
A Workflow for the Networked Ontologies

Lifecycle:
A Case Study in FAO of the UN

Óscar Muñoz-Garćıa1, Asunción Gómez-Pérez1, Marta Iglesias-Sucasas2,
and Soonho Kim2

1 Ontology Engineering Group - Universidad Politécnica de Madrid
2 Food and Agriculture Organization of the United Nations

Abstract. This document shows a preliminary framework for editing
networked ontologies in the context of the NeOn project. The goal is
to manage, in a collaborative way, multiple networked ontologies for
large-scale semantic applications. This paper shows the main concepts
on the editorial workflow and several lifecycle use cases. The ontologies
produced with this framework will be used by the Food and Agricul-
ture Organization of the United Nations (FAO) in many different large
applications such the Fisheries Stock Depletion Assessment System[4].
Therefore a major goal for FAO is to have a strong and reliable ontology
management system for editing the networked ontologies that applica-
tions will use as a basis. This framework for editing networked ontologies
is being developed in the context of the NeOn Project1. What we present
here is a brief summary of the activities carried out in this project re-
garding user requirements and subsequent use case analysis.

Keywords: networked, ontology, workflow, fisheries, lifecycle, FAO,
NeOn.

1 Introduction

The Food and Agriculture Organization of the United Nations (FAO) leads in-
ternational effort to defeat hunger. The Organization acts as a neutral forum
where all nations dialogue as equals to debate policy and negotiate agreements
FAO is also a source of knowledge and information to help developing countries
and countries in transition modernise and improve Agriculture, Forestry and
Fisheries practices and ensure good nutrition for all.

Efficiently managing information and knowledge is extremely important to
FAO and that is reflected in Article 1 of its Constitution, which reads that
”The Organization must collect, analyse, interpret, and disseminate information
relating to nutrition, food Agriculture and development.”

In this line, in the Fisheries domain, one of the biggest challenges both at
present and in the future is to manage the world’s fish stocks for achieving long-
term sustainable Fisheries. For this purpose, the Fisheries department of the
1 For more information see: http://www.neon-project.org

D. Borrajo, L. Castillo, and J.M. Corchado (Eds.): CAEPIA 2007, LNAI 4788, pp. 200–209, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.neon-project.org

A Workflow for the Networked Ontologies Lifecycle 201

FAO has several information and knowledge organization systems to facilitate
and secure the long-term, sustainable development and utilisation of the world’s
Fisheries and Aquaculture. However, currently each system has its own com-
munity having each of them its own vocabulary, different languages, etc. This
constitutes a separate knowledge collective.

Current FAO Fisheries systems manage and disseminate statistical data on
fishing, GIS data, information on aquaculture, geographic entities, description
of fish stocks, etc. Although much of the data are ’structured’, they are not nec-
essarily interoperable because they are expressed in different representation lan-
guages and according to different models, developed using different technologies
or deployed in different platforms. These data sources could be better exploited
by bringing together related and relevant information, along with the use of the
Fisheries ontologies, to provide inference-based services, enabling policy makers
and national governments to make informed decisions.

The current technical state does not solve the problem in applications where
complex ontologies should be created and managed collaboratively and in highly
dynamic, multilingual and constantly evolving environments. There are sev-
eral tools such Protégé2 for editing ontologies, R2O [6] for making mappings
between ontologies and data bases, RDF-Gravity for visualising3, the ontol-
ogy alignment API and Server4, etc. Despite there are a lot them that solve
many problems such ontology learning, ontology upgrade and ontology align-
ment, these tools are stand alone and make the process of managing ontological
information very complex basing the interoperability between them in export-
ing and importing processes that sometimes degrades the information. With
respect to methodologies, Methontology [7] and On-To-Knowledge [5] do not
define a workflow for editing ontologies taking into account the roles involved
in the ontology development. Also these methodologies are defined for building
ontologies from scratch not taking into account the reuse of existing ones. All
the aforementioned approaches do not consider collaborative and distributed
construction of ontologies when developers are geographically distributed us-
ing different languages. In fact the first method that included a proposal for
collaborative construction was Co4 [2] and the first tool was Tadzebao and
WebOnto[8].

