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Abstract. This paper explores an integrated approach to diagnosis of
complex dynamic systems. Consistency-based diagnosis is capable of per-
forming automatic fault detection and localization using just correct be-
haviour models. Nevertheless, it may exhibit low discriminative power
among fault candidates. Hence, we combined the consistency based ap-
proach with machine learning techniques specially developed for fault
identification of dynamic systems. In this work, we apply Stacking to
generate time series classifiers from classifiers of its univariate time series
components. The Stacking scheme proposed uses K-NN with Dynamic
Time Warping as a dissimilarity measure for the level 0 learners and
Naïve Bayes at level 1. The method has been tested in a fault identifi-
cation problem for a laboratory scale continuous process plant. Experi-
mental results show that, for the available data set, the former Stacking
configuration is quite competitive, compare to other methods like tree
induction, Support Vector Machines or even K-NN and Naïve Bayes as
stand alone methods.

1 Introduction

Diagnosis of complex dynamic systems is still an open research problem. It has
been approached using a wide variety of techniques, [2], being the four main
approaches: Knowledge Based —including expert systems—, Case Based Rea-
soning, Machine Learning and Model Based Systems. Currently, it seems clear
that no single technique is capable to claim its success in every field. Therefore,
an increasing number of diagnosis systems have opted for hybrid solutions. In
this work, we propose a combination of Model Based and Machine Learning
methods. Our approach relies primarily upon model-based diagnosis, but it has
been enhanced via machine-learning techniques to overcome some drawbacks.

In the Artificial Intelligence field, the DX community has developed Consis-
tency Based Diagnosis, CBD, as the major paradigm for model based diagnosis
[5]. CBD can be summarized as an iterative cycle of behavior prediction, dis-
crepancy or conflict detection, fault localization or candidate generation, and
candidate refinement by means of new measurements. In this cycle, diagnosis
candidates can be automatically obtained from conflicts using a minimal hitting
set algorithm.
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Although CBD is able to perform both fault detection and localization with
just models for correct behavior, the absence of fault models knowledge is partly
responsible of the low discriminative power that CBD may exhibit [8]. Partic-
ularly in dynamic systems, with low observability, [3], it is not uncommon to
localize a set that involves a large number of components, without been able to
discriminate between them. Usually, to solve this drawback, knowledge about
fault modes is introduced. We have opted for the predictive approach, which use
models of fault modes to estimate faulty behavior, as in Sherlock [6] or GDE+
[17]. Based on such estimation, non-consistent fault modes are rejected. Never-
theless, the increase in the discriminative power has a price. For a system with N
components and only two behaviors —ok and faulty—, diagnosis must discrimi-
nate between 2N behavioral mode assignments. When M behavioral models are
considered —one correct, M − 1 faulty—, diagnosis must discriminate among
MN mode assignments. This is the problem faced by any model-based diagnosis
proposal which attempts fault identification [8].

For practical reasons, this theoretical approach is infeasible in real systems and
many approaches have been proposed in recent years to deal with the complexity
issue. However, to the best of our knowledge, there is no general architecture
suitable for any kind of system. In fact, many approaches just perform fault
detection and localization, or rely upon a combination of some kind of heuristic,
which helps focusing the diagnosis task. This will be also our approach.

In the recent past, [13] it has been proposed a diagnosis architecture which
combined consistency-based diagnosis with machine learning techniques, main-
taining the soundness of the CDB approach. CDB was in charge of fault detec-
tion and localization, while machine learning was use for fault identification. The
identification problem was approached as a multivariate time series classification
task and time series classifiers were induce off line from simulated data.

In this work, this approach is explored further, studying the possibilities of
Dynamic Time Warping, DTW, [10] as the basis of induced classifiers. K-Nearest
Neighbours, K-NN, using DTW as a dissimilarity measure behaves reasonably
well for some univariate problems but degrades in the multivariate case. Al-
though DTW can be easily extended for the multivariate case, these extensions
are far from optimal. Instead, we have opted for using univariate classification
methods to handle each multivariate time series component —itself a univariate
time series— introducing an additional classifier to obtain the final class.

