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Abstract. This paper describes an approach to automatically obtain
an HTN planning domain from a well structured learning objects repos-
itory and also to apply an HTN planner to obtain IMS Learning Designs
adapted to the features and needs of every student.

1 Introduction

Nowadays, distance learning is positioning as a key tool not only for gradu-
ate courses but also for professionals continuing education. In these areas, the
heterogeneity of students, their different performance and needs and previous
studies force current e-learning platforms to highlight the issue of customizing
learning designs so that every student may optimally exploit the contents of a
given course. This is not new, and the need to adapt learning designs is care-
fully described in current standards for learning management systems (LMS).
Educational metadata (IEEE-LOM [1] or IMS-MD [5]) allows instructors to clas-
sify learning resources according to a set of variables. Student profiles (IMS-LIP
[5]) are also represented to gather information about their features.And, finally,
learning designs (IMS-LD [5]) allow instructors to adapt the learning path and
the use of learning resources to the features and capabilities of every student.

The use of these standards, amongst others, is fostering a common language
and new interoperability capabilities between all the entities involved in e-learning
activities. Even more, different learning objects could be potentially shared be-
tween different platforms. However, the process of building a learning design is a
very complex task, that must be manually developed by the instructor.

This paper focuses on making the life of instructors easier, thanks to the use
of artificial intelligence planning techniques [4,3] able to automatically obtain
a learning design customized to every student needs and features. These tech-
niques have been usually employed to help experts of different fields to define
their strategic plans like in aerospatial domains , civil emergencies or military
campaigns . However, they are also specially useful for the design of learning
paths, since they can both explore all the possibilities of the available learning
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resources, its different learning objects and their features, and also take into ac-
count the features and needs of every student in order to elaborate, like in those
strategic plans, the best learning path for every student.

We must say that the use of artificial intelligence planning techniques in real
applications imply a great knowledge engineering effort in order to acquire and
validate the available know-how of every domain and to encode this knowledge
into a set of rules or protocols which is usually named the planning domain. A
planning domain is the core of any planning application that guides the search
effort of the planner and it is usually written in the Planning Domain Descrip-
tion Language [6] or any of its flavours [3]. This important effort has been an
obstacle for the practical application of planning techniques and the technical
part of this paper is devoted to show that this planning domain may be au-
tomatically generated from a well structured domain like the learning objects
repository of a LMS. In order to do that, we propose an exhaustive labeling of
learning objects making use of the IMS-MD or IEEE-LOM standards and an
inference procedure that explores all the metadata and relations to generate a
valid planning domain. Later on, a state-of-the art planning algorithm might
be used to obtain a customized learning design for every student. Given that
most LMS are intended to use these standard metadata, our approach could be
directly used in any of them just by checking for a correct labeling of learning
objects. These contributions are aligned towards an important horizon: enable
end users (instructors and students) to easily adopt e-learning standards at a
low cost.

2 HTN Planning Foundations

In order to better understand the main contributions of this paper, a brief in-
troduction to HTN planning techniques [4] is presented first. HTN (Hierarchical
Task Network) planning is a family of artificial intelligence planners that have
shown to be very powerful in practical applications on very different domains.
HTN planning paradigm is based on the same three concepts that any other
planning approach. The initial state is a set of literals that describe the facts
that are true at the beginning of the problem; this would be the students’ profile.
The goal is a description of what we want to achieve with a plan, that is, the
learning goals.The domain is the set of available actions or rules to achieve the
goals. In our case, the available learning objects.

2.1 HTN Planning Domains

HTN planning domains are designed in terms of a hierarchy of compositional
activities. Lowest level activities, named actions or primitive operators, are non-
decomposable activities which basically encode changes in the environment of the
problem. In our approach, these primitive operators are represented as PDDL 2.1
level 3 durative actions. On the other hand, high level activities, named tasks, are
compound actions that may be decomposed into lower level activities. Depend-
ing on the problem at hand, every task may be decomposed following different
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schemes, or methods, into different sets of sub-activities. These sub-activities
may be either tasks, which could be further decomposed, or just actions. Tasks
and their, possibly multiple, decompositions encode domain dependent rules for
obtaining a plan, that can only be composed of primitive actions. Unlike non
HTN planners, HTN goals are not specified as a well formed formula that must
be made true by the plan from the initial state. Instead, goals are described
as a partially ordered set of tasks that need to be carried out. And finally, the
main HTN planning algorithm takes the set of tasks to be achieved, explores
the space of possible decompositions replacing a given task by its component
activities, until the set of goal tasks is transformed into a set of only primitive
actions that make up the plan.

