, S′) →

(nΔt′′ [P |Q]p, S′′) | (mΔt′ [R]μ, S′)

(R-Com) cΔt!〈m : Amb[Γ]〉.(P,Q) | cΔt?(x : Amb[Γ]).(P ′, Q′) → P |P ′{m/x}

(R-Open)
n : Amb[Γ ′], m : Amb[Γ], Γ <: Γ ′

(mΔt′ [openΔtn. (P, P ′) | (nΔt′′ [Q]μ, S′′)], S′) → (mΔt′ [P |Q]μ, S′)

(R-Res)
P → Q

(νn : Amb[Γ])P → (νn : Amb[Γ])Q

(R-Amb)
P → Q

(nΔt[P]μ, R) → (nΔt[Q]μ, R)
(R-Par1)

P → Q

R |P → R |Q

(R-Par2)
P → P ′, Q → Q′

P |Q → P ′ |Q′ (R-Struct)
P ′ ≡ P, P → Q, Q ≡ Q′

P ′ → Q′

56 B. Aman and G. Ciobanu

In the rules (R-In), (R-Out), (R-Open) ambientm can be passive or active,
while in the rules , (R-In), (R-Out) ambient n is active. The difference between
passive and active ambients is that the passive ambients can be used in several
reductions in a unit of time, while the active ambients can be used in at most one
reduction in a unit of time, by consuming their capabilities. In the rules (R-In),
(R-Out) the active ambient n becomes passive, forcing it to consume only one
capability in one unit of time. In (R-Open) we imposed the condition Γ <: Γ ′

to avoid releasing an unwanted set of types inside the surrounding ambient m.
The ambients which are tagged as passive, become active again by applying the
global time-stepping function (R-GTProgress).

In mobile ambients with timers, if one process evolves by one of the rules (R-
In), (R-Out), (R-Open), (R-Com), while another one does not perform any
reduction, then the rule (R-Par1) should be applied. We define only the left
composition (R-Par1), because the right composition results from (R-Struct)
and (R-Par1). If more than one process evolve in parallel by applying one of
the rules (R-In), (R-Out), (R-Open), (R-Com) then the rule (R-Par2)
should be applied. The rule (R-GTProgress) is applied to simulate the global
passage of time, changing all the p tags to a, and so permitting the ambients to
participate in new reductions in the next unit of time.

Even if we consider types for ambients as in [5], we do not take into account
the environment parameter. Instead, we consider that each ambient has its own
set of types Γ , which control the communication of processes inside that ambient
as it results from Table 7.

3.2 Subject Reduction

Well-typedness of a process is defined by a set of rules regarding only the com-
munication inside ambients. The typing rules of Table 8 express the conditions
which must be satisfied for each syntactic construction of a process in order to
be well-typed. These rules describe the relationship of a process to its types,
providing the static semantics of tMA. We write P : Γ and say that a process
P is well-typed with respect to the set of types Γ , meaning that process P can
exchange only messages of types from set Γ ; usually Γ represents the set of types
valid in the ambient containing process P .

Table 8. Typing Rules

(T-Null) 0 : Γ (T-Write)
P : Γ , Q : Γ , Γ <: Amb[Γ ′]

cΔt!〈m : Amb[Γ ′]〉. (P, Q) : Γ
(T-Par)

P : Γ , Q : Γ

P |Q : Γ

(T-Read)
P : Γ � Amb[Γ ′], Q : Γ

cΔt?(x : Amb[Γ ′]). (P, Q) : Γ � Amb[Γ ′]
(T-New)

P : Γ � Amb[Γ ′]

(νn : Amb[Γ ′])P : Γ

(T-Amb)
n : Amb[Γ], P : Γ , Q : Γ ′

(nΔt[P]μ, Q) : Γ ′ (T-Cap)
P : Γ , Q : Γ

MΔt.(P, Q) : Γ
(T-Repl)

P : Γ

∗P : Γ

Since process 0 cannot communicate, 0 is well-typed under any set of types,
this being expressed in rule (T-Null). Rule (T-Write) states that only messages

Mobile Ambients with Timers and Types 57

of types from the set Γ can be sent. Similar reasoning is expressed in rule (T-
Read). An ambient has only internal communication, meaning that it cannot
send messages to sibling processes; therefore an ambient is well-typed under
any set of types, and this is expressed in rule (T-Amb). If P and Q are sibling
processes which can exchange messages of types from the set Γ , then P | Q is also
such a process. Rule (T-New) states that if a process can exchange messages
of types from the set Γ �Amb[Γ ′], then the restricted process (νn : Amb[Γ ′])P
cannot exchange messages of type Amb[Γ ′] with sibling processes. By adding a
capability to a process we do not affect the well-typedness of that process as it
results from rule (T-Cap).

Lemma 1. If (νn : Amb[Γ ′])P : Γ and n /∈ fn(P) then P : Γ .

Lemma 2. If P : Γ � Amb[Γ ′], x,m : Amb[Γ ′], x ∈ bn(P) and m /∈ fn(P)
then P{m/x} : Γ �Amb[Γ ′].

In order to say that cΔt!〈m : amb[Γ ′]〉.(P,Q) is well-typed with respect to the
set of types Γ , the following statements should hold:

(i) m : Amb[Γ ′], which means that ambient m contains the set of types Γ ′;
(ii) Γ <: Amb[Γ ′], which means that Γ contains the type Amb[Γ ′];
(iii) P : Γ ; Q : Γ , which means that P and Q are well-typed with respect

to the set of types Γ . If one of the statements is not true, the process cΔt!〈m :
Amb[Γ ′]〉.(P,Q) can still be well-typed, if the alternative process Q is well-typed,
with respect to the same set of types Γ .

The following proposition states that the application of the global time
progress function φΔ to a process P does not change its property of being well-
typed.

Proposition 1 (Time Passage). If P : Γ then φΔ(P) : Γ .

Proof. We take into account all the cases which enter in the definition of φΔ.
We present only one case the other being treated in a similar manner.
Case inferred from P = MΔt.(R,Q), t > 0. The syntax is a general nota-
tion to capture all the capabilities because their behaviour is the same in this
context. As a consequence, the rule (T-Cap) is applied and the expected result
MΔ(t−1).(R,Q) : Γ is obtained which is the same as φΔ(P) : Γ .

The following proposition states that if a process P is well-typed, then all the
processes from its equivalence class are well-typed.

Proposition 2 (Subject Congruence). If P ≡ Q then P : Γ iff Q : Γ .

Proof. We proceed by structural induction. We present only one case the other
being treated in a similar manner.
(S-Res Amb Dif) We have that P = (νn : Amb[Γ ′])(mΔt[P ′]μ, P ′′) and Q =
(mΔt[(νn : Amb[Γ ′])P ′]μ, P ′′) with n �= m. Assume P : Γ . This must have been
derived from (T-New) and (T-Amb) with P ′′ : Γ � Amb[Γ ′]. Because n does
not affect the process P ′′ by applying the rule Lemma 1 we have that P ′′ : Γ . By
applying (T-Amb) we obtain that Q : Γ .

58 B. Aman and G. Ciobanu

The following proposition states that if a process P is well-typed, then the
process obtained after applying a reduction rule is well-typed.

Proposition 3 (Subject Reduction). If P → Q then P : Γ iff Q : Γ .

Proof. We proceed by induction on the derivation of P → Q. We present only
one case the other being treated in a similar manner.
(R-Com) We have that P = cΔt!〈m〉. (P,Q) | cΔt′?(x : Amb[Γ ′]). (P ′, Q′) and
Q = P |P ′{m/x}. Assume P : Γ . This must have been derived from (T-Par)
with cΔt!〈m〉. (P,Q) : Γ and cΔt′?(x). (P ′, Q′) : Γ and by applying the rules
(T-Write) and (T-Read) we obtain that P : Γ , P ′Γ and Γ <: Amb[Γ ′]. By
applying the Lemma 2 and the rule (T-Par) we obtain that P |P ′{m/x} : Γ .

In Table 9 we describe the error system of tMA, where by err−→ we denote the
fact that an error occurred. An error can occur only when a process tries to
exchange a message of a wrong type. Note that if a process wants to communicate
a message of a wrong type, it can still be well-typed if the alternative process Q
is well-typed.

Table 9. Error System

(E-Com)
Γ �= Γ ′

cΔt!〈m : Amb[Γ ′]〉.(P, Q) | cΔt?(x : Amb[Γ]).(P ′, Q′)
err−→

(E-Open)
n : Amb[Γ ′], m : Amb[Γ], Γ �<: Γ ′

(mΔt′ [openΔtn. (P, P ′) | (nΔt′′ [Q]μ, S′′)]μ, S′)
err−→ (E-Par)

P
err−→

P |Q err−→

(E-Amb)
P

err−→
(nΔt[P]μ, Q)

err−→
(E-New)

P
err−→

(νn : Amb[Γ])P
err−→

(E-Str)
P ≡ Q Q

err−→
P

err−→

Rule (E-Com) states that a process can receive only messages of a certain
type. In Rule (E-Open) we express the fact that if in an ambient n are ex-
changed messages of types from Γ ′, by opening the ambient, in order for the
processes to exchange messages of types from Γ ′, the ambient m containing am-
bient n should allow exchange of messages of types from Γ ′. The rest of the rules
are obvious and state the fact that if a process generates an error then including
it in another process, the error does not disappear.

Proposition 4. If a process is well typed, then it does not generate errors:
P : Γ implies P � err−→.

Proof. The proof considers the opposite of the fact that if P gives rise to a
runtime error (P err−→), then P cannot be well-typed under any set of types Γ
(P � : Γ , for all Γ). We use induction on the structure of P and consider a proof
cases for each rule in Table 9. We present only one case the other being treated
in a similar manner.
(E-Com) We consider that there exist a set of types Γ such that R : Γ , where
R = cΔt!〈m〉.(P,Q) | cΔt′?(x : Amb[Γ ′]).(P ′, Q′). This must have been derived

Mobile Ambients with Timers and Types 59

from (T-Par) with cΔt!〈m〉.(P,Q) : Γ and cΔt′?(x : Amb[Γ ′]).(P ′, Q′) : Γ .
Applying (T-Write), (T-Read) we have that Γ <: Amb[Γ ′] and n : Amb[Γ ′],
which is in contradiction with the hypothesis of the rule (E-Com), and so we
have that R � err−→.

We denote by P t→ Q the fact that process P evolves to process Q after apply-
ing the rule (R-GTProgress) for t ≥ 0 times, and with tφΔ(R) the fact that
function φΔ is applied t times to process R. We denote by ∼= the relation which
respects all the rules of Table 6 except replication, namely rule (S-Repl Par).
The following result claims that if two processes are structurally congruent and
both idle for t units of time, then the obtained processes are also structural con-
gruent.

Proposition 5. Time passage cannot cause a nondeterministic behaviour:
if P ∼= Q, P t→ P ′ and Q t→ Q′ then P ′ ∼= Q′.

Proof. We proceed by structural induction and present only one case the other
being treated in a similar manner.
(S-Res) We have P = (νn : Amb[Γ ′])P ′ and Q = (νn : Amb[Γ ′])Q′ with
P ∼= Q. By induction we have that if P ′ ∼= Q′, P ′ t→ P ′′ and Q′ t→ Q′′ then
P ′′ ∼= Q′′. By applying (R-Res) to both P ′ t→ P ′′ and Q′ t→ Q′′ we obtain that
P

t→ (νn : Amb[Γ])P ′′ and Q t→ (νn : Amb[Γ])Q′′. By applying (S-Res) to
P ′′ ∼= Q′′ we obtain that (νn : Amb[Γ])P ′′ ∼= (νn : Amb[Γ])Q′′.

The following example motivates why we remove replication. Let P = inΔ5n.
Then we have ∗P ≡ P | ∗ P . By applying the function φΔ, we obtain

φΔ(P | ∗ P) = inΔ4n | ∗ P �≡ ∗P = φΔ(∗P).

4 Cab Protocol with Timers

We extend the cab protocol described in [10] by introducing new operations
which describe a recall for a taxi when a certain period of time has passed, and
the payment of the trip. Roughly speaking, the cab protocol is about a city
with various sites, cabs and clients willing to go from one site to another. At
http://www-sop.inria.fr/mimosa/ambicobjs/taxis.html, a graphical implemen-
tation of the cab protocol is presented. The implementation is written in Java,
and presents the ambients as named and coloured circles, whose limits act as
boundaries for what is inside. A capability in c is described by an anchor which
remains in the ambient a, and an arrow outside which is linked to any ambient
with name c. When such an arrow finds an ambient c, the ambient a is entirely
moved inside c. A capability out c is described by an anchor pointing outside.
A capability open c is represented as a small square trying to find an ambient
with the same name. If it does, the boundaries are dissolved and the content
of that ambient is released. A snapshot of the cab protocol is presented in the
following figure:

60 B. Aman and G. Ciobanu

The whole system consists of one city, n sites, and several cabs and clients. The
cabs can be empty waiting in a precise site or can have clients and be anywhere
in the city, while the clients can be either on some sites waiting for a free cab to
arrive, or ar already traveling with a cab. In order to initiate a trip a client must
achieve a cab, and it does this by sending a request for an empty cab. In what
follows we use this protocol to illustrate how the mobile ambients with timers
are working, emphasizing on the timing aspects. It is worth to note that each
ambient of the system is well-typed because we do not consider communication.
Considering the fact that we have only ambients with no internal communication,
all the processes are well-typed under any set of types Γ .

A message emitted by a client located at a site from in order to call a cab is
described by
load client = loadingΔt1 [outΔt2cab. inΔt3client]μ

call = callΔt7[outΔt8client. outΔt9from. inΔt10cab. inΔt11from. load client]μ

recall = recallΔt12 [outΔt13cab. inΔt14from. inΔt15client]μ

call from client = (call, recall)
This ambient must enter a cab, where it gets opened and releases the process
load client. After it exits the ambient client and successively the ambient from it
looks for a cab to enter. If it founds a cab then it enters it by applying a (R-In):

(callΔt7 [inΔt10cab.inΔt11from. . . .]a, recall) | cab∞[]μ

→ cab∞[callΔt7 [inΔt11from. . . .]p, recall]μ

If the timerΔt7 of the ambient call expires before it enters a cab, then an ambient
recall is released. This would be possible if no cab ambient becomes sibling with
the ambient call in the period of time represented by the timer Δt7. To discard
the ambient call with the expired timer we apply a (R-GTProgress) rule which
launches the safety process recall:

(callΔt7 [inΔt10cab.inΔt11from. . . .]a, recall)→ recall
The recall ambient enters the ambient client, and announces that he can make
another call. This process of recalling is repeated until the process load client is
released. The process load client is launch by opening the ambient call using a
(R-Open) rule:

cab∞[(callΔt7 [load client]μ, recall) | openΔt44call.openΔt45trip. . . .]μ

→ cab∞[load client | openΔt45trip. . . .]μ

Mobile Ambients with Timers and Types 61

As a consequence, the cab goes to from in order to meet its client, and it releases
an ambient loading. All the steps necessary for a correct evolution of the trip, are
performed by applying the appropriate reduction rules. Once loading has been
released, it enters the ambient client.

The address given to the driver by a client to go from the current location
from to address to, as well as the payment of the trip are described by
trip from to c = tripΔt20 [outΔt21client. outΔt22from. inΔt23to. pay driver]μ

pay driver = payΔ16 [inΔt17c. inΔt18wallet. inΔt19money]μ

Whenever the client opens loading it means that the cab is present, and therefore
the client may enter it. Consequently, the client enters the cab and releases an
ambient trip, which the cab receives and opens. The process which is released
moves the cab to its destination where it releases another synchronization am-
bient pay to inform the client to pay the trip. An ambient pay enters the client
wallet and moves an ambient money to the driver wallet.
paid driver = paidΔt28 [outΔt29money. outΔt30wallet. outΔt31driver. inΔt32c]μ

money client = money∞[openΔt33pay. outΔt34wallet. outΔt35c. inΔt36driver.
inΔt37wallet. paid driver]μ

wallet client = wallet∞[money client | . . . |money client]μ
bye cab = byeΔt24 [outΔt25c. inΔt26cab. outΔt27to]μ

client from to = (νc)c∞[∗(openΔt38recall. call from c) | recallΔt39 []μ |
openΔt40 loading. inΔt41cab. trip from to c | openΔt42paid.
outΔt43cab. bye cab |wallet client]μ

Once the ambient money enters the driver wallet, an ambient paid is released and
send to the client telling him to get out from the cab. The client opens it, leaves
the cab, and sends the last synchronization ambient bye to the cab, instructing
it to leave the current location to.

The cab and the city are described by
driver = driver∞[wallet∞[money∞[]μ | . . . |money∞[]μ]μ]μ

cab = cab∞[rec X. openΔt44call. openΔt45trip. openΔt46bye.X | driver]μ
city = city∞[cab | . . . | cab | site∞1 [client site1 sitei | client site1 sitej | . . .]μ

| . . . | site∞i [. . .]μ]μ

In the discussion above we have supposed that only the timer Δt7 of the
ambient call expires, and this may produce the execution of the safety process
recall. This was made only for the sake of simplicity. In order to simulate other
possible scenarios, we can suppose that other timers may also expire:

– Δt1 - means that the loading ambient does not reach the ambient client,
and a safety process should be released in order to announce cab to create
another loading ambient;

– Δt16 - means that the pay ambient does not reach the ambient client, and a
safety process should be released in order to announce cab to create another
pay ambient;

– Δt20 - means that the trip ambient does not reach the ambient cab, and a
safety process should be released in order to announce the client to create
another trip ambient;

62 B. Aman and G. Ciobanu

– Δt28 - means that the paid ambient does not reach the ambient client, and a
safety process should be released in order to announce cab to create another
paid ambient;

– Δt24 - means that the bye ambient does not reach the ambient cab, and a
safety process should be released in order to announce the client to create
another bye ambient;

– various other scenarios can be simulated by introducing several other timers
over capabilities and ambients.

5 Conclusion

Process algebra is the general study of distributed concurrent systems in an
algebraic framework. In the last decades, some successful models have been in-
troduced within this framework: ACP [3], CSP [11], CCS and π-calculus [12],
distributed π-calculus [9], mobile ambients [4]. Each of these approaches are not
able to naturally describe properties of timing, probability and priority of events
performed by the components of the system being modelled. Process algebra
with timing features are presented in [1,7,8,13]. In [1] it is presented a process
algebra (CIPA) with local clocks where duration is attached to actions. A global
clock, eager actions and static durations are presented in [8]. A closer approach
is presented in [7], where the actions are durationless, and the author uses both
a relative and an absolute time over TCCS [13] and CIPA. An important dif-
ference between these papers and our approach is that they work with process
algebras like CSP, TCCS, CIPA and we work with mobile ambients. We do not
know about another timed approach over mobile ambients. We have extended
the mobile ambients by adding time constraints to channels, capabilities and
ambients. A similar extension with timers for π-calculus is presented in [2], and
for distributed π-calculus in [6]. A difference comes from the fact that a location
may disappear together with its processes.

Our work is motivated by the existence of timers in TCP/IP communication
protocols; the timers fit very well to the description of messages as mobile am-
bients. We extend with time restrictions a formalism designed for mobility in
order to study various aspects related to time. The formalism used is the ambi-
ent calculus. The novelty comes from the fact that the ambients can also expire,
simulating in this way the maximum amount of time any package can exist in
a network before being discarded. We have provided a static semantic given by
a typing system, and an operational semantics by a reduction relation. To de-
scribe passage of time we have given a discrete global time progress function. We
proved that the structural congruence and passage of time do not interfere with
the typing system. A subject reduction results ensures that once well-typed, an
ambient remains well-typed.

This paper is a first attempt to incorporate timing information on a simple
semantics without any significant contradiction. Time-related design decisions
follow standard ones for Timed CCS-like languages but their embedding in am-
bients make the construction of syntax and semantics more involved because

Mobile Ambients with Timers and Types 63

of structural semantics, reduction rules and typing systems for which mobile
ambients rely on.

To illustrate how the new formalism works, we have presented a timed exten-
sion of the cab protocol. In this example we emphasize the use of timers. For
the sake of simplicity we have presented a variant of the protocol in which only
one timer can expire. Other scenarios where other timers may expire are briefly
described.

References

1. Aceto, L., Murphy, D.: Timing and Causality in Process Algebra. Acta Informat-
ica 33(4), 317–350 (1996)

2. Berger, M.: Basic Theory of Reduction Congruence for Two Timed Asynchronous
pi-Calculi. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 115–130. Springer, Heidelberg (2004)

3. Bergstra, J.A., Klop, J.W.: Process Theory based on Bisimulation Semantics. In:
de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354,
pp. 50–122. Springer, Heidelberg (1989)

4. Cardelli, L., Gordon, A.: Mobile Ambients. In: Nivat, M. (ed.) ETAPS 1998 and
FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

5. Cardelli, L., Gordon, A.: Types for Mobile Ambients. In: ACM Symposium on
Principles of Programming Languages, pp. 79–92. ACM Press, New York (1999)

6. Ciobanu, G., Prisacariu, C.: Timers for Distributed Systems. Electronic Notes in
Theoretical Computer Science 164(3), 81–99 (2006)

7. Corradini, F.: Absolute versus relative time in process algebras. Information and
Computation 156(1), 122–172 (2000)

8. Gorrieri, R., Roccetti, M., Stancampiano, E.: A Theory of Processes with Dura-
tional Actions. Theoretical Computer Science 140(1), 73–94 (1995)

9. Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Infor-
mation and Computation 173(1), 82–120 (2002)

10. Hirschkoff, D., Teller, D., Zimmer, P.: Using ambients to control resources. In:
Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 288–303. Springer, Heidelberg (2002)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1989)

12. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

13. Moller, F., Tofts, C.: A Temporal Calculus of Communicating Systems. In: Groote,
J.F., Baeten, J.C.M. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 401–415. Springer,
Heidelberg (1991)

Automatic Refinement of Split Binary

Semaphore

Damián Barsotti and Javier O. Blanco

Fa.M.A.F., Universidad Nacional de Córdoba,
Córdoba 5000, Argentina

Abstract. Binary semaphores can be used to implement conditional
critical regions by using the split binary semaphore (SBS) technique.
Given a specification of a conditional critical regions problem, the SBS
technique provides not only the resulting programs but also some invari-
ants which ensure the correctness of the solution. The programs obtained
in this way are generally not efficient. However, they can be optimized by
strengthening these invariants and using them to eliminate unnecessary
tests.

We present a mechanical method to perform these optimizations. The
idea is to use the backward propagation technique over a guarded tran-
sition system that models the behavior of the programs generated by
the SBS. This process needs proving heavy implications and simplifying
growing invariants. Our method automatically entrusts these tasks to
the Isabelle theorem prover and the CVC Lite validity checker. We have
tested our method on a number of classical examples from concurrent
programming.

1 Introduction

Split Binary Semaphores (SBS) are used to implement conditional critical regions
[1,2]. Since the method is fairly general, the solutions obtained often perform
some unnecessary tests when leaving a critical region. This work focuses on the
mechanical elimination of these unnecessary tests in the programs.

The SBS technique provides not only the programs implementing conditional
critical regions, but also some invariants which ensure its correctness. Starting
from them, we find stronger invariants from which it can be automatically de-
duced that certain tests will always be false and hence can be eliminated.

In order to achieve these optimizations, we model programs as guarded tran-
sition systems, for which many invariant generation techniques are well-known.
In this work we mainly use the backward propagation technique [3] which pro-
vides invariants that are quantifier-free formulae. The proofs involved in their
manipulation can be dealt with fully automated provers1 such as CVC Lite [4].

1 Some provers (like CVC Lite and Simplify) include some support for first-order
quantifiers elimination. Nevertheless, these provers work better and faster on
quantifier-free formulae since support for quantifiers is not complete.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 64–78, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automatic Refinement of Split Binary Semaphore 65

This validity checker also supports several interpreted theories (including ratio-
nal and integer linear arithmetic, arrays, tuples, etc.) which are appropriate for
obtaining assertions on programs.

The propagation techniques (backward and forward) are based on the calculus
of a fixed point of a formula transformer. One of the advantages of the backward
propagation technique is that the sequence of approximations is usually finite.
Unfortunately, the formulae produced during this process are large. We use some
simplification techniques implemented in CVC Lite and in the Isabelle theorem
prover [5] to tackle this problem. Isabelle is an interactive theorem prover that
offers efficient tactics for simplification. Besides, we implement other simplifica-
tion methods using CVC Lite.

The paper is structured as follows. In Sec. 2 we explain the SBS technique.
Sec. 3 and 4 present the theoretical framework for constructing the guarded
transition system and the method for obtaining the invariants. The guarded
transition system that results from the programs generated by SBS technique is
developed in Sec. 5 and the refinement procedure in Sec. 6. In Sec. 7 we show
some optimizations applied on the refinement procedure. Finally, we show some
examples in Sec. 8 and expose our conclusions and suggestions for further work
in Sec. 9.

2 Split Binary Semaphores

It is well-known that binary semaphores can easily ensure mutual exclusion
and are suitable to implement critical regions. Moreover, they can be used in a
systematic way to implement conditional critical regions. We briefly present the
solution and refer to the literature for a justification of the method [1,6,2,7].

A set {s0, . . . , sn} of binary semaphores is called a split binary semaphore if
at any time at most one of them equals 1, i.e. the following property is a global
invariant for the (multi)program:

0 ≤ 〈
∑
i : 0 ≤ i ≤ n : si〉 ≤ 1 .

In the execution of the program, every critical region begins with a P on some
semaphore, and ends with a V operation on some semaphore (not necessarily
the same one). Hence, the invariant ensures mutual exclusion between any pair
P-V.

Besides ensuring mutual exclusion, SBS satisfies the following domino rule [7].
In an execution of the program, if the last V operation is over semaphore s, then
the next P operation will be on the same semaphore (notice that there may
be more than one P on s). This means that the precondition of a V operation
can be taken as the postcondition of any corresponding P operation since shared
variables can only be modified inside critical sections. This rule can be formulated
as the global invariant ϕSBS : 〈∀s :: s = 0 ∨ Is〉 where Is is the assertion that
holds before every V.s statement and after every corresponding P.s statement.

In order to implement conditional critical regions, the SBS can be used in the
following way. To every different condition, a binary semaphore of the SBS is

66 D. Barsotti and J.O. Blanco

associated, and another “neutral” semaphore is used for the case in which no
condition holds. Then, every critical region will be prefixed by a P operation on
the semaphore associated with its precondition. Some care should be taken to
introduce V operations to ensure progress. We illustrate the method with two
conditional critical regions.

Suppose we want to execute statements S0, S1 atomically under conditions
B0, B1 respectively. Furthermore, the critical regions must preserve a global in-
variant I. We use binary semaphores s0, s1 for each condition and two counters
b0, b1 which will be used to count the number of processes committed to execute
P.s0, P.s1 respectively. These counters are necessary to avoid deadlocks. Another
semaphore m is used for the case in which no condition holds or there is no
process waiting.

The following invariant characterizes the SBS solution for the critical region
problem.

ϕSBS : (s0 = 0 ∨ (B0 ∧ 0 < b0 ∧ I)) ∧
(s1 = 0 ∨ (B1 ∧ 0 < b1 ∧ I)) ∧
(m = 0 ∨ ((¬B0 ∨ 0 = b0) ∧ (¬B1 ∨ 0 = b1) ∧ I)) .

Fig. 1 shows the (fully annotated) component obtained by the application of
the SBS technique for the atomic execution of S0.

SCC0

P.m ;
{I ∧ (¬B0 ∨ b0 = 0) ∧ (¬B1 ∨ b1 = 0)}
if B0 → {I ∧ B0 ∧ b0 = 0 ∧ (¬B1 ∨ b1 = 0)}

skip
� ¬B0→ {I ∧ ¬B0 ∧ (¬B1 ∨ b1 = 0)}

b0 := b0 + 1 ;
{I ∧ (¬B0 ∨ b0 = 0) ∧ (¬B1 ∨ b1 = 0)}
V.m ;
P.s0 ;
{I ∧ B0 ∧ b0 > 0}
b0 := b0 − 1

fi;
{I ∧ B0}
S0 ;

{I}
if B0 ∧ b0 > 0 → {I ∧ B0 ∧ b0 > 0} V.s0

� B1 ∧ b1 > 0 → {I ∧ B1 ∧ b1 > 0} V.s1

� (¬B0 ∨ b0 = 0) ∧ (¬B1 ∨ b1 = 0)
→ {I ∧ (¬B0 ∨ b0 = 0) ∧ (¬B1 ∨ b1 = 0)} V.m

fi

Fig. 1. SBS generated component

For some examples on the use of this method see the extended version of this
article [8] and [1].

Automatic Refinement of Split Binary Semaphore 67

3 Guarded Transition System

The following definitions are taken from [9,3]. Let Σ be a first-order language
containing interpreted symbols for concrete domains like booleans, integers and
reals. Let F be the set of first-order formulas with free (typed) variables con-
tained in a finite set V = {x1, · · · , xn} over Σ. We shall denote the sequence of
variables x1, · · · , xn by x̄.

The usual way to model reactive systems is by using a guarded transition
system S = 〈V , Θ, T 〉 where Θ ∈ F is its initial condition and T is a finite set
of guarded transitions. Each τ ∈ T can be specified as follows:

γτ �−→ x̄ := ēτ (x̄)

where γτ ∈ F is the transition guard and ēτ (x̄) is a sequence of expressions
in Σ whose free variables are taken from V ; both sequences should have equal
length. The formula γτ denotes the condition that should hold in order to exe-
cute the transition, x̄ := ēτ (x̄) is a simultaneous assignment which indicate the
transformation of the state produced by the transition.

Usually, a transition system has a control variable vc ∈ V which ranges over a
finite set L of locations. This variable acts as a program counter and the locations
act as source and target of each transition. Hence, any τ ∈ T can be written as:

vc = lτ ∧ γτ �−→ x̄ := ēτ (x̄) ; vc := l′τ

where lτ , l′τ ∈ L, γτ is a predicate with variables in V/{vc} and x̄ := ēτ (x̄) is a
simultaneous assignment with variables in V/{vc}. For a given transition τ we
define the functions src(τ) = lτ and tgt(τ) = l′τ .

For each transition, we define a predicate Φτ as follows:

Φτ (x̄, x̄′) � γτ (x̄) ∧ x̄′ = ēτ (x̄)

where x̄′ is the renaming of variables xi in x̄ as x′i. Note that Φτ is a formula with
free variables in V ∪V ′ where V ′ is the set of variables obtained by renaming the
variables x to x′ in V . These predicates denote the relation between the values
of the variables before execution of the transitions (in a given location src(τ)),
with the values of the same variables after its execution (in location tgt(τ)).
Hence, we can define the transition predicate Φ of a guarded transition system
S as follows:

Φ(x̄, vc, x̄′, vc′) �
∨

τ∈T
vc = src(τ) ∧ vc′ = tgt(τ) ∧ Φτ (x̄, x̄′) .

The formula transformer weakest precondition[3,9] of a transition τ , denoted
by wp(Φτ), is defined as follows:

wp(Φτ)(ϕ(x̄)) � ∀x̄′. (Φτ (x̄, x̄′)→ ϕ(x̄′)) .

The universal quantifier can be eliminated using substitution:

wp(Φτ)(ϕ(x̄)) = γτ (x̄)→ ϕ(ēτ (x̄)) . (1)

68 D. Barsotti and J.O. Blanco

In general, the weakest precondition transformer for the whole transition sys-
tem S, denoted by WP (Φ), is defined as follows:

WP (Φ)(φ(x̄, vc)) � ∀ x̄′, vc′. (Φ(x̄, vc, x̄′, vc′) → φ(x̄′, vc′)) .

Since the set of location L is finite, the predicate φ can be written as:

φ(x̄, vc) =
∧
l∈L
vc = l → φ(x̄, l) . (2)

If we define the predicates φl(x̄) = φ(x̄, l) for each location l ∈ L then the
weakest precondition of the whole system is equivalent to:

WP (Φ)(φ(x̄, vc)) =
∧

τ∈T
vc = src(τ) → wp(Φτ)(φtgt(τ)(x̄)) (3)

or, using (1):

WP (Φ)(φ(x̄, vc)) =
∧

τ∈T
(vc = src(τ) ∧ γτ (x̄))→ φtgt(τ)(ēτ (x̄)) . (4)

4 Invariants

Let S = 〈V , Θ, T 〉 be a guarded transition system and R a first-order theory over
the language Σ. A formula ϕ ∈ F is an inductive invariant if R |= Θ → ϕ and
R |= ϕ → WP (Φ)(ϕ), with Φ the transition predicate of the guarded transition
system. Since the theory R is fixed, we shall not mention it explicitly when we
talk about satisfiability and validity in R. Thus, validity in R is denoted by |= .

A formula φ ∈ F is an invariant if there exists an inductive invariant ϕ such
that |= ϕ→ φ. This characterization is sound and relative complete2.

For a monotone formula transformer Γ : F �→ F , such as WP , we write the
greatest fixed point as νX.Γ (X). Its meaning is the usual [3].

Given a formula φ, we define the monotone formula transformer B by

B(Y) � φ ∧ WP (Φ)(Y) . (5)

The greatest fixed point ϕB : νX.B(X) provides the weakest formula ϕB
satisfying |= ϕB → φ and |= ϕB → WP (Φ)(ϕB). Therefore, if |= Θ → ϕB then
φ is an invariant and ϕB is an inductive invariant of the system.

Since B is monotone, if the sequence starting from True

True︸ ︷︷ ︸← B(ϕ0)︸ ︷︷ ︸← B(ϕ1)︸ ︷︷ ︸← · · ·
ϕ0 ϕ1 ϕ2

(6)

converges in finitely many steps, then its limit is ϕB. From this property we can
explore the state space using the backward propagation technique [3]: given a
candidate invariant φ, we can find the fixed point ϕB if the sequence converges
in finitely many steps. Then, proving |= Θ → ϕB we can verify if φ is an invariant
of the system.
2 Completeness is here understood relative to the expressibility of the first-order lan-

guage.

Automatic Refinement of Split Binary Semaphore 69

5 SBS as a Transition System

In this section we explain how to obtain a transition system for a set of processes
executing the programs generated by the implementation of conditional critical
regions using the SBS technique.

There is a common way to construct transition systems which model the be-
havior of concurrent programs [10]. The main idea is to first obtain a transition
system for every individual thread or sequential component (in a standard way)
and then construct their parallel composition as a product, relying on the in-
terleaving semantics of concurrency. In this new transition system there is a
variable vc which ranges over sets of locations instead of a single one. The value
of this variable is a subset of L and it denotes all the locations in which control
currently resides.

Note, however, that for SBS programs, the number of threads may grow un-
boundedly (we only model access to a shared resource, in principle it may be
accessed by many different components). Establishing a bound for these compo-
nents is unnecessary and artificial. Instead, we construct a different transition
system in which the transitions represent coarser atomic actions. This will be
possible given certain peculiarities of SBS programs.

Mutual exclusion: as mentioned in Sec. 2 any process executing these pro-
grams begins with a P operation and ends with a V operation. Moreover,
all the statements between them are executed in mutual exclusion. This is a
characteristic of the method: split binary semaphores ensure mutual exclu-
sion between any pair of P and V operations, i.e. at most one semaphore is
on at any point of the execution. Mutual exclusion is therefore ensured3.
From this property it follows that we can consider any sequence of the form
P.si; c1; · · · ; cn; V.sj as atomic. Such sequence will be called section Sij

p . Ex-
ecution of programs can be seen as the execution of a set {Si1j1

1 , · · · , Sinjn
n }

of such sections.
Domino rule: by the semaphore’s semantics we can assert that every V op-

eration is followed by a corresponding P operation applied on the same
semaphore, i.e. after a Sij

p ends, only a section Sjk
q can begin.

Locality of the variables: the variables used in the SBS programs cannot be
modified by other programs, i.e. the system is closed.

The mutual exclusion property implies that the sections Sij
p are executed one-

at-a-time for each isolated thread. The possible interleavings among different
threads are performed outside these sections, which can be considered atomic.
Considering also the other two properties, the behavior of the system can be re-
garded as the execution of a sequence of sections Sip1 jp1

p1 ;Sip2jp2
p2 ; · · · ;Sipn jpn

pn ; · · ·
with jpk

= ipk+1 . This gives these sort of systems a sequential flavor.
These characteristics allows us to define coarse grained transition systems

which are much more suitable for simplification. These systems can be seen as

3 For further discussions and an operational consideration, we refer to [1].

70 D. Barsotti and J.O. Blanco

sequential processes with non-deterministic jumps (goto sentences) between V’s
and P’s applied to the same semaphore.

From these facts, each section Sij
p will be modeled as a transition and the

locations identify which semaphore is active before and after the section is exe-
cuted (i.e. si and sj for the section Sij

p). Loosely speaking, each transition will
be associated with a sequence of actions executed inside a critical region by a
thread.

In the general case, the SBS technique takes as input a set {S0, · · · , Sm−1} of
programs with its corresponding conditions {B0, · · · , Bm−1}, an initial condition
Θ′ and a global invariant I. Here, m refers to the number of critical regions. For
each program Si the technique generates a component SCCi implementing its
corresponding critical region as shown in Fig. 2.

SCCi

P.sm ; (inm)
if Bi → skip
� ¬Bi → bi := bi + 1 ;

V.sm ; (out’m)
P.si ; (ini)
bi := bi − 1

fi;
Si ;
if B0 ∧ b0 > 0 → V.s0 (out0)

...
...

...
� Bm−1 ∧ bm−1 > 0 → V.s(m−1) (outm−1)
�
�

0≤j<m ¬Bj ∨ bj = 0 → V.sm (outm)

fi

Fig. 2. Component with labels

Only temporarily, we annotate each entry and exit point in a given component
SCCi to identify the sections Sjk

p (these labels will not identify nodes of the
transition system): the entry points are marked with labels prefixed by “in” and
the exit points are prefixed by “out”. The former are associated with P operations
and the later with V operations. The subscripts of the labels indicate which is
the semaphore involved. For example, a section (Smm

p) starting with inm may
end in out’m (if condition ¬Bi holds) or in one of the outj , with j ∈ {0, · · · ,m}
(if Bi holds). On the other hand, the sections (Sij

p with j ∈ {0, · · · ,m}) starting
in ini should end in one of the exit points outj (if its corresponding guard is on).

Given the shape of the guarded transition systems, we need to calculate the
condition under which a trace can be executed. This can be done by propagat-
ing the classical weakest precondition transformer [11] for every guard inside a
section Sjk

p to the beginning of the section. We enumerate all possible transitions:

– From (inm) to (out’m): Each transition is executed if the condition ¬Bi

holds and the state changes only with the increment of bi. Hence, we have
the following m transitions (one for each component SCCi):

Automatic Refinement of Split Binary Semaphore 71

vc = sm ∧ ¬Bi �−→ bi := bi + 1 ; vc := sm

with i ∈ {0, · · · ,m− 1}.
– From (inm) to (outj): These transitions are executed if Bi holds and Bj ∧
bj > 0 holds in the final guarded command. To calculate γ we apply wp on
the guard Bj ∧ bj > 0. We have then m×m transitions as follows:

vc = sm ∧ Bi ∧ wp(Si)(Bj ∧ bj > 0) �−→ Si ; vc := sj

with i ∈ {0, · · · ,m− 1}, j ∈ {0, · · · ,m− 1}.
– From (inm) to (outm): These transitions execute the same program as before

but only when the last guard of the final guarded command holds for each
SCCi. To calculate the guard γ we apply again wp but this time on guard∧

0≤j<m ¬Bj ∨ bj = 0:

vc = sm ∧ Bi ∧ wp(Si)(
∧

0≤j<m ¬Bj ∨ bj = 0) �−→ Si ; vc := sm

with i ∈ {0, · · · ,m− 1}.
– From (ini) to (outj): These transitions are executed when Bj ∧ bj > 0 holds

in the last guarded command. To calculate the guard for the transition we
apply wp, using as program the decrement of bi followed by program Si, on
the guard Bj ∧ bj > 0. We obtain then m×m transitions as follows:

vc = si ∧ wp(bi := bi − 1;Si)(Bj ∧ bj > 0)
�−→ bi := bi − 1 ;Si ; vc := sj

with i ∈ {0, · · · ,m− 1}, j ∈ {0, · · · ,m− 1}.
– From (ini) to (outm): These transitions are analogous to the ones considered

in the previous item, but are executed when the last guard of the final
guarded command holds for each SCCi. We now apply wp on these guards:

vc = si ∧ wp(bi := bi − 1;Si)(
∧

0≤j<m ¬Bj ∨ bj = 0)
�−→ bi := bi − 1 ;Si ; vc := sm

with i ∈ {0, · · · ,m− 1}.

These transitions form the set T of a transition system S = 〈V , Θ, T 〉 that
model the behavior of the SBS-based process. V is the set of program variables
in {S0, · · · , Sm−1} adding the auxiliary variables {b0, · · · , bm−1} and the control
variable vc. The initial condition Θ is:

Θ : vc = sm ∧ (
∧

0≤i<m bi = 0) ∧ Θ′ .

The SBS technique also provides an inductive invariant for the system:

ϕSBS :
∧

0≤i≤m

vc = si → ϕsi (7)

with ϕsi : Bi ∧ bi > 0 ∧ I, 0 ≤ i < m and ϕsm : (
∧

0≤j<m ¬Bj ∨ bj = 0) ∧ I.

72 D. Barsotti and J.O. Blanco

6 Automatic Refinement

We describe the process that automatically performs the required simplifications.
In particular, we focus on the elimination of some guards in the final conditional
statement of each component.

To check the possibility of elimination of a given guard, we use the backward
propagation technique on a candidate invariant φ (5) which models the impos-
sibility of the execution of this guard while the correction of the critical regions
is preserved.

For example, if we want to eliminate guard Bk ∧ bk > 0 (for some k ∈
{0, · · · ,m− 1}) in program SCCi (Fig. 2) we strengthen the invariant to ensure
that any transition with source (inm) and target (outk) or with source (ini) and
target (outk), is never executed. This is achieved by strengthening the inductive
invariant ϕSBS (7) with the propagation (using wp) of the negation of the guard
for each program SCCi:

φ : ϕSBD ∧ Fm ∧ Fi (8)

with Fm : vc = sm ∧ Bi → wp(Si)(¬Bk ∨ bk = 0)
Fi : vc = si → wp(bi := bi − 1;Si)(¬Bk ∨ bk = 0)

the strengthening of the transitions with source (inm) and target (outk), and
with source (ini) and target (outk) respectively.

Since we have a finite number of locations, we represent the setL as {0, · · · ,m}.
Furthermore, with (2), every assertion φ over the transition system can be repre-
sented by arrays indexed over L. That is, a formula φ(x̄, vc) =

∧
l∈L vc = l →

φ(x̄, l) will be represented by [φ(x̄, 0), · · · , φ(x̄,m)].
Given the formula φ and a formulaϕ (both represented as arrays)we implement

the formula transformer B:
function B(φ, T , ϕ)

for every i ∈ L do
Ti := {τ ∈ T : src(τ) = i} ;
ϕ[i] := φ[i] ∧

∧
τ∈Ti

wp(Φτ)(ϕ[tgt(τ)]) ;
ϕ[i] := R-simplify(ϕ[i]) ;

end for
return ϕ ;

In each iteration the function obtains B(ϕ) calculating the set {τ ∈ T :
src(τ) = i} for each location. The result of the function is calculated using the
formula

WP (Φ)(ϕ(x̄, vc)) =
∧
s∈L

vc = s →
∧

τ∈T ∧
src(τ)=s

wp(Φτ)(ϕtgt(τ)(x̄))

which is equivalent to (3).
The function R-simplify performs simplifications in the theory R and always

returns equivalent formulae. We implement them using CVC Lite and Isabelle.
These are described in Sec. 7.

Automatic Refinement of Split Binary Semaphore 73

Using the function B we can implement the algorithm for the fixed point:

function backPropagation(φ, T)
ϕ := [True, · · · ,True] ;
loop

if �|= Θ→ B(φ, T , ϕ) then
return unsat(B(φ, T , ϕ)) ;

else if |= ϕ→ B(φ, T , ϕ) then
return converge(ϕ) ;

else
ϕ := B(φ, T , ϕ) ;

end if
end loop

This function has a main loop which calculates the valuesϕi in (6). The variable
ϕ stores these values. If the value B(φ, T , ϕ) does not satisfy |= Θ → B(φ, T , ϕ),
then the function returns the value unsat(B(φ, T , ϕ)). In this case the method can-
not find an inductive invariant for the formula φ. In the other case, the method
checks if it has reached the fix point. If it is the case, it returns the value converge(ϕ)
which stores the fix point. We use CVC Lite in order to implement the verifications
of these conditions.

7 Method Optimizations

During the execution of the procedure described in Sec. 6, the size of the formulae
grows in each iteration. This is due to substitutions in the calculation ofWP (4)
performed by theB transformer. In order to optimize the procedure, we try to keep
the size of the formulae as short as possible. We carry out this task in two ways:
by eliminating and simplifying transitions and the candidate invariant before the
execution of the method and applying simplification strategies over the formulae
obtained in the fix point calculation.

Transition Simplification. The transitions from (inm) to (outj) in program SCCi

(Fig. 2) are

vc = sm ∧ Bi ∧ wp(Si)(Bj ∧ bj > 0) �−→ Si ; vc := sj

with i ∈ {0, · · · ,m − 1}, j ∈ {0, · · · ,m − 1}. When i = j the transition is never
executed. This is proven by showing that the term corresponding to this transition
in (3) is weaker than the candidate invariant φ, and hence can be absorbed in the
fix point calculation. Then, these transitions will be:

vc = sm ∧ Bi ∧ wp(Si)(Bj ∧ bj > 0) �−→ Si ; vc := sj

with i ∈ {0, · · · ,m−1}, j ∈ {0, · · · ,m−1} and i �= j. The proof is in the extended
version of this paper [8].

74 D. Barsotti and J.O. Blanco

We can eliminate other transitions considering the strength in the candidate
invariant φ (8). If we try to eliminate the guardBk ∧ bk > 0 in the program SCCi,
the transitions from (inm) to (outk) and from (ini) to (outk)

vc = sm ∧ Bi ∧ wp(Si)(Bk ∧ bk > 0) �−→ Si ; vc := sk and

vc = si ∧ wp(bi := bi − 1;Si)(Bk ∧ bk > 0) �−→ bi := bi − 1 ;Si ; vc := sk

can be eliminated. This fact is provenby showing that the terms generated by these
transitions are absorbed in the fix point calculation. The proofs are in the extended
version of this paper [8].

We can also simplify the transition going from (inm) to (outm):

vc = sm ∧ Bi ∧ wp(Si)(
∧

0≤j<m ¬Bj ∨ bj = 0) �−→ Si ; vc := sm

with i ∈ {0, · · · ,m−1}. These transitions are simplified by eliminating a conjunc-
tion term in the subformula

∧
0≤j<m ¬Bj ∨ bj = 0 :

vc = sm ∧ Bi ∧ wp(Si)(
∧

0≤j<m
i
=j

¬Bj ∨ bj = 0) �−→ Si ; vc := sm

with i ∈ {0, · · · ,m− 1}. The proof is in the extended version of this paper [8].

Candidate Invariant Simplification. If we try to eliminate the guard Bi ∧ bi > 0
in the program SCCi (i.e. eliminating the guard that releases the same kind of
process) the strengthening of Fm in (8) is not necessary. The proof is in the ex-
tended version of this paper [8].

Formulae Simplifications. We implement some simplification strategies over the
formulae. The function R-simplify (Sec. 6) implements these strategies over the
formulae ϕ[i] in the algorithm. These are quantifier-free formulae due to substitu-
tion in (4). Hence we can store them in conjunctive normal form. If some term in
the normalized formulae is weaker than the conjunction of the others, this term
can be eliminated. The process is applied over all terms in the formula. Also, a
similar tactic is applied over the disjunctions inside the conjunctions; if a subterm
is stronger than the disjunction of other subterms (in the same conjunctive term),
it can be eliminated. The testing of these implications is done with the CVC Lite
Validity Checker.

Moreover, other simplifications are implemented using the Isabelle theorem
prover. This tool implements default tactics of simplification and the function R-
simplify uses them in order to reduce the size of the formulae.

8 Examples

We test the method over some classical problems. From a given problem, the gener-
ation of the transition system and the candidate invariant was done automatically
from its specification. The specification consists of a set {S0, · · · , Sm−1} of pro-
grams with its corresponding conditions {B0, · · · , Bm−1}, an initial condition Θ′

and a global invariant I, as described in Sec. 5.

Automatic Refinement of Split Binary Semaphore 75

We develop a transition system generator that takes a text specification of the
problemas input and returns a textual representationof the transition system with
the candidate invariant. In this section we show the input and the result for each
example in a formatted form.

The method and the transition system generator was programmed in the
SML language. These programs and the specifications of the examples can be
found at http://www.cs.famaf.unc.edu.ar/ damian/publications/sbdinv/
programs/

Example 1 (Bounded Buffer). Consider the classical Producer/Consumer prob-
lem through a bounded buffer. The component called Producer produces some el-
ements and sends them to the Consumer component which will use them. Some
synchronization is needed to avoidwriting on a full buffer or reading from an empty
one. The programs are S0 : n := n+ 1 (producer component) and S1 : n := n− 1
(consumer component), the conditions are B0 : n < N and B1 : n > 0, the initial
condition is Θ′ : n = 0 ∧ N > 0 and the global invariant is I : 0 ≤ n ∧ n ≤ N .

First we test the method without any guard elimination. This case is for testing
purposes only (we do not attempt to eliminate any guard). After performing the
system simplifications the set of transitions generated is shown in Fig. 3. In this

vc = 2 ∧ ¬n < N �−→ b0 := b0 + 1; vc := 2 ,
vc = 2 ∧ ¬n > 0 �−→ b1 := b1 + 1; vc := 2 ,
vc = 2 ∧ n < N ∧ b1 > 0 ∧ n + 1 > 0 �−→ n := n + 1; vc := 1 ,
vc = 2 ∧ n > 0 ∧ b0 > 0 ∧ n − 1 < N �−→ n := n − 1; vc := 0 ,
vc = 2 ∧ n < N ∧ (b1 = 0 ∨ ¬n + 1 > 0) �−→ n := n + 1; vc := 2 ,
vc = 2 ∧ n > 0 ∧ (b0 = 0 ∨ ¬n − 1 < N) �−→ n := n − 1; vc := 2 ,
vc = 0 ∧ b0 − 1 > 0 ∧ n + 1 < N �−→ b0, n := b0 − 1, n + 1; vc := 0 ,
vc = 0 ∧ b1 > 0 ∧ n + 1 > 0 �−→ b0, n := b0 − 1, n + 1; vc := 1 ,
vc = 1 ∧ b0 > 0 ∧ n − 1 < N �−→ b1, n := b1 − 1, n − 1; vc := 0 ,
vc = 1 ∧ b1 − 1 > 0 ∧ n − 1 > 0 �−→ b1, n := b1 − 1, n − 1; vc := 1 ,
vc = 0 ∧ (b0 − 1 = 0 ∨ ¬n + 1 < N) ∧ (b1 = 0 ∨ ¬n + 1 > 0)

�−→ b0, n := b0 − 1, n + 1; vc := 2 ,
vc = 1 ∧ (b0 = 0 ∨ ¬n − 1 < N) ∧ (b1 − 1 = 0 ∨ ¬n − 1 > 0)

�−→ b1, n := b1 − 1, n − 1; vc := 2

Fig. 3. Bounded Buffer transitions

figure the locations are represented by the semaphore index as the transitions gen-
erator does. Note that after performing the system simplifications we obtain fewer
transitions than those developed in Sec. 5.

The candidate invariant is also automatically generated and is the same SBS
invariant of the problem ϕSBS because we do not attempt to do any guard elimi-
nation:

φ : (vc = 0 → 0 ≤ n ∧ n < N ∧ b0 > 0) ∧
(vc = 1 → 0 < n ∧ n ≤ N ∧ b1 > 0) ∧
(vc = 2 → (¬n < N ∨ b0 = 0) ∧ (¬n > 0 ∨ b1 = 0) ∧ 0 ≤ n ∧ n ≤ N) .

http://www.cs.famaf.unc.edu.ar/~damian/publications/sbdinv/programs/
http://www.cs.famaf.unc.edu.ar/~damian/publications/sbdinv/programs/

76 D. Barsotti and J.O. Blanco

Furthermore, the initial condition generated is:

Θ : vc = 2 ∧ n = 0 ∧ b0 = 0 ∧ b1 = 0 ∧ N > 0 .

After a few seconds of execution time the method converges in one iteration,
returning the same invariant φ.

In the second test we attempt to eliminate the producer’s guard n < N ∧ b0 >
0. This guard releases the producer that waits in the semaphore. The resulting set
of transitions is different from the previous one (for the details see the extended
version of the article [8]) and the candidate invariant is

φ : (vc = 0 → 0 ≤ n ∧ n < N ∧ b0 > 0 ∧ (b0 = 1 ∨ ¬n+ 1 < N)) ∧
(vc = 1 → 0 < n ∧ n ≤ N ∧ b1 > 0) ∧
(vc = 2 → (¬n < N ∨ b0 = 0) ∧ (¬n > 0 ∨ b1 = 0) ∧ 0 ≤ n ∧ n ≤ N) .

After a few seconds the method converges in four iterations, returning the fol-
lowing inductive invariant:

ϕ : (vc = 0 → 0 ≤ n ∧ n < N ∧ b0 > 0 ∧ (n < N − 1 → b0 = 1)
∧ (n > 0→ b0 ≤ 2 ∨ b1 ≤ 1)) ∧

(vc = 1 → 0 < n ∧ n ≤ N ∧ b1 > 0) ∧ (n > 1 → b0 ≤ 1 ∨ b1 = 1)
∧ (n < N → b0 ≤ 1)) ∧

(vc = 2 → (¬n < N ∨ b0 = 0) ∧ (¬n > 0 ∨ b1 = 0)
∧ 0 ≤ n ∧ n ≤ N)

which is implied by the initial condition Θ. Hence we can eliminate this guard.
We also try to eliminate the consumer’s guard n > 0 ∧ b1 > 0 obtaining a

similar positive result.
For the rest of guards (n > 0 ∧ b1 > 0 in producer and n < N ∧ b0 > 0 in

consumer) the method detects the unsatisfiability of the formula Θ → B(φ, T , ϕ)
in the first iteration.

Example 2 (Greedy Bounded Buffer). This example is a modified version of the
bounded buffer problem, where the consumer is greedy and consumes two elements
instead of one. The programs are S0 : n := n + 1 (producer) and S1 : n := n− 2
(greedy consumer), B0 : n < N and B1 : n > 1 are the conditions, Θ′ : n = 0 ∧
N > 1 is the initial condition, and the global invariant is I : 0 ≤ n ∧ n ≤ N .

For this problem the only guard that can be removed is n > 2 ∧ b1 > 0
in the consumer program. This guard releases a consumer process waiting in his
semaphore.

Automatic Refinement of Split Binary Semaphore 77

The transition system generated has 11 transitions and the fix point calculation
converges in 6 iterations to the invariant:

ϕ : (vc = 0 → 0 ≤ n ∧ 0 < b0 ∧ n < N
∧ (3 ≤ n→ b1 = 1 ∨ ¬0 < b1)
∧ (2 + n < N ∧ 1 ≤ n→ (0 < b1 → (0 < −2 + b0 → b1 = 1)))
∧ (3 + n < N → (0 < b1 → b1 = 1 ∨ ¬0 < −3 + b0))
∧ (n+ 1 < N ∧ 2 ≤ n→ (0 < b1 → b1 = 1 ∨ ¬0 < b0 − 1))) ∧

(vc = 1 → n ≤ N ∧ 0 < b1 ∧ 1 < n
∧ (3 < n→ b1 = 1)
∧ (n < N ∧ 3 ≤ n→ (0 < b1 − 1 → (b1 = 2 ∨ ¬0 < −2 + b0))))
∧ (1 + n < N → (0 < b1 − 1 → (0 < −3 + b0 → b1 = 2))) ∧

(vc = 2 → n ≤ N ∧ 0 ≤ n ∧ (b1 = 0 ∨ ¬1 < n) ∧ (b0 = 0 ∨ ¬n < N))

For the others guards the method finishes detecting the unsatisfiability of the
formula Θ → B(φ, T , ϕ).

Example 3 (Readers and Writers). The last example is the classical readers and
writers problem. The specification has the programs S0 : w := w + 1 (writer’s
entrance), S1 : w := w − 1 (writer’s exit), S2 : r := r + 1 (reader’s entrance) and
S3 : r := r− 1 (reader’s exit). The corresponding conditions areB0 : w = 0 ∧ r =
0, B1 : True, B2 : w = 0 and B3 : True.

In order to achieve the simplifications we need to add two kinds of assertions
to the programs. First, given the topology of the programs (i.e. every exit is pre-
ceded by an entry), we can add the preconditions of the specification. This means
that all the transitions in the writer’s exit will have the predicate w > 0 as extra
precondition and similarly for the reader’s exit with r > 0. Furthermore, since the
conditions for the execution of both exit procedures are always true, variables b2
and b3 will be invariantly equal to 0. Hence, these two predicates are added to the
global invariant.

With these additions, the method finds all superfluous guards of all SBS pro-
grams in a few seconds. It also detects all the cases where the simplification is not
possible (for the details see the extended version of the article [8]).

9 Conclusions and Further Work

Conditional critical regions are a high level design pattern for concurrent program-
ming. Unfortunately, since they are expensive to implement, most programming
languages do not provide them as primitives. The SBS technique allows a nice im-
plementationwhich canbe further improvedby axiomaticmethods.Thiswork pro-
vides a tool for performing such simplifications automatically. Since many prob-
lems can be solved with conditional critical regions, this method may have a wide
range of applications. We performed some experiments with classical concurrent
programs and variants of them (e.g. readers and writers, bounded buffer where the
consumer is greedy and consume more than one element).

78 D. Barsotti and J.O. Blanco

The examples suggest that in many cases the strengthening process terminates.
However, until now we were unable to prove a termination theorem which would be
of great importance since in this case the simplification could even be implemented
in a compiler. Given that SBS was early considered as a valid alternative for im-
plementation of conditional critical regions and monitors [12], these improvements
may give a much more efficient implementation of monitors with conditional wait,
which are easier to handle than other kinds of monitors.

Whereas the transition systems considered are generated by a SBS program,
many of these results can be extended to other kinds of programs in which each
transition models an atomic sequence of actions.

Although it works only for a very specific case, this work can be seen as a step
towards the use of theoremsprovers not only for a posteriori verification of systems,
but also for their formal construction and optimization.

Acknowledgements. We would like to thank Leonor Prensa Nieto and the ref-
erees for their helpful comments.

References

1. Dijkstra, E.W.: A tutorial on the split binary semaphore (March 1979),
http://www.cs.utexas.edu/users/EWD/ewd07xx/EWD703.PDF

2. Schneider, F.B.: On Concurrent Programming. Graduate texts in computer science.
Springer, New York, Inc. (1997)

3. Bjorner, N., Browne, A., Manna, Z.: Automatic generation of invariants and inter-
mediate assertions. Theor. Comput. Sci. 173(1), 49–87 (1997)

4. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating validity
checker. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 515–518.
Springer, Heidelberg (2004)

5. Paulson, L.C.: The Isabelle reference manual (2004),
http://isabelle.in.tum.de/doc/ref.pdf

6. Andrews, G.: Foundations of Multithreaded, Parallel, and Distributed Program-
ming. Addison-Wesley, Reading, Massachusetts, USA (1999)

7. Martin, A., van de Snepscheut, J.: Design of synchronization algorithms. Construc-
tive Methods in Computing Science, pp. 445–478 (1989)

8. Barsotti, D., Blanco, J.O.: (Im)proving split binary semaphores. Tecnical
Report (2007), Available at http://www.cs.famaf.unc.edu.ar/ damian/
publicaciones/sbdinv/SBDwip ext.pdf

9. Tiwari, A., Rueß, H., Säıdi, H., Shankar, N.: A technique for invariant generation.
In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp.
113–127. Springer, Heidelberg (2001)

10. Manna, Z., Pnueli, A.: On the faithfulness of formal models. In: Mathematical Foun-
dations of Computer Science, pp. 28–42 (1991)

11. Dijkstra, E.W., Scholten, C.S.: Predicate calculus and program semantics. Springer,
New York, Inc. (1990)

12. Kessels, J.L.W.: An alternative to event queues for synchronization in monitors.
Commun. ACM 20(7), 500–503 (1977)

http://www.cs.utexas.edu/users/EWD/ewd07xx/EWD703.PDF
http://isabelle.in.tum.de/doc/ref.pdf
http://www.cs.famaf.unc.edu.ar/~damian/publicaciones/sbdinv/SBDwip_ext. pdf
http://www.cs.famaf.unc.edu.ar/~damian/publicaciones/sbdinv/SBDwip_ext. pdf

Stepwise Development of Simulink Models Using

the Refinement Calculus Framework�

Pontus Boström1, Lionel Morel2, and Marina Waldén1

1 Åbo Akademi University, Department of Information Technologies
Turku Centre for Computer Science

Joukahaisenkatu 3-5, 20520 Turku, Finland
{pontus.bostrom,marina.walden}@abo.fi

2 INRIA/IRISA - Campus universitaire de Beaulieu
35042 Rennes Cedex, France
lionel.morel@irisa.fr

Abstract. Simulink is a popular tool for model-based development of
control systems. However, due to the complexity caused by the increas-
ing demand for sophisticated controllers, validation of Simulink models
is becoming a more difficult task. To ensure correctness and reliability
of large models, it is important to be able to reason about model parts
and their interactions. This paper provides a definition of contracts and
refinement using the action system formalism. Contracts enable abstract
specifications of model parts, while refinement offers a framework to rea-
son about correctness of implementation of contracts, as well as com-
position of model parts. An example is provided to illustrate system
development using contracts and refinement.

1 Introduction

Simulink / Stateflow [16] is a domain specific programming and simulation lan-
guage that has become popular for development of control- and signal-processing
systems. It enables model-based design of control systems, where a (continuous)
model of the plant can be constructed together with the (discrete) controller.
Simulink offers a wide range of simulation tools, which enables simulation and
evaluation of the performance of the controller. However, it lacks good tools and
development methodologies for reasoning about correctness of models. In partic-
ular, it fails to enforce a structured stepwise development method that becomes
necessary when developing large control systems.

A goal of our work is to establish such a development method by studying
the application of formal analysis techniques to help validate models. The work
is based on the use of assume-guarantee (called pre-post in this paper) contracts
as a form of local specifications. Analysis techniques rely on a notion of refine-
ment of Simulink models. The refinement calculus [6] gives a good theoretical
� This work is carried out in the context of the project ITCEE (Improving Transient

Control and Energy Efficiency by digital hydraulics) funded by the Finnish funding
agency TEKES

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 79–93, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

80 P. Boström, L. Morel, and M. Waldén

framework for developing formal stepwise design methodologies in which abstract
specifications are refined into detailed ones. The advantage with refinement is
that it allows for a seamless design flow where every step in the development
process can be formally validated by comparing the refined model to the more
abstract one. The final implementation is then formally guaranteed to exhibit
the behaviour described by the original specification.

Design-by-contract for embedded controllers. Contract-based design [18]
is a popular software design technique in object-oriented programming. It is
based on the idea that every method in each object is accompanied by (ex-
ecutable) pre- and post- conditions. The approach has also been successfully
applied to reactive programs in [15]. There, a contract is described as a pair of
monitors (A,G) and is associated to each component. The meaning of such a
contract is that ”as long as input values satisfy A, the outputs should satisfy G”.

Contracts in Simulink consists of such pre- and post-conditions for model
fragments [8]. To get a formal semantics of contracts we translate the Simulink
models to action systems. Action systems [5,7] is a formalism based on the re-
finement calculus [6] for reasoning about reactive systems. Contracts are here
viewed as non-deterministic abstract specifications. They cannot be simulated
in Simulink, but they can be analysed by other tools e.g. theorem provers. Con-
formance of an implementation to a specification can be validated by model
checking or testing. The aim to provide an easy to use and lightweight reason-
ing framework for correctness of models. Contracts together with the refinement
definition also enable compositional reasoning [1] about correctness of models.

Other formalisations of Simulink exist [3,10,11,21,22]. Each one of these take
into account different subsets of Simulink. Refinement of Simulink diagrams has
also been considered by Cavalcanti et al. [10]. However, they deal mostly with
refinement of models into code. We are interested in refinement and stepwise
development of models from abstract specifications, which is not the concern of
any of those works. Instead of action systems, a definition of refinement [19] for
Lustre [13] could also be used in conjunction with the translation from Simulink
to Lustre [22]. However, that formalisation can only accommodate discrete mod-
els. Treating continuous models using refinement of continuous action systems
[17] is a rather natural extension of our formalisation. Furthermore, general for-
mal description and refinement rules for process nets (block-diagrams) has also
been investigated [14]. However, we focus specifically on rules for Simulink.

Here we only consider Simulink models that are discrete and use only one
single sampling time. We do not consider all types of blocks, e.g., non-virtual
subsystems or Stateflow. The action system formalism and refinement calculus
is, however, very versatile [6] and can accommodate these features as well.

2 Action Systems

Action systems [4,5,7] are used for describing reactive and distributed systems.
The formalism was invented by Back and Kurki-Sounio and later versions of it
use the refinement calculus [6].

Stepwise Development of Simulink Models 81

Table 1. Program statements with their predicate transformer semantics

〈f〉.q.σ = q.f.σ (Functional update)
{p}.q = p ∧ q (Assertion)
[p].q = p ⇒ q (Assumption)
(S1; S2).q = S1.(S2.q) (Sequential composition)
[R].q.σ = ∀σ′.(R.σ.σ′ ⇒ q.σ′) (Demonic relational update)
(S1 � S2).q = S1.q ∧ S2.q (Demonic choice)
skip.q = q (Skip)
abort.q = false (Aborted execution)
magic.q = true (Miraculous execution)

Before introducing action systems, a short introduction to the refinement
calculus [6] is needed. The refinement calculus is based on Higher Order Logic
(HOL) and lattice theory. The state-space of a program in the refinement calculus
is assumed to be of type Σ. Predicates are functions from the state-space to the
type Boolean, p : Σ → bool. A predicate corresponds to the subset of Σ where p
evaluates to true. Relations can be thought of as functions from elements to set of
elements, R : Σ → (Σ → bool). A program statement is a predicate transformer
from predicates on the output state-space Σ to predicates on the input state-
space Γ , S : (Σ → bool) → (Γ → bool). Here we will only consider conjunctive
predicate transformers [6,7]. Note also that conjunctivity implies monotonicity.
A list of conjunctive predicate transformers are given in Table 1.The functional
update consists of assignments of the type (〈f〉 =̂ x := e), where the value of
variable x in state-space σ is replaced by e. The relational update R is given in
the form R =̂ (x := x′|P.x.x′). The predicate P gives the relation between the
old values of variable x in σ and the new values x′ in σ′. Other variables than x
in σ remains unchanged in the updated state-space σ′.

An action system has the form:
A =̂ |[var x; init A0; do A od]| : 〈z〉

Here x (resp. z) denotes the local (resp. global) variables.A0 is a predicate giving
the initialisation action. All actions can be grouped as one single action A that
consists of conjunctive predicate transformers, without loss of generality [7].

2.1 Trace Semantics

The execution of an action system gives rise to a sequence of states, called be-
haviours [5,7]. Behaviours can be finite or infinite. Finite behaviours can be
aborted or miraculous, since we do not consider action systems that can termi-
nate normally. In order to only consider infinite behaviours, aborted or mirac-
ulous behaviours are extended with infinite sequences of ⊥ or , respectively.
These states are referred to as improper states.

Action A can be written as {tA}; [nA], where tA is a predicate and nA is a
relation that relates the old and the new state-spaces. This can again be done
without loss of generality [7]. Then σ = σ0, σ1, . . . is a possible behaviour of A
if the following conditions hold [5,7]:
– The initial state satisfies the initialisation predicate, A0.σ0

– if σi is improper then σi+1 is improper
– if σi is proper then either:

82 P. Boström, L. Morel, and M. Waldén

• the action system aborts, ¬tA.σi and σi+1 = ⊥, or
• it behaves miraculously, tA.σi ∧ (nA.σi = ∅) and σi+1 = , or
• it executes normally, tA.σi ∧ nA.σi.σi+1

Behaviours contain local variables that cannot be observed. Only a trace of a
behaviour consisting of global variables can be observed. Furthermore, all finite
stuttering has been removed from the result and finally all infinite stuttering
(internal divergence) has been replaced with an infinite sequence of ⊥. Stuttering
refers to steps where the global variables are left unchanged. The semantics of
action system A is now a set of observable traces [5,7].

2.2 Refinement

Refinement of an action system A means replacing it by another system that is
indistinguishable from A by the environment [5,7]. An ordering of traces σ and
τ , σ ≤ τ , is first defined on the extended state-space Σ ∪ {⊥, } as:

(σ0, σ1, . . .) ≤ (τ0, τ1, . . .) =̂ (∀i · σi = ⊥ ∨ σi = τi ∨ τi = �)

Consider two action systems A and A′. Refinement is then defined as:

A � A′ =̂ (∀σ′ ∈ tr(A′) ⇒ (∃σ ∈ tr(A) · σ ≤ σ′))

This means that for each trace in the refined system A′ there exists a corre-
sponding trace in the abstract system A. Data refinement rules corresponding
to this refinement semantics can be found in [5,7].

3 Encoding Simulink Diagrams in the Refinement
Calculus

The structure of a Simulink block diagram can be described as a set of blocks
containing ports, where ports are related by signals. Simulink has a large library
of different blocks for mathematical and logical functions, blocks for modelling
discrete and continuous systems, as well as blocks for structuring diagrams.
Simulink diagrams can be hierarchical, where subsystem blocks are used for
structuring.

3.1 The Steam Boiler Example

To illustrate the formalisation and stepwise development of Simulink, we use
a simplified version of the steam boiler case study [2] as a running example
throughout the paper. This system consists of a boiler for producing steam.
Water is delivered to the system using a pump that can be switched on or off.
Steam is taken from the boiler using a valve that is either fully opened or fully
closed. The goal of the controller is to maintain the water level between the lower
limit L1 and upper limit L2. It can read the current water level using the sensor
w level and it controls both the pump and the out-valve of the boiler through
the actuators pump on and out open.

Stepwise Development of Simulink Models 83

too_high

ok

too_low

pump_on

Pump controller

(a)

po1

po2

po3

po4

po5

po6

po7

po8

po9

pi1

pi3

pi4

pi5

pi6

pi7

pi8

pi9

pi10

pi2

1

pump_on

1

switch_on

0

switch_off

switch3

switch2

switch1

z

1

already_on

3

too_low

2

ok

1

too_high

(b)

Fig. 1. A simple Simulink model consisting of a part from the steam boiler example.
Diagram (b) shows the content of subsystem (a).

3.2 Translating Simulink Model Elements

To introduce the Simulink diagram notation, a small example is shown in Fig. 1.
The diagram contains the part of the steam boiler controller that controls if the
pump is switched on or off. The diagram contains source blocks switch on and
switch off for defining constants giving the state of the pump. There are three
in-blocks that provides Booleans stating whether the water level is too high, ok
or too low. If the water level is too low the pump is switched on and if it is
too high the pump is switched off by the switch-blocks, switch1 , switch2 and
switch3 . If the water level is between the limits, the current state of the pump is
maintained using the memory in the block already on . The desired state of the
pump is delivered from the subsystem by the out block pump on.

A Simulink model is defined as a tuple M = (B, root, subh, P, blk, ndep, C).
– B is the set of blocks in the model. We can distinguish between the following

types of blocks; subsystem blocks Bs, in-blocks in subsystems Bi, out-blocks
in subsystems Bo and blocks with memory Bmem. When referring to other
types of ”basic” blocks, Bb is used in this paper. Subsystems Bs, in-blocks
Bi and out-blocks Bo are referred to as virtual blocks, since they are used
purely for structuring and have no effect on the behavioural semantics.

– root ∈ Bs is the root subsystem.
– subh : B → Bs is a function that describes the subsystem hierarchy. For

every block b, subh.b gives the subsystem b is in;
– P is the set of ports for input and output of data to and from blocks. The

ports P i is the set of in-ports and P o is the set of out-ports, P = P i ∪ P o;
– blk : P → B is a relation that maps every port to the block it belongs to;
– ndep : P i �→P o is a partial function that maps in-ports in non-virtual blocks

to the ports in other non-virtual blocks they depend on. An in-port depends
on an out-port, if there is a signal or sequence of ports in virtual blocks con-
nected by signals between them. Since we need to be able to analyse model
fragments, all in-ports in non-virtual blocks are not necessarily connected.
This function can be defined in terms of signals and ports, but for brevity it
is given directly.

84 P. Boström, L. Morel, and M. Waldén

Table 2. Overview of the translation from Simulink to refinement calculus

Simulink construct Requirements Refinement calculus translation
Port, p: p ∈ P∧

blk.p /∈ (Bi ∧ Bo ∧ Bs)
ν.p

Constant, c: true c
Dependency, ndep: p1 = ndep.p2 ν.p2 := ν.p1

Normal block, b: b ∈ Bb ∧ blk.po = b ∧ po ∈ P o∧
blk.pi = b ∧ pi ∈ P i

ν.po := fb.(ν.pi).cb

Memory block, b: b ∈ Bmem ∧ blk.po = b ∧ po ∈ P o∧
blk.pi

f = b ∧ pi
f ∈ P i∧

blk.pi
g = b ∧ pi

g ∈ P i

ν.po := fb.pi
f .xb.cb

xb := gb.pi
g.xb.cb

– C is the set of block parameters of the model. The block parameters are a
set of constants defined in the Matlab workspace of the model.

There are several constraints concerning these functions and relations in order to
only consider valid Simulink models, e.g., valid hierarchy of subsystems. In this
paper we assume that we only deal with syntactically correct Simulink models
(ones that can be drawn).

Consider the Simulink block diagram given in Fig. 1. The blocks are de-
fined as B =̂ {root ,Pump controller , too high , ok , too low , switch1 , . . .}. The
subsystems are given as Bs =̂ {Pump controller , root} and the hierarchy as
subh =̂ {(Pump controller , root), (too high, Pump controller), . . .}. Names of
ports are usually not shown in diagrams. Here we have the following ports,
P =̂ {pi1, . . . , pi10} ∪ {po1, . . . , po9}. The function describing to which block
each port belongs to is then given as blk =̂ {(po1, switch off), (po2, already on),
(po3, switch on), . . .}. The connections between the ports are defined as ndep
=̂ {(pi1, po3), (pi3, po2), (pi4, po2), . . .}. Note that e.g. (pi2, po6) is not in ndep,
since pi2 is only connected to a virtual block. There are no configurable para-
meters C in this diagram.

To reason about Simulink models in the refinement calculus framework, all
Simulink constructs are mapped to a corresponding construct in the refinement
calculus, as shown in Table 2. The column requirements gives the required con-
dition for a construct to be translated, while the column refinement calculus
translation gives the actual translation.

Ports in Simulink corresponds to variables in the refinement calculus frame-
work. The function ν : P �→V describes this mapping, where V is a set of variable
names. Only necessary ports are translated to variables, i.e., ports that can be in
(dom .ndep∪ran .ndep). The constant block parameters are translated directly to
variables c. The connections between blocks, p1 = ndep.p2, are modelled as as-
signments. A block can contain in-ports, out-ports, and block parameters. Each
block b ∈ Bb is associated with a function fb that updates its out-ports based
on the value of the in-ports pi and the parameters of the block cb. In blocks
that contain memory b ∈ Bmem, the value on the out-ports depends also on the
memory in the block xb. The memory is updated (using a function gb). These
functions do not need to depend on all in-ports.

Stepwise Development of Simulink Models 85

3.3 Ordering the Assignments Obtained from Simulink

Now that the translation of the individual constructs have been determined we
can give the order in which to execute them. There are several different orderings,
since diagrams can have blocks that do not depend on each other. To find an
ordering, the dependency between ports in the Simulink diagram need to be
determined. We define a relation totdep that describes this.

totdep =̂ λp1 : P · {p2 ∈ P |
((p1 ∈ P i ⇒ p2 ∈ ndep.p1)∧
(p1 ∈ P o ⇒ p2 ∈ fdep.p1))}

The relation totdep considers both the relation between ports as given by the
signals and subsystem hierarchy (ndep), as well as the relations between out-
ports and in-ports inside blocks (fdep). The relation fdep, fdep : P o → P(P i), can
sometimes not be determined syntactically on the graphical part of the Simulink
diagram. However, the data dependency for different blocks is documented in the
Simulink documentation [16]. The relation totdep need to be a partial order that
forms a directed acyclic graph for deterministic models. Hence, we can always
find an order in which to update the ports in the model and ensure predictable
behaviour and execution time. This is automatically ensured by Simulink, if the
check for algebraic loops is activated. The order in which the translated Simulink
model elements are executed can now be defined.

Definition 1 (Ordering of assignments). Consider two ports p1 and p2 such
that p1 depends on p2, p2 ∈ totdep∗.p1. In the refinement calculus representation
ν.p1 is updated in the substitution S1 and ν.p2 in S2. Then there exists a (possibly
empty) sequence of substitutions S such that S2;S;S1.

The ordering given in Def. 1 can be achieved by topologically sorting the assign-
ments to ports. Note that this ensures that a port is never read before it has
been updated.

Consider again the model in Fig. 1. The data dependency inside blocks is given
by fdep =̂ {(po7, pi1), (po7, pi2), (po7, pi3), (po8, pi4), . . .}, since the output of a
switch block depends on all its inputs and the output of the memory block
already on does not depend on its input. The complete ordering of ports is then,
totdep =̂ ndep∪ fdep. The refinement calculus representation refCalc.M of model
M becomes:

refCalc.M =̂ ν.po1 := 0; ν.pi7 := ν.po1; ν.po2 := x; ν.pi3 := ν.po2;
ν.po3 := 1; ν.pi1 := ν.po3; ν.po7 := (if ν.pi2 then ν.pi1 else ν.pi3 end); . . .
x := ν.po9

Here x denotes the memory in block already on. The memories are updated
after the ports in the diagram have been updated. Hence, refCalc.M returns
the sequential composition of a permutation satisfying the ordering rules of the
individual translated statements, as well as the memory updates. Note that all
in-ports are not assigned, since some in-ports are not connected to non-virtual
blocks.

86 P. Boström, L. Morel, and M. Waldén

Table 3. Refinement calculus semantics of contract conditions

Contract condition Refinement calculus semantics
Qparam(c) Qparam(c)

Qpre(pi, c) {Qpre(ν.pi, c)}

Qpost(po, pi, c) [ν.po := vo|Qpost(vo, ν.pi, c)]

4 Specification of Simulink Models

When developing Simulink models, we want to start with an abstract overview
of the system that is then refined in a stepwise manner. We use contracts to give
this abstract description.

The blocks in a Simulink diagram usually use parameters from the Matlab
workspace. These parameters are required to have certain properties, here de-
scribed by the predicate Qparam. In the refinement calculus this translates (see
3) into a condition describing the valid parameter values.

A contract for a Simulink model fragment consists of a pre-condition and a
post-condition that state properties about its inputs and outputs. In practise
this means that we give a specification block that can then be refined to a de-
sired implementation. A specification block,Ms, contains in-ports (pi), out-ports
(po), a pre-condition (Qpre) and a post-condition (Qpost). The semantics of the
specification Ms is given by its translation to the refinement calculus shown in
Table 3. Statements with this semantics cannot be simulated by the solvers in
Simulink. However, other tools can be used to analyse these abstract specifica-
tions. The fact that an implementation satisfies its specification can be tested
also in Simulink.

Consider again the steam boiler example. An overview of the complete sys-
tem is given in Fig. 2. This model consists of a specification of the controller,
Controller, and a specification of the plant, Steam boiler. The model has block
parameters giving the maximum and minimum water levels L1 and L2, respec-
tively. Water levels are positive and the upper level L2 is higher than the lower
level L1, Qparam =̂ L1 > 0 ∧ L2 > L1. The following safety requirements are
then given for the water level in the controller:
– When it is above L2, the pump is switched off and the out valve is opened.
– When it is below L1, the pump is switched on and the valve is closed.

The contract of the controller is then derived from the safety requirements.

Qpre
c =̂ true

Qpost
c =̂ (w level > L2 ⇒ ¬pump on ∧ out open)∧

(w level < L1 ⇒ pump on ∧ ¬out open)

pump_on

out_open
w_level

Steam boiler

w_level

pump_on

out_open

Controller

Fig. 2. The diagram in gives an overview of the complete steam boiler system

Stepwise Development of Simulink Models 87

The plant has no pre-condition, Qpre
p =̂ true, and it can assign any positive value

to the current water level, Qpost
p =̂ w level ≥ 0.

Since the ordering rules for statements in Def. 1 only concerns statements
that updates variables, the assert statement needs a separate rule.

Definition 2 (Ordering of assert statements). Consider an arbitrary assert
statement {Q(p1, . . . , pn)}. The assert statement is evaluated as soon as possible.
This means that all statements Sj that updates ν.pj, where pj ∈ {p1, . . . , pn},
have already been evaluated. Furthermore, the last such update statement S is
directly followed by the assert statement, S; {Q(p1, . . . , pn)}.

The diagram in Fig. 2 contains cyclic dependencies between blocks, i.e., feedback.
Since this is a common pattern for connections between specification blocks, we
also deal with it here. A cycle can be treated as a fix-point [14].

Definition 3 (Cyclic dependencies). Assume that Ms is any specification
block in a cycle. Let the in-port pi

s of Ms be connected to the out-port po of an-
other block in the same cycle. In order to be able to use the ordering rules in
Definitions 1 and 2, this connection is considered broken when ordering state-
ments. The refinement calculus translation of Ms gives the statements ([ν.pi

s :=
v|true], [ν.po

s := v|Qpost]). The rest of the constructs in the cycle are translated
as in Tables 2 and 3. These statements are then followed by the assumption that
the value of pi

s and the value of po are equal and by the translated pre-condition
Qpre of the specification, [ν.pi

s = ν.po]; {Qpre}.

The treatment of feedback here is similar to the one by Mahony [14]. It enables
us to prove that the pre-condition is guaranteed by its preceding blocks. Using
this technique, the diagram in Fig. 2 can now be translated:

refCalc.System =̂
[w level′ := v|true]; [pump on, out open := vp, vo|Qpost

c]; pump on′ := pump on;
out open′ := out open; {Qpre

p }; [w level := v|Qpost
p]; [w level′ = w level]; {Qpre

c }

Cycles are not allowed in the implementation and new features have to be added
during the refinement process to make the cyclic dependencies disappear.

4.1 Action System Semantics of Simulink Models

We have now given the semantics of all the needed parts of Simulink in the refine-
ment calculus framework. The behaviour of the complete diagram is given as an
action system. Assume that the constructs in the Simulink model is translated
to the refinement calculus statements (S1, . . . , Sn). This involves both standard
Simulink constructs and contract statements. However, the execution order of
these statements given in Def. 1-3 is not unique. Consider two arbitrarily chosen
execution orders Sk; . . . ;Sl and Sr; . . . ;Ss satisfying the ordering constraints.
The following results are then possible:

1 (Sk; . . . ; Sl).false ∧ ¬(Sr; . . . ; Ss).true
2 ¬(Sk; . . . ; Sl).true ∧ (Sr; . . . ; Ss).false

3 ∀q · (Sk; . . . ; Sl).q = (Sr; . . . ; Ss).q

88 P. Boström, L. Morel, and M. Waldén

Due to the different order of statements, one sequence of statements might ex-
ecute a miraculous statement before an abort statement or vice-versa (cases 1
and 2). Otherwise, the result is the same for both orderings (case 3).

Since a model should be non-terminating both miraculous and aborting behav-
iour are considered erroneous and should be avoided. Hence, we can consideran
arbitrary ordering of the statements. The action system is then:

M =̂ |[var x1, . . . , xm, c;
init Qparam(c) ∧ Init(x1, . . . , xm);
do

Sk; . . . ; Sl; R1; . . . ; Rm; t := t + ts

od
]| : 〈ν.p1, . . . , ν.pn, t〉

The global variables giving the observable behaviour are given by the ports,
p1, . . . , pn, in the model. This way it is possible to track that the behaviour of
the initial model is preserved. The time t is considered to be a global variable, to
ensure that we have no infinite stuttering. The memory of the blocks, x1, . . . , xm,
and constant block parameters c are local variables to the action system. The
action consists of a sequence of statements Sk; . . . ;Sl satisfying the ordering
rules in Def. 1-3 that updates ports. This sequence is followed by statements
R1; . . . ;Rm updating the memory variables x1, . . . , xm. The order is not impor-
tant, since these statements are deterministic and independent of each other.
The system is correct, if all pre- and post-conditions are satisfied at all times.
Correctness can be verified by checking that the system is non-terminating,
∀t · t ∈ tr(MV)⇒ t /∈ {⊥, }.

4.2 Correctness of Simulink Models

The aim of this paper is to be able to define and verify correctness properties
of Simulink models. Furthermore, since proofs might not always be feasible, we
like to be able to have correctness criteria that can be model checked or tested.

Assume that we have a Simulink model M with a pre-condition Qpre that
should maintain a condition Qpost. Assume further that pi

f denotes in-ports that
are free and pi

b denotes in-ports in Qpre that are already connected. The trans-
lation of constructs of M with the pre-condition Qpre and post-condition Qpost

is given by the refinement calculus statements (S1, . . . , Sn, {Qpre}, {Qpost}, R1,
. . . , Rm):

refCalc.M = Sk; . . . ; Sj ; . . . ; {Qpost}; . . . ; Sl; R1; . . . ; Rm , for k, j, l ∈ 1..n

The assert {Qpre} cannot be included, since not all in-ports are connected. Model
M is therefore a partial model. However, we are interested in the model behaviour
in the environment where it is used, i.e., for inputs, where the pre-condition holds.
We create a validation model for obtaining a complete model that provides the
most general environment of such type.

Definition 4 (Validation model). A validation model is created by adding a
non-deterministic assignment to the model that assigns the free in-ports pi

f in

Stepwise Development of Simulink Models 89

M values satisfying the precondition. The model contains the refinement calcu-
lus statements: (S1, . . . , Sn, {Qpre}, {Qpost}, [ν.pi

f := v|Qpre], R1, . . . , Rm). The
validation model for M is given as

refCalc.MV =̂ Sk; . . . ; [ν.pi
f := v|Qpre]; . . . ; {Qpre}; . . . ; Sj ; . . . ; {Qpost}; . . . ; Sl; R1; . . . ; Rm

The behaviour of the validation model refCalc.MV is given as an action system.
The model M is correct, if the action system MV has no improper traces.

If the modelM is deterministic, the correctness of the validation model can be
checked using model checking, other verification tools or testing. A test case for
M is a model where the statement [ν.pi

f := v|Qpre(v, ν.pi
b)] has been refined to a

deterministic statement. Note that we need to show that there is always a test
case in order to ensure that the validation model does not behave miraculously.

If the model M is given as a set of specification blocks M1, . . . ,Mm, where
all the models Mj consists of a pre-condition Qpre

j and post-condition Qpost
j ,

the correctness constraints can be simplified. In this case, there is no need to
iterate the system over time, since the execution of the graph is independent
of the number of times it has been executed before (see Def. 1-3). This lead to
compositional reasoning about correctness for different model fragments similar
to composition of specifications in [1], i.e., we do not have to know anything
about the implementation of the specifications to prove that the connections
between them are correct. We need to verify that 1) the validation model does
not behave miraculously, ¬MV .false and that 2) the pre-conditions are not
violated, MV .true.

We can then derive a condition of the following type for checking
pre-conditions in the model MV using the refinement calculus:

([Qparam(c)]; [ν.pi
f := v|Qpre]; {Qpre

1 }; [ν.po
1 := v|Qpost

1]; . . . ;
{Qpre

m }; [ν.po
m := v|Qpost

m]; {Qpost}).true

Hence, the post-conditions of the predecessors have to imply the pre-condition
of the successors and the final post-condition Qpost. Using weakest precondition
calculations simple conditions can be derived. To show the absence of miraculous
behaviour is similar.

5 Refinement

To get a definition of refinement we use the translation of Simulink to the Action
Systems formalism. The abstract specifications given by contracts are refined to
more concrete models. The properties of the block parameters were stated using
an initialisation condition. Refinement of the block parameters follow standard
rules for refinement of initialisation [5,7] and is not discussed here.

Consider specification blockMs with in-ports P i
s , out-ports P o

s , pre-condition
Qpre and post-condition Qpost in a model M = (B, root, subh, P, blk, ndep, C).
This specification is refined by the model fragmentMn = (Bn, rootn, subhn, Pn,
blkn, ndepn, Cn) with pre-condition Qpre

n . The refinement is illustrated in Fig. 3.

90 P. Boström, L. Morel, and M. Waldén

M:

M':

v

p^i_n1

p^i_n2

p^o_n1

p^o_n2

M_n

p^i_1

p^i_2

M_2

p^o_1

p^o_2

M_1

p^i_s1

p^i_s2

p^o_s1

p^o_s2

M_s

p^i_1

p^i_2

M_2

p^o_1

p^o_2

M_1

Fig. 3. Illustration of refinement of abstract specification M into refinement M ′

The specification Ms is replaced by Mn, while the ports P i
s and P o

s of Ms are
replaced by ports from Mn.

First we need to determine how ports in the old model M relates to ports in
the new model M ′, in order to relate the variables refCalc.M to the variables in
refCalc.M ′. The mapping of ports to variables is denoted by ν in the abstract
model and by ν′ in the refined model.
1. Every block except Ms in M is preserved in M ′. Hence, each port p from

these blocks are also preserved, which means that they are mapped to the
same variables in the refinement calculus representation, ν′.p = ν.p.

2. For every in-port p fromMs inM there is an in-port pn fromMn inM ′ such
that they depend on the same port, ndep.p = ndep′.pn (see Fig. 3). The port
pn that replaces port p is mapped to the same variable in the refinement
calculus representation, ν′.pn = ν.p.

3. For every in-port p such that it depends on an out-port ps in the speci-
fication block Ms there is a corresponding port pn in Mn that p depends
on, ps = ndep.p ∧ pn = ndep′.p (see Fig. 3). The port pn that replaces
port ps is mapped to the same variable as before in the refinement calculus
representation, ν′.pn = ν.ps.

We need to show that the replacement of Ms with pre-condition Qpre
n and

model fragment Mn is a correct refinement. First we note that we can add
an assert statement {Qpost} after the statement [ν.po

s1, . . . , ν.p
o
sn := v|Qpost] in

the abstract specification. In the refinement, the contract statements ({Qpre},
[ν.po

s1, . . . , ν.p
o
sn := v|Qpost]) are replaced by the translated Simulink model con-

structs ({Qpre
n }, S1, . . . , Sm, R1, . . . , Rt) obtained from Mn. We use a validation

model to check the correctness of this refinement. This validation model uses the
refinement calculus statements ([ν.pi

s1, . . . , ν.p
i
sm := v|Qpre], {Qpost}, {Qpre

n },
S1, . . . , Sm, R1, . . . , Rt). This model, refCalc.MV

n , is constructed of the state-
ments above ordered according to the rules in Def. 1-3. Note that statement
[ν.pi

s1, . . . , ν.p
i
sm := v|Qpre] assign the in-ports and, hence, appears in the be-

ginning of the translation. The assert statement {Qpost} that depends on the
out-ports is placed towards the end.

refCalc.MV
n =̂ Sk; [ν.pi

s1, . . . , ν.pi
sm := v|Qpre]; . . . ; {Qpre

n }; . . . ; Sl; {Qpost}; R1; . . . ; Rt

Stepwise Development of Simulink Models 91

2
out_open

1
pump_on

too_high

ok

too_low

pump_on

Pump controller

too_high

ok

too_low

out_open

Out controller

w_level

too_high

ok

too_low

Decision

1
w_level

Fig. 4. This diagram shows the refinement of the controller

Theorem 1 (Correctness of refinement). The model Mn refines Ms, Ms !
Mn, if ∀t · t ∈ tr(MV

n) ⇒ t �= ⊥ and Mn does not behave miraculously.

Proof. There are two constructs to consider {Qpre} ! {Qpre
n } and

[ν.po
s1, . . . , ν.p

o
sn := v|Qpost] ! refCalc.Mn.

– If {Qpre} ! {Qpre
n } does not hold {Qpre

n } will contribute with aborted traces,
due to the assignment to in-ports, [ν′.pi

s1, . . . , ν
′.pi

sm := v|Qpre].
– If [ν.po

s1, . . . , ν.p
o
sn := v|Qpost] ! refCalc.Mn does not hold, then either,

• the model fragment refCalc.Mn aborts, or
• the output from refCalc.Mn does not satisfy Qpost.

Both cases contribute with aborted traces.
Since we show that MV

n does not abort we can conclude that {Qpre} ! {Qpre
n }

and [ν.po
s1, . . . , ν.p

o
sn := v|Qpost] ! refCalc.Mn must hold. �"

Due to monotonicity we have Ms !Mn ⇒M !M ′.
The controller in the steam boiler example is refined in a stepwise manner

to obtain an implementation. Here we do the development in one single model,
such that each level in the subsystem hierarchy is a new refinement step. Each
subsystem is associated with a contract. When the system is refined, the details
of the subsystem are added. First we refine the specification of the controller into
three different subsystem as shown in Fig. 4. The first one, Decision, decides if
the water level is too high (too high), suitable (ok) or too low (too low). The
second one, Pump Controller, computes if the pump should be on, while the third
one, Out Controller, computes if the out valve should be opened. The contract
for the specification Decision states that the water level should be between L1

and L2 to be acceptable, otherwise it is too high or too low.

Qpre
d =̂ true

Qpost
d =̂ (w level > L2 ⇒ too high ∧ ¬ok ∧ ¬too low)∧

(w level < L1 ⇒ ¬too high ∧ ¬ok ∧ too low)∧
(w level ≥ L1 ∧ w level ≤ L2 ⇒ ¬too low ∧ ok ∧ ¬too high)

The specification block Pump Controller requires that the water level is either
too low, acceptable or too high. It guarantees that the pump is switched on if
the water level is too low and switched off if it is too high.

Qpre
pump =̂ too high ∨ ok ∨ too low

Qpost
pump =̂ (too high ⇒ ¬pump on) ∧ (too low ⇒ pump on)

92 P. Boström, L. Morel, and M. Waldén

The contract for the last specification, Out Controller, is defined similarly. Note
that we do not say anything about the situation when the level is between L1

and L2. The implementation can choose the best alternative in that case.
To validate that the system in Fig. 4 refines the specification Controller we

create a validation model:

refCalc.ControllerV =̂

[w level := v|Qpre
c (v)]; {Qpre

d
}; [too high, ok, too low := vh, vo, vl|Qpost

d
];

{Qpre
pump}; [pump on := v|Qpost

pump]; {Qpre
out}; [out open := v|Qpost

out]; {Qpost
c }

We first need to show that the validation model does not behave miraculously,
¬(refCalc.ControllerV).false. It is easy to see that values can always be given
to the in-ports and that the post-conditions are feasible. The refinement is then
correct if the validation model does not abort. By systematically computing the
weakest precondition (refCalc.ControllerV).true from this program we get the
following conditions:

(Qparam ∧Qpre
c ⇒ Qpre

d)∧
(Qparam ∧Qpre

c ∧Qpost
d ⇒ Qpre

pump)∧
(Qparam ∧Qpre

c ∧Qpost
d ⇒ Qpre

out)∧
(Qparam ∧Qpre

c ∧Qpost
d ∧Qpost

pump ∧Qpost
out ⇒ Qpost

c)

The refinement of the Controller is still abstract and not executable. To illus-
trate the final implementation consider the implementation of the specification
Pump Controller in Fig. 1. Here we have taken the approach to only switch on
or off the pump when a water level limit is reached. Other control strategies can
also be used. The implementation of Pump Controller uses memory and we have
to validate its behaviour over time to ensure correct behaviour. This is again
done by creating a validation model.

6 Conclusions and Future Work

In this paper we have presented a definition of refinement of Simulink diagrams
using contracts and an action systems semantics. First we gave a translation
from Simulink to refinement calculus and provided a definition of contracts us-
ing pre- and post-conditions in specification blocks. The action systems formalism
provided semantics to these contracts. We then showed how an abstract speci-
fication given as a contract could be refined into an implementation satisfying
the contract. Furthermore, validation of the refinement can be performed by
model checking or testing a validation model. These ideas have been tried on a
larger case study [8] and the initial experience with contracts and Simulink are
positive. An extended version of the paper is also available as a technical report
[9].

We believe this refinement-based development provides a convenient design
method even for developers not familiar with formal methods. These methods
are not limited to Simulink: they can be applied to other similar languages like
SCADE [12] and Scicos [20] as well.

Stepwise Development of Simulink Models 93

References

1. Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Program-
ming Languages and Systems 17(3), 507–534 (1995)

2. Abrial, J.-R., Börger, E., Langmaack, H.: The steam boiler case study: Compe-
tition of formal program specification and development methods. In: Abrial, J.-
R., Börger, E., Langmaack, H. (eds.) Formal Methods for Industrial Applications.
LNCS, vol. 1165, pp. 1–12. Springer, Heidelberg (1996)

3. Arthan, R., Caseley, P., O’Halloran, C., Smith, A.: ClawZ: Control laws in Z. In:
Proceedings of ICFEM 2000, pp. 169–176. IEEE Press, Los Alamitos (2000)

4. Back, R.-J.R., Kurki-Suonio, R.: Decentralization of process nets with centralized
control. In: Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium of Princi-
ples of Distributed Computing, pp. 131–142. ACM Press, New York (1983)

5. Back, R.-J.R., von Wright, J.: Trace refinement of action systems. In: Jonsson, B.,
Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer, Heidel-
berg (1994)

6. Back, R.-J.R., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer, Heidelberg (1998)

7. Back, R.-J.R., von Wright, J.: Compositional action system refinement. Formal
Aspects of Computing 15, 103–117 (2003)

8. Boström, P., Linjama, M., Morel, L., Siivonen, L., Waldén, M.: Design and val-
idation of digital controllers for hydraulics systems. In: The 10th Scandinavian
International Conference on Fluid Power, Tampere, Finland (2007)

9. Boström, P., Morel, L., Waldén, M.: Stepwise development of Simulink models
using the refinement calculus framework. Technical Report 821, TUCS (2007)

10. Cavalanti, A., Clayton, P., O’Halloran, C.: Control law diagrams in Circus. In:
Fitzgerald, J.A., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
253–268. Springer, Heidelberg (2005)

11. Chen, C., Dong, J.S.: Applying timed interval calculus to Simulink diagrams. In: Liu,
Z.,He, J. (eds.) ICFEM2006.LNCS, vol. 4260, pp. 74–93. Springer,Heidelberg (2006)

12. Esterel Technologies. SCADE (2006), http://www.esterel-technologies.com/
13. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow

programming language lustre. Proceedings of the IEEE 79(9), 1305–1320 (1991)
14. Mahony, B.: The DOVE approach to design of complex dynamic processes. In:

Theorem Proving in Higher Order Logic, NASA conf. publ., CP-2002-211736 (2002)
15. Maraninchi, F., Morel, L.: Logical-time contracts for reactive embedded compo-

nents. In: ECBSE’04. 30th EUROMICRO Conference on Component-Based Soft-
ware Engineering Track, Rennes, France (2004)

16. Mathworks Inc., Simulink/Stateflow (2006), http://www.mathworks.com
17. Meinicke, L., Hayes, I.: Continuous action system refinement. In: Uustalu, T. (ed.)

MPC 2006. LNCS, vol. 4014, pp. 316–337. Springer, Heidelberg (2006)
18. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-

wood Cliffs (1997)
19. Mikáč, J., Caspi, P.: Temporal refinement for Lustre. In: SLAP 2005. Proceedings

of Synchronous Languages, Applications and Programming, Edinburgh, Scotland.
ENTCS, Elsevier, Amsterdam (2005)

20. Scilab Consortium. Scilab/Scicos (2006), http://www.scilab.org
21. Tiwari, A., Shankar, N., Rushby, J.: Invisible formal methods for embedded control

systems. Proceedings of the IEEE 91(1), 29–39 (2003)
22. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink

to Lustre. ACM Trans. on Embedded Computing Systems 4(4), 779–818 (2005)

 http://www.esterel-technologies.com/
http://www.mathworks.com
http://www.scilab.org

����������	
� �	� � ���������� ������ �����

π����������

������ ���

���������� 	
 �	������ ������ ��� �����	�	��
������� ���������� 	
 ���	� � ����	�� ������� � !! "� #� $� �����

�����������	
����

��������� %� ���� ����� &� ������ � ������'���� ������� 	
 ������ 	�(
��� π(�������� &���� ��)�� ������'���� �	����	� ���	 ���	���� *������(
�	��� &� ������� ����� '���������	��
	� ���� � ������'���� ������ 	����
π(��������� ������ ������'���� �	���+� '���������	�� ������'���� �	����
'���������	� ��� ������'���� �������	� '���������	� ������������� ,�
��	�� ���� ��� ����� ������'���� '���������	�� ��� �-���������

� �������	�
��

���	
� ���
� π�������� ��� ������
� ��� �����
� ���
����
�� �� �����������
����
������� ����� �� 	��	
� ���
� π��������� ����
��
� ��� � ���������� ��
�
����
��
� �! �� �������� 	��	 ���
�� ���
 ��""������
�� ��"
 ���
�
�����
#���
��
��
� !�� 	��	
� ���
� π��������� ���	 �� ��
�
#�����
��
� ����
$� ���"�
������ ��� ���"�� ���"�������� �
�
 ��
�
��
� �� ����� %	
 �
������
��

� �	

�	�

#�����
��
� ��� �����
� �� ��&�����

'���
�� ������� ���

����	
� ���	 ��������
� �	��
$�������� �
����
 �	

������ ����� �! ����
��
�� %	
�
 ��
 ������� ��������� !�� ������ ��
� ����
��
�������� ��������� ������ ��
� CCS �(�)�� ������ ��
� π�������� ��(�� Seal ���
����� ��)�� ������ ��
� 	��	
� ���
� �������� ��*�� M �������� ��+�� Kell��������
��,�� Homer�������� �*�-�
��� .�� �	
�
 ����
�� �������� ��������
� "�� �
��

�
�� �	������ "��	��
�� �� "��
 �
�
����� ������ ����� ����� �	
�
 ����
��
� ��

�����
� ��������� �� ��"
 ����
���� ��/
 �	
 �	����� �! �
�����
�� �� � ������
�
�� ����
��� ��������
� ��
 ��������� ��������
� ���	 ������
� ��"���
���� %	
�

��������
� �	
� ���
��
�
 �� �	
 �
"������ �! ����
��
� ���
��"
 ����� �� ��"

$�
��� �! �	
�� � �
��� �

	�������

�� �	�� ���
� �
 �
���� � ������ ��
� 	��	
� ���
� π�������� �	��	 ������ �	

� �
��
� �� �

 �	
 ������ ��
� �����
 �! ����
��
�� .�� �	�� ������ ��
� 	��	
�
���
� π��������� �	
 ����
��
� ���
� � �
������� ��
 ������
�
� ��
 ������ ��
�
�� �����
 ��� ��������� ��
 ��������
� ���	 ������
� ��"���
��� �	��	 �
��
�
��
���
�� ��� �	
 � �
��
� ��� ���� ��� �
�� �	
 ����
�� � ��""��������� ���	 �� ��
���� ��� � �
��
 �� ����������	 �	�� ���� �! �	
 ������ ��
� ����
�� �	��	 �
���
�
�� �	
 �
��� .���	
�"��
� �	�

 �
�
��� ������� �! ���"������� �
���
� �� �	��

� ���� &	�) &�� ����	���� '� ��� ����	��� ������� ������ *	������	� 	
 ����� �����
.���� "!/01!1"�

���� �����	
� ��	 �� �������� ������� ����� ����	 ���� ����	 � !�"��#	 �����
�© � $��%�$&'�$()% ��$(�� *����(+�$% ����

2���������	��
	� � ������'���� 3����� 4���� π(�������� 56

� �
������� �! ������ ��
� ����
"� ��
 ��������
�� %	

#�����
��

��

� �	

������ ��
� ���"�������� �� ����
�� �	��	 �
�
����0
� �	

#�����
��

��

�
 ��
�
#�����
��
� ���"�� ���"������� ��� ����
$� ���"������� �� ������ ��
�
����
�� ��������� �����
�
��� � ������ ��
� ����
$� ���"������� �� ��
�
��
� ���
� �
�
����0����� �! ����
$� ���"������� �� �	
 ���
 �! ������ ��
� ����
��
��
'���
��
� ��

#���
� �! �	
� ��
�
��
	������� �	��	 ��
 ��
�
� ��
#�����
��
!�� ����
$� ���"�������� ��� !���	
�"��
 �	
�

	������� 	���
�
� �� �	

��"
 �������� ��
��

� �	
 ��"
 ���������� ��"������� � ������ ��
� ���"��
 ���"������� �� ��
�
��
� �� � �
��
����"�� !��" �! ������ ��
� ���"�������� 1

���� ������
 � �
� �
������� ���"������� !�� ��� ������ ��
� ����
�� ���������
����
� ������ ��
� �
������� ���"�������� �	��	 �� ��
� �� �	
 "��
 �! "
����
�
�"��� ��"���
��� �! ����
�� ���	
� �	�� � �
��� �
� ���	 �� ������� �� �� ��
2���	�� ��
�/���� !�� ������ ��
� �
������� ���"��������K ��� L ��
 ���� ��

������ ������ ��
� �
������� ���"���� �! ���
� �� �� ������ ������ ��
� ����
��
M � ��� ������ ��
� ��""��������� {τ}i,j
��

� K ��� M ���
 "���	
�
 � �	
 ��"
 ������ ��
� ��""��������� {τ}i,j
��

� L ��� M � �	
�
 {τ}i,j

�
���
� �	
 ��""���������
��

� ��������� i ��� j� %	�� ��
��
������� ��3
�
��
!��" �������� ��
�
#�����
��

����
 �	
 �� �
����� �� ��� �

�
�� 1

����� �	
 ����
��� �! �	
�
 ������ ��
� ���"�������� ��� ����
 �	

#�����
��

��

� �	
 �	�

 ������ ��
� ���"���������

%	�� ���
� �� ������0
� �� !������4 �� �
����� & �
 ��
5� �
��
� 	��	
� ���
�
π��������� �� �
����� (� �
 ��������
 �	
 ����
�������� �����$� ��
��
� ����
������ ����
" !�� ������ ��
� 	��	
� ���
� π��������� �� �
����� �� �
 ��
�
��
�	
 ������� �! ������ ��
� ����
$� ���"�������� ������ ��
� ���"�� ���"�������
��� ������ ��
� �
������� ���"�������� �� �
����� ,� �
 ����� �	
 �
������

��

� ������ ��
� �
������� ���"������� ��� ������ ��
� ����
$� ���"��������
�� �
����� +� �
 ����� �	
 �
������
��

� ������ ��
� ���"�� ���"�������
��� ������ ��
� ����
$� ���"�������� �� �
�����)� �
 ���
 � �	�����
��������
�	
��
"� %	
 ���
� �� �������
� �� �
����� *�

� �� ����
�� �� �
���� ���� π����	�����

�� �	�� �
����� �
 ��
5� �
���� �	
 �����$� ��
��
� ���������� ����
" ��� ���"�
������� �! �	
 	��	
� ���
� π��������� 1
 ���� !���� �� � �
�������
� !���"
��
�! �	
 	��	
� ���
� π�������� ��&�� ��
�� �	
�
 �� �� � ��������� �� �	�� !���"
���

1
 ����"
 � �
� N �! ��"
�� ����
� ��
� � a, b, c���� ��� � �
� V ar �!
����
�� ����� �
�� ����
� ��
� � X,Y, Z, U, ...� 1
 ��
 E,F, P,Q���� �� ����� !��
����
��
�� Pr �
���
� �	
 �
� �! ��� ����
��
��

1
 6��� ���
 �	
 ���""�� !�� �	
 	��	
� ���
� π�������� ����
��
� �� !������4
P ::= 0 | U | π.P | P1|P2 | (νa)P | !P
π �� ����
� � ��
6$ ��� ��� 	��
 ��
 �! �	
 !�������� !��"�4
π ::= τ | l | l | a(U) | a〈P 〉, 	
�
 τ �� � ��� ��
6$7 l �� � 6��� ���
� ����� ��
6$7

l �� � 6��� ���
� ������ ��
6$7 a(U) �� � 	��	
� ���
� ����� ��
6$ ��� a〈P 〉 �� �
	��	
� ���
� ������ ��
6$�

5" 7� ��	

��
��	 ����
�� �! �	
 !��" (νy)P �	
 ������
��
 �! y �� ���� ���	�� �	
 ����

�! P � 8� ������
��
 �! y �� � ����
�� �� ���� ��
 !�

 �3 �� ��
� ��� ��
 ���	�� �	

����
 �! � ���� ������
��
 �! y� %	
 �
� �! ��"
� ��������� !�

 �� P �� �
���
�
fn(P)� 8� ������
��
 �! � ��"
 �� � ����
�� �� ���� ��
 ���� �! �� �� ��� !�

�
�
 ����
 �	
 �
� �! ���� ��"
� �� bn(P)� n(P) �
���
� �	
 �
� �! ��"
� �! P �
��
�� n(P) = fn(P) ∪ bn(P)� %	
 �
6������ �! �� ��������� �� ����
�� �
�"� "��
������
 �
��"��� �! ���� ��"
� �	
� �
�
����� �� ����� ��"
 ������
�

���	
� ���
� ����� ��
6$ a(U).P ���� ��� !�

 ������
��
� �! U �� P � %	

�
� �! ����� �
� ��������� !�

 �� P �� �
���
� fv(P)� 1
 ����
 �	
 �
� �! ����
����� �
� �� bv(P)� 8 ����
�� �� ����
� �! �� 	�� �� !�

 ����� �
7 �� �� ��
� �! ��
	�� !�

 ����� �
�� Prc �� �	
 �
� �! ��� ����
� ����
��
��

'���
��
� P ��� Q ��
 α����
��� �
� P ≡α Q� �! Q ���
 � ����
� !��"
P � � 6���
 ��"
� �! �	���
� �! ���� ��"
� ��� ����� �
�� .��
$�"��
�
(νc)(b〈c(U).U〉.0) ≡α (νd)(b〈d(U).U〉.0)�

%	
 ��
�������� �
"������ �! 	��	
� ���
� ����
��
� �� ���
� �� %� �
 �� 1

	��
 �"���
� �	
 ��""
���� ���
� �! �	
 ������
���" ��� ��""����������

ALP :
P

α−→ P ′

Q
α−→ Q′

P ≡α Q,P
′ ≡α Q

′ TAU : τ.P τ−→ P

OUT 1 : l.P l−→ P IN1 : l.P l−→ P

OUT 2 : a〈E〉.P a〈E〉−→ P IN2 : a(U).P
a〈E〉−→ P{E/U}

PAR :
P

α−→ P ′

P |Q α−→ P ′|Q
bn(α) ∩ fn(Q) = ∅

COM1 :
P

l−→ P ′ Q
l−→ Q′

P |Q τ−→ P ′|Q′

COM2 :
P

(ν�b)a〈E〉−→ P ′ Q
a〈E〉−→ Q′

P |Q τ−→ (νb̃)(P ′|Q′)
b̃ ∩ fn(Q) = ∅

RES :
P

α−→ P ′

(νa)P α−→ (νa)P ′
a /∈ n(α) REP :

P |!P α−→ P ′

!P α−→ P ′

OPEN :
P

(ν�c)a〈E〉−→ P ′

(νb)P
(νb,�c)a〈E〉−→ P ′

a �= b, b ∈ fn(E)− c̃

%� �
 �

�� ��&����� ��������� ��
�
��
� ��"
 ���
�
�����
#�����
��
� !�� 	��	
� ���
�
π�������� ���	 �� ����
$� ���"�������� ���"�� ���"������� ��� ��
�
#���
��
��
� %	
�

#�����
��
� �
�
 ����
� ��
 �������
��� �� �	
 !��������� �

��

ε=⇒ �� � �
����
 �	
 �
5
$��
 ��� ���������
 ������
 �!
τ−→, ��
 α=⇒ ��

� �
����

ε=⇒ α−→ ε=⇒�

8 ��""
���� �
������ R ⊆ Prc × Prc �� � �
�/ ����
$� ���"������� �! P R
Q �"���
�4 9�: �	
�
�
� P

ε=⇒ P ′� �	
� �	
�

$���� Q′ ���	 �	�� Q
ε=⇒ Q′ ���

P ′ R Q′7 9&: �	
�
�
� P
l=⇒ P ′� �	
� �	
�

$���� Q′� ���	 �	�� Q

l=⇒ Q′ ���

P ′ R Q′7 9(: �	
�
�
� P
l=⇒ P ′� �	
� �	
�

$���� Q′� ���	 �	�� Q

l=⇒ Q′ ���

2���������	��
	� � ������'���� 3����� 4���� π(�������� 50

P ′ R Q′7 9�: �	
�
�
� P
a〈E〉
=⇒ P ′� �	
�

$���� Q′ ���	 �	�� Q

a〈E〉
=⇒ Q′ ��� P ′ R

Q′7 9,: �	
�
�
� P
(ν�b)a〈E〉

=⇒ P ′� �	
�

$��� Q′� F � c̃� ���	 �	�� Q
(ν�c)a〈F 〉

=⇒ Q′ ���

!�� ��� C(U) ���	 fn(C(U)) ∩ {b̃, c̃} = ∅� (νb̃)(P ′|C〈E〉) R (νc̃)(Q′|C〈F 〉).
1
 ����
 P ≈Ct Q �! P ��� Q ��
 �
�/�� ����
$� ���"�����
8 ��""
���� �
������ R ⊆ Prc ×Prc �� � �
�/ ���"�� ���"������� �! P R

Q �"���
�4 9�: �	
�
�
� P
ε=⇒ P ′� �	
� �	
�

$���� Q′ ���	 �	�� Q

ε=⇒ Q′ ���

P ′ R Q′7 9&: �	
�
�
� P
l=⇒ P ′� �	
� �	
�

$���� Q′� ���	 �	�� Q

l=⇒ Q′ ���

P ′ R Q′7 9(: �	
�
�
� P
l=⇒ P ′� �	
� �	
�

$���� Q′� ���	 �	�� Q

l=⇒ Q′ ���

P ′ R Q′7 9�: �	
�
�
� P
a〈m.0〉⇒ P ′� 	
�
 m �� � !�
�	 ��"
� �	
�

$���� Q′ ���	

�	�� Q
a〈m.0〉⇒ Q′ ��� P ′ R Q′7 9,: �	
�
�
� P

(ν�b)a〈E〉⇒ P ′� �	
�

$��� Q′� F � c̃�

���	 �	�� Q
(ν�c)a〈F 〉⇒ Q′ ��� !�� � !�
�	 ��"
 m� (νb̃)(P ′|!m.E) R (νc̃)(Q′|!m.F).

1
 ����
 P ≈Nr Q �! P ��� Q ��
 �
�/�� ���"�� ���"�����
8 ��""
���� �
������ R ⊆ Prc×Prc �� � �
�/ ��
� ���"������� �! P R Q

�"���
�4
9�: �	
�
�
� P

τ=⇒ P ′ �	
� �	
�

$���� Q′� ���	 �	�� Q
τ=⇒ Q′ ��� P ′ R

Q′7
9&: !�� ��� �	���
� n� �! P ⇓ n� �	
� ���� Q ⇓ n. �
�
 P ⇓ n "
��� ∃P ′�

P
α=⇒ P ′� 	
�
 α = n �� n �� n〈E〉 �� (νã)n〈E〉��
%�� ����
��
� P ��� Q ��
 �
�/�� ��
�
#�����
��� �! �	
�
 �� � �
�/ ��
�

 ���"������� R� ���	 �	�� P |C R Q|C !�� ��� ����
�� C�

� ������ ��� �������� ����
�
�� �����! �� "
���
�����

�
���� ���� π�#��	����

�� �	�� �
������ � ������� �! ����
�� �������� �� ��
�
��
� �	��	 ����������
�
���
$��� �� � "
��� �! ��
���!���� ����
�� ������ ������ 1
 ��� ��������
 �	

����
�� �! ������ ��
� ����
��� ;��
� � �������� �
� Loc� ��������� �
� Loc
 �	

�
� �! ������� ��"
��� �	
 �����$!�� ������ ��
� ����
��
� ������ �	
 ������
�
��"�������� �! �����
� ����
�� {P}i, �	��	 "�� �	��
 �
6�
� ��"
 a� �����
�	
 ��������� (νa)−� %	
 ����� �! �	
 ������ ��
� ����
��
� �� �
���
� �� DPr,
����
� ��
� � K,L,M,N, ...�

%	
 !��"�� �
6������ �! ������ ��
� ����
�� �� ���
� �� !������4
M ::= {P}i | M1|M2 | (νa)M, 	
�
 i ∈ Loc ��� P ∈ Pr�
��������
��� {P}i �
��
�
��� ����
�� P �
������ �� �������� i� %	
 ������� �!

���	 � ����
�� ����
 � �
��
� �� ����� <���	�� �������� i<� M1|M2 �
��
�
���
�	
 ������
� ��"�������� �! ��� ������ ��
� ����
"� M1 ��� M2� (νa)M �� �	

�
��������� ��
������ �	��	 "�/
� ��"
 a ����� �� ����
" M �

.��
$�"��
� {(νl)(b〈l.0|!τ.0〉.0|l.0)}0|{b(U).U}1, (νl)({l.0}0|{l.0|!τ.0}1),
{b〈!τ.0〉.0}0|{b(U).U}1 ��� {0}0|{!τ.0}1 ��
 ������ ��
� ����
��
�� 	
�
 ����
����
�� {(νl)(b〈l.0|!τ.0〉.0|l.0)}0|{b(U).U}1 �
��
�
��� (νl)(b〈l.0|!τ.0〉.0|l.0) ���
b(U).U ������� �� ��������� = ��� � �
��
����
��� (νl)({l.0}0|{l.0|!τ.0}1) �
� �

�
��� �	
 ������
� �! {l.0}0 ��� {l.0|!τ.0}1 ���	 � ������
 ��"
 l�

58 7� ��	

��"���� �� �	
 �������� 	��	
� ���
� π��������� ��
��	 ������ ��
� ����
��
�! �	
 !��" (νa)M �	
 ������
��
 �! a �� � ���� ���	�� �	
 ����
 �! M � 8�
������
��
 �! a �� M �� ���� ��
 !�

 �3 �� ��
� ��� ��
 ���	�� �	
 ����

�! � ���� ������
��
 �! a� %	
 �
� �! ��"
� ��������� !�

 �� M �� �
���
�
fn(M)� 8� ������
��
 �! � ��"
 �� M �� ���� ��
 ���� �! �� �� ��� !�

�
�
 ����
 �	
 �
� �! ���� ��"
� �� bn(M)� n(M) �
���
� �	
 �
� �! ��"
� �!
M � ��
�� n(M) = fn(M) ∪ bn(M)� 1
 ��
 n(M,N) �� �
���
 n(M) ∪ n(N)�
���	
� ���
� ����� ��
6$ {a(U).P}i ���� ��� !�

 ������
��
� �! U �� P � %	

�
� �! ����� �
� ��������� !�

 �� M �� �
���
� �� fv(M)� 1
 ����
 �	
 �
� �!
 ���� ����� �
� �� M �� bv(M)� 8 ������ ��
� ����
�� �� ����
� �! �� 	�� �� !�

����� �
7 �� �� ��
� �! �� 	�� !�

 ����� �
��DPrc �� �	
 �
� �! ��� ����
� ������ ��
�
����
��
��

'���
��
� M ��� N ��
 α����
��� �
� M ≡α N � �! N ���
 � ����
� !��"
M � � 6���
 ��"
� �! �	���
� �! ���� ��"
� ��� ���� ����� �
��

���������� ������
��
 �� � ������
��
 �
������ ��������� �	
 !�������� ���
�4
{P}i|{Q}i ≡ {P |Q}i;M |N ≡ N |M ; (L|M)|N ≡ L|(M |N); M |0 ≡M ; (νa)0

≡ 0; (νa)(νb)M ≡ (νb)(νa)M ; (νa)(M |N) ≡ M |(νa)N �! a /∈ fn(M); M ≡ N
�! M ≡α N.

%	
 ������ ��
� ������� ��
 ���
� �
Iα ::= {τ}i,j | {l}i | {l}i | {a〈E〉}i | {a〈E〉}i | {(νb̃)a〈E〉}i

1
 ����
 bn(Iα) !�� �	
 �
� �! ��"
� ���� �� Iα� �	��	 �� {b̃} �! Iα ��

{(νb̃)a〈E〉}i ��� ∅ ��	
����
� n(Iα) �
���
� �	
 �
� �! ��"
� �	�� ����� �� Iα�
��"���� �� %� �
 �� �
 ���
 �	
 ��
�������� �
"������ �! ������ ��
� ����
��
�

�� %� �
 &� 1
 	��
 �"���
� �	
 ��""
���� ���
� �! �	
 ������
���" ��� ��""�
��������� %	
 "��� !
����
 �! %� �
 & �� �	�� �	
 ��
� Iα �� �	
 ���������� �����
�� �! �	
 !��" {α}i �� {τ}i,j � �	
�
 α �� �� ����� �� ������ ������� i ��� j ��

���������� .��" �	
 ������ ��
� ��
�� {α}i ���
 �
����
� �� �� ����� �� ������
������ �
�!��"
� �� �������� i� ��� {τ}i,j ���
 �
����
� �� � ��""���������

��

� ��������� i ��� j� �� �	
 !��������� �
 ��
� {α}i �� � ������ ��
� �����
�� ������ ������� ��� {τ}i,j �� � ������ ��
� ��""����������

ALP :
M

Iα−→M ′

N
Iα−→ N ′

M ≡ N,M ′ ≡ N ′ TAU :
P

τ−→ P ′

{P}i
{τ}i,i−→ {P ′}i

OUT 1 :
P

l−→ P ′

{P}i
{l}i−→ {P ′}i

IN1 :
P

l−→ P ′

{P}i
{l}i−→ {P ′}i

OUT 2 :
P

(ν�b)a〈E〉−→ P ′

{P}i
{(ν�b)a〈E〉}i−→ {P ′}i

IN2 :
P

a〈E〉−→ P ′

{P}i
{a〈E〉}i−→ {P ′}i

PAR :
M

Iα−→M ′

M |N Iα−→M ′|N
bn(Iα) ∩ fn(N) = ∅

COM1 :
M

{l}i−→M ′ N
{l}j−→ N ′

M |N {τ}i,j−→ M ′|N ′

2���������	��
	� � ������'���� 3����� 4���� π(�������� 55

COM2 :
M

{(ν�b)a〈E〉}i−→ M ′ N
{a〈E〉}j−→ N ′

M |N {τ}i,j−→ (νb̃)(M ′|N ′)
b̃ ∩ fn(N) = ∅

RES :
M

Iα−→M ′

(νa)M Iα−→ (νa)M ′
a /∈ n(Iα)

OPEN :
M

{(ν�c)a〈E〉}i−→ M ′

(νb)M
{(νb,�c)a〈E〉}i−→ M ′

a �= b, b ∈ fn(E)− c̃

%� �
 &

2
"��/4 �� �	
 � ��
 �� �
� ���������� M
{α}i−→ M ′ "
��� �	�� ������ ��
�

����
�� M �
�!��"� �� ������ �� �������� i� �	
� �������
� �� M ′7 ��� ������

���� M
{τ}i,j−→ M ′ "
��� �	�� �!�
� � ��""���������
��

� ��������� i ��� j�

������ ��
� ����
�� M �������
� �� M ′�

$ "
���
����� %
�
!����
���

�� ��� ������ ��
� ��������� ����
��
� ������� ���������� ��� ������� �� �	
 ����

�! ��������� ����
 � �
��
� �� �	��
 ���������� .�� ���	 ������ ��
� ����
��
��
��"
 �
� ������ ��
� ���"�������� ������ ��
� ����
$� ���"�������� ������ ��
�
���"�� ���"������� ��� ������ ��
� �
������� ���"�������� ����
 ������
�� %	

�
� �
"������ �
 ���
 �� ������ ��
� ����
��
� ������������ ��/
� �	
 ������ �����
�� ����
 ���� ��������

.�� ������ ��
� ��������� ��� ������ ��
� ����
��
� ��

#���
� �! ��� ���� �	

�������� �� ���� �	
 ���������� �	
�
 �	
 ������� 	���
�� ���
 "���	
�
��	
��	
�� �� �
 �
� �	
 !�������� �
6������ �! ������ ��
� ����
$� ���"�������� ��
�	
 !��������� �
 � �
����
 P{E/U} �� P 〈E〉�

1
 6��� ���
 �	
 �
�/ ������ ��
� ����
$� ���"�������� �
�/ ������ ��
� ���
"�� ���"������� ��� �	
 �
�/ ������ ��
� �
������� ���"�������� %	
� �
 ���

�	
�� ������
��
 ����
��� ��� �	

#�����
��

��

� �	
�
 �	�

 ���"���������

>
!��
 ������ �	
 �
�/ ������ ��
� ���"��������� �
� �� ��"���
 ��""�����
���� {τ}i,i ���	 {τ}i,j � �	
�
 i �= j� .�� �
�/ ������ ��
� ���"��������� �� �

"�
������� �� ��
� {τ}i,i �� �� ������ �
 ��""��������� ��� {τ}i,j �� � ���� �
 ��"
"���������� ����
 !�� �� � �
��
� �	� ��� ����������	
��

� ���
�� {τ}i,i �� ��
���
���� ��""��������� �� �������� i� ��� {τ}i,j �
��
�
��� ��
$�
���� ��""�
��������
��

� ��� ��3
�
�� ��������� i ��� j� %	
�
!��
 �� �	
 !��������� �

�
���� {τ}i,i �� � ������

�
�� �� �������� i� ��� {τ}i,j �� � ���� �

�
��
��

�
��������� i ��� j�

.��
$�"��
� �
� �� ������
� � ����
" ���������� �! � ���
����
 ��� ��
���	 ���
����� �� �� ��
�� �	�� �� �	�� ����
"� �	
 ���
����
 �� �	�������� !�� ���� !��" �	

���	 �������� �! �	
 ������" ����������� �	
 ���
����
 	�� ��
 �	���
��
��	
�

����
 �! � ������"
���� ��
����
 �	
 ?� �! �	
 ���
����
 �� ��
 �	���
��
�	
� � �
� ������" ����
 �
�� �� �	
 ���
����
� %	
 ���
����
 �� �
��� �� �
�
��

� �
� ������"� 8!�
� �
�
����� �� ���� ��������� �� �	�� ������" ����� �� �� <���
�

 !! 7� ��	

����
�<
��	
� � � �
� ?� ��
����
 � ������"
���� 	�� ������
� ��
����

�	
 ������" 	�� 6���	
��

�� �	��
$�"��
� �	
 ���
����
 ��� �	

���	 ���
 ��
��6
� �� ��� ������ ��
�
�������� �����$ �� !������4

Sat
def
= {!a(U).U |satsys}S, �	
�
 S �
��
�
��� �������� satellite�

Earth
def
= {a〈newprg1〉.a〈newprg2〉...}E , �	
�
 E �
��
�
��� �������� earth�

@�� �	
 ����
" �� ��
��6
� ��4

Sys
def
= (νa)({!a(U).U |satsys}S|{a〈newprg1〉.a〈newprg2〉...}E)

%	

���	 ��� �
�� � �
� ������" �� �	
 ���
����
� �	
� �� �	
 ���
����
� �	��
������" ���
����� ���	 �	
 ��� ���
����
 ����
"4

Sys
{τ}S,E−→ (νa)({!a(U).U |newprg1|satsys}S|{a〈newprg2〉...}E)

{τ}S,S=⇒
(νa)({!a(U).U |newsatsys}S |{a〈newprg2〉...}E)

�� �	�� ���������� �
#�
��
� {τ}S,E �� � ��""���������
��

� ���������
satellite ��� earth, {τ}S,S �� �� ���
���� ������ �� �������� satellite. ��������
���
�
 ��� ������
� {τ}S,E �� ��
$�
���� ��""��������� ��� �� �� ���� �
7 "
���	��
�
{τ}S,S ���
 ��
�
� �� �� ���
���� ������ �! ���
����
 ��� �� �� ������
� %	
�
!��
�
!��" ��
� �! ������ ��
� ��������� �
 ��� �
��
�� ���
���� ��""��������� ���	 ��
{τ}S,S �� {τ}S,E �� ��
��
� �� � ���� �
 �������

.������ �
 ���
 �	
 �
6������ �! �
�/ ������ ��
� ����
$� ���"�������� %	
 ��!
!
�
��
 !��" ������ ������ ��
� ����
$� ���"������� �� �	�� �� �	
 ���
 �! �
�/
 ���"������� �
 �
��
�� {τ}i,i ����
 !��" ������ ��
� ��
� {τ}i,i 	���
�� ���
�
����� �� �������� i�

�� �	
 !��������� �
 ��
M
ε=⇒M ′ �� � �
����
M

{τ}i1,i1−→ ...
{τ}in,in−→ M ′, ���

��
M
Iα=⇒M ′ �� � �
����
M

ε=⇒ Iα−→ ε=⇒M ′.

��������� �	1
�/ ������ ��
� ����
$� ���"�������
A
�M � N ∈ DPrc� �
 ����
M ≈d

cxt N � �! �	
�
 �� � ��""
���� �
������ R�M
R N �"���
�4

9�: �	
�
�
�M
ε=⇒M ′� �	
�

$���� N ′ ���	 �	�� N

ε=⇒ N ′ ���M ′ R N ′7

9&: �	
�
�
�M
{τ}i,j=⇒ M ′� �	
�

$���� N ′ ���	 �	��N

{τ}i,j=⇒ N ′ ���	M ′ R N ′�
�	
�
 i �= j7

9(: �	
�
�
�M
{l}i=⇒M ′� �	
�

$���� N ′ ���	 �	�� N

{l}i=⇒ N ′ ���	M ′ R N ′7

9�: �	
�
�
�M
{l}i=⇒M ′� �	
�

$���� N ′ ���	 �	�� N

{l}i=⇒ N ′ ���	M ′ R N ′7

9,: �	
�
�
�M
{a〈E〉}i=⇒ M ′� �	
�

$���� N ′ ���	 �	�� N

{a〈E〉}i=⇒ N ′ ���M ′ R
N ′7

9+: �	
�
�
�M
{(ν�b)a〈E〉}i=⇒ M ′� �	
�

$���N ′� F � c̃� ���	 �	��N

{(ν�c)a〈F 〉}i=⇒ N ′�

��� !�� ��� ������ ��
� ����
�� C(U) ���	 fn(C(U)) ∩ {b̃, c̃} = ∅�
(νb̃)(M ′|C〈E〉) R (νc̃)(N ′|C〈F 〉)�

���������
	1
�/ ������ ��
� ���"�� ���"�������
A
�M � N ∈ DPrc� �
 ����
M ≈d

nor N � �! �	
�
 �� � ��""
���� �
������ R�M
R N �"���
�4

2���������	��
	� � ������'���� 3����� 4���� π(�������� !

9�: �	
�
�
�M
ε=⇒M ′� �	
�

$���� N ′ ���	 �	�� N

ε=⇒ N ′ ���M ′ R N ′7

9&: �	
�
�
�M
{τ}i,j=⇒ M ′� �	
�

$���� N ′ ���	 �	��N

{τ}i,j=⇒ N ′ ���	M ′ R N ′�
�	
�
 i �= j7

9(: �	
�
�
�M
{l}i=⇒M ′� �	
�

$���� N ′ ���	 �	�� N

{l}i=⇒ N ′ ���	M ′ R N ′7

9�: �	
�
�
�M
{l}i=⇒M ′� �	
�

$���� N ′ ���	 �	�� N

{l}i=⇒ N ′ ���	M ′ R N ′7

9,: �	
�
�
�M
{a〈m.0〉}i=⇒ M ′� �	
�

$���� N ′ ���	 �	�� N

{a〈m.0〉}i=⇒ N ′ ���M ′

R N ′� �	
�
 m �� � !�
�	 ��"
7

9+: �	
�
�
�M
{(ν�b)a〈E〉}i=⇒ M ′� �	
�

$���N ′� F � c̃� ���	 �	��N

{(ν�c)a〈F 〉}i=⇒ N ′�

��� !�� � !�
�	 ��"
 m ��� !�
�	 �������� k� (νb̃)(M ′|{!m.E}k)
R (νc̃)(N ′|{!m.F}k)�

�� �	
 !�������� �
6������ �! �
�/ ������ ��
� �
������� ���"�������� �
 ����
�
��
�� {τ}i,i ����
 {τ}i,i �
��
�
��� �� ���
���� ��""��������� �� �������� i� ���
�
���� {τ}i,j �� � ���� �

�
��� �	
�
 i �= j, ����
 !�� �� � �
��
� �	� ��� ���
�������	
��

� ���
�� {τ}i,j �
��
�
��� ��
$�
���� ��""���������
��

� ��
������� i ��� j�

��������� �	1
�/ ������ ��
� �
������� ���"�������
A
� K, L ∈ DPrc� �
 ����
 K ≈d

red L� �! �	
�
 �� � ��""
���� �
������ R� ���	
�	�� �	
�
�
� K R L �	
� !�� ��� ������ ��
� ����
��M,

9�: K|M ε=⇒ K ′ �"���
� L|M ε=⇒ L′ !�� ��"
 L′ ���	 K ′ R L′7

9&:K|M {τ}i,j=⇒ K ′� �	
�
 i �= j� �"���
� L|M {τ}i,j=⇒ L′ !�� ��"
 L′ ���	K ′ R L′�
.��" �	
 � ��
 �
6�������� �
 ��� �

 �	�� ��
�
#�����
��
 ��� ������

��
� �
������� ���"������� ��
 ��	 �
������� ��
� ���"��������� B� �	
 ��	
�
	���� !�� ��
�
#�����
��
� �� � �
��
� ��� �
�� �	���
�� �	����	 �	��	 ����
��
��� ���
���� ���	
������"
��� �	
�
�� !�� ������ ��
� �
������� ���"��������
�� � �
��
� �

� ��� �� �
�� �	���
�� �� ���� 	�� ���� ����� �� ����������	

��

� ��������� �	
�
 ��""��������� 	���
��� %	
�
!��
 ��� ������ ��
� �
���
���� ���"������� �� "��
 ��"��
 �	�� ��
�
#�����
��
 �� �	
 ���
 �! ������ ��
�
��������

& �� '����
�� %������ "
���
����� #������ ���

'���	�
�� %
�
!����
���

1
 6����� ���
 �	
 ������
��
 ����
��� �! �
�/ ������ ��
� ����
$� ���"��������
��
�� ���	 ���"������� �� ��
�
��
� � ������
� ��� �
��������� ��
������ �! �	
 ���
����
�

���������� � 9������
��
 �! ≈d
cxt:	 .�� ��� M � N � S ∈ DPrc� M ≈d

cxt N �"
���
�4

9�:M |S ≈d
cxt N |S;

9&: (νa)M ≈d
cxt (νa)N.

@��� �
 ����� �	
 �
������
��

� ������ ��
� ����
$� ���"������� ��� ���
��� ��
� �
������� ���"��������

 !� 7� ��	

����������
	M ≈d
cxt N ⇒M ≈d

red N �

���������� �	M ≈d
red N ⇒M ≈d

nor N �

(�� '����
�� %������ "
���
����� #������ ���)��!��

%
�
!����
���

�	� ������ ��� �������� ��������� ������ �� ���������� �����

 �� π!"��#���� $��� ��#����� %�������

�� ��&����� �	

#�����
��

��

� �
�/ ����
$� ���"������� ��� �
�/ ���"��
 ���"������� ��� ����
�� �� �	
 ����!� �	
 !������������ �	
��
" ��� 6����� ���
��
�� ������ �� �� !�������
 ��� �
����� �� ����
��
� �! � ���
� ����
��� %	��� � ��"
��
$ ����
�� ���
 �
��"���
� ���� �	
 ������
� ��"�������� �! ��"��
� ����
��
��
%	
� �	
 ����
�� �! �����
�
� ����
��
� ��� ��������
�� �	��	 �� �	
 /
� ��
� ��
�	
 ����!� %����
�
� ����
��
� �
��
�
�� � ���� �! ���"�� !��" !�� �	
 ����
��
��
C��� �"���������� �	
�
 �� � �
�� ��"��
 �	�����
�������� �! ����
$� ���"�������
�� �����
�
� ����
��
�� ����
� �����
�
� ���"�������� >� �	
 !������������ �	
�
�
"� � ����
�� ���
 �����!��"
� �� � �����
�
� ����
��� %	
 �����!��"����� ��
���� �� �� ��
 �	
 ��"��
� �	
��� �! �����
�
� ����
��
� �� �
���� � ��� �	
 �
� �!
��� ����
��
�� �� ��&����� �
�/ ����
$� ���"������� ��� 6����� ����
� ��

#���
��
�� �� �
�/ �����
�
� ���"������� �� �����
�
� ����
��
�� �	
� � �	
 "������
!��" �
�
��� ����
��
� �� �����
�
� ����
��
�� �	

#�����
��

��

� �
�/ ���
�
$� ���"������� ��� �
�/ ���"�� ���"������� ��� ����
�� %	
 ��" �! �	�� �
�
���� �� ��
$�
�� ����������� ����! �� ���
� ���� �	
 ����
�����
��

��

� ���
��� ��
� ����
$� ���"������� ��� ������ ��
� ���"�� ���"��������

>�� ��"
 �
����� �
�	����� �
����� �� ����������� ����!� ��/
 �	
 !������������
�	
��
" ��� !��� � ��������� �! �	
 "������ �� �����
�
� ����
��
�� ������

�
�
����0
� �� ������ ��
� ����
��
� ���
����� .��
$�"��
� �
� �� 	��
 � ���/ ��
�	
 ����
�� a〈b.0〉. ��� �����
�
� "������ �
���� �� (νm)(a〈m.0〉|!m.b.0) ��� �

	��
 a〈b.0〉 ≈Ct (νm)(a〈m.0〉|!m.b.0)� .�� �	
 ������ ��
� ����
�� {a〈b.0〉}i� � ���
�� �
 �����
�
� "������ �
���� �� (νm)({a〈m.0〉}i|!{m.b.0}i)� >�� ��!�������
���
{a〈b.0〉}i �≈d

cxt (νm)({a〈m.0〉}i|!{m.b.0}i)� 2���	�� ��
�/���� �! �
 ����"
 �
��
�
����
��
� a〈m.0〉 ��� !m.b.0 ��
 �����
� �� i ��� �
����� ����
�� a(U).U �� �����
�
�� j� �	
� �	
� ��� ��""������

��

� i ��� j� �	
� �������
 �� !m.b.0 �� ��
������ i ��� m.0 �� �������� j �
��
����
��� �	
�
 m �� �	
�� ������
 ��"
� !m.b.0
��� m.0 ��� ��""������
 �����
��

� i ��� j7 	
��
 �	
�
 ��
 ��� ��""���
�������
��

� i ��� j� >�� �
��
� ����
�� a〈b.0〉 �� �������� i ��� �
����� ����
��
a(U).U �� �������� j ��� ��""������
 ���� ���

��

� i ��� j� �	
� �������

�� 0 �� �������� i ��� b.0 �� �������� j �
��
����
��� %	
�
!��
 ����
��
� {a〈b.0〉}i

��� (νm)({a〈m.0〉}i|!{m.b.0}i) ��
 ��� ������ ��
� ����
$� ���"�����
��"������� !�� ��� 6$
� �������� k� {a〈b.0〉}i ��� (νm)({a〈m.0〉}i|!{m.b.0}k)

��
 ��� ������ ��
� ����
$� ���"����� >�� �! �
 ����� �������� ����� �
� ��� ���
��"
 ���
 �� �	
 ��
�������� �
"������� �	
� �	�� ��� �
" ���
 ����
�� .��
$
�"��
� �
� �� �

 {a〈b.0〉}i ��� (νm)({a〈m.0〉}i|!{m.b.0}x). 1
 	��
 {a〈b.0〉}i|
{a(U).U}j

{τ}i,j−→ {b.0}j, ��� (νm)({a〈m.0〉}i|!{m.b.0}x)|{a(U).U}j ��� ��"����

2���������	��
	� � ������'���� 3����� 4���� π(�������� !1

�� � �	
 !�������� ����������4 (νm)({a〈m.0〉}i|!{m.b.0}x)|{a(U).U}j
{τ}i,j−→

(νm)(!{m.b.0}x|{m.0}j)
{τ}j,j−→ (νm)(!{m.b.0}j|{b.0}j) ≡ {b.0}j, �	
�
 �
 ��

��"
 !{m.b.0}x
{m}j−→ !{m.b.0|b.0}j� ��
�� �	
� {P}x ��""������
� ���	 {Q}j, P

���
 ��
�
� �� �� �������� j�
@�� �� ���
 �	
 ����
�� ����
��� �! ������ ��
� �����
�
� ����
��
� ��� ������

��
� �����
�
� "������� �
 �	���� 6��� �
�
����0
 ������ ��
� ����
��
� �� �	

��
� ���	 �������� ����� �
��

1
 ������� ��
 x� y� z �� �
���
 �������� ����� �
�� A
� lv
 �	
 �
� �! ��������
����� �
��

%	
 !��"�� �
6������ �! ������ ��
� ����
��
� ���	 �������� ����� �
� �� ���
�
�� !������4
M ::= {P}i |M1|M2 | (νa)M | !M, �	
�
 i ∈ loc ∪ lv ��� P ∈ Pr�
.���	
�"��
� �	
 ��
��
� ���������� ����
" �! ������ ��
� ����
��
� ���	 ����

���� ����� �
� �������� �! �	
 !�������� ���
�4

All rules of the labelled transition system of distributed processes (All rules
in Table2)

INS :
P

α−→ P ′

{P}x
{α}x→i−→ {P ′}i

α �� �� �	
 !��" �! l

COMV :
M

{l}i−→M ′ N
{l}x→i−→ N ′

M |N {τ}i,i−→ M ′|N ′

REP :
M |!M Iα−→M ′

!M Iα−→M ′
%� �
 (

2
"��/4 �� �	�� ��
��
� ���������� ����
"� �	
 ������ ��
� ������� ��
 ���
� �4
Iα ::= {τ}i,j | {l}i | {l}i | {l}x→i | {a〈E〉}i | {a〈E〉}i | {(νb̃)a〈E〉}i, �	
�
 {l}x→i

�
��
�
��� ������ ��
� 6��� ���
� ����� ������� ���	 � �������� ����� �
 x ������
����
� � i�

�� �	
 ���
 INS �
 �
� α
 ���� � 6��� ���
� ����� �������
����
 �� �	

!�������� ����������� �
 ���� �

� �� ������
� �	�� ���
� %	
 ���
 INS "
���
�	�� �������� ����� �
� ���
 ����������
� � ��� �������� �	
� ����
��
� �
�

!��" � 6��� ���
� ����� ������� 8�
$�"��
 �� {m.Q}x
{m}x→i−→ {Q}i� COMV

"
��� �	�� �! N ��""������
� ���	 � ��"���
�� �� �������� i �	����	 � 6��� ��
�
� ����� ������� �	
� �������� ����� �
 x �� N �	����
 ����������
� � i ���
�	
 ��""��������� �� ��
�
� �� �� ���
���� ��� ������ �� i. .��
$�"��
� �
 	��

(νm)({m.P}i|{m.Q}x)
{τ}i,i−→ {P}i|{Q}i, �� (νm)({m.P}i|{m.Q}x)

{τ}i,j−→

{P}i|{Q}j �� ��� ��"���
� ����
 �	
�
 �� �� ���
 ���	 ��
M

{l}i−→M ′ N
{l}x→j−→ N ′

M |N {τ}i,j−→ M ′|N ′
�

1

$����
 ���	 � ���

����
 ��	
����
 �	
 ������ ��
� �
����� �! �	
 !��������
���� �	
��
" ���� ��� 	��� 9�

 A
""� �:� .��
$�"��
� �! �
 ��"��
(νm)({m.0}i|!{m.b.0}x){τ}i,j−→(νm)({0}i|{b.0}j|!{m.b.0}x) �	
� (νm)({m.0}i|

 !/ 7� ��	

!{m.b.0}x) �≈d
cxt {b.0}i. �� ��������� �	
 ���������� (νm)({m.0}x|!{m.b.0}y)

{τ}i,j−→
(νm)({0}i|{b.0}j|!{m.b.0}j) �� ���� ��� ��"���
� ����
 �	
�
 �� �� ���
 ���	 ��

M
{l}x→i−→ M ′ N

{l}y→j−→ N ′

M |N {τ}i,j−→ M ′|N ′
. %	�� ���
 ��
$����
�
����
 !�� ��� ���� ��"
 ��

���� ������ ��
� ����
��
� ���	 �������� ����� �
� ��
 ���
�
������ �	��	 ��
 ����
�
������ ��
� �����
�
� ����
��
� �
6�
� �� �	
 �
$� �
������ .�� ������ ��
� ����
�
�
� ����
��
�� �	
�
 �� �� ���
 �	�� ��
 ��"���
�� �� �������� ����� �
 x ���
��""������
 ���	 ����	
� ��"���
�� �� �������� ����� �
 y.