The univariate classification method is K-NN with DTW dissimilarity mea-
sure; the outputs of each univariate classifier are combined by another classifier
to obtain the multivariate time series classifier. This approach is an special case
of Stacking [20], a method designed for the combination of classifiers. The clas-
sifiers are organized in levels, being the outputs of one level the inputs for the
next level. Normally, Stacking is used for combining classifiers obtained with dif-
ferent methods. In the present work, the same method (DTW) is used for all the
classifiers in the first level. Nevertheless, each classifier uses a different subset of
the input features, the series formed by the values of one of the variables.

The rest of the paper is organized as follows. Next section will introduce
the compilation technique used to perform consistency-based diagnosis, which is
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the basis for our model-based diagnosis system. Section 3 will describe how to
induce multivariate time series classifiers based on Stacking and DTW. Section 4
shows how to integrate these classifiers with the consistency based approach to
diagnosis. Afterwards, we present some results on a case study plant. Finally, we
discuss the results and draw some conclusions.

2 Consistency-Based Diagnosis Using Possible Conflict

CBD generate minimal candidates —i.e., minimal set of faulty components—
computing the hitting set of minimal conflicts [14]. Hence the central issue in
CBD is computing minimal conflicts from symptoms in an efficient way. Re-
iter [14] gives a precise definition of the concept of conflict. Intuitively, a conflict
is a set of components such that at least one of its elements is faulty: other way,
there will be a logical inconsistency between current observations, the system
description —i.e., the models of the system— and the assumption that all the
components of the conflict work properly.

Although Reiter introduced the theoretical framework of CBD, the compu-
tational paradigm is the General Diagnostic Engine [6] proposed by de Kleer
and Williams. GDE computes conflicts coupling the simulation process with
a dependency recording device, an Assumption based True Maintenance Sys-
tems, ATMS. Although this approach is quite efficient in static domains with
qualitative variables, it does not scale up to dynamic systems described with
quantitative equations. Nevertheless, GDE like conflicts computation may be
tackled through compilation techniques, avoiding the need of on line dependency
recording.

The computation of possible conflicts is a compilation technique which, un-
der certain assumptions, is equivalent to on-line conflict calculation in GDE. A
detailed description of consistency based diagnosis with possible conflicts can be
found in [11,12]. For the sake of brevity, we just resume how to perform CBD
with possible conflicts.

The main idea behind the possible conflict concept is that the set of subsys-
tems capable to generate a conflict can be identified off-line. More over, possible
conflicts approach provides a computational technique to automatically obtain,
from a graphical representation of the system, the symbolic expression of the
models associated to each possible conflict.

Those models can be used to perform fault detection. If there is a discrepancy
between predictions from those models and current observations, the possible
conflict would be responsible for such a discrepancy and should be confirmed
as a real conflict. Afterwards, diagnosis candidates are obtained from conflicts
following Reiter’s theory.

3 Machine Learning Techniques for Fault Identification

There are several works that use machine learning techniques for diagnosis.
Those works use methods as Inductive Logic Programming [9], Neural
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Fig. 1. Schema of the Stacking variant used in this work

Networks [19], KDD techniques [16], decision trees [18], and combination of tech-
niques like recurrent neural networks, Wavelet On-Line Pre-processing (WOLP)
and Autonomous Recursive Task Decomposition (ARTD) [15].

To take into account the dynamic nature of the problem, we have approached
diagnosis as the task of classifying the recent evolution of the variables involved
in the system. Each historic episode of a variable may be considered as a time
series. Hence, the evolution of the variables of the systems may be registered as
a multivariate time series. In this way, the diagnosis of a dynamic system may
be managed as a particular case of multivariate time series classification.