HTN planning domains are usually written after a knowledge engineering
stage in which the know-how of the problem is studied and formally represented
[10,3]. This stage requires a strong commitment of domain’s experts and a deep
knowledge of planning techniques, so it is not an easy task. However, in problems
with an underlying strongly structured knowledge like a learning objects repos-
itory with an exhaustive metadata labeling, this domain could be automatically
extracted as will be shown in the following sections.

3 Our Approach

The main idea behind this approach is that AI planning techniques may be used
to automatically generate a customized learning design based on the following
assumptions: (1) The learning objects repository is labeled using a extensive set
of standard metadata that is described along this section. (2) The instructor
explores the repository and define the learning objectives of a given course. (3)
Our system explores the different databases of users profiles, learning objects
and learning objectives and generates the necessary PDDL files [6,3] for our
HTN planner to run. The planner is executed and a customized learning plan is
obtained for every student registered at the same course. (4) The learning plan
is translated into a form playable or understandable by the LMS. (5) The plan
is executed (or played) by the student to follow the course adapted to its own
features and needs.

In order to guarantee a valid extraction of an HTN planning domain and a
successful adaptation of the learning path, at least the following set of metadata
are required to be present in the labeling of the learning objects1:

Hierarchical structure. Hierarchical relations of the form chapter/sub-
chapter/ lesson, being lesson the atomic part of the hierarchy, are encoded
by means of the is-part-of relational metadata. This allows to encode hi-
erarchical dependencies between learning objects. A learning path, that is,
the sequence of learning objects that is to be followed by student will only
be made up of atomic objects. This means that compound objects might

1 There is a wider variety of metadata that allow for a greater adaptation capability
to the features of every student. They have not been included due to lack of space.
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have no content, except those included in their constituent atomic objects
and they primarily act as the underlying structure of the course. (Figure 1).

Ordering relations. The order relation or sequence between learning objects
defined by the instructor, in the case that they exist, are encoded by means
of the is-based-on relational metadata. Figure 1 shows a simple example
so far.

Fig. 1. A simple labeling of learning objects showing a piece of a classic Artificial
Intelligence course chapter devoted to search: After a brief introduction, the sections
about depth-first search (DFS) and breadth-first search (BFS) exactly in this order.
Lowest level objects (atomic) appear shadowed.

Content dependencies. Sometimes, the content of a given chapter or sub-
chapter depends on other chapters of the same repository. Since the student
may or may not have background knowledge on these dependencies, they
are encoded my means of the relational metadata requires. For example,
the chapter AI-Search depends on knowledge about graphs, that belongs
to a learning object of another course. This dependency is encoded to allow
the planning algorithm to reason about the convenience or not of including
a chapter about graphs in a given learning path: if the student does not
know about graphs, it would be strongly required to pass first this chapter,
otherwise, it would be ignored. (Figure 3)

Optional lessons. These are lessons that may be included or not in a learning
path depending on some conditions, usually the global time span of the
course. This is encoded by means of the general metadata coverage that
is labeled with the constant optional. If this metadata is empty, then the
learning object is intended to be mandatory.

Different languages. Our approach is also intended to cope with reposito-
ries handling different languages so that the planner may or may not may
select some learning objects depending on a student’s knowledge of other
languages. It is encoded with the general metadata language.

Typical Learning Time. The educational metadata is a very important is-
sue to successfully encode a learning path given the temporal constraints
imposed by the course, the student or both.

Type of resources. Every resource, that is, a learning object, in the repository
must be labeled with the educational metadata learning-resource-type
(a lesson, an example, an excercise, etc).
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Hardware/Software requirements. In the case that a given learning object
would require special hardware or software features (like multimedia files,
for example) this could be used for the planner to reason about its inclusion
or not in the learning path depending on the declared HW/SW platform of
every student. This is encoded in the technical metadata other-platform-
requirements.

These are standard IEEE-LOM [1] metadata and they are needed to ensure a
correct domain extraction from the repository, so it is not a heavy requirement
of our approach, since they are supposed to be present in most standard learning
objects repositories.

