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Abstract. We consider a job shop problem with uncertain durations
and flexible due dates and introduce a multiobjective model based on
lexicographical minimisation. To solve the resulting problem, a genetic
algorithm and a decoding algorithm to generate possibly active schedules
are considered. The multiobjective approach is tested on several problem
instances, illustrating the potential of the proposed method.

1 Introduction

In the last decades, scheduling problems have been subject to intensive research
due to their multiple applications in areas of industry, finance and science [1].
To enhance the scope of applications, fuzzy scheduling has tried to model the
uncertainty and vagueness pervading real-life situations, with a great variety of
approaches, from representing incomplete or vague states of information to using
fuzzy priority rules with linguistic qualifiers or preference modelling [2],[3].

The complexity of problems such as shop problems means that practical ap-
proaches to solving them usually involve heuristic strategies, such as genetic al-
gorithms, local search, etc [1]. It is not trivial to extend these strategies to fuzzy
scheduling. Indeed, incorporating uncertainty to scheduling usually requires a
significant reformulation of the problem and solving methods. In the literature,
we find some attempts to extend heuristic methods for job shop solving to the
fuzzy case. For instance, 6-point fuzzy numbers and simulated annealing are used
for single objective problem in [4], while triangular fuzzy numbers and genetic
algorithms are considered for multiobjective problems in [5], [6] and [7]. The
latter also proposes a semantics for solutions to job shop with uncertainty.

In the sequel, we describe a fuzzy job shop problem with uncertain durations
and flexible due dates. A leximin approach is taken to define an objective function
that combines minimisation of the expected fuzzy makespan and maximisation
of due-date satisfaction. The resulting problem is solved by means of a genetic
algorithm (GA) based on permutations with repetitions that searches in the
space of possibly active schedules. We analyse the performance of the resulting
multiobjective GA on a set of problem instances.
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2 Uncertain Processing Times and Flexible Constraints

In real-life applications, it is often the case that the exact duration of a task is not
known in advance. However, based on previous experience, an expert may have
some knowledge about the duration, thus being able to estimate, for instance,
an interval for the possible processing time or its most typical value. In the
literature, it is common to use fuzzy numbers to represent such processing times,
as an alternative to probability distributions, which require a deeper knowledge
of the problem and usually yield a complex calculus.

When there is little knowledge available, the crudest representation for uncer-
tain processing times would be a human-originated confidence interval. If some
values appear to be more plausible than others, a natural extension is a a fuzzy
interval or a fuzzy number. The simplest model of fuzzy interval is a triangu-
lar fuzzy number or TFN, using only an interval [a1, a3] of possible values and
a single plausible value a2 in it. For a TFN A, denoted A = (a1, a2, a3), the
membership function takes the following triangular shape:

μA(x) =

⎧
⎪⎨

⎪⎩

x−a1

a2−a1 : a1 ≤ x ≤ a2

x−a3

a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

Two arithmetic operations on TFNs are of interest herein. The first one is fuzzy
number addition, which in the case of TFNs A = (a1, a2, a3) and B = (b1, b2, b3)
is reduced to adding three pairs of real numbers so A+B = (a1 +b1, a2 +b2, a3 +
b3). The second one is the maximum A ∨ B, obtained by extending the lattice
operation max on real numbers using the Extension Principle. Computing the
membership function is not trivial and the result is not guaranteed to be a TFN,
so in practice we approximate A ∨ B by a TFN, A � B = (a1 ∨ b1, a2 ∨ b2, a3 ∨
b3). This approximation was first proposed in [4] for 6-point fuzzy numbers, a
particular case of which are TFNs. The approximated maximum can be trivially
extended to the case of n > 2 TFNs.