In this work we propose to use Stacking for combining several univariate time
series classifiers to obtain the classification of multivariate time series. Each of
these classifiers is K-NN using DTW distance. The outputs of these classifiers
are combined using Naïve Bayes. The schema is showed in the figure 1.

When we use stacking, classification is achieved using a multilevel architecture.
Stacking uses a first layer called level 0 that is composed of the base classifiers,
in our case, the k-neighbors with DTW distance classifier. The inputs of this
level are the time series we classify and we have one classifier for each univariate
time series. The output of this layer is the input of the second layer called level
1. This layer is composed of the meta-learner that learns how to combine the
decisions of the base classifiers. The output of the level 1 layer is the target class.

Naïve Bayes has been selected for the level 1 classifier because it is a global
and continuous classifier; these are desirable properties for the level 1 classifier.
Against it, it is the fact that the univariate series are not independent. For the
domain problem that we are interested in, it seems that some subset of compo-
nents is adequate to predict some classes and other subsets to predict another.
Hence, it is reasonable to expect some independence between different subsets of
the multivariate time series components. On the contrary, some dependence must
exits among the components of each subset. Nevertheless, the fact of training



Stacking Dynamic Time Warping for the Diagnosis of Dynamic Systems 15

the level 0 classifiers with different and disjoint data gives a chance to increase
independence. Although usually Stacking applies different level 0 classifiers to
the same learning set, in this work we propose to use different learning sets with
the same level 0 classifier. We can do this because of the nature of the process we
are classifying. This approach tries to offer an alternative of multivariate DTW.

4 Integration Proposal

Consistency-based diagnosis automatically provides fault isolation based on fault
detection results. Using possible conflicts, consistency-based diagnosis can be
easily done without on-line dependency recording. The proposed diagnosis pro-
cess will incrementally generate the set of candidates consistent with observa-
tions. In the off-line stage, we initially analyze the system and find out every
possible conflict, pci. Then, we build an executable model, SDpci , for each pci.

In the on-line stage, we perform a semi-closed loop simulation with each exe-
cutable model SDpci :
1. repeat

(a) simulate(SDpci ; OBSpci) → PREDpci.
(b) if |PREDpci − OBSOpci | > δpci confirm pci as a real conflict.
(c) update(set of candidates, set of activated pcs)

2. until every pci is activated or time elapsed.
Where OBSpci denotes the set of input observations available for SDpci ; PREDpci

represents the set of predictions obtained from SDpci ; OBSOpci denotes the set
of output observations for SDpci ; and δpci is the maximum value allowed as the
dissimilarity value between OBS0pci and PREDpci .

Without further information about fault modes, consistency-based diagnosis
will just provide a list of feasible faulty candidates. In recent works, [1,13,3] it
has been proposed a diagnosis architecture which combines consistency based
diagnosis with possible conflicts with induced multivariate time series classifiers.
These classifiers provide a ranking of fault modes compatible with consistency
based diagnosis candidates. In this way, the logical soundness of consistency
based diagnosis is preserved, because fault models are not used to propose non
consistent behaviors. Nonetheless, the ranking information may improve fault
isolation accuracy and may provide some clue towards fault identification.

Let’s CLASSIFIER_StackDTW(t; c) denote an invocation of the classifier
induced using stacking univariate DTWs, with a fragment of series from t to the
min(current time, t+maximum series length), and with the set of candidates c.