3.1 Domain Extraction in a Simple Case

In the simplest case (Figure 1), a repository containing just hierarchical and
sequencing metadata may be intuitively translated into an HTN domain as those
presented earlier just by exploring these relations. Compound objects (those with
any “child object”) would be translated into a compound task and simple objects
(those with no children) would be translated into non-decomposable actions.
Therefore, the simple repository shown in Figure 1 would be translated into the
HTN domain shown in Figure 2

(:task AI-Search

:parameters (?student)

(:method One

:tasks (

(AI-Search-Intro ?student)

(AI-Blind-Search ?student))))

(:task AI-Blind-Search

:parameters (?student)

(:method One

:tasks (

(AI-Blind-Search-Intro ?student)

(AI-DFS ?student)

(AI-BFS ?student))))

(:durative-action AI-Search-Intro

:parameters(?student)

:duration (= ?duration

(typical-learning-time AI-Search-Intro))

:condition()

:effect(passed ?student AI-Search-Intro))

(:durative-action AI-DFS

:parameters(?student)

:duration (= ?duration

(typical-learning-time AI-DFS))

:condition()

:effect(passed ?student AI-DFS))

Fig. 2. Part of the domain extracted from the sample repository of Figure 1

3.2 Domain Extraction in Complex General Cases

The simple domain extraction procedure roughly sketched before is too simple
and it does not allow for a full adaptation of the learning path, taking into ac-
count the full set of metadata present in the repository (Figure 3). This section
fully describes a domain extraction procedure that completely fits into the ex-
pected adaptation scheme represented in these metadata. Let us consider the
repository shown in Figure 3

Extracting Primitive Actions. HTN primitive actions are extracted from
those learning objects that have no children. These actions will take into account
the following issues. The duration of the action will be its typical learning time. If
there are some special hardware requirements or it has been written in a language
different than the common language of the course, then the list of preconditions



Knowledge Engineering and Planning for the Automated Synthesis 45

Fig. 3. A labeling of learning objects slightly more complex than Figure 1. Lowest level
objects (atomic) appear shadowed.

will include these conditions for the action to be included. Figure 4 shows two ac-
tions that exhibit these preconditions so they will only be included in the learning
path if the profile of the student meets these conditions.

(:durative-action AIDFS-Algorithm

:parameters(?student)

:duration (= ?duration

(typical-learning-time AIDFS-Algorithm))

:condition(hardware ?student multimedia)

:effect(passed ?student AIDFS-Algorithm))

(:durative-action AIDFS-Lecture

:parameters(?student)

:duration (= ?duration

(typical-learning-time AIDFS-Lecture))

:condition(>= (mark ?student english) 50)

:effect(passed ?student AIDFS-Lecture))

Fig. 4. Action AIDFS-Algorithm requires the student hardware platform to have mul-
timedia capabilities. Action AIDFS-lecture is written in english, a foreign language for
the student, and it requires the student to have a satisfactory mark registered in its
profile (at least 50 out of 100).

For every atomic learning object labeled as “optional”, a new task is cre-
ated with two different methods, one of them includes its corresponding action
and the other does not. For example, Figure 5 shows how the optional object
AIDFS-Examples is treated.

As may be seen in Figure 3, there may be more than one atomic object with
the same name (i.e. there are two objects with name AIDFS-Algorithm). This
means that they are different ways of performing the same learning act and,
probably, under different conditions. This allows the student to follow a given
lesson although the lesson offered to each student might be different depending
on their context. This is encoded as an additional compound task that includes
a unique method containing a single action. There will be a primitive action for
each atomic object so that, the compound task forces the introduction of one of
these actions that will be found by the planner by search and backtracking in
the case that the conditions of the actions are not met (see Figure 6).

Extracting Compound Tasks. The previous domain extraction procedure
allows to generate the primitive actions of an HTN domain and some additional
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(:task OPTIONAL-AIDFS-Examples

:parameters (?student)

(:method Yes

:precondition ()

:tasks (

(AIDFS-Examples ?student)))

(:method No

:precondition ()

:tasks ()))

(:durative-action AIDFS-Examples

:parameters(?student)

:duration (= ?duration

(typical-learning-time AIDFS-Example))

:condition()

:effect(passed ?student AIDFS-Example))

Fig. 5. Action AIDFS-Examples is optional. This is encoded as a compound task with
two alternative decompositions. The first one, labeled as “Yes” tries to include the
object AIDFS-Examples. If a backtracking is produced during the search, then the
method labeled as “No” introduces an empty decomposition, that is, it does not include
the object.