To solve the above problems, the goal of the NeOn project is to create the
first ever service-oriented, open infrastructure, and associated methodology to
support the development lifecycle for a new generation of semantic applica-
tions being the FAO case study a complex use case that will validate the NeOn
methodologies and the NeOn Toolkit (which is on development, but includes
several parts partially tested). NeOn provides FAO with a great opportunity to
develop an appropriate framework to manage the Fisheries ontologies and their
lifecycles, as well as to implement a semantic web Fisheries Stock Depletion
Assessment System that exploits those ontologies.

2 For more information see: http://protege.stanford.edu
3 See: http://semweb.salzburgresearch.at/apps/rdf-gravity/index.html
4 For more information see: http://alignapi.gforge.inria.fr

http://protege.stanford.edu
http://semweb.salzburgresearch.at/apps/rdf-gravity/index.html
http://alignapi.gforge.inria.fr

202 Ó. Muñoz-Garćıa et al.

In this context, one of the most important goals for FAO, is to develop a
framework and support tools where ontologies can be modelled, populated, val-
idated and deployed, and at the same time, mechanisms are put in place to
facilitate that the existing ontological resources used by applications are main-
tained and kept up-to-date, and that when applying changes (to single ontologies
or networks) all dependencies between systems continue to hold.

While requirements for ontology design, population and validation are com-
mon in ontology engineering environments, the FAO case study looks for a more
articulated approach paying special attention to an editorial workflow, key to
ensure that users can modify and update ontologies in a controlled and coherent
manner, especially for those ontologies already deployed on the Internet. At the
same time, this controlled environment for the editorial workflow will provide the
necessary support to appropriately version ontologies deployed on the Internet,
and to ensure semantic web applications reliability on the ontologies exploited.

2 Fisheries Ontologies Lifecycle

2.1 Users

The Fisheries ontologies lifecycle will be managed by a combination of two major
types of users: ontology engineers and subject experts.

Ontology engineers are specialised in ontology modelling techniques and is-
sues; have from basic to advanced knowledge of ontology engineering tools and
inference engines, but may know little about the domain to be modelled. Usu-
ally, they are in charge of defining the initial skeleton of the ontology, and in so
doing, they take into account the purpose of the ontology, possible interactions
with legacy systems, and other relevant issues.

Ontology editors are domain experts, although they can also be information
management specialists, terminologists or translators. they are in charge of the
everyday editing and maintenance work of the networked multilingual ontologies
and they can be in charge of developing specific fragments of ontologies, revising
work done by others, and developing multilingual versions of ontologies.

2.2 Roles

Users participating in the Fisheries Ontologies Lifecycle will need to be autho-
rised in the system to get access rights by the system Administrators. Authorised
users will be assigned roles to various ontology modules as either Ontology en-
gineers, Subject experts, Validators or Viewers, depending on the kind of rights
they will have and the kind of tasks they will be assigned to.

Subject expert, validator and viewer correspond to the possible roles of the
Ontology editors within the editorial workflow.

– Subject experts are the editors inserting or modifying ontology content.
– Validators revise, approve or reject changes made by subject experts, and

they are the only ones who can copy changes into the production environment
for external availability.

A Workflow for the Networked Ontologies Lifecycle 203

– Viewers are users authorised to enter in the system and consult approved
information about ontologies but they cannot edit the ontologies.

2.3 Major Processes

As illustrated in figure 1, the Fisheries ontologies lifecycle consists of the follow-
ing major processes:

1. Ontology conceptualisation: Ontology engineers organise and structure
the domain information into meaningful models at the knowledge level. In the
fishery domain, they collect the information from Fisheries databases, infor-
mation system and documents, and analyse it together with Fisheries domain
experts in FAO. The conceptualisation process results in an ontology model with
most of the concept level entities, such as, classes, properties and restrictions.

