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Abstract. Generative Topographic Mapping is a probabilistic model for
data clustering and visualization. It maps points, considered as proto-
type representatives of data clusters, from a low dimensional latent space
onto the observed data space. In semi-supervised settings, class informa-
tion can be added resulting in a model variation called class-GTM. The
number of class-GTM latent points used is usually large for visualization
purposes and does not necessarily reflect the class structure of the data.
It is therefore convenient to group the clusters further in a two-stage pro-
cedure. In this paper, class-GTM is first used to obtain the basic cluster
prototypes. Two novel methods are proposed to use this information as
prior knowledge for the K-means-based second stage. We evaluate, using
an entropy measure, whether these methods retain the class separabil-
ity capabilities of class-GTM in the two-stage process, and whether the
two-stage procedure improves on the direct clustering of the data using
K-means.

1 Introduction

Amongst density-based methods, Finite Mixture Models have established them-
selves as a flexible and robust tool for multivariate data clustering [1]. In many
practical data analysis scenarios, though, the available knowledge concerning
the cluster structure of the data may be quite limited. In these cases, data ex-
ploration techniques are valuable tools and, amongst them, multivariate data
visualization can be of great help by providing the analyst with intuitive cues
about data structural patterns. In order to endow Finite Mixture Models with
data visualization capabilities, certain constraints must be enforced. One alterna-
tive is forcing the model components to be centred in a low-dimensional manifold
embedded into the usually high-dimensional observed data space. Such approach
is the basis for the definition of Generative Topographic Mapping (GTM) [2], a
flexible manifold learning model for simultaneous data clustering and visualiza-
tion whose probabilistic nature makes possible to extend it to perform tasks such
as missing data imputation [3], robust handling of outliers [4], and unsupervised
feature selection [5], amongst others.
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Finite Mixture Models can also be used beyond unsupervised learning in order
to account for class-related information in supervised or semi-supervised settings
[6]. Class information can be integrated as part of the GTM training to enrich
the cluster structure definition provided by the model [7,8]. The resulting class-
GTM model is the basis of this paper.

GTM in general and class-GTM in particular do not place any strong restric-
tion on the number of mixture components (or clusters), in order to achieve
an appropriate visualization of the data. This richly detailed cluster structure
does not necessarily match the more global cluster and class distributions of the
data. For that reason, a two-stage clustering procedure may be useful in this
scenario [9]. Class-GTM can be used in the first stage to generate a detailed
cluster partition in the form of a mixture of components. The centres of these
components, also known as prototypes, can be further clustered in the second
stage. For that role, the well-known K-means algorithm is used in this study.
The issue remains of how we should initialize K-means in the second clustering
stage. Random initialization, with the subsequent choice of the best solution,
was the method selected in [9]. This approach, though, does not make use of
the prior knowledge generated in the first stage of the procedure. Here, we pro-
pose two different ways of introducing such prior knowledge in the initialization
of the second stage K-means, without compromising the final clusterwise class
separation capabilities of the model. This fixed initialization procedures allow
significant computational savings.

The outline of the remaining of the paper is as follows: In section 2, we sum-
marily introduce the GTM and its class-GTM variant, as well as the two-stage
clustering procedure with its alternative initialization strategies. Several exper-
imental results are provided and discussed in section 3, while a final section
outlines some conclusions and directions for future research.

2 Two-Stage Clustering

The two-stage clustering procedure outlined in the introduction is described
in this section. The first stage model, namely class-GTM, is introduced first.
This is followed by the details of different initialization strategies for the second
stage. We propose two novel second stage fixed initialization strategies that take
advantage of the prior knowledge obtained in the first stage.

2.1 The Class-GTM Model

The standard GTM is a non-linear latent variable model defined as a mapping
from a low dimensional latent space onto the multivariate data space. The map-
ping is carried through by a set of basis functions generating a constrained mix-
ture density distribution. It is defined as a generalized linear regression model:

y = φ(u)W, (1)
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where φ is a set of M basis functions φ(u) = (φ1(u), ..., φM(u)). For continuous
data of dimension D, spherically symmetric Gaussians