(:task MULTIPLE-AIDFS-Algorithm

:parameters (?student)

(:method Unique

:precondition ()

:tasks (

(AIDFS-Algorithm ?student))))

(:durative-action AIDFS-Algorithm

:parameters(?student)

:duration (= ?duration

(typical-learning-time AIDFS-Algorithm))

:condition(hardware ?student multimedia)

:effect(passed ?student AIDFS-Algorithm))

(:durative-action AIDFS-Algorithm

:parameters(?student)

:duration (= ?duration

(typical-learning-time AIDFS-Algorithm))

:condition()

:effect(passed ?student AIDFS-Algorithm))

Fig. 6. Part of the domain extracted from the sample repository of Figure 3. Action
AIDFS-Algorithm may be included in any of the forms present in the domain to adapt
the learning path to the existing conditions

compound tasks to encode part of the adaptation scheme. This will enable the
planner to adapt a learning path to the individual features of every student. How-
ever, there are still more possibilities to encode additional adaptation schemes in
the repository so that the search capability of the planner is increased. They are
related to the decomposition of a compound task. There may be compound ac-
tions, like DS-Graphs in Figure 3 whose constituents parts are fully ordered and,
therefore, they will always be included in the same order in any learning path.
However, other compound tasks like AI-DFS do not have its constituents objects
fully ordered. This means that the order in which these objects will be included
in a learning path is not always the same and it may depend on some external
conditions. In order to represent this, implicit ordering relations are defined in
our approach to encode different orderings for every compound task based on
the learning-resource-type of every object. For example, the following rule

((TRUE) (Problem-statement Simulation Experiment Exercise Lecture))

would mean that in every possible situation in which the order of the component
objects is not explicitly defined by the instructor, the ordering in which they ap-
pear in the task will be the following: first the object labeled with learning-
resource-type equal to problem-statement, then those labeled assimulation,
those labeled as experiment, the objects labeled as exercise and at the end,
those labeled as lecture.These other rules encode a more interesting example:
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((Honey-Alonso-Learning-Type ?student Theorist)
(Problem-statement Simulation Experiment Exercise Lecture))

((Honey-Alonso-Learning-Type ?student Pragmatic)
(Simulation Experiment ExerciseProblem-statement Lecture))

They mean that the decomposition of a compound object depends on the
registered Honey-Alonso learning profile of every student. For example, these
two previous rules would produce the decomposition scheme for task AI-DFS
shown in Figure 7.

(:task AI-DFS

:parameters (?student)

(:method Pragmatic

:precondition (learning-type ?student pragmatic)

:tasks (

(MULTIPLE-AIDFS-Algorithm ?student)

(AIDFS-Examples ?student)

(AIDFS-Properties ?student)

(AIDFS-Lecture ?student)))

(:method Theorist

:precondition (learning-type ?student theorist)

:tasks (

(AIDFS-Properties ?student)

(MULTIPLE-AIDFS-Algorithm ?student)

(AIDFS-Examples ?student)

(AIDFS-Lecture ?student))))

Fig. 7. Task AI-DFS is decomposed depending on the Honey-Alonso learning profile of
the student

And finally, there is the case that a compound object requires another ob-
ject that belong to any other course. Figure 3 shows that the object AI-Search
depends on the object DS-Graphs that belongs to another course, let say Data
Structures. In this case, the task AI-Search includes two different decomposi-
tions, one of then for the case that the student has successfully passed this
required object, and the other one for the case that the student has not passed
this object and thus, will have to be included in his/her learning path.

In summary, this section has shown that a valid HTN domain may be ex-
tracted from a well structured learning objects repository just by exploring a set
of standard metadata present in most LMS2.