2. Ontology population: Ontology engineers perform the knowledge acquisi-
tion activities with various manual or (semi)automatic methods various methods
to transform unstructured, semi-structured and/or structured data sources into
ontology instances. In the Fisheries domain, this process consist mainly in convert-
ing semi-structured data sources (fishery fact sheets in XML format) and struc-
tured data source (from relational databases) into corresponding instances in the
conceptualised Fisheries ontology. Figure 2 shows the possible population sources.

3. and 4. Iteration of conceptualisation and populationprocess until get-
ting a stable version: Ontology engineers will iterate the conceptualisation and
population processes until getting a populated ontology that satisfies all require-
ments and it is considered stable. Once achieved, the ontology will enter into the
test and maintenance environment, implemented through the editorial workflow.

5. Ontology validation and update through editorial workflow: The
editorial workflow will allow Ontology editors to consult, validate and modify the

2. Populate

3. Conceptualize

& populate

iterations
1. Conceptualize

4. Stable version = V0

6. Publish = V1,

n upgrades = Vn+1

V1

Vn+1

5. Validate &

Update

(editorial workflow)

Ontology

Engineers

Ontology

Editors

Development environment

Intranet or local

Test/maintenance

environment

Intranet

Production environment

Internet

Fig. 1. Fisheries Ontologies Lifecycle

204 Ó. Muñoz-Garćıa et al.

2. Populate

3. Conceptualize & Populate iterations

RDBMS

XML

Schema

1. Conceptualize Populated ontology

Manual population

Instances migrated to Ontology

Ontology mapped.

Instances stay in XML

Ontology mapped.

Instances stay in DB

Instances migrated to Ontology

Fig. 2. Ontology Population

ontology keeping track of all changes in a controlled and coherent manner. Any
ontology to be released on the production environment needs to pass through
the editorial workflow being it the first time for version 1 or for any subsequent
upgrade. The editorial workflow is explained in detail in the following section.

6. Ontology publication: Once ontology editors in charge of validation con-
sider the ontology final, they are authorised to release it on the Internet and
make it available to end users and systems. A release will consist in making a
copy of the ontology in the maintenance environment into the production envi-
ronment, which in the case of FAO will be the Internet. Ontologies published
on the Internet will be always versioned, from 1 for the first published version
to N+1 to the N upgrade of the ontology. All versions will be available all the
time with necessary metadata in order to ensure that semantic third party se-
mantic web applications relying on a particular version will keep working relying
on a previous version independently of the new one until a decision is made to
upgrade the application, if required, to use the new ontology version.

2.4 Editorial Workflow

The Fisheries editorial workflow will implement the necessary mechanisms to
allow Ontology editors to consult and if authorised, validate and/or modify the
ontology in a controlled and coherent manner, ensuring that only fully validated
ontologies will be released on the Internet.

A Workflow for the Networked Ontologies Lifecycle 205

Draft To Be Approved
Send to To Be Approved

Reject to Draft

Approved
Reject to To Be Approved

Send to Approved
PublishedPublish

To Be Deleted

Delete
Reject Deletion

Destroy

Insert Update

Test/maintenance environment

Intranet

Production environment

Internet

Editorial Workflow - Ontology Editors

Draft To Be Approved
Send to To Be Approved

Approved Published

To Be Deleted

Delete
Insert Update

Draft To Be Approved
Reject to Draft

Approved
Reject to To Be Approved

Send to Approved
Published

Publish

To Be Deleted

Delete
Reject Deletion

Destroy

Update

Subject expert can edit Subject expert can only visualize

Update
Update

Validator can edit Validator can only visualize

Editorial Workflow – Subject experts

Editorial Workflow – validators

Fig. 3. Editorial Workflow

The workflow is based on the assignation of a status to each element of the
ontology. Only if all the elements have “Approved” status, the ontology can be
published or upgraded.

206 Ó. Muñoz-Garćıa et al.

The possible statuses for each element are:

– Draft: this is the status assigned to any element when it pass first into the
editorial workflow, or it is assigned to a single element when it was approved
and then updated by a subject expert.

– To be approved: once a subject expert is confident with a change in draft
status and wants it to be validated, the element is passed to the to be
approved status, and remains there until a validator accepts it.