D����� ��
� ����
$� ���"������� ≈d
cxt ��� ������ ��
� ���"�� ���"�������

≈d
nor ���
 �
�
����0
� �� ������ ��
� ����
��
� ���	 �������� ����� �
��

�	
 ���������� ������� ��#�����& ���������� ������� '������

��� ���������� ������� (�����������

%	
 ����
�� �! �����
�
� ����
��
� ��� ��������
� �� ��&���� !�� �	
 ����! �! �	

#�����
��

��

� ����
$� ���"������� ��� ���"�� ���"�������� .�� �
�	�����
�
������ �	
 ����! ��
� �	����	 �� ���
�"
����
 ��
� �	�� ���� ����
��
� ���� �
/��� �! ���"�� !��" 9�����
�
� ����
��
�:� %	
 ����������	��� !
����
 �! �����
�
�
����
��
� �� �	��
�
�� ��""��������� �"��� �	
" �� ��
$�	���
 �! � �����
��
�	
�
 � �����
� �� ��
�
"
����� ����
�� �	��
 ���� !������������ �� �� �������

� ���� �! ����	
� ����
��� �� �	�� �
������ �
 ��������
 �	
 ������ ��
� �
����� �!
�����
�
� ����
��
�� ��"���� �� �����
�
� ����
��
�� ������ ��
� �����
�
� ����
��
�
��� ����
 �

� �� � ���� �! <���"�� !��"< !�� �	
 ������ ��
� ����
��
�� ���
�
��
��""��������� �"��� �	
" �� �	

$�	���
 �! � ������ ��
� �����
�� 1
 �	��� ��

������ ��
� �����
�� �� �
�!��" ������ ��
� ����
�� �����!��"������ �	��	 "�/

�	
 ��
��"
�� �! �	
 ���������� �! ������ ��
� 	��	
� ���
� ����
��
�
���
��

@�� �
 ��������
 �	
 ����
�� �! ������ ��
� �����
�
� ����
��
�� %	
 ����� �!
�	
 ������ ��
� �����
�
� ����
��
� DTPr �� ���� ��"���� �� DPr�
$�
�� �	��

�
�� 	��	
� ���
� ������ ����
�� �� �� �	
 !��" �! �����
��

1
 6��� ���
 �	
 !�������� �
6������4
M ::= {Q}i |M1|M2 | (νa)M | (νm)(M |!{m.Q}x) �	
�
 i ∈ loc ��� x ∈ lv�
Q ::= 0 | U | τ.Q | l.Q | l.Q | a(U).Q | a〈m.0〉.Q | Q1|Q2 | (νa)Q | !Q
1
 ��� �	��M �� � ������ ��
� �����
�
�����
�� �!M �� �
6�
� �� � ��
�DTPrc

�� �	
 �
� �! ��� ����
� ������ ��
� �����
�
� ����
��
�� .��
$�"��
� (νm){a〈
m.0〉.0}i|!{m.0}x, (νn)({a〈m.0〉.0}i|!{n.b〈c.0〉.0}x), {a〈m.0〉.0}i ���
(νm, n)({a〈m.0〉.0}i|!{m.b〈n.0〉.0}x|!{n.τ.0}y) ��
 ����
� ������ ��
� �����
�
�
����
��
��

A������� ����� �
� �� M ��
 �
���
� �� lv(M). lv(M) ∪ lv(N) �� � �
����
�
�� lv(M,N). '�
��
 ���
 �	�� �� �	�� ���
�� �	
 ����
�� �! ������ ��
� ����
��
�
���	 �������� ����� �
� �� ��������
� ���� !�� ������ �	
 �
6������ �! ������ ��
�
�����
�
� ����
��
�� �
��
 ����
��
� ��DTPr"�� ������� �������� ����� �
�� ��
����
��
� �� DPr 	��
 �� �������� ����� �
�� ��
�� !�� ��� ����
�� M �� DPr�
lv(M) = ∅.

�� ��&����� �����
�
� "������ ��� �
6�
� ��������
��� �� !�� ������ ��
�
����
��
�� �	���� ��
 ��3
�
��� .��
$�"��
� �
� M = {(a〈τ.0〉.0|b〈l.0〉.0)}0, �! �

2���������	��
	� � ������'���� 3����� 4���� π(�������� !6

�
6�
 �����
�
� "������ �� �� ��&����� �	
� �	
 �����
�
� ����
�� ��
{(νm, n)(a〈m.0〉.0|!m.τ.0|b〈n.0〉.0|!n.l.0)}0. >�� {(a〈τ.0〉.0|b〈l.0〉.0)}0 �≈d

cxt

{(νm, n)(a〈m.0〉.0|!m.τ.0|b〈n.0〉.0|!n.l.0)}0. %	
�
!��
 �
 	��
 �� ��
�
�� � �
�
�
6������ �! �����
�
� "������ !�� ������ ��
� ����
��
��

.�� {(a〈τ.0〉.0|b〈l.0〉.0)}0, �� ���
� �� ��
�
��
 �	
 ����
���
�� �! "������ �

���� �� �����!��" �� �� (νm, n)({a〈m.0〉.0|b〈n.0〉.0}0|!{m.τ.0}x|!{n.l.0}x).1
 ��
�	�� � ��� ��
��� 6����� �
 �
����
 ��� ������ ����
��
� �� {(a〈τ.0〉.0|b〈l.0〉.0)}0 �
!�
�	 ����� �
� ��� �
� {(a〈X〉.0|b〈Y 〉.0)}0, �	
� �
 �
����
 ��� ������ ����� �
� ��
{(a〈X〉.0|b〈Y 〉.0)}0 � �����
�� ��� �
� (νm, n)({a〈m.0〉.0|b〈n.0〉.0}0|
!{m.τ.0}x|!{n.l.0}x)�

���������)	 1
 ���
 � "������ V r �	��	 �����!��"�
�
�� ����
�� P ���� �
����
�� �	��	 �� �	
 ��"
 �� P �� �	
�

�
�� ������ ����
�� �� �
����
� � �
����
�� ����� �
�

9�: V r[0] ::= 0;
9&: V r[U] ::= U ;
9(: V r[τ.P] ::= τ.V r[P];
9�: V r[l.P] ::= l.V r[P];
9,: V r[l.P] ::= l.V r[P];
9+: V r[a(U).P] ::= a(U).V r[P];
9): V r[a〈E〉.P] ::= a〈X〉.V r[P], �	
�
 X �� � !�
�	 ����� �
;
9*: V r[P1|P2] ::= V r[P1]|V r[P2];
9-: V r[(νa)P] ::= (νa)V r[P];
9�=: V r[!P] ::=!V r[P];

��������� *	1
 ���
 � "������ Trx �	��	 �����!��"�
�
�� ������ ��
� ����
��
M ���� �	
 ������ ��
� �����
�
� ����
�� Trx[M] ���	 �
��
�� �� � �������� ����
� �
 x. %	
 "������ �� �
6�
� ��������
�� �� �	
 ��������
 �!M.

9�: Trx[{P}i] ::= (νm1, ...,mn)({V r[P]{m1.0/X1, ...,mn.0/Xn}}i|
Trx[!{m1.E1}x]|...|Trx[!{mn.En}x]), �	
�
 m1, ...,mn ��
 !�
�	 ��"
�� X1, ...,
Xn ��
 ��� ����� �
� �	�� ����� �� 	��	
� ���
� ������ ��
6$
� �! V r[P] ���E1, ...,
En �����!� P ≡ V r[P]{E1/X1, ..., En/Xn};

9&: Trx[M1|M2] ::= Trx[M1]|Trx[M2];
9(: Trx[(νa)M] ::= (νa)Trx[M];
�� �� ��
!�� �� �

 �	
 ��
�������� ����
�����
��

��

� M ��� Trx[M].

%����!��"����� Trx[] "��
$���� �	
 ��"
� �! {τ}j,j ��
�� �� � ����
��� >��
�	

	������ �� ��	
����
 �	
 ��"
� %	

$������� �� ��
 �� �	
 !��� �	�� �! ��M
� ����
�� E �� �����"���
� ��� ��
� k ��"
� �	
�� �� Trx[M] k ���������� {τ}j,j

���
�������� ��
 �
#���
� �� �������
 �	
 ����
� �! E.

.��
$�"��
� �
� M
def
= {a〈E〉.0}i|{a(U).(U |U)}j , �	
� M

{τ}i,j−→ 0|{E|E}j
def
=

M ′.
�� Trx[M], �	�� �� ��"����
� ����� ��� ���������� {τ}j,j ���
��������4
Trx[M] = (νm)({a〈m.0〉.0}i|Trx[!{m.E}x]|{a(U).(U |U)}j)

{τ}i,j−→ (νm)({0}i|Trx[!{m.E}x]|{m.0|m.0}j)
{τ}j,j−→

{τ}
j,j−→ (νm)({0}i|Trx[{E}j]|Trx[{E}j]|Trx[!{m.E}x])

 !" 7� ��	

= {0}i|Trx[{E}j]|Trx[{E}j] ����
 m �� � !�
�	 ��"

= Trx[M ′].

�� �� ����	� �� ���
 �	�� !�� ��� ����
�� ��DTPr, �� ������ �
�!��" ��� ������
�! �	
 !��" {m}x→i
����
 � �	
 �
6������ �! DTPr,
�
�� �������� ����� �

������ �� ����
��
� �! �	
 !��" (νm)(M |!{m.Q}x)� �	
�
 m �� ����
� � �	

�
��������� (νm), ��� � �	
 ���
� �� %� �
 (� �� ������ �
�!��" {m}x→i.%	
�
!��

!�� ��� ����
�� �� DTPr, �	
 ������� �� ��� �
�!��" ��
 ��� �� �	
 !��" �!4
{τ}i,j | {l}i | {l}i | {a〈E〉}i | {a〈E〉}i | {(νb̃)a〈E〉}i

@�� �
 ��� ���
 �	
 ������ ��
� �
����� �! �����
�
� ���"������� �� !�������

��������� �	 A
� M � N
 ��� ����
� ������ ��
� �����
�
� ����
��
�� �
 ����

M ≈d

tr N � �! �	
�
 �� � ��""
���� �
������ R4

9�: �	
�
�
�M R N ���M
ε=⇒M ′� �	
�

$���� N ′ ���	 �	�� N

ε=⇒ N ′ ���
M ′ R N ′7

9&: �	
�
�
�M R N ���M
Iα=⇒M ′� �	
�

$���� N ′ ���	 �	�� N

Iα=⇒ N ′ ���
M ′ R N ′� �	
�
 Iα �= {τ}i,i !�� ��� i ∈ loc, Iα �� ��� � ������ ��
� 	��	
� ���
�
������7

9(: �	
�
�
�M RN ���M
{a〈m.0〉}i=⇒ M ′� �	
�
m �� � !�
�	 ��"
� �	
�

$����

N ′ ���	 �	�� N
{a〈m.0〉}i=⇒ N ′ ���M ′ R N ′7

9�: �	
�
�
� M R N ��� M
{(νm)a〈m.0〉}i=⇒ M ′� �	
�

$���� N ′ ���	 �	��

N
{(νm)a〈m.0〉}i=⇒ N ′ ���M ′ R N ′�
1
 ���M ��� N ��
 ������ ��
� �����
�
� ���"���� �!M ≈d

tr N.

�	� ���������� +���� (����������� ,������ ���������� "������

(�����������

@�� �
 ����� �	
 �
������
��

� �	
 ������ ��
� ����
$� ���"������� ��� ���
��� ��
� ���"�� ���"�������� %	
 "��� �
���� �� �	��4M ≈d

nor N ⇒ Trx[M] ≈d
tr

Trx[N] ⇒ M ≈d
cxt N, �	
�
 x �� �� �� ������ �������� ����� �
.1
 ��	�
�
 �	��

�
���� � ������� �
�
��� ������������ ��������� ������ ��
� !������������ �	
�
�
" 9A
""� �:� !��� � ��������� �! �	
 "������ �� ������ ��
� �����
�
� ����
��
�
9A
""� &:� �	
 �
������
��

� ������ ��
� �����
�
� ���"������� ��� ������
��
� ���"�� ���"������� 9'���������� ,:� ��� �	
 �
������
��

� ������ ��
�
�����
�
� ���"������� ��� ������ ��
� ����
$� ���"������� 9'���������� +:�

.������� �
 ���
 �	
 ������
��
 �! ≈d
tr .

����������)	 9������
��
 �! ≈d
tr: .�� ��� M � N � K ∈ DTPrc� M ≈d

tr N �"
���
�4

��M |K ≈d
tr N |K;

&� (νa)M ≈d
tr (νa)N.

@�� �
 ���
 �	
 ������ ��
� �
����� �! �	
 !������������ �	
��
"� �	��	 ����
�
�	��� � "
��� �! ������ ��
� �����
��� � ������ ��
� �� ����
�� �! � ���
� ������
��
� ����
�� ���
 !�������
� ����

2���������	��
	� � ������'���� 3����� 4���� π(�������� !0

����� �	 .�� �� ������ ������ ��
� ����
�� M ��� ����
�� E ���	 m /∈
fn(M,E)� �� 	���� �	��M{E/U} ≈d

cxt (νm)(M{m.0/U}|!{m.E}x).
@��
4 1
 �� ��� 	��
 M{E/U} ≈d

cxt (νm)(M{m.0/U}|{!m.E}x). 8 �����
�

$�"��
 ��4M = {U}i|{U}j� E = a.0. %	�� �	��� �	� �
 ��������
 �	
 �
�����
���� ��
����� �� ������ ��
� ����
��
� ���	 �������� ����� �
��

%	
 ����
���
�� �! Trx[] �� ����
� �� A
""� &4

�����
	 .��
��	M ∈ DPrc :
�� Trx[M] �� � ������ ��
� �����
�
� ����
��7
&� Trx[M] ≈d

cxt M ;
(� Trx[M] ≈d

tr M, �!M �� � ������ ��
� �����
�
� ����
���
'���������� ,
��� ����
� �	
 �
������
��

� ≈d

nor ��� ≈d
tr4

���������� *	 .�� ��� M � N ∈ DPrc, M ≈d
nor N ⇒ Trx[M] ≈d

tr Tr
x[N],

�	
�
 x �� �� �� ������ �������� ����� �
.
'���������� +
��� ����
� �	
 �
������
��

� ≈d

cxt ��� ≈d
tr4

���������� �	 .�� �� ������M �N ∈ DPrc� Trx[M] ≈d
tr Tr

x[N]⇒M ≈d
cxt N,

�	
�
 x �� �� �� ������ �������� ����� �
.
%	
 !�������� ����������� �� �	
 "��� �
���� �! �	�� �
������ �	��	 ����
� �	

#�����
��

��

� ������ ��
� ���"�� ��� ����
$� ���"���������

���������� -	M ≈d
nor N ⇒M ≈d

cxt N �

* � #����	���
���
�� �����!

�� �	�� �
������ �
 ���
 �	

#�����
��

��

� �
�/ ������ ��
� ���"�� ���"���
����� �
�/ ������ ��
� ����
$� ���"������� ��� �
�/ ������ ��
� �
������� ���"
��������

���������� .	M ≈d
nor N ⇔M ≈d

cxt N ⇔M ≈d
red N �

%	
�
 ������ ��
� ���"�������� ��������� ���� �
�
#�����
��
� �� �
�����
����
��
� �� !������4 ��� 	��	
� ���
� π�������� ����
��
� P ��� Q ��
 ������
�
��

#�����
�� �! �	
 ������ ��
� ����
��
� {P}l ��� {Q}l ������ �� �	
 ��"

�������� l ��
 ������ ��
� ���"�����

+ #��	���
���

%	�� ���
� ��
�
��� ��
$�
����� �! �	
 	��	
� ���
� π�������� ���	 �
�� ��"��

������ ��
� !
����
�� %	�

 �
� �������� ��
� ���"�������� �
�
 ������
� �� �	��
���
�� %	
�
 ������ ��
� ���"�������� ��
 ����
� ��

#�����
���

%������������� �	
 ������ ��
� ��������
 �! ����
��
� ���
 "��

$������ � ��
������� ��3
�
�� ��������� �� �	
�� ������
� ��"���
���� %	
 ������"
�� �! ����
����� "��
 ���
 ����������� �� ����"������ �� �	

$
������ ����

��� %	
 ������
�������	 ��� �����
� 6��� � 8�
�� ���� � ��������� ��3
�
�� ��������� �� �����
�
� ��"���
���� %	
 ����"�� �������	 ��� �
�
���
� 6���� � >�����
� ��� �&��

 !8 7� ��	

 � ����������� ��������� ���	 �������� �� �� ���
��
� "��
 ����
��
�� !�� �
6����
������� �! ��������
#�����
��
 ��� ��
���
��1
 ����� �	
 ������ �������	 �� �	��
���
�� �	��	 ��"��
 ������� !��" �� ��������
 ����� �! ��
�� ���"��
"����
� �

!�� �
��6������ ������
��

'������	��

 � ����	� 9�: � ������ ���& 	
 �	��������� *	���� ������� 	
 �	������� ";�<� �! =���
; 55/<

�� 2	��	�� .�� ����������� %�� 3�������� >�� ?����� ��: � ���	�� 	
 ��	������ &��� �	(
��������� *	���� ������� 	
 �	������� "� "6=�!! ; 55/<

1� 2	��	�� .�� ����������� %�� 3�������� >�� ?����� ��: 4'������� �	��������� ���	�������
�	������ ������ /� 1 =" ; 551<

/� ����������� %�: #�	���� ����'��� &��� 9	��������� %�: 2�������� @�� #	���� ��� �	�)��
� ;����< 3���') 	
 #�	���� ����'��� ��� 6� �	���(3	������ ��������� ;�!! <

6� ����������� %�: 4'������� ������'���	� �� ��	������: ������ ��� ������� �	��������� %���
@	����� 	
 *	������	�� 	
 �	������ ������ ";/<� 161=151 ; 556<

"� ����������� %�� 3�������� >�: ������'���� 2���������	��� @	����� 	
 ��� ��> 1";/<�
880=5 ; 585<

0� �	�������� *�� �� ���	��� $�: 9	������ '���� ���������
	� ��	���� ����'���� ����
%�
	������� 1/� �5 =1�/ ; 550<

8� .	��)����� @���� 3����'������ ��� ���	��� A�: � �������� 	
 >	'��� $��	������
%�: 2���� 9�� @��B��� #�� ?C��D��)E� >�� ?������ �� ;����< �4���$ �!!�� 9���
�	�� �/� � ��� �0�=�80� �������� 3�����'��� ;�!!�<

5� 3����'������ ��� .	��)����� @���� 2��������� >�: 2���������	� �	���������
	�
3	��� (� �������� 	
 3����� 4���� >	'��� F�'����� $��	������ ��������� $��	��
�$(�!!/(6�� %� ���������� 	
 �	�������� ;�!!/<

 !� 3�������� >�� $���)�� @�� G	������ ��: �
����: � ��������
	� �	���	����� �	(
'��� �	��� %�: ,���)��&��H� %� ;���< *4�� �!!/� 9��� �	�� �580� ��� �/ =�6"�
�������� 3�����'��� ;�!!/<

 � $����� @�� 3�������� >�: � ����� ��������
	� ������'���� �	'��� ��	������� %�: #�	(
�������� 	
 #4#958 ; 558<

 �� ����	���� ��: 2���������	� �� ������(���� �������� %�
	�����	� ��� �	�����(
��	� 1 ;�< ; 55"<

 1� ����	���� ��: 9	������ ��� ������������ ��������� �� �������
	� �	'��� ��	������� %�:
3������ >�� >�������� @��� ;����< ��� 55/� 9��� �	�� 085� �������� 3�����'���
; 55/<

 /� ����	���� ��: F+�������� �	'����� �� ��	���� ����'���: I���(���� ��� ������(����
���������� #��� ������� ���������� 	
 F��'���� ; 55�<

 6� ������� ��� ��
���� @�: ��� ?��� ��������: �
����� 	
 ������ 	���� ������'����
��	���� �������� %�: #������ ��� J������� #� ;����< .� �!!/� 9��� �	�� 1�"0�
�������� 3�����'��� ;�!!6<

 "� ������� ��� ��
���� @�: ��� >(��������: � ������(���� ������'���� ��	���� ���������
��> %.#9�� �	����� 18; <� 6!=" ;�!!1<

 0� A���)� @�� ��������� .�: ���: �
����&	�)
	� ������ �	'��� �	�������	��� %�:
��������H��� �� ;���< ,	�)��	� 	� %������� #�	�������� 9�������� ; 555<

 8� G	������ ��� 3�������� >�: �'������ ��� �	������ �� ������'���� ������ 	����
��	������� %�: 2������ @���>�� >��&� � ;����< �4���$ 555� 9��� �	�� ""/�
�������� 3�����'��� ; 555<

A Complete and Compact Propositional Deontic

Logic

Pablo F. Castro and T.S.E. Maibaum

McMaster University
Department of Computing & Software

Hamilton, Canada
castropf@mcmaster.ca, tom@maibaum.org

Abstract. In this paper we present a propositional deontic logic, with
the goal of using it to specify fault-tolerant systems, and an axioma-
tization of it. We prove several results about this logic: completeness,
soundness, compactness and decidability. The main technique used dur-
ing the completeness proof is based on standard techniques for modal
logics, but it has some new characteristics introduced for dealing with
this logic. In addition, the logic provides several operators which appear
useful for use in practice, in particular to model fault-tolerant systems
and to reason about their fault tolerance properties.

Keywords: Modal Logic, Deontic Logic, Temporal Logic, Fault toler-
ance, Software Specification.

1 Introduction

Deontic logics have been a field of research in formal logic for many years; the
first deontic formal systems were given by Ernst Mally in the 1920’s. Since then,
several different systems have been developed; in particular, the use of modal
systems enjoyed great success in the deontic community (see [1]). Though the
most important research was done by philosophers and logicians, in the last
25 years computer scientists have adopted deontic logics as a field of research.
The utility of these logics to formalize concepts such as violation, obligation,
permission and prohibition, is very useful for system specification, where these
concepts arise naturally. Examples of the application of deontic systems can be
found in several places: in [2] Broersen develops several deontic frameworks to
reason about real-time systems; in [3], Maibaum and Khosla use deontic notions
to distinguish between prescription and description of systems; and several de-
ontic logics have been developed to deal with agents (for example: [4]). Deontic
logics seem to be very useful to formalize fault-tolerant systems (as argued in
[5]): they allow us to distinguish between normal and non-normal states, and
therefore between bad and good actions.

In this paper we present our own version of deontic logic; we include some
operators which are not so common in the literature (the done operator, the
relative complement on actions and two versions of permission), and we describe

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 109–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

110 P.F. Castro and T.S.E. Maibaum

some of its properties. The important point to make about this logic is that it
has a complete and sound axiomatization; we give a proof of this in section 2.
Also, we outline a temporal extension of this logic. An important characteristic
of our framework is that we use a relative complement over actions (that is,
the complement is with respect to the other actions, and not with respect to
the universal relation). Moreover, the operators on actions that we consider are
exactly those of boolean algebras, and the novel feature of the axiomatization is
that it is compact. In several places (e.g., see [2]) it is shown that modal boolean
logics (modal logics with boolean operators) with relative complement are not
compact; we shall explain why this is not true in the logic described later on.

Our main goal is to use this logic to reason about fault-tolerant systems; we
provide some examples of applications in this paper. However, our intention here
is to focus on the theoretical properties of the logic.

The paper is organized as follows: in section 2 we describe the propositional
version of the logic and we prove the completeness and soundness theorems. We
give an example of its application in section 3, and, finally, we describe some
future work.

2 A Propositional Ought-to-Do Deontic Logic

We shall present a logic, which can be considered as an ought-to-do logic in the
sense that deontic operators are applied to actions. Using greek letters: α, β, γ,
... to denote actions, we can describe informally the constructions of our logic:

– α =act β: actions α and β are equals.
– [α]: after any possible execution of α, ϕ is true.
– [α " β]ϕ: after the non-deterministic execution of α or β, ϕ is true.
– [α � β]ϕ: after the parallel execution of α and β, ϕ is true.
– [U]ϕ: after the non-deterministic choice of any possible action, ϕ is true.
– [∅]ϕ: after executing an impossible action, ϕ becomes true.
– [α]: after executing an action different from α, ϕ is true.
– P(α): every way of executing α is allowed.
– Pw(α) : some way of executing α is allowed.

As usual we consider the logical connectives: ∨,∧,¬ and →. The dual of the box
modality can be defined in the standard way: 〈α〉ϕ def⇐⇒ ¬[α]¬ϕ.

Note that, as common in deontic logics, we have the notion of permission;
the operator P(α) tells us if an action is allowed to be performed or not. We
can call it a strong permission since it requires that every way of performing
an action has to be allowed. For example, if we say that driving is allowed, we
also mean that driving while drinking beer is allowed. Of course, permission has
been a polemical notion since the beginning of deontic logic. Some people (for
example: [6]) have proposed a weak version, where to be allowed to perform an
action means that this action is allowed only in some contexts. We shall use both
notions of permission; the latter is denoted by the operation Pw(α), and it should
be read as: α is weakly allowed. The two versions differ in their properties, as we
shall show later on.

A Complete and Compact Propositional Deontic Logic 111

It is usual to define the notion of obligation using the notion of permission
(although these two are not necessarily related!), some versions include (see [6]):
O(α) ≡ ¬Pw(α). This can give us some problems; for example this definition
enables Ross’s paradox: O(α) → O(α " α′). This can be read as: if you are
obliged to send a letter, then you are obliged to send it or burn it. Trying to keep
the definition of obligation simple, we use a variant of the above definition, but
using both versions of permission: O(α) def⇐⇒ P(α) ∧ ¬Pw(α). That is, an action
is obligated if and only if it is strongly permitted and no other action is weakly
permitted. Ross’s paradox is avoided as the reader can check for himself.

A vocabulary (or language) 〈Φ0, Δ0〉, is a tuple where Φ0 = {p, q, s, ...} is a
(enumerable) set of propositions, and Δ0 = {α0, .., αn} is a finite set of “atomic”
(or primitive) actions. Using a vocabulary we can define the set Φ of formulae;
the inductive definition is straightforward.

Let us introduce the notion of deontic structures.

Definition 1 (models). Given a language L = 〈Φ0, Δ0〉, an L-Structure is a
tuple: M = 〈W ,R, E , I,P〉 where:

– W, is a set of worlds.
– R, is an E-labeled relation between worlds. We require that, if (w, w′, e) ∈ R

and (w, w′′, e) ∈ R, then w′ = w′′, i.e., R is functional.
– E, is a non-empty set of (names of) events.
– I, is a function:

• For every p ∈ Φ0 : I(p) ⊆ W
• For every α ∈ Δ0 : I(α) ⊆ E.

In addition, the interpretation I has to satisfy the following properties:
I.1 For every αi ∈ Δ0: |I(αi)−

⋃
{I(αj) | αj ∈ (Δ0 − {αi})}| ≤ 1.

I.2 For every e ∈ E: if e ∈ I(αi) ∩ I(αj), where αi �= αj ∈ Δ0, then:
∩{I(αk) | αk ∈ Δ0 ∧ e ∈ I(αk)} = {e}.

I.3 E =
⋃

αi∈Δ0
I(αi).

– P ⊆ W × E, is a relation which indicates which event is permitted in which
world. �

We can extend the function I to well-formed action terms and formulas, as
follows:

– I(¬ϕ) def= W − I(ϕ).
– I(ϕ → ψ) def= I(¬ϕ) ∪ I(ψ).
– I(α " β) def= I(α) ∪ I(β).
– I(α � β) def= I(α) ∩ I(β).
– I(α) def= E − I(α).
– I(∅) def= ∅.
– I(U) def= E .

We are following the approach given in [7] for the semantics, in the sense that
we interpret an action as a set of events. Intuitively, an action produces a set of
events during its execution.

112 P.F. Castro and T.S.E. Maibaum

Conditions I.1, I.2 and I.3 in definition 1 express topological requirements
on the possible interpretations of atomic actions. I.1 says that the isolated appli-
cation of an action always generates at most one event ; otherwise we will have
an undesired nondeterminism in our models, as the different ways of executing
an atomic action arise because you can execute it together with other actions
(perhaps environmental actions). I.2 establishes that if an event is a result of
the execution of two or more actions, then the concurrent execution of all the ac-
tions which generate it will give us only this event. I.3 only says that every event
is produced by some atomic action. It is a kind of standard model requirement.

Now, we can introduce the relation � between models and formulae. Some
notation is needed for dealing with the relational part of the structure: we will
use the notation w

e→ w′ when (w, w′, e) ∈ R.

Definition 2 (�). Given a vocabulary L = 〈Φ0, Δ0〉 and a L-structure M =
〈W ,R, E , I,P〉, we define the relation � between worlds and formulas as follows:

– w, M � p
def⇐⇒ w ∈ I(p)

– w, M � α =act β
def⇐⇒ I(α) = I(β)

– w, M � ¬ϕ
def⇐⇒ not w � ϕ.

– w, M � ϕ → ψ
def⇐⇒ w � ¬ϕ or w � ψ or both.

– w, M � [α]φ def⇐⇒ for all w′ ∈ W and e ∈ I(α) if w
e→ w′ then w′, M � φ.

– w, M � P(α) def⇐⇒ for all e ∈ I(α), P(w, e) holds.

– w, M � Pw(α) def⇐⇒ there exists some e ∈ I(α) such that P(w, e) �

Some explanation about the semantics of complement is needed. Note that for
interpreting [α]ϕ, we are only taking into account the events which are not
produced by the action α and which can be executed in the actual state. In other
words, we are not using the complement with respect to the universal relation.
If we used the latter notion, non reachable worlds would become reachable.

2.1 A Deductive System

In this section we present a deductive system; this is a normal modal system
(in the sense that the K-axiom can be deduced from it) and the axioms for the
modal part of the logic are similar to those given at [8] and [9]. We assume the
standard definition of the relation �⊆ ℘(Φ)× Φ. And we will say: �DPL ϕ, if ϕ
is a theorem of the following axiomatic system (we shall omit the subscript DPL
when there is no confusion).

An important characteristic of our set of axioms (which, to the authors’ knowl-
edge, is not shared with other related work) is that it establishes a deep con-
nection between the weak version of permission and the strong version of it.
Actually, one of these axioms can be seen as a kind of “compactness” property
that our models satisfy. This property is implied by the restrictions assumed
about them. This is a key fact exploited in the completeness proof. Before go-
ing into details, we need to introduce the notions of canonical action terms and

A Complete and Compact Propositional Deontic Logic 113

boolean algebra of action terms. For the following definitions, we consider the
following fixed vocabulary:

Φ0 = {p1, p2, p3, ...} Δ0 = {α1, ..., αn}

This language induces the set Δ of boolean terms; we denote by ΦBA some
axiomatization of boolean algebras (note that there exist complete axiomatiza-
tions, see [10]). Then, the set Δ/ΦBA is the quotient set of the boolean terms by
=act; the point is that using this set we can define the (atomic) boolean algebra
〈Δ/ΦBA,"[],�[],−[], [∅]BA, [U]BA〉 as follows:

– −[][α]BA = [α]BA

– [α]BA "[] [β]BA = [α " β]BA

– [α]BA �[] [β]BA = [α � β]BA

It is straightforward to prove that this is a boolean algebra. Furthermore, since
the terms in Δ are generated by a finite set Δ0 of atomic actions, the quotient
boolean algebra is finite, and therefore atomic. We call at(Δ/ΦBA) (or at(Δ)
when no confusions arises) the set of atoms of the quotient boolean algebra of
terms. Note also that we can define ![] in the usual way.

It will be useful to recall the following theorems about atomic boolean algebras
(their proofs can be found in [11], for example).

Theorem 1. For every finite boolean algebra 〈A,∪,∩,−, 0, 1〉, the following
holds: for all x ∈ A, there exist atoms a1, ..., an such that: x = a1 ∪ ... ∪ an. �

Theorem 2. For every finite boolean algebra B = 〈A,∪,∩,−, 0, 1〉, and con-
sidering A = {a | a is an atom of B}, there exists an isomorphism between
B and the boolean algebra 〈℘(A),∪,∩,−, ∅, A〉. The isomorphism is defined by
f(x) = {a | a ≤ x}.

�
It is important to keep in mind these facts for the proofs given below. At this
point we are ready to present our axiomatic system.

Definition 3 (Axioms for DPL). Given a vocabulary 〈Φ0, Δ0〉, where Δ0 =
{α1, ..., αn}. The axiomatic system is composed of the following axioms:

1. The set of propositional tautologies.
2. A set of axioms for boolean algebras for action terms (a complete one), in-

cluding standard axioms for equality.
3. The following set of axioms

A1. 〈α〉⊥ ↔ ⊥
A2. [∅]ϕ
A3. 〈α〉ϕ ∧ [α]ψ → 〈α〉(ϕ ∧ ψ)
A4. [α " α′]ϕ ↔ [α]ϕ ∧ [α′]ϕ
A5. [α]ϕ → [α � α′]ϕ
A6. P(∅)
A7. P(α " β) ↔ P(α) ∧ P(β)
A8. P(α) ∨ P(β) → P(α � β)

114 P.F. Castro and T.S.E. Maibaum

A9. ¬Pw(∅)
A10. Pw(α " β) ↔ Pw(α) ∨ Pw(β)
A11. Pw(α � β) ↔ Pw(α) ∧ Pw(β)
A12. P(α) ∧ α �=act ∅ → Pw(α)
A13. (

∧
[α]BA∧α�α′(Pw(α) ∨ (α =act ∅))) → P(α′)

A14. P(α) ∧ ¬Pw(α) ↔ O(α)
A15. 〈α〉ϕ ↔ ¬[α]¬ϕ

A16. (α1 " ... " αn) =act U
A17a. α =act α′ → [β](α =act α′)
A17b. 〈β〉(α =act α′) → α =act α′

and the following deduction rules:

MP :
ϕ ϕ → ψ

ψ
GN :

ϕ

[α]ϕ
BA :

α =act α′ ϕ[α]
ϕ[α/α′]

�
Some explanation is needed for the axioms. A1 and A3 are basic axioms of nor-
mal modal logics. A2 says that after an impossible action everything becomes
possible. A4 tells us that if something is true after the execution of a nondeter-
ministic choice between two actions, then this has to be true after the execution
of one of these actions. A5 says that parallel execution preserves properties; one
can think of some scenario where this is not true, but this happens when we
execute two actions not consistent with each other, and this is just an impos-
sible action in our framework. A6, A7 and A8 are similar axioms for strong
permission, and A9, A10 and A11 are the duals for weak permission. Here the
important point is to establish a relationship between both versions of permis-
sions; because of the nature of deontic predicates (they predicate on actions),
we cannot use the standard technique that we use for modal operators (that is,
define one of them as the dual of the other). Axioms A12 and A13 express the
relation between the two versions of permission. The former says that strong
permission implies weak permission for “non-impossible” actions. The latter one
says that if every way of executing an action α is weakly permitted, then α is
strongly permitted. Or, by the contrapositive, if an action is not strongly allowed,
then some way of executing it is not weakly permitted. As the reader can deduce,
this is a kind of compactness property which relates both versions of permission.
Note that the given formula is finite because the underlying canonical term al-
gebra (modulo action equality) is finite; in this way we can avoid second order
quantifiers. Unfortunately, in a first order extension of this axiomatic system we
cannot use the same trick. Axioms A14 and A15 define obligation and the box
modality, respectively. Finally, formula A16 says that the union of all actions
gives us the universal action and axioms A17a and A17b express that equality
is not affected by modalities.

Now, we can prove the soundness of our axiomatic system. We only show the
proofs of the most important axioms; the other proofs are similar.

A Complete and Compact Propositional Deontic Logic 115

Theorem 3 (soundness). The axiomatic system defined in definition 3 is
sound with respect to the models defined in definition 1, that is:

� ϕ ⇒� ϕ

Proof. We have to prove that each axiom is valid, and that the deduction rules
preserve validity. Axioms 1-3 and the deduction rules MP and GN are very stan-
dard and their soundness proofs can be found in the literature. On the other
hand, it is clear that boolean algebra axioms are valid, since the interpretation
of action operators are given by means of set operators. We prove the validity of
axioms 4-17 and that the deduction rule BA preserves validity.
Axiom 4: Straightforward by first order properties. See axiom 7’s proof.
Axiom 5: Direct using subset properties and “for all” properties.
Axiom 6: Straightforward by definition of � and vacuous domain.
Axiom 7: Suppose w, M � P(α " β), for arbitrary model M and world w. This
means that: ∀e ∈ I(α " β) : P(w, e); using first order logic we get: (∀e ∈ I(α) :
P(w, e)) ∧ (∀e ∈ I(α) : P(w, e)), and this implies: w, M � P(α) ∧ P(β).
Axiom 8: Similar reasoning as before, but using the fact that: I(α � β) = I(α) ∩
I(β).
Axiom 9: For every model M and world w, by logic we have: ¬(∃e ∈ I(∅) :
P(w, e)), and this means: � ¬Pw(∅).
Axiom 10: Suppose w, M � Pw(α " β); by definition we obtain: ∃e ∈ I(α " β) :
P(w, e) and using the definition of I and properties of ∃ we get: w, M � Pw(α)∨
Pw(β).
Axiom 11: Similar to Axiom 10.
Axiom 12: Suppose that w, M � P(α) ∧ α �= ∅; this means: ∀e ∈ I(α) : e ∈ Pw

and I(α) �= ∅; by basic first order reasoning we get: ∃e ∈ I(α) : P(w, e), but this
implies w, M � Pw(α).
Axiom A13: Suppose that for some w:

w, M �
∧

[α]BA∧α�α′

(Pw(α) ∨ α =act ∅)

and:
w, M �� P(α′)

The last formula implies: ∃e ∈ I(α′) : ¬P(w, e). Now, using condition I.1 and
I.2, we can reason by cases:

– e ∈ I(αi) −
⋃

j
=i(I(αj)), for some αi. Therefore, by condition I.1, we get:
I(αi � (

⊔
j
=i αj)) = {e}. And then w, M �� Pw(αi� (

�
j
=i αj)). This gives us

a contradiction.
– e ∈ I(αi) ∩ I(αj), for some i �= j. Then, let α1

1, ..., α
1
m be all the atomic

action such that: e ∈ I(α1
k), for 1 ≤ k ≤ m. Then by condition I2, we

get:
⋂

1≤k≤m I(α1
k) = {e}. And then w, M �� Pw(α1

1 � ... � α1
m), giving a

contradiction, the result follows.

116 P.F. Castro and T.S.E. Maibaum

Axiom A14, Axiom A15, Axiom16: Straightforward.
Axiom A17: The result follows from the fact that action interpretations are fixed,
and they do not depend on states.
BA: The result is straightforward from the fact that, if we have α =act α′, then
I(α) = I(α′); here using the Leibniz equality property deduce that, if � ϕ[α], then
� ϕ[α′]. �
The following theorems of the axiomatic system just defined are used in the
completeness proof; actually in [8] theorem T3 is used for axiomatizing the modal
part of boolean logic, and it should be enough for the modal part of our logic.
Because we are taking an algebraic view of the logic, in our axiomatic system
we focused on operational properties.

Theorem 4. The following are theorems of DPL; we do not include the proofs
here, but they can be found in [12].

T1. P(α) ∧ α′ ! α → P(α′)
T2. Pw(α′) ∧ α′ ! α → Pw(α)
T3. [α]ϕ ∧ (α′ ! α) → [α′]ϕ
T4. [α]ϕ ∧ [α′]ψ → [α " α′](ϕ ∨ ψ)
T5. [α]ϕ ∧ [α′]ψ → [α � α′](ϕ ∧ ψ)

For the completeness proof, we introduce the following canonical model:

Definition 4 (canonical model). C = 〈EC ,WC ,RC ,PC , IC〉 where:

– EC def= at(Δ)

– WC
def= {Γ | Γ is a maximal consistent set of formulae}

– RC def=
⋃
{Rα,w,w′ | w, w′ ∈ WC ∧ α ∈ Δ ∧ (∀ϕ ∈ Φ : [α]ϕ ∈ w ⇒ ϕ ∈ w′)},

where Rα,w,w′
def= {w [α′]BA→ w′ | ∀[α′]BA ∈ IC(α)}

– PC
def=

⋃
{Pw,α | w ∈ WC∧P(α) ∈ w}, where: Pw,α

def= {(w, [α′]BA) | [α′]BA ∈
IC(α)}

– IC(αi)
def= {[α′]BA ∈ EC |�ΦBA α′ ! α}

– IC(pi)
def= {w ∈ WC | pi ∈ w} �

It is important to explain the basic intuition behind this canonical model. We
use the set of atoms in the underlying term algebra (modulo equality) for the
set of events. Analyzing the atoms of the term algebra, we note that they are
quite suitable for defining the events, each of them having the form: αi � ... �
αi+n � αk � ...αk+m, where the first sequence of actions can be thought of as
the primitive actions executed by the action (which this event belongs to) and
the rest are the actions not executed when the event takes effect. The worlds,
as usual, are maximal consistent sets of formulae, and the relationship between
them is defined as is common in modal logics (see [13]); the novel point is that we
label the relationship with the corresponding atoms. In a similar way we define
the relation RC ; if a formula P(α) exists in a given world w, then we add to the

A Complete and Compact Propositional Deontic Logic 117

relation the pairs (w, γ), where γ is an atom of the term algebra. Our axioms
ensure that this is safe.

Keeping these facts in mind, we can prove the completeness of the system, that
is; each consistent set of formulas has a model. First, for the proof we need the
following lemma whose proof is straighforward using boolean algebra properties.

Lemma 1. ∀α ∈ Δ, ∀[α′]BA ∈ IC(α) : �ΦBA α′ ! α

Now, we can prove a fundamental lemma.

Lemma 2 (truth lemma). w, C � ϕ ⇔ ϕ ∈ w.

Proof. The proof is by induction on ϕ; we only describe the most important
steps.

Base Case. Using the definition we get

w, C � pi ⇔ w ∈ IC(pi) ⇔ pi ∈ w

Inductive Case. We have several cases:

CASE I. we have to prove w, C � [α]ϕ ⇔ [α]ϕ ∈ w.
⇒) Suppose w, C � [α]ϕ, this means:

∀[γ]BA ∈ IC(α), ∀w′ ∈ WC : w
[γ]BA→ w′ ⇒ w′, C � ϕ

≡ [inductive hypothesis]

∀[γ]BA ∈ IC(α), ∀w′ ∈ WC : w
[γ]BA→ w′ ⇒ ϕ ∈ w′ (*)

On the other hand, suppose [α]ϕ /∈ w, then (recalling properties of maximal
consistent sets) 〈α〉¬ϕ ∈ w. Now, consider the set: Γ = {¬ϕ} ∪ {ψ | [α]ψ ∈ w}.
We claim that this set is consistent, for if not:

∃ψ1, ..., ψn ∈ Γ : {ψ1, ..., ψn, ϕ} � ⊥

by definition of contradiction. But using this we can deduce:

〈α〉¬ϕ ∧ [α]ψ1 ∧ ... ∧ [α]ψn ∈ w
⇒ [axiom 3 and maximal consistent set properties]
〈α〉(¬ϕ ∧ ψ1 ∧ ... ∧ ψn) ∈ w
⇔ [hypothesis]
〈α〉⊥ ∈ w
⇔ [axiom 1]
⊥ ∈ w !

Then Γ has to be consistent, and therefore it has a maximal consistent extension
(by Zorn’s lemma) Γ ∗. But by definition of RC :

∀[γ]BA ∈ IC(α) : w
[γ]BA→ Γ ∗ ∧ Γ ∗ � ¬ϕ

which contradicts (*) and therefore [α]ϕ ∈ w.

118 P.F. Castro and T.S.E. Maibaum

⇐) Suppose [α]ϕ ∈ w; we have to prove w � [α]ϕ. Suppose that w � [α]ϕ, then
this means:

∃[γ]BA ∈ IC(α), ∃w′ ∈ WC : w
[γ]BA→ w′ ∧ w′, C � ϕ

which is equivalent to (by ind.hyp.):

∃[γ]BA ∈ IC(α), ∃w′ ∈ WC : w
[γ]BA→ w′ ∧ ϕ /∈ w′ (∗∗)

But, by definition of RC, this means:

∃w′ ∈ WC : (∀ψ : [γ]ψ ∈ w ⇒ ψ ∈ w′) ∧ ϕ /∈ w′

⇒ [logic]
¬([γ]ϕ) ∈ w
⇔ [max.cons.set properties]
[γ]ϕ /∈ w (***)

But we know by lemma 1 that γ ! α. From here and using the hypothesis ([α]ϕ ∈
w) and using theorem T3, we obtain: [γ]ϕ ∈ w!. And therefore: w, C � [α]ϕ.

CASE II. We have to prove: w, C � P(α) ⇔ P(α) ∈ w.
⇒) Suppose w, C � P(α); this means:

∀[γ]BA ∈ IC(α) : PC(w, [γ]BA)

Because of lemma 1, this implies (using definition of PC) that either P(α) or
P(β) where �ΦBA α ! β, since there is no other way to introduce this relation in
the canonical model. In both cases the result follows, in the first trivially, in the
second one by using T1.
⇐) Suppose that P(α) ∈ w; by definition of PC this means:

∀[γ]BA ∈ IC(α) : PC(w, [γ]BA)

But using the definition of � we get: w, C � P (α).

CASE III. w, C � Pw(α) ⇔ Pw(α) ∈ w.
For the case α =act ∅ the equivalence is trivial; let us prove the other case
(α �=act ∅).
⇒) Suppose w, C � Pw(α); this means:

∃[γ]BA ∈ IC : PC(w, [γ]BA)

By definition of PC, this only happens if for some β: γ ! β and P(β) ∈ w. Then
by theorem T1 this implies P(γ) ∈ w, and therefore, using axiom A12, we get:
Pw(γ) ∈ w; from this, by theorem T2, we obtain Pw(α) ∈ w.
⇐) Suppose Pw(α) ∈ w. We know by properties of atomic boolean algebras that:

[α]BA = [γ1]BA "[] ... "[] [γn]BA for some [γ1]BA, ..., [γn]BA atoms in Δ/ΦBA

⇔ [def. of Δ/ΦBA]
[α]BA = [γ1 " ... " γn]BA

A Complete and Compact Propositional Deontic Logic 119

But this implies by deduction rule BA that Pw(γ1 " ..." γn) ∈ w. By axiom A10,
this implies:

Pw(γ1) ∨ ... ∨ Pw(γn) ∈ w

Let γi be some of these action terms such that Pw(γi) ∈ w; since γi ∈ at(Δ), we
have: ∧

[α]BA∧α�γi

(Pw(α) ∨ (α =act ∅)) ∈ w

Then by MP and A13 we get P(γi) ∈ w. By definition of PC, this implies that:

∃[γ]BA ∈ IC(α) : PC([γ]BA, w)

and this is just the definition of w � Pw(α). �
Note that we have to prove that the defined interpretation IC holds with the
restrictions I.1 and I.2 (I.3 is satisfied by definition). The following theorem
does this.

Theorem 5. The function IC satisfies the conditions I.1,I.2.
Proof. First note that all the atoms of the boolean algebra Δ/ΦBA (the
Lindenbaum-Tarski algebra [10]) have the following form (or are equivalent to it):

α1
1 � ... � α1

m � α2
1 � ... � α2

k

Where for all αi ∈ Δ0: αi = α1
j or αi = α2

j , for some j. That is, the atoms in the
Lindenbaum algebra can be represented by terms which are composed of “intersec-
tions” of atomic actions or their negations.

That IC satisfies conditions I.1, I.2 is implied by the underlying structure of
the generated Lindenbaum Algebra:
I.1: If [γ] ∈ IC(αi)−

⋃
j
=i(IC(αj)), then γ =act αi � (

�
j
=i(αj)), where

�
is used

to denote the application of � to a finite sequence of boolean terms.
I.2: We have to show that if [γ] ∈ I(αi) ∩ I(αj), for some i �= j. Then:⋂

{I(αk) | [γ] ∈ I(αk)} = {[γ]} (1)

In this case it is easy to see that:

γ =act α1
1 � ... � α1

m � α2
1 � ... � α2

m′ (2)

where α1
i are the atomic actions which have the equivalence class [γ] in its inter-

pretation, and α2
i are the rest. Since the right term in equation 2 is an atom, every

other [γ′] that satisfies condition 1 also satisfies: [γ′] = [γ]. The theorem follows. �

We have proved that the canonical model has the correct behavior; the complete-
ness follows:

Corollary 1. For every consistent set Γ of DPL, there is a model which satisfies it.

Proof. If Γ is consistent, then there exists a maximal extension of it which is a
maximal consistent set, and therefore this set is a world w in the canonical model.
By the definition of canonical model we know w, C � Γ ; this finalizes the proof. �

120 P.F. Castro and T.S.E. Maibaum

Compactness is a corollary of strong completeness:

Corollary 2. If every finite subset of a set Γ of formulae is satisfable, then Γ is
satisfable.

On the other hand, decidability can be proved using a selection argument (see
[13]).

Theorem 6 (decidability). Satisfability is decidable in DPL.

Proof. Suppose that for a formula ϕ: w, M � ϕ, for some model M and world w.
Let d(ϕ) = m be the degree of ϕ (that is, the maximal depth of nested modalities),
and let n be the number of primitive actions in the language.

First, note that for every world in M we have at most
∑n

i=1

(
n
i

)
= 2n− 1 possi-

ble relationships with other worlds (that is, the maximum number of events in the
model). Let M ′ be the model obtained from M ruling out those worlds do not reach-
able from w in m “steps”. Clearly, M ′, w � ϕ, and M ′ has at most m ∗ (2n − 1)
worlds, where m = d(ϕ) and n is the number of primitive actions.

This gives us a decidability method: given ϕ, build all the models up to size m ∗
(2n − 1) and check if ϕ is true in everyone of them. Obviously, this method is ex-
ponential in complexity. �

3 Extensions and Applications of DPL

The notion of time is useful for specifying fault-tolerant systems; using temporal
constructs we can formalize, for example, error recovery (which without doubt,
is a temporal property). Several temporal formalism have been proposed in the
literature; it seems that for our formalism a CTL logic (see [14]) is the most ap-
propriate. This is mainly because branching is inherent in our approach to system
specification. Here we only present the syntactic extension of the logic; both the
semantics (using traces) and an axiomatic system are described in [12].

We define the temporal formulae as follows.

Definition 5 (Temporal Formulae). Given a DPL vocabulary 〈Φ0, Δ0〉, the set
of temporal deontic formulae (ΦT) is defined as follows:

– Φ0 ⊆ ΦT .
– ,⊥ ∈ ΦT .
– if α, β ∈ Δ, then α =act β ∈ ΦT

– if ϕ1, ϕ2 ∈ ΦT , then ϕ1 → ϕ2 ∈ ΦT .
– if ϕ ∈ ΦT , then ¬ϕ ∈ ΦT .
– if ϕ ∈ ΦT with no temporal operators and α ∈ Δ, then 〈α〉φ ∈ ΦT .
– if α ∈ Δ then P(α) ∈ ΦT and Pw(α) ∈ ΦT .
– If α ∈ Δ , then Done(α) ∈ ΦT .
– If ϕ1, ϕ2 ∈ Φ, then ANϕ, AGϕ, A(ϕ1 U ϕ2), E(ϕ1 U ϕ2) ∈ ΦT .

The temporal operators are the classic ones in CTL logics; intuitively, the predi-
cate ANϕ means in all possible executions ϕ is true at the next moment, AGϕ means

A Complete and Compact Propositional Deontic Logic 121

in all executions ϕ is always true, A(ϕ1 U ϕ2) means for every possible execution
ϕ1 is true until ϕ2 becomes true and E(ϕ1 U ϕ2) says there exists some execution
where ϕ1 is true until ϕ2 becomes true. As usual, using these operators we can de-
fine the dual versions of them. The Done(−) operator is a bit uncommon, it is used
to predicate about the past execution of an action. Intuitively, Done(α) means the
last action executed was α. Some properties of Done(−) are:

Done1. Done(α) ∧ α ! α′ → Done(α′)
Done2. Done(α " β) → Done(α) ∨ Done(β)
Done3. Done(α � β) ↔ Done(α) ∧ Done(β)
Done4. Done(α " β) ∧ Done(α) → Done(β)
Done5. [α]ϕ ∧ [β]Done(α) → [β]ϕ

All these properties are intuitive; the last of them is a kind of subsumption prop-
erty: if after doing α ϕ is true, and after doing β we have also done α, then af-
ter β ϕ is true. We can use the Done(−) operator to introduce a Do(α) operator:
Do(α) def⇐⇒ ANDone(α), which means: the next action to be performed is α. It is in
particular useful to specify recovery actions and model restrictions.

Using these new constructions we can show an example of application of this
formalism. We take again the dining philosophers problem ([15]), but we add the
possibility of processes crashing. This is introduced in the model saying that a
philosopher can feel sick and then he has to go to the bathroom (perhaps holding
onto some fork). The complete example is shown in [12] and here we only describe
the part where we model fault-tolerance. Consider the following formulae :

DO i.eating → Do(i.getthk " i.getbad)
O1. i.eating ↔ O(i.downL � i.downR)
V1. ¬i.v1 ∧ O(i.downL � i.downR) →

([i.downL � i.downR]i.v1) ∧ ([i.downL � i.downR]¬i.v1)
V2. ¬i.v1 ∧ ¬O(i.downL � i.downR) → [U]¬i.v1

V3. i.v2 ↔ i.v1 ∧ (¬i.hasL � ¬i.hasR)
V4. (i.v1 → [i.downL � i.downR]¬i.v1)∧

(i.v1 ∧ ¬i.v2 → [i.downL � i.downR]i.v1)
V5. i.v2 → [i.downL " i.downR]i.v2

V6. ((i.v2 ∧ ¬i.hasL) → [i.downR]¬(¬i.v2 ∧ ¬i.v1))∧
((i.v2 ∧ ¬i.hasR) → [i.downR](¬i.v2 ∧ ¬i.v1))

where 0 ≤ i ≤ n. The predicate i.v1 is used to note when a violation occurs (i.e.,
when philosopoher i goes with some forks to the bathroom). i.v2 is a refinement
of it; it is only true when philosopher i went to the bathroom with only one fork.
Predicates i.hasL and i.hasR allow us to know if philosopher i has his left or right
fork, respectively. Actions i.downL, i.downR model the actions of philosopher i
putting down the corresponding fork. The predicate i.eating tells us if a philoso-
pher is eating or not. The actions i.getthk and i.getbad are used when philosopher
i goes to thinking again (he puts down the forks) or he goes to the bathroom, re-
spectively. The two actions are disjoint between them (i.getthk � i.getbad = ∅).

It is interesting to analyze the formulae given above.DO is amodel restriction; it
says that, after eating, a philosopher has to go thinking or he can get a stomachache

122 P.F. Castro and T.S.E. Maibaum

and then he goes to the bathroom. O1 tells us that if a philosopher is eating, then
he is obligated to put down both forks after eating. Formula V1 specifies when a
violation becomes possible, that is, when the philosopher does not put both forks
down.V2describe those scenarioswhere a violation isnot possible.V3defines i.v2.
V4 tell us that returning both forks to the table is a recovery action. In a similar
way, V5 and V6 define how we can recover from a violation of type v2.

Several properties can now be proven. For example, we can prove that a viola-
tion i.v2 is less dangerous than a i.v1 ∧ ¬i.v2 violation, in the sense that the first
type of violation allows neighbors to progress in some cases (under the hypothesis
of no more crashes occurring).

� AG(((i + 1).v2 ∧ ¬(i + 1).hasR) ∧ ¬i.bath ∧ ¬(i− 1).bath) → EFi.eating

We show some of these properties in [12]. The important point to make is the way
in which we can specify different kinds of violations (faults having occurred in the
system) and the relationships between them. As we have shown, recovery actions
can be described using modalities; furthermore, deontic constructions are impor-
tant to differentiate between normative and non-normative states. In addition,
more complicated constructions (e.g., obligations bounded by some time limit)
can be expressed using the temporal operators. We leave this for further work.

4 Conclusion and Further Work

In this paper we presented the propositional part of a deontic logic; an axiomatic
system was described and some of its properties were proved. As shown in an ex-
ample, this logic provides some constructs which seem useful to formalize fault-
tolerance concepts. Our ultimate goal is to use this logic for developing a more in-
clusive framework; modularization is a key factor in such a framework. However,
some important problems have to be solved to modularize the logic, e.g, how the
deontic operators associated with different modules can be distributed and com-
posed is an important point here.

On the other hand, it is well-known that propositional logics are not expressive
enough to deal with some problems. It seems possible to extend this logic with
first-order logic constructs, although it is not straightforward that all the proper-
ties (like compactness) will be preserved in such an extension.

The decidability method described in section 2 is very inefficient. However,
other (still exponential) methods are possible; in particular tableaux methods are
known to be useful in dynamic logics; from the axiomatic system described it is
likely to be possible todevelopa tableauxmethod and we leave this as further work.

References

1. Meyer, J.J., Wieringa, R.J.: Deontic logic: A concise overview. In: DEON 91. First
International Workshop on Deontic Logic (1991)

2. Broersen, J.: Modal Action Logics for Reasoning about Reactive Systems. PhD the-
sis, Vrije University Amsterdam (2003)

A Complete and Compact Propositional Deontic Logic 123

3. Maibaum, T.S.E., Khosla, S.: The prescription and description of state-based
systems. In: Barringer, H.B., Pnueli, A. (eds.) Temporal Logic in Computation,
Springer, Heidelberg (1985)

4. Meyer, J.J.: Dynamic logic for reasoning about actions and agents. In: Workshop
on Logic-Based Artificial Intelligence, Washington, DC, June 14–16 (1999)

5. Magee, J., Maibaum, T.S.E.: Towards specification, modelling and analysis of fault
tolerance in self managed systems. In: Proceeding of the 2006 international work-
shop on self-adaptation and self-managing systems (2006)

6. Meyer, J.J.: A different approach to deontic logic: Deontic logic viewed as variant
of dynamic logic. Notre Dame Journal of Formal Logic 29 (1988)

7. Kent, S., Quirk, B., Maibaum, T.S.E.: Specifying deontic behavior in modal action
logic. Technical report, Forest Research Project (1991)

8. Gargov, G., Passy, S.: A note on boolean logic. In: Petkov, P.P. (ed.) Proceedings
of the Heyting Summerschool, Plenum Press, New York (1990)

9. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
10. Sikorski, R.: Boolean Algebras. Springer, Heidelberg (1969)
11. Monk, J.D.: Mathematical Logic. Graduate Texts in Mathematics. Springer, Hei-

delberg (1976)
12. Castro, P.F., Maibaum, T.S.E.: Torwards a deontic logic for fault tolerance. Tech-

nical Report SQRL39, McMaster, Department of Computing & Software, Software
Quality Research Laboratory (2007)

13. Blackburn, P., Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoret-
ical Computer Science, vol. 53 (2001)

14. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tempo-
ral logic of branching time. In: STOC. 14th Annual Symposiun on Theory of Com-
puting (1982)

15. Dijkstra, E.W.: Hirarchical ordering of sequential processes. In: Acta Informatica,
vol. 1, pp. 115–138. Springer, Heidelberg (1971)

Verifying Lock-Freedom Using Well-Founded

Orders

Robert Colvin and Brijesh Dongol

ARC Centre for Complex Systems
School of Information Technology and Electrical Engineering

University of Queensland
{robert,brijesh} @itee.uq.edu.au

Abstract. Lock-free algorithms are designed to improve the perfor-
mance of concurrent programs by maximising the potential for processes
to operate in parallel. Lock-free algorithms guarantee that within the
system as a whole, some process will eventually complete its operation
(as opposed to guaranteeing that all operations will eventully complete).
Since lock-free algorithms potentially allow a high degree of interference
between concurrent processes, and because their progress property is
non-trivial, it is difficult to be assured of their correctness without a for-
mal, machine-checked verification. In this paper we describe a method
for proving the lock-free progress property. The approach is based on
the construction of a well-founded ordering on the set of processes. The
method is demonstrated using a well-known lock-free stack algorithm as
an example, and we describe how the proof was checked using a theorem
prover.

1 Introduction

The lock-free property may be expressed informally as “eventually some process
will complete an operation”. Hence, the system as a whole will make progress,
even if some processes never complete their operation [HLM03,Don06a]. Lock-
free algorithms are designed to avoid problems associated with lock-based algo-
rithms (such as deadlock and priority inversion) and to increase the potential for
concurrent execution (for improved performance). However, lock-free algorithms
tend to be more complex than lock-based programs and due to this complexity,
some published lock-free algorithms have been proved to be incorrect, despite
being presented alongside informal proofs [CG05,Doh03].

Formal verification of lock-free algorithms has so far focussed on their safety
properties [CGLM06,CDG05,CG05,DGLM04]. This is for two reasons: firstly,
until recently lock-freedom had not been formalised; and secondly, because tech-
niques for proving complex progress properties, such as lock-freedom, can be
difficult to apply [Don06a]. In this paper, we complement the formal verification
of safety properties of lock-free algorithms with a technique for formally verifying
their progress property. The technique is designed to be intuitive and amenable
to tool support.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 124–138, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Verifying Lock-Freedom Using Well-Founded Orders 125

The paper is structured as follows. In Sect. 2 we describe lock-free algorithms,
and the formal framework used to describe programs and progress properties.
In Sect. 3 we describe the proof method and demonstrate it on a well-known
lock-free stack algorithm. In Sect. 4 we show how the framework and proofs
were encoded in the PVS theorem prover [ORR+96].

2 Preliminaries

In this section we give our formal framework: in Sect. 2.1 we describe lock-free
algorithms, and in Sect. 2.2 we descibe how we represent them as transition
systems. In Sect. 2.3 we give a formal definition of lock-freedom and in Sect. 2.4
we give a theorem for proving lock-freedom.

2.1 Lock-Free Algorithms

The typical structure of a lock-free operation on a shared data G is to take a
snapshot of G, construct a new value for G locally, then attempt to update G
to this new value. If no interference has occurred, i.e., G has not been modified
since the snapshot was taken, the operation completes, whereas if interference has
occurred, a new snapshot of G is taken and the steps above are repeated. This can
be more efficient than lock-based approaches, since each operation is executed
mostly independently. The risk is that an operation may be continually interfered
with, hence unable to complete. However, a lock-free program must only ensure
that some operation will eventually complete, even if other operations never
do. In the rest of this section we formalise the general structure of lock-free
algorithms using a lock-free stack algorithm as an example.

The general structure of a program that implements a lock-free data structure
consists of a finite set of processes, PROC , each of which executes operations on
the data structure from the set OP . A process may either be active (currently
executing an operation) or idle (not executing any operation). An idle process
becomes active by starting a new operation, while an active process becomes idle
by completing the operation it is currently executing. An operation is a sequential
statement (implicitly parameterised by the calling process) and is non-blocking,
i.e., no atomic statement of the operation exhibits blocking behaviour. In this
paper, we assume each operation op ∈ OP is of the form in Fig. 1.

op �= op.preloop; op.loop; op.postloop
P(PROC ,OP) �= ‖ p:PROC • while true { � op: OP • op } end

Fig. 1. Structure of lock-free algorithms

The code corresponding to op.loop is a potentially infinite retry-loop, while
the code corresponding to both op.preloop and op.postloop is assumed not to
contain any potentially infinite loops, i.e., is guaranteed to terminate in a finite
number of steps regardless of interference. Note that op.preloop and op.postloop

126 R. Colvin and B. Dongol

may be empty for some operations. The lock-free programs in [MS98,DDG+04],
[CG05] all conform to the structure in Fig. 1.

Each atomic statement has a unique label, and each process p has a program
counter (pc) whose value is the label of the next statement p will execute. We
assume the existence of a special label idle to identify idle processes, i.e., p is
idle iff pcp = idle. We use PC to denote the set of all labels in the program
(including idle).

The general structure of a lock free program is summarised by the program,
P , in Fig. 1. The processes execute in parallel, and are initially idle; from this
state a process p non-deterministically chooses an operation op from OP for
execution. When execution of op is completed, the process executing op returns
to the idle state, and may once again choose a new operation for execution.

Example: Treiber’s stack. To understand how typical lock-free operations
are implemented, consider the code in Fig. 3, which is based on a lock-free stack
algorithm presented by Michael and Scott [MS98] and attributed to Treiber
[Tre86]. The labels ps1 . . . ps6 and pp1 . . . pp9, in addition to idle, form the set
PC . The program uses the Compare-and-Swap (CAS) primitive (Fig. 2), which
combines a test and update of a variable within a single atomic statement. A
procedure call CAS (G, ss ,n) operates as follows: if (shared) variable G is the
same as (snapshot) variable ss , then G is updated to the value of n and true is
returned; otherwise no update occurs and false is returned.

CAS(G, ss, n) �= if G = ss then G := n ; return true
else return false

Fig. 2. Compare-and-Swap

It is well known that CAS-based implementations can suffer from the “ABA
problem” [MS98]. This can be manifested in the following way: a process p takes
a snapshot, say ssp , of the shared variable G when G’s value is A; then another
process modifies G to B, then back again to A. Process p has been interfered
with, but the CAS that compares G and ssp cannot detect this since G = ssp
after the interference has taken place. If value A is a pointer, this is a potentially
fatal problem, as the contents of the location pointed to by A may have changed.
A work-around is to store a modification count with each global variable, and
to increment the count each time the variable is modified. Modification counts
do not constitute a full solution to the ABA problem, since in a real system,
modification counts will be bounded. However, in practice, the likelihood of the
ABA problem occurring is reduced to a tolerably small level [Moi97]. In the stack
implementation in Fig. 3, the ABA problem can occur because pointers may be
reused after they are freed by the pop operation (pp8), hence, a modification
count is added to the shared variable pointer (for a full explanation, see Michael
and Scott [MS98]).

The stack is represented as a linked list of nodes (of type node). A push(v)
operation, where v is of some type Value, adds a new node with value v to the

Verifying Lock-Freedom Using Well-Founded Orders 127

struct node { val: Value; next: *node }
struct node ptr { ptr: *node; count: int }
node ptr Top = (null, 0)

push(v: Value) �=
ps1 n := new node()
ps2 n->val := v
ps3 repeat
ps4 ss := Top
ps5 n->next := ss.ptr
ps6 until CAS(Top, ss, (n, ss.count + 1))

pop : Value �=
pp1 repeat
pp2 ss := Top
pp3 if ss.ptr = NULL then
pp4 return EMPTY
pp5 n := ss.ptr->next
pp6 until CAS(Top, ss, (n, ss.count + 1))
pp7 pvalue := ss.ptr->val
pp8 free(ss.ptr)
pp9 return pvalue

Fig. 3. Treiber’s stack

front of the list, while a pop operation returns EMPTY if the stack is empty and
otherwise removes a node from the front of the list and returns its value (we
assume EMPTY is a member of type Value which is never pushed). Each node
consists of a value field (val of type Value) and a next pointer (next of type
*node). The first node in the list is stored in shared variable Top, of special type
node ptr: it contains a pointer to the top of the stack (Top.ptr) which is null
if the stack is empty, and a modification count (Top.count) which is used to
detect interference as described above.

A process executing push(v) first allocates a new node, n (ps1), and sets the
value field of n to the pushed value, v (ps2). These two statements constitute
push.preloop. It then enters push(v).loop, in which it takes a snapshot, ss,
of the top of the stack (ps4), then sets the next field of n to ss.ptr (ps5).
Assuming that the snapshot ss is still accurate, i.e., the value of Top (which
includes its modification count) is the same as when the snapshot was taken
at ps4, the stack may be updated by setting Top.ptr to n and incrementing
its modification count (ps6). A successful execution of the CAS at ps6 marks
a successful push operation, therefore the executing process exits push(v).loop
and returns to an idle state. In this case, push(v).postloop is empty. If CAS(Top,
ss, (n, ss.count + 1)) fails (ps6), then Top has been modified by another
process and push(v).loop is retried.

The pop operation is similarly structured. In this case pop.preloop is empty,
so it immediately enters pop.loop in which it takes a snapshot, ss, of Top (pp2).
If the snapshot is null (pp3), the pop operation completes and returns Empty to

128 R. Colvin and B. Dongol

indicate an empty stack was observed (pp4). If the snapshot is non-null, local
variable n is set the next pointer of ss (pp5), then a CAS is used to update
Top (pp6) and pop.postloop is executed. If the CAS is unsuccessful, the loop is
retried. Execution of pop.postloop stores the value of the popped node (pp7) in
pvalue, frees the popped node (pp8) and returns the value of pvalue (pp9). This
completes the pop operation and thus the executing process returns to an idle
state.

We now argue informally why Treiber’s stack is lock-free. A push operation
will not complete if it is stuck forever inside push.loop, i.e., retries the loop an
infinite number of times. Because each retry occurs when some other operation
has modified Top, this implies that an infinite number of processes have success-
fully executed a CAS. Because both push.postloop and pop.postloop have only
a finite number of steps, and because we assume there are a finite number of
processes, an infinite number of successful CASs implies an infinite number of
operations complete, hence, there will always be some process that completes its
operation. Similar reasoning holds for the pop operation.

2.2 Transition Systems and Trace-Based Reasoning

We model programs as labelled transition systems. The variables of a program
may either be shared or local (a local variable of type T is modelled as a function
of type PROC → T). The system also includes a program counter for each pro-
cess (PROC → PC). A program P is defined by: states(P), the set of allowable
states of P , each of which is a mapping from variables of P to their values; a
nonempty set start(P) ⊆ states(P), the initial states of P ; actions(P), a set
of labels for transitions – there is one action for each atomic statement of code
per process; and trans(P): states(P) × actions(P) × states(P), the transitions
of the system, each of which corresponds to an individual action. A predicate
of P has type states(P) → B, thus, for a predicate Q and state s , Q .s denotes
that s satisfies Q . For convenience, we represent the transitions of an action α
as an atomic guard/effect pair, where the guard (denoted grd) is a predicate
on states(P) that defines the states in which α is enabled, and the effect (de-
noted eff) atomically updates the values of the variables of the current state.
For example, the statement ps4 for process p is represented by the transition

push4p :
grd: pcp = ps4
eff : ssp , pcp := Top, ps5

This transition is enabled in any state in which process p is ready to execute
the code at ps4, and the effect of this transition is to atomically update local
variable ssp to the value held by the shared variable Top and to advance the pc
value for p to ps5.

The transitions corresponding to the CAS at pp6 is represented by the two
transitions below, corresponding to the succeed/fail cases, respectively.

Verifying Lock-Freedom Using Well-Founded Orders 129

pop6Sucp :
grd: pcp = pp6 ∧ Top = ssp
eff : Top, pcp := (np , ssp .count + 1), pp7

pop6Failp :
grd: pcp = pp6 ∧ Top �= ssp
eff : pcp := pp2

A trace, t , of a program P is a sequence of states s0, s1, ..., such that s0 ∈
start(P), and for each i , there exists an action α ∈ actions(P) such that
(si , α, si+1) ∈ trans(P) (written si

α−→ si+1). We use traces(P) to denote the set
of all complete traces of P , i.e., each t ∈ traces(P) represents a terminating or
infinite execution of P . We assume the presence of minimal progress [Mis01], i.e.,
some enabled action is chosen for execution, although this may always be an ac-
tion of the same process. For a program, P , of the form outlined in Fig. 1, under
the minimal progress assumption, each t ∈ traces(P) is infinite, i.e., dom(t) = N.

To describe properties of traces we use the temporal operators always, eventu-
ally and next, represented by �,� and ©©©, respectively. The notation (t , i) � F
states that formula F is satisfied by trace t at index i . If F is a predicate on
a single state, i.e., does not contain any temporal operators, then (t , i) � F iff
F .ti . The meaning of the three operators are defined below, following Manna
and Pnueli [MP92].

(t , i) � �F ⇔ (∀j : N • j ≥ i ⇒ (t , j) � F)
(t , i) ��F ⇔ (∃j : N • j ≥ i ∧ (t , j) � F)
(t , i) � ©©©F ⇔ (t , i + 1) � F

A trace t satisfies temporal formula F , written t � F , if (t , 0) � F , i.e., F holds
in the initial state. For a program P and a temporal formula F , P satisfies F ,
written P |= F , iff (∀t : traces(P) • t � F).

2.3 Formalising Lock-Freedom

Lock-freedom is a system-wide property that guarantees some active process
will eventually complete an operation. That is, in Fig. 1, some processes may
get stuck executing op.loop forever, but at least one other process will always
be able to complete. The definition of lock-freedom is formalised by Dongol
[Don06a], but because it is designed to be as general as possible, it is not easily
amenable to proof. Our definition of lock-freedom is based on [Don06a], but
specialised for the class of lock-free operations outlined in Sect. 2.1.

Definition 1 (Lock-freedom). A program P of the form outlined in Sect. 2.1
is lock-free iff it satisfies the following property

P |= ��(∃p:PROC • pcp �= idle ∧©©©(pcp = idle)). (1)

That is, a program P with a finite number of processes for which every trace
of P is infinite is lock free iff from any reachable state, there is a point in the
future where some active process transitions to the idle state, i.e., some active
process completes its operation. In the case of Treiber’s stack, lock-freedom is
satisfied if there will always eventually be a successful execution of the CAS at
ps6, a pop operation that returns Empty at pp4, or a pop operation that returns
a value at pp9.

130 R. Colvin and B. Dongol

2.4 Proving Always-Eventually Properties

To prove a property of the form ��F we utilise a common technique of identify-
ing a well-founded ordering on program states and showing that each transition
in the system either reduces the well-founded ordering or establishes F . Using a
well-founded ordering ensures a finite bound the number of intermediate states
before F is established. Well-founded orders are used to develop methods for
proving leads-to properties [CM88] and until properties [FG96].

Theorem 1. Let P be a program where all traces in traces(P) are infinite in
length; (W ,≺) be a well-founded ordering; Pp and Qp be predicates parameterised
by process p; and δ be a total function from program states to W. If

(∀α: actions(P); s , s ′: states(P) • s α−→ s ′ ⇒
δ(s ′) ≺ δ(s) ∨ (∃p:PROC • Pp .s ∧ Qp .s ′)

(2)

then
P |= ��(∃p:PROC • Pp ∧©©©Qp). (3)

Proof. First note that by the definition of �, � and ©©©, expanding and simpli-
fying (3) gives

(∀t : traces(P) • (∀i : N • (∃j : N • j ≥ i ∧ (∃p:PROC • Pp .tj ∧ Qp .tj+1)))). (4)

Assume arbitrary t ∈ traces(P) and i ∈ N. By (2) and the definition of a trace,
either δ(ti+1) ≺ δ(ti) holds, or (4) is satisfied because some process that is
active in state ti becomes idle in state ti+1. Since (W ,≺) is well-founded, we
will eventually reach a state tk such that k ≥ i and δ(tk) is the base of (W ,≺).
Since each trace is infinite, state tk+1 must exist and furthermore, δ(tk+1) cannot
be smaller than δ(tk). By (2), some process that satisfies Pp .tk satisfies Qp .tk+1;
k is therefore the witness for j in (4). �

By instantiating Pp to pcp �= idle and Qp to pcp = idle, we may apply Theorem 1
to reduce a proof of a temporal formula such as (1) to the construction of a
well-founded ordering followed by case analysis on all transitions in the system.

3 Proving Lock-Freedom

In this section we outline how we prove lock-freedom and demonstrate the tech-
nique using Treiber’s stack as an example. The proof consists of the following
steps:

1. Identify the transitions from op.loop to op.postloop, and show that an infinite
number of such transitions implies lock-freedom.

2. Define a well-founded ordering on program states.
3. Apply Theorem 1 to show lock-freedom by case analysis on transitions.

Verifying Lock-Freedom Using Well-Founded Orders 131

3.1 Identifying Transitions from op.loop to op.postloop

Definition 1 describes lock-freedom for programs of the form outlined in Sect. 2.1.
While this is an appropriate definition, it is generally easier to show that even-
tually, either a process becomes idle or it exits op.loop (and therefore reaches
op.postloop). For the Treiber stack, we therefore show that a process eventually
either transitions to idle (which satisfies (1)) or to pp7 (the start of pop.postloop).
Note that a push operation exiting push(v).loop and a pop operation returning
Empty directly transition to idle. It then remains to show that this implies lock-
freedom.

Theorem 2 (Lock-freedom for Treiber). If the following holds for the pro-
gram in Fig. 3

P |= ��(∃p:PROC • pcp �∈ {idle, pp7} ∧©©©(pcp ∈ {idle, pp7})) (5)

then (1) holds, i.e., the Treiber stack is lock-free.

Proof : Assume P satisfies (5). Then an arbitrary trace t in traces(P) must
contain an infinite number of transitions to idle or to pp7. If t contains an infinite
number of transitions to idle then (1) holds. If t contains an infinite number of
transitions to pp7, then, because there are a finite number of processes, at least
one process, say p, must be responsible for an infinite number of these transitions.
Between any two transitions to pp7 by process p a transition to idle by p must
occur. Hence, t must contain an infinite number of transitions to idle, and (1)
holds. �

3.2 Defining the Well-Founded Ordering

The straightforward approach to defining a well-founded ordering on program
states is to base it purely on PC , i.e., the labels of the program statements
[DM06,DM07]. However, this does not work for lock-free operations because
each retry of op.loop will break the well-founded ordering on PC . Furthermore,
the guard of the loop is not suited for defining a loop variant.

To give the intuition behind the ordering we use, we note that a process exe-
cuting op.loop is in one of two “states”: either its snapshot of the global variable
is accurate, in which case its “goal” is to successfully execute the CAS and exit
op.loop; or its snapshot is inaccurate, in which case its goal is to take a new snap-
shot to obtain an accurate one. We consider a simple hierarchy between these
two “states”: having an accurate snapshot is better than having an inaccurate
snapshot, thus, taking a new snapshot constitutes an improvement in the status
of each process.

Note that a successful execution of the CAS allows the process to exit op.loop.
Thus, each step a process p takes within op.loop takes it closer to its goal of exit-
ing op.loop or renewing its snapshot. The difficulty arises when another process
q interferes with p by modifying the shared variable thereby rendering p’s snap-
shot inaccurate. This is clearly a step of the system which is not an improvement

132 R. Colvin and B. Dongol

for p. However, crucially, the step that regresses p also establishes that process
q has made progress, i.e., has reached a point from which it will complete within
a finite number of steps. So each step of the system improves the position for
the process that executed the step, but may simultaneously “regress” other pro-
cesses; however these regressive steps are exactly the ones that ensure progress
of the system as a whole.

In the Treiber stack, a process p performing a push operation proceeds by
entering push(v).loop and taking a snapshot. If p is not interfered with, it will
go on to successfully execute the CAS at ps6 and complete. However, if between
taking the snapshot and executing the CAS some other process q interferes with
p (and therefore makes progress), then from this point process p will proceed
back to statement ps4 (where it will take another snapshot of Top). Execution of
ps4 improves the status of process p by renewing the snapshot then proceeding
as before.

We now formalise this intuition for the Treiber stack and construct two or-
derings on pc values, one for an accurate snapshot, ≺�, and one for an inaccu-
rate snapshot, ≺×. The ordering in the case where the snapshot is accurate is a
straightforward progression from being idle through to being ready to execute the
CAS (ps6). We underline the labels that are contained within push(v).loop. So
that the labels may be presented in the same order they appear in the program,
for labels a and b we define, (b *� a) ⇔ (a≺�b) and (b *× a) ⇔ (a≺×b).

idle *� ps1 *� ps2 *� ps4 *� ps5 *� ps6

The ordering for an inaccurate snapshot is similar, except that the base of the
ordering is statement ps4 where another snapshot is taken.

idle *× ps1 *× ps2 *× ps5 *× ps6 *× ps4

Notice that outside push(v).loop the orderings ≺� and ≺× are identical; the
accuracy of the snapshot is irrelevant at this stage. For practical reasons, it is
simpler to include all pc values in both ≺� and ≺×.

We may follow the same pattern for the pop operation, except that in this
case, the labels corresponding to pop.postloop precede those in pop.loop because
the label corresponding to the CAS (pp6) is the base.

pp7 *� pp8 *� pp9 *� idle *� pp2 *� pp3 *� pp4 *� pp5 *� pp6

The ordering for an inaccurate snapshot is again similar, except that the label at
the base corresponds to the statement that updates the snapshot of Top (pp2).

pp7 *× pp8 *× pp9 *× idle *× pp3 *× pp4 *× pp5 *× pp6 *× pp2

This ordering is more constrained than it needs to be, for instance, pp4 pre-
cedes pp5, though this is not necessary – they are unrelated. However, for pre-
sentation purposes it is easier to give the values in a strict order.

We have defined orderings ≺� and ≺× on PC for an accurate and inaccurate
snapshot of Top, respectively. To determine which is the appropriate ordering

Verifying Lock-Freedom Using Well-Founded Orders 133

to use for a particular process p we must observe the status of p’s snapshot
via the predicate Top = ssp . We define the type ProcM : B × PC , such that for
each process p, its corresponding value in ProcM is (Top = ssp , pcp). We may
now define an ordering on processes via ProcM , corresponding to our earlier
intuition.

Definition 2 (≺p). Let b1, b2 be booleans; and pc1, pc2 be program labels. Given
the ordering on booleans ≺B, where true ≺B false, the ordering ≺p on ProcM is
defined as follows:

(b1, pc1) ≺p (b2, pc2) =̂ b1 ≺B b2 ∨
(b1 = b2 ∧ (b1 ⇒ pc1≺�pc2) ∧ (¬ b1 ⇒ pc1≺×pc2))

Hence, a process can improve its position by turning an inaccurate snapshot into
an accurate one (b1 ≺B b2), or, if no change is made to the snapshot, by making
progress within the appropriate ordering on pc values, either ≺� or ≺×. Note
that the ordering ≺p is not lexicographic (for details see [Don06b]).

To apply Theorem 1, we must instantiate the well-founded ordering (W ,≺)
and define a function δ. We choose the set W to be a function from processes
to their ProcM value, i.e., W :PROC → ProcM . Therefore, for a state s , δ is
defined as follows:

δ(s) = (λ p:PROC • (s .Top = s .ssp , s .pcp)) (6)

It remains to give an ordering on type W . We call this ordering ≺s , which we
define below; we first define the non-strict version +s .

Definition 3 (+s). Let s1 and s2 be states. The non-strict ordering, +s , on
δ(s1) and δ(s2) is defined as:

δ(s1) +s δ(s2) =̂ (∀r :PROC • δ(s1).r +p δ(s2).r).

Hence, state s1 is no worse than s2 if each process is no worse with respect to
+p . We use Definition 3 to define ≺s as follows:

Definition 4 (≺s). Suppose s1 and s2 are states.

δ(s1) ≺s δ(s2) =̂ δ(s1) + δ(s2) ∧ δ(s1) �= δ(s2).

Thus, at least one process must have improved its position with respect to ≺p .

Theorem 3. The ordering ≺s is well-founded.

Proof : The definition of ≺s requires at least one process in the state to be bet-
ter placed with respect to ≺p , and the other processes to be no worse. Hence
≺s is well-founded if ≺p is well founded. For ≺p to be well-founded, the three
orderings≺B,≺� and≺× must be well-founded, which follows from inspection. �

In Sect. 4 we outline a machine-checked proof of Theorem 3.

134 R. Colvin and B. Dongol

3.3 Case Analysis

We now complete the proof that the Treiber stack is lock-free.

Theorem 4. The Treiber stack (Fig. 3) is lock-free.

Proof : By Theorem 2, the Treiber stack is lock-free if (5) holds. We utilise The-
orem 1, with the following instantiations: pcp �∈ {idle, pp7} and pcp ∈ {idle, pp7}
for Pp and Qp , respectively; (PROC → ProcM ,≺s) for (W ,≺); and instanti-
ating δ as defined in (6). The proof of (5) is therefore reduced to showing the
following instantiation of (2), for all states s and all actions α.

s α−→ s ′ ⇒ δ(s ′) ≺s δ(s) ∨
(∃p:PROC • (pcp �∈ {idle, pp7}).s ∧ (pcp ∈ {idle, pp7}).s ′)

(7)

We split the actions into three (mutually exhaustive) classes: those that mod-
ify Top, those that modify ssp , (since these two classes will affect the first element
of the ProcM pairs), and then the rest of the actions.

1. Transitions which modify Top
We strengthen the quantified property in Definition 7 by choosing a wit-
ness for p; the obvious choice is the process, say pα, that is responsible for
transition α

s α−→ s ′ ⇒
δ(s ′) ≺s δ(s) ∨ (s .pcpα �∈ {idle, pp7} ∧ s ′.pcpα ∈ {idle, pp7})

The actions corresponding to a successful CAS at ps6 and pp6 (the only
transitions that modify Top) also establish pcp ∈ {idle, pp7}. Hence (7) holds
for this class of transitions.

2. Transitions which modify ssp
The only actions that alter ssp are push4p and pop2p ; and their effect is to
set ssp = Top to true. Hence, for push4p , δ(s ′).p = (true, ps5). If δ(s).p =
(false, ps4), i.e., p’s snapshot is inaccurate, then δ(s ′).p ≺p δ(s).p by Defini-
tion 2 since true ≺B false. If δ(s).p = (true, ps4), then then δ(s ′).p ≺p δ(s).p
by Definition 2 because ps5 ≺�ps4. Similar reasoning applies to the transi-
tion pop2p , hence (7) holds for this class of transitions.

3. All other transitions
Actions that do not modify Top or ssp do not affect any other process: their
improvement is based purely on the relationship between pcp in the pre and
post states of the corresponding transition. We have carefully chosen the well-
founded orderings ≺� and ≺× to contain the pair of pc values associated
with almost all of the transitions that do not modify Top or ssp , hence
(7) is trivially satisfied in these cases. The only exception is the transition
corresponding to line pp4, where a pop operation returns Empty to indicate
that an empty stack was observed. However, (7) in this case is also trivially
satisfied, since it is a transition from active to idle. Hence, (7) hold for this
class of transitions.

Since (7) holds, by Theorem 3 and Theorem 1, (5) holds; therefore by Theo-
rem 2, the Treiber stack is lock-free. �

Verifying Lock-Freedom Using Well-Founded Orders 135

4 Mechanising Proofs of Lock-Freedom

In this section, we describe how our proof of lock-freedom for the Treiber stack
was checked using the PVS theorem prover [ORR+96]. The encoding of the
Treiber program as a transition system was straightforward, and follows similar
encodings as described in, e.g., [CG05]. The PVS theory, proof and strategies files
are available online from [CD]. The PVS encoding of (7) is given below; as ex-
pected, the proof is trivial, and was automatically proved by a single application
of the built-in PVS proof strategy “grind”. For an action alpha, proc(alpha)
is the process that executes alpha, and for a label pc, progress(pc) holds if
pc = idle or pc = pp7.

treiber-lf: LEMMA
FORALL alpha, s0, s: trans(s0)(alpha)(s) IMPLIES

LT(delta(s), delta(s0)) OR
(not progress(s0‘pc(proc(alpha))) and

progress(s‘pc(proc(alpha))))

The more difficult aspect of the lock-freedom proof is proving Theorem 3, i.e.,
that the relation ≺s (“LT” above) is well-founded. This proof was constructed
by first showing the underlying relations ≺B, ≺� and ≺× are well-founded,
with respect to the appropriate theorem from the underlying PVS theories. This
theorem states that a relationship on type T is well founded if there exists
a least element in every non-empty subset of T . The proofs were conducted
by selecting an arbitrary subset of T , and doing a case analysis, in turn, on
whether a particular element of PC or B was or was not a member of that
set. To simplify proofs of this form, we developed a specialised proof strategy
prove-wf which takes a list of values (the elements of T) and performs the case
analysis in turn. Assuming the values are given in the correct order, the strategy
can automatically show well-foundedness, e.g., the well-foundedness of ≺� was
shown by

(prove-wf ("ps6" "ps5" "ps4" "ps2" "ps1"
"pp6" "pp5" "pp4" "pp3" "pp2" "idle"

"pp9" "pp8" "pp7"))

The ordering of the pc values corresponds to the (combined) ordering for ≺�

given earlier: if a≺�b then a must appear to the left of b in the list.
The ordering on processes, ≺p , was straightforwardly encoded as follows,

where, if p1 is a tuple, the expressions p1‘1 and p1‘2 access the the first and
second elements of p1, respectively, and where LT bool, LT pcT and LT pcF
encode ≺B, ≺� and ≺×, respectively.

LT_pair(p1:ProcM, p2:ProcM): boolean =
LT_bool(p1‘1, p2‘1) or
(p1‘1 = p2‘1 AND

(p1‘1 implies LT_pcT(p1‘2, p2‘2)) and
(NOT p1‘1 implies LT_pcF(p1‘2, p2‘2)))

136 R. Colvin and B. Dongol

However, proving the minimal-element definition of well-foundedness for such
an ordering is not convenient, since enumerating each element of type ProcM is
time-consuming and error-prone. Instead we used the alternate decreasing finite
chain property of well-founded relations. (see, e.g., Gries and Schneider [GS93,
Sect. 12.4] for a comparison of different well-foundedness characterisations). For
a finite set T , to show that every descending chain in T is finite, it is sufficient
to show that for all elements y of T , it is not the case that y ≺∗ y. That is, we
used the following definition1 for relation r on finite type T.

well_founded_finite?(r): bool =
forall (y:T): not trans_closure(r)(y, y)

Using this more convenient formulation of the well-foundedness, Theorem 3
was proved. As expected, the bulk of the proof effort was spent on this (and
supporting) theorems.

5 Conclusion

Programs which exhibit lock-freedom have been demonstrated to have perfor-
mance advantages over lock-based algorithms [MS98]. In this paper we have
outlined a general approach for formally proving lock-freedom, using a well-
known lock-free stack algorithm as a case study. Although applied to a rela-
tively straightforward lock-free algorithm, the same principles, particularly in
designing the well-founded ordering, apply to the general class of lock-free algo-
rithms outlined in Sect. 2.1, including those of Michael and Scott [MS98] and
algorithms with more complex memory models [Mic04,HLM02]. Formally prov-
ing lock-freedom is difficult because (1) idle process can always begin a new
operation, hence there is no final “end-point” that we can appeal to (2) all syn-
chronisation is not lock-based, hence there is a high degree of interference (3)
the reasoning must be based on the system as a whole, as opposed to a single
process.

In contrast to techniques for proving progress properties which analyse all
possible interleavings of the processes, our technique is based on a well-founded
ordering on the state of a single process and the shared variables. Our technique
does not compare the states of two processes, hence it scales because it is inde-
pendant of the number of processes in the system. The bulk of the work is in
desribing the ordering and proving it to be well-founded. The rest of the proof is
a case analysis on transitions, which is trivial and can be automatically verified,
as we demonstrated with the theorem prover PVS.

In [Don06a], where lock-freedom, along with other classes of nonblocking algo-
rithms, is formalised, a proof of lock-freedom for a simple algorithm is presented.
However, the technique used is not amenable to tool support and does not scale

1 We postulated, but did not prove, that a relation r on a finite type T that satisfies
this definition is well-founded – a proof of this theorem in PVS is beyond the scope
of this work.

Verifying Lock-Freedom Using Well-Founded Orders 137

well. Gao and Hesselink [GH07] have formalised lock-freedom, but their proofs
remain informal and furthermore, they assume stronger system properties such
as weak fairness.

In future work we will extend the theory and tool support to more complex
lock-free algorithms such as (1) the linked list queue algorithm of Michael and
Scott [MS98] where updating the queue requires two steps, and, because of this,
operations may have to retry the loop twice to complete an operation even in
the absence of interference (2) the array-based queue algorithm in [CG05], which
requires up to three iterations of its loop to complete an operation. We plan on
extending our PVS proof strategies for proving well-foundedness, particularly as
the case studies become more complex.

Acknowledgements. The authors wish to thank Ian Hayes and three anonymous
reviewers for helpful suggestions on this paper.

References

CD. Colvin, R., Dongol, B.: PVS files for lock-freedom of the Treiber stack,
http://www.itee.uq.edu.au/∼nbverif/Lockfreedom Proofs/Treiber/

CDG05. Colvin, R., Doherty, S., Groves, L.: Verifying concurrent data structures
by simulation. In: Proceedings of the REFINE 2005 Workshop. Electronic
Notes in Theoretical Computer Science, vol. 137, pp. 93–110 (2005)

CG05. Colvin, R., Groves, L.: Formal verification of an array-based nonblocking
queue. In: 10th International Conference on Engineering of Complex Com-
puter Systems, pp. 507–516. IEEE Computer Society Press, Los Alamitos
(2005)

CGLM06. Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal verification of a
lazy concurrent list-based set algorithm. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 475–488. Springer, Heidelberg (2006)

CM88. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA (1988)

DDG+04. Doherty, S., Detlefs, D., Groves, L., Flood, C.H., Luchangco, V., Martin,
P.A., Moir, M., Shavit, N., Steele, Jr., G.L.: DCAS is not a silver bullet for
nonblocking algorithm design. In: Gibbons, P., Adler, M. (eds.) Proceedings
of the 16th Annual ACM Symposium on Parallel Algorithms, pp. 216–224.
ACM Press, New York (2004)

DGLM04. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of
a practical lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M.
(eds.) FORTE 2004. LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg
(2004)

DM06. Dongol, B., Mooij, A.J.: Progress in deriving concurrent programs: Empha-
sizing the role of stable guards. In: Uustalu, T. (ed.) MPC 2006. LNCS,
vol. 4014, pp. 140–161. Springer, Heidelberg (2006)

DM07. Dongol, B., Mooij, A.J.: Streamlining progress-based derivations of concur-
rent programs. Formal Aspects of Computing (to appear)

Doh03. Doherty, S.: Modelling and verifying non-blocking algorithms that use dy-
namically allocated memory. Master’s thesis, Victoria University of Welling-
ton (2003)

http://www.itee.uq.edu.au/~nbverif/ Lockfreedom_Proofs/Treiber/

138 R. Colvin and B. Dongol

Don06a. Dongol, B.: Formalising progress properties of non-blocking programs. In:
Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 284–303. Springer,
Heidelberg (2006)

Don06b. Dongol, B.: Towards simpler proofs of lock-freedom. In: AWCVS’06. 1st
International Workshop - Asian Working Conference on Verified Software,
October 2006, pp. 136–147 (2006)

FG96. Fix, L., Grumberg, O.: Verification of temporal properties. J. Log. Com-
put. 6(3), 343–361 (1996)

GH07. Gao, H., Hesselink, W.H.: A general lock-free algorithm using compare-and-
swap. Inf. Comput. 205(2), 225–241 (2007)

GS93. Gries, D., Schneider, F.B.: A logical approach to discrete math. Springer-
Verlag New York, Inc., New York, NY, USA (1993)

HLM02. Herlihy, M., Luchangco, V., Moir, M.: The repeat offender problem: A mech-
anism for supporting dynamic-sized, lock-free data structures. In: Malkhi,
D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 339–353. Springer, Heidelberg
(2002)

HLM03. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization:
Double-ended queues as an example. In: 23rd IEEE International Confer-
ence on Distributed Computing Systems, p. 522. IEEE Computer Society
Press, Los Alamitos (2003)

Mic04. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free ob-
jects. IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)

Mis01. Misra, J.: A Discipline of Multiprogramming. Springer, Heidelberg (2001)
Moi97. Moir, M.: Practical implementations of non-blocking synchronization prim-

itives. In: PODC, pp. 219–228 (August 1997)
MP92. Manna, Z., Pnueli, A.: Temporal Verification of Reactive and Concurrent

Systems: Specification. Springer, New York, Inc. (1992)
MS98. Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe

locking on multiprogrammed shared memory multiprocessors. J. Parallel
Distrib. Comput. 51(1), 1–26 (1998)

ORR+96. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Com-
bining specification, proof checking, and model checking. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Hei-
delberg (1996)

Tre86. Treiber, R.K.: Systems programming: Coping with parallelism, Technical
Report RJ 5118, IBM Almaden Res. Ctr. (1986)

Tree Components Programming:
An Application to XML�

Pascal Coupey, Christophe Fouqueré, and Jean-Vincent Loddo

LIPN – UMR7030
CNRS – Université Paris 13

99 av. J-B Clément, F–93430 Villetaneuse, France
firstname.lastname@lipn.univ-paris13.fr

Abstract. We present a new programming approach based on a contextual com-
ponent specification. The language we propose integrates XML and functional
aspects in a coherent and homogeneous framework. This enables us to fully have
static typing and to specify formal properties with respect to interactions.

Our language FICX, Functional Interactive and Compositional XML, defines
a new kind of data structure called Xobjects and relies on a statically typed func-
tional language (currently OCaml). An Xobject is an abstract structure made in
two parts: the Xdata part is an XML structure extended by means of triggers ded-
icated to interactions, the reaction part gives the code associated to triggers that is
evaluated on demand. The modularity is ensured by a parameterization of Xob-
jects: compound Xobjects form a tree structure, rendering a complex XML tree
together with appropriate reactions for triggers. A program is a set of structures,
each structure being a tree of Xobjects.

Keywords: web programming language, static typing, tree components, XML.

1 Introduction

Classic object oriented programming languages offer class/subclass relationship with
inheritance mechanism. It is not well suited when applications need "part-of" relation-
ship. Of course, this may be encoded using the object paradigm but no facility is given
to the programmer since she has to build by herself the partonomy beside the class/-
subclass hierarchy. This is true in the semi-structured data field and in particular XML-
like languages where many recent works extend XML language in order to describe
documents as a composition of various parts (pure XML, scripts, database requests,
web service requests [11,13,5]). Our purpose is to propose a programming language
whose core principle is that basic objects are components of a tree and to apply it to
XML language. In fact, tree structures may be obtained by merging partial trees (in-
stead of just composing them). Such (partially defined) structures are first-class citizens
in our programming language. They encapsulate static and dynamic contents to allow
for interactivity and expressiveness. Moreover the whole language is strongly typed to
ensure error-free executions. This programming paradigm is applied here to XML pro-
gramming. Examples are given wrt the web as this domain has at least the following

� This work is supported by the Marie Curie action n. 29849 Websicola.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 139–153, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

140 P. Coupey, C. Fouqueré, and J.-V. Loddo

features: use of semi-structured data, interactivity, needs for modular and safe program-
ming. Our language FICX, Functional Interactive and Compositional XML, defines a
new kind of data structure called Xobjects and relies on a statically typed functional
language (currently OCaml). An Xobject is an abstract structure made of two parts:
the Xdata part is an XML structure extended by means of triggers dedicated to inter-
actions, the reaction part gives the code associated to triggers and that is evaluated on
request. A Request is a first-citizen expression of the language. Its value is the result
of a reaction selected by a trigger. To take advantage of the tree structure of compound
Xobjects, a delegation mechanism is offered: a request may contain an (abstract) path
to be followed to find an adequate reaction. FICX uses in fact extensively the concept
of abstract path. An abstract path is a sequence of labels for addressing Xobjects in a
tree, e.g. the root, the value at label Y of a parent, ... To summarize, FICX has the main
following characteristics:

Modularity: Compound Xobjects form a tree structure, rendering a complex XML tree
together with appropriate reactions for triggers. A program is a set of Xstructures. Each
Xstructure is a fully defined tree of Xobjects and plays the role of an entry point to the
program.

Interaction: Each reaction describes a possible evolution: the result of requesting a re-
action to some Xobject is a new Xobject (possibly with new Xdata, new triggers, new
reactions).

Static typing: The type of an Xobject is given by the type of its Xdata part together
with the type of its reactions. An Xobject defines a set of triggers (usable for interaction)
and a set of reactions (called either by an expression of the language or by means of an
interaction). These two sets should coincide in case of Xstructures: the type of reaction
patterns should cover the type of the XML structure associated to a trigger (sound-
ness), and, a reaction being given, a corresponding trigger should have been defined for
interaction (completeness).

These peculiarities offer the user means to develop modular and type checked pro-
grams. In the framework of web applications, triggers may be viewed as web service
names or anchors in web sites. However, contrarily to most web languages, triggers and
reactions should be related in a program in such a way that controls may occur. The
toy example given in Ex. 1 on the left defines the variable link to be a function with
one parameter msg which returns an Xobject1 and home whose value is an Xobject with
one parameter Y. The Xdata part is written in CDuce style [2] and is extended with a
trigger T. The corresponding XML structure in home Xobject declaration is given on the
right. The Xobject link has two reactions with trigger tag T. The first one creates a new
Xobject link with the string "Bonjour" if the parameter given with the trigger contains
the string "Hello", the second reaction has the converse behaviour. The evolution con-
sists in creating Xobjects that alternates "Bonjour" and "Hello" messages. website is a

1 For the sake of simplicity, we consider that link = xobject <> (msg:string) ... is syn-
tactic sugar for link = fun (msg:string)→xobject <> ... then collapsing the name of the
function which returns the Xobject with the name of the Xobject itself.

Tree Components Programming: An Application to XML 141

link = fun (msg:string) →
xobject <>

T<h1 align="center">[msg]
�

T(<h1 align="center">["Hello"])
⇒ (link "Bonjour")

T(<h1 align="center">["Bonjour"])
⇒ (link "Hello")

xend;

home = xobject <Y>
<html>[

<head>[<title>["Welcome"]]
<body>[Y]

]
� xend;

website = home[Y �→ (link "Hello")];
otherwebsite = Y.T("Hello")@website;

Data extracted from website in standard
XML style:

<html>
<head>

< t i t l e >"Welcome"< / t i t l e >
< / head>
<body>

<a hre f =
URL_encoding_of (

Y . T("Hello") @website
) >

<h1 a l i g n ="center"> ["Hello"]
< / a>

< / body>
< / html>

Ex. 1. Xobject definitions and XML data

(compound) Xobject giving a value to the parameter Y in a copy of Xobject home. Note
that Xobject home is unchanged. Its standard HTML presentation is given on the right
(where URL_encoding_of() is a built-in function). The interactive request has the
same shape as the expression for defining otherwebsite. Its operational semantics uses
the delegation mechanism. In Y.T("Hello")@website, website is called the initial concrete
receiver as it is the Xobject that should at first react. As it has no appropriate reaction,
the request is delegated wrt the path, here Y. Let o be the value of (link "Hello"), o
responds by (link "Bonjour"). The Xobject otherwebsite may then have been defined
equivalently by the expression home[Y�→(link "Bonjour")]. This is also the result sent
back in case of interactive request.

We present in the next section the syntax and the operational semantics of the lan-
guage FICX, focussing on its main features: abstract paths, Xobjects, requests. We de-
fine in particular a specific class of trees and show in which extent a set of abstract
paths is a representation of such a tree. We give in section 3 the type system . We end
comparing FICX to other works in this domain and present a few extensions under
study.

2 Language FICX: Syntax and Operational Semantics

We use a functional programming language, currently OCaml, as a core language for
functions, definitions, ... that we do not detail here (the reader may find descriptions of
OCaml in [6]). This core is extended by means of an Xobject data type that integrates
an extended XML structure called Xdata to publish data and triggers, and a functional
part called reaction intended to answer requests built from triggers. Moreover Xobjects
may be parameterized by abstract paths defined in the following subsection. Finally,
an Xstructure is a specific top-level definition that is used to declare interactive data
and functionalities. The grammar of the language FICX, specific to our aim, is given in

142 P. Coupey, C. Fouqueré, and J.-V. Loddo

Program
P ::= ε empty program

| S P | d P Xstructure or definition followed by a program
Xstructure
S ::= xstruc d begin w = e where d is a definition, w an identifier, e an expression
Xobject
e ::= xobject〈Y1, . . . ,Yn〉 Xobject definition with abstract paths parameters

e � sr Xdata � reactions
xend

| e1[Y �→e2] parameter assignment
| τ (e2)@e1 request evaluation
| Y Abstract path name Y

Reactions
sr ::= ε r ::= τp(p)⇒e reaction conditioned by trigger and parameter patterns

| r sr
Triggers
τ ::= Y.C abstract path followed by a tag

Fig. 1. Grammar of FICX

Fig. 1. We use the following notations throughout the paper: e is an expression and p
is a pattern, a, A, C, x, y are identifiers, τ is a trigger, Y, Z are abstract paths, finally r
states for a reaction.

The operational semantics follows standard functional programming operational se-
mantics: it is given as an evaluation judgment on programs, expressions, ... to be com-
puted with respect to a given environment. An environment is an evaluation environ-
ment together with a handler environment. An evaluation environment is a partial func-
tion from the set of variable names and abstract paths to values, either ground values or
handlers to such values (supposing a domain of handlers). A handler environment is a
partial function from the set of handlers to values. Handlers are used to denote Xobject
parameter values. The evaluation judgment for expressions is of the following form:

E ,H � e ⇓ v,H′

read as: the evaluation of expression e in an evaluation environment E with a handler
environmentH leads to a value v together with a new handler environmentH′.

2.1 Abstract Paths

Abstract paths are defined according to the following grammar, where y is an identifier,
parent, root and self are keywords:

Y ::= parent | root | self | y | Y.Y
We suppose further that abstract paths (and abstract path patterns or path types in

the same way) are always in normal form with respect to the rewriting →AP applied to
self.Y, where Y is the abstract path to be normalized (y �= self,root,parent):

y.parent →AP ε Y.root →AP root Y.self →AP self

Tree Components Programming: An Application to XML 143

Let φ = {root.r,self.a.c, self.a.d, self.b.e}
and ψ = {root.s, self.g,self.parent.f},
φ and ψ represent the following pairs of trees:

φ: (
�
r , �

a

�
c

�
d

�
b

�
e
) and ψ: (

�
s ,

�

parent

�
g

�
f)

The following is an example of ’merge with mask’ operation wrt some path:

φ �self.b ψ: (
�

r
�
s, �

a

�
c

�
d

�
b

�
e

�
g

�
f)

Ex. 2. Abstract paths and trees

Thus →AP gives rise to two kinds of normal forms: root.Y and self.Y with self
and root not in Y. The intended meaning is that a set of such abstract paths should
partially define two rooted trees, one with abstract root root and another ’centered’ on
selfwhere self.parent. . . .parent should represent a path ’up’ to some concrete
root (see Ex. 2 where orientation is given as the root is not always at top). Abusively,
self may be omitted in the following from abstract paths writings. We give below a
few simple definitions and properties that characterize the particular trees and opera-
tions we need. We then relate such trees to a specification given by abstract paths. We
do not first consider values (say Xdata and reactions) attached to nodes and we fix a
non-empty set of symbols L.

Definition 1

– An unambiguous rooted L-edge-labelled tree is a tree with a root node, edges la-
belled by elements inL, and such that for each node two distinct edges have distinct
labels. Let TL be the set of such trees.

– Let T1, T2 ∈ TL, T1 ≤ T2 if there exists an injective mapping f from T1 to T2 such
that if r is the root node of T1 then f(r) is the root node of T2, and if (n1, n2) is an
edge of T1 labelled l, then (f(n1), f(n2)) is an edge of T2 labelled l.

Proposition 1. Let L∗ be the set of finite sequences of elements of L and P(L∗) be
the powerset of L∗, (TL,≤) is faithfully represented by (P(L∗),⊂), hence (TL,≤) is a
lattice.

Let us now consider the set T _
L of partially defined unambiguous rooted L-edge-

labelled trees, where a special symbol ’_’ plays the role of a variable:

Definition 2. Let _ be a symbol not in L, T _
L is the set of unambiguous rooted L∪{_}-

edge-labelled trees such that paths Y.l._ cannot appear, where l ∈ L. Let T1, T2 ∈ T _
L ,

T1 ≤ T2 if there exists an injective mapping f from T1 to T2 such that if r is the
root node of T1 then f(r) is the root node of T2, if (n1, n2) is an edge of T1, then
(f(n1), f(n2)) is an edge of T2, moreover if the label of (n1, n2) is in L then it is also
the label of (f(n1), f(n2)).

Proposition 2. (T _
L ,≤) is a poset, (TL,≤) embeds in (T _

L ,≤), (T _
L ,≤) is not a lattice.

144 P. Coupey, C. Fouqueré, and J.-V. Loddo

Let α be
�

�

_

�
z

�
x and β be

�

�
y then

�

�

_

�
z

�
x

�
y and

�

�
y

�
z

�
x are distinct, incomparable

and the smallest that are greater than α and β.

Ex. 3. Trees in T _
L

In Ex.3, a counter-example for (T _
L ,≤) to be a lattice is given. However the following

proposition serves to control Xobject composition validity:

Proposition 3. Let T1, T2 ∈ T _
L , (T1, T2) has a least upper bound (lub) iff either T1 =

T2, or T1, T2 ∈ TL, or if T1 �∈ TL then T2 ∈ TL and the set of labels of edges from the
root of T2 is included in the set of labels of edges from the root of T1, or the same last
property interchanging T1 and T2.

The proof follows a structural definition of these trees. The key element comes from the
fact that if the two roots have each a daughter labelled _ then there are always at least
two distinct minima: one merging the two edges labelled _, the other putting separately
two branches, one labelled _, the other labelled by some element of L (that is a non-
empty set).

Let us now add to nodes values, i.e. values necessary for the operational semantics
or the typing system. For simplicity, we keep notation T _

L and we define a lub of two
valued trees as the lub of the trees obtained forgetting the values. We consider moreover
the following definitions: If T ∈ T _

L and Z is a path in T then Z(T) is the subtree of T
at path Z , val(T) is the value associated to the root node of T , self(T) is defined as the
subtree ending the _ path: self(T) = T if T ∈ TL, self(T) = self(_(T)) otherwise.
Taking care of previous properties, we define the following partial operations on T _

L :

Definition 3. Let T1, T2 ∈ T _
L ,

– ’Merge with mask’ operation �: T = T1 � T2 has the structure of the lub of
T1 and T2 if it exists and, forall path Y , val(Y (T)) = val(Y (T2)) if defined,
val(Y (T)) = val(Y (T1)) otherwise.

– ’Merge with mask’ operation wrt some path. T = T1 �Y T2 is defined in the
following way: let n be the longest path including only _ in T2 (i.e. the depth of
self(T2) in T2),
• if |Y | ≥ n, let Z be the prefix of Y of length |Y |−n and T ′1 be the tree T1 after

deleting the subtree Z(T1), if Z(T1) � T2 exists, T is the tree T ′1 appending
Z(T) � T2 at the leaf Z , otherwise T is not defined ;

• if |Y | < n, let Z be a sequence of _ of length n−|Y | and T ′2 be the tree T2 after
deleting the subtree Z(T2), if T1 � Z(T2) exists, T is the tree T ′2 appending
T1 � Z(T2) at the leaf Z , otherwise T is not defined.

Note that, thanks to proposition 3, the safety of previous operations may be statically
checked as soon as labels are known. The following proposition shows that such trees
may be used to design an operational model for our language (and also a typing system
as soon as a typing system is available for Xdata and reactions).

Tree Components Programming: An Application to XML 145

xstruc
link = xobject <root.H1> (x:string)

root.H1.T<a>[x]
� xend;

message = xobject <> (msg:string)
<h1 align="center">[msg]

� xend;
phandler = xobject <M1> (k:int)

M1 <p>["Visits for this session (cs): " k]
�

T(<a>[x]) ⇒ (let y=(if (x = "Hello") then "Salut" else "Hello") in
(phandler (k + 1))[M1 �→(message y)])

xend;
home = xobject <L1, L2, H1>

<html>[<head>[<title>["Welcome"]] <body>[H1
 L1
 L2]]
� xend;

m1 = (message "Hello");
h1 = (phandler 0)[M1 �→ m1];
l1 = (link "Increment cs and reload with Hello");
l2 = (link "Increment cs and reload with Salut");
o = home[L1 �→ l1][L2 �→ l2][H1 �→ h1];

begin website = o

Ex. 4. Xobjects with components

Proposition 4. A finite set of abstract paths represents two trees: a tree in TL we called
’with abstract root root’, and one in T _

L , we called ’centered on self’.

In the following, we freely use the abstract path notation for operations on T _
L .

2.2 Xobjects

An Xobject is structured in two parts: an Xdata structure together with reactions, and
is parameterized by means of abstract paths. Parameterization is a convenient way to
refer to yet unknown Xobjects while parameter assignment merges partial trees of com-
ponents. Abstract paths that are used in an Xobject body are declared in the header: in
Ex. 4, Xobject home expects three subcomponents L1,L2,H1. Note the reference to root.H1

in the definition of link: this Xobject is expected to be in a tree whose Xobject root has
at least a subcomponent for label H1.

In Ex. 4, website is declared as an entry point. The tree of components is rooted at o,
that has two links l1 and l2 and one phandler h1 as subcomponents, h1 having a child
m1. Two triggers are declared, posted in l1 and l2, authorizing interactive requests of the
form H1.T(x)@website.

We are now able to precise the operational model. We extend a domain, supposed
given for basic types and that includes handlers, by the following kinds of values:

– TT called a handler tree value is a map from abstract paths to handlers. It is a pair
of trees (U, V) ∈ TL × T _

L , one rooted at abstract path root and one centered at
self with the following partial operations:
• An ’identifier’ operation: let TT = (U, V), if V ∈ TL and U � V is defined

then -TT = (U � V, U � V).

146 P. Coupey, C. Fouqueré, and J.-V. Loddo

m fresh, TT = {self �→ m}
E ,H � xobject〈Y1, . . . ,Yn〉→e � sr xend ⇓ TT,H∪ {m �→ xval(E , e � sr)}

E ,H � e2 ⇓ TT2,H2 E ,H2 � e1 ⇓ TT1,H1

E ,H � e1[Y �→e2] ⇓ TT1 �Y TT2,H1

E ,H � d ⇓d E1,H1 E1,H1 � e ⇓ TT2,H2

E ,H � xstruc d begin w = e ⇓d E2 ∪ {w �→ TT2},H2

Fig. 2. Operational semantics for Xobject and Xstructure declarations

• A ’merge with mask’ operation �: let TT1 = (U1, V1) and TT2 = (U2, V2) be
handler tree values, TT = TT1 � TT2 is the handler tree value (U, V) such that
U = U1 � U2 and V = V1 � V2.

• A ’merge with mask’ operation wrt some path: let TT1 = (U1, V1) and TT2 =
(U2, V2) be handler tree values, Y be an abstract path in normal form, TT =
TT1 �Y TT2 is the handler tree value (U, V) such that
∗ if Y has form self.Z , U = U1 � U2 and V = V1 �Y V2,
∗ if Y has form root.Z, V = V1 and U = U1 �Y W where -TT2 = (W, W).

– xval(E , e � r) serves to denote Xobject closures, where r is a sequence of values
of the form τp(p) ⇒ e, e is an expression and E is an evaluation environment.

A handler tree value TT may also be part of an evaluation environment as it is a map from
abstract paths to values. dom(TT) is then the set of abstract paths of TT . We consider
available in that case an operation TT Y→Y ′

that changes the reference frame of the
domain of TT wrt the change from Y to Y ′.

The operational semantics of Xobjects is given in Fig. 2. The semantics correspond-
ing to an Xobject declaration is straightforwardly a closure (as for functions) and as-
signment of abstract path parameters is similar to the standard treatment of handlers in
functional programming: the rule is nothing else but a new value given for the refer-
ence (the typing system should ensure that v2 is an Xobject value). The semantics of
an Xstructure declaration follows the semantics of a (top level) definition (⇓d evaluates
definitions).

2.3 Xdata and Reactions

The language for the Xdata part extends XML. XML is basically expressed by means
of tree structures where nodes are of the form <a le>[s] where a is the markup of the
node, le is a list of attribute-value pairs (the value may be the result of the evaluation of
an expression), and s is a sequence of XML constituents. XML syntax is extended in the
following way: an abstract path may be used in place of an XML node and each node in
an XML structure may be labelled by a trigger τ . A trigger τ has the general form Y.C
where C is an interaction tag (tag for short) and the abstract path Y is the path to the
abstract last possible receiver. Setting down a trigger means that a functionality should
be available, as a GET in HTML or the description of a service. In case of Xstructures, a

Tree Components Programming: An Application to XML 147

E ,H � e2 ⇓ v2,H2 E ,H2 � e1 ⇓ TT1,H1 H1(self(TT1)) = xval(E1, e � sr)
match(τ, v2, sr) = (e0, E0)

E1\(dom(E0) ∪ dom(TT1)) ∪ E0 ∪ TT1,H1 � e0 ⇓ TT0,H0

E ,H � τ (e2)@e1 ⇓ TT0,H0

E ,H � e2 ⇓ v2,H2 E ,H2 � e1 ⇓ TT1,H1 H1(self(TT1)) = xval(E1, e � sr)
match(y.Z.C, v2, sr) = undef

E1 ∪ TT y→self
1 ,H1 � Z.C(e2)@self ⇓ TT0,H0

E ,H � y.Z.C(e2)@e1 ⇓ TT1 �y TT0,H0

where the function match(_, _, _) checks if a trigger fires a reaction and in this case sends back
the expression to be evaluated together with the capture variables given by a standard pattern
matching function matchPatt (not given here):
match(Y.C, v, ε) = undef,
match(Y.C, v, Z.D⇒e sr) = match(Y.C, v, sr)

if Y �= Z or C �= D or matchPatt(v, p) = undef
match(Y.C, v, Y.C(p)⇒e sr) = (e, Γ) if matchPatt(v, p) = Γ

Fig. 3. Operational semantics of requests

built-in function get_Xdata is available that extracts the Xdatum to build a (standard)
XML structure that can be sent interactively. When encountering an abstract path in
place of an XML node, the function is recursively called on the value at the abstract
path. In case of a trigger, a request is prepared that includes the address of the value of
root (called the initial concrete receiver2), the abstract path from it to the last possible
receiver, the interaction tag and an XML structure (the parameter of the request). Note
that the abstract path to the last possible receiver is now given from root, then may
be different from the abstract path set up in the Xdata. Such an interactive request is
at first received (and executed) by the initial concrete receiver. In fact a request is a
first-class citizen that has the general form τ(e2)@e1: e1 is the concrete receiver of the
request, τ(e2) gives the trigger and the parameter value for the request. The operational
semantics is given in Fig. 3. Due to lack of space, the second rule considers only an
identifier beginning the abstract path but similar rules may be given with keywords
parent,root andself. The semantics may be rephrased in the following way: if the
concrete receiver has an adequate reaction (the reaction matches trigger and parameter
of the request), the reaction is evaluated ; otherwise the request is delegated following
the path to the last possible receiver until some Xobject has an adequate reaction. It
is the type system that is responsible for checking that there cannot be run-time errors.
Note that an Xobject value is rebuilt when a delegation occurs. In this paper, we suppose
that capture variables are available in standard and XML patterns. However, this may
be extended to tag and abstract paths patterns.

Going back to Ex. 4, a tag T is set down in the Xdata part of link: root.H1.T<a>[x]

states that the tag T is an anchor. Requests available in this case may be for example
T("Hello")@h1 or H1.T("Hello")@website. This last request is the only one that can be used
interactively. As website has no appropriate reaction, the request is delegated to h1, value

2 This is generalized in section 4 where the initial receiver may be different from root.

148 P. Coupey, C. Fouqueré, and J.-V. Loddo

Xdata
ts ::= [τ]<a lt>[rt] Xdata tree

| Y abstract path type name
Xobjects
to ::= TT | Y abstract tree and path name types
vn ::= ts � ρ type of a TT node value
ρ ::= ε sequence of Xobject types

| τp1 → ts
p1 [→ to

1]; . . . ;τpn → ts
pn [→ to

n] for a pattern type for trigger type

Fig. 4. Type language of FICX (except XML and functional type language)

of H1 as it is given in website. The reaction part of this phandler contains a reaction that
is fired with result the Xobject (phandler 1)[M1�→(message "Salut")]. The final value sent
back to the requester is home[L1�→l1][L2�→l2][H1 �→(phandler 1)[M1 �→(message "Salut")]].

3 Language FICX: The Type System

FICX is strongly typed: the static typing offers the programmer a way to check its pro-
gram before execution. Besides the usual benefits, it allows to check the completeness
and soundness of the program with respect to interactions as given by requests expres-
sions. Obviously, requests included in the program are checked at compile time and
interactive requests are checked only on the fly. However, one may control interactive
requests by studying available triggers and reactions: e.g. clicks in a browser generate
requests and are allowed by triggers set up on some Xdata, web services should answer
to declared services. We refer in the later to completeness and soudness with respect to
the cover of triggers and reactions in an Xstructure, i.e. a fully defined tree of Xobjects.

The type language is in two parts (see Fig. 4): ts stands for standard or Xdata ex-
pressions, to for Xobjects. The type system for functional expressions is standard, it is
extended for Xdata expressions by mimicking the structure. Abstract path variables are
also defined as types (these are sequences of constants). The type of an Xobject is an
abstraction of a handler tree value as defined in the operational semantics: it is a pair
of trees in TL × T _

L with abstract paths as labels and nodes valued by the type of its
Xdata together with types for the reactions (pattern and result), these values are noted
vn in the figure. ρ defines the types for possible reactions (supposed if given as triggers,
explicit if given as reactions): this is a sequence possibly empty associating to a trigger
pattern and a pattern type the type of the result if it is defined (summing over the sets of
patterns types, and of result types). Taking into account reactions in the type is possible
because of subtyping, and the fact that a program may only include a finite number of
Xobject types. However, as reactions and triggers may not be defined in the same Xob-
ject, the type system should propagate pieces of information and when possible merge
them to satisfy coherence properties when an Xobject is used as a parameter value for
another Xobject.

Due to lack of space, we limit the description of type judgments to Xobjects. The
remainder is quite easy to define as it takes up technics used for functional program-
ming, XML, ... Note that in the following we suppose that variables newly typed were

Tree Components Programming: An Application to XML 149

not typed before (type clash with respect to the environment is supposed implicit). Let
Δ be a type environment, i.e. a partial function �→ from the set of variable names (in-
cluding abstract path variables) to types, judgments for an expression and a sequence
of reactions are given as follows:

Δ � e : t where e is an expression and t its type
Δ �r sr : ρ where sr is a sequence of reactions with type ρ

3.1 Expression Judgment Rules: Xobjects

The type of an Xobject is of type TT (YJoin builds the pair of trees) whose self node
value summarizes types of reactions and of triggers set up in the Xdata part. These two
data are merged in a single type ρ′ considering that triggers not covered by reactions
give ’partially defined’ types. Trig computes the set of triggers set up in its argument.
RIT (Reaction Intersection Type) retracts triggers (in its second argument) for which
reactions are given in its first argument (a reaction type). Parameter assignment is typed
by means of a merge and mask operation wrt an abstract path.

Δ,
−−−−−→
Yi �→ Yi � e : t Δ,

−−−−−→
Yi �→ Yi �r sr : ρ

RIT(ρ,Trig(t)) = ρ′

to1 = YJoin(Y1, . . . , Yn,self�→t�ρ′)
Δ � xobject <Y1, . . . ,Yn>→e � sr xend : to1

Δ � e1 : TT1 Δ � e2 : TT2

Δ � e1[Y �→e2] : TT1 �Y TT2

Auxiliary functions for type computation:
Trig(<a lt>[rt]) = Trig(rt)
Trig(τ<a lt>[rt]) = {τ→ <a lt>[rt]} ∪ Trig(rt)
Trig(rt1 rt2) = Trig(rt1) ∪ Trig(rt2)
Trig(t) = ∅ otherwise

RIT(ρ, ∅) = ρ
RIT(ρ, {τ → ts} ∪ T) = RIT(RIT1(ρ, τ → ts), T)
RIT1(ε, τ → ts) = τ → ts

RIT1(τ1 → ts
1 [→ to

1];ρ, τ → ts) = τ1 → ts
1 [→ to

1];RIT1(ρ, τ → ts \ τ1 → ts
1)

3.2 Expression Judgment Rules: Requests

A request τ(e2)@e1 has a type given by the result of the fired reaction. This reaction
should be on the path (given in the trigger τ) beginning from the receiver (value of e1).
If the type of e1 includes a compatible reaction (function testreac), then the request
has the type of the result:

Δ � e1 : TT1 Δ � e2 : t2 testreac(τ, t2, ρ(self(TT1))) = TT2

Δ � τ(e2)@e1 : TT1 �y TT2

otherwise the request is delegated to the first part of the trigger. The following rule
concerns the case where this first part is some child y. The fact that the type of an
Xobject is a global environment (not limited to local constituents) allows for similar
rules when the first element of the path is parent, or root.

150 P. Coupey, C. Fouqueré, and J.-V. Loddo

Δ � e1 : TT1 Δ � e2 : t2 testreac(y.Y.C, t2, ρ(self(TT1))) = undef

val(y(TT1)) defined Δ \ dom(TT1) ∪ TT1
y→self � Y.C(e2)@self : TT2

Δ � y.Y.C(e2)@e1 : TT1 �y TT2

where
testreac(τ, t, ε) = undef
testreac(τ, t, τp→t1→to2 ;ρ) = to2 if τ <:τ τp and t <: t1
testreac(τ, t, τp→t1→to2 ;ρ) = testreac(τ, t, ρ) otherwise

It is not too difficult to prove a safety theorem stating that well-typed expressions are
evaluable, i.e. there cannot be evaluation errors (provided for the functional language
part an operational semantics safe with respect to a classic typing):

Theorem 1. Let e be an expression of the language, if � e : t is provable, then there
exist v,H′ such that � e ⇓ v,H′ is provable.

The proof results from a careful study of the various rules. Note that the typing rules
ensure that the Xobject parameters of a request have appropriate reactions, and that the
operational semantics rules are in correspondence with the typing ones.

3.3 Xobject Evolution and Completeness

Interactive requests may be controlled by means of a static study of Xstructures: in-
teractive requests that correspond to declared triggers on Xobjects may be executed
without errors. This is particularly the case with web sites when requests are built by
the browser after a user click, it is also the case with web services if clients conform a
WSDL or BPEL declaration. However, a dynamic type checking has to be added as one
cannot be sure that requests are well-formed with respect to some declaration. Besides
this soundness property, the completeness stands for checking that reactions given in
Xobjects are correctly declared. The typing rule for the Xstructure expression is given
in Fig. 5 (Δ �d d : Γ is a type judgment for definitions, Γ is a type environment, �S

is used for top-level type judgments). The complexity of the rule comes from the fact
that the pair of trees have now to be merged. This is done by the function FDX that also
ensures that soundness and completeness properties are satisfied:

– 1st line does an ’identifier’ operation,
– 2nd line ensures that reactions cover triggers (ρ is fully defined), and recursively

through reactions,
– 3rd line ensures that Xobjects in the environment are known.

3.4 Subtyping

A subtyping system is supposed to be given for the XML part of the language. It is
extended for XML and trigger patterns. The subtyping system for Xobjects has the
following characteristics: let to1 and to2 be two Xobject types, to1 <: to2 (to1 extends to2) if

– For each abstract path Y , possibly with type tY in to2, Y is present in to1, if required
with a type t′Y <: tY .

Tree Components Programming: An Application to XML 151

Xstructure

Δ �d d : Γ Γ � e : to FDX(to) = t′o

Δ �S xstruc d begin w = e : w �→ t′o

where
FDX(TT <:to) = TT ′ <:to iff TT ′ = TT

and ρ(self(TT ′)) = FDXρ(ρ(self(TT)))
and FDXT (TT ′) is true

FDXρ(ε) = ε
FDXρ(τp → ts

p → to;ρ) = τp → ts
p → FDX(to);FDXρ(ρ)

FDXT (TT) is true iff forall node n of TT , n has a value

Fig. 5. Soundness and completeness of Xstructures (entry points)

– XML subtyping should be satisfied as well as subtyping with respect to triggers
(triggers in to2 should appear in to1).

– Each reaction defined in to2 has its counterpart in to1.

Typing constraints may then be added to the language as usual.

4 Extensions

In the current setting, requests should initially be sent to the (concrete) root of a tree of
components, and, if necessary, delegated to some adequate Xobject wrt an abstract path
to a final receiver. However, this constraint is neither formally necessary nor practically
wishful. In fact, this delegation mechanism is safe as soon as the concrete receiver is
known and the nodes in the abstract path have each a value. Moreover, sending a request
directly to some node in a tree of components allows for an Ajax-like mechanism.
Ajax [3] is a web development technique for creating interactive web applications and
is intended to increase the web page’s interactivity, speed, and usability. A response may
be given as a part of an HTML document and it is the client responsability to replace
the old value by the new one at the right place (a DOM-based mechanism generally),
avoiding the page to be completely reloaded. This mechanism may be modelled in
our framework as a request to some specific Xobject maybe different from a root, this
Xobject being specified when setting up a trigger. To take care of this generalization, the
syntax of a request does not change and a trigger should be set up as Y ′:Y.C<a le>[s]
where the initial receiver is such that Y ′ is the path from self to it.

Let us replace the definition of link in Ex. 4 by:

link = xobject <parent.H1> (x:string)
root.H1.M1:self.parent.H1.T<a>[x]

� xend;

The trigger root.H1.M1:self.parent.H1.T<a>[x] in link states that the initial (resp. final)
receiver for the tag T should be the value at self.parent.H1 (resp. root.H1.M1). A request
corresponding to such a tag could be root.H1.M1.T("Hello")@h1. Operational and typing
rules are slightly more complex as one should manage delegation not only wrt direct

152 P. Coupey, C. Fouqueré, and J.-V. Loddo

subcomponents (daughters in the component tree) but also to parents of a node. Using
such a mechanism interactively requires more theoretical and practical investigations.
When a request is received at first by the root of a tree of components, a new tree of
components is created for the response, hence the tree structure is fully defined. This is
no more the case when a request is initially sent to a node different from the root: either
the tree is rebuilt but efficiency is lost, or a replacement is done but completeness and
soundness wrt reactions may not be guaranteed.

More generally, we currently study carefuly the theoretical meaning of interaction,
i.e. setting up triggers as a dual to requesting reactions. An operational semantics of in-
teraction may be given in terms of processus calculus while keeping the semantics of the
delegation process described in this paper. This may be fruitful for extending expressivity
of interaction. For instance, associating multiple receivers to the same tag could be useful
in pratice. In example 4, one would desire to increment the handler at each change in the
welcome message: requests root.L1.T("Hello")@m1 and root.L1.T("Hello")@h1 are sent.
However, the operational semantics is not obvious if order of execution matters. This is
not the case when replies concern disjoint parts of the concrete tree of components.

5 Related Works

Our work concerns two different communities: object and XML programming as the
real novelties of FICX are program modularity through Xobject component trees and
static typing for structures that mix XML and functional parts. However our approach
is uneasily comparable to the standard object-oriented paradigm in that modularity is
got by partonomy rather than inheritance. Moreover Xobjects are in fact immutable as
parameter instantiation and requests create each time new Xobjects. It is easier to relate
our work to different areas in semi-structured data field (embedded calls, type checking,
web services).

Embedded calls in XML documents: Concepts of triggers and reactions in FICX
are close to the (not new) idea of embedded calls in XML structures. Previous works
from this area can be classified in two categories: data oriented and code oriented. In
the data-oriented approach, the XML structure is enriched with intensional data. In
Macromedia [10], Appache Jelly [14], AXML [1,5], database or web service queries
help to dynamically complete XML documents and a declaration of services may be
available. Including expressions and triggers in Xdata has the same objectives even if
we do not focus on the problems of distributed stream data. The difference mainly relies
on the fact that our language is strongly type-checked although works just cited extend
loosely XML types or schemas. For example, type checking in AXML is based on
an extension of XML schemas in order to describe data types needed in an exchange.
The code-oriented approach, as popularized by PHP [13], JSP [12], ASP [11], tries to
introduce code in XML structures in order to allow parameterization and dynamicity of
websites. However, no static checking is proposed so there is no guarantee the resulting
XML structure is correct before run-time.

Typed XML processing languages: Many works (see [9]) for a general survey) exist
that propose strongly typed languages for manipulating XML data: Xact [7] (an ex-

Tree Components Programming: An Application to XML 153

tension of JAVA), CDUCE [2] (a ML-like language), XSTATIC [4] (an extension of
C#). These programming languages allow to manipulate, to create and to check XML
documents thanks to a powerful parser and a type inference system. They extend a pro-
gramming language by means of a typed language for XML document manipulation.
However they do not support code integration in XML data. On the other hand XMλ [8]
is closer to our concerns. It uses a Haskell-like syntax and treats XML documents as
native values. It allows to include typed expressions and embedded functions calls in
XML documents while proposing a powerful type-checking. All these systems lack a
general framework able to design software in a modular and homogeneous way.

6 Conclusion

FICX is a programming language that focuses on designing trees of components, close
to part-of relationship. FICX is well suited to XML-like languages by integrating static
and dynamic aspects in an homogeneous framework. A powerful delegation process for
interactions is defined thanks to the tree structure. The study of FICX (type checking,
operational semantics) is facilitated by the fact that XML data and Xobject evolutions
are encoded in the same language. Such a tree components programming paradigm
increases expressivity with respect to other works where XML values may be computed
only by means of direct calls.

References

1. Abiteboul, S., Benjelloun, O., Milo, T.: Positive active xml. In: ACM SIGMOD/PODS 2004
Conference (June 2004)

2. Benzaken, V., Castagna, G., Frisch, A.: Cduce: An xml-centric general purpose language.
In: ICFP 2003. Proc. 8th ACM SIGPLAN International Conference on Functional Program-
ming, Uppsala, Sweden, ACM Press, New York (2003)

3. Crane, D., Pascarello, E., James, D.: Ajax in Action. Manning Publications (2005)
4. Gapeyev, V., Levin, M.Y., Pierce, B.C., Schmitt, A.: XML goes native: Run-time representa-

tions for Xtatic. In: 14th International Conference on Compiler Construction (April 2005)
5. Active XML homepage, http://activexml.net
6. Objective CAML homepage, http://caml.inria.fr/ocaml/index.en.html
7. Kirkegaard, C., Møller, A.: Type checking with XML Schema in Xact. Technical Report

RS-05-31, BRICS (September 2005)
8. Meijer, E., Shields, M.: XMλ: A functional language for constructing and manipulating XML

documents (Draft) (1999)
9. Møller, A., Schwartzbach, M.I.: The design space of type checkers for XML transformation

languages. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 17–36. Springer,
Heidelberg (2004)

10. Macromedia Coldfusion MX,
http://www.macromedia.com/software/coldfusion

11. Active Server pages, http://www.asp.net/
12. Sun’s, J.A.V.A.: Server Pages, http://java.sun.com/products/jsp
13. The PHP Hypertext Preprocessor, http://www.php.net
14. Jelly: Executable XML, http://jakarta.apache.org/commons/jelly

http://activexml.net
http://caml.inria.fr/ocaml/index.en.html
http://www.macromedia.com/software/coldfusion
http://www.asp.net/
http://java.sun.com/products/jsp
http://www.php.net
http://jakarta.apache.org/commons/jelly

� ��������	
�� ������������ ����� ���� ������

������� �����������

������� �����	
��1,2 ��� ���� ����2

1����� ������ 	
� �
������ ������ �
2��
 ������� ����������� �����
	 ��	
�����
� �����
�
 ���

!
��������� ���� "#$
%�&#'($'(��
� %������

���������	�
������ ������������������

��������� %
���� ����
�� �
�������� � �����
	 �����
��� ��������
��� �
������� ������� �
	�)��� �����
� � �����*����
�� �� �������
�
)���� ��	
�����
� �����
�
 � �� ���� �� � 	
������
� �
 ������ �����
�
���������
�� ���� ��� �
)����� �
� ��)��� ��
� �� ������	�� �����#
����
� ���)��� ������
	��� �������
� ��� �
�����
	 ������)���� ��
��+����� 	�
� ��
 ��� �
���������� �� ���� ������)� ������� � 	����)
��
	
� ���� ����� ����� ���
 � 	
���� �����
����� ��
����� ���
)�� 	
� ���
�
��������
�
	 	
������ �
����� ��
 ���� 	
� �
���������
�� ������#
�� ����� �� � ������� �
������ ,� ������� � �

�������
� ��� �� � 	
�
���)��� ����
� �������� ����� � �
����� ����
���
	 ��������� �����
������� 	�
�
���� 	�����
������� ,� ���
 ������� ����
��)
�� ��� ��
������� �
 �
������
���� ������� ������ ������ ���
� �
�� ��� ������
)� ����
� � ���� ����� �� � ������� 	
�
�� �
�������

� �������	�
��

�����	 ������� ��� �������� ��������� �� �������� ������� ������� ��� � ������
�����������	 ��������� �� ����	����� ����� 	! ������� ��������" #���� �������
�		�� ��� ��� ��������� �� �� ������	 ������������ ���� � ���� �������� ��� ����
���		!� ���� �� �$��
�� 	� �������" #��
����	!��� ��������� �� ��� ������
��
��� � ����� ��� �$���	�� �� ��� ������ �� ������� ����� 	�� ��� ��� ����������
��������� �� ���� ����� �����" %� �
��� ���! ��� �����������	&	�����	 �� ���
��
��� �������
�� � ��� ��
������� ��� ������� ��������� � �
� ����
��� ��������"

'������� �� �� ����������� ����� ����
��� �������� �������� ���� �
�����
����������� �� ��� �
������� �	�������� ����	��� �� ��� ���
��" #�� ������
�
�� ����	� ��� �	��!� ���� �������� 	�� ���������	 ������
� ��� �� � ����� ����
����
��� �� ��		 �� ��	����
� ������� �� ������� �������
�	�" ��������� �� ����
�!�� ���	
���
� ��� ��� 	������ ��� �� �	� �� ��� �������� ()%*+#�,� ����&
��&���� �!������ ��&	��� �
������ ��� ����
�	 ����
������" % �������! ���� �		
����� ��������� ���� �� ������ �� ���� ���! ��	! �� ����	� ���� � 	� �� ����
��������� �� ���� ������ ���� ���� �������
�	� ��� ���� �� ����� ��	����������
��� ����	���" % �!����	 �������� �� ���	��� ���� ����� ���
�� �� ������
���� ���
������ �� ����� �-�.�"

���� �����	
� ��	 �� �������� ������� ����� ����	 ���� ����	 � �!�"�#$	 �����
�© � %��&�%'(�%)*& ��%)�� +����),�%& ����

� %����)
�� 	
� ���
��
����� ����� ���
 %
���� ������ �����
����� -$$

/� �	���� ���� ��� ��	
���� �� ���� ��� 	�� �� �� ��������� ��������� � �
�
��
�� ���� ��� �����	 ����	������ �������" #��� ��� ��������		! ��������� �	����!
����� 	� �� ��
���� ����!0� ����		��� 	���
����" 1� ��������� �������� ��
��
��	���������� ��� ����� ����	�$ ��� ��2�
	� �� ������ �
���� �������� ���&
�
���� ����������" #�� ���� ������
���� �� ���� ����� �� �� �$���� ����		���
	���
���� ���� ��� ������
��� ����	������� ��������� �� ��
�� �
���� ��� �����	
����	������ �������" 3
� ����	 ��� ��� ����� �� ��� ���� ���� ��
�� ��� � ����
�	
�
 �� ��		 �� ����	��
 �� ����� �� ������� ������� ����������" 4! ���������
� �
� �� �� �	�
��� ��� ������	 ����� 	�� ������ ��� ��� ��
�� ��������� �� ��		
�� ��� ��
�� ��	���������� ��������! �� ������� ������� ����������� �� ������
��
� ������	 ���
	���	�� �������� ��������� �� ����	��� ��
�� ������� �� �����	
�!�����" 3
� ���	 �� �� ����	�� � ��������� ������ ����� �� ��� ������ � �
�
��
�� ��	���� �
�������	��! ��� ����� �
�������	��! �� � ���
	�� �������" /� �	��
���� ��� �
� ������
��� �����	��� ���� � ������������� ����������	 ����		���
	���
���" #��� �����	����� ������ ��� �
������" ������ �� ����� � ������ ���������
�� ��� ��� ��������� �� ����� �� ����������	 ����� �� ��		 �� � ����������	 �����&
���� �� ������ � �
� ����" ������� �� ����� ��� �
�� ���� ����	������ ���
�����	����� ���� ����������	 ������
��� ������� ��� �!����� ������������� ���
��������	
���
	���� �� �
� ��������" /� �	�� �	���� ���� ��� ����	� �� �������
�� ���� ����� ��� � ������� �� ����� �
������ ����� ��
��"

#�� ���� �� ��� ����� �� ���
��
��� �� ��		���" 1� ������� �� �� ������ � ����
�� ��� ���� ������
�� �������� ���� �
� ��������� ��
�	�
���")��� ������&
���		!� ������� �"� ����� � ����� ������������ �� ��� ����		��� 	���
��� ����	���
(%����� �!�����,� ������� �"� �������� ��� �����������	 �������� (�
 5������
	����, ���� ��
�� �� �
� ��
������� ���� ��� ����� ��
�� ��	
��" %� ����
������ �� �	�� ������
�� � ���� �������� ���� ��		 �������
�� � �
����� �$���	�
����
���
� ��� �����" 1� ������� 6� �� ���� �� ������	 ������������ �� ��� ��
��
�������� ��� �
��� �� �����	 �!�����" #�� ����������� �� ��
�� ���� �����	
�!����� ��		 � ���� ���� ������������� ��� �	����� �� ������� 7� ����� ��
������
�� � ������������ 	���
��� ��������� ������ �
����� ��� ��
�� ��������"
����		!� �� ������� -� �� ���� ����	
����� � �
� ��� ���� ���������� ������
&
����� �� ��� ������ �� ��		 �� ������� ���� ��	���� ����"

� �	������� ���	����

��� ������	
� �
�����

������	 �����	 ������� ��� ����	������ �� ������� �������� ���� ��� ��		 ��
�&
��� ���� ��� !����� ���	
���� ��� %����� �!����� �����	��� ��� ��� ��� 4&)�����
���" #�� %����� �!����� �����	��� �� ���� �� ��5�����0� �
����� ������� 	��&
�
��� �8�� ��� ��� ��������� ��	�
	
� �7� ��
��� �� ����	�� �������� ���������
�� ��� �������& !&������
����� ��������" 4���� �� ����� ������������� ��� ����
���� �� ��� �����	��� �� �
���� �������	! ��� �������� ������ � �
� �� �� ��	
��
�� ���
�� ���������� � ��� �� ����
������� �� ���� ��� ������ ��� �� ������	
�
��
� ��	
��� �� ��		 �� ��� ������ ��� �������� ������
�" #�� �����	��� ��
��������	! �
��� 	� ��� ����	������ �� ����
����� ��������"

-$. %� �� ������ ��� /� ���

#�� 4&)����� �� ������� �
������
	 �������� �� �����	 ������� ����	������"
1� �������� �� ��� %����� �!����� �����	���� �� ��� ��� ������		! �������� ���
����
�����!")��� ������ ���������� ����� �������� ������� ��� ������ ��� ����
�
�����" #�� +���� 4 ���� �����	��� �� �����	! ��9
����� ! %����� �!�����" %�
� ���
	� �� ���� ����� ������ ���������� �� 4 ��� ����	� �����$�����	! ��� ����
����	������ ����� �� ������ �!�����" #���� ��� �������� ��� ��
���	 ��:������
���� �������� ����� �����	��� ��
��" #�� %����� �!����� �����	��� ��� ����
�$�������� ������ ������ �� ���������� ��
�� ��� ���&���&����� �������� �� �
�!����" #�� �!���$
��� �� 4 (��		�� %)*� % ������)������ *�������, ��� ��
��������� ;
��� 	�������
� �� � ���
	� ���� �
��� 	� ��� ���
�	 ���	���������� ��
�!������ ��� ���� ���� �� ��� �������<�����" ��� �$���	�� ����� �� ���	 �
�����
�����	! ����	� 	� ��� ��� 4&)������ ������� ����� �� ���� ��� ������ �!�����" 1�
���� ������ �� ��		
�� ��� %����� �!����� �����	��� ���
�� �� ��� �!���������
�����������" /� ��� �������� ���� �� ������ ���� ��� �$�������� �� ���� ��
	�
�	�� � ���� �������������	! �� ��� %)* �������� �� ��� 4&)�����"

% ����������	 ������ �!���� ��� � ������� ��������� �� ��� ��		����� ���
�&
�
��=

A 0 12
	�� ��������
�
��� 	
��������
��
��� �������

���
��� �������
��
� ����
� �
	����3���������������4 0 56�����������
�78
S0;
�

g1 → S1 29 ��� 29 gn → Sn

�

91

#�� 	���� �����	�� ��� ������	�� ������� ��� 	���	 ����� 	��� ��� ��� ����������
����������	!" �
���������� 	�������	�� 	���� �		 ���&	���	 ����� 	�� ���� ���
	� �
������� 	� ���� ��� �!����� ��� ��� �$������ ! ������� ������ �!����" #�� 	���
�����	�� ���������� ���&	���	 ����� 	�� ���� ��� ������
��� ! ��� �!���� ���
��� � �������� ! ����� ����" #�� ��� �	�
�� �������� ������
���� ���	
����
������
�� �������
��� �� ����� �� ����� �� � ������
	�� ������
��� �� ��		 �� ���
 ����� ���������� ��� ���	����������" #�� ���� �� ��� �!���� �������� ��� ����
�
��� ��� ����������" /��� ��� �!���� ������� ��� ������	 ��������� S0 �� �$��
����
��		���� ��;
�����		! ! � 	��� ���������� �	������ �� ��� ���� gi → Si" #����
�
���&��������� ����� ��� ��		�� ��� ��	��� �� ��� �!����� ����� ��� ���� ������
�!�����" #�� �
���� ��� ��	��� �$���������� ��� �� ���� ��� �
��� �� �� ������
���	
���� �� ��
�� ��� ������ �� ���� �� � ������
" %� ������� �� ���� �������	!
��� ��������� �� ��� ������� ��� � �$��
��� �� ��� ��	! �� ��� 	��" +�� 	��
������� ��� �$��
��� �� ���������������� ������ ��� ���! ��� �	��!� ����������
�� � ������" 1� ��������� ��� ������� ��� ����� � �$��
��� �� ����		�	�
� �� ����
����� ���! �
�� � �����
	�� �� �
�� � ��! ���� ���! �������� ��� ���� ���
	�

� %����)
�� 	
� ���
��
����� ����� ���
 %
���� ������ �����
����� -$:

�� �� ���! ���� �$��
��� �� � (����������������, ��;
����" ��� �$���	�� �������
���� ���� �� ����� 	�� �� ������� �� ������� ���� ���� ����� 	�� �� ������

� ��	! ���� ���� ������ �� ����� ����� 	��� ��� � �����
	�� �� �
� �� ����		�	
�����
� ��� ���� �� �		���	 ������������" #�� ������ �!���� ���������� ���� �����
��� �� 	����� ��! ��� 	�� ������� 	���" 1� ���� ������ �� ��		� �������� ���
��
���� ����� �� �	��!� ���� ������ ��� 	��� �� ���� �
� �!����� ��		 ��� ���������"

��� �������	�� ���	�

/� ��� ��� �����������	&	�����	 ������� �� ��������� � �
� ��
�� �� ��� ������
�	�� ���	 ������
��� ! >?���� �.�" /� ��� ���� ���� 	���� �
��� �
� �
������ ��		
 ! ��������� � ����� �� ����
���� � ����	� ��
�� ��	
� ���� � ����� �� ��	
��"
1� �
 5������ 	����� ��
�� �� �$������� �� ����	�� �� ��� ���� (��
� 	,� ����� � ���&
������� �	����
 ������ ��� ��� �	���� ��� 	 �� ���������" @�	
�� ������� ���� A ��
� ���
���� �"�" b, d, i ∈ [0..1]� ��� ����� �
� ���
	� ���
� �� �� �"�" b+d+ i = 1"
+��� ������ ��� �$����� ��� ��
�� �� ������� �����!� ��� �$���	� ������� �������
 !
���� � ��
�� ����	�" 1� �����! % ��
��� �����! 4 ���� �	��� bA

B� ��� �	��� dA
B

��� ��������� iAB� ��
�� ��� �������� πA
B = (bA

B, dA
B, iAB)" 1��
�����	!� ��� �	���

��� ��� �	��� �������� �� ��� ����	� ��������� ������
� �$�������� �� ��� �����!
��� ����� ��� ����	� �� ������ ��� ��������� ���������� ��� 	��� �� ����	���� ��
��� �����!" ��� �$���	�� ���� ���	
����� �� �����! �� ����� !�
 ���� �� �����&
�
� �$�������� ����������� �	���� ��� �	��� ��� ��������� ��
	� � A� A ��� ��
����������	!"