When a TFN models an uncertain duration, its membership function may be
interpreted as a possibility distribution on the values that the duration may take.
Given this interpretation and based on credibility theory, the expected value [8]
of a TFN A is given by E[A] = 1

4 (a1 + 2a2 + a3).
In practice, if due-date constraints exist, they are often flexible. For instance,

customers may have a preferred delivery date d1, but some delay will be allowed
until a later date d2, after which the order will be cancelled. The satisfaction
of a due-date constraint becomes a matter of degree, our degree of satisfaction
that a job is finished on a certain date. A common approach to modelling such
satisfaction levels is to use a fuzzy set D with linear decreasing membership
function:

μD(x) =

⎧
⎪⎨

⎪⎩

1 : x ≤ d1

x−d2

d1−d2 : d1 < x ≤ d2

0 : d2 < x

(2)
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Such membership function expresses a flexible threshold “less than”, representing
the satisfaction level sat(t) = μD(t) for the ending date t of the job [2]. When the
job’s completion time is no longer a real number t but a TFN C, the degree to
which C satisfies the due-date constraint D may be measured using the following
agreement index [9],[5]:

AI(C, D) =
area(D ∩ C)

area(C)
(3)

3 The Job Shop Scheduling Problem

3.1 Description of the Problem

The job shop scheduling problem, also denoted JSP, consists in scheduling a set
of jobs {J1, . . . , Jn} on a set of physical resources or machines {M1, . . . , Mm},
subject to a set of constraints. There are precedence constraints, so each job Ji,
i = 1, . . . , n, consists of m tasks {θi1, . . . , θim} to be sequentially scheduled. Also,
there are capacity constraints, whereby each task θij requires the uninterrupted
and exclusive use of one of the machines for its whole processing time. In ad-
dition, we may consider due-date constraints, where each job has a maximum
completion time and all its tasks must be scheduled to finish before this time. A
solution to this problem is a schedule (a starting time for all tasks) which, besides
being feasible, in the sense that due precedence and capacity constraints hold,
is optimal according to some criteria, for instance, that due-date satisfaction is
maximal or makespan is minimal.

A schedule s for a job shop problem of size n × m (n jobs and m machines)
is fully determined by a decision variable representing a task processing order
x = (x1, . . . , xnm), where 1 ≤ xl ≤ n for l = 1, . . . , nm and |{xl : xl = i}| = m
for i = 1, . . . , n. This is a permutation with repetition as proposed by Bier-
wirth [10]; a permutation of the set of tasks, where each task is represented
by the number of its job. Thus a job number appears in such decision variable
as many times as different tasks it has. The order of precedence among tasks
requiring the same machine is given by the order in which they appear in the
decision variable x. Hence, the decision variable represents a task processing
order that uniquely determines a feasible schedule. This permutation should be
understood as expressing partial schedules for every set of operations requiring
the same machine.

Let us assume that the processing time pij of each task θij , i = 1, . . . , n,
j = 1, . . . , m is a fuzzy variable (a particular case of which are TFNs). Let ξ
be the matrix of fuzzy processing times such that ξij = pij , let ν be a machine
matrix such that νij is the machine required by task θij , let Ci(x, ξ, ν) denote
the completion time of job Ji and let Cij(x, ξ, ν) denote the completion time of
task θij , i = 1, . . . , n j = 1, . . . , m. Clearly, the completion time of a job is the
completion time of its last task, that is: Ci(x, ξ, ν) = Cim(x, ξ, ν), i = 1, . . . , n.
The starting time for task θij , i = 1, . . . , n, j = 1, . . . , m will be the maximum
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between the completion times of the tasks preceding θij in its job and its machine.
Hence, the completion time of task θij is given by the following:

Cij(x, ξ, ν) =
(
Ci(j−1)(x, ξ, ν) � Crs(x, ξ, ν)

)
+ pij

where θrs is the task preceding θij in the machine according to the processing
order given by x. Ci0(x, ξ, ν) is assumed to be zero and, analogously, Crs(x, ξ, ν)
is taken to be zero if θij is the first task to be processed in the corresponding
machine. Finally, the fuzzy makespan Cmax(x, ξ, ν) is the maximum completion
time of jobs J1, . . . , Jn as follows:

Cmax(x, ξ, ν) = �1≤i≤n (Ci(x, ξ, ν))