– Approved: if a validator accepts a change in an element in the to be ap-
proved status, this passes to the approved status.

– Published: this is the status of all elements in an ontology released to the
Internet.

– To be deleted: if a subject expert considers that an element needs to be
deleted, the item will be flagged with the ”to be deleted status” and removed
from the ontology, although only a validator would be able to definitively
delete it.

The workflow then will allow to set up who (depending on the user role) can
do what (actions as explained below) and when (depending on the status of the
element and the role of the user).

Subject experts will be able to:

– Insert a new element, or Update an approved element. In both cases the
system will automatically assign a Draft status to the element. These two
actions triggers the start of the workflow.

– Send to be approved: the subject expert changes the status of an element
from Draft to To be approved. This automatically moves the responsibility
on the item from the subject expert to the validator.

– Delete an approved element, which will be sent to To be deleted status; or
delete an item in Draft status, which will be automatically deleted.

Validators will be able to:

– Update an approved or a to be approved element. Being the validator doing
the modification, and not needing to be double checked by other validators,
the element will remain in the same status as it was.

– If an element is in the To be approved status, the validator can either accept
it, so it will be Send to the Approved status; it can be not accepted, then
it will be Rejected to draft status, or the validator can modify it.

– If an element is in the Approved status, the validator can either send it back
to To be approved, so it will be Rejected to To be approved status, can
delete it and send it to the bin or the To be deleted status or the validator
can modify it.

– Delete an element in the Approved and Destroy an element in the To be
deleted status.

– If the validator does not agree with an element proposed To be deleted by
a subject expert, and thus in the To be deleted status, the validator can
Reject the deletion, and pass back the element to the Approved status.

A Workflow for the Networked Ontologies Lifecycle 207

– When all the elements of the ontology are approved the validator can decide
to Publish it. This action will copy the Approved ontology into the produc-
tion environment assigning it the right version, V1 for the first release and
VN+1 for N subsequent releases.

3 Use Cases

A model of the system’s functionality and environment has been developed fol-
lowing the Unified Process methodology [1] coming from software engineering.
This section makes a brief summary of the Use-Case Model obtained.

Next we put a description of the most relevant use cases. These use cases
take the NeOn metamodel as a basis. This networked ontology model has been
designed in the NeOn project and is derived from the modeling primitives offered
by OWL[3].

1. Search: While editing an ontology, the Ontology Editor is able to perform
searches across the whole ontologies being edited, independently of whether
the text appears in a concept label, annotation, property name, etc.

2. Answer Query: While editing an ontology, the Ontology Editor is able
to perform queries within the ontologies being edited. The queries could be
using and standard query language (e.g. SPARQL), a natural language query
or a predefined query from a template . As an example, these constraints or
predefined queries could be:
– For concepts: “having parent such that ...”, “having child such that ...”
– For instances: “being an instance of ...”
– For properties: “attached to ...”, “linking...”

3. Manage Multilinguality: The Ontology Editor deals with the multilin-
gual aspect of the ontologies adding languages to the ontology; doing spell-
checking, managing the multilingual labels, selecting the working language,
and coping with specificities of translation (i.e., no lexicalization available
for concepts, available lexicalization correspond to more than once concept
or conversely, several lexicalizations are possible).

4. Export: exporting an ontology to other formats. In example exporting on-
tologies into thesaurus format, which implies conversion to: TagText, RDBMS,
ISO2709, SKOS and TBX.

5. Convert: convert an ontology from other formats, including population from
databases using R2O [6] and from existing resources with implicit schema
(XML).

6. Manage Mappings: creation of alignments between ontologies in a manual
way and an semi-automatic way. Mappings between concepts or modules in
different ontologies are created. For the creation of an automatic alignment
the Ontology Editor gives the System two ontologies. The System returns
the Ontology Editor the candidate mappings. The Ontology Editor inspects
the proposed candidates one by one selecting the appropriate candidate and
confirming the proposed mapping. Finally the System creates the alignment
taking into account the mappings chosen.