#�
�� ����	�� ��� � �������� �� !
���� � �
� �� �� �	�� ���� ����������
���
	���� �� � ��������� ��		�� ������	�� ���	" >?���� �
������ � �
� �� ��
���������� �� ����� ��	! ���� ��		 � ��������� ��� ��� �
����� �� ���� �����"
/� ��		
�� ��� ��		����� ���� ����� �� �������� ��� �������
��	��"

��������� ��� ���
�����	! � ������ �� �� ��� �������� ����
���� ��� ��		��&
���� ������� �� ��� ��������� % ��� 4� � �
� � ����� �����!� B� �� ����� ��� %
��� 4 �	����! ���� � �������	 �������" �����		!� �� �� ������ ��=

���
	�	�
 �� ��� πA
C = (bA

C , dA
C , iAC) ��
 πB

C = (bB
C , dB

C , iBC) �� ��	�	��� �� ���

�	�� �� ���
 �� ���	�� � ��
 ���	�� �� ������	����� ��� πA,B
C = (bA,B

C , dA,B
C , iA,B

C)
�� ��� �������� ��	�	�� ���
 �� ���	�	�� � ��
 � ����� ���	�� �� ��� ��������
��	�	�� ������� �� ��� 	�
	�	
��� ��	�	��� � � ��
 � �� ����!�"

�" bA,B
C = (bA

CiBC + bB
C iAC)/κ

�" dA,B
C = (dA

CiBC + dB
C iAC)/κ

6" iA,B
C = (iACiBC)/κ

7" κ = iAC + iBC − iACiBC

#�� �!� �	 ⊕ ��		 �
��� �� ������ �������
�� �� ���� πA,B
C = πA

C ⊕ πB
C "

#������
��	�� �� ��� �������� ����
���� ��� �����! %0� ������� �� B� �����
���� % �������� ��� ������� �� 4� ��� 40� ������� �� B �� �����"

���
	�	�
 �� ��� πA
B = (bA

B, dA
B, iAB) �� �� ��	�	�� ���
 �� ���	�� � �� ���	�� ��

��
 πB
C = (bB

C , dB
C , iBC) �� ��	�	�� ���
 �� ���	�� � �� ���	�� ��

-$; %� �� ������ ��� /� ���

��� πAB
C = (bAB

C , dAB
C , iAB

C) �� ��� �������
��	�� ��	�	�� ���
 �� ���	�� �
����� ���	�� � �� �������
��	�� � �� ��� �������
��	�� ��	�	�� πAB

C ���
����� �� ��� ��	�	��� πA

B ��
 πB
C �� ����!�"

�" bAB
C = bA

BbB
C

�" dAB
C = bA

BdB
C

6" iAB
C = dA

B + iAB + bA
BiBC

#�� �!� �	 ⊗ ��		 �
��� �� ������ ��������������� �� ���� πAB
C = πA

B ⊗ πB
C "

#�� �������
� ��� �������������� ���������� ��� �������� �
��� �� ���&
�
�� ��� ��
�� �� ��� �����! �� ������� �����! ���� ����� ��� ��������� ��� �����
�������� �� � �������� �����" #��� ������� �� ������ �� �� �����	 ! >?���� ��A��

� ��� ��� �
����� �� ���� ������ �� ��		 ����������� ��� ������ ��� � ����	�
�$���	� ������ ����� ��		 �	�� �������
�� � �
����� �$���	� ����
���
� ��� ����
�� ���� �����" B������� � �
� �� �� ��������= %� 4� """� '" #���� �������� �����&
����� �� ��� ����� �� ��� ����� �� ��
�� �" #�� �������� ���� ��������� ��� ��
��
��	������� ��� ��� �
� ��� ����� ��� ��
�� ����	��" ��� �$���	�� ��� �������� ���
���� ���� % �� ���� � ������� ���� �����! % ��
��� �����! � ��������� �� ���
����	� (A"�� A"�� A"6,� �"�" �	��� �� A"�� ��� �	��� �� A"� ��� ��������� �� A"6"

���� �� �������� ���� ��������� ����� ������
������

*�� ���
�� ���� �� ���� �� ���� ��� �
�� �����! % ��
��� '" %� ��� �
���� ���� ��� ������ % ��� �� ������ �$�������� �� '� ���� ������ ���� ��� ����
��! ��
�� ����	� ��������� ' (����� ���� (A� A� �,� �"�" ����	 ���������," 1�������
��� ��
�� ����	� ��� � ������� ��������	! ���� ��� ��
�� ��	���������� �� ��� �����

���� �
 5������ 	����" 1� ���� ������
	�� ��������� ��� ����� (�$�	
���� ��� ����&
��� ���� (%�C,,� �� � ��DC (�������� ������&D���		�	 C����,� ��� ����� � ��
��
��	
� ��� � ����
��� ! ��� ����� ��� �������
� ��� �������������� ����&
����� �� �� ��� �$�������� �	��" #�� �����	� �� ��� �� ������ ��� �$��������� ��
��		 �� ��� �� ����	� ���� ����	�$ ��������� (���&��DC ������, ��� � ��
��
�� >?����0� ���� �.��A�" #�� ���� �������	� ��� �������� ���� �������������� ��

��� �� ���� � ��
�� ����� ���� % �� '" /��� ������� ���
�� ��� �������
�
�������� ��
��� ���� ��� �����
� �	��������� ����� �� ��;
��� � ��� ���� ��
��
��	
�" 1� �
� ����� ��� �$�������� �� ��;
��� ��=

((πA
B ⊗ πB

C ⊗ πC
E)⊕ (πA

D ⊗ πD
E)⊕ (πA

F ⊗ πF
E))⊗ πE

H

� %����)
�� 	
� ���
��
����� ����� ���
 %
���� ������ �����
����� -$<

/��� ��������� ��� ��	
�� ����� �� ��� ����� ���� ��� �$��������� �� ��� ���
���
	� (A"6-� A"A77� A"�A," /� ��������� ���� �� �����! % ������ �������� ������
�� ��
�� �����! '� ��� �	��� ��	
� ���� A"6-" 3� ��� ����� ����� ����� �� ���!
	���	� ������ �� �$�	����	! �����
�� '� ����� ��� �	��� �� ��	! A"A77" #�� ������
��! ����� �� ��	! � ���� ���
�� �� �$�	���� ��
�� �� '� ���� ���
�� �����
�� ��
������	� �� ��� ���� ���� ����� �� ;
��� � ���� ������ �� ���������� A"�A� ����	���"

� �����
� ����� �������

1� ���� �������� �� ��		 ����������� ��� �� �$����� ��
�� ��	����������� ��
��
��;
�������� ���" �� �����	 �!�����" /� ��		
�� ��� %����� �!����� �����	���
���� ������� �"� �� ������ � ��� �!������ ��� �� ��		 ������ � �
� ��
��
����
��� �
 5������ 	���� �� ��������� �� �"�" 1� ���� ������� �� ��		 ��	!
�� ��������
������ �!����� ��������� ������� �� ������� 7 �� ��		 ������ ��� �!���$ ����
������������� ! ������ ������ �
����� ��� ��
�� ������� �� ��� �����	���"

E��
� �������� �� ��&	��� �
����� ��������� ����� ��� ������� %���� �� �����&
����� ��
!��� �
��� ��� ���� � ��		��� '���	�" ������ �� ��		 ��������� ��
��
���
��" #�� ����������� ��� ���� �	��� �� ��� ��		����� ����� ���������� ��� ���=

� %��� �� ���
� �� ��� ��� ���"
� '���	� �� ���
� �� ���� ��� ���"
� %��� ��� ������ ����� ��
! ��� ���" ('���	� ������� ��� �����",

#�� ������ �!����� ������������ ��� �������� ��
	� 	��� �� ��		���" %��� ���
'���	� ��� ����������� ! A ��� H� ����������	!� ��� ��� ����
�������� �&
����� ��� ��� ������� ����� �	��� ��� �$������F�������� ����� 	��"

A 0 12
	�� ��
��� = &��� �������
��� = ��
	 ����
��
��� �������
����� ��������	��
��
� ������
�� 3���� = ���� 4 0 56����78
���
�

>���> ∈ �������
��� ∧ >���> ∈ �������
����

∧ ��
��� ≥ ��������	��3>���>4
→ ������
�� 3>���>4

���

�

91

H 0 12
���
���
��� �������
���� = ��
	 ���� �

��������	�� = %�����
� 3���� →&��4
���

91

-.(%� �� ������ ��� /� ���

/� ���
�� ���� ����� ��� ����� ������� ������� (G"""G �� ��� ��&�� 	���, ���� ����
��� �!���� �
����� ���� ��� �
������ ������ �� ���� 	��� �"�" ���� ������ ���
	�
 � ��� 	�� �� ��! ���� �� ���� ��� �!���� ��		 ��� ���������" #���� ������� ���
�	�� �������� 	� ��� ������� ����� �� �"�" ����! ��� ��	���� �
�������	��!" �
�����
�����	� �� ����� ������� ��� ����	����� ��� �
� �
������� ��� ��		 � ������� ����"

*�� �
����� ���� %��� ����� ��
! ��� ��� ��	! �� ��� ��� ���
�� ������
�� ��
�� '���	�" +��� ���
�� � ������� ��
	� ��������		! � �������	! �������
����� �� �� �
������� ���� '���	� ���		! ��	����� ��� ��� ����� �� ��� ��������
��� ��!����" #��� �������
��� � ������
	��	! �����
� ��� 	�� �� %��� ��� ��	!
������	! ��� '���	� ��	���� ��� ��� �� �$�������� �� ��� ��
������������" 3� ���
����� ����� ��� ����� ���� ������
� �$�������� �� ����� �������� ��� �� �
��
���� ����
������ ���� ������� ��� ����� '���	�" 1� ���� ������� � ����� ��
������� �� ��
�� ��� � �������" ��� ���� ������ �� ������
�� ��
�� ����	��� ����
��� ����	" E��
� ����		 ��� �$���	� �� ������� �"�� ��� ���
�� ���� ���� �������
�� ��
�� �� ����������� ! ��� �������� ����� �� ��
�� �" 1� ���� ������ �� 	��
����� % ��� ' ��������� %��� ��� '���	�� ����������	!" %�������� �� ��� ������
%��� ��� ������
� �$�������� �� 4�� (4,� �����	 (�,� ������� (�, ��� C�!����
(C,�
� ���� �� ����� ������� ���� '���	� ������	!� ������" ����
����	!� 4���
�����	 ��� �������� �� �
��� ���� ����� ����	�� ��� �� �
��� �
� ���� ������ ��
��
�� ��� � ������� ����� ���	
�� %��� �� ��
��� ��� '���	� �� ��� �����������"
%� � ���
	�� %��� ��� ������ �������� ��
�� �� '���	�
���� �
 5������ 	����" %���
����� ��� � ��������
 ��
�� ����	�� ���� ��� ������� ��
�� �� '���	� �
�� �$����
�� ����� ��� ��� ����������� �� ���� �	���" /� �������<� ���� ���� ��� � ���� !
�$������� ��� �
��� �� ��� ������ ���������� ��� ������������ �� �� �������� ��
��� ������
� ��;
�������� (G����! �� ��		G� G����! ��
!G� G��� ���
�� ����!G,�
�� ��� ��� � ��
�� ���������=

� %��� ��� ������ ����� �� '���	�

/��� �� �� �� ��������		! � ��������	�	�� ��$������ �6�� ����� ��		 � ����
����
�
����� �� ������� 7" %���0� ������ �!���� ��
	� ��� � �$������� ��=

A 0 12
	�� ��
��� = &��� �������
��� = ��
	 ���� ��

�

�

�

πA
B = ������������

πA
D = ������������

πA
F = ������������

������
�� = �����������

��
��� �������
����� ��������	����
�

�
	

πB
C � πC

E � πD
E �

πF
E � πE

H

��
� ������
�� 3���� = ���� 4 0 56����78�

�

�

�

������
�� =0 3(�"� (�"� (�:4?
πA

B =0 3(�'� (�:� (�-4?
πA

D=0 3(�:� (�-� (�'4?
πA

F =0 3(�.� (�-� (�"4?

� %����)
�� 	
� ���
��
����� ����� ���
 %
���� ������ �����
����� -.-

���
�

>���> ∈ �������
��� ∧ >���> ∈ �������
����
∧ ��
��� ≥ ��������	��3>���>4

�

�
∧ ((πA

B ⊗ πB
C ⊗ πC

E) ⊕ (πA
D ⊗ πD

E) ⊕ (πA
F ⊗ πF

E)) ⊗ πE
H 7 ������
��

→ ������
�� 3>���>4
���

�

91

#�� ����� �� ��� �!���� ���� ���� ��� ����� ��� ������ ���� � �$" %� ���
 � ����� �� ���������	 ���� ���	
����� ��� ���
�� �� ��
�� ��� ��� ����� ��
��� �
���� �"�" ��� �
��� ��� ��� �����������
" #�� ��
�� ��	
��
��� �� ���
��
�� ��	�
	����� ����
	� ���� ��� ����� �� 	���	 ��� �������� ����� 	��" #��
��	
�� ���� %��� �����	� �� �������� 	� ��� ��������� �"�" ��� ��� ������ ��
�� ��
����� �������� ��� ����		�� �� 	���	 ����� 	��� ������� ����� �������0 ��
�� ��	
��
��� ��������" #���� ����� 	�� ���
	� � �$������ ! ��� �!����� ������������
��� ���������� �������" #� ��������� ����� ��
�� ��	
��� �� ���� ������
��� �
��� �!��� #�
��#���	�� ����� �� ����	! � ����� ���� �������� ��� (�A""��� �A""���
�A""��," #��� �!�� �� �	��
��� ��� ��� �������	� ����� 	�� ����� �������� %���0�
	����� �� ���� ��� ��������� �� � ���
�� ��
�� �� ����! �
� ��� �����������" 1�
��� �
���� ��
�� ���������� (GHG, ������ ��� ��	�
	���� ��
�� ��	
� ��� ���
�������	� ����	�" #� � � 	� �� �� ����� �� �
�� ����� ���� �� ���� !
���� �
���������� ��	����� �� #�
��#���	� ����� 	��" /� ����� �;
�	��! �� ��� ��		�����
������� ����� ����������� ��		 �� ���
�����=

���
	�	�
 �� ����	
�� �!� ����� ��	���� t1 % &b1� d1� i1' ��
 t2 % &b2, d2� i2'�
����� ��	���� ��� ����� &t1%t2' 	 b1%b2 ��
 d1%d2 ��
 i1%i2�

�
���������� �� ����� ��� G	��� ���� �� �;
�	G ��� G������� ���� �� �;
�	G
��	������� G≤G ��� G≥G� ����������	!� �� ��		���=

���
	�	�
 �� ����	
�� �!� ����� ��	���� t1 % &b1� d1� i1' ��
 t2 % &b2, d2� i2'�
t1 	� ���� ���� �� ����� �� t2 &t1 ≤ t2' 	 b1 ≤ b2 ��
 d1 ≥ d2 ��
 i1 ≥ i2�
t1 	� ������� ���� �� ����� �� t2 &t1 ≥ t2) 	 b1 ≥ b2 ��
 d1 ≤ d2 ��
 i1 ≤ i2�

����		!� ��� G	��� ����G ��� G������� ����G ��	������� GIG ��� GHG� ����������	!�
��� ������ �� ��� ���� ������ �� G≤G ��� G≥G� ���� ��� ���������	 ���������
���� t1 �= t2"

*��� �� ���� �� ����� �
� �������		! ����� ������" ������ �� ���" 7� ��� ���&
������� �� ��� �	��� ��� ��������� ��	
�� �� ���� ��� ����� ��! ���� �� ���
���������� �� �	��� ��	
��" #��� �� ���
�� 	��� ��� �	���F��������� �� ������&
���� G �����G� ������� 	��� �	��� �� ���������� �� � G�����G" ������� �� ���� ��
������ ���� ����� ��	������ �� ��� �������
�� ����	 ������" ��� �$���	�� ��� ���
��
�� ����	�� t1J(A"-� A"7� A"�, ��� t2J(A"6� A"�� A"-,� ������� t1 ≤ t2 ��� t2 ≤ t1
�� ��
�" #����� ��� �
� �� ��� �	������ �� �������	� ��
�� ����	�� ���� ��� � ��
����� �� ����� ������� ����� �� ����� � ��
�� ��	
� �������� ��� �$���	�� (A"8�

-.' %� �� ������ ��� /� ���

A"-� A"6," #�� ������ �� ���� ��� �������	� ����	�� ��� � �������� �� �
�������
��� ��� �������
�	 �	���� ��� �	��� ��� ��������� ��	
�� �� �����	 ��
�� ����	��" 1�
�����	 ��
�� ����	��� ��� ������ (�����, ��� �������� (�������, ����� ��� �	������
�
��� �������� �
�
� �� �$���	! �"

E��
� �������� �
� �
����� �$���	� �����" /� ���� ����� � ���� ���� �������
������
���� ��
�� ������� ���� ��� �!�����
� ����� ��� ���		 � �
� �� �� � ����	��
�� ��� ��!" 3�� �� ��� ��� 	��� �� ��� ���� ���� �� �� �������	! ��� ���������� ��
���
�		! ����� ��� ���	� ��
�� ����
	� �� ���� �� ��� �
��� & 	�� �	��� �� ������
��� �$��������" ���� �� ����������	 ����� �� ����� �� ��
	� �	�� 	��� �� ���� ���
�
���� ����� ��� ����	�� ��� ��! �� ����� 	��� �$��������� �
�� �� ����� �� ��
��
����
�������" %������ ��� 	�� �� ���� ��� ����� �� ��� ��
�� ��	
� ����
�������
��� �$��� �"�" ��� ����
	� �� ���
�� 	�" /��	� �
� ��	
����� �� ���� �������
��
�� ��	
�� ���� ����
�� (��� ��
�� ��	
� �� ����	�
	���� ���� ����,� �� ������
����	� ������� �� ��� ���
�	 ��
�� ����� �
�� �� ������ ��� ������� ��� �����
���������� ������ ����� ��� ����
	� ����	� ��
	� ���� �� � �������" % ��	����
����������� �� �
� �
����� �������� �� ��� ���� ���� ��� �$�������� ��� ��	! �

��� �� ����
�� ��� ��	
� ��� %���0� ��
�� �� '���	�" 1� ���� %��� ������ ��
��
������ ���� �������� ������� �$�������� ��
	� ���� �� � �������" *��� ��
��		 ��! �� ������� ����� ��� 	��� �"�"=

� B	���
� ��� �
���"
� #��� ��
�� ���� ������� ���� ����
��"
�)��� ��������
������ �������� ����� 	�"

#� ���� ��� �
��� ���� ����������� �� ���� ��� ��
�� ����
������ �� � ��������
������
��� ��� ����	! ���� � �
������ ��		 ���� ��� �
���" #��� ��	�� �������
��� ���� ��&�� 	��� �������� ���	� ��� ���� �� ����� �
����� ���� ���������
������
���" #�� ��� ������
�� ��
	� ����	! � �$������� ��=

���� �����(, J K
���
�� ((πA

B ⊗ πB
C ⊗ πC

E)⊕ (πA
D ⊗ πD

E)⊕ (πA
F ⊗ πF

E))⊗ πE
H

L = #�
��#���	�

#�� ���������� ���� �� ��� �
��� ��
	� ��� ����	! � �$������� �� G#�
��(,
H ��������
 G" #�� ������
�� ����� �������� ���		 ������� � ����&����� �$��������
��� ���� ��� ������� ��� ��� 	�� �� ����
������ �� �		� ������� ���� �� �
�����
��! �����
������ ������� ���� '���	�" #� ������� ���� ���� �� 9�$� �	��!� ��
���	��� ��� ��������� �$�������� ���� �� �	������� ���� �!������		! ������� ���
��
�� �$�������� ���� ����� ���	
���� ��� �$��������" #�� �	������� �� �
���
��� ��� �$���	�� ��� ��� ��������� ! >?���� ��A�� ����� ��� �	��
��� �� ���
���� �	��� �� ������ �
� ����&����� �$�������� � ���" '���� �� ��		 ��� 	��� ���
�	��������
� ����	! ����� �� �
� ��� ��
�� ����
������ ������
�� �� � 	���
 �$" #��� ��� �� ���� ��	! ����� ����� ��
�� ��	
�� ����� �� ���� ���
�		! ������
���� ����
��" ��� �$���	�� πA

B ��� ��� ������� �� �
� ����� 	�� �	�
���
� ���
πA

G� ����� �� ��� ��� ��� ������ �� �
� ������
	�� �$��������" #�� ���� ���� �� ���
��� ��� ������ ��� �� �
��� � ���
	� �� '���	� ���� %���0� ��	!
������ �������

� %����)
�� 	
� ���
��
����� ����� ���
 %
���� ������ �����
����� -."

�� ���5
������ ���� ��� 	��� �� � ���� ���� ���� % �� ' ��� C �� ��� �����"
/��� ������ �� �����! �������� �� ��		 �� �� �����! ����� ���� ����
��� �		 ��
��
��	
�� ���� �� � ���	
���" /��� � ��������� ��� ����	 �
� �� �� ��
�� ����� 	��
��		 � n2−n (�� �		&��&�		 ��	���������� �$���� ��� �����	�&��&�����	�," 8 �������
 ���� ������� �� �
� �$���	�� ����� ��		 � -� ��
�� ����� 	��" #�� ��	����������
��� ����� ����� �� �
�����	! �� ��� �� ��� ����� ��������� ����	 ���������� �"�" (A�
A� �," #���� ����� 	��� �
�� �� πE

D� ���		 ���� �� � ���	
��� �� ��� �!����� �����
���! ��� ���	
��� �� ��� ��
�� �	������� �� ���� �
�� � ��	��������� �� ������ ��
��� �
�
��" ����� ��! ����� ������ ����� �	�� ���� %���0� ��
�� ��	
�� �� �����
������ �� ��		 ���� ����� ���� ��� �� �	�
�� �� �������" ��� ��	�	��� 	� ����
��� ������(� ����� ������ �����
 �� �	�	��� �� �������
� ����� 3
� �	������� ����
� 	� �� ����
�� ��
�� ��	���������� ������ ��� ��� �������� ��� 5
�� %��� ��
'���	�� ��� ��
��� �� ��		 �� ����������� ����� ���
	� �	�� � ����� �� ���
� ��
��� ��
�� ����
������ ������
��"

/��� ������������� �
� ��� ��������� ��� ���
��
�� �� %���0� ������ �!����
��� � ������� �� ��		���" #�� ����	������ ����� �� ��� �!���� ��� ����� ���� ���
��	���� �� ��� ��
�� ����������=

A 0 12
	�� ��
��� = &��� �������
��� = ��
	 ���� �

�
�
������
�� = �����������

��
��� �������
����� ��������	����

�

�

�
πB

A � πB
C � πB

D� πB
E � πB

F � πB
G � πB

H ,
���
πH

A � πH
B � πH

C � πH
D � πH

E � πH
F � πH

G

���
���

�

�

�

�
πA

B � πA
C � πA

D= ������������
πA

E � πA
F � πA

G= ������������
πA

H = �����������

��
� ������
�� 3���� = ���� 4 0 56��� 78�

�

�
�����3��	 = ����� ���� = ����4 0 56��� 78 = �����������

����

�

�

�

������
�� =0 3(�"� (�"� (�:4?
πA

B =0 3(�'� (�:� (�-4? πA
C =0 3(� (� -4? πA

D=0 3(�:� (�-� (�'4?
πA

E =0 3(� (� -4? πA
F =0 3(�.� (�-� (�"4? πA

G=0 3(� (� -4?
πA

H =0 3(� (� -4

���
�

>���> ∈ �������
��� ∧ >���> ∈ �������
����
∧ ��
��� ≥ ��������	��3>���>4

�

�
∧ �����3@�@� @A@4 7 ������
��

→ ������
�� 3>���>4
���

�

91

-.B %� �� ������ ��� /� ���

� �����������
���� �	�
�� �������

%� ����� �� ��� ������
� �������� �� �� ����� 	� �� �$����� ��
�� ��;
��������
��� ��	���������� �� ������ �!�����" '������� ���! ��� ��� �������		! ��������
��� ���� �
����� ��� ������� �� �!������� �
�����" 1� ���� �������� �� ������
��
� ������������ 	���
��� ��� ������ �!������ ��������� ��� � ���������� ��! ��
������ � �
� ��
�� �� ��� �����	 ����	������ �������" /��	� ��� �$������ �	��!
�� ����������� ������ �!���� �� ��� ���� �� ���� �� �	����� ����� ���! �������
������&	���	 ������
��� ��� �$�������� ��
��&��	���� ����������" /� ���� ������
��
��� ��� �!���$ ���� �
� ���� ��
�! ��������=

A 0 12
	�� ��
��� = &��� �������
��� = ��
	 ����
��
��� �������
����� ��������	��

��
� ������
�� 3���� = ���� 4 0 56��� 78
���
�

>���> ∈ �������
��� ∧ >���> ∈ �������
����
∧ ��
��� ≥ ��������	��3>���>4
→ ������
�� 3>���>4

�� ��C�����	����
���

�

91
�� ��CT�

�

�

�

T 0 12
��
� �����3��	 = ����� ���� = ����4 0 56��� 78 = �����������
�������� �� �� !� "� #� �� $� �

���������
�� �����	����
πA

B =0 3(�'� (�:� (�-4? πA
C =0 3(� (� -4? ���? πA

H =0 3(� (� -4?
���
πH

A =0 3(� (� -4? πH
B =0 3(� (� -4? ���? πH

G =0 3(� (� -4?
���
�

����	����= �����3@�@� @� @4 7 3(�"� (�"� (�:4 → ����?

�

���
91

/� ����
�������
 ��� �!���� ! � ��������� ���! ��
�� ������� ���� ��� ����
�� ��� �
�������	��!" /��	� �� ������
�	! �$������� �		 ��
�� ������� �� ��� ������
�!����� ������	��� (A� """� H,� �� ��� ���� ��� ������������ �!���� T ����&
����� �� ������������ ��
��" %� �� ��� ������
� �������� �� ���� ������ ��� �����
�� ��� �!����� ��	���� �� ��
�� ! �$��" /��	� ��� ���	� ������������ �!���� ��
��
��&��	����� ��� ������ �!���� A ��	! �������� ��� ����� ���������� ��	���� ��
��
��" #�� ��������� (GMT G, �������� ����� ������������ �!���� ���
	� �
���
��� ������ ��� ��
�� �������" �
���������� ��� ��������� GM�)*������G ���	���
���� ��� �)*������ ����������� ���
	� � ���	��� �� ��� ��� �
������ ������"
#�� ����������� �)*������ ����	� �� ���	���� �� ��� ��
���	�
� �	�
�� �� ���

� %����)
�� 	
� ���
��
����� ����� ���
 %
���� ������ �����
����� -.$

������������ �!����� ��� �� ���� �	�� ����� ��� ��
�� ����
������ ������
��
�� ��� ������������ �!����" #�� ��
�� ����� 	�� (πi

j, ��� ���	����" 4! �������!&
��� �		 �������� ����	���� �������� ! 	������ ���� �� ��� �
�	�	�� �	�
��� �� ���

��� ��
�
�	! ����	
�� ����� ��� n2 − n ��
�� ����� 	�� ���" 1� �
� �$���	��
���� ��� �������� %� """� '� ��� ��
�� ����� 	�� ��� πA

B � πA
C � """� πH

G " 4! �$�������
��� ������ �!���� A� �� ����	
�� ���� �� �� �	���� ��������	 �� ��� ���� ������
�!���� �� ������� 6� �"�" ����� ������
���� ��
�� �������" #�� ��	! ��:������ ��
��� ���� ��� �� ��� ���� ��� ���������� �� ��� ��
�� ������������ �!����" 1� �
������ �� ���� ���� � �
		 ����	�� ���
����� ��� �� ��� �����" /� ���� �
�������
�� ��������� � ���
	�� �������� �� � ��������� ���! ��
�� ���� � �������� �!�&
���" 1� ����� ��� ������� �� ��� �!���� ������������� ��
�� �� � ��������� �� ���
������	 �!���� (����� ���� ��� ��
�� ����
������ ������
�� ����������,"

N� �� ���� ������ �� ���� ������
��� � ������������ �!���� �����
� ������
� ������ ���������" /� ������ �� �� ���� ! ������� ��� � ������	 ������������
�!���� �����	���� ���� �������� ������ �!����� �!���$" B������� ��� ��		�����
��������� ���� �� �� ������ �!����� A� ��� � ����	�� ��������� ���� �� � ��
��
������������ �!����� T =

A 0 12
	�� ��������
�
��� 	
��������
��
��� �������

���
��� �������
��
� ����
� �
	����3���������������4 0 56��� 78
S0;
�

g1 → S1C�����1 29 ��� 29 gn → SnC�����n

���

�

91CT

T 0 12
��
� ����
� ������
	3��	 = ����� ���� = ����4 0 56��� 78 = �����������
�������� e1� ���� ek

���������
�� t1� � tm

πe1
e2 =0 6�����7? πe1

e3 =0 6�����7? ���? πek
ek−2 =0 6�����7? πek

ek−1 =0 6�����7
�

t1= h1→T1 29 ��� 29 tm= hm→Tm

�

91

#�� ������ �!���� A �� ;
��� ����	�� �� ��� ��������� ���� �� ������� �"�" /�
��� �������� ���
�� ���� ����� ��� �	��!� ���� ���������	 ��� 	�� ������ ����
�������� ��� �!���� ���� ������������ �"�" ��� ���� ���
������ �� �� �
� �$&
���	�" �
���������� ����� ��� ���������� �� T �������� �� ��		 �� ��� ����������
�����1� """� �����n" #���� ���
	� � ���	���� ���� ��� �� ��� ������������ t1� """�
tm 	����� �� ��� ��
���	�
� �	�
�� �� T � �� ����	! ������� �� ��� ������ ��

-.. %� �� ������ ��� /� ���

;
������ ��� �� ��
�� ��;
��������" #�� ��
�� ������������ �!���� T ��������
��� ���� �	�
��� �� �������� �� ��� ��
���	�
� �	�
�� �	����! ���������� ��
��		 �� ����� 	� ������	�<������" #�� �	�
�� ���� ����	! �������� � 	��� �� ���&
���
��� ���������� �	�������� ��� ����
���� ��
�� ������ ��� �� ���
���
�����F��������� ����� ��� ����� �� ���
�" #�� �
����� �� ��� �
�	�	�� �	�
�� ��
�� 	��� �		 ��� �������� ����	� 	�"

#�� ��&�� ���� �������� ��� ���	����������� �� ��� ������������" #���� ���
 � ���������� 	� �		�� �������� ����� �
����� �� �� �$����� ��
�� ��;
��������"
#�� �
���� h1� """� hm ��		 �!����		! � �� ��� ���� ��������i(��i�
��� i,•(bi� di�
ii,� ����� ��� �!� �	 • ������ ��� ��! ��� �� ��� ��������� J� I� H� ≤ �� ≥� �"�"
� ������
�� ��		 ��� � ���������� �� ��� ���
	� ������� ���� �������	� ����	�"
#�� ���������� T1� """� Tm ��� �$��
��� �������� ��� ����������� �� ���������"
1� ����� �� �� ������ �→+ M� �� ��� ������ �!���� A ��� � ����������� � = �→�
�� ��� ������������ �!���� T � ���� �� ������ �� � ��� ������ �∧�→+ O� ��
�������� %����� �!����� �����!" #���� Ti ���������� ��� �
��� �� ���	�����
���������	 ��
�� ��	���� �
�������	��!�
� �� ��� ������ ���! ��� ������� �,	�
(��&��," %� �� �$���	�� ���! ��� �
��� �� ���	����� � ��
���� �������� ���
���! ����� � ����������� ��� ��� ���������"

#�� ������������ (���	" ��� ���������� Ti, ��� ����� �$��
��� �� �
���
�
�	��!� �� ���5
������ ���� �� ������ ���� �� ������ �!����" #��� �� ���
�� ���
������������ �!���� �� ����� �$��
��� �� ��� ���" 1� ��� ������ � ���������� �
��������� ��������� ��� �
�������	��! �� ��� ���� �!����� �"�" ��� ������ �!����
���� �� �����������" �
���������� ��� ������������ �!���� ��� ��� k2 − k ��
��
����� 	�� (πe1

e2
� πe1

e3
� """� πek

ek−2
� πek

ek−1
, � ����� ��� ��� �$�	����	! ���	���� ����� ���!

��� � ������� ���� ��� 	��� �� ��������" #��! ��� �������� ���� �� � ������	�<���
����� �� ���� �� ���5
������ ���� ��� ������	�<����� �� ��� ���� �!����"

/� ��� �����	��� ��� � ��� AMT �!���� ���� � �������� ������ �!���� ��
������� � ������ ��������� �� ������������ �!�����" /� ����� ��� ������� �� ���
�!���� AMT �� � �;
���	��� �� ��� ��		����� �������� ������ �!����=

Astandard 0 12
	�� ��������� πe1

e2 � πe1
e3 � ���� πek

ek−2 � πek
ek−1

�
��� 	
��������
��
��� �������
���
��� �������

��
� ����
� �
	����3���������������4 0 56��� 78�
����
� ������
	3��	 = ����� ���� = ����4 0 56��� 78 = �����������

S0; πe1
e2 =0 6�����7? πek

ek−1 =0 6������7?
�

g1 ∧ gtrans1 → S1? Ttrans1 29 ��� 29 gn ∧ gtransn → Sn? Ttransn

���

�

91

#�� transi ������� �� Astandard ����� �� ��� ������������� ���������� �� A" #�
���� ������ �	���� �� ����� �� �� ������ g1 → S1M�����1 �� A ��� �����1 ���

� %����)
�� 	
� ���
��
����� ����� ���
 %
���� ������ �����
����� -.:

������ �� ���������� �� ��� ����������� tj = hj→Tj �� T � ���� ��
	� �� Astandard

�����	��� �� ��� ������ gi ∧ hj → SiO Tj"
����		!� �� ������� ��� � ��� ��������� ���� ���� �� ������ �!���� 	������

��! ������ �� ��
�� (��� ������� �"�,�
� ����� �� ���		 ���&�����������" /�
�������		! ���� ����= &-' .� ��! ��	��� ���� ���� �

�
� ��� &/' ��� ����
�
� ��� ��	��� ���� ���� �����������
� %� ��� �$�� ����������� ������� ��� �	� ���
��� ��� �!���� ��		 ���������� ����� �� ���
��� ��� �������� �� ������� ����
������� ��� �!���� �� � ���	� ���� �����������" 1� ��� �� ��������� ���
�� ����
��� �������
�	 ��
�� ����
������ ������
��� �� ���������� ��� ��� Ti ����������
����� �,	�� �		 ��� �����;
������ �� ������ �!����� �����! �� Astandard ���� �
��	�� �
����������� ��������� �6� ��� �
	�		��" /� ����	
�� ���� �
� ������ ��
������
���� ��
�� ������� �������
��� � �
����������� ��������� ����� ��������
���� ��� �	��������
��� ��� ��
�� ����
������ ��������� ��� �		 Ti ����������
��� ���������� �� �,	�" /� ���� �������� ��
����	�� ��� ��� � �	��! �� �����
��
�� ������� (T , ��������	! ���� ��� ���� �� ��� �
�������	��! (A,"

� ���	���
��� �� ������ ���

1� ���� ������ �� ���� ����� ��� �� �!���������		! ������
�� ��������� � �
�
��
�� ��;
�������� ���� �����	 �!����� ����	������" /� ����
��� �
 5������
	���� �.� ��� ��������� �� ��
�� ��	
��� ��� ��� %����� �!����� �����	��� ��� ���
������ �� �����	 ����		��� 	���
���" #���
���
� ��� ������ �� ����
��� ��
��	��� �
����� �������� �� � �
����� �$���	�� ���� ����� �� ���� �!���������		!
������
��� ��������� � �
� ��
��" �
���������� �� ���� �
������� � ���
	�� ��&
������ ! ������� ��� �� �������� ��
�� ��;
�������� ���� ����� �
�������	��!�
���� ���		!� �� �������� � ��
�� ������������ 	���
��� ���
�� ���� ������ �!�&
����" 4! ����� ��� �� �		�� ��� ��� ����� �	��! �� ���� ��� ������ �!����� �	��� ��
��
�� �
�������	��!� �		����� ��� ����	���� �� ����������� �� ����� �������" #��
��
�� ��;
�������� ��� ���� � �
�������� ���� ��� �!���� �� � �
�����������
��������� ���� �6�" %	���
�� �� ����
��� ������ �!����� �� ��� ������ �
� ����
��� �� �������	� � ������������ ���� ����� ����		��� 	���
���� �� ��		" ����		!�
�� �	���� ���� �
� �������� ��� � ������� �� ���	�������� �
����� ��� ��	� ��
��
��" #��� �� �
� �� �
� ����		��� �� �������� ������ ������ �� ���� ������ ����
 ���
��� �� ��������� ��
��" 3���� ��� 	��� ����	���� ����	�� ������ ��
	��
�������� �	�� ����� ���� ��� ��������� ��������� �� ���� �����"

/� ���� ��
�� ����������� �� ��� �����! �� �����$� ����� ������ �!����� ��P��
����� �� �
�� �� ��	���� �� ����	�����	 �!����� ��-�" #�
�� ��� � ���������� �
���� �� �����$�� ��� ��� ��������� ��� ���������F��;
����� ��
�� �� ��
���� ��
��� ������������� ������ ��� �����$� ����������� ��6�" %	���
�� ��� �����������
�� ��
�� ���� �����	 �!����� ����� �� � ;
��� ��
��$�	���� ��	� �� ��
�!� ��
��� ��� ����
���� �� 	���� �� � �������� ����� ! 4
�	�� �� �	" �-�� �� ��		 �� !
�����	
�� ��� ���� �P�" /��� ��� �	�� ��� ���� �� �����	�<��� ��
���
���	����
�� ������� ��������� ����" �
���������� �
� �������� �� ��
�! ��� � ����	��
���&
� �� ���� �� 4!<������ ��������� �����7��
� �� ����������� ��
�	����
��
�� ��	���������� �� ������� ������� ������� �� �������� � ������ ���������"

-.; %� �� ������ ��� /� ���

��!����	��

-� ������� !�#D�= ��� E#E

�= ���� ��� ��
 ���� �
 ������ �� ������� � ����������
F����� &�) G
��� �� 3-<<.4

'� E���� D�!�D�� /����#�
��
� D�= ����������H���
�
	 ��
���� ����)��� ��������H��
�
���
�� ��= FI�� @;"� F�
������ �
	 ��� ���
�� ������ ��J ����
����
�
F���������
	 ����������� �
������ � ��� -"-K-B'� ��J F����� &�) G
��� &G�
�� 3-<;"4

"� E���� D�!�D�� ���� /�= �����
����
� ��*������
	 �������� �������� %
���� ��#
�����
	 �
������ ;3"4� "'BK"B. 3-<<.4

B� E���� D�!�D�� �
� ,�� ��� !�= D�*������ ��������= � ��������� ����
�����
��
���� ��� &�) G
�� 3-<<;4

$� E������ J�� L�������� J�� L
 F������ �� ������� F�= ��� ���
	 	
���� ����
�� ��
��� ��������
	 ����� 3�
����
� �����4� ��= !������ ��� F
����� �� ��������
�� ��
3����4 ������ '((B� L&�� �
�� '<<$� ��� """K""<� ���� ��� A�������� 3'((B4

.� ������� /�J�� J����� !�= F������� F�
 ��� ���� �= � %
������
�� �����
�#,�����
F�������� �
������ D����� 3-<;;4

:� �� ������� %�� ���� /�= � 	����)
�� 	
� ���
��
����� ����� ���
 ��� ����
� �������
	
������� 3)
�� �� ��
 ����4� ��= ����
� L�� �� M�	��M����� �� 3����4 &,F�@(.�
F�
������ � 	
� ��� -;�� &
���� ,
����
�
� F�
 ������ ���
���
�� '((.�
D���N��O� ���������� D���N��O�� ������� 3'((.4 3��������4

;� ��N������ P�= � ����������
	 F�
 ������ � F�������#A���� P� ��)

� ���+� 3-<:.4
<� !Q��� � ��= ����*���� ����
���)��� ���N������ �
 ��� ��= F�
������ �
	 ��� '��

���������� ,
����
�
� �
��
������ D���
��� 3-<<:4
-(� !Q��� � ��� A��)���� D�� F
��� �= ����� ���)
�� ��������)��� ���N������ �
 ���

��= ��� @(.� F�
������ �
	 ��� '<�� ������������ �
������ ������ �
�	�������
��� ;$K<B 3'((.4

--� L���
��� L�� �
����� D�� F����� J�= ��� ��H������ ������� ��
����� ��J �����#
����
��
� F�
 ������ L�� �� �� ��� ������ B3"4� ";'KB(- 3-<;'4

-'� JR������ ��� ������� !�#D�� S
����� L�= P����#� ��� �� �� D
��� ����������� �:�
P�#��
N��� DI��& 3��#$--$<<4 3'(($4�
��

-"� &�
����� J�� ���� /�� G��� L�� �������� J�= � 	
���� �
���
	 �
���T�#�)�������
��� �
���T�#����������� ��= P%& @(.� F�
������ �
	 ��� %
���� �PPP �������#
��
��� �
�	������
�
	�)��� P� ������� ��� %
���� J���
��� ,����� �
�� ���
��� ��� -::K-;$� �PPP �
������
����� F����� L
� ������
� 3'((.4

-B� F����� J�� �
����� D�� L���
��� L�= D������ � ������� �� ��� ��������
	 	������
!
�����
	 ��� ��J ':3'4� '';K'"B 3-<;(4

-$� F����� L�� ���� /�� ,���R�� J�= � �
�
�
 ���� ����
��� �
 ����������� �
������ �
��= F�
������ �
	 ,�@<< # ,
����
�
� ����������� ������� �������� -<<<�
P�����
��� &
��� �� ���
������� �
������ ������� �
�� ';� ��� <:K--;� P��������
��������� 3-<<<4

-.� ,� ������ ,�� ����
��� J�� P� ����� ��� ���H��� �� L
)�� A�� &�T
�� F�= � 	
����
�
��� 	
� ����� ��	������ ���� ������ ��= %��@("� ,
����
�
� %
���� �������
�� ������� ��� ������ ��� -;-K-<' 3'((B4

-:� G��� L�� ���� /�= � 	
������� 	
� �
���T�#�)��� �
���� �
������ � ��= �F�� @(B�
F�
������ �
	 ��� ����� ���������
��� ���
����
� F������� ��� �����������
�
������ U����� ���������
��� ,
����
�
� ��
������� J
���� ��� �

�� 	
�
F������� �
������
� A����
 ���
�� &��)
��� 3�F��UA����
F��@(B4� ,����� #
�
�� ��� ��� ��� -BK'-� �PPP �
������
����� F����� L
� ������
� 3'((B4

http://rodin.cs.ncl.ac.uk/deliverables.htm

A Higher-Order Demand-Driven Narrowing

Calculus with Definitional Trees

Rafael del Vado Vı́rseda

Dpto. de Sistemas Informáticos y Computación
Universidad Complutense de Madrid

rdelvado@sip.ucm.es

Abstract. We generalize the Constructor-based ReWriting Logic CRWL
to the setting of the simply typed λ-calculus, where theories are presented
by conditional overlapping fully extended pattern rewrite systems. We
claim that this logic is useful for higher-order functional-logic program-
ming, and propose a Higher-Order Lazy Narrowing calculus HOLNDT for
answering joinability and reducibility queries, in which a variant of Defi-
nitional Trees is used to efficiently control the demand-driven narrowing
strategy. The calculus HOLNDT is shown to be sound and strongly com-
plete with respect to this higher-order conditional rewriting logic.

1 Introduction

The effort to identify suitable computational models for higher-order functional
logic programming has grown in recent years. Functional-logic languages with
a sound and complete operational semantics are mainly based on narrowing,
a transformation rule which combines the basic execution mechanisms of func-
tional and logic languages, namely rewriting with unification. All serious at-
tempts to generalize narrowing for higher-order functional-logic programs (see,
for example, [5,7,9]) must address issues such as identifying suitable notions of
value and equality, and reducing the huge search space for bindings of higher
order variables.

The Constructor-based ReWriting Logic CRWL [4] provides a suitable frame-
work for rule-based declarative (functional and logic) programming with non
deterministic non-strict functions with call-time choice semantics, where pro-
grams are Constructor-Based Conditional Term Rewrite Systems (CB-CTRSs
for short). Since the classical notion of rewriting is not suitable in this setting,
a new notion of rewriting is adopted as the basis of proof calculi for joinability
and reduction statements. An important result is the existence of sound and
complete lazy narrowing calculi [4,2,3] for solving goals in first-order CRWL-
theories presented by CB-CTRSs. Moreover, a higher-order extension of CRWL
is presented in [5] but using applicative rewrite rules instead of λ-abstractions
and higher-order unification.

In this paper, we propose a higher-order rewriting logic for declarative pro-
gramming with higher-order functions and λ-terms as data structures to obtain
more of the expressivity of higher-order functional programming. More precisely,

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 169–184, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 R. del Vado Vı́rseda

we adopt the framework of simply typed λ-calculus in which terms are in βη-
normal form and theories are presented by conditional overlapping inductively
sequential pattern rewrite systems. These are a subclass of fully-extended con-
ditional pattern rewrite systems whose rules can be arranged in a variant of the
classical definitional trees, a useful tool introduced by Antoy [1] for achieving
a reduction strategy which avoids unneeded steps. Compared to CRWL, the
distinctive features of our new higher-order conditional rewriting logic are:
– values are terms which do not match the left hand side of any rewrite rule. In

the first-order case [4,2], values are constructor-based terms, but this notion
is too weak in a higher-order setting. Still, our notion of value is decidable
because matching against a pattern is decidable.

– equality is interpreted as joinability to a common value.
We prove the existence of a sound and strongly complete lazy narrowing calculus
for higher-order functional-logic programming in such a logic, generalizing and
improving previous higher-order narrowing calculi [5,9] and strategies [7]. More-
over, as the main novelty w.r.t. [7] and following the ideas introduced in [2,3]
for the first-order case, we show that definitional trees can be used to efficiently
control the narrowing strategy in the setting of our higher-order rewriting logic.

The paper is structured as follows. In Section 2 we introduce the basic no-
tions and notations of our theoretical framework. In Subsection 2.2 we pro-
pose a higher-order conditional rewriting logic characterized by a proof system
called GHRC, a generalization of the proof system GORC which underlies the
constructor-based rewriting logic CRWL of [4]. In Section 3 we propose a higher-
order demand-driven narrowing calculus with definitional trees called HOLNDT.
Section 4 is devoted to proving the main properties which guarantee the useful-
ness of HOLNDT — soundness and strong completeness. Section 5 concludes.

2 Preliminaries

We assume the reader is familiar with the notions and notations pertaining to
higher-order narrowing and term rewriting with definitional trees (see, e.g., [7]
and [2]). The set of types for the simply typed λ-terms is generated by a set B
of base types (e.g., nat, bool) and the function type constructor “→”. Simply
typed λ-terms are generated in the usual way from a signature F of function
symbols and a countably infinite set V of variables by successive operations of
abstraction and application. We also consider the enhanced signature F⊥ = F ∪
Bot, where Bot = {⊥b | b ∈ B} is a set of distinguished B-typed constants. The
constant ⊥b is intended to denote an undefined value of type b. We employ ⊥ as a
generic notation for a constant from Bot. In this paper, we assume the following
conventions of notation: X, Y, Z, R, H , possibly primed or with subscripts, denote
free variables; f, f ′ denote defined function symbols, g denotes a data constructor
or defined function symbol, and a a (free or bound) variable or a constant from
F ; l, r, s, t, u, possibly primed or with subscript, denote terms; π, π′, π1, π2, . . .
denote terms of base type.

A Higher-Order Demand-Driven Narrowing Calculus 171

A sequence of syntactic objects o1, . . . , on, where n ≥ 0, is abbreviated by
on. For instance, the simply typed λ-term λx1. . . . λxk.(· · · (a t1) · · · tn) is
abbreviated by λxk.a(tn). Substitutions are finite type-preserving mappings from
variables to terms, denoted by {Xn �→ tn}, and extend homomorphically from
terms to terms. The set of free variables of a term t is denoted by FV(t).

The long βη-normal form of a term, denoted by t-η
β, is the η-expanded form

of the β-normal form of t. It is well-known that s =αβη t if s-η
β =α t-η

β [8].
Since βη-normal forms are always defined, we will in general assume that terms
are in long βη-normal form and are identified modulo α-conversion. For brevity,
we may write variables and constants from F in η-normal form, e.g., X instead
of λxk.X(xk). We assume that the transformation into long βη-normal form is
an implicit operation, e.g., when applying a substitution to a term. With these
conventions, every term t has an unique long βη-normal form λxk.a(tn), where
a ∈ F⊥ ∪ V and a() coincides with a. The symbol a is called the root of t and
is denoted by hd(t). We distinguish between the set T (F⊥,V) of partial terms
(terms for short), the set T (F ,V) of total terms, and the set T (F⊥,V)∗ =
T (F⊥,V) \ {λxk.⊥ | k ≥ 0} of partially defined terms. T (F⊥,V) is a poset with
respect to the approximation ordering !, defined as the least partial ordering
such that:

λxk.⊥ ! λxk.t t ! t
s1 ! t1 . . . sn ! tn

λxk.a(sn) ! λxk.a(tn)

We adopt the convention that the free and bound variables inside a term are kept
disjoint, and assume that bound variables with different binders have different
names. We define Dom(γ)={X∈FV | Xγ �=X}. Two substitutions γ1 and γ2

are equal on a set W of variables, written as γ1 = γ2 [W], iff Xγ1=Xγ2 for all
X∈W , and we write γ1≤γ2 [W] iff there is a substitution σ with γ2 = σγ1 [W].
The restriction γ	W of a substitution γ to a set W of variables is defined by
Xγ	W=Xγ if X∈W and Xγ	W=X otherwise. To manipulate terms, we define:

– the set of positions in t: Pos(λxk.a(tn)) = {1i | 0 ≤ i ≤ k} ∪ {1k.j.q | 1 ≤
j ≤ n, q ∈ Pos(tj)}, where “.” denotes sequence concatenation and 1k is the
sequence of 1 repeated k times. The empty sequence is denoted by ε. Note
that, with this convention, we have 10 = ε.

– the subterm t|p of t at some position p ∈ Pos(t):

(λxk.a(tn))|p =
{

λxi+1 . . . xk.a(tn) if p = 1i with 0 ≤ i ≤ k,
ti|q if p = 1k.i.q and 1 ≤ i ≤ n.

A position p is maximal in t if t|p is of base type. The set of maximal positions
in a term t is denoted by MPos(t).

– the sequence of variables abstracted on the path to position p ∈ Pos(t):

seqbv(t, p) =

⎧⎨⎩ ε if p = ε,
x.seqbv(s, q) if t = λx.s and p = 1.q,
seqbv(ti, q) if t = a(tn), 0 < i ≤ n, and p = i.q.

172 R. del Vado Vı́rseda

The set of variables abstracted on the path to position p ∈ Pos(t) is BV(t, p)
= {seqbv(t, p)}, and the set of variables with bound occurrences in t is
BV(t)=

⋃
p∈Pos(t) BV(t, p). We also find it convenient to define t
p=λxk.(t|p),

where xk = seqbv(t, p).

A pattern [10] is a term t for which all subterms t|p = X(tn), with X ∈
FV(t) and p ∈ MPos(t), satisfy the condition that t1↓η, . . . , tn↓η is a sequence
of distinct elements of BV(t, p). Moreover, if all such subterms of t satisfy the
additional condition BV(t, p) \ {t1↓η, . . . , tn↓η} = ∅, then the pattern t is fully
extended.

An equality statement is a multiset {{s, t}}, written s == t, where s, t ∈
T (F⊥,V) are terms of the same type.

Definition 1. A Conditional Pattern Rewrite System (CPRS for short)
is a finite set of conditional rewrite rules of the form f(ln) → r ⇐ C, where

– f(ln) and r are total terms of the same base type,
– f(ln) is a fully extended linear pattern, and
– C is a (possibly empty) finite sequence of equality statements between total

terms. In symbols, C ≡ sm == tm, with si, ti ∈ T (F ,V) for i = 1, . . . , m.

The term f(ln) is called the left hand side (lhs), r is the right hand side (rhs),
and C is the conditional part of the rewrite rule.

A CPRS R induces a partition of F into Fd (defined symbols) and Fc (construc-
tors):

Fd = {f ∈ F | ∃(f(ln) → r ⇐ C) ∈ R}, Fc = F \ Fd.

R is a Constructor-Based CPRS (CB-CPRS for short) if each rewrite rule
f(ln) → r ⇐ C satisfies the additional condition that l1, . . . , ln ∈ T (Fc,V).

Definition 2 (Lifter). Given a term t, a subset V of FV(t), and a sequence xk

of distinct variables with no occurrences in t, the xk-lifter of t with respect
to V is the term t↑xk�V , defined recursively as follows:

t↑xk�V =

⎧⎪⎪⎨⎪⎪⎩
λyl.(π↑(yl,xk)�V) if t ≡ λyl.π,

a
(
t↑xk�V
n

)
if t ≡ a(tn) with a �∈ V ,

X
(
xk, t↑xk�V

n

)
if t ≡ X(tn) with X ∈ V .

The xk-lifter of a term t is the term t↑xk = t↑xk�FV(t) . We also define t�xk =
λxk.(t↑xk).

For example, (λx.Y (f(x, Z(x))))↑y,z = λx.Y (y, z, f(x, Z(y, z, x))), whereas (λx.
Y (x, Z(x)))�y,z = λy, z, x.Y (y, z, x, Z(y, z, x)). If C = sm == tm is a sequence of

equality statements then we write C�xk for the sequence s
�xk
m == t

�xk
m .

For later use, we introduce the notation Rf for the subset of R consisting of
the rewrite rules whose left-hand sides have head f .

A Higher-Order Demand-Driven Narrowing Calculus 173

It is well known that unification of patterns is decidable and unitary [10]. There-
fore, for every t ∈ T (F⊥,V) and pattern π, there exists at most one matcher
between t and π, which we denote by matcher(t, π).

A position p ∈ MPos(t) is rigid in t if hd(t|q) ∈ BV(t, q) ∪ F for all q ≤ p.
p ∈ MPos(t) is safe in t if hd(t|q) ∈ BV(t, q) ∪ Fc for all q ≤ p. t is flex
if hd(t) ∈ FV(t), and rigid otherwise. We denote by Posr(t) the set of rigid
positions of t, and by Poss(t) the set of safe positions of t.

Example 1. If t = λx, y.g(f(x(X(a, y)),⊥)), where f ∈ Fd, a, g ∈ Fc, and y is
a bound variable of base type, then MPos(t) = {1i | 2 ≤ i ≤ 6} ∪ {15.2, 1.1.2},
Posr(t) = {12, 13, 14}, and Poss(t) = {1.1}. �"

2.1 Higher-Order Overlapping Definitional Trees

The following definitions generalize the higher-order definitional trees introduced
in [7]. There, neither conditional rewrite rules nor overlapping left hand sides
were considered. The definitions also generalize Antoy’s ODTs [1] and del Vado
Vı́rseda’s ODTs [2] for the first-order case.

Definition 3. T is an Overlapping Definitional Tree (ODT for short) with
fully extended linear pattern π iff T can be built in finitely many steps by using
the following two construction rules:

1. T ≡ rule(π, {r1⇐ C1, . . . , rm⇐ Cm}), abbreviated rule(π, {ri⇐ Ci}1≤i≤m),
where π → ri ⇐ Ci are called the rewrite rules offered by T .

2. T ≡ case(π, p, {π1: T1, . . . , πm: Tm}), abbreviated case(π, p, {πi : Ti}1≤i≤m),
where p ∈ MPos(π), π|p = X(yn), each πi is a term of the form ai(Xqi)↑yn ,
with ai ∈ Fc ∪ {yn} such that a(Xqi)�yn is of the same type as X, Xqi is a
sequence of distinct fresh variables, ai �= aj whenever i �= j, and each Ti is
an ODT with linear pattern π{X �→ a(Xqi)�yn}.

Let R[T] be the set of all rewrite rules in R offered by the rule-nodes of the
ODT T . A call pattern for an n-ary function symbol f is any fully extended
linear pattern f(tn) such that t1, . . . , tn ∈ T (Fc,V). Note that, if T is an ODT
with pattern π, then π is a call pattern for some f ∈ Fd. An ODT for f ∈ Fd

is an ODT whose pattern is a call pattern for f .

Definition 4. A CB-CPRS R is a Conditional Overlapping Inductively
Sequential System (COISS for short) if every f ∈ Fd has an ODT T with
pattern f(Xn) such that R[T] = Rf .

Example 2. We consider the set of data constructors

Fc = {0 : nat, s : nat → nat, true, false : bool}

and the set of defined symbols

Fd = {f, g : nat → nat → nat, leq : (nat → nat) → (nat → nat) → bool}

defined by the CB-CPRS

174 R. del Vado Vı́rseda

R = { f(X, Y) → s(0), g(X,Y) → 0,
leq(λx.0, F) → true,
leq(λx.s(F (x)), λx.0) → false,
leq(λx.s(F (x)), λx.s(G(x))) → leq(λx.F (x), λx.G(x))}.

It is easy to check that R is a COISS. For example, the defined symbol leq has
the ODT

T = case(leq(λx.X(x), λx.Y (x)), 1.1, {
0 : rule(leq(λx.0, λx.Y (x)), {true ⇐ {}}),
s(F (x)) : case(leq(λx.s(F (x)), λx.Y (x)), 2.1, {

0 : rule(leq(λx.s(F (x)), λx.0), {false ⇐ {}}),
s(G(x)) : rule(leq(λx.s(F (x)), λx.s(G(x))),

{leq(λx.F (x), λx.G(x)) ⇐ {}})})})

and R[T] = Rleq. Note that the variables in the ODT have been written in long
βη-normal form, in order to show that the ODT is built properly. �"
We find it convenient to define the xk-lifter of an ODT as follows:

Definition 5. The xk-lifter T ↑xk of an ODT T is defined recursively as fol-
lows:

– rule(π↑xk , {r↑xk

i ⇐ C
�xk

i }1≤i≤m) if T ≡ rule(π, {ri ⇐ Ci}1≤i≤m),
– case(π↑xk , p, {π↑xk

i : T ↑xk

i }1≤i≤m) if T ≡ case(π, p, {πi : Ti}1≤i≤m).

The xk-lifted term π↑xk is called the pattern of T ↑xk and is denoted by
patt(T ↑xk), and the position p is called the choice position of T ↑xk and is
denoted by Pos(T ↑xk).

We note that, if T ≡case(π↑xk , p, {π↑xk

i :T ↑xk

i }1≤i≤m), then the terms π↑xk |p, π↑xk

i

and patt(T ↑xk

i)|p are of the same base type, and hd(π↑xk

i) = hd(patt(T ↑xk

i)|p).
From now on, assume we are given a COISS R together with a predefined

association of an ODT Tf , with R[Tf] = Rf to every f ∈ Fd. We extend the
notionR[T] to xk-lifted ODTs by definingR[T ↑xk] = R[T]. If T1, T2 are xk-lifted
ODTs, then we write T1 1 T2 if T1 is a proper subtree of T2.

Definition 6. Let t ≡ λxk.f(sn) and p = 1k.q ∈ MPos(t). p is a demanded
position of t (i.e., p ∈ dmd(t)) if there exists T 1 T ↑xk

f with Pos(T) = q, and
∀T ′. T ′ 1 T ∧ q′ = Pos(T ′) ⇒ hd(f(sn)|q′) = hd(patt(T)|q′).

2.2 A Higher-Order Conditional Rewriting Logic

In this section, we propose a (conditional) higher-order rewriting logic for decla-
rative programming with non-strict and non-deterministic functions with call
time choice semantics, as a generalization of the first-order rewriting logic CRWL

[4]. We propose this logic as the basis of a proof calculus, called GHRC, for re-
duction and joinability statements to a common value. The GHRC proof calculus
provides a declarative semantic for a COISS R, and will be used to prove the
soundness and completeness properties of our narrowing calculus with defini-
tional trees HOLNDT in Section 4. First, we need to define the suitable notion
of value that is used in our setting.

A Higher-Order Demand-Driven Narrowing Calculus 175

Definition 7. A value is a partial term t which has the following property:
∀p ∈ MPos(t), ∀(π → r ⇐ C) ∈ R : �matcher(t
p, π

�seqbv(t,p))1

A total value is a value which is a total term. A value substitution is a subs-
titution which binds variables to values. We write Val(F⊥,V) (resp. Val(F ,V))
for the set of values (resp. total values), and VSubst(F⊥,V) for the set of subs-
titutions which bind variables to values.

For a given COISS R, we want to derive statements of the following kind:
– reduction statements: s � t, where s, t ∈ T (F⊥,V) are of the same type.
– equality statements: s == t, which holds iff reduction statements s � u

and t � u can be derived for some total value u ∈ Val(F ,V).

The provability relation is defined by the following proof system:

Definition 8 (GHRC proof calculus).
B Bottom: λxk.π � λxk.⊥
MN Monotonicity:

λxk.s1 � λxk.t1 . . . λxk.sn � λxk.tn
λxk.a(sn) � λxk.a(tn)

RF Reflexivity: s � s
OR Outermost reduction:

λxk.s1 � l
�xk

1 θ . . . λxk.sn � l
�xk
n θ C�xkθ r�xkθ � u

λxk.f(sn) � u
for any u �= λxk.⊥, θ ∈ VSubst(F⊥,V), and (f(ln) → r ⇐ C) ∈ R.

J Join:
s � u t � u

s == t
if u ∈ Val(F ,V).

Thus, we interpret equality as joinability to a common total value. Detailed
examples of derivations in the form of proof trees in this kind of rewriting logics
can be found in [4] and [2]. We write R � A if A is provable with GHRC for
R, and R � {{A1, . . . , An}} if R � Ai for i = 1, . . . , n. We denote by PT (A)
the set of proof trees for a statement A, PT L(A) for the proof trees of PT (A)
which end with the application of inference rule L ∈ {B,MN,RF,OR,J}, and
by |P|OR the number of applications of OR in a proof tree P . We also write
R �L A if there exists a proof of R � A which ends with application of rule L,
and R �L A if there is no such a proof. In the sequel, we will also consider the
distinguished statement false, which denotes an unprovable statement.

In our study of GHRC it is relevant to tell more about the set from which we
pick up the rewrite rule employed in an OR step. For this purpose, we assume
in the sequel that Ω, Ω′ range over sets of rewrite rules, and define the set
PT Ω

OR(A) of proof trees P ∈ PT OR(A), which employ a rewrite rule from Ω in
the last proof step. We also write R �Ω

OR A if there exists P ∈ PT Ω
OR(A), where

Ω ranges over sets of rewrite rules of R. Obviously, PT Ω′

OR(A) ⊆ PT Ω
OR(A)

whenever Ω′ ⊆ Ω. We also define the set PT u
J(s == t) of proof trees, which are

of the form P1 P2
s==t (J), where P1 ∈ PT (s � u) and P2 ∈ PT (t � u).

In the remainder of this subsection we give two results, generalizing useful
known properties of CRWL-deductions for the first-order case (see [4,2] for more
1 Note: in this definition, we assume FV(t) ∩ FV(π) = ∅.

176 R. del Vado Vı́rseda

details), which characterize the semantics proofs built with GHRC and which are
relevant to our further development of a demand-driven narrowing calculus.

Lemma 1 (Approximation Property). Let s ∈Val(F⊥,V). If R � s� t then
t ∈Val(F⊥,V), s 2 t, and R �OR s � t. Moreover, if t ∈Val(F ,V) then s = t.

Lemma 2 (Splitting Property). If P ∈ PT Ω
OR(s � t) then |P|OR > 0 and

hd(s) ∈ Fd. Moreover, if p ∈ dmd(s) and xq = seqbv(s, p), then either
(i) hd(s|p) = g ∈ Fd and there exist λxq .π ∈T (F⊥,V)∗, P1∈PT Rg

OR(λxq .(s|p)�
λxq .π) and P2 ∈ PT Ω

OR(s[π]p � t) such that |P1|OR + |P2|OR = |P|OR, or
(ii) hd(s|p) ∈ Fc ∪ {xq} and P ∈ PT Ω′

OR(s � t), where Ω′ = {(π → r ⇐ C) ∈
Ω | p ∈ Poss(π) and hd(π|p) = hd(s|p)}.

2.3 Goals and Solutions

Finally, we give a precise definition for the class of goals (from a given COISS
R) and the set of solutions of a goal with which we are going to work.

Definition 9. An atomic goal is one of the following:

• equation: multiset {{s, t}} of total terms of the same type, written s ==? t.
• annotated equation: pair 〈s ==? t, u〉 between an equation s ==? t and

a total fully extended linear pattern u of the same type as s. We write such
an annotated equation as s ==?

u t. Equations are symmetric: s ==? t ≡
t ==? s and s ==?

u t ≡ t ==?
u s.

• suspension: pair 〈s, R〉 ∈ Term(F ,V)×FV, written s �? R, where R is a
variable of the same type as s.

• production: ternary relation between a term λxk.f(sn) with f ∈ Fd, an
xk-lifted ODT T for f , and a free variable R of the same type as λxk.f(sn),
written λxk.〈f(sn), T 〉�? R.

or the distinguished symbol fail. A goal is a multiset {{G1, . . . , Gn}} of atomic
goals Gi.

In the sequel, we assume that w, w′ denote either terms or expressions of the
form λxk.〈π, T 〉, where T is an xk-lifted ODT for hd(π). Then, w �? R denotes
either a suspension or a production. Similarly to other demand-driven or lazy
narrowing calculi (see, e.g., [4] and [2]), we also need to define a suitable notion
of produced and demanded variable to deal with a higher-order lazy evaluation.

Definition 10. R is a produced variable in a goal G if ∃(w �? R) ∈ G.
H is a strict variable in G if ∃(s ==?

u t) ∈ G and H ∈ FV(u). We write
PV(G) (resp. SV(G)) for the set of produced variables (resp. strict variables)
in G. The set DV(G) of demanded variables in G is defined inductively as
follows: R ∈ DV(G) if ∃(w �? R) ∈ G, and either

(a) ∃ (λyk.〈π′, case(π, p, {πi : Ti}1≤i≤m)〉 �? R′) ∈ G with hd(π′|p) = R, or
(b) ∃ (s ==?

u t) ∈ G with hd(s) = R, or
(c) ∃ (λyk.R(tn) �? R′) ∈ G and R′ ∈ DV(G).

A Higher-Order Demand-Driven Narrowing Calculus 177

The set SDV(G) of strongly demanded variables is defined by strengthening
condition (b) of DV(G) to

(b′) ∃ (s ==?
u t) ∈ G with hd(s) = R and u↓η �∈ FV.

Note that SDV(G) ⊆ DV(G) ⊆ PV(G). Additionally, any goal G is admis-
sible if the following conditions (called goal invariants) hold:

1. If (w �? R) ∈ G then R occurs only once in the rhs of a production or
suspension,

2. R �∈ FV(w) for all suspension or production of G,
3. If (λxk.〈π′, T 〉 �? R) ∈ G then R ∈ DV(G), and either

(i) T ≡ rule(π, {ri ⇐ Ci}1≤i≤m) and λxk.π matches λxk.π′, or
(ii) T ≡ case(π, p, {πi : Ti}1≤i≤m) and 1k.p ∈ dmd(λxk.π′),

and if s ==?
u t ∈ G then

4. If H ∈ FV(u) then H occurs only once in G,
5. If u↓η �∈ FV then hd(u) ∈ {hd(s), hd(t)}.

Definition 11. γ ∈ Subst(F⊥,V) is a solution of a goal G if γ	FV(G)\PV(G) ∈
VSubst(F⊥,V), and for each atomic goal Gi ∈ G there exists a proof tree Pi

such that

(a) Pi ∈ PT (sγ == tγ) if Gi ≡ s ==? t.
(b) Pi ∈ PT (sγ � Rγ) if Gi ≡ s �? R.
(c) Pi ∈ PT uγ

J (sγ == tγ) if Gi ≡ s ==?
u t.

(d) Pi ∈ PT R[T]
OR (λxk.πγ � Rγ) if Gi ≡ λxk.〈π, T 〉�? R.

The proof tree Pi is called a witness that γ is a solution of Gi.

We write Soln(G) for the set of solutions of a goal G, and Wtnγ(Gi) for the set
of witnesses that γ is a solution of an atomic goal Gi. The next result is useful to
prove properties of our demand-driven narrowing calculus and shows that GHRC

semantics does not accept an undefined value for demanded variables.

Lemma 3 (Demand Lemma). Let γ ∈ Soln(G). Then, Rγ ∈ T (F⊥,V)∗ for
all R ∈ SDV(G).

Proof. Assume by contrary that there exists R ∈ SDV(G) with hd(Rγ) = ⊥.
Then

1. there exists a (possibly empty) sequence of suspensions sq � Rq such that
R = R0 and hd(si) = Ri−1 for all 1 ≤ i ≤ q, and

2. either (i) G contains λym.〈π′, case(π, p, {π : Ti}1≤i≤m)〉�? X with hd(π′|p)
= Rq, or (ii) G contains a strict equation s ==?

u t with hd(s) = Rq and
u = λxk.a(Hn(xk)) with a ∈ F ∪ {xk}.

From γ ∈ Soln(G) and Lemma 1 results hd(Riγ) = ⊥ for all i ≤ q. If 2.(i) holds
then 1m.p ∈ dmd(λym.π′γ) and R �OR λym.π′γ � Xγ. In this case, we get a
contradiction with Lemma 2, because 1m.p ∈ dmd(λym.π′γ) and hd(π′γ|p) = ⊥.
If 2.(ii) holds then R � sγ � uγ. Then, hd(sγ)=⊥ because hd(s)=Rq and
hd(Rqγ)=⊥. Since ⊥ �= a=hd(uγ), we can not have sγ � uγ, contradiction. �"

178 R. del Vado Vı́rseda

3 A Higher-Order Demand-Driven Narrowing Calculus

HOLNDT is a system of transformation rules designed to solve goals {{s1 ==? t1,

. . . , sn ==? tn}}, which we abbreviate by {{sn ==? tn}}, where si, ti ∈ T (F ,V)
for all i ∈ {1, . . . , n}. It acts on states of the form P ≡ 〈G | K〉, where G is a
goal and K is a set of values. A state P is admissible if

(a1) G is admissible,
(a2) K is a set of total pattern terms, and
(a3) for every s ==?

u t ∈ G there exists a pattern t′ ∈ K and a maximal position
p ∈ MPos(t′) such that t′
p= u.

We write Adm for the set of admissible states. The meaning of such a state is

[[〈G | K〉]] = {γ ∈ Soln(G) | Kγ is a set of values}.

We note that [[〈fail | ∅〉]] = [[〈G | K〉]] = ∅ whenever K is not a set of values. In
the sequel, we denote the state 〈fail | ∅〉 by fail and call it failure state. We
identify with fail all pairs 〈G | K〉 for which K is not a set of values. Solving a
goal amounts to computing refutations, i.e., sequences of transformation steps.

Definition 12. A HOLNDT-refutation of a goal G = {{sn ==? tn}} is a maxi-
mal finite sequence of transformation steps

Π : P0 ≡〈G | ∅〉≡〈G0 | K0〉⇒σ1 P1≡〈G1 | K1〉⇒σ2 . . . ⇒σm Pm≡〈Gm | Km〉
between states P0, P1, . . . , Pm, such that Pm �= fail is a final state, i.e., a non
failure state which can not be transformed anymore. Each transformation step
corresponds to an instance of some transformation rule of HOLNDT. We abbre-
viate Π by P0 ⇒∗

σ Pm, where σ = σ1 · · ·σm. Given such a goal G, the set of
computed answers produced by HOLNDT is

A(G) = {σγ	FV(G) | 〈G | ∅〉⇒∗
σ P is a HOLNDT-refutation and γ ∈ [[P]]}.

3.1 Design and Analysis Considerations

In the sequel, we will describe the HOLNDT calculus and analyze its main proper-
ties. The general idea is to ensure the computation of solutions from goals which
are correct with respect to GHRC’s semantics, while using definitional trees in a
similar way to [2,3] to ensure that all the narrowing steps performed during the
computation are needed ones. Since the design considerations are quite involved
and the analysis techniques quite complicated, we consider useful to precede our
presentation with a brief outline of our design considerations and techniques.

Typical requirements in the design of such a calculus are soundness: every
computed answer is a solution, i.e., A(G) ⊆ Soln(G), and completeness: for
any γ ∈ Soln(G) there exists γ′ ∈ A(G) such that γ′ ≤ γ [FV(G)]. Note that
the completeness requirement demands the capability to compute a minimal
complete set of solutions. It is easy to see that if HOLNDT is complete then
it suffices to enumerate minimal complete set of solutions of the final states.

A Higher-Order Demand-Driven Narrowing Calculus 179

Therefore, an important design issue is to guarantee that minimal complete sets
of solutions are easy to read off for the final states. In the design of first-order lazy
or demand-driven narrowing calculi, as for example [4] and [2], this is achieved
by ensuring that final states have empty goal components; thus the minimal
complete set of solutions of a final state consists of the empty substitution {}.
Unfortunately, things are much more complicated in the higher-order case. This
problem is inevitably related to the problem of unifying flex terms, which is in
general intractable. We adopt an approach similar to Huèt’s procedure of higher-
order pre-unification: we refrain from solving atomic goals between flex terms
as much as possible. As a consequence, our final states will be a class of states
whose equations are only between flex terms. We will show that it is possible to
guarantee that these final states are meaningful and that it is relatively easy to
read off some of their solutions.

Of particular importance is the following additional design issue: the transfor-
mation rules of HOLNDT take into account the structure of the witness trees for
the solutions we aim to compute. For example, if we encounter an atomic goal
λxk.f(sn) ==?

u t with f ∈ Fd, then we keep in mind that we are looking for a γ
with a witness tree of the form P1 P2

λxk.f(sn)γ==tγ (J), where P1∈Wtnγ(λxk.f(sn)�?u).
To ease the presentation of the goal transformation rules of HOLNDT, we dis-

tinguish separately rules concerning the different components of an admissible
goal: rules for (annotated) equations, rules for productions, rules for suspensions,
and finally, rules for failure detection.

3.2 Transformation Rules for Equations

The goal transformation rules for (annotated) equations support an improved
treatment of the strict equality ==? as a built-in primitive symbol, along the
lines of [4] and [2], rather than a defined function as in the case of [7]. We
distinguish several cases according to the syntactic structure of their arguments.

(ann) annotation

〈{{s ==? t, E}} | K〉 ⇒ 〈{{s ==?
H t, E}} | K ∪ {H}〉 where H is a fresh variable of suitable type.

(on)1 rigid narrowing

〈{{λxk.f(sn) ==?
u t, E}} | K〉 ⇒{} 〈{{λxk.〈f(sn), T

↑xk
f 〉 �? R, R ==?

u t, E}} | K〉
where f ∈ Fd and either hd(t)
∈ PV or u↓η ∈ FV.

(ov)1 flex narrowing

〈{{λxk.X(sm) ==?
u t, E}} | K〉 ⇒σ 〈{{λxk.〈X(sm), T ↑xk

f 〉 �? R, R ==?
u t, E}}σ | (K ∪ {X})σ〉

where u↓η
∈ FV, X
∈ PV and σ = {X �→ λym.f(Xn(ym))} with f ∈ Fd.
(sg) strict guess

〈{{λxk.a(sn) ==?
H t, E}} | K〉 ⇒σ 〈{{λxk.a(sn) ==?

Hσ t, E | Kσ}}〉
where a ∈ F ∪ {xk}, and σ = {H �→ λxk.a(Hn(xk))}.

(d) decomposition

〈{{λxk.v(sn) ==?
u λxk.v(tn), E}} | K〉 ⇒σ 〈{{λxk.sn ==?

Hn
λxk.tn, E}} | Kσ〉

where v ∈ {xk} ∪ F and either

– u ≡ H and σ = {H �→ λxk.v(Hn(xk))}, or

– u ≡ λxk.v(Hn(xk)) and σ = {}.
(i)1 imitation

〈{{λxk.X(sp) ==?
u λxk.f(tn), E}} | K〉 ⇒σ 〈{{λxk.Xn(sp) ==?

Hn
λxk.tn, E}}σ | (K ∪ {X})σ〉

where X
∈ PV and either

– u ≡ H and σ = {X �→ λyp.f(Xn(yp)), H �→ λxk.f(Hn(xk))}, or

– u ≡ λxk.f(Hn(xk)) and σ = {X �→ λyp.f(Xn(yp))}.

180 R. del Vado Vı́rseda

(p)1 projection

〈{{λxk.X(sp) ==?
u t, E}} | K〉 ⇒σ 〈{{λxk.X(sp) ==?

u t, E}}σ | (K ∪ {X})σ〉
where X
∈ PV, t is rigid, and σ = {X �→ λyp.yi(Xn(yp))} is a valid projection binding.

(fs) flex same

〈{{λxk.X(yp) ==?
H λxk.X(y′p), E}} | K〉 ⇒σ 〈{{E}}σ | (K ∪ {X})σ〉

where X
∈ PV, λxk.X(yp) and λxk.X(y′
p) are patterns, σ={X �→λyp.Z(zq), H �→ λxk.Z(zq)},

{zq} = {yi | yi = y′
i, 1 ≤ i ≤ n}.

(fd) flex different

〈{{λxk.X(yp) ==?
H λxk.Y(y′q), E}} | K〉 ⇒σ 〈{{E}}σ | (K ∪ {X, Y})σ〉

where X, Y
∈ PV, λxk.X(yp) and λxk.Y (y′
q) are patterns, X
= Y , σ = {X �→ λyp.Z(zr), Y �→

λy′
q.Z(zr), H �→ λxk.Z(zr)}, and {zr} = {yp} ∩ {y′

q}.

3.3 Transformation Rules for Productions

The goal transformation rules for productions of the form λxk.〈f(sn), T 〉�? R
encode our higher-order demand-driven narrowing strategy, guided by the ODT
T for the defined function symbol f , in a vein similar to the needed narrowing
strategy of [7] and [2], and thanks to the Splitting Property given in Lemma 2.
(ev) evaluation

(1) 〈{{λxk.〈π′, case(π, p, {πi : Ti}1≤i≤m)〉 �? R, E}} | K〉 ⇒{}
〈{{λxk.〈π′, Ti〉 �? R, E}} | K〉 if hd(π′|p) = hd(πi).

(2) 〈{{λxk.〈π′, rule(π, {ri ⇐ Ci}1≤i≤m)〉 �? R, E}} | K〉 ⇒{}

〈{{λykq .sq �? Rq, C?
i , λxk.ri �? R, E}} | K ∪ {Rq}〉

if 1 ≤ i ≤ m, matcher(λxk.π′, λxk.π) = {Rq �→ λykq .sq}, and {Rq} = FV(λxk.π).

(on)2 rigid narrowing

〈{{λxk.〈π′, case(π, p, {πi : Ti}1≤i≤m)〉 �? R, E}} | K〉 ⇒{}

〈{{λxq .〈π′|p, T ↑xq
f 〉 �? R′,

λxk.〈π′[R′(xq)]p, case(π, p, {πi : Ti}1≤i≤m)〉 �? R, E}} | K〉
if π′|p = f(tn) with f ∈ Fd, xq = BV(λxk.π′, 1k.p).

(ov)2 flex narrowing

〈{{λxk.〈π′, case(π, p, {πi : Ti}1≤i≤m)〉 �? R, E}} | K〉 ⇒σ

〈{{λxq.〈π′|p, T ↑xq
f 〉 �? R′,

λxk.〈π′[R′(xq)]p, case(π, p, {πi : Ti}1≤i≤m)〉 �? R, E}}σ | (K∪{X})σ〉
if xq = BV(λxk.π′, 1k.p), hd(π′|p) = X
∈ PV, and σ = {X �→ λyr .f(Xn(yr))} for some
f ∈ Fd of suitable type.

(i)2 imitation

〈{{λxk.〈π′, case(π, p, {πi : Ti}1≤i≤m)〉 �? R, E}} | K〉 ⇒σ

〈{{λxk.〈π′,Ti〉 �? R, E}}σ | (K∪ {X})σ〉
if hd(π′|p) = X
∈ PV, hd(πi) = c ∈ Fc, and σ = {X �→ λyr.c(Xn(yr))}.

(p)2 projection

〈{{λxk.〈π′, case(π, p, {πi : Ti}1≤i≤m)〉 �? R, E}} | K〉 ⇒σ

〈{{λxk.〈π′, case(π, p, {πi : Ti}1≤i≤m)〉 �? R, E}}σ | (K ∪ {X})σ〉
if hd(π′|p) = X
∈ PV and σ = {X �→ λzr .zi(Xn(zr))} is a valid projection binding for X.

3.4 Transformation Rules for Suspensions

The goal transformation rules concerning suspensions s �? R are designed with
the aim of modeling the behavior of lazy narrowing with sharing, as in other
similar narrowing calculi [4,2,3], and thanks to the Demand Lemma.

(rm) unnecessary suspension

〈{{t �? R, E}} | K〉 ⇒{} 〈{{E}} | K〉 (R
∈ FV(E))
(rn) rigid narrowing

〈{{λxk.f(tn)�?R, E}} | K〉 ⇒{} 〈{{λxk.〈f(tn), T ↑xk
f 〉�?R, E}} |K〉 (R ∈ DV)

if f ∈ Fd.

A Higher-Order Demand-Driven Narrowing Calculus 181

(i)3 imitation

〈{{λxk.f(sn) �? R, E}} | K〉 ⇒σ 〈{{λxk.sn �? Rn, Eσ}} | Kσ〉 (R ∈ DV)

where σ = {R �→ λxk.f(Rn(xk))}.
(rp) rigid projection

〈{{λxk.xi(tn) �? R, E}} | K〉 ⇒σ 〈{{λxk.tn �? Rn, Eσ}} | Kσ〉 (R ∈ DV)

where σ = {R �→ λxk.xi(Rn(xk))}.
(fp) flex projection

〈{{λxk.X(sm) �?R, E}}|K〉 ⇒σ 〈{{λxk.X(sm) �? R, E}}σ|(K∪{X})σ〉 (R ∈ SDV)

where X
∈ PV and σ = {X �→ λym.yi(Xn(ym))}.
(fg) flex guess

〈{{λxk.X(sm) �? R, E}}|K〉 ⇒σ 〈{{λxk.X(sm) �? R, E}}σ|(K∪{X})σ〉 (R ∈ SDV)

where X
∈ PV and σ = {X �→ λym.g(Xn(ym)), R �→ λxk.g(Rn(xk))} with g ∈ F .

3.5 Transformation Rules for Failure Detection

Failure rules are used for failure detection in the syntactic unification of anno-
tated equations and in the case of symbol non-cover by an ODT in productions.

(f1) clash 1

〈{{λxk.v(sn) ==?
u λxk.v

′(tm), E}} | K〉 ⇒{} fail

if v, v′ ∈ Fc ∪ {xk} and either (i) v
= v′ or (ii) hd(u)
∈ FV ∪ {v, v′}.
(f2) clash 2

〈{{λxk.〈π′, case(π, p, {πi : Ti}1≤i≤m)〉 �? R, E}} | K〉 ⇒{} fail

if hd(π′|p)
∈ {hd(πi) | 1 ≤ i ≤ m} ∪ Fd ∪ FV.
(f3) occur check

〈{{λxk.s ==?
u λxk.X(yn), E}} | K〉 ⇒{} fail

if X
∈ PV, λxk.X(yn) is a flex pattern, hd(λxk.s)
= X and (λxk.s)|p = X(zn), where zn is a
sequence of distinct bound variables and p ∈ Poss(λxk.s).

Example 3. The classical higher-order function foldr can be defined as

foldr(g, e, []) → e

foldr(g, e, [x|xs]) → g(x, foldr(g, e, xs))

where the following result holds: if f(e) = e′ and f(g(x, y)) = g′(x, f(y)) then
f(foldr(g, e, xs)) = foldr(g′, e′, xs). Moreover, the following corollary can be
easily obtained: if f([]) = e′ and f([x|xs]) = g′(x, f(xs)) then f(xs) = foldr(g′,
e′, xs). As application, we can use HOLNDT over the particular function f → λxs.

pair(sum(xs), length(xs)), where pair is a data constructor, and

sum([]) → 0 length([]) → 0 fst(pair(x, y))→ x
sum([x|xs])→ x+sum(xs) lenght([x|xs])→ 1+length(xs) snd(pair(x, y))→ y

to compute E′ and G′ s.t. f([]) == E′ and λx, xs.f([x|xs]) == λx, xs.G′(x,
f(xs)). We obtain the solutions {E′ �→ pair(0, 0)} and {G′ �→ λu, z.pair(u +
fst(z), 1+ snd(z))}. For example, we have the following HOLNDT-refutation cor-
responding to {E′ �→ pair(0, 0)} ∈ A({{f([]) ==? E′}}):

〈{{f([]) ==? E′}} | ∅〉 ⇒ (ann)
〈{{f([]) ==?

H E
′}} | {H}〉 ⇒{} (on)1

〈{{λxs.〈f([]), Tf 〉 �? R,R ==?
H E

′}} | {H}〉 ⇒{} (ev)(2)
〈{{pair(sum([]), length([])) �? R, R ==?

H E
′}} | {H}〉 ⇒{R �→ pair(R1,R2)} (i)3

〈{{sum([]) �? R1, length([]) �? R2, pair(R1, R2) ==?
H E

′}} | {H}〉 ⇒2
{} (rn)

〈{{λx, xs.〈sum([]), Tsum〉 �? R1, λx, xs.〈length([]), Tlength〉 �? R2,
pair(R1, R2) ==?

H E
′}} | {H}〉 ⇒2

{} (ev)(1)

182 R. del Vado Vı́rseda

〈{{〈sum([]), Tsum([])〉 �? R1, 〈length([]), Tlength([])〉 �? R2,
pair(R1, R2) ==?

H E
′}} | {H}〉 ⇒2

{} (ev)(2)

〈{{0 �? R1, 0 �? R2, pair(R1, R2) ==?
H E

′}} | {H}〉 ⇒2
{R1 �→0,R2 �→0} (i)3

〈{{pair(0, 0) ==?
H E

′}} | {H}〉 ⇒{E′ �→pair(X,Y),H �→pair(H1,H2)} (i)1
〈{{X ==?

H1 0, Y ==?
H2 0}} | {pair(H1, H2), pair(X, Y)}〉⇒2

{X �→0,Y �→0,H1 �→0,H2 �→0} (i)1
〈{{ }} | {pair(0, 0), pair(0, 0), 0, 0}〉. �%

4 Main Properties

The main properties of the calculus relate the solutions of a goal to the ans-
wers computed by HOLNDT. First, we analyze how much local information about
Soln(G) is carried by A(G) to prove correctness of a single HOLNDT-step.

Lemma 4 (Local Soundness). If P ∈ Adm and P ⇒σ P ′ is a HOLNDT-step
then P ′ ∈ Adm and {σγ | γ ∈ [[P ′]]} ⊆ [[P]]. Moreover, if P ∈ Adm satisfies the
preconditions of a transformation rule for failure detection, then [[P]] = ∅.

This property corresponds to “narrowing” the set of possible computed answers
by each transformation step. Now, the soundness is quite easy to achieve from
Lemma 4: we must check that each inference step in a derivation is locally sound.

Theorem 1 (Soundness). Let Π : 〈G | ∅〉 ⇒∗
σ P ′ be a HOLNDT-derivation.

Then, σγ ∈ Soln(G) whenever γ ∈ [[P ′]].

Proof. Let γ ∈ [[P ′]]. We prove by induction on the length of Π that σγ ∈
Soln(G). If |Π | = 0 then σ = {} and σγ = γ ∈ [[P ′]] = [[〈G | ∅〉]] = Soln(G).
If |Π | > 0 then we can write Π : 〈G | ∅〉 ⇒∗

σ1
P1 ⇒σ2 P ′. By Lemma 4,

we know that σ2γ ∈ [[P1]]. We can now apply the IH to the shorter derivation
〈G | ∅〉⇒∗

σ1
P and learn that σγ = σ1σ2γ ∈ [[〈G | ∅〉]] = Soln(G). �"

Completeness is much more difficult to ensure: we must verify that any solution
γ of a given goal G will be eventually approximated, i.e., that we will eventually
reach a representation Sfin = 〈G′ | K′〉 of a computed answer γ′ such that
γ′ ≤ γ [FV(G)]. This approximation process must take into account all the
possible shapes of elementary goals, and make sure that progress can be made
towards reaching Sfin. We achieve this by looking at the syntactic structures of
atomic goals, the solution γ which we want to approximate, and the witness tree
that γ is a solution of the given goal, and show how these grouped structures
or triples (called configurations of a set of admissible configurations Cfg) can
be looked up for computing a representation Sfin of an approximation of γ by
means of a well-founded ordering * over Cfg.

Lemma 5 (Progress). There exists a poset (Cfg, *) with * well-founded, and
a surjection 3 : Cfg → Adm, such that, if P = 〈G | K〉 ∈ Adm is a non-final
state, W is a finite set of variables, and γ ∈ [[P]] with Dom(γ) ⊆ V, then there
exist P ′ = 〈G′ | K′〉 ∈ Adm, γ′ ∈ [[P ′]], and a HOLNDT-step P ⇒σ P ′, with
3(P) * 3(P ′) and γ = σγ′ [W].

A Higher-Order Demand-Driven Narrowing Calculus 183

We are ready now to state our completeness result by application of Lemma 5.

Theorem 2 (Strong Completeness). Let G = {{sn ==? tn}}. Then, A(G) =
{γ	FV(G) | γ ∈ Soln(G)}.
Proof. Since A(G) ⊆ Soln(G) by soundness (Theorem 1), we must only show
that Soln(G) ⊆ A(G). Let γ ∈ Soln(G), P = 〈G | ∅〉, and W0 = FV(G) ∪
Dom(γ). First, we prove that, for every given admissible state P , any finite set
of variables W , and γ ∈ [[P]], there exists a HOLNDT-refutation Φ : P ⇒∗

σ P ′ such
that γ = σγ′ [W] for some γ′ ∈ [[P ′]]. The proof is by induction with respect to
the well-founded ordering * introduced in Lemma 5.

If P is final then we can choose Φ : P ⇒0
{} P and γ′ = γ. Otherwise, we can

apply Lemma 5 to determine P1 = 〈G1 | K1〉, γ1 ∈ [[P1]], and a HOLNDT-step
ϕ : P ⇒σ1 P1 with 3(P) * 3(P1) and γ = σ1γ1 [W]. Let W ′ = W ∪FV({Xσ1 |
X ∈ W}). By IH for 3(P1), there exists a HOLNDT-refutation Φ′ : P1 ⇒∗

σ′ P ′ such
that γ1 = σ′γ′	W ′ for some γ′ ∈ [[P ′]]. Let σ = σ1σ

′ and Φ the HOLNDT-refutation
obtained by prepending ϕ to Φ′. Then, Φ : P ⇒∗

σ P ′ and σγ′ is a computed
answer. Also, γ	W = σ1γ1	W = σ1σ

′γ′	W = σγ′	W , and this concludes our
preliminary proof. In particular, if γ ∈ Soln(G) then γ ∈ [[P]] where P = 〈G | ∅〉.
According to our preliminary result, there exists a HOLNDT-refutation Φ : P ⇒∗

σ

P ′ such that γ = σγ′ [FV(G)] for some γ′ ∈ [[P ′]]. Thus, σγ′	FV(G) ∈ A(G),
σγ′	FV(G) = γ	FV(G), and γ ∈ A(G). �"
Our proof reveals that HOLNDT is strongly complete, i.e., completeness does not
depend on the choice of the selectable atomic goal in the current state.

5 Conclusion and Future Work

We have presented a generalization of the first-order Constructor-based ReWri-
ting Logic CRWL [4] to the more expressive setting of the simply typed λ-calculus,
in order to define a higher-order demand-driven narrowing calculus HOLNDT for
higher-order functional-logic programming. We have proved that HOLNDT con-
serves the good properties of the needed narrowing strategy [7], while being
sound and strongly complete w.r.t. our higher-order conditional rewriting logic.
Higher-order overlapping definitional trees are used to efficiently control the nar-
rowing strategy for answering joinability and reducibility queries, extending and
generalizing the first-order case [2], which guarantee the usefulness of HOLNDT.

Because of these results, we plan to implement the HOLNDT calculus in Mathe-
matica [6], a good framework for working with rewrite systems and narrowing.
We hope that the implemented calculus serves as a functional-logic program-
ming languages interpreter, allowing researchers in this field write higher-order
functional-logic programs combined with powerful Mathematica rewrite rules.

References

1. Antoy, S.: Optimal non-deterministic functional logic computations. In: Hanus,
M., Heering, J., Meinke, K. (eds.) ALP 1997 and HOA 1997. LNCS, vol. 1298, pp.
16–30. Springer, Heidelberg (1997)

184 R. del Vado Vı́rseda

2. del Vado Vı́rseda, R.: A demand-driven narrowing calculus with overlapping defi-
nitional trees. In: PPDP, pp. 253–263 (2003)

3. del Vado Vı́rseda, R.: Declarative constraint programming with definitional trees.
In: FroCos, pp. 184–199 (2005)

4. González-Moreno, J.C., Hortalá-González, M.T., López-Fraguas, F.J., Rodŕıguez-
Artalejo, M.: An approach to declarative programming based on a rewriting logic.
J. Log. Program. 40(1), 47–87 (1999)

5. González-Moreno, J.C., Hortalá-González, M.T., Rodŕıguez-Artalejo, M.: A higher
order rewriting logic for functional logic programming. In: ICLP, pp. 153–167
(1997)

6. Hamada, M., Ida, T.: Implementation of lazy narrowing calculi in mathematica.
Technical report, RISC, Johannes Kepler University, Austria (1997)

7. Hanus, M., Prehofer, C.: Higher-order narrowing with definitional trees. J. Funct.
Program. 9(1), 33–75 (1999)

8. Hindley, J.R., Seldin, J.P.: Introduction to Combinatorics and λ-Calculus. Cam-
bridge University Press, Cambridge (1986)

9. Ida, T., Marin, M., Suzuki, T.: Higher-order lazy narrowing calculus: A solver for
higher-order equations. In: Moreno-Dı́az Jr., R., Buchberger, B., Freire, J.-L. (eds.)
EUROCAST 2001. LNCS, vol. 2178, pp. 479–493. Springer, Heidelberg (2001)

10. Miller, D.: A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. J. Log. Comput. 1(4), 497–536 (1991)

Distributed Time-Asynchronous Automata

Cătălin Dima1 and Ruggero Lanotte2

1 LACL, Université Paris 12, 61 av. du Général de Gaulle,
94010 Créteil Cedex, France

2 Università dell’Insubria, Via Valleggio 11, 22100, Como, Italy

Abstract. We show that the class of distributed time-asynchronous au-
tomata is more expressive than timed automata, has a decidable empti-
ness problem, is closed under union, concatenation, star, shuffle and
renaming, but not under intersection. The closure results are obtained
by showing that distributed time-asynchronous automata are equivalent
with a subclass of shuffle regular expressions and its related class of stop-
watch automata.

1 Introduction

The theory of timed systems has reached a certain level of sofistication, proved
by the various results in decidability for automata with dense timing [2,9,11],
logical characterizations [8], regular expressions [4,7], monoidal characterizations
[5]. However, as E. Asarin has noted in [3], the picture is still not that “nice”
in the timed setting as it is in the untimed setting, and [3] states a number
of challenges for enriching this picture, among which the first challenge is “to
complete [...] a theory of timed systems and timed languages”. The study of
new classes of automata that have different expressive power than existing ones,
though being decidable, can be a means to complete the timed languages picture.

We investigate here the class of distributed time-asynchronous automata, which
are tuples of timed automata synchronized on input symbols and whose time-
passage transitions are asynchronous (i.e. time is local to each automaton). Each
automaton owns a set of clocks which only the owner can reset, but everyone may
check the value of everyone’s clocks. Synchronizations take place by jointly ac-
cepting an input symbol while testing global clock constraints (but note that we
do not consider here distributed alphabets, in the sense of [13]). As we show, this
class of automata has a decidable emptiness problem and are strictly more expres-
sive than timed automata and incomparable with the rectangular automata of [9].
They are inspired from [10], being an intermediary step between the distributed
timed automata and the interleaved timed automata of [10].

We investigate here the closure properties of this class, by comparing it with
the class of timed shuffle expressions, which were suggested in [3] and stud-
ied in [7], where they were showed to be equivalent with stopwatch automata.
Shuffle and stopwatches, as noted in [7], model preemptive scheduling, and their
study would help understanding the benefits of using automata theory in solving
scheduling problems [1].

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 185–200, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

186 C. Dima and R. Lanotte

Clearly, distributed time-asynchronous automata are strictly less expressive
than stopwatch automata and timed shuffle expressions. However we may pro-
vide a subclass of shuffle expressions, called here fair shuffle expressions that are
equivalent with distributed time-asynchronous automata. Fair shuffle expressions
are only allowed to intersect with untimed regular expressions. This amounts to
the fact that distributed timed automata are closed under union, concatenation,
star, shuffle and renaming, but not under intersection. The equivalence result
is proved by showing that our automata are equivalent with a subclass of stop-
watch automata [9], called here partitioned stopwatch automata in which the set
of stopwatches is partitioned into disjoint classes. Then, at each location, stop-
watches in only one class are allowed to be active. The interesting fact about
this equivalence is that global clock constraints suffice for simulating the central-
ized control in a partitioned stopwatch automaton – there is no need to be able
to reset, in a component of a distributed time-asynchronous automaton, some
clocks that are not owned by that component.

Finally, the result on nonclosure under intersection is proved by reducing
the problem to checking that, when considering only private clocksets, that is,
clock constraints in component i only refer to clocks owned by component i,
then a certain language accepted by a (general) stopwatch automaton cannot be
accepted by a distributed time-asynchronous automaton modulo renaming.

The paper goes on as follows: in the next section we introduce our class of
distributed time-asynchronous automata and recall the definition of stopwatch
automata. In the third section, we recall the timed shuffle expressions and intro-
duce the fair shuffle expressions, then show the equivalence between distributed
time-asynchronous automata, partitioned stopwatch automata and fair shuffle
expressions. The fourth section shows the nonclosure under intersection of dis-
tributed time-asynchronous automata. We end with a section of conclusions.

2 Basic Notions

A timed word, also called timed event sequence, is a finite sequence of nonnegative
numbers and symbols from Σ. For example, the sequence 1.2 a 1.3 b denotes a
behavior in which an action a occurs 1.2 time units after the beginning of the
observation, and after another 1.3 time units action b occurs. The length �(w) of
a timed word w is the sum of all the reals in it, e.g. �(1.2 a 1.3 b) = 1.2+1.3 = 2.5.
Timed (event) languages are then sets of timed words.

Several operations on timed words will be used in this paper. The first is
concatenation, which extends the classic concatenation of untimed words by
considering that concatenation of two reals amounts to summation of the reals.
Hence, a 1.3·1.7 b c 0.4 = a(1.3+1.7)b = a 3 b c 0.4. The second operation on timed
words is shuffle, which is formally defined as follows: for each w1, w2 ∈ TW(Σ),
w1 w2 =

{
u1v1 . . . unvn | w1 = u1 . . . un, w2 = v1 . . . vn

}
.

Concatenation and shuffle can be straightforwardly extended to languages, so,
given L1, L2 ⊆ TW(Σ), we will denote L1 · L2 =

{
w1 · w2 | w1 ∈ L1, w2 ∈ L2

}
and L1 L2 =

⋃{
w1 w2 | w1 ∈ L1, w2 ∈ L2

}
.

Distributed Time-Asynchronous Automata 187

Another useful operation on timed languages is renaming: it replaces syn-
tactically symbols with other symbols, while keeping durations the same. The
renaming of a ∈ Σ with b ∈ Σ is denoted [a/b]. We also use deletion, which
removes a symbol from a timed word, and consider it as a special case of
renaming. The deletion of a symbol a ∈ Σ is denoted [a/ε]. For example,
[a/c, b/ε]

(
1.3 a 1.2 b 0.1 a

)
= 1.3 c 1.3 c.

All our automata use nonnegative real-valued variables that are called clocks
when used in timed automata, resp. stopwatches when used in stopwatch au-
tomata. The values of such variables may inhibit or allow taking some transition.
Formally, transitions are enabled by clock constraints which are positive boolean
combinations of elementary constraints of the type x ∈ I, with x being a (clock
or stopwatch) variable and I ⊆ R≥0 an interval with bounds in Z ∪ {∞}. The
set of constraints with variables in a given set X is denoted Constr(X).

Given v : X → R≥0 and C ∈ Constr(X), we denote as usual v |= C if C holds
when all occurrences of each x ∈ X are replaced with v(x). We also denote v+ t
the valuation (v + t) : X → R≥0 defined by (v + t)(x) = v(x) + t for all x ∈ X .
Further, for Y ⊆ X , we denote v

Y
the valuation v

Y
: Y → R≥0 defined by

v
Y

(x) = v(x) for all x ∈ Y .
A final notion to be employed is clock (or stopwatch) reset : given a valuation

v : X → R≥0 and a subset Y ⊆ X , we denote v[Y := 0] the clock valuation
defined by v[Y := 0](x) = 0 when x ∈ Y and v[Y := 0](x) = v(x) when x �∈ Y .

2.1 Distributed Timed Automata

Definition 1. A distributed time-asynchronous automaton is a tuple
A = (Q1, . . . , Qn, Σ,X1, . . . , Xn, δ1, . . . , δn, q

0
1 , . . . , q

0
n, F1, . . . Fn) where Σ is a

finite set of symbols, X1, . . . , Xn are n finite, pairwise-disjoint sets of clocks,
Q1, . . . , Qn are n finite sets of locations, q0i ∈ Qi are initial locations, Fi ⊆ Qi

are subsets of final locations, and δ1, . . . , δn are transition relations, with δi ⊆{
q

C,a,Y−−−−→ r | q, r ∈ Qi, a ∈ Σ ∪ {ε}, C ∈ Constr(X), Y ⊆ Xi

}
.

A timed automaton is a distributed time-asynchronous automaton with only
one component.

A distributed time-asynchronous automaton with private clocksets
is a distributed time-asynchronous automaton in which each component can test
only clocks in Xi, i.e., for all 1≤ i≤n, if q

C,a,Y−−−−→ q′∈δi then C∈Constr(Xi).

We denote in the sequel X =
⋃

1≤i≤nXi.
Intuitively, an distributed time-asynchronous automaton can make time-

passage transitions in which clocks in different components evolve independently,
and discrete transitions in which components may synchronize. Synchronizations
take place by jointly accepting an input symbol while testing global clock con-
straints, and then reseting some clocks. This amounts to the fact that each
component can see the value of every clock.

Formally, the semantics of a distributed time-asynchronous automaton is given
as a timed transition system T (A) = (Q, θ,Q0,Qf) where Q = Q1 × . . .×Qn ×

188 C. Dima and R. Lanotte

Rn
≥0 represents the set of system states, Q0 = {(q10 , . . . , qn0)}×{0n} is the initial

state, F = F1×. . .×Fn×Rn
≥0 are the final states, while θ is the set of transitions:

θ =
{
(q1, . . . , qn, v)

t−→ (q1, . . . , qn, v′) | ∀1 ≤ i ≤ n, qi ∈ Qi and

∃ti ∈ R≥0 with v′
Xi

= v
Xi

+ ti and t = t1 + . . .+ tn
}

∪
{
(q1, . . . , qn, v)

a−→ (q′1, . . . , q
′
n, v

′) | ∀1 ≤ i ≤ n ∃Ci ∈ Constr(X) with v |= Ci

and ∃Yi ⊆ Xi with qi
Ci,a,Yi−−−−−→ q′i ∈ δi and v′ = v[Y1 ∪ . . . ∪ Yn := 0]

}
∪
{
(q1, . . . , qn, v)

ε−→ (q′1, . . . , q
′
n, v

′) | ∃1 ≤ i ≤ n ∃Ci ∈ Constr(X), with v |= Ci

and ∃Yi ⊆ Xi with qi
Ci,ε,Yi−−−−→ q′i ∈ δi, v′ = v[Yi := 0] and ∀j �= i, q′j = qj

}
Informally, distributed time-asynchronous automata can make time passage

transitions or discrete transitions. In time passage transitions, all components
evolve independently one of the other, the local times being incremented indepen-
dently, which will increment the global time with the sum of local increments.
Discrete transitions are of two types: synchronizing transitions and asynchro-
nous, silent transitions. In synchronizing transitions, each component checks the
validity of a clock constraint and, upon validity, all agree on the same symbol
a ∈ Σ and reset some clocks while changing location. Only clocks “owned by”
component i (i.e. x ∈ Xi) can be reset by component i, but any component may
read clocks not owned by it. Finally, in silent transitions, a specified component
checks for the validity of a clock constraint, then resets some clocks it owns and
changes location “silently”, i.e. on an ε-transition.

A trajectory inA is a sequence of transitions in θ, τ=
(
(qj−1

1 , . . . , qj−1
n , vj−1)

ξj−→
(qj1, . . . , q

j
n, vj)

)
1≤j≤m

, where ξj ∈ Σ ∪ {ε} ∪ R≥0 for all 1 ≤ j ≤ m. Note that
each trajectory starts in the initial state of T (A). The trajectory τ is accepting
if it ends in Qf and does not end with a time passage transition. The timed
word accepted by τ is acc(τ) = ξ1 . . . , ξm. The timed language accepted by A
is L(A) = {acc(r) | r is accepted by A}. An example of a distributed time-
asynchronous automaton is given in Figure 1 below. Note that this language is
not timed regular, that is, cannot be accepted by a timed automaton – see [7].

���
��

�
y1 = 0, a, ∅

��
��

�

y2 ∈]0, 1[
a, {y1}

��
��

�
y1 = 0, a, ∅

��
��

�
y2 = 1, a, ∅

��
���

���
��

�

x2 ∈]0, 1[
a, {x1}

��
��

�
x1 = 0, a, ∅

��
��

�
x2 = 1, a, {x1}

��
��

�
x1 = 0, a, ∅

��
���

Fig. 1. The two components of a distributed time-asynchronous automaton recognizing
the language {t1 a t2 a t3 a t4 a | t1, t2, t3, t4 ∈]0, 1[, t1 + t3 = 1 ∧ t2 + t4 = 1}

Distributed Time-Asynchronous Automata 189

2.2 Stopwatch Automata

Definition 2. A stopwatch automaton is a tuple A = (Q,Σ,X, γ, δ, q0, F)
where Q is a finite set of locations, Σ is a finite set of symbols and X is a finite
set of stopwatches, γ : Q → P(X) is a mapping assigning to each location the
set of stopwatches that are active in that location, q0 ∈ Q is the initial location,
F ⊆ Q the set of final locations, and δ is a finite set of transitions with

δ ⊆
{
q

C,a,Y−−−−→ r | q, r ∈ Q, a ∈ Σ ∪ {ε}, C ∈ Constr(X), Y ⊆ X)
}

A partitioned stopwatch automaton is a stopwatch automaton in which

∀q, q′ ∈ Q, γ(q) �= γ(q′) ⇒ γ(q) ∩ γ(q′) = ∅

Similarly to distributed time-asynchronous automata, we give the semantics of a
stopwatch automaton as a timed transition system T (A) = (Q, θ,Q0,Qf) where
Q = Q×Rn

≥0 is the set of states, Q0 = {(q0,0n)} is the (singleton) set of initial
states, Qf = Qf × Rn

≥0 is the set of final states and

θ =
{
(q, v) t−→ (q, v′) | t ∈ R≥0, v

′
γ(q)

= v
γ(q)

+ t, v′
X\γ(q)

= v
X\γ(q)

}
∪
{
(q, v) a−→ (q′, v′) | a ∈ Σ ∪ {ε}, ∃(q, C, a, Y, q′) ∈ δ such that v |= C

and v′ = v[Y := 0]
}

Informally, the automaton can make time passage transitions in which all stop-
watches that are active in some location advance by τ , and discrete transitions,
in which location changes. The discrete transitions are enabled when the current
stopwatch valuation v satisfies the guardC of a certain transition q

C,a,X−−−−→ q′ ∈ δ,
and when they are executed, the stopwatches in the reset component X are set
to zero.

Formally, a trajectory in T (A) is a chain ρ =
(
(qi−1, vi−1)

ξi−→ (qi, vi)
)

1≤i≤k

of transitions from θ that starts in Q0. An accepting trajectory is a trajectory
which ends in Qf and does not end with a time passage transition. The ac-

cepting trajectory ρ =
(
(qi−1, vi−1)

ξi−→ (qi, vi)
)

1≤i≤k
accepts the timed word

acc(ρ) = ξ1ξ2 . . . ξk. The language accepted by A is then L(A) =
{
acc(ρ) |

ρ is an accepting trajectory
}
.

An example of a stopwatch automaton is given in Figure 2, and an example
of a partitioned stopwatch automaton is given in Figure 3 below. Note that the
timed language from Figure 1 is the same as for the automaton in Figure 3. Note
also that the timed language in Figure 2 is not timed regular either.

Before ending this section, we state some useful properties of partitioned stop-
watch automata.

Proposition 1. For each partitioned stopwatch automaton A, there exists an
equivalent partitioned stopwatch automaton B satisfying the following properties:

190 C. Dima and R. Lanotte

�
��
��
x1, x3 �

x1 ∈]0, 1[
a, ∅

��
��
x2 �

x2 ∈]0, 1[
a, ∅

��
��
x1 �

x1 = 1, a, ∅

��
��
x2, x3 �

x2 = 1 ∧ x3 = 1
a, ∅

��
��
��
��

Fig. 2. A stopwatch automaton recognizing the language {t1 a t2 a t3 a t4 a |
t1, t2, t3, t4 ∈]0, 1[, t1 + t3 = t2 + t4 = t1 + t4 = 1}

���
��
x1 �

x1 ∈]0, 1[
a, ∅

��
��
x2 �

x2 ∈]0, 1[
a, ∅

��
��
x1 �

a, x1 = 1, ∅

��
��
x2 �

a, x2 = 1, ∅

��
���

Fig. 3. A partitioned stopwatch automaton recognizing the language
{t1 a t2 a t3 a t4 a | t1, t2, t3, t4 ∈]0, 1[, t1 + t3 = 1 ∧ t2 + t4 = 1}

1. Between any two locations q, r there exists at most one transition, and there
are no self-loops (i.e. no transitions q

C,a,Y−−−−→ q).
2. Exactly one of the following conditions is satisfied:

(a) Either for each transition q
C,a,Y−−−−→ r, we have that Y ⊆ γ(q) and C ∈

Constr(γ(q)).
(b) Or for each transition q

C,a,Y−−−−→ r, we have that Y ⊆ γ(r) and C ∈
Constr(γ(r)).

3. If q ∈ Q is the target of a visible (i.e. non-ε) transition, then any transition
leading to q is visible.

4. A must spend a non-zero amount of time in each location which is the source
or the target of some ε-transition: there exists a stopwatch ξi ∈ Xi which
is reset when entering each location q with γ(q) = Xi. Moreover, on each

transition q
C,ε,Y−−−−→ q′ or on each transition r

C,a,Y−−−−→ r′ in which r is the
target of ε-transitions, then C contains also a constraint of the form ξi ∈ I
with I ⊆]0,∞[.

These results rely on straightforward state-splitting constructions.

2.3 Decidability of the Reachability Problem for Partitioned
Stopwatch Automata

A zone (see [12,6]) is a nonempty n-dimensional convex set of points character-
ized by a constraint of the form CZ =

∧
0≤i,j≤nxi−xj ∈ Iij , where x0 = 0 and

Iij are non-negative intervals with integer bounds. In the sequel, we consider
only zones that use variables from a set of stopwatches (or clocks) X .

An M -region, with M ∈ R≥0, is a zone R for which there exists Y ⊆ X such
that some constraint characterizing R can be put in the following format:

CR =
∧

x∈Y
(x ∈ Ix) ∧

∧
x,y∈Y,x
=y

x− y ∈ Ixy ∧
∧

x∈X\Y
x ∈]M,∞[

where for each x, y ∈ X,x �= y:

Distributed Time-Asynchronous Automata 191

– Either Ix ={α} with α∈N, α≤M , or Ix =]α, α+1[with α∈N, α≤M−1,
– Either Ixy = {α} with α ∈ N, −M ≤ α ≤M , or Ix =]α, α+ 1[with α ∈ N,
−M ≤ α ≤M − 1,

We denote RegA the set of regions for the automaton A.
The following theorem adapts the well-known region construction of [2] for

partitioned stopwatch automata:

Theorem 1. The reachability problem for the class of partitioned stopwatch au-
tomata is decidable.

Proof. Consider a partitioned stopwatch automaton A = (Q,Σ,X, γ, δ, q0, F)
and denote n = card

{
γ(q) | q ∈ Q

}
the number of partitions of the set of

stopwatchesX , and denote these partitions asX1, . . . , Xn. The region automaton
corresponding to A will then be the following: RA =

(
Q × Regn

A, δR, r0,Rf

)
where r0 = (q0,0X1 , . . . ,0Xn), Rf =

{
(q,R1, . . . , Rn) | q ∈ QF

}
and

δR =
{
(q,R1, . . . , Rn) −→ (q,R′1, . . . , R

′
n) | ∃(q,v) ξ−→ (q′,v′)∈θ, ξ∈R≥0∪Σ∪{ε}

such that ∀1 ≤ i ≤ n, Ri, R
′
i ∈ RegA and v

Xi
∈ Ri, v

′
Xi
∈ R′i

}
It is easy to see that L(A) is not empty if and only if RA has at least one

reachable final configuration. �"

3 Shuffle Regular Expressions

In this section we recall the notion of timed shuffle expression and its relationship
with stopwatch autoamta. We then define the subclass of fair shuffle expressions,
which will be proved to be equivalent with distributed time-asynchronous au-
tomata.

Definition 3. The set of timed shuffle expressions over a set of symbols Σ
is recursively defined as follows:

E ::= a | t | 〈E〉I | f(E) | E1 E2 | E1 + E2 | E1 ∧ E2 | (E)∗

where a ∈ Σ ∪ {ε}, I ⊆ R≥0 is an interval with integer and nonnegative bounds,
or infinite bounds. and f : Σ → Σ ∪ {ε} is a renaming function.

A timed regular expression is a timed shuffle expression constructed with-
out the operator and an untimed shuffle expression is a shuffled timed
expression constructed without the operator 〈 〉I .

The semantics of a timed shuffle expression E is denoted ‖E‖ and is given by
the following rules:

192 C. Dima and R. Lanotte

‖a‖ = {a} ‖t‖ = {t | t ∈ R≥0}
‖E1 + E2‖ = ‖E1‖ ∪ ‖E2‖ ‖E∗‖ = ‖E‖∗

‖E1 ∧ E2‖ = ‖E1‖ ∩ ‖E2‖ ‖〈E〉I‖ =
{
w ∈ ‖E‖ | �(w) ∈ I

}
‖E1 · E2‖ = ‖E1‖ · ‖E2‖ ‖E1 E2‖ = ‖E1‖ ‖E2‖
‖f(E)‖ =

{
f(w) | w ∈ ‖E‖

}
Theorem 2 ([4,7]). Timed regular expressions are equivalent with timed au-
tomata and timed shuffle expressions are equivalent with stopwatch automata.

The following expression is equivalent with the automaton in Figure 2:

[z1/ε, z2/ε, z3/ε, z4/ε]
(
(〈z1〈t〉]0,1[az3〈t〉]0,1[a〉1) (〈z2〈t〉]0,1[z4〈t〉]0,1[a〉1)

)
∧
(
((z2taz3ta) (〈z1taz4ta〉1)

)
Definition 4. The set of fair shuffle expressions is the subset of timed
shuffle expressions defined recursively as follows:

F ::= U | f(F) | F1 + F2 | F ∧ T | (F)∗ | F1 F2

where T is a timed expression, U is an untimed expression and f : Σ → Σ ∪{ε}
is a renaming.

The following expression is a fair shuffle expression which is equivalent with the
partitioned stopwatch automaton in Figure 3:

[z1/ε, z2/ε]
(
(z1taz2taz1taz2ta) ∧ (〈z1〈t〉]0,1[az1ta〉1) (〈z2〈t〉]0,1[z2ta〉1)

)
3.1 Relations Between Partitioned Stopwatch Automata and Fair

Shuffle Expressions

Theorem 3. Partitioned stopwatch automata are equivalent with fair shuffle
expressions, and the equivalence is effective.

Proof. For the left-to-right inclusion, consider a partitioned stopwatch automa-
ton A = (Q,Σ,X, γ, δ, q0, F). The set of states Q can be partitioned into S1, . . . ,
Sn states such that γ(q) = γ(q′) iff q, q′ ∈ Si, for some i. By means of Proposition

1, we can assume that if q
C,a,Y−−−−→ q′ ∈ δ, then Y ⊆ γ(q) and C ∈ Constr(γ(q)).

The idea is to construct n timed automata A1, . . . ,An such that each Ai per-
forms all the actions of A while letting time pass only in states from Si. The
languages of all Ai will be shuffled, and intersected with the language of an
untimed automaton that will ensure proper interleaving. This proper interleav-
ing is also ensured by considering distinct labeling for each transition and by
introducing a new symbol ζ, to be performed instantaneously in each Ai before
each step that simulates a step of A. This is needed for keeping from mixing

Distributed Time-Asynchronous Automata 193

time elapses within Ai with time elapses within Aj when they are shuffled. This
technique is a variation of the one used in [7]. Finally, each timed automaton
will reference a new clock xi which is needed for ensuring that time passage is 0
in each automaton Ai while passing through a state q with γ(q) �= Xi.

Formally Ai = (Q × {1, 2}, Σi, Xi, δi, q
i
0 = (q0, 1), F × {1, 2}) with Σi =

{ζ} ∪ {q C,a,Y−−−−→ q′ | q C,a,Y−−−−→ q′ ∈ δ and q ∈ Si}, Xi = γ(Si) ∪ {xi} and:

δ =
{
(q, 1)

xi=0,ζ,∅−−−−−→ (q, 2) | q ∈ Q
}

∪
{
(q, 2)

C,(q,C,a,X,q′),Y ∪{(xi,0)}−−−−−−−−−−−−−−−−−→ (r, 1) | q C,a,Y−−−−→ r ∈ δ and q ∈ Si

}
∪
{
(q, 2)

(xi=0),ε,{(xi,0)}−−−−−−−−−−−→ (r, 1)) | q C,a,Y−−−−→ r ∈ δ and q �∈ Si

}
As a consequence of Theorem 2, we can construct timed expressions T1, . . . , Tn

such that ‖Ti‖ = L(Ai) for all 1 ≤ i ≤ n. Note that Ti expresses the accepting
trajectories ofA projected to states in Si and with the introduction of the symbol
ζ at the beginning of each step. More precisely, for any i,

ρ = (q1, v1)
t1−→ (q1, v̂1)

a1−→ . . . (qm, vm) tm−→ (qm, v̂m) . . . am−→ (qm+1, vm+1)

is an accepting trajectory ofA iff, for any i, there exists ζt′1a′1ζ ·. . .·ζt′ma′m ∈ ‖Ti‖

s.t. for all j, t′j =
{
tj if qj ∈ Si

0 otherwise , aj =
{

(qj , aj , qj+1) if qj ∈ Si

ε otherwise . Let then f be

the renaming f :
⋃

i∈[1,n]Σi → Σ defined by f(q, C, a, Y, q′) = a and f(ζ) = ε.

Observe that not all timed words specified by T = f(T1 . . . Tn) might be
accepted by trajectories of A since the projected trajectories could be combined
in a non-coherent way. Formally, from ‖T ‖ we must only keep the strings of the
form (q0, C1, a1, Y1, q1)(q1, C2, a2, Y2, q2) . . . of (T1 . . . Tn). But T might also
contain strings of the form (q0, C1, a1, Y1, r1)(q1, C2, a2, Y2, r2) . . . with q1 �= r1.

Hence we need an extra expression that checks the right sequencing of states.
Consider then the timed automaton A′ = (Q×{1, 2},

⋃
i∈[1,n]Σ, ∅, δ′, (q0, 1), F×

{1, 2}) in which:

δ′ =
{
(q,1)

true,ζ,∅−−−−→(q,2)) | q∈Q
}
∪
{
(q,2)

true,(q,C,a,Y,q′),∅−−−−−−−−−−−→(q′, 1) | (q,C,a,Y,q′)∈δ
}

Since A′ has no clock constraint, we can construct an untimed expression ϑ
such that ‖ϑ‖ = L(A′). Finally, we have that L(A) = ((τ1 . . . τn) ∧ ϑ)[f].
This proves the left-to-right inclusion in Theorem 3.

For the right-to-left inclusion, we proceed by structural induction on the given
regular expression T . The case when T is a timed regular expression is already
covered by Theorem 2 while the cases of union, concatenation, star, shuffle and
renaming can be treated exactly as in [7].

For the intersection case, suppose T = T ′∧U , with T ′ a fair shuffle expression
and U an untimed expression. Then, by induction, there exist A1 a partitioned
stopwatch automaton and A2 a timed automaton such that L(A1) = ‖T ‖ and
L(A2) = ‖E‖. Let Ai = (Qi, Σ,Xi, γi, δi, q

i
0, Fi), for i = 1, 2.

194 C. Dima and R. Lanotte

Note that in U , between two symbols a, b we can have times equal to 0 (when
ab is a subexpression of U) or all possible times (when atb is a subexpression
of U). Therefore, we can assume that A2 is such that X2 = {xq|q ∈ Q2} and

each transition of A2 is of the form q
C,a,{xq′}−−−−−−→ q′ with C ∈ {true, xq = 0}.

We then construct a partitioned stopwatch automaton A = (Q1 × Q2, Σ,X1 ∪
X2, γ, δ, (q10, q

2
0), F1 × F2) in which γ(q, q′) = γ1(q) ∪ {xq′} and

δ = {(q1, q2)
C1∧C2,a,Y1∪Y2−−−−−−−−−−→ (q′1, q

′
2) | qi

Ci,a,Yi−−−−−→ q′i ∈ δi, i = 1, 2}

Note that the construction would not work with only one extra clock, since that
clock would have to belong to each γ(q), which would mean that the automaton
A is not partitioned. �"

Proposition 2. The class of partitioned stopwatch automata is closed under
union, renaming, shuffle, Kleene star but not under intersection.

Proof. Closure under union, renaming, shuffle, Kleene star is obvious since fair
shuffle expressions are.

For the proof of non-closure under intersection we rely on several results on
distributed time-asynchronous automata from the following section. �"

Theorem 4. The classes of distributed time-asynchronous automata and parti-
tioned stopwatch automata are equivalent.

Proof. For the left-to-right inclusion, consider first a distributed time-
asynchronous automaton A = (Q1, . . . , Qn, Σ,X1, . . . , Xn, δ1, . . . , δn, q

0
1 , . . . , q

0
n,

F1, . . . Fn).
The language L(A) is then straightforwardly equal with the language of the

partitioned stopwatch automaton A′ = (Q,Σ,X, γ, δ, q0, F) in which:

– Q = Q1 × . . . × Qn × {1, . . . , n} where index j represents the sequential
component for which the time elapses.

– The set of clocks is X =
⋃

i∈[1,n]Xi and γ is such that γ(q1, . . . , qn, j) = Xj .
– δ is the following set of transitions:

δ =
{
(q1, . . . , qn, j)

C,a,Y−−−−→ (q′1, . . . , q
′
n, j) | ∀1 ≤ i ≤ n ∃qi

Ci,a,Yi−−−−−→ q′i ∈ δi
with Y =

⋃
i∈[1,n]

Yi and C =
∧

1≤i≤n
Ci

}
∪
{
(q1, . . . , qi, . . . , qn, j)

C,ε,Y−−−−→ (q1, . . . , q′i, . . . , qn, j) | qi
C,ε,Y−−−−→ q′i ∈ δi

}
∪
{
(q1, . . . , qn, j)

true,ε,∅−−−−→ (q1, . . . , qn, j + 1)
)
| 1 ≤ j < n

}
∪
{
(q1, . . . , qn, n)

true,ε,∅−−−−→ (q1, . . . , qn, 1)
}

– q0 = (q10 , . . . , q0n) and F = F1 × . . .× Fn × {1, . . . , n}.

Distributed Time-Asynchronous Automata 195

The reverse proof requires a slightly more involved construction, since this
time we need to simulate some centralized control (the location of a parti-
tioned stopwatch automaton) by a distributed control, via synchronous read
of input and checking global constraints. The main problem here is posed by
ε-transitions.

Consider then a partitioned stopwatch automaton A = (Q,Σ,X, γ, δ, q0, F).
We will assume A satisfies conditions from Proposition 1. The main idea is to
construct a distributed time-asynchronous automaton with n components, where
n = card

{
γ(q) | q ∈ Q

}
is the number of partitions of X . Xi will be (part of)

the set of clocks that can be reset by component i. Each component will then
basically behave like A but keeping from reseting and updating clocks that are
not in Xi. A first (essential, but not sufficient) means of synchronization is the
use of Σ as a common input alphabet.

Additionnaly, we will employ a second set of clocks X whose elements will
be indexed by the set Q× {1, . . . , n}, which will be used to forbid local time to
advance in component i, when it reaches a location q with γ(q) �= Xi, that is,
a component j that does not own the set of clocks Xi. Hence, each clock x(q,i)

will be reset in each component j �= i when entering location q, and then tested
for 0 when j leaves q.

But we need a supplimentary mechanism to ensure full synchronization in the
presence of ε-transitions in the original automaton A. This mecanisms employs
an extra set of clocks Z =

{
z(q,r,i) | 1 ≤ i ≤ n and ∃q C,a,Y−−−−→ r ∈ δ

}
. Each clock

z(q,r,i) will be reset in each component exactly when the (unique) transition
between q and r is taken by the appropriate component.

The actual idea is that each component i guesses that the next transition is
q −→ r, by resetting the clock z(q,r,i); at the same time, it resets x(q,i). Immediately
after (fact which can be checked by x(q,i) = 0), each component checks that
everybody has guessed the same transition, by checking that

∧
1≤j≤n z(q,r,j) = 0.

Here we rely on assumption 4 in Proposition 1, which ensures that z(q,r,i) �=
0 when A crosses a ε-transition different from that connecting q and r. The
same reasoning will be employed when the transition between q and r is in Σ,
as this will ensure the components that they all agree on the transition that
links q to r, and do not employ some other transition that has the same input
label.

Formally, the distributed time-asynchronous automaton that is equivalent
with A is B =

(
Q1, . . . , Qn, Σ,X

′
1, . . . , X

′
n, δ1, . . . , δn, q

1
0 , . . . q

0
n, F1, . . . , Fn

)
where

1. Qi = (Q ∪ (Q×Q))× {i}, qi0 = (q0, i) and Fi = F × {i}.
2. X ′i = Xi ∪

{
x(q,i) | γ(q) �= Xi

}
∪
{
z(q,r,i) | 1 ≤ i ≤ n

}
.

3. δi consists of transitions

196 C. Dima and R. Lanotte

δ =
{
(q, i)

C,a,Y−−−−→ (q, r, i) | γ(q) = Xi and ∃q C,a,Y ′

−−−−→r∈δ, Y ={x(q,i), z(q,r,i)}
}

∪
{
(q, i)

C,a,Y−−−−→ (q, r, i) | γ(q) �= Xi and ∃q C′,a,Y ′

−−−−−→ r ∈ δ, C = (x(q,i) = 0)

and Y = {x(q,i), z(q,r,i)}
}

∪
{
(q, r, i)

C,a,Y−−−−→ (r, i) | γ(q) = Xi and ∃q C′,a,Y ′

−−−−−→ r ∈ δ,

C = C′ ∧ (x(q,i) = 0) ∧
∧

1≤j≤n

(z(q,r,j) = 0) and Y = Y ′
}

∪
{
(q, r, i)

C,a,Y−−−−→ (r, i) | γ(q) �= Xi and ∃q C′,a,Y ′

−−−−−→ r ∈ δ,

C = C′ ∧ (x(q,i) = 0) ∧
∧

1≤j≤n

(z(q,r,j) = 0) and Y = {x(r,i)}
}

Note first that, in any accepting trajectory, in locations of the type (q, r, i)
time cannot pass since they are needed for synchronization purposes, which is
achieved by resetting z(q,r,i) before entering that location, and then checking,
when leaving (q, r, i), that z(q,r,j) = 0 for all j.

We may then show that in any trajectory ρ =
(
(qj−1

1 , . . . , qj−1
n , vj−1)

ξj−→
(qj1, . . . , q

j
n, vj)

)
1≤j≤m

, each state (qj−1
1 , . . . , qj−1

n , vj−1) has the following prop-
erties

1. There exists a (possibly empty) subset Yj ⊆ {1, . . . , n} such that for each
i ∈ Yj there exist q, r ∈ Q such that qj−1

i = (q, r, i).
2. If Yj = ∅ then there exists q ∈ Q such that for all 1 ≤ i ≤ n, qji =

(q, i).
3. If Yj �= ∅ then and exactly one of the two following properties holds:

(a) Either for all 1 ≤ i ≤ n, i �∈ Yj , q
j
i = (q, i);

(b) Or for all 1 ≤ i ≤ n, i �∈ Y , qji = (r, i).

The correctness of this construction can then be proved by induction on

the length of an accepting trajectory in B, ρ =
(
(qj−1

1 , . . . , qj−1
n , vj−1)

ξj−→
(qj1, . . . , q

j
n, vj)

)
1≤j≤m

by showing that there exists a corresponding accepting

trajectory in A, ρ =
(
(rl−1, ul−1)

ζl−→ (rj , ul)
)
1≤l≤p

, which accepts the same
timed word. The choice of rj can be done as follows:

1. If Yj �= ∅ and hence qji = (q, r, i) for all i ∈ Yj , then we put rj = r.
2. If Yj = ∅ and hence qji = (q, i) for some q ∈ Q and all 1 ≤ i ≤ n, then we

put rj = q.
�"

4 Nonclosure Under Intersection of Partitioned
Stopwatch Automata

In this subsection we prove the non-closure result from Proposition 2:

Distributed Time-Asynchronous Automata 197

Proposition 3. The class of languages accepted by distributed time-asynchronous
automata is not closed under intersection.

The proof of result relies on a series of additional properties, starting with the
following:

Proposition 4. For each distributed time-asynchronous automaton
A = (Q1, . . . , Qn, Σ,X1, . . . , Xn, δ1, . . . , δn, q

0
1 , . . . , q

0
n, F1, . . . Fn) there exists a

distributed time-asynchronous automaton with private clocksets
B = (Q1, . . . , Qn, Σ,X1, . . . , Xn, δ1, . . . , δn, q

0
1, . . . , q

0
n, F 1, . . . Fn) and a renam-

ing f : Σ → Σ ∪ {ε} such that L(A) = f
(
L(B)

)
.

Moreover, if A contains no ε-transition, then f contains no symbol deletion.

Proof. The idea in the construction of B is to no longer have ε-transitions and
thus have only synchronizing discrete transitions. Then, synchronization done
by global constraints in A will be simulated by unique labels of the transitions.

If we recall that Q = Q1× . . .×Qn, F = F1 × . . .×Fn and q0 = (q10 , . . . , q
n
0),

then, formally, the components of B are:

– The set of locations is Qi = Q× {i}, with qi0 = (q0, i) and Fi = F × {i}.
– The set of inputs is

Σ =
{
(tr1, . . . , trn) | ∀1 ≤ i ≤ n, tri = q

C,a,Y−−−−→ r ∈ δi
}

∪
{
q

C,ε,Y−−−−→ r | q C,ε,Y−−−−→ r ∈ δi for some 1 ≤ i ≤ n
}}

– The i-th transition relation is:

δi =
{
(q, i)

Ci,ξ,Yi−−−−−→ (r, i) | q = (q1, . . . , qn), r = (r1, . . . , rn),

∀1 ≤ j ≤ n, ∃trj = qj
Cj ,a,Yj−−−−−→ rj ∈ δj , ξ = (tr1, . . . , trn), Ci = Ci Xi

}}
∪
{
(q, i)

Ci,ξ,Y i−−−−−→ (r, i) | q = (q1, . . . , qn), r = (r1, . . . , rn), and ∃j,

1 ≤ j ≤ n for which ∃trj = qj
Cj,ε,Yj−−−−−→ rj ∈ δj such that ξ = trj ,

Ci = Cj Xi
, Y i = Yj ∩Xi, and ∀l �= j, ql = rl

}
For each constraint C, we have denoted here C

Y
the sub-constraint of C

which uses only clocks in Y . �"

The following result is a generalization of Proposition 12 of [11] to the case of
distributed time-asynchronous automata with private clocksets:

Lemma 1. Given a distributed time-asynchronous automaton with private
clockset A suppose that all timed words in L(A) contain the same sequence of
symbols, L(A) =

{
t1a1 . . . tnantn+1 | ti ∈ R≥0

}
, for some a1, . . . , an ∈ Σ.

Then for each t1a1 . . . tnantn+1 ∈ L(A) there exists some k ∈ N and k se-
quences of time points (tji)1≤i≤n+1 (1 ≤ j ≤ k) such that

198 C. Dima and R. Lanotte

– ti =
∑

1≤j≤k t
j
i for all 1 ≤ i ≤ n+ 1.

– If, for each 1 ≤ j ≤ k, we denote Rj ⊆ R≥0
n+1 the region to which belongs

each (n+1)-dimensional point vj defined by vj
i =

∑
1≤l≤it

j
l (1 ≤ i ≤ n+1),

then for any other point uj ∈ R, if we define sji = uj
i − u

j
i−1 (with uj

0 = 0),
then (∑

1≤j≤k
sj1
)
a1 . . .

(∑
1≤j≤k

sjn
)
an

(∑
1≤j≤k

sjn+1

)
∈ L(A)

The last result that needed in the proof of Proposition 4 is the following:

Lemma 2 ([6]). For any region R ⊆ Rn
≥0 and subset of indices Y ⊆ {1, . . . , n},

if R
Y

denotes the restriction (or projection) of R onto points whose coordinates
belong to Y , then for any v ∈ R

Y
, there exist v′ ∈ R with v′

Y
= v.

Proof (of Proposition 4). Consider the timed language

L =
{
t1at2at3at4a | t1, t2, t3, t4 ∈]0, 1[, t1 + t3 = t2 + t4 = t1 + t4 = 1

}
L is the intersection of the language of the distributed time-asynchronous au-
tomaton in Figure 1 with the language of the distributed time-asynchronous
automaton in Figure 4, and is the language in Figure 2, hence is accepted by a
stopwatch automaton.

���
��

�
y1 = 0, a, ∅

��
��

�

y1 ∈]0, 1[
a, {y1}

��
��

�

y1 ∈]0, 1[
a, {y1}

��
��

�
y1 = 0, a, ∅

��
���

���
��

�

x2 ∈]0, 1[
a, {x1}

��
��

�
x1 = 0, a, {x1}

��
��

�
x1 = 0, a, ∅

��
��

�
x2 = 1, a, ∅

��
���

Fig. 4. The two components of a distributed time-asynchronous automaton recognizing
the language {t1 a t2 a t3 a t4 a | t1, t2, t3, t4 ∈]0, 1[, t1 + t4 = 1}

Suppose there exists a distributed time-asynchronous automaton with private
clocks A and a renaming f such that f(L(A)) = L. In the sequel, we will
present all elements of L(A) in the form t1a1(t2 − t1)a2 . . . (tn − tn−1)an, for
some (t1, . . . , tn) ∈ R≥0

n.
Take the timed word w = 0.3 a 0.3 a 0.7 a 0.7 a ∈ L, hence there exists a timed

word w′ ∈ L(A) with f(w′) = w. Suppose w′ = t1a1(t2− t1)a2 . . . (tn− tn−1)an.
Then, by Lemma 1, there exist k sequences of time points (tji)1≤i≤n (1 ≤ j ≤ k)
such that ti =

∑
1≤j≤k t

j
i , and regions Rj 4 tji which fulfill the properties in

Lemma 1.
Consider now the renaming f and suppose that f(al) = a for l ∈ I =

{i1, i2, i3, i4} and f(al) = ε otherwise. Hence,∑
1≤i≤i1

ti =
∑

i1<i≤i2
ti = 0.3

∑
i2<i≤i3

ti =
∑

i3<i≤i4
ti = 0.7

Distributed Time-Asynchronous Automata 199

By Lemma 2, if we consider the restriction of each region Rj to the set of
indices I, then for any uj ∈ Rj I (1 ≤ j ≤ k) there exists vj ∈ Rj with
uj = vj

I , But this means that for any timed word

w1 =
(∑

1≤j≤k

sj1

)
a
(∑

1≤j≤k

(sj2 − s
j
1)
)
a
(∑

1≤j≤k

(sj3 − s
j
2)
)
a
(∑

1≤j≤k

(sj4 − s
j
3)
)
a

there exists a timed word w2 =
(∑

1≤j≤k t
j
1

)
a1 . . .

(∑
1≤j≤k(tjn − t

j
n−1)

)
an ∈

L(A) with f(w2) = w1 and w2 ∈ L(A), and hence w1 ∈ L.
Therefore, we only need to consider what are the possible 4-dimensional re-

gions Rj that may compose timed words in L of the form t1a(t2 − t1)a(t3 −
t2)a(t4 − t3)a, for which there exists sjl (1 ≤ j ≤ k, 1 ≤ l ≤ 4) such that

–
∑
sjl = tl and (sj1, s

j
2, s

j
3, s

j
4) ∈ Rj ,

– And the same holds also for t1 = t2 = 0.3 and t3 = t4 = 0.7.

The first observation to make on Rj is that in its normal form CRj , the
constraint for sjl − s

j
j−1 is of the form sjl − s

j
l−1 ∈ [l − 1, l[(1 ≤ l ≤ 4, and we

consider sj0 = 0). This follows since sjl −s
j
l−1 must belong to the same interval as

the l-th time passage in w. For example, sj4 must belong to the same unit length
interval as 0.7.

We may then see that there exists only one region Rj whose constraint on
sj1 is not of the form sj1 = 0. This follows by contradiction, since if we suppose
that this holds for two indices j1, j2, that is, that CRj1

and CRj2
both contain

sj1 ∈]0, 1[, then, by lemma 2, we may construct sj1 , sj2 such that sj11 = sj21 = 0.8,
which would mean that a timed word of the type 1.6 a t2 a t3 a t4a would have to
be in L, which is obviously false.

This observation can be further generalized to all l and all constraints sjl−s
j
l−1.

As a consequence, we only have to consider that k ≤ 4. This gives only finitely
many (actually only 4) cases to check, and all lead to the possibility to construct
a timed word as in Lemma 2, but which is not in L. �"

5 Conclusions

We have introduced the class of distributed time-asynchronous automata, that
correspond to asynchronous compositions of timed automata, in which time is
allowed to progress independently between components, and resynchronizations
are done with the aid of global clock constraints and input symbols. We have
proved that this class is equivalent with fair shuffle expressions, which are timed
shuffle expressions which allow intersection only with untimed expressions. We
have also proved nonclosure under intersection for distributed time-asynchronous
automata.

An interesting question concerns the study of closure properties for distributed
time-asynchronous automata with private clocksets.

200 C. Dima and R. Lanotte

References

1. Abdeddäım, Y., Maler, O.: Preemptive job-shop scheduling using stopwatch au-
tomata. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS,
vol. 2280, pp. 113–126. Springer, Heidelberg (2002)

2. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126,
183–235 (1994)

3. Asarin, E.: Challenges in timed languages. Bulletin of EATCS 83 (2004)
4. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of ACM 49,

172–206 (2002)
5. Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and

timed languages. Inf. Comput. 182(2), 137–162 (2003)
6. Dima, C.: Computing reachability relations in timed automata. In: Proceedings of

LICS’02, pp. 177–186 (2002)
7. Dima, C.: Timed shuffle expressions. In: Abadi, M., de Alfaro, L. (eds.) CONCUR

2005. LNCS, vol. 3653, pp. 95–109. Springer, Heidelberg (2005)
8. Henzinger, T., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages.

In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
580–591. Springer, Heidelberg (1998)

9. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata. J. Comput. Syst. Sci. 57, 94–124 (1998)

10. Krishnan, P.: Distributed timed automata. Electr. Notes Theor. Comput. Sci. 28
(1999)

11. Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for
timed automata. In: Proceedings of LICS’03, pp. 198–207. IEEE Computer Society
Press, Los Alamitos (2003)

12. Yovine, S.: Model-checking timed automata. In: Rozenberg, G. (ed.) Lectures on
Embedded Systems. LNCS, vol. 1494, pp. 114–152. Springer, Heidelberg (1998)

13. Zielonka, W.: Notes on finite asynchronous automata. Informatique Théorique et
Applications 21(2), 99–135 (1987)

Skolem Machines and Geometric Logic

John Fisher1 and Marc Bezem2

1 Department of Computer Science, California State Polytechnic University
Pomona, California, USA
jrfisher@csupomona.edu

2 Department of Computer Science, University of Bergen
Bergen, Norway
bezem@ii.uib.no

Abstract. Inspired by the wonderful design and implementation of the
Prolog language afforded by the Warren Abstract Machine (WAM), this
paper describes an extended logical language which can compute larger
realms of first-order logic, based upon theories for finitary geometric
logic. The paper describes a Geolog language for expressing first-order
geometric logic in tidy closed form, a mathematical Skolem Machine
that computes the language, and an implementation prototype that in-
timately mimics the abstract machine, and which also reformulates ex-
pensive bottom-up inference into efficient top-down inference. There are
promising mathematical theorem proving applications for geometric logic
systems, collected on the website [5]. The emphasis of this paper is the-
ory, abstract machine design and direct implementation of the abstract
machine.

1 The Geolog Language

First-order geometric logic expresses general logic rules in a restricted
and simplified form. Many kinds of reasoning problems, including those
found in lattice theory, projective geometry and axiomatic abstract al-
gebra, can be directly expressed in first-order geometric logic. This has
led to the use of geometric logic for automated mathematical theorem
proving. For example, the system Geo2006i by de Nivelle [10] is based
on geometric logic and participated in CASC-J3 [14]. As a newcomer, it
ended somewhere in the middle of the field (e.g., a 6-th place out of 11
in the category FOF). Clearly, the full potential of geometric logic for
automated and interactive theorem proving has yet to be explored.

Geometric logic arose in algebraic geometry and includes infinite dis-
junctions and some higher-order logic; see [4]. In Categorical Logic first-
order geometric logic is currently called coherent logic, see for example
[7, Sect. D.1.1]. Although this article deals exclusively with first-order
geometric logic we use the terminology ‘geometric logic’ to address the

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 201–215, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

202 J. Fisher and M. Bezem

logical forms of the input language, opening up for the possibility to add,
for example, higher-order features to the language.