3.2 A Multiobjective Model

It is not trivial to optimise a schedule in terms of fuzzy makespan, since nei-
ther the maximum ∨ nor its approximation � define a total ordering in the set
of TFNs. In the literature, this problem is tackled using some ranking method
for fuzzy numbers, lexicographical orderings, comparisons based on λ-cuts or
defuzzification methods. Here the modelling philosophy is similar to that of
stochastic scheduling, which optimises some expected objective functions subject
to some expected constraints. For this purpose, we use the concept of expected
value for a fuzzy variable, so the objective is to minimise the expected makespan
E[Cmax(x, ξ, ν)], a crisp value. In the absence of due-date constraints, this pro-
vides an expected makespan model for fuzzy job shop scheduling problems [11].

If flexible due dates Di exist for jobs Ji, i = 1, . . . , n, the agreement index
AI(Ci(x, ξ, ν), Di), denoted AIi(x, ξ, ν) for short, is a crisp value measuring
to what degree the due date is satisfied. The degree of overall due-date satis-
faction for schedule s may be obtained by combining the satisfaction degrees
AIi(x, ξ, ν), i = 1, . . . , n. We may expect due dates to be satisfied in average
or, being more restrictive, expect that all due dates be satisfied. The degree to
which schedule s, determined by an ordering x, satisfies due dates is then given,
respectively, by the following:

AIav(x, ξ, ν) =
1
n

n∑

i=1

AIi(x, ξ, ν), AImin(x, ξ, ν) = min
i=1,...,n

AIi(x, ξ, ν) (4)

Clearly, both AIav(x, ξ, ν) and AImin(x, ξ, ν) should be maximised. Notice how-
ever that they model different requirements and encourage different behaviours.

In order to maximise both measures of due-date satisfaction and minimise
the expected makespan, we may formulate a multiobjective problem as a fuzzy
goal programming model according to a priority structure and target levels es-
tablished by the decision makers as follows:

Priority 1. f1(x, ξ, ν) = E[Cmax(x, ξ, ν)] should be minimised and should not
exceed a given target value b1, i.e. we have the following goal constraint:

f1(x, ξ, ν) + d−1 − d+
1 = b1 (5)

where d+
1 , the positive deviation from the target, should be minimised.



84 I. González-Rodŕıguez, J. Puente, and C.R. Vela

Priority 2. f2(x, ξ, ν) = AIav(x, ξ, ν) should be maximised and should not be
less than a given target value b2, i.e. we have the following goal constraint:

f2(x, ξ, ν) + d−2 − d+
2 = b2 (6)

where d−2 , the negative deviation from the target, should be minimised.
Priority 3. f3(x, ξ, ν) = AImin(x, ξ, ν) should be maximised and should not

be less than a given target value b3, i.e. we have the following goal constraint:

f3(x, ξ, ν) + d−3 − d+
3 = b3 (7)

where d−3 , the negative deviation from the target, should be minimised.

Thus, we have the following lexmin scheduling model for the fuzzy job shop
problem (FJSP):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin (d+
1 , d−2 , d−3 )

subject to:
fi(x, ξ, ν)] + d−i − d+

i = bi, i = 1, 2, 3,

bi ≥ 0, i = 1, 2, 3,

d−i , d+
i ≥ 0,

1 ≤ xl ≤ n, l = 1, . . . , nm,

|{xl : xl = i}| = m, i = 1, . . . , n,

xl ∈ Z
+, l = 1, . . . , nm.

(8)

where lexmin denotes lexicographically minimising the objective vector.

4 Using Genetic Algorithms to Solve FJSP

The crisp job shop problem is a paradigm of constraint satisfaction problem
and has been approached using many heuristic techniques. In particular, ge-
netic algorithms have proved to be a promising solving method [10],[12],[13].
The structure of a conventional genetic algorithm for the FJSP is described in
Algorithm 1. First, the initial population is generated and evaluated. Then the
genetic algorithm iterates for a number of steps or generations. In each itera-
tion, a new population is built from the previous one by applying the genetic
operators of selection, recombination and acceptation.