208 Ó. Muñoz-Garćıa et al.

7. Visualize: visualisation of ontologies and fragments of them in different
ways, depending on the task to be performed. Mappings and relations be-
tween the concepts and modules in networked ontologies are visualised.
Browsing an ontology and printing the visualisation is included.

8. Modularize: working with ontology modules; creation of modules manually
and semi-automatically and merging modules. For more information about
an ontology module is please see [3].

9. Manage Provenance and Statistics: the System captures ontology
changes. The users can see the changes history, view use statistics (prove-
nance, which system they are used by, by whom they are edited, frequency
of changes, fragment/domain of the ontology changed at fastest rate) and
view ontology statistics (depth, number of child nodes, number of relations
and properties, number of concepts per ”branch”).

10. Populate from text: the Ontology Editor chooses the textual corpora. The
System provides Ontology Editor with a list of candidate elements of the
ontology (classes, instances and relations between concepts). The System
shows the documents and excerpts supporting the extracted terminology,
including the document metadata such as title of the document, author,
data, owner, publication date. The Ontology Editor inspects and selects
the appropriate candidate, and adds the selected ones to the ontology. The
System populates the ontology doing previously a consistency checking of
the ontology with the newly added elements.

11. Evaluate and Validate Ontology: the Ontology Editor can check the
quality of the development of the ontology, checking for duplicates within
the ontology, making comparisons with other ontologies and evaluating struc-
tural properties of the ontology.

12. Obtain Documentation: automatic creation of relevant metadata con-
cerning the ontology design, such as UML-like diagrams, and documentation
concerning the relations and properties used.

4 Conclusions

In this paper we have described the lifecycle needed for managing the networked
ontologies that are used by the Food and Agriculture Organization of the United
Nations. We have focussed the description in the editorial workflow and also we
have enumerated some relevant use cases that describe the features demanded
by FAO in order to create and maintain the ontologies.

The current technical state is not enough to cover the needs because there
is not an integrated tool that provides all the features needed. So we have in-
troduced the NeOn Toolkit that is been developed in the context of the NeOn
project where FAO takes part as a case study partner.

Acknowledgements

This work has been supported by the NeOn project (IST-2005-027595). We are
very grateful to our NeOn partners for their revisions and comments.

A Workflow for the Networked Ontologies Lifecycle 209

References

1. Larman, C., O’Hagan, D. (eds.): Applying UML and patterns: an introduction to
object-oriented analysis and design and iterative development, 3rd edn. Prentice
Hall, Upper Saddle River (2005)

2. Euzenat, J.: Building Consensual Knowledge Bases: Context and Architecture. In:
Mars, N. (ed.) KBKS 1995. Second International Conference on Building and Shar-
ing of Very Large-Scale Knowledge Bases, University of Twente, Enschede, The
Netherlands, pp. 143–155. IOS Press, Amsterdam (1995)

3. D1.1.1 Networked Ontology Model v1. Technical report. NeOn (2006)
4. D7.1.1 Specification of users and user requirements. Technical report. NeOn (2006)
5. Staab, S., Schnurr, H.P., Studer, R., Sure, Y.: Knowledge Processes and Ontologies.

IEEE Intelligent Systems 16(1), 26–34 (2001)
6. Modelo para la definición automática de correspondencias semánticas entre on-

toloǵıas y modelos relacionales, Jesús Barrasa Rodŕıguez. PHD Thesis (December
2006)

7. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering.
Springer, Heidelberg (2003)

8. Domingue, J.: Tadzebao and WebOnto: Discussing, Browsing, and Editing Ontolo-
gies on the Web. In: Gaines, B.R., Musen, M.A. (eds.) KAW 1998. 11th International
Workshop on Knowledge Acquisition, Modeling and Management, Banff, Canada,
vol. KM4(120) (1998)

	A Workflow for the Networked Ontologies Lifecycle: A Case Study in FAO of the UN
	Introduction
	Fisheries Ontologies Lifecycle
	Users
	Roles
	Major Processes
	Editorial Workflow

	Use Cases
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