Geolog is a language for expressing first-order geometric logic in a for-
mat suitable for computations using an abstract machine. In the sequel
Geolog rules will be used as machine instructions for an abstract machine
that computes consequences for first-order geometric logic, and also Ge-
olog rules will be used as input for the compiler/interpreter based on the
abstract machine.

A Geolog rule has the general form

A1, A2, . . . , Am ⇒ C1;C2; . . . ;Cn (1)

where the Ai are atomic expressions and each Cj is a conjunction of
atomic expressions, m,n ≥ 1. The left-hand side of a rule is called the
antecedent of the rule (a conjunction) and the right-hand side is called the
consequent (a disjunction). All atomic expressions can contain variables.

If n = 1 then there is a single consequent for the rule (1), and the rule
is said to be definite. Otherwise the rule is a splitting rule that requires
a case distinction (case of C1, or case of C2,. . . , or case of Cn).

The separate cases (disjuncts) Cj must each have a conjunctive form

B1, B2, . . . , Bh (2)

where the Bi are atomic expressions, and h ≥ 1 varies with j. Any free
variables occurring in (2) other than those which occurred free in the an-
tecedent of the rule are taken to be existential variables and their scope is
this particular disjunct (2). The variables occurring free in the antecedent
are taken to be universal variables and their scope is the whole rule.

As an example, consider the Geolog rule, actually the last rule in Fig-
ure 1 below:

s(X,Y) => e(X,Y) ; domain(Z),r(X,Z),s(Z,Y) .

The variables X,Y are universally quantified and have scope covering the
entire formula, whereas Z is existentially quantified and has scope covering
the last disjunct in the consequent of rule. A fully quantified first-order
logical formula representation of this Geolog rule would be

(∀X)(∀Y)[s(X,Y) → e(X,Y) ∨ (∃Z)(r(X,Z) ∧ s(Z, Y))]

This existential quantification is the distinguishing feature which makes
geometric logic more expressive than the conjunctive normal form (CNF)

Skolem Machines and Geometric Logic 203

used in resolution logic [11]. In Section 2 we discuss the disadvantages of
reducing geometric logic to CNF.

We now come to two special cases of rule forms in (1), the true an-
tecedent and the goal or false consequents. Rules of the form

true ⇒ C1;C2; . . . ;Cn (3)

are called factuals. Here ‘true’ is a special constant term denoting the
empty conjunction. Factuals are used to express initial information in
Geolog theories.

Rules of the form
A1, A2, . . . , Am ⇒ goal (4)

are called goal rules. Here ‘goal ’ is a special constant term. A goal rule
expresses that its antecedent is sufficient (and relevant) for goal . Similarly,
rules of the form

A1, A2, . . . , Am ⇒ false (5)

are called false rules. Here ‘false’ is a special constant term denoting the
empty disjunction. A false rule expresses rejection of its antecedent.

The constant terms true, goal and false can only appear in Geolog
rules as just described. All other predicate names, individual constants,
and variable names are the responsibility of the Geolog programmer.

The definition of Geolog rules provided here is compatible with [2,
Definition 1.1]. The main difference is that we allow function symbols.

A Geolog theory (or program) is a finite set of Geolog rules. A the-
ory may have any number of factuals and any number of goal or false
rules. The theories also serve as the instruction set for the abstract ma-
chine described in the next section, so the rules are also referred to as
‘instructions’.

Figure 1 shows a Geolog theory for proving that confluence of a rewrite
relation implies uniqueness of normal forms. This theory serves for an
input to a Prolog reader that reads a geometric logic theory and uses it
as the input for the goal interpreter. (The % symbol prefixes comments.)

The predicate domain is being used as a domain (closure) predicate in
the theory of Figure 1. On the left of ⇒ in a rule, the intended meaning
is ‘belongs to the domain’. On the right of ⇒, domain can be used to
introduce a new element to the domain, when the rule is actually used.
For example, the first rule will add the fact domain(a) (a is in the domain)
and then the seventh rule will add the fact e(a,a). In the last two rules in
Figure 1, domain is used to add newly generated elements to the domain.

To illustrate two different ways of using a domain closure predicate,
consider the following rules.

204 J. Fisher and M. Bezem

true => domain(a), domain(b), domain(c). %1 domain elements a,b,c
e(b,c) => goal. %2 the goal is to prove b=c
r(b,Z) => false. %3 for normal form b
r(c,Z) => false. %4 and normal form c
true => s(a,b),s(a,c). %5 both reducts of a
domain(X) => e(X,X). %6 reflexivity of e
e(X,Y) => e(Y,X). %7 symmetry of e
e(X,Y),e(Y,Z) => e(X,Z). %8 transitivity of e
e(X,Y) => s(X,Y). %9 s contains e
r(X,Y) => s(X,Y). %10 and r,
s(X,Y),s(Y,Z) => s(X,Z). %11 is transitive,
s(X,Y),s(X,Z) => domain(U),s(Y,U),s(Z,U). %12 satisfies diamond, and
s(X,Y) => e(X,Y);domain(Z),r(X,Z),s(Z,Y). %13 is included in e + r.s

Fig. 1. A Geolog theory expressing that confluence of a rewrite relation r implies
uniqueness of normal forms

human(X) => human(Y), father(Y), parent(Y,X).
human(X) => human(father(X)), parent(father(X),X).

In these examples, human is being used as a domain closure predi-
cate. Both rules express that all humans have a father who is a parent
and that the father should be included in the human domain. If the
antecedent is true (say with X = bill) then the first clause creates a
new domain element, say c, puts it in the human relation, puts it in the
father relation and puts the pair (c,bill) in the parent relation. The
second clause adds father(bill) to the human domain and puts the pair
(father(bill),bill) in the parent relation. Thus, one can use func-
tion symbols (like father) and also get partial domain closure. It is the
responsibility of the Geolog programmer to choose the name and specify
the particular rules for a domain closure predicate.

2 Skolem Machines

Finite sets of Geolog rules can serve as instruction sets for a mathematical
tape machine, which we call a Skolem Machine or SM for short.

The logical formulas characterized by Geolog , and the bottom-up ap-
proach to reasoning with those logical formulas, finds its earliest (1920)
precursor in a particular paper by Skolem [12]. A more recent (1988) pre-
cursor, without the existential quantification, is the system SATCHMO [9].

It may be argued that existential quantification is unnecessary, as it
can be eliminated by introducing Skolem functions, another invention of
the same Skolem. However, we wish to point out a few disadvantages of
Skolem functions for formalizing and automating mathematics.

Skolem Machines and Geometric Logic 205

First, Skolem functions change the meaning of a formula. For example,
a tautology like p(X,Y) → (∃Z)p(X,Z) is turned into a non-tautology
p(X,Y)→ p(X, f(X,Y)) or, slightly better, p(X,Y)→ p(X, f(X)). This
is bad news for interactive theorem proving: your reasoning assistant
works on a different problem than you do! How would you help it when it
gets stuck? Even if you are so lucky that it finds a solution, you have either
to believe this or to convert the solution back to the original problem.

Second, a Skolem function might not be aware of its own symmetry,
such as in rule 12 in Figure 1, where the premiss is symmetric in Y and
Z. Or of its own idempotency, in the same rule. This is bad news for
automated theorem proving: many irrelevant Skolem terms are generated.
A Skolem function, relevant or not, turns a finite set of constants into an
infinite Herbrand universe. 1

Skolem machines resemble multitape Turing machines and the two ma-
chine models actually have the same computational power, see [3]. The the-
ory outlined in this section will influence implementations discussed later
in this article. An SM has a finite instruction set, and this is the same as
what was defined as a Geolog theory or program in the previous section.

An SM starts with one tape having true written on it, as shown in
Figure 2.

true

Fig. 2. Initialized tape

The basic operations of an SM use the Geolog rules in the instruction
set to extend a tape (write logical terms at the end) and to create new
tapes (for splitting rules).

The tapes are also called states. An SM with more than one tape is
said to be in a disjunctive state, comprised of multiple separate simple
states or tapes.

The basic purpose of a particular SM is to compute its instruction set
and to halt when all of its tapes have goal or false written on them.

In order to motivate the general definitions for the workings of SM,
let us work through a small example. To this end, consider the Geolog
rulebase (SM instructions) in Figure 3.

1 Note that newly generated witnesses for existential statements, do not have these
disadvantages. These witnesses are called Skolem constants by some, but we would
prefer to view them as eigenvariables in the elimination of existential quantification.

206 J. Fisher and M. Bezem

true => domain(X), p(X). % #1
p(X) => q(X) ; r(X) ; domain(Y), s(X,Y). % #2
domain(X) => u(X). % #3
u(X), q(X) => false. % #4
r(X) => goal. % #5
s(X,Y) => goal. % #6

Fig. 3. Sample instructions

The only instruction that applies to the initial tape is instruction #1.
The antecedent of the rule matches true on the tape, so the tape can be
extended using the consequent of the rule. In order to extend the tape
using domain(X),p(X) a new instance for the existential variable X is first
generated and then substituted, and the resulting terms are written on
the tape, as shown in Figure 4.

true domain(sk1) p(sk1)

Fig. 4. After applying rule #1

At this point in machine operation time either of the rules #2 or #3
can apply. The general definition of SM operation does not specify the
order, but we will apply applicable rules in top-down order. So, applying
instruction #2 we get tape splitting, as shown in Figure 5.

true domain(sk1) p(sk1) q(sk1)

true domain(sk1) p(sk1) r(sk1)

true domain(sk1) p(sk1) domain(sk2) s(sk1,sk2)

Fig. 5. After applying rule #2

Each of the disjuncts in the consequent of rule #2 is used to extend
the previous single tape. This requires that the previous tape be copied
to two new tapes and then these tapes are extended.

Now, instruction #3 applies to all three tapes, even twice to the last
tape, with result shown in Figure 6.

Instruction #4 now adds false to the top tape, shown in Figure 7.

Skolem Machines and Geometric Logic 207

true domain(sk1) p(sk1) q(sk1) u(sk1)

true domain(sk1) p(sk1) r(sk1) u(sk1)

true domain(sk1) p(sk1) domain(sk2) s(sk1,sk2) u(sk1) u(sk2)

Fig. 6. After applying rule #3 four times (!)

--
true domain(sk1) p(sk1) q(sk1) u(sk1) false

--

true domain(sk1) p(sk1) r(sk1) u(sk1)

true domain(sk1) p(sk1) domain(sk2) s(sk1,sk2) u(sk1) u(sk2)

Fig. 7. Goal tape, rule #4

Now instruction #5 applies to the second tape, and then instruction
#6 applies to the third tape, shown in Figure 8.

--
true domain(sk1) p(sk1) q(sk1) u(sk1) false

--

true domain(sk1) p(sk1) r(sk1) u(sk1) goal

true domain(sk1) p(sk1) domain(sk2) s(sk1,sk2) u(sk1) u(sk2) goal

Fig. 8. After applying rule #5 and then #6, HALTED

At this point the SM halts because each tape has either the term goal
or the term false written on it.

The SM has effectively computed a proof that the disjunction

(∃X)(u(X) ∧ q(X)) ∨ (∃X)r(X) ∨ (∃X)(∃Y)s(X,Y)

is a logical consequence of the Geolog theory consisting of the first three
rules in Figure 3. This is so because every tape of the halted machine

208 J. Fisher and M. Bezem

either has q(sk1) and u(sk1) written on it, or has r(sk1) written on
it, or else has s(sk1,sk2) written on it. Note that the three disjuncts
correspond to the goal and false rules in Figure 3. We will continue a
discussion of this example (specifically, the role intended for the false
rule) later in this section.

The proof tree displayed in Figure 9 was automatically drawn by the
program whose implementation is described in the next section. The di-
agram displays the tapes generated by the SM in the form of a directed
tree. Notice that the tree splits where the SM would have copied a tape.2

Fig. 9. Tree display

Here is the definition of SM operations, described in smaller steps.

– A Geolog rule ANT ⇒ CONS is applicable to an SM tape T , provided
that it is the case that all of the terms of ANT can be simultaneously
matched against grounded terms written on T . (It may be that ANT
can be matched against T in more than one way; for example, rule
#3 and the third tape of Figure 5.)

– If the rule ANT ⇒ CONS is applicable to tape T , then for some
matching substitution σ apply σ to CONS and then expand tape T
using σ(CONS).

– In order to expand tape T by σ(CONS) = C1;C2; . . . ;Ck copy tape
T making k − 1 new tapes T2, T3, . . . , Tk, and then extend T using
C1, extend T2 using C2, . . . , and extend Tk using Ck. (No copying if
k = 1.)

– In order to extend a tape T using a conjunction C, suppose that
X1, . . . ,Xp are all of the free existential variables in C. Create new

2 It is possible to describe an SM using trees rather than multiple tapes.

Skolem Machines and Geometric Logic 209

constants cj, 1 ≤ j ≤ p and substitute cj for Xj in C, obtaining C ′,
and then write each of the terms of C ′ on tape T . (It is mandatory
that the constant is new with repect to the theory and the tape, but
different tapes may subsequently contain the same constant.)

Notice that only grounded terms ever appear on any SM tape. Thus
the matching algorithm does not really need the full power of general
term unification. Simple left-to-right term matching suffices.

Given an SM with tapes T1, . . . , Tt, t ≥ 0, we say a particular tape Ti

is saturated if no new instance of a rule can be applied to it. A tape is
halted if it is either saturated or contains goal or contains false (any of
which could occur at the same time). An SM is called halted if all its tapes
are halted, it is halted successfully if it is halted with all tapes containing
either goal or false. If a tape of an SM is saturated with neither goal nor
false on it, then this tape actually constitutes a countermodel: all rules
are satisfied, they are consistent (by absence of false) and yet the goal
doesn’t hold (by absence of goal).

Suppose that we write a Geolog theory in the form

T = A ∪G ∪ F (6)

where A is the axioms, G contains all of the affirming goal rules and F
contains all of the rejecting false rules. It is intended that A contains all
the rules of the theory other than the goal rules and the false rules and
that A, G, and F are mutually disjoint sets.

The Geolog query Q for a Geolog theory T = A∪G∪F is the disjunctive
normal form Q = C1;C2; . . . ;Ck consisting of all of the conjunctions Ci

such that either Ci appears as antecedent of one of the goal rules (in G)
or of one of the false rules (in F). As before, the free variables in Q are
taken to be existential variables. The scope of a variable X appearing in
a particular Ci (within Q) is restricted to Ci.

We say that a Geolog theory T supports its query Q if there is a suc-
cessfully halted SM such that each Ci is satisfied on some tape.

Theorem 1. If theory T supports its query Q then Q is a logical con-
sequence of the axioms of T . Here both T and Q are considered to be
first-order logical formulas as described in the introductory section and in
this section.
In our example from earlier in this section we demonstrated that the
query (u(X),q(X));r(Y);s(U,V) is supported by the theory and there-
fore, according to Theorem 1,

(∃X)(u(X) ∧ q(X)) ∨ (∃Y)r(Y) ∨ (∃U)(∃V)s(U, V)

210 J. Fisher and M. Bezem

is a logical consequence of the axioms of the theory. The axioms are #1-3,
and the query is given by #4-6.

In general, false and goal are interchangeable in Geolog rules, in so far
the declarative semantics as expressed in Theorem 1 is concerned. Tech-
nically, false, being the empty disjunction, is a symbol which should be
interpreted as logically false, in the same way as true, being the empty
conjunction, is a symbol whose logical interpretation is intended as true.
As part of the logical vocabulary, they have the same status as other con-
nectives and quantifiers. In contrast, goal is an atom, a nullary predicate
which could be interpreted as either true or as false.

In principle one could do with either only goal , or only false . If one
doesn’t use false, the theory is always consistent (all predicates can be
taken to be true everywhere). If one doesn’t use goal , the theory can be
inconsistent. Although one could do with only one of goal , false, there
can be pragmatic reasons to use both. The use of goal or false depends
to a large extent on taste and tradition. For example, the query of a
Geolog theory could be r(b,X);r(c,Y);e(b,c) where the first two are
assumed never to be true. In that case r(b,X) => false, r(c,Y) =>
false and e(b,c) => goal are more clear than any other combination
of conclusions false and goal. This is actually the choice made in the
example in Figure 1. Another pragmatic ground for using false would be
that some specific disjunct occurs in many different queries.

Theorem 1 is a correctness result for Skolem machine consequences:
Skolem machines compute queries for Geolog theories and supported
queries are logical consequences of the axioms of a theory. The issue of the
completeness of SM computations, obviously depending on strategies for
picking rules, is addressed in [6]. It is in general not decidable whether a
Geolog theory supports its query. The Geolog programmer is mainly inter-
ested in designing theories that can be shown to support their intended
queries, using some computational device, such as the implementation
described in the next section.

The definitions for the SM operations allow for repeated use of an
instruction for a working tape T . There is an obvious restriction that
should be applied for efficiency reasons. Suppose the ANT ⇒ CONS is
an applicable rule for tape T , with matching substitution σ. We say that
the disjunction σ(CONS) = σ(C1;C2; . . . ;Ck) is already satisfied on T
provided that at least one of the conjunctions Ci is satisfied, possibly
with constant symbols substituted for the free existential variables. A
closed conjuction C ′ is satisfied on T if all of the terms of C ′ are already
written on T .

Skolem Machines and Geometric Logic 211

Theorem 2. If we expand tapes of Skolem machines using an applicable
rule ANT ⇒ CONS only if σ(CONS) is not already satisfied on the tape,
exactly the same queries are supported.

Another consequence of the restriction to applicable rules that are not
already satisfied is that it may occur that a tape is saturated without
containing goal or false and that a counter model will be discovered.

translate(+GeologRuleIn, -PrologRuleOut)

Fig. 10. The intended translation, Geolog rule to Prolog clause

3 Procedural Implementations

Implementations of Skolem machine operations using Prolog procedures
can be very straightforward. Each of the Geolog rules in the instruction set
is translated into a special kind of Prolog clause. The implementation that
we illustrate is called the Geometric Logic Abstract Machine or GLAM for
short. The reason for this name is that the clauses resemble the procedures
of the Warren Abstract Machine (WAM), which is used as a basis for
most of the efficient implementations of Prolog itself. In particular, each
procedure tries to match bindings for variables in terms. For the GLAM
procedures, however, the terms can be in different states (multiple tapes).

The Prolog translator is basically a one-line program that mimics the
SM operations. The translate rule has the profile shown in Figure 10.

Figure 11 shows the full Prolog code for translating a Geolog rule.
For example, consider Geolog rule #2 from the sample rulebase in the
previous section, shown in Figure 12. First, any existential variables in
the consequent are separated and flagged, as shown in Figure 13, and
then the translated Prolog clause is displayed in Figure 14.

In the previous section the SM operations describing how to apply a
Geolog rule to a tape were described. The code in Figure 11 mimics the
steps defining how a SM applies instructions to tapes. The Prolog code
implements the tape using a Prolog list, and terms are added to the
beginning of the list (end of the tape).

Each of the try clauses describes how to try to extend a tape using
the corresponding Geolog rule. The Geolog rules are translated into Pro-
log clauses in the order in which they appear in the Geolog instruction
sequence. Figure 15 has an outline for all of the try clauses, showing the
order in which they are asserted to memory (and compiled).

In the SWI-Prolog [15] implementation of the GLAM, after the Geolog
rules are read from file and translated into Prolog clauses, the Prolog

212 J. Fisher and M. Bezem

%%%%%%%%%%%%%%%%
%% Translator
%%%%%%%%%%%%%%%%
translate((ANT => CONS) , % to the following Prolog clause ...
(try((ANT => CONS),S) :-

satisfy(ANT,S),
\+satisfactual(CONS,S),
cases(CONS,[F|R]),
extend(F,S,FS),
try(_,FS), % try again
continue(S,R))) . % other cases, if any

Fig. 11. Translating Geolog rules to Prolog clauses

p(X) => q(X) ; r(X) ; domain(Y), s(X,Y).

Fig. 12. +GeologRuleIn, sample input term

clauses are asserted and then compiled into internal procedures for the
underlying Prolog machine.

The remaining small amount of code for applying Geolog rules, expand-
ing, and extending tapes (states) is given in the reference [5]. The Prolog
interpreter has filename geoprolog.pl. The reference also provides a user
guide and a number of examples.

The primary advantage of this approach is its excellent speed of execu-
tion. The implementation described here applies the Geolog instructions
to the states (tapes) in a very strict top-down order: The first instruction
that succeeds is applied to expand a tape or extend tapes, and then the
interpreter goes all the way back to the first procedure (corresponding
to the first Geolog instruction) in order to try other instructions. This is
clear if one looks at the generated code, such as that in Figure 14, which
is typical. This is a doggedly persistent top-down approach, which is very
reminiscent of how Prolog itself works. And, this explains the speed! This
can be a great source of efficiency, as it is for Prolog. The primary ref-
erence for the theoretical underpinnings for Prolog is [8], and relevant
references for the machine model for the WAM are [1] and [13].

As it is for Prolog, the ordering of Geolog instructions becomes impor-
tant for depth-first implementation of GLAM.

Now, in contrast, the advantage of breadth-first Geolog interpreters is
that the order of the Geolog rules is not, in and of itself, a direct hindrance.
Breadth-first interpreters for Geolog would typically apply all applica-
ble rules to the current tapes (states) simultaneously. Such breadth-first
interpreters can often deplete execution resources before halting, but they
could in principle compute all consequences for a Geolog theory.

Skolem Machines and Geometric Logic 213

p(X) => q(X) ; r(X) ; Y^(domain(Y), s(X,Y)).

Fig. 13. +GeologRuleIn, flag existential variable

try((p(A)=>q(A);r(A);B^ (domain(B), s(A, B))), C) :-
satisfy(p(A), C),
\+satisfactual((q(A);r(A);B^ (domain(B), s(A, B))), C),
cases((q(A);r(A);B^ (domain(B), s(A, B))), [E|H]),
extend(E, C, F),
try(_, F),
continue(C, H).

Fig. 14. -PrologRuleOut, sample output term

As emphasized in [2], in case of depth-first, it is often best to sequence
the instructions so that splitting rules and rules introducing existential
quantifiers are placed at the end of the rulebase, such as. the rules 12
and 13 in Figure 1. Moving these rules higher up in the list is inhibitive
for computing the query depth-first. In the presence of function symbols
even more trivial examples can be given, such as the wrong order of the
last two of the following rules:

true => p(a).
p(X) => p(f(X)). %alternatively: p(X) => succ(X,Y),p(Y).
p(X) => goal.

4 Conclusion and Future Research

Using an abstract machine to implement a language is a precise approach.
We have advocated this approach for first-order geometric logic using the
Geolog language. We have shown that the resulting machinery can be
fruitfully put to work in automated reasoning in some areas of mathe-
matics.

For extending this approach beyond the language restrictions imposed
by geometric logic we envisage the integration of Geolog in more expres-
sive logical frameworks. The role of Geolog is then to boost automation of
the logical framework. For this purpose geometric logic could be a better
choice than other candidates, such as resolution logic, since the existential
quantification allows a more faithful representation of the problems to be
delegated to Geolog. How to integrate and which particular strategies for
computing Geolog queries, will be subjects of future research.

214 J. Fisher and M. Bezem

% START with initial state
try :- try(_,[true]).

% test for goal on tape (or \f)
try(_,S) :-

member(goal,S), member(false,S), !.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Translated Geolog clauses asserted
%%% here, in user-specified order.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% last clause, must have stuck tape
try(_,S) :-

write(’counter_model(’),
write(S),
writeln(’).’)

Fig. 15. Order for the translated Prolog clauses

References

1. Ait-Kaci, H.: Warrens’s Abstract Machine, A Tutorial Reconstruction. School of
Computing Science (February 18, 1999)

2. Bezem, M.A., Coquand, T.: Automating Coherent Logic. In: Sutcliffe, G.,
Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer,
Heidelberg (2005)

3. Bezem, M.A.: On the Undecidability of Coherent Logic. In: Middeldorp, A., van
Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles:
Steps on the Road to Infinity. LNCS, vol. 3838, pp. 6–13. Springer, Heidelberg
(2005)

4. Blass, A.: Topoi and computation. Bulletin of the EATCS 36, 57–65 (1998)
5. Fisher, J.R.: Geolog website, www.csupomona.edu/~jrfisher/www/geolog/
6. Fisher, J.R., Bezem, M.A.: Query Completeness of Skolem Machine Computations.

In: Proceedings MCU’07 (to appear)
7. Johnstone, P.: Sketches of an Elephant: a topos theory compendium, vol. 2, Oxford

Logic Guides 44, OUP (2002)
8. Lloyd, J.W.: Foundations of Logic Programming. revised edn. Springer, Berlin

(1987)
9. Manthey, R., Bry, F.: SATCHMO: A Theorem Prover Implemented in Prolog. In:

Lusk, E., Overbeek, R. (eds.) 9th International Conference on Automated Deduc-
tion. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)

10. de Nivelle, H., Meng, J.: Geometric Resolution: A Proof Procedure Based on Finite
Model Search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI),
vol. 4130, pp. 303–317. Springer, Berlin (2006)

11. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. Jour-
nal of the ACM 12(1), 23–41 (1965)

www.csupomona.edu/~jrfisher/www/geolog/

Skolem Machines and Geometric Logic 215

12. Skolem, Th.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und
Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen,
Skrifter I, vol. 4, pp. 1–36, Det Norske Videnskaps-Akademi (1920). Also in Jens
Erik Fenstad, editor, Selected Works in Logic by Th. Skolem, pp. 103–136, Uni-
versitetsforlaget, Oslo (1970)

13. Warren, D.H.D.: An abstract Prolog instruction set. Technical Note 309, SRI In-
ternational, Menlo Park, CA (October 1983)

14. Sutcliffe, G., Suttner, C.: The CADE ATP System Competition. Link available at:
www.cs.miami.edu/~tptp/CASC/

15. Wielemaker, J.: SWI-Prolog Reference Manual. Link available at:
www.swi-prolog.org

www.cs.miami.edu/~tptp/CASC/
www.swi-prolog.org

A Logical Calculus for Modelling Interferences

Christophe Fouqueré

LIPN – UMR7030
CNRS – Université Paris 13

99 av. J-B Clément, F–93430 Villetaneuse, France
cf@lipn.univ-paris13.fr

Abstract. A logic calculus is presented that is a conservative extension
of linear logic. The motivation beneath this work concerns lazy evalu-
ation, true concurrency and interferences in proof search. The calculus
includes two new connectives to deal with multisequent structures and
has the cut-elimination property. Extensions are proposed that give first
results concerning our objectives.

1 Introduction

Linear Logic is a good framework for interpreting and computing over linear
structures. Since Girard’s seminal paper [1] that gives first insights (proof nets,
phase and coherent spaces), a lot has been achieved among which normaliza-
tion of proofs via focusing and polarization [2,3]. These last results seem to be
intrinsically related to principles underlying cut elimination as it allows for inves-
tigating a reconstruction of logical structures as in Ludics [4]. Recent works done
on concurrent modelling using such a framework seem promising [5,6]. However,
non series-parallel situations are not taken into account.

We present a logic calculus (and variants) that is a conservative extension
of linear logic. The motivation beneath this work is a careful study of lazy
evaluation in logic programming. Since works of Andreoli [2], we know that full
linear logic may be used as a logical programming language thanks to focalization
and works have been done on lazy evaluation in this case [7]. However we show
in Sect. 3 that cut elimination is false for a naive calculus taking laziness as
a principle. A second motivation concerns the control of true concurrency and
interferences in proof search. For instance, suppose the following problem to be
modelled in logic programming. We have two ’packs’ of actions: f =

⊕
fn (resp.

g =
⊕
gn) such that fn (resp. gn) transforms n occurences of a (resp. b) into n

occurences of a and n occurences of b, where n ≥ 1. We suppose at the initial
state only one resource of each kind (hence one a and one b). We want to simulate
exactly the two following situations:

(i) if the two actions are applied (whatever may be the order) then we have three
possible results: 3 a and 2 b, 2 a and 3 b, 2 a and 2 b. The first (resp. second)
result is obtained when action f (resp. g) is applied first followed by action
g (resp. f). The third result occurs when the two actions are performed
independently.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 216–230, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Logical Calculus for Modelling Interferences 217

(ii) if the two actions are applied strictly concurrently, there is only one possible
result: we get 2 a and 2 b.

This is not possible inside propositional classical or linear logic as it requires a
control between proofs. For that purpose, we basically shift from a sequent view
to a multisequent view. Moreover sharing of formulas occurences between such
sequents is allowed. The reader should have in mind the following elements:

– logical operations are done on occurences of formulas that may be shared
among different sequents,

– a sequent is a place grouping a bunch of occurences,
– each step of a proof transforms zero, one or two multisequents into one

by means of an operation, either structural or logical (in this last case the
operation is done on occurences of formula and entails the structure of the
conclusion),

– equivalently, a multisequent may be defined as a set of places, a set of oc-
curences of formulas and a function relating a place to a set of occurences.

In the following the two interpretations may be used. Shifting from sequents
to multisequents gives place for a new structural operation that joins sequents
(to be compared with the par operation that joins occurences in a sequent).
In a first step we consider a ”2-way” connective that ”relates” two sequents
in a multisequent. Its dual is denoted | and called cpar. We then consider the
following extensions:

– add of a ’cloning’ structural rule: this comes from the observation that inter-
action of a sequent by means of a cut elimination is behaviouraly equivalent
to interaction with two sequents sharing exactly the same occurences. How-
ever this last observation is not provable without such a cloning rule.

– add exponential-like modalities (Sec. 4): standard modalities for linear logic
are available. However as sharing is internal, it allows for adding modalities
whose behaviour is the converse of the standard one.

– add a 3-way connective (Sec. 5): it relates three sequents in one shot. This is
requested for a model of independence. It offers also a means to deal with non
series-parallel structures as a 3-way connective is intrinsically a non-linear
operation.

In Sect. 6, we end by some comments about a possible algebraic semantics.

2 Related Works

Modelling interferences has not yet been really investigated in logic. First of
all, classical logic as well as modal logic do not take seriously into account the
notion of resource, hence appear to be inadequate. Second, modelling (and con-
trolling) interferences may seem contradictory in the framework of Linear Logic
as the splitting mechanism seems at the heart of cut-elimination. However, cur-
rent works done on concurrency are close. Following Girard’s works on Ludics,

218 C. Fouqueré

Curien, Faggian, Giamberardino [5,6] were able to formalize L-nets that quo-
tient (abstract) proof trees w.r.t. commutation of tensors. This normalization
goes further than the one given by Andreoli with focusing and polarization.
However, non series-parallel situations cannot be taken into account in their de-
notational model. Works close to the research presented here include Bunched
Implications [8] and Deep Inference [9]. But these two last frameworks seem to
fail in keeping basic logical properties as focalization and polarization. The line
of research that is undertaken here introduces a syntactic novelty by considering
that occurences of formulae may be shared by different sequents. This sharing in-
duces a strict synchronization between different computations (i.e. developments
of proofs) and new connectives may be defined that internalize this mechanism.

3 A Multisequent Calculus

Besides the classical multiplicative and additive connectives of Linear Logic, we
introduce two new connectives ctimes 5 and cpar | whose intended meaning is
to model strict concurrency.

Definition 1. The formulas, denoted A,B, . . . , are built from atoms p, q, . . . ,
p⊥, q⊥, . . . , constants 1, ⊥, 0, and the following (linear) connectives:

– (parallel) multiplicative conjunction ⊗ (times) and disjunction � (par),
– (concurrent) multiplicative conjunction 5 (ctimes) and disjunction | (cpar),
– additive conjunction ⊕ (plus) and disjunction � (with).

Negation is defined by De Morgan rules:

(p)⊥ = p⊥ (p⊥)⊥ = p
(A⊗B)⊥ = B⊥ � A⊥ (A � B)⊥ = B⊥ ⊗A⊥
(A5B)⊥ = B⊥ | A⊥ (A | B)⊥ = B⊥ 5A⊥
(A⊕B)⊥ = B⊥ � A⊥ (A � B)⊥ = B⊥ ⊕A⊥
1⊥ = ⊥ 0⊥ = ⊥⊥ = 1 ⊥ = 0

A −◦ B = A⊥ � B

3.1 Structures of Multisequents

Definition 2. A formula context Γ has one of the two following forms:

– A formula A
– A finite multiset of formula contexts separated by commas Δ1, . . . , Δn. ’,’ is

considered commutative and associative.

Sequents are of the form {Γ}, where Γ is a formula context. A multisequent is a
finite multiset of sequents. Multisequents are denoted S, T , . . . If a multisequent
is reduced to one sequent, ’{’ and ’}’ may be omitted. A multisequent may contain
sequents that are not disjoint: an occurence of a formula may appear in different
sequents. Such sequents are said to be linked. Superscripts are put if different
occurences of the same formula occur. The principal formulas occurences of a
(logical) rule are formulas from the hypotheses on which the rule applies. The
principal sequents are sequents where the principal formulas occur.

A Logical Calculus for Modelling Interferences 219

Example 1 (multisequents). {A,B}{C,D}: this multisequent involves four for-
mulas and two (disjoint) sequents whereas {A,B}{B,C}{C,D} involves three
sequents and four occurences of formulas.

At first glance, rules given in sequent calculi may seem strange: Throughout the
paper, contexts of a principal occurence are identified by a free subscript. For
example, {Γi, A} means a multiset of sequents (the domain of the free subscript
i) where the same occurence A appears. Note that the domain of i cannot be
empty. Sequents that remain unchanged by a rule are either replaced by dots or
by a notation for a multisequent. If a proof involves different occurences of the
same fomula (hence different contexts), these occurences are distinguished by a
superscript:1 remark this in the �-rule in Fig. 2.

3.2 A Naive (and Wrong) Attempt

Lazy logic programming relies mainly on a lazy splitting of contexts when con-
sidering the ⊗ rule. The standard ⊗ rule is the following one:

{Γ,A} {Δ,B}
{Δ,Γ,A⊗B} (⊗)

In a bottom-up proof search, as it is the case in logic programming, applying
this rule requires to know how to split the multiset Δ,Γ . A lazy way consists
in delaying this separation. Let us note | the connective ⊗ defined in a lazy
way. Shifting to multisequents, this may be given by sharing the whole multiset
Δ,Γ between the two sequents in the hypothesis (remember that occurences are
shared between sequents if no superscript is present):

{Δ,Γ,A}{Δ,Γ,B}
{Δ,Γ,A | B} (|)

We suppose further � still dual to |: (A | B)⊥ = B⊥ � A⊥. Following these
guidelines, a system for a lazy Multiplicative Linear Logic (lazy MLL) is given
in Fig. 1. However a counter-example to cut-elimination is easy to find:
{A⊥, A � ⊥} and {A⊥ | 1, A � ⊥}{A⊥ | 1, 11 � 12} are provable.
But {A⊥, A � ⊥}{A⊥, 11 � 12} is not provable:

A⊥,A

A⊥,A,⊥
A⊥,A�⊥

and

{A⊥,A}{11}{1}{12}

{A⊥,A}{A⊥,11,12}{1,A}{1,11,12}

{A⊥|1,A}{A⊥|1,11,12}

{A⊥|1,A,⊥}{A⊥|1,11,12}
{A⊥|1,A�⊥}{A⊥|1,11

�12}

but

false

{11,12}

{A⊥,A}{11,12}

{A⊥,A}{A⊥,11,12}

{A⊥,A,⊥}{A⊥,11,12}
{A⊥,A�⊥}{A⊥,11

�12}

1 A context Γ with a supersript supposes the superscript for each formula of the
context.

220 C. Fouqueré

Structural rules

. . . {Γi, A}{Δ} . . .

. . . {Γi, A}{A, Δ} . . .
(d)

S1 S2

S1S2
(s)

. . . {Γ, A, B, Δ} . . .

. . . {Γ, B, A, Δ} . . .
(e)

Logical rules (in rules (1) and (axiom), the multisequent consists of only one sequent)

A, A⊥
(axiom)

1
(1)

. . . {Γi} . . .

. . . {Γi,⊥} . . .
(⊥)

. . . {Γi, A, B} . . .

. . . {Γi, A � B} . . .
(�)

. . . {Γi, A}{Γi, B} . . .

. . . {Γi, A | B} . . .
(|)

Cut rule
. . . {Γi, A} {Δj , A

⊥} . . .

. . . {Γi, Δj} . . .
(cut)

Fig. 1. Sequent calculus for a bad lazy MLL. i, j ∈ N∗ in rules.

3.3 The Calculus CMALL

In order to circumvent the previous situation, lazyness is modelled by means of
two specific connectives | and 5 besides the two multiplicative connectives � and
⊗ of Linear Logic. The rules of the sequent calculus Concurrent Multiplicative
Additive Linear Logic (CMALL) are given in Fig. 2. The system includes a
cloning structural rule (c), however one may note that proofs of cut elimination,
asynchrony, ... we give in the following are still true without this rule. Examples
of instantiation of the rules are given below to help the reader recover standard
situations.

Example 2 (Rule instantiation). (A,B,X, Y, Z are formulas)

{X,A}{Y,A} {Z,B}
{X,Z,A⊗B}{Y, Z,A⊗B} (⊗)

{X}{X,A}{X,B}
{X}{X,A | B} (|)

{X}{X,A,B}
{X}{X,A � B} (�)

It is easy to prove the following statements (multisequents may be given two-
sided for easiness of reading):

– A⊗B−◦A | B is provable:
{A⊥,A}

ax
{B⊥,B}

ax

{A⊥,A}{B⊥,B}
s

{A⊥,B⊥,A}{B⊥,B}
d

{A⊥,B⊥,A}{A⊥,B⊥,B}
d

{A⊥,B⊥,A|B}
|

{A⊥
�B⊥,A|B}

�

A Logical Calculus for Modelling Interferences 221

– | is asynchronous (lemma 2) whereas ⊗ is synchronous. Although | does
neither distribute over �, nor the converse. But | does distribute over �:
A | (B � C) 7� (A | B) � (A | C) is provable

{A1,A⊥1} {B,B⊥1}

{A1,(A⊥�B⊥)1} {B,(A⊥�B⊥)1}

{A1,(A⊥�B⊥)⊕(A⊥�C⊥)1} {B,(A⊥�B⊥)⊕(A⊥�C⊥)1}

{A2,A⊥2} {C,C⊥2}

{A2,(A⊥�C⊥)2} {C,(A⊥�C⊥)2}

{A2,(A⊥�B⊥)⊕(A⊥�C⊥)2} {C,(A⊥�B⊥)⊕(A⊥�C⊥)2}

{A,(A⊥�B⊥)⊕(A⊥�C⊥)} {B�C,(A⊥�B⊥)⊕(A⊥�C⊥)}

{A|(B�C),(A⊥�B⊥)⊕(A⊥�C⊥)}

{A,A⊥1}

{B,B⊥1}

{B,(B⊥⊕C⊥)1}

{A,[A⊥�(B⊥⊕C⊥)]1} {B,[A⊥�(B⊥⊕C⊥)]1}

{A|B,[A⊥�(B⊥⊕C⊥)]1}

{A,A⊥2}

{C,C⊥2}

{C,(B⊥⊕C⊥)2}

{A,[A⊥�(B⊥⊕C⊥)]2} {C,[A⊥�(B⊥⊕C⊥)]2}

{A|C,[A⊥�(B⊥⊕C⊥)]2}

{(A|B)�(A|C),A⊥�(B⊥⊕C⊥)}

– ⊗ �≡| Remark that {1,⊥ ⊗ ⊥} is not provable, but {1,⊥ | ⊥} is provable
(the two ⊥ are indexed to distinguish them, however these two denote the
same constant; note also that there is only one occurence of 1 throughout
the proof): 1

1

{1}{1}
w

{1}{1,⊥2}
⊥

{1,⊥1}{1,⊥2}
⊥

1,⊥1|⊥2
|

Proposition 1. The system enjoys cut-elimination: if S is a provable multise-
quent, then there exists at least one cut-free proof of S.

The proof of cut-elimination (proofs may be found in [10]) relies mainly on a
reconstruction of proofs in case the two last rules concern the cut formulas,
and on the three following lemmas that allow the commutation of rules. The
standard definition of the height of a proof is generalized: the height of the proof
of a multisequent is the maximum of the heights of each partial proof.

Lemma 1 (Separability). Let S and T be disjoint multisequents (i.e. there is
no occurence of formulas shared by S and T), the multisequent ST is provable
iff S is provable and T is provable.

Lemma 2 (Asynchrony). The connectives �,�, | are asynchronous: let R be
an inference rule of one of these connectives (denoted ◦ below), let S be a provable
sequent of proof

T
. . . {A ◦B,Γ} . . . R on A ◦B

. . .
... . . .

. . . {A ◦B,Γ} . . .
then there exists a proof of the same height of S with R as the last rule.

Lemma 3 (Synchrony of the cut rule). The cut rule is synchronous, i.e. let
a proof of S be of the form in the left hand side (R is a rule), then one can build
a proof of the same height of S of the form in the right hand side:

222 C. Fouqueré

U [A]
W1[A] R V [A⊥]

S cut

U [A] V [A⊥]
W2

cut

S R

Structural rules

. . . {Δ} . . .

. . . {Δ}{Δ} . . .
(c)

. . . {Γi, A}{Δ} . . .

. . . {Γi, A}{A, Δ} . . .
(d)

S1 S2

S1S2
(s)

Logical rules (in rules (1) and (axiom), the multisequent consists of only one sequent)

A, A⊥
(axiom)

1
(1)

. . . {Γi} . . .

. . . {Γi,⊥} . . .
(⊥)

. . .

. . . {Γi,�} . . .
(�)

no rule for 0

. . . {Γi, A} {Δj , B} . . .

. . . {Δj , Γi, A ⊗ B} . . .
(⊗)

. . . {Γi, A, B} . . .

. . . {Γi, A � B} . . .
(�)

. . . {Γi, A} {Δj , B} . . .

. . . {Γi, A � B}{Δj , A � B} . . .
(�)

. . . {Γi, A}{Γi, B} . . .

. . . {Γi, A | B} . . .
(|)

. . . {Γi, A} . . .

. . . {Γi, A ⊕ B} . . .
(⊕1)

. . . {Γi, B} . . .

. . . {Γi, A ⊕ B} . . .
(⊕2)

S1{Γ 1
i , A} S2{Γ 2

i , B}

S{Γi, A � B}
(�)

Cut rule
. . . {Γi, A} {Δj , A

⊥} . . .

. . . {Γi, Δj} . . .
(cut)

Fig. 2. Sequent calculus for CMALL

4 Shared and Unshared Modalities

Modalities may be added to the system in the spirit of exponentials in Soft
Linear Logic [11]. They are written as upperscripts on formulas: As and Au.
The sharing .s modality (resp. the unsharing .u) is reminiscent of the why-not ?
(resp. the of-course !). Rules are completed with the ones given below:

. . . {Γ j
i , Δj} . . .

. . . {Γi, Δ
s
j} . . .

(.s)
. . . {Γi, A} . . .
. . . {Γ s

i , A
u} . . . (.u)

Proposition 2. Cut-elimination for CMALL with modalities is valid.

A Logical Calculus for Modelling Interferences 223

Example 3. (Rule instantiation)

{X1,A}{Y 1,A}{X2,B}{Y 2,B}
{X,As}{Y,As}{X,Bs}{Y,Bs}

(.s)
{X,A}{Y,A}

{Xs,Au}{Y s,Au}
(.u)

The sharing modality enjoys the following property: A−◦As | As is provable

A⊥1,A1
ax

A⊥2,A2
ax

{A⊥,As}{A⊥,As}
.s

A⊥,As|As
|

The previous example shows that a unique resource A may be used for two dif-
ferent actions: let us suppose a system has one resource A, and a set of processes
each needing one resource A, may we run them together ? The answer is yes if
two conditions are satisfied: (i) each process accepts to share its needed resource
with others, (ii) the processes run concurrently. We formalize each process Pi

as As −5 Ri where A −5 B = A⊥ | B (Ri is the formula modelling the result
of Pi): this answers condition (i). Concurrence between processes is denoted as
P1 5 . . .5Pn. We have then the following provable and non-provable two-sided
sequents (1 ≤ i ≤ n):

A,Pi � Ri

A,P1 5 . . .5 Pn � R1 5 . . .5Rn

A,P1 ⊗ · · · ⊗ Pn �� R1 ⊗ · · · ⊗Rn

The fact that the third sequent is not provable is obvious (even if each process
is modelled A−◦Ri !). We just give the proofs for the two others (we set n = 2
in the second proof for sake of clarity).

R⊥
i ,Ri

ax
A⊥,A

ax

A⊥,As
(.s)

A⊥,As⊗R⊥
i ,Ri

⊗

{A⊥1,A1}
ax

{A⊥2,A2}
ax

{A⊥1,A1}{A⊥2,A2}
s

{A⊥,As1}{A⊥,As2}
(.s)

{R⊥
1 ,R1}

ax
{R⊥

1 ,R1}
ax

{R⊥
1 ,R1�R2}{R⊥

2 ,R1�R2}
�

{A⊥,As1}{R⊥
1 ,R1�R2}{A⊥,As2}{R⊥

2 ,R1�R2}
s

{A⊥,As1}{R⊥
1 ,R1�R2}{A⊥,As2}{A⊥,R⊥

2 ,R1�R2}
d

{A⊥,As1}{R⊥
1 ,R1�R2}{A⊥,As2,R1�R2}{A⊥,R⊥

2 ,R1�R2}
d

{A⊥,As1,R1�R2}{R⊥
1 ,R1�R2}{A⊥,As2,R1�R2}{A⊥,R⊥

2 ,R1�R2}
d

{A⊥,As1,R1�R2}{A⊥,R⊥
1 ,R1�R2}{A⊥,As2,R1�R2}{A⊥,R⊥

2 ,R1�R2}
d

{A⊥,As1,R1�R2}{A⊥,R⊥
1 ,R1�R2}{A⊥,As|R⊥

2 ,R1�R2}
|

{A⊥,As|R⊥
1 ,R1�R2}{A⊥,As|R⊥

2 ,R1�R2}
|

A⊥,(As|R⊥
1)|(As|R⊥

2),R1�R2

|

224 C. Fouqueré

5 Managing Interferences

Connectives | and 5 as defined in Sect. 3 cannot deal with interference. In fact,
the calculus is designed having lazy logic programming in mind: the context
is not immediately split with the 5 rule but a splitting should occur when
applying | rules. However, even if a splitting property should be valid, there is
no need to have it explicitly for one of the connectives. In fact, interference may
be introduced by considering triples instead of pairs of hypotheses in the rule
introducing |. We then modify the calculus given for CMALL by changing the
rules for connectives 5 and | (we call this calculus I-CLL):

...{Γi,A}... ...{Δj ,B}...
...{Γi,A�B}{Γi,Δj ,A�B}{Δj ,A�B}...

(�)
...{Γi,A}{Γi,A,B}{Γi,B}...

...{Γi,A|B}...
(|)

It is easy to prove that | is asynchronous and 5 is synchronous, and also that
cut-elimination is valid. Note that the calculus CMALL can be simulated by
I-CLL (in order to distinguish the two connectives we note || connective cpar
defined in CMALL and | the connective defined in I-CLL):

Proposition 3. If S[A || B] is provable in CMALL then S[A | B] is provable
in I-CLL.

Proof. The following partial proof shows that one can use a proof with || to build
a proof with |. Remind that these connectives are asynchronous.

...{Γi,A}{Γi,B}...
...{Γi,A}{Γi,A}{Γi,B}...

w

...{Γi,A}{Γi,A,B}{Γi,B}...
d

...{Γi,A|B}...
|

This allows us to recover previous properties: A ⊗ B−◦A | B and ⊗ �≡ |. We
are now able to model independent actions:

Example 4. Suppose we have two ’packs’ of actions: f =
⊕
fn (resp. g =

⊕
gn)

such that fn (resp. gn) transforms n occurences of a (resp. b) into n occurences
of a and n occurences of b, where n ≥ 1. Suppose also that we have only one
resource of each kind (hence one a and one b). We want to simulate the two
following situations:

(i) if the two actions are applied (whatever may be the order) then we have three
possible results: 3 a and 2 b, 2 a and 3 b, 2 a and 2 b. The first (resp. second)
result is obtained when action f (resp. g) is applied first followed by action
g (resp. f). The third result occurs when the two actions are performed
simultaneously.

(ii) if the two actions are applied concurrently, there is only one possible result:
we get 2 a and 2 b.

As proofs are one-sided (and on the right), we take the negation of propositional
variables to get more readable proofs. Let us formalize f1 as a⊥−◦05((a⊥⊗b⊥) �

A Logical Calculus for Modelling Interferences 225

(⊥ | (a⊥ ⊗ b⊥))) and g1 as b⊥−◦0 5 ((a⊥ ⊗ b⊥) � (⊥ | (a⊥ ⊗ b⊥))). These
formalizations are straightforwardly generalized to fn and gn.

We consider the following aliases: X ≡ | Y and Y ≡ (a � b)⊕ (15 (a � b)).
Hence f⊥ ≡ a⊥⊗X and g⊥ ≡ b⊥⊗X . Notice that we omit ⊕ rules in proofs to
shorten them and recall that when two occurences of the same formula appear,
these occurences are indexed.

(i) application of f and g is formalized as f ⊗ g:

{a⊥,a}

{2a,3b}....
{b,a,b,g⊥}

{b,Y,g⊥}
�

{b, ,g⊥}{b, ,Y,g⊥}{b,Y,g⊥}

{b, ,g⊥}{b, ,Y,g⊥}{b,Y,g⊥}
d

{b,X,g⊥}
|

{a,b,f⊥,g⊥}
⊗

{a,b,f⊥
�g⊥}

�

The other results are obtained by swapping f and g or by using g only on
one b in the last step of the previous proof.

(ii) concurrent application of f and g is formalized as f 5 g.

{a⊥,a}
ax

1
1

{2a,2b}....
{a,b,X2}{X2}
{a�b,X2}{X2}

�

{Y }{Y,X2}{Y,X2}{X2}
�

{ }{ }{Y }{ ,X2}{Y,X2}{Y,X2}{X2}

{ }{ }{Y }{ ,X2}{ ,Y,X2}{Y,X2}{X2}
d

{ }{ ,Y }{Y }{ ,X2}{ ,Y,X2}{Y,X2}{X2}
d

{X1}{X1,X2}{X2}
|

{b⊥,b}
ax

{X1}{X1,b,g⊥}{b,g⊥}
⊗

{a,f⊥}{a,b⊥,f⊥,g⊥}{b,g⊥}
⊗

{a,b,f⊥}{a,b,f⊥,g⊥}{b,g⊥}
d

{a,b,f⊥}{a,b,f⊥,g⊥}{a,b,g⊥}
d

{a,b,f⊥|g⊥}
|

Note that the sequent {a, b, f⊥ | g⊥} is not provable when using {2a, 3b} as
hypothesis.

6 Comments About a Phase Semantics

In this section, a phase semantics is proposed for Linear Logic. It is built as a
kind of Fock space on top of a free commutative monoid. Comultiplication is used
to model the splitting process. We conjecture that it may give a phase semantics

226 C. Fouqueré

for our calculus. Let (M,�, 1) be a free commutative, associative monoid with
neutral element 1. Elements range as x, y, The product will be denoted as a
concatenation: xy � x � y. We consider the following notations and definitions:

– M is the set of multisets of M . These multisets are denoted additively:
x1+ · · ·+xn � {x1, . . . , xn}.M is considered as a subset ofM by identifying
a singleton and its element. The empty set may be denoted 0.

– M×n is the closure under + of the cartesian product of n copies of M (and
× distributes over +). Elements range as a, b, Elements of the cartesian
product of M are called simple. ai is the ith part of the simple element a.

– M◦n is the closure under + of the symmetric cartesian product, i.e. M◦n =
M×n/Sn where Sn is the group of permutations on n elements. The sym-
metric product is denoted ◦.

– M◦0 = M×0 = {∅}.
– Fock(M) =

⋃
n≥0M◦n . Elements of Fock(M) range as f, g, . . .

– Let Δ :M→M×2 be such that (shuffle coproduct on M):

∀x ∈M, Δ(x) =
∑

x(1)x(2)=x x(1) × x(2)

∀a1, a2 ∈M, Δ(a1 + a2) = Δ(a1) +Δ(a2)

We use the Sweedler notation: sums are over all possible decompositions.
– Δn−1 : M→M×n (n ≥ 1) is recursively defined:

• Δ0(a) = a
• Δ1(a) = Δ(a)
• Δn+1(a) = (Δ × idn) ◦ Δn(a) (here ◦ refers to composition and idn �
id× · · · × id (n times))

– We extend Δn as a morphism on (Fock(M), ◦,+):
• Δn(f + g) = Δn(f) +Δn(g)
• Δn(f ◦ g) = Δn(f) ◦Δn(g)

Proposition 4

– Δ is coassociative and cocommutative.
– ∀n ≥ 0, i ∈ [0, n], Δn+1 = (idi ×Δ× idn−i) ◦Δn (n-coassociativity).
– ∀n ≥ 0, i, j ∈ [1, n+ 1], ci,j ◦Δn = Δn (n-cocommutativity)

where ci,j(a1×· · ·×ai×· · ·×aj×· · ·×an+1) = a1×· · ·×aj×· · ·×ai×· · ·×an+1.

Proofs are obtained by direct computations and induction on n. We finally extend
� to get a product on Fock(M):

Definition 3. Let f ∈ M◦m , g ∈ M◦n, f and g simple elements,

f � g �
∑

◦i,jfi(j)gj(i)

where i ∈ [1,m] and j ∈ [1, n]. � is extended by linearity to the Fock space.

A Logical Calculus for Modelling Interferences 227

Proposition 5. � enjoys the following properties:

– � is well defined on Fock(M) and is commutative, associative.
– ∀u ∈M, ∀n ≥ 0, i ∈ [0, n], Δn+1(u) =

∑
Δi(u(1)) ◦Δn−i(u(2))

– u � (f ◦ g) =
∑

(u(1) � f) ◦ (u(2) � g)

Proof. Notations are the following ones:{
f = f1 ◦ · · · ◦ fm
fi = fi(1) . . . fi(n)

{
g = g1 ◦ · · · ◦ gn
gj = gj(1) . . . gj(m)

where fi and gj are elements of M . Then

f � g =
∑
f1(1)g1(1) ◦ · · · ◦ f1(n)gn(1) ◦ f2(1)g1(2) ◦ · · · ◦ fm(n)gn(m)

– the definition does not depend on the chosen representatives: permuting fi
with fj replaces in the sum the term fi(k)gk(i) by fj(k)gk(i) and fj(l)gl(j) by
fi(l)gl(j). However, the sum being computed over all decompositions of gk
and gl, and invariant over permutations, the global sum remains the same.
Finally, the product � is commutative as � is commutative on M .

– Note that f � g is the symmetric of Δn(f) ·Δm(g) where · is the dot product
(here on M◦mn).

– The dot product is associative (because � is associative on M), so is the �
product.

– the two last propositions are proven by induction and direct computation.

We add to M an element 1 and extend Δ in the following way: Δ(1) = 1× 1.
Note that 1 is neutral w.r.t. �. (Fock(M), �, ◦,1) is called a distribution space.
A model of Linear Logic may be obtained by defining as usual an order relation
and by interpreting formulas of Linear Logic as facts. We use the following
notations: f, g ∈ Fock(M), F,G ⊂ Fock(M). Elements of the dual are denoted
with a prime: f ′ ∈ F⊥. A,B denote facts, i.e. subsets of Fock(M) closed by
biorthogonal: A = A⊥⊥. We give the following definitions:

Definition 4

– ≥ is the least partial order relation on Fock(M) satisfying (∀f, g, h ∈ Fock(M)):

(≥1) f ≤ g then f � h ≤ g � h
(≥2) f ≤ f + g

– ⊥⊥ is a subset of Fock(M) satisfying:
(⊥⊥ 1) it is the smallest ideal for ≥: f ∈⊥⊥ and f ≤ g then g ∈⊥⊥
(⊥⊥ 2) it contains a subset ⊥ ⊂M
(⊥⊥ 3) f, g ∈⊥⊥ iff f ◦ g ∈⊥⊥

– f⊥ = {g ∈ Fock(M)/f � g ∈⊥⊥}
– F⊥ =

⋂
f∈F f

⊥

– F � G = {f � g/f ∈ F, g ∈ G}
– F ◦G = {f ◦ g/f ∈ F, g ∈ G}

228 C. Fouqueré

Lemma 4
f < g then ∃h �= 0, such that g = f + h

Proof. We proceed by induction on p = m+ n: f ∈M◦m and g ∈M◦n .

– The property is true for p = m = n = 0 (f = g = 0 is the only possibility).
– Let p ≥ 1 and the property true for all p′ < p. We consider the various cases

implying f < g.
(≥1) ∃f1, g1, h1 such that f = f1 � h1, g = g1 � h1 and f1 < g1. Hence by

induction (inductive construction of the partial order onM or induction
on p), ∃h2 �= 0 such that g1 = f1+h2. Then g = g1�h1 = (f1+h2)�h1 =
f1 � h1 + h2 � h1 = f + h2 � h1.

(≥2) g = f + h: the case is obvious.
transitivity f1 < f2 and f2 < f3. Then ∃h1 �= 0 such that f2 = f1+h1 and

∃h2 �= 0 such that f3 = f2+h2.Thus f3 = (f1+h1)+h2 = f1+(h1+h2).

Lemma 5

f ∈⊥⊥ iff ∃(gi)i∈I , I finite non-empty, gi ∈⊥⊥, gi ∈M such that f = ©igi + h

Proof. One direction results from (⊥⊥ 3), (≥2). Suppose f ∈⊥⊥. We prove the
other result by induction on n such that f ∈M◦n .

– n = 1 We can suppose that f =
∑

j∈J fj and fj ∈ M . We proceed by
induction on the cardinality of J . Either f ∈ M and we are finished, or
(definition of the order relation ≥) ∃g ∈ M, g ∈⊥⊥, g �= f such that g < f ,
hence ∃h and f = g+h (situation (⊥⊥ 3) does not occur). We finish by using
the property on g.

– Suppose the property true till n − 1, n > 0. Either situation (⊥⊥ 1) occurs
and ∃g ∈ M, g ∈⊥⊥, g �= f such that g < f and we conclude with Lemma
4, or situation (⊥⊥ 3) occurs and ∃f1, f2 and f = f1 ◦ f2 and f1, f2 ∈⊥⊥ and
induction on n applies.

Note that Lemma 5 shows in fact that the splitting of the context may be
”anticipated” in terms of phase semantics (one element of a sum has a ”good”
property). Then the following property shows that the two sets of connectives
coincide:

Proposition 6. (A�B)⊥⊥ = (A⊥ ◦B⊥)⊥ (i.e. ⊗ and | are equivalent) when A
and B are facts.

Proof. – A⊥ ◦B⊥ ⊂ (A � B)⊥: with the definition given,

(A⊥ ◦B⊥) � A � B = ((A⊥ � A) ◦B⊥ +A⊥ ◦ (B⊥ � A)) � B
= (A⊥ � A) ◦ (B⊥ � B) + (A⊥ � A � B) ◦B⊥

+(A⊥ � B) ◦ (B⊥ � A) +A⊥ ◦ (B⊥ � A � B)

and (A⊥ � A) ◦ (B⊥ � B) ⊂ ⊥ hence the result follows.

A Logical Calculus for Modelling Interferences 229

– (A � B)⊥ ⊂ (A⊥ ◦B⊥)⊥⊥:
• let u ∈ (A⊥ ◦B⊥)⊥, then ∀a′ ∈ A⊥, b′ ∈ B⊥, u � (a′ ◦ b′) ∈ ⊥.
• Furthermore u � (a′ ◦ b′) =

∑
(u(1) � a

′) ◦ (u(2) � b
′) (Lemma 5).

• Then by Lemma 5, there exist u(1) and u(2) such that u = u(1) � u(2),
and (u(1) � a

′) ◦ (u(2) � b
′) ∈ ⊥.

• Hence u(1) � a
′ ∈ ⊥ and u(2) � b

′ ∈ ⊥, i.e. u(1) ∈ a′⊥ and u(2) ∈ b′⊥, then
u = u(1) � u(2) ∈ a′⊥ � b′⊥.

• Then u ∈
⋂

a′,b′ a
′⊥ � b′⊥ =

⋂
a′ a′⊥ �

⋂
b′ b

′⊥.
• Furthermore A⊥ =

⋃
a′{a′}, then A = A⊥⊥ =

⋂
a′ a′⊥, idem for B.

• Then u ∈ A � B.

Definition 5. A phase structure (P,V) is given by a phase space P and a valu-
ation that associates a fact V(p) to each proposition symbol p. The interpretation
V(A) of a formula A is defined in a standard way:

V(A⊥) = V(A)⊥

V(⊥) = 1 V(1) = ⊥
V(A⊗B) = V(A)⊗ V(B) V(A � B) = V(A) � V(B)
V(A5B) = V(A)5 V(B) V(A | B) = V(A) | V(B)
V(A⊕B) = V(A)⊕ V(B) V(A � B) = V(A) � V(B)

The interpretation of sequents is defined in the following way: let S be a
multisequent, S may be defined as a triple (I,O, p) where I ⊂ N is finite, O
is a finite multiset of occurrences of formulas, p is a function from I to the
powerset of O (i.e. p(i) gives the set of occurrences present in the ith sequent of
S). Define n(A, i) = #{j ≤ i/A ∈ p(j)}. Then

V(S) = {
∑

©i∈I X∈p(i)

x′∈V(X⊥)

x′(n(X,i))}⊥⊥

where the sum is over all tuples (x′(1), . . . , x
′
(n(X,|I|))) for all X⊥, i.e. x′ ∈ V(X⊥)

and Δn(X,|I|)(x′) =
∑

x′=x′
(1)�···�x′

(n(X,|I|))
x′(1) ◦ · · · ◦ x′(n(X,|I|)).

Note that the valuation V is well defined as Δn is associative for all n, and
operations ◦, � are associative and commutative.

Definition 6. Let A be a formula, A is valid for V iff V(A) ⊂⊥⊥. A multisequent
S is valid iff V(S) ⊂⊥⊥ for all phase structure (P,V).

Theorem 1. If a multisequent is provable in Linear Logic, then it is valid.

The proof is done, as usual, by induction on the structure of a proof.
Even if the phase semantics as described here has lost part of its significance

w.r.t. CMALL because of Lemma 5, we conjecture that this algebraic framework
may give fruitful insights to the understanding of calculi over multisequents.

230 C. Fouqueré

7 Conclusion

An original logic calculus (with variants) is presented that is a conservative ex-
tension of Linear Logic, at the theoretical level, and at the language level. The
motivation beneath this work concerns lazy evaluation, true concurrency and
interferences in proof search. We show that cut elimination is false if one con-
siders a naive approach. The calculus CMALL adds two new connectives to deal
with multisequent structures. It has the cut-elimination property. Extensions are
proposed that give first results concerning our objectives. A proposal is made
concerning an algebraic semantics where formulas shared among different se-
quents could be denoted as elements in a Fock-like space. Among lines of future
research, one may cite also the search for a proofnet-like syntax: the intuitive
way consists of authorizing multitrips instead of a single trip as in proofnets (for
example if a path traverses a cpar node then two trips are fired, and the dual
node joins two trips that arrive).

References

1. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
2. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of

Logic and Computation 2(3), 297–347 (1992)
3. Laurent, O.: Syntax vs. semantics: a polarized approach. Theoretical Computer

Science 343(1–2), 177–206 (2005)
4. Girard, J.Y.: Locus solum. Mathematical Structures in Computer Science 11, 301–

506 (2001)
5. Curien, P.L., Faggian, C.: L-nets, strategies and proof-nets. In: Ong, L. (ed.) CSL

2005. LNCS, vol. 3634, pp. 167–183. Springer, Heidelberg (2005)
6. Giamberardino, P.D., Faggian, C.: Jump from parallel to sequential proofs: Mul-

tiplicatives. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 319–333. Springer,
Heidelberg (2006)

7. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear
logic proof search. In: Herre, H., Dyckhoff, R., Schroeder-Heister, P. (eds.) ELP
1996. LNCS, vol. 1050, pp. 67–81. Springer, Heidelberg (1996)

8. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bulletin of Symbolic
Logic 5(2), 215–244 (1999)

9. Guglielmi, A.: A system of interaction and structure. ACM Transactions on Com-
putational Logic 8(1) (2007)

10. Fouqueré, C.: A Sequent Calculus for Modelling Interferences. Technical re-
port, LIPN, Université Paris 13 (2007), http://hal.archives-ouvertes.fr/
hal-00156386/en/

11. Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Sci-
ence 318(1-2), 163–180 (2004)

http://hal.archives-ouvertes.fr/hal-00156386/en/
http://hal.archives-ouvertes.fr/hal-00156386/en/

Reflection and Preservation of Properties in

Coalgebraic (bi)Simulations�

Ignacio Fábregas, Miguel Palomino, and David de Frutos Escrig

Departamento de Sistemas Informáticos y Computación, UCM
fabregas@fdi.ucm.es, {miguelpt, defrutos}@sip.ucm.es

Abstract. Our objective is to extend the standard results of preser-
vation and reflection of properties by bisimulations to the coalgebraic
setting, as well as to study under what conditions these results hold for
simulations. The notion of bisimulation is the classical one, while for sim-
ulations we use that proposed by Hughes and Jacobs. As for properties,
we start by using a generalization of linear temporal logic to arbitrary
coalgebras suggested by Jacobs, and then an extension by Kurtz which
includes atomic propositions too.

1 Introduction

To reason about computational systems it is customary to mathematically for-
malize them by means of state-based structures such as labelled transitions sys-
tems or Kripke structures. This is a fruitful approach since it allows to study
the properties of a system by relating it to some other, possibly better-known
system, by means of simulations and bisimulations (see e.g., [15,14,12,3]).

The range of structures used to formalize computational systems is quite wide.
In this context, coalgebras have emerged with a unifying aim [18]. A coalgebra
is simply a function c : X −→ FX , where X is the set of states and FX is some
expression on X (a functor) that describes the possible outcomes of a transition
from a given state. Choosing different expressions for F one can obtain coalgebras
that correspond to transition systems, Kripke structures, . . .

Coalgebras can also be related by means of (bi)simulations. Our goal in this
paper is to prove that, like their concrete instantiations, (bi)simulations between
arbitrary coalgebras preserve some interesting properties. A first step in this
direction consists in choosing an appropriate notion for both bisimulation and
simulation, as well as a logic in which to express these properties.

Bisimulations were originally introduced by Aczel and Mendler [1], who showed
that the general definition coincided with the standard ones when particularized;
it is an established notion. Simulations, on the other hand, were defined by Hughes
and Jacobs [8] and lack such canonicity. Their notion of simulation depends on
the use of orders that allow (perhaps too) much flexibility in what it can be con-
sidered as a simulation; in order to show that simulations preserve properties, we
� Research supported by the Spanish projects DESAFIOS TIN2006-15660-C02-01,

WEST TIN2006-15578-C02-01 and PROMESAS S-0505/TIC/0407.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 231–245, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

232 I. Fábregas, M. Palomino, and D. de Frutos Escrig

will have to impose certain restrictions on such orders. As for the logic used for the
properties, there is likewise no canonical choice at the moment. Jacobs proposes a
temporal logic (see [9]) that generalizes linear temporal logic (LTL), though with-
out atomic propositions; a clever insight of Pattinson [17] provides us with a way
to endow Jacobs’ logic with atomic propositions.

Since our original motivation was the generalization of the results about sim-
ulations and preservation of LTL properties, we will focus on Jacobs’ logic and
its extension with atomic propositions. Actually, modal logic seems to be the
right logic to express properties of coalgebras and several proposals have been
made in this direction, among them those in [10,13,17], which are invariant under
behavioral equivalence. The reason for studying preservation/reflection of prop-
erties by bisimulations here is twofold: on the one hand, some of the operators in
Jacobs’ logic do not seem to fall under the framework of those general proposals;
on the other hand, some of the ideas and insights developed for that study are
needed when tackling simulations. As far as we know, reflection of properties by
simulations in coalgebras has not been considered before in the literature.

2 Preliminaries

In this section we summarize definitions and concepts from [8,11,9], and intro-
duce the notation we are going to use.

Given a category C and an endofunctor F in C, an F -coalgebra, or just a
coalgebra, consists of an object X ∈ C together with a morphism c : X −→ FX .
We often call X the state space and c the transition or coalgebra structure.

Example 1. We show how two well-known structures can be seen as coalgebras:

– Labelled transition systems are coalgebras for the functor F = P(id)A, where
A is the set of labels.

– Kripke structures are coalgebras for the functor F = P(AP)×P(id), where
AP is a set of atomic propositions.

It is well-known that an arbitrary endofunctor F on Sets can be lifted to a
functor in the category Rel of relations, that is, Rel(F) : Rel −→ Rel. Given a
relation R ⊆ X × Y , its lifting is defined by

Rel(F)(R) = {〈u, v〉 ∈ FX1 × FX2 | ∃w ∈ F (R). F (r1)(w) = u, F (r2)(w) = v} ,

where ri : R −→ Xi are the projection morphisms.
A predicate P of a coalgebra c : X −→ FX is just a subset of the state space.

Also, a predicate P ⊆ X can be lifted to a functor structure using the relation
lifting:

Pred(F)(P) =
∐

π1
(Rel(F)(

∐
δ(P))) =

∐
π2

(Rel(F)(
∐

δ(P))),

where δ = 〈id, id〉 and
∐

f (X) is the image of X under f , so
∐

δx
(P) = {(x, x) |

x ∈ P},
∐

π1
(R) = {x1 | ∃x2.x1Rx2} is the domain of the relation R, and∐

π2
(R) = {x2 | ∃x1.x1Rx2} is its codomain.

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 233

The class of polynomial endofunctors is defined as the least class of endofunc-
tors on Sets such that it contains the identity and constant functors, and is
closed under product, coproduct, constant exponentiation, powerset and finite
sequences. For polynomial endofunctors, Rel(F) and Pred(F) can be defined
by induction on the structure of F . For further details on these definitions see
[9]; we will introduce some of those when needed. For example, for the cases of
labelled transition systems and Kripke structures we have:

Rel(P(id)A)(R) = {(f, g) | ∀a ∈ A. (f(a), g(a)) ∈ {(U, V) | ∀u ∈ U. ∃v ∈ V. uRv ∧
∀v ∈ V. ∃u ∈ U. uRv}}

Pred(P(id)A)(P) = {f | ∀a ∈ A. f(a) ∈ {U | ∀u ∈ U. Pu}}

Rel(P(AP)× P(id))(R) = {((u1, u2), (v1, v2)) | (u1 = v1. u1, v1 ∈ P(AP)) ∧
(u2, v2) ∈ {(U, V) | ∀u ∈ U. ∃v ∈ V. uRv ∧

∀v ∈ V. ∃u ∈ U. uRv}}

Pred(P(AP)× P(id))(P) = {(u, v) | (u ⊆ P(AP)) ∧ (v ∈ {U | ∀u ∈ U. Pu)}

A bisimulation for coalgebras c : X −→ FX and d : Y −→ FY is a relation
R ⊆ X × Y which is “closed under c and d”:

if (x, y) ∈ R then (c(x), d(y)) ∈ Rel(F)(R) .

In the same way, an invariant for a coalgebra c : X −→ FX is a predicate P ⊆ X
such that it is “closed under c”, that is, if x ∈ P then c(x) ∈ Pred(F)(P).

We will use the definition of simulation introduced by Hughes and Jacobs
in [8] which uses an order ! for functors F that makes the following diagram
commute

PreOrd
forget

��
Sets

� ����������

F
�� Sets

Given an order ! on F , a simulation for the coalgebras c : X −→ FX and
d : Y −→ FY is a relation R ⊆ X × Y such that

if (x, y) ∈ R then (c(x), d(y)) ∈ Rel(F)�(R) ,

where Rel(F)�(R) is defined as

Rel(F)�(R) = {(u, v) | ∃w ∈ F (R). u ! Fr1(w) ∧ Fr2(w) ! v} .

To express properties we will use a generalization of LTL proposed by Jacobs
(see [9]) that applies to arbitrary coalgebras, whose formulas are given by the
following BNF expression:

ϕ = P ⊆ X | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⇒ ϕ | ©ϕ | �ϕ | �ϕ | ϕ U ϕ

234 I. Fábregas, M. Palomino, and D. de Frutos Escrig

© is the nexttime operator and its semantics (abusing notation) is defined as
©P = c−1(Pred(F)(P)) = {x ∈ X | c(x) ∈ Pred(F)(P)}; � is the henceforth
operator defined as �P if exists an invariant for c, such that Q ⊆ P with x ∈ Q
or, equivalently by means of the greatest fixed point ν, �P = νS.(P ∧©S); �

is the eventually operator defined as �P = ¬�¬P ; and U is the until operator
defined as P U Q = μS.(Q ∨ (P ∧ ¬©¬S)), where μ is the least fixed point.

We denote the set of states in X that satisfies ϕ as �ϕ�X . That is, if P ⊆ X
is a predicate, then �P �X = P ; if α ∈ {¬,©, �, �} then �αϕ�X = α�ϕ�X , and
if β ∈ {∧,∨, ⇒, U } then �ϕ1βϕ2�X = �ϕ1�Xβ�ϕ2�X . We will usually omit the
reference to the set X when it is clear from the context. We say that an element
x satisfies a formula ϕ, and we denote it by c, x |= ϕ, when x ∈ �ϕ�. Again, we
will usually omit the reference to the coalgebra c.

3 Reflection and Preservation in Bisimulations

These definitions of reflection and preservation are slightly more involved than
for classical LTL because the logic proposed by Jacobs does not use atomic
propositions, but predicates (subsets of the set of states). Later, we will see how
atomic propositions can be introduced in the logic.

Given a predicate P on X and a binary relation R ⊆ X × Y , we will say that
an element y ∈ Y is in the direct image of P , and we will denote it by y ∈ RP ,
if there exists x ∈ X with x ∈ P and xRy. The inverse image of R is just the
direct image for the relation R−1.

Definition 1. Given two formulas ϕ on X and ψ on Y , built over predicates
P1, . . . Pn and Q1, . . .Qn, respectively, and a binary relation R ⊆ X × Y , we de-
fine the image of ϕ as a formula ϕ∗ on Y , obtained by substituting in ϕ RPi for Pi.
Likewise, we build ψ−1, the inverse of ψ, substituting R−1Qi for Qi in ψ.

Remark 1. It is important to notice that ϕ∗ coincides with ϕ−1 when we consider
R−1 instead of R. Analogously, ϕ−1 is just ϕ∗ when we consider R−1 instead of R.

Now we can define when a relation preserves or reflects properties.

Definition 2. Let R ⊆ X × Y be a binary relation and a and b elements such
that aRb. We say that R preserves the property ϕ on X if, whenever a |= ϕ,
b |= ϕ∗. We say that R reflects the property ϕ on Y if b |= ϕ implies a |= ϕ−1.

Let us first state a couple of technical lemmas whose proofs appear in [6].

Lemma 1. Let F be a polynomial functor, R ⊆ X × Y a bisimulation between
coalgebras c : X −→ FX and d : Y −→ FY , P ⊆ Y , Q ⊆ X and xRy. If
d(y) ∈ Pred(F)(P), then c(x) ∈ Pred(F)(R−1P); and if c(x) ∈ Pred(F)(Q),
then d(y) ∈ Pred(F)(RQ).

Another auxiliary lemma we need to prove the main result of this section is the
following:

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 235

Lemma 2. The direct and inverse images of an invariant are also invariants.

Proof. Let R be a bisimulation between c : X −→ FX and d : Y −→ FY . Let
us suppose that P ⊆ X is an invariant and let us prove that so is RP ; that
is, for all y ∈ RP it must be the case that d(y) ∈ Pred(F)(RP). If y ∈ RP ,
then there exists x ∈ P such that xRy. Since P is an invariant, we also have
c(x) ∈ Pred(F)(P) and by Lemma 1 we get d(y) ∈ Pred(F)(RP).

On the other hand, since R−1 is also a bisimulation, the inverse image of an
invariant is an invariant too. �"

At this point it is interesting to recall that our objective is to prove that bisim-
ulations preserve and reflect properties of a temporal logic, that is, if we have
xRy and y |= ϕ then we must also have x |= ϕ−1; and, analogously, if x |= ϕ
then y |= ϕ∗. We will show this result for all temporal operators except for the
negation; it is well-known that negation is reflected and preserved by standard
bisimulations, but not here because of the lack of atomic propositions in the
coalgebraic temporal logic.

To prove the result for the rest of temporal operators, we will see that if
y ∈ �ϕ� then we also have x ∈ R−1�ϕ� and, analogously, if x ∈ �ϕ� then y ∈ R�ϕ�.
Ideally, we would like to have both R−1�ϕ� = �ϕ−1� and R�ϕ� = �ϕ∗� but,
in general, only the inclusion ⊆ is true. Fortunately this is enough to prove
our propositions, since the temporal operators are all monotonic except for the
negation. In fact, here is where the problem with negation appears.

Lemma 3 ([6]). Let R be a bisimulation between coalgebras c : X −→ FX and
d : Y −→ FY . For all temporal formulas ϕ and ψ which do not contain the
negation operator, it follows that

R−1�ϕ�Y ⊆ �ϕ−1�X and R�ψ�X ⊆ �ψ∗�Y .

Finally we can show that bisimulations reflect and preserve properties given by
any temporal operator except for the negation.

Proposition 1. Let ψ be a formula over a set Y which does not use the negation
operator and let R be a bisimulation between coalgebras c : X −→ FX and
d : Y −→ FY . Then the property ψ is reflected by R.

Proof. The result is proved by structural induction over the formula ψ using the
first half of Lemmas 1 and 3, and Lemma 2. See [6] for further details. �"

Preservation of properties is a consequence of the reflection of properties together
with the fact that if R is a bisimulation then R−1 is also a bisimulation. We have
thus proved the following theorem.

Theorem 1. Let ψ and ϕ be formulas over sets Y and X, respectively, which
do not use the negation operator and let R be a bisimulation between coalgebras
c : X −→ FX and d : Y −→ FY . Then ψ is reflected by R and ϕ is preserved
by R.

236 I. Fábregas, M. Palomino, and D. de Frutos Escrig

4 Reflection and Preservation in Simulations

In [3,16] it is proved not only that bisimulations reflect and preserve properties
but also that simulations reflect them: it turns out that this result does not
generalize straightforwardly to the coalgebraic setting.

The main problem that we have found concerning this is that the coalgebraic
definition of simulation uses an arbitrary functorial order !, and in general
reflection of properties will not hold for all orders.

Let us show a counterexample that will convince us that simulations may
not reflect properties without restricting the orders. Let us take F = P(id),
X = {x1, x2}, Y = {y1, y2} and the coalgebras c and d defined as c(x1) =
{x1, x2}, c(x2) = {x2}, d(y1) = y2 and d(y2) = y2. We define u ! v whenever
v ⊆ u and consider the formula ϕ = ©P , where P = {y2}, and the simulation
R = {(x1, y2)}. It is immediate to check that R is a simulation and y2 ∈ �ϕ�,
but x1 /∈ �ϕ−1�.
– y2 ∈ �ϕ�. Indeed, since d(y2) = y2 then y2 ∈ �ϕ� = ©P is equivalent to

y2 ∈ P = {y2}, which is trivially true.
– x1 /∈ �ϕ−1�. By definition, ϕ−1 =©R−1P = ©{x1}. Since c(x1) = {x1, x2},

it is enough to see that x2 /∈ {x1}, which is also true.

As a consequence, we will need to restrict the functorial orders that are in-
volved in the definition of simulation. In a first approach we will impose an extra
requirement that the order must fulfill, and later we will not only restrict the
orders but also the functors that are involved.

4.1 Restricting the Orders

The idea is that we are going to require an extra property for each pair of ele-
ments which are related by the order. In particular, we are particularly interested
in the following property (which is defined in [8]):

Definition 3. Given a functor F : Sets −→ Sets, we say that an order !
associated to it is “down-closed” whenever a ! b, with a, b ∈ FX, implies that

b ∈ Pred(F)(P) =⇒ a ∈ Pred(F)(P), for all predicates P ⊆ X .

We can show some examples of down-closed orders:

Example 2. 1. Kripke structures are defined by the functor F = P(AP) ×
P(id), so a down-closed order must fulfill that if (u, v) ! (u′, v′), then
(u′, v′) ∈ Pred(F)(P) implies (u, v) ∈ Pred(F)(P); that is, by definition
of Pred(P(AP)×P(id)), u, u′ ⊆ P(AP) and, if v′ ∈ Pred(P(id))(P) = {U |
∀u ∈ U. u ∈ P} then v ∈ Pred(P(id))(P). In other words, for all b ∈ v and
b′ ∈ v′, if b′ ∈ P then b ∈ P . Therefore, what is needed in this case is that
the set of successors v of the smaller pair is contained in the set of successors
v′ of the bigger pair, that is, if (u, v) ! (u′, v′) then v ⊆ v′.

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 237

2. Labelled transition systems are defined by the functor F = P(id)A, so the
order must fulfill the following: if u ! v then ∀a ∈ A. u(a) ⊆ u′(a).

Those examples show that there are not many down-closed orders, but it does
not seem clear how to further extend this class in such a way that we could still
prove the reflection of properties by simulations. Unfortunately, even under this
restriction we can only prove reflection (or preservation) of formulas that only
use the operators ∨, ∧, © and �.

To convince us of this fact, we present a counterexample with operator �. Let
X = {x1, x2}, Y = {y1, y2} and the functor F = P(id). We consider the following
down-closed order: u ! v if u ⊆ v. We also define the coalgebras c : X −→ FX
and d : Y −→ FY as c(x1) = {x1}, c(x2) = {x2}, d(y1) = {y1, y2} and d(y2) =
{y2}. Obviously R = {(x1, y1)} is a simulation since c(x1) = {x1} ! {x1} and
{y1} ! {y1, y2} = d(y1) and, also, {x1}Rel(F)(R){y1}. We have y1 ∈ �{y2},
since we can reach y2 from y1, but x1 /∈ �R−1{y2} = �∅. Indeed, x1 /∈ �∅ is
equivalent to x1 ∈ �¬∅ and this is true since {x1} is an invariant such that
x1 ∈ {x1}, with {x1} ⊆ ¬∅.

In order to prove reflection of properties that only use the operators ∨, ∧, ©
and �, we will need a previous elementary result involving binary relations.

Proposition 2. Let R ⊆ X × Y be a binary relation and P ⊆ Y a predicate.
Let us suppose that uRel(F)(R)v; then, if v ∈ Pred(F)(P) it is also true that
u ∈ Pred(F)(R−1P).

Proof. Once again the proof will proceed by structural induction on the functor
F . See [6] for further details. �"
We will also need a subtle adaptation of Lemmas 2 and 3 from the framework
of bisimulations to the framework of simulations. In particular, we can adapt
Lemma 2 to prove that if Q is an invariant and R a simulation, R−1Q is still an
invariant, whereas the first half of Lemma 3 will also be true in the framework
of simulations for formulas that only use the operators ∨, ∧, © and �.

Lemma 4. Let R be a simulation between coalgebras c : X −→ FX and d :
Y −→ FY , with a down-closed order, and let Q ⊆ Y be an invariant. Then
R−1Q is also an invariant.

Proof. We are going to show that for allx ∈ R−1Qwehave c(x) ∈ Pred(F)(R−1Q).
Let us take an arbitrary x ∈ R−1Q; then, by definition there exists y ∈ Q such that
xRy and, since Q is an invariant, d(y) ∈ Pred(F)(Q). On the other hand, since R
is a simulation, c(x) ! uRel(F)(R)v ! d(y). Henceforth, since we are working
with a down-closed order and d(y) ∈ Pred(F)(Q), then v ∈ Pred(F)(Q). Also,
by Proposition 2 we have u ∈ Pred(F)(R−1Q) and, using again that the order is
down-closed, it follows that c(x) ∈ Pred(F)(R−1Q). �"
Lemma 5 ([6]). Let R be a simulation between coalgebras c : X −→ FX and
d : Y −→ FY , with a down-closed order. If ϕ is a temporal formula constructed
only with operators ∨, ∧, © and �, then

R−1�ϕ�Y ⊆ �ϕ−1�X .

238 I. Fábregas, M. Palomino, and D. de Frutos Escrig

Now we can state the corresponding theorem:

Theorem 2 ([6]). Let R be a simulation between coalgebras c : X −→ FX and
d : Y −→ FY with a down-closed order. If ϕ is a temporal formula constructed
only with operators ∨, ∧, © and �, then the property ϕ is reflected by the
simulation.

Instead of considering down-closed orders, we could have imposed the converse
implication, that is, those orders that satisfy that if a ∈ Pred(F)(P) then b ∈
Pred(F)(P).

Definition 4. Given a functor F : Sets −→ Sets we say that an order ! is
up-closed if whenever a ! b then

a ∈ Pred(F)(P) =⇒ b ∈ Pred(F)(P), for all predicates P .

Obviously up-closed is symmetrical to down-closed, that is, it is equivalent to
taking !op instead of ! in Definition 3. So, for example, in the case of Kripke
structures an up-closed order would satisfy (u, v) ! (u′, v′) if v′ ⊆ v.

The interesting thing about up-closed orders is that they allow us to prove
preservation of properties; again, this result will hold only for formulas con-
structed with the operators ∨, ∧, © and �. We need the following auxiliary
result whose proof is analogous to the case of down-closed orders. Since if R is a
simulation for the order !, then R−1 is a simulation for the oposite order !op,
we can apply Theorem 2 to get the following (see [6] for more details):

Theorem 3. Let R be a simulation between coalgebras c : X −→ FX and
d : Y −→ FY carrying an up-closed order. If ϕ is a temporal formula constructed
only with the operators ∨, ∧, © and �, then R preserves the property ϕ.

4.2 Restricting the Class of Functors

As we have just seen, it is not enough to restrict ourselves to down-closed (or
up-closed) orders to get a valid result for all properties. What we want is a
necessary and sufficient condition over functorial orders that implies reflection
(or preservation) of properties by simulations. So far we have not found such a
condition, but we have a sufficient one for simulations to reflect properties (and,
in fact, also so that they preserve properties).

Recalling the structure of lemmas and propositions used to prove reflection
and preservation of properties by bisimulations, we notice that the key ingredient
was Lemma 1. With this lemma we were able to prove directly preservation
of invariants (Lemma 2) and the relation between R−1 (respectively R) of a
formula and the inverse of a formula (respectively direct image of a formula).
Also, Lemma 1 was essential to prove directly reflection and preservation of
formulas built with the nexttime operator and the rest of temporal operators.

In the previous section the problem we faced was that either the second half
of Lemma 1 (for down-closed orders) or the first half of Lemma 1 (for up-closed

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 239

orders) held, but not both simultaneously. As a consequence, the results for the
operators eventually and until did not hold. So, if we were capable of finding a
subclass of functors and orders such that they fulfill results analogous to Lemma
1 then, translating those proofs, we would get reflection and preservation of
arbitrary properties.

We are going to define a subclass of functors and orders in the way that
Hughes and Jacobs did in [8] for the subclass Poly.

Definition 5. The class Order is the least class of functors closed under the
following operations:

1. For every preorder (A,≤), the constant functor X �→ A with the order given
by !X=≤A.

2. The identity functor with equality order.
3. Given two polynomial functors F1 and F2 with orders !1 and !2, the product

functor F1 × F2 with order !X given by

(u, v) !X (u′, v′) if u !1 u′ and v !2 v′ .

4. Given the polynomial functor F with order !F and the set A, the functor
FA with order !X given by

u !X v if u(a) !F v(a) for all a ∈ A.

5. Given two polynomial functors F1 and F2 with orders !1 and !2, the co-
product functor F1 + F2 with order !X given by

u !X v if u = κ1(u0) and v = κ1(v0) with u0 !1 v0

or u = κ2(u0) and v = κ2(v0) with u0 !2 v0 .

6. Given the polynomial functor F with order !F , the powerset functor P(F)
with order !X given by

u !X v if ∀a ∈ u ∃b ∈ v such that a !F b
and also ∀b ∈ v ∃a ∈ u such that a !F b .

For example the usual order for Kripke structures is not in the class Order.
Besides, in the definition of Poly in [8] the authors did not consider the powerset
functor but we do, although we are not using the usual order for this functor.

At first, to obtain that simulations not only reflect but also preserve properties
may seem a little surprising. If we think about the elements in the subclass
Order we notice that we have restricted the orders to equality-like orders, that
is, almost all possible orders in Order are the equality. However, since the class
Order is very similar to the class Poly, it has the same good properties shown
in [8] (like the stablility of the orders and functors).

Example 3. 1. If we consider the functor P(id), then the order ! defined in
Definition 5 says that u ! v if and only if for each a ∈ u there exists b ∈ v
such that a = b, and if for each b ∈ v there exists a ∈ u such that a = b.
This means that ! is the identity relation. As an immediate consequence for
transition systems the only possible Order simulations are bisimulations.

240 I. Fábregas, M. Palomino, and D. de Frutos Escrig

2. If we consider the functor A× id where A has a preorder ≤A different from
the identity, the order ! from Definition 5 is the following: (u, v) ! (u′, v′) iff
v = v′ and u ≤A u′. So, if ≤A is not the identity, neither is !. For example,
let us take X = {x1, x2, x3}, Y = {y1, y2}, AP = {p1, p2, p3} and consider
the functor F = P(id) × P(AP) and the coalgebras c : X −→ FX and d :
Y −→ FY defined by c(x1) = ({x2, x3}, {p1}), c(x2) = ({x3}, {p2}), c(x3) =
({x2}, {p3}), d(y1) = ({y2}, {p2}) and d(y2) = ({y2}, {p1}). Obviously there
is no bisimulation between x1 and y1 since this atomic propositions are not
the same, but taking the order ! defined as (u, v) ! (u′, v′) iff u = u′ (that
is, taking as the preorder ≤AP the total relation) we have that there exists
a simulation R in Order between x1 and y1.

Lemma 6 ([6]). Let R ⊆ X × Y be a simulation between coalgebras c : X −→
FX and d : Y −→ FY , such that the functor F is in the class Order. Let
us also suppose that P ⊆ Y and xRy; then, if d(y) ∈ Pred(F)(P) we have
c(x) ∈ Pred(F)(R−1P).

In a similar way we have the corresponding lemma involving direct predicates.

Lemma 7. Let R ⊆ X × Y be a simulation between coalgebras c : X −→ FX
and d : Y −→ FY , such that the functor F is in Order. Let us suppose also
that P ⊆ X and xRy. Then, if c(x) ∈ Pred(F)(P), d(y) ∈ Pred(F)(RP).

Now we can conclude that under these hypothesis simulations reflect and pre-
serve properties, simultaneously! This fact is a straightforward result from Lem-
mas 6 and 7.

Theorem 4. Let R be a simulation between coalgebras c : X −→ FX and
d : Y −→ FY , with F a polynomial functor in the class Order. Then, the
simulation R reflects and preserves properties.

5 Including Atomic Propositions

A consequence of the fact that the logic proposed by Jacobs does not introduce
atomic propositions was the need of giving non-standard definitions of reflection
and preservation of properties. Kurz, in his work [13] includes atomic proposi-
tions in a temporal logic for coalgebras by means of natural transformations.

Definition 6. Given a set AP of atomic propositions, the formulas of the tem-
poral logic associated to a coalgebra c : X −→ FX are given by the BNF expres-
sion:

ϕ = p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⇒ ϕ | ©ϕ | �ϕ | �ϕ | ϕ U ϕ

where p ∈ AP is an atomic proposition.

Kurz also defines when a state x satisfies an atomic proposition p, that is, he
defines the semantics of an atomic proposition.

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 241

Definition 7. Let F : Sets −→ Sets be a functor and AP a set of atomic
propositions. Let ν : F ⇒ P(AP) be a natural transformation and c : X −→ FX
a coalgebra. We say that x satisfies an atomic proposition p ∈ AP , and denote
it x |= p, when p ∈ (νX ◦ c)(x). This way �p� = {x | p ∈ (νX ◦ c)(x)}.

Notice that in fact this defines not only a semantics but a family of possible
semantics that depends on the natural transformation. For example, we can
define a natural transformation for the functor for Kripke structures in this way:

νX : P(AP)× P(X) −→ P(AP)
(P, Q) �−→ P

With νX we have characterized the standard semantics of LTL for Kripke struc-
tures. Analogously, we could define the following interpretation: ν′X(P, Q) =
P(AP) \ P .

Introducing in our temporal logic the semantics of the atomic propositions,
we can prove the following theorem involving bisimulations:

Theorem 5. Let R be a bisimulation between coalgebras c : X −→ FX and
d : Y −→ FY . Let ϕ be a temporal formula; then, the following is true for all
x ∈ X and y ∈ Y such that xRy:

x ∈ �ϕ�X ⇐⇒ y ∈ �ϕ�Y .

Here we have captured in the same theorem the classical ideas of reflection
and preservation of properties: we have some property in the lefthand side of
a bisimulation if and only if we have the property in its righthand side. In
this case the theorem is true also for the negation operator thanks to the atomic
propositions. Intuitively, this is because now we have an “if and only if” theorem,
whereas in Theorem 1 we needed to reason separately for each implication using
monotonicity, and negation lacks it. Also notice that even though we could think
that in Theorem 1 our predicates played the role of atomic propositions, there
are some essential differences: first, predicates are not independent of each other,
unlike atomic propositions, and secondly, while atomic propositions stay the
same predicates vary with each set of states.

Proof. Once again the proof will proceed by structural induction on the formula
ϕ. We only show some of the cases (the complete proof can be found in [6]).

1. Let ϕ = p where p is an arbitrary atomic proposition. This way we have the
following diagram, for ν an arbitrary natural trasformation:

X

c

��

R

[c,d]

��

π1�� π2 �� Y

d
��

FX

νX

��

FR
Fπ1�� Fπ2 ��

νR

��

FY

νY

��
P(AP) P(AP)id�� id �� P(AP)

242 I. Fábregas, M. Palomino, and D. de Frutos Escrig

This diagram is commutative. Indeed, since R is a bisimulation the upper
side commutes, while the lower side commutes because ν is a natural trans-
formation.
So, x ∈ �ϕ�X means by definition that p ∈ (νX ◦ c)(x). Since the diagram
commutes then p ∈ (νR ◦ [c, d])(x, y) ⇔ p ∈ (νY ◦ d)(y), that is, y ∈ �ϕ�Y .

2. Let us suppose ϕ = ¬ϕ0. In this case we must show that x ∈ ¬�ϕ0�X if
and only if y ∈ ¬�ϕ0�Y , that is, we must see that x /∈ �ϕ0�X if and only
if y /∈ �ϕ0�Y . By induction hypothesis we have x ∈ �ϕ0�X if and only if
y ∈ �ϕ0�Y .

3. Let us suppose now that ϕ = ©ϕ0. We must prove that x ∈ ©�ϕ0�X is
equivalent to y ∈ ©�ϕ0�Y , that is, c(x) ∈ Pred(F)(�ϕ0�X) is equivalent to
d(y) ∈ Pred(F)(�ϕ0�Y). The latter will be proved by structural induction
on the functor F . As an example we show the case of F = GA. Let us prove
only one implication since the other one is almost identical. We have

Pred(F)(�ϕ0�X) = {f | ∀a ∈ A. f(a) ∈ Pred(G)(�ϕ0�X)} .

Once again, as we have shown in other proofs, we define for each a ∈ A and
each F -coalgebra c : X −→ F (X) a G-coalgebra, ca : X −→ G(X) where
for each x ∈ X we have ca(x) = c(x)(a). In this way, we have xRy and
ca(x) = c(x)(a) ∈ Pred(G)(�ϕ0�X). By induction hypothesis we have that
da(y) ∈ Pred(G)(�ϕ0�Y). Since this is a valid argument for all a ∈ A, we
obtain d(y) ∈ Pred(F)(�ϕ0�Y).

4. ϕ = �ϕ0. Assuming that x ∈ �ϕ�X we get that there exists

Q ⊆ X an invariant for c with Q ⊆ �ϕ0�X and x ∈ Q.

Now, RQ is a invariant for d and, also, such that RQ ⊆ �ϕ0�Y with y ∈ RQ.
Indeed, if x ∈ Q then y ∈ RQ and if b ∈ RQ there must exists some
a ∈ Q ⊆ �ϕ0�X such that aRb. So, by induction hypothesis we get that
b ∈ �ϕ0�Y

On the other hand, if y ∈ �ϕ�Y there must exists some invariant T on Y ,
such that T ⊆ �ϕ0�Y with y ∈ T , hence for proving x ∈ �ϕ�X it is enough
to consider the invariant R−1T . �"

To obtain a similar result for simulations, we will need again to restrict the
class of functors and orders as we did in Sections 4.1 and 4.2. In particular
we are interested in the following antimonotonicity property: if u ! u′ then
ν(u′) ⊆ ν(u).

Definition 8. Let F : Sets −→ Sets be a functor, AP a set of atomic propo-
sitions and ν : F ⇒ P(AP) a natural transformation. We say that ! is a
down-natural ν-order if, whenever u ! u′ then ν(u′) ⊆ ν(u).

Obviously this definition depends on the natural transformation that we consider
in each case. For example, for Kripke structures we have the following natural
transformation: νX((AX , BX)) = AX ⊆ AP . To obtain a down-natural ν-order

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 243

the following must hold: (u, v) ! (u′, v′) then ν((u′, v′)) ⊆ ν((u, v)), that is, it
will be enough to require (u, v) ! (u′, v′) iff u′ ⊆ u.

This way, if we combine the down-closed and the down-natural orders we get:

If (u, v) ! (u′, v′) then u′ ⊆ u and v ⊆ v′ .

This characterization is not as restrictive as one could think. Indeed, if we
recall the definition of functorial order we had:

PreOrd
forget

��
Sets

� ����������

F
�� Sets

This diagram means that the functor F and the order ! almost have the same
structure and indeed, we could use a natural transformation between ! and
P(AP) in Definition 7 instead of a natural transformation between F and
P(AP), that is, ν :!⇒ P(AP). Considering ν in this way, an immediate conse-
quence is that if we take as order in P(AP) the relation ⊇ (as is done in [16]),
then u ! v implies ν(u) ! ν(v).

We can tackle the proof of reflection of properties (with atomic propositions)
by simulations as we did in Section 4.1, imposing to the order not only to be
down-natural but also down-closed. But, if we do that we will find the same
difficulties we faced in Section 4.1 (that is, we would not be able to prove reflec-
tion of formulas built with the operators until and eventually). Therefore, we
must restrict the class of functors and orders, as we did with the class Order in
Section 4.2, but imposing also that the orders must be down-natural.

Definition 9. The class Down-Natural ν-Order is the subclass of Order
where all orders are down-natural.

Notice that we are defining a different class for each natural transformation ν.
Under this condition we state the corresponding theorem involving simulations
and the reflection of properties (with atomic propositions); for the proof see [6].

Theorem 6. Let R be a simulation between coalgebras c : X −→ FX and
d : Y −→ FY on the same polynomial functor F from Sets to Sets belonging
to the class Down-Natural ν-Order and let ϕ be a temporal formula. Then,
for each x ∈ X and y ∈ Y such that xRy:

y ∈ �ϕ�Y =⇒ x ∈ �ϕ�X .

We showed above that simulations for functors in the class Order reflected
and preserved all kinds of properties. Instead, now we can only prove one im-
plication, that corresponding to the reflection of properties. This is so because
down-natural ν-orders have a natural direction.

Exactly in the same way as we did with down-natural ν-orders, we can define
the corresponding class of up-natural ν-orders:

244 I. Fábregas, M. Palomino, and D. de Frutos Escrig

Definition 10. Let F : Sets −→ Sets be a functor, AP a set of atomic propo-
sitions and ν : F ⇒ P(AP) a natural transformation. We say that ! is an
up-natural ν-order if u ! u′ implies ν(u) ⊆ ν(u′).

As we did for down-natural ν-orders, we define a subclass of Order:

Definition 11. The class Up-Natural ν-Order is the subclass of Order
where all orders are up-natural.

Theorem 7. Let R be a simulation between coalgebras c : X −→ FX and
d : Y −→ FY on the same polynomial functor F in the class Up-Natural
ν-Order, and let ϕ be a temporal formula. Then, for all x ∈ X and y ∈ Y such
that xRy:

x ∈ �ϕ�X =⇒ y ∈ �ϕ�Y .

6 Conclusions

The main goal of this paper was to study under what assumptions coalgebraic
simulations reflect properties. In our way towards the proof of this result, we
were also able to prove reflection and preservation of properties by coalgebraic
bisimulations. For expressing the properties we used Jacobs’ temporal logic [9],
later extended with atomic propositions using the idea presented in [13].

That coalgebraic bisimulations reflect and preserve properties expressed in
modal logic is a well-known topic (e.g, [10,13,17]), but not so the corresponding
results for simulations. The main difficulty is that Hughes and Jacobs’ notion of
simulation is defined by means of an arbitrary functorial order which bestows
them with a high degree of freedom. We have dealt with this by restricting the
class of functorial orders (although even so we are not able of obtaining a general
result) and by restricting also the class of allowed functors.

In order to get more general results on the subject, an interesting path that we
intend to explore is the search for a canonical notion of simulation. This definition
would provide us, not only with a “natural” way to understand simulations but,
hopefully, would also give rise to “natural” general results about reflection of
properties.

Another promising direction of research is the study of reflection and preser-
vation of properties in probabilistic systems, following our results of [4] in com-
bination with the ideas presented in [7,5,2].

Acknowledgement

The authors would like to thank the anonymous referees for their comments and
suggestions.

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 245

References

1. Aczel, P., Mendler, N.P.: A final coalgebra theorem. In: Dybjer, P., Pitts, A.M.,
Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer
Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)

2. Bartels, F., Sokolova, A., de Vink, E.P.: A hierarchy of probabilistic system types.
Theor. Comput. Sci. 327(1-2), 3–22 (2004)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

4. de Frutos Escrig, D., Palomino, M., Fábregas, I.: Multiset bisimulation as a com-
mon framework for ordinary and probabilistic bisimulations (submitted)

5. de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems:
a coalgebraic approach. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A.
(eds.) ICALP 1997. LNCS, vol. 1256, pp. 4460–4470. Springer, Heidelberg (1997)

6. Fábregas, I., Palomino, M., de Frutos Escrig, D.: Reflection and preser-
vation of properties in coalgebraic (bi)simulations (extended) (2007),
http://maude.sip.ucm.es/∼miguelpt/

7. Hasuo, I.: Generic forward and backward simulations. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 406–420. Springer, Heidelberg (2006)

8. Hughes, J., Jacobs, B.: Simulations in coalgebra. Theor. Comput. Sci. 327(1-2),
71–108 (2004)

9. Jacobs, B.: Introduction to Coalgebra. Towards Mathematics of States
and Observations. Book in preparation. Draft available in the web,
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

10. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics, vol. 141. North-Holland, Amsterdam (1999)

11. Jacobs, B., Rutten, J.J.M.M.: A tutorial on (co)algebras and (co)induction. Bul-
letin of the European Association for Theoretical Computer Science 62, 222–259
(1997)

12. Kesten, Y., Pnueli, A.: Control and data abstraction: The cornerstones of prac-
tical formal verification. International Journal on Software Tools for Technology
Transfer 4(2), 328–342 (2000)

13. Kurz, A.: Logics for coalgebras and applications to computer science. PhD thesis,
Universität München (2000)

14. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design 6, 1–36 (1995)

15. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

16. Palomino, M.: Reflexión, abstracción y simulación en la lógica de reescritura. PhD
thesis, Universidad Complutense de Madrid, Spain (March 2005)

17. Pattinson, D.: Expressivity Results in the Modal Logic of Coalgebras. PhD thesis,
Universität München (2001)

18. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput.
Sci. 249(1), 3–80 (2000)

http://maude.sip.ucm.es/~miguelpt/
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

Controlling Process Modularity

in Mobile Computing

Takashi Kitamura and Huimin Lin

Institute of Software, Chinese Academy of Sciences
{takashi,lhm}@ios.ac.cn

Abstract. A variant of π-calculus which can flexibly and dynamically
control process modularity is presented. The calculus is equipped with
a two level structure to represent process distribution and mobility over
flat locations. It provides a suitable model for modular programming
in concurrent and mobile computing. Several bisimulation relations are
discussed, and a notion of bisimulation-preorder is proposed to reflect
some aspects of mobile distributed computing such as interaction costs.

Keywords: Mobile computing, process modularity, bisimulation-
preorder, interaction-costs.

1 Introduction

Several variants of the π-calculus have been proposed to describe specific aspects
in mobile distributed computing [1,2,3,4,10,12,14,16]. These calculi extend the
π-calculus with explicit notions of process distribution and mobility. Though de-
veloped for different purposes, they possess some basic features in common: they
are normally equipped with a two-level location structure to represent process
distributions over flat locations, and a primitive for process migration.

The device for process migration among locations in these calculus is quite
simple. Modulo syntactical differences, process mobility in these calculi is imple-
mented by a specific action go l where l is a location name. By performing this
action a process can move from its current location to location l. If we denote a
process P located at a location m by m[P], then m[go l.P] → l[P]. Furthermore,
the structural congruence rule m[P | Q] ≡ m[P] | m[Q], for splitting and joining
co-located processes, is commonly taken in these calculi. As a consequence, one
has m[go l.P | Q] → l[P] | m[Q], but not m[go l.P | Q] → l[P | Q]. That is, the
unit of movement is a single thread of computing syntactically following the go
operator.

Such a design of process mobility primitives may bring some simplicity, e.g.,
the semantic theory is simple. However, in many occasions one would like to
have more flexible controls over process movements. Especially in describing
highly mobile distributed systems, e.g., ubiquitous computing systems, such that
mobility happens anytime and anywhere or that a system is deployed on several
computers over networks and the structure of deployment evolves dynamically,

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 246–259, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Controlling Process Modularity in Mobile Computing 247

it is desirable to determine process movement units dynamically, at run time,
rather than statically by syntactical scoping. Let us call the way process mobility
units is determined process modularity.

To illustrate why dynamic process modularity is desired, consider a packet
process which acts as a carrier taking a resource from location l to destination
d. The functionality of such a system can be specified by the following transition

l[Packet] ‖ l[R] →∗ d[Packet] ‖ d[R]

(we use ‖ for the distributed parallel composition operator, and reserve | as the
local parallel composition operator). Since the mission of Packet is to take re-
source R to location d, as the first approximation it could be implemented
as Packet = go d.Packet’. However, as we have just observed, if the struc-
tural congruence rule m[P | Q] ≡ m[P] | m[Q] is assumed then we will have
l[Packet] ‖ l[R] → d[Packet’] ‖ l[R], i.e. Packet cannot take R to d.

To facilitate the description of such functionalities, in designing our calculus
we do not assume the structural congruence rule m[P |Q] ≡ m[P] | m[Q]. Instead,
we let

m[go l.P | R] → l[P | Q],

i.e. the unit of movement is the entire distributed process enclosing the go
operator. In order to be able to control process modularity dynamically, we
provide two primitives merge and split, with the semantics

m[merge.P] ‖ m[Q] → m[P | Q]

and
m[split.P | Q] → m[P] ‖ m[Q],

respectively.
With these operators Packet can be implemented as

Packet = start.ready.go d.arrive.Packet′.

And the resource R, who wishes to use the carrier service , is

R = start.merge.ready.arrive.split.R′.

The system and a trace of the computation are as follows;

l[Packet] ‖ l[R]
→ l[ready.go d.arrive.Packet′] ‖ l[merge.ready.arrive.split.R′]
→ l[ready.go d.arrive.Packet′ | ready.arrive.split.R′]
→ l[go d.arrive.Packet′ | arrive.split.R′]
→ d[arrive.Packet′ | arrive.split.R′]
→ d[Packet′ | split.R′]
→ d[Packet′] ‖ d[R′].

In this implementation, Packet first send a signal to notify R that the service
is starting. It then waits till R is ready. Upon receiving the start signal, R joins

248 T. Kitamura and H. Lin

with Packet, to allow the carrier to take it to the destination d, and tells Packet
that it is ready to go. After arriving at d, R separates itself from Packet by
performing the split action. A refined version of the packet process system,
where the packet takes a resource to its destination through repeatedly routed
among several locations, can be found in Section 3.

The highlight of the process description given above is a dynamic evolution
of process modularity. First packet Packet and resource R merge into a single
module at the original location l (so that they can move together); Then, after
arriving at the destination location d, they split into two module, so that Packet
can go back to l leaving R at d alone. This feature makes the calculus a suitable
model for mobile systems with dynamic process modularity, for example, a mo-
bile distributed system in which process modules are dynamically deployed on
computers among network. And more generally, it provides a suitable model for
modular programming in concurrent and mobile computing.

We present an operational semantics for the calculus and discuss two kinds of
bisimilarity, reflecting different aspects of mobile distributed computing. First,
we consider the usual notion of bisimilarity which does not take locations into
account. Then we propose a refinement notion of bisimilarity which is location-
aware, in the sense that two bisimilar processes can not only mimic each other’s
communication behaviours but also locations. For the location-aware bisimilar-
ity, we further discuss a preorder relation on bisimilar processes which reflects
interaction costs, namely process P is costlier-than Q, if P is bisimilar to Q and
it costs more for P to exhibit the same behaviour as Q.

Related work. Our calculus is a variant of the π-calculus extended with a
two-level structure to represent process distribution and mobility among flat
locations, which is in common with the calculi proposed by many others [1, 2,
3, 10, 12, 14, 16]. The dynamic control on process modularity is influenced by
Mobile Ambients (MA) [5]. And the Seal-calculus [15] and Mobile Resources [8]
are variants of MA equipped with communication channels as in π-calculus. But
in these calculi locations are organized into a hierarchical structure, while in
our calculus locations are flat. Also the Distributed Join-calculus (the DJoin
calculus) [7] and the M-calculus [13] are extended variants of the Join-calculus
[6] with explicit notion of locations to model distributed computing, but these
calculi do not consider the idea of dynamic control on process modularity.

2 The Calculus

2.1 Syntax

Assume an infinite set Nc of channel names, ranged over a, b, c, · · · , and an
infinite set Nl of location names, ranged over l, m, n, · · · . We denote the union
of Nc and Nl as N , ranged over by x, y · · · . The syntax of the language is given
in Definition 1.

Controlling Process Modularity in Mobile Computing 249

Definition 1

α ::= a〈x〉 | a(x) | go l |merge | split | τ
P, Q ::= 0 | α.P | [x = y]P | [x �= y]P | P + Q | P |Q | (νa)P | A(x1, · · · , xn)
M, N ::= m[P] |M ||N | (νa)M | X(x1, · · · , xn)

The set of local processes is denoted by P , whose elements are ranged over
by P, Q, R, · · · . Local processes can be considered as a collection of threads of
computation that run at a single location, and hence may be called threads.
Threads are constructed by inaction 0, action prefix α.P , match [x = y], mis-
match [x �= y] nondeterministic choice +, parallel composition |, channel name
restriction (νa)P , and recursively defined processes. A defining equation A of

arity n is of the form A(x1, · · · , xn) def= P where the xi are pairwise distinct.
Action prefix is of five kinds: an output action ā〈x〉, an input action a(x),

a silent action τ , and joining and splitting actions merge and split. The set
of actions is denoted by Act, ranged by α, β, · · · . When defining operational
semantics we shall use bound output actions of the form ā〈νx〉. The set of free
names and bound names of an action α are defined thus: if α is an input action
a(x) or a bound output action ā〈νx〉 then bn(α) = {x} and fn(α) = {a}; for all
other actions bn(α) = ∅ and fn(α) is the set of the names occurring in α.

The set of distributed processes are denoted byM, whose elements are ranged
over by M, N, · · · . Distributed processes are also called agents. Agents are con-
structed by located threads m[P], distributed parallel composition ||, channel
name restriction (νa)M , and recursively defined agents. A defining equation X

of arity n is of the form X(x1, · · · , xn)
def
= M where the xi are pairwise distinct.

In each one of the forms a(x).P , (νa)P and (νa)M , the occurrences of x and
a are binding. These lead to the notions of bound and free names as usual. We
use bn(P)/bn(M) and fn(P)/fn(M) to denote the sets of bound and free names
of P and M , respectively. We also write n(P)/n(M) for the set of names of
P/M , i.e., n(P) = bn(P) ∪ fn(P) and n(M) = bn(M) ∪ fn(M). In defining

equations of A(x1, · · · , xn)
def
= P and X(x1, · · · , xn)

def
= M , we assume that

fn(P) ⊆ {x1, · · · , xn} and fn(M) ⊆ {x1, · · · , xn}. In some examples, we shall
elide the parameters of defining equations when they are unimportant or can be
inferred from context.

Substitutions, ranged over by σ are partial mapping from N to N . We write
{x/y} for the substitution that maps y to x. Substitutions are post-fixing and bind
tighter that any operators in the language. We shall use ≡α for α-equivalence.

2.2 Structural Congruence

Structural congruence is defined for threads and agents.

Definition 2. (Structural congruence) Structural congruence for threads and
agents, ≡, are defined respectively as the smallest congruence satisfying the fol-
lowing rules:

250 T. Kitamura and H. Lin

• Structural congruence for threads

1. P ≡ Q if P ≡α Q
2. P |0 ≡ P , P |Q ≡ Q|P , P |(Q|R) ≡

(P |Q)|R
3. P + 0 ≡ P , P + Q ≡ Q + P , P +

(Q + R) ≡ (P + Q) + R
4. (νa)0 ≡ 0, (νa)(P + Q) ≡ P +

(νa)Q if a �∈ fn(P), (νa)(P |Q) ≡
P |(νa)Q if a �∈ fn(P)

5. A(y) ≡ P{y/x} if A(x) = P

• Structural congruence for agents

1. M ≡ N if M ≡α N
2. m[P] ≡ m[Q] if P ≡l Q
3. M ||N ≡ N ||M , M ||(N ||L) ≡

(M ||N)||L
4. m[(νa)P] ≡ (νa)m[P],

(νa)(M ||N) ≡ M ||(νa)N if
a �∈ fn(M), (νa)(νb)M ≡
(νb)(νa)M

5. X(y) ≡ M{y/x} if X(x) = M

The rules of structural congruence for threads are in the usual way. The second
rule of structural congruence for agents, i.e., m[P] ≡ m[Q] if P ≡l Q, means that
agents, acquired by locating structural congruent threads at a same location,
are structural congruent. The first rule in 4 of structural congruence for agents,
i.e., m[(νa)P] ≡ (νa)m[P], means that restrictions at top level of threads can be
pulled out to the distributed level, where notice that a �= m since restrictions are
only on channel names in the calculus. The other rules of structural congruence
for agents are straightforward.

2.3 Operational Semantics

The operational semantics is given in terms of an enriched variant of the usual
labelled transition systems.

Let the set of locations be defined as Loc = Nl ∪ {null}, ranged by h, i, · · · .
Null is used in cases where concrete location names are of no interest.

A labelled transition system is a tuple: (S, Act, Loc,→), where S is a set of
states and → ∈ S × Act × Loc × S a located transition. We write M

α−→
h

M ′ to

mean (M, α, h, M ′) ∈ →, meaning agent M can evolve into M ′ by performing
action α at location h.

Definition 3. The transition relations are defined by the rules in Table 1.

We omit the location label null in transitions. For example, M
τ−→ M ′ means

M
τ−→

null
M ′.

The STRUCT rule makes explicit our intuition that structurally congruent
processes are deemed to have the same behaviours. This simplifies the definition
of the operational semantics. For example, rules for locally restricted processes
of the form m[(νa)P] are not needed, because transitions of such processes can
be inferred using structurally congruent to pull out restrictions outside location
names:

m[P] α−→
m

m′[P ′], a �∈ n(α)

(νa)m[P] α−→
m

(νa)m′[P ′], m �= x ∧m′ �= a
D-RES

m[(νa)P] α−→
m

m′[(νa)P ′]
STRUCT

Controlling Process Modularity in Mobile Computing 251

Table 1. Transition rules

ACT:

α �= a(x)

α.P
α−→ P INP:

−
a(x).P

ay−→ P{y/x} SUM:

P
α−→ P ′

P + Q
α−→ P ′

MATCH:

P
α−→ P ′

[x = x]P
α−→ P ′ MISMATCH:

P
α−→ P ′, x �= y

[x �= y]P
α−→ P ′

L-COM:

P
a〈x〉−→ P ′, Q

a(x)−→ Q′

P | Q
τ−→ P ′ | Q′ L-PAR:

P
α−→ P ′, bn(α) ∩ fn(Q) = ∅, α �= split

P | Q
α−→ P ′ | Q

LACT:

P
α−→ P ′, α �= τ,go l

m[P]
α−→
m

m[P ′] LTAU:

P
τ−→ P ′

m[P]
τ−→ m[P ′] GO:

P
go l−→ P ′

m[P]
τ−→ l[P ′]

SPLIT:

m[P]
split−→

m
m[P ′]

m[P | Q]
τ−→ m[P ′] ‖ m[Q] MERGE:

m[P]
merge−→

m
m[P ′]

m[P] ‖ m[Q]
τ−→ m[P ′ | Q]

D-PAR:

M
α−→
h

M ′, bn(α) ∩ fn(N) = ∅, α �= merge

M ‖ N
α−→
h

M ′ ‖ N

D-COM:

M
ā〈x〉−→

h
M ′, N

ax−→
i

N ′

M ‖ N
τ−→ M ′ ‖ N ′ RES:

M
α−→
h

M ′, x �∈ n(α)

(νa)M
α−→
h

(νa)M ′

OPEN:

M
ā〈b〉−→

h
M ′, a �= b

(νb)M
ā〈νb〉−→

h
M ′ STRUCT:

M ≡ N, M
α−→
h

M ′, M ′ ≡ N ′

N
α−→
h

N ′

Also rules for communication involving bound output actions are elided since
such an interactions can be inferred using STRUCT and RES, by pulling out-
side the restrictions in both interacting agents (possibly after α-conversion) using
structural congruence rule. In a similar way, the transition rule for process iden-
tifiers is unnecessary since they are defined through structural congruence rules
A(y) ≡ P{y/x} if A(x) = P and X(y) ≡ M{y/x} if X(x) = M . (see [11])

ACT, INP, SUM, MATCH, MISMATCH, L-COM and L-PAR define the be-
haviours of local processes in the usual way. Note that ACT does not handle
input action since we separately consider it in INP (in the early style of seman-
tics). LACT and LTAU lift local transitions to the distributed level. We consider
LACT and LTAU separately, because we do not assign locations to internal in-
teractions between local processes. GO is the rule for process mobility. SPLIT
and MERGE respectively define the behaviours of merging and splitting pro-
cess modularities. D-PAR, D-COM, RES and OPEN specify the behaviours of

252 T. Kitamura and H. Lin

distributed processes. As D-COM shows, communication between processes at
different locations, i.e., distributed communication, is admitted in this calculus.

3 Descriptive Examples

3.1 Routed Packet

We implement the system of Routed packet whose concept is explained in Intro-
duction. This example mainly shows the aspect of dynamic control on process
modularities of the calculus.

Packet = call(l, d).go l.start.ready.P (l, d)
P (l, d) = if l = d then arrive.Packet

else route〈d〉.next(n).go n.P (n, d)
R = call〈l, d〉.start.merge.ready.arrive.split.R′

Sys = m[Packet] ‖ l[R]

Packet is a routed packet which carries process R to its destination. The im-
plementation of Packet is based on a program of routed forwarding in [10]. The
resource process R calls the service Packet, passing its current location name
l and the destination location name d to the service. Upon receiving the call,
Packet moves to l, to allow R to use the service. It then signals the start of
the service, and waits till R is ready. R makes itself on board by executing a
merge action, and tells Packet that it is ready for departure. When R finds itself
has arrived at d, it separates from the carrier by performing split. The Packet
process relies on a routing mechanism to find the way to d. This is modeled by
the output action route〈d〉 (asking the routing mechanism how to get to d) and
the input action next(n) (receiving the next hop information from the routing
mechanism).

3.2 Follow-Me Application

“Follow-me application” is a case study by Cambridge University’s Sentient
Computing project and is a special case of context aware applications [9]. The
basic concept of follow-me application is that applications are deployed at com-
puters around a user, and they must follow the user as she moves, in order to
support ubiquitous and personalized services. Figure 1 shows the basic concept
of the “follow-me application”. The figure depicts that when the user moves from
location l to m, the application deployed at location l follows the user moving
to m.

As we can see, a characteristic feature of the follow-me application is that
the timing of process mobility is highly dynamic. The application program’s
movements depend on the user’s which are arbitrary, sudden and unpredictable.
Hence the application system on the one hand must provide services to the user,
and on the other hand must be ready to move at any moment to follow the user.

Controlling Process Modularity in Mobile Computing 253

l m

U U UA A A

Step1:
move @followinteraction Ainteraction

l m l m

Step2: Step3:

Fig. 1. Basic concept of follow-me application

The design of process mobility of our calculus enables to describe such a highly
mobile system, where mobility is anytime and anywhere. The monitor program
FmMon can be implemented easily as FmMon = l[FM], where

FM = fm(x).go x.FM + mon.FM

Assume that user’s behaviour is as follows:

User = l[enter.mon.mon.mon.go m.fm〈m〉.mon.mon.mon.exit.0].

The user is initially located at l and her activities are monitored by the monitor
there. When the user moves to location m she notifies the application via the
fm channel. Upon receiving the notification, the application follows the user’s
moving to m, then keeps monitoring the user at the new location. The monitor
system SysFmM and its trace are as follows;

SysFmM = (νfm, mon)(FmMon ‖ User)
enter−→

l

τ−→ τ−→ τ−→(νfm, mon)(l[FM] ‖ m[fm〈m〉.User′])
τ−→ τ−→(νfm, mon)(m[FM] ‖ m[User′′])
τ−→ τ−→ τ−→ exit−→

m
(νfm, mon)(m[FM] ‖ m[0])

This example demonstrates that the process mobility mechanism in our cal-
culus enables direct and simple descriptions for highly mobile systems where
process mobility is anytime and anywhere as in ubiquitous computing.

On the other hand, in our view, the design of process mobility in the cal-
culi [1, 2, 3, 10, 12, 14, 16] may require an intricate scheme to describe such a
highly mobile system as follow-me application. With the design of process mo-
bility in these calculi [1, 2, 3, 10, 12, 14, 16], process modularity is specified as a
single thread of computing syntactically following the go operator, hence pro-
cess ready to move, e.g., l[go m.P], is blocked by go operator and hence it can
not do anything but move1. Due to this, the timing of process mobility is not
flexibly specified with the design. Although this problem is partly due to the way
how the implementation is designed, its root may lie on the design of process
mobility in these calculi itself.

1 This scheme may be reminiscent of serialization in programming languages such as
Java.

254 T. Kitamura and H. Lin

4 Bisimulations

Consider a DNS (Domain name system) implemented as follows

DNS = nslookup(dn, a).a〈resolve(dn)〉.0 | DNS.

The process DNS receives, along port nslookup, a request to resolve a domain
name dn together with a returning channel name a, and send back the the
resolved name resolve(dn) via a. Suppose the service is deployed at two locations
l and m. The two systems, l[DNS] and m[DNS], though at different locations,
provide the same service, namely resolving domain names.

The standard notion of bisimulation, which takes into account only commu-
nication behaviours, identifies the two DNS services. This is appropriate, as we
are only interested in the functional aspects of these two processes.

But in some occasions it is also plausible to distinguish processes which have
the same communication behaviour exhibited at different locations. Recall that,
in our calculus, processes are explicitly distributed over locations, and the loca-
tion awareness is reflected in the transition systems used to provide operational
semantics for processes.

In this section we shall consider two kind (weak) bisimulation relations, one
ignoring location information and the other is location-aware. The later is called
location-conscious bisimulation, or LC-bisimulation for short, which equates
processes that can mimic each other’s communication behaviours as well as the
operating locations of observable transitions.

Weak transitions are defined in the usual way: (1) =⇒ stands for (τ−→)∗; (2)
τ=⇒ stands for (τ−→)+; (3) α=⇒

h
stands for =⇒ α−→

h
=⇒ if α �= τ , and τ=⇒ if

α = τ ; (4) α̂=⇒
h

stands for α=⇒
h

if α �= τ , and =⇒ if α = τ .

We start with ground weak bisimilarity and LC-bisimilarity.

Definition 4

1. A ground weak bisimulation is a symmetric binary relation S ⊆ M ×M,
satisfying the following; (M, N) ∈ S then ∀α ∈ Act and ∀h ∈ Loc

• M
α−→
h

M ′ ∧ bn(α) �∈ fn(M, N) implies ∃N ′, h′ : N
α̂=⇒
h′

N ′ ∧ (M ′, N ′) ∈ S.

M and N are ground weak bisimilar, written M≈̇N , if (M, N) ∈ S for some
ground weak bisimulation.

2. A ground weak LC-bisimulation is a symmetric binary relation S ⊆M×M,
satisfying the following; (M, N) ∈ S then ∀α ∈ Act and ∀h ∈ Loc,
• M

α−→
h

M ′ ∧ bn(α) �∈ fn(M, N) implies ∃N ′ : N
α̂=⇒
h

N ′ ∧ (M ′, N ′) ∈ S.

M and N are ground weak LC-bisimilar, written M≈̇lN , if (M, N) ∈ S for
some ground weak LC-bisimulation.

In the definition of ≈̇ the location information of the two processes under con-
sideration is ignored. On the other hand, ≈̇l refines ≈̇ in that it takes into
account not only observable transitions but also the locations where these tran-
sitions happen. Note that the locations of invisible transitions are ignored in
both equivalences.

Controlling Process Modularity in Mobile Computing 255

Proposition 1. (1) ≈̇ and ≈̇l are equivalence relations. (2) ≈̇ includes ≈̇l.

As usual, the notions of weak bisimilarity ≈ and weak LC-bisimilarity ≈l are
defined by closing up ≈̇ and ≈̇l, respectively, with respect to substitutions.

Definition 5. 1. M ≈ N if and only if Mσ ≈̇ Nσ for any σ.
2. M ≈l N if and only if Mσ ≈̇l Nσ for any σ.

As expected, in our calculus, summation does not preserve ≈, but interestingly
it is preserved by all other operators. For ≈l, besides summation, parallel com-
positions at distributed level do not preserve ≈l, i.e. M ≈l N �⇒ M ||L ≈l

N ||L. For example, although m[a.0] || m[b.0] ≈l m[a.0 | b.0], we do not have
m[a.0] || m[b.0] || m[merge.go l.0] ≈l m[a.0 | b.0] || m[merge.go l.0], because

m[a.0] || m[b.0] || m[merge.go l.0] τ−→ l[a.0] || m[b.0]
m[a.0 | b.0] || m[merge.go l.0] τ−→ l[a.0 | b.0]

and l[a.0] || m[b.0] �≈l l[a.0 | b.0].

Theorem 1. (1) ≈ is preserved by all operators at distributed level. (2) ≈l is
preserved by name restriction at distributed level. (3) ≈ and ≈l are preserved by
all local operators except summation.

5 A Bisimulation-Based Preorder

Consider another implementation of the monitor system in Section 3.2:

SysM = (νmon)(l[Mon] ‖ l[User])
l[Mon] = l[mon.Mon],
l[User] = l[enter.mon.mon.mon.go m.mon.mon.mon.exit.0]

SysM is similar to SysFmM in Section 3.2: both specify a monitor program
which monitors an user moving between locations. In fact SysFmM ≈l SysM .
But the two systems are implemented differently. In SysM, the monitor program
Mon resides in location l, never trying to follow the user’s move, and monitors
the user by remote communications only, while the monitor program FmM in
SysFmM follows the user’s move by process migration and locally communicates
with the user.

In any practical mobile computing environment, it is reasonable to assume
that local communications, remote communications and process migrations may
incur different costs. Thus, although the systems mentioned above implement
the same functionality, there is a good reason to compare them in terms of
interaction costs.

In the following, we consider a bisimulation-based ordering relation w.r.t.
interaction costs, which we may call costlier-than relation, such that it relates
processes with identical behaviours but and requiring different interaction costs.

256 T. Kitamura and H. Lin

5.1 LTS with Interaction Costs

To define the costlier-than relation, first we slightly modify the transition rules
in section 2 which involve the invisible action τ .

Invisible transitions arise from four kinds of interactions: communication, pro-
cess merge, process split and process mobility. Consequently we tag the label τ
with four indices: τc, τg, τm and τs, which respectively represent the internal
actions resulting from communication, merge, split and process mobility.

Next the set of locations Loc is enriched, so that the sources and destinations
of remote communications and process migrations can be remembered. The en-
riched locations, denoted by ELoc and ranged over λ, are given by the following
rule:

λ ::= h | l ·m where l, m ∈ N and h ∈ N ∪ null

Thus locations are either single locations, h, or composed locations, l ·m. Com-
posed locations are used for remote communication or process migration, both
of which involves two locations l and m.

The modified transition rules are as follows:

Table 2. Modified transition rules

LTAU:

P
τ−→ P ′

m[P]
τc−→
m

m[P ′] GO:

P
go l−→ P ′

m[P]
τg−→
m·l

l[P ′]

SPLIT1:

m[P]
split−→

m
m[P ′]

m[P | Q]
τs−→
m

m[P ′] ‖ m[Q] MERGE1:

m[P]
merge−→

m
m[P ′]

m[P] ‖ m[Q]
τm−→
m

m[P ′ | Q]

D-COM1:

M
ā〈x〉−→

l
M ′, N

ax−→
m

N ′

M ‖ N
τc−→

l·m
M ′ ‖ N ′

The bisimulation-based preorder will be parameterized on a cost domain and
a cost function. A cost domain (D,!, +) is a set D equipped with a total order
relation ! and a binary function + over D. A cost function f :: Tτ �→ D, where
Tτ = {(s, α, λ, s′) ∈ T | α = τ}, maps each τ -transition to an element of D. We
shall write s

τ−→
λ

cs
′ to mean denote s

τ−→
λ

s′ such that f(τ−→
λ

) = c.

5.2 Bisimulation Preorder w.r.t Costs

We proceed to formalize bisimulation preorder w.r.t. interaction costs. Weak tran-
sitions with the notion of costs are defined as follows; (1) =⇒c� τ−→

λ1
c1 · · ·

τ−→
λn

cn

for some n ≥ 0 and c =
∑n

i=0 ci; (2) α=⇒
λ

c � =⇒ c1

α−→
λ

c2 =⇒ c3 and c = c1 + c2 +

c3; (3) α̂=⇒
λ

c � α=⇒
λ

c if α �= τ and =⇒c if α = τ . Note that in (1) location labels

Controlling Process Modularity in Mobile Computing 257

are not attached to a sequence of τ -transitions, =⇒c, though they are attached
to a single τ -transition, τ−→

λ1
c1 . This is because location labels for a τ -transition is

not for observing the location where the action occurs, but for measuring the cost.
Costs for a sequence of τ -transition is acquired by accumulating the cost on each
τ -transition. Hence location labels for a sequence of τ -transitions are not required
and hence omitted.

The costlier-than relations are defined as refinements of weak bisimulation and
LC-bisimulation. That is, we define two notions of costlier-than relation, bisim-
and-costlier-than and LC-bisim-and-costlier-than refining≈ and≈l, respectively.

Definition 6

1. A binary relation S ⊆M×M is a bisim-and-costlier-than relation, if, when-
ever (M, N) ∈ S, for all α ∈ Act, λ and c ∈ D,
(a) M

α=⇒
λ

cM
′ ∧ bn(α) �∈ fn(M, N) implies ∃N ′, λ′, c′ : N

α̂=⇒
λ′ c′N

′∧(M ′, N ′)

∈ S ∧ c′ ≤ c;
(b) v.v. with c ≤ c′.
M is bisim-and-costlier-than N , written M � N , if (M, N) ∈ S for some
bisim-and-costlier-than relation S.

2. A binary relation S ⊆ M ×M is a LC-bisim-and-costlier-than relation, if,
whenever (M, N) ∈ S, for all α ∈ Act, λ and c ∈ D,
(a) M

α=⇒
λ

cM
′ ∧ α �= τ ∧ bn(α) �∈ fn(M, N) implies ∃N ′, c′ : N

α̂=⇒
λ

c′N
′ ∧

(M ′, N ′) ∈ S ∧ c′ ≤ c;
(b) v.v. with c ≤ c′;
(c) M

τ=⇒
λ

cM
′ implies ∃N ′, d : N =⇒ c′N

′ ∧ (M ′, N ′) ∈ S ∧ c′ ≤ c;

(d) v.v. with c ≤ c′.
M is LC-bisim-and-costlier-than N, written M �l N , if (M, N) ∈ S for some
LC-bisim-and-costlier-than relation S. �

The bisim-and-costlier-than relation refines weak bisimulation in a straightfor-
ward manner, by additionally taking onto account of costs. In the definition
of LC-bisim-and-costlier-than relation, τ -transitions and non-τ -transitions are
considered separately. This is because we assume location-awareness only in the
case of non-τ -transitions, the location information is ignored for τ -transitions
but are used for non-τ -transitions.

Proposition 2. 1. � and �l are preorder relations.
2. � and �l are included by ≈ and ≈l, respectively.

5.3 Example of Modeling Analysis

We demonstrate an example of modeling analysis with the two systems SysM

and SysFmM, using the costlier-than relation proposed above. Assume in the
setting that the cost function assigns costs as follows;

258 T. Kitamura and H. Lin

f(τc−→
m·m

) = 1,

f(τc−→
l·m

) = f(τc−→
m·l

) = 6,

f(
τg−→
l·m

) = f(
τg−→
m·l

) = 8.

Then the traces of these systems with costs are as follows;

SysFmM = (νfm, mon)(l[FM] ‖ l[User])
enter−→

l

τc−→
l·l

1
τc−→
l·l

1
τc−→
l·l

1

(νfm, mon)(l[FmMon] ‖ l[go m.fm〈m〉.User])
τg−→
l·m

8
τc−→
m·l

6
τg−→
l·m

8

(νfm, mon)(m[FmMon] ‖ m[User])
τc−→

m·m 1
τc−→

m·m 1
τc−→

m·m 1
exit−→
m

(νfm, mon)(m[FmMon] ‖ m[0])

SysM=(νmon)(l[Mon] ‖ l[User])
enter−→

l

τc−→
l·l

1
τc−→
l·l

1
τc−→
l·l

1

(νmon)(l[Mon] ‖ l[go m.User])
τg−→
l·m

8

(νmon)(l[Mon] ‖ m[User])
τc−→

l·m
6

τc−→
l·m

6
τc−→
l·m

6
exit−→
m

(νmon)(l[Mon] ‖ m[0])

In this setting we have SysM �l SysFmM.

6 Conclusion and Future Work

We have presented a variant of π-calculus that can flexibly specify process mod-
ularity and dynamically control it. It brings a simple and suitable model for
modular programming in distributed mobile computing. Two notions of bisim-
ilarities, location-unaware and location-aware, are discussed. Furthermore, two
bisimulation-based preorders are introduced to reflect interaction costs. To our
best knowledge, this is the first bisimulation-based preorder taking interaction
costs into consideration.

As future work, we would like to consider axiomatization for the bisimulation
relations proposed in this calculus. Also we are interested in the expressive power
of the subset of the calculus whose operators consist of only go, split and merge.
Another avenue of research is to design a spatial logic for the calculus. The
calculus bears a spatial structure constituted of locations and link connectivity,
which may be considered as a hybrid of π-calculus and Mobile Ambient. Thus
it is interesting to investigate spatial properties in this framework.

References

1. Amadio, R., Boudol, G., Lousshaine, C.: The receptive distributed π-calculus. In:
ACM Transactions on Programming Languages and Systems (TOPLAS), ACM
Press, New York (2003)

2. Amadio, R.M.: An asynchronous model of locality, failure, and process mobility.
In: Garlan, D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282,
Springer, Heidelberg (1997)

3. Amadio, R.M.: On modelling mobility. Theoretical Computer Science 240(1) (2000)

Controlling Process Modularity in Mobile Computing 259

4. Boudol, G., Castellani, I., Germain, F., Lacoste, M.: Models of distribution and
mobility: state of the art, MIKADO Global Computing Project, IST-2001-32222,
Deliverable D1.1.1 (2002)

5. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) ETAPS 1998 and
FOSSACS 1998. LNCS, vol. 1378, Springer, Heidelberg (1998)

6. Fournet, C., Gonthier, G.: The reflexive cham and the join-calculus. In: Conference
Record of the ACM Symposium on Principles of Programming Languages, ACM
Press, New York (1996)

7. Fournet, C., Gonthier, G., Lévy, J.-J., Maranget, L., Rémy, D.: A calculus of mobile
agents. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp.
406–421. Springer, Heidelberg (1996)

8. Godskesen, J., Hildebrandt, T., Sassone, V.: A calculus of mobile resources. In:
Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, Springer, Heidelberg (2002)

9. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a
context-aware application. Mobile Computing and Networking (1999)

10. Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Infor-
mation and Computation 173, 82–120 (2002)

11. Parrow, J.: Handbook of Process Algebra. Elsevier, Amsterdam (2001) (chapter
An introduction to the π-calculus)

12. Ravara, A., Matos, A., Vasconcelos, V., Lopes, L.: A lexically scoped distributed π-
calculus. Technical report, Di/fcul tr, DIFCUL, Department of Computer Science,
University of Lisbon (2002)

13. Schmitt, A., Stefani, J.B.: The m-calculus: A higher-order distributed process cal-
culus. Technical report, RR-4361, INRIA (2002)

14. Sewell, P., Wojciechowski, P., Pierce, B.: Location-independent communication for
mobile agents: A two-level architecture. In: Bal, H.E., Cardelli, L., Belkhouche, B.
(eds.) ICCL 1998. LNCS, vol. 1686, Springer, Heidelberg (1999)

15. Vitek, J., Castagna, G.: Seal: A framework for secure mobile computations. In:
Bal, H.E., Cardelli, L., Belkhouche, B. (eds.) Internet Programming Languages.
LNCS, vol. 1686, Springer, Heidelberg (1999)

16. Wojciechowski, P., Sewell, P.: Nomadic pict: Language and infrastructure design
for mobile agents. In: Proceedings of ASA/MA ’99, First International Symposium
on Agent Systems and Applications/Third International Symposium on Mobile
Agents (1999)

Failures: Their Definition, Modelling and Analysis

Brian Randell and Maciej Koutny

School of Computing Science, Newcastle University
Newcastle upon Tyne, NE1 7RU, United Kingdom

{brian.randell,maciej.koutny}@ncl.ac.uk

Abstract. This paper introduces the concept of a ‘structured occurrence net’,
which as its name indicates is based on that of an ‘occurrence net’, a well-
established formalism for an abstract record that represents causality and con-
currency information concerning a single execution of a system. Structured oc-
currence nets consist of multiple occurrence nets, associated together by means
of various types of relationship, and are intended for recording either the actual
behaviour of complex systems as they interact and evolve, or evidence that is
being gathered and analyzed concerning their alleged past behaviour. We pro-
vide a formal basis for the new formalism and show how it can be used to gain
better understanding of complex fault-error-failure chains (i) among co-existing
interacting systems, (ii) between systems and their sub-systems, and (iii) involv-
ing systems that are controlling, supporting, creating or modifying other systems.
We then go on to discuss how, perhaps using extended versions of existing tools,
structured occurrence nets could form a basis for improved techniques of system
failure prevention and analysis.

Keywords: failures, errors, faults, dependability, judgement, occurrence nets, ab-
straction, formal analysis.

1 Introduction

The concept of a failure of a system is central both to system dependability and to
system security, two closely associated and indeed somewhat overlapping research do-
mains. Specifically, particular types of failures (e.g., producing wrong results, ceasing to
operate, revealing secret information, causing loss of life, etc.) relate to, indeed enable
the definition of, what can be regarded as different attributes of dependability/security:
respectively reliability, availability, confidentiality, safety, etc. The paper by Avizienis
et al. [1] provides an extended (informal) discussion of the basic concepts and terminol-
ogy of dependability and security, and contains a detailed taxonomy of dependability
and security terms. Our aims in this present paper are: (i) to improve our understand-
ing — in part by formalising — of the concept of failure (and error and fault) as given
by [1]; (ii) to reduce (in fact by uniting the apparently different concepts of ‘system’
and ‘state’) the number of base concepts, i.e., concepts that the paper uses without ex-
plicit definition; and (iii) to initiate an investigation of possible improved techniques of
system failure prevention and analysis.

Complex real systems, made up of other systems, and made by other systems (e.g.,
of hardware, software and people) evidently fail from time to time, and reducing the

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 260–274, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Failures: Their Definition, Modelling and Analysis 261

frequency and severity of their failures is a major challenge — common to both the
dependability and the security communities. Indeed, a dependable/secure system can be
regarded as one whose (dependability/security) failures are not unacceptably frequent
or severe (from some given viewpoint).

We will return shortly to the issue of viewpoint. But first let us quote the definitions
of three basic and subtly-distinct concepts, termed ‘failure’, ‘fault’ and ‘error’ in [1]:

‘A system failure occurs when the delivered service deviates from fulfilling the
system function, the latter being what the system is aimed at. An error is that
part of the system state which is liable to lead to subsequent failure: an error
affecting the service is an indication that a failure occurs or has occurred. The
adjudged or hypothesised cause of an error is a fault.’

Note that errors do not necessarily lead to failures — such occurrences may be
avoided by chance or design. Similarly, failures in a component system do not neces-
sarily constitute faults to the surrounding system — this depends on how the surround-
ing system is relying on the component. These three concepts (respectively an event,
a state, and a cause) are evidently distinct, and so need to be distinguished, whatever
names are chosen to denote them. The above quotation makes it clear that judgement
can be involved in identifying error causes, i.e., faults. However it is also the case that
identifying failures and errors involves judgement (not necessarily simple adherence to
some pre-existing specification) — a critical point that we will return to shortly.

A failure can be judged to have occurred when an error ‘passes through’ the system-
user interface and affects the service delivered by the system — a system being com-
posed of components which are themselves systems. This failure may be significant,
and thus constitute a fault, to the enclosing system.

Thus the manifestation of failures, faults and errors follows a ‘fundamental chain’:
. . . → failure → fault → error → failure → fault → . . ., i.e., . . . → event → cause
→ state → event → cause → It is critical to note that this chain can flow from one
system to: (i) another system that it is interacting with; (ii) a system which it is part of;
and (iii) a system which it creates or sustains.

Typically, a failure will be judged to be due to multiple co-incident faults, e.g., the
activity of a hacker exploiting a bug left by a programmer. Identifying failures (and
hence errors and faults), even understanding the concepts, is difficult. There can be un-
certainties about system boundaries, the very complexity of the systems (and of any
specifications) is often a major difficulty, the determination of possible causes or con-
sequences of failure can be a very subtle and iterative process, and any provisions for
preventing faults from causing failures may themselves be fallible. Attempting to enu-
merate a system’s possible failures beforehand is normally impracticable. Instead, one
can appeal to the notion of a ‘judgemental system’.

The ‘environment’ of a system is the wider system that it affects (by its correct func-
tioning, and by its failures), and is affected by. What constitutes correct (failure-free)
functioning might be implied by a system specification — assuming that this exists,
and is complete, accurate and agreed. (Often the specification is part of the problem!)
However, in principle a third system, a judgemental system, is involved in determining
whether any particular activity (or inactivity) of a system in a given environment con-
stitutes or would constitute — from its viewpoint — a failure. Note that the judgemental

262 B. Randell and M. Koutny

Condition (place) Event (transition)
Past condition Extant condition

Interaction

c1

c2

c3

c4

c5

c6e1

e2

e4

e3

Fig. 1. Basic notation (left) and an occurrence net (right)

system and the environmental system might be one and the same, and the judgement
might be instant or delayed. The judgemental system might itself fail — as judged by
some further system — and different judges, or the same judge at different times, might
come to different judgements.

The term ‘Judgemental System’ is deliberately broad — it covers from on-line fail-
ure detector circuits, via someone equipped with a system specification, to the retro-
spective activities of a court of enquiry (just as the term ‘system’ is meant to range
from simple hardware devices to complex computer-based systems, composed of hard-
ware, software and people). Thus the judging activity may be clear-cut and automatic,
or essentially subjective — though even in the latter case a degree of predictability is
essential, otherwise the system designers’ task would be impossible. The judgement is
an action by a system, and so can in principle fail either positively or negatively. This
possibility is allowed for in the legal system, hence the concept of a hierarchy of crown
courts, appeal courts, supreme courts, etc.

In this paper we describe a means of modelling the activity of systems — oper-
ational computing systems, the systems of people and computers that created them or
are adapting them, the systems that are passing judgements on them, etc. The formalism
that we use in this paper is based on that of occurrence nets [2,6,18] and our extensions
of such nets [13]. We introduce this formalism not just in order to clarify such concepts
as fault-error-failure chains, and the role of judgemental systems, but also because the
occurrence net formalism is well-supported by tools for system validation and synthe-
sis [7,8,9], tools which we believe could be significantly enhanced by being extended
so as to take advantage of the concept that we introduce in Sections 3-6 of this paper
of “structured occurrence nets”. (Section 7 sketches the ways in which we envisage
exploiting such enhanced tools.)