To codify chromosomes we use the decision variable x, a permutation with
repetition, which presents a number of interesting characteristics [14]. The qual-
ity of a chromosome is evaluated by the fitness function, which is taken to be the
objective function of the leximin problem lexmin(d+

1 , d−2 , d−3 ) as defined above.
In the selection phase, chromosomes are grouped into pairs using tournament.

Each of these pairs is mated to obtain two offsprings and acceptance consists
in selecting the best individuals from the set formed by the pair of parents and
their offsprings. For chromosome mating we consider the Job Order Crossover
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Algorithm 1. Conventional Genetic Algorithm

(JOX) [10]. Given two parents, JOX selects a random subset of jobs, copies their
genes to the offspring in the same positions as they appear in the first parent,
and the remaining genes are taken from the second parent so as to maintain
their relative ordering. This operator has an implicit mutation effect. Therefore,
no explicit mutation operator is actually necessary and parameter setting is
simplified, as crossover probability is 1 and mutation probability need not be
specified.

From a given decision variable x we may obtain a semi-active schedule as
explained in Section 3, meaning that for any operation to start earlier, the rela-
tive ordering of at least two tasks must be swapped. However, other possibilities
may be considered. For the crisp job shop, it is common to use the G&T algo-
rithm [15], which is an active schedule builder. A schedule is active if one task
must be delayed for any other one to start earlier. Active schedules are good in
average and, most importantly, the space of active schedules contains at least an
optimal one, that is, the set of active schedules is dominant. For these reasons
it is worth to restrict the search to this space. Moreover, the G&T algorithm is
complete for the job shop problem.

In Algorithm 2 we propose an extension of G&T to the case of fuzzy processing
times. It should be noted nonetheless that, due to the uncertain durations, we
cannot guarantee that the produced schedule will indeed be active when it is
actually performed (and tasks have exact durations). We may only say that
the obtained fuzzy schedule is possibly active. Throughout the algorithm, given
any task θ, its starting and completion times will be denoted by Sθ and Cθ

respectively.
Recall that operator JOX tries to maintain for each machine a subsequence

of tasks in the order as they appear in parent 1 and the remaining tasks in the
same order as they are in parent 2. It often happens that these two subsequences
are not compatible with each other in order to obtain an active schedule, so the
decoding algorithm given in Algorithm 2 has to exchange the order of some
operations. This new order is translated to the chromosome, for it to be passed

Require: an instance of fuzzy JSP, P
Ensure: a schedule H for P

1. Generate the initial population;
2. Evaluate the population;
while No termination criterion is satisfied do

3. Select chromosomes from the current population;
4. Apply the recombination operator to the chromosomes selected at step 3. to
generate new ones;
5. Evaluate the chromosomes generated at step 4;
6. Apply the acceptance criterion to the set of chromosomes selected at step 3.
together with the chromosomes generated at step 4.;

return the schedule from the best chromosome evaluated so far;
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Algorithm 2. Extended G&T for triangular fuzzy times

onto subsequent offsprings. In this way, the GA exploits the so called lamarckian
evolution. As mentioned above, an implicit mutation effect is obtained.

The GA described above has been successfully used to minimise the expected
makespan using semi-active schedules, comparing favourably to a simulated an-
nealing algorithm from the literature [4]. Also, the GA combined with the ex-
tended G&T improves the expected makespan results obtained by a niche-based
GA where chromosomes are matrices of completion times and recombination
operators are based on fuzzy G&T [11].

5 Experimental Results

For the experimental results, we follow [4] and generate a set of fuzzy problem
instances from well-known benchmark problems: FT06 of size 6 × 6 and LA11,
LA12, LA13 and LA14 of size 20 × 5. For a given crisp processing time x, a
symmetric fuzzy processing time p(x) is generated such that its centre value, p2,
is equal to x. The value of p1 is selected at random so that the TFN’s maximum
range of fuzziness is 30% of p2, taking into account that p3 is the symmetric
point to p1 with respect to p2, p3 = 2p2−p1. In [4], only uncertain durations are
considered. To generate a flexible due date for a given job Ji, let ιi =