φm(u) = exp
{−1/2σ2‖u− μm‖2

}
(2)

are an obvious choice of basis function, with centres μm and common width σ; W
is a matrix of adaptive weights wmd that defines the mapping, and u is a point
in latent space. To avoid computational intractability a regular grid of K points
uk can be sampled from the latent space. Each of them, which can be considered
as the representative of a data cluster, has a fixed prior probability p(uk) = 1/K
and is mapped, using (1), into a low dimensional manifold non-linearly embedded
in the data space. This latent space grid is similar in design and purpose to
that of the visualization space of the SOM. A probability distribution for the
multivariate data X = {xn}N

n=1 can then be defined, leading to the following
expression for the log-likelihood:

L(W, β|X) =
N∑

n=1

ln

{
1
K

K∑

k=1

(
β

2π

)D/2

exp
{−β/2‖yk − xn‖2

}
}

(3)

where yk, usually known as reference or prototype vectors, are obtained for each
uk using (1); and β is the inverse of the noise variance, which accounts for the fact
that data points might not strictly lie on the low dimensional embedded manifold
generated by the GTM. The EM algorithm is an straightforward alternative to
obtain the Maximum Likelihood (ML) estimates of the adaptive parameters of
the model, namely W and β.

The class-GTM model is an extension of GTM and therefore inherits most of its
properties. The main goal of this extension is to improve class separability in the
clustering results of GTM. For this purpose, we assume that the clustering model
accounted for the available class information. This can be achieved by modelling
the joint density p(C,X), instead of p(X), for a given set of classes {Ti}. For the
Gaussian version of the GTM model [7,8], such approach entails the calculation
of the posterior probability of a cluster representative uk given the data point
xn and its corresponding class label cn, or class-conditional responsibility ẑc

kn =
p(uk|xn, cn), as part of the E step of the EM algorithm. It can be calculated as:

ẑc
kn =

p(xn, cn|uk)
K∑

k′=1

p(xn, cn|uk′)

=
p(xn|uk)p(cn|uk)

K∑

k′=1

p(xn|uk′)p(cn|uk′ )

=
p(xn|uk)p(uk|cn)

K∑

k′=1

p(xn|uk′ )p(uk′ |cn)

,

(4)
and, being Ti each class,

p(uk|Ti) =

∑
n;cn=Ti

p(xn|uk)/
∑

n p(xn|uk)
∑

k′
∑

n;cn=Ti
p(xn|uk′ )/

∑
n p(xn|uk′)

. (5)

Equation (4) differs from the standard responsibility ẑkn of GTM in that, in-
stead of imposing a fixed prior p(uk) = 1/K on latent space, we consider a
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class-conditional prior p(uk|Ti). Once the class-conditional responsibility is cal-
culated, the rest of the model’s parameters are estimated following the standard
EM procedure.

2.2 Two-Stage Clustering Based on GTM

In the first stage of the proposed two-stage clustering procedure, a class-GTM
is trained to obtain the representative prototypes (detailed clustering) of the
observed dataset X. As mentioned in the introduction, the number of prototype
vectors is usually chosen to be large for visualization purposes, and does not
necessarily reflect the global cluster and class structure of the data. In this
study, the resulting prototypes yk of the class-GTM are further clustered using
the K-means algorithm. In a similar two-stage procedure to the one described in
[9], based on SOM, the second stage K-means initialization in this study is first
randomly replicated 100 times, subsequently choosing the best available result,
which is the one that minimizes the error function

E =
C∑

k=1

∑

x∈Gk

‖x− μk‖2, (6)

where C is the final number of clusters in the second stage and μk is the centre of
cluster Gk. This approach seems somehow wasteful, though, as the use of GTM
instead of SOM can provide us with richer a priori information to be used for
fixing the K-means initialization in the second stage.

Two novel fixed initialization strategies that take advantage of the prior
knowledge obtained by class-GTM in the first stage are proposed. They are
based on two features of the model, namely: the Magnification Factors (MF)
and the Cumulative Responsibility (CR). The Magnification Factors measure
the level of distorsion of the mapping from the latent to the data spaces. Areas
of low data concentration correspond to high distorsions of the mapping (i.e.,
high MF), whereas areas of high data density correspond to low MF. The MF is
described in terms of the derivatives of the basis functions φj(u) in the form:

dA′

dA
= det 1/2

(
ψTWTWψ

)
, (7)

where ψ has elements ψji = ∂φj/∂u
i [10]. If we choose C to be the final number

of clusters for K-means in the second stage, the first proposed fixed initialization
strategy will consist on the selection of the class-GTM prototypes corresponding
to the C non-contiguous latent points with lowest MF for K-means initialization.
That way, the second stage algorithm is meant to start from the areas of highest
data density.