As can be seen in Fig. 1, occurrence nets are directed acyclic graphs that portray
the (alleged) past and present state of affairs, in terms of places (i.e., conditions, repre-
sented by circles), transitions (i.e., events, represented by squares) and arrows (each
from a place to a transition, or from a transition to a place, representing (alleged)
causality). For simple nets, an actual graphical representation suffices — and will be
used here using the notation shown in Fig. 1. (In the case of complex nets, these might
be better represented in some linguistic or tabular form.) We will also take advantage
of our belated realization that the concepts of ‘system’ and ‘state’ are not separate,
but just a question of abstraction, so that (different related) occurrence nets can rep-
resent both systems and their states using the same symbol — a ‘place’. In fact in
this paper we introduce and define, and discuss the utility of, several types of relation-
ship, and term a set of related occurrence nets a structured occurrence net (or SON).
These types of relationship differ depending on the specific means and objectives of a

Failures: Their Definition, Modelling and Analysis 263

particular investigation. However, there are some fundamental constraints that any
structured occurrence net ought to satisfy. Crucially, we will require that the structures
we admit avoid cycles in systems’ temporal behaviour as these contradict the accepted
view on the way physical systems could possibly behave.

Note: it is easy to understand how occurrence nets could be ‘generated’ by executing
Petri nets representing computing systems, but they could in fact be used to record
the execution of any (potentially asynchronous) process, hardware or software, indeed
human, no matter what notation or language might be used to define it. (It is worth
noting that various other graphical notations similar to occurrence nets can be found
in both the hardware and the software design worlds, e.g., strand spaces [19], signal
diagrams [14] and message sequence charts [15].)

2 Occurrence Nets

In this section, we present the basic model of an occurrence net, which is standard
within Petri net theory [2,6,18]. Later on, we will extend it to express more intricate
features of our approach to the modelling of complex behaviours. In a nutshell, an
occurrence net is an abstract record of a single execution of some computing system
(though they can be used to portray behaviours of quite general systems, e.g., ones that
include people) in which only information about causality and concurrency between
events and visited local states is represented.

Definition 1 (occurrence net). An occurrence net is a triple ON = (C, E, F) where:
C �= ∅ and E are finite disjoint sets of respectively conditions and events (collectively,
conditions and events are the nodes of ON); and F ⊆ (C × E) ∪ (E × C) is a flow
relation satisfying the following: (i) for every c ∈ C there is at most one e such that
(e, c) ∈ F , and at most one f such that (c, f) ∈ F ; (ii) for every e ∈ E there is c such
that (c, e) ∈ F , and d such that (e, d) ∈ F ; and (iii) ON forms an acyclic graph (in
other words, the transitive closure of the relation F , denoted by F+, is irreflexive).

In the above definition — aimed at capturing the essence of a computation history —
E represents the events which have actually been executed and C represents conditions
(or holding of local states) enabling their executions. Here we will discuss computation
histories as though they have actually occurred; however, the term will also be used
of ‘histories’ that might have occurred, or that might occur in the future, given the
existence of an appropriate system. Now we introduce few useful notations:

– For each condition or event x we use pre(x) and post(x) to denote the set of all
elements y such that (y, x) ∈ F and (x, y) ∈ F , respectively. In other words, pre()
and post() correspond to the incoming and outgoing arcs, respectively.

– Two distinct nodes ofON , x and y, are causally related if (x, y) ∈ F+ or (y, x) ∈
F+; otherwise they are concurrent.

– During the execution captured by the occurrence net, the system has passed through
a series of (global) states, and the concurrency relation in ON provides full infor-
mation about all such potential states. A cut is a maximal (w.r.t. set inclusion) set
of conditions Cut ⊆ C which are mutually concurrent.

264 B. Randell and M. Koutny

– Let Cut init
ON and Cutfin

ION be the sets of all conditions c such that pre(c) = ∅ and
post(c) = ∅, respectively. These two sets are cuts; the former corresponds to the
initial state of the history represented by ON , and the latter to its final state.

For the occurrence net depicted in Fig. 1, we have C = {c1, . . .} and E = {e1, . . .}.
Moreover, Cut init

ON = {c1} and Cutfin
ION = {c6}, and the other four cuts are {c2, c3},

{c2, c5}, {c4, c3} and {c4, c5}. An occurrence net is usually derived from a single exe-
cution history of the system. However, since it only records essential (causal) orderings,
it also conveys information about other potential executions.

Definition 2 (sequential execution). A sequential execution of the occurrence netON
is D0 e1 D1 . . . en Dn, where each Di is a set of conditions and each ei is an event, such
that D0 = Cut init

ON and, for every i ≤ n, pre(ei) ⊆ Di−1 and Di = (Di−1 \pre(ei))∪
post(ei). We will call e1 . . . en a firing sequence of ON .

For the occurrence net in Fig. 1, {c1} e1 {c2, c3} e2 {c4, c3} e3 {c4, c5} e4 {c6} is a pos-
sible execution. Thus an execution starts in the initial global state, and each successive
event transforms a current global state into another one according to the set of con-
ditions in its vicinity. Basically, all conditions (local states) which made possible its
execution cease to hold, and new conditions (local states) created by the event begin to
hold. It follows that ON is sound in the sense of obeying some natural temporal prop-
erties as well as testifying to the fact thatON does not contain redundant parts. We also
have a complete characterisation of global states reachable from the default initial one
— these are all the cuts of ON . Hence we can verify state properties of the computa-
tions captured by ON by running a model checker which inspects all the cuts. Such a
model checker could be based on a SAT-solver, e.g., as in [9], or integer programming,
e.g., as in [7].

Theorem 1 ([2]). Given an execution as in Def. 2, each Di is a cut of ON , and no
event occurs more than once. Moreover, each cut ofON can be reached from the initial
cut through some execution, and each event ofON is involved in at least one execution.

An alternative, more concurrent, notion of execution considers that in a single com-
putational move, a set of events (called a step) rather than a single event is executed.
A step execution of ON is a sequence D0 G1 D1 . . .Gn Dn, where each Di is a set
of conditions and each Gi is a set of events, such that D0 = Cut init

ON and, for every
i ≤ n, we have pre(Gi) ⊆ Di−1 and Di = (Di−1 \ pre(Gi)) ∪ post(Gi). For the
net in Fig. 1, {c1} {e1} {c2, c3} {e2, e3} {c4, c5} {e4} {c6} is a possible step execution.
For the basic model of occurrence nets, the sequential and step executions are broadly
speaking equivalent; in particular, Theorem 1 holds also for step executions. However,
for extended notions of occurrence nets, which we discussed in [10], sequential and
step executions may, e.g., admit different sets of reachable global states.

3 Structuring Occurrence Nets

We now outline two simple ways of structuring occurrence nets. The first one captures
system interaction, i.e., a situation in which two or more systems (in other words, a

Failures: Their Definition, Modelling and Analysis 265

(a) (b)

Fig. 2. System interaction (a), and simple abstraction (b)

compound system) proceed concurrently and (occasionally) interact with each other.
As shown in Fig. 2(a), the systems — in this case two — or more precisely the ac-
tions of two systems, are represented by occurrence nets. We will follow a convention
that conditions and events of different systems are recognised by shading them differ-
ently. There are some obvious rules about legal such colourings (e.g., that they partition
the nodes into disjoint sets the members of each of which are connected; in this case,
linearly but in general any occurrence net might be used).

We have two types of interactions to relate events of separate systems, represented
by thick dashed arcs (relation κ in the next definition) and edges (relation σ in the next
definition). The former relation means that one event is a causal predecessor of another
event (i.e., information flow was unidirectional), while the latter means that two events
have been executed synchronously (i.e., information flow was bidirectional).

Definition 3 (interaction ON). An interaction occurrence net is defined to be a tuple
ION = (ON 1, . . . ,ON k, κ, σ), where each ON i = (Ci, Ei, Fi) is an occurrence
net,1 and κ, σ ⊆

⋃
i
=j Ei × Ej are two relations (σ being symmetric) such that the

relation PrecION = F|C×C ∪ (F ◦ (κ ∪ σ) ◦ F) is acyclic.
In the above, as well as later on, we denote C =

⋃
i Ci, F =

⋃
i Fi and E =

⋃
i Ei.

Intuitively, if (e, f) ∈ κ then e cannot happen after f , and if (e, f) ∈ σ then e and
f must happen synchronously. For an interaction occurrence net as in Def. 3, cuts and
step executions need to be re-defined. A cut of ION is a maximal (w.r.t. set inclusion)
set of conditions Cut ⊆ C such that (Cut × Cut) ∩ Prec+

ION = ∅. The initial cut of
ION , Cut init

ION , is the union of the initial cuts of all the ON i’s.

Definition 4 (step execution of ION). A step execution of the interaction occurrence
net ION is a sequence D0 G1 D1 . . . Gn Dn, where each Di ⊆ C is a set of conditions
and each Gi ⊆ E is a set of events, such that G0 = Cut init

ION and, for every i ≤ n:

– pre(Gi) ⊆ Di−1 and Di = (Di−1 \ pre(Gi)) ∪ post(Gi);
– (e, f) ∈ κ∧f ∈ Gi implies e ∈

⋃
j≤i Gj; and (e, f) ∈ σ∧f ∈ Gi implies e ∈ Gi.

We can re-establish the basic behavioural characteristics of occurrence nets (proofs of
these, and other new results formulated later on, are provided in [13]). Moreover, there
is a consistency between the individual and interactive views of computation.

Theorem 2. Given a step execution as in Def. 4, each Di is a cut of ION , and no event
occurs more than once. Moreover, each cut of ION can be reached from the initial cut
through some step execution, and each event of ION is involved in at least one step
execution of ION . Finally, for m ≤ k and i, j ≤ n, we have:

1 In this, and other similar definitions, different occurrence nets have disjoint sets of nodes.

266 B. Randell and M. Koutny

(a)

Abstraction:
two (extant)
systems

Two (active)
systems
in operation (b)

Fig. 3. Behavioural abstraction (a), and system creation (b)

– D0∩Cm G1∩Em D1∩Cm . . . Gn∩Em Dn∩Cm is a step execution of ONm.
– e ∈ Gi, f ∈ Gj and (e, f) ∈ κ (or (e, f) ∈ σ) imply i ≤ j (resp. i = j).

Note, however, that it may happen that a cut of an individual occurrence net ON i may
no longer be reachable through any step execution of the composite system ION .

Structures like that shown in Fig. 2(a) capture interactions between different systems
but give no information about the evolution of individual systems. This orthogonal view
is illustrated in Fig. 2(b), where we have a two-level view of a system’s history. The two
levels are delineated by dashed boxes, whereas (as before) dotted boxes will delineate
occurrence nets when there are multiple occurrence nets within a level.

A possible interpretation of Fig. 2(b) is that the upper level provides a high-level
view of system which went through two successive versions which are represented by
two conditions of the upper occurrence net (the event in the middle represents a version
update). The lower occurrence net captures the behaviour of the system during the same
period. Fig. 2(b) also shows the ‘abstracts’ relation working across the two levels of
description. The relation connects conditions in the lower part with those in the upper
part which abstract them. We omit a formal definition of the two-level occurrence net
as it is a special case of the construct introduced later in Def. 6.

4 Evolutional Abstractions

As already indicated in Fig. 2(b), any condition can be viewed either as a state (of some
system), or as a (sub)system itself that presumably has its own states and events — just
which is simply a matter of viewpoint. Moreover, as indicated in Fig. 2(a), behaviours
of different systems can interact with each other. In general, it is possible to have sets of
related occurrence nets, some showing what has happened in terms of systems and their
evolution, the other showing the behaviours of these systems. In fact, the former can be
viewed as the behavioural abstraction of the latter. What comes now is a combination
of the structuring mechanisms that were illustrated in Fig. 2(a) and 2(b).

Fig. 3(a) shows a simple example, involving the interacting activities of two systems
(note that the same shading is used for the higher- and lower-level view of each system).
This picture gives no information about the evolution of the two systems — some such
additional information is portrayed in the following figures. Moreover, the upper part
of the picture does not provide any information about the interactions between the two
systems (basically, all it says is that ‘there are two systems’).

Failures: Their Definition, Modelling and Analysis 267

More interesting is Fig. 4(a) which shows the history of an online modification of
two systems, i.e., one in which the modified systems carry on from the states that had
been reached by the original systems — a possibility that is easy to imagine, though
often difficult to achieve dependably, especially with software systems. In this case,
the ‘abstracts’ relation is non-trivial as it identifies those parts of the behaviours which
are pre- and post-modification ones. Another type of system modification is shown in
Fig. 4(b). It again shows that the two systems have each suffered some sort of modifi-
cation, i.e., have evolved, once — the ‘abstracts’ relations between the two levels show
which state sequences are associated with the systems before they were modified, and
which with the modified systems. Note that in this case the behaviour of each system
is represented by two disjoint occurrence nets. Thus the standard theory does not work
as desired as it would consider these two parts as concurrent whereas, in fact, one is
meant to precede the other. In the proposed structured view the upper part provides the
necessary information for the desired sequencing of the occurrence nets. The last mo-
tivating example in this section, Fig. 3(b), shows some of the earlier history of the two
systems in Fig. 3(a), i.e., that one system has spawned the other system, and after that
both systems went through some independent further evolutions.

Note that additional information could have been portrayed in the figures by showing
relations, from the earlier versions of the two systems, to parts of the occurrence nets
which recorded the behaviour that occurred when these earlier versions were active —
but to avoid undue graphical complexity no attempt is made to show that here (it may
happen that no records of the prior behaviour of the two systems are available).

We will now formalise the ‘evolutional abstractions’ outlined above. After an auxil-
iary definition, we introduce the notion of an occurrence net corresponding to a record
of modification, creation, etc., of some compound system.

An interval ofON = (C, E, F) is a non-empty set of conditions int = {c1, . . . , cm}
such that there are e1, . . . , em−1 satisfying (ci, ei) ∈ F and (ei, ci+1) ∈ F , for every
i ≤ m− 1. Intuitively, int captures successive stages in the evolution of some system.

Definition 5 (evolutional ON). An evolutional occurrence net is EON = (ON , �),
where ON = (C, E, F) is an occurrence net and � : C → {1, . . . , N} (N ≥ 1).
Moreover, the inverse image �−1(i) = {c ∈ C | �(c) = i} is an interval, for i ≤ N .

The next definition combines together the above ideas about structuring behaviours.

Definition 6 (evolutional SON). An evolutional structured occurrence net is a tuple
ESON=(EON , ION , α), where EON and ION are as in Def. 5 and 3, respectively,
and α : C → C is a mapping such that:

– �(α(C)) = {1, . . . , N}, and α(Ci) ∩ α(Cj) �= ∅ implies i = j, for all i, j ≤ k;
– α(Ci) is an interval and |�(α(Ci))|=1, for all i ≤ k;
– for every i ≤ k and every condition c ∈ C with α−1(c) ⊆ Ci, the sets Minc and

Max c of, respectively, all minimal and maximal elements of α−1(c) w.r.t. the flow
relation Fi are cuts of ON i;

– for every i ≤ N and all conditions b, c, d ∈ C such that �(α(b))=�(α(d))=i, if
(α(b), α(c)) ∈ F+ and (α(c), α(d)) ∈ F+, then we have �(α(c))=i;

– PrecESON = PrecION ∪ Prec is an acyclic relation, where Prec is the union of
sets Max c ×Mind, for all e ∈ E and (c, d) ∈ pre(e)×post(e).

268 B. Randell and M. Koutny

(a) (b)

Fig. 4. System modifications

Intuitively, PrecION captures causalities resulting from intra-level interactions be-
tween behaviours, whereas Prec reflects the succession of evolutions the system had
undergone during the history captured by ESON .

We now introduce cuts and step executions for the evolutional structured occurrence
net in Def. 6. A cut of ESON is a maximal (w.r.t. set inclusion) set of conditions
Cut ⊆ C ∪ C such that (Cut × Cut) ∩ (Prec+

ESON ∪ F+) = ∅ and, moreover,
α(Cut ∩C) = Cut ∩ C. (Taking into account F+ means that only a single version of
a system can be active at any time.) The initial cut of ESON is the union, Cut init

ESON ,
of the initial cut of ON and the initial cuts of all the ON i’s such that α(Cut init

ON i
) ∩

Cut init
ON �= ∅.

Definition 7 (step execution of SON). A step execution of the evolutional structured
occurrence net ESON is a sequence D0 G1 D1 . . . Gn Dn, where each Di ⊆ C ∪C is
a set of conditions and each Gi ⊆ E ∪E is a set of events, such that G0 = Cut init

ESON
and, for every i ≤ n, we have the following (below Min =

⋃
c∈post(E∩Gi)

Minc and
Max =

⋃
c∈pre(E∩Gi)

Max c):

– pre(Gi) ∪Max ⊆ Di−1 and post(Max) ⊆ Gi;
– Di = (Di−1 \ (pre(Gi) ∪Max)) ∪ post(Gi) ∪Min;
– (e, f) ∈ κ∧f ∈ Gi implies e ∈

⋃
j≤i Gj; and (e, f) ∈ σ∧f ∈ Gi implies e ∈ Gi.

Theorem 3. Given a step execution as in Def. 7, each Di is a cut of ESON , and no
event occurs more than once. Moreover, each cut of ESON can be reached from the
initial cut through some step execution, and each event of ESON is involved in at least
one step execution of ESON .

We next establish a consistency between the individual and interactive views of com-
putation, intertwined with the record of evolutions of the systems involved.

Theorem 4. Given a step execution as in Def. 7, for every m ≤ k, we have that the
sequence D0∩Cm G1∩Em D1∩Cm . . . Gn∩Em Dn∩Cm is either a sequence of
empty steps, or a step execution of the occurrence net ONm possibly preceded and/or
followed by a sequence of empty sets (in the former case, the first non-empty set is the
initial cut of ONm, and in the latter the final one). Moreover, the following sequence
D0∩C G1∩E D1∩C . . . Gn∩E Dn∩C is a step execution of ON .

A version of Theorem 2 also holds, and using such results one can attempt to model
check state based properties of evolving systems by inspecting all cuts of ESON .

Failures: Their Definition, Modelling and Analysis 269

(a)

(b)

(c)

(d)

Fig. 5. System composition (a), and system abbreviation (b,c,d)

5 Spatial and Temporal Abstractions

Another type of abstraction, that we will call composition abstraction, is based on the
relation ‘contains / is component of’. Fig. 5(a) shows the behaviour of a system and of
its three component systems, and how its behaviour is related to that of its components.
(This figure does not represent the matter of how, or indeed whether, the component
systems are enabled to interact, i.e., what design is used, or what connectors are in-
volved.) Having identified such a set of interacting systems, and hence the containing
system which they make up, then each member of this set has the other members as its
environment.

Definition 8 (spatial abstraction SON). A spatial abstraction structured occurrence
net is a tuple SASON = (ON , ION , ϑ, ε), where ON and ION are as in Def. 1
and 3, ϑ : C → 2C and ε : E → E, and, moreover, the following hold (below
ϑ(H) =

⋃
c∈H ϑ(c), for every H ⊆ C):

– ϑ(C) = C and ε(E) = E; if Cut is a cut of ON and c, d ∈ Cut , then ϑ(Cut) is a
cut of ION and ϑ(c) ∩ ϑ(d) = ∅;

– for every event e ∈ E, pre(e)⊆ϑ(pre(ε(e))) and post(e)⊆ϑ(post(ε(e)));
– PrecSASON = PrecION ∪Prec′ is a acyclic, where Prec′ is the union of relations

(ϑ(pre(e))\ϑ(post(e)))×ε−1(e) and ε−1(e)×(ϑ(post(e))\ϑ(pre(e))), for e ∈ E.

One can define the cuts and step executions for SASON similarly as it has been done
in Section 4 for ESON , and then obtain results similar in essence and applicability to
those formulated for ESON . The above is in effect a spatial abstraction — one can also
have a temporal abstraction, through the ‘abbreviation’ relation, i.e., an abbreviation
abstraction, as shown in Fig. 5(b).

When one ‘abbreviates’ parts of an occurrence net one is in effect defining atomic
actions, i.e., actions that appear to be instantaneous to their environment. The rules that
enable one to make such abbreviations are non-trivial when multiple concurrent activi-
ties are shown in the net. These are best illustrated by an alternative representation for
an occurrence net together with its abbreviations, namely a structured occurrence net
in which each abbreviated section (or ‘atomic’ activity) of the net is shown surrounded
by an enclosing ‘event box’. Fig. 5(c) shows this alternative representation of Fig. 5(b),
the top part of which can readily be recreated by ‘collapsing’ Fig. 5(c)’s occurrence net,
i.e., by replacing the enclosed sections by simple event symbols, as shown in Fig. 5(d).

270 B. Randell and M. Koutny

(a) (b)

Fig. 6. Two valid collapsings

This net collapsing operation is much trickier with occurrence nets that represent asyn-
chronous activity since there is a need to avoid introducing cycles into what is meant to
be an acyclic directed graph. (Hence the need, on occasion, to use synchronous system
interactions.) This is the main subject of [3] and is illustrated in Fig. 6.

A block of an occurrence net ON = (C, E, F) is a non-empty set Bl ⊂ C ∪ E of
nodes where both the maximal and minimal (w.r.t. F) elements are events, and for all
nodes x, y ∈ Bl , (x, z) ∈ F+ and (z, y) ∈ F+ imply z ∈ Bl . Thus in a block there are
no ‘gaps’ between the nodes it comprises.

Definition 9 (temporal abstraction SON). A temporal abstraction structured occur-
rence net is T ASON = (ION , ION ′, ξ) where ION is as in Def. 3, ION ′ =
(ON ′

1, . . . ,ON ′k, κ′, σ′) is an interaction occurrence net with ON ′i = (C′i, E
′
i, F

′
i)

(for i ≤ k), and ξ : C′ ∪ E′ → C ∪ E; and, moreover, the following are satisfied, for
every i ≤ k (below C′ =

⋃
i C′i , F

′ =
⋃

i F ′i and E′ =
⋃

i E′i):

– ξ(C′i ∪ E′i) = Ci ∪ Ei, ξ−1(Ci) ⊆ C′i and ξ(E′i) = Ei;
– ξ−1(e) is a block of ON ′

i, for every e ∈ Ei; and |ξ−1(c)| = 1, for every c ∈ Ci;
– Fi = {(x, y) | (ξ−1(x)× ξ−1(y)) ∩ F ′i �= ∅};
– κ = {(e, f) | (ξ−1(e)× ξ−1(f)) ∩ κ′ �= ∅}; and
– σ = {(e, f) | (ξ−1(e)× ξ−1(f)) ∩ σ′ �= ∅} ∪

{(e, f) | (((ξ−1(e)× ξ−1(f))∩κ′ �= ∅) ∧ ((ξ−1(f)× ξ−1(e))∩κ′ �= ∅))}.

A practical way in which temporal abstraction might be used is to analyse the behaviour
at the higher level of abstraction, which can be done more efficiently, and after finding a
problem mapping it to a corresponding behaviour at the lower level (and possibly con-
tinuing the analysis there). To give a flavour of the kind of result which would provide
an underpinning for this approach, we have the following.

Theorem 5. Let T ASON be a temporal abstraction structured occurrence net as
in Def. 9, and D0 {e1}D1 . . . {en}Dn be a step execution of ION . Let i ≤ k and
f1 . . . fq be the subsequence of e1 . . . en comprising the events in Ei. For every j ≤ q,
let ej1 . . . ejmj be a firing sequence of ON ′

i involving exactly the events of ξ−1(fj)
starting from pre(fj) (which is possible). Then e11 . . . e1m1 . . . en1 . . . eqmq is a firing
sequence of ON ′

i.

Failures: Their Definition, Modelling and Analysis 271

(a) (b)

J
J

J

(c)

Fig. 7. State retention (a), what did not occur (b), and post-hoc judgement (c) involving a judge-
mental system (upper part) and an active system (lower part)

6 Dependability

To allow for the possibility of failure a system might, e.g., make use of ‘recovery
points’. Such recovery points can be recorded in states that take no further (direct)
part in the system’s ongoing (normal) behavior, as shown in Fig. 7(a). The notion of a
‘failure’ event involves, in principle, three systems — the given (possibly failing) sys-
tem, its environment, and a judging system. This judging system may interact directly
and immediately with the given system, in which case it is part of the system’s environ-
ment, e.g., in VLSI an on-chip facility [12]; another example, in a very different world,
is a football referee! Alternatively the judging system may also be deployed after the
fact using an occurrence net that represents how the failing event occurred. Such an
occurrence net is also something that can for example be recorded in a retained state,
e.g., that of the judgment system. Fig. 7(c) is an attempt to portray this. It deliberately
represents a situation in which a judgement system has obtained and retained only in-
complete evidence of the systems’ states and events and even the causal relationships
between conditions and events.

In practice, judgement is likely to involve consideration not just of what (allegedly)
happened but also what could have and should have happened, perhaps based on a
system design or specification. An extended occurrence net notation that is used to
represent such matters is the ‘barb’ (introduced in [11]), namely an event that could
have occurred, given the condition(s) that existed, but which did not — see Fig. 7(b),
where the barbs are represented by a distinctive kind of boxes.

Retracing the ‘fault-error-failure’ chain, after a judgment has been made that a par-
ticular event needs to be regarded as a failure involves following causal arrows in either
direction within a given occurrence net, and following relations so as to move from one
occurrence net to another. Thus one could retrace (i) the source and / or consequence of an
interaction between systems, (ii) from a system to some guilty component(s), (iii) from
a component to the system(s) built from it, or (iv) from a given system to the system(s)
that created or modified it, or to the system(s) that should have allowed it to continue
to exist. All this tracing activity can be undertaken by some tracing system (perhaps
a part of the judgement system) using whatever evidence is available (e.g., a retained
occurrence net which is alleged to record what happened). This tracing system (just like

272 B. Randell and M. Koutny

a judgment system) can of course itself fail (in the eyes of some other judgment system)!
The actual implementation of such tracing in situations of ongoing activity, and of po-
tential further failures, e.g., such as interfering with witnesses and the jury (in a judicial
context), involves problems such as those addressed by the chase protocols [17].

7 Utilising Structured Occurrence Nets

One can envisage a given judge, having identified some system event as a failure,
analysing a structured occurrence net, i.e., a set of related occurrence nets (dealing with
the various abstractions of the various relevant systems), in an attempt to identify (i) the
fault(s) that should be blamed for the failure, and / or (ii) the erroneous states that could
and should be corrected or compensated for. Unless we assume that the occurrence nets
are recorded correctly and completely as an automated by-product of system activity,
in undertaking such a task it may well prove appropriate during such an analysis to
correct or add to the occurrence nets, both individually and as a set, based on additional
evidence or assumptions about what occurred.

Different judges (even different automated judgement systems) could of course, even
if they identify the same failure event, come to different decisions regarding what ac-
tually happened and in determining the related faults and errors — possibly because
they use different additional information (e.g., assumptions and information relating to
system designs and specifications) to augment the information provided by the occur-
rence nets themselves. The result of such analyses could be thought of as involving the
marking-up of the set of occurrence nets so as to indicate a four-way classification of
all their places, namely as ‘Erroneous’, ‘Correct’, ‘Undecided’, and ‘Not considered’.

As indicated earlier, the production of such a classification is likely to involve repeated
partial traversals of the occurrence nets, following causal arrows backwards within a
given occurrence net in a search for causes and forwards in a search for consequences.
In addition it will involve following relations so as to move from one occurrence net
to another. Two simplistic examples of this are: (i) the recognition that a given system’s
behaviour had, after a period of correct operation, started to exhibit a succession of faults,
might lead to investigating the related occurrence net representing the system’s evolution
to determine if it had suffered a modification at the relevant time, and (ii) evidence of
the non-occurrence of an expected event might be found to be due to a failure of an
infrastructural system, such as a power supply. (Due to the page limit we omitted here a
discussion, included in [13], of an abstraction relation which can be used to model the
‘supports’ relationship between hardware and the software processes that are running on
it, and indeed between the electricity source and the hardware that it powers.)

This way of describing the failure analysis task using occurrence nets might be re-
garded as essentially metaphorical, i.e., essentially just as a way of describing (semi)-
formally what is often currently done by expert investigators in the aftermath of a major
system failure. However, at the other extreme one can imagine attempting to automate
the recording and analysis of actual occurrence nets — indeed one could argue that
this is likely to be a necessary function of any complex system that really merited the
currently fashionable appellations ‘self-healing’ and ‘autonomic’. The more likely, and
practical, possibility — one that we plan to investigate — is the provision of computer

Failures: Their Definition, Modelling and Analysis 273

assistance for the tasks of representing, checking the legality of, and performing analy-
ses of, structured occurrence nets. This is because the task of analysing and / or deriving
the scenarios depicted by structured occurrence nets will, in real life, be too complex to
be undertaken as a simple paper and pencil exercise. The main reason is that the sys-
tems we primarily aim at are (highly) concurrent and so their behaviour suffers from
the so-called ‘state explosion problem’. In a nutshell, even the most basic problems
are then of non-polynomial complexity and so perhaps the only way to deal with them
is to use highly optimised automated tools. This work could build on earlier work at
Newcastle [7,9] on the unfoldings of Petri nets introduced in [16], and also benefit, e.g.,
from recent work at Rennes [4] on the diagnosis of executions of concurrent systems.

A quite different use of such sets of related occurrence nets might in fact prove feasi-
ble. This would be to use them as a way of modelling complex system behaviour prior
to system deployment, so as to facilitate the use of some form of automated model-
checking in order to verify at least some aspects of the design of the system(s). Alter-
natively such automated model-checking might be used to assist analysis of the records
of actual failures of complex systems. Such work could take good advantage of re-
cent work at Newcastle on the model-checking of designs, originally expressed in the
pi-calculus, work which involves the automated generation and analysis of occurrence
nets [8]. For the integration of different formalisms, solvers and quantitative tools one
could follow an approach adopted in modelling tools like Möbius [5].

There is in principle yet another avenue that could be explored, namely that of using
structured occurrence nets which have been shown to exhibit desirable behaviour, in-
cluding automated tolerance and / or diagnosis of faults, as an aid to designing systems
that are guaranteed to exhibit such behaviour when deployed. We have in fact, with col-
leagues, already shown that it is possible to synthesize asynchronous VLSI sub-systems
via the use of formal representations based on occurrence nets [9], but such designs are
much less complex than those that we have had in mind while developing the concept
of structured occurrence nets.

8 Concluding Remarks

A major aim of the present paper has been to introduce, and motivate the study of, the
concept that we term structured occurrence nets, a concept that we claim could serve as
a basis for possible improved techniques of failure prevention and analysis of complex
evolving systems. This is because the various types of abstractions that the concept of
a structured occurrence nets make use of are all ones that we suggest could facilitate
the task of understanding complex systems and their failures, and that of the analysis
of the cause(s) of such failures. These abstractions would in most cases be a natural
consequence of the way the system(s) have been conceived and perceived, rather than
abstractions that have to be generated after the fact, during analysis.

As mentioned earlier, we are working on the report [13] expanding on the results for-
mulated in this paper, and containing a sketch of a structured representation of the vari-
ous activities and mistakes which led up to the tragic Ladbroke Grove Train Crash [20].
(In this example sketch separate related occurrence nets are used for each of the trains
that collided, for the train maintenance and inspection activities, and for the signalling

274 B. Randell and M. Koutny

system design effort. In doing so, we make use of such SON relationships as interaction,
abstraction and system modification.)

Acknowledgements. We would like to thank the referees for their helpful comments.
This research was supported by the EC IST grants RESIST and RODIN.

References

1. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Trans. on Dep. and Sec. Comp. 1, 11–33 (2004)

2. Best, E., Devillers, R.: Sequential and Concurrent Behaviour in Petri Net Theory. TCS 55,
87–136 (1988)

3. Best, E., Randell, B.: A Formal Model of Atomicity in Asynchronous Systems. ACTA 16,
93–124 (1981)

4. Chatain, T., Jard, C.: Symbolic Diagnosis of Partially Observable Concurrent Systems. In:
de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, Springer, Heidelberg
(2004)

5. Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi, S., Doyle, J.M., Sanders, W.H.,
Webster, P.: The Möbius Modeling Tool. In: PNPM’01, pp. 241–250. IEEE Computer Soci-
ety, Los Alamitos (2001)

6. Holt, A.W., Shapiro, R.M., Saint, H., Marshall, S.: Information System Theory Project
RADC-TR-68-305 US Air Force, Rome Air Development Center (1968)

7. Khomenko, V., Koutny, M.: Verification of Bounded Petri Nets Using Integer Programming.
Formal Methods in System Design 30, 143–176 (2007)

8. Khomenko, V., Koutny, M., Niaouris, A.: Applying Petri Net Unfoldings for Verification of
Mobile Systems CS-TR 953 Newcastle University (2006)

9. Khomenko, V., Koutny, M., Yakovlev, A.: Logic Synthesis for Asynchronous Circuits Based
on STG Unfoldings and Incremental SAT. Fundamenta Informaticae 70, 49–73 (2006)

10. Kleijn, H.C.M., Koutny, M.: Process Semantics of General Inhibitor Nets. INFCOM 190,
18–69 (2004)

11. Kleijn, J., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for Membrane Systems.
In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850,
Springer, Heidelberg (2006)

12. Koppad, D., Sokolov, D., Bystrov, A., Yakovlev, A.: Online Testing by Protocol Decomposi-
tion. In: IOLTS’06, pp. 263–268. IEEE CS Press, Los Alamitos (2006)

13. Koutny, M., Randell, B.: Understanding Failures (in preparation)
14. Lenk, S.: Extended Timing Diagrams as a Specification Language. In: European Design

Automation, pp. 28–33. IEEE Computer Society Press, Los Alamitos (1994)
15. Mauw, S.: The Formalization of Message Sequence Charts. Computer Networks and ISDN

Systems 28, 1643–1657 (1996)
16. McMillan, K.L.: A Technique of State Space Search Based on Unfoldings. Formal Methods

in System Design 6, 45–65 (1995)
17. Merlin, P.M., Randell, B.: State Restoration in Distributed Systems. In: FTCS-8, pp. 129–

134. IEEE Computer Society Press, Los Alamitos (1978)
18. Rozenberg,G.,Engelfriet, J.:ElementaryNetSystems. In:Reisig,W.,Rozenberg,G. (eds.)Lec-

tures on Petri Nets I: Basic Models. LNCS, vol. 1491, pp. 12–121. Springer, Heidelberg (1998)
19. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand Spaces: Proving Security Protocols Correct.

Journal of Computer Security 7, 191–230 (1999)
20. http://www.rail-reg.gov.uk/upload/pdf/incident-ladbrokegrove-

ladbroke-optim.pdf

http://www.rail-reg.gov.uk/upload/pdf/incident-ladbrokegrove-ladbroke-optim.pdf
http://www.rail-reg.gov.uk/upload/pdf/incident-ladbrokegrove-ladbroke-optim.pdf

C�WS: A Timed Service-Oriented Calculus�

Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi

Dipartimento di Sistemi e Informatica Università degli Studi di Firenze
{lapadula,pugliese,tiezzi}@dsi.unifi.it

Abstract. COWS (Calculus for Orchestration of Web Services) is a founda-
tional language for Service Oriented Computing that combines in an original
way a number of ingredients borrowed from well-known process calculi, e.g.
asynchronous communication, polyadic synchronization, pattern matching, pro-
tection, delimited receiving and killing activities, while resulting different from
any of them. In this paper, we extend COWS with timed orchestration constructs,
this way we obtain a language capable of completely formalizing the semantics
of WS-BPEL, the ‘de facto’ standard language for orchestration of web services.
We present the semantics of the extended language and illustrate its peculiarities
and expressiveness by means of several examples.

1 Introduction

Service-Oriented Computing (SOC) is an emerging computing paradigm that uses
loosely coupled ‘services’ to support the development of interoperable, evolvable sys-
tems and applications, and exploits the pervasiveness of the Internet technologies.
Services are computational entities made available on a network as autonomous,
platform-independent resources that can be described, published, discovered, and dy-
namically assembled, as the basic blocks for building applications. Companies like IBM,
Microsoft and Sun have invested a lot of efforts to promote their deployment on Web Ser-
vices, that are one of the present more successful instantiation of the SOC paradigm.

Many research efforts are currently addressed to define clean semantic models and
rigorous methodological foundations for SOC applications. A main line of research
aims at developing process calculi-like formalisms that provides in a distilled form
the paradigm at the heart of SOC (see, e.g., [2,3,4,5,9,10,12,13,16]). Most of these
formalisms, however, do not model the different aspects of currently available SOC
technologies in their completeness. One such aspect is represented by timed activities
that are frequently exploited in service orchestration and are typically used for handling
timeouts. For example, in WS-BPEL [21], timeouts turn out to be essential for dealing
with service transactions or with message losses. Thus, a service process could wait
a callback message for a certain amount of time after which, if no callback has been
received, it invokes another operation or throws a fault. However, only a few process
calculi for SOC deal with timed activities. In particular, [12,13] introduce webπ, a timed
extension of the π-calculus tailored to study ‘web transactions’. [8,9] present a timed
calculus based on a more general notion of time, and an approach to verify WS-BPEL

� This work has been supported by the EU project SENSORIA, IST-2 005-016004.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 275–290, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

276 A. Lapadula, R. Pugliese, and F. Tiezzi

specifications with compensation/fault constructs. [11] proposes a general purpose task
orchestration language that manages timeouts as signals returned by dedicated services
after some specified time intervals. Furthermore, all these formalisms, do not take into
account such fundamental aspects of SOC as service instantiation and correlation.

To meet the demands arising from modelling SOC middlewares and applications,
in [15] we have introduced COWS (Calculus for Orchestration of Web Services), a
new modelling language that takes its origin from linguistic formalisms with opposite
objectives, namely from WS-BPEL, the ‘de facto’ standard language for orchestration
of web services, and from well-known process calculi, that represent a cornerstone of
current foundational research on specification and analysis of concurrent and mobile
systems. In [14] we show that COWS can model different and typical aspects of (web)
services technologies, such as, e.g., multiple start activities, receive conflicts, routing
of correlated messages, service instances and interactions among them. In this paper,
since it is not known to what extent timed computation can be reduced to untimed
forms of computation [22], we extend COWS with timed activities. Specifically, we
introduce a WS-BPEL-like wait activity, that causes execution of the invoking service
to be suspended until the time interval specified as an argument has elapsed, and permit
using it to choose among alternative behaviours, alike the WS-BPEL pick activity. This
way, the resulting language, that we call C�WS (timed COWS), can faithfully capture
also the semantics of WS-BPEL timed constructs.

For modelling time and timeouts, we draw again our inspiration from the rich lit-
erature on timed process calculi (see, e.g., [7,20] for a survey). Thus, in C�WS, basic
actions are durationless, i.e. instantaneous, and the passing of time is modelled by using
explicit actions, like in TCCS [18]. Moreover, actions execution is lazy, i.e. can be de-
layed arbitrary long in favour of passing of time, like in lTCCS [19]. Finally, since many
distributed systems offer only weak guarantees on the upper bound of inter-location
clock drift [1], passing of time is modelled synchronously for services deployed on a
same ‘service engine’, and asynchronously otherwise.

The rest of the paper is organized as follows. The syntax of C�WS is presented in
Section 2, while its operational semantics is introduced in Section 3. Section 4 presents
an extension that makes it explicit the notion of service engine and of deployment of
services on engines. Section 5 illustrates three example applications of our framework
and Section 6 concludes the paper. We refer the interested reader to [14] for further
motivations on the design of COWS and C�WS, for many examples illustrating their
peculiarities and expressiveness, for comparisons with other process-based and orches-
tration formalisms, and for the presentation of a variant of the wait activity, that sus-
pends the invoking service until the absolute time reaches its argument value.

2 C�WS Syntax

The syntax of C�WS, given in Table 1, is parameterized by three countable and pair-
wise disjoint sets: the set of (killer) labels (ranged over by k, k′, . . .), the set of values
(ranged over by v, v′, . . .), and the set of ‘write once’ variables (ranged over by x, y,
. . .). The set of values is left unspecified; however, we assume that it includes the set of
names, ranged over by n, m, . . . , mainly used to represent partners and operations, and a

C�WS: A Timed Service-Oriented Calculus 277

Table 1. C�WS syntax

s ::= (services) g ::= (input-guarded choice)
kill(k) (kill) 0 (nil)

| u • u′!ē (invoke) | p • o?w̄.s (request processing)
| g (input-guarded choice) | � e.s (wait)
| s | s (parallel composition) | g + g (choice)
| {|s|} (protection)
| [d] s (delimitation)
| ∗ s (replication)

set of positive numbers (ranged over by δ, δ′, . . .), used to represent time intervals. The
language is also parameterized by a set of expressions, ranged over by e, whose exact
syntax is deliberately omitted; we just assume that expressions contain, at least, values
and variables. Notably, killer labels are not (communicable) values. Notationally, we
prefer letters p, p′, . . . when we want to stress the use of a name as a partner, o, o′, . . .
when we want to stress the use of a name as an operation. We will use w to range over
values and variables, u to range over names and variables, and d to range over killer
labels, names and variables. Notation ·̄ stands for tuples of objects, e.g. x̄ is a shortening
for the tuple of variables 〈x1, . . . , xn〉 (with n ≥ 0). We assume that variables in the same
tuple are pairwise distinct. All notations shall extend to tuples component-wise.

Partner names and operation names can be combined to designate communication
endpoints, written p •o, and can be communicated, but dynamically received names
can only be used for service invocation (as in the Lπ [17]). Indeed, communication
endpoints of receive activities are identified statically because their syntax only allows
using names and not variables. Services are structured activities built from basic activ-
ities, i.e. the empty activity 0, the kill activity kill() , the invoke activity • ! , the
receive activity • ? and the wait activity � , by means of prefixing . , choice + ,
parallel composition | , protection {| |} , delimitation [] and replication ∗ . The ma-
jor difference with COWS is that the choice construct can be guarded both by receive
activities and by wait activities. In particular, the wait activity � e specifies the time
interval, whose value is given by evaluation of e, the executing service has to wait for.
We adopt the following conventions about the operators precedence: monadic operators
bind more tightly than parallel composition, and prefixing more tightly than choice. We
shall omit trailing occurrences of 0, writing e.g. p • o?w̄ instead of p • o?w̄.0, and use
[d1, . . . , dn] s in place of [d1] . . . [dn] s.

The only binding construct is delimitation: [d] s binds d in the scope s. In fact, to
enable concurrent threads within each service instance to share (part of) the state, re-
ceive activities in C�WS bind neither names nor variables, which is different from
most process calculi. Instead, the range of application of the substitutions generated by
a communication is regulated by the delimitation operator, that additionally permits to
generate fresh names (as the restriction operator of the π-calculus) and to delimit the
field of action of kill activities. Thus, the occurrence of a name/variable/label is free if it
is not under the scope of a delimitation for it. We denote by fk(t) the set of killer labels
that occur free in t, and by fd(t) that of free names/variables/killer labels in t. Two terms

278 A. Lapadula, R. Pugliese, and F. Tiezzi

Table 2. C�WS structural congruence (excerpt of laws)

∗ 0 ≡ 0 ∗ s ≡ s | ∗ s {|0|} ≡ 0
{| {|s|} |} ≡ {|s|} {|[d] s|} ≡ [d] {|s|} [d] 0 ≡ 0

[d1] [d2] s ≡ [d2] [d1] s s1 | [d] s2 ≡ [d] (s1 | s2) if d � fd(s1)∪fk(s2)

are alpha-equivalent if one can be obtained from the other by consistently renaming
bound names/variables/labels. As usual, we identify terms up to alpha-equivalence.

3 C�WS Operational Semantics

The operational semantics of C�WS is defined over an enriched set of services that
also includes those auxiliary services where the argument of wait activities can also
be 0. Moreover, the semantics is defined only for closed services, i.e. services without
free variables/labels (similarly to many real compilers, we consider terms with free
variables/labels as programming errors), but of course the rules also involve non-closed
services. Formally, the semantics is given in terms of a structural congruence and of a
labelled transition relation. We assume that evaluation of expressions and execution of
basic activities, except for � e, are instantaneous (i.e. do not consume time units) and
that time elapses between them.

The structural congruence ≡ identifies syntactically different services that intuitively
represent the same service. It is defined as the least congruence relation induced by a
given set of equational laws. We explicitly show in Table 2 the laws for replication,
protection and delimitation, while omit the (standard) laws for the other operators stat-
ing that parallel composition is commutative, associative and has 0 as identity element,
and that guarded choice enjoys the same properties and, additionally, is idempotent.
All the presented laws are straightforward. In particular, commutativity of consecutive
delimitations implies that the order among the di in [〈d1, . . . , dn〉] s is irrelevant, thus in
the sequel we may use the simpler notation [d1, . . . , dn] s. Notably, the last law can be
used to extend the scope of names (like a similar law in the π-calculus), thus enabling
communication of restricted names, except when the argument d of the delimitation is
a free killer label of s2 (this avoids involving s1 in the effect of a kill activity inside s2).

To define the labelled transition relation, we need a few auxiliary functions. First,
we exploit a function [[]] for evaluating closed expressions (i.e. expressions without
variables): it takes a closed expression and returns a value. However, [[]] cannot be
explicitly defined because the exact syntax of expressions is deliberately not specified.

Then, through the rules in Table 3, we define the partial functionM(,) that per-
mits performing pattern-matching on semi-structured data thus determining if a receive
and an invoke over the same endpoint can synchronize. The rules state that two tuples
match if they have the same number of fields and corresponding fields have match-
ing values/variables. Variables match any value, and two values match only if they are
identical. When tuples w̄ and v̄ do match,M(w̄, v̄) returns a substitution for the variables
in w̄; otherwise, it is undefined. Substitutions (ranged over by σ) are functions mapping
variables to values and are written as collections of pairs of the form x
→ v. Application

C�WS: A Timed Service-Oriented Calculus 279

Table 3. Matching rules

M(x, v) = {x
→ v} M(v, v) = ∅
M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1 σ2

Table 4. Is there an active kill(k)? / Are there conflicting receives along p • o matching v̄?

kill(k) ↓kill

s ↓kill ∨ s′ ↓kill

s | s′ ↓kill

s ↓kill

{|s|} ↓kill

s ↓kill

[d] s ↓kill

s ↓kill

∗ s ↓kill

|M(w̄, v̄) |< �
p • o?w̄.s ↓�p • o,v̄

s ↓�p • o,v̄ d � {p, o}
[d] s ↓�p • o,v̄

s ↓�p • o,v̄

{|s|} ↓�p • o,v̄

g ↓�p • o,v̄ ∨ g′ ↓�p • o,v̄

g + g′ ↓�p • o,v̄

s ↓�p • o,v̄ ∨ s′ ↓�p • o,v̄

s | s′ ↓�p • o,v̄

s ↓�p • o,v̄

∗ s ↓�p • o,v̄

of substitution σ to s, written s · σ, has the effect of replacing every free occurrence of
x in s with v, for each x
→ v ∈ σ, by possibly using alpha conversion for avoiding v to
be captured by name delimitations within s. We use |σ | to denote the number of pairs
in σ and σ1 σ2 to denote the union of σ1 and σ2 when they have disjoint domains.

We also define a function, named halt(), that takes a service s as an argument and
returns the service obtained by only retaining the protected activities inside s. halt() is
defined inductively on the syntax of services. The most significant case is halt({|s|}) =
{|s|}. In the other cases, halt() returns 0, except for parallel composition, delimitation
and replication operators, for which it acts as an homomorphism.

halt(kill(k)) = halt(u1 • u2!ē) = halt(g) = 0 halt(s1 | s2) = halt(s1) | halt(s2)

halt({|s|}) = {|s|} halt([d] s) = [d] halt(s) halt(∗ s) = ∗ halt(s)

Finally, in Table 4, we inductively define two predicates: s↓kill checks if s can im-
mediately perform a kill activity; s ↓�p •o,v̄, with � natural number, checks existence
of potential communication conflicts, i.e. the ability of s of performing a receive
activity matching v̄ over the endpoint p • o that generates a substitution with fewer
pairs than �.

The labelled transition relation
α̂−−→ is the least relation over services induced by the

rules in Table 5, where label α̂ is generated by the following grammar:

α̂ ::= α | δ
α ::= †k | (p •o) � v̄ | (p •o) � w̄ | p •o �σ� w̄ v̄ | †

In the sequel, we use d(α) to denote the set of names, variables and killer labels occur-
ring in α, except for α = p •o �σ� w̄ v̄ for which we let d(p •o �σ� w̄ v̄) = d(σ), where

280 A. Lapadula, R. Pugliese, and F. Tiezzi

Table 5. C�WS operational semantics

kill(k)
†k−−→ 0 (kill) p • o?w̄.s

(p •o)�w̄−−−−−−−→ s (rec)

[[ē]] = v̄
(inv)

p • o!ē
(p • o)�v̄−−−−−−→ 0

g1
α−−→ s

(choice)
g1 + g2

α−−→ s

s
p • o �σ{x
→v′ }� w̄ v̄−−−−−−−−−−−−−−→ s′

(delsub)

[x] s
p • o �σ� w̄ v̄−−−−−−−−→ s′ ·{x
→ v′}

s
†k−−→ s′

(delkill)
[k] s

†−→ [k] s′

s
α−−→ s′ d�d(α) s ↓kill⇒ α=†, †k

(delpass)
[d] s

α−−→ [d] s′
s
α−−→ s′

(prot)
{|s|} α−−→ {|s′|}

s1
(p • o)�w̄−−−−−−−→s′1 s2

(p •o)�v̄−−−−−−→s′2 M(w̄, v̄)=σ ¬(s1 | s2 ↓|σ|p • o,v̄)
(com)

s1 | s2
p •o �σ� w̄ v̄−−−−−−−−→ s′1 | s′2

s1
p • o �σ� w̄ v̄−−−−−−−−→ s′1 ¬(s2 ↓|M(w̄,v̄)|

p • o,v̄)
(parcon f)

s1 | s2
p • o �σ� w̄ v̄−−−−−−−−→ s′1 | s2

s1
†k−−→ s′1

(parkill)
s1 | s2

†k−−→ s′1 | halt(s2)

s1
α−−→ s′1 α � (p •o �σ� w̄ v̄), †k

(parpass)
s1 | s2

α−−→ s′1 | s2

s ≡ s1 s1
α−−→ s2 s2 ≡ s′

(cong)
s
α−−→ s′

0
δ−→ 0 (nilelaps) ∗ s

δ−→ ∗ s (repl) u • u′!ē
δ−→ u • u′!ē (invelaps)

s
δ−→ s′

(protelaps){|s|} δ−→ {|s′|}
s
δ−→ s′

(scopeelaps)
[d] s

δ−→ [d] s′
p • o?w̄.s

δ−→ p • o?w̄.s (recelaps)

� 0.s
†−→ s (waittout)

[[e]] � δ′
(waiterr)� e.s

δ−→� e.s

δ � [[e]]
(waitelaps)� e.s

δ−→� [[e−δ]].s

g1
δ−→ g′1 g2

δ−→ g′2
(pick)

g1 + g2
δ−→ g′1 + g′2

s1
δ−→ s′1 s2

δ−→ s′2
(parsync)

s1 | s2
δ−→ s′1 | s′2

d({x
→ v}) = {x, v} and d(σ1σ2) = d(σ1)∪d(σ2). The meaning of labels is as follows.
α̂ denotes taking place of computational activities α or time elapsing δ (recall that δ is
a time interval). †k denotes execution of a request for terminating a term from within
the delimitation [k] . (p •o) � v̄ and (p •o) � w̄ denote execution of invoke and receive

C�WS: A Timed Service-Oriented Calculus 281

activities over the endpoint p • o, respectively. p •o �σ� w̄ v̄ (if σ � ∅) denotes execution
of a communication over p • o with receive parameters w̄, matching values v̄ and sub-
stitution σ to be still applied. † and p •o �∅� w̄ v̄ denote taking place of timeout/forced
termination or communication (without pending substitutions), respectively. A compu-
tation from a closed service s0 is a sequence of connected transitions of the form

s0
α̂1−−→ s1

α̂2−−→ s2
α̂3−−→ s3 . . .

where, for each i, α̂i can be δ, † or p •o �∅� w̄ v̄ (for some p, o, w̄ and v̄).
The rules in the upper part of Table 5 model computational activities, those in the

lower part model time passing. We prefer to keep separate the two sets of rules to make
it evident that C�WS is a ‘conservative’ extension of COWS (indeed, the rules in the
upper part are exactly those of COWS). We now comment on salient points. Activity
kill(k) forces termination of all unprotected parallel activities (rules (kill) and (parkill))
inside an enclosing [k] , that stops the killing effect by turning the transition label †k
into † (rule (delkill)). Existence of such delimitation is ensured by the assumption that
the semantics is only defined for closed services. Sensitive code can be protected from
killing by putting it into a protection {| |}; this way, {|s|} behaves like s (rule (prot)). Sim-
ilarly, [d] s behaves like s, except when the transition label α contains d or when a kill
activity is active in s and α does not correspond to a kill activity or a timeout (rule
(delpass)): in such cases the transition should be derived by using rules (delsub) or (delkill).
In other words, kill activities are executed eagerly. A service invocation can proceed
only if the expressions in the argument can be evaluated (rule (inv)). A receive activity
offers an invocable operation along a given partner name (rule (rec)). The execution of a
receive permits to take a decision between alternative behaviours (rule (choice)). Com-
munication can take place when two parallel services perform matching receive and
invoke activities (rule (com)). Communication generates a substitution that is recorded
in the transition label (for subsequent application), rather than a silent transition as
in most process calculi. If more then one matching is possible, the receive that needs
fewer substitutions is selected to progress (rules (com) and (parcon f)). This mechanism
permits to correlate different service communications thus implicitly creating interac-
tion sessions and can be exploited to model the precedence of a service instance over
the corresponding service specification when both can process the same request. When
the delimitation of a variable x argument of a receive is encountered, i.e. the whole
scope of the variable is determined, the delimitation is removed and the substitution for
x is applied to the term (rule (delsub)). Variable x disappears from the term and cannot
be reassigned a value. Execution of parallel services is interleaved (rule (parpass)), but
when a kill activity or a communication is performed. Indeed, the former must trigger
termination of all parallel services (according to rule (parkill)), while the latter must en-
sure that the receive activity with greater priority progresses (rules (com) and (parcon f)).
Rule (cong) states that structurally congruent services have the same transitions.

Time can elapse while waiting on invoke/receive activities, rules (invelaps) and
(recelaps). When time elapses, but the timeout is still not expired, the argument of wait
activities � is updated (rule (waitelaps)). Time elapsing cannot make a choice within a
pick activity (rule (pick)), while the occurrence of a timeout can. This is signalled by
label † (thus, it is a computation step), that is generated by rule (waittout) and used by
rule (choice) to discard the alternative branches. Time elapses synchronously for all

282 A. Lapadula, R. Pugliese, and F. Tiezzi

services running in parallel: this is modelled by rule (parsync) and the remaining rules
for the empty activity (nilelaps), the wait activity (waiterr), replication (repl), protection
(protelaps) and delimitation (scopeelaps). Furthermore, rule (waiterr) enables time passing
for the wait activity also when the expression e used as an argument does not return
a positive number; in this case the argument of the wait is left unchanged. Notably, in
agreement with its eager semantics, the kill activity does not allow time to pass.

We end this section with a simple example aimed at clarifying some peculiarities of
our formalism and at specifying timeouts as described in [11,22]. Consider the service:

[x, y, k] (p •o1?〈x〉.(p • o2?〈x, y〉+� 10.kill(k)) | {|p′ • o3!〈x〉|} | p′ • o4!〈x, y〉)
| [n] p •o1!〈n〉

Communication of private names is standard and exploits scope extension as in the π-
calculus. Notably, receive and invoke activities can interact only if both are within the
scopes of the delimitations that bind the variables argument of the receive. Thus, in the
example, to enable communication of the private name n, besides its scope, we must
extend the scope of variable x, as in the following computation:

[n, x] ([y, k] (p •o1?〈x〉.(p • o2?〈x, y〉+� 10.kill(k))
| {|p′ • o3!〈x〉|} | p′ • o4!〈x, y〉)

| p • o1!〈n〉)
p •o1 �∅� 〈x〉 〈n〉−−−−−−−−−−−→

[n, y, k] ((p •o2?〈n, y〉+� 10.kill(k)) | {|p′ • o3!〈n〉|} | p′ • o4!〈n, y〉) 6−−→
[n, y, k] ((p •o2?〈n, y〉+� 4.kill(k)) | {|p′ • o3!〈n〉|} | p′ • o4!〈n, y〉) 4−−→
[n, y, k] ((p •o2?〈n, y〉+� 0.kill(k)) | {|p′ • o3!〈n〉|} | p′ • o4!〈n, y〉) †−−→
[n, y, k] (kill(k) | {|p′ • o3!〈n〉|} | p′ • o4!〈n, y〉) †−−→
[n] {|p′ • o3!〈n〉|}

When the communication takes place, a timer starts and the substitution {x
→ n} is ap-
plied to all terms delimited by [x] , not only to the continuation of the service performing
the receive. Then, the time elapses until the timeout expires, this way the receive along
p • o2 is discarded. Finally, the kill activity removes the unprotected invoke activity.

4 Service Deployment

In the language presented so far, time passes synchronously for all services in parallel,
thus we can think of as all services run on a same service engine. As a consequence, the
services share the same clock and can be tightly coupled. Instead, existing SOC systems
are loosely coupled because they are usually deployed on top of distributed systems that
offer only weak guarantees on the upper bound of inter-location clock drift. Consider
for example a scenario including a customer service and a service provider composed
of two subservices – one used as an interface to interact with external services, the
other being an internal service that performs queries in a database – sharing a tuple of
variables, operations, The scenario could be modelled by the term

customer | [d̄shared] (provider inter f ace | provider internal service)

C�WS: A Timed Service-Oriented Calculus 283

The customer and the provider service are loosely coupled and can be deployed on
different engines, while the provider subservices are tightly coupled and must be colo-
cated. To emphasize these aspects, we introduce explicitly the notions of service engine
and of deployment of services on engines and we will write the previous term as follows:

{ customer } | { [d̄shared] (provider inter f ace | provider internal service) }
Formally, we extend the language syntax with the syntactic category of (service) en-
gines (alike the ‘machines’ of [12]) defined as follows:

E ::= 0 | {s} | [n]E | E | E
Each engine {s} has its own clock (whose value does not matter and, hence, is not made
explicit), that is not synchronized with the clock of other parallel engines (namely,
time progresses asynchronously among different engines). Besides, (private) names can
be shared among engines, while variables and killer labels cannot. In the sequel, we
will only consider well-formed engine compositions, i.e. engine compositions where
partners used in communication endpoints of receive activities within different service
engines are pairwise distinct. The underlying rationale is that each service has its own
partner names and that the service and all its instances run within the same engine.

To define the semantics, we first extend the structural congruence of Section 3 with
the abelian monoid laws for engines parallel composition and with the following laws:

{s} ≡ {s′} if s ≡ s′ {0} ≡ 0 {[n] s} ≡ [n] {s} [n] 0 ≡ 0

[n] [m]E ≡ [m] [n]E E | [n] F ≡ [n] (E | F) if n � fd(E)

The first law lifts to engines the structural congruence defined on services, the second
law transforms an engine with empty activities into an empty engine, while the third law
permits to extrude a private name outside an engine. The remaining laws are standard.

Secondly, we define a reduction relation −→ among engines through the rules shown
in Table 6. Rule (loc) models occurrence of a computation step within an engine, while
rule (res) deals with private names. Rule (congE) says that structurally congruent engines
have the same behaviour, while rule (parasync) says that time elapses asynchronously be-
tween different engines (indeed, F and, then, the clocks of its engines remain unchanged
after the transition). Rule (comE), where fv(w̄) are the free variables of w̄, enables in-
teraction between services executing within different engines. It combines the effects
of rules (delsub) and (com) in Table 5. Indeed, since the delimitations [x̄] for the input
variables are singled out, the communication effect can be immediately applied to the
continuation s′2 of the service performing the receive. The last premise ensures that, in
case of multiple start activities, the message is routed to the correlated service instance
rather than triggering a new instantiation.

Notably, computations from a given parallel composition of engines are sequences of
(connected) reductions. Communication can take place intra-engine, by means of rule
(com), or inter-engine, by means of rule (comE). In both cases, since we are only con-
sidering well-formed compositions of engines, checks for receive conflicts are confined
to services running within a single engine, the one performing the receive, differently
from the language without explicit engines, where checks involve the whole compo-
sition of services. Notice that, to communicate a private name between engines, first

284 A. Lapadula, R. Pugliese, and F. Tiezzi

Table 6. Operational semantics of C�WS plus engines (additional rules)

s
α̂−−→ s′ α̂ ∈ {δ, †, p •o �∅� w̄ v̄}

{s} −→ {s′}
(loc)

E −→ E′

[n]E −→ [n]E′
(res)

E ≡ E′ E
′ −→ F′ F

′ ≡ F
E −→ F

(congE)
E −→ E′

E | F −→ E′ | F
(parasync)

s1
(p •o)�v̄−−−−−−→ s′1 s2

(p • o)�w̄−−−−−−−→ s′2 M(w̄, v̄)=σ fv(w̄)= x̄ ¬(s2 ↓|σ|p • o,v̄)

{s1} | { [x̄] s2} −→ {s′1} | {s′2 · σ}
(comE)

it is necessary to exploit the structural congruence for extruding the name outside the
sending engine and to extend its scope to the receiving engine, then the communication
can take place, by applying rules (comE), (res) and (congE).

5 Examples

In this section, we illustrate three applications of our framework. The first one is an
example of a web service inspired by the well-known game Rock/Paper/Scissors, while
the remaining ones are use-cases inspired by [6]. In the sequel, we will write Z � W to
assign a symbolic name Z to the term W. We will use n̂ to stand for the endpoint np • no

and, sometimes, we will write n̂ for the tuple 〈np, no〉 and rely on the context to resolve
any ambiguity. For the sake of readability, in the examples we will use assignment and
conditional choice constructs. They can be thought of as ‘macros’ corresponding to the
following C�WS encodings

〈〈[w = e].s〉〉 = [m̂] (m̂!〈e〉 | m̂?〈w〉.〈〈s〉〉)
〈〈if (e) then {s1} else {s2}〉〉 = [m̂] (m̂!〈e〉 | (m̂?〈true〉.〈〈s1〉〉 + m̂?〈false〉.〈〈s2〉〉))

where m̂ is fresh, and true and false are the values that can result from evaluation of e.

Rock/Paper/Scissors service. Consider the following service:

rps � ∗ [xchamp res, xchall res, xid, xthr 1, xthr 2, xwin, k]
((pchamp • othrow?〈xchamp res, xid, xthr 1〉.

(pchall • othrow?〈xchall res, xid, xthr 2〉.
(xchamp res • owin!〈xid, xwin〉 | xchall res • owin!〈xid, xwin〉)

+� 30 . ({|xchamp res • owin!〈xid, xchamp res〉|} | kill(k)))
+ pchall • othrow?〈xchall res, xid, xthr 2〉.

(pchamp • othrow?〈xchamp res, xid, xthr 1〉.
(xchamp res • owin!〈xid, xwin〉 | xchall res • owin!〈xid, xwin〉)

+� 30 . ({|xchall res • owin!〈xid, xchall res〉|} | kill(k))))
| Assign)

C�WS: A Timed Service-Oriented Calculus 285

The task of service rps is to collect two throws, stored in xthr 1 and xthr 2, from two
different participants, the current champion and the challenger, assign the winner to
xwin and then send the result back to the two players. The service receives throws from
the players via two distinct endpoints, characterized by operation othrow and partners
pchamp and pchall. The service is of kind ‘request-response’ and is able to serve chal-
lenges coming from any pairs of participants. The players are required to provide the
partner names, stored in xchamp res and xchall res, which they will use to receive the re-
sult. A challenge is uniquely identified by a challenge-id, here stored in xid, that the
partners need to provide when sending their throws. Partner throws arrive randomly.
Thus, when a throw is processed, for instance the challenging one, it must be checked
if a service instance with the same challenge-id already exists or not. An instance of
service rps, that is created because of the reception of the first throw of a challenge,
waits the reception of the corresponding second throw for at most 30 time units. If this
throw arrives within the deadline, the instance behaves as usual. Otherwise, when the
timeout expires, the instance declares the sender of the first throw as the winner of the
challenge and terminates. We assume that Assign implements the rules of the game and
thus, by comparing xthr 1 and xthr 2, assigns the winner of the match by producing the
assignment [xwin = xchamp res] or [xwin = xchall res]. Thus, we have

Assign � if (xthr 1 == “rock” & xthr 2 == “scissors”)
then { [xwin = xchamp res] }
else { if (xthr 1 == “rock” & xthr 2 == “paper”)

then { [xwin = xchall res] }
else { . . . } }

A partner may simultaneously play multiple challenges by using different challenge
identifiers as a means to correlate messages received from the server. E.g., the partner

(pchall • othrow!〈p′chall, 0, “rock”〉 | [x] p′chall
• owin?〈0, x〉.s0)

| (pchall • othrow!〈p′chall, 1, “paper”〉 | [y] p′chall
• owin?〈1, y〉.s1)

is guaranteed that the returned results will be correctly delivered to the corresponding
continuations.

Let us now consider the following match of rock/paper/scissors identified by the
correlation value 0:

s � rps | pchamp • othrow!〈p′champ, 0, “rock”〉 | [x] p′champ
• owin?〈0, x〉.schamp

| pchall • othrow!〈p′chall, 0, “scissors”〉 | [y] p′chall
• owin?〈0, y〉.schall

where p′champ and p′chall denote the players’ partner names.
Figure 1 shows a customized UML sequence diagram depicting a possible run of

the above scenario. The champion and a challenger participate to the match, play their
throws (i.e. “rock” and “scissors”), wait for the resulting winner, and (possibly) use
this result in their continuation processes (i.e. schamp and schall). Here is a computation
produced by selecting the champion’s throw:

286 A. Lapadula, R. Pugliese, and F. Tiezzi

Fig. 1. Graphical representation of the Rock/Paper/Scissors service scenario

s
pchamp •othrow �∅� 〈xchamp res ,xid,xthr 1〉 〈p′champ ,0,“rock”〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

rps | [xchall res, xthr 2, xwin, k]
((pchall • othrow?〈xchall res, 0, xthr 2〉.

(p′champ
• owin!〈0, xwin〉 | xchall res • owin!〈0, xwin〉)

+� 30 . ({|p′champ
• owin!〈0, p′champ〉|} | kill(k)))

| Assign · {xchamp res
→ p′champ, xid
→ 0, xthr 1
→ “rock”})
| [x] p′champ

• owin?〈0, x〉.schamp

| pchall • othrow!〈p′chall, 0, “scissors”〉 | [y] p′chall
• owin?〈0, y〉.schall � s′

In case the challenger’s throw is not consumed within the deadline, the timeout expires:

s′
30−−→ †−−→

rps | [xchall res, xthr 2, xwin, k]
({|p′champ

• owin!〈0, p′champ〉|} | kill(k)
| Assign · {xchamp res
→ p′champ, xid
→ 0, xthr 1
→ “rock”})

| [x] p′champ
• owin?〈0, x〉.schamp

| pchall • othrow!〈p′chall, 0, “scissors”〉 | [y] p′chall
• owin?〈0, y〉.schall

Then, the kill activity terminates the instance and the champion is declared to be the
winner. Instead, if the challenger’s throw is consumed by the existing instance within
the deadline, the service evolves as follows:

s′
5−−→ pchall •othrow �∅� 〈xchall res ,0,xthr 2〉 〈p′chall ,0,“scissors”〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

rps | [xwin] (p′champ
• owin!〈0, xwin〉 | p′chall

• owin!〈0, xwin〉
| Assign · {xchamp res
→ p′champ, xid
→ 0, xthr 1
→ “rock”,

xchall res
→ p′chall, xthr 2
→ “scissors”})
| [x] p′champ

• owin?〈0, x〉.schamp

| [y] p′chall
• owin?〈0, y〉.schall

In the computation above, rules (com) and (parcon f) allow only the existing instance to
evolve (thus, creation of a new conflicting instance is avoided). Once Assign determines
that pchamp won, the substitutive effects of communication transforms the system as
follows:

C�WS: A Timed Service-Oriented Calculus 287

Fig. 2. Graphical representation of the Buyer/Seller/Shipper protocol

s′′ � rps | p′champ
• owin!〈0, pchamp〉 | p′chall

• owin!〈0, pchamp〉
| [x] p′champ

• owin?〈0, x〉.schamp

| [y] p′chall
• owin?〈0, y〉.schall

At the end, the name of the resulting winner is sent to both participants as shown by the
following computation:

s′′
p′champ •owin �∅� 〈0,x〉 〈0,pchamp〉−−−−−−−−−−−−−−−−−−−−−−→ p′chall •owin �∅� 〈0,y〉 〈0,pchamp〉−−−−−−−−−−−−−−−−−−−−−→

rps | schamp · {x
→ pchamp} | schall · {y
→ pchamp}

A Buyer/Seller/Shipper protocol. We illustrate a simple business protocol for purchasing
a fixed good. The protocol, graphically represented in Figure 2, involves a buyer, a seller
and a shipper. Firstly, Buyer asks Seller to offer a quote, then, after the Seller’s reply,
Buyer answers with either an acceptance or a rejection message (it sends the latter
when the quote is bigger than a certain amount). In case of acceptance, Seller sends
a confirmation to Buyer and asks Shipper to provide delivery details. Finally, Seller
forwards the received delivery information to Buyer. Moreover, after Seller presents a
quote, if Buyer does not reply in 30 time units, then Seller will abort the transaction. In
the end, the whole system is

{Buyer} | {Seller} | {Shipper}
where

288 A. Lapadula, R. Pugliese, and F. Tiezzi

Fig. 3. Graphical representation of the Investment Bank interaction pattern

Buyer � [id] (pS • oreqQuote!〈pB, id〉
| [xquote] pB • oquote?〈id, xquote〉 .

[k] (if (xquote ≤ 1000)
then { pS • oaccept!〈id〉

| pB • ocon f irmation?〈id〉 .
[xdet] pB • odeliveryDet?〈id, xdet〉 }

else { pS • ore ject!〈id〉 }
| pB • oabort?〈id〉 . kill(k)))

Seller � ∗ [xB, xid] pS • oreqQuote?〈xB, xid〉 .
(xB • oquote!〈xid, vquote〉
| pS • oaccept?〈xid〉 .

(xB • ocon f irmation!〈xid〉
| pS H • oreqDelivDet!〈xid, pS 〉
| [xdet] pS • odeliveryDet?〈xid, xdet〉 .

xB • odeliveryDet!〈xid, xdet〉)
+ pS • ore ject?〈xid〉
+� 30 . xB • oabort!〈xid〉)

Shipper � ∗ [xid, xS] pS H • oreqDelivDet?〈xid, xS 〉 .
[xdet] [xdet = computeDelivDet(xS)] . xS • odeliveryDet!〈xid, xdet〉

Function computeDelivDet() computes the delivery details associated to a seller. No-
tably, if Buyer receives an abort message from Seller, then it immediately halts its other
activities, by means of the killing activity.

Investment Bank interaction pattern. We describe a typical interaction pattern in In-
vestment Bank and other businesses, graphically represented in Figure 3. We consider
two participants, A and B. A starts by requiring a quote to B, that answers with an initial
quote. Then, B enters a loop, sending a new quote every 5 time units until A accepts a
quote. Of course, in order to receive new quotes, also A cycles until it sends the quote
acceptance message to B. Services A and B are modelled as follows:

C�WS: A Timed Service-Oriented Calculus 289

A � pB • oreqQuote!〈pA, id〉
| [xquote] pA • oquote?〈id, xquote〉 .

[n̂] (n̂!〈xquote〉
| ∗ [x] n̂?〈x〉 .

[xnew] (� rand() . pB • oaccept!〈id, x〉
+ pA • ore f resh?〈id, xnew〉 . n̂!〈xnew〉))

B � ∗ [xA, xid] pB • oreqQuote?〈xA, xid〉 .
(xA • oquote!〈xid, vquote〉
| [n̂] (n̂!〈vquote〉

| ∗ [x] n̂?〈x〉 .
[xquote] (pB • oaccept?〈xid, xquote〉

+� 5 . (xA • ore f resh!〈xid, newQuote(x)〉
| n̂!〈newQuote(x)〉))))

Function newQuote(), given the last quote sent from B to A, computes and returns a new
quote. Notably, in both services, the iterative behaviour is modelled by means of a private
endpoint (i.e. n̂) and the replication operator. At each iteration, A waits a randomly chosen
period of time,whosevalue is returned byfunctionrand(),before replying to B. If this time
interval is longer than 5 time units, a receive on operation ore f resh triggers a new iteration.

Now, consider the system A | B. If the participant A does not accept the current quote
in 5 time units, then a new quote is produced by the participant B, because its timeout
has certainly expired. Instead, if we consider the system {A} | {B}, the clock of B can be
slower than that of A, thus the production of a new quote is not ensured.

6 Concluding Remarks

We have introduced C�WS, a formalism for specifying and combining services, while
modelling their dynamic behaviour. We have first considered a language where all ser-
vices are implicitly allocated on a same engine. Then, we have presented an extension
with explicit notions of service engine and of deployment of services on engines.

Weplantocontinueourprogrammetolayrigorousmethodologicalfoundationsforspec-
ificationandvalidationofSOCmiddlewaresandapplications.Wearecurrentlyworkingon
formalizingthesemanticsofWS-BPELthroughlabelledtransitionsystems.Weintendthen
to prove that this semantics and that defined by translation in COWS do agree. Of course,
the extension presented in this paper will be essential to faithfully capture the semantics of
WS-BPEL timed constructs. As a further work, we want to develop type systems and be-
haviouralequivalencescapableofdealingalsowithtimeaspects.Pragmatically, theycould
provide a means to express and guarantee time-based QoS properties of services (such as,
e.g., time to reply to service requests), that should be published in service contracts.

Acknowledgements. We thank the anonymous referees for their useful comments.

References

1. Berger, M.: Basic theory of reduction congruence for two timed asynchronous pi-calculi. In:
Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 115–130. Springer,
Heidelberg (2004)

290 A. Lapadula, R. Pugliese, and F. Tiezzi

2. Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long-running transactions. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 124–138. Springer,
Heidelberg (2003)

3. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins, F., Monta-
nari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V.T., Zavattaro, G.: SCC: a Service Centered
Calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 38–57. Springer, Heidelberg (2006)

4. Butler, M.J., Hoare, C.A.R., Ferreira, C.: A trace semantics for long-running transactions. In:
Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) CSP 2004. LNCS, vol. 3525, pp. 133–150.
Springer, Heidelberg (2005)

5. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred programming for
web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2–17. Springer,
Heidelberg (2007)

6. Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.: A theoretical
basis of communication-centred concurrent programming. Technical report, W3C (2006)

7. Corradini, F., D’Ortenzio, D., Inverardi, P.: On the relationships among four timed process
algebras. Fundam. Inform. 38(4), 377–395 (1999)

8. Geguang, P., Huibiao, Z., Zongyan, Q., Shuling, W., Xiangpeng, Z., Jifeng, H.: Theoretical
foundations of scope-based compensable flow language for web service. In: Gorrieri, R.,
Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 251–266. Springer, Heidelberg
(2006)

9. Geguang, P., Xiangpeng, Z., Shuling, W., Zongyan, Q.: Towards the semantics and verifica-
tion of bpel4ws. In: WLFM 2005, Elsevier, Amsterdam (2005)

10. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: a calculus for service
oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp.
327–338. Springer, Heidelberg (2006)

11. Kitchin, D., Cook, W.R., Misra, J.: A language for task orchestration and its semantic prop-
erties. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 477–491.
Springer, Heidelberg (2006)

12. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.) FOSSACS
2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

13. Laneve, C., Zavattaro, G.: web-pi at work. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005.
LNCS, vol. 3705, pp. 182–194. Springer, Heidelberg (2005)

14. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services (full
version). Technical report, Dipartimento di Sistemi e Informatica, Univ. Firenze (2006),
http://rap.dsi.unifi.it/cows

15. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services. In:
ESOP. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)

16. Mazzara, M., Lucchi, R.: A pi-calculus based semantics for WS-BPEL. Journal of Logic and
Algebraic Programming 70(1), 96–118 (2006)

17. Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. Mathematical Structures
in Computer Science 14(5), 715–767 (2004)

18. Moller, F., Tofts, C.: A temporal calculus of communicating systems. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 401–415. Springer, Heidelberg (1990)

19. Moller, F., Tofts, C.: Relating processes with respect to speed. In: Groote, J.F., Baeten, J.C.M.
(eds.) CONCUR 1991. LNCS, vol. 527, pp. 424–438. Springer, Heidelberg (1991)

20. Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In: Larsen,
K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 376–398. Springer, Heidelberg (1992)

21. OASIS: Web Services Business Process Execution Language Version 2.0. Technical report,
WS-BPEL TC OASIS (August 2006), http://www.oasis-open.org/

22. van Glabbeek, R.J.: On specifying timeouts. ENTCS 162, 173–175 (2006)

http://rap.dsi.unifi.it/cows
http://www.oasis-open.org/

Regular Linear Temporal Logic�

Martin Leucker1 and César Sánchez2,3

1 Institut für Informatik
TU München, Germany

2 Computer Science Department
Stanford University, Stanford, USA

3 Computer Engineering Department
University of California, Santa Cruz, USA

Abstract. We present regular linear temporal logic (RLTL), a logic that
generalizes linear temporal logic with the ability to use regular expres-
sions arbitrarily as sub-expressions. Every LTL operator can be defined
as a context in regular linear temporal logic. This implies that there is a
(linear) translation from LTL to RLTL.

Unlike LTL, regular linear temporal logic can define all ω-regular lan-
guages, while still keeping the satisfiability problem in PSPACE. Unlike
the extended temporal logics ETL∗, RLTL is defined with an algebraic
signature. In contrast to the linear time μ-calculus, RLTL does not de-
pend on fix-points in its syntax.

1 Introduction

We present regular linear temporal logic (RLTL), a formalism to express prop-
erties of infinite traces by conveniently fusing regular-expressions and linear-
temporal logic. Moreover, we show that the satisfiability and equivalence of
RLTL expressions are PSPACE-complete problems.

The linear temporal logic (LTL) [19,16] is a modal logic over a linear frame,
whose formulas express properties of infinite traces using two modalities: next-
time and until. LTL is a widely accepted formalism for the specification and
verification of concurrent and reactive systems. However, Wolper [26] showed
that LTL cannot express all ω-regular properties (the properties expressible by
finite-state automata on infinite words, known as Büchi automata [4]). In par-
ticular, it cannot express the property “p holds at every other moment”. In
spite of being a useful specification language, this lack of expressivity seems to
surface in practice [20] and it has been pointed out (see for example [3]) that
regular-expressions are sometimes very convenient in addition to LTL, in formal
specifications. Actually, in the industry standard specification language PSL,
arbitrary mixtures of regular expressions and LTL are allowed [1].

� Part of this work was done during the first author’s stay at Stanford University and
was supported by ARO DAAD190310197. The second author has been supported in
part by NSF grants CCR-01-21403, CCR-02-20134, CCR-02-09237, CNS-0411363,
and CCF-0430102, and by NAVY/ONR contract N00014-03-1-0939.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 291–305, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

292 M. Leucker and C. Sánchez

To solve the expressivity problem, Wolper introduced the so called extended
temporal logic ETL where new operators are defined as right linear grammars,
and language composition is used to compose operators. ETL was later ex-
tended [25] to different kinds of automata. The main drawback of the extended
temporal logics is that, in order to obtain the full expressivity, an infinite number
of operators is needed.

An alternative approach consists on adapting the modal μ-calculus [5,12] to
the linear setting, which gives rise to the linear time μ-calculus, denoted as
νTL [2]. Here, the full expressivity is obtained by allowing the use of fix point
operators. It can be argued that this formalism is not algebraic either since one
needs to specify recursive equations to describe temporal properties. Moreover,
the only modality is the nexttime. Even though every ground regular expression
can be translated into a νTL expression (see [14]), the concatenation operator
cannot be directly represented in νTL, i.e., there is no context of νTL that cap-
tures concatenation. On the other hand, extending νTL with concatenation (the
so-called fix point logic with chop FLC [18,15]) allows expressing non-regular
languages. This extra expressive power comes at the price of undecidable satis-
fiability and equivalence problems. A more restricted extension of νTL allowing
only left concatenation with regular expressions is possible along the lines pre-
sented here, but this is out of the scope of this paper.

There have also been dynamic logics that try to merge regular expressions
(for the program part) and LTL (for the action part), for example, Regular Pro-
cess Logic [7]. However, it makes the satisfiability problem non-elementary by
allowing arbitrary combinations of negations and regular operators. Dynamic
linear-temporal logic DLTL [8] keeps the satisfiability problem in PSPACE, but
restricts the use of regular expressions only as a generalization of the until op-
erator. While the generalized until present in DLTL and the power operators
present in RLTL are complementary (in the sense that none can be defined in
terms of each other), the power operators are more suitable for extensions that
can handle past, as discussed in Section 5.

An arbitrary mixture of (sequentially extended) regular expressions and LTL
is possible in PSL [1,6]. However, decision procedures for satisfiability etc. and
their complexities are still an area of active research (for full PSL). Thus, RLTL
can be understood as subset of PSL for which an efficient satisfiability procedure
(PSPACE) is available.

The logic that we present here is a generalization of linear temporal logic
and ω-regular expressions, based on the following observation. It is common for
different formalisms to find the following three components in the (recursive)
definition of operators:

1. attempt : an expression that captures the first try to satisfy the enclosing
expression.

2. obligation: an expression that must be satisfied, if the attempt fails, to con-
tinue trying the enclosing expression. If both the attempt and the obligation
fail, the sequence is not matched.

Regular Linear Temporal Logic 293

3. delay: an expression that describes when the enclosing expression must be
started again.

For example, the binary Kleene-star z∗y matches a string s if either y (the
attempt) matches s, or if after z (the delay), the whole expression z∗y matches
the remaining suffix. In this case, no obligation is specified, so it is implicitly
assumed to hold. Formally, the following equivalence holds z∗y = y + z ; z∗y, or
more explicitly

z∗y = y + (Γ ∗ | z ; z∗y),
where x | y denotes the intersection operator present in (semi-)extended regular
expressions [22]. Consider also the linear temporal logic expression x U y. An
ω-sequence satisfies this expression if either y does (the attempt) or else, if x
does (the obligation) and in the next step (the delay), the whole formula x U y
holds. Formally,

x U y = y ∨ (x ∧ (x U y)).
In Section 2 we will formalize this intuition by introducing a general operator
that can be specialized for temporal logic and regular-expression constructs.

The rest of this document is structured as follows. Section 2 defines regu-
lar linear-temporal logic. Section 3 shows how to translate LTL and ω-regular
expressions into RLTL. Section 4 shows, via a translation to alternating Büchi
automata, that the logic defines only ω-regular languages, and that the satis-
fiability and equivalence problems are in PSPACE. Finally, Section 5 presents
some concluding remarks.

2 Regular Linear Temporal Logic

We define in this section regular linear temporal logic, in two stages. First, we
introduce a variation of regular expressions over finite words, and then—using
these—we define regular linear temporal logic to describe languages over infinite
words. Each formalism is defined as an algebraic signature, by giving meanings
to the operators. We use Σre for the operators in the language of regular expres-
sions, Σtl for the signature of the language for infinite words, and Σ as a short
hand for Σre ∪Σtl.

We begin by fixing a finite set of propositions Prop, and from it the alphabet
Γ = 2Prop of input actions (observable properties of individual states). As usual,
Γ ∗ denotes the finite sequences of words over Γ , Γω stands for the set of infinite
words, and Γ∞ is Γ ∗ ∪ Γω. Given a word w, we use pos(w) to denote the set of
positions of w: if w ∈ Γω then pos(w) is {1, . . .} = ω; if w ∈ Γ ∗ then pos(w) =
{1, . . . , |w|}, where |w| denotes the length of w as usual. We use w[i] to denote
the letter from Γ at position i of w. We use Pos to denote the set of positions
of words in Γω, i.e., Pos is an alias of ω.

2.1 Regular Expressions

We first introduce a variation of regular expressions that can define regular
languages that do not contain the empty word. Basic expressions are boolean

294 M. Leucker and C. Sánchez

combinations of elements from B(Prop) that identify the elements of Γ , including
true for Prop and false for ∅.

Syntax. The language of the regular expressions for finite words is the smallest
set closed under:

α ::= α+ α
∣∣ α ; α

∣∣ α∗α ∣∣ p (1)

where p ranges over basic expressions. The operators +, ; and ∗ define the stan-
dard union, concatenation and binary Kleene-star1. The signature of regular
expressions is then

Σre = {B(Prop)0, +2, ;2, ∗2}

where the superindices indicate the arity of the operators. The set of regular
expressions RE is the set of all ground expressions over this signature. Note that
this signature contains no variables or fix-point quantifiers.

Semantics. To ease the definition of RLTL for infinite languages, we define
regular expressions as accepting segments of an infinite word. Given an infinite
word w and two positions i and j, the tuple (w, i, j) is called a segment of
the word w. Similarly, (w, i) is called a pointed word. The semantics of regular
expressions is described by defining a relation �re that relates expressions with
their sets of segments, that is �re ⊆ (Γω × Pos × Pos) × RE. The semantics is
defined inductively as follows. Given a proposition p ∈ Prop, expressions x, y,
and z, and a word w,

− (w, i, j) �re p whenever w[i] satisfies p and j = i+ 1.
− (w, i, j) �re x+ y whenever either (w, i, j) �re x or (w, i, j) �re y,

or both.
− (w, i, j) �re x ; y whenever for some k ∈ pos(w),

(w, i, k) �re x and (w, k, j) �re y.
− (w, i, j) �re x

∗y whenever either (w, i, j) �re y, or for some
sequence (i0 = i, i1, . . . im) (w, ik, ik+1) �re x
and (w, im, j) �re y.

The semantical style used above, more conventional for temporal logics, is
equivalent to the more classical of associating a language over finite words to a
given expression: for v ∈ Γ ∗, v ∈ L(x) whenever for some w ∈ Γω, (vw, 1, |v|) �re

x. In this manner the definition of ∗ is equivalent to the conventional definition,
that is, both describe the same language:

L(x∗y) = L(
∑
i≥0

xi ; y)

where xi ; y is defined inductively as x0; y = y and xi+1 = x ; xi, as usual. Since
p satisfies that if (w, i, j) �re p then j > i, it follows the empty word is not in

1 Stephen C. Kleene himself in [11] introduced the ∗ operator as a binary operator.
Our choice of a binary ∗ is determined by our key decision of defining languages that
do not contain the empty word. An alternative is to introduce a unary x+ operator.

Regular Linear Temporal Logic 295

L(p), and also that L(x + y) and L(x ; y) cannot contain the empty word. It
also follows that x∗y cannot contain the empty word: if v is in L(z∗y) then v is
in L(zky) for some k.

Moreover, every regular language over finite words (that does not contain the
empty word) can be defined, since x+ is equivalent to x∗x.

2.2 Regular Linear Temporal Logic over Infinite Words

RLTL is built from regular expressions by using intersection, concatenation of
a finite and an infinite expression, and two ternary operators, called the power
operators. As we will see, the power operators generalize both the LTL constructs
and the ω-operator.

Syntax. The set of RLTL expressions is the smallest set closed under:

φ ::= φ ∨ φ
∣∣ φ ∧ φ ∣∣ α ; φ

∣∣ αφφ
∣∣ αφφ

∣∣ α̂ (2)

where α ranges over regular expressions RE. The symbols ∨ and ∧ stand for the
conventional union and intersection of languages (i.e., conjunction and disjunc-
tion in logics and + and | in semi-extended ω-regular expressions). The symbol ;
stands for the conventional concatenation of an expression over finite words and
an expression over infinite words.

The operators αφφ, called the power operator, and its dual αφφ allow simple
recursive definitions, including the Kleene-star (xω for infinite words) and the
various operators in linear temporal logic. Finally, α̂ denotes the suffix closure
(arbitrary extension of a set of finite words to infinite words). The signature of
RLTL is then:

Σtl = {∨2, ∧2, ;2, (···)3 , (···)3, ·̂1}
where the superindices again indicate the arity of the operators. Even though the
symbol ; is overloaded we consider the signatures to be disjoined. The operators
∨ and ∧ require two expressions in the language of Σtl, while (···), (···) and ·̂
require the first argument to be an expression in the language of Σre and the
rest in Σtl. The set of regular linear temporal logic expressions RLTL is the
set of all ground expressions over this signature. Note again that this signature
contains no variable or fix-point quantifier.

Semantics. The semantics of an RLTL expression is defined as a binary relation
� between pointed words and expressions, that is � ⊆ (Γω×Pos)×RLTL. This
relation is defined inductively as follows. Given RLTL expressions x and y and
regular expression z:

− (w, i) � x ∨ y whenever either (w, i) � x or (w, i) � y, or both.
− (w, i) � x ∧ y whenever both (w, i) � x and (w, i) � y.
− (w, i) � z ; y whenever for some k ∈ pos(w),

(w, i, k) �re z and (w, k) � y.
− (w, i) � zxy whenever (w, i) � y or for some sequence

(i0 = i, i1, . . . im) (w, ik, ik+1) �re z and (w, ik) � x,
and (w, im) � y.

296 M. Leucker and C. Sánchez

− (w, i) � zxy whenever one of:
(i) (w, i) � y and (w, i) � x
(ii) for some sequence (i0 = i, i1, . . . im)

(w, ik, ik+1) �re z and (w, ik) � y and (w, im) � x
(iii) for some infinite sequence (i0 = i, i1, . . .)

(w, ik, ik+1) �re z and (w, ik) � y
− (w, i) � ẑ whenever for some k ∈ pos(w), (w, i, k) �re z.

The semantics of zxy establish that either the obligation y is satisfied at the
point i of evaluation, or there is a sequence of delays—as determined by z—
after which y holds, and x holds after each individual delay. The semantics of
zxy establish that y must hold initially and after each delay—as determined by
z— and that x determines when the repetition of the delay can stop (if it stops
at all).

As with regular expressions, languages can also be associated with RLTL
expressions in the standard form: a word w ∈ Γω is in the language of an
expression x, denoted by w ∈ L(x), whenever (w, 1) � x. The following lemmas
hold immediately from the definitions:

Lemma 1. For every RLTL expressions x and y and RE expression z:

– The expression zxy is equivalent to y ∨ (x ∧ z ; zxy).
– The expression zxy is equivalent to y ∧ (x ∨ z ; zxy).

Lemma 2. If Lx is the language of x, Ly is the language of y and Lz the
language of z, then

– The language of zxy is the least fix-point solution of the equation:

X = Ly ∪ (Lx ∩ Lz;X)

– The language of zxy is the greatest fix-point solution of the equation:

X = Ly ∩ (Lx ∪ Lz;X)

where ; is the standard language concatenation.

Thus, although the semantics of the power operators is not defined using fix
point equations, it can be characterized by such equations, similar as the until
operator in LTL.

We finish this section by justifying the need of the operator α̂ in RLTL. It is
clear, directly from the semantics, that the operators ∧, ∨ and ; will not define
infinite languages (or equivalently pointed models) unless their arguments do. By
Lemma 1, the same holds for the power and dual power operators. The expression
x̂ serves as a pump of the finite models (segments) of x to any continuation. An
alternative would have been to include a universal expression (in the next
section) from which x̂ = x ; . Similarly, = t̂rue, so both alternatives are
equivalent.

In the sequel, the size of an RLTL formula is defined as the total number of
its symbols.

Regular Linear Temporal Logic 297

3 Translating LTL and Regular Expressions into RLTL

We will use and ⊥ as syntactic sugar for t̂rue and f̂alse (resp). In particular,
observe that (w, i) � and (w, i) � ⊥ for every pointed word (w, i). We first
introduce some equivalences of RLTL, very simple to prove, that will assist in
our definitions:

x ∨ y = y ∨ x x ∧ y = y ∧ x
 ∨ x = ∧ x = x
⊥ ∨ x = x ⊥ ∧ x = ⊥

3.1 Translating ω-Regular Expressions

First, we show how to translate ω-regular expressions into regular linear temporal
logic. An ω-regular expression is of the form:∑

i

xi ; (yi)ω

for a finite family of regular expressions xi and yi. Note that when a more con-
ventional definition of regular expressions is used (one that allows the definition
of languages containing the empty word), one must explicitly require that yi
does not posses the empty word property, which is not needed in our definition.
Also, the case of xi possessing the empty word property (in the classical defini-
tion), can be handled easily since for every yi the following equivalence holds:
yω

i = yi ; (yω
i). Then every expression of the form xi ; (yi)ω can be translated into

(xi ; yi) ; (yω
i), for which the finite prefix does not accept the empty word and it

is in the variation of regular expressions introduced here.

Lemma 3. Given a regular expression z, the regular linear temporal logic ex-
pression z⊥ is equivalent to zω.

Proof. As no pointed word (w, i) satisfies ⊥, the only relevant case in the se-
mantics of the dual power operator for z⊥ is that there is an infinite sequence
of points (i1, i2, . . .) for which (w, ik, ik+1) � z. Therefore w ∈ L(zω). �"

It follows that the ω-regular expression
∑

i xi ; (yi)ω is equivalent to the RLTL
expression

∨
i xi ; (yi⊥). This immediately implies:

Corollary 1. The following are true for regular linear temporal logic:
– RLTL can express every ω-regular language.
– The set of operators {∨, ;, dual power} is complete.

Observe that no alternation of the power operators is needed to obtain expressive
completeness (or in terms of Lemma 2 no alternation of fix points is necessary).
This result is analogous to the linear μ-calculus [14], where the alternation hier-
archy collapses at level 0 (in terms of expressiveness).

298 M. Leucker and C. Sánchez

3.2 Translating LTL

We consider the following definition of LTL:

ψ ::= p
∣∣ ψ ∨ ψ ∣∣ ψ ∧ ψ ∣∣ ψ ∣∣ ψ ∣∣ ψ ∣∣ ψ U ψ ∣∣ ψ R ψ

which allows to express every linear temporal logic property in negation normal
form. Note that ψ and ψ are just added for convenience.

The semantics of LTL expressions are defined, similarly to RLTL, by defining
a binary relation �LTL between pointed words and LTL expressions: �LTL ⊆
(Γω × Pos) × LTL. The semantics is defined inductively. The basic expressions
and boolean operators are mapped as conventionally. Let x and y be arbitrary
LTL expressions. The semantics of the temporal operators is:

− (w, i) �LTL x whenever (w, j) �LTL x for some j ≥ i.
− (w, i) �LTL x whenever (w, j) �LTL x for all j ≥ i.
− (w, i) �LTL x whenever (w, i+ 1) �LTL x.
− (w, i) �LTL x U y whenever (w, j) �LTL y for some j ≥ i, and

(w, k) �LTL x for all i ≤ k < j.
− (w, i) �LTL xR y whenever (w, j) �LTL y for all j ≥ i, or

for some j, (w, j) �LTL x and for all k
within i ≤ k < j, (w, j) �LTL y.

Consider the following procedure, that translates an LTL expression ψ into
an RLTL expression τ(ψ):

– τ(p) = p̂, τ(x ∧ y) = τ(x) ∧ τ(y), τ(x ∨ y) = τ(x) ∨ τ(y),
– τ(x) = true ; τ(x),
– τ(x) = true⊥τ(x),
– τ(x) = true τ(x),
– τ(x U y) = trueτ(x)τ(y),
– τ(xR y) = trueτ(x)τ(y).

Theorem 1. Every LTL expression defines the same language as its RLTL
translation.

Proof. The proof proceeds by structural induction. For the basic expression, the
boolean operators and the result holds directly from the definitions. We show
here the equivalence for U (the rest follow similarly). It is well known that xU y
is the least fix point solution of the equation X ≡ y ∨ (x ∧ (x U y)), which is
by Lemma 2 the semantics of trueτ(x)τ(y). �"

Our translation maps every LTL operator into an equivalent RLTL context (with
the same number of holes). Consequently, this translation only involves a linear
blow-up in the size of the original formula. Since checking satisfiability of linear
temporal logic is PSPACE-hard [21] this translation immediately gives a lower
bound on the complexity of RLTL.

Proposition 1. The problems of satisfiability and equivalence for regular linear
temporal logic are PSPACE-hard.

Regular Linear Temporal Logic 299

4 Translating RLTL into Alternating Automata

We now show that every RLTL formula can be translated with a linear blow-up
into an alternating automaton accepting precisely its models.

4.1 Preliminaries

Let us, however, first recall the definitions of (nondeterministic) automata op-
erating on finite words and alternating Büchi automata operating on infinite
words.

A nondeterministic finite automaton (NFA) is a tuple A : 〈Γ,Q, q0, ∂, F 〉
where Γ is the alphabet, Q a finite set of states, q0 ∈ Q the initial state, ∂ :
Q × Γ → 2Q the transition function, and F ⊆ Q is the set of final states. An
NFA operates on finite words: A run of A on a word w = a1 . . . an ∈ Γ ∗ is a
sequence of states and actions ρ = q0a1q1 . . . qn, where q0 is the initial state of
A and for all i ∈ {1, . . . n}, we have qi+1 ∈ ∂(qi, ai). The run is called accepting
if qn ∈ F . The language of A, denoted by L(A), is the set of words w ∈ Γ ∗ for
which an accepting run exists.

For a finite set X of variables, let B+(X) be the set of positive Boolean formulas
over X , i.e., the smallest set such that X ⊆ B+(X), true, false ∈ B+(X), and
φ, ψ ∈ B+(X) implies φ ∧ ψ ∈ B+(X) and φ ∨ ψ ∈ B+(X). We say that a
set Y ⊆ X satisfies (or is a model of) a formula φ ∈ B+(X) iff φ evaluates to
true when the variables in Y are assigned to true and the members of X\Y
are assigned to false. A model is called minimal if none of its proper subsets
is a model. For example, {q1, q3} as well as {q2, q3} are minimal models of the
formula (q1 ∨ q2) ∧ q3.

An alternating Büchi automaton (ABA) is a tuple A : 〈Γ,Q, q0, ∂, F 〉 where Γ ,
Q, and F are as for NFAs. The transition function ∂, however, yields a positive
boolean combination of successor states: ∂ : Q × Γ → B+(Q). Furthermore, an
ABA operates on infinite words: A run over an infinite word w = a0a1 . . . ∈ Γω

is a Q-labeled directed acyclic graph (V,E) such that there exist labellings l :
V → Q and h : V → N which satisfy the following properties:
– there is a single v0 ∈ V with h(v0) = 0. Moreover, l(v0) = q0.
– for every (v, v′) ∈ E, h(v′) = h(v) + 1.
– for every v′ ∈ V with h(v′) ≥ 1, {v ∈ V | (v, v′) ∈ E} �= ∅,
– for every v, v′ ∈ V , v �= v′, l(v) = l(v′) implies h(v) �= h(v′), and
– for every v ∈ V , {l(v′) | (v, v′) ∈ E} is a minimal model of ∂(l(v), ah(v)).
A run (V,E) is accepting if every maximal finite path ends in a node v ∈ V

with ∂(l(v), ah(v)) = true and every maximal infinite path, wrt. the labeling l,
visits at least one final state infinitely often. The language L(A) of an automa-
ton A is determined by all strings for which an accepting run of A exists. We
also consider alternating co-Büchi automaton (AcBA), defined exactly as ABA,
except that the accepting condition establishes that all final states are visited
only finitely many times in accepting paths.

We measure the size of an NFA, ABA and AcBA in terms of its number of
states.

300 M. Leucker and C. Sánchez

An ABA is weak (WABA), if there exists a partition of Q into disjoints sets
Qi, such that for each set Qi either Qi ⊆ F or Qi∩F = ∅, and, there is a partial
order ≤ on the collection of the Qi’s such that for every q ∈ Qi and q′ ∈ Qj for
which q′ occurs in δ(q, a), for some a ∈ Γ , we have Qj ≤ Qi.

It was shown in [13] that every AcBA can be translated into a WABA with a
quadratic blow-up. Furthermore, it was shown in [17] that for an ABA accepting
L, we get an AcBA accepting the complement of L, when dualizing the transition
function (switching ∧ with ∨ and true with false) and turning the acceptance
condition into a co-Büchi acceptance condition. This gives

Proposition 2. For every ABA A with n states, there is an ABA Ā with at
most n2 states accepting the complement of A’s language.

4.2 Translation

We are now ready to formulate the main theorem of this section:

Theorem 2. For every φ ∈ RLTL, there is an ABA Aφ accepting precisely the
ω-words satisfying φ. Moreover, the size of Aφ is linear in the size of φ.

Corollary 2. Checking satisfiability of an RLTL formula is PSPACE-complete.

Proof. By Proposition 1, satisfiability of an RLTL formula is PSPACE-hard.
Given φ ∈ RLTL, we can construct Aφ according to Theorem 2, and check Aφ

for emptiness, which can be done in PSPACE [24].

As usual, we call two formulas of RLTL equivalent iff their sets of models coin-
cide.

Lemma 4. Checking equivalence of two RLTL formulas is PSPACE-complete.

Proof. By Proposition 1, equivalence of two RLTL formulas φ and ψ is PSPACE-
hard.

The formulas φ and ψ are equivalent iff both (¬φ ∧ ψ) and (φ ∧ ¬ψ) are un-
satisfiable. Even though complementation is not present in RLTL, we can use au-
tomata constructions to perform these two tests. The construction of Theorem 2
gives ABA Aφ and Aψ polynomial in the size of the formula. By Proposition 2,
we can complement an ABA with an at most quadratic blow-up. ABAs in turn
can be combined with ∧. The check for emptiness of the resulting alternating
automata can be done in PSPACE [24]. �"

In the remainder of this section, we present the construction ofAφ for φ ∈ RLTL,
hereby proving Theorem 2. The procedure works bottom-up the parse tree of φ.
Recall that every regular expression α can be translated into an equivalent NFA
[9].

Now, consider alternating Büchi automata for x and y,Ax : 〈Γ,Qx, qxo , ∂
x, F x〉

and Ay : 〈Γ,Qy, qyo , ∂
y, F y〉, and a non-deterministic automaton (over finite

words) for z: Az : 〈Γ,Qz , qzo , ∂
z, F z〉. Without loss of generality, we assume

that their state spaces are disjoint. We consider the different operators of RLTL:

Regular Linear Temporal Logic 301

Disjunction. The automaton for x ∨ y is:

Ax∨y : 〈Γ,Qx ∪Qy, q0, ∂, F
x ∪ F y〉

where q0 is a fresh new state. The transition function is defined as

∂(q, a) =

{
∂x(q, a) if q ∈ Qx

∂y(q, a) if q ∈ Qy

∂(q0, a) = ∂x(qx0 , a) ∨ ∂y(qy0 , a).

Thus, from the fresh initial state q0, Ax∨y chooses non-deterministically one of
the successor states of Ax’s or Ay’s initial state. Clearly, the accepted language
is the union.

Conjunction. The automaton for x ∧ y is:

Ax∧y : 〈Γ,Qx ∪Qy, q0, ∂, F
x ∪ F y〉

where q0 is again a fresh new state. The transition function is defined as before
except

∂(q0, a) = ∂x(qx0 , a) ∧ ∂y(qy0 , a).

Hence, from the fresh initial state q0, Ax∧y follows both Ax’s and Ay’s initial
state. Clearly, the accepted language is the intersection.

Suffix extensions. The automaton for ẑ is:

A
bz : 〈Γ,Qz ∪ {qtt}, qz0 , ∂, {qtt}〉

where qtt is a fresh new state and ∂ is defined, for q ∈ Qz as:

∂(q, a) =

{∨
{∂z(q, a)} if q /∈ F z∨
{∂z(q, a)} ∨ {qtt} if q ∈ F z

and ∂(qtt, a) = qtt. Thus, from a final state, which signals that the prefix of the
infinite word read so far matches the regular expression, the automaton may
non-deterministically choose to accept the remainder of the word.

Concatenation. The automaton for z ; x is:

Az;x : 〈Γ,Qz ∪Qx, qz0 , ∂, F
x〉

where ∂ is defined, for q ∈ Qz as:

∂(q, a) =

{∨
{∂z(q, a)} if ∂z(q, a) ∩ F z = ∅∨
{∂z(q, a)} ∨ qx0 if ∂z(q, a) ∩ F z �= ∅

and, for q ∈ Qx as ∂(q, a) = ∂x(q, a). Recall that Az is a nondeterministic
automaton. Whenever Az can non-deterministically choose a successor that is a
final state, it can also switch to Ax. Thus, the accepted language is indeed the
concatenation.

302 M. Leucker and C. Sánchez

qx

0

q
y

0

qz

0

q0

f

a

aa

a

b

b

Ax

Ay

Az

Fig. 1. Construction for the power operator

Power. The automaton for zxy is:

Azxy : 〈Γ,Qz ∪Qx ∪Qy ∪ {q0}, q0, ∂, F x ∪ F y〉

where ∂ is defined as follows. The successor for a of the initial state is:

∂(q0, a) = ∂y(qy0 , a) ∨ (∂x(qx0 , a) ∧
∨
{∂z(qz0 , a)})

The successor of Qx and Qy are defined as in Ax and Ay, i.e., ∂x(q, a) for q ∈ Qx,
∂y(q, a) for q ∈ Qy. For q ∈ Qz

∂(q, a) =

{∨
{∂z(q, a)} if ∂z(q, a) ∩ F z = ∅∨
{∂z(q, a)} ∨ q0 if ∂z(q, a) ∩ F z �= ∅

The construction, depicted in Fig. 1, follows precisely the equivalence zxy ≡
y ∨ (x ∧ z; zxy) established in Lemma 1 and the construction for disjunction,
conjunction, and concatenation.

Dual power. The automaton for zxy is:

Azxy : 〈Γ,Qz ∪Qx ∪Qy ∪ {q0}, q0, ∂, F x ∪ F y ∪ {q0}〉

where ∂ is defined exactly as before except for the successor for a of the initial
state:

∂(q0, a) = ∂y(qy0 , a) ∧ (∂x(qx0 , a) ∨
∨
{∂z(qz0 , a)})

Note, however, the state q0 is now accepting, since the evaluation is allowed to
loop in z for ever, restarting a copy of y at each repetition of z.

Regular Linear Temporal Logic 303

Complexity. Recall that a regular expression can linearly be translated into a
corresponding NFA [9,10]. Examining the construction given above, we see that
each operator adds at most one extra state. Thus, the overall number of states
of the resulting automaton is linear with respect to the size of the formula.

The above construction for the concatenation operator relies heavily on the
fact that the automatonAz for a regular expression is nondeterministic. If RLTL
were based on extended regular expressions, which offer boolean combinations
of regular expressions (including negation), there would be no hope to get a
PSPACE satisfiability procedure, as checking emptiness for extended regular
expressions is already of non-elementary complexity [22]. On the same line, semi-
extended regular expressions (that add conjunction to regular expressions) and
input-synchronizing automata as introduced by Yamamoto [27] do neither give
a PSPACE algorithm.

5 Conclusion and Discussion

In this paper, we introduced RLTL, a temporal logic that allows to express all ω-
regular properties. It allows a smooth combination of LTL-formulas and regular
expressions. Besides positive boolean combinations, only two power operators
are introduced, which generalize LTL’s until as well as the ∗/ω-operator found
in ω-regular expressions. In contrast to LTL, RLTL allows to define arbitrary
ω-regular properties, while keeping LTL’s complexity of satisfiability (PSPACE).
In contrast to νTL, RLTL refrains the user to deal with fix point formulas.

Technically, RLTL can be considered as a sublogic of linear fix point logic
with chop (LFLC). As satisfiability for LFLC is undecidable, RLTL spots an
interesting subset of LFLC. Moreover, practically, the techniques developed for
LFLC [18,15] should be usable for RLTL as well.

The careful reader has probably observed that complementation has not been
included in RLTL, even though doing so does not immediately turn the decision
problems non-elementary (regular-expressions would be built completely before
complementation is applied). The reason is that complementation for ABA (us-
ing the translation from AcBA to WABA to obtain an ABA) involves a quadratic
blow-up, and the resulting ABA for a given formula obtained at the end of the
inductive construction will no-longer have a polynomial size in all cases.

A different accepting condition can be used, for example a parity condition,
giving a linear size parity automaton at the end of the translation (using possibly
a linear number of colors). One way to attack the emptiness problem of parity
automata is then to translate the automaton into a weak alternating parity
automaton, whose emptiness problem is well known to be in PSPACE. However,
the best procedure known generates a weak automaton of size O(nk), for n states
and k ranks). The use of weak parity automata directly in the construction is
precluded by the dual power operator zxy, since one seems to be forced to express
that the initial state q0 must be visited infinitely often.

Recent developments [23] seem to indicate that the emptiness problem for
alternating parity automata is in PSPACE, by a direct algorithm. This result

304 M. Leucker and C. Sánchez

would allow the introduction of negation in RLTL freely with no penalty in the
complexity class of the algorithms.

Nevertheless, as the resulting alternating Büchi automaton for a given RLTL
formula can be complemented with an at most quadratic blow-up, we can eas-
ily get an exponentially bigger nondeterministic Büchi automaton accepting the
formula’s refutations, so that automata-based model checking of RLTL specifi-
cations can be carried out as usual (for LTL).

Clearly, since ETL, νTL, DLTL, and RLTL are all expressively complete wrt.
ω-regular languages, for every ground formula in one logic defining some ω-
regular language, there is an equivalent ground formula in any of the other
logics defining the same language. From that perspective, all logics are equally
expressive. However, ETL, and νTL offer, for example, no translation of the
sequencing operator ; respecting a given context and DLTL does not allow to
formulate a corresponding ω-operator. Thus, RLTL’s unique feature is that every
LTL operator and the operators in regular expressions can be translated into an
equivalent RLTL context (with the same number of holes). This allows a linear,
inductive translation of LTL properties or regular expressions.

The closest approach to RLTL is DLTL, though it is motivated in the context
of dynamic logic. Similarly as RLTL, DLTL implicitly follows similar concepts
as attempt, obligation, and delay by enriching the until operator. However, the
obligation must be met in every “intermediate” position between the current
and the one where the attempt holds. In RLTL, however, a sequence of delays
has to be considered and the obligation has to hold only when the delay begins.
The choice taken in RLTL has a huge advantage: It is straightforward to extend
RLTL with past operators, by changing the direction of delay expressions. Ex-
tending DLTL to handle past seems to be much more cumbersome. However,
this addition is left for future work.

References

1. IEEE P1850 - Standard for PSL - Property Specification Language (September 2005)
2. Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its

temporal logic. In: POPL’86. Procs. of the 13th Annual ACM Symp. on Principles
of Programming Languages, pp. 173–183. ACM Press, New York (1986)

3. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The
temporal logic Sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 363–367. Springer, Heidelberg (2001)

4. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
of the Int’l Congress on Logic Methodology and Philosophy of Science, pp. 1–12.
Stanford University Press (1962)

5. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel pro-
grams using fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) Automata, Lan-
guages and Programming. LNCS, vol. 85, pp. 169–181. Springer, Heidelberg (1980)

6. Fisman, D., Eisner, C., Havlicek, J.: Formal syntax and Semantics of PSL: Appendix
B of Accellera Property Language Reference Manual, Version 1.1 (March 2004)

7. Harel, D., Peleg, D.: Process logic with regular formulas. Theoretical Computer
Science 38, 307–322 (1985)

Regular Linear Temporal Logic 305

8. Henriksen, J.G., Thiagarajan, P.S.: Dynamic linear time temporal logic. Annals of
Pure and Applied Logic 96(1–3), 187–207 (1999)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages and com-
putation. Addison-Wesley, Reading (1979)

10. Hromkovic, J., Seibert, S., Wilke, T.: Translating regular expressions into small ε-
free nondeterministic finite automata. In: Reischuk, R., Morvan, M. (eds.) STACS
97. LNCS, vol. 1200, pp. 55–66. Springer, Heidelberg (1997)

11. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, vol. 34, pp. 3–41. Princeton
University Press, Princeton, New Jersey (1956)

12. Kozen, D.: Results on the propositional μ-calculus. In: Nielsen, M., Schmidt, E.M.
(eds.) Automata, Languages, and Programming. LNCS, vol. 140, pp. 348–359.
Springer, Heidelberg (1982)

13. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. In:
ISTCS’97. Proc. of the Fifth Israel Symposium on Theory of Computing and Sys-
tems, pp. 147–158. IEEE Computer Society Press, Los Alamitos (1997)

14. Lange, M.: Weak automata for the linear time μ-calculus. In: Cousot, R. (ed.)
VMCAI 2005. LNCS, vol. 3385, pp. 267–281. Springer, Heidelberg (2005)

15. Lange, M., Stirling, C.: Model checking fixed point logic with chop. In: Nielsen, M.,
Engberg, U. (eds.) ETAPS 2002 and FOSSACS 2002. LNCS, vol. 2303, Springer,
Heidelberg (2002)

16. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer, Hei-
delberg (1995)

17. Muller, D.E., Schupp, P.E.: Altenating automata on infinite trees. Theoretical
Computer Science 54, 267–276 (1987)

18. Müller-Olm, M.: A modal fixpoint logic with chop. In: Meinel, C., Tison, S. (eds.)
STACS 99. LNCS, vol. 1563, pp. 510–520. Springer, Heidelberg (1999)

19. Pnueli, A.: The temporal logic of programs. In: FOCS’77. Proc. of the 18th IEEE
Symposium on Foundations of Computer Science, pp. 46–67. IEEE Computer So-
ciety Press, Los Alamitos (1977)

20. Pnueli, A.: Applications of temporal logic to the specification and verification of
reactive systems – a survey of current trends. In: Rozenberg, G., de Bakker, J.W.,
de Roever, W.-P. (eds.) Current Trends in Concurrency. LNCS, vol. 224, pp. 510–
584. Springer, Heidelberg (1986)

21. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear termporal logics.
Journal of the ACM 32(3), 733–749 (1985)

22. Stockmeyer, L.J.: The Complexity of Decision Problems in Automata Theory
and Logic. PhD thesis, Department of Electrical Engineering, MIT, Boston, Mas-
sachusetts (1974)

23. Vardi, M.Y.: Personal communication
24. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,

F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

25. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115, 1–37 (1994)

26. Wolper, P.: Temporal logic can be more expressive. Information and Control 56,
72–99 (1983)

27. Yamamoto, H.: On the power of input-synchronized alternating finite automata. In:
Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON
2000. LNCS, vol. 1858, p. 457. Springer, Heidelberg (2000)

Algebraic Semantics for Compensable

Transactions�

Jing Li, Huibiao Zhu, and Jifeng He

Software Engineering Institute, East China Normal University
Shanghai, China, 200062

{jli, hbzhu, jifeng}@ sei.ecnu.edu.cn

Abstract. This paper presents the algebraic semantics of a novel trans-
actional language t-calculus. This language focuses on modeling long
running transactions in terms of compensable transactions, showing how
the compensations can be orchestrated to ensure atomicity. The typical
operators of sequential and parallel compositions are redefined so that
the corresponding compensations will be activated in a suitable order
whenever some failure occurs in later stage. In addition, we investigate
more transactional operators, such as speculative choice, exception han-
dling, alternative forwarding and programmable compensation. The wise
use of these constructs is rather helpful to set up a flexible and effective
business process. We present a clear algebraic semantics for t-calculus and
derive its operational semantics mechanically based on a given derivation
strategy. This work provides a foundation for optimization and imple-
mentation of this language.

1 Introduction

Business transactions need to deal with failures that arise at any stage of exe-
cution and this is both difficult and critical. Since business transactions usually
require long periods of time to complete, it is infeasible and unreasonable to
block resources so long. Additionally, in the context of web services, the activi-
ties involved in a transaction possibly belong to different organizations, so there
is no control to lock resources of the other parties. Particularly, the business
transaction usually involves communications with external agents. In this case,
the external agent should also take some actions while aborting a transaction,
which makes the pure roll-back technique no longer adequate. For instance, the
cancelation of a flight ticket should be accompanied by an extra payment. In
order to recover from failure, a weaker notion of atomicity based on the concept
of compensation was introduced [1] so as to make an overall long-lived trans-
action still execute as a unit. A compensation is some ad-hoc activity declared
by application developers so as to remove partial effects in a semantic manner.
If a long-running transaction fails in the middle, appropriate compensations are
activated to compensate for completed parts of this transaction.
� Supported by National Basic Research Program of China (No. 2005CB321904) and

Shanghai STCSM Project (No. 06JC14058).

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 306–321, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Algebraic Semantics for Compensable Transactions 307

A transaction equipped with a compensation is referred as a compensable
transaction, whose effect can be semantically removed by its compensating ac-
tions. The transactional language t-calculus was introduced by Li et al [2] to
model business flow in terms of compensable transactions. t-calculus provides a
framework to combine smaller compensable transactions into a larger one, thus
gradually setting up a long running business transaction which has compensa-
tion as its main error recovery technique. The typical operators of sequential
and parallel compositions are redefined so that compensations will be activated
in a suitable order whenever some failure occurs later. In addition, more trans-
actional operators, such as speculative choice, exception handling, alternative
forwarding and programmable compensation, are studied to orchestrate com-
pensations in a different way. The plentiful operators facilitate the developers to
design a distributive system with high responsiveness to environment and strong
capability for dealing with failures.

Algebraic semantics is useful for studying program properties which are ele-
gantly expressed as equational laws. These laws are well suited to support pro-
gram transformation and optimization. In this paper, we explore the algebraic
semantics for t-calculus based on normal forms, where each compensable trans-
action can be re-written as a kind of head normal form. This approach provides
a computable method for justifying kinds of properties for compensable trans-
actions. In addition, we consider the derivation of operational semantics from
algebraic semantics for t-calculus by proposing a related derivation strategy.
This work builds a certain kind of linking theory between two different semantic
models, which are strongly advocated by Unifying Theories of Programming [3].

2 Transactional Calculus

The transactional language t-calculus is intended to describe the behavior of
top-level transactions but not low-level computations. Transactions are modeled
in terms of atomic activities they can engage in and a number of operators are
introduced to support compensable transactions. An atomic activity is such an
activity where no errors can take place in the middle of execution, the atomic-
ity of which is guaranteed by the underlying system. We use an infinite set Σ
of names to represent atomic activities ranged over by A, B, Moreover, we
consider two other special activities: the empty activity 0 always completes but
has no effect; the error activity ♦ always leads to a failure. The syntax of this
transactional calculus is summarized as follows.

BT ::= A ÷ B | A ÷ 0 | A ÷ ♦ | Skip | Abort | Fail
S, T ::= BT | S; T | S ‖T | S � T | S � T | S ⊗ T |

S � T | S � T | S�T | S � T
P ::= {T}

Basically, a compensable transaction consists of two parts: a forward flow and
a compensating flow. In case of failure, compensation will be activated to com-
pensate its forward flow. The basic way to construct a compensable transaction

308 J. Li, H. Zhu, and J. He

is through a transactional pair A÷ B, where A is the forward flow and B is its
compensation. The compensation B is responsible for undoing the effect of A
and should be installed on the successful completion of A for possibly later use.
Especially, A ÷ 0 denotes that the forward flow A is associated with an empty
compensation. In other words, the effect made by A does not need to be removed
when error occurs. Besides, not every activity can be semantically undone, so
sometimes the application designer cannot find a suitable compensation. In this
case, we use A ÷ ♦ to denote that the forward flow A is associated with an
unacceptable compensation which always encounters a failure.

Moreover, there are three variations for basic transactions. Skip stands for a
successfully completed transaction without anything really done. Abort means a
certain error has taken place and all installed compensations should be activated
to recover from this failure. Fail indicates an error too. However, it has no chance
to enable compensations and causes an exception instead.

The sequential and parallel operators are redefined for composing compens-
able transactions. For sequential composition, the compensations are installed
in a reverse order as opposed to their forward flow. As for parallel composition,
both forward flow and compensating flow are arranged in parallel. It is worth
noting that, in parallel composition, if one branch fails, the whole transaction is
regarded as fail too. Thus, the other branch does not need to continue but ter-
minates early by stoping executing the non-performed activities and enabling its
compensation immediately. This mechanism is called forced termination which
is used to avoid unnecessary executions. For example,

(A1 ÷ B1; A2 ÷ B2)‖Abort

the right branch can only fail, this failure may occur before A1 starts, after A1

completes or even when A2 finishes. The left part cannot predict the time when
its sibling encounters a failure, so it must support forced termination in any
stage of execution. Suppose a failure takes place after A1 completes, then the
latter transaction is not performed at all and the installed compensation B1 is
run to compensate for the effect of A1.

Apart from external choice S � T and internal choice S � T , we study another
useful construct of choice S⊗T called speculative choice. For speculative choice,
two branches are arranged to run in parallel. The choice is delayed when one
branch has succeeded. That is, the successfully completed one is chosen while
another one should be compensated. This operator provides a way for developers
to design two or more threads to finish one task. If one thread is failed, the others
are still active trying to achieve the same target. This construct is quite useful
to improve the responsiveness to the environment. Especially, if one branch has
completed successfully, the other one is forced to terminate. For instance,

(A1 ÷ B1; A2 ÷ B2) ⊗ (A3 ÷ B3; A4 ÷ B4)

suppose A4 completes after A1 finishes, then the left branch is forced to terminate
by inhibiting the execution of A2. Besides, B1 is run to compensate for the effect
of A1, and B4, B3 have been installed for possibly later activation.

Compensation is proposed to compensate for its forward flow so as to remove
any partial effect. However, a partial compensation which fails in the middle will
lead to inconsistency. In order to deal with partial compensations, two kinds of
exception handling are introduced. For backward handling S � T , the backward

Algebraic Semantics for Compensable Transactions 309

OrderTran = {ProcOrder}
ProcOrder = (AccOrder ÷ RefOrder; FulOrder) � (GetIndem ÷ 0)

FulOrder = PrepOrder‖UpdCredit‖BookShip

PrepOrder = (PackOrder ÷ UnpackOrder) � (PackOrder ÷ ♦)

UpdCredit = CheckCredit ÷ 0; (Abort � DeductMoney ÷ RefundMoney)

BookShip=(RequestSA÷ 0; (Abort�BookSA÷QuitSA))� (BookSB ÷ QuitSB)

Fig. 1. Transaction for order fulfillment

handler T aims to supply the lack for the partial compensation so as to result
in a perfect transactional abort. With regard to forward handling S � T , the
forward handler T tries to go forward again from a specific point. If the forward
handler succeeds, the whole transaction is considered successful too.

When a sub-transaction aborts, all previously committed sub-transactions
should be aborted. However, it would be quite costly when aborting a long
running transaction. Instead, it is more satisfactory if we can restart the aborted
sub-transaction in an alternative way without aborting the other siblings. Based
on this consideration, a new construct S � T called alternative forwarding is
introduced to achieve this goal. T is the alternative which is triggered on the
abortion of S so as to re-fulfil the same goal.

So far, compensations can only be accumulated through its sub-transactions.
However, in some situations, compensations need to be programmed according
to application-specific requirements. Thus, it is better to provide a way for devel-
opers to define a novel compensation instead of the original one. In the construct
of programmable compensation S�T , T is the newly programmed compensation
for S and it is installed only when S has completed successfully. For instance:

(A1 ÷ B1; A2 ÷ B2; A3 ÷ B3) � (T1 �T2)

the original compensation B3, B2, B1 is replaced by T1 �T2. It is worth noting
that the compensation itself is also treated as a compensable transaction.

Our target is to set up a long running transaction in terms of compensable
transactions. The transactional block {T } represents a complete business trans-
action by enclosing a compensable transaction T . An example of a transaction
for processing customer orders is presented in Figure 1. At first, the seller accepts
an order request compensated by refusing the order. Afterwards, three sub-tasks
begin to process in parallel. According to distinct features of goods, some kind
of goods damage easily. For solid goods, the activity PackOrder is compensated
by UnpackOrder. For fragile ones, the special construct PackOrder÷♦ denotes
that simple unpacking is not enough. In this case, the seller would ask for extra
indemnities GetIndem from the client which is transacted within an exception
handler. The choice is made internally based on which kind of goods the client
orders. The credit update is performed concurrently since this task normally
succeeds. Once the credit checking fails, the signal of abort will cause all the
finished activities to be compensated. Assume that this seller has only two ship-
pers to contact with. Shipper A is cheaper but hard to book whereas shipper B

310 J. Li, H. Zhu, and J. He

is more expensive but always available. For saving money, shipper A is preferred
and shipper B is booked only when shipper A is unavailable.

3 Algebraic Semantics

In this section, our main objective is to explore equivalence for compensable
transactions using an algebraic theory. Our approach for this is to identify a
normal form which has a highly restricted syntax.

3.1 Head Normal Form

A transaction advances one step by performing an activity. We express this one-
step behavior as h → T called a guarded transaction. The guard h is an activity
of the following ones:
– atomic activity which always succeed, denoted by A, B, . . . ∈ Σ.
– error activity which indicates an error, denoted by ♦ and ♦.
– ready activity which denotes a tendency to succeed, denoted by �.
– forced activity which leads to forced termination, denoted by �.

In the above, ♦ denotes a failure occurring during the forward flow, while ♦
stands for a failure arising during the compensating flow. The forced activity
� is not given explicitly within a transaction. It is used to indicate that the
environment has the chance to terminate a compensable transaction forcibly.

During the course of executing a compensable transaction, we need to intro-
duce some assistant constructs to describe the intermediate running objects :
– S ↑ T denotes the non-performed forward flow is S and the compensation T

has already been installed.
–

↼

T denotes the compensation T has been activated automatically on failure.

–
←↩

T denotes the compensation T has been activated by forced termination.
– S�T denotes two parallel transactions are executing, in which at most one

branch is in the forward flow.
Besides, a compensable transaction may end in five states:
– �\T (success) represents the transaction has successfully completed with a

compensation T installed.
– � (abort) represents the transaction has been successfully compensated due

to a failure during its forward flow.
– � (forced abort) represents the transaction has been forced to terminate and

it has been compensated successfully.
– 	 (fail) represents some failure occurs during the forward flow but the com-

pensation fails to amend partial execution.
– 	 (forced fail) represents the transaction has been forced to terminate but

its compensation fails halfway.
We call the five transactions above as terminated transactions. The normal

form introduced here is called head normal form (hnf), we formally define a
transaction to be in hnf if:

Algebraic Semantics for Compensable Transactions 311

– it is in {�\T, �, �, 	, 	}, or
– it has the form �i≤N hi → Ti where each Ti is in hnf, or
– it has the form �j≤MTj where each Tj is in hnf.
From the above definition, the first item says that any terminated transaction

is a kind of hnf. As for the second item, �i≤NTi is a shorthand for T1 � T2 � . . . �
TN−1 �TN in which each branch Ti must be a guarded transaction in the form of
h → T where T is in hnf too. We call this construct as guarded choice. If we allow
N = 1, then a guarded transaction is a degenerate form of guarded choice. The
internal choice �j≤MTj is an abbreviation for T1 � T2 � . . . � TM−1 � TM which
is intended to make a nondeterministic choice between a set of transactions.
Particularly, each branch Tj can be a nondeterministic choice too.

The normal form has some elegant laws. Both � and � satisfy associativity
(�-asso,�-asso), commutativity (�-comm,�-comm) and idempotency (�-idem,�-
idem). In addition, � distributes through � (�-dist). Any pair of head normal
forms are semantically equal if and only if one can be rewritten into the other by
using these laws. Especially, while judging whether �\T1 is equivalent to �\T2,
we need to further compare their installed compensations based on their own
normal forms.

3.2 Algebraic Laws for Compensable Transactions

Now we transform a compensable transaction into a head normal form and
investigate its relevant properties. We use HF(T) to represent its head normal
form for a transaction T . For basic transactions, the transformation is direct and
easy. For composite ones, we first suppose its components have already been
in hnf, then define its transformation according to its semantics as designed.
Particularly, if T is already in hnf, then HF(T) = T , e.g. HF(�) = �.
Basic Transactions. A transactional pair either starts by performing its for-
ward flow or can be initially prevented from performing by force.

HF(A ÷ B) = �→ � � A → HF(Skip↑(B ÷ 0))

HF(A ÷ 0) = �→ � � A → HF(Skip)

HF(A ÷ ♦) = �→ � � A → HF(Skip↑Abort)

From the above definition, we see that after the forward behavior A finishes,
we mark the remaining flow as Skip which actually does nothing and install its
corresponding compensation. The compensation itself is regarded as a compens-
able transaction too, so we make use of B ÷ 0 instead of a simple activity B. In
addition, no compensation is installed due to an empty compensation for A÷ 0,
and Abort is installed to denote an unacceptable compensation for A÷ ♦.

As for Skip, it comes to successful completion instantly with an empty com-
pensation installed. Both Abort and Fail indicate a failure but lead to different
states. Moreover, all of them can be terminated by force initially.

HF(Skip) = �→ � � � → �\Skip

HF(Abort) = �→ � � ♦ → �
HF(Fail) = �→ � � ♦ → �

312 J. Li, H. Zhu, and J. He

Sequential Composition. If the first transaction is an internal choice, this
composition is in this form too:

HF(S) = �j≤MHF(Sj)

HF(S; T) = �j≤MHF(Sj ; T)

The following expression tells that any guarded activity except � is moved for-
ward out of the sequential composition. Especially, the ready activity � is hidden
for the successor decides how the composition terminates:

HF(S) = �i≤N hi → HF(Si) � � → HF(S′), ∀hi �= �

HF(S; T) = �i≤N hi → HF(Si; T) � HF(S′; T)

If the first transaction S terminates unsuccessfully, so does the whole transaction.
Otherwise, the overall transaction is denoted as T ↑ S′:

HF(S) = S′, S′ ∈ {�, �, �,�}
HF(S; T) = S′

HF(S) = �\S′

HF(S; T) = HF(T ↑ S′)

Now, we define the semantics for the assistant construct S ↑ T . When HF(S)
is a kind of choice, each branch is associated with the fore-installed compensation:

HF(S) = �j≤MHF(Sj)

HF(S ↑ T) = �j≤MHF(Sj ↑ T)

HF(S) = �i≤N hi → HF(Si)

HF(S ↑ T) = �i≤N hi → HF(Si ↑ T)

When S terminates successfully then its installed compensation S′ is composed
in front of the existing compensation T , which ensures that the compensations
are accumulated in the reverse order to their original operational sequence:

HF(S) = �\S′

HF(S ↑ T) = �\(S′; T)

If S is failed to compensate, the installed compensation T is simply discarded
and the whole transaction fails too. If S is aborted on failure or by force, the
already installed compensation T will run to compensate for the completed part:

HF(S) = S′, S′ ∈ {�, �}
HF(S ↑ T) = S′

HF(S) = �
HF(S ↑ T) = HF(

↼

T)

HF(S) = �
HF(S ↑ T) = HF(

←↩

T)

As for
↼

T , the forced activity � is not allowed to happen since there is no
reason to prevent compensation from undoing partial effects. Besides, the ready
activity � in the compensating flow is not a signal of success, so we eliminate
this activity here. In addition, a failure arising during the compensating flow
will lead to fail immediately Further, we rename ♦ by ♦ to explicitly denote an
error occurring within a compensation:

HF(T) = �jHF(Tj)

HF(
↼

T) = �jHF(
↼

Tj)

HF(T) = �i ki → HF(Ti) � �→ S � � →HF(S1)�♦ →HF(S2)

HF(↼T) = �i ki→HF(
↼

Ti) � HF(
↼

S1) � ♦ → �

For simplicity, we list all kinds of guards in the above expression. In fact, some
guards cannot appear simultaneously. In t-calculus, the construct like Skip � T
is not allowed, then a guarded choice with a guard � can only have this form:
�→ S � � → T . Since the forced activity in a compensating flow is inhibited, the
resulted transaction is still in the head normal form.

Algebraic Semantics for Compensable Transactions 313

A successful compensation means the partial forward flow is successfully com-
pensated for. In this case, the compensation installed for compensation is ignored
since it is no longer used. When the compensation aborts or fails, the partial
effect is not removed completely and the whole transaction leads to fail instantly:

HF(T) = �\T ′

HF(
↼

T) = �
HF(T) = T ′, T ′ ∈ {�, �}

HF(
↼

T) = �

Terminating a compensation by force is not allowed, so these is no need to

consider the case that HF(T) is � or 	. The only difference between
←↩

T and
↼

T
shows below, where the ended transaction is a forced one, either � or 	.

HF(T) = �\T ′

HF(
←↩

T) = �
HF(T) = T ′, T ′ ∈ {�, �}

HF(
←↩

T) = �

Sequential composition is associative and has Skip as its left unit, Abort, Fail
as its left zeros.

Theorem 3.1 (Sequence)

(1) Abort;T = Abort (2) Fail; T = Fail
(3) Skip; T = T (4) (T1; T2); T3 = T1; (T2; T3)

We give the proof of (1) by computing the head normal forms of both sides
according to the above definitions. The proofs for others may be tedious but
techniques are similar.

HF(Abort; T) = �→ HF(�; T) � ♦ → HF(�; T)

= �→ � � ♦ → �
= HF(Abort)

Parallel Composition. With regard to the parallel composition, if at least
one branch is in an internal choice, the whole transaction is in this form too:

HF(S) = �j≤MHF(Sj), HF(T) = �i≤NHF(Ti), M + N > 2

HF(S ‖T) = �j≤M,i≤NHF(Sj ‖Ti)

If one branch has encountered some error, the other branch is forced to com-
pensate instead of keeping on performing. Two errors from different branches
just produce one error from the viewpoint of the environment. Terminating a
whole transaction by force means both branches are willing to yield to this forced
termination. Besides, when both branches are ready to succeed, the overall com-
position is ready too. Firstly, we redefine a parallel operator among the three
activities {♦, �, �} to describe how they synchronize in a parallel composition.

♦ ‖ � = ♦ � ‖ ♦ = ♦ ♦ ‖ ♦ = ♦ � ‖� = � � ‖ � = �

In the following, we suppose ki, lj ∈ Σ ∪ {♦} and fi, gj ∈ {♦, �, �}. For atomic
activities, each parallel branch goes forward independently. As for other three
activities, we only choose these pairs (fi, gj) which have a synchronization, i.e.,

314 J. Li, H. Zhu, and J. He

Table 1. Conjunctions between terminated transactions

& � � � �

� �
� � �

� � � �
� � � � �

* � � � �

� �
� � �

� � � �
� � � � �

the value of fi ‖gj is defined. For instance, the pair (♦, �) is not chosen to form
a guard since ♦ ‖ � is undefined:

HF(S) = (�i ki → HF(Si)) � (�i fi → HF(S′
i)),

HF(T) = (�j lj → HF(Tj)) � (�j gj → HF(T ′
j))

HF(S ‖T)=(�i ki → HF(Si ‖T)) � (�j lj → HF(S ‖Tj)) � (�i,j fi ‖gj → HF(S′
i ‖T ′

j))

Only when both branches succeed, the whole composition is successful and
the installed compensations for two branches are constructed in parallel:

HF(S) = �\S′, HF(T) = �\T ′

HF(S ‖T) = �\(S′ ‖T ′)

If one branch leads to abort or fail, the other one is forced to terminate. Thus,
we need not to consider the case that one branch succeeds but another one not.
In this case, the terminal state of the parallel composition is defined as follows:

HF(S) = S′, HF(T) = T ′, {S′, T ′} ⊂ {�, �, �, �}
HF(S ‖T) = S′&T ′

The commutative operator & is defined in Table 1. It says that if one branch
is failed (i.e., it ends in), the whole composition actually fails in spite of the
state of the other branch. Besides, when both branches are forced to terminate,
the whole transaction is terminated by force too.

Parallel composition is commutative, associative and has Skip as its unit.

Theorem 3.2 (Parallel)

(1) S ‖T = T ‖S (2) Skip‖T = T (3) (T1 ‖T2)‖T3 = T1 ‖(T2 ‖T3)

Choice. For external choice, the whole composition is a guarded choice. Espe-
cially, if one branch has the form of �iTi, we move � out of the outside by using
the law �-dist and the whole composition is guaranteed in hnf. As for internal
choice, which branch is chosen is unpredictable:

HF(S � T) = HF(S) � HF(T) HF(S � T) = HF(S) �HF(T)

With regard to speculative choice, it resolves the internal choice at first:

HF(S) = �j≤MHF(Sj), HF(T) = �i≤NHF(Ti), M + N > 2

HF(S ⊗ T) = �j≤M,i≤NHF(Sj ⊗ Ti)

In speculative choice, two branches are performing in parallel and the decision
of choice is delayed until one branch succeeds. Then, when one branch shows

Algebraic Semantics for Compensable Transactions 315

the tendency to succeed, the other one is forced to terminate. In this case, the
developer should guarantee that the forcibly terminated branch cannot fail but
always abort. Otherwise, the successful branch should also be compensated due
to an inconsistent state. Here we enforce the requirement that any branch in a
speculative choice cannot fail so that the whole composition always ensures a pos-
itive response to the environment. Same as parallel composition, both branches
should be willing to yield to a forced termination. Consequently, the two events
� and � must synchronize in some way. We redefine the operator ⊗ among the
two activities to describe how they interact within a speculative choice.

�⊗ � = � � ⊗ � = � � ⊗ � = �

In the following expression, we suppose ki, lj ∈Σ ∪ {♦} and fi, gj ∈{�, �}. Each
branch goes forward independently while performing an atomic activity. Any pair
(fi, gj) which has a synchronization will be chosen to form a guard. Especially,
the pair (�, �) cannot be selected as �⊗ � is undefined. Besides, the error activity
♦ from one branch is unseen by the environment, since the other branch still has
the chance to fulfil the same business goal:

HF(S) = (�i ki → HF(Si)) � (�i fi → HF(S′
i)) � (♦ → HF(S′)),

HF(T) = (�j lj → HF(Tj)) � (�j gj → HF(T ′
j)) � (♦ → HF(T ′))

HF(S ⊗ T) = (�i ki → HF(Si ⊗ T)) � (�j lj → HF(S ⊗ Tj))
� (�i,j fi ⊗ gj → HF(S′

i�T ′
j)) � HF(S′

�T) � HF(S�T ′)

Notice that, after one of the three guards {♦, �, �} emerges, at least one branch
has started its compensating flow. So we introduce the intermediate construct
S�T to describe this kind of business flow, which reflects how speculative choice
works when at most one branch moves forward. Likewise, this new construct will
first resolve the nondeterministic choice. However, it does not have synchronous
execution of any activities.

HF(S) = �j≤MHF(Sj), HF(T) = �i≤NHF(Ti), M + N > 2

HF(S�T) = �j≤M,i≤NHF(Sj �Ti)

HF(S) = �i≤M hi → HF(Si), HF(T) = �j≤N lj → HF(Tj)

HF(S�T) = (�i≤M hi → HF(Si�T)) � (�j≤N lj → HF(S�Tj))

When one branch succeeds, the whole composition is regarded as success. More-
over, the compensation installed for the successful branch is preserved:

HF(S) = �\S′,HF(T) = T ′∈{�, �}
HF(S�T) = �\S′

HF(S) = S′∈{�, �},HF(T) = �\T ′

HF(S�T) = �\T ′

Both branches may terminate abnormally (i.e., aborts or fails), and the result
of the whole transaction is defined as follows:

HF(S) = S′,HF(T) = T ′, {S′, T ′} ⊂ {�, �, �, �}
HF(S ‖T) = S′ ∗ T ′

The commutative operator ∗ is defined in Table 1. In speculative choice, when
one branch has aborted, the whole composition still has the chance to succeed
if another branch terminates successfully. Thus, when one branch is aborted on

316 J. Li, H. Zhu, and J. He

failure (i.e., it ends in �) and the other is forcibly terminated (i.e., it either ends
in � or), the whole transaction is considered as forced termination. This point
reflects the difference between the two operators ∗ and &.

Speculative choice is commutative, associative and has Abort as its unit.

Theorem 3.3 (Speculative Choice)

(1) S ⊗ T = T ⊗ S (2) Abort ⊗ T = T (3) (T1 ⊗ T2) ⊗ T3 = T1 ⊗ (T2 ⊗ T3)

Exception Handling. Firstly, we focus on the backward handling S � T . The
handler T keeps invariant while the first transaction S does not terminate:

HF(S) = �j≤MHF(Sj)

HF(S � T) = �j≤MHF(Sj � T)

HF(S) = �i≤N hi → HF(Si)

HF(S � T) = �i≤N hi → HF(Si � T)

When the first transaction fails either automatically or forcibly, the backward
hander is activated to do the untouched compensation so as to remove all partial
effects:

HF(S) = �

HF(S � T) = HF(
↼

T)

HF(S) = �

HF(S � T) = HF(
←↩

T)

If the first transaction succeeds or aborts, the handler is simply abandoned:

HF(S) = �\S′

HF(S � T) = �\S′
HF(S) = S′, S′ ∈ {�, �}

HF(S � T) = S′

Regarding the forward handling S � T , the error activity ♦ occurring within
the first transaction S is unobservable by the environment, for the forward han-
dler T may recover from this error and terminate successfully at last:

HF(S) = �jHF(Sj)

HF(S � T) = �jHF(Sj � T)

HF(S) = �i hi → HF(Si) � ♦ → HF(S′), ∀hi �= ♦
HF(S � T) = �i hi → HF(Si � T) � HF(S′ � T)

Different from backward handling, the forward handler T is enabled only when
S fails on failure not by force. In particular, if S tends to abort, the activity ♦
should take place in advance so as to notify its parallel siblings if they exist:

HF(S) = �

HF(S � T) = HF(T)

HF(S) = S′, S′ ∈ {�\S′′, �, �}
HF(S � T) = S′

HF(S) = �
HF(S � T) = ♦ → �

Exception handling has Skip and Abort as its left zeros. Below, we use 5 to stand
for � or �. Property (3) says that the handler just monitors the area which may
raise failures, provided that S1 does not fail. The last three properties distinguish
backward handling from forward handling. The difference is backward handler
inhibits the latter execution while the forward handler does not. Besides, forward
handling is associative whereas backward handling is not.

Theorem 3.4 (Exception Handling)

(1) Skip (T = Skip (2) Abort (T = Abort
(3) (S1; S2) (T = S1; (S2 (T) (4) (Fail � S); T = Fail � S
(5) (Fail � S); T = Fail � (S; T) (6) (T1 � T2) � T3 = T1 � (T2 � T3)

Algebraic Semantics for Compensable Transactions 317

Alternative Forwarding. In the construct of S � T , when S encounters a
failure, this failure is unobservable as its alternative T may possibly remedy this
error. Anyway, its algebraic semantics is quite similar to forward handling:

HF(S) = �jHF(Sj)

HF(S �T) = �jHF(Sj �T)

HF(S) = �i hi → HF(Si) � ♦ → HF(S′), ∀hi �= ♦
HF(S �T) = �i hi → HF(Si �T) � HF(S′ �T)

Analogously, the alternative T is activated only when S aborts on failure. If S
tends to fail, the error activity ♦ should take place in advance so as to notify its
parallel siblings if they exist:

HF(S) = �
HF(S �T) = HF(T)

HF(S) = S′, S′ ∈ {�\S′′, �, �}
HF(S �T) = S′

HF(S) = �

HF(S �T) = ♦ → �

Alternative forwarding is associative and has Skip and Fail as its left zeros.

Theorem 3.5 (Alternative Forwarding)

(1) Skip�T = Skip (2) Fail�T = Fail (3) (T1 �T2)�T3 = T1 � (T2 �T3)

Programmable Compensation. The newly programmed compensation T is
simply attached for possibly later installation while S does not terminate:

HF(S) = �j≤MHF(Sj)

HF(S � T) = �j≤MHF(Sj � T)

HF(S) = �i≤N hi → HF(Si)

HF(S � T) = �i≤N hi → HF(Si � T)

When the first transaction S terminates successfully, the original compensation
is thrown away and the new compensation T is installed instead. If the first
transaction aborts or fails, the whole transaction terminates abnormally without
any compensation installed:

HF(S) = �\S′

HF(S � T) = �\T
HF(S) = S′, S′ ∈ {�, �, �,�}

HF(S � T) = S′

Programmable compensation has Abort and Fail as its left zeros, and several
other interesting properties shown below.

Theorem 3.6 (Programmable Compensation)

(1)Abort � T = Abort (2)Fail � T = Fail
(3)(T1 � T2) � T3 = T1 � T3 (4)T1 � (T2 � T3) = T1 � T2

(5)(T1 (T2)�T3 = (T1�T3) ((T2�T3) (6)(T1 �T2)�T3 = (T1�T3)� (T2 � T3)
(7)(T1�T ′

1); (T2�T ′
2) = (T1; T2)�(T ′

2; T
′
1) (8)(T1�T ′

1)‖(T2�T ′
2) = (T1 ‖T2) � (T ′

1 ‖T ′
2)

Properties (3) says that the new compensation always replaces the older one,
while (4) tells that compensations produced by compensations make no effect.
Programmable compensation distributes right through exception handling and
alternative forwarding respectively, shown as (5) and (6). In addition, assum-
ing T1, T2 terminate successfully without raising errors or encountering forced
termination, the properties (7),(8) show the installation order of compensations
according to the sequential or parallel compositions.

318 J. Li, H. Zhu, and J. He

Transactional Block. A transactional block {T } stands for a complete busi-
ness transaction. It masks forced termination in the forward flow:

HF(T) = �j≤MHF(Tj)

HF({T}) = �j≤MHF({Tj})
HF(T) = �i≤N hi → HF(Ti) � �→ HF(T ′), ∀hi �=�

HF({T}) = �i≤N hi → HF({Ti})

It discards the installed compensation when the inner compensable transaction
T succeeds. Otherwise, it terminates unsuccessfully like T does:

HF(T) = �\T ′

HF({T}) = �\Skip

HF(T) = T ′, T ′ ∈ {�, �}
HF({T}) = T ′

Notice that the inner transaction cannot be terminated by force, since the forced
activity � has been forbidden to occur.