∑m
j=1 p2

i,j

be the sum of most typical durations across all its tasks. Also, for a given task
θi,j let ρi,j be the sum of most typical durations of all other tasks requiring the
same machine as θi,j , ρi,j =

∑
r �=i,s�=j:νrs=νij

p2
r,s, where p2

r,s denotes the most
typical duration of task θr,s. Finally, let ρi = maxj=1,...,m ρi,j be the maximum
of such values across all tasks in job Ji. The earlier due date d1 is a random
value from [dm, dM ], where dm = ιi + 0.5ρi and dM = ιi + ρi, and the later
due date d2 is a random value from [d1, int(1.3d1)], where int(x) denotes the
smallest integer greater than or equal to x. [16].

For each problem instance, we have run the GA 30 times, using the three
single-objective functions f1, f2 and f3 and the multi-objective function

Require: a chromosome x and a fuzzy JSP P
Ensure: the schedule s given by chromosome x for problem P
1. A = {θi1, i = 1, . . . , n}; /*set of first tasks of all jobs*/
2. while A �= ∅ do
3. Determine the task θ′ ∈ A with minimum earliest completion time C1

θ′ if sched-
uled in the current state;

4. Let M ′ be the machine required by θ′ and B ⊆ A the subset of tasks requiring
machine M ′;

5. Remove from B any task θ that starts later than Cθ′ : Ci
θ′ ≤ Si

θ, i = 1, 2, 3;
6. Select θ� ∈ B such that it is the leftmost operation in the sequence x;
7. Schedule θ∗ as early as possible to build a partial schedule;
8. Remove θ� from A and insert in A the task following θ� in the job if θ� is not

the last task of its job;
9. return the built schedule;
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proposed in this work lexmin(d+
1 , d−2 , d−3 ). The configuration parameters of the

GA are population size 100 and number of generations 200. To fix the target
value for the expected makespan b1, we use our experience obtained with previous
experimentation using f1 as single objective and set b1 equal to the makespan’s
average value across 30 runs of the single-objective GA (see Table 1). The tar-
get values for due date satisfaction are in all cases b2 = b3 = 1. Finally, we
also include results obtained with a different multi-objective function based on
fuzzy decision making, proposed in [7] and denoted f hereafter. In this approach,
the decision maker must define gradual satisfaction degrees for each objective.
The results shown herein are obtained with maximum satisfaction for each ob-
jective equal to the above target values; the minimum satisfaction degrees for
makespan are int(1.1b1) and, in all cases, the minimum satisfaction for f2 and f3

is achieved at 0. For each fitness function we measure E[Cmax], AIav and AImin

of the obtained schedule and compute the best, average and worst of these values
across the 30 executions of the GA. The results are shown in Table 1; under each
problem name and between brackets we include optimal value of the makespan
for the original crisp problem, which provides a lower bound for the expected
makespan of the fuzzified version [4].

Let us first analyse the results obtained by the proposed multiobjective ap-
proach, compared to the results obtained when optimising a single criterion. For
the most prioritary objective, minimisation of makespan, we see that the mul-
tiobjective approach obtains exactly the same expected makespan values than
the single-objective function. These expected values also coincide with the opti-
mal value for the crisp problem in all cases except LA12. For this problem, the
fuzzy makespan for the 30 runs of the GA is Cmax = (972, 1039, 1110), so the
most typical value coincides with the optimal value of the crisp problem, but
E[Cmax] = 1040. Besides, there is a clear improvement in due date satisfaction.

Regarding the second objective, AIav, the results obtained by lexmin com-
pared to 1− f2 yield a relative error lower than 1%, except for FT06, where the
relative error is close to 6%. Notice however that, for this problem, the single ob-
jective 1− f2 has a relative error w.r.t. the best expected makespan values up to
36%. The use of multiobjective optimisation sets this error to 0, at the expense
of reasonably worse results for the second objective. In the remaining problems,
the benefits of multiobjective optimisation are even clearer: the makespan errors
(w.r.t. the best values) go from 2.26%-28.12% when using 1 − f2 to zero using
the multiobjective approach and, at the same time, the multiobjective approach
has notably higher values of AIav than when only makespan (f1) is optimised,
at the same computational cost.