As its name suggests, the CR is the sum of responsibilities over all data points
in X for each cluster k:

CRk =
N∑

n=1

ẑc
kn . (8)
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The second proposed fixed initialization strategy, based on CR, is similar in spirit
to that based on MF. Again, if we choose C to be the final number of clusters for
K-means in the second stage, the fixed initialization strategy will now consist on
the selection of the class-GTM prototypes corresponding to the C non-contiguous
latent points with highest CR. That is, the second stage algorithm is meant to
start from those cluster prototypes that are found to be most responsible for the
generation of the observed data.

3 Experiments

In this section, we first describe the experimental design and settings. This is
followed by a presentation and discussion of the corresponding results.

3.1 Experimental Design and Settings

The class-GTM model was implemented in MATLAB R©. For the experiments
reported next, the adaptive matrix W was initialized, following a procedure
described in [2], as to minimize the difference between the prototype vectors
yk and the vectors that would be generated in data space by a partial PCA,
mk = V2uk, where the columns of matrix V2 are the two principal eigenvectors
(given that the latent space considered here is 2-dimensional). Correspondingly,
the inverse variance β was initialised to be the inverse of the 3rd PCA eigenvalue.
This ensures the replicability of the results. The value of parameter σ, describing
the common width of the basis functions, was set to 1. The grid of latent points
uk was fixed to a square 13x13 layout for the ecoli dataset and to a 20x20 layout
for the oil flow dataset. Both datasets are summarily described in section 3.2.
The corresponding grid of basis functions φ was equally fixed to a 5x5 square
layout for both datasets.

The goals of these experiments are twofold. First, we aim to assess whether a
two-stage clustering procedure, where the first stage involves class-GTM and the
second stage involves K-means, improves on the class separation capabilities of
the straight clustering of the data using the K-means algorithm alone. Secondly,
we aim to test whether the second stage initialization procedures based on the
Magnification Factors and the Cumulative Responsibility of the class-GTM, de-
scribed in section 2.2, retain the class separability capabilities of the two-stage
clustering procedure in which K-means is randomly initialized. If this is the case,
a fixed second stage initialization strategy should entail a substantial reduction
of computational time compared to a random second stage initialization requir-
ing a large number (100 in the reported experiments and also in [9]) of algorithm
runs.

Beyond the visual exploration that could be provided by class-GTM, the sec-
ond stage clustering results should be explicitly quantified in terms of class
separability. For that purpose, the following entropy-like measure is proposed:
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ECk
({Ti})=−

∑

{Ck}
P (Ck)

∑

{Ti}
P (Ti|Ck) lnP (Ti|Ck)=−

K∑

k=1

Nk

N

|{Ti}|∑

i=1

pki ln pki .

(9)
Sums are performed over the set of classes {Ti} and the class-GTM clusters {Ck};
N is the total number of prototypes; Nk is the number of prototypes assigned
to the kth cluster; pki = nki

Nk
, where nki is the number of prototypes from class

i assigned to cluster k; and, finally, |{Ti}| is the cardinality of the set of classes.
The minimum possible entropy value is 0, which corresponds to the case of no
clusters being assigned prototypes corresponding to more than one class.

Given that the use of a second stage in the clustering procedure is intended
to provide final clusters that best reflect the overall structure of the data, the
problem remains of what is the most adequate number of clusters. This is a
time-honoured matter of debate, which goes beyond the scope of this paper, and
many cluster validity indices have been defined over the years. In this paper we
use the widely known Davies-Bouldin (DB) index [11,9] to provide us with some
indication of what the adequate number of final clusters might be. According to
the DB index, the best clustering minimizes

1
C

C∑

k=1

max
l �=k

{
Sc(Gk) + Sc(Gl)
dce(Gk, Gl)

}
, (10)

where C is the number of clusters; Sc is a within-cluster distance named centroid

distance and is calculated as Sc =
∑

yi∈Gk
‖yi−µk‖

Nk
, Nk is the number of samples

in cluster Gk; and dce is a between-clusters distance named centroid linkage
defined as dce(Gk, Gl) = ‖μk − μl‖.