4 Correspondence with Operational Semantics

The traditional way of defining an operational semantics is to provide a set of
individual transition steps directly. In contrast to the standard style, this section
derives the operational semantics from the given algebraic semantics. This work
helps to relate two different semantical models for a particular language, which
guarantees the consistency between different theories to some extent.

The operational semantics for t-calculus describes the behavior of compens-
able transactions in terms of transition rules using the approach of Plotkin [4]:

T
α−→ T ′

It says that the transaction T turns to T ′ by performing an event α. Here, α ∈
Σ∪{♦, ♦, �, �, τ}∪Δ, where τ denotes a silent or internal event and Δ is a set of
five terminated events {�, !, †, !, †}. � stands for successful completion (success),
! for successful compensation after a failure (abort), † for partial compensation
after a failure (fail). ! for successful compensation by forced termination (forced
abort), and † for partial compensation by forced termination (forced fail). These
terminated events correspond to the terminated transactions respectively.

Especially, when a compensable transaction performs �, it converts to another
transaction representing its installed compensation. However, when a compens-
able transaction performs some other terminal events, it turns to a dormant
transaction denoted as Null which has no further transition rules. In order to
derive the operational semantics from the fore-mentioned algebraic semantics,
we propose a derivation strategy based on normal forms.

Definition 4.1 (Derivation Strategy)

(1) If HF(T) = �\T ′, then T
�−→ T ′

(2) If HF(T) = �, then T
!−→ Null

(3) If HF(T) = �, then T
!−→ Null

(4) If HF(T) = �, then T
†−→ Null

(5) If HF(T) = �, then T
†−→ Null

(6) If HF(T) = �i≤N hi → HF(Ti), then T
hi−→ Ti

(7) If HF(T) = �j≤M HF(Tj), then T
τ−→ Tj

(8) If HF(T) = HF(S), then T
τ−→ S

Algebraic Semantics for Compensable Transactions 319

The last item says that if two syntactically different transactions have the same
normal forms, the transition label is a silent event τ which denotes an underly-
ing transformation on syntactic structures. Based on the fore-defined algebraic
semantics and the given derivation strategy, deriving a complete operational se-
mantic model for t-calculus is direct and apparent. For demonstration, we simply
list some transition rules for several compensable transactions. With regard to
basic transactions, their operational semantics is easy to obtain:

A ÷ B
�−→ � A ÷ B

A−→ Skip↑(B ÷ 0)

Abort
�−→ � Abort

♦−→ �

As for composite transactions, here we investigate the operational semantics for
alternative forwarding which is derived from its algebraic semantics.

S
a−→ S′, a ∈ Σ ∪ {♦, �, �, τ}

S �T
a−→ S′ �T

S
♦−→ S′

S �T
τ−→ S′ �T

S
�−→ S′

S �T
�−→ S′

S
!−→ Null

S�T
τ−→ T

S
†−→ Null

S �T
♦−→ �

S
ν−→ Null, ν ∈ {!, †}
S�T

ν−→ Null

5 Related Work

Most languages proposed for web services composition (e.g., WSFL, XLANG,
BPEL4WS and WSCDL) have the corresponding constructs to deal with long
running transactions. Nevertheless, these proposals do not provide a formal se-
mantics, whose informal descriptions easily lead to ambiguous understanding. In
our previous works [5,6,7,8,9], we have offered a theoretical foundation for the
two representative proposals: BPEL and WSCDL. Especially, the transactional
mechanisms adopted by these languages are carefully studied and formalized.

Recently, some researchers have devised new process calculi from scratch for
modeling long-running transactions based on the concept of compensation. The
representatives of this kind are StAC [10,11], cCSP [12,13] and Sagas calculi [14].
StAC is a language taking inspiration from process algebras like CCS and CSP,
together equipped with exception and compensation handling mechanisms. It
provides two explicit operators (reverse and accept) for activating or discarding
installed compensations respectively, which inhibits a clean compositional se-
mantics and makes the reasoning more difficult. Considering this, cCSP is then
designed as a subset of StAC, which supports automatic compensating and leads
to a neater compositional semantics. As for Sagas calculi, it provides a richer
set of operators to model robust business transactions. Particularly, in terms of
parallel composition, Sagas calculi gives a different explanation from cCSP. A
detailed comparison can be found in [15].

Our work has been inspired by Sagas Calculi and cCSP. We have introduced
several transactional operators recommended by Sagas calculi into our transac-
tional language. Different from Sagas Calculi and cCSP, we treat compensations
as compensable transactions too, through which we provide a uniform manner

320 J. Li, H. Zhu, and J. He

to manage the forward flow and compensating flow. In addition, properties for
compensable transactions are not given by assumption but guaranteed to be
justified by the pre-defined algebraic semantics.

6 Conclusion

The transactional language t-calculus aims to precisely model long-running busi-
ness flow in terms of compensable transactions. In order to take care of inter-
rupt handling among concurrent flows, the technique of forced termination is
introduced to handle this kind of requirement. By working with an algebraic se-
mantics, we provide a clear meaning for kinds of transactional operators. Since
each compensable transaction can be expressed as a kind of head normal form,
it is easy for us to justify a set of equational properties for compensable transac-
tions by computing the respective normal forms for both sides. Further, we have
established a correspondence between the algebraic semantics and operational
semantics for this transactional language. Thus, the operational model does not
need to set up from scratch but directly from the algebraic model based on a
proposed derivation strategy. This work provides a basis for optimization and
implementation of a transactional language with compensations.

References

1. Garcia-Molina, H., Salem, K.: Sagas. In: Proc. of ACM SIGMOD’87, pp. 249–259.
ACM Press, New York (1987)

2. Li, J., Zhu, H., Pu, G., He, J.: Looking into compensable transactions. In: SEW-31,
IEEE Computer Society Press, Los Alamitos (to appear, 2007)

3. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Engle-
wood Cliffs (1998)

4. Plotkin, G.D.: A structural approach to operational semantics. Technical report,
Aarhus University (1981)

5. Pu, G., Zhu, H., Qiu, Z., Wang, S., Zhao, X., He, J.: Theoretical foundations
of scope-based compensable flow languange for web service. In: Gorrieri, R.,
Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 251–266. Springer,
Heidelberg (2006)

6. Zhu, H., Pu, G., He, J.: A detational approach to scope-based compensable flow
language for web services. In: Proc. of ASIAN’06 (2006)

7. He, J., Zhu, H., Pu, G.: A model for BPEL-like languages. Frontiers of Computer
Science in China (2006)

8. Li, J., He, J., Pu, G., Zhu, H.: Towards the semantics for web service choreography
description language. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp.
246–263. Springer, Heidelberg (2006)

9. Li, J., He, J., Zhu, H., Pu, G.: Modeling and verifying web services choreography
using process algebra. In: SEW-31, IEEE Computer Society Press, Los Alamitos
(to appear, 2007)

10. Butler, M., Ferreira, C.: A process compensation language. In: Grieskamp, W.,
Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 61–76. Springer,
Heidelberg (2000)

Algebraic Semantics for Compensable Transactions 321

11. Butler, M., Ferreira, C.: An operational semantics for StAC, a language for mod-
elling long-running business transactions. In: De Nicola, R., Ferrari, G.L., Meredith,
G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 87–104. Springer, Heidel-
berg (2004)

12. Butler, M., Hoare, T., Ferreira, C.: A trace semantics for long-running transaction.
In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) CSP 2004. LNCS, vol. 3525,
pp. 133–150. Springer, Heidelberg (2005)

13. Butler, M., Ripon, S.: Executable semantics for compensating CSP. In: Bravetti,
M., Kloul, L., Zavattaro, G. (eds.) Formal Techniques for Computer Systems and
Business Processes. LNCS, vol. 3670, pp. 243–256. Springer, Heidelberg (2005)

14. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. In: POPL’05, pp. 209–220. ACM Press, New York
(2005)

15. Bruni, R., Butler, M., Ferreira, C., Hoare, T., Melgratti, H., Montanari, U.: Com-
paring two approaches to compensable flow composition. In: Abadi, M., de Al-
faro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 383–397. Springer, Heidelberg
(2005)

Axiomatizing Extended Temporal Logic

Fragments Via Instantiation�

Wanwei Liu, Ji Wang, Wei Dong, and Huowang Chen

National Laboratory of Parallel and Distributed Processing, China
{wwliu,wj,wdong,hwchen}@nudt.edu.cn

Abstract. ETLs are temporal logics employing ω-automata as temporal
connectives. This paper presents sound and complete axiom systems for
ETLl, ETLf , and ETLr, respectively. Axioms and rules reflecting tem-
poral behaviors of looping, finite and repeating automaton connectives
are provided. Moreover, by encoding temporal operators into automaton
connectives and instantiating the axioms and rules relating to automaton
connectives, one may derive axiom systems for given ETL fragments.

1 Introduction

Temporal logics have been frequently used as property specification languages in
verification of reactive and concurrent systems. In the broad sense, temporal log-
ics can be categorized into linear time ones and branching time ones. As indicated
by Vardi [Var01], temporal logics in linear framework have several advantages
— such as can be more naturally expressed and have a better compositionality.

There are two major ways to make temporal logics in linear framework to be
as expressive as ω-regular languages. One possible approach is to employ second
order qualifiers or fixpoint operators, like QPTL, [PVW87], linear μ-calculus
[BB87] and S1S; the other approach is to enrich the temporal connectives, as
done in ETL (Extended Temporal Logic, cf. [Wol83,WVS83,VW94]).

The temporal logics achieved by the second approach have an infinite family
of temporal operators. In fact, a spectrum of temporal logics will be obtained by
incorporating different temporal connectives, and each of them can be viewed
as a fragment (sub logic) of ETL. These fragments provide the rich choices to
make a proper tradeoff between the expressiveness and complexity in defining
property specifications.

Axiomatization might lead people into better understanding of the logics. In
this paper, we present three axiom systems, namely L ,F ,R, respectively for
ETLl, ETLf and ETLr.

� This research is supported by the National Natural Science Foundation of China
under Grant No.60233020, 90612009, 60673118; the National High-Tech Research
and Development Plan of China under Grant No.2006AA01Z178, 2006AA01Z429;
the National Grand Fundamental Research 973 Program of China under Grant
No.2005CB321802; Program for New Century Excellent Talents in University un-
der Grant No.NCET-04-0996.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 322–336, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Axiomatizing Extended Temporal Logic Fragments Via Instantiation 323

Though ETLs are known to have clear automaton decision procedures (cf.
[VW94,Pit00]), we reveal an important feature of ETL axiom systems: one may
derive a sound and complete axiom system for a given ETL fragment from them.

Axiomatizations of other temporal logics having the same expressive power to
ω-regular languages, e.g. linear μ-calculus [Kai97], QPTL [KP95,FR03], usually
give the characterization of second order operators. In comparison, ETL axiom
systems involve axioms and rules reflecting behaviors of temporal connectives.
We believe that using explicit temporal connectives might yield a more intuitive
way for doing specification.

Related work. The earliest axiomatization for ETL can be dated back to Wolper’s
graceful axiom system for temporal logic that uses ω-grammar as operators
[Wol83]. ω-grammar operators can be roughly viewed as looping acceptance
automaton connectives. In this paper, axioms corresponding to ω-regular op-
erators that using finite or repeating conditions are also considered. Kaivola
[Kai98] presented a sound and complete deductive system for extended compu-
tation tree logic. This logic is acquired form CTL∗ by adding μ operator to the
pure path formulas. Therefore the axioms and rules are specialized for the fixed
point operator and path qualifiers.

2 Automata on ω-Words and Extended Temporal Logic

Given a finite alphabet Σ, an ω-word over Σ is an infinite sequence w0w1 · · ·,
where wi ∈ Σ for each i ∈ N.

A (nondeterministic) automaton on ω-words is a tuple A = 〈Σ,Q, δ,Q0, F 〉
where: Σ is a finite alphabet ; Q is a finite set of states ; δ : Q × Σ → 2Q is the
transition function; Q0 ⊆ Q is a set of initial states ; F ⊆ Q is a set of final
states.

A run (resp. infinite run) of A over an ω-word w0w1 . . . is an infinite (resp.
finite) sequence σ = s0s1 . . ., (resp. σ = s0s1 . . . sk) where s0 ∈ S0, and si+1 ∈
δ(si, wi).

Different types of automata can be defined depending on the acceptance con-
ditions. For looping acceptance automata, any run is accepting. For finite accep-
tance automata, a finite run σ = s0s1 . . . sk is accepting iff sk ∈ F . For repeating
acceptance automata (Büchi automata), a run σ = s0s1 . . . is accepting iff there
are infinitely many i’s such that si ∈ F .

An ω-word is accepted by A if there is an accepting run (when the acceptance
condition is looping or repeating) or an accepting finite run (when the acceptance
condition is finite) of A over it. We denote by L(A) the set of ω-words accepted
by A.

Fix a set of atomic propositions AP , formulas of ETL (Extended Temporal
Logic) can be defined as follows.

– , ⊥ and each p ∈ AP are formulas.
– If ϕ is a formula then both ¬ϕ and �ϕ are formulas.

324 W. Liu et al.

– If ϕ1 and ϕ2 are formulas then both ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 are formulas.
– If A is an automaton with the alphabet Σ = {a1, . . . , an} and ϕ1, . . . , ϕn

are formulas, then A(ϕ1, . . . , ϕn) is also a formula.

 ,⊥, propositions and their negations are said to be literals.

Remark 1. ETLs using automaton connectives with finite, looping and repeating
acceptance conditions are named ETLf , ETLl and ETLr, respectively. Vardi and
Wolper’s original definition does not involve the nexttime operator �. We ex-
plicitly demand it because tableaux can be defined succinctly with this operator,
and this does not change the essence of the logic.

A structure π is an ω-word over the alphabet 2AP . Let π(i) be the i-th letter
of π, then satisfaction of a formula ϕ at position i of a structure π, denoted
(π, i) |= ϕ, is defined inductively as follows.

– (π, i) |= , for any structure π and i; (π, i) �|= ⊥, for any structure π and i.
– For each p ∈ AP , (π, i) |= p iff p ∈ π(i).
– (π, i) |= ¬ϕ iff (π, i) �|= ϕ; (π, i) |= �ϕ iff (π, i+ 1) |= ϕ.
– (π, i) |= ϕ1 ∧ ϕ2 iff both (π, i) |= ϕ1 and (π, i) |= ϕ2; (π, i) |= ϕ1 ∨ ϕ2 iff

either (π, i) |= ϕ1 or (π, i) |= ϕ2.
– Let A = 〈{a1, . . . , an}, Q, δ,Q0, F 〉, (π, i) |= A(ϕ1, . . . , ϕn) iff

when the acceptance type of A is looping or repeating (resp. finite), we
require an accepting run (resp. finite accepting run) of A over an ω-word w,
such that for any j ∈ N (resp. 0 ≤ j ≤ m), if the j-th letter of w is ak then
(π, i+ j) |= ϕk.

(π, 0) |= ϕ is abbreviated as π |= ϕ. A formula ϕ is satisfiable if there exists
a structure π such that π |= ϕ. A formula ϕ is valid iff π |= ϕ holds for any
structure π.

Assume that A = 〈Σ,Q, δ,Q0, F 〉 and q ∈ Q, we use Aq to denote the au-
tomaton (Q,Σ, δ, {q}, F), which has the same acceptance condition as A.

We now impose an additional constraint on the automaton connectives occur-
ring in formulas: each automaton connective should have a unique initial state.
Therefore, each connective should be of the form Aq. This would not lose any ex-
pressiveness, because A(ϕ1, . . . , ϕn) ↔

∨
q∈Q0

Aq(ϕ1, . . . , ϕn) holds in all kinds
of ETLs.

Theorem 1. [VW94] Expressiveness of ETLl, ETLf and ETLr are all equal to
ω-regular languages.

3 Axiomatization of ETLl

3.1 ETLl Tableau Rules

Given an ETLl formula ϕ, a tableau of ϕ is a tuple 〈T , ρ, Γ0〉. Where: T is a
finite set of nodes, and each node is a finite set of ETLl formulas. ρ ⊆ T × T is
the transition relation, and 〈Γ, Γ ′〉 ∈ ρ only if Γ ′ is obtained from Γ by applying
a tableau rule (tableau rules are shown in Figure 1). Γ0 = {ϕ} is the initial node.

Axiomatizing Extended Temporal Logic Fragments Via Instantiation 325

(and)
Γ ∪ {ϕ1 ∧ ϕ2}
Γ ∪ {ϕ1, ϕ2}

(or)
Γ ∪ {ϕ1 ∨ ϕ2}

Γ ∪ {ϕ1}, Γ ∪ {ϕ2}
(neg-neg)

Γ ∪ {¬¬ϕ}
Γ ∪ {ϕ}

(neg-and)
Γ ∪ {¬(ϕ1 ∧ ϕ2)}
Γ ∪ {¬ϕ1 ∨ ¬ϕ2}

(neg-or)
Γ ∪ {¬(ϕ1 ∨ ϕ2)}
Γ ∪ {¬ϕ1 ∧ ¬ϕ2}

(neg-next)
Γ ∪ {¬�ϕ}
Γ ∪ {�¬ϕ}

(pos-exp)
Γ ∪ {Aqi(ϕ1, . . . , ϕn)}

Γ ∪ {
�

ak∈Σ

�
qj∈δ(qi,ak)(ϕk ∧ �Aqj (ϕ1, . . . , ϕn))}

(neg-exp)
Γ ∪ {¬Aqi (ϕ1, . . . , ϕn)}

Γ ∪ {
�

ak∈Σ

�
qj∈δ(qi,ak)(¬ϕk ∨ (ϕk ∧ �¬Aqj (ϕ1, . . . , ϕn)))}

(modal)
{ϕ1, . . . , ϕn, �ψ1, . . . , �ψm}

{ψ1, . . . , ψm} each ϕi is a literal

Fig. 1. Tableau rules for ETLl

Remark 2. The rule (neg-exp) is not exactly the dual of (pos-exp). Instead, we
explicitly require that �¬Aqj (ϕ1, . . . , ϕn)) accompanied with ϕk, which is useful
in proving some theorems (e.g. Theorem 3).

Nodes in a tableau are pairwise different, and hence a tableau has only finitely
many nodes.

In a tableau 〈T , ρ, Γ0〉, if 〈Γ, Γ ′〉 ∈ ρ, then we say Γ ′ is a successor of Γ and
Γ a predecessor of Γ ′. When Γ ′ is a successor of Γ , the formula ϕ ∈ Γ to which
we apply tableau rule to obtain Γ ′ is said to be the reducing formula.

Nodes being of the form {ϕ1, . . . , ϕn,�ψ1, . . . ,�ψm} are called modal nodes,
where either m �= 0 or n �= 0 and each ϕi is a literal. Others are said to be
non-modal nodes. Clearly, the only tableau rule that can be applied to a modal
node is (modal). A modal node has exactly one successor. The initial state and
successors of modal nodes are said to be state nodes. Note that if m = 0, its
successor should be the node ∅. ∅ is not a modal node and it has no successor.

A path in a tableau is a finite or infinite node sequence Γ1Γ2 · · ·, where Γi+1

is a successor of Γi. A path is complete if: 1) the first node is the initial node;
and 2) the path is either an infinite one or ending with ∅.

A loop is a finite path whose first node and last node are the same one. It is
easy to prove the following lemma.

Lemma 1. Each loop in a tableau contains at least one modal node.

To capture the internal structure of a tableau, we need the notion trace— a trace
in the tableau 〈T , ρ, Γ0〉 is a finite or infinite formula sequence φ0φ1 Where:
1) Each φi belongs to a node in T . 2) If φi ∈ Γ and φi+1 ∈ Γ ′ then 〈Γ, Γ ′〉 ∈ ρ.
Moreover, if φi is the reducing formula of Γ w.r.t. Γ ′, then φi+1 is the formula
obtained from φi by applying the corresponding rule; otherwise, φi+1 = φi.

326 W. Liu et al.

Each trace τ determines a unique path P , and we say that τ belongs to P .
Nodes containing ⊥, ¬ or complementary pairs (such as φ and ¬φ) are

immediately removed. Consequently, nodes (except for the node ∅) that have no
successors are also removed. This process is called local consistency filtering.

A tableau meets local consistency if the initial node is not removed after the
recursive process of local consistency filtering.

A tableau meets global consistency if it has a complete path P such that
no formula of the form ¬Aqi (ϕ1, . . . , ϕn) appears infinitely often in any trace
belonging to P .

A tableau meeting both local consistency and global consistency is said to be
a consistent tableau. For the tableau approach, we have the following theorem.

Theorem 2. An ETLl ϕ is satisfiable iff it has a consist tableau.

3.2 The Axiom System for ETLl

The ETLl axiom system, namely L , is shown in Figure 2. Here, ϕ → ψ is the
abbreviation of ¬ϕ ∨ ψ, and ϕ ↔ ψ is (ϕ → ψ) ∧ (ψ → ϕ). The axiom (P)
involves all tautology instances such as ↔ ¬⊥, ¬¬ϕ→ ϕ, etc. For the aim of
simplicity, we use

∧
Γ as the abbreviation of

∧
φ∈Γ φ from now on, and define

that
∧
∅ = ,

∨
∅ = ⊥.

Axioms
1. (P) All tautology instances
2. (N) ¬�ϕ ↔ �¬ϕ
3. (K) �(ϕ1 → ϕ2) ↔ (�ϕ1 → �ϕ2)
4. (Exp) Aqi(ϕ1, . . . , ϕn) ↔

�
ak∈Σ(

�
qj∈δ(qi,ak)(ϕk ∧ �Aqj (ϕ1, . . . , ϕn)))

(where A = 〈Q, Σ, δ, Q0, F 〉)
Rules

1. (MP) If ϕ1 → ϕ2 and ϕ1 then ϕ2

2. (XGen) If ϕ then �ϕ
3. (Loop) If

�
1≤i≤m(ψi →

�
1≤k≤n(

�
qj∈δ(qi,ak)(ϕk ∧ �ψj)))

then ψi → Aqi(ϕ1, . . . , ϕn) for all 1 ≤ i ≤ m
(where A = 〈{a1, . . . , an}, {q1, . . . , qm}, δ, Q0, F 〉)

Fig. 2. The axiom system L

Clear to see that each axiom is valid and each rule preserves validity. Thus,
the system is sound.

Lemma 2 (Reasoning property of tableaux). Given a tableau 〈T , ρ, Γ0〉,
then every node Γ ∈ T satisfies the reasoning property. i.e.{∧

Γ →
∨
〈Γ,Γ ′〉∈ρ

∧
Γ ′ , when Γ is not a modal node∧

Γ → �∧
Γ ′ , when Γ is a modal node and Γ ′ is its successor

.

Axiomatizing Extended Temporal Logic Fragments Via Instantiation 327

According to the tableau rules, Lemma 2 can be easily proven.

Theorem 3. If an ETLl formula ϕ is not satisfiable, then �L ¬ϕ.

Proof. Let 〈T , ρ, Γ0〉 be an arbitrary tableau of ϕ. Since ϕ is not satisfiable,
according to Theorem 2, this tableau must not be a consistent one. We show
how to obtain a deductive sequence of ¬ϕ from this tableau.

I) If the tableau does not meet local consistency, we can construct the deduc-
tive sequence of ¬ϕ with the consistency filtering process.

– A node Γ involving⊥ or ¬ or complementary pairs is removed immediately.
¬
∧
Γ can be proven by the axiom (P).

– Suppose Γ ′ is successor of a non-modal node Γ . If ¬
∧
Γ ′ is proved, then∧

Γ →
∨
〈Γ,Γ ′′〉∈ρ,Γ ′′
=Γ ′

∧
Γ ′′ is also proved by the reasoning property and

classical propositional logic. This implies that the remaining tableau having
Γ ′ removed still fulfils reasoning property.

– For a non-modal node Γ , if all its successors are removed, inductively, we
have �

L

∧
Γ ′ for each successor Γ ′ of Γ . According to the reasoning prop-

erty,
∧
〈Γ,Γ ′〉∈ρ ¬

∧
Γ ′ → ¬

∧
Γ holds. Hence we can infer ¬

∧
Γ by (MP).

– Suppose that Γ a modal node, and Γ ′ is its unique successor. If Γ ′ is re-
moved, inductively, i.e. �L ¬

∧
Γ ′, then we have �L �¬∧Γ ′ by (XGen),

and subsequently, we have �L ¬�∧
Γ ′ by (N) and (MP). According to the

reasoning property ¬�∧
Γ ′ → ¬

∧
Γ . Therefore, ¬

∧
Γ is inferred.

Since the initial node Γ0 = {ϕ} is also removed, we will eventually get the
deductive sequence of ¬ϕ.

II) If the tableau meets local consistency, then the node ∅ must not exist in
the tableau 1. Therefore, each complete path has to be infinite.

Let P be an arbitrary infinite path. Since the tableau is connected, one can
find a complete path in the tableau whose suffix is P . Since the tableau does not
meet global consistency, there must exist an infinite trace τ belonging to P such
that some formula ¬Aqi (ϕ1, . . . , ϕn) appears in τ infinitely often.

For a node Γ in P , τ takes a formula in Γ at each visit to Γ , (notice that τ
may take different formulas at different visit to Γ). We denote by Γ[τ] the set
of formulas that τ ever takes in all his visiting to Γ . Since P is infinite, then
it contains loops. By Lemma 1, P involves modal nodes, and hence involves
state nodes. Suppose that A = 〈{a1, . . . , an}, {q1, . . . , qm}, δ, Q0, F 〉, then for any
1 ≤ k ≤ m, let Dk = {Γ | Γ is a state node in P and ¬Aqk (ϕ1, . . . , ϕn) ∈ Γ[τ]},
and let ψk =

∨
Γ∈Dk

∧
Γ . It is easy to prove there is at least one Dk, such that

Dk �= ∅.
By the reasoning property of tableau and the tableau rule (neg-exp), ψk →∨

1≤l≤n(
∨

qj∈δ(qk,al)
(ϕl ∧�ψj)) is inferred for all 1 ≤ k ≤ m. Therefore, we have

ψk → Aqk(ϕ1, . . . , ϕn) according to the (Loop).
On the other hand, we have ψk → ¬Aqk(ϕ1, . . . , ϕn) because ¬Aqk(ϕ1, . . . , ϕn)

appears in each state node belonging to Dk.
1 Otherwise, we can find a complete path ending with ∅. Since this path is finite, no

infinite trace is involved. Then the tableau meets global consistency by definition.

328 W. Liu et al.

Therefore, for all 1 ≤ k ≤ m, ¬ψk can be proven. It implies that for each state
node Γ ∈ Dk, ¬

∧
Γ can be proven. Thus, at least one node can be removed.

Consequently, remove components those are unreachable from the initial state,
and remove nodes that now having no successors as in I).

Clearly, the reasoning property still holds by the remaining tableau, and the
remaining tableau is still a one that does not meets global consistency. Repeat
this way, we can go on with removing other nodes, until the initial node Γ0 = {ϕ}
is removed, and then ¬ϕ is proven. �

Subsequently, if ϕ is a valid ETLl formula, then ¬ϕ is not satisfiable. Thus, ¬¬ϕ
can be proven, and then ϕ is proven.

4 Axiomatization of ETLf and ETLr

4.1 Axiomatization of ETLf

Tableau rules of ETLf are similar to that of ETLl, except that the rules (pos-exp)
and (neg-exp) are replaced by four new rules (pos-exp1), (pos-exp2), (neg-exp1)
and (neg-exp2), as shown in Figure 3.

Assume that the finite acceptance automaton A = 〈Σ, Q, δ, Q0, F 〉

(pos-exp1)
Γ ∪ {Aqi(ϕ1, · · · , ϕn)}

Γ ∪ {
�

ak∈Σ

�
qj∈δ(qi,ak)(ϕk ∧ �Aqj (ϕ1, · · · , ϕn))} qi �∈ F

(pos-exp2)
Γ ∪ {Aqi(ϕ1, · · · , ϕn)}

Γ ∪ {�} qi ∈ F

(neg-exp1)
Γ ∪ {¬Aqi (ϕ1, · · · , ϕn)}

Γ ∪ {
�

ak∈Σ

�
qj∈δ(qi,ak)(¬ϕk ∨ �¬Aqj (ϕ1, · · · , ϕn))} qi �∈ F

(neg-exp2)
Γ ∪ {¬Aqi (ϕ1, · · · , ϕn)}

Γ ∪ {⊥} qi ∈ F

Fig. 3. Tableau rules (pos-exp1), (pos-exp2), (neg-exp1) and (neg-exp2)

For ETLf tableaux, the notion of local consistency is the same as for ETLl

tableaux. An ETLf tableau meets global consistency if there is a complete path
P in the tableau, and no formula of the form Aq(ϕ1, · · · , ϕn) appears infinitely
often in any trace belonging to P .

Analogously, we may show an ETLf is satisfiable iff it has a consistent tableau.
The axiom system for ETLf , namely F , is shown in Figure 4.

Theorem 4. If an ETLf formula ϕ is not satisfiable, then �
F
¬ϕ.

The proof is almost identical to Theorem 3. We firstly construct a tableau for
ϕ, then this tableau must be inconsistent. If the tableau does not meet local

Axiomatizing Extended Temporal Logic Fragments Via Instantiation 329

Axioms
1. (P), 2. (N), 3.(K), same as the corresponding axioms in L .
4. (Exp) Aqi(ϕ1, . . . , ϕn) ↔

�
ak∈Σ(

�
qj∈δ(qi,ak)(ϕk ∧ �Aqj (ϕ1, . . . , ϕn)))

(where A = 〈{q1, . . . , qm}, Σ, δ, Q0, F 〉, and qi �∈ F)
5. (Acc) Aqi(ϕ1, · · · , ϕn) (where qi is a final state of A)

Rules
1. (MP), 2.(XGen), same as corresponding rules in L .
3. (Fin) If

�
1≤i≤m,qi ∈F (ψi →

�
1≤k≤n(ϕk → ��qj∈δ(qi,ak) ψj))

and
�

1≤i≤m,qi ∈F (ψi →
�

δ(qi,ak)∈F ¬ϕk)

then ψi → ¬Aqi (ϕ1, . . . , ϕn) for all 1 ≤ i ≤ m such that qi �∈ F
(where A = 〈{a1, . . . , an}, {q1, . . . , qm}, δ,Q0, F 〉)

Fig. 4. The axiom system F

consistency, ¬ϕ can be proven accompanied with the consistency filtering. If
this tableau does not meet global consistency, for an arbitrary infinite path P ,
there is a trace τ having infinitely many occurrences of some Aqi (ϕ1, . . . , ϕn).
Assume that A = 〈{a1, . . . , an}, {q1, . . . , qm}, δ, Q0, F 〉, for every 1 ≤ k ≤ m,
we now let Dk = {Γ | Γ is a state node in P and Aqk(ϕ1, . . . , ϕn) ∈ Γ[τ]} and
ψk =

∨
Γ∈Dk

∧
(Γ\{Aqk(ϕ1, . . . , ϕn)}).

By rule (Fin), we have ψk → ¬Aqk (ϕ1, . . . , ϕn) for all 1 ≤ k ≤ m. It implies
that for any Γ ∈ Dk,

∧
Γ → ¬Aqk (ϕ1, . . . , ϕn) can be proven. On the other hand,∧

Γ → Aqk (ϕ1, . . . , ϕn) holds because Aqk(ϕ1, . . . , ϕn) belongs to Γ . Hence, at
least one state node is removed. And, repeat this way to remove other nodes.

Therefore, if an ETLf ϕ is not satisfiable, then ¬ϕ can be proven in F .
Consequently, all valid ETLf formulas can be proven in F .

4.2 Axiomatization of ETLr

ETLr has a wider application in practice. For example, the ForSpec Language
Logic (cf. [AFF+02,AFF+05]) and IBM’s Sugar. Tableau rules for ETLr are ex-
actly the same as those for ETLl. The definition of global consistency is modified
as follows.

There is a complete path P in the tableau and each trace τ belonging to P
satisfies:

– Positive eventuality: if a formula Aqi(ϕ1, . . . , ϕn) appears infinitely often in
τ , then there is a Aqf (ϕ1, . . . , ϕn) appears infinitely often in τ , where qf is
a final state of A.

– Negative eventuality: if a formula ¬Aqi (ϕ1, . . . , ϕn) appears infinitely often
in τ , then for each final state qf of A, the formula Aqf (ϕ1, . . . , ϕn) does not
appear infinitely often in τ .

As in ETLl and ETLf , we can show that an ETLr formula is satisfiable iff it
has a consistent tableau.

330 W. Liu et al.

The axiom system for ETLr is R = (L \{(Loop)})∪{(Sim), (Rep), (R-Loop)}.
The axiom (Sim), rules (Rep) and (R-Loop) are depicted in Figure 5.

(Sim) Aq1
1 (ϕ1, . . . , ϕn) → Aq2

2 (ϕ1, . . . , ϕn)
(where A1 and A2 have the same alphabet and L(Aq1

1) ⊆ L(Aq2
2))

(Rep) If
�

1≤t≤m(ψt →
�

1≤k≤n(ϕk → ��qr∈δ(qt,ak) ψr)) and
�

qf ∈F (
�

qu∈IA(qs)(ψu →
�

qf ∈δ(qu,ak) ¬ϕk)

∨
�

qv∈IA(qf)(ψv →
�

qf ∈δ(qv,ak) ¬ϕk))

then ψs → ¬Aqs (ϕ1, . . . , ϕn)
(where A = 〈{a1, . . . , an}, {q1, . . . , qm}, δ, Q0, F 〉, and 1 ≤ s ≤ m,
IA(qi) is the states that can be reached from qi in A, including qi itself)

(R-Loop) If
�

1≤i≤m(ψi →
�

1≤k≤n(
�

qj∈δ(qi,ak)(ϕk ∧ �ψj)))

then ψi → Aqi(ϕ1, . . . , ϕn) for all 1 ≤ i ≤ m
(where A = 〈{a1, . . . , an}, {q1, . . . , qm}, δ, Q0, {q1, . . . , qm}〉)

Fig. 5. The axiom (Sim) and rule (Rep), (R-Loop) of R

Theorem 5. If an ETLr formula ϕ is not satisfiable, then �R ¬ϕ.

This proof is a combination of those for L and F , we here just describe the
proof sketch.

Given an unsatisfiable ETLr formula ϕ, one can construct an arbitrary tableau
for it, and this tableau must not be consistent. If the tableau does not meet the
local consistency, ¬ϕ can be easily proven with the consistency filtering process.
When the global consistency is not satisfied, then each infinite path P must
involve a trace τ , which violates either positive eventuality or negative eventu-
ality. If the trace does not meet positive eventuality, then use the rule (Rep) to
remove state nodes involved in the path — just like what we done in proving
the completeness of F . When the trace does not meet negative eventuality, we
use both (Sim) and (R-loop) to remove such nodes. Repeat this, we can remove
other nodes. Once the initial node is removed, then ¬ϕ is proven.

5 Axiomatizing Fragments of Extended Temporal Logic

5.1 The Instantiating Axiomatization Approach

For ETLs, one can get their fragments (sub logics) by restricting the temporal
connectives to a special subset (but at least the operator “nexttime” should be
reserved). The original ETL is said to be the base logics of that fragment.

Axiomatizing Extended Temporal Logic Fragments Via Instantiation 331

For an n-ary temporal operator K in an ETL fragment, if the automaton
Aq

K fulfills that K(ϕ1, . . . , ϕn) and Aq
K(ϕ1, . . . , ϕn) are logically equivalent for all

ϕ1, . . . , ϕn, then we say Aq
K is an automaton encoding of K.

For example, consider the logic LTL, besides the nexttime operator, it has an-
other operator “until” (U). Let the finite acceptance automaton AU = 〈{a1, a2},
{q1, q2}, δU, {q1}, {q2}〉, where δU(q1, a1) = {q1}, δU(q1, a2) = {q2} and δU(q2, a1)
= δU(q2, a2) = ∅. Clearly, ϕ1Uϕ2 is exactly Aq1

U (ϕ1, ϕ2) and hence LTL can
be viewed as a fragment of ETLf , and Aq1

U is an automaton encoding of U in
ETLf .

In the ETL axiom systems, there exist axioms like (Exp) etc, and rules like
(Loop) etc., we call them “automaton-related axioms/rules”. For ETL fragments,
we can instantiate the automaton-related axioms and/or rules for the special
operators. — i.e. using the automaton encodings as concrete connectives, one can
get an instanced version of each automaton-related axiom or rule. The resulted
axioms and rules are called instanced axioms and instanced rules. The new axiom
system we obtained is called instanced axiom systems for the fragment.

E.g., for LTL, Aq2
U (ϕ1, ϕ2) is directly replaced by according to (Acc). The

instance axiom (Exp) for U is

ϕ1Uϕ2 ↔ (ϕ1 ∧�(ϕ1Uϕ2)) ∨ ϕ2.

The instanced rule (Fin) for U is

If ψ1 → ((ϕ1 → �ψ1) ∧ (ϕ2 → �ψ2)) and ψ1 → ¬ϕ2

then ψ1 → ¬(ϕ1Uϕ2)
,

and since the second premise is ψ1 → ¬ϕ2, in practice, we usually let the first
premise be ψ1 → (ϕ1 → �ψ1).

The axioms (P),(N),(K), and instanced (Exp), together with rules (MP),
(XGen) and instanced (Fin) formalize a new reasoning system 2 for LTL.

This axiom system is a sound and complete one for LTL. To show this, we
compare it with the LTL axiom system presented by Lange and Stirling [LS01].

Lange and Stirling’s system has seven axioms and three rules, and involves two
operators U and R. The relation between these two operators can be described
as: ϕ1Rϕ2 ↔ ¬(¬ϕ1U¬ϕ2). Thus, by replacing each occurrence of ϕ1Rϕ2 with
¬(¬ϕ1U¬ϕ2), Lange and Stirling’s axiom system is given in Figure 6.

We now show that all the axioms and rules in Lange and Stirling’s system can
be inferred by our instanced axiom system. Axiom 2 and axiom 3 can be proven
by instanced (Exp), (P) and (MP), axioms 5 and 6 can be proven by (K) and
(MP). The only interesting thing here is to obtain the rule (Rel).

Let φ = ϕ2 ∧ (ϕ1 ∨ �¬(¬(ϕ1 ∨ ψ)U¬(ϕ2 ∨ ψ))), then the premiss becomes
ψ → φ. It is straightforward to show that φ→ ¬¬ϕ2 and

φ→ (¬ϕ1 → �¬(¬(ϕ1 ∨ ψ)U¬(ϕ2 ∨ ψ))) (∗)
2 Instanced (Acc) has already been used to eliminate the connective of Aq2

U , and its
instance axiom � is merged to (P).

332 W. Liu et al.

Axioms
1. (P), 4. (N), 7. definition of R, given as above.
2. ϕ1Uϕ2 → ϕ2 ∨ (ϕ1 ∧ �(ϕ1Uϕ2)).
3. ¬(¬ϕ1U¬ϕ2) → ϕ2 ∧ (ϕ1 ∨ �¬(¬ϕ1U¬ϕ2)).
5. �(ϕ1 ∧ ϕ2) → �ϕ1 ∧ �ϕ2.
6. �(ϕ1 → ϕ2) → (�ϕ1 → �ϕ2).

Rules
1. (MP), 2.(XGen).

3. (Rel)
If ψ → (ϕ2 ∧ (ϕ1 ∨ �¬(¬(ϕ1 ∨ ψ)U¬(ϕ2 ∨ ψ))))
then ψ → ¬(¬ϕ1U¬ϕ2)

Fig. 6. Lange and Stirling’s axiom system for LTL

By instanced (Exp), ¬(¬(ϕ1∨ψ)U¬(ϕ2∨ψ)) ↔ (ϕ2∨ψ)∧((ϕ1∨ψ)∨�¬(¬(ϕ1∨
ψ)U¬(ϕ2 ∨ψ))) holds. Notice that (ϕ2 ∨ψ)∧ ((ϕ1 ∨ψ)∨�¬(¬(ϕ1 ∨ψ)U¬(ϕ2 ∨
ψ))) ↔ ψ ∨ φ, and ψ → φ is the premiss, thus

¬(¬(ϕ1 ∨ ψ)U¬(ϕ2 ∨ ψ))→ φ (∗∗)

Then, φ → (¬ϕ1 → �φ) is proven by (*) and (**). Because φ → ¬¬ϕ2 and
φ→ (¬ϕ1 → �φ), according to the instanced (Fin), we have φ→ ¬(¬ϕ1U¬ϕ2),
and hence ψ → ¬(¬ϕ1U¬ϕ2) then the rule (Rel) is proven.

We now summarize the approach of instantiating axiomatization for ETL
fragments.

1. Firstly, choose a proper ETL as the base logic.
2. Encode the temporal operators with corresponding automaton connectives.
3. Obtain the instanced axiom system by instantiating corresponding

automaton-related axioms and deductive rules.

For the instantiating axiomatization approach, we have the following theorem.

Theorem 6. Given a fragment of ETLl (resp. ETLf , ETLr), the corresponding
instanced axiom system of L (resp. F , R) is a sound and complete axiom
system for the fragment.

Proof. For the given ETL fragment, without loss of generality, assume that it is a
fragment of ETLl. After encoding its temporal operators to (looping acceptance)
automata, one can give an axiom system of this logic by instantiating the axiom
(Exp) and rule (Loop).

Soundness of the resulted system is trivially held, because each instance of
automaton-related axioms and rules preserves validity. To prove completeness of
the instanced axiom system, we also need to build tableaux for the formulas.

Since each operator in the fragment has an automaton encoding, tableau rules
for base logic still suit the fragment. It is no wonder that formulas those cannot

Axiomatizing Extended Temporal Logic Fragments Via Instantiation 333

be satisfied do not have consistent tableaux — otherwise, they have consistent
tableaux in the base logic, which violates the conclusion of Theorem 2.

Given a formula ϕ that cannot be satisfied, we create a tableau of it. It is
easy to show that the“reasoning property” still holds. If the tableau does not
meet local consistency, ¬ϕ can be easily proven with the local filtering process.
Otherwise, if the tableau does not meet global consistency, we can find a infinite
path P , and an infinite trace τ belonging to P and contains infinitely many
occurrences of some ¬Aqi(ϕ1, . . . , ϕn) where Aqi is the automaton encoding for
some operator in the fragment.

Assume that A has the state set {q1, . . . , qm}, then for each 1 ≤ k ≤ m,
still let Dk = {Γ | Γ is a state node of P and ¬Aqk (ϕ1, . . . , ϕn) ∈ Γ[τ]} and
ψk =

∨
Γ∈Dk

∧
Γ . There exists some 1 ≤ k ≤ m, such that Dk �= ∅.

According to the reasoning property and the tableau rule (neg-exp), we have
ψk →

∨
1≤i≤n

∨
qj∈δ(qk,ai)

(ϕi ∧ �ψj) for each 1 ≤ k ≤ m. Since each Aqk is
an automaton encoding of some operator in the fragment, we can now apply
the instanced (Loop). Therefore, we have ψk → Aqk (ϕ1, . . . , ϕn), and hence∧
Γ → Aqk(ϕ1, . . . , ϕn) for each Γ ∈ Dk.
On the other hand, for every Γ ∈ Dk,

∧
Γ → ¬Aqk(ϕ1, . . . , ϕn) can be proven

because ¬Aqk(ϕ1, . . . , ϕn) ∈ Γ . Thus, at least one node can be removed. Con-
sequently, remove components those are unreachable from the initial state, and
remove nodes that now having no successors. Repeat this process to eliminate
other nodes.

From this, we can see that the proof for the fragment almost performs an
identical routine of that for the base logic, but with temporal operators restricted
to a special set. It is same to prove that in the case of the logic is a fragment of
ETLf or ETLr. �

5.2 Further Examples and Discussions

In the previous subsection, we have given an approach namely “instantiating
axiomatization” to produce axiom system for ETL. It should be pointed out
that for a given temporal logic, the axiom system we obtain is highly sensitive
to the base logic and automaton encodings we choose.

For example, LTL can also be viewed as a fragment of ETLl. To do this,
we consider LTL to be the ETLl fragment equipped with the operators � and
“release” (R).

Let the looping acceptance automatonAR = 〈{a1, a2, a3}, {q1, q2}, δR, {q1}, ∅〉,
where δR(q1, a1) = {q1}, δR(q1, a2) = {q2}, δR(q2, a3) = {q2}, δR(q1, a3) =
δR(q2, a1) = δR(q2, a2) = ∅.

Clearly, ϕ1Rϕ2 = Aq1
R (ϕ2, ϕ1∧ϕ2,), and we can prove ¬Aq2

R (ϕ2, ϕ1∧ϕ2,)→
Aq2

R (ϕ2, ϕ1 ∧ ϕ2,) in L . Hence, Aq2
R (ϕ2, ϕ1 ∧ ϕ2,) can be directly replaced

by . Now, the instanced axiom (Exp) becomes

ϕ1Rϕ2 ↔ (ϕ2 ∧�(ϕ1Rϕ2)) ∨ (ϕ1 ∧ ϕ2),

and the instance rule (Loop) becomes

334 W. Liu et al.

If (ψ1 → (ϕ2 ∧�ψ1 ∨ (ϕ1 ∧ ϕ2) ∧�ψ2)) ∧ (ψ2 → �ψ2)
then ψ1 → ϕ1Rϕ2.

For the instanced (Loop), the trivial conclusion ψ2 → is omitted.
Once the base logic is decided, it is also important to choose proper operators.

For example, when we decide to derive an LTL axiom system underlying the base
logic ETLr, things become complex. For doing this, we suggest to use G, W and� as LTL temporal operators 3. The reason why we choose G and W as additional
operators is that we can give them repeating automaton encodings that all the
states are final states this fulfills the requirement of (R-Loop)’s premise.

In detail,AW = 〈{a1, a2, a3}, {q1, q2}, δW, {q1}, {q1, q2}〉 andAG = 〈{q1}, {a1},
δG, {q1}, {q1}〉, where δW(q1, a1) = {q1}, δW(q1, a2) = {q2}, δW(q2, a3) = {q2},
δW(q1, a3) = δW(q2, a1) = δW(q2, a2) = ∅ and δG(q1, a1) = {q1}. It is easy to
proof that Gϕ↔ Aq1

G ϕ, ϕ1Wϕ2 ↔ Aq1
W(ϕ1, ϕ2,). and Aq2

W(ϕ1, ϕ2,)↔ .
(Sim) derives no instanced rules because AW and AG do not share the same

alphabet. Instanced axioms (Exp) for G and W are respectively Gϕ↔ ϕ ∧�Gϕ
and ϕ1Wϕ2 ↔ (ϕ1 ∧ �(ϕ1Wϕ2)) ∨ ϕ2. Instanced rules of (Rep) and (R-Loop)
for G can be respectively described as

(Rep)
If ψ → (ϕ→ �ψ)
and ψ → ¬ϕ
then ψ → ¬Gϕ

(R-Loop)
If ψ → (ϕ ∧�ψ)
then ψ → Gϕ

.

Instanced (Rep) for G can be reduced to have only one premise ψ → ¬ϕ. In-
stanced rules of (Rep) and (R-Loop) for W can be respectively described as

(Rep)
If (ψ → ¬ϕ1) ∧ (ψ → ¬ϕ2)
then ψ → ¬(ϕ1Wϕ2)

(R-Loop)
If ψ → (ϕ1 ∧�ψ) ∨ ϕ2

then ψ → ϕ1Wϕ2
.

Please note that the premiss of instanced (Rep) for W has been reduced.
As the final example, we show how to axiomatize temporal logics involving

infinitely many temporal connectives. Consider such a logic: it involves the next-
time operator and all the connectives like Pk (k ∈ N), where (π, i) |= Pkϕ if and
only if (π, i+ k× j) |= ϕ for all j ∈ N. For example, P2p means “p holds at least
in all even moments”. To get its axiom system, we consider this logic to be a
fragment of ETLl.

For each k ≥ 1, we create a loop acceptance automaton Ak = 〈{a, b}, {q1, . . . ,
qk}, δk, {q1}, ∅〉, where:

δk(qi, a) =
{
{q1} , if i = 1
∅ , otherwise and δk(qi, b) =

⎧⎨⎩∅ , if i = 1
qi+1 , if 1 < i < k
q1 , if i = k

.

Clearly, Pkϕ = Aq0
k (ϕ,). According to (Exp), we haveAqi

k (ϕ,)↔ �Aqi+1
k (ϕ,)

for all 1 ≤ i < k, and Aqk−1
k (ϕ,) ↔ �Pkϕ. Thus, we combine previous axioms

and let
3 Here, G is the “global” operator, and W is the “weak until” operator. The relation

among W, G and U can be described as: ϕ1Wϕ2 ↔ ((ϕ1Uϕ2) ∨ Gϕ1), or ϕ1Uϕ2 ↔
((ϕ1Wϕ2) ∧ ¬G¬ϕ2).

Axiomatizing Extended Temporal Logic Fragments Via Instantiation 335

Pkϕ↔ ϕ ∧�kPkϕ (k ∈ N)

to be the final form of instanced (Exp), where �k is the abbreviation of k suc-
cessive � operators. Similarly, one can give the instanced rule (Loop) as

If ψ → ϕ ∧�kψ then ψ → Pkϕ k ∈ N.

In comparison, when choosing ETLf as the base logic, to produce the axiom
system for this logic might make things complex.

6 Concluding Remarks

In this paper, we first present three complete axiom systems for ETLl, ETLf and
ETLr, respectively, and then present the axiomatizing approach by instantiation.

The axioms and rules for ETLs we provided are orthogonal. Each axiom sys-
tem includes automaton-related axiom and rules, these characterize the essential
properties of looping, finite and repeating temporal connectives, respectively.
The utilities (K), (N) and (XGen) give a description of the nexttime operator.

We discussed three kinds of acceptance conditions of automaton connectives,
and we believe that these are rich enough [KMM04] to produce axiom systems
for various ETL fragments.

These deductive systems for ETLs are flexible. It is easy to rewrite them
into ETL using alternating automaton connectives. To do this, just modify the
automaton-related axioms and rules into the alternating version.

One of the further work is the axiomatization of ETLs equipped with “past
operators” — i.e. Extended Temporal Logics employing two-way automata as
connectives [KPV01]. In such systems, new axioms and rules reflecting “back-
ward” and “stuttering” behaviors might be provided.

References

AFF+02. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Land-
ver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar,
Y.: The forspec temporal logic: A new temporal property-specification lan-
guage. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002.
LNCS, vol. 2280, pp. 211–296. Springer, Heidelberg (2002)

AFF+05. Armoni, R., Fix, L., Fraer, R., Huddleston, S., Piterman, N., Vardi, M.Y.:
Sat-based induction for temporal safety properties. Electr. Notes Theor.
Comput. Sci. 119(2), 3–16 (2005)

BB87. Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal,
B., Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS,
vol. 398, pp. 62–74. Springer, Heidelberg (1989)

FR03. French, T., Reynolds, M.: A sound and complete proof system for QPTL. In:
Proceedings of 4th Advances in Modal Logic, pp. 127–148. King’s College
Publications (2003)

Kai97. Kaivola, R.: Using Automata to Characterise Fixed Point Temporal Logics.
PhD thesis, University of Edinburgh (1997)

336 W. Liu et al.

Kai98. Kaivola, R.: Axiomatising extended computation tree logic. Theoretical
Computer Science 190(1), 41–60 (1998)

KMM04. Kupferman, O., Morgenstern, G., Murano, A.: Typeness for ω-regular au-
tomata. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 324–333.
Springer, Heidelberg (2004)

KP95. Kesten, Y., Pnueli, A.: A complete proof systems for QPTL. In: Logic in
Computer Science, pp. 2–12 (1995)

KPV01. Kupferman, O., Piterman, N., Vardi, M.Y.: Extended temporal logic revis-
ited. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
pp. 519–535. Springer, Heidelberg (2001)

LS01. Lange, M., Stirling, C.: Focus games for satisfiability and completeness of
temporal logic. In: LICS’01. Proceedings of the 16th Annual IEEE Sympo-
sium on Logic in Computer Science, Boston, MA, USA, IEEE Computer
Society Press, Los Alamitos (2001)

Pit00. Piterman, N.: Extending temporal logic with ω-automata. Thesis for the
M.Sc Degree, School of the Weizmann Institute of Science (August 2000)

PVW87. Prasad, S.A., Vardi, M.Y., Wolper, P.: The complementation problem for
Büchi automata with applications to temporal logic. Theoretical Computer
Science 49, 217–237 (1987)

Var01. Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Margaria, T.,
Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, pp. 1–22.
Springer, Heidelberg (2001)

VW94. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information
and Computation 115(1), 1–37 (1994)

Wol83. Wolper, P.: Temporal logic can be more expressive. Information and Con-
trol 56(1–2), 72–99 (1983)

WVS83. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation
paths. In: Proc. 24th IEEE Symposium on Foundations of Computer Science,
Tucson, pp. 185–194. IEEE Computer Society Press, Los Alamitos (1983)

Deciding Weak Bisimilarity of Normed

Context-Free Processes Using Tableau�

Xinxin Liu1 and Haiyan Chen1,2

1 State Key Laboratory Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, 100080, China

2 Graduate School of the Chinese Academy of Sciences,
Beijing, 100039, China

{xinxin,chy}@ios.ac.cn

Abstract. Deciding strong and weak bisimilarity of context-free proce-
sses are challenging because of the infinite nature of the state space of
such processes. Deciding weak bisimilarity is harder since the usual de-
composition property which holds for strong bisimilarity fails. Hirshfeld
proposed the notion of bisimulation tree to prove that weak bisimulation
is decidable for totally normed BPA and BPP processes. Suggested by
his idea of decomposition, in this paper we present a tableau method
for deciding weak bisimilarity of totally normed context-free processes.
Compared with Hirshfeld’s bisimulation tree method, our method is more
intuitive and more direct.

1 Introduction

There have been a lot of efforts on the study of decidability and complexity of
verification problems for infinite-state systems [1,2,3]. In [4] Baeten, Bergstra,
and Klop proved the remarkable result that bisimulation equivalence is decidable
for irredundant context-free grammars (without the empty production). Within
process calculus theory these grammars correspond to normed processes defined
by a finite family of guarded recursion equations in the signature of BPA(Basic
Process Algebra) [4]. In general these processes have infinite state space. The
decidability result has later been extended to the class of all (not necessarily
normed)BPA processes in [5,6]. J.Srba keeps an updated record of results on
this subject [7].

Most of the results on infinite state system are concerning strong bisimilarity.
For weak bisimilarity, much less is known. Semidecidability of weak bisimilarity
for BPP has been shown in [8]. Hirshfeld proved a decomposition property for a
generalized weak bisimilarity of totally normed context-free processes, and with
this directly obtained decidability of bisimilarity of totally normed BPA in [9].
This decidability result is also a consequence of a more elaborate theorem proved
by Stirling in [10].

� Supported by the National Natural Science Foundation of China under Grant Nos.
60673045, 60496321.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 337–350, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

338 X. Liu and H. Chen

Our work is inspired by Hirshfeld’s idea of decomposition for a generalized
weak bisimilarity. By refining Hirshfeld’s notion of weak bisimulation up to,
we obtain an equivalence relation which enables us to devise a tableau method
for deciding weak bisimilarity of totally normed context-free processes. In [11],
Hüttel and Stirling proposed a tableau decision procedure for deciding strong
bisimilarity of normed context-free processes. Later in [12], Hüttel adapted the
tableau method and proved the decidability of branching bisimulation of totally
normed context-free processes. As Hüttel pointed out in [12], the key for tableau
method to work is a nice decomposition property which holds for strong bisim-
ulation and branching bisimulation, but fails for weak bisimulation. Our work
in some sense is to propose a version of weak bisimulation equivalence for which
certain decomposition property (Proposition 6) makes the tableau method work
correctly.

The paper is organized as follows. In section 2 we review some important
concepts about BPA processes and weak bisimulation. In section 3 we describe
relative weak bisimulation equivalence which is the key for the tableau method.
In section 4 we present the tableau decision method and show the sound and
completeness result. Section 5 contains conclusion and suggestions for further
work.

2 BPA Processes

Following [9], here we present BPA processes as states in a sequential labeled
rewrite system.

Definition 1. A sequential labeled rewrite system is a tuple 〈V, Στ , Δ〉 where

1. V is a finite set of variables; the elements of V∗, finite strings on V, are
referred to as states.

2. Στ is a finite set of labels, containing a special label τ .
3. Δ ⊆ V×Στ × V∗ is a finite set of rewrite rules.

We use X,Y, Z to range over elements of V ; a, b, c to range over elements of Σ;
α, β, γ to range over elements of V∗, and write αβ for the concatenation of α and
β. The operational semantics of the processes (states) can be simply given by a
labeled transition system (V∗, Στ ,−→) where −→⊆ V∗ ×Στ × V∗ is defined as
follows:

−→= {(Xβ, a, αβ)|(X, a, α) ∈ Δ, β ∈ V∗}.

As usual we write α a−→ β for (α, a, β) ∈−→, and write α ε=⇒ β or simply
α =⇒ β for α(τ−→)∗β, and write α a=⇒ β for α ε=⇒ a−→ ε=⇒ β. We say α is
terminating, written α ⇓, if α(τ−→)∗ε where ε is the empty string.

Here is an example adapted from [11]. Consider the labeled rewrite system
〈V ,Στ , Δ〉, where

V = {X,Y }, Στ = {a, c, τ},
Δ = {(X, a, ε), (X, τ,XY), (Y, c, ε)}.

Deciding Weak Bisimilarity of Normed Context-Free Processes 339

Clearly the state space generated from X (i.e. the set of states reachable from X
by performing transitions) consists of strings of the forms X,XY, · · · , XY n, · · ·
and ε, Y, · · · , Y n, · · · . Obviously the number of such states are infinite, even under
quotient of weak bisimulation equivalence.

Letˆ: Στ −→ Σ∗τ be the function such that â = a when a �= τ and τ̂ = ε, the
following general definition of weak bisimulation on V∗ is standard.

Definition 2. A binary relation R ⊆ V∗ × V∗ is a weak bisimulation if for all
(α, β) ∈ R the following hold:

1. α ⇓ if and only if β ⇓;
2. whenever α a−→ α′, then β â=⇒ β′ for some β′ with (α′, β′) ∈ R;
3. whenever β a−→ β′, then α â=⇒ α′ for some α′ with (α′, β′) ∈ R.

Two states α and β are said to be weak bisimulation equivalent, written α ≈ β,
if there is a weak bisimulation R such that (α, β) ∈ R.

It is standard to prove that ≈ is an equivalence relation between processes.
Moreover the following proposition shows that it is a congruence with respect to
string composition on V∗.

Proposition 1. If α ≈ β and α′ ≈ β′ then αα′ ≈ ββ′.

Proof. We construct a binary relation R = {(αα′, ββ′)|α ≈ β, α′ ≈ β′}. We will
show that R is a weak bisimulation, i.e. R satisfies the clause 1. 2. and 3. of
Definition 2. Suppose (αα′, ββ′) ∈ R with α ≈ β, α′ ≈ β′. If αα′ ⇓ then α ⇓
and α′ ⇓, since α ≈ β and α′ ≈ β′, α ⇓ iff β ⇓ and α′ ⇓ iff β′ ⇓, so ββ′ ⇓; in the
same way we can prove that ββ′ ⇓ implies αα′ ⇓, thus clause 1 of Definition 2
is satisfied. For clause 2. suppose αα′ a−→ α′′, we discuss by two cases: if α �= ε
and α a−→ α1, then α′′ ≡ α1α

′, since α ≈ β, ∃β1.β
â=⇒ β1 with α1 ≈ β1, then

ββ′
â=⇒ β1β

′ with (α1α
′, β1β

′) ∈ R, clause 2. of Definition 2 is satisfied; if α = ε,
then αα′ = α′ and β ⇓ (since α ≈ β, now α ⇓), in this case αα′ a−→ α′′, then
α′

a−→ α′′, since α′ ≈ β′, ∃β′′.β′ â=⇒ β′′ with (α′′, β′′) ∈ R, so ββ′ =⇒ β′
â=⇒ β′′

with (α′′, β′′) ∈ R, thus clause 2 of Definition 2 is satisfied. For clause 3. the
situation is similar to clause 2. �"

Note that in general clause 1. of Definition 2 is necessary. Otherwise any X ∈ V
which has no transitions will be equated with ε, and as a consequence Proposition
1 would fail.

3 Relative Weak Bisimulation Equivalence

In this section we propose a notion of weak bisimulation relative to a binary
relation on states. This notion is a refinement of Hirshfeld’s notion of “bisimu-
lation up to” introduced in [9]. For the induced new equivalence, we then study
its decomposition properties, its relationship to ≈. This provides a foundation
for the tableau decision method discussed in the next section.

The following definition settles some notations and terminologies.

340 X. Liu and H. Chen

Definition 3. A state α is said to be normed if there exists a finite sequence of
transitions from α to ε, and un-normed otherwise. The weak norm of a normed
α is the length of the shortest transition sequence of the form α

a1=⇒ . . .
an=⇒ ε,

where each ai �= τ and ai=⇒ is counted as 1. We denote by ||α|| the weak norm
of α. Also, we follow the convention that ||α|| = ∞ for unnormed α, and ∞ > n
for any number n. A state is totally normed if it is a state of a system 〈V , Στ , Δ〉
where for every variable X ∈ V, 0 < ‖X‖ <∞.

Note that ||X || < ∞ is the same as saying that X is normed, while ||X || > 0
implies that X cannot terminate silently.

It is obvious that weak norm is additive: ||αβ|| = ||α||+ ||β||. Moreover, weak
norm is respected by ≈.

For a binary relation Γ on states, we write Γ= for the equivalence relation
generated by the following four rules:

ref : α Γ= α axiom : α Γ= β((α, β) ∈ Γ)

tran : α
Γ= β, β Γ= γ

α
Γ= γ

symm : α
Γ= β

β
Γ= α

i.e. Γ= is the smallest reflexive, symmetry, and transitive binary relation contain-
ing Γ . Clearly if Γ is finite then so is Γ=, and in this case it is decidable whether
α

Γ= β .

Definition 4. Let R,Γ ⊆ V∗ × V∗. R is a weak bisimulation w.r.t Γ if for all
(α, β) ∈ R, then either ||α|| = ||β|| ≤ 1 and α Γ= β, or ||α|| > 1 and ||β|| > 1
and the following hold:

1. whenever α a−→ α′, then β â=⇒ β′ for some β′ such that (α′, β′) ∈ R,
2. whenever β a−→ β′, then α â=⇒ α′ for some α′ such that (α′, β′) ∈ R.

For α, β ∈ V∗ and Γ ⊆ V∗ × V∗, we say that α is weak bisimilar to β w.r.t. Γ ,
written α ≈Γ β, if there is R ⊆ V∗×V∗ such that R is a weak bisimulation w.r.t
Γ and (α, β) ∈ R.

This is a typical co-inductive definition for ≈Γ . With such definition, the follow-
ing properties of ≈Γ are expected and have standard proofs which are omitted
here.

Proposition 2. Let Γ ⊆ V∗ × V∗, then

1. ≈Γ is the largest weak bisimulation w.r.t Γ ;
2. ≈Γ is an equivalence, i.e. it is reflexive, symmetric, and transitive.

Remark: Our definition differs from Hirshfeld’s bisimulation up to as follows.
First, bisimulation up to is defined through a series of approximation while ≈Γ

Deciding Weak Bisimilarity of Normed Context-Free Processes 341

is defined using maximum fixed-point approach. Second, in our definition we
use the weak norms of α, β as pre-conditions to determine when “bisimulation
clauses” 1 and 2 are required to hold when are not, moreover in the case clauses

1 and 2 are not required to hold we then require α
Γ= β instead of simply

(α, β) ∈ Γ . As a result ≈Γ is an equivalence relation, an important property
which is necessary for the tableau method to work correctly. Bisimulation up to
is not an equivalence relation in general.

Next we define some special kinds of Γ which have useful properties.

Definition 5. Let Γ ⊆ V∗×V∗. We say Γ is uniform if ||α|| = ||β|| = 1 for all
(α, β) ∈ Γ . We say Γ is sound if for all (α, β) ∈ Γ the following hold:

1. whenever α a−→ α′ then β â=⇒ β′ for some β′ with α′ ≈Γ β
′;

2. whenever β a−→ β′ then α â=⇒ α′ for some α′ with α′ ≈Γ β
′.

Proposition 3. Let Γ ⊆ V∗×V∗ be uniform. Then Γ= respects weak norms, i.e.
if α Γ= β then either both α, β are un-normed, or both are normed and ||α|| = ||β||.
Moreover ≈Γ also respects weak norms.

Proof. It is obvious that Γ= respects weak norms.
Let α be normed and α ≈Γ β. We prove that β is also normed and ||α|| = ||β||

by induction on the weak norm of α. By Definition 4 either ||α|| = ||β|| ≤ 1 and
α

Γ= β, or ||α|| > 1 , ||β|| > 1 and clauses 1.2. hold. In the first case since α Γ= β

and Γ= respects weak norms, so ||α|| = ||β||. If ||α|| > 1, suppose α τ i

−→ α1
a−→ α′

with a �= τ and ||α|| = ||α′||+ 1, then α ≈Γ β implies that β a=⇒ β′ for some β′

with α′ ≈Γ β
′. Now since ||α′|| < ||α||, by the induction hypothesis β′ is normed

and ||α′|| = ||β′||, thus β is normed and ||β|| ≤ ||α||. Now we can apply the same
reasoning with α, β switching places we obtain ||α|| ≤ ||β||, thus ||α|| = ||β||. �"

The following easy to prove lemma shows an important property of sound Γ .

Lemma 1. Let Γ ⊆ V∗ × V∗ be sound. If α Γ= β then the following hold:

1. whenever α a−→ α′ then β â=⇒ β′ for some β′ with α′ ≈Γ β
′;

2. whenever β a−→ β′ then α â=⇒ α′ for some α′ with α′ ≈Γ β
′.

Lemma 2. If Γ ⊆ V∗ × V∗ is both uniform and sound then ≈Γ is a weak
bisimulation.

Proof. Let α ≈Γ β, we will show that clauses 1. 2. and 3. of Definition 2 are
satisfied. By Proposition 3 in this case ≈Γ respects weak norms, thus α ⇓ iff
||α|| = 0 iff ||β|| = 0 iff β ⇓, clause 1. of Definition 2 is satisfied. For clause 2. and
clause 3. since ≈Γ respects weak norms we only need to consider the following
two cases. If ||α|| > 1 and ||β|| > 1, then since ≈Γ is a weak bisimulation w.r.t Γ ,
α ≈Γ β implies clause 2. and clause 3. If ||α|| = ||β|| ≤ 1, then α ≈Γ β implies
α

Γ= β, and clause 2. and 3. are satisfied by Lemma 1. �"

342 X. Liu and H. Chen

Proposition 4. Let α, β, γ ∈ V∗, Γ ⊆ V∗ × V∗. If α ≈Γ β then γα ≈Γ γβ.

Proof. It is easy to check that {(γα, γβ) |γ ∈ V∗, α ≈Γ β} is a weak bisimulation
w.r.t. Γ . �"

Lemma 3. Let Γ ⊆ V∗×V∗, α1, α2, β1, β2 ∈ V∗ with α1, β1 normed and ||α1|| ≥
||β1||. If α1α2 ≈Γ β1β2 and ||β1β2|| > 1 then there exists δ ∈ V∗ such that
δα2 ≈Γ β2.

Proof. By induction on ||β1||. If ||β1|| = 0, let β1
ε=⇒ ε, then β1β2

ε=⇒ β2, and
since α1α2 ≈Γ β1β2, there exists α′ ∈ V∗ such that α1α2

ε=⇒ α′ and α′ ≈Γ β2.
Since in this case ||α1|| > 0, it must be that α1

ε=⇒ δ and α′ = δα2 for some
δ ∈ V∗, thus we proved the case for ||β1|| = 0. If ||β1|| > 0, let β1

a=⇒ β′

be a weak norm reducing transition sequence, then β1β2
a=⇒ β′β2 and since

α1α2 ≈Γ β1β2, there exists α′ ∈ V∗ such that α1α2
a=⇒ α′ and α′ ≈Γ β

′β2.
Since in this case ||α1|| > 1, it must be that α1

a=⇒ α′′ and α′ = α′′α2 for some
α′′ ∈ V∗. Now α′′α2 ≈Γ β

′β2, ||β′|| < ||β1||, and ||α′′|| at most reduce ||α1|| by
1 thus still ||α′′|| > ||β′||, by the induction hypothesis there exists δ ∈ V∗ such
that δα2 ≈Γ β2. �"

4 The Tableau Method for Totally Normed BPA

From now on, we restrict our attention to totally normed BPA processes, i.e.
processes of a sequential labeled rewrite system 〈V , Στ , Δ〉 where ∞ > ||X || > 0
for all X ∈ V . And throughout the rest of the paper, we assume that all the
processes considered are totally normed unless stated otherwise.

We show that for totally normed processes the following are decidable:

1. whether α ≈Γ β, where Γ ⊆ V∗ × V∗ is uniform;
2. whether α ≈ β.

We first show that 1 above is decidable. Then we show 2 is also decidable by
showing a reduction to 1.

First we list the following obvious properties of such processes.

Proposition 5. In a totally normed process system 〈V , Στ , Δ〉,

1. for a fixed n, there are only finitely many α ∈ V∗ such that ||α|| = n;
2. if Γ ⊆ V∗ × V∗ is uniform then Γ is finite;
3. there are only finitely many Γ ⊆ V∗ × V∗ which are uniform.

In the following, we devise a tableau decision method to decide whether α ≈Γ β.
The rules of the tableau system are built around equations of the form α =Γ β,
where α, β ∈ V∗, Γ ⊆ V∗ × V∗ is uniform. Each rule has the form

name
α =Γ β

α1 =Γ1 β1 . . . αn =Γn βn
side condition.

Deciding Weak Bisimilarity of Normed Context-Free Processes 343

The premise of a rule represents the goal to be achieved while the consequents
are the subgoals. There are three rules altogether. One rule for reducing the
weak norms of the states in the goal, one rule for aligning the states so that rule
reduc can be applied, and one rule for unfolding. We now explain the three rules
in turn.

4.1 Reducing Weak Norms

The following proposition states an important decomposition property of weak
bisimulation with respect to Γ . With this property, we introduce the first rule of
our tableau method which can be used to reduce the weak norms of the states
in the goal.

Proposition 6. Let α, β ∈ V∗ with ||α|| = ||β|| > 1, X ∈ V, Γ ⊆ V∗ × V∗ be
uniform. Then αX ≈Γ βX if and only if there exists Γ ′ ⊆ V∗×V∗ such that Γ ′

is uniform and α ≈Γ ′ β and α′X ≈Γ β
′X for all (α′, β′) ∈ Γ ′.

Proof. For the “if” direction, let R = {(α′X, β′X) |α′ ≈Γ ′ β′}, it is not difficult
to check that R∪ ≈Γ is a weak bisimulation w.r.t. Γ . Also, obviously (αX, βX) ∈
R, thus (αX, βX) ∈ R∪ ≈Γ , and so αX ≈Γ βX .

For the “only if” direction, let

Γ ′ = {(α′, β′) | ||α′|| = ||β′|| = 1, α′X ≈Γ β
′X},

R = {(α′, β′) | α′X ≈Γ β
′X}.

Obviously Γ ′ is uniform and α′X ≈Γ β
′X for all (α′, β′) ∈ Γ ′. Also it is easy to

check that R is a weak bisimulation w.r.t. Γ ′ and (α, β) ∈ R. �"

This proposition guarantees the soundness and backwards soundness of the fol-
lowing rule:

reduc
αX =Γ βX

α =Γ ′ β {α′X =Γ β′X | (α′, β′) ∈ Γ ′} ||α|| = ||β|| > 1

Note that the states in the subgoals all have smaller weak norms than the states
in the original goal. Also note that, by 3. of Proposition 5, there are only finitely
many possible choices for Γ ′. This means there are only finitely many different
ways to apply this rule.

4.2 Aligning the States

The next rule can be used to align the states in the goal so that rule reduc can
be applied to the subgoals. The rule is based on the following observation.

Proposition 7. Let α1, β1, α, β ∈ V∗ with ||α1|| ≥ ||β1|| > 1. Then
α1α ≈Γ β1β if and only if there exists δ ∈ V∗ such that δα ≈Γ β and α1α ≈Γ

β1δα and ||δ|| = ||α1|| − ||β1||.

344 X. Liu and H. Chen

Proof. For the “if” direction, suppose α1α ≈Γ β1δα and δα ≈Γ β. Then by
Proposition 4 β1δα ≈Γ β1β. Then since ≈Γ is an equivalence, by transitivity we
obtain α1α ≈Γ β1β.

For the “only if” direction, suppose α1α ≈Γ β1β. Since ||α1|| ≥ ||β1||, by
Lemma 3 there exists δ ∈ V∗ with δα ≈Γ β. Then by Proposition 4 β1δα ≈Γ β1β,
and again since ≈Γ is an equivalence, by transitivity
α1α ≈Γ β1δα. By Proposition 3 ≈Γ respects weak norms, thus
||α1||+ ||α|| = ||β1||+ ||δ||+ ||α||, and ||δ|| = ||α1|| − ||β1||. �"

This proposition guarantees the soundness and backwards soundness of the fol-
lowing rule:

align
α1α =Γ β1β

α1δβ =Γ β1β α =Γ δβ
||δ|| = ||β1|| − ||α1||, ||α1|| > 1

Note that by 1. of Proposition 5 there are only finitely many possible choices
for δ. Thus there are only finitely many ways to apply each rule.

Discussion. In fact we can refine the rule by imposing more strict restrictions
on δ. To do so, for α, β ∈ V∗ with ||α|| ≥ ||β||, we first define the set D(α, β) in-
ductively defined the weak norm of β as follows: if ||β|| = 0 then D(α, β) = {α},
otherwise

D(α, β) = ∪{D(α′, β′) | ∃a ∈ Σ.α
a

=⇒ α′, β
a

=⇒ β′, ||α′|| < ||α||, ||β′|| < ||β||, ||α′|| ≥ ||β′||}.

Note that in the above formula the weak norm of α′ (β′) is exactly one less
than that of α (β). With this in mind it is not difficult to see that D(α, β) is
finite and can be easily computed. Then instead of requiring ||δ|| = ||β1||− ||α1||
in the side condition of rule align, we can require δ ∈ D(β1, α1), and the refined
rule remains both sound and backwards sound. With the new restriction, we
only need to consider fewer choices for δ.

4.3 Unfolding by Matching the Transitions

Definition 6. Let (α, β) ∈ V∗×V∗. A binary relation M ⊆ V∗×V∗ is a match
for (α, β) if the following hold:

1. whenever α a−→ α′ then β â=⇒ β′ for some (α′, β′) ∈M ;
2. whenever β a−→ β′ then α â=⇒ α′ for some (α′, β′) ∈M ;
3. whenever (α′, β′) ∈ M then ||α′|| = ||β′|| and either α a−→ α′ or β a−→ β′

for some a ∈ Σ.

It is easy to see that for a given (α, β) ∈ V∗×V∗, there are finitely many possible
M ⊆ V∗×V∗ which satisfies 3. above and moreover each of them must be finite.
And for such M it is not difficult to see that it is decidable whether M is a
match for (α, β).

The last rule can be used to obtain subgoals by matching transitions, and it
is based on the following observation.

Deciding Weak Bisimilarity of Normed Context-Free Processes 345

Proposition 8. Let α, β ∈ V∗ with ||α|| = ||β|| > 1. Then α ≈Γ β if and only
if there exists a match M for (α, β) such that α′ ≈Γ β

′ for all (α′, β′) ∈M .

Proof. Obvious from Definition 4. �"

This proposition guarantees the soundness and backwards soundness of the fol-
lowing rule:

unfold
α =Γ β

{α′ =Γ β′ | (α′, β′) ∈ M} ||α|| = ||β|| > 1, M is a match for (α, β)

As pointed out above there are finitely many matches for a given (α, β), so there
are finitely many ways to apply this rule on (α, β).

4.4 Constructing Tableaux

We determine whether α ≈Γ β by constructing a tableau with root α =Γ β using
the three rules introduced above. A tableau is a finite tree with nodes labeled
by equations of the form α =Γ β, where α, β ∈ V∗, Γ ⊆ V∗ × V∗ is uniform.

Moreover if α =Γ β labels a non-leaf node, then the following are satisfied:

1. ||α|| = ||β||;
2. its sons are labeled by α1 =Γ1 β1 . . . αn =Γn βn obtained by applying rule

reduc or align or unfold to α =Γ β, in that priority order;
3. no other non-leaf node is labeled by α =Γ β.

A tableau is a successful tableau if the labels of all its leaves have either of the
following forms:

1. α =Γ β where there is a non-leaf node also labeled α =Γ β;
2. α =Γ β where α Γ= β.

Note that as we pointed out earlier that for finite Γ (by 2. of Proposition 5 this
must be the case), whether α Γ= β is decidable.

4.5 Decidability, Soundness, and Completeness

Theorem 1. For α, β ∈ V∗, and uniform Γ ⊆ V∗ × V∗, there are finitely many
tableaux with root α =Γ β, and all of them can be effectively enumerated.

Proof. Note that the only rule in which the weak norms of states in the subgoals
can be greater than that in the original goal is rule unfold, and the priority rule
mentioned above determines that this rule can only be applied when all two
other rules are not applicable, and it is easy to see that this can only happen
when both states in the goal contains no more than 2 letters. This fact implies
that each state in the nodes of a tableau with root α ≈Γ β has bounded weak
norms. Then by 1. and 3. of Proposition 5 there are bounded number of different
labels in such a tableau. And since no two non-leaf nodes are labeled the same,

346 X. Liu and H. Chen

a tableau with root α ≈Γ β can only have bounded number of non-leaf nodes,
thus the number of tableaux with root α ≈Γ β must be finite.

There are finitely many (exactly 3) rules to apply on each node, and each rule
with finitely many different ways to apply, thus there is a way to enumerate all
different tableaux with a root α ≈Γ β. �"

This theorem gives us a decision procedure for the problem whether there is a
successful tableau with root α =Γ β, since we just need to enumerate all tableaux
with root α =Γ β, and then test if each of them are successful (this test is also
decidable as mentioned earlier).

Definition 7. A sound tableau is a tableau such that if α =Γ β is a label in it
then α ≈Γ β.

Theorem 2. A successful tableau is a sound tableau.

Proof. Let T be a successful tableau. We define W = {(α, Γ, β) | α, β ∈ V∗, Γ ⊆
V∗ × V∗ is uniform} to be the smallest set of triples satisfies the following:

1. if α Γ= β then (α, Γ, β) ∈W ;
2. if there is a node in T labeled with α =Γ β and on which rule unfold is

applied then (α, Γ, β) ∈ W ;
3. if (α, Γ, α′) ∈W , (γα′, Γ, β) ∈W , and ||γ|| > 1, then (γα, Γ, β) ∈ W ;
4. if (α, Γ ′, β) ∈ W , ||α|| = ||β|| > 1, and moreover (α′, β′) ∈ Γ ′ implies

(α′X,Γ, β′X) ∈ W , then (αX,Γ, βX) ∈W .

We will prove the following properties about W :

A. If α =Γ β labels a node in T then (α, Γ, β) ∈W .
B. If (α, Γ, β) ∈ W , then either ||α|| = ||β|| ≤ 1 and α Γ= β, or ||α|| > 1 and
||β|| > 1 and moreover the following hold:
(a) if α a−→ α′ then β â=⇒ β′ for some β′ such that (α′, Γ, β′) ∈ W ;
(b) if β a−→ β′ then α â=⇒ α′ for some α′ such that (α′, Γ, β′) ∈ W .

Clearly property B. implies that for every uniform Γ ,

BΓ = {(α, β) | (α, Γ, β) ∈W}

is a weak bisimulation w.r.t. Γ . Then together with property A. it implies that
T is a sound tableau.

We prove A. by induction on n = ||α|| = ||β||. If α =Γ β is a label of
an non-leaf node, there are three cases according to which rule is applied on
this node. If unfold is applied, then by rule 2. of the construction of W clearly
(α, Γ, β) ∈ W . If reduc is applied, in this case α =Γ β is of the form α1X =Γ

β1X , and the node has sons labeled by α1 =Γ ′ β1 and α′X =Γ β
′X for every

(α′, β′) ∈ Γ ′. Clearly α1, β1 and α′X, β′X for every (α′, β′) ∈ Γ ′ have shorter
weak norms than α and β, then by the induction hypothesis (α1, Γ

′, β1) ∈W and
(α′X,Γ, β′X) ∈ W for every (α′, β′) ∈ Γ ′. Then by rule 4. in the construction

Deciding Weak Bisimilarity of Normed Context-Free Processes 347

of W , (α, Γ, β) ∈ W . If align is applied, in this case α =Γ β is of the form
α1α2 =Γ β1β2 and the two sons have labels α1δβ2 =Γ β1β2 and α2 =Γ δβ2

where ||δ|| = ||β1|| − ||α1||. According to the priority of the applicability of the
rules in 4.4 reduc must be applied on α1δβ2 =Γ β1β2, then by what we have just
proved (α1δβ2, Γ, β1β2) ∈ W . Also α2, δβ2 have weak norms shorter than that
of α and β, by the induction hypothesis (α2, Γ, δβ2) ∈ W . Then by rule 3. of the
construction of W , (α, Γ, β) ∈W . If α =Γ β is a label of a leaf node, then since
T is a successful tableau either there is a non-leaf node also labeled by α =Γ β

and in this case we have proved that (α, Γ, β) ∈ W , or α Γ= β must hold and in
this case by rule 1. in the construction of W we also have (α, Γ, β) ∈W .

We prove B. by induction on the four rules define W . Suppose (α, Γ, β) ∈ W ,
there are the following cases.

Case of rule 1. i.e. α Γ= β. We have two subcases here. The first is ||α|| =
||β|| ≤ 1, then B. holds obviously. The second is ||α|| = ||β|| > 1, then it must
be that α = β and B. also holds.

Case of rule 2. i.e. there existsM which is a match for (α, β) such that α′ =Γ β
′

is a label of T for all (α′, β′) ∈ M . Then by A. it holds that (α′, Γ, β′) ∈ W for
all (α′, β′) ∈M , then by definition of a match, clearly B. holds.

Case of rule 3. i.e. there exist (α1, Γ, α2) ∈ W and (γα2, Γ, β) ∈ W where
||γ|| > 1 and α = γα1. If γα1

a−→ γ′′, we have to match this by looking for a β′

such that β â=⇒ β′ and (γ′′, Γ, β′) ∈W . Since ||γ|| > 1, it must be that γ a−→ γ′

and γ′′ = γ′α1 for some γ′, thus γα2
a−→ γ′α2. Now (γα2, Γ, β) ∈ W , by the

induction hypothesis there exists β′ ∈ V∗ such that β â=⇒ β′ and (γ′α2, Γ, β
′) ∈

W . Since (α1, Γ, α2) ∈W , by rule 2 we have (γ′α1, Γ, β
′) ∈W that is (γ′′, Γ, β′) ∈

W . For another direction, let β a−→ β′, since (γα2, Γ, β) ∈ W , by the induction
hypothesis there exists γ′′ such that γα2

â=⇒ γ′′ and (γ′′, Γ, β′) ∈ W . Since
||γ|| > 1, it must be that γ′′ = γ′α′, and γ â=⇒ γ′, thus γα1

â=⇒ γ′α1. Again
because (α1, Γ, α2) ∈W , by rule 2 we have (γ′α1, Γ, β

′) ∈W .
Case of rule 4. i.e. α = α0X and β = β0X for some α0, β0, X with ||α0|| =

||β0|| > 1, and (α0, Γ
′, β0) ∈ W , and moreover (α′, β′) ∈ Γ ′ implies (α′X,Γ,

β′X) ∈ W . Let α0X
a−→ α′′. Since ||α0|| > 1, it must be that α′′ = α′0X and

α0
a−→ α′0. Since (α0, Γ

′, β0) ∈ W , by the induction hypothesis there exists
β′0 ∈ V∗ such that β0

â=⇒ β′0 and (α′0, Γ
′, β′0) ∈ W . Now β0X

â=⇒ β′0X , and
(α′0X,Γ, β′0X) ∈ W by rule 4. The another direction can be proved in a similar
way. �"

This theorem means that the decision procedure for existence of successful
tableau with root α =Γ β is sound for α ≈Γ β.

Theorem 3. Let α, β ∈ V∗, and Γ ⊆ V∗×V∗ be uniform. If α ≈Γ β then there
is a successful tableau with root α =Γ β.

Proof. By using Propositions 6, 7, and 8 we can prove the following basic fact: if
a sound tableau T is not successful, then we can construct another sound tableau
T ′ which has the same root as T and which has one more non-leaf node than T .

348 X. Liu and H. Chen

Repeatedly using this basic fact, we can construct a sequence of sound
tableaux T0, . . . , Tn, . . . such that T0 is just the single leaf node α =Γ β. However
since there are only finitely many tableaux with root α =Γ β, this sequence must
end, and obviously the last tableau in the sequence is a successful tableau with
root α =Γ β. �"

This theorem means that the decision procedure for existence of successful
tableau with root α =Γ β is complete for α ≈Γ β.

At last, the following theorem shows how to use the decidability of ≈Γ to
solve the decidability of ≈.

Theorem 4. Let α, β ∈ V∗ be totally normed. Then α ≈ β if and only if there
exists a sound and uniform Γ ⊆ V∗ × V∗ such that α ≈Γ β.

Proof. The if direction follows from Lemma 2. For the only if direction, let
Γ = {(α′, β′) | ||α′|| = ||β′|| = 1, α′ ≈ β′}. It is easy to check that Γ is both
uniform and sound, and ≈ is a weak bisimulation with respect to Γ . Thus we
found a sound and uniform Γ such that α ≈Γ β. �"

Thus to decide whether α ≈ β, we just need to enumerate all uniform Γ , and
then check

1. if Γ is sound;
2. if α ≈Γ β holds.

We have already shown that 2. is decidable. The following easy to prove theorem
gives a decision procedure for 1. Thus for totally normed α, β ∈ V∗, whether
α ≈ β is decidable.

Theorem 5. Let Γ ⊆ V∗×V∗ be uniform. Then Γ is sound if and only if for all
(α, β) ∈ Γ , there is a match M for (α, β) such that α′ ≈Γ β

′ for all (α′, β′) ∈M .

4.6 Complexity of the Tableau System

The complexity of the tableau system can be measured in terms of the longest
path of a tableau. Let us examine the structure of a path of a tableau. A node
is called an unfold node if the rule unfold is applied on it. A segment of a path
is called a basic segment if non of the nodes in the segment is an unfold node. It
is clear that each path of a tableau consists of several basic segments separated
by a number of unfold nodes. Note that the unfold nodes on a path of a tableau
must be pairwise distinct, and by the discussion in the proof of Theorem 1 the
two states in an unfold node each contains no more than 2 variables. Thus the
number of unfold nodes in a path must be bounded by O(v4), where v is the
size of V . Thus if there is a bound M for the length of any basic segment,
then the longest path of a tableau is bounded by O(v4M). Now we define a set
S = {α |α a−→ β, length(α) ≤ 2} andM = max{||β|| |α a−→ β, α ∈ S}. It is easy
to see that M is the largest weak norm of any node following an unfold node.
Since rule reduc and align decrease norms, a basic segment is bounded by M .

Deciding Weak Bisimilarity of Normed Context-Free Processes 349

5 Conclusion

In this paper we introduced the notion of weak bisimulation with respect to an
uniform equivalence relation, and proposed a tableau decision method to decide
whether a pair of totally normed context-free processes are weak bisimilar w.r.t.
an uniform equivalence relation. Since weak bisimulation w.r.t. an equivalence
relation subsumes weak bisimulation as a special case, we obtain a tableau de-
cision procedure for weak bisimilarity of totally normed context-free processes.
The tableau decision procedure is intuitively more appealing than the decidabil-
ity proofs by Stirling [10] and Hirshfeld [9]. Recent results by Richard Mayr show
that the problem is EXPTIME-hard for (general) BPA and even for normed BPA
[13].

For future work we are interested to see if this tableau method can be extended
to instances where the restriction of totally normedness can be relaxed.

References

1. Moller, F.: Infinite results. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996.
LNCS, vol. 1119, pp. 195–216. Springer, Heidelberg (1996)

2. Esparza, J.: Decidability of model checking for infinite-state concurrent systems.
Acta Informatica 97(34), 85–107 (1997)

3. burkart, O., Esparza, J.: More infinite results. Electronic Notes in Theoretical
computer Science 5 (1997)

4. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Decidability of bisimulation equiva-
lence for processes generating context-free languages. Journal of the Association
for Computing Machinery 93(40), 653–682 (1993)

5. Christensen, S., Hüttel, H., Stirling, C.: Bisimulation equivalence is decidable for
all context-free processes. Information and Computation 95(121), 143–148 (1995)

6. Burkart, O., Caucal, D., Steffen, B.: An elementary bisimulation decision procedure
for arbitrary context-free processes. In: Hájek, P., Wiedermann, J. (eds.) MFCS
1995. LNCS, vol. 969, pp. 423–433. Springer, Heidelberg (1995)

7. Srba, J.: Roadmap of Infinite Results. In: Current Trends in Theoretical Computer
Science, The Challenge of the New Century. Formal Models and Semantics, vol. 2,
pp. 337–350. World Scientific Publishing Co., Singapore (2004)

8. Esparza, J.: Petri nets,commutative context-free grammars, and basic parallel
processes. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 221–232. Springer,
Heidelberg (1995)

9. Hirshfeld, Y.: Bisimulation trees and the decidability of weak bisimulations. In:
INFINITY’96. Proceedings of the 1st International Workshop on Verification of
Infinite State Systems, Germany, vol. 5 (1996)

10. Stirling, C.: Decidability of bisimulation equivalence for normed pushdown
processes. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119,
pp. 217–232. Springer, Heidelberg (1996)

11. Hüttel, H., Stirling, C.: Actions speak louder than words. Proving bisimilarity for
context-free processes. In: LICS 91. Proceedings of 6th Annual symposium on Logic
in Computer Science, Amsterdam, pp. 376–386 (1991)

12. Hans, H.: Silence is golden: Branching bisimilarity is decidable for context-free
processes. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 2–12.
Springer, Heidelberg (1992)

350 X. Liu and H. Chen

13. Mayr, R.: Weak bisimulation and regularity of BPA is EXPTIME-hard. In: EX-
PRESS’03. Proceedings of the 10th International Workshop on Expressiveness in
Concurrency, France, pp. 143–160 (2003)

14. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

15. Milner, R.: Communication and Concurrency. Prentice-Hall International, Engle-
wood Cliffs (1989)

16. Bergstra, J.A., Klop, J.W.: Process theory based on bisimulation semantics. In:
Proceedings of REX Workshop, Amsterdam, The Netherlands, pp. 50–122 (1988)

17. Caucal, D.: Graphes canoniques de graphes algébriques. Informatique théorique et
Applications(RAIRO) 90-24(4), 339–352 (1990)

18. Hirshfeld, Y., Jerrum, M., Moller, F.: Bisimulation equivalence is decidable for
normed process algebra. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.)
ICALP 1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)

Linear Context Free Languages

Roussanka Loukanova

Computational Linguistics
Dept. of Linguistics and Philology

Uppsala University
rloukano@stp.lingfil.uu.se

Abstract. In this paper, I present the class of linear context free lan-
guages (LCFLs) with a class of non-deterministic one-way two-head (read
only) automata, called non-deterministic linear automata (NLA). At the
begining of the work of an NLA, the reading heads are installed under
the opposite ends of the given input string. Then, each head can move in
one direction only, the left head from left to right, while the right head
from right to left. I give formal definitions of two non-deterministic ver-
sions of the linear automata, without and with ε-transitions, and their
corresponding computations. Deterministic linear automata model un-
ambiguous structural analysers, while the class of the languages recog-
nized by them does not coincide with the class of deterministic linear
languages recognized by deterministic push-down machines. I compare
the linear automata with other models of LCFLs. In particular, I con-
sider a subclass of unambiguous linear context-free languages and define
corresponding linear automata serving as efficient parsing tools for them,
in deterministic and non-deterministic variants.

1 Introduction

Various automata models have been proposed for the class of linear context-free
languages (LCFLs) and some of its subclasses. For overviews, see, for exam-
ple, Hopcroft and Ullman [7], Salomaa [11], Rosenberg and Salomaa [10], and
Autebert, Berstel and Boasson [6]. In particular, Amar and Putzolu, in [2] and
[3], studied automata realization of the even LCFLs; Ibarra [8] described the
power properties of the class of the two-way multi-head automata; Rosenberg
[9] gave 2-tape finite automata characterization of LCFLs; Andrei and Kudlek
[4] introduced a parsing algorithm for a subclass of LCFLs.

This paper1 introduces a class of non-deterministic linear automata (NLA)
recognizing the class of LCFLs. I will give a formal presentation of the NLA
and some of their properties with some suggestions for potential applications.
Intuitively, an NLA has: a tape in the cells of which an input string over a given
input alphabet is written; a control unit that can be in any of a given finite
number of states; a subset of states designated as the final states; a set of work
instructions defined by a transition function; and two reading heads. An NLA is
1 I am grateful to anonymous readers of this paper for their valuable feedback.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 351–365, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

352 R. Loukanova

similar to a finite state automaton except that the work of an NLA is distributed
among two heads. At start, the heads are installed correspondingly under the
leftmost and rightmost end characters of the input. Each head can move in one
direction only: the left head advances cell-by-cell from the leftmost beginning
of the string in the right direction, while the right head proceeds similarly in
the opposite direction. At each move (i.e., at each discrete step), depending on
the state of the control and the symbol scanned by either of the heads, the
control chooses non-deterministically one of the heads as being active, goes non-
deterministically into a set of new states and moves the active head one cell
forward in its direction. The automaton halts when no further move is defined
by its transition function, or right after all characters of the input have been
read. The input string is recognized just in case when all of its characters have
been read and the control is in a final state.

Rosenberg [9] represents a correspondence between LCFLs and sets of ordered
pairs of strings 〈x, y〉. For each LCFL L, there is a two-tape one-way automatonA,
such that a stringα ∈ L iff there is a pair of strings 〈x, y〉 such thatα= xy−1, where
y−1 is the reversal of y, and 〈x, y〉 brings the automaton to an accepting state by
placing x on the first tape and y on the second. Rosenberg’s model is an important
characterization of the LCFLs and their properties, which implies various theo-
retical results. While being equivalent to Rosenberg’s model (Rosenberg [9]) with
respect to the recognized class of languages, NLA have distinctive computational
features. Firstly, NLA define analyses of the input strings without splitting them.
Secondly, the sequences of computations over input strings associate corresponding
analyses to them in a direct mode which represents their structure.

NLA computations model natural processes and structures in deterministic
and non-deterministic variants. An NLA is a direct computational model of sym-
metrically dependent patterns which are symbolically encoded with strings and
computation steps of the NLA over strings. Note that the modelled patterns are
not necessarily symmetric. They may have symmetrically dependent branches, as
for example, in a pattern A1 . . . AkBk . . . B1, where Ai and Bi (i ≥ 1) represent
branches that are dependent on each other.

The class of NLA gives possibilities for efficient parsing and pattern recogni-
tion. For example, a subclass of NLA, presented in this paper, realizes a parsing
algorithm defined by Andrei and Kudlek [4].

2 Non-deterministic Linear Automata (NLA)

2.1 The Basic Definitions of NLA

Definition 1. A nondeterministic linear automaton (NLA) is a tuple M =
〈Q,Σ, δ, q0, L,R, F 〉, where

1. Q �= ∅ is a nonempty finite set; the elements of Q are called the states of M ;
2. Σ is a finite set called the input alphabet of M ;
3. q0 ∈ Q is a distinguished state called the initial state of M ;
4. L,R �∈ Q ∪ Σ, L �= R; L and R are interpreted as markers for the left and

right reading heads, correspondingly;

Linear Context Free Languages 353

5. F ⊆ Q; the elements of F are called the final states of M ;
6. δ : Q×Σ −→ P(Q× {L,R}) is the transition function of M .

Let M = 〈Q,Σ, δ, q0, L,R, F 〉 be an NLA. In a more detailed informal way,
the work of M can be described as follows. Each input to the sequences of
calculations performed byM is a string α ∈ Σ∗ given to M by having it written
on the tape in the usual way, the successive characters in successive cells. At
the beginning of the work, the control is in its initial state q0, the left reading
head is installed under the first character of α, while the right head is under the
last character of α. At each step of the work, exactly one of the two heads is
advanced in its direction to the next cell — the left head to right, the right head
to left. At the beginning of each step, both heads are scanning their position
cells. The move is determined non-deterministically by the current state of the
control and the character scanned by the head that is selected to be moved. On
completion of a step, the control can non-deterministically enter multiple states.
After some moves, both heads can get positioned under one and the same cell.
Depending on the transition function of M , either of the heads can read the
character in that cell and get advanced into its direction. At that moment, the
heads cross each other and M halts. The work can end before such move, if no
transition is defined. Formally, the successive moves, i.e., all possible sequences
of calculations ofM on any given string α ∈ Σ∗ are determined by the transition
function δ. The following cases are possible:

1. Let q ∈ Q and a ∈ Σ. Assume that the control of M is in the state q and
both heads are scanning the character a in the same or different tape cells.
Let, for some p1, . . . , pk, q1, . . . , ql ∈ Q,

δ(q, a) = {(p1, L), . . . , (pk, L), (q1, R), . . . , (ql, R)} (1)

(a) If k, l ≥ 1, M selects non-deterministically either of the two heads to
be the active one. If the left head has been selected, it reads its charac-
ter a and advances in the right direction, while the control enters non-
deterministically the states p1, . . . , pk. The right head stays at its place
during any such move. Or, non-deterministically, M can select the right
head as being the one that reads the a in its square and moves in the left
direction. The control enters the states q1, . . . , ql in a non-deterministic
mode.

(b) If k = 0 (l = 0) and l ≥ 1 (k ≥ 1), the left (right) head stays under its
a without reading it (at least, as long as the control is in the state q),
while the other head reads its a and moves in its direction by entering
non-deterministically the states q1, . . . , ql (p1, . . . , pk).

(c) If k = 0 and l = 0, M halts without being able to read a.
2. Let q ∈ Q, a, b ∈ Σ and a �= b. Assume that the control of M is in the state
q and the left head is scanning a, while the right head is under the other
symbol b. Let for some p1, . . . , pk, q1, . . . , ql ∈ Q

δ(q, a) = {(p1, L), . . . , (pk, L), (q1, R), . . . , (ql, R)} (2)

354 R. Loukanova

And let for some r1, . . . , rm, s1, . . . , sn ∈ Q

δ(q, b) = {(r1, L), . . . , (rm, L), (s1, R), . . . , (sn, R)} (3)

(a) If k ≥ 1, the left head can be selected non-deterministically to be
active during the current move. In such case, the control enters non-
deterministically the states p1, . . . , pk, determined by (2).

(b) If n ≥ 1, the right head can be selected non-deterministically as the
active one for the current move. In such case, the control enters non-
deterministically the states s1, . . . , sn, determined by (3).

(c) If k = 0 and n = 0, M halts without being able to read.

We say that a square is read-off iff it has been scanned by one of the heads
which then moves into its direction. We require that each square is read at
most once either by the left or the right head. This means that after the heads
exchange their sides, e.g. when the left head has just moved to the right hand
side of the right head (or the vice versa) the NLA M halts its work.
M behaves non-deterministically (disjunctively) in two different aspects. At

first, one non-deterministic branch of computations can be followed by choosing
either of the heads to be moved according to the transition function. Second, after
the choice of the active head has been made, the control can be simultaneously,
i.e., non-deterministically, in more than one state.

2.2 NLA’s Configurations and Sequences of Computations. Some
Examples

Let M = 〈Q,Σ, δ, q0, L,R, F 〉 be an NLA. The successive moves and stages of
the work of an NLA M are formalized by the notion of a configuration and the
traditional binary relation � between configurations.

Definition 2. A configuration of M is an ordered pair 〈q, α1Xα2Y α3〉, where
q ∈ Q, α1, α2, α3 ∈ Σ∗, and X,Y ∈ {L,R} are such that either:

1. X = L, Y = R, and α2 �= ε; or
2. X = L, Y = R, and α1 = α2 = α3 = ε; or
3. X = R, Y = L, α2 = ε, and α1α3 �= ε.

An initial configuration is any configuration 〈q0, LωR〉, where q0 is the ini-
tial state of M and ω ∈ Σ∗. An accepting configuration is any configuration
〈q, α1RLα2〉, where q ∈ F and α1, α2 ∈ Σ∗ (α1α2 �= ε), or 〈q, LR〉 where q ∈ F
(the later is possible only if q = q0 ∈ F).

A configuration 〈q, α1Xα2Y α3〉 represents an instantaneous description of the
work of an automaton M after a finite number of steps. The string α1α2α3 is
the input written on the tape and it has to be either recognized or rejected
by M . The markers X,Y ∈ {L,R} represent the left and right reading heads,
respectively. The above three kinds of configurations ofM are interpreted in the
following way:

Linear Context Free Languages 355

1. 〈q, α1Lα2Rα3〉, where q ∈ Q, α1, α2, α3 ∈ Σ∗ and α2 �= ε. The control of
M is in the state q, the left head is scanning the first character of α2, while
the right head is scanning the last character of α2. The strings α1 and α3

have already been read by the left and right head, respectively. The string
α2 is pending to be read. In the case when α2 ∈ Σ, both heads are scanning
the same square filled up with the symbol α2, and either one of them may
read it in the next move if δ(q, α2) is appropriately defined. After one of the
heads has read α2, the entire string α1α2α3 has been read and M halts.

2. 〈q, LR〉 where q ∈ Q. The tape is empty and both heads are scanning its first
square which is blank. By the formal definitions of a configuration (Defini-
tion 2) and of the moves of M (Definition 3) any configuration of the kind
〈q, α1LRα3〉 is unreachable unless q = q0 and α1α3 = ε.

3. 〈q, α1RLα3〉, where q ∈ Q, α1, α3 ∈ Σ∗ and α1α3 �= ε

(a) α1 = α′1a and α3 = bα′3 for some α′1, α
′
3 ∈ Σ∗ and a, b ∈ Σ. The

interpretation of the configuration 〈q, α′1aRLbα′3〉 is as follows. The string
α′1a has been read-off by the left head which after scanning and reading-
off the last character a of α1 has moved under the next right hand side
square which is filled up by b. The string bα′3 has been read-off by the
right head which after scanning and reading-off the leftmost symbol b of
α3 has moved to its left hand side, i.e. under a. The two heads have just
crossed and exchanged their positions. Since all input characters have
been read-off and any square can be read-off at most once, M halts.

(b) α3 = ε and α1 = α′1a for some a ∈ Σ. In this case, the configuration
is 〈q, α′1aRL〉. The input string has been read-off only by the left head
during its moves to right, while the right head has not done any move
at all.

(c) α1 = ε and α3 = bα′3 �= ε. Similarly to the previous case, the configu-
ration is 〈q,RLα3〉, where the string α3 has been read-off by the right
head with moves in the left direction.
Notice that if X = R, Y = L, α1 = α1 = α3 = ε, then 〈q, α1Xα2Y α3〉 =
〈q,RL〉. In this case, the “configuration” is unreachable by M , because
according to Definition 1, a NLA, does not allow any ε-transitions.

Next, we define the traditional computation steps �M and �∗M of M . If Φ
and Ψ are some configurations, then Φ �M Ψ is interpreted as an immediate
(one-step) move of M from the configuration Φ to the configuration Ψ , while
Φ �∗M Ψ is a sequence of successive moves from Φ to Ψ . Formally:

Definition 3. The binary relation �M between configurations of M , called an
immediate move (or transition) of M , is defined as follows. For any two con-
figurations Φ and Ψ of M , Φ �M Ψ iff there are some p, q ∈ Q, a ∈ Σ and
α1, α2, α3 ∈ Σ∗, such that one of the following conditions is fulfilled:

1. (q, L) ∈ δ(p, a), α2 �= ε, Φ = 〈p, α1Laα2Rα3〉 and Ψ = 〈α1aLα2Rα3〉,
i.e., 〈p, α1Laα2Rα3〉 �M 〈q, α1aLα2Rα3〉;

356 R. Loukanova

2. (q, L) ∈ δ(p, a), α2 = ε, Φ = 〈p, α1LaRα3〉 and Ψ = 〈q, α1aRLα3〉,
i.e., 〈p, α1LaRα3〉 �M 〈q, α1aRLα3〉;
(The left head has just moved to right and is scanning the leftmost character
of α3, while the right head is under the square containing a. No further
transitions are possible because all characters have been read-off.)

3. (q,R) ∈ δ(p, a), α2 �= ε, Φ = 〈p, α1Lα2aRα3〉 and Ψ = 〈q, α1Lα2Raα3〉,
i.e., 〈p, α1Lα2aRα3〉 �M 〈q, α1Lα2Raα3〉;

4. (q,R) ∈ δ(p, a), α2 = ε, Φ = 〈p, α1LaRα3〉 and Ψ = 〈q, α1RLaα3〉,
i.e., 〈p, α1LaRα3〉 �M 〈q, α1RLaα3〉.

If Φ and Ψ are two configurations such that Φ �M Ψ , we say that M has done
an immediate move (or an immediate transition step) from Φ to Ψ .

Let �∗M be the binary relation between configurations of M , which is the tran-
sitive and reflexive closure of �M . In case that Φ �∗M Ψ , we say that there is a
transition of M from the configuration Φ to the configuration Ψ . We also say
that M has done a sequence of (successive) moves from Φ to Ψ .

Definition 4. The language L(M) accepted (i.e., recognized) by M is the set

L(M) = {ω : ω ∈ Σ∗, 〈q0, LωR〉 �∗M Ψ, where Ψ is an accepting configuration}.

Corollary 1. The language L(M) accepted by M is the set

L(M) = {ω : ω ∈ Σ∗ and 〈q0, LωR〉 �∗M 〈q, α1RLα2〉 for some q ∈ F and
α1, α2 ∈ Σ∗ such that ω = α1α2} ∪ Γ , where

Γ =
{
ε, if q0 ∈ F ;
∅, otherwise.

Proof. By the definition of the relation �∗M , the definition of an accepting con-
figuration (Definition 2) and Definition 4. �"

Lemma 1. Let M = 〈Q,Σ, δ, q0, L,R, F 〉 be an NLA. For every p, q ∈ Q and
every ω, α1, α2, α3, β1, β2 ∈ Σ∗ such that ω = α1α2α3, it is true that

〈p, LωR〉 �∗M 〈q, α1Lα2Rα3〉

if and only if
〈p, β1LωRβ2〉 �∗M 〈q, β1α1Lα2Rα3β2〉.

Proof. The proof can be easily carried on by induction on the length of �∗M . �"

The following are examples of languages recognized by NLA:

Example 1. L = {anbncm : n,m ∈ N, n,m ≥ 1}.

Example 2. L = {anbm : n,m ∈ N, n ≥ m ≥ 1}.

Linear Context Free Languages 357

Example 3. Let Σ be an alphabet and let k ∈ N, k ≥ 1, m1, . . . ,mk ∈ N,
n1, . . . , nk ∈ N, a1, . . . , ak ∈ Σ and b1, . . . , bk ∈ Σ.

1. L1 = {ax1
1 . . . a

xk

k b
mkxk+nk

k . . . bm1x1+n1
1 : x1, . . . , xk ∈ N};

2. L2 = {am1x1+n1
1 . . . amkxk+nk

k bxk

k . . . b
x1
1 : x1, . . . , xk ∈ N}.

Example 4. A more interesting class of NLA, with potential applications in sym-
metric dependences, are those recognizing the following LCFLs:

Let k ∈ N, k ≥ 1, m1, . . . ,mk, n1, . . . , nk ∈ N, a1, . . . , ak, b1, . . . , bk ∈ Σ, and
let f1, . . . , fk, g1, . . . , gk, be given functions such that, for every i ∈ {1, . . . , k},
either fi(xi) = xi and gi(xi) = mixk +ni or gi(xi) = xi and fi(xi) = mixk +ni.

L = {af1(x1)
1 . . . a

fk(xk)
k b

gk(xk)
k . . . b

g1(x1)
1 : x1, . . . , xk ∈ N}.

Example 5. Let L1, . . . , Lk be languages recognized by NLA, i.e., for every i =
1, . . . , k, there is an NLA Mi such that Li = L(Mi), and let

L = {α1 . . . αkβk . . . β1 : αiβi ∈ Li for i = 1, . . . , k}

Then L = L(M) for an NLA M .

3 NLA and Linear Context Free Grammars

Definition 5. A linear context free grammar, or in brief, a linear grammar, is
a context free grammar G = 〈N,Σ, S, P 〉 (in the Chomsky hierarchy), the rules
of which are of the form A → αB, A → Bα or A → α, where A,B ∈ N and
α ∈ Σ∗.

Definition 6. A linear grammar G is in a standard form if all of its rules are
of the form A→ aB, A→ Ba or A→ a, where A,B ∈ N and a ∈ Σ; and also
in case when G contains the rule S → ε, where S is the initial nonterminal of
G and S does not occur in the right hand side of any rule. If a linear grammar
G is in a standard form, we say that G is a standard linear grammar.

Theorem 1. (An well known result) For each linear grammar G there is an
equivalent linear grammar G′ in a standard form, i.e., such that L(G) = L(G′).

Construction of NLA from Linear Grammar: Let G = 〈N,Σ, S, P 〉 be a
standard linear grammar such that L = L(G). Let R,L and qf be new pairwise
different symbols such that R,L, qf �∈ N ∪ Σ. Consider the NLA M = 〈N ∪
{qf}, Σ, δ, S,R, L, F 〉, where N ∪{qf} is the set of the states ofM , and the initial
symbol S of G is the initial state ofM . The set of the final states ofM is:

F =

⎧⎨⎩{qf , S}, if ε ∈ L;

{qf}, otherwise.
(4)

358 R. Loukanova

The transition function δ is defined as follows. For every A ∈ N , a ∈ Σ and
X ∈ {L,R},

δ(A, a) = {(B,L) : B ∈ N and A→ aB ∈ P}∪
{(B,R) : B ∈ N and A→ Ba ∈ P}∪
{(qf , L) : A→ a ∈ P}

(5)

Lemma 2. Let G = 〈N,Σ, S, P 〉 be a standard linear grammar. Let M be the
NLA constructed as above. Then for all A ∈ N and ω ∈ Σ∗ such that ω �= ε:

if A⇒∗
g
ω then 〈A,LωR〉 �∗M 〈qf , α1RLα2〉

for some α1, α2 ∈ Σ∗ such that ω = α1α2.
(6)

Proof. Using induction on i, we prove that for all i ≥ 1:

if A⇒i
g
ω, then 〈A,LωR〉 �∗M 〈qf , α1RLα2〉

for some α1, α2 ∈ Σ∗ such that ω = α1α2. (7)

Basis. Let A ⇒g ω. Since G is in a standard form, then A → a ∈ P for some
a ∈ Σ such that ω = a. Hence, (qf , L) ∈ δ(A, a), and 〈A,LaR〉 �M 〈qf , aRL〉.
Induction Step. Assume that the claim is true for some i ≥ 1. Let A⇒i+1

g
ω.

Case 1. There is an a ∈ Σ such that the derivation A⇒i+1
g
ω is of the form:

A ⇒g aB ⇒i
g
ω. Then A → aB ∈ P and ω = aω1 for some ω1 ∈ Σ+ such

that B ⇒i
g
ω1. Hence, (B,L) ∈ δ(A, a), and by the induction hypothesis:

〈B,Lω1R〉 �∗M 〈qf , α1RLα2〉 for some α1, α2 ∈ Σ∗ such that ω1 = α1α2. (8)

Then ω = aω1 = aα1α2. By (B,L) ∈ δ(A, a) and the definition of the relation
�M , and then, by (8) and Lemma 1, respectively, it follows that:

〈A,LωR〉 = 〈A,Laω1R〉 �M 〈B, aLω1R〉 �i
M 〈qf , aα1RLα2〉.

Case 2. There is an a ∈ Σ such that the derivation A ⇒i+1
g

ω is of the form:
A⇒g Ba⇒i

g
ω. The proof is similar to the Case 1. �"

Lemma 3. Let G = 〈N,Σ, S, P 〉 be a standard linear grammar. Let M be the
NLA constructed as above. Then for all A ∈ N and ω ∈ Σ∗ such that ω �= ε:

if 〈A,LωR〉 �∗M 〈qf , α1RLα2〉 for some α1, α2 ∈ Σ∗
such that ω = α1α2,

then A⇒∗
g
ω.

(9)

Proof. Using induction on i, we prove that for all i ≥ 1:

if 〈A,LωR〉 �i
M 〈qf , α1RLα2〉 for some α1, α2 ∈ Σ∗

such that ω = α1α2,
then A⇒∗

g
ω.

(10)

Linear Context Free Languages 359

Basis. Let 〈A,LωR〉 �M 〈qf , α1RLα2) for some α1, α2 ∈ Σ∗ (ω = α1α2). Then,
there is a ∈ Σ such that ω = a, α1 = a, α2 = ε and (qf , L) ∈ δ(A, a). Hence,
A→ a ∈ P , and A⇒g a.
Induction Step. Assume that the claim is true for some i ≥ 1. Let

〈A,LωR〉 �i+1
M 〈qf , α1RLα2), where ω = α1α2. (11)

Case 1. There are some a ∈ Σ, ω1 ∈ Σ∗, and B ∈ N such that ω = aω1 and
the sequence of the transitions (11) is:

〈A,LωR〉 = 〈A,Laω1R〉 �M 〈B, aLω1R〉 �i
M 〈qf , α1RLα2〉 (12)

Then α1 = aα′1 for some α′1 ∈ Σ∗ such that ω1 = α′1α2 and 〈B, aLω1R〉 �i
M

〈qf , aα′1RLα2〉. By Lemma 1, 〈B,Lω1R〉 �i
M 〈qf , α′1RLα2〉. Therefore, by the

induction hypothesis, B ⇒∗
g
α′1α2 = ω1. The first transition in (12) is possible

only if (B,L) ∈ δ(A, a). By the definition of the transition function δ, it follows
that A→ aB ∈ P . Therefore,

A⇒g aB ⇒∗
g
aω1 = ω.

Case 2. There are some a ∈ Σ, ω1 ∈ Σ∗ and B ∈ N such that ω = ω1a
and the sequence (11) of the transitions is: 〈A,Lω1aR〉 �M 〈B,Lω1Ra〉 �i

M

〈qf , α1RLα2〉. The proof is similar to the one for the Case 1. �"

Lemma 4. Let G = 〈N,Σ, S, P 〉 be a standard linear grammar. Let M be the
NLA constructed as above. Then for all A ∈ N and ω ∈ Σ∗ such that ω �= ε:

A⇒∗
g ω iff 〈A,LωR〉 �∗M 〈qf , α1RLα2〉

for some α1, α2 ∈ Σ∗ such that ω = α1α2. (13)

Proof. Follows from Lemma 2 and Lemma 3. �"

Theorem 2. If L is a linear language, then L = L(M) for some NLA M .

Proof. Let L be a linear language, then there is a standard linear grammar
that generates it. Let G = 〈N,Σ, S, P 〉 be such standard linear grammar, i.e.,
L = L(G). Let M be the NLA constructed as above from G. Let ω ∈ Σ∗.
Case 1. If ω = ε, then by the construction of M ,

ε ∈ L = L(G) iff S ∈ F iff ε ∈ L(M). (14)

Case 2. If ω �= ε, then, by Lemma 4,

S ⇒∗
g
ω iff 〈S,LωR〉 �∗M 〈qf , α1RLα2〉

for some α1, α2 ∈ Σ∗ such that ω = α1α2. (15)

By (14) and (15), it follows that for all ω ∈ Σ∗, ω ∈ L(G) iff ω ∈ L(M).
Therefore, L(G) = L(M). �"

360 R. Loukanova

Construction of Linear Grammar from NLA: Consider an NLA M =
〈Q,Σ, δ, q0, R, L, F 〉. Construct the grammar G = 〈N,Σ, S, P 〉, where N = Q,
S = q0, and the set of rules P is:

P = {q → ap : p, q ∈ Q, and (p, L) ∈ δ(q, a)}∪
{q → a : q ∈ Q, p ∈ F and (p, L) ∈ δ(q, a)}∪
{q → pa : p, q ∈ Q, and (p,R) ∈ δ(q, a)}∪
{q → a : q ∈ Q, p ∈ F and (p,R) ∈ δ(q, a)} ∪ P ′

(16)

where P ′ = {q0 → ε}, if q0 ∈ F , otherwise P ′ = ∅.

Lemma 5. Let M = 〈Q,Σ, δ, q0, R, L, F 〉 be an NLA, and G be the grammar
constructed as above by (16). Then for all q ∈ Q and ω ∈ Σ∗ such that ω �= ε:

if 〈q, LωR〉 �∗M 〈p, α1RLα2〉, for some p ∈ F and α1, α2 ∈ Σ∗,
such that ω = α1α2,

then q ⇒∗
g
ω.

(17)

Proof. (outline) Using induction on i, i ≥ 1, we prove that for all q ∈ Q and
ω ∈ Σ∗ such that ω �= ε:

if 〈q, LωR〉 �i
M 〈p, α1RLα2〉, for some p ∈ F and α1, α2 ∈ Σ∗,

such that ω = α1α2,
then q ⇒∗

g
ω.

(18)

The statement (17) follows from (18). �"

Lemma 6. Let M = 〈Q,Σ, δ, q0, R, L, F 〉 be an NLA, and G be the grammar
constructed as above by (16). Then for all q ∈ Q and ω ∈ Σ∗ such that ω �= ε:

if q ⇒∗
g
ω, then 〈q, LωR〉 �∗M 〈p, α1RLα2〉,

for some p ∈ F and α1, α2 ∈ Σ∗ (ω = α1α2)
(19)

Proof. (outline) By induction on i, i ≥ 1, we prove that for all q ∈ Q and ω ∈ Σ∗
such that ω �= ε:

if q ⇒i
g
ω, then 〈q, LωR〉 �∗M 〈p, α1RLα2〉,

for some p ∈ F and α1, α2 ∈ Σ∗ (ω = α1α2)
(20)

Then, (19) follows from (20). �"

Lemma 7. Let M = 〈Q,Σ, δ, q0, R, L, F 〉 be an NLA, and G be the grammar
constructed as above by (16). Then for all q ∈ Q and ω ∈ Σ∗ such that ω �= ε:

q ⇒∗
g
ω iff 〈q, LωR〉 �∗M 〈p, α1RLα2〉,

for some p ∈ F and α1, α2 ∈ Σ∗ (ω = α1α2)
(21)

Proof. The statement follows from Lemma 5 and Lemma 6. �"

Theorem 3. If L is such that L = L(M) for some NLA, then there is a linear
grammar G (in a standard form) such that L = L(G).

Linear Context Free Languages 361

Proof. Let L = L(M), where M = 〈Q,Σ, δ, q0, L,R, F 〉 is an NLA. Let G be the
grammar constructed as above by (16). Let ω ∈ Σ∗.
Case 1. If ω = ε, then by the construction of G,

ε ∈ L(G) iff q0 ∈ F iff ε ∈ L = L(M). (22)

Case 2. If ω �= ε, then, by Lemma 7,

q0 ⇒∗
g
ω iff 〈q0, LωR〉 �∗M 〈p, α1RLα2〉

for some p ∈ F and α1, α2 ∈ Σ∗ (ω = α1α2)
(23)

By (22) and (23), it follows that for all ω ∈ Σ∗, ω ∈ L(G) iff ω ∈ L(M).
Therefore, L = L(G) = L(M). �"

Definition 7. A NLA M = 〈Q,Σ, δ, q0, L,R, F 〉 is called a deterministic linear
finite automaton (DLA), if all values of δ have at most one element.

There are linear languages that are recognised by deterministic push down au-
tomata, but for which there is no DLA. An example of such a language is
L1 = {ancbn, anb2n : n ∈ N, n ≥ 1}. And vice versa, there are non-deterministic
context-free languages (i.e., such that are not recognizable by any deterministic
push down automata), that can be recognized by DLA. An example of such
language is L2 = {anbnc, anb2n : n ∈ N, n ≥ 1}.

4 NLA with ε-Transitions

In this section, I will generalize the class of the NLA by permitting ε-transitions,
i.e., moves from one to another state without reading input symbols and without
advancing any of the reading heads. This generalization does not add to the
power of the NLA, but the construction of the class LA(m,n) of automata given
in the following section is significantly simplified by permitting ε-transitions.

Definition 8. A nondeterministic linear automaton (NLA) which allows ε-tran-
sitions is a tuple M = 〈Q,Σ, δ, q0, L,R, F 〉, where

1. Q �= ∅ is the set of the states of M ;
2. Σ is a finite set, that is the input alphabet of M ;
3. q0 ∈ Q is the initial state of M ;
4. L,R �∈ Q∪Σ, L �= R; L and R are the markers for the left and right reading

heads, correspondingly;
5. F ⊆ Q is the set of the final states of M ;
6. δ : Q×Σ ∪ {ε} −→ P(Q× {L,R, ε}) is the transition function of M .

Note that infinite ε-loops are possible and can be algorithmically detected and re-
moved. An algorithms for this will be included in the complete version of the paper.

Theorem 4. For each NLA, M with ε-transitions, there is an NLA M ′ without
ε-transitions recognizing the same language, i.e., such that L(M) = L(M ′).

362 R. Loukanova

Proof. The intuition behind the formal proof is that, at first, all chains of suc-
cessive ε-transitions are calculated. Then each chain of successive ε-transitions
starting from a state q and ending in a state p is replaced by non-ε-transitions
in all possible (non-deterministic) ways: for each a ∈ Σ, we add all elements of
the set δ(p, a) to the set of the elements of δ(q, a). �"

5 A Class of Unambiguous Linear Languages and Linear
Automata

Andrei and Kudlek [4] consider a subclass of linear languages generated by a
subclass LLin(m,n) of linear grammars that resemble the class of LL(k) gram-
mars (see Aho and Ullman [1] and Hopcroft and Ullman [7]). They also define
a class of bidirectional parsers corresponding to LLin(m,n) that, intuitively,
“look ahead” the next m terminal symbols and the “look back” to the previous
n terminals to determine uniquely the grammar rule that has to be used. The
class of LLin(m,n) grammars is useful because it designate an unambiguous
subclass of linear languages the membership problem for which can be solved
by a linear time complexity algorithm. In this section, I will introduce some of
the definitions (in slightly modified versions of those in Andrei and Kudlek [4])
of the class of LLin(m,n) languages and then I wil define a class of linear au-
tomata, LA(m,n) that recognizes the same class LLin(m,n) of languages. The
linear automata LA(m,n) are an automata version of the bidirectional parsers of
Andrei and Kudlek [4].

Definition 9. Let A be an alphabet, k, n,m ∈ N and w = w1 . . . wk ∈ A∗, where
w1, . . . , wk ∈ A. Then

(m)w =

⎧⎨⎩w1 . . . wm, if m ≤ k

w, otherwise.
w(n) =

⎧⎨⎩wk−n+1 . . . wk, if n ≤ k

w, otherwise.

Definition 10. Let G = 〈N,Σ, S, P 〉 be a linear grammar and let n,m ∈ N.
The grammar G is said to be LLin(m,n) if for every pair of derivations

A =⇒ α1 =⇒∗ x and A =⇒ α2 =⇒∗ y

where x, y ∈ Σ∗, A ∈ N and α1, α2 ∈ (N ∪ Σ)∗, the equalities of the m left-
most and n rightmost characters of x and y, respectively, i.e. (m)x =(m) y and
x(n) = y(n), imply that α1 = α2 (i.e., the rule that is applied, A→ α, is uniquely
determined by looking at the first m and last n symbols of the generated string).

The class of all languages L such that for some m,n ∈ N there is a LLin(m,n)
grammar G for which L = L(G) is denoted by LLin(m,n). There are lin-
ear languages that are not in LLin(m,n) for any m,n ∈ N. For example,
L1 = {ancbn, anb2n : n ≥ 1} is such language. Also, every LLin(m,n) gram-
mar is unambiguous, but there are unambiguous linear languages that are not
LLin(m,n) (see Andrei and Kudlek [4]).

Linear Context Free Languages 363

Definition 11. Let G = 〈N,Σ, S, P 〉 be an LLin(m,n) grammar for some
n,m ∈ N and γ ∈ (N ∪ Σ)∗. Let # �∈ N ∪ Σ. The set firstm−lastn(γ) is
the union of the folowing sets:

1. {(u, v) : u, v, x ∈ Σ∗, |u| = m, |v| = n, |uxv| ≥ max{m,n}, γ =⇒∗
G uxv}

2. {(#xv, v) : v, x ∈ Σ∗, |xv| < m, |v| = n, γ =⇒∗
G xv}

3. {(u, ux#) : u, x ∈ Σ∗, |ux| < n, |u| = m, γ =⇒∗
G ux}

4. {(#x, x#) : x ∈ Σ∗, |x| < m, |x| < n, γ =⇒∗
G x}

Construction of LA(m,n): LetG = 〈N,Σ, S, P 〉 be an LLin(m,n) grammar for
some n,m ∈ N. Let # �∈ N ∪Σ. We construct an NLA automaton LA(m,n)(G) =
〈Q,Σ, δ, q0, L,R, F 〉 as follows:

1. Q = {[#α, β#, γ] : α, β ∈ Σ∗, |α| ≤ m, |β| ≤ n, γ ∈ (N ∪Σ)∗, and
either γ ∈ N or A→ γ ∈ P for some A ∈ N}

(not all states are reachable);
2. q0 = [#,#, S] is the initial state;
3. F = {[#,#, ε]} is the set of a single final state;
4. the transition function δ is defined as follows

(a) for every A ∈ N :
δ([#,#, A], ε) = {([#,#, γ], ε) : A→ γ ∈ P}

(b) for every α0 ∈ Σ∗, α ∈ Σ∗∪#Σ∗, β ∈ Σ∗∪Σ∗#, a ∈ Σ and γ ∈ (N∪Σ)∗

such that A → γ ∈ P , for some A ∈ N , (α, β) ∈ firstm−lastn(γ) and
α0a (or #α0a) is a prefix of α :
include ([#α0a,#, γ], L) in δ([#α0,#, γ], a);

(c) for every β0, α, β ∈ Σ∗, a ∈ Σ and γ ∈ (N ∪ Σ)∗ such that A → γ ∈ P
for some A ∈ N and (α, β) ∈ firstm−lastn(γ) and aβ0 (or aβ0#) is a
sufix of β:
include ([#α, aβ0#, γ], R) in δ([#α, β0#, γ], a);

(d) for every X ∈ N ∪ {ε}, and α1, α2, β1, β2 ∈ Σ∗
δ([#α1α2, β2β1#, α1Xβ1], ε) = ([#α2, β2#, X], ε);

(e) for every X ∈ N ∪ {ε}, and α1, α2, β ∈ Σ∗
δ([#α1α2, β#, α1X], ε) = ([#α2, β#, X], ε);

(f) for every X ∈ N ∪ {ε}, and α, β1, β2 ∈ Σ∗
δ([#α, β2β1#, Xβ1], ε) = ([#α, β2#, X], ε).

We denote the class of all linear automata LA(m,n)(G) constructed as above
with LA(m,n), i.e., for any m,n ∈ N

LA(m,n) = {LA(m,n)(G) : G ∈ LLin(m,n)}.

Lemma 8. Let G = 〈N,Σ, S, P 〉 be an LLin(m,n) grammar for some n,m ∈
N and let LA(m,n)(G) = 〈Q,Σ, δ, q0, L,R, F 〉 be an automaton constructed as
above. Then, for every α1, α2, u ∈ Σ∗, X ∈ N , and A ∈ N :

1. If 〈[#,#, A], Lα1uα2R〉 �∗LA(m,n)(G) 〈[#,#, X], α1LuRα2〉
then A =⇒∗

G α1Xα2

364 R. Loukanova

2. If α1α2 �= ε and 〈[#,#, A], Lα1α2R〉 �∗LA(m,n)(G) 〈[#,#, ε], α1RLα2〉
then A =⇒∗

G α1α2

Proof. The proof of (1) is carried on by induction on the number of moves made
by LA(m,n)(G). �"

Lemma 9. Let G = 〈N,Σ, S, P 〉 be an LLin(m,n) grammar for some n,m ∈
N and let LA(m,n)(G) = 〈Q,Σ, δ, q0, L,R, F 〉 be an automaton constructed as
above. Then, for every α1, α2, u ∈ Σ∗, X ∈ N , and A ∈ N :

1. If A =⇒∗
G α1Xα2

then 〈[#,#, A], Lα1uα2R〉 �∗LA(m,n)(G) 〈[#,#, X], α1LuRα2〉
2. If α1α2 �= ε and A =⇒∗

G α1α2

then 〈[#,#, A], Lα1α2R〉 �∗LA(m,n)(G) 〈[#,#, ε], α1RLα2〉

Proof. The proof of (1) is carried on by induction on the length of the derivation
in G. �"

Theorem 5. Let G = 〈N,Σ, S, P 〉 be an LLin(m,n) grammar for some n,m ∈
N and let LA(m,n)(G) = 〈Q,Σ, δ, q0, L,R, F 〉 be constructed as above. Then, for
every α1α2 ∈ Σ∗

〈[#,#, S], Lα1α2R〉 �∗LA(m,n)(G) 〈[#,#, ε], α1RLα2〉 iff S =⇒∗
G α1α2

Proof. Follows from the items (2) of Lemma 8 and Lemma 9. �"

6 Conclusions

The class of NLA is of further interest from theoretic and application perspec-
tives. Various operations, such as union, homomorphism and concatenation over
NLA can be defined and studied for applications in modeling natural processes.
The class of the NLA (LCFLs) are not necessarily closed under such operations.
The result of such an operation can be an automaton which is not an NLA, but
is a composition of components that are modeled by NLA. The NLA compo-
nents of such “combined” abstract devices represent symmetrically dependent
patterns and processes. For example, a set of such dependences can be modelled
by a finite union of concatenations of NLA. In particular, L =

⋃n
i=1(Π

mi

j=1Li,j),
where each Li,j (i = 1, . . . , n; j = 1, . . . ,mi) is a LCFL representing symmet-
ric dependences. L can be represented with a set of context-free rules such as
Ai −→ Ai,1 . . . Ai,mi , where each Ai,j is the initial symbol of the corresponding
LCFL Li,j. Research on such operators, their closure properties, algorithms and
applications are subject of further work.

NLA have potential applications in natural language processing for morphol-
ogy analysis, shallow parsing and part of speech tagging. They have also po-
tential applications in neuroscience, including neurolinguistics and bioinformat-
ics for modeling “mirror” patterns and dependences on processes in symmetric

Linear Context Free Languages 365

branches, for example, symmetric or paralleled neural paths governed by a com-
mon originator. In particular, this is a plausible model of language cognitive fac-
ulty on morphological interrelations between sounds, lexical units, co-occurrence
restrictions, meanings, which are beyond the capacity of finite-state automata,
but do not need full context free power.

References

1. Aho, A.V., Ullman, J.D.: Theory of Parsing, Translation and Compiling, Parsing,
vol. 1. Prentice Hall, Englewood Cliffs (1972)

2. Amar, V., Putzolu, G.: On a Family of Linear Grammars. Information and Con-
trol 7, 283–291 (1964)

3. Amar, V., Putzolu, G.: Generalizations of Regular Events. Information and Con-
trol 8(1), 56–63 (1965)

4. Andrei, S., Kudlek, M.: Linear Bidirectional Parsing for a Subclass of Linear Lan-
guages. FBI-Bericht 215/98, p. 22 (1998)

5. Andrei, S., Kudlek, M.: Bidirectional Parsing for Linear Languages. In: Thomas,
W. (ed.) Preproceedings of DLT’99. Aachener Informatik-Berichte 99-5, pp. 331–
344 (1999)

6. Autebert, J.-M., Berstel, J., Boasson, L.: Context-free languages and pushdown
automata. In: Rozenberg, R., Salomaa, A. (eds.) Handbook of Formal Languages,
ch. 3, vol. 1, Springer, Heidelberg (1997)

7. Hopcroft, J.E., Ullman, J.D.: Introduction To Automata Theory, Languages, And
Computation, 1st edn. Addison-Wesley, Reading (1979)

8. Ibarra, O.H.: On Two-way Multihead Automata. J. Comput. Syst. Sci. 7(1), 28–36
(1973)

9. Rosenberg, A.L.: A machine realization of the linear context-free languages. Infor-
mation and Control 10(2), 175–188 (1967)

10. Grzegorz, R., Salomaa, A.: Handbook of Formal Languages, vol. 1-3. Springer,
Heidelberg (1997)

11. Salomaa, A.: Formal Languages. Academic Press. New York (1973). Revised edition
in the series ”Computer Science Classics” Academic Press (1987)

FM for FMS: Lessons Learned While Applying

Formal Methods to the Study of
Flexible Manufacturing Systems

Andrea Matta1, Matteo Rossi2, Paola Spoletini2,
Dino Mandrioli2, Quirico Semeraro1, and Tullio Tolio1

1 Dipartimento di Meccanica, Politecnico di Milano
{andrea.matta,quirico.semeraro,tullio.tolio}@polimi.it

2 Dipartimento di Elettronica e Informazione, Politecnico di Milano
{rossi,spoletini,mandrioli}@elet.polimi.it

Abstract. In the past few years two research groups of Politecnico di
Milano, whose activities were centered on Formal Methods for the pro-
duction of critical software and on industrial manufacturing systems,
respectively, have carried out a joint research project that, among other
things, aimed at introducing the use of formal methods in the design
and analysis phases of industrial production systems (and especially of
so-called Flexible Manufacturing Systems, FMSs) as a complementary
tool to the ones used in the current practice of the field. This paper re-
ports on the challenges that the research groups faced during the project,
and on the lessons that have been learned in the process.

Keywords: Experience, Formal Methods, Production Systems, Tempo-
ral Logics, Finite-State Models, System Design, Formal Verification.

1 Introduction

The authors of this paper belong to two different research groups of the school of
engineering at Politecnico di Milano. One group is a software engineering (SwE)
group who has been active in the development and application of formal meth-
ods (FMs) for critical software; the other group is an industrial engineering (IE)
group whose research addresses the problems related to Flexible Manufactur-
ing Systems (FMSs), i.e., industrial production systems composed of computer
numerically controlled machining centers (workstations) that are capable of pro-
ducing different kinds of products in different ratios and volumes, depending on
the needs of the firm (hence, flexibility).

During some brainstorming the two groups realized that they had in com-
mon not only typical engineering problems and quality goals such as reliability,
flexibility, maintainability, but also fundamental design principles such as ab-
straction, hierarchical development, and even some notion of object-oriented
approach to the design and documentation. The next step suggested that some
techniques originally developed within the software engineering world –those un-
der the “hat” of formal methods in particular– could nicely complement common

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 366–380, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

FM for FMS: Lessons Learned While Applying FMs to the Study of FMSs 367

practices in the development of FMSs. This led to the launching of a pilot project
to validate this idea.

A case study was defined based on previous experience of the IE group. Much
cooperative work was devoted to a mutual exchange of knowledge between the
two groups so as to state a common “language”: the SwE group had to un-
derstand the essential features of FMSs, whereas the IE group augmented its
knowledge of notations and models such as UML, logic-based specification, ab-
stract state machines, still maintaining each subgroup precise and distinguished
competences and responsibilities. Starting from the original documentation and
knowledge supplied by the IE people we developed a specification, design and ver-
ification of the FMS case study by applying innovative techniques imported from
the FM community (logic-based specification and verification through model-
checking in particular). The pilot project showed that the FM-based approach
yielded a deeper understanding of the finer points of the system (e.g. it un-
covered “holes” in the specification), an improved system reliability (through
verification of desired properties), and other typical engineering qualities. Also,
several guidelines for further improvements were derived. Let us point out that,
for a number of reasons, which include the material costs that such an endeavor
would entail, realizing the designed FMS down to acquiring the physical de-
vices and deploying them was not one of the goals of the research project within
which this work was carried out. Nevertheless, we are confident that the quali-
tative lessons we learned throughout this work are very general, and would only
be confirmed by a project that included also the implementation phase and a
quantitative evaluation of the benefits.

This paper reports on our experience on joining interdisciplinary expertise,
rooted however on a strong common engineering background, with the goal of
advancing the state of the art of designing FMSs by exploiting techniques im-
ported from the FM community. It is organized as follows: Section 2 presents
the features that are in common between software engineering and production
systems development, and lists some works that are across the two fields; Section
3 briefly reviews the state of the art of production systems development, which
motivated the research, and the project’s goal; Section 4 describes the major
phases through which the research activity was carried out; Section 5 presents
the lessons we learned while carrying out the research; finally, Section 6 draws
some conclusions, and outlines future developments for the current research.

2 Background

The research was carried out in close collaboration by two research groups: the
Formal Methods/Software Engineering group at the Department of Electronics
and Computer Science, and the group of Industrial Engineering at the Depart-
ment of Mechanical Engineering. The two groups had never worked together,
but nonetheless it was soon realized that, in addition to some shared techni-
cal background, there was, most notably, a common “frame of mind” when it
came to problems, problem representation and problem analysis. It became clear

368 A. Matta et al.

from the beginning of the collaboration that Software Engineering and Industrial
Engineering share a significant set of goals, which entail also a common set of
problems and difficulties to overcome.

Software systems and production systems are both complex agglomerate of
components interacting with each other according to some (possibly user-defined)
logic. They aremodular in nature, and their components are designed tobe reusable
(they should not be re-developed for each new instance of system). In addition,
both software and production systems are often required tobeflexible and reconfig-
urable to adapt to different situations (different configurations, different products
to be produced, different production targets, etc.). Also, both software and pro-
duction systems can have aspects of criticality: a widely-studied class of software
applications is the one of the so-called safety-critical systems, where a malfunction
(for example due to a software bug) can cause catastrophic consequences (includ-
ing, possibly, loss of human lives); production systems are critical more from an
economic point of view, in that the wrong design might result in loss of millions (of
euros/dollars) due for example to lack of production capacity or, at the opposite
end, to excess of production capacity (with corresponding waste of highly expen-
sive resources such as production machines).

As a consequence of their characteristics, both kinds of systems must be de-
signed with great care and through a rigorous process, which should facilitate
the use of precise and sound analysis techniques for the evaluation of the system
design well before its implementation. More precisely, in both cases one would
like to be able to guarantee that deadlines are met (for example, that a certain
amount of items is produced in a day), and that results and goals are achieved.

However, the similarities between software and production systems are not
limited to the above abstract features, but have also a technical counterpart: in
both fields the UML notation is employed in the early phases of development
to model the system being designed. As a matter of fact, while UML was born
in the SwE community for the development of software systems, in recent years
its use has spread also to different engineering areas, including the design of
production systems [1]. The use of the UML notation in both software and
industrial engineering reinforces the above perception that the two fields have
many points in common: they share not only problems, but also approaches to
solve them, such as the Object-Oriented one incarnated in the UML. In addition,
the shared use of UML highlights a common attitude towards modeling, and
constitutes a first step towards the adoption of a common set of concepts and
terminology (even if, as Section 4 points out, it can also hide subtle differences).

While software and industrial engineers share both a similar attitude towards
modeling and, to a certain extent, the same modeling languages (albeit limited
to the semi-formal variety of modeling), traditionally they have used different
approaches when it comes to precise, mathematical (i.e. formal) modeling for
design and analysis purposes. In fact, the standard practice in the early phases
(i.e. before implementation) of the development of production systems employs
mostly statistical/probabilistic models; these are usually based on Markov chains
and Queuing theory to carry out an analytic study of the system and are typically

FM for FMS: Lessons Learned While Applying FMs to the Study of FMSs 369

combined with a heavy use of (statistical) numerical discrete events simulation
tools for the analysis of the performance of the system under different configu-
rations and loads [2]. In SwE practice, instead, models focus mostly on the logic
aspects of the application (whether conditions will or will not occur, what course
of action must be taken in each case, etc.), rather than on the statistical ones
(e.g. how often a certain condition occurs). In addition, what is simulation for
production systems becomes testing for software applications.

To conclude this Section, it is clear that the development of software applica-
tions (especially critical ones) and that of production systems share many traits.
This is evidenced also by a number of previous works, in which modeling and –to
a lesser extent– verification techniques (mostly based on Petri Nets) originally
developed by the computer science community have been applied to the produc-
tion systems domain [3,4,5,6]. However, we feel that such techniques could and
should also be tightly integrated in the design process of manufacturing systems,
as a complementary and synergic approach to the existing ones [7].

3 Project Motivation and Aim

This Section presents the goals of our research project. To put these goals in
better perspective, we first briefly describe the main features and components
of FMSs; then, we outline the techniques used in the current practice for the
design and analysis of FMSs; finally, we state the goals of the project.

3.1 Flexible Manufacturing Systems

FMSs are production systems composed of computer numerically controlled
(CNC) machining centers that generally process prismatic metal components.
A process cycle defining all the technological information (e.g. type of opera-
tions, tools, feed movements, working speeds, etc.) is available for each product
so that the system has the whole knowledge for transforming raw parts, the state
in which a piece enters into the system, into finished parts, the state in which
a piece has completed the process cycle. The main components of an FMS are
described below.

CNC machines (also called working stations, WS for short) perform the op-
erations on raw parts. A machining operation consists in the removal of
material from the raw parts with a tool, which is mounted on the spindle
of the machine. The machines are CNC in that their movements during the
machining operations are controlled by a local computer. Machines can dif-
fer, in addition to other minor technical characteristics, in their size, power,
speed, and number of controlled axes.

Pallets are the hardware standard physical interfaces between the system com-
ponents (e.g. WSs) and the parts that are to be machined. Parts are clamped
on pallets by means of automated fixtures providing them stability during
the machining operation. Usually, but not always, fixtures are dedicated to
products; also, more than one part is tipically mounted on a pallet. Parts to

370 A. Matta et al.

Fig. 1. An example of FMS

be machined must first be clamped on pallets before they can be worked on
by a WS. A pallet is an expensive resource (its cost is generally between 10
and 50 keuro), so only a limited number of them is available in an FMS.

The load/unload (L/U) station executes the operations of 1) clamping raw
parts onto pallets (and thus allowing them to enter the system), and 2)
removing finished parts from pallets after their process cycle has been com-
pleted by the WSs of the system. L/U stations can be manned, i.e. an op-
erator accomplishes the task, or unmanned, i.e. the operation is done by a
gantry robot. After finished parts are dismounted from a pallet, the latter
can be used anew to insert other parts into the system.

The part handling sub-system is the set of devices that move parts (and
pallets) through the system. In practice, a number of different mechanical
devices can be used to transport pallets/parts: automated guided vehicles,
carriers, conveyors, etc.

Tools perform the cutting operations on raw parts. Since tools are expensive
resources their number is limited and, as a consequence, they are moved
through the system only when requested by WSs. Tools wear out with use
and have to be reconditioned from time to time in order to be usable again.

The tool handling sub-system is the set of devices that move tools through
the system. The automated transport of tools among WSs is not always
present in FMSs due to management difficulties encountered in practice.
However, when this solution is adopted, the most frequently adopted device
to transport tools consists of a carrier moving on tracks.

The central part buffer is the place where pallets wait for the availability of
system resources (i.e. machines, carriers, load/unload stations).

The central tool buffer is the place where tools can be stored when they are
not used.

The supervisor is the software that controls resources at system level by as-
signing pallets to machines and L/U stations and by scheduling tool and
pallet transports.

The tool room is the place where tools are reconditioned.

Figure 1 shows an example of an FMS with four WSs and one L/U station.
Let us now briefly describe the flow of parts through an FMS. In general, at

the L/U station more than one part is loaded onto a pallet. The type and the

FM for FMS: Lessons Learned While Applying FMs to the Study of FMSs 371

number of parts on a pallet depend on the products to be manufactured and on
the system components (e.g. the WSs). If the load/unload operation is executed
manually by human operators (i.e. the L/U station is manned), then its duration
can be considered a random variable according to some estimated distribution;
otherwise, if the L/U station is unmanned, then deterministic load/unload times
can be assumed. After parts are loaded onto pallets, the supervisor decides, for
each pallet, the path that it will follow in the FMS to complete the process cycle
of all its parts. In order to complete the process cycle, a pallet must visit at least
one WS; if all WSs are busy, pallets wait in the central buffer. Each machine has
at least two pallet positions: the first one is the pallet working position, which
is used when the pallet is machined by the tool; the other positions, which are
known as pallet waiting positions, are instead used to decouple the WS from the
part handling sub-system. Indeed, a pallet in a waiting position waits either for
the machine to complete working on the pallet that is in the working position,
or for the carrier to become available for a transport if the pallet has already
been worked. For example, in the FMS of Figure 1 every WS has exactly one
waiting position in addition to the working one. To move a pallet from a waiting
position to the working position (and vice versa), every WS is provided with a
pallet changer ; a pallet changer is an automatic device, so the movement between
different positions can be considered deterministic since there is no source of
variability in the operation. After the pallet has been blocked in the working
position and the tools necessary for the operations are available to the machine,
the processing operations can be executed. Processing times of machines can be
reasonably assumed deterministic. In fact, the trajectory of the tool during the
cutting of material is computer numerically controlled and therefore the sources
of variability are negligible.