4 Obtaining a Plan

The application of this procedure to a learning objects repository would
produce a file named “domain.pddl” that is one of the components for any
PDDL-compliant planner. This file will be the same for every student since it
only contains the translation of the learning objects repository into a PDDL do-
main. However, for the planner to run, there is another file that must be present.
It is usually named “problem.pddl” and it encodes, both, the initial state and
the goal of the problem. In terms of a LMS, the initial state encodes student
profiles and the goal encodes the learning goals.

Students profiles are extracted from the LMS’ databases following the IMS-
LIP [5] standard or any other equivalent formalism. These profiles will contain all

2 There is a preamble of the HTN planning domain in PDDL, but it is practically
always the same and it is not included here.
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the available information about the student that will make the planner to search
and backtrack amongst the available tasks and actions in the translated domain
and, therefore, to optimally adapt the desired learning path to its features and
needs.

Learning goals are defined by the instructor amongst the list of compound
tasks available in the domain (i.e. the highest level learning objects) and they
will appear totally ordered in the goal section of the pddl problem. Figure 8
shows a piece of this problem. As may be seen, there are two students, Peter
and Clark, Peter doest not have any temporal constraint[3] to end the course,
but Clark needs to end the course in less than 320 minutes.

(define (problem simple)

(:domain test)

(:objects

Peter, Clark - student)

(:init

(learning-type Peter pragmatic)

(= (mark Peter english) 50)

(passed Peter DS-Graphs)

(hardware Peter multimedia) ...)

(:tasks-goal

:tasks [

(AI-Search Peter)

((<= ?end 320) (AI-Search Clark))

]

)

Fig. 8. The problem of the PDDL scenario is also automatically extracted from the
LMS databases, both the initial state (students profiles) and the goal (learning goals
asserted by the instructor)

Once the domain and the problem have been translated from the LMS repos-
itory and databases into PDDL compliant files, the HTN planner [3] is executed
and an adapted learning path is obtained for each of the students included in the
problem. This plan may be easily encoded in a IMS-LD, packaged in a IMS-CP
that contains all the involved learning objects and delivered for execution in most
LMS. The procedure described along this paper has been implemented in Python
and fully integrated in the ILIAS LMS [9], which embeds a SOAP (Simple Object
Access Protocol) server, so that several Python scripts implement the extraction
procedures described so far, just by using the available SOAP functions, and ob-
tain the domain and problem files. The SIADEX HTN planner [3] is then executed
and a plan is obtained. ILIAS does not support IMS-LD specification yet, so in or-
der to make the plan available to student, we have translated the plan into a follow
up guideline that appears over the student’ ILIAS desktop.

5 Related Work

There are several approaches in the literature that shows the relative success of
AIP&S technologies for the assisted design of learning paths, either for HTN plan-
ners [2] or non HTN planners [8]. In all these approaches, the planning domain can-
not be encoded by the instructor, but by a person with deep knowledge on AIP&S
and PDDL. This means that any change in the learning objects repository has to
be recoded again, making the instructor to depend on third persons. Our approach
clearly grants the independence of instructors and reduces the cost of using AIP&S
to zero.
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6 Concluding Remarks

This paper has presented an integrated approach able to extract a planning
domain from a well structured learning objects repository just by exploring the
standard metadata labeling present in the objects. This is just a first step towards
the automatic use of an HTN planner able to obtain customized learning paths
adapted to every student’ needs and features. The use of an artificial intelligence
HTN planner allows for a fast and robust generation of adapted learning designs
with respect to typical learning designs that had to be manually encoded in
a long and boring process. The main obstacle for the practical use of AI HTN
planners, i.e. the design of the planning domain, has also been overcome without
any intervention of instructors.

However there is still an issue that needs further study: the adaptation of the
learning path to run-time information like the result of intermediate evaluations
during the development of a course. We are pursuing a continual planning ap-
proach [7] in which the planning of a whole course with intermediate evaluations
is neglected in favour of a sequence of planning episodes, each planning episode
happening between every two consecutive evaluations. It is clear that if a course
has no intermediate evaluations, then the continual planning approach is not nec-
essary and a unique plan is enough to cover the whole development of a course.

References

1. ANSI/IEEE. IEEE Standard for Learning Object Metadata.
http://ltsc.ieee.org/wg12/

2. Ullrich, C.: Course Generation Based on HTN Planning. In: Proceedings of 13th
Annual Workshop of the SIG Adaptivity and User Modeling in Interactive Systems,
pp. 74–79 (2005)
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