With this notation, the integration of the fault mode knowledge in the con-
sistency based diagnosis cycle may be simply stated. Just add:

(d) CLASSIFIER_StackDTW (t0, set of candidates)
to the on-line simulation loop, with t0 the starting time of the series, prior
to the first conflict confirmation. In this way, the diagnostician may provide
fault isolation a la consistency based, ordering fault candidates according to the
confidence assigned to them by the classifiers and providing fault identification
information.
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Fig. 2. The diagram of the plant

5 Case Study

5.1 The System to Be Diagnosed

For this work, we have used the laboratory scale plant shown in figure 2. Al-
though a laboratory plant, its complexity is comparable to the one encountered
in several subsystems of real processes. It is made up of four tanks {T1, . . . , T4},
five pumps {P1, . . . , P5}, and two PID controllers acting on pumps P1, P5 to
keep the level of {T1, T4} close to the specified set point. To control temperature
on tanks {T2, T3} we use two resistors {R2, R3}, respectively.

In this plant we have eleven different measurements: levels of tanks T1 and
T4 –{LT 01, LT 04}–, the value of the PID controllers on pumps {P1, P5} –
{LC01, LC04}–, in-flow on tank T1 –{FT 01}–, outflow on tanks {T2, T3, T4}
–{FT 02, FT 03, FT 04}–, and temperatures on tanks {T2, T3, T4} –{TT 02, TT 03,
TT 04}–. Action on pumps {P2, P3, P4}, and resistors –{R2, R3}– are also known.

The plant may work with different configurations and a simple setting without
recirculation —pumps {P3, P4} and resistor R2 are switch off— has been chosen.

5.2 Possible Conflicts for the System

We have used common equations in simulation for this kind of process.

1. tdm: mass balance in tank t.
2. tdE: energy balance in tank t.
3. tfb: flow from tank t to pump.
4. tf : flow from tank t through a pipe.
5. rp: resistor failure.

Based on these equations we have found the set of possible conflicts shown
in table 1. In the table, second column shows the set of constraints used in
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Table 1. Possible conflicts found for the laboratory plant; constraints, components,
and the estimated variable for each possible conflict

Constraints Components Estimate

PC1 t1dm, t1fb1, t1fb2 T1, P1, P2 LT01

PC2 t1fb1, t2dm, t2f T1, T2, P1 FT02

PC3 t1fb1, t2dm, r2p T1, P1, T2, R2 TT02

PC4 t1fb2, t3dm, t3f T1, P2, T3 FT03

PC5 t1fb2, t3dm T1, P2, T3 TT03

PC6 t4dm T4 LT04

PC7 t4fb T4, P5 FT04

Table 2. Fault modes considered

Class Component Description

f1 T1 Small leakage in tank T1

f2 T1 Big leakage in tank T1

f3 T1 Pipe blockage T1 (left outflow)
f4 T1 Pipe blockage T1 (right outflow)
f5 T3 Leakage in tank T3

f6 T3 Pipe blockage T3 (right outflow)
f7 T2 Leakage in tank T2

f8 T2 Pipe blockage T2 (left outflow)
f9 T4 Leakage in tank T4

f10 T4 Pipe blockage T4 (right outflow)
f11 P1 Pump failure
f12 P2 Pump failure
f13 P5 Pump failure
f14 R2 Resistor failure in tank T2

each possible conflict, which are minimal with respect to the set of constraints.
Third column shows those components involved. Fourth column indicates the
estimated variable for each possible conflict.

5.3 Experimental Design

We have considered the fourteen fault modes shown in table 2.
Possible conflicts related to fault modes are shown in the following theoretical

fault signature matrix shown in table 3.
It should be noticed that these are the fault modes classes which can be distin-

guished for fault identification. In the fault localization stage, the following pair
of faults {f1, f2}, {f4, f11}, and {f3, f12}, and {f10, f13} can not be separately
isolated.

Due to the cost of obtaining enough data for a fourteen classes classification
problem from the laboratory plant, we have resorted to a detail, non linear
quantitative simulation of the plant. We have run twenty simulations for each
class, adding noise in the sensors readings. We have modeled each fault class
with a parameter in the [0, 1] range. We have made twenty simulations for each
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Table 3. PCs and their related fault modes

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

PC1 1 1 1 1 1 1

PC2 1 1 1 1

PC3 1 1 1 1

PC4 1 1 1 1

PC5 1 1 1

PC6 1

PC7 1 1

class of fault. Each simulation lasted 900 seconds. We randomly generate the
fault magnitude, and its origin, in the interval [180, 300]. We also have assumed
that the system is in stationary state before the fault appears.