The architecture of FMSs has expanded to different sectors with different
technologies (e.g. plastic deformation, lathes, assembly machines, etc.) with high
benefits in terms of increase of performance and business.

3.2 Current Practice in the Design of FMSs

The goal of the design of an FMS is to determine the “right” system configuration
that permits to attain the desired production targets. The system “configura-
tion” is a mixture of physical and logical settings that affect many different
aspects of the system; some of the most relevant settings are: the number of
copies of each kind of tool; the number of instances of each kind of pallet; the
rules used by the supervisor to manage resources (to decide for example to which
WS a pallet entering the system is to be sent, or which tool request must be
satisfied first); the rules through which WSs manage process cycles (e.g. what
operations to execute first, or the order in which tools are requested), etc.

As mentioned in Section 2, the design of production systems is a difficult task;
as a consequence, it is often decomposed into several hierarchical sub-problems,
which differ in the level of detail of the analysis and in the tools adopted to select,
assess and test alternative configurations. In addition, the levels for design and

372 A. Matta et al.

analysis are difficult to establish and depend on the type of production system,
the importance of the decision, and the available budget [2].

To solve the design problem outlined above, a number of tools for select-
ing and managing the equipment, assessing the system performance and test-
ing alternative solutions are used in the current practice. Such tools rely on
models for the evaluation of the performance of the different system configu-
rations, and on optimization techniques to identify the configuration that best
matches the production targets and the company’s goals. As customary with
any kind of model, a performance evaluation model should be accurate, com-
plete, easy to use and cheap; however, there is usually a trade-off between
these features, so that greater accuracy and completeness entail higher costs
and time. The techniques that are most used in practice for the design and
analysis of production systems are analytical methods and discrete events sim-
ulation.

Analytical methods (mostly based on Markov chains and Queuing theory) rep-
resent the most relevant behavior of complex systems through a limited number
of variables that are (often implicitly) related through dynamic equations. How-
ever, analytical methods often require to introduce restrictive assumptions to
simplify the mathematical treatment of the model, thus reducing the applicabil-
ity of the technique. In this regard, a classic example is the memoryless property
of Markovian models, which does not fit well with the phenomena of mechanical
wear of machines and tools. On the other hand, analytical methods generally
perform fast and the provided results have average accuracy.

A simulation model, instead, can represent a complex manufacturing sys-
tem in all its details. Quite naturally, this translates to higher costs in terms
of both development time for the simulation code and computational time to
run the experiments. Thus, the level of adequacy of a simulation model is de-
cided by the user coherently with the objectives and the budget of the anal-
ysis. The accuracy of performance measures estimated by simulation greatly
depends on the completeness of the model and on the length of simulation ex-
periments.

The choice of the most appropriate performance evaluation method depends
on the level of the analysis. A widespread approach [8] consists of using analyt-
ical methods for an initial selection of good configuration candidates and then
refining the choice among the selected candidates by performing simulation ex-
periments. This two-step approach benefits from the speed of analytical methods
in the initial phase (which eliminates distinctively poor configurations), while at
the same time exploiting the higher detail of simulation models in the second
phase to search for the best candidate. However, as explained in the next Section,
both analytical methods and simulation (used alone or in combination) are in-
adequate to answer a number of important design questions. Hence, important
benefits can be gained if new, innovative techniques that are able to address
these deficiencies were used in conjunction (not as substitutes) with the classic
ones in the design process of production systems.

FM for FMS: Lessons Learned While Applying FMs to the Study of FMSs 373

3.3 FMs for FMSs

Despite their large adoption in the design and analysis phases of production sys-
tems, analytical methods and simulation are not enough to check if the system
under design meets its requirements. Systems may be required to avoid dead-
lock, to guarantee certain resource utilizations thresholds, to use some preferred
system paths, etc. Analytical methods model the system dynamics by means of
feasible states and random transitions among the system states, but they only
provide aggregate statistics on the system behavior. Indeed these methods can
provide probabilities about the occurrence of one or more events in a given time
period, but very seldom they can be used to determine whether an event will
certainly happen or not (e.g. the production of a lot in a time period, the un-
availability of transporters under heavy system loading conditions, a deadlock,
etc.). The main difficulties arising when using analytical methods to check the
system being designed lie in the intractability of the underlying mathematical
models and in the restrictive assumptions that limit their scope of application.

Simulation for production systems is akin to testing for software applications:
it can be used to check several different paths in order to unearth incorrect system
behaviors and to check some properties; however, in the vast majority of cases
simulation cannot guarantee the global correctness of the system configuration,
as one or more unexplored paths, out of the infinite possible ones, may invalidate
the conclusions of the analyst. For instance, deadlocks are often encountered in
practice when the production system is physically tested after its deployment; in
this case the supervisor, i.e. the software controlling the system equipment and
flows, must be changed in order to overcome these unforeseen design problems.

The ultimate aim of our research project was to apply formal methods from
the computer science domain to FMS design, in order to overcome the limitations
of the techniques currently used outlined above. More precisely, the goal was
twofold: on one hand, to build formal models of FMS components (and of whole
systems), for the purpose of gaining better insight into their dynamics and their
interactions; on the other hand, to apply formal verification techniques to such
models, in order to check the kinds of requirements that cannot be analyzed
with classic tools such as analytical methods and simulation.

The next Section outlines the various phases of the research project, and the
issues and problems that arose while carrying them out.

4 Project Phases

The project went through three major phases: one devoted to familiarizing the
researchers involved in the project with the core issues of each field; one in which
a first formalization of FMS components was given in terms of the TRIO [9] logic
language; and one dedicated to the elaboration of a finite-state model of a real-life
FMS, on which model checking-based formal verification was carried out. While
the three phases are presented here in sequential order, they were not actually
carried out in a waterfall-like manner. For example, the task of familiarizing
researchers with the different concepts involved from the production systems

374 A. Matta et al.

and the software engineering domains was not confined temporally to the first
months of the project, but was carried out throughout. This (and other) issue(s)
will be analyzed in greater depth in the next Section.

The first, essential task that needed to be carried out consisted in establishing
a common ground of terms and concepts that was shared by the researchers
involved, in order to facilitate the interaction. As mentioned in Section 2, a
common language, which constituted the basis for the first exchange of ideas,
already existed in the form of the UML. In fact, the IE research group had
already developed a UML model of a generic FMS [10] in an autonomous manner,
without input from the SwE group. The UML description, which consists of class
and sequence diagrams, gives a semi-formal view of the core elements of an FMS
(parts, pallets, tools, WSs, rules, etc.) and their main features and roles; this
allowed the SwE group to get a first, fairly complete idea of the elements involved
(and related terms and definitions), and was the first step towards the creation
of a “vocabulary” of concepts that was shared by the two groups. Let us remark
that creating a common vocabulary did not simply mean that the researchers
of the SwE group had to learn what a “pallet” is, or what a WS does. Subtler
challenges hid in apparently common concepts such as “verification”, which in IE
is used as a synonym for “validation”. As a matter of fact, validation is a central
concept in IE, and refers to the issue of ensuring that the system model matches
the behavior of the studied production system up to a certain error, which is
a priori defined (the validation activity is often carried out in IE through a
statistical analysis). Instead, the term “verification” in formal methods is mostly
used in the sense of “checking if a desired property descends from a model” [11]1.

Establishing a common base of terms was only part of the initial work that had
to be carried out before delving into the formalization/verification stages of the
project. Another crucial aspect was sharing and understanding the skills of the
two groups, and the issues and problem areas of each domain. This was important
for finding the modeling and analysis techniques that best fit the kinds of systems
at hand, and for deciding which features and properties were the most interesting
to be analyzed. For example, at the beginning it was not apparent that some
resources, pallets in particular, are in fact scarce in production systems, and
considering their number as unbounded could have relevant consequences on the
significance of the analyses carried out; such information came to the surface
only after lengthy discussions among the two groups, and was used in the later
stages of the work.

In the second stage of the work, a logic-based model of some of the compo-
nents of an FMS was built [7,12]. The model is written in the TRIO [9] logic
language, and was developed by the SwE group from the initial UML description
provided by the IE group. A detailed description of the TRIO model is outside
the scope of the present experience report. Let us simply point out that TRIO is
a very expressive temporal logic, which is capable of representing a wide range of

1 Such difference in the use of the term “verification” is perhaps not surprising, if one
considers that even in the SwE community there is often disagreement on what V&V
exactly refers to.

FM for FMS: Lessons Learned While Applying FMs to the Study of FMSs 375

properties, especially those defining the dynamic constraints on the system (e.g.
timing constraints, or the semantics of the rules used to manage the system).
The TRIO model was very useful in a number of ways: it allowed the SwE group
to get a first grasp of the key elements of an FMS, to gather some initial ideas on
them, and to experiment with them at a very high level. In addition, it helped
focus the research on the parts of the system that the production system experts
deemed the most relevant to analyze; in fact, it was decided early on that the
research should focus on studying the effects on production of different manage-
ment rules for tools and pallets –rather than, for example, checking timeliness
properties for the transport network.

The experimentation with the TRIO model, which included carrying out the
verification of some simple properties through theorem proving techniques [7]
evidenced a number of relevant features of FMSs. Among these, an important one
is the finiteness of the cardinal elements of the system; for example, the number
of WSs in an FMS is usually limited to a small number, rarely more than five; in
addition, the number of management rules that are implemented in an FMS is
typically small (one or two to decide in which order tools should be requested/the
requests should be satisfied, one or two to decide how to assign pallets to WSs,
etc.), even though they can be chosen from a fairly large (albeit finite) set. In
addition, it became apparent that to represent the features of interest of FMSs a
discrete time model was sufficient: most temporal quantities (operation duration,
transportation delays, etc.) are deterministic and with precise (integer) values,
whereas a continuous-time model (which would allow to temporally separate
between nearly-simultaneous events) is in this case not necessary, as the number
of events that can occur in the system is finite and well-defined (hence, they can
be easily separated even if they occur in the same discrete instant). Therefore,
for the verification phase it was decided to employ model checking techniques
[13], which fit very well the main characteristics of FMSs. Let us remark that
the TRIO language does not impose a specific temporal model [14] and TRIO
formulas can be interpreted over temporal domains that can be either discrete or
dense. In fact, the initial FMS TRIO model did not mandate a specific temporal
domain (even if the first analyses based on this model were carried out using the
PVS-based TRIO tool [15], which uses continuous time).

In the last few years, techniques to model check TRIO specifications inter-
preted over a discrete time domain have been developed [16]. However, the SPIN-
based prototype TRIO model checker was not fully operational at the time of
the project; hence, it was decided that, to carry out formal verification on FMSs,
developing a model directly in Promela [17], the modeling language of the SPIN
model checker was the best solution. Then, in the third stage of the project, a fi-
nite state, discrete-time Promela model of part of a real-life FMS was developed
and verified for some interesting properties through the SPIN model checker
[18] (a detailed account of the Promela model and the verifications carried out
is outside the scope of this report). While the TRIO model is at a very general
and high level of detail (for example, it does not include a representation of the
process cycle that products undergo), the Promela one is much more detailed

376 A. Matta et al.

and less general, as it represents a very specific FMS, with a given set of WSs,
tools, pallets, and products to be machined. In addition, it includes a model of
the part programs that are executed by the WSs (where a part program contains
the information concerning the set of operations that must be carried out on a
certain pallet). The Promela model was developed in close collaboration by the
two groups participating in the research; more precisely, while the SwE group
actually built the model, the IE group gave continuous input on it, to make sure
that it matched real-life FMSs, and as a form of model validation.

To conclude this Section, let us remark that the “vocabulary building” phase
was in fact spread throughout the project, and was not limited to the first
months, prior to the development of the different models. For example, the ex-
istence of only a limited, and usually not large number of pallets in an FMS – a
fact that was obvious (hence in no need to be explained) to the IE researchers,
but not at all so to the SwE ones – is a feature that emerged in the later stages,
during the development of the Promela model. In fact, building and verifying
the models helped disseminate the various concepts among the groups, and was
a means for familiarizing the researchers from both groups with the key issues
and techniques of each field.

5 Lessons Learned

We can derive several lessons from our experience. Some of them confirm fairly
well established –but neither universally accepted nor practiced– beliefs on best
practices to apply in complex systems development; others may drive future en-
hancements both in industrial practices and in research. We are confident that
they can be exploited within industrial environments too, although our experi-
ence has been carried out by a purely academic team, which, nevertheless, could
count on a long-standing experience of cooperation with industrial environments.

The first fundamental lesson confirms the fact that [19] in most cases system
engineering is mostly the integration of heterogeneous components that are de-
veloped on the basis of different technologies and cultures. Thus, at least in its
high phases, system engineering cannot be carried out in isolation by the spe-
cialists of different fields. Stated in this way, such a “lesson” may sound fairly
obvious; in our opinion, however, far less obvious are its consequences on working
group organization and even on engineering education.

As we emphasized in Section 4, in our experience much effort has been devoted
to –continuously– enrich and update the “shared knowledge” of the group, still
maintaining a clear distinction in roles, special skills, and responsibilities. On the
one hand this was fostered by an already strong common background on basic
engineering disciplines: IE people were already provided with some programming
skills and with a rudimentary knowledge of UML; SwE people had some knowl-
edge of basic mechanical engineering, not only in terms of essential physics’ laws
but also in terms of elementary mechanical devices. On the other hand the “fine
tuning” of the necessary “groups’ common language” still uncovered important
“holes” in the knowledge of each others’ culture which, if remained hidden, could
severely undermine the whole project.

FM for FMS: Lessons Learned While Applying FMs to the Study of FMSs 377

A pleasant side remark is that not only problems and goals are often the
same in different engineering fields (e.g. reusability, flexibility, and other qualities
both of the products and of the processes) but also techniques and methods
to approach the solution of such problems can quite profitably be mutually
“imported” from each other’s cultures: in our case the initial common knowledge
consisting of basic models such as mathematical equations, Markov chains, and
of the UML notation evolved to include more sophisticated formal methods such
as TRIO and model checking.

At the other side of the coin it was also confirmed that in general engineers
(not only IEs, but often even SwEs) are more familiar with operational for-
malisms such as state-based abstract machines than with descriptive formalisms
such as logic-based languages. This is unfortunate since it hinders reasoning at a
high level of abstraction about the properties of the system under construction.

In our opinion these lessons should have a strong impact in the whole setting
of engineering education. Whereas the keyword “interdisciplinarity” is often in-
voked when talking about education [20], its interpretation in actual and pro-
posed engineering curricula is quite far from building a real shared engineering
culture. For instance [21] and others [19,22] properly recommend that a SW en-
gineer has a robust knowledge of non-engineering disciplines such as financial,
human, and social sciences (which are all the more important when Software En-
gineering moves towards System Engineering [23]), but, by contrast, very little
attention is devoted to engineering fields other than SwE: a very shallow knowl-
edge of elementary physics is often all that is recommended and offered in SwE
curricula. On the other hand most curricula in fields of engineering other than
computing see the knowledge in computer science as simple “service”, consisting
of a little programming, use of productivity tools and access to Internet, hiding
to their students that computing is based on a deep and long-standing culture,
whose roots date back several millennia. We believe that the present tendency
to overspecialize curricula in the various engineering disciplines may have in the
long term negative consequences and should be contrasted.

Moving to more technical issues, our experience confirmed once more the use-
fulness of applying FMs to produce artifacts of better quality and more robust.
In fact, the effort of stating and verifying system properties in a formally rigor-
ous way, with the help of automatic tools, helped uncovering subtle errors and
obtaining improvements that were not possible when adopting more traditional
methods. For instance, during the formal verification (through model checking)
of the configuration of a test FMS, we realized that the tool management rules
did not guarantee the desired performance. In fact, since the rules were incom-
plete, they did not sufficiently constrain the tool reservation mechanism. Hence
an additional rule was added to the specification of the FMS configuration.

More generally, through model checking we were able to (formally) analyze
properties and characteristics of the test FMS that could not have been checked
through statistical approaches; for instance, we have proved that, in the test
FMS, which is composed of 4 WSs working on 5 different kinds of pallets, no
WS has ever to wait for tool number 2 for more than 100 seconds.

378 A. Matta et al.

Once more, we emphasize the benefits of applying FMs per se, where by FM we
intend here any technique that exploits the rigor and precision of mathematics;
again, methods produced by different cultures such as statistical and probabilis-
tic methods, simulation based on differential or difference equations, theorem
proving, model-checking etc. should not be used in isolation, but integrated to
exploit their complementarities.

On the other hand the choice –and possibly the tailoring– of the appropriate
method for the problem at hand is often far from obvious and standardized: in
some sense such a choice is itself the result of a spiral process, which aims at
selecting and tuning the FMs and tools that are best suited for a specific goal
on the basis of early experiences through continuous refinements. For instance,
in our project, realizing the finiteness of the essential features of a FMS and
discretizing the time domain led to prefer model-checking techniques over more
general but less automatic verification approaches such as theorem proving.

Furthermore several abstraction techniques can be applied to master and mit-
igate the typical combinatorial explosion problem of exhaustive verification (for
example, we were able to exploit the physical and logical symmetry of some sys-
tem configurations to considerably reduce in those cases the state space to be
searched).

6 Conclusions and Future Work

We reported on our experience on “importing” formal models, methods, and
tools typical of the SwE community into the design of FMSs. The cooperation
between the two groups belonging to the respective engineering communities
confirmed that not only problems and goals are similar, if not exactly the same,
in different engineering fields, but also much mutual benefit can be achieved
by complementing and integrating approaches and techniques of the different
communities. This requires a strong common cultural background so that in-
teraction and cooperation within the team can be effective and productive in
a short time. Of course, a fine tuning in terms of knowledge exchange between
the groups’ members and a tailoring of models, techniques and tools to the
peculiarities of the application field has been and will be necessary in similar
endeavors.

Our pilot experience soundly confirmed the expected benefits in the overall
quality and productivity of the FMS design process; it also suggested a few
guidelines for further exploitation of our approach.

First, in this initial experience our attention has been focused on the modeling
and verification techniques that appeared to be more “ready to use”, i.e., whose
technical features and supporting tools seemed to produce immediate benefits.
For instance, model checking has been selected as the principal approach to verify
properties, such as the absence of deadlock and the maximum time to complete
the machining (i.e. the execution of the part program) of a pallet, that are not
easily checkable by more traditional techniques. It is likely, however, that the
obtained benefits can be further enhanced by deepening and fine tuning existing

FM for FMS: Lessons Learned While Applying FMs to the Study of FMSs 379

techniques (e.g. employing abstraction techniques for model checking, other than
symmetry, that are especially tailored to suit the specific features of FMS2); by
including more techniques –whether traditional, such as numerical simulation,
or innovative, such as theorem proving– that have not been fully explored yet;
and by better integrating them (and their related tools) with one another.

Second, the transition between the various phases of the process often involved
a sharp change in the adopted (semi)formalism, leaving the full responsibility
of guaranteeing the consistency among the various deliverables to the human
actors. The state of the art, however, is rapidly evolving towards integrated en-
vironments that support a seamless transition among the various process phases.
For instance, during this project a new version of TRIO, ArchiTRIO, has been
defined which supports a smooth transition from requirements specification to
architectural design, down to the lower implementation phases and verification.
Its integration with verification tools both based on theorem proving and on
model checking is also on the way [24]. ArchiTRIO is also fully compatible with
the UML notation, and allows users to enrich it with a “desired and appropri-
ate amount of formalism” [25], so that it can be adopted with little effort by
practitioners who are familiar with the UML standard. A revised version of the
system presented in this paper based on ArchiTRIO will be developed.

Finally, and fairly obviously, we plan to enrich our experience with more, and
more complex projects, possibly in cooperation with industrial colleagues.

Acknowledgements

Work supported by the MIUR FIRB project: “Software frameworks and tech-
nologies for the development and maintenance of open-source distributed simula-
tion code, oriented to the manufacturing field.” Contract code: RBNE013SWE.

References

1. Bruccoleri, M., La Diega, S.N., Perrone, G.: Object-oriented approach for flexible
manufacturing control systems analysis and design using the Unified Modeling
Language. Int. Journal of Flexible Manufacturing Systems 15(3), 195–216 (2003)

2. Matta, A., Semeraro, Q., Tolio, T.: A framework for long term capacity decisions
in advanced manufacturing systems. In: Matta, A., Semeraro, Q. (eds.) Design of
Advanced Manufacturing Systems, Springer, Heidelberg (2005)

3. Zhou, M., Venkatesh, K.: Modeling, Simulation, and Control of Flexible Manufac-
turing Systems: A Petri Net Approach. World Scientific, Singapore (1999)

4. Wang, J., Deng, Y.: Incremental modeling and verification of flexible manufacturing
systems. Journal of Intelligent Manufacturing 10(6), 485–502 (1999)

5. Hatono, I., Yamagata, K., Tamura, H.: Modeling and online scheduling of flexible
manufacturing systems using stochastic petri nets. IEEE Transactions on Software
Engineering 17(2), 126–132 (1991)

2 Model checking techniques and tools, which are of the “push button” kind, lend
themselves to being used by sufficiently-trained application domain experts, without
help –at least in this phase– from the formal method experts.

380 A. Matta et al.

6. Flake, S., Mueller, W., Pape, U., Ruf, J.: Specification and formal verification of
temporal properties of production automation systems. In: Ehrig, H., Damm, W.,
Desel, J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.) INT
2004. LNCS, vol. 3147, pp. 206–226. Springer, Heidelberg (2004)

7. Matta, A., Furia, C., Rossi, M.: Semi-formal and formal models applied to flexible
manufacturing systems. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS
2004. LNCS, vol. 3280, pp. 718–728. Springer, Heidelberg (2004)

8. Starr, P.J.: Integration of simulation and analytical submodels for supporting man-
ufacturing decisions. Int. J. of Production Research 29, 1733–1746 (1991)

9. Ciapessoni, E., Coen-Porisini, A., Crivelli, E., Mandrioli, D., Mirandola, P.,
Morzenti, A.: From formal models to formally-based methods: an industrial ex-
perience. ACM Trans. on Software Engineering and Methodology 8(1), 79–113
(1999)

10. Matta, A., Tolio, T., Tomasella, M., Zanchi, P.: A detailed uml model for general
flexible manufacturing systems. In: Proc. of ICME ’04, pp. 113–118 (2004)

11. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering,
2nd edn. Prentice-Hall, Englewood Cliffs (2001)

12. Leone, F.: Specifica e analisi di un flexible manufacturing system. Elaborato di
laurea, Politecnico di Milano (in Italian) (2005)

13. Clarke, E., Grunberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)
14. Morzenti, A., Mandrioli, D., Ghezzi, C.: A model parametric real-time logic. ACM

Transactions on Programming Languages and Systems 14(4), 521–573 (1992)
15. Gargantini, A., Morzenti, A.: Automated deductive requirement analysis of critical

systems. ACM Trans. on Software Eng. and Methodology 10(3), 255–307 (2001)
16. Morzenti, A., Pradella, M., San Pietro, P., Spoletini, P.: Model-checking trio spec-

ifications in SPIN. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS,
vol. 2805, pp. 542–561. Springer, Heidelberg (2003)

17. Holzmann, G.: The SPIN Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading (2003)

18. Spoletini, P., Tomasella, M., Matta, A., Rossi, M.: Formal verification in analysis
and design of production systems. In: Proc. of ICME ’06, pp. 367–372 (2006)

19. Ghezzi, C., Mandrioli, D.: The challenges of software engineering education. In: In-
verardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 115–127. Springer,
Heidelberg (2006)

20. Knight, J.C., Leveson, N.G.: Software and higher education. Communications of
the ACM 49(1), 160 (2006)

21. Bourque, P., Dupuis, R. (eds.): Guide to the Software Engineering Book of Knowl-
edge. IEEE Computer Society Press, Los Alamitos (2004)

22. Lethbridge, T., LeBlanc, R., Sobel, A.K., Hilburn, T., Diaz-Herrera, J.: SE2004:
Recommendations for undergraduate software engineering curricula. IEEE Soft-
ware 23(6), 19–25 (2006)

23. International Council on Systems Engineering (INCOSE): Guide to the systems en-
gineering body of knowledge – G2SEBoK, online at http://g2sebok.incose.org

24. Furia, C.A., Rossi, M., Strunk, E.A., Mandrioli, D., Knight, J.C.: Raising formal
methods to the requirements level. Technical Report TR 2006.64, Politecnico di
Milano (2006)

25. Pradella, M., Rossi, M., Mandrioli, D.: ArchiTRIO: A UML-compatible language
for architectural description and its formal semantics. In: Wang, F. (ed.) FORTE
2005. LNCS, vol. 3731, pp. 381–395. Springer, Heidelberg (2005)

http://g2sebok.incose.org

On Equality Predicates in Algebraic

Specification Languages

Nakamura Masaki and Futatsugi Kokichi

School of Information Science, Japan Advanced Institute of Science and Technology

Abstract. The execution of OBJ algebraic specification languages is
based on the term rewriting system (TRS), which is an efficient theory
to perform equational reasoning. We focus on the equality predicate im-
plemented in OBJ languages. The equality predicate is used to test the
equality of given terms by TRS. Unfortunately, it is well known that the
current execution engine of OBJ languages with the equality predicate
is not sound. To solve this problem, we define a modular term rewrit-
ing system (MTRS), which is suitable for the module system of OBJ
languages, and propose a new equality predicate based on MTRS.

1 Introduction

We propose a new equality predicate for algebraic specification languages that
support a module system and a rewrite engine. The principals of the module
system for algebraic specifications were first realized in the Clear language [7] and
have been inherited by OBJ languages [9,12,3,5,2]. The theory of the CafeOBJ
module system updates the original concepts of Clear or other OBJ languages
to a more sophisticated situation [8], which helps describe the specifications of
a large and complex system by using several types of module imports, built-
in modules and the loose and tight denotation for each module. The execution
of OBJ languages is based on the term rewriting system (TRS) [14,15], which
is a useful notion for realizing equational reasoning, the most basic building
block of the verification of OBJ specifications. Using a rewriting engine based
on TRS, we obtain a powerful semi-automatic verification system. Although OBJ
languages support a sophisticated module system for specification description,
the specification verification, however, does not benefit greatly from the module
system. Actually, in the current implementation of CafeOBJ, the rewrite engine
treats all equations equally. OBJ languages support the equality predicate, which
is a special operation symbol used to test the equality of terms. However, the use
of the equality predicate in a specification makes its verification unsound [11].

We present an example of CafeOBJ modules to show that the current equality
predicate is problematic. The following specification Z denotes the set of integers.
The constant operator 0 stands for 0, and the unary operators s and p are the
successor and predecessor functions. The equations mean that the successor of
the predecessor, and the predecessor of the successor, of an integer is the integer
itself, where X is a variable that denotes an arbitrary integer.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 381–395, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

382 N. Masaki and F. Kokichi

mod! Z{ [Zero < Int]
op 0 : -> Zero
ops s p : Int -> Int
eq s(p(X:Int)) = X .
eq p(s(X:Int)) = X .}

The equality predicate == is used for checking the equality of terms, for exam-
ple, s(p(X)) == p(s(X)) means the predecessor of the successor is equivalent
to the successor of the predecessor for any integer. The equational reasoning
with the CafeOBJ system is performed as follows: the system first reduces the
both sides of the equation, and returns true if the results are the same, and
otherwise returns false. Here, terms are reduced according to the equations
in the specification where the equations are regarded as left-to-right oriented
rewrite rules. For the above equation, the both sides are reduced into X, and
the CafeOBJ system returns true. The equality predicate has a problem when
being inside the specification. The following specification tt ZERO specifies the
predicate that tests whether an integer is zero or not.

mod! ZERO{ pr(Z)
op zero : Int -> Bool
eq zero(X:Int) = (X == 0) .}

The equation in the specification defines the predicate zero(X) as the result of X
== 0. We next try to prove the equation zero(s(X)) == false. The left-hand
side is reduced into false as follows: zero(s(X))→ s(X) == 0 → false, and
the CafeOBJ system returns true for the above equation, however, it is not true
in the case of X = p(0). Thus, the current CafeOBJ system is unsound if the
equality predicate is used inside a specification. In the following sections, we
discuss the reason for the unsoundness problem. We propose a term rewriting
system based on the module system, called the modular term rewriting system
(MTRS), and define a new equality predicate by using the MTRS to solve the
unsoundness problem.

In the next section, we briefly introduce CafeOBJ algebraic specification lan-
guage. We focus on the module system. In Section 3, we propose a modular
equational proof system (MEPS) for the module system of the CafeOBJ speci-
fication language. In Section 4, we propose MTRS. In Section 5, we discuss the
problems of the existing equality predicate and propose a new equality predicate.
In Section 6, we discuss applications of our research, and we present conclusions
in Section 7.

2 Preliminaries

We introduce OBJ algebraic specification languages [8,9,12,13,16] with the nota-
tions and definitions from CafeOBJ [8]. To simplify the discussion, we treat only
a subset of CafeOBJ, which does not include, for example, conditional equations,
parameterized modules and transition rules. However, the present results can be
applied straightforwardly to full CafeOBJ specifications.

On Equality Predicates in Algebraic Specification Languages 383

2.1 Algebraic Specification

Let S be a set. An S-sorted set A is a family {As | s ∈ S} of sets indexed by
elements of S. We may write a ∈ A if a ∈ As for some s ∈ S. S∗ is the set of
sequences of elements of S. The empty sequence is denoted by ε. S+ is the set of
non-empty sequences, i.e., S+ = S∗ \ {ε}. An (order-sorted) signature (S,≤, Σ)
is a triple of a set S of sorts, a partial order ≤⊆ S × S, and S+-sorted set Σ of
operation symbols, where for f ∈ Σw s (w ∈ S∗ and s ∈ S), w s is referred to as
the rank of f . When w = ε, f is referred to as a constant symbol. (S,≤, Σ) is
occasionally abbreviated as Σ. Let (S,≤, Σ) be a signature and X an S-sorted
set of variables. An S-sorted set T (Σ,X) (abbr. T) of terms is defined as the
smallest set satisfying the following: (1) Σs ⊆ Ts for any s ∈ S, (2) Xs ⊆ Ts

for any s ∈ S, (3) f(t1, . . . , tn) ∈ Ts if f ∈ Σs1···sn s and ti ∈ Tsi (i = 1, . . . , n).
(4) Ts′ ⊆ Ts if s′ ≤ s. An equation is denoted by (∀X)t = t′, where X is a
set of variables, t, t′ ∈ T (Σ,X)s for some sort s ∈ S. We may omit (∀X) if
no confusion exists. An (equational) specification is a pair of a signature and an
axiom (a set of equations): SP = (Σ,E). We write SSP , ≤SP , ΣSP , and ESP for
the sets of the sorts, the partial order, the operation symbols, and the axiom of
a specification SP . In addition, we also write s ∈ SPCf ∈ SPCe ∈ SPCt ∈ SP
if s ∈ SSP , f ∈ ΣSP , e ∈ ESP , t ∈ T (ΣSP , X), respectively. We may omit
the signature of a specification and the specification is referred to as simply the
axiom E.

Example 1. The following specification SPZ denotes integers.

SSPZ = {Zero, Int}
≤SPZ = {(Zero, Zero), (Zero, Int), (Int, Int)}
ΣSPZ := (ΣSPZ)Zero = {0}, (ΣSPZ)Int Int = {s, p}
ESPZ = {s(p(X)) = X, p(s(X)) = X}

For a signature (S,≤, Σ), a Σ-algebra M is an algebra that consists of (1) an
S-sorted carrier setM such thatMs ⊆Ms′ if s ≤ s′, (2) an elementMc ∈Ms for
each c ∈ Σs, and (3) an operation (or a function) Mf : Ms1 × · · · ×Msn → Ms

for each f ∈ Σs1···sn s. An assignment a : X → M is a map from an S-sorted
variables set X to an S-sorted carrier set M such that a(x) ∈ Ms if x ∈ Xs.
By an assignment a : X → M , a term t ∈ T (Σ,X) can be interpreted as an
element of M , denoted by a(t), as follows: a(t) = a(x) if t = x ∈ X , a(t) =Mc if
t = c ∈ Σ, and a(t) = Mf (a(t1), . . . , a(tn)) if t = f(t1, . . . , tn). For a Σ-algebra
M and an equation e : (∀X)t = t′, we declare that M satisfies e, denoted by
M |= e, iff a(t) = a(t′) for any assignment a : X → M . For SP = (Σ,E), a Σ-
algebra that satisfies all equations in E is called an SP -algebra (or SP -model).
We may omit SP - if no confusion exists. The set of all SP -algebras is denoted
by M(SP). For algebras A and B, a Σ-homomorphism h : A → B is an S-
sorted homomorphism, which is a family of {hs : As → Bs}s∈S , that satisfies the
following: (M1) hs(x) = hs′(x) for each x ∈ As if s ≤ s′. (M2) hs(Af (a1, . . . , an))
= Bf (hs1(a1), . . . , hsn(an)) if f ∈ Σs1···sn s and ai ∈ Asi(i = 1, . . . , n). The set
of all Σ-homomorphisms is denoted by HA,B. An initial SP -algebra is an SP -
algebra I that has the unique Σ-homomorphism h : I → A for any SP -algebra

384 N. Masaki and F. Kokichi

A. The set of all initial algebras is denoted by IM(SP). Since initial algebras
are isomorphic, we often identify one of the initial algebras with the set IM(SP)
of all initial algebras. Roughly speaking, an initial algebra I has the following
properties: any element in I should be described in the signature of SP (no junk)
and any equation in I should be deduced from the axiom of SP (no confusion).

Example 2. The following Z is an SPZ-algebra: ZZero = {0}, ZInt = Z, Z0 = 0,
Zs(n) = n + 1, Zp(n) = n − 1, where Z is the set of all integers. Z is initial
(Z ∈ IM(SPZ)). The real number algebra R with same interpretations and the
Boolean algebra B with B0 = false Bs = Bp = ¬ can be SPZ-algebras; however,
they are not initial. There is no term corresponding to the real number 3.1415,
and although B |= s(0) = p(0), it cannot be deduced from the axiom of Z.

2.2 CafeOBJ Algebraic Specification Language

We introduce CafeOBJ algebraic specifications language. Although in this pa-
per we treat only CafeOBJ, other OBJ languages can be treated. The CafeOBJ
specifications are described in a modular manner. The CafeOBJ module Z in
Section 1 corresponds to SPZ in Example 1: The declaration [Zero < Int] in
Z corresponds to the sort set {Zero, Int} and the reflexive transitive closure
of the described order. An operation symbol is declared as op f : A B -> C,
which stands for f ∈ ΣA B C. By ops, we can declare two or more operation
symbols with the same rank. ΣA B C is the set of all operation symbols with the
rank A B C. An equation is declared as eq s(p(X:Int)) = X, which stands for
(∀X) s(p(X)) = X, where XInt = {X} and Xs = ∅ for any other s ∈ S. For
a module MOD, the corresponding specification is denoted as SPMOD. Deno-
tations of CafeOBJ specifications represent the class of their algebras. In this
section, we introduce specifications without explicit imports, called basic speci-
fications (or basic modules). CafeOBJ basic specifications can be classified into
specifications with a tight denotation and specifications with a loose denotation.
A specification with a tight denotation is denoted as mod! and a loose speci-
fication is denoted as mod*. Hereinafter, each specification is assumed to have
its denotation declaration and is referred to as d(SP) = tight or loose. The
denotation [SP] of SP is defined as IM(SP) if d(SP) = tight and M(SP) if
d(SP) = loose. We refer to an element of [SP] as a denotational model. We write
SP |= e if M |= e for any M ∈ [SP]. Since Z is tight, [SPZ] = IM(SPZ). Thus,
Z essentially denotes only the integer algebra Z. We next present an example of
loose modules:

mod* FUN{ [Elt]
op f : Elt -> Elt}

Since FUN is loose, [SPFUN] =M(SPFUN). Thus, FUN denotes all algebras, including
at least one function on a set, e.g., they interpret f into, for example, the identity
function on natural numbers, the sort function on arrays, a code refactoring, and
a document editing.

On Equality Predicates in Algebraic Specification Languages 385

The execution of CafeOBJ is based on the term rewriting system (TRS). The
CafeOBJ system [3] is interactive. When starting CafeOBJ, we meet a prompt
CafeOBJ>. After inputting a CafeOBJ module, e.g., mod! TEST{...}, by hand or
through a file, we can select or open the module by select TEST or open TEST.
A prompt will be changed to TEST> or %TEST>. We can then use the CafeOBJ
reduction command red. Here, red takes a term constructed from the selected
or opened module, and returns its normal form (in the default strategy) with
respect to the TRS, the rewrite rules of which are left-to-right-oriented equations
in the module. For example, red s(p(p(0))) returns s(0) for Z:

CafeOBJ> mod! Z{ ... }
-- defining module! Z...._..* done.
CafeOBJ> select Z
Z> red s(p(p(0))) .
-- reduce in Z : s(p(p(0)))
p(0) : Int

A special operation symbol == can be used for equational reasoning. The equality
predicate == takes a pair of terms belonging to the same sort and returns true
or false. When inputting red s == t, CafeOBJ reduces both terms into s′ and
t′, and returns true if s′ and t′ are the same, and otherwise returns false:

Z> red s(p(0)) == p(s(0)) .
-- reduce in Z : s(p(0)) == p(s(0))
true : Bool

The equational reasoning with red (or red ==) is sound, which means that
if red t returns t′ (or red t == t′ returns true), then SP |= t = t′ holds. The
equational reasoning is not complete for several reasons, for example, TRS may
not be confluent, terms may include a variable, and a specification may not be
tight. These reasons are discussed in Sections 3, 4, and 5.

2.3 Structured Specification

We briefly introduce the notion of specification imports. Details can be found
in [8]. A specification can import a sub specification 1. There are three import
relations �p, �e, and �u, called protecting, extending, and using imports, re-
spectively. SP ′ �x SP means that SP imports SP ′ with mode x. We may use
� as one of the three imports. Each imported specification is assumed to be
declared with either the tight or loose denotation declaration. We present the
properties of imports related to our research: (1) when SP imports SP ′ with
protecting mode, any sort or operation symbol x in SP ′ is protected in SP , i.e.
for any M ∈ [SP], Mx = M ′

x for some M ′ ∈ [SP ′], (2) the import relation is
transitive, and the mode of the composed import is the weakest mode, where
�p is strongest and �u is weakest, e.g., if SP �p SP

′�e SP
′′, then SP �e SP

′′.
1 SP ′ is a sub specification of SP , denoted by SP ′ ⊆ SP , iff SSP ′ ⊆ SSP , ≤SP ′⊆≤SP ,

ΣSP ′ ⊆ ΣSP and ESP ′ ⊆ ESP .

386 N. Masaki and F. Kokichi

In CafeOBJ, an import relation SP ′ �p SP (or SP ′ �e SP , SP ′ �u SP)
is described as pr(SP ′) (or ex(SP ′), us(SP ′)). Note that import declarations
should be irreflexive, e.g., CafeOBJ does not allow, for example, mod! MOD{
pr(MOD)· · ·} and mod! A{pr(B)· · ·} · · · mod! B{pr(A)· · ·}. For a module with
imports, SPMOD includes, for example, the sorts, the operation symbols, and
the equations described in the imported modules, as well as MOD itself. When
declared only in MOD itself, the above are denoted as SMOD, ΣMOD, and
EMOD, respectively. Thus, when MOD imports −−−−→MODi

2, ESPMOD = EMOD ∪⋃
i ESPMODi

, for example.

Example 3. The following is an example of specifications with imports:

mod! FUNN{ pr(Z) pr(FUN)
op fn : Int Elt -> Elt
var E : Elt var X : Int
eq fn(0, E) = E .
eq fn(s(X), E) = f (fn(X, E)) .}

FUNN imports Z and FUN with the protecting mode. Thus, for example, MInt

is the set of integers (or its isomorphism) for any M ∈ [SPFUNN]. The operation
symbol fn is interpreted into a functionMfn fromMInt×MElt toMElt satisfying
Mfn(n, e) = fn(e) if n ≥ 0. Note that Mfn(n, e) can be any integer for n < 0.

3 Modular Equational Proof System

We next present an axiomatic semantics (Section 3) and an operational seman-
tics (Section 4) for a modular algebraic specification language. The semantics
presented in Sections 3 and 4 are similar to ordinary semantics, such as those pre-
sented in [8]. The difference is that we prepare notations to extract the part that
corresponds to each submodule. The target language is the subset of CafeOBJ
introduced in Section 2. The congruence relation =E for a set E of equations is
defined as follows: t =E t

′ iff t = t′ can be derived from the reflexive, symmetric,
transitive, congruent, and substitutive laws from E [8]. We redefine this congru-
ence relation while maintaining the module structure. We define the congruence
relation =MOD for each module MOD.

Definition 1. For a module MOD, the congruence relation (∀X) =MOD

on T (ΣSPMOD , X) (abbr. T) is defined as the smallest relation satisfying the
following laws:

[reflexivity] [symmetry] [transitivity] For s, t, u ∈ T ,

(∀X)t =MOD t

(∀X)s =MOD t

(∀X)t =MOD s

(∀X)s =MOD u (∀X)u =MOD t

(∀X)s =MOD t

[congruence] For f ∈ (ΣSPMOD)s1···sn s and ti, t′i ∈ Tsi (i ∈ {1, . . . , n}),
(∀X)t1 =MOD t

′
1 · · · (∀X)tn =MOD t

′
n

(∀X)f(t1, . . . , tn) =MOD f(t′1, . . . , t′n)
2 We write −→ai instead of a1, a2, . . . , an.

On Equality Predicates in Algebraic Specification Languages 387

[substitutivity] For (∀Y)t = t′∈ EMOD and θ : Y → T ,

(∀X)θ(t) =MOD θ(t′)

[import] For modules MOD that import MOD′ and s, t ∈ T ,
if (∀X)s =MOD′ t, then

(∀X)s =MOD t

The last two laws can be a leaf of a proof tree. [substitutivity] is an instance of
an equation e that belongs to MOD itself. By [import], any equation derived
from the submodule is also derivable.

Example 4. Figure 1 is a proof tree for (∀∅)mod2(s(s(p(s(0))))) =FUNN 0. We omit
(∀X) for each equation, where XElt = {E}. Note that the left-most leaf comes
from s(p(s(0))) =Z s(0).

s(p(s(0)))) =FUNN s(0)

fn(s(p(s(0))), E) =FUNN fn(s(0), E)

fn(s(0), E) =FUNN f(fn(0, E))

fn(0, E) =FUNN E

f(fn(0, E)) =FUNN f(E)

fn(s(0), E) =FUNN f(E)

fn(s(p(s(0))), E) =FUNN f(E)

Fig. 1. A proof tree for fn(s(p(s(0))), E) =FUNN f(E)

3.1 Soundness and Completeness of MEPS

We show the soundness of the modular equational proof system (abbr. MEPS),
i.e., s =MOD t ⇒ SPMOD |= s = t, and gives a sufficient condition under which
MEPS is complete, s =MOD t ⇐ SPMOD |= s = t. Let MOD be a module,
and let E be the set of all equations in MOD and its imported modules, i.e.,
ESPMOD . It is trivial that =MOD and =E are exactly the same binary relation.
Thus, the following properties hold [8].

Proposition 1. LetMOD be a module, s, t ∈ T (ΣSPMOD , X). If (∀X)s =MOD

t, then SPMOD |= s = t.

Proposition 2. Let MOD be a tight and basic, i.e., with no explicit imports,
module. Let s, t ∈ T (ΣSPMOD , ∅). Then, SPMOD |= s = t ⇔ s =MOD t.

4 Modular Term Rewriting System

For a specification (Σ,E) and an equation l = r ∈ E, if l is not a variable and all
variables in r occur in l, (Σ,E) (or just E) is called a TRS. In a TRS, equations
are used as left-to-right rewrite rules. We may write l→ r and R instead of l = r
and E when emphasizing rewrite rules. We propose an extension of TRSs for
the module system, called a modular TRS (or MTRS), and an MTRS rewrite
relation.

388 N. Masaki and F. Kokichi

Definition 2. MTRSs are defined recursively as follows: an MTRS R is a pair
((Σ,R), A) of a TRS R and a set A of MTRSs satisfying the following: Σ′ ⊆ Σ
for each MTRS ((Σ′, R′), A′) ∈ A.

For a moduleMOD, the set EMOD of equations described inMOD corresponds
to the TRS of the first argument (Σ,R), and imported modules correspond to
the second argument A. Since the rewrite rules (equations) in a module are con-
structed from the operation symbols declared in the module itself and imported
modules, the condition Σ′ ⊆ Σ is needed. Basic modules correspond to MTRSs
in which the second arguments are empty.

In order to assign an MTRS rewrite relation →R, we introduce a positions
set O(t), a subterm t|p and a replacement term t[u]p as follows: O(x) = {ε} and
O(f(t1, . . . , tn)) = {ε} ∪ {i.p ∈ N+

∗ | p ∈ O(ti)}. t|ε = t and f(t1, . . . , tn)|i.p =
ti|p. t[u]ε = u and f(t1, . . . , tn)[u]i.p = f(. . . , ti−1, ti[u]p, ti+1, . . .). The set of all
maps from A to B is denoted by BA. The reflexive transitive closure of → is
denoted by →∗.

Definition 3. Let R = (R, {Ri}i=1,...,n) be an MTRS. The MTRS rewrite re-
lation →R is defined as follows:

s→R t
def⇐⇒

{
∃(∀X)l → r ∈ R, θ ∈ TX , p ∈ O(s).(s|p = θ(l) ∧ t = s[θ(r)]p)
or ∃i ∈ {1, . . . , n}.s→Ri t.

The first part is the definition of the ordinary TRS rewrite relation →R for a
TRS R, and the latter part (∃i ∈ {1, . . . , n}.s→Ri t) corresponds to the rewrite
relation of the imported modules.

Example 5. MTRSs RZ = ((ΣZ, EZ), ∅) and RFUN = ((ΣFUN, ∅), ∅) correspond to
modules Z and FUN. MTRSRFUNN = ((ΣFUNN∪ΣZ∪ΣFUN, EFUNN), {RZ,RFUN}) corre-
sponds to the modules FUNN. s(p(s(0)))→RZ s(0) holds. Thus, fn(s(p(s(0))), E)
→RFUNN fn(s(0), E) →RFUNN f(fn(0, E)) →RFUNN f(E) holds.

Let MOD be a module importing −−−−→MODi. MTRS RMOD is defined as the pair
(EMOD,

−−−−−→RMODi). We write R,−→Ri instead of RMOD,
−−−−−→RMODi if no confusion

exists. We hereinafter assume the existence of a corresponding module for each
MTRS.

4.1 Soundness and Completeness of MTRS

When a (possibly infinite) sequence −→si of terms satisfies si →R si+1 for each
i = 0, 1, 2, . . ., the sequence is referred to as a rewrite sequence, denoted by
s0 →R s1 →R s2 →R · · ·. If (s →∗ t andjt → u does not hold for any u ∈ T ,
t is called a →-normal form (of s). We often omit →. For a binary relation
→ written as an arrow, we define ←= {(a, b) | b → a} and ↔=→ ∪ ←. The
reflexive and transitive closure of ↔R coincides with =MOD. Terms a and b are
joinable, and are denoted by a ↓ b when there exists c such that a →∗ c and
b →∗ c. → is confluent iff b ↓ c whenever a →∗ b, a →∗ c. → is terminating

On Equality Predicates in Algebraic Specification Languages 389

iff there is no infinite rewrite sequence s0 → s1 → · · ·. → is convergent iff it
is confluent and terminating. We define equational reasoning by MTRS as the
following procedure: take terms s and t, reduce them into their →R normal
forms, and return true if they are the same, and otherwise return false.

We show the soundness of the MTRS equational reasoning (s ↓R t⇒ s =MOD

t) and the sufficient condition under which the MTRS equational reasoning is
complete (s ↓R t ⇐ s =MOD t). Let R be a MTRS, and let R the TRS union of
all TRSs, including R. It is trivial that the MTRS rewrite relation →R and the
ordinary TRS rewrite relation →R are exactly the same binary relation. Thus,
the following properties hold [14,15].

Proposition 3. If s ↓RMOD t, then (∀X)s =MOD t.

Proposition 4. Let MOD be a module such that →RMOD is convergent. Let
s, t ∈ T (ΣSPMOD , X). Then, (∀X)s =MOD t ⇔ s ↓RMOD t.

5 Equality Predicate

In CafeOBJ, we can use the equality predicate == not only in verification,
but also in description as an operation symbol. t1 == t2 is a term for t1, t2 ∈
Ts. The equality predicate is included in a built-in module BOOL. The built-in
module BOOL has a sort Bool, constants true and false, and operations such
as and , or , and == . 3. The rank of == is s s -> Bool for any sort s. It
is not an ordinary operation symbol because it is polymorphic. In addition, the
equality predicate == has another special quality in that it cannot be defined
by equations or a TRS (even if the target sorts are fixed). Although we can give
eq X:s == X = true for true cases, eq X:s == Y:s = false does not give false
cases because t == t can be an instance of X == Y. The reduction command for a
term including == is defined as follows: for a pattern s == t, reduce both terms,
i.e., red s and red t, and replace the term with true if the results are same,
and otherwise replace the term with false. The equality predicate denotes the
equality of model values, i.e., M==(x, y) = (x = y) [8]. If we use the equality
predicate as an operation symbol in the axiom, the equational reasoning is no
longer sound because Propositions 2 and 4 do not hold without the assumptions.
We next show examples in which SP |= s = t does not hold, even if red s ==
t returns true.
Confluence: Consider SP with eq a = b and eq a = c. red b == c returns
false because b and c are normal forms. Thus, red (b == c) == false returns
true. However, SP |= b == c = false do not hold because b = a = c.

Denotation: For the loose module FUN (See Section 2.2), red (f(E:Elt) == E)
== false returns true because f(E) and E are normal forms. However, SPFUN �|=
3 We define a basic module (or specification) as a module without explicit imports.

The explicit import means that the module has no import declaration, and does not
use anything belonging to BOOL, i.e., the sort Bool, operations true, false, and ,
etc. Such modules can be considered as modules with no imports.

390 N. Masaki and F. Kokichi

(∀{E}) (f(E) == E) = false because there existsM ∈ [SPFUN], which interprets
f into the identity function, i.e., Mf(x) = x for all x ∈MElt.

Verification: Even if the specification is convergent as a TRS and is declared
with a tight denotation, equational reasoning is still unsound for a specification
with the equality predicate. Before showing a problematic example, we introduce
a proof score, which is a basis for CafeOBJ verifications. Consider the following
module: mod! PROOF{ pr(Z) op n : -> Int }. Since Z is protected, the constant n
should be an integer. Then, the reduction command red s(p(n)) == p(s(n))
in PROOF returns true, which means that M |= s(p(n)) = p(s(n)) for any M ∈
[SPPROOF] from Proposition 1 and 3. For any integer n ∈ ZInt, there exists M ∈
[SPPROOF] such thatMn = n. Thus, Zs(Zp(n)) = Zp(Zs(n)) holds for any n ∈ ZInt.
The theory of a proof using a constant as an arbitrary element, called Theorem
of Constants, can be found in [11]. By the open command, we can declare a
nameless module that imports the opened module with the protect mode. The
following code, called a proof score, has the same meaning as the above proof:

CafeOBJ> open Z
-- opening module Z.. done.
%Z> op n : -> Int .
%Z> red s(p(n)) == p(s(n)) .
-- reduce in %Z : s(p(n)) == p(s(n))
true : Bool

Consider the following proof score for the module ZERO with the equality
predicate (Section 1).

CafeOBJ> open ZERO
-- opening module ZERO.. done.
%ZERO> op n : -> Int .
%ZERO> red zero(n) == false .
-- reduce in %ZERO : zero(n) == false
true : Bool

The proof score means that zero(n) = false for any integer n. However, this
does not hold because 0 is an integer. The literature [11] mentions the problem
of the equality predicate (Section 2.1.1). One solution given by [11] is to give a
user-defined equality predicate for each sort needed. For example, the equality
predicate is on Nat, which is defined as 0 : -> Nat and s : Nat -> Nat, is
defined by the four equations: (0 is 0) = true, (s(N) is 0) = false, (0 is
s(N)) = false, and (s(M) is s(N)) = M is N, where M and N are variables
[11]. However, it is not always possible for the user to find a suitable definition.
For example, how should is be defined on Int for the specification Z? The
equation (s(N) is 0) = false does not hold for N = p(0) on Int. Moreover,
the user should prove that each user-defined equality predicate actually denotes
the equality on its target set.

On Equality Predicates in Algebraic Specification Languages 391

5.1 Local Equality Predicate

To solve the problems of the equality predicate, we propose a new equality
predicate, called the local equality predicate (LEP). The equality predicate im-
plemented in CafeOBJ is hereinafter referred to as the global equality predicate
(GEP). The LEP is defined for the specification language without the global
equality predicate, which we introduced in Section 2, 3 and 4. For a module
MOD, the specification SPMOD is redefined as follows:

Definition 4. Assume thatMOD imports −−−−→MODi. The specification SPMOD is
redefined by replacing the definition of ΣSPMOD as follows: ΣSPMOD = ΣMOD ∪⋃

iΣMODi ∪ {op =MODi= : s s -> Bool | s ∈ SMODi}. ESPMOD = EMOD

∪
⋃

iEMODi ∪ {eq (X:s =MODi= X) = true | s ∈ SMODi}. The other parts,
such as SSPMOD , are not changed.

Denotation: For any SPMOD-algebraM , LEP op =MODi= : s s -> Bool
is interpreted in the equality on Ms.
MEPS: Add the following to Definition 1:

[LEP] For module MOD, which imports MOD′ and s, t ∈ T (ΣSPMOD , ∅),
if (∀X)s �=MOD′ t, then

(∀X)(s =MOD′= t) =MOD false

MTRS: Add the following condition to Definition 2: MTRS ((Σ,R), A) satisfies
the following: op =MODi= : s s -> Bool ∈ Σ for each s ∈ SMODi and
Ri ∈ A, and eq (X:s =MODi= X) = true ∈ R for each Ri ∈ A for each
s ∈ SMODi and Ri ∈ A. Replace Definition 3 with the following:

s→R t
def⇐⇒

⎧⎨⎩
∃(∀X)l → r ∈ R, θ ∈ TX , p ∈ O(s).(s|p = θ(l) ∧ t = s[θ(r)]p)
or ∃i ∈ {1, . . . , n}.s→Ri t
or ∃p ∈ O(s).(s|p = (u =MODi= v) ∧ t = s[false]p ∧ u �↓Ri v)

Note that for both MEPS and MTRS, the true cases are given by simply adding
an ordinary equation eq X =MODi= X = true.

5.2 Soundness of the Local Equality Predicate

Here, we present properties on the soundness of LEP. These properties can be
proved from Proposition 2 and 4, and the proofs are omitted.

Theorem 1. [Soundness of MEPS with LEP] LetMOD be a module such
that for any occurrence of =MODi= in MOD, the module MODi is basic,
tight, and imported with the protecting mode. Let s, t ∈ T (ΣSPMOD , X). Then,
SPMOD |= s = t if (∀X)s =MOD t.

Theorem 2. [Soundness of MTRS with LEP] LetMOD be a module such
that for any occurrence of =MODi= in MOD, the rewrite relation →Ri is con-
vergent. Let s, t ∈ T (ΣSPMOD , X). Then, (∀X)s =MOD t if s ↓R t.
Corollary 1. Equational reasoning by MTRS for specifications with LEP is
sound under the assumption of Theorems 1 and 2.

392 N. Masaki and F. Kokichi

5.3 Sound Verification System

We next introduce a sound verification system (or rewrite engine) for specifica-
tions with LEP. Consider the assumption of Corollary 1 (i.e., Theorems 1 and 2).
The tight denotation, the basic module, and the protecting import can be easily
checked. Consider an MTRS (R, ∅) corresponding to a basic module. (R, ∅) can
be regarded as an ordinary TRS R. For an ordinary TRS, many useful sufficient
conditions and tools for termination have been proposed [14,15,10,1,4,6], and
when assuming termination, the confluence property is decidable and can be
proved using the critical pair method [14,15]. Thus, we can obtain a decidable
procedure P to check the assumption of Corollary 1 by using termination provers.
The reduction command for LEP is defined as follows. s =MODi= t is rewritten
as follows: Reduce s and t into their normal forms s′ and t′, respectively. If s′ and
t′ are same, then replace the equation with true. If s′ and t′ are not same, then
check the conditions (1) s′, t′ ∈ T (ΣSPMODi

, ∅) and (2) P (MODi). If the conditions
hold, then replace the equation with false, and otherwise return the equation
as is. Then, from Corollary 1, the obtained reduction command is sound.

Example 6. We show the experiences of the reduction command for specifica-
tions with local equality predicates 4. We modify ZERO as follows:

mod! ZERO{ pr(LEP-Z)
op zero : Int -> Bool
eq zero(X:Int) = (X =Z= 0) .}

where LEP-Z is the module having the local equality predicate =Z= on Z (Omit
the definition). In the new ZERO, the global equality predicate == has been
replaced with =Z= . For the terms zero(s(p(0))) and zero(s(p(s(0)))), the
CafeOBJ system returns the correct answers true and false. We again try the
proof score shown in Section 5 as follows:

CafeOBJ> open ZERO
-- opening module ZERO.. done.
%ZERO> op n : -> Int .
%ZERO> red zero(n) == false .
-- reduce in %ZERO : zero(n) == false
false : Bool

As a result of the LEP, an incorrect true is not returned for the above proof
score. Note that false does not mean a disproof. The following is a proof score of
n �= 0⇒ zero(n) = false, and returns true. Thus, it holds for anyM ∈ [SPM2].

ZERO> open ZERO
-- opening module ZERO.. done.
%ZERO> op n : -> Int .
%ZERO> eq n =Z= 0 = false .

4 We have implemented each local equality predicate in CafeOBJ manually by using
order sorts.

On Equality Predicates in Algebraic Specification Languages 393

%ZERO> red zero(n) == false .
-- reduce in %ZERO : zero(n) == false
true : Bool

6 Applications

6.1 Application to Full CafeOBJ

The CafeOBJ specifications in the above sections are restricted in order to focus on
the essential part of the problem of GEP. LEP can be applied to full CafeOBJ (or
OBJ languages) straightforwardly, which include, for example, conditional equa-
tions, parameterizedmodules, behavioral specifications, and rewrite specifications.

6.2 Application of LEP

The assumption of Corollary 1 is not so restrictive. The tight denotation and
the protecting import are necessary conditions. The convergence property is
one of the properties that any algebraic specification is expected to satisfy. In
particular, Maude, one of the OBJ languages, requires its functional modules
(corresponding to CafeOBJ tight modules specifying a data type of a target
system) to be convergent in order to obtain a sound rewriting engine for system
specifications [5]. Since the import relation is transitive, the basic module is not
so restrictive. For example, =Z= can be used in a module, which imports FUNN
with the protecting mode, where FUNN imports Z with the protecting mode. The
following TREE is an example outside the assumption:

mod! TREE{ pr(Z) [Int < Tree]
op __ : Tree Tree -> Tree }

This is a specification of trees having leaves that are integers: Term s(0) is a
tree from [Int < Tree]. Term (p(0) s(0)) p(0) is another example of trees.
TREE is not basic, and Tree is defined in TREE. The LEP on trees is outside
the assumption of Corollary 1. However, if necessary, we can describe the corre-
sponding basic specification satisfying the assumption as follows:

mod! TREE{ [Zero < Int < Tree]
op 0 : -> Zero
op s p : Int -> Int
op __ : Tree Tree -> Tree
eq s(p(X:Int)) = X .
eq p(s(X:Int)) = X .}

6.3 Applications of MEPS and MTRS

MEPS and MTRS are useful not only for dealing with the equality predicates,
but also for the introduction of several functions to modular specification lan-
guages. For example, built-in modules are treated well by our framework rather
than the ordinary framework. Some built-in modules have only signatures and

394 N. Masaki and F. Kokichi

do not have equations (axioms), thus, the ordinary TRS does not treat them
directly. The meaning of operation symbols are implemented in other low-level
languages, e.g., Common Lisp for CafeOBJ built-in modules. For example, a
built-in module NAT has constants 0, 1, 2, . . ., operation symbols, such as + , * ,
and the expression x + y, for example, is reduced to the result of the evaluation
of the Common Lisp expression (+ x y). In our modular framework, we simply
define =NAT and →NAT from the implementation of NAT in order to obtain the
axiomatic and operational semantics of specifications with the built-in module
NAT. Similarly, our framework can be used while implementing a specification.
When we have implemented submodules of a given large specification, we may
obtain a specification combined with those implementations and can perform
some execution tests for the ongoing implementation, or verifications for the
semi-implemented specification. Integrating other verification techniques, such
as model-checking, with a rewriting-based verification is another possible use of
our framework.

7 Conclusion

We proposed the modular equational proof system and the modular term rewrit-
ing system, which are suitable for algebraic specification languages with a module
system. We also proposed the local equality predicate and showed its soundness
(Corollary 1 and Section 5.3). The problem of the global equality predicate is well-
known in the CafeOBJ community, and it has not been used in the recent practical
specifications. The current CafeOBJ system also supports another equality pred-
icate =, which is implemented by simply eq (X = X) = true, where X is a variable.
Many case studies have been succeeded with the above simple equality predicate.
However, because it does not support false cases, we have to manually provide
false cases needed for verification. The local equality predicate solves the problem
of the equality predicate while maintaining its advantages.

For the TRS area, MTRS with LEP is related to the conditional TRS (CTRS)
with negative conditions. A conditional rewrite rule in CTRS is written as l →
r if

∧
li = ri. When li ↓R ri, an instance of l is replaced with the instance

of r (there are several definitions of CTRS rewrite relations. See [14,15]). If a
negative equation is included in the condition part, it is not easy to prove the
soundness of the CTRS. A conditional rewrite rule can be described in CafeOBJ
as a conditional equation in which the condition is a term of the sort Bool.
We can give a Bool condition term as (u1= M1 =v1) and · · · and (un= Mn =vn)
for positive equations and not(u′1= M1′ =v′1) and · · · and not(u′n= Mn′ =v′n) for
negative equations. We can say that MTRS with the local equality predicate
gives one solution of the difficulty of dealing with negative conditions in CTRS.

References

1. AProVE, http://www-i2.informatik.rwth-aachen.de/AProVE/
2. BOBJ, http://www.cs.ucsd.edu/groups/tatami/bobj/

http://www-i2.informatik.rwth-aachen.de/AProVE/
http://www.cs.ucsd.edu/groups/tatami/bobj/

On Equality Predicates in Algebraic Specification Languages 395

3. CafeOBJ, http://www.ldl.jaist.ac.jp/cafeobj/
4. CiME, http://cime.lri.fr/
5. Maude, http://maude.cs.uiuc.edu/
6. Tyrolean Termination Tool, http://cl2-informatik.uibk.ac.at/ttt/
7. Burstall, R.M., Goguen, J.A.: The Semantics of CLEAR, A Specification Language.

In: Bjorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332.
Springer, Heidelberg (1980)

8. Diaconescu, R., Futatsugi, K.: CafeOBJ Report. World Scientific, Singapore (1998)
9. Futatsugi, K., Goguen, J.A., Jouannaud, J.-P., Meseguer, J.: Principles of OBJ2.

In: POPL. Proceedings of the 12th ACM Symposium on Principles of Programming
Languages, pp. 52–66. ACM Press, New York (1985)

10. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated Termination
Proofs with AProVE. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp.
210–220. Springer, Heidelberg (2004)

11. Goguen, J.A., Malcolm, G.: Algebraic Semantics of Imperative Programs, Massa-
chusetts Institute of Technology (1996)

12. Goguen, J.A., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.-P.: Soft-
ware Engineering with OBJ: Algebraic Specification in Action. Kluwers Academic
Publishers, Boston, MA (2000) (chapter Introducing OBJ*)

13. Meinke, K., Tucker, J.V.: Universal Algebra. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science: Background -
Mathematical Structures, vol. 1, pp. 189–411. Clarendon Press, Oxford (1992)

14. Ohlebusch, E.: Advanced topics in term rewriting. Springer, Heidelberg (2002)
15. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-

ence, vol. 55. Cambridge University Press, Cambridge (2003)
16. Wirsing, M.: Algebraic Specification. In: Handbook of Theoretical Computer Sci-

ence. Formal Models and Sematics (B), pp. 675–788 (1990)

http://www.ldl.jaist.ac.jp/cafeobj/
http://cime.lri.fr/
http://maude.cs.uiuc.edu/
http:// cl2-informatik.uibk.ac.at/ttt/

Data-Distributions in PowerList Theory

Virginia Niculescu

Faculty of Mathematics and Computer Science
Babeş-Bolyai University, Cluj-Napoca

vniculescu@cs.ubbcluj.ro

Abstract. PowerList theory is well suited to express recursive, data-
parallel algorithms. Its abstractness is very high and ensures simple and
correct design of parallel programs. We try to reconcile this high level
of abstraction with performance by introducing data-distributions into
this theory. One advantage of formally introducing distributions is that
it allows us to evaluate costs, depending on the number of available
processors, which is considered as a parameter. The analysis of the pos-
sible distributions for a certain function may also lead to an improvement
in the design decisions. Another important advantage is that after the
introduction of data-distributions, mappings on real parallel architec-
tures with limited number of processing elements can be analyzed. Case
studies for Fast Fourier transform and rank-sorting are given.

Keywords: parallel computation, abstraction, design, distribution,
data-structures.

1 Introduction

PowerLists are data structures introduced by J. Misra [9], which can be suc-
cessfully used in a simple and provably correct, functional description of parallel
programs, which are divide and conquer in nature. They allow work at a high
level of abstraction, especially because index notations are not used. To ensure
methods that verify the correctness of the parallel programs, algebras and struc-
tural induction principles are defined on these data structures. Based on the
structural induction principles, functions and operators representing the parallel
programs, are defined.

The second section briefly describes this theory.
PowerList theory can be considered the basis for a model of parallel computa-

tion with a very high level of abstraction. In order to be useful, a model of parallel
computation must address both issues, abstraction and effectiveness, which are
summarized in the following set of requirements: abstractness, software develop-
ment methodology, architecture independence, cost measures, no preferred scale
of granularity, efficiently implementable [13]. The first three requirements are
clearly fulfilled by PowerList theory.

Mappings on hypercubes have been analyzed for the programs specified based
on Power notations [9,7]; they are based on Gray code.Thus, we may agree that
the requirement of efficient implementation is also fulfiled. The most practical

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 396–409, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Data-Distributions in PowerList Theory 397

approach of bounded parallelism has to be introduced, and so, the distributions.
The cost measures have to be more rigorously defined, as well.

Section 3 presents the way in which distributions may be defined on these
special kinds of data structures, and also how the functions defined on them
could be transformed to accept distributions. Time-complexity is analyzed, and
examples are given for Fast Fourier Transformation, and Rank-sorting.

For other models, these kinds of enhancement have been analyzed, as well.
There is a clear necessity to reconcile abstraction with performance, as is it
stated by S. Gorlatch in [3].

The BMF formalism [1,3] is also based on recursion, and there the notion of
homeomorphism is essential. The distributions have been introduced as simple
functions that transform a list into a list of lists. But, since few of the key
distributions, such as block decomposition, can be defined in this calculus, so
various hybrid forms, often called skeletons [2] have been introduced to bridge
the gap.

Shape theory [4] is a more general approach. Knowledge of the shapes of the
data structures is used by many cost models [5]. Static shape analysis can be
applied to those programs for which the shape of the result is determined by that
of inputs, i.e. the shapely programs. PowerList theory allows us to define shapely
programs, but in a very elegant and simple way. It has proved to be highly
successful in expressing computations that are independent of the specific data
values. By introducing data distributions in this theory, we enhance its power of
expressivity.

We will define distributions in the same way as we define functions represent-
ing programs (based on pattern matching). Hence, distribution properties could
be proved by induction as well. Also, choosing a distribution strongly depends
on initial function definition: it depends on the decomposition operator that is
used.

The analysis of time-complexity is done on the hypothesis of a PRAM model
(shared memory), or a complete interconnection network (distributed memory).

2 PowerList Theory

PowerList

A PowerList is a linear data structure whose elements are all of the same type.
The length of a PowerList data structure is a power of two. The type constructor
for PowerList is:

PowerList : Type× N → Type (1)

and so, a PowerList with 2n elements of type X is specified by PowerList.X.n
(n = loglen.l). A PowerList with a single element a is called singleton, and is
denoted by [a] . If two PowerList structures have the same length and elements
of the same type, they are called similars.

Two similar PowerLists can be combined into a PowerList data structure with
double length, in two different ways:

398 V. Niculescu

– using the operator tie p | q; the result contains elements from p followed by
elements from q

– using the operator zip p ! q; the result contains elements from p and q,
alternatively taken.

Therefore, the constructor operators for PowerList are:

[.] : X → PowerList.X.0
.|. : PowerList.X.n× PowerList.X.n→ PowerList.X.(n+ 1)
.!. : PowerList.X.n× PowerList.X.n→ PowerList.X.(n+ 1).

(2)

Functions are defined based on the structural induction principle. For exam-
ple, the high order function map, which applies a scalar function to each element
of a PowerList is defined as follows:

map : (X → Z)× PowerList.X.n→ PowerList.Z.n
map.f. [a] = [f.a]
map.f. (p!q) = map.f.p !map.f.q or map.f. (p | q) = map.f.p |map.f.q

(3)

A special case of themap is obtained if function f is an application of a binary
operator (5), provided that the first argument (z) is given :

< z5 > .l.p = map.(z5).p. (4)

Another example is the function flat that is applied to a PowerList with
elements which are in turn PowerLists, and it returns a simple PowerList:

flat : PowerList. (PowerList.X.n) .m→ PowerList.X.(n ∗m)
flat. [l] = l
f lat. (p!q) = flat.p ! f lat.q or flat. (p | q) = flat.p | flat.q

(5)

Associative operators on scalar types can be extended to PowerList, as well.

3 Distributions

The ideal method to implement parallel programs described with PowerLists
is to consider that any application of the operators tie or zip as deconstructors,
leads to two new processes running in parallel, or, at least, to assume that for each
element of the list there is a corresponding process. That means that the number
of processes grows linearly with the size of the data. In this ideal situation, the
time-complexity is usually logarithmic (if the combination step complexity is a
constant), depending on loglen of the input list.

A more practical approach is to consider a bounded number of processes np.
In this case, we have to transform the input list, such that no more than np

processes are created. This transformation of the input list corresponds to a
data distribution.

Data-Distributions in PowerList Theory 399

Definition 1. D = (δ, A,B) is called a (one-dimensional) distribution if A and
B are finite sets, and δ is a mapping from A to B; set A specifies the set of data
objects (an array with n elements that represent the indices of data objects), and
set B specifies the set of processes, which is usually p. Function δ assigns each
index i(0 ≤ i < n), and its corresponding element, to a process number [11].

One advantage of PowerList theory is that it is not necessary to use indices,
and this simplifies very much reasoning and correctness proving. Thus, we will
introduce distributions not as in the definition above, but as functions on these
special data structures.

The distribution will transform the list into a list with np elements, which are
in turn sublists; each sublist is considered to be assigned to a process.

3.1 PowerList Distributions

We consider PowerList data structures with elements of a certain type X , and
with length such that loglen = n. The number of processes is assumed to be
limited to np = 2p (p ≤ n).

Two types of distributions – linear and cyclic, which are well-known distri-
butions, may be considered. These correspond in our case to the operators tie
and zip. Distributions are defined as PowerList functions, so definitions corre-
sponding to the base case and to the inductive step have to be specified:

– linear

distrl.p.(u|v) = distrl.(p− 1).u|distrl.(p− 1).v, if loglen.(u|v) ≥ p ∧ p > 0
distrl.0.l = [l]
distrl.p.x = [x], if loglen.x < p.

(6)
– cyclic

distrc.p.(u!v)=distrc.(p− 1).u!distrc.(p− 1).v, if loglen.(u!v) ≥ p ∧ p > 0
distrc.0.l = [l]
distrc.p.x = [x], if loglen.x < p.

(7)

The base cases transform a list l into a singleton, which has the list [l] as its
unique element.

Examples. If we consider the list l = [1 2 3 4 5 6 7 8], the lists obtained after
the application of the distribution functions distrl.2.l and distrc.2.l are:

distrl.2.l = distrl.1.[1 2 3 4] | distrl.1.[5 6 7 8] = [[1 2] [3 4] [5 6] [7 8]]
distrc.2.l = distrc.1.[1 3 5 7] ! distrc.1.[2 4 6 8] = [[1 5] [2 6] [3 7] [4 8]]

Properties. If we consider u ∈ PowerList.X.n, then distr.n.u = u, where u
is obtained from the list u by transforming each of its elements into a singleton
list. (This could be easily proved by structural induction.)

400 V. Niculescu

We also have the trivial property distr.0.u = [u].
The result of the application of a distribution distr.p to a list l ∈ PowerList.X.n,
n ≥ p is a list that has 2p elements each of these being a list with 2n−p elements
of type X . (This property could be proved by induction on p.)

The properties are true for both linear and cyclic distributions.

3.2 Function Transformation

We consider a function f defined on PowerList.X.n based on operator tie with
the property that

f.(u|v) = Φ(f.x0, f.x1, . . . , f.xm, u, v), (8)

where xi ∈ PowerLists.X.k, k = loglen.u, and xi = ei.u.v, ∀i : 0 ≤ i ≤ m, and
ei and Φ are expressions that may use scalar functions and extended operators
on powerlists. If the function definition Φ is more complex and uses other func-
tions on PowerLists, then these functions have to be transformed first, and the
considered function after that.

A scalar function fs has zero or more scalars as arguments, and its value
is a scalar. The function fs is easily extended to a PowerList by applying fs
“pointwise” to the elements of the PowerList. A scalar function that operates on
two arguments could be seen as an infix operator, and it can also be extended
to PowerLists.

The extensions of the scalar functions on PowerLists could be defined by using
either operator tie or zip. Some properties of these functions can be found in [9].
For the sake of clarity, we will introduce the notation fs1, which specifies the
corresponding extended function on PowerLists of the scalar function fs defined
on the scalar type X . For the case of one argument the definition is:

fs1 : Powerlist.X.n→ Powerlist.X.n
fs1.[a] = [fs.a]
fs1.(p|q) = fs1.p|fs1.q or fs1.(p!q) = fs1.p!fs1.q

(9)

Further, fs2 (which is the notation for the extension of fs on PowerLists with
elements which are in turn PowerLists) could be defined:

fs2 : Powerlist.(PowerList.X.m).n→ PowerList.(PowerList.X.m).n
fs2.[l] = [fs1.l]
fs2.(p|q) = fs2.p|fs2.q or fs2.(p!q) = fs2.p!fs2.q

(10)

This represents, in fact, an extension from functions defined on PowerLists with
depths equal to 1 to those defined on PowerLists with depths larger than 1.

We intend to show that

f.u = flat ◦ fp.(distl.p.u),

where
fp.(u|v) = Φ2(fp.x

′

0, f
p.x

′

1, . . . , f
p.x

′

m, u, v)
fp.[l] = [fs.l]
fs.u = f.u
x

′

i = e2i .u.v, ∀i : 0 ≤ i ≤ m

(11)

Data-Distributions in PowerList Theory 401

Function fp corresponds to parallel execution, and function fs corresponds
to sequential execution.

Lemma 1. Given a scalar function fs : X → X, and a distribution function
distr.p, defined on PowerList.X.n, then the following equality is true

dist.p ◦ fs1 = fs2 ◦ dist.p (12)

Proof. To prove this lemma we use induction on p.
We give the proof only for the case of the linear distribution, but the case of

the cyclic distribution is similar.
Base case(p = 0)

fs2.(distl.0.u)
= {p = 0⇒ distl.p.u = [u]}
fs2.[u]

= {fs2 definition}
[fs1.u]

= {distrl.0 definition}
distrl.0.(fs1.u)

Inductive step

fs2.(distl.p.(u|v))
= { definition of distrl}
fs2.(distl.(p− 1).u|distl.(p− 1).v)

= {fs2 definition}
fs2.(distl.(p− 1).u)|fs2.(distl.(p− 1).v))

= {induction assumption}
distrl.(p− 1).(fs1.u)|distrl.(p− 1).(fs1.u)

= {distrl definition}
distrl.p.(fs1.u|fs1.v)

= {fs1 definition}
distrl.p.(fs1.(u|v))

The previous result is naturally extended to scalar functions with more argu-
ments, such as infix operators.

Scalar binary associative operators (⊕) could also be extended on PowerLists
as reduction operators – red(⊕). They transform a PowerList into a scalar. For
them, similar extensions as for scalar functions may be done.

red1(⊕) : Powerlist.X.m→ X
red1(⊕).[a] = a
red1(⊕).(p|q) = red1(⊕).p⊕ red1(⊕).q

(13)

red2(⊕) : Powerlist.(PowerList.X.m).n→ PowerList.X.0
red2(⊕).[l] = [red1(⊕).l]
red2(⊕).(p|q) = [red1(⊕).

(
red2(⊕).p|red2(⊕).q

)
]

(14)

402 V. Niculescu

For this, a similar property in relation to distribution is obtained:

distr.p ◦ red1(⊕) = red2(⊕) ◦ distr.p (15)

Theorem 1. Given a function f defined on PowerList.X.n as Eq. 8, a corre-
sponding distribution distrl.p, (p ≤ n), and a function fp defined as in Eq. 11,
then the following equality is true

f = flat ◦ (fp ◦ distl.p) (16)

Proof. We will prove the following equation

(distrl. ◦ f).u = (fp ◦ distl.p).u
for any u ∈ PowerList.X.n (17)

which implies the equation 16. To prove this, we use induction on p again.
Base case(p = 0)

fp.(distl.0.u)
= {p = 0 ⇒ distl.p.u = [u]}
fp.[u]

= {fp definition}
[fs.u]

= {fs and distrl.0 definitions}
distrl.0.(f.u)

Inductive step

fp.(distl.p.(u|v))
= { definition of distrl}
fp.(distl.(p− 1).u|distl.(p− 1).v)

= {fp definition, scalar functions properties}
Φ2(fp.(e20.(distl.(p− 1).u).(distl.(p− 1).v)), . . . ,

fp.(e2m.(dist
l.(p− 1).u).(distl.(p− 1).v)), distl.(p− 1).u, distl.(p− 1).v)

= {ei are simple expressions – use scalar functions}
Φ2(fp ◦ distrl.(p− 1).(e0.u.v), . . . ,

fp ◦ distrl.(p− 1).(em.u.v), distl.(p− 1).u, distl.(p− 1).v)
= {induction assumption, and scalar functions properties}

(distrl.p ◦ Φ)(f.(e0.u.v), . . . , f.(em.u.v), u, v)
= {f definition}
distrl.p.(f.(u|v))

For cyclic distribution the proof is similar; the operator tie is replaced with the
operator zip.

3.3 Time Complexity

Considering a function f defined on PowerList representing a program, and a
distribution distr.p.·, time-complexity of the resulting program is the sum of the

Data-Distributions in PowerList Theory 403

parallel execution time and the sequential execution time:

T = Θ + T (fp) + T (fs)

whereΘ reflects the costs specific to parallel processing (communication or access
to shared memory).

The evaluation considers that the processor-complexity is 2p (O(2p) processors
are used).

Example 1. (Constant-time combination step) If the time-complexity of the
combination step is a constant Ts(Φ) = Kc,Kc ∈ R, and considering that the
time-complexity of computing the function on singletons is equal to Ks (Ks ∈ R
also a constant), then we may evaluate the total complexity as being:

T = Θ +Kcp+Kc(2n−p − 1) +Ks2n−p (18)

If p = n, we achieve the cost of the ideal case (unbounded number of proces-
sors).

For example, for reduction red(⊕) the time-complexity of the combination
step is a constant, and Ks = 0; so we have

Tred = Θ +K⊕(p+ 2n−p − 1) (19)

For extended operators 5 the combination constant is equal to 0, but we have
the time needed for the operator execution on scalars reflected in the constant
Ks. We have a similar situation for the high order function map. In these cases,
the time-complexity is equal to

T = Θ +Ks2n−p (20)

Example 2. (Fast Fourier Transform) As proved by J. Misra[9], the function
for the computation of Fast Fourier Transform on N points is:

fft.[x] = [x]
fft.(p!q) = (fft.p+ u× fft.q)|(fft.p− u× fft.q)
where u = powers p

(21)

The powerlist definition for the function powers is:

powers.[x] = [1]
powers.(p|q) = (powers.p)2!(< w ∗ > (powers.p)2)
where w is the Nth principal root of 1

(22)

The extended operators +,−,× were used.
The computation of the function fft could be carried out in O(logN) time

using O(N) processors (N is the length of the initial list).
The function could be transformed for bounded parallelism, to be a distributed

PowerList function, using Theorem 1. Thus, we obtain

fftp.[l] = [ffts.l]
fftp.(p!q) = (fftp.p +2 v ×2 fftp.q) | (fftp.p −2 v ×2 fftp.q)
where v = powersp p

(23)

404 V. Niculescu

In the first stage, each of the 2p processors executes a sequential computation of
a Fourier Transformation (ffts), and the time-complexity is O

(
(n− p)2(n−p)

)
.

For the execution of fftp there are p steps, and each one could be executed in
O
(
2(n−p−1)

)
time. At the level k, 0 ≤ k < p, the operators +,−,× are applied

to lists of length equal to 2n−p+(p−k−1) using 2p−k processors; based on Eq. 20
this can be executed with a time-complexity equal to 2n−p−1. Because the func-
tion powers is also defined based on extended operators, it needs the same time-
complexity O(2(n−p−1)) at each level. (But this time could still be improved since
the result of the function powers depends only on the length of the argument list.)

So, the total time-complexity is

T = Θ + T p + T s = Θ + O
(
N

P
logN

)
+O

(
N

P
(logN − logP)

)
where N = 2n and P = 2p. Θ could be approximated to O

(
logP N

P

)
. If p = n

then the time-complexity is O(logN).

Example 3 (Rank Sorting)
The idea of the rank sort algorithm is as follows: determine the rank of each
element in the unsorted sequence and place it in the position according to its
rank. The rank of an element is equal to the number of elements smaller than it
[6].

Rank sort is not exactly a good sequential sorting algorithm because the time
complexity in the sequential case is: O(N2) (N is the length of the sequence).
But this algorithm leads to good parallel algorithms.

We will consider the special case of a sequence with N = 2n elements. The
type of the elements is X , on which we have defined an order relation ≤.

By using the definition of the method, we arrive to the following simple
PowerList function:

rank : PowerList.X.n→ PowerList.N.n
rank.l = map.(count.l).l

count : PowerList.X.n×X → N
count.l.x = (red(+) ◦map.(f x)).l

f : X ×X → N

f.x.y =
{

1, if x ≥ y
0, if x < y

(24)

A simple transformation can be made:

red(+) ◦map (f x) l = red(+) (map (f x) l) not= redmap(+, f.x).l (25)

which simple means that the application of the function f.x is made in the same
step with the reduction, not in a separate sequent step. Function composition
leads to sequential composition.

Data-Distributions in PowerList Theory 405

We proved by induction on the loglen of the list, that for any associative
operator ⊕ and any scalar function f we have

redmap(⊕, f).(p|q) = redmap(⊕, f).p ⊕ redmap(⊕, f).q

(Operator zip could also be used.)

Base case loglen.p = loglen.q = 0

redmap(⊕, f).[a b]
= {redmap definition}
red.(⊕).(map.f.[a b])

= {map definition}
red.(⊕).[f.a f.b]

= {red definition}
f.a⊕ f.b

= {map, red, and redmap definition}
redmap(⊕, f).[a] ⊕ redmap(⊕, f).[b]

Inductive step

redmap(⊕, f).(p|q)
= {redmap definition}
red.(⊕).(map.f.(p|q))

= {red and map definition}
red.(⊕).map.f.p ⊕ red.(⊕).map.f.q

= {induction hypothesis }
redmap(⊕, f).p ⊕ redmap(⊕, f).q

We may consider that the function redmap is a special kind of reduction.
Ideally, for computing the first function map of the rank definition, we need a

number of processors equal to the length of the input list – n. Each application
of the function count l is a reduction that can be computed with O(log n) time
complexity andO(n) processor complexity. So, for whole program the unbounded
time complexity is O(log n), with the processor complexity equal to O(n2).

For bounded parallelism we need to transform the program by imposing that
the number of processors be equal to 2p, and using Theorem 1.

As it may be noticed in the specification, the algorithm contains two phases:
one represented by the function map, and the other represented by the function
count, each of them having the input list l as an argument. A distribution func-
tion dist.p simple divides the argument list into 2p balanced sublists. So, we may
apply it for the computation of the function map, or for the computation of the
function count, or for both.

There are two cases that we have to take into account:

– A. Case p ≤ n.
– B. Case n < p ≤ 2n.

406 V. Niculescu

A. Case p ≤ n If the number of processors is less or equal to the size of the
list, than a distribution function can be applied only once: for the function map,
or for the function count.

In the first sub-case we obtain the following transformation:

rank.l = (flat ◦mapp.(counts.l) ◦ distl.p).l
mapp.(counts.l).[p] = maps.(counts.l).p
counts.l.u = redmaps(+, f.x).l

(26)

This means that each processor sequentially computes the ranks for 2n−p ele-
ments.

If we apply the function dist to the function count, we obtain the following
transformation of the function rank:

rank.l = maps (flat ◦ countp.l).l
countp.l.x = (redmapp(+, f.x) ◦ distl.p).l
redmapp(+, f.x).(p|q) = [red(+).(redmapp(+, f.x).p|redmapp(+, f.x).q)]
redmapp(+, f.x).[p] = [redmaps(+, f.x).p]

(27)
This program sequentially computes the ranks of the elements, but each rank is
computed in parallel using 2p processors. For computing the rank of an element
x, the processors compare x to all their 2n−p local elements, and compute local
ranks; then the local ranks are added.

The two sub-cases reflect different ways for algorithm decomposition in sub-
steps, which can be computed with 2p processors. Based on equations 19 and
20, the time complexities of the two sub-cases are:

1. Θ1 + 2n−p(2n + 2n − 1) = Θ1 + 22n−p+1 − 2n−p for the first case, and
2. 2n ∗ (Θ2 + p+2n−p− 1+2n−p) = 2nΘ2 +22n−p+1 + p2n− 2n for the second.

Obviously, if we ignore the Θ times, the first is the best.
In order to implement the program on a shared memory (SM) architecture,

the list l is shared by all processors, so normally we will choose the first sub-case
with the better time complexity.

If we analyze the number of accesses to the shared memory, we have the
following situation, in the first sub-case: Each processor makes 22n−p readings
and 2n−p writings from/in the shared memory. On a CREW architecture, Θ1

will be α(22n−p + 2n−p)), where α is the unit time for shared memory access.
On a distributed memory (DM) architecture, the second alternative is better

since we have the list distributed over the processors. An element is broadcasted
to all the processors during the step that computes its rank - so there are 2n steps.
Each processor compares the current received element to the local elements and
computes a local rank. Local ranks are summed using a tree like computation
that represents the reduction. If we consider β the unit time for communication,
and the constant b reflects the time for a broadcast, then Θ2 is given by the
following expression: β(p + b). So, for good values of β and b, the result could
be better than that of the SM architecture case.

Data-Distributions in PowerList Theory 407

B. Case n < p ≤ n2 If we have more than n processors and p = q + r
(q < n and r < n), we may use the distribution function for both stages of
computations. Thus, we arrive to the following transformation of the program:

rank.l = (flat ◦mapp.(flat ◦ countp.l) ◦ dist.p).l
countp.l.x = (redmapp(+, f.x) ◦ dist.p).l (28)

The time complexity for this case is Θ1 + 2n−q(Θ2 + r + 2n−r − 1 + 2n−r).
For a DM architecture, the processors could be arranged on a 2q × 2r mesh,

and the data distribution of the first line may be replicated on the other lines of
processors. Each line computes the ranks of the elements of a sublist with 2n−q

elements.
We have obtained three variants, two for the case p ≤ n and one for the case

n < p ≤ n2.

Remark. The functions map and red could be defined based on operator tie,
but also based on operator zip. So, in order to obtain distributed functions we
may also use cyclic distribution.

Rank sorting algorithm is one that shows that a poor sequential algorithm
for a problem may lead to very good parallel algorithms. It has been considered
especially for sorting on shared memory architectures [14]. We have shown here
in a formalized way that we may successful use it for distributed architectures,
as well. We have also formally analyzed the case when the number of processors
p is between n and n2.

The abstract design using PowerList notation can comprise different cases that
may appear at the implementation phase: shared memory versus distributed
memory, and different numbers of processors. Thus, the abstractness of this
formalism does not exclude performance.

3.4 Further Work

If we want to work with matrices, it is possible to use PowerList, whose elements
are in turn, PowerList. But this is not the natural way to work with multidimen-
sional structures, and also by using this kind of structures it would be very diffi-
cult to define specific functions – for example matrix transposition. For these rea-
sons a new notation, specific to multidimensional structures, has been introduced
– PowerArray [9]. Distributions could also be introduced for these multidimen-
sional structures. (The limited space did not allow us to present their case, here.)
For PowerArray data structures, Cartesian distributions could be defined.

A distribution is generally defined as simple mapping between the input data
and the processors numbers. A special case of distributions is represented by
the set-distributions [10], which are defined using set-mappings between the in-
put data and the processors numbers. They are used when we want to assign a
datum to more than one processor. We may introduce this special case of distri-
bution into the abstract model of Power theories by transforming the functions
defined on PowerLists into functions defined on PowerArrays, where the arrays
are obtained by replicating the lists on new dimensions.

408 V. Niculescu

Beside PowerList notation, other two have been developed for one-dimensio-
nal data structures: ParList, and PList [7]. They consider the case when the
lists don’t have lengths which are powers of two, and respectively, the case when
the division could be done into more than two parts. This kind of analysis, based
on distribution, could be done for ParList, PList theories as well, and so the
model would not be restricted to special structures with lengths equal to powers
of two, and to divide&conquer programs, where division is done always into two
parts.

4 Conclusions

The synthesis and analysis of a parallel algorithm can be carried out under the
assumption that the computational model consists of p processors only, where
p ≥ 1 is a fixed integer. This is referred to as bounded parallelism. In contrast,
unbounded parallelism refers to the situation in which it is assumed that we have
at our disposal an unlimited number of processors.

From a practical point of view algorithms for bounded parallelism are prefer-
able. It is more realistic to assume that the number of available processors is
limited. Although parallel algorithms for unbounded parallelism, in general, use
a polynomially bounded number of processors (e.g. O(n2), O(n3), etc.) it may
be that for very large problem sizes the processors requirement may become
impractically large. However, algorithms for unbounded parallelism are of great
theoretical interest, since they give limits for parallel computation and provide
a deeper understanding of a problem’s intrinsic complexity.

Consequently, the right way to design parallel programs is to start from
unbounded parallelism, and then transform the algorithm for bounded paral-
lelism. The PowerList functions represent programs which usually reflect the
unbounded parallelism.

The PowerList notation has been proved to be a very elegant way to spec-
ify divide&conquer parallel algorithms and prove their correctness. The main
advantage of this model is that it offers a simple, formal and elegant way to
prove correctness. Their abstractness is very high, but we may reconcile this
abstractness with performance by introducing bounded parallelism, and thus
distributions. The necessity of this kind of reconciliation for parallel computa-
tion models is argued by Gorlatch in [3], and also by Skillicorn and Talia in
[13].

We have proved that the already defined PowerList functions could be easily
transformed to accept bounded parallelism, by introducing distributions. The
functions defined based on operator tie have to use linear distributions, and the
functions defined based on operator zip have to use cyclic distributions.

The presented case studies of Fast Fourier Transform and Rank-Sorting em-
phasize the advantages of using distributions, and the way in which design may
be improved based on distribution analysis.

There are several advantages of formally introducing the distributions; the
first is that it allows us to evaluate costs, depending on the number of available

Data-Distributions in PowerList Theory 409

processors - as a parameter. The analysis of the possible distributions for a cer-
tain function may lead to an improvement in the design decisions, too. Another
advantage is that we may control the parallel decomposition until a certain level
of tree decomposition has been achieved; otherwise parallel implementation of
this kind of programs could be done, for example, in a ‘deep-first’ manner, which
could be disadvantageous. Also, after the introduction of the distributions func-
tions, mapping on real architectures with limited number of processing elements
(e.g. hypercubes) could be analyzed.

References

1. Bird, R.: Lectures on Constructive Functional Programming. In: Broy, M. (ed.)
Constructive Methods in Computing Science. NATO ASI Series F: Computer and
Systems Sciences, vol. 55, pp. 151–216. Springer, Heidelberg (1988)

2. Cole, M.: Parallel Programming with List Homomorphisms. Parallel Processing
Letters 5(2), 191–204 (1994)

3. Gorlatch, S.: Abstraction and Performance in the Design of Parallel Programs.
In: CMPP’98 First International Workshop on Constructive Methods for Parallel
Programming (1998)

4. Jay, C.B.: A semantics for shape. Science of Computer Programming 25(2), 251–
283(33) (1995)

5. Jay, C.B.: Costing Parallel Programs as a Function of Shapes. Science of Computer
Programming 37(1), 207–224 (2000)

6. Knuth, D.E.: The Art of Computer Programming. In: Sorting and Searching, vol. 3,
Addison-Wesley, Reading (1973)

7. Kornerup, J.: Data Structures for Parallel Recursion. PhD Thesis, Univ. of Texas
(1997)

8. Kornerup, J.: PLists: Taking PowerLists Beyond Base Two. In: MIP-9805, 9805th
edn. First International Workshop on Constructive Methods for Parallel Program-
ming, pp. 102–116 (1998)

9. Misra, J.: PowerList: A structure for parallel recursion. ACM Transactions on
Programming Languages and Systems 16(6), 1737–1767 (1994)

10. Niculescu, V.: On Data Distributions in the Construction of Parallel Programs.
The Journal of Supercomputing 29(1), 5–25 (2004)

11. Niculescu, V.: Unbounded and Bounded Parallelism in BMF. Case-Study: Rank
Sorting. Studia Universitatis Babes-Bolyai, Informatica XLIX(1), 91–98 (2004)

12. Skillicorn, D.B.: Structuring data parallelism using categorical data types. In: Pro-
gramming Models for Massively Parallel Computers, pp. 110–115. Computer Soci-
ety Press (1993)

13. Skillicorn, D.B., Talia, D.: Models and Languages for Parallel Computation. ACM
Computer surveys 30(2), 123–136 (1998)

14. Wilkinson, B., Allen, M.: Parallel Programming Techniques and Applications Using
Networked Workstations and Parallel Computers. Prentice-Hall, Englewood Cliffs
(2002)

Quasi-interpretation Synthesis by Decomposition

An Application to Higher-Order Programs

Guillaume Bonfante, Jean-Yves Marion, and Romain Péchoux

Nancy-Université, Loria, Carte team, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex,
France, and École Nationale Supérieure des Mines de Nancy, INPL, France

Guillaume.Bonfante@loria.fr Jean-Yves.Marion@loria.fr
Romain.Pechoux@loria.fr

Abstract. Quasi-interpretation analysis belongs to the field of implicit
computational complexity (ICC) and has shown its interest to deal with
resource analysis of first-order functional programs, which are terminat-
ing or not. In this paper, we tackle the issue of program decomposition
wrt quasi-interpretations analysis. For that purpose, we use the notion
of modularity. Firstly, modularity decreases the complexity of the quasi-
interpretation search algorithms. Secondly, modularity increases the in-
tentionality of the quasi-interpretation method, that is the number of
captured programs. Finally, we take advantage of modularity conditions
to extend smoothly quasi-interpretations to higher-order programs.

We study the modularity of quasi-interpretations through the notions
of constructor-sharing and hierarchical unions of programs. We show
that, in both cases, the existence of quasi-interpretations is no longer a
modular property. However, we can still certify the complexity of pro-
grams by showing, under some restrictions, that the size of the values
computed by a program remains polynomially bounded by the inputs
size.

1 Introduction

1.1 Certifying Resources by Quasi-interpretations

The resources control of memory, space or time is a fundamental issue when
considering critical systems. This paper, which deals with static analysis of first-
order functional programs, is a contribution to that field and, in particular, to
the field of implicit computational complexity (ICC). The control of resources is
studied by the ICC community in four distinct approaches that we briefly review.
The first one deals with linear type disciplines in order to restrict computational
time and began with the seminal work of Girard [13] on Light Linear Logic. The
interested reader should consult the recent results of Baillot-Terui [4], Lafont [22]
and Coppola-Ronchi [8]. The second approach is due to Hofmann [15,16], who
introduced a resource atomic type, into linear type systems, for higher-order
functional programming. The third one considers imperative programming lan-
guages and is developed by Niggl-Wunderlich [26], Jones-Kristiansen [20] and

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 410–424, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Quasi-interpretation Synthesis by Decomposition 411

Marion-Moyen [24]. The fourth approach is the one on which we focus in this
paper. It concerns term rewriting systems and quasi-interpretations.

A comprehensive introduction to quasi-interpretations is given in [6]. Basi-
cally, a quasi-interpretation of a first-order functional program provides an up-
per bound on the size of any value computed by the program. Combined with
recursive path orderings, it characterizes complexity classes such as the set of
polynomial time functions or yet the set of polynomial space functions. The main
features of quasi-interpretations (abbreviated QI) are the following:

1. QI analysis includes a broad class of algorithms, even some that have an
exponentially length derivation but denote a polynomial time computable
function using dynamic programming techniques. See [23,5].

2. Resource verification of bytecode programs is obtained by compiling first-
order functional and reactive programs which admit quasi-interpretations.
See for example [2,3,9].

3. In [7], the synthesis of QI was shown to be decidable in exponential time for
polynomial quasi-interpretations of bounded degree over real numbers.

1.2 Modularity

The issue of modularity of term rewriting systems has been introduced by
Toyama in [30]. Nowadays, it is a classical approach to solve problems like conflu-
ence [31], termination [21,14] or completeness [19] by dividing the problem into
smaller parts. The interested reader should consult Middeldorp [25], Klop [19]
and, more recently, Ohlebusch [27] to read an overview on this subject. In the
literature, modularity is studied with respect to the way programs are divided.
In this paper, we consider two distinct program decompositions. The first one is
the constructor-sharing union in which functions defined by programs can share
constructors. The second one is the hierarchical union, where constructors of one
program are defined function symbols of another program.

1.3 More Intentionality

We show that in both cases QI are not modular, but we can still use QI in
order to predict resource bounds for constructor-sharing unions. Moreover, we
are able, under some syntactical restrictions, to analyze resource bounds in the
hierarchical case. The consequence is that we analyze the complexity of more
programs. We obtain new characterizations of the sets of polynomial time and
polynomial space functions. Last but not least, the hierarchical union of two
programs can be considered as a way to deal with higher-order programs. Up to
now, the QI method only applies to first-order functional programs. A way to
deal with higher-order programs is to transform a higher-order definition into a
hierarchical union of programs using higher-order removal methods. As a result,
we obtain new higher-order characterizations of the sets of polynomial time and
polynomial space functions.

412 G. Bonfante, J.-Y. Marion, and R. Péchoux

1.4 Modularity as a Way to Improve QI Synthesis

The problem of the QI synthesis, which was introduced by Amadio in [1], con-
sists in finding a QI for a given program. In a perspective of automatic anal-
ysis of the complexity of programs, such a problem is fundamental. We have
shown in [7] that the QI synthesis for a program having n variables, has a
time complexity in 2nα

, for some constant α, as long as we take polynomial
QI with degrees smaller than an arbitrarily fixed constant. On one hand we
have a very general procedure, on the other hand the procedure has a high
cost. The question of modularity of QI is central as long as one considers a
divide and conquer strategy to find QI. Take a program and divide it into k
sub-programs having nj variables for j from 1 to k. Then the complexity of
the QI synthesis decreases from 2(

�k
j=1 nj)

α

to
∑k

j=1 2nα
j , for some constant α.

Such results allow the improvement of a software called CROCUS, available
at http://libresource.inria.fr//projects/crocus, that we are currently
developing and which finds QI using some heuristics.

1.5 Plan of the Paper

The paper is organized as follows. Section 2 describes the syntax and semantics of
considered programs. After introducing the notion of QI, it briefly reviews their
main properties. Sections 3 and 4 are devoted to the study of constructor-sharing
and, respectively, hierarchical unions. Finally, Section 5 is an application of the
complexity results obtained in the case of a hierarchical union to higher-order
programs.

The full paper with the proofs and more examples is available at the address
http://hal.inria.fr

2 Quasi-interpretations of First-Order Functional
Programs

2.1 Syntax and Semantics of First-Order Programs

A program is defined formally as a quadruple 〈X , C,F ,R〉 with X ,F and C finite
disjoint sets which represent respectively the variables, the function symbols and
the constructors symbols and R a finite set of rules defined below:

(Values) T (C) 4 v ::= c | c(v1, · · · , vn)
(Terms) T (C,F ,X) 4 t ::= c | x | c(t1, · · · , tn) | f(t1, · · · , tn)
(Patterns) P 4 p ::= c | x | c(p1, · · · , pn)
(Rules) R 4 r ::= f(p1, · · · , pn) → t

where x ∈ X , f ∈ F , and c ∈ C.
The set of rules induces a rewriting relation →. The relation ∗→ is the reflexive

and transitive closure of →. Throughout the paper, we only consider programs
having disjoint and linear patterns. So each program is confluent [17].

http://libresource.inria.fr//projects/crocus
http://hal.inria.fr

Quasi-interpretation Synthesis by Decomposition 413

The domain of computation of a program 〈X , C,F ,R〉 is the constructor al-
gebra T (C). A substitution σ is a mapping from variables to terms and a ground
substitution is a substitution which ranges over values of T (C). Given a term t

and a ground substitution σ, we define the notation �tσ� by if tσ
∗→w and w is

in T (C) then �tσ� = w, �tσ� = ⊥ otherwise.
The size |t| of a term t is defined to be the number of symbols of arity strictly

greater than 0 occurring in t. We define |⊥| = 0.

2.2 Recursive Path Orderings

Given a program 〈X , C,F ,R〉, we define a precedence ≥F on function symbols
and its transitive closure, that we also note ≥F , by f ≥F g if there is a rule of
the shape f(p1, · · · , pn) → C[g(e1, · · · , em)] with C[:] a context and e1, · · · , em

terms. f ≈F g iff f ≥F g and g ≥F f. f >F g iff f ≥F g and not g ≥F f.
We associate to each function symbol f a status st(f) in {p, l} and which

satisfies if f ≈F g then st(f) = st(g). The status indicates how to compare
recursive calls. When st(f) = p, the status of f is said to be product. In that
case, the arguments are compared with the product extension of≺rpo. Otherwise,
the status is said to be lexicographic.

Definition 1. The product extension ≺p and the lexicographic extension ≺l of
≺ over sequences are defined by:

– (m1, · · · , mk) ≺p (n1, · · · , nk) if and only if (i) ∀i ≤ k, mi + ni and (ii)
∃j ≤ k such that mj ≺ nj.

– (m1, · · · , mk) ≺l (n1, · · · , nl) if and only if ∃j such that ∀i < j, mi + ni

and mj ≺ nj

Definition 2. Given a precedence +F and a status st, we define the recursive
path ordering ≺rpo as follows:

u +rpo ti
f ∈ F

⋃
C

u ≺rpo f(. . . , ti, . . .)

∀i ui ≺rpo f(t1, · · · , tn) g ≺F f
g ∈ F

⋃
C

g(u1, · · · , um) ≺rpo f(t1, · · · , tn)

(u1, · · · , un) ≺st(f)
rpo (t1, · · · , tn) f ≈F g ∀i ui ≺rpo f(t1, · · · , tn)

g(u1, · · · , un) ≺rpo f(t1, · · · , tn)

A program is ordered by ≺rpo if there are a precedence +F and a status st such
that for each rule l → r, the inequality r ≺rpo l holds.

A program which is ordered by ≺rpo terminates [11].

2.3 Quasi-interpretations

An assignment of a symbol b ∈ F
⋃
C of arity n is a function
b� : (R+)n → R+.

414 G. Bonfante, J.-Y. Marion, and R. Péchoux

An assignment satisfies the subterm property if for any i = 1, n and any
X1, · · · , Xn in R+, we have

b�(X1, · · · , Xn) ≥ Xi

An assignment is weakly monotone if for any symbol b,
b� is an increasing
(not necessarily strictly) function with respect to each variable. That is, for
every symbol b and all X1, · · · , Xn, Y1, · · · , Yn of R with Xi ≤ Yi, we have

b�(X1, · · · , Xn) ≤
b�(Y1, · · · , Yn).

We extend assignment
−� to terms canonically. Given a term t with m vari-
ables, the assignment
t� is a function (R+)m → R+ defined by the rules:

b(t1, · · · , tn)� =
b�(
t1�, · · · ,
tn�)

x� = X

where X is a fresh variable ranging over reals.

Definition 3 (Quasi-interpretation). A quasi-interpretation
−� of a pro-
gram 〈X , C,F ,R〉 is a weakly monotonic assignment satisfying the subterm prop-
erty such that for each rule l → r ∈ R, and for every ground substitution σ

lσ� ≥
rσ�
Definition 4. Let Max-Poly{R+} be the set of functions defined to be con-
stant functions over R+, projections, max, +, × and closed by composition. An
assignment
−� is said to be polynomial if for each symbol b ∈ F

⋃
C,
b� is

a function in Max-Poly{R+}. A quasi-interpretation
−� is polynomial if the
assignment
−� is polynomial.

Now, say that an assignment of a symbol b of arity n > 0 is additive if

b�(X1, · · · , Xn) =
n∑

i=1

Xi + α with α ≥ 1

An assignment
−� of a program p is additive if
−� is polynomial and each
constructor symbol of p has an additive assignment. A program is additive if it
admits a quasi-interpretation which is an additive assignment.

Example 1. Consider the program which computes the logarithm function and
described by the following rules:

log(0) → 0 half(0) → 0
log(S(0)) → 0 half(S(0)) → 0

log(S(S(y))) → S(log(S(half(y)))) half(S(S(y))) → S(half(y))

It admits the following additive quasi-interpretation:

0� = 0

S�(X) = X + 1

log�(X) =
half�(X) = X

Quasi-interpretation Synthesis by Decomposition 415

2.4 Key Properties of Quasi-interpretations

Lemma 1 (Fundamental Lemma). Assume that 〈X , C,F ,R〉 is a program
admitting an additive quasi-interpretation
−�. There is a polynomial P such that
for any term t which has n variables x1, · · · , xn and for any ground substitution
σ such that xiσ = vi, we have

|�tσ�| ≤ P |t|(max
i=1..n

|vi|)

where P 1(X) = P (X) and P k+1(X) = P (P k(X)).

A proof of the Lemma is written in [23]. Notice that the complexity bound just
depends on the inputs and not on the term t which is of fixed size. Lemma 1 and
the subterm property of QI imply that each intermediate call in a computation
is performed on values whose size is polynomially bounded by the input size.

Theorem 1 ([23]). The set of functions computed by additive programs ordered
by ≺rpo where each function symbol has a product status is exactly the set of
functions computable in polynomial time.

The proof is fully written in [23]. It relies on the fundamental Lemma, combined
with a memoization technique à la Jones [18].

Theorem 2 ([5]). The set of functions computed by additive programs ordered
by ≺rpo is exactly the set of functions computable in polynomial space.

3 Constructor-Sharing and Disjoint Unions

Two programs 〈X1, C1,F1,R1〉 and 〈X2, C2,F2,R2〉 are constructor-sharing if

F1 ∩ F2 = F1 ∩ C2 = F2 ∩ C1 = ∅

In other words, two programs are constructor-sharing if their only shared sym-
bols are constructor symbols. The constructor-sharing union of two programs
〈X1, C1,F1,R1〉 and 〈X2, C2,F2,R2〉 is defined as the program

〈X1, C1,F1,R1〉
⊔
〈X2, C2,F2,R2〉 = 〈X1 ∪ X2, C1 ∪ C2,F1 ∪ F2,R1 ∪R2〉

Notice that the semantics for constructor-sharing union is defined since the
confluence is modular for constructor-sharing unions of left-linear systems [28].

Proposition 1 (Modularity of ≺rpo). Assume that p1 and p2 are two pro-
grams ordered by ≺rpo then p1

⊔
p2 is also ordered by ≺rpo, with the same status.

We are showing a negative result for the modularity of quasi-interpretations in
the case of constructor-sharing union:

Proposition 2. The property of having an additive quasi-interpretation is not
a modular property w.r.t. constructor-sharing union.

416 G. Bonfante, J.-Y. Marion, and R. Péchoux

Proof. We exhibit a counter-example. We consider two programs p0 and p1. Both
constructor sets C0 and C1 are taken to be {a,b}, F0 = {f0} and F1 = {f1}.
Rules are defined respectively by:

f0(a(x)) → f0(f0(x)) f1(b(x)) → f1(f1(x))
f0(b(x)) → a(a(f0(x))) f1(a(x)) → b(b(f1(x)))

p0 and p1 admit the respective additive quasi-interpretations
−�0 and
−�1
defined by:

a�0(X) = X + 1
a�1(X) = X + 2

b�0(X) = X + 2
b�1(X) = X + 1

f0�0(X) = X
f1�1(X) = X

Ad absurdum, we prove that p0

⊔
p1 admits no additive quasi-interpretation.

Suppose that it admits the additive quasi-interpretation
−�. Since
−� is ad-
ditive, let
a�(X) = X + ka and
b�(X) = X + kb, with ka, kb ≥ 1. For the
simplicity of the proof, suppose that the polynomial
f0� can be written without
max operation. For the first rule of p0,
f0� has to verify the following inequality:

f0�(X + ka) ≥
f0�(
f0�(X))

Now, write
f0�(X) = αXd + Q(X), where Q is a polynomial of degree strictly
smaller than d. Observe that
f0�(X +ka) is of the shape αXd +R(X), where R
is a polynomial of degree strictly smaller than d, and that
f0�(
f0�(X)) is of the
shape α2Xd2

+S(X), where S is a polynomial of degree strictly smaller than d2.
For X large enough, the inequality above yields the following inequalities d ≥ d2

which gives d = 1. So, we can compare leading coefficient, α ≥ α2. So that,
α = 1 and, in conclusion,
f0�(X) = X + k. By symmetry, the same result holds
for
f1�(X) = X + k′.

Now the last two rules imply the inequalities:

kb + k ≥ 2ka + k

ka + k′ ≥ 2kb + k′

Consequently, ka = kb = 0, which is a contradiction with the requirement that
ka, kb ≥ 1. �"

However, the complexity bounds remain correct even if the constructor-sharing
union does not admit a quasi-interpretation. We establish that the Fundamental
Lemma holds:

Theorem 3. Given p1 = 〈X1, C1,F1,R1〉 and p2 = 〈X2, C2,F2,R2〉, two pro-
grams having an additive quasi-interpretation, there is a polynomial P such that
for any term t of p1

⊔
p2 which has n variables x1, · · · , xn, and for any ground

substitution σ such that xiσ = vi:

|�tσ�| ≤ P |t|(max
i=1..n

|vi|)

Quasi-interpretation Synthesis by Decomposition 417

Proof. The proof is a consequence of Lemma 1, by observing that there is no call
between the two programs p1 and p2 of a constructor-sharing union p1

⊔
p2. �"

Together with the fact that ≺rpo is modular, Theorem 3 implies:

Corollary 1 (time and space for constructor-sharing union)

– The set of functions computed by constructor-sharing union of additive pro-
grams ordered by ≺rpo where each function symbol has a product status is
exactly the set of functions computable in polynomial time.

– The set of functions computed by constructor-sharing union of additive pro-
grams ordered by ≺rpo is exactly the set of functions computable in polyno-
mial space.

Theorem 3 analyzes more programs like the counter-example built in the proof
of Proposition 2. In fact, there are several meaningful examples based on cod-
ing/encoding procedures which are now captured, but which were not previ-
ously, by dividing the QI analyzing on subprograms of the original one. So,
the time/space characterization that we have established, is intentionally more
powerful than the previous ones. Moreover, it gives rise to an interesting and
simple strategy for synthesizing quasi-interpretations, which consists in dividing
a program into two sub-programs having disjoint sets of function symbols, and
iterating this division as much as possible.

4 Hierarchical Union

Two programs 〈X1, C1,F1,R1〉 and 〈X2, C2,F2,R2〉 are hierarchical if

F1 ∩ F2 = F2 ∩ C1 = ∅ and C1 ∩ C2 �= ∅ and F1 ∩ C2 �= ∅

where symbols of F1 do not appear in patterns of R2. Their hierarchical union
is defined as the program:

〈X1, C1,F1,R1〉 1 〈X2, C2,F2,R2〉 = 〈X1 ∪ X2, C1 ∪ C2 −F1,F1 ∪ F2,R1 ∪R2〉

Notice that the hierarchical union is no longer a commutative operation in con-
trast to constructor-sharing union. Indeed, the program 〈X2, C2,F2,R2〉 is call-
ing function symbols of the program 〈X1, C1,F1,R1〉 and the converse does not
hold. In other words, the hierarchical union of programs p1 1 p2 corresponds to
a program p2 which can load and execute libraries of p1.

The hypothesis that patterns inR2 are over C2−F1 symbols entails that there
is no critical pair. Consequently, confluence is a modular property of hierarchical
union and the semantics is well defined.

Proposition 3 (Modularity of ≺rpo). Assume that 〈X1, C1,F1,R1〉 is a pro-
gram ordered by ≺rpo with a status function st1 and a precedence +F1 and
〈X2, C2,F2,R2〉 is a program ordered by ≺rpo with a status function st2 and
a precedence +F2 , then 〈X1, C1,F1,R1〉 1 〈X2, C2,F2,R2〉 is ordered by ≺rpo

418 G. Bonfante, J.-Y. Marion, and R. Péchoux

Since the constructor-sharing union is a particular case of hierarchical union ,
the following holds:

Proposition 4. The property of having an additive quasi-interpretation is not
a modular property w.r.t. hierarchical union.

Moreover, contrarily to what happened with constructor-sharing union, the Fun-
damental Lemma does not hold. That is why we separate both cases. Here is a
counter-example:

Example 2. The programs p1 and p2 are given by the rules:

d(S(x)) → S(S(d(x))) exp(S(x)) → d(exp(x))
d(0) → 0 exp(0) → S(0)

p1 and p2 are ordered by ≺rpo with product status and admit the following
additive quasi-interpretations:

0�1 = 0
0�2 = 0

S�1(X) = X + 1
S�2(X) =
d�2(X) = X + 1

d�1(X) = 2×X
exp�2(X) = X + 1

d can be viewed as a constructor symbol whose quasi-interpretation is additive
in p2 whereas it is a function symbol whose quasi-interpretation is affine in p1.
The exponential comes from the distinct kinds of polynomial allowed for d.

From now on, some restrictions which preserve the Fundamental Lemma are
established. In order to avoid the previous counter-example, we put restriction
on the shape of the polynomials allowed for the quasi-interpretations of the
shared symbols in a criteria called Kind preserving.

For that purpose, define an honest polynomial to be a polynomial, without the
max operation, whose coefficients are greater or equal to 1. By extension, define
the QI
−� to be honest if
b� is honest for every symbol b. Honest polynomials
are very common in practice because of the subterm property.

Given n variables X1, · · · , Xn and n natural numbers a1, · · · , an, define a
monomial m to be a polynomial of one term, of the shape m(X1, · · · , Xn) =
Xa1

1 × . . .×Xan
n where some aj �= 0. Given a monomial m and a polynomial P ,

define m ! P iff P =
∑k

j=1 αj ×mj , with αj constants and mj pairwise distinct
monomials, and there is i ∈ {1, k} s.t. mi = m and αi �= 0. The coefficient αi,
also noted coefP (m), is defined to be the multiplicative coefficient associated to
m in P .

Definition 5. Assume that 〈X1, C1,F1,R1〉 1 〈X2, C2,F2,R2〉 is the hierarchi-
cal union of two programs with respective polynomial QIs
−�1 and
−�2. We
say that
−�1 and
−�2 are Kind preserving if ∀b ∈ C2 ∩ F1:

1.
b�1 and
b�2 are honest polynomials
2. ∀m, m !
b�1 ⇔ m !
b�2

Quasi-interpretation Synthesis by Decomposition 419

3. ∀m, coef
�b�2

(m) = 1 ⇔ coef
�b�1

(m) = 1

Two Kind preserving QIs
−�1 and
−�2 are called additive Kind preserving
if the following conditions are satisfied:

–
b�1 is additive for every b ∈ C1,
–
b�2 is additive for every b ∈ C2 −F1.

Notice that
b�2 is not necessarily additive for b ∈ C2∩F1. The QI
−�1 and
−�2
of example 2 are not additive Kind preserving since we have
d�1(X) = 2 ×X
and
d�2(X) = X + 1.

Consequently, an interesting restriction for preserving the Fundamental
Lemma might be to force the quasi-interpretations of a hierarchical union to be
additive Kind preserving. However, this restriction is not enough as illustrated
by the following program:

Example 3. Consider the following respective programs p1 (on the left) and p2:

g(t) → S(S(t)) f(S(x),0, t) → f(x, t, t)
f(x,S(z), t) → f(x, z, g(t))

f(0,0, t) → t

Their hierarchical union p1 1 p2 computes an exponential function. Using the
notation n for S(. . .S(0) . . .)︸ ︷︷ ︸

n times S

, we have �f�(n, m, p) = 3n × (2 ×m + p).

p1 and p2 are ordered by ≺rpo with lexicographic status and admit the fol-
lowing additive Kind preserving quasi-interpretations:

0�2 = 0

S�1(X) = X + 1
S�2(X) =
g�2(X) = X + 1

g�1(X) = X + 2
f�2(X, Y, Z) = max(X, Y, Z)

The problem of the above counter-example comes directly from the fact that
the number of alternations between rules of both programs used during the
evaluation depends on the inputs. A way to deal with Kind preserving QIs is
to bound the number of alternations by some constant. For that purpose, we
also put some syntactic restrictions over the considered programs, considering a
notion of flat programs introduced by Dershowitz in [12], where it was used in
order to ensure modularity of completeness of hierarchical unions.

Definition 6. The hierarchical union 〈X1, C1,F1,R1〉 1 〈X2, C2,F2,R2〉 is cal-
led stratified if

– For all rule f(p1, · · · , pn) → e in R2, we have: For each g(e1, · · · , en) sub-
term of e such that g ≈F2 f, no (shared) function symbols of C2 ∩F1 occurs
in the arguments e1, · · · , en of g.

– The program 〈X2, C2,F2,R2〉 is flat: For every rule f(p1, · · · , pn) → e of R2,
e has no nesting of function symbols. In other words, e is a term without
composition of function symbols in F2.

420 G. Bonfante, J.-Y. Marion, and R. Péchoux

The examples of this paper (see in particular Section 5) illustrate the fact that
the restriction on the stratified union is not harsh.

Theorem 4. Given two programs p1 =〈X1, C1,F1,R1〉 and p2 =〈X2, C2,F2,R2〉
having additive Kind preserving quasi-interpretations
−�1 and
−�2 and their
stratified union p1 1 p2, the Fundamental Lemma holds:

There is a polynomial P such that for any term t of p1 1 p2 which has n
variables x1, · · · , xn, and for any ground substitution σ such that xiσ = vi:

|�tσ�| ≤ P |t|(max
i=1..n

|vi|)

Proof. The proof relies on two Lemmas.
The first Lemma states that every stratified union is evaluated using a strat-

egy of the shape t
∗→2u1

∗→1v1 . . .
∗→2uk

∗→1vk with the number of alternations k
between rules of p1 and rules of p2 bounded by some constant.

The second Lemma states that given two Kind preserving QIs
−�1 and
−�2,
there exist two polynomials Q and P such that for every term t we have
t�1 ≤
P (
t�2) and
t�2 ≤ Q(
t�1).

Combined with Lemma 1, we obtain:

|vk| ≤
vk�2 ≤ (Q ◦ P)k(P (
t�2)) ≤ (Q ◦ P)k(P (S(max
i=1..n

|wi|)))

for some polynomial S and some inputs w1, · · · , wn. �"

Example 4. Consider the following programs p1 and p2:

d(S(x)) → S(S(d(x))) sq(S(x)) → S(add(sq(x), d(x)))
d(0) → 0 sq(0) → 0

−−−−−− −−−−−−−
add(S(x), y) → S(add(x, y))

add(0, y) → y

Their hierarchical union p1 1 p2 = 〈X , C,F ,R〉 computes the square of a unary
number given as input. For the precedence ≥F , we have sq >F {add, d}. More-
over the program p2 is flat since there is no composition of function symbols
in its rules. Consequently, p1 1 p2 is a stratified union, since the argument of
the recursive call sq(x) is a variable. Both p1 and p2 are ordered by ≺rpo with
product status. Define the quasi-interpretations
−�1 and
−�2 by:

0�1 = 0
0�2 = 0

S�1(X) = X + 1
S�2(X) = X + 1

d�1(X) = 2×X
d�2(X) = 2×X

add�1(X, Y) = X + Y
add�2(X, Y) = X + Y + 1

sq�2(X) = 2×X2

−�1 and
−�2 are additive Kind preserving QIs, so that the program p1 1 p2

computes values whose size is polynomially bounded by the inputs size.
Moreover, the program division can be iterated on p1 by separating the rules

for function symbols add and d, thus obtaining a constructor-sharing union.

Quasi-interpretation Synthesis by Decomposition 421

Corollary 2 (time and space for hierarchical union of Kind preserving
QIs). The set of functions computed by a hierarchical union of two programs p1

and p2 such that

1. p1 1 p2 is a stratified union,
2. p1 and p2 admit the respective additive Kind preserving QIs
−�1 and
−�2,
3. p1 and p2 are ordered by ≺rpo and each function symbol has a product status,

is exactly the set of functions computable in polynomial time.
Moreover, if condition (3) is replaced by: p1 and p2 are ordered by ≺rpo then

we characterize exactly the class of polynomial space functions.

Proof. Again, this result is a consequence of the fact that we have the Funda-
mental Lemma in Proposition 4 and the ≺rpo ordering with product status. �"

We have established a new decomposition of programs, called stratified union,
which guarantees that the Fundamental Lemma remains correct. Such a decom-
position is a necessary condition in order to preserve the polynomial bound, as
illustrated by the above counter-examples. Thus, we obtain a new way of di-
viding programs in a synthesis perspective which is more flexible than in the
constructor-sharing case. Consequently, it improves the time complexity of the
QI search algorithm.

5 Application to Higher-Order Programs

Resource control of higher-order programs by QI is a tricky task, because we
should deal at first glance with higher-order assignments. However, higher-order
mechanisms can be reduced to an equivalent first order functional program
by defunctionalization, which was introduced by Reynolds [29]. Defunctional-
ization consists in two steps. First, a new constructor symbol is substituted
to every higher-order function declaration. Second, each function application
is eliminated by introducing a new function symbol for application. We re-
fer to Danvy [10] which investigates works related to defunctionalization and
Continuation-Passing style and gives a lot of references.

Now, we show how to use modularity of QI in order to control resources
of higher-order programs. Since this is an application of the previous Sections
and due to the lack of space, we illustrate the key concepts without formalizing
higher-order programs.

Example 5. Suppose that g is defined by a program q3. Consider the following
higher-order program p.

fold(λx.f(x),nil) → 0
fold(λx.f(x), c(y, l)) → f(fold(λx.f(x), l))

h(l) → fold(λx.g(x), l) for g defined in q3

422 G. Bonfante, J.-Y. Marion, and R. Péchoux

h(l) iterates g such that �h�(l) = �g�n(0) where n is the number of elements in
the list l. From p, we obtain p̂ by defunctionalization:

q1 =

⎧⎪⎨⎪⎩
ˆfold(nil) → 0

ˆfold(c(y, l)) → app(c0, ˆfold(l)) c0 is a new constructor

ĥ(l) → ˆfold(l)

q2 =
{
app(c0, x) → g(x)

We are now able to use QI to higher-order programs by considering their first-
order transformations. In fact, the above example illustrates the fact that a
defunctionalized program p̂ is divided into three parts: the programs q1 and q2

above and a program q3 which computes g. Notice that the hierarchical union of
q2 1 q1 is stratified. Moreover, it admits the following additive Kind preserving
QIs:

 ˆfold�1(X) =
h�1(X) = X
g�2(X) = X + 1

c�1(X, Y) = X + Y + 1
c0�2 = 0

0�1 =
c0�1 =
nil�1 = 0
app�2(X, Y) = X + Y + 1

app�1(X, Y) = X + Y + 1

Now, the results on modularity that we have previously established, allow us to
give a sufficient condition on the QI of g defined in q3, in order to guarantee that
the computation remains polynomially bounded. Indeed, Proposition 4 implies
that
g�3 should be Kind preserving. That is,
g�3(X) =
g�2(X)+α = X+α+1,
where α is some constant. Notice that
g�2 is forced by
app�2, and on the other
hand
app�2 is forced by
app�1.

Example 6. Consider the following programp, which visits a list l in Continuation-
Passing style.

visit(nil, λx.f(x), y) → f(y)
visit(c(z, l), λx.f(x), y) → visit(l, λx.g1(f(x)), y)

h(l) → visit(l, λx.g0(x), 0)

where g0 and g1 are defined by some program q3 which admits an additive QI

 �3. We have �h�(l) = �g1�n(�g0�(0)) where n is the number of elements in the
list l. We obtain p̂

q1 =

⎧⎪⎨⎪⎩
ˆvisit(nil, k, y) → app(k, y)

ˆvisit(c(z, l), k, y) → ˆvisit(l, c1(k), y)

h(l) → ˆvisit(l, c0, 0) c0 and c1 are new constructors

q2 =

{
app(c0, x) → g0(x)

app(c1(k), x) → g1(app(k, x))

Quasi-interpretation Synthesis by Decomposition 423

The hierarchical union q2 1 q1 is stratified and admits the following additive
Kind preserving QIs:

 ˆvisit�1(X) =
h�1(X) = X + 1
g1�2(X) =
g0�2(X) = X + 1

c1�1(X, Y) =
c�1(X, Y) = X + Y + 1
c1�2(X) = X + 1

0�1 =
c0�1 =
nil�1 = 0
0�2 =
c0�2 = 0

app�1(X, Y) = X + Y + 1
app�2(X, Y) = X + Y + 1

Now, suppose that we have two QI
g0�3 and
g1�3, which are two resource
certificates for g0 and g1 wrt q3. Proposition 4 states that we are sure to remain
polynomial if the QI of g0 and g1 are Kind preserving. In other words,
g0�3(X) =
X + α and
g1�3(X) = X + β for some constants α and β.

So, a modular approach is a way to predict safely and efficiently if we can apply
a function in a higher-order computational mechanism.

Finally, we state the following characterizations:

Theorem 5 (Modularity and higher-order programs). The set of func-
tions computed by a higher-order program p such that the defunctionalization p̂

is defined by hierarchical union p1 1 p2 of two programs p1 and p2 satisfying:

1. p1 1 p2 is a stratified union,
2. p1 and p2 admit the respective additive Kind preserving QIs
−�1 and
−�2,
3. p1 and p2 are ordered by ≺rpo and each function symbol has a product status,

is exactly the set of functions computable in polynomial time.
Moreover, if condition (3) is replaced by: p1 and p2 are ordered by ≺rpo then

we characterize exactly the class of polynomial space functions.

References

1. Amadio, R.: Max-plus quasi-interpretations. In: Hofmann, M.O. (ed.) TLCA 2003.
LNCS, vol. 2701, pp. 31–45. Springer, Heidelberg (2003)

2. Amadio, R., Coupet-Grimal, S., Dal-Zilio, S., Jakubiec, L.: A functional scenario
for bytecode verification of resource bounds. In: Marcinkowski, J., Tarlecki, A.
(eds.) CSL 2004. LNCS, vol. 3210, pp. 265–279. Springer, Heidelberg (2004)

3. Amadio, R., Dal-Zilio, S.: Resource control for synchronous cooperative threads.
In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 68–82.
Springer, Heidelberg (2004)

4. Baillot,P.,Terui,K.:Afeasiblealgorithmfortypinginelementaryaffinelogic.In:Urzy-
czyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 55–70. Springer, Heidelberg (2005)

5. Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: On lexicographic termination ordering
with space bound certifications. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.)
PSI 2001. LNCS, vol. 2244, Springer, Heidelberg (2001)

6. Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: Quasi-interpretation a way
to control resources. Submitted to Theoretical Computer Science (2005),
http://www.loria.fr/∼marionjy

7. Bonfante, G., Marion, J.-Y., Moyen, J.-Y., Péchoux, R.: Synthesis of
quasi-interpretations. In: LCC2005, LICS affiliated Workshop (2005),
http://hal.inria.fr/

http://www.loria.fr/~marionjy
http://hal.inria.fr/

424 G. Bonfante, J.-Y. Marion, and R. Péchoux

8. Coppola, P., Rocca, S.R.D.: Principal typing for lambda calculus in elementary
affine logic. Fundamenta Informaticae 65(1-2), 87–112 (2005)

9. Dal-Zilio, S., Gascon, R.: Resource bound certification for a tail-recursive virtual
machine. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 247–263. Springer,
Heidelberg (2005)

10. Danvy, O.: An analytical approach to programs as data objects, Doctor Scientarum
degree in Computer Science. BRICS. Departement of Computer Science. University
of Aarhus (2006)

11. Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Sci-
ence 17(3), 279–301 (1982)

12. Dershowitz, N.: Hierachical termination. In: Lindenstrauss, N., Dershowitz, N.
(eds.) CTRS 1994. LNCS, vol. 968, Springer, Heidelberg (1995)

13. Girard,J.-Y.:Light linear logic. InformationandComputation143(2),175–204(1998)
14. Gramlich, B.: Generalized sufficient conditions for modular termination of rewrit-

ing. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 53–68. Springer,
Heidelberg (1992)

15. Hofmann, M.: A type system for bounded space and functional in-place update.
Nordic Journal of Computing 7(4), 258–289 (2000)

16. Hofmann, M.: The strength of Non-Size Increasing computation. In: POPL, pp.
260–269 (2002)

17. Huet, G.: Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM 27(4), 797–821 (1980)

18. Jones, N.D.: Computability and complexity, from a programming perspective. MIT
Press, Cambridge (1997)

19. Klop, J.W.: Term rewriting systems. In: Handbook of logic in Computer Science,
vol. 2, pp. 1–116. Oxford University Press, Oxford (1992)

20. Kristiansen, L., Jones, N.D.: The flow of data and the complexity of algorithms.
In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp.
263–274. Springer, Heidelberg (2005)

21. Kurihara, M., Ohuchi, A.: Modularity of simple termination of term rewriting sys-
tems with shared constructors. Theoretical Computer Science 103, 273–282 (1992)

22. Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Sci-
ence 318, 163–180 (2004)

23. Marion, J.-Y., Moyen, J.-Y.: Efficient first order functional program interpreter
with time bound certifications. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000.
LNCS (LNAI), vol. 1955, pp. 25–42. Springer, Heidelberg (2000)

24. Marion, J.-Y., Moyen, J.-Y.: Heap analysis for assembly programs. Technical re-
port, Loria (2006)

25. Middeldorp, A.: Modular properties of term rewriting Systems. PhD thesis, Vrije
Universiteit te Amsterdam (1990)

26. Niggl, K.-H., Wunderlich, H.: Certifying polynomial time and linear/polynomial
space for imperative programs. SIAMJournal onComputing 35(5), 1122–1147 (2006)

27. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002)
28. Krishna Rao, M.R.K.: Modular proofs of completeness of hierarchical term rewrit-

ing systems. Theoretical Computer Science 151, 487–512 (1995)
29. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.

In: ACM, pp. 717–740. ACM Press, New York (1972)
30. Toyama, Y.: Counterexamples for the direct sum of term rewriting systems. Infor-

mation Processing Letters 25, 141–143 (1987)
31. Toyama, Y.: On the church-rosser property for the direct sum of term rewriting

systems. Journal of the ACM 34(1), 128–143 (1987)

Composing Transformations

to Optimize Linear Code

Thomas Noll and Stefan Rieger

RWTH Aachen University
Software Modeling and Verification Group

52056 Aachen, Germany
{noll,rieger}@cs.rwth-aachen.de

Abstract. We study the effect of an optimizing algorithm for straight–
line code which first constructs a directed acyclic graph representing
the given program and then generates code from it. We show that this
algorithm produces optimal code with respect to the classical transfor-
mations known as Constant Folding, Common Subexpression Elimina-
tion, and Dead Code Elimination. In contrast to the former, the latter
are also applicable to iterative code containing loops. We can show that
the graph–based algorithm essentially corresponds to a combination of
the three classical optimizations in conjunction with Copy Propagation.
Thus, apart from its theoretical importance, this result is relevant for
practical compiler design as it potentially allows to exploit the optimiza-
tion potential of the graph–based algorithm for non–linear code as well.

1 Introduction

Literature on optimizing compilers describes a wide variety of code transforma-
tions which aim at improving the efficiency of the generated code with respect to
different parameters. Most of them concentrate on specific aspects such as the
elimination of redundant computations or the minimization of register usage.
There are, however, also combined methods which integrate several optimiza-
tion steps in one procedure.

In this paper we compare several classical optimizing transformations for
straight–line code with a combined procedure which first constructs a directed
acyclic graph (DAG) representing the given program and then generates opti-
mized code from it. The basic version of the latter has been introduced in [3],
and the authors claim that it produces optimal results1 regarding the length of
the generated code. However the DAG procedure cannot directly be applied to
iterative code containing loops, which on the other hand is possible for most of
the classical transformations.

Although our analysis is limited to straight–line code in this contribution we
have plans to extend it to iterative programs in the future.

In this paper we first present a slightly modified version of the DAG algo-
rithm that in addition supports constant folding. We do not consider algebraic
1 The optimality is given w.r.t. strong equivalence, see Sec. 2.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 425–439, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

426 T. Noll and S. Rieger

optimizations though, since our framework is independent of the interpretation
of operator and constant symbols. Our results thus hold for arbitrary interpreta-
tions over any domain. We show that the DAG algorithm integrates the following
three classical transformations:

Constant Folding, corresponding to a partial evaluation of the program with
respect to a given interpretation of its constant and operation symbols;

Common Subexpression Elimination, aiming to decrease the execution time by
avoiding multiple evaluations of the same (sub-)expression; and

Dead Code Elimination, removing computations that do not contribute to the
actual result of the program.

It will turn out that these transformations are not sufficient to completely encom-
pass the optimizing effect of the DAG algorithm. Rather a fourth transformation,
Copy Propagation, has to be added, which propagates values in variable–copy
assignments. This does not have an optimizing effect on its own but generally
enables other transformations such as Common Subexpression Elimination and
Dead Code Elimination, thus it is treated separately in an extra section.

Our investigation will be carried out in a framework in which we develop
formal definitions for concepts such as linear programs and their semantics,
(optimizing) program transformations, their correctness and their equivalence,
etc. These preliminaries will be presented in Sec. 2, followed by the definition of
the three classical transformations and of the DAG–based algorithm in Sec. 3 and
4, respectively. The subsequent Sec. 5 constitutes the main part of this paper,
establishing the equivalence between the DAG procedure and the composition
of the classical transformations.

To support the experimenting with concrete examples, a web–based imple-
mentation of the optimizing transformations is available at the URL [8].

Moreover we would like to mention that this paper is a condensed version of
our technical report [7] which presents complete proofs for all of the propositions
and includes more details and examples regarding the algorithms presented here.

2 SLC–Programs and Their Properties

Straight–line code (SLC) constitutes the basic blocks of the intermediate code
of iterative programs. In particular it is contained in loop bodies whose efficient
execution is crucial.

Syntax
An SLC–program consists of a sequence of assignments using simple arithmetic
expressions without branching or loops.

A signature is a pair Σ = (F,C) consisting of a finite set of function symbols
(or: operation symbols) F :=

⋃∞
i=1 F

(i) where F (i) denotes the set of i–ary func-
tion symbols, and a set of constant symbols C. Furthermore V := {x, y, z, . . .}
denotes a possibly infinite set of variables.

An SLC–program is a quadruple π = (Σ,vin,vout, β) with a signature Σ =
(F,C), a vector of input variables vin = (x1, . . . , xs) (xi ∈ V), a vector of output

Composing Transformations to Optimize Linear Code 427

variables vout = (y1, . . . , yt) (yi ∈ V) where all input and output variables are
pairwise distinct, and a block β = α1;α2; . . . ;αn with instructions αi of the form
x← e where x ∈ V and e ∈ (V \ {x}) ∪ C ∪ {f(u1, . . . , ur) | f ∈ F (r) and ∀j ∈
{1, .., r} : uj ∈ V ∪C}.

In addition every program is assumed to be complete in the sense that every
variable is defined before being used (with the understanding that every input
variable xi is defined in the beginning while every output variable yj is used in
the end).

Moreover we introduce the following denotations: Vin and Vout denote the
sets of input/output variables of π, Cπ and Vπ the sets of constant symbols and
variables occurring in π, respectively, and Vα and Ve stand for the set of variables
in the instruction α and in the expression e, respectively. Finally, SLC denotes
the set of all SLC–programs.

vin : (x, y)
β : u ← 3;

v ← x− y;
w ← u+ 1;
x ← x− y;
v ← w − 1;
u ← x− y;
z ← u ∗ w;
u ← 2 ∗ u;

vout : (u, v)

Fig. 1. An SLC–program

Figure 1 shows a simple SLC–program over the
signature Σ� := ({+(2), ∗(2), −(2)},�). For simplic-
ity we employed the usual infix notation.

Semantics
The semantics of an SLC–program depends on the
domain of the variables and on the interpretation
of the operators and constant symbols. These are
formally given by a Σ–algebra A := (A,ϕ) with
domain (universe) A and interpretation function ϕ :
F ∪ C ∪ A →

⋃∞
i=0{δ | δ : Ai → A} where ϕ(f) :

Ar → A for every f ∈ F (r), ϕ(c) ∈ A for every
c ∈ C, and ϕ(a) = a for every a ∈ A.2

The current state in the computation of an SLC–
program can be expressed as a mapping of the pro-
gram’s variables to their values: σ : Vπ → A. This induces the state space
S := {σ | σ : Vπ → A}.

Now every instruction α = x← e determines a transformation A[[α]] : S → S
of one state into another: the variable x is associated with the value resulting
from the evaluation of the expression e. By composing the transformations of
the instructions in a program π we obtain its semantics as a function that maps
a vector representing the input values to a vector that contains the values of the
output variables, that is, A[[π]] : As → At.

Note that the semantics is defined independent of the variable names, only
the order of the variables in the input/output vectors is relevant. Moreover due
to the completeness conditions on programs it suffices to give the values of the
input variables; non–input variables can be initialized arbitrarily.

Equivalence and Optimality
For optimizations program equivalence is of high significance since programs
have to be transformed in such a way that their semantics is preserved.
2 Requiring the latter will turn out to be useful for constant folding; see Sec. 3 for

details.

428 T. Noll and S. Rieger

Two SLC–programs π1 and π2 over some signature Σ are called A–equivalent
for a Σ–algebra A (π1 ∼A π2) iff A[[π1]] = A[[π2]]. If this holds for all interpreta-
tions A then they are called strongly equivalent (π1 ∼ π2).

Note that (strong) equivalence of two programs requires that both have the
same number of input and of output variables. The A–equivalence of two pro-
grams is generally undecidable [5]. This, however, is not the case for strong
equivalence [7].

Assessing the quality of an optimization requires a notion of cost. As stan-
dard cost functions we will use the number of instructions and the number of
operations (that is, instructions of the form x← f(u1, . . . , ur)).

In general the optimality of a given program w.r.t. a cost function is unde-
cidable (this follows from the undecidability of A–equivalence). Therefore from
now on we will concentrate on transformations that improve programs instead
of really optimizing them. (Nevertheless we will still call these “optimizations”.)

3 Classical Optimizations

After discussing the formal basis we will now focus on optimization algorithms for
SLC–programs. In this section we will introduce the “classical optimizations”.
Those are algorithms that are widely known and used in today’s compilers.
Optimizations typically consist of an analysis and a transformation step. For an
optimizing transformation of SLC–programs we require the following properties:

Definition 3.1. A function T : SLC → SLC is called an A–program transfor-
mation for an interpretation A if, for every π ∈ SLC, T (π) ∼A π (correctness)
and T (T (π)) = T (π) (idempotency). If T is correct for every interpretation,
then we call it a program transformation.

Dead Code Elimination
Dead Code Elimination removes instructions that are dispensable because they
do not influence program semantics. An instruction x← e represents dead code
if x is not used until it is redefined or if it is used only in instructions which are
themselves dead code.

The transformation is based upon the Needed Variable Analysis which deter-
mines, for each instruction, those variables whose values are still required. It is a
backward analysis, i.e., starting from the set of output variables the set of needed
variables is computed for each instruction.

Definition 3.2 (Needed Variable Analysis). Let π := (Σ,vin,vout, β) ∈
SLC with β = α1; . . . ;αn. For every instruction α = x ← e we define the
transfer function tα : 2Vπ → 2Vπ as follows:

tα(M) :=
{

(M \ {x}) ∪ Ve if x ∈M
M else

The tαn , . . . , tα1 determine, beginning with Vout, the sets of needed variables:

NVn := Vout and NVi−1 := tαi(NVi) for i ∈ {n, . . . , 2}.

Composing Transformations to Optimize Linear Code 429

Using the sets of needed variables computed during the analysis step we can now
define Dead Code Elimination.

Definition 3.3 (Dead Code Elimination). For π = (Σ,vin,vout, β) ∈ SLC
with β = α1; . . . ;αn, the transformation TDC : SLC → SLC is given by:

TDC (π) := (Σ,vin,vout, β
′) with β′ := tDC(α1); . . . ; tDC(αn)

tDC(x← e) :=
{
x← e if x ∈ NVi

ε else

This means all instructions x ← e for which x is not in the set of needed vari-
ables are removed. A computation ofNV0 could be used for removing dispensable
input variables. This would however conflict with our definition of the program
semantics.

In Tab. 1 the analysis sets and the computation result of a TDC–application
to the program from Fig. 1 are shown.

Table 1. Application of the classical transformations to the program from Fig. 1

i αi NVi d.c.? AEi vr(i) TCS(π) RDi(u, v, w, x, y, z) TCF (π)
1 u← 3; {u, x, y} No ∅ ∅ u← 3; (⊥,⊥,⊥,⊥,⊥,⊥) u← 3;
2 v ← x− y; {u, x, y} Yes ∅ {4} t2 ← x− y; (3,⊥,⊥,⊥,⊥,⊥) v ← x− y;

v ← t2;
3 w← u+ 1; {w, x, y} No {2} ∅ w ← u+ 1; (3,⊥,⊥,⊥,⊥,⊥) w ← 4;
4 x← x− y; {w, x, y} No {2, 3} ∅ x← t2; (3,⊥, 4,⊥,⊥,⊥) x← x− y;
5 v ← w − 1; {v, x, y} No {3} ∅ v ← w − 1; (3,⊥, 4,⊥,⊥,⊥) v ← 3;
6 u← x− y; {u, v} No {3, 5} ∅ u← x− y; (3, 3, 4,⊥,⊥,⊥) u← x− y;
7 z ← u ∗ w; {u, v} Yes {5, 6} ∅ z ← u ∗ w; (⊥, 3, 4,⊥,⊥,⊥) z ← u ∗ 4;
8 u← 2 ∗ u; {u, v} No {5, 6, 7} ∅ u← 2 ∗ u; (⊥, 3, 4,⊥,⊥,⊥) u← 2 ∗ u;

TDC is correct and idempotent and thus a program transformation [7]. It
should be noted that there are non–idempotent variants of Dead Code Elimina-
tion based on a so–called “Live–Variable Analysis” (see e.g. [4,6]).

Common Subexpression Elimination
Unlike Dead Code Elimination, Common Subexpression Elimination is using a
forward analysis, the Available Expressions Analysis, which computes for each
instruction the (indices of the) operation expressions whose value is still available
and whose repeated evaluation can be avoided therefore.

Definition 3.4 (Available Expressions Analysis). Let π := (Σ,vin,vout,
β) ∈ SLC with β = α1; . . . ;αn and αi = xi ← ei for every i ∈ {1, . . . , n}. An
expression e is available at position i if ej = e for some j < i and xk /∈ Ve for
every j ≤ k < i.

The tαi : 2{1,...,n} → 2{1,...,n} are given by tαi(M) := killαi ◦ genαi where

genαi(M) :=
{
M ∪ {i} if ei = f(u1, . . . , ur) and ∀j ∈M : ej �= ei
M else

430 T. Noll and S. Rieger

killαi(M) :=M \ {j ∈M | xi ∈ Vej}

This yields the sets of available expressions AEi ⊆ {1, . . . , n} for i ∈ {1, . . . , n}:

AE1 := ∅ and AEi+1 := tαi(AEi) for i ∈ {1, . . . , n}

Definition 3.5 (Common Subexpression Elimination). For each instruc-
tion, the function vr : {1, . . . , n} → 2{1,...,n} yields the valid recurrences of the
corresponding expression: vr(i) := {j ∈ {i+ 1, . . . , n} | i ∈ AEj , ei = ej}.

The program transformation3 TCS : SLC → SLC works as follows: for every
i ∈ {1, . . . , n} with vr(i) �= ∅, select ti ∈ V \ Vπ and

1. replace αi = x← e by ti ← e; x← ti and
2. for all j ∈ vr(i), replace αj = y ← e by y ← ti.