3.2 Results and Discussion

In the first stage of the two-stage clustering procedure, class-GTM was trained to
model two datasets taken, in turn, from the UCI and the Pattern Recognition and
Machine Learning book1 repositories: ecoli and oil flow. The resulting prototypes
yk were then clustered in the second stage using the K-means algorithm. This
last stage was performed in three different ways, as described in section 2.
In the first one, K-means was randomly initialized 100 times, selecting the results
corresponding to the minimum of the error function in (6). In the second, we used
the Magnification Factors of class-GTM as prior knowledge for the initialization
of K-means. In the third, Cumulative Responsibility was used as prior knowledge.
In all cases, K-means was forced to yield a given number of final clusters, from
2 up to 13. The DB index and the final entropy were calculated for all the above
procedures and numbers of clusters.

The DB index results for the experiments with ecoli, including the direct
clustering of the data with K-means alone, are reported in Fig. 1. Ecoli consists
of 336 7-dimensional points belonging to 8 classes representing protein location
1 http://research.microsoft.com/∼cmbishop/PRML/webdatasets/datasets.htm
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Fig. 1. DB index for the clustering of ecoli using two-stage clustering with different
initializations (based on Magnification Factors (MF init), Cumulative Responsibility
(CR init) and random (rand init)), and K-means alone

sites, 3 of which are very small, i.e., the data set is strongly class-unbalanced. It
is therefore unsurprising that the results in Fig. 1 do not provide a clear pattern.
They nevertheless suggest that no more of 4 clusters (for two-stage clustering) or
5 (for direct K-means) represent an adequate solution. In fact, there are only 4
main groups in ecoli, namely: cytoplasm, periplasm, inner membrane and outer
membrane. Some relatively good solutions are also suggested for 8 or 9 clusters
using the two-stage procedure.

The entropy results for ecoli are shown in Fig. 2. Two immediate conclusions
can be drawn: First, all the two-stage clustering procedures based on class-GTM
perform much better than direct K-means clustering in terms of class separation
in the resulting clusters. Second, random initialization in the second stage of the
clustering procedure does not entail any significant advantage over the proposed
fixed initialization strategies across the whole range of possible final number of
clusters, while being far more costly in computational terms.

The DB index results for the experiments with oil flow, also including the
direct clustering of the data with K-means, are reported in Fig. 3. Oil flow,
firstly used in [12], simulate non-intrusive measurements by gamma densitometry
from a pipeline transporting a mixture of gas, oil, and water. It consists of
1000 points described by 12 attributes. Three types of flow configuration are
used as class information labels. The results in Fig. 3 do not indicate any clear
number of clusters when data are grouped directly by K-means without any class
information. Instead, for the two-stage procedure based on class-GTM there is no
indication that more than 4 clusters would provide any substantial improvement.
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Fig. 2. Entropy measurements for two stage and K-means alone clusterings of ecoli.
Legend as in Fig. 1.
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Fig. 3. DB index for the clustering of oil flow using two-stage clustering with different
initializations and K-means alone. Legend as in Fig. 1.
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Fig. 4. Entropy measurements for two stage and K-means alone clusterings of oil flow.
Legend as in Fig. 1.

The entropy results for oil flow are shown in Fig. 4 and they are fully consis-
tent with the results for ecoli. Again, the two-stage clustering procedures based
on class-GTM perform much better than direct K-means clustering in terms
of class separation, and the two-stage random and fixed initialization strategies
yield almost identical results, with the former being computationally more costly.

4 Conclusion

In this paper we have analysed different strategies of initialization for a two-stage
multivariate data clustering procedure. The first stage is based on the manifold
learning class-GTM model, which, besides clustering, also provides data and
clusters visualization on a low-dimensional space. The second stage is based on
the well-known K-means algorithm, which was initialized either multiple times
randomly or, making use of the prior knowledge provided by class-GTM in the
first stage, in a fixed manner using a novel procedure based on its Magnification
Factors and Cumulative Responsibility. Several experiments have shown that
the two-stage random and fixed initializations yield almost identical results in
terms of clusterwise class separation, with the former being computationally
more costly. It has also been shown that the two-stage clustering procedures
based on class-GTM perform much better than direct K-means clustering of the
data in terms of this clusterwise class separation.

Future research should expand the reach of the analyses to assess whether the
class information-enriched class-GTM model performs better than the standard
GTM as first stage clustering method. Different cluster validity indices could
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also be used in order to obtain further guidance on the choice of an appropriate
final number of clusters.
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