The data sampling was one data per second. However, due to the slow dy-
namics in the plant, we can select one data every three seconds without losing
discrimination capacity. Since we just have eleven measures, then each simulation
will provide eleven series of three hundred numeric elements.

5.4 Results

In this section, the results from the proposed method are compared to some
standard machine learning methods: Decision Trees, Naïve Bayes Classifiers and
Support Vector Machines (with the linear kernel).

Moreover, the results for Nearest Neighbor method, for different values of the
number of neighbors, are included. They are from [4]. For this method, DTW is
used considering that the distance between two multivariate series is the sum of
the distances for each variable.

The methods are used with series of different lengths, because the classifiers
are going to be used for early classification. We consider some significative length
values: 30, 40, 50 and 100% of the series. The length of the full series is 15
minutes.

The results were obtained using 10-fold stratified cross-validation. Moreover,
the Stacking method uses another internal cross-validation, also with 10 folds.

Table 4 shows the results obtained using different methods for different per-
centages of the series length. Stacking DTW classifiers has better results than
any of the other considered methods, for all the considered lengths.

Table 4 also shows the average rank of each method. For each method, the av-
erage rank is calculated from its ranks in the different folds. For each fold, the
methods are ranked. The best method in the fold is assigned the number 1, the
second the number 2, and so on. The average rank of the proposed method is al-
ways smaller than 2.0. According to Friedman test [7] these average ranks are, for
all the considered lengths, significantly different from the mean rank.

The second best method is decision trees. If we compare the results of the
two best methods for the different folds, using a paired t-test the differences are
significant when using half-length and full series.
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Table 4. Results of the different methods for different lengths of the series

Series Decision Naïve DTW DTW DTW Stacking
Length Tree Bayes SVM 1-NN 3-NN 5-NN DTW+NBC

Accuracy 30% 68.57 59.64 44.64 56.07 57.86 53.21 73.93
(percentage) 40% 94.29 87.50 80.71 87.86 84.29 83.21 95.36

50% 91.79 91.79 84.64 91.07 87.14 83.57 96.79
100% 93.93 83.57 92.14 91.43 88.57 85.00 98.57

Average 30% 2.35 3.60 6.45 4.60 3.75 5.30 1.95
ranks 40% 2.05 3.70 6.05 3.60 5.35 5.75 1.50

50% 3.25 3.25 6.00 3.00 4.90 6.00 1.60
100% 3.05 5.75 3.50 3.30 4.95 6.10 1.35

6 Conclusions

This work further explores an integrated approach to diagnosis that pretends to
be effective in complex dynamic systems, combing Consistency Based Diagnosis
with machine learning techniques.

The main contribution of this work is the proposal of Stacking to address mul-
tivariate time series classification from univariate time series classifiers induced
for each component of the original time series.This new proposal improves pre-
vious results because of the better performance of the induced classifier. With
40% of the series, long before the system reaches another stationary state, the
new method provides a 95% success rate. The only drawback is the need to train
the meta level learner with different lengths of the time series.

The results using Stacking with DTW and Naive Bayes are much better than
the results from DTW and Naive Bayes. Hence, the success of the method is
not a consequence of combining classifiers that work well isolated. The proposed
method has also better results than other standard machine learning methods,
such as decision trees and support vector machines.

Although the proposed method was designed for the diagnosis of dynamic
systems, it can be used for other multivariate time series classification tasks.
The method will be tested with data sets from other domains.

Normally, Stacking is using for combining several methods, while in the pre-
sented variant it is used with the same method with different inputs. The two
approaches can be used in conjunction, so we plan to test the method using
several methods for the first level.
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