Table 1 shows both the available expressions, the valid recurrences, and the
result of eliminating common subexpressions in the program from Fig. 1.

Again it is possible to show that Common Subexpression Elimination is a
program transformation. Please refer to [7] for details.

Constant Folding
Constant Folding is a partial evaluation of the input program with constant prop-
agation. It avoids the redundant evaluation of constant expressions at runtime.
In contrast to Dead Code and Common Subexpression Elimination the optimiza-
tion is incorporating the program semantics as this is necessary for evaluating
constant expressions.

During the program analysis we determine for every instruction the known
values of the variables. For this the definition of the semantics (Sec. 2) is ex-
tended to allow the “evaluation” of expressions with unknown variable values
(represented by the symbol ⊥ in Tab. 1). If at least one argument of a function
is an unknown variable also the evaluation result is unknown. Special properties
of operations, such as ∀x ∈ � : 0 · x = 0, are ignored.

The evaluation of constant expressions potentially causes the introduction
of new constants (not contained in C). Therefore the signature of the target
program needs to be adapted.

Definition 3.6 (Constant Folding). For π = (Σ,vin,vout, β) ∈ SLC, Σ =
(F,C), β = α1; . . . ;αn, αi = xi ← ei and A = (A,ϕ), the transformation
TCF : SLC → SLC is defined by:

TCF (π) := ((F,A),vin,vout, β
′) with β′ := x1 ← RD1(e1); . . . ;xn ← RDn(en)

where RDi replaces all variables known to be constant by the respective values,
and evaluates constant expressions (see [7] for the formal definition).

3 For a proof of this property refer to [7].

Composing Transformations to Optimize Linear Code 431

Example 3.7. When applying TCF to the program from Fig. 1 employing the
usual arithmetic interpretation we get the result depicted in Tab. 1. As we can
see, Constant Folding potentially produces dead code: the first instruction is
dispensable since u is not used anymore until its redefinition in the sixth in-
struction.

For establishing the correctness of Constant Folding the particular interpretation
has to be taken into account; thus strong equivalence is generally not preserved.
We show in [7]:

Lemma 3.8. For every π = (Σ,vin,vout, β) ∈ SLC and every interpretation A
of Σ, π ∼A TCF (π) and TCF (TCF (π)) = TCF (π).

4 DAG Optimization

The DAG optimization for SLC–programs is based on the construction of a
directed acyclic graph (DAG). A basic version of this optimization has been
introduced in [3]. We will present a modified version which, however, does not
consider the register allocation problem since we focus on intermediate code.

Definition 4.1 (DAG). A DAG is an acyclic graph G = (K,L, lab, suc) with
a set of nodes K and a set of labels L, a labeling function lab : K → L and a
partially defined successor function suc :⊆ K ×�→ K.

A DAG represents the result and the operands of expressions by (different) nodes
that are linked by the successor function.

The DAG of an SLC–Program
The DAG of an SLC–program is a graphical representation of the program with
sharing of identical subterms. Furthermore a partial evaluation of expressions
(similar to Constant Folding) is performed (extending the algorithm in [3]).

In addition to the DAG we need a valuation function val :⊆ Vπ×�→ K with
val(x, i) = k iff the subgraph rooted at k represents the value of the variable x
after i computation steps.

Algorithm 4.2 (DAG Construction). Let π := (Σ,vin,vout, β) ∈ SLC with
Σ = (F,C), β = α1; . . . ;αn and A = (A,ϕ). The DAG G and the valuation func-
tion val are inductively constructed as follows where the set of labels is defined
by L := F ∪ Vin ∪A:4

Select K := Vin ∪ ϕ(Cπ) with lab(k) = k ∀k ∈ K as initial nodes5 and set
val(x, 0) := x for all x ∈ Vin where ϕ(Cπ) := {ϕ(c) | c ∈ Cπ}.

Assuming that G and val are already constructed for α1; . . . ;αi and letting
αi+1 = x ← e, we distinguish different cases depending on the type of the ex-
pression e:
4 Nodes that represent complex expressions will be labeled by the corresponding func-

tion symbols whereas variable/constant nodes will be labeled by themselves.
5 Alternatively one could add the constants later “on demand”.

432 T. Noll and S. Rieger

1. e = y ∈ V :
According to the induction hypothesis, val(y, i) ∈ K is already representing
the current value of y. Thus G is not extended; set

val(x, i+ 1) := val(y, i) and val(x′, i+ 1) := val(x′, i) for x′ �= x

In the following update(x, i+ 1, y) will be used to abbreviate the above two
assignments.

2. e = c ∈ C:
ϕ(c) ∈ K already exists. Therefore only: update(x, i+ 1, ϕ(c)).

3. e = f(u1, . . . , ur), uj ∈ V ∪ C, f ∈ F (r). We distinguish further subcases:
(a) for all j ∈ {1, . . . , r}, uj ∈ C or (uj ∈ V and val(uj, i) ∈ A).

Then let a := ϕ(f)(u′1, . . . , u
′
r) ∈ A with

u′j :=
{
ϕ(uj) if uj ∈ C
val(uj, i) if uj ∈ V

– a ∈ ϕ(Cπ) : no extension of G, set update(x, i+ 1, a).
– a /∈ ϕ(Cπ): K := K ∪ {a} and update(x, i+ 1, a).

(b) ∃j ∈ {1, . . . , r} with uj ∈ V and val(uj , i) /∈ A.
– ∃k ∈ K with lab(k) = f and

suc(k, j) =
{
ϕ(uj) if uj ∈ C
val(uj, i) if uj ∈ V

No modification of G; the value of e is already represented by k. Set
update(x, i+ 1, k).

– Otherwise: insert a node ki+1:

K := K ∪ {ki+1}
lab(ki+1) := f

suc(ki+1, j) :=
{
ϕ(uj) if uj ∈ C
val(uj, i) if uj ∈ V

update(x, i+ 1, ki+1)

Example 4.3. Figure 2 shows the DAG of the program from Fig. 1. The square
nodes are the nodes already present before processing the instructions. The oth-
ers were created later according to the above definition. For better clarity the
val–table only shows those entries that represent changes.

The DAG construction incorporates aspects of Common Subexpression Elimi-
nation (node sharing for expressions already represented by a node in the DAG)
and Constant Folding (partial evaluation of expressions based on constant infor-
mation, i.e. no node represents a constant expression).

Composing Transformations to Optimize Linear Code 433

1 3 x y

k2/−

k6/−

4

k7/∗

2

k8/∗

1 2

1

2

1

21

2

i u v w x y z
0 x y
1 3
2 k2
3 4
4 k2
5 3
6 k6
7 k7
8 k8

k2 ← x− y;
k6 ← k2 − y;
u ← 2 ∗ k6;
v ← 3;

Fig. 2. DAG, val–function and optimized program for π from Fig. 1

Code Generation from a DAG
For generating code from a DAG only the nodes that are reachable from an
“output node” are required. We will call these nodes output relevant. The oth-
ers are not considered during code generation, thus implementing Dead Code
Elimination.

With regard to the processing order of the nodes the following restriction has
to be observed. Before creating an instruction for a node k all successors of k have
to be processed first. In the following we will present a simple nondeterministic
algorithm for code generation using our example.

Example 4.4. Let π be the program from Fig. 1 and G its DAG which is depicted
in Fig. 2. Then code generation can be done as follows:

1. The set of output–relevant nodes is {2, 3, x, y, k2, k6, k8}, as they are all
reachable from k8 (except 3 which itself is output–relevant).

2. Since the constants and input values are immediately available an operation
node is the first node to process. This can only be k2 because the other oper-
ation nodes depend on it. The instruction k2 ← x − y is created (according
to the node label and the node’s successors).

3. The next node to process is k6 because the node k8 depends on it. For k6
we obtain k6 ← k2 − y.

4. For the last remaining operation node k8 we add u ← 2 ∗ k6. Here we do
not use a temporary assignment variable but the output variable u because
this will be the final value of u. Otherwise we would have to insert a copy
instruction later on.

5. Now all the operation nodes are processed but the output variable v is still
undefined. Since val(v, 8) = 3 we have to add the instruction v ← 3.

Thus we get the result shown in Fig. 2.

434 T. Noll and S. Rieger

This “naive” code generation technique has several disadvantages increasing
the complexity of the correctness proof:

– The algorithm is nondeterministic, multiple choices for the next node to
process are possible. Hence the output depends on the node ordering, and
thus the order of the assignments may differ between the input and the
optimized program. (In our example, the order of the assignments to the
variables u and v is reversed.)

– The idempotency is violated because after eliminating output–irrelevant
nodes in the first application of TDAG , the second application will introduce
new node names.

In [7] an extended algorithm avoiding the above problems is introduced. It
works similarly and will be denoted by TDAG in the sequel.

In programs obtained from the DAG code generation for every assignment
a new, previously undefined variable is used; this normal form is called Static
Single Assignment (SSA) form in the literature.

Note that if the number of available registers is limited, the optimal code
generation from a DAG is NP–complete [2]. The code generation from expression
trees, however, is also in this case efficient [1].

Intuitively it is clear that the DAG algorithm is working correctly. Proving
this correctness, however, is not trivial. We show in [7]:

Theorem 4.5. Let π = (Σ,vin,vout, β) ∈ SLC and A be an interpretation of
Σ. Then π ∼A TDAG(π) and TDAG(TDAG(π)) = TDAG(π).

5 Composing the Simple Transformations

After formally introducing the different optimizing program transformations we
will analyze the relations between them. We call two optimizations equivalent if
every transformation is optimal with respect to the other:

Definition 5.1. Let T1, T2 : SLC → SLC be program transformations.

– T2 is called T1–optimal (T1 ≤ T2) iff ∀π ∈ SLC : T1(T2(π)) = T2(π).
– T1 and T2 are called equivalent (T1 ∼ T2) iff T1 ≤ T2 and T2 ≤ T1.

In previous examples we have seen that the DAG algorithm has a higher “op-
timizing potential” than the classical transformations. A generalization of this
observation yields (proven in [7]):

Theorem 5.2. T ≤ TDAG for every T ∈ {TDC , TCS , TCF}.

In the following we will examine the reverse direction, that is, the question
whether the classical transformations can be applied in a certain order such that
the result is equivalent to the DAG–optimized program.

Composing Transformations to Optimize Linear Code 435

Copy Propagation
Our first observation is that the classical transformations alone do not suffice
for “simulating” the DAG optimization.

Theorem 5.3. There exists a program π ∈ SLC such that π = T (π) for every
T ∈ {TDC , TCS , TCF}, but π �= TDAG(π).

Proof. Consider the program depicted in Fig. 3. It is optimal w.r.t. all three
classical transformations. An application of TDAG , however, produces a much
shorter version. �"

vin : (x, y)
β : u← x;
y ← u+ y;
v ← u;
u← v ∗ y;
v ← u+ v;

vout : (u, v)

↓ TDAG

v1 ← x+ y;
u← x ∗ v1;
v ← u+ x;

Fig. 3. Program with copy
instructions and its DAG–
optimized version

In the example Dead Code Elimination would
yield an optimizing effect if one would replace e.g.
the occurrences of u on the right–hand side of the
instructions 2 and 3 by x. For this problem we
will now introduce a new algorithm, Copy Propa-
gation, which is no direct improvement but a pre-
processing step enabling other optimizations.

Our version of Copy Propagation does not only
substitute a variable used after a copy instruc-
tion with its original variable but also traces back
transitive dependencies for copy chains. During
the analysis step we collect the valid copies for
each instruction. These are basically pairs of vari-
ables that have the same value at a given point
(due to copy instructions). A third value – the
transitive depth which represents the length of a
copy chain – is used to guarantee determinism and
idempotency of the transformation. Copy Propa-
gation fulfills the requirements of a program transformation6.

Definition 5.4 (Valid Copies). Let π := (Σ,vin,vout, β) ∈ SLC with β :=
α1; . . . ;αn. For an instruction α = x ← e we define the transfer function tα :
2V 2

π×{1,...,n} → 2V 2
π×{1,...,n} by

tx←e(M) := trans(M \ {(y, z, d) ∈M | d ∈ {1, . . . , n}, x ∈ {y, z}}
∪ {(x, e, 1) | e ∈ Vπ \ {x}})

Here trans : 2V 2×� → 2V 2×� computes the transitive closure of the argument
relation, taking the transitive depth into account. Now the analysis sets CPi ⊆
V 2

π × {1, . . . , n} can be computed inductively:

CP1 := ∅ and CPi+1 := tαi(CPi) for i ∈ {1, . . . , n− 1}

Based on the CP–sets we define the program transformation:

6 Proven in [7].

436 T. Noll and S. Rieger

Definition 5.5 (Copy Propagation). The transformation TCP : SLC → SLC
for π = (Σ, Vin, Vout, β) ∈ SLC with β = x1 ← e1; . . . ;xn ← en and Σ = (F,C)
is given by

TCP(π) := (Σ,vin,vout, β
′) with β′ := x1 ← CP 1(e1); . . . ;xn ← CPn(en)

where CP (e) with CP ⊆ V 2
π ×{1, . . . , n}, c ∈ C, x ∈ Vπ and f ∈ F (r) is defined

as follows:

CP (c) := c

CP (x) :=

⎧⎨⎩y if ∃y ∈ V, ∃d ∈ {1, . . . , n} with (x, y, d) ∈ CP
and ∀(x, y′, d′) ∈ CP : d′ ≤ d

x else

CP (f(u1, . . . , ur)) := f(CP (u1), . . . , CP (ur))

The selection of the tuple with the highest transitive depth for the substitution
ensures that the copy chains are traced back completely and that the algorithm
works deterministically.

Example 5.6. Applying Copy Propagation to the program of Fig. 3 yields:

i αi CPi new instruction α′i
1 u← x; ∅ u← x;
2 y ← u+ y; {(u, x, 1)} y ← x+ y;
3 v ← u; {(u, x, 1)} v ← x;
4 u← v ∗ y; {(u, x, 1), (v, u, 1), (v, x, 2)} u← x ∗ y;
5 v ← u+ v {(v, x, 2)} v ← u+ x;

In instruction 4 the tuple printed in boldface results from the computation of the
transitive closure. The transitive depth is needed to decide which substitution
to use for v in instruction 4.

Execution Order
Now we will analyze the relations between the simple algorithms. Of particular
interest is the following property:

Definition 5.7. Let Ti : SLC → SLC, i ∈ {1, 2} be two program transforma-
tions. If there exists a π ∈ SLC such that

T1(π) = π and T1(T2(π)) �= T2(π)

then T2 is called T1–enabling (T2 → T1).

TDC TCS TCF TCP

TDC - - -
TCS - - →
TCF → → -
TCP → → -

Fig. 4. Enabling relations

Thus intuitively a transformation enables another
if it “produces” additional optimization potential
w.r.t. the other. The enabling relationships holding
for our transformations are given in Fig. 4. Here an
arrow means that the transformation labeling the
row enables the transformation indexing the col-
umn, whereas a dash indicates the absence of an
enabling effect.

Composing Transformations to Optimize Linear Code 437

– TDC does not enable any of the other transformations because it eliminates
instructions and therefore does not create new available expressions, copy
instructions, or constant variables.

– TCS enables Copy Propagation due to the insertion of copy instructions. It
has no influence on Constant Folding and Dead Code Elimination.

– We have already seen in Ex. 3.7 that Constant Folding “produces” additional
Dead Code. One can easily construct examples in which the substitution of
variables by constants creates common subexpressions.

– From Ex. 5.6 it is clear that TCP is TDC–enabling. Similarly to Constant
Folding the substitution of variables by others can create common subex-
pressions.

Between Copy Propagation and Common Subexpression Elimination there is
a mutual dependence. Thus a repeated application of both is generally unavoid-
able.

Lemma 5.8. There exists a sequence (πn)n∈�\{0} such that T := TCP ◦ TCS

has to be applied at least n times to πn for reaching a fixed point.

Proof. πn := (Σ, (x), (y, z), βn) with Σ = (F, ∅) and F = {f (2)} where βn is
given by

β1 := y ← f(x, x); βn+1 := βn;
z ← f(x, x); y ← f(y, x);

z ← f(z, x);

obviously fulfills the requirement. �"

The maximum number of iterations is bounded by the number of instructions
since every application of Common Subexpression Elimination that provokes a
change reduces the number of operation expressions of the program, and since
the number of operation expressions is limited by the number of instructions
(see also [7]).

In practice it is certainly not advisable to “blindly” use the worst–case itera-
tion number; rather a demand–driven method should be employed.

Definition 5.9. For π ∈ SLC and T := TCP ◦ TCS the transformation TCPCS :
SLC → SLC is be defined by:

TCPCS(π) :=
{
π if T (π) = π
TCPCS(T (π)) else

From the previous observations as represented in Tab. 4, we can now derive an
order for the simple transformations to achieve a good optimization effect:

1. Constant Folding (cannot be enabled by the other transformations)
2. Application of Common Subexpression Elimination and Copy Propagation

in alternation (TCPCS)
3. Dead Code Elimination (enabled by TCP and TCF)

438 T. Noll and S. Rieger

Table 2. Application of TCOPT to π from Fig. 1

TCF (π) TCS (TCF (π)) TCP(TCS (TCF (π))) TDC (TCP (TCS (TCF (π))))
u← 3; u← 3; u← 3;
v ← x− y; t2 ← x − y; t2 ← x− y; t2 ← x− y;

v ← t2; v ← t2;
w ← 4; w ← 4; w← 4;
x← x− y; x← t2; x← t2;
v ← 3; v ← 3; v ← 3; v ← 3;
u← x− y; u← x− y; u← t2 − y; u← t2 − y;
z ← u ∗ 4; z ← u ∗ 4; z ← u ∗ 4;
u← 2 ∗ u; u← 2 ∗ u; u← 2 ∗ u; u← 2 ∗ u;

Definition 5.10. The compositional transformation incorporating the classical
optimizations and Copy Propagation is given by TCOPT := TDC ◦ TCPCS ◦ TCF .

Example 5.11. Table 2 shows an exemplary computation of TCOPT for our exam-
ple program from Fig. 1 starting from the TCF–optimized program from Ex. 3.7.
Already one application of TCP ◦ TCS suffices here to reach the fixed point (this
is clear because in TCP(TCS (TCF (π))) all operation expressions are distinct).

The resulting program is identical to the DAG–optimized program from Fig. 2
except for variable naming and the instruction order7. Also for the example from
Fig. 3 we would get the same results “modulo” variable names.

Simulation of the DAG Transformation
For achieving a TDAG–optimal transformation we obviously need to rename the
variables in the output program. This can be done via a variable renaming trans-
formation. The TDAG–equivalence is even then not fulfilled for the compositional
TCOPT–optimization, there remain two minor issues:

– Under some circumstances Copy Propagation does not allow the propagation
of a variable name even though the old assignment is still valid. This problem
can be circumvented by transforming the input program in SSA form (TSSA

is formally defined in [7]) before applying TCOPT .
– Copy Assignments to output variables cannot be removed using the pre-

viously introduced transformations. They occur especially due to Common
Subexpression Elimination. A specialized algorithm (TRC ; see [7]) solves this
problem.

Finally we obtain an extended compositional transformation:

Definition 5.12. For π ∈ SLC the extended compositional transformation
TXOPT : SLC → SLC is defined by TXOPT := TSSA ◦ TRC ◦ TCOPT ◦ TSSA.

7 The advanced DAG–algorithm does not have the reordering issue.

Composing Transformations to Optimize Linear Code 439

The final application of TSSA is only required to ensure a variable naming “com-
patible” to the advanced DAG algorithm. Approximately we have TXOPT ≈
TCOPT and according to [7]:

Theorem 5.13. TXOPT ∼ TDAG .

6 Conclusion and Future Work

We have shown that the DAG procedure can essentially be characterized as a
combination of Copy Propagation and the three classical transformations. More
concretely it corresponds to a repeated application of Common Subexpression
Elimination and Copy Propagation in alternation, preceded by Constant Folding
and followed by Dead Code Elimination:

TDAG ≈ TDC ◦ (TCP ◦ TCS)∗ ◦ TCF .

Apart from its theoretical importance, this result is also relevant for practical
compiler design as it potentially allows to exploit the optimization potential
of the DAG–based algorithm for non–linear code as well. Certainly our results
cannot be transferred directly to iterative code, but the basic composition of the
transformations should turn out to be effective. This matter is the main point
for future investigation.

Furthermore it would be interesting to analyze whether Copy Propagation
and Common Subexpression Elimination can be merged into one algorithm to
avoid the iterative application procedure.

References

1. Aho, A.V., Johnson, S.C.: Optimal code generation for expression trees.
J. ACM 23(3), 488–501 (1976)

2. Aho, A.V., Johnson, S.C., Ullman, J.D.: Code generation for expressions with com-
mon subexpressions. J. ACM 24(1), 146–160 (1977)

3. Aho, A.V., Sethi, R., Ullman, J.D.: A formal approach to code optimization. ACM
SIGPLAN Notices 5(7), 86–100 (1970)

4. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison–Wesley, London, UK (1986)

5. Ibarra, O.H., Leininger, B.S.: The complexity of the equivalence problem for
straight–line programs. In: STOC’80. Proc. of the 12th Annual ACM Symp. on
Theory of Computing, pp. 273–280. ACM Press, New York, NY, USA (1980)

6. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

7. Noll, T., Rieger, S.: Optimization of straight–line code revisited. Technical Report
2005–21, RWTH Aachen University, Dept. of Computer Science, Germany (2005),
http://sunsite.informatik.rwth-aachen.de/Publications/AIB/

8. Rieger, S.: SLC Optimizer - Web Interface (2005),
http://aprove.informatik.rwth-aachen.de/~rieger/

http://sunsite.informatik.rwth-aachen.de/Publications/AIB/
http://aprove.informatik.rwth-aachen.de/~rieger/

Building Extended Canonizers by

Graph-Based Deduction

Silvio Ranise1 and Christelle Scharff2,�

1 LORIA & INRIA-Lorraine, France
ranise@loria.fr

2 Seidenberg School of Computer Science and Information Systems,
Pace University, USA
cscharff@pace.edu

Abstract. We consider the problem of efficiently building extended can-
onizers, which are capable of solving the uniform word problem for some
first-order theories. These reasoning artifacts have been introduced in
previous work to solve the lack of modularity of Shostak combination
schema while retaining its efficiency. It is known that extended canon-
izers can be modularly combined to solve the uniform word problem in
unions of theories. Unfortunately, little is known about efficiently im-
plementing such canonizers for component theories, especially those of
interest for verification like, e.g., those of uninterpreted function sym-
bols or lists. In this paper, we investigate this problem by adapting and
combining work on rewriting-based decision procedures for satisfiability
in first-order theories and SER graphs, a graph-based method defined
for abstract congruence closure. Our goal is to build graph-based ex-
tended canonizers for theories which are relevant for verification. Based
on graphs our approach addresses implementation issues that were lack-
ing in previous rewriting-based decision procedure approaches and which
are important to argue the viability of extended canonizers.

1 Introduction

An increasing number of verification tools, e.g., software model-checkers, require
the use of Satisfiability Modulo Theories (SMT) solvers [14] (in first-order logic)
to implement the back-ends for the automatic analysis of specifications and
properties. This is so because verification problems require to solve satisfiability
problems, e.g., checking if an abstract trace yields a spurious concrete trace can
be reduced to a satisfiability problem modulo the theory of the data structures
manipulated by the program. The availability of efficient SMT solvers becomes
a crucial pre-requisite for automating the various verification tasks. To make the
situation more complex, most verification problems involve several theories, e.g.,
programs manipulate composite data structures such as arrays and integers for
their indexes, so that methods to combine theories are also required.
� This work is supported by the National Science Foundation under grant ITR-

0326540.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 440–454, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ranise@loria.fr
cscharff@pace.edu

Building Extended Canonizers by Graph-Based Deduction 441

The lazy approach to build SMT solvers is currently the most popular and
most successful in terms of run-time performance. It consists in reducing a the-
ory solver to its essence by separating generic Boolean reasoning from theory
reasoning. The common practice is to write theory solvers just for sets of ground
literals (i.e. atomic formulas and their negation). These simple procedures are
then integrated with an efficient Boolean solver, allowing the resulting system to
accept (possibly quite large) arbitrary Boolean combinations of ground literals.
In the lazy approach, reasoning modules for a background theory obtained as
the union of several simpler theories may be modularly built by writing pro-
cedures for each component theory and then use the solvers cooperatively via
well-known combination schemas (see, e.g., [13] for an overview). As a conse-
quence, the problem of building (a) efficient and (b) easily combinable theory
solvers for conjunctions of literals in selected theories is central to the task of
building SMT solvers which can be profitably integrated in larger verification
tools. More in general, the problem of building and combining theory solvers is
important for automated deduction and constraint programming since their use
allows one to automatically reason on a computation domain, improve efficiency,
and reduce user-interaction.

Theory solvers for selected theories (such as the theory of uninterpreted func-
tion symbols, the theory of lists, the theory of arrays) are usually built in ad hoc
ways and their proofs of correctness depend on specific model-theoretic argu-
ments (see, e.g., [9]). The rewriting-approach in [2] proposes a uniform method-
ology to build solvers which consists in showing the termination of a completion
process of a refutation complete calculus on a set of formulae obtained as the
union of the axioms of the background theory T and a (finite) set S of ground
literals in T . A drawback of [2] is that it is difficult to derive a precise characteri-
zation of the complexity of the resulting theory solvers because of the abstraction
notion of computation (i.e. a logical calculus) used. In this paper, we adapt the
rewriting approach in [2] to use SER graphs [16], which provide a graph-based
completion procedure to solve the word problem of (ground) equational theo-
ries, so as to build efficient theory solvers. SER graphs combine the key ideas
of completion [7] and abstract congruence closure [4], and can be seen as a spe-
cialization of SOUR graphs [8], which were developed for general completion.
The choice of a particular and compact data structure to represent terms and
literals allow us to derive precise characterizations of the worst-case behavior for
the synthesized theory solvers. We will see that, for the theories of uninterpreted
function symbols and lists, such a worst-case behavior is the same of the best
theory solvers available in the literature.

The adaptation of the rewriting-approach to SER graphs allows us to fulfill
desideratum (a) for theory solvers to be used in lazy SMT tools. Regarding the
possibility to easily combine solvers—cf. desideratum (b) above—more work is
required. In [1], a modularity result for rewriting-based solvers in unions of theo-
ries is derived. On the one hand, it is possible to adapt this result to SER graphs.
On the other hand, some theories (e.g., Linear Arithmetic) do not admit solvers
based on rewriting and come with ad hoc procedures, that can be combined

442 S. Ranise and C. Scharff

with others via well-known combination schemas, such as Nelson-Oppen [10]
and Shostak [17]. Both combination schemas are based on exchanging logical
formulae between the solvers so as to synchronize their states. Since Shostak
assumes the existence of certain interface functionalities—called the canonizer
and the solver—to efficiently derive the facts needed for synchronization, it is
believed to give better performances than Nelson and Oppen. Unfortunately, as
clearly shown in [5], Shostak is not modular. A further drawback is that the
theory of uninterpreted function symbols (which is present in virtually any ver-
ification problems) does not admit a solver and Shostak must be amended to
incorporate the theory. To find a better trade-off between the modularity of Nel-
son and Oppen and the efficiency of Shostak, a new combination method has
been proposed in [13]. The schema combines extended canonizers, i.e. procedures
capable of computing normal forms not only with respect to a background the-
ory (as it is the case for canonizers in Shostak) but also with respect to (ground)
sets of equalities. In [13], it is also sketched how to obtain extended canonizers
for the theory of uninterpreted function symbols and for theories with (finitely
many) commutative function symbols. However, the discussion is sketchy and
does not address complexity and implementation issues which are important to
argue the viability of the proposed concept. The main contribution of this
paper is showing how to build efficient extended canonizers by adapting the
rewriting-based approach to use SER graph. We notice that extended canoniz-
ers are easily combinable as a by product of the fact that they are the basic
modularity notion underlying the combination schema in [13].

Plan of the paper. In Section 2, we give some background notions and recall the
formal definition of extended canonizer from [13]. In Section 3, we show how to
build theory solvers and compute extended canonizers for the theory of equality
and the theory of lists à la Shostak. In Section 4, we argue the correctness
of the extended canonizers described in the previous section. In Section 5, we
illustrate the internal workings of an extended canonizer on an example. Finally,
in Section 6, we give some conclusions and discuss lines for future work.

2 Background

We assume the usual first-order syntactic notions of signature, term, position,
and so on. Let Σ be a signature containing only function symbols with their
arity and X a set of variables. A 0-arity symbol is called a constant. A Σ-term
is a term built out of the symbols in Σ and the variables in X . A Σ-term is flat
if its depth is 0 or 1. If l and r are two Σ-terms, then l ≈ r is a Σ-equality and
l �≈ r is a Σ-disequality. A Σ-literal is either a Σ-equality or a Σ-disequality.
For a literal, depth(l "# r) = depth(l) + depth(r), where "# is either ≈ or �≈. A
Σ-equality is flat if its depth is at most 1 (i.e., it is of the form c = d, for c, d
constants, or f(c1, ..., cn) ≈ cn+1, for c1, ..., cn, cn+1 constants). A Σ-disequality
is flat if its depth is 0 (i.e., it is of the form c �≈ d, for c, d constants). A Σ-formula
is built in the usual way out of the universal and existential quantifiers, Boolean
connectives, and symbols in Σ. A Σ-formula ϕ is ground if Var(ϕ) = ∅ (where

Building Extended Canonizers by Graph-Based Deduction 443

Var(ϕ) is the set of variables occurring in ϕ) and a sentence if it has no free
variables.

We also assume the usual first-order notions of interpretation, satisfiability,
validity, logical consequence, and theory. A Σ-theory is a set of sentences. In this
paper, we consider theories with equality, meaning that the equality symbol ≈
is always interpreted as the identity relation. A Σ-structure A is a model of a
Σ-theory T if A satisfies every sentence in T . A Σ-formula is satisfiable in T (or,
equivalently, T -satisfiable) if it is satisfiable in a model of T . Two Σ-formulae
ϕ and ψ are equisatisfiable in T if for every model A of T , A satisfies ϕ iff
A satisfies ψ. The satisfiability problem for a Σ-theory T amounts to checking
whether any given (finite) conjunction of Σ-literals (or, equivalently, any given
finite set of Σ-literals) is T -satisfiable or not1. A satisfiability procedure for
T is any given algorithm that solves the satisfiability problem for T . (When
checking the T -satisfiability of a conjunction Γ of Σ-literals, the free variables Γ
can be regarded as Skolem constants.) The uniform word problem for a theory
T amounts to checking whether T |= Γ ⇒ e where Γ is a conjunction of Σ-
equalities and e is a Σ-equality, and all the variables in Γ ⇒ e are implicitly
universally quantified.

Definition 1 (Extended canonizer [13]). Let T be a Σ-theory and Γ a con-
junction of ground Σ-equalities. If Γ is T -satisfiable, then an extended canonizer
for T is a computable function ecan(Γ) : T (Σ,X)→ T (Σ ∪K,X) such that for
any Σ-terms s, t we have T |= Γ ⇒ s ≈ t iff ecan(Γ)(s) = ecan(Γ)(t), where K
is a set of constants such that K ∩Σ = ∅.
The existence of an extended canonizer for a theory T implies the decidability of
the uniform word problem for T . The notion of extended canonizer can be seen
as a generalization of the concept of canonizer for the theory of equality defined
in [15]. An important difference is that the extended canonizer defined above
can be modularly combined as shown in [13]. However, [15] describes a solution
to the problem of combining the theory of uninterpreted function symbols with
some classes of theories by an interesting generalization of Shostak combination
schema.

In the rest of this paper, for simplicity, we only consider convex theories. A
Σ-theory is convex iff all the conjunctions of Σ-literals are convex. A conjunction
Γ of Σ-literals in a theory T is convex iff for any disjunction x1 = y1∨· · ·∨xn =
yn (where xi, yi are variables for i = 1, ..., n) we have that T ∪ Γ |= x1 =
y1 ∨ · · · ∨ xn = yn iff T ∪ Γ |= xi = yi for some i ∈ {1, ..., n}. If a theory T
admitting an extended canonizer is also convex, then it is always possible to
build a satisfiability procedure for T by recalling that Γ ∧ ¬e1 ∧ · · · ∧ ¬en (for
n ≥ 1) is T -unsatisfiable iff there exists some i ∈ {1, ..., n} such that Γ ∧ ¬ei
is unsatisfiable or, equivalently, T |= Γ ⇒ ei, where e1, ..., en (for n ≥ 1) are
equalities.

The theory of uninterpreted function symbols is the set of sentences which are
logical consequences of the empty set of axioms (in first-order logic with equal-
1 The satisfiability of any ground formula can be reduced to the satisfiability of sets

of literals by well-known techniques.

444 S. Ranise and C. Scharff

ity). The theory of lists à la Shostak [17] is the set of sentences which are logical
consequences of the following axioms: car(cons(X,Y)) ≈ X , cdr(cons(X,Y)) ≈
Y , and cons(car(X), cdr(X)) ≈ X , where X and Y are implicitly universally
quantified variables. Notice that both theories are convex.

3 SER Graphs for Extended Canonizers

In this section we describe how to combine and adapt work from [13,16] to build
decision procedures and compute extended canonizers for the theory of equality
and the theory of lists à la Shostak. In particular we show how SER graphs
represent the state of the procedures whose computations are described by a
suitable set of transition rules ST (applied on an initial SER graph) and how
to compute extended canonizers from saturated SER graphs. Preliminary, we
illustrate how the rewriting-approach of [2] can be adapted to compute normal
forms on a simple example (which will be used also in Section 5).

Let us consider the theory of lists à la Shostak and the following set of literals:

Γ :=

⎧⎨⎩ (1) car(c9) ≈ c5, (2) cdr(c9) ≈ c7, (3) cons(c1, c2) ≈ c4,
(4) d ≈ c6, (5) e ≈ c8, (6) k ≈ c3, (7) i ≈ c1, (8) j ≈ c2, (9) c ≈ c9,
(10) c5 ≈ c6, (11) c7 ≈ c8, (12) c4 ≈ c3

⎫⎬⎭
where equalities are oriented from left to right. In view of building extended
canonizers, we consider the problem of showing that car(c) ≈ d by normalizing
the terms car(c) and d with respect to Γ and the theory of lists. It is well-
known that a (ground) convergent term-rewriting system can be obtained from
Γ by detecting all possible critical pairs (i.e. selected logical consequences which
“patch” non-confluent chains of rewriting) in Γ and the axioms of the theory of
lists [7]. This can be done as follows. First, all critical pairs are derived between
two equalities in Γ and added to the set of equalities (i.e. considering only
the theory of uninterpreted function symbols). Second, compute a critical pair
between an axiom of the theory of lists and an equality in Γ (i.e. considering
suitable instances of the axioms of the theory of lists). Go back to the first
step until no more critical pairs can be derived. For Γ , we derive the following
equalities:
– (13) cons(c6, c8) ≈ c12 and (14) c12 ≈ c9 by axiom cons(car(X), cdr(X)) ≈
X , (10), (1), (2) and (11);

– (15) car(c3) ≈ c10 and (16) c10 ≈ c1 by axiom car(cons(X,Y)) ≈ X , (3),
and (12);

– (17) cdr(c4) ≈ c11 and (18) c11 ≈ c2 by axiom cdr(cons(X,Y)) ≈ Y , (3),
and (12).

Notice how we have introduced fresh constants (namely, c10, c11, and c12) to
maintain the set of equalities flat. Technically, this simplifies the task of building
a ground convergent term-rewriting system and it is compatible with the notion
of extended canonizer (cf. Definition 1), which permits to return normal forms
over a signature extended with extra constants. No more critical pairs can be
detected and it is not difficult to see that (1)—(17) form a (ground) convergent

Building Extended Canonizers by Graph-Based Deduction 445

term-rewriting system (assuming that equalities are oriented from left to right).
At this point, we can find the normal form for car(c):

car(c)
(9)
≈ car(c9)

(1)
≈ c5

(10)
≈ c6.

Indeed, d ≈ c6 by (4). Hence, we are entitled to conclude that T |= Γ ⇒
car(c) ≈ d, where T is the theory of lists à la Shostak. Below, we will show how
to adapt this completion process for computing normal forms to use a particular
data structure to represent terms and equalities, called SER graphs, so as to
build efficient extended canonizers.

In the rest of this paper, let Γ be a set set of ground equalities built on a
signature Σ, and K be a set of constants such that Σ ∩ K = ∅. We call Σ the
(basic) signature, and Σ ∪K the extended signature. T denotes a theory defined
by a set of axioms Ax(T).

3.1 SER Graphs

Directed (SER) graphs that support full structure sharing are used to represent
(ground) terms and equalities of Γ . Each vertex v is labeled by (i) a func-
tion symbol of Σ denoted by Symbol(v), and (ii) a constant of K denoted by
Constant(v). The vertices labeled by constants of K represent terms or more
generally equivalence classes of terms. Edges carry information about sub-term
relationships between terms (S), unordered equalities (E) and rewrite rules (R).
Sub-term edges are labeled by an index, and we write u →i

S v for a sub-term
edge between vertices u and v. Informally, this sub-term edge indicates that v
represents the i-th sub-term of the term represented by u. We write u−E v and
u→R v to denote equality and rewrite edges respectively. This graph structure
provides a suitable basis for computing (abstract) congruence closures as graph
transformation rules as described in [16]. The efficiency of SER graphs crucially
depends on the use of a simple ordering (that needs to be defined only on K),
rather than a full term ordering.

Initial SER Graph. An initial SER graph, DAG(Γ), represents a set of equal-
ities Γ as well as the sub-term structure of terms in Γ . It is characterized by
the following conditions: (i) If Symbol(v) is a constant, then v has no outgoing
sub-term edges; and (ii) if Symbol(v) is a function symbol of arity n, then there
is exactly one edge of the form v →i

S vi, for each i with 1 ≤ i ≤ n.
The term Term(v) represented by a vertex v over the signature Σ is re-

cursively defined as follows: If Symbol(v) is a constant of Σ, then Term(v) =
Symbol(v); if Symbol(v) is a function symbol of Σ of arity n, then Term(v) =
Symbol(v)(Term(v1), . . . , T erm(vn)), where v →i

S vi, for 1 ≤ i ≤ n. Evidently,
Term(v) is a term over the signature Σ. We require that distinct vertices of
DAG(Γ) represent different terms. Moreover, we insist that DAG(Γ) contain
no rewrite edges and that each equality edge u −E v correspond to an equality
s ≈ t of Γ (with u and v representing s and t, respectively), and vice versa.

The vertices of the graph DAG(Γ) also represent flat terms over the ex-
tended signature Σ ∪K. More specifically, if Symbol(v) is a constant of Σ, then

446 S. Ranise and C. Scharff

ExtTerm(v) = Constant(v), and if Symbol(v) is a function symbol of Σ of ar-
ity n, then ExtTerm(v) = Symbol(v)(Constant(v1), . . . , Constant(vn)), where
v →i

S vi, for 1 ≤ i ≤ n.

SER Graph Transformations Rules. Let ST denote a set of mandatory and
optional SER graph transformation rules. For a theory T with axioms Ax(T)
the rules of STT are designed to handle the theory of equality and the axioms
Ax(T) simulating extension rules for T that reduce the satisfiability problem
of T to the theory of equality. STeq is the set of graph transformation rules
for the theory of equality. Note that STeq ⊆ STT . In this paper we instan-
tiate ST to STeq and STls to compute extended canonizers in the theory of
equality and in the theory of lists à la Shostak respectively. The graph trans-
formations for these theories are showed on Figures 1 and 2. The SER graph
transformation rules are also formally defined as pairs of tuples of the form
(Es, Ee, Er, V, K, KC, C, M)→ (E′s, E′e, E′r, V ′, K′, KC′, C′, M ′), where
the individual components specify a graph, an extended signature, an ordering
on constants, a function that associates a constant of the basic and extended
signature to a vertex, and a marking function, before and after rule application.
More precisely, if (Es, Ee, Er, V, K, KC, C, M) is a configuration, then:
– Es, Ee, and Er describe the sets of sub-term, equality, and rewrite edges,

respectively;
– V is the set of vertices2;
– K describes the (partial) ordering on constants. Specifically, KC is a set

of “ordering constraints” of the form {ci * cj | ci, cj ∈ K}. (A set of
such constraints is considered satisfiable if there is an irreflexive, transitive
relation on K that satisfies all of them);

– C is the function that associates a constant of K and a constant of Σ to
a vertex of the graph. The signature of C is V → K × Σ. C is updated
the following way. Let dom(C) be the domain of C and update(C, v, c) be a
function C′ which is identical to C for every value v in dom(C) except for c
for which C′(v) = c. Indeed, dom(update(C, v, c)) = dom(C) ∪ {v}; and

– M is the function that associates a tuple of size |ST | to a vertex of the graph.
For each rule r of ST this tuple records if r was applied on v. The signature
of M is V → (B × · · · × B), where B = {0, 1}.

The initial state we are starting with is (Es, Ee, Er = ∅, V, K, KC = ∅, C, ∅),
where V are the vertices of DAG(Γ), Es, Ee and Er are the S, E and R edges
of DAG(Γ), K are the set of constants disjoint from Σ labeling the vertices of
V , and C is constructed to associate to each vertex of V a pair composed of a
constant of K and a symbol of Σ.

A graph G is saturated with respect to the rules of ST if there are no more
transformation rules that can be applied on G. Note that saturated graphs con-
tain only sub-term and rewrite edges. A state (Es, Ee, Er, V, K, KC, C, M) is
called final if no transformation rule is applicable on that state. Note that during
2 Note that, in the theory of equality, vertices can be deleted. In the theory of lists à

la Shostak vertices can be added or deleted.

Building Extended Canonizers by Graph-Based Deduction 447

the saturation process (and on the saturated graph) each vertex v represents a
term on the extended signature but not on the basic signature (see [16]).

The rewrite system over the extended signature extracted from a SER graph
is obtained by reading D-rules, C-rules and C-equalities from the graph [4].
Note that on a saturated graph there are only D-rules and C-rules. A D-rule on
Σ ∪ K is a rewrite rule f(c1, . . . , cn) → c0, where f ∈ Σ is a function symbol of
arity n and c0, c1, . . . , cn are constants of K. A C-rule on Σ ∪K (respectively, a
C-equality) is a rule c0 → c1 (respectively, an equality c0 ≈ c1), where c0 and c1
are constants of K. Intuitively, the constants in K will essentially serve as names
for equivalence classes of terms. Thus, an equation ci ≈ cj indicates that ci and
cj are two names for the same equivalence class.

3.2 Extended Canonizers

Computing an extended canonizer ecan(Γ)(s) of a term s ∈ T (Σ) considering a
set of ground equalities Γ and a theory T (defined by a set of axioms Ax(T)) is
performed in four steps.

– The first step consists of the saturation of the initial SER Graph DAG(Γ)
w.r.t. a set of graph transformation rules ST to obtain a graph G′.

– The second step integrates (recursively) s to the saturated graph G′ and
adds a marker # to point to the vertex v representing s.
• If s is a constant c of Σ and c labels a vertex v of G′, v represents s.
• If s is a constant c of Σ that is not present on G′, a new vertex v labeled

by c and a new constant cnew is added to G′ to represent s.
• If s = f(s1, . . . , sn), a new vertex v labeled by f and a new constant cnew

is added to G′ to represent s. The terms si representing vi are recursively
integrated to the graph such that there is exactly one S edge of the form
v →i

S vi, for each i with 1 ≤ i ≤ n.
It is possible to dispense with this case by adding the equality cs =
f(s1, . . . , sn) to Γ , where cs is a fresh constant. In this way, it is sufficient
to find the normal form of a constant.

– The third step consists of the saturation of G′ w.r.t. the same set of trans-
formation rules ST after the addition of s to obtain a graph G′′.

– The fourth (and last) step consists of computing ecan(Γ)(s) on G′′ by fol-
lowing the marker #.
• If the marker points to a vertex with a chain of outgoing R edges ending

with a vertex w, ecan(Γ)(s) = Constant(w) 3.
• Otherwise, ecan(Γ)(s) = ExtTerm(v).

While the termination of the second and fourth steps above is obvious, the
analysis of the exhaustive application of the rules of the SER graphs will offer
the argument for the termination of the first and the third steps.
3 Note that during the saturation process # may point to a vertex different from

the initial v vertex in particular due to the fact that the SER graphs support full
structure sharing. If v is deleted and merged with a vertex u then # will point to u.

448 S. Ranise and C. Scharff

3.3 Extended Canonizers for the Theory of Equality

To build an extended canonizer for the theory of equality the set of SER graph
transformation rules ST is instantiated by STeq = {Orient, SR, RRout, RRin,
Merge}. Figure 1 depicts the graph transformations with their specific con-
ditions of application graphically and formally as transformation rules. Ori-
ent, replaces an equality edge, v −E w, by a rewrite edge, v →R w, provided
Constant(v) * Constant(w). The ordering * needs to be defined on constants
in K not on terms over Σ∪K. The SR rule replaces one sub-term edge by another
one. In logical terms it represents the simplification of a sub-term by rewriting,
or, equivalently, the simultaneous simplification of all occurrences of a sub-term,
if the graph presentation encodes full structure sharing for terms. The RRout
and RRin rules each replace one rewrite edge by another. They correspond to
certain equational inferences with the underlying rewrite rules (namely, critical
pair computations and compositions, which for ground terms are also simplifi-
cations). The RRin rule is useful for efficiency reasons, though not mandatory.
If the rule is applied exhaustively, the resulting rewrite system will be a right-
reduced rewrite system over the extended signature. The Merge rule ensures full
structure sharing; it collapses two vertices that represent the same term over the
extended signature into a single vertex. For example, if two vertices v and w
represent the same flat term (over the extended signature), the Merge rule can
be used to delete one of the two vertices, say v, and all its outgoing sub-term
edges. All other edges that were incident on v need to be redirected to w, with
the proviso that outgoing rewrite edges have to be changed to equality edges.

The transformation rules can then be applied non-deterministically, and are
only applied if they result in a new edge.

The componentM is not modified by the rules in STeq. It will be updated by
those presented in the next section, since we need to extend the graphs with suf-
ficiently many ground instances of the axioms of the theory of lists in a fair way.

3.4 Extended Canonizers for the Theory of Lists à la Shostak

To build an extended canonizer for the theory of lists à la Shostak, the set of SER
graph transformation rules ST is instantiated by STls = {CrdCons, CarCons,
CarCdrCons}∪STeq . Figure 2 depicts the graph transformations with their spe-
cific conditions of application graphically and formally as transformation rules.
The set STeq has been defined in Section 3.3. Rewriting and computing criti-
cal pairs in the presence of the axioms of the theory of lists à la Shostak re-
quires extending the equalities of Γ [6]. These extension computations are im-
plemented by the CrdCons , CarCons and CarCdrCons rules each corresponding
to one of the axioms of the theory of lists à la Shostak cdr(cons(X,Y)) ≈ Y ,
car(cons(X,Y)) ≈ X and cons(car(X), cdr(X)) ≈ X respectively.

The transformation rules can then be applied non-deterministically. They are
only applied once on a particular vertex; this is guaranteed by the marking func-
tion M that controls the number of applications of each rule on a vertex. When

Building Extended Canonizers by Graph-Based Deduction 449

Orient Rule (mandatory) SR Rule (mandatory)

RE
V1V1 V2

c1 > c2

V2

c1 c1 c2c2 RR

S S

V3

V1

V2 V3

V1

V2

i i

(Es, {v1−E v2} ∪ Ee, Er, V, K, KC, C, M)
→Orient

({v1 →i
S v2} ∪ Es, Ee, {v2 →R

v3} ∪ Er, V, K, KC, C, M)
(Es, Ee, {v1 →R v2} ∪ Er, V, K, {c1 ,
c2} ∪ KC, C, M)

→SR

if {c1 , c2} ∪ KC is satisfiable. ({v1 →i
S v3} ∪ Es, Ee, {v2 →R

v3} ∪ Er, V, K, KC, C, M)

RRout Rule (mandatory) RRin Rule (optional)

R

R

V2

V1 V3

V2

V1 V3

R

c2

c3

c2

c1 c3

f

g h

f

g h

c1

c2 > c3

R R
V2 V3

V1

V2 V3

R

c1

c3

c1

c2 c3

f

g h

f

g h

c2

V1

R

c1 > c3

R

(Es, Ee, {v1 →R v2, v1 →R

v3} ∪ Er, V, K, KC, C, M)
(Es, Ee, {v1 →R v2, v2 →R

v3} ∪ Er, V, K, KC, C, M)
→RRout →RRin

(Es, Ee, {v2 →R v3, v1 →R

v3} ∪ Er, V, K, {c2 , c3} ∪ KC, C, M)
(Es, Ee, {v1 →R v3, v2 →R

v3} ∪ Er, V, K, {c1 , c3} ∪ KC, C, M)

Merge Rule (mandatory)

 f c0’
���
���
���
���
���
���
���
���

����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
������
���
���

���
���
������
���
���
���
��
��
��

��
��
�����
���
���

���
���
���

S kn1

S k1

S kn1

S k1

S nS iS 1

V0iV0i

S iS i S nS nS 1S 1

V0’V0

V2n2

V21

V1n1

V11

V4n4

V41

V3n3

V31

V2n2

V21

V1n1

V11

V4n4

V41

V3n3

V31
R

E

...

E

...

R

...
R

R ...

V0nV01

 f c0’

V0’

R

E

...

E

...

E

...
E

R ...

V0nV01

C0 > C0’

 f c0

(
�

i∈{1,...,n}{V0 →i
S V0i ∪ V ′

0 →i
S V0i} ∪

�
j∈{1,...,n1}{V1j →kj

S V0} ∪ Es,�
k∈{1,...,n2}{V2k −E V0} ∪ Ee,�
l∈{1,...,n3}{V3l →R V0} ∪

�
p∈{1,...,n4}{V0 →R V4p} ∪ Er,

{V 0, V 0′} ∪ V, {c0, c′
0} ∪ K, KC, C, M)

→Merge

(
�

i∈{1,...,n}{V
′
0 →i

S V0i} ∪
�

j∈{1,...,n1}{V1j →kj

S V ′
0} ∪ Es,�

p∈{1,...,n4}{V
′
0 −E V4p} ∪

�
k∈{1,...,n2}{V2k −E V ′

0} ∪ Ee,�
l∈{1,...,n3}{V3l →R V ′

0} ∪ Er,

{V 0′} ∪ V, {c′
0} ∪ K, {c0 , c′

0} ∪ KC, C, M)
if Symbol(V0) = Symbol(V ′

0), and {c0 , c′
0} ∪ KC is satisfiable.

Fig. 1. The graph transformation rules in STeq

450 S. Ranise and C. Scharff

CdrCons Rule (mandatory) CarCons Rule (mandatory)

c1

 cdr

 cons cons

E

c4

c1

S

S 21S

1

V4

V2 V3

V1 V1

S 1

V2 V3

2S

c4

car

 cons cons

c1 c1E

1S

S 1 2S

V4

S 2

V3V2

1S

V1V1

V3V2

({v1 →1
S v2, v1 →2

S

v3} ∪ Es, Ee, Er, V, K, KC, C, M)
({v1 →1

S v2, v1 →2
S

v3} ∪ Es, Ee, Er, V, K, KC, C, M)
→CdrCons →CarCons

({v1 →1
S v2, v1 →2

S v3, v4 →1
S

v1} ∪ Es, {v4 −E v3} ∪ Ee, Er, {v4} ∪
V, {c4} ∪ K, KC, update(C, v4, (c4, cdr)), M ′)

({v1 →1
S v2, v1 →2

S v3, v4 →1
S

v1} ∪ Es, {v4 −E v2} ∪ Ee, Er, {v4} ∪
V, {c4} ∪ K, KC, update(C,v4, (c4, car)), M ′)

if Symbol(v1) = cons and #1 M(v1) = 0 if Symbol(v1) = cons and #2 M(v1) = 0
Symbol is extended such that Symbol(v4) =
cdr

Symbol is extended such that Symbol(v4) =
car

M ′ is M extended with #1 M(v1) = 1,
#1 M(v4) = 1, #2 M(v4) = 1 and
#3 M(v4) = 1

M ′ is M extended with #2 M(v1) = 1,
#1 M(v4) = 1, #2 M(v4) = 1 and
#3 M(v4) = 1

CarCdrCons Rule (mandatory)

c3

 cdr

 cons

E

 cdr cdr car
c2 cc3 c2

c4

 car

S 1S 1S 1

V2

V1

V3

2S1S

V4

V3

V1

V2

S 1

({v2 →1
S v1, v3 →1

S v1} ∪ Es, Ee, Er, V, K, KC, C, M)
→CarCons

({v2 →1
S v1, v3 →1

S v1, v4 →1
S v2, v4 →2

S v3} ∪ Es, {v4 −E v1} ∪ Ee, Er, {v4} ∪ V,
{c4} ∪ K, KC, update(C,v4, (c4, cons)), M ′)
if Symbol(v2) = car, Symbol(v3) = cdr, and and #3 M(v1) = 0
Symbol is extended such that Symbol(v4) = cons
M ′ is M extended with #3 M(v2) = 1, #3 M(v3) = 1, #1 M(v4) = 1, #2 M(v4) = 1 and
#2 M(v4) = 1

Fig. 2. The graph transformation rules in STls \ STeq

a rule is applied on a vertex that vertex is marked w.r.t. that rule. Additionally,
the vertices added by the rule are marked w.r.t. all the rules. The signature of
M is V → (B × B × B) where B = {0, 1} where V is the set of vertices
of the considered graph, and M(v) is a tuple of size three such that #1 M(v),
#2 M(v), and #3 M(v)4 record if the rule CrdCons, CarCons and CarCdrCons
were applied on v respectively. Figure 2 presents the transformation rules Crd-
Cons , CarCons and CarCdrCons. For clarity, we did not add the marker to the
rules.

4 #i t denotes the ith component of the tuple t.

Building Extended Canonizers by Graph-Based Deduction 451

4 Correctness

By assigning a suitable weight to graphs that decreases with each application of
a transformation rule (as shown in [16]), it is possible to show that the exhaus-
tive application of the rules in STeq terminates. This implies that the first and
the third steps in the construction of the extended canonizer (cf. Section 3.2)
for the theory of equality also terminate. As already observed in Section 3.2,
the termination of the second and fourth steps is trivial. The correctness of
the extended canonizer for the theory of equality is a straightforward conse-
quence of the results in [16]. Exhaustive application of the graph transformation
rules in STeq is sound in that the equational theory represented over Σ-terms
does not change with respect to the given set of equations Γ . Completeness fol-
lows from the fact that the term rewriting system over the extended signature
extracted from the graph saturated by STeq is convergent. If RRin is applied
the resulting rewrite system over the extended signature is right-reduced. The
proofs are based on associating a triple (K, Ex, Rx) with each SER graph tu-
ple (Es, Ee, Er, V, K, KC, C, M), where Ex is the set of C-equalities and
Rx is the set of D and C-rules extracted from the SER graph. Thus, with the
initial graph we associate a triple (K0, Ex0, Rx0), where Rx0 ∪ Ex0 repre-
sents the same equational theory over Σ-terms (by construction). This property
is preserved by the application of the transformation rules in STeq. The triple
(Kn, Exn, Rxn) representing a saturated SER graph is such that Exn is empty
and Rxn is a convergent rewrite system over the extended signature. Addition-
ally, it is possible to prove that the extended canonizer runs in quadratic time
in the number of sub-terms of the input set of literals by adapting the argument
in [9].

Property 1. There exists an O(n2) extended canonizer for the theory of equality,
where n is the number of sub-terms in the input set of literals.

The termination and correctness of the extended canonizer for the theory of lists
à la Shostak is only slightly more complex. As for the theory of equality, we only
need to prove the termination of the first and the fourth steps in the construction
of the extended canonizer. This can be argued as follows. The termination of the
exhaustive application of the rules in STls can be easily seen by observing that
the rules in STls \ STeq (cf. Figure 2) can only be applied a linear number
of time in the number of the sub-terms represented in graph (because of the
proviso in the rules about the function M). M is built in such a way that
the rules in STls \ STeq are not applied on vertices added by the same set of
rules.

Property 2. If we would apply rules of STls \ STeq on initial vertices and apply
rules of the same set of rules to the resulting vertices generating new vertices,
the latter vertices and the initial vertices would eventually be merged.

Indeed, the rules in STls\STeq simulate extension rules for the theory of lists à la
Shostak and equalities generated by extension rules are not extended themselves.

452 S. Ranise and C. Scharff

The rules in STeq terminates and do not create any new vertex to which the
rules in STls \ STeq can be applied. This allows us to conclude the termination
of the exhaustive application of the rules in STls. For correctness, we observe
that the exhaustive applications of the rules in STls simulates the exhaustive
applications of the superposition calculus to the flat set of literals corresponding
to the initial set of equalities represented in the graph (see [2] for details). As a
consequence, the term rewriting system over the extended signature in the final
graph is ground convergent.

Property 3. There exists an O(n2) extended canonizer for the theory of lists à
la Shostak, where n is the number of sub-terms in the input set of literals.

The quadratic complexity can be seen by observing that at most a linear number
k = O(n) of new vertices is created by the rules in STls\STeq while the exhaustive
application of those in STeq can be done in O(k2) = O(n2).

5 A Worked Out Example

Figure 3a presents the construction ofDAG(Γ), where Γ ={car(c) ≈ d, cdr(c) ≈
e, cons(i, j) ≈ k} and K = {c1, . . . , c9}. We apply all the transformations de-
scribed below on DAG(Γ) using the ordering {c5 * c6, c7 * c8, c12 * c9, c10 *
c1, c11 * c2, c4 * c3}5 on the constants of K′ = K ∪ {c10, c11, c12}.

– Orient orients the E edge between c5 and c6 into an R edge from c5 to c6
(c5 * c6), and the E edge between c7 and c8 into an R edge from c7 to c8
(c7 * c8).

– CarCdrCons adds a vertex labeled by c12 and cons, two S edges from c12 to
c5 and from c12 to c7, and an E edge between c12 and c9.

– SR replaces the S edge from c12 to c5 by an S edge from c12 to c6.
– SR replaces the S edge from c12 to c7 by an S edge from c12 to c8.
– Orient orients the E edge between c12 and c9 into an R edge from c12 to c9

(c12 * c9)
– CarCons transformation adds a vertex labeled by c10 and car, an S edge

from c10 to c4 and an E edge between c10 and c1.
– CdrCons adds a vertex labeled by c11 and cdr, an S edge from c10 to c4 and

an E edge between c10 and c2.
– Orient orients the E edges between c10 and c1, c11 to c2 and c4 to c3 into an
R edges from c10 to c1 (c10 * c1), c11 to c2 (c11 * c2), and c4 to c3 (c4 * c3).

– SR replaces the S edge from c10 to c4 by an S edge from c10 to c3.
– SR replaces the S edge from c11 to c4 by an S edge from c11 to c3.

No more transformation rules can be applied on the graph. We obtain the
saturated graph on Figure 3b. The convergent rewrite system over the extended
signature K′ is {c12 → c9, c5 → c6, c7 → c8, c10 → c1, c11 → c2, c4 →
5 This ordering is constructed “on the fly.”

Building Extended Canonizers by Graph-Based Deduction 453

a)

1

c5

c6

c9

c7

c8
e

cons
c4

c

k

1 2

c2
i
c1

j

c3

car

d

cdr

1 S

E

E
S S

E

S

b)

#

car
c10

1
1

c4 c3
k

c3c4

2

c4
cons k

1

cons

j

c5
car

i

c11

c7
cdr

c2c1

cdr

2

1

c12
cons e

c8

c9

c6

11

d

c

S

R

R

R
R

S

S

R R

SS

S
S

S

Fig. 3. a) Initial DAG for Γ = {car(c) ≈ d, cdr(c) ≈ e, cons(i, j) ≈ k}, b) Saturated
graph on the extended signature

c3, cons(c6, c8) → c12, car(c9) → c5, cdr(c9) → c7, car(c3) → c10, cdr(c3) →
c1, cons(c1, c2)→ c4}.

Using the graph we can now prove that T |= Γ ⇒ car(c) ≈ d, where T is the
theory of lists à la Shostak, by proving that ecan(Γ)(car(c)) = ecan(Γ)(d) = c6.

– To compute ecan(Γ)(car(c)), we add a vertex v labeled by c13 and an S edge
from v to the vertex labeled by c9. c13 and c5 are merged and the marker to
the vertex representing car(c) points to c5 (cf. Figure 3b). As there is an R
edge from c5 to c6, ecan(Γ)(car(c)) = c6.

– ecan(Γ)(d) = c6 because d and c6 label the same vertex.

6 Discussion

We have presented a graph-based method for building decision procedures and
extended canonizers for the theory of equality and the theory of lists à la Shostak.
The method combines the key ideas of the rewriting-based approach to build
satisfiability procedures and SER graphs. It also allows us to obtain a precise
characterization of the computational complexity of the resulting procedures.
We believe that our approach allows for efficient implementations and a visual
presentation that better illuminates the basic ideas underlying the construction
of decision procedures for convex theories and the computations of extended
canonizers. We plan to apply our method to other theories for which the rewriting
approach does not work, e.g., the theory of acyclic lists [11], by designing suitable
rules on the graph data structure in order to take into account the infinitely many
axioms for acyclicity.

454 S. Ranise and C. Scharff

References

1. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: On a rewriting approach to
satisfiability procedures: extension, combination of theories and an experimental
appraisal. In: Gramlich, B. (ed.) Frontiers of Combining Systems. LNCS (LNAI),
vol. 3717, Springer, Heidelberg (2005)

2. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. J. of Information and Computation 183(2), 140–164 (2003)

3. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
Cambridge (1998)

4. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. J. of Auto-
mated Reasoning 31(2), 129–168 (2003)

5. Conchon, S., Kristic, S.: Canonization for disjoint unions of theories. Information
and Computation 199(1-2), 87–106 (2005)

6. Jouannaud, J., Kirchner, H.: Completion of a set of rules modulo a set of equations.
SIAM J. on Computing 15(4), 1155–1194 (1986)

7. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Com-
putational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford
(1970)

8. Lynch, C., Strogova, P.: SOUR graphs for efficient completion. Journal of Discrete
Mathematics and Theoretical Computer Science 2(1), 1–25 (1998)

9. Nelson, C.G., Oppen, D.C.: Fast Decision Procedures based on Congruence Clo-
sure. Journal of the ACM 27(2), 356–364 (1980)

10. Nelson, C.G., Oppen, D.C.: Simplification by cooperating decision procedures.
ACM Trans. on Programming Languages and Systems 1(2), 245–257 (1979)

11. Oppen, D.C.: Reasoning About Recursively Defined Data Structures. J.
ACM 27(3), 403–411 (1980)

12. Rusinowitch, M.: Theorem-proving with resolution and superposition. J. Symb.
Comput. 11(1-2), 21–49 (1991)

13. Ranise, S., Ringeissen, C., Tran, D.: Nelson-Oppen, Shostak and the Extended
Canonizer: A Family Picture with a Newborn. In: Liu, Z., Araki, K. (eds.) ICTAC
2004. LNCS, vol. 3407, pp. 372–386. Springer, Heidelberg (2005)

14. Ranise, S., Tinelli, C.: Satisfiability Modulo Theories. IEEE Magazine on Intelligent
Systems 21(6), 71–81 (2006)

15. Ruess, H., Shankar, N.: Deconstructing Shostak. In: Proceedings of the 16th Annual
IEEE Symposium on Logic in Computer Science, Boston, Massachusetts, USA, pp.
19–28. IEEE Computer Society, Los Alamitos (2001)

16. Scharff, C., Bachmair, L.: On the Combination of Congruence Closure and Com-
pletion. In: Buchberger, B., Campbell, J.A. (eds.) AISC 2004. LNCS (LNAI),
vol. 3249, pp. 103–117. Springer, Heidelberg (2004)

17. Shostak, R.E.: Deciding Combinations of Theories. Journal of the ACM 31, 1–12
(1984)

A Randomized Algorithm for BBCSPs in the

Prover-Verifier Model

K. Subramani�

LDCSEE,
West Virginia University,

Morgantown, WV
ksmani@csee.wvu.edu

Abstract. In this paper we introduce a Prover-Verifier model for an-
alyzing the computational complexity of a class of Constraint Satisfac-
tion problems termed Binary Boolean Constraint Satisfaction problems
(BBCSPs). BBCSPs represent an extremely general class of constraint
satisfaction problems and find applications in a wide variety of domains
including constraint programming, puzzle solving and program testing.
We establish that each instance of a BBCSP admits a coin-flipping Turing
Machine that halts in time polynomial in the size of the input. The prover
P in the Prover-Verifier model is endowed with very limited powers; in
particular, it has no memory and it can only pose restricted queries to
the verifier. The verifier on the other hand is both omniscient in that it is
cognizant of all the problem details and insincere in that it does not have
to decide a priori on the intended proof. However, the verifier must stay
consistent in its responses. Inasmuch as our provers will be memoryless
and our verifiers will be asked for extremely simple certificates, our work
establishes the existence of a simple, randomized algorithm for BBCSPs.
Our model itself serves as a basis for the design of zero-knowledge ma-
chine learning algorithms in that the prover ends up learning the proof
desired by the verifier.

1 Introduction

This paper analyzes a class of constraint satisfaction problems called Boolean
Binary Constraint Satisfaction problems (BBCSPs) within the framework of
a Prover-Verifier model. The principal goal of the analysis is to establish that
BBCSPs can be decided by simple and efficient randomized algorithms. A
BBCSP is characterized by a conjunction of binary constraints over boolean
bi-valued variables. To recapitulate, a binary constraint is one which is defined
by exactly two variables, while a boolean variable is one which can assume at

� This research is supported in part by a research grant from the Air-Force Office
of Scientific Research under contract FA9550-06-1-0050. A portion of this research
was conducted at the Stanford Research Institute, where the author was a Visiting
Fellow.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 455–466, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

456 K. Subramani

most two values. The conjunction of binary constraints over boolean variables
constitutes a BBCSP.

BBCSP instances arise in a wide variety of domains, including Real-Time
Scheduling [13], program verification [1] and even constraint-based puzzle solving.

It is important to note that BBCSPs permit constraints that combine several
theories as opposed to typical constraint systems which focus on a single theory.
This feature is particularly important in the modeling and specification of prob-
lems in domains such as robotics. BBCSPS are not known to be polynomial-time
solvable and on account of their generality, the design of a general-purpose poly-
nomial time algorithm appears challenging at the very least. In this paper, we
present a simple and efficient randomized algorithm for the class of BBCSPs.
Randomized algorithms have a number of advantages in terms of robustness,
simplicity, and space efficiency and the Constraint Solving literature is replete
with the successful application of local search based on randomized strategies
towards global optimization problems [11].

The principal contributions of this paper are as follows:

(a) Definition of a new class of Constraint Satisfaction problems called BBCSPs.
(b) Design and Analysis of a randomized polynomial time algorithm for BBC-

SPs.
(c) Development and Analysis of a Prover-Verifier Model for the analysis of

Constraint Satisfaction problems.

The rest of this paper is organized as follows: Section 2 provides a formal
definition of the class of BBCSPs. The Prover-Verifier model and its application
to the analysis of Constraint Satisfaction problems are discussed in Section 3.
In Section 4, the motivation for our work is detailed; related approaches in the
literature are presented in Section 5. The randomized algorithm for BBCSP is
described in Section 6, followed by a detailed analysis in Section 7. We conclude
in Section 8, by summarizing our contributions and pointing out avenues for
future research.

2 Statement of Problem

We begin with some preliminary definitions.

Definition 1. A program variable (or variable) is a placeholder for values from
a specified set, which is called its domain.

Definition 2. A variable is said to be boolean, if its domain has cardinality 2.

Definition 3. A binary constraint is defined as a predicate of the form: f(xa, xb)≤
c, where xa, xb are program variables, c is a real constant and f() is an arbitrary
binary function.

A Constraint Satisfaction Problem (CSP) is defined by the triplet 〈X ,D, C〉, where
X = {x1, x2,. . ., xn} denotes a set of program variables, D= {D1, D2,. . .Dn} de-
notes the set of their respective domains and C = {C1, C2, . . . , Cm} denotes a set
of constraints over the program variables.

A Randomized Algorithm for BBCSPs in the Prover-Verifier Model 457

Definition 4. An assignment to a CSP R = 〈X ,D, C〉 is any mapping g : X →
D, which assigns to each variable xi ∈ X , a values from the domain Di.

Definition 5. An assignment g : X → D to the CSP R = 〈X ,D, C〉, satisfies a
constraint f(xa, xb) ≤ c, if f(g(xa), g(xb)) ≤ c.

Definition 6. An assignment g : X → D to the CSP R = 〈X ,D, C〉, is said to
be a valid (or consistent) assignment, if it satisfies all the constraints in C. In
this case, we write g |= R.

If a CSP assignment does not have a valid assignment, it is said to be infeasible
or inconsistent; otherwise it is feasible or satisfiable.

Definition 7. Given an assignment g1 : X → D which does not satisfy the CSP
R = 〈X ,D, C〉, we define ⊕g1 to be the disjunction of the negations of all the
assignments in g1. Note that ⊕g1 is a constraint; further R is satisfiable, if and
only if R ∧ ⊕g1 is.

For instance, consider the constraint l1 : x1 − x2 ≤ 0, with x1, x2 ∈ {2, 4}. The
assignment g1 : x1 = 4, x2 = 2 clearly violates l1. It is not hard to see that l1 is
feasible if and only if l1 ∧⊕g1 = l1 ∧ (x1 �= 4 ∨ x2 �= 2) is.

Definition 8. A CSP R = 〈X ,D, C〉 is said to be a Boolean Binary Constraint
Satisfaction Problem (BBCSP) if every program variable xi ∈ X is boolean and
every constraint Ci ∈ C is binary.

Definition 9. Given a BBCSP R = 〈X ,D, C〉 and an assignment g1 : X → D,
such that g1 �|= R, the operation ;(g1, xi) creates a new assignment g′1, which
differs from g1 only on variable xi. Since xi has precisely two values, the ;
operation is well-defined.

The application of the ; operator to a variable in an assignment is referred to
as flipping that variable in that assignment.

Any CSP R defines a natural relation over the ordered tuples over its domain
D, viz., the relation that is constituted of precisely those tuples that satisfy the
CSP. This relation is called the inclusion relation corresponding to that CSP
and is denoted by Rin.

When dealing with CSPs in which program variables belong to bounded do-
mains, it is important to distinguish between extensional and intensional con-
straint representations. A constraint is in intensional form, if it is represented
implicitly; it is in extensional form if the tuples that satisfy it are explicitly enu-
merated. For instance, let x1, x2 ∈ {2, 4} denote two program variables. Consider
the constraint x1 − x2 ≤ −1; this representation is the intensional. To represent
the same constraint in extensional form, we would list the tuples that satisfy the
constraint; in this case, there is only one such tuple, viz., 〈2, 4〉. The results of
this paper do not make any assumption about the form in which the constraints
are represented.

It is important to note that the framework of CSPs permits only conjunctive
theories; in other words, a valid assignment must satisfy all constraints. This is

458 K. Subramani

not a restriction in general, since a pair of constraints which need to be satisfied
in the disjunctive sense only can be conjunctively linked using a boolean variable.
For instance, the disjunctive constraint specification: (x1 − 3 · x2 ≥ 7)∨ (3 · x4−
7 · x5 ≤ 4) can be converted into the conjunctive specification: (x1 − 3 · x2 ≥
7− y ·M) ∧ (3 · x4 − 7 · x5 ≤ (1− y) ·M + 4), y ∈ {0, 1} and M is a sufficiently
large number that relaxes the constraint. It is important to note though that this
technique does not preserve the structure of BBCSPs since the constraints are
no longer binary. Accordingly, BBCSPs are somewhat restrictive in the scope of
the constraints that are permitted, in that the constraint specifications must be
conjunctively linked.

In this paper we are concerned with the following problem: Given a BBCSP
R = 〈X ,D, C〉 , determine a valid assignment for R or establish its infeasibility.
Alternatively, we can define the BBCSP problem as follows: Given a BBCSP
R = 〈X ,D, C〉 , check if Rin = ∅. It is crucial to note that the entire
constraint set is not provided to the algorithm (prover), but only
responses to queries are provided. The following section clarifies this issue.

3 The Prover-Verifier Model

In this section, we discuss the Prover-Verifier Model, which will serve as the
framework in which our algorithm for BBCSPs will be analyzed.

The model is best understood through the mechanics of the following two-
person game:

(i) The BBCSP R = 〈X ,D, C〉 is known to player V (the verifier).
(ii) Player P (the prover) knows X and D. It is P’s job to determine a valid

assignment g() for R.
(iii) In each round of the game, player P provides a proof to R. The proof is

nothing more than an assignment function, which maps the variables in X
to the domain D.

(iv) If player V finds P’s proof satisfactory, i.e, the assignment provided by P
satisfies all the constraints in R, then P wins and the game is over.

(v) If player V is dissatisfied with P’ s proof, then he provides a certificate
which serves to convince P that his proof was incorrect. Two distinct cer-
tificates (i.e., certificates provided during distinct rounds of the game) are
said to be inconsistent, if they are inconsistent on at least one variable.
For instance, if V declares that the sub-proof x1 ≥ 2 is incorrect in one
certificate and that the sub-proof x1 < 2 is incorrect in another certificate,
then these two certificates are inconsistent.

(vi) Player P can use the certificates obtained up to the current juncture to
formulate a new proof and the protocol continues. If P can access only the
current certificate, before he makes his next move, then he is said to be
memoryless.

(vii) At any point in the game, P can decide that R is an inconsistent constraint
set and terminate the game.

A Randomized Algorithm for BBCSPs in the Prover-Verifier Model 459

(viii) At the end of each round player V can augment the constraint set C of the
BBCSP R in response to P’s proofs, as long as the new constraints that are
added are consistent with R. For instance, if V has responded negatively
to P’s subproof x1 ≥ 2, then he can add the constraint x1 < 2 to R, if
x1 < 2 is consistent with R.

We make the following important observations:

(a) Under the above protocol, player P is not required to provide a proof, estab-
lishing the inconsistency of R; if such a proof were to be provided, whenever
P terminates with a declaration of inconsistency, then P is said to be a
complete prover.

(b) It is understood that if R is feasible, then V will provide a consistent se-
quence of certificates to P during the game. Indeed, P can use the inconsis-
tency of certificates provided by V as a valid proof that R is inconsistent.

(c) V is not bound to a specific consistent assignment for R; this feature is
important when R has multiple consistent assignments. Accordingly, if P
presents V with a proof g1 that is consistent with R, V could choose to
declare that g1 is incorrect, if R∧⊕g1 is satisfiable by an alternate proof g2.
If player V fixes the assignment he is interested in, before the game begins,
then we say that he is sincere; otherwise, we say that he is insincere.

As part of rejecting the prover’s current proof, the verifier can provide four
types of certificates, viz.,

(i) Type 0 Certificate - This type of certificate (also called value certificate)
targets a specific variable in the assignment. For instance, in case of a SAT
instance, the prover could provide the proof (x1 = true, x2 = false) to the
verifier. The verifier could reject the proof with the certificate x1 = false.

(ii) Type 1 Certificate - This type of certificate (also called order certificate)
targets some ordering property that is violated in the current proof. For
instance, in case of an integer programming problem, the proof x1 = 1, x2 =
2 could be rejected with the certificate x1 ≥ 2 or even x1 > x2.

(iii) Type 2 Certificate - This type of certificate (also called aggregate certificate)
targets some aggregate measure which is violated in the current proof. For
instance, in case of an integer programming problem, the proof (x1 =
1, x2 = 2) could be rejected with the certificate (x1 + x2) ≥ 10.

(iv) Type 3 Certificate - This type of certificate (also called membership cer-
tificate) targets the proof as a whole and returns as a certificate one of the
constraints that is violated by the current proof. In other words, the verifier
establishes the incorrectness of the current proof, by explicitly providing
a constraint which precludes the current assignment from being a tuple in
Rin.

Let T i
v denote the time taken by a verifier to provide a certificate of Type i.

It is not hard to see that T 0
v ≥ T 1

v ≥ T 2
v ≥ T 3

v .
In this paper, we shall be considering verifiers which provide certificates of

Type 3 only, i.e., the prover does not have access to the entire constraint set.

460 K. Subramani

It must be noted that in the traditional computational model in which all the
constraints are part of the input, BBCSPs can be reduced to 2CNF satisfiability
and are therefore solvable in linear time [2]. However, our computation model is
different from the traditional RAM model.

4 Motivation

Our work in this paper is motivated by two orthogonal considerations:

(A) Tools for practical applications - As mentioned before, BBCSPs arise in
a number of interesting domains, including but not limited to real-time
scheduling [14], program analysis [1], constraint solving [6,10] and program
testing [3].

(i) Real-Time Scheduling - [16] describes a real-time scheduling problem
called Totally Clairvoyant scheduling, which is characterized by two
non-standard features, viz., the existence of relative timing constraints
among jobs (for instance, Job J4 should start 7 units after job J2 ends)
and non-constant execution times (for instance, the execution time e1
of job J1 belongs to [7, 10]). There also exist applications in which job
execution time is not a continuous range, but one of two values, e.g.,
{7, 10}. Such a problem can be directly modeled as a BBCSP.

(ii) BoolIPD(2) - A conjunctive theory that arises often in constraint-
based analysis of programs is BoolIPD(2).
Let A · x ≤ b denote a polyhedron in which the support of each row
is at most 2, i.e., at most two non-zero variables per row. Let Cx �= d
denote an open region, in which the support of each row is at most 2.
The mathematical programming problem

∃x ∈ Z A · x ≤ b ∧C · x �= d

is an instance of IPD(2), i.e., integer programming with at most two
non-zero variables per constraint with disequalities. If in addition, each
program variable is boolean, then we have an instance of BoolIPD(2).
Modern day SMT (Satisfiability Modulo Theory) solvers such as
YICES [5], ICS [3] and the one described in [12], solve BoolIPD(2)
instances using additional variables and disjunction; however, this
destroys the binary nature of BoolIPD(2) constraints. Inasmuch as
BoolPD(2) problems form a subclass of BBCSPs, the randomized al-
gorithm that we describe in this paper can be directly used for solving
them. Additionally, it would be worthwhile to investigate the exact
complexity of BoolIPD(2).

(B) Alternative mode(l)s of computation - The typical approach to constraint
solving problems is deterministic in nature; however, randomized approaches
have been found to be fairly robust and effective in identifying solutions to
CSPs [7]. While it is true that the randomized algorithm discussed here works
for only selected class of CSPs, viz., BBCSPs, the insights from this algorithm

A Randomized Algorithm for BBCSPs in the Prover-Verifier Model 461

can be used for guided testing and bounded model checking for a more general
class of constraints. Our technique embodies a number of search paradigms:

(i) Search through Verification - [4] proposes a randomized, linear-time
algorithm for identifying the Minimum Spanning Tree (MST) of an
undirected, weighted graph using a verification subroutine; in other
words, the search for the desired structure is achieved through veri-
fication. Our algorithm is similar in that the search for a solution is
achieved through a number of Type 3 certificates.

(ii) Learning with Zero Knowledge - In Valiant’s PAC model of learning
[17], a concept is learned through a sequence of positive and negative
examples. Each example causes the algorithm to reformulate its hy-
pothesis about the concept. In our approach, we learn a solution to the
BBCSP through a sequence of negative examples only; it is important
to note that the algorithm never formulates a hypothesis, but still suc-
ceeds in learning the concept with a probability better than one-sixth.

5 Related Work

Papadimitriou [8] gave the first randomized algorithm for the 2SAT problem,
which had provable polynomial time convergence and bounded error was pre-
sented. Their strategy is easily modeled as a one dimensional random walk with
one absorbing barrier and one reflecting barrier. Applications of the random
walk strategy to harder versions of satisfiability with detailed implementation
profiles are described in [18]. In particular, they consider the efficacy of bias-
ing the process of selecting the clause which is satisfied in the next round. [15]
extended the ideas presented by Papadimitriou [8] to derive a randomized al-
gorithm for the Q2SAT problem. Local search through random walks has also
been studied for harder Satisfiability problems [11].

6 The Randomized Algorithm

Algorithm (6.1) represents the randomized algorithm for solving BBCSPs. The
algorithm itself is a variant of the technique described in [8] for solving 2SAT
instances.

Observe that the algorithm is extremely local in its approach and does not
advocate any form of constraint propagation, which is standard in sophisticated
CSP solvers. Indeed not only does it not exploit any specific constraint theory,
it is completely oblivious to the constraint set C itself. and therefore does not
require random access to the constraint base.

The algorithm commences with an initial assignment g0 on which the con-
straints are evaluated. In each round, the algorithm picks an arbitrary constraint
that is falsified and flips one of the variables that define that constraint.

If the algorithm fails to find a satisfying assignment in 3 · n2 rounds (where
n = |X |), it declares that R is unsatisfiable. In the next section, we shall show
that such a declaration has a probability 5

6 of being correct.

462 K. Subramani

Function BBCSP-Solve(R = 〈X ,D, C〉)
1: Let g0 be an arbitrary assignment to X .
2: if (g0 |= R) then
3: (R is satisfiable.)
4: return(g0)
5: end if
6: count = 0; n = |X |.
7: while (a constraint in C is violated and (count ≤ 3 · n2)) do
8: Arbitrarily select a violated constraint Cr ∈ C.
9: Let xa and xb denote the two variables associated with Cr.

10: Flip a fair coin to pick one of xa and xb.
11: if (xa is selected) then
12: Set gcount+1 to -(gcount, xa)
13: {The flipping operation is well-defined.}
14: else
15: Set gcount+1 to -(gcount, xb)
16: end if
17: if gcount+1 |= R then
18: (R is satisfiable.)
19: return(gcount+1)
20: else
21: count = count + 1.
22: end if
23: end while
24: return(“R is probably unsatisfiable.”)

Algorithm 6.1. Randomized algorithm for an arbitrary BBCSP

We observe that the algorithm does not build a copy of the constraints; ac-
cordingly it does not need to know all of the constraints in C or even all of
the broken constraints in C, under the current assignment. All it needs is the
variables associated with a single broken constraint, that could be chosen by
an adversary. This observation is especially useful in the adversarial analysis of
online algorithms.

7 Analysis of Correctness

Observe that if Algorithm (6.1) claims that the input constraint system R is
satisfiable, by executing Line (3) or Line (18), then it the assignment g() that is
provided along with the claim, is proof positive that R is indeed satisfiable. In
other words, the algorithm does not create a false positive.

On the other hand, other hand, if Algorithm (6.1) claims that the input
instance R is not satisfiable, then it is possible that there exists an assignment
g : X → D, such that g |= R, and which was not discovered in the 3·n2 iterations;
we now show that the probability that this occurs over all the random choices
made by the algorithm is less than one-sixth.

A Randomized Algorithm for BBCSPs in the Prover-Verifier Model 463

We analyze the case of false negatives within the framework of the Prover-
Verifier model discussed in Section 3. Assume that the BBCSP R is satisfiable
and let us focus on a particular satisfying assignment T̂ . Let T denote the current
assignment to the variables xi, i = 1, 2, . . . , n. The prover P provides T to the
verifier V. If T is a satisfying assignment and meets with V’s approval, the
game is over with P winning. If it is not, then there is at least one constraint
in R which is broken by T ; let Cr = f(xi, xj) denote a broken constraint, where
the function f() models the fact that the constraint Cr is dependent on xi and
xj only. V provides only the variables (say xi and xj) that are involved in the
broken constraint to P.

P flips a fair coin to decide which variable to flip; assuming that the coin
picks xi, P computes ;(T, xi) and returns this assignment to V. We observe
that in T̂ , either xi has been set incorrectly or xj has (If both variables were
set correctly, the constraint would not have been broken!). Since both xi and xj

are bi-valued, and the variable to be flipped is chosen by P, uniformly and at
random, after the variable flip, with probability one-half, T agrees with T̂ in one
more variable and with probability one-half, T agrees with T̂ in one less variable.
(In order to simplify the analysis, we ignore the possibility that both xi and xj

are incorrectly set, in which case T moves closer to T̂ with probability one.)
Let t(i) denote the expected number of variable flips for Algorithm (6.1) to take

the current assignment T to the satisfying assignment T̂ , assuming that T differs
from T̂ on i variables. Note that t(0) = 0, since if the current assignment differs
from T̂ on 0 variables, then it is already a satisfying assignment. Likewise, t(n) =
1+ t(n− 1), since if the current assignment differs from T̂ on all n variables, with
probability 1, the new assignment will agree with T̂ on at least one assignment.

We need the following technical lemma that helps us to compute the expec-
tation of a random variable by conditioning it on a different random variable.
This lemma has been proved in [9].

Lemma 1. Let X and Y denote two random variables; let E[X | Y] denote that
function of the random variable Y , whose value at Y = y is E[X | Y = y]. Then,

E[X] = E[E[X | Y]]. (1)

In other words,

E[X] =
∑

y

E[X | Y = y] ·Pr[Y = y]. (2)

Based on the above discussion, we note that the prover P is executing a one-
dimensional random walk with one absorbing barrier (at 0) and a reflecting
barrier (at n). Accordingly, we use Lemma (1) to derive the recurrence relations
for the expected number of variable flips assuming that P is currently at position
i of the walk.

t(0) = 0

t(i) =
1
2
· t(i− 1) +

1
2
· t(i+ 1) + 1, 0 < i < n

t(n) = t(n− 1) + 1 (3)

464 K. Subramani

System (3) can be solved using induction (among other techniques) to give
t(n) = n2. In other words, the expected number of variable flips before the prover
P translates an arbitrary assignment, which does not satisfy R to a particular
assignment T̂ , which is approved by the verifier V (i.e., T̂ |= R is n2.

We need another technical lemma known as Chebyshev’s inequality, proved
in [9] among other places.

Lemma 2. Let X be a non-negative random variable, with variance σ2 and
mean E[X]. Given an arbitrary constant a > 0,

Pr[|X −E[X]| ≥ a · E[X]] ≤ σ2

a2(E[X])2

It has been established that the variance of the random walk described by System
(3) is at most 2

3n
4.

If X denotes the random variable corresponding to the number of steps taken
by Algorithm 6.1, we have,

Pr[X ≥ 3 · n2] = Pr[X − n2 ≥ 2 · n2]
≤ Pr[|X − n2| ≥ 2 · n2]
= Pr[X −E[X]| ≥ 2 · n2]

≤
2
3n

4

(2n2)2
, using Chebyshev′s inequality

=
1
6

We conclude that the probability that the prover P has not identified T̂ after
3 · n2 rounds of the game is less than one-sixth.

8 Conclusions

The main contributions of this paper were as follows:

(a) The isolation of a class of constraint satisfaction problems, called Boolean
Binary Constraint Satisfaction problems (BBCSPs) - BBCSPs are restrictive
in the nature of constraints that they admit; however, as we have seen in
Section 2 and Section 4, they can be used to model constraint satisfaction
problems in a number of interesting domains.

(b) The design a Monte Carlo algorithm for BBCSPs - We detailed a simple,
randomized algorithm for BBCSPs, with a probability of error of at most
one-sixth.

From our perspective, the following open problems are interesting for future
research:

(a) Can the constraint size be included in the analysis? - The weakness of the
analysis in this paper is that neither the expected convergence time nor

A Randomized Algorithm for BBCSPs in the Prover-Verifier Model 465

the probability of error account for the number of constraints in the BBCSP
instance. Clearly, if the number of constraints is small in a satisfiable BBCSP
instance, with respect to the number of program variables, the number of
variable flips should be small as well. Likewise, if the number of constraints
is large, we should have a higher degree of confidence in a negative answer
than the one afforded by the Chebyshev inequality.

(b) Can the analysis be extended to the case where the program variables are
multi-valued as opposed to boolean? - The boolean nature of program vari-
ables was crucial in the current analysis; relaxing this requirement leads to a
larger class of problems. We have had some success in modeling a randomized
algorithm for difference constraints as a 2-dimensional random walk.

References

1. Aiken, A.: Introduction to set constraint-based program analysis. Science of Com-
puter Programming 35(2), 79–111 (1999)

2. Aspvall, B., Plass, M.F., Tarjan, R.: A linear-time algorithm for testing the truth of
certain quantified boolean formulas. Information Processing Letters 8(3), 121–123
(1979)

3. de Moura, L.M., Owre, S., Ruess, H., Rushby, J.M., Shankar, N.: The ics decision
procedures for embedded deduction. In: Basin, D., Rusinowitch, M. (eds.) IJCAR
2004. LNCS (LNAI), vol. 3097, pp. 218–222. Springer, Heidelberg (2004)

4. Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm to
find minimum spanning trees. Journal of the ACM 42(2), 321–328 (1995)

5. Khachiyan, L.G.: A polynomial algorithm for linear programming. Soviet Math.
Doklady, vol. 20, pp. 191–194 (1979) (Russian original in Doklady Akademiia Nauk
SSSR 244, 1093–1096)

6. Marriott, K., Stuckey, P.J.: Programming with Constraints: An Introduction. The
MIT Press, Cambridge (1998)

7. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge, England (1995)

8. Papadimitriou, C.H.: On selecting a satisfying truth assignment. In: IEEE (ed.),
Proceedings: 32nd annual Symposium on Foundations of Computer Science, San
Juan, Puerto Rico, pp. 163–169, October 1–4 (1991), 1109 Spring Street, Suite
300, Silver Spring, MD 20910, USA. IEEE Computer Society Press, Los Alamitos
(1991)

9. Ross, S.M.: Probability Models, 7th edn. Academic Press, Inc., San Diego (2000)
10. Schlenker, H., Rehberger, F.: Towards a more general distributed constraint sat-

isfaction framework: Intensional vs. extensional constraint representation. In: 15.
WLP, pp. 63–70 (2000)

11. Schöning, U.: New algorithms for k-SAT based on the local search principle. In:
MFCS: Symposium on Mathematical Foundations of Computer Science (2001)

12. Sheini, H.M., Sakallah, K.A.: From propositional satisfiability to satisfiability mod-
ulo theories. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 1–9.
Springer, Heidelberg (2006)

13. Subramani, K.: An analysis of zero-clairvoyant scheduling. In: Katoen, J.-P.,
Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 98–112.
Springer, Heidelberg (2002)

466 K. Subramani

14. Subramani, K.: An analysis of totally clairvoyant scheduling. Journal of Schedul-
ing 8(2), 113–133 (2005)

15. Subramani, K.: Cascading random walks. International Journal of Foundations of
Computer Science (IJFCS) 16(3), 599–622 (2005)

16. Subramani, K.: Totally clairvoyant scheduling with relative timing constraints. In:
Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 398–411.
Springer, Heidelberg (2005)

17. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11),
1134–1142 (1984)

18. Wei, W., Selman, B.: Accelerating random walks. In: Van Hentenryck, P. (ed.) CP
2002. LNCS, vol. 2470, pp. 216–232. Springer, Heidelberg (2002)

On the Expressive Power of QLTL�

Zhilin Wu

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, P.O. Box 8718, Beijing, China, 100080

Graduate School of the Chinese Academy of Sciences,
19 Yuquan Street, Beijing, China

wuzl@ios.ac.cn

Abstract. LTL cannot express the whole class of ω-regular languages
and several extensions have been proposed. Among them, Quantified
propositional Linear Temporal Logic (QLTL), proposed by Sistla, ex-
tends LTL by quantifications over the atomic propositions. The expres-
sive power of LTL and its fragments have been made relatively clear by
numerous researchers. However, there are few results on the expressive
power of QLTL and its fragments (besides those of LTL). In this pa-
per we get some initial results on the expressive power of QLTL. First,
we show that both Q(U) (the fragment of QLTL in which “Until” is the
only temporal operator used, without restriction on the use of quantifiers)
and Q(F) (similar to Q(U), with temporal operator “Until” replaced by
“Future”) can express the whole class of ω-regular languages. Then we
compare the expressive power of various fragments of QLTL in detail
and get a panorama of the expressive power of fragments of QLTL. Fi-
nally, we consider the quantifier hierarchy of Q(U) and Q(F), and show
that one alternation of existential and universal quantifiers is necessary
and sufficient to express the whole class of ω-regular languages.

1 Introduction

Linear Temporal Logic (LTL) was first defined by the philosopher A. Prior in
1957 [9] as a tool to reason about the temporal information. Later, in 1977, A.
Pnueli introduced LTL into computer science to reason about the behaviors of
reactive systems [8]. Since then, it has become one of the most popular temporal
logics used in the specification and verification of reactive systems.

Expressive power is one of the main concerns of temporal logics. Perhaps
because of their popularity, the expressive power of LTL and its fragments have
been made relatively clear by numerous researchers. A well-known result is that
an ω-regular language is LTL-definable iff it is first order definable iff it is ω-
star free iff its syntactic monoid is aperiodic [5,4,14,15,7]. Since the class of
ω-star-free languages is a strict subclass of the class of ω-regular languages,

� Partially supported by the National Natural Science Foundation of China under
Grant No. 60223005 and the National Grand Fundamental Research 973 Program
of China under Grant No. 2002cb312200.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 467–481, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

468 Z. Wu

some natural temporal properties such as the property that the proposition
p holds at all even positions cannot be expressed in LTL [18]. Consequently
several extensions of LTL have been proposed to define the whole class of ω-
regular languages. Among them we mention Extended Temporal Logic (ETL)
[19], linear μ-calculus (νTL)[17] and Quantified propositional Linear Temporal
Logic (QLTL, also known as QPTL) [11].
QLTL extends LTL by quantifications over atomic propositions. While the

expressive power of LTL and its fragments have been made relatively clear, there
are few results on the expressive power of QLTL and its fragments (besides those
of LTL). A well-known result is that ω-regular languages can be expressed by
X , F operators and existential quantifiers in QLTL [2,12], which, nevertheless,
is almost all we know about the expressive power of QLTL and its fragments
besides those of LTL. We do not even know whether several natural fragments of
QLTL, e.g. Q(U) (the fragment of QLTL in which “Until” is the only temporal
operator used, without restriction on the use of quantifiers) and Q(F) (similar
to Q(U), with temporal operator “Until” replaced by “Future”), are expressively
equivalent to QLTL or not. Consequently we believe that the expressive power
of QLTL could be made clearer, which is the main theme of this paper.

In this paper, we first give a positive answer to the question whether Q(U)
and Q(F) can define the whole class of ω-regular languages. Then we compare
the expressive power of various fragments of QLTL in detail and get a panorama
of the expressive power of fragments of QLTL. In particular, we show that the
expressive power of EQ(F)(the fragments of QLTL containing formulas of the
form ∃q1...∃qkψ, where ψ is the LTL formula in which “Future” is the only
temporal operator used) is strictly weaker than that of LTL; and the expres-
sive power of EQ(U) (the fragments of QLTL containing formulas of the form
∃q1...∃qkψ, where ψ is the LTL formula in which “Until” is the only temporal
operator used) is incompatible with that of LTL. Finally, we consider the quan-
tifier hierarchy of Q(U) and Q(F), and show that one alternation of existential
and universal quantifiers is necessary and sufficient to express the whole class of
ω-regular languages.

Compared to ETL and νTL, QLTL is more natural and easier to use for those
people already familiar with LTL. As it was pointed out in [6,3], QLTL has
important applications in the verification of complex systems because quantifi-
cations have the ability to reason about refinement relations between programs.

However, the complexity of QLTL is very high: QLTL is not elementarily
decidable [12]. So from a practical point of view, it seems that it is unnecessary
to bother to clarify the expressive power of QLTL. Our main motivation of the
exploration of the expressive power of QLTL is from a theoretical point of view,
that is, the analogy between QLTL and S1S [16], monadic second order logic
over words.

The formulas of S1S are constructed from atomic propositions x = y, x < y
and Pσ(x) (Pσ is the unary relation symbol for each letter σ in the alpha-
bet of words) by boolean combinations, first and second order quantifications.
S1S defines exactly the class of ω-regular languages. QLTL can be seen as a

On the Expressive Power of QLTL 469

variant of S1S because the quantifications over atomic propositions in QLTL
are essentially second order quantifications over positions of the ω-words.

In S1S, second order quantifications are so powerful that the first order vo-
cabulary can be suppressed into the single successor relation (“S(x, y)”) since
the linear order relation (“<”) can be defined by the successor relation with the
help of second order quantifications:

x < y ≡ ¬(x = y) ∧ ∀X((X(x) ∧ ∀z∀z′(X(z) ∧ S(z, z′)→ X(z′))) → X(y)).

Then, analogously we may think that in QLTL the LTL part (the first order
part) can also be suppressed to the temporal operator X (“Next”), the coun-
terpart of successor relation S(x, y). However, because in S1S the positions of
words can be referred to directly by first order variables while in QLTL they
cannot, it turns out that in QLTL the LTL part cannot be suppressed into the
single temporal operator X (As a matter of fact, the fragment of QLTL with
only X operators used has the same expressive power as the fragment of LTL
with only X operator used). However, we still want to know to what extent
the LTL part of QLTL can be suppressed. So we consider Q(U) and Q(F),
the fragment of QLTL with only U and F operator used respectively, to see
whether they can still express the whole class of ω-regular languages. When we
find out that they can do so, we then want to know whether they can also do so
when only the existential quantifiers are available. The answer is negative, and
naturally, we then consider the quantifier hierarchy of Q(U) and Q(F) to see
how many alternations of existential and universal quantifiers are necessary and
sufficient to express the whole class of ω-regular languages.

The rest of the paper is organized as follows: in Section 2, we give some
notation and definitions; then in Section 3, we recall some relevant results on
the expressive power of QLTL and its fragments; in Section 4, we establish the
main results of this paper; finally in Section 5, we give some conclusions.

2 Notation and Definitions

2.1 Syntax of QLTL

Let P denote the set of propositional variables {p1, p2, ...}. Formulas of QLTL
are defined by the following rules:

ϕ := q(q ∈ P) | ϕ1 ∨ ϕ2 | ¬ϕ1 | Xϕ1 | ϕ1Uϕ2 | ∃qϕ1(q ∈ P)

Let ϕ be a QLTL formula, the subformulas of ϕ is denoted by Sub(ϕ), and
the closure of ϕ, denoted by Cl(ϕ), is Sub(ϕ) ∪ {¬ψ|ψ ∈ Sub(ϕ)}.

Let ϕ be a QLTL formula. The free-variables-set and bound-variables-set of
ϕ, denoted by Free(ϕ) and Bound(ϕ) respectively, are defined similar to that
of first order logic.

The set of variables occurring in a formula ϕ, denoted by V ar(ϕ), is Free(ϕ)∪
Bound(ϕ).

470 Z. Wu

In the remaining part of this paper, we assume that all QLTL formulas ϕ are
well-named: i.e., for all ϕ, Free(ϕ)∩Bound(ϕ) = ∅, and for any q ∈ Bound(ϕ),
there is a unique quantified formula ∃qψ in Cl(ϕ).

We define several abbreviations of QLTL formulas as follows: true = q ∨
¬q(q ∈ P), false = ¬true, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2

Fϕ1 = trueUϕ1, Gϕ1 = ¬F¬ϕ1, ∀qϕ1 = ¬ (∃q(¬ϕ1)).
Moreover, we introduce the following abbreviations. Let AP be a given

nonempty finite subset of P . Then, for a ∈ 2AP ,

B(a)AP =
(
∧

p∈a
p

)
∧
(

∧
p∈AP\a

¬p
)

;

and for A ⊆ 2AP ,
B(A)AP =

∨
a∈A

B(a)AP .

2.2 Semantics of QLTL

QLTL formulas are interpreted as follows. Let u ∈
(
2P

)ω. Denote the suffix of
u starting from the i-th position (the first position is 0) as ui and the letter in
the i-th position of u as ui.

– u |= q if q ∈ u0.
– u |= ϕ1 ∨ ϕ2 if u |= ϕ1 or u |= ϕ2.
– u |= ¬ϕ1 if u �|= ϕ1.
– u |= Xϕ1 if u1 |= ϕ1.
– u |= ϕ1Uϕ2 if there is i ≥ 0 such that ui |= ϕ2 and for all 0 ≤ j < i, uj |= ϕ1.
– u |= ∃qϕ1 if there is some v ∈

(
2P

)ω such that v differs from u only in the
assignments of q (namely for all i ≥ 0 and for all q′ ∈ P\{q}, q′ ∈ vi iff
q′ ∈ ui) and v |= ϕ1.

Let AP ⊆ AP ′ ⊆ P . If a ∈ 2AP , a′ ∈ 2AP ′
, and a′ ∩ AP = a, then we

say that the restriction of a′ to AP is a, denoted by a′|AP = a. If A ⊆ 2AP ,
A′ ⊆ 2AP ′

, and A = {a′|AP

∣∣ a′ ∈ A′}, then we say that the restriction of A′

to AP is A, denoted by A′|AP = A. If u ∈
(
2AP

)ω, u′ ∈
(
2AP ′

)ω

and for all
i ≥ 0, u′i|AP = ui, then we say that the restriction of u′ to AP is u, denoted by

u′|AP = u. Let L ⊆
(
2AP

)ω and L′ ⊆
(
2AP ′

)ω

, we say that the restriction of L′

to AP is L, denoted by L′|AP = L, if L =
{
u ∈

(
2AP

)ω |∃u′ ∈ L′, u′|AP = u
}
.

Proposition 1. Let AP be a nonempty finite subset of P and ϕ be a QLTL
formula such that Free(ϕ) ⊆ AP . Then, for any u, v ∈

(
2P

)ω with u|AP = v|AP ,
we have that u |= ϕ iff v |= ϕ.

Let ϕ1, ϕ2 be two QLTL formulas. ϕ1 and ϕ2 are said to be equivalent, denoted
by ϕ1 ≡ ϕ2, if for all u ∈

(
2P

)ω
, u |= ϕ1 iff u |= ϕ2.

On the Expressive Power of QLTL 471

Proposition 2. Let AP be a nonempty finite subset of P, ϕ1 and ϕ2 be two
formulas such that Free(ϕ1), F ree(ϕ2) ⊆ AP . Then ϕ1 ≡ ϕ2 iff (for all u ∈(
2AP

)ω, u |= ϕ1 iff u |= ϕ2).

For a QLTL formula, the bound variables are usually seen as auxiliary variables.
Consequently if AP is the set of propositional variables that we are concerned
about, and if we want to use QLTL formula ϕ to define a language of

(
2AP

)ω,
naturally we may require that Free(ϕ) ⊆ AP and Bound(ϕ) ∩ AP = ∅. So we
introduce the following definition.

Definition 1 (Compatibility of AP and ϕ). Let AP be a given nonempty
finite subset of P and ϕ be a formula of QLTL. AP and ϕ are said to be com-
patible if Free(ϕ) ⊆ AP and Bound(ϕ) ∩AP = ∅.

Let AP be a nonempty finite subset of P and ϕ be a formula such that AP and
ϕ are compatible. The language of

(
2AP

)ω defined by ϕ, denoted by L(ϕ)AP , is{
u ∈

(
2AP

)ω |u |= ϕ
}
.

Proposition 3. Let AP be a nonempty finite subset of P and ϕ = ∃q1...∃qkψ
be a formula such that AP and ϕ are compatible. Let AP ′ = AP ∪ {q1, ..., qk},
then AP ′ and ψ are compatible and L(ϕ)AP = L(ψ)AP ′ |AP .

2.3 Fragments of QLTL and Expressive Power of Logics

Let O1, O2, ... ∈ {X,F,G,U}. We use L(O1, O2, ...) to denote the fragment of
QLTL containing temporal operators {O1, O2, ...} but containing no quantifiers,
and use Q(O1, O2, ...) to denote the fragment of QLTL containing both tempo-
ral operators {O1, O2, ...} and quantifiers. Moreover we denote the fragment of
QLTL containing exactly formulas of the form ∃q1...∃qkψ (or ∀q1...∀qkψ), where
ψ ∈ L(O1, O2, ...), as EQ(O1, O2, ...) (or AQ(O1, O2, ...)).

For instance, LTL is L(X,U) and QLTL is Q(X,U).
Let ϕ be a formula in QLTL and SL be one fragment of QLTL. We say that

ϕ is expressible in SL iff there is a formula ψ in SL such that ϕ ≡ ψ.
Let AP be a nonempty finite subset of P , L ⊆

(
2AP

)ω, and SL be one
fragment of QLTL (e.g., Q(F)). We say that L is expressible in SL if there is a
formula ϕ in SL such that AP and ϕ are compatible and L(ϕ)AP = L.

Let SL1 and SL2 be two fragments of QLTL. We say that SL1 is less expres-
sive than SL2, denoted by SL1 ≤ SL2, if for any formula ϕ1 ∈ SL1, there exists
a formula ϕ2 ∈ SL2 such that ϕ1 ≡ ϕ2, and we say that SL1 and SL2 are expres-
sively equivalent, denoted by SL1 ≡ SL2, if SL1 ≤ SL2 and SL2 ≤ SL1. More-
over we say that SL1 is strictly less expressive than SL2, denoted by SL1 < SL2,
if SL1 ≤ SL2 but not SL2 ≤ SL1. Finally we say that the expressive power of
SL1 and SL2 are incompatible, denoted by SL1 ⊥ SL2, if neither SL1 ≤ SL2

nor SL2 ≤ SL1, namely there are two formulas ϕ1 ∈ SL1 and ϕ2 ∈ SL2 such
that there exists no formula in SL2 equivalent to ϕ1 and there exists no formula
in SL1 equivalent to ϕ2.

472 Z. Wu

2.4 B
..
uchi Automaton and ω-Languages

A B
..
uchi automaton B is a quintuple (Q,Σ, δ, q0, T), where Q is the finite state

set, Σ is the finite set of letters, δ ⊆ Q × Σ × Q is the transition relation,
q0 ∈ Q is the initial state, and T ⊆ Q is the accepting state set. Let u ∈ Σω, a
run of B on u is an infinite state sequence s0s1... ∈ Qω such that s0 = q0 and
(si, ui, si+1) ∈ δ for all i ≥ 0. A run of B on u is accepting if some accepting
state occurs in it infinitely often. u is accepted by B if B has an accepting run on
u. The language defined by B, denoted by L(B), is the set of ω-words accepted
by B.

An ω-language is said to be ω-regular if it can be defined by some B
..
uchi

automaton.
An ω-language L ⊆ Σω is said to be stutter invariant if for all u ∈ Σω and

function f : N→ N\{0} (N is the set of natural numbers), we have that u ∈ L
iff uf(0)uf(1)... ∈ L.

Let L ⊆ Σω be ω-regular. The syntactic congruence of L, denoted by ≈L,
is a congruence on Σ∗ defined as follows: let u, v ∈ Σ∗, then, u ≈L v if for all
x, y, z ∈ Σ∗, (xuyzω ∈ L iff xvyzω ∈ L) and (x(yuz)ω ∈ L iff x(yvz)ω ∈ L). The
syntactic monoid of L, denoted by M(L), is the division monoid Σ∗/ ≈L.

An ω-language L ⊆ Σω is said to be non-counting if there is n ≥ 0 such that
for all x, y, z, u ∈ Σ∗, (xunyzω ∈ L iff xun+1yzω ∈ L) and (x(yunz)ω ∈ L iff
x(yun+1z)ω ∈ L).

A monoid M is said to be aperiodic if there is k ≥ 0 such that for all m ∈M ,
mk = mk+1.

Let L ⊆ Σω. It is not hard to show that M(L) is aperiodic iff L is non-
counting.

3 Known Results on the Expressive Power of QLTL and
LTL

In the remaining part of this paper, we always assume that AP is a nonempty
finite subset of P .

Proposition 4 ([2,12]). An ω-language is ω-regular iff it is expressible inQLTL.

Corollary 1. Q(X,U) ≡ EQ(X,F).

Proposition 5 ([1])

(i) Xp1 is not expressible in L(U);
(ii) Fp1 is not expressible in L(X);
(iii) p1Up2 is not expressible in L(X,F).

In the following we recall three propositions characterizing the expressive power
of LTL(namely L(X,U)), L(U) and L(F) respectively.

In the remaining part of this subsection, we assume that L ⊆ (2AP)ω.

On the Expressive Power of QLTL 473

Proposition 6 (Characterization of LTL, [5,4,14,15,7]). Suppose that L
is ω-regular, then the following two conditions are equivalent:

– L is expressible in LTL;
– The syntactic monoid of L, M(L), is aperiodic.

Proposition 7 (Characterization of L(U), [10]). Let ϕ be a formula in
L(X,U) and Free(ϕ) ⊆ AP . Then ϕ is expressible in L(U) iff L(ϕ)AP is stutter
invariant.

Definition 2 (Restricted ω-regular set). L is said to be a restricted ω-
regular set if it is of the form

S∗1s1S
∗
2s2...S

∗
m−1sm−1S

ω
m, (1)

where Si ⊆ 2AP (1 ≤ i ≤ m), and si ∈ Si\Si+1 (1 ≤ i < m).

For instance, let AP = {p1}, then,
(
2AP

)ω
and

(
2AP

)∗ {p1}∅ω are both restricted
ω-regular sets.

Definition 3. Let s0 ∈ 2AP and S′ ⊆ 2AP . We define Linit(s0)
inf(S′) as follows:

L
init(s0)
inf(S′) = {u ∈ L|u0 = s0, each element of S′ occurs infinitely often in u}

Proposition 8 (Characterization of L(F), [13]). Let L be nonempty. Then,
L is expressible in L(F) iff L is a finite union of nonempty languages of the
form M

init(s0)
inf(S′) , where M ⊆

(
2AP

)ω is a restricted ω-regular set, s0 ∈ 2AP and
S′ ⊆ 2AP .

For instance, let AP = {p1}, then, L(Fp1)AP ⊆
(
2AP

)ω is exactly the union of
languages (L1)

init({p1})
inf(∅) , (L1)

init(∅)
inf({{p1}}), and (L2)

init(∅)
inf(∅) , where L1 =

(
2AP

)ω and

L2 =
(
2AP

)∗ {p1}∅ω.

4 Our Results on the Expressive Power of QLTL and Its
Fragments

According to Proposition 4, Q(X,U), Q(X,F), EQ(X,U) and EQ(X,F) are
all expressively equivalent, which, nevertheless, is almost all we know about the
expressive power of QLTL besides those of LTL. For instance, we do not know
whether several natural fragments of QLTL, e.g., Q(U) and Q(F), can define
the whole class of ω-regular languages or not.

In this section, we first give a positive answer to the above question, namely,
we show that Q(U) and Q(F) can define the whole class of ω-regular languages.
Then, since EQ(X,U) and EQ(X,F) can also do so, analogously, we want to
know whether EQ(U) and EQ(F) can do so or not. However, the answer is
negative. As a matter of fact, we show that EQ(F) < LTL and EQ(U) ⊥

474 Z. Wu

LTL. Furthermore, we compare the expressive power of EQ(U) and EQ(F)
with that of other fragments of QLTL and get a panorama of the expressive
power of various fragments of QLTL (Fig. 1). Since neither EQ(U) nor EQ(F)
can express the whole class of ω-regular languages, we want to know how many
alternations of existential and universal quantifiers are necessary and sufficient
to do that. The answer is one, which will be shown in the end of this section.

Q(U)

EQ(U)

L(U)L(F)

EQ(F)

Q(F)

L(X,F)

L(X,U)

Q(X,U)

Fig. 1. Expressive power of QLTL and its fragments

Remark 1 (Notation in Fig. 1). Let L1 and L2 be two nodes in Fig. 1. If L2

is reachable from L1 but not vice versa, then L1 < L2, e.g. EQ(F) < EQ(U).
If neither L2 is reachable from L1 nor L1 is reachable from L2, then L1 ⊥ L2,
e.g. EQ(F) ⊥ L(U). If L1 and L2 are reachable from each other (namely, in the
same Strongly Connected Component), then L1 ≡ L2, e.g. Q(U) ≡ Q(F). �

4.1 Expressive Power of Q(U) and Q(F)

In the following we will show that, with the help of quantifiers, the operator X
can be expressed by the operator U and the operator U can be expressed by the
operator F .

Lemma 1. Let ϕ ∈ QLTL, q1, q2 ∈ P\V ar(ϕ) and q1 �= q2. Then

Xϕ ≡
(
ϕ ∧ ∃q1 (¬q1 ∧ (ϕ ∧ ¬q1) U (ϕ ∧ q1))

)
∨(

¬ϕ ∧ ¬∃q2 (¬q2 ∧ (¬ϕ ∧ ¬q2) U (¬ϕ ∧ q2))
)
.

Lemma 2. Let ϕ1 and ϕ2 be two formulas of QLTL and q ∈ P\(V ar(ϕ1) ∪
V ar(ϕ2)) . Then

ϕ1Uϕ2 ≡ ∃q (F (ϕ2 ∧ q) ∧G(¬q → G¬q) ∧G(ϕ1 ∨ ϕ2 ∨ ¬q)) .

From Lemma 1 and Lemma 2, we have the following theorem.

Theorem 1. Q(X,U) ≡ Q(U) ≡ Q(F).

On the Expressive Power of QLTL 475

4.2 Expressive Power of EQ(F) and EQ(U)

Both EQ(X,U) and EQ(X,F) can define the whole class of ω-regular languages
(Corollary 1). Then a natural question to ask is whether this is true for EQ(U)
and EQ(F) as well. We will give a negative answer to this question in this
subsection. Moreover, in this subsection, we will compare the expressive power
of EQ(F) and EQ(U) with that of other fragments of QLTL.

We first show that EQ(F) cannot define the whole class of ω-regular lan-
guages. In fact we show that EQ(F) is strictly less expressive than LTL.

Lemma 3. Let AP ⊆ AP ′ ⊆ P and L ⊆
(
2AP ′

)ω

. If L is a restricted ω-

regular set, s0 ∈ 2AP ′
, S′ ⊆ 2AP ′

and Linit(s0)
inf(S′) �= ∅, then,

(
L

init(s0)
inf(S′)

)∣∣∣
AP

=

(L|AP)init(s0|AP)
inf(S′|AP) .

Lemma 4. For any formula ϕ = ∃q1...∃qkψ ∈ EQ(F), there exists some for-
mula θ ∈ L(X,U) such that ϕ ≡ θ.

Proof of Lemma 4.
Suppose that ϕ = ∃q1...∃qkψ ∈ EQ(F), where ψ ∈ L(F).
Suppose that ϕ and AP are compatible and AP ′ = AP ∪ {q1, ..., qk}.

Then, according to Proposition 3, we have that ψ and AP ′ are compatible,
and L(ϕ)AP = L(ψ)AP ′ |AP .

If L(ψ)AP ′
= ∅, then ϕ ≡ false. So we assume that L(ψ)AP ′ �= ∅.

According to Proposition 8, L(ψ)AP ′
is a finite union of nonempty languages

of the form L
init(s0)
inf(S′) , where L ⊆

(
2AP ′

)ω

is a restricted ω-regular set, s0 ∈ 2AP ′

and S′ ⊆ 2AP ′
.

In the remaining part of the proof of this lemma, we always suppose that L is
a restricted ω-regular set, specifically, S∗1s1S

∗
2s2...S

∗
m−1sm−1S

ω
m, where Si ⊆ 2AP

(1 ≤ i ≤ m), and si ∈ Si\Si+1 (1 ≤ i < m).
From Lemma 3, we know that L(ϕ)AP = L(ψ)AP ′ |AP is a finite union of

nonempty languages of the form (L|AP)init(s0|AP)
inf(S′|AP) .

In the following we will show that there is a formula ξ in L(X,U) such that
V ar(ξ) = Free(ξ) ⊆ AP and L(ξ)AP = (L|AP)init(s0|AP)

inf(S′|AP) . Let θ be the dis-
junction of all these ξ’s. Then L(ϕ)AP = L(θ)AP . Because Free(ϕ) ⊆ AP and
Free(θ) ⊆ AP , according to Proposition 2, we conclude that ϕ and θ are equiv-
alent.

In order to define ξ, we define a sequence of formulas ηi (1 ≤ i ≤ m) as
follows:

ηi =

{
G
(
B (Sm|AP)AP

)
if i = m

B (Si|AP)AP
U

(
B(si|AP)AP ∧Xηi+1

)
if 1 ≤ i < m

It is not hard to show that for all 1 ≤ i ≤ m,

L(ηi)AP = (Si|AP)∗ (si|AP) ... (Sm|AP)ω
.

476 Z. Wu

Thus, L|AP = L(η1)AP .
We can define ξ by the formula

B (s0|AP)AP ∧ η1 ∧
∧

a∈(S′|AP)

GF
(
B(a)AP

)
.

�

Lemma 5. Let ϕ be a formula in EQ(U) and AP be compatible with ϕ. Then for
any u ∈ (2AP)ω, any function f : N→ N\{0}, if u |= ϕ, then, uf(0)

0 ...u
f(i)
i ... |=

ϕ.

Lemma 6. Let AP = {p1}. Then Xp1 is not expressible in EQ(U).

Proof of Lemma 6.
To the contrary, suppose that Xp1 is expressible in EQ(U).

We know that ∅{p1}ω |= Xp1, then according to Lemma 5, we have that
∅2{p1}ω |= Xp1, a contradiction. �

Theorem 2. EQ(F) < LTL.

Proof.
It follows directly from Lemma 4 and Lemma 6. �

Theorem 3. EQ(F) ⊥ L(X,F).

Proof.
From Lemma 2, we know that p1Up2 is expressible in EQ(F). While it is not
expressible in L(X,F) according to Proposition 5.
Xp1 is not expressible in EQ(F) according to Lemma 6.
So, EQ(F) ⊥ L(X,F). �

From Lemma 6, we already know that EQ(U) cannot define the whole class
of ω-regular languages. In the following, we will show that the expressive power
of EQ(U) and LTL are incompatible.

Lemma 7. Let AP = {p1} and

L = {u ∈
(
2AP

)ω |(∅{p1}) occurs an odd number of times in u}.

L is expressible in EQ(U), while it is not expressible in LTL.

Remark 2. A language similar to L in Lemma 7 is used in Proposition 2 of
[2]. �

Theorem 4. EQ(U) ⊥ LTL.

Proof.
It follows from Lemma 6 and Lemma 7. �

Now we compare the expressive power of EQ(F) and EQ(U) with that of L(F)
and L(U).

On the Expressive Power of QLTL 477

Lemma 8. Let AP = {p1}. Then

L = {∅, {p1}}∗ {p1}{p1} {∅, {p1}}∗ ∅ω ⊆
(
2AP

)ω

is expressible in EQ(F), while it is not expressible in L(U).

The following theorem can be derived from Lemma 8 easily.

Theorem 5. L(F) < EQ(F) and L(U) < EQ(U).

But how about the expressive power of EQ(F) and L(U)? In Lemma 8, we have
shown that there is a language expressible in EQ(F), but not expressible in
L(U). In the following we will show that there is a language expressible in L(U),
but not expressible in EQ(F).

Lemma 9. Let AP = {p1, p2, p3} and

L = ({p1}{p1}∗{p2}{p2}∗{p3}{p3}∗)ω
.

Then L is expressible in L(U), while it is not expressible in EQ(F).

Proof of Lemma 9.
We first define the formula ϕ in L(U) such that AP and ϕ are compatible and
L(ϕ)AP = L:

ϕ ≡ B({p1})AP ∧G
(
B({p1})AP → B({p1})AP U B({p2})AP

)
∧

G
(
B({p2})AP → B({p2})AP U B({p3})AP

)
∧

G
(
B({p3})AP → B({p3})AP U B({p1})AP

)
.

Now we show that L is not expressible in EQ(F).
To the contrary, suppose that there is an EQ(F) formula ψ = ∃q1...∃qkξ such

that ψ and AP are compatible and L = L(ψ)AP .
Let AP ′ = AP ∪ {q1, ..., qk}. Then, according to Proposition 3, we have that

ξ and AP ′ are compatible, L(ψ)AP = L(ξ)AP ′ |AP .
According to Proposition 8, L(ξ)AP ′

is a finite union of nonempty languages of
the form M

init(s0)
inf(S′) , where M is a restricted ω-regular set, s0 ∈ 2AP ′

, S′ ⊆ 2AP ′
.

From Lemma 3, we know that L = L(ξ)AP ′ |AP is a finite union of nonempty
languages of the form (M |AP)init(s0|AP)

inf(S′|AP) .

Let u = ({p1}{p2}{p3})ω ∈ L. Then, u ∈ (M |AP)init(s0|AP)
inf(S′|AP) for some restricted

ω-regular set M , s0 ∈
(
2AP ′

)ω

and S′ ⊆
(
2AP ′

)ω

.

Suppose that M = S∗1s1...S
∗
m−1sm−1S

ω
m, where Si ⊆ 2AP (1 ≤ i ≤ m), and

si ∈ Si\Si+1 (1 ≤ i < m). Then,

M |AP = (S1|AP)∗ (s1|AP) ... (Sm−1|AP)∗ (sm−1|AP) (Sm|AP)ω
.

Since {p1}, {p2} and {p3} occur infinitely often in u ∈ M |AP , we have that
{{p1}, {p2}, {p3}} ⊆ Sm|AP .

478 Z. Wu

If m = 1, then M |AP = (Sm|AP)ω. In this case, let

u′ = {p1}{p2}{p3}({p2}{p1}{p3})ω.

Evidently u′ ∈ M |AP . Moreover, u0 = u′0, and the elements of 2AP occurring
infinitely often in u and u′ are the same. So, u′ ∈ (M |AP)init(s0)

init(S′) ⊆ L, a contra-
diction.

Now we assume that m > 1.
Since u ∈MAP , we have that u = x(sm−1|AP)y ({p1}{p2}{p3})ω, where

x ∈ (S1|AP)∗ (s1|AP) ... (Sm−1|AP)∗ and y ({p1}{p2}{p3})ω ∈ (Sm|AP)ω .

Let u′ = x(sm−1|AP)y ({p2}{p1}{p3})ω.
Then, u′ ∈ (S1|AP)∗ (s1|AP) ... (sm−1|AP) (Sm|AP)ω. Moreover, u′0 = u0 and

the elements of 2AP occurring infinitely often in u and u′ are the same. So,
u′ ∈ (M |AP)init(s0)

inf(S′) ⊆ L, a contradiction as well.
So, we conclude that L is not expressible in EQ(F). �

Theorem 6. L(U) ⊥ EQ(F).

Proof.
It follows from Lemma 8 and Lemma 9. �

Also we have the following theorem according to Lemma 9.

Theorem 7. EQ(F) < EQ(U).

The expressive power of QLTL and its fragments are summarized into Fig. 1.

4.3 Quantifier Hierarchy of Q(U) and Q(F)

In Subsection 4.2, we have known that EQ(F) and EQ(U) can not define the
whole class of ω-regular languages. It follows easily that AQ(F) and AQ(U) can
not define the whole class of ω-regular languages as well. Moreover since ¬Xp1 ≡
X(¬p1) is not expressible in EQ(U) (similar to the proof of Lemma 6),Xp1 is not
expressible in AQ(U) or in AQ(F). Consequently Xp1 is expressible in neither
EQ(U) ∪ AQ(U) nor in EQ(F) ∪ AQ(F). Thus we conclude that alternations
of existential and universal quantifiers are necessary to define the whole class
of ω-regular languages in Q(U) and Q(F). A natural question then occurs: how
many alternations of existential and universal quantifiers are sufficient to define
the whole class of ω-regular languages? The answer is one.

Now we define the quantifier hierarchy in Q(U) and Q(F).
The definitions of hierarchy ofΣk,Πk and<k in Q(U) and Q(F) are similar to

the quantifier hierarchy of first order logic. Σk (Πk resp.) contains the formulas
of the prenex normal form such that there are k-blocks of quantifiers and the
quantifiers in each block are of the same type (all existential or all universal); the
consecutive blocks are of different types; the first block is existential (universal
resp.). <k = Σk ∩ Πk, namely <k contains those formulas both equivalent to
some Σk formula and to some Πk formula. In addition, we define ;k = Σk∪Πk.

On the Expressive Power of QLTL 479

Lemma 10. ΣU
2 and ΣF

2 define the whole class of ω-regular languages.

Proof of Lemma 10.
Let B = (Q, 2AP , δ, q0, T) be a B

..
uchi automaton. Suppose that Q = {q0, ..., qn},

L(B) can be defined by the following formula ϕ.

ϕ := ∃q0...∃qn
(
q0 ∧G

(
∧

i
=j
¬(qi ∧ qj)

)
∧

G

(
∨

(qi,a,qj)∈δ

(
qi ∧ B(a)AP ∧Xqj

))
∧
(
∨

qi∈T
GFqi

))
Let AP ′ = AP ∪Q. If we can find a formula ψ in ΠU

1 (ΠF
1 , resp.) such that

ψ and AP ′ are compatible and

ψ ≡ G
(

∨
(qi,a,qj)∈δ

(qi ∧ B(a)AP ∧Xqj)
)
,

then, we are done.
We first show that such a ψ in ΠU

1 exists.
We observe that ∨

(qi,a,qj)∈δ
(qi ∧ B(a)AP ∧Xqj) can be rewritten into its con-

junctive normal form and the conjunctions can be moved to the outside of “G”:

G

(
∨

(qi,a,qj)∈δ
(qi ∧ B(a)AP ∧Xqj)

)
≡ ∧
i1, ..., ik
a1, ..., al

j1, ..., jm

G
(
qi1 ∨ ... ∨ qik

∨ B(a1)AP ∨ ... ∨ B(al)AP ∨Xqj1 ∨ ... ∨Xqjm

)

It is sufficient to show that there is a ΠU
1 formula such that the formula and

AP ′ are compatible and the formula is equivalent to

G
(
qi1 ∨ ... ∨ qik

∨ B(a1)AP ∨ ... ∨ B(al)AP ∨Xqj1 ∨ ... ∨Xqjm

)
. (2)

The negation of the formula (2) is of the form F (ϕ1 ∧Xϕ2), where ϕ1, ϕ2 are
boolean combinations of propositional variables in AP ′. If we can prove that for
any formula of the form F (ϕ1 ∧Xϕ2), there is a formula ξ in ΣU

1 such that ξ
and AP ′ are compatible, and ξ ≡ F (ϕ1 ∧Xϕ2), then, we are done.

Let

Si =
{
a ∈ 2AP ′

∣∣∣a satisfies the boolean formula ϕi

}
, where i = 1, 2.

Then, for any u ∈
(
2AP ′

)ω

,

u |= F (ϕ1 ∧Xϕ2) iff u |= F
(
B(S1)AP ′ ∧XB(S2)AP ′

)
.

480 Z. Wu

From Proposition 2, we know that

F (ϕ1 ∧Xϕ2) ≡ F
(
B(S1)AP ′

∧XB(S2)AP ′
)
.

Let q′ ∈ P\AP ′, and AP ′′ = AP ′∪{q′}, S′1 = S1, and S′2 = {a∪{q′}
∣∣a ∈ S2}.

We have that S′i|AP ′ = Si (i = 1, 2) and S′1 ∩ S′2 = ∅.
Then, ΣU

1 formula

χ := ∃q′F
(
B(S′1)

AP ′′ ∧ B(S′1)
AP ′′

U B(S′2)
AP ′′

)
satisfies that χ and AP ′ are compatible, and

χ ≡ F
(
B(S1)AP ′ ∧XB(S2)AP ′

)
≡ F (ϕ1 ∧Xϕ2) .

Now we show that there is also a formula χ′ ∈ ΣF
1 equivalent to F (ϕ1∧Xϕ2).

According to Lemma 2, there are q′′ ∈ P\AP ′′ and ξ ∈ L(F) such that
∃q′′ξ ≡ B(S′1)AP ′′

U B(S′2)AP ′′
.

Let
χ′ := ∃q′∃q′′F

(
B(S′1)

AP ′′ ∧ ξ
)
.

Then χ′ ∈ ΣF
1 , χ′ and AP ′ are compatible and

χ′ ≡ χ ≡ F (ϕ1 ∧Xϕ2) .

�

The following theorem is a direct consequence of Lemma 10.

Theorem 8. Q(U) ≡ ΣU
2 ≡ ΠU

2 ≡ <U
2 ≡ ;U

2 and Q(F) ≡ ΣF
2 ≡ ΠF

2 ≡ <F
2 ≡

;F
2 .

5 Conclusions

In this paper, we first showed that Q(U) and Q(F) can define the whole class of
ω-regular languages. Then we compared the expressive power of EQ(F), EQ(U)
and other fragments of QLTL in detail and got a panorama of the expressive
power of fragments of QLTL. In particular, we showed that EQ(F) is strictly
less expressive than LTL and that the expressive power of EQ(U) and LTL
are incompatible. Furthermore, we showed that one alternation of existential
and universal quantifiers is necessary and sufficient to express the whole class of
ω-regular languages.

The results established in this paper can be easily adapted to the regular
languages on finite words.

There are several open problems. For instance, since we discovered that neither
EQ(U) nor EQ(F) can define the whole class of ω-regular languages, a natural
problem is to find (effective) characterizations for those languages expressible in
EQ(U) and EQ(F) respectively.

On the Expressive Power of QLTL 481

We can also consider similar problems for the other temporal operators, such
as the strict “Until” and “Future” operators.

Acknowledgements. I want to thank Prof. Wenhui Zhang for his reviews on
this paper and discussions with me. I also want to thank anonymous referees for
their comments and suggestions.

References

1. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branch-
ing versus linear time temporal logic. Journal of the ACM 33(1), 151–178 (1986)

2. Etessami, K.: Stutter-invariant languages, ω-automata, and temporal logic. In:
Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 236–248.
Springer, Heidelberg (1999)

3. French, T., Reynolds, M.: A Sound and Complete Proof System for QPTL. Ad-
vances in Modal Logic 4, 127–147 (2003)

4. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the Temporal Analysis of Fair-
ness. In: POPL’80. Conference Record of the 7th ACM Symposium on Principles
of Programming Languages, pp. 163–173. ACM Press, New York (1980)

5. Kamp, H.W.: Tense Logic and the Theory of Linear Order. PhD thesis, UCLA,
Los Angeles, California, USA (1968)

6. Kesten, Y., Pnueli, A.: A Complete Proof Systems for QPTL. In: LICS, pp. 2-12
(1995)

7. Perrin, D.: Recent results on automata and infinite words. In: Chytil, M.P., Koubek,
V. (eds.) Mathematical Foundations of Computer Science 1984. LNCS, vol. 176,
pp. 134–148. Springer, Heidelberg (1984)

8. Pnueli, A.: The temporal logic of programs. In: 18th FOCS, pp. 46–51 (1977)
9. Prior, A.N.: Time and Modality. Clarendon Press, Oxford (1957)

10. Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without
the next-time operator. Information Processing Letters 63, 243–246 (1997)

11. Sistla, A.P.: Theoretical issues in the design and verification of distributed systems.
PHD thesis, Harvard University (1983)

12. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. TCS 49, 217–237 (1987)

13. Sistla, A.P., Zuck, L.D.: Reasoning in a restricted temporal logic. Information and
Computation 102, 167–195 (1993)

14. Thomas, W.: Star-free regular sets of ω-sequences. Inform. and Control 42, 148–156
(1979)

15. Thomas, W.: A combinatorial approach to the theory of ω-automata. Inform. and
Control 48, 261–283 (1981)

16. Thomas, W.: Automata on Infinite Objects. In: Van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, pp. 133–191. Elsevier Science Publishers, Ams-
terdam (1990)

17. Vardi, M.Y.: A temporal fixpoint calculus. In: POPL’88. Proceedings of the 15th
Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, pp. 250–259 (1988)

18. Wolper, P.: Temporal logic can be more expressive. Inform. and Control 56, 72–99
(1983)

19. Vardi, M.Y., Wolper, P.: Yet another process logic. In: Clarke, E., Kozen, D. (eds.)
Logics of Programs. LNCS, vol. 164, pp. 501–512. Springer, Heidelberg (1984)

Author Index

Aman, Bogdan 50

Barsotti, Damián 64
Bezem, Marc 201
Bjørner, Dines 1
Blanco, Javier O. 64
Bonfante, Guillaume 410
Boström, Pontus 79

Cao, Zining 94
Castro, Pablo F. 109
Chen, Haiyan 337
Chen, Huowang 322
Chen, Yinghua 34
Ciobanu, Gabriel 50
Colvin, Robert 124
Coupey, Pascal 139

de Frutos Escrig, David 231
Degerlund, Fredrik 154
del Vado Vı́rseda, Rafael 169
Dima, Cătălin 185
Dong, Wei 322
Dongol, Brijesh 124

Fábregas, Ignacio 231
Fisher, John 201
Fouqueré, Christophe 139, 216

He, Jifeng 18, 306

Kitamura, Takashi 246
Kokichi, Futatsugi 381
Koutny, Maciej 260

Lanotte, Ruggero 185
Lapadula, Alessandro 275
Leucker, Martin 291
Li, Jing 306
Lin, Huimin 246
Liu, Wanwei 322
Liu, Xinxin 337

Loddo, Jean-Vincent 139
Loukanova, Roussanka 351

Maibaum, T.S.E. 109
Mandrioli, Dino 366
Marion, Jean-Yves 410
Masaki, Nakamura 381
Matta, Andrea 366
Morel, Lionel 79

Niculescu, Virginia 396
Noll, Thomas 425

Palomino, Miguel 231
Péchoux, Romain 410
Pugliese, Rosario 275

Randell, Brian 260
Ranise, Silvio 440
Rieger, Stefan 425
Rossi, Matteo 366

Sánchez, César 291
Scharff, Christelle 440
Semeraro, Quirico 366
Sere, Kaisa 154
Spoletini, Paola 366
Subramani, K. 455

Tiezzi, Francesco 275
Tolio, Tullio 366

Waldén, Marina 79
Wang, Ji 322
Wu, Zhilin 467

Xia, Bican 34

Yang, Lu 34

Zhan, Naijun 34
Zhou, Chaochen 34
Zhu, Huibiao 306

	Title Page
	Preface to $Colloquium$ Proceedings
	Organisation
	Table of Contents
	Domain Theory: Practice and Theories A Discussion of Possible Research Topics
	Introduction
	A Preamble
	On Originality
	Structure of Paper

	Domain Engineering: A Dogma and Its Consequences
	The Dogma
	The Consequences
	The Triptych Verification
	Full Scale Development: A First Suggested \Reesearch Topic
	Examples of Domains
	Domains: Suggested \Reesearch Topics

	Domain Facets
	Stages of Domain Development
	The Facets
	Intrinsics
	Support Technology
	Management and Organisation
	Rules and Regulations
	Human Behaviour

	Domains: Miscellaneous Issues
	Domain Theories
	Domain Descriptions and Requirements Prescriptions
	Requirements-Specific Domain Software Development Models
	On Two Reasons for Domain Modelling

	Conclusion
	What Has Been Achieved ?
	What Needs to Be Achieved ?

	References

	Linking Semantic Models
	Introduction
	Linear Equation and Its Solution
	Termination
	Deadlock
	Communication
	Probability
	Conclusion
	References

	Discovering Non-linear Ranking Functions by Solving Semi-algebraic Systems
	Introduction
	Theories and Tools on Solving Semi-algebraic Systems
	Semi-algebraic Systems
	Real Solution Classification
	DISCOVERER

	Polynomial Programs
	Discovering Non-linear Ranking Function
	Conclusions and Future Work
	References

	Mobile Ambients with Timers and Types
	Introduction
	Mobile Ambients
	Mobile Ambients with Timers and Types
	Operational Semantics
	Subject Reduction

	Cab Protocol with Timers
	Conclusion
	References

	Automatic Refinement of Split Binary Semaphore
	Introduction
	Split Binary Semaphores
	Guarded Transition System
	Invariants
	SBS as a Transition System
	Automatic Refinement
	Method Optimizations
	Examples
	Conclusions and FurtherWork
	References

	Stepwise Development of Simulink Models Using the Refinement Calculus Framework
	Introduction
	ActionSystems
	Trace Semantics
	Refinement

	Encoding Simulink Diagrams in the Refinement Calculus
	The Steam Boiler Example
	Translating Simulink Model Elements
	Ordering the Assignments Obtained from Simulink

	Specification of Simulink Models
	Action System Semantics of Simulink Models
	Correctness of Simulink Models

	Refinement
	Conclusions and Future Work
	References

	Bisimulations for a Distributed Higher Order π-Calculus
	Introduction
	An Overview of Higher Order π-Processes
	Syntax and labelled Transition System of Distributed Higher Order π-Calculus
	Distributed Bisimulations
	The Relation Between Distributed Context and Reduction Bisimulations
	The Relation Between Distribured Context and Normal Bisimulations
	Syntax and Labelled Transition System of Distributed Higher Order π-Calculus with Location Variables
	Distributed Triggered Processes, Distributed Triggered Mapping and Distributed Triggered Bisimulations
	Distributed Normal Bisimulation Implies Distributed Context Bisimulation

	A Characterisation Theorem
	Conclutions
	References

	A Complete and Compact Propositional Deontic Logic
	Introduction
	A Propositional Ought-to-Do Deontic Logic
	A Deductive System

	Extensions and Applications of DPL
	Conclusion and Further Work
	References

	Verifying Lock-Freedom Using Well-Founded Orders
	Introduction
	Preliminaries
	Lock-Free Algorithms
	Transition Systems and Trace-Based Reasoning
	Formalising Lock-Freedom
	Proving Always-Eventually Properties

	Proving Lock-Freedom
	Identifying Transitions from $op.loop$ to $op.postloop$
	Defining the Well-Founded Ordering
	Case Analysis

	Mechanising Proofs of Lock-Freedom
	Conclusion
	References

	Tree Components Programming: An Application to XML
	Introduction
	Language FICX: Syntax and Operational Semantics
	Abstract Paths
	{\em Xobjects}
	{\em Xdata} and {\em Reactions}

	Language FICX: The Type System
	Expression Judgment Rules: Xobjects
	Expression Judgment Rules: Requests
	Xobject Evolution and Completeness
	Subtyping

	Extensions
	Related Works
	Conclusion
	References

	A Framework for Incorporating Trust into Formal System Development
	Introduction
	Background Concepts
	Modelling Languages
	Subjective Logic

	Trust in Formal Systems
	Trust-Coordinated Action Systems
	Conclusions and Related Work
	References

	A Higher-Order Demand-Driven Narrowing Calculus with Definitional Trees
	Introduction
	Preliminaries
	Higher-Order Overlapping Definitional Trees
	A Higher-Order Conditional Rewriting Logic
	Goals and Solutions

	A Higher-Order Demand-Driven Narrowing Calculus
	Design and Analysis Considerations
	Transformation Rules for Equations
	Transformation Rules for Productions
	Transformation Rules for Suspensions
	Transformation Rules for Failure Detection

	Main Properties
	Conclusion and Future Work
	References

	Distributed Time-Asynchronous Automata
	Introduction
	BasicNotions
	Distributed Timed Automata
	Stopwatch Automata
	Decidability of the Reachability Problem for Partitioned Stopwatch Automata

	Shuffle Regular Expressions
	Relations Between Partitioned Stopwatch Automata and Fair Shuffle Expressions

	Nonclosure Under Intersection of Partitioned Stopwatch Automata
	Conclusions
	References

	Skolem Machines and Geometric Logic
	The \glog\ Language
	Skolem Machines
	Procedural Implementations
	Conclusion and Future Research
	References

	A Logical Calculus for Modelling Interferences
	Introduction
	Related Works
	A Multisequent Calculus
	Structures of Multisequents
	A Naive (and Wrong) Attempt
	The Calculus CMALL

	Shared and Unshared Modalities
	Managing Interferences
	Comments About a Phase Semantics
	Conclusion
	References

	Reflection and Preservation of Properties in Coalgebraic (bi)Simulations
	Introduction
	Preliminaries
	Reflection and Preservation in Bisimulations
	Reflection and Preservation in Simulations
	Restricting the Orders
	Restricting the Class of Functors

	Including Atomic Propositions
	Conclusions
	References

	Controlling Process Modularity in Mobile Computing
	Introduction
	The Calculus
	Syntax
	Structural Congruence
	Operational Semantics

	Descriptive Examples
	Routed Packet
	Follow-Me Application

	Bisimulations
	A Bisimulation-Based Preorder
	LTS with Interaction Costs
	Bisimulation Preorder w.r.t Costs
	Example of Modeling Analysis

	Conclusion and Future Work
	References

	Failures: Their Definition, Modelling and Analysis
	Introduction
	Occurrence Nets
	Structuring Occurrence Nets
	Evolutional Abstractions
	Spatial and Temporal Abstractions
	Dependability
	Utilising Structured Occurrence Nets
	Concluding Remarks
	References

	\tcows: A Timed Service-Oriented Calculus
	Introduction
	\tcows\ Syntax
	\tcows\ Operational Semantics
	Service Deployment
	Examples
	Concluding Remarks
	References

	Regular Linear Temporal Logic
	Introduction
	Regular Linear Temporal Logic
	Regular Expressions
	Regular Linear Temporal Logic over Infinite Words

	Translating LTL and Regular Expressions into RLTL
	Translating ω-Regular Expressions
	Translating LTL

	Translating RLTL into Alternating Automata
	Preliminaries
	Translation

	Conclusion and Discussion
	References

	Algebraic Semantics for Compensable Transactions
	Introduction
	Transactional Calculus
	Algebraic Semantics
	Head Normal Form

	Correspondence with Operational Semantics
	Related Work
	Conclusion
	References

	Axiomatizing Extended Temporal Logic Fragments Via Instantiation
	Introduction
	Automataon ω-Words and Extended Temporal Logic
	Axiomatization of ETL_l
	$ETL_l $Tableau Rules
	The Axiom System for ETL_l

	Axiomatization of$ ETL_f$ and ETL_r
	Axiomatization of ETL_f
	Axiomatization of ETL_r

	Axiomatizing Fragments of Extended Temporal Logic
	The Instantiating Axiomatization Approach
	Further Examples and Discussions

	Concluding Remarks
	References

	Deciding Weak Bisimilarity of Normed Context-Free Processes Using Tableau
	Introduction
	BPA Processes
	Relative Weak Bisimulation Equivalence
	The Tableau Method for Totally Normed BPA
	Reducing Weak Norms
	Aligning the States
	Unfolding by Matching the Transitions
	Constructing Tableaux
	Decidability, Soundness, and Completeness
	Complexity of the Tableau System

	Conclusion
	References

	Linear Context Free Languages
	Introduction
	Non-deterministic Linear Automata (NLA)
	The Basic Definitions of NLA
	NLA’s Configurations and Sequences of Computations. Some Examples

	NLA and Linear Context Free Grammars
	NLA with ε-Transitions
	A Class of Unambiguous Linear Languages and Linear Automata
	Conclusions
	References

	FM for FMS: Lessons Learned While Applying Formal Methods to the Study of Flexible Manufacturing Systems
	Introduction
	Background
	Project Motivation and Aim
	Flexible Manufacturing Systems
	Current Practice in the Design of FMSs
	FMs for FMSs

	ProjectPhases
	Lessons Learned
	Conclusions and Future Work
	References

	On Equality Predicates in Algebraic Specification Languages
	Introduction
	Preliminaries
	Algebraic Specification
	CafeOBJ Algebraic Specification Language
	Structured Specification

	Modular Equational Proof System
	Modular Term Rewriting System
	Soundness and Completeness of MTRS

	Equality Predicate
	Local Equality Predicate
	Soundness of the Local Equality Predicate
	Sound Verification System

	Applications
	Application to Full CafeOBJ
	Application of LEP
	Applications of MEPS and MTRS

	Conclusion
	References

	Data-Distributions in $PowerList$ Theory
	Introduction
	$PowerList$ Theory
	Distributions
	$PowerList$ Distributions
	Function Transformation
	Time Complexity
	Further Work

	Conclusions
	References

	Quasi-interpretation Synthesis by Decomposition An Application to Higher-Order Programs
	Introduction
	Certifying Resources by Quasi-interpretations
	Modularity
	More Intentionality
	Modularity as a Way to Improve QI Synthesis
	Plan of the Paper

	Quasi-interpretations of First-Order Functional Programs
	Syntax and Semantics of First-Order Programs
	Recursive Path Orderings
	Quasi-interpretations
	Key Properties of Quasi-interpretations

	Constructor-Sharing and Disjoint Unions
	Hierarchical Union
	Application to Higher-Order Programs
	References

	Composing Transformations to Optimize Linear Code
	Introduction
	SLC–Programs and Their Properties
	Classical Optimizations
	DAG Optimization
	Composing the Simple Transformations
	Conclusion and Future Work
	References

	Building Extended Canonizers by Graph-Based Deduction
	Introduction
	Background
	SER Graphs for Extended Canonizers
	SER Graphs
	Extended Canonizers
	Extended Canonizers for the Theory of Equality
	Extended Canonizers for the Theory of Lists $\`{a}$ la Shostak

	Correctness
	A Worked Out Example
	Discussion
	References

	A Randomized Algorithm for BBCSPs in the Prover-Verifier Model
	Introduction
	Statement of Problem
	The Prover-Verifier Model
	Motivation
	Related Work
	The Randomized Algorithm
	Analysis of Correctness
	Conclusions
	References

	On the Expressive Power of QLTL
	Introduction
	Notation and Definitions
	Syntax of QLTL
	Semantics of QLTL
	Fragments of QLTL and Expressive Power of Logics
	B\"{u}chi Automaton and ω-Languages

	Known Results on the Expressive Power of QLTL and LTL
	Our Results on the Expressive Power of QLTL and Its Fragments
	Expressive Power of $Q(U) $and $Q(F)$
	Expressive Power of $EQ(F)$ and $EQ(U)$
	Quantifier Hierarchy of $Q(U$) and $Q(F)$

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColorForImages
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