The behaviour for the third objective, AImin is similar. There is a slight
worsening in the value of AImin when lexmin is used instead of 1− f3 (with the
exception of FT06, where worsening is higher), but this is largely compensated
by the improvement in makespan. Notice as well that the errors obtained in
AImin when only makespan minimisation is considered may be up to 100% and
they are reduced by lexmin between 60% and 100%, with an average reduction
of 77.72%, again with the exception of FT06.
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Table 1. Results obtained by the GA

ProblemFitness
f1 f2 f3

Best Avg Worst Best Avg Worst Best Avg Worst

f1 55 55 55 0.94 0.94 0.94 0.64 0.64 0.64
FT06 1 − f2 59 70.47 75 1 1 1 1 1 1
(55) 1 − f3 61 72.28 75 1 1 1 1 1 1

lexmin 55 55 55 0.94 0.94 0.94 0.64 0.64 0.64
f 59 69.07 87 0.98 0.89 0.68 0.89 0.51 0

f1 1222 1222 1222 0.93 0.83 0.74 0.37 0.07 0
LA11 1 − f2 1238 1326.91 1371 1 1 1 1 1 1
(1222) 1 − f3 1241 1327.88 1372.50 1 1 1 1 1 1

lexmin 1222 1222 1222 1 1 0.98 1 0.99 0.80
f 1279.75 1339.22 1488.75 0.86 0.75 0.61 0.32 0.03 0

f1 1040 1040 1040 0.95 0.88 0.82 0.64 0.15 0
LA12 1 − f2 1084 1112.53 1212.75 1 1 1 1 1 1
(1039) 1 − f3 1084 1102.16 1192.25 1 1 1 1 1 1

lexmin 1040 1040 1040 1 0.99 0.99 0.93 0.92 0.90
f 1064.50 1145.97 1293 0.91 0.84 0.77 0.47 0.08 0

f1 1150 1150 1150 0.96 0.92 0.88 0.80 0.54 0.34
LA13 1 − f2 1198 1291.62 1359.25 1 1 1 1 1 1
(1150) 1 − f3 1151 1272.12 1363 1 1 1 1 1 1

lexmin 1150 1150 1150 1 1 1 1 1 1
f 1185.75 1289.16 1378.25 0.96 0.87 0.80 0.75 0.24 0

f1 1292 1292 1292 0.95 0.86 0.81 0.60 0.04 0
LA14 1 − f2 1292 1321.21 1432.75 1 1 1 1 1 1
(1292) 1 − f3 1292 1315.63 1445 1 1 1 1 1 1

lexmin 1292 1292 1292 1 1 1 1 1 1
f 1292 1337.54 1427.50 0.94 0.86 0.79 0.47 0.05 0

Finally, if we compare the two multiobjective approaches, lexmin is clearly
better than f . The latter, based on fuzzy decision making, uses the minimum
to aggregate the objectives’ satisfaction degrees and this operator might be too
coarse in some cases, for instance, when one objective is more difficult to achieve
than the others or when objectives are partially incompatible.

6 Conclusions and Future Work

We have considered a job shop problem with uncertain durations, modelled us-
ing TFNs, and flexible due dates, also modelled with fuzzy sets. The goal is to
find an ordering of tasks that yields a feasible schedule with minimal makespan
and maximum due-date satisfaction. We propose to formulate the multiobjective
problem as a fuzzy goal programming model according to a priority structure
and target levels established by the decision maker, using the expected value of
the makespan and lexicographical minimisation. The resulting problem is solved
using a GA with codification based on permutations with repetitions. Experi-
mental results on fuzzy versions of well-known problem instances illustrate the
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potential of both the proposed multiobjective formulation and the GA. Indeed,
in most cases the expected makespan values coincide with optimal values for the
original problems and due-date satisfaction is maximal.

In the future, the multiobjective approach will be further analysed on varied
set of problem instances, incorporating the semantics proposed in [7]. Also, the
GA may be hybridised with other heuristic techniques such as local search, which
implies further studying task criticality when durations are fuzzy.
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