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Abstract. Transformation Based Learning (TBL) is an intensively Ma-
chine Learning algorithm frequently used in Natural Language Process-
ing. TBL uses rule templates to identify error-correcting patterns. A crit-
ical requirement in TBL is the availability of a problem domain expert
to build these rule templates. In this work, we propose an evolutionary
approach based on Genetic Algorithms to automatically implement the
template selection process. We show some empirical evidence that our
approach provides template sets with almost the same quality as human
built templates.

1 Introduction

Transformation Based error-driven Learning (TBL) is a symbolic machine learn-
ing method introduced by Eric Brill [1]. The TBL technique builds an ordered
set of rules that correct mistakes of a base line classifier. It has been used for sev-
eral important linguistic tasks, such as part-of-speech (POS) tagging [1], parsing,
prepositional phrase attachment [2] and phrase chunking [3,4], having achieved
state-of-the-art performance in many of them.

Within the TBL framework, the generated rules must follow patterns called
templates, which are meant to capture the relevant feature combinations. The
accuracy of the TBL classifier is highly dependent on the template set used in
the learning process. Unfortunately, the process of generating good templates is
highly expensive and depends on the problem expert skills.

In this work, we address the problem of automatic TBL template selection
through an evolutionary approach based on Genetic Algorithms (GAs). We show
four genetic approaches, each one with a different degree of understanding of
the problem. The better the understanding, the better is the accuracy of the
generated classifier. Our experiments show that we can achieve the same quality
as the best template set for some benchmark problems.

The remainder of this paper is organized as follows. Section 2 presents a brief
overview of GAs and TBL. In Section 3, we describe our genetic approaches.
Section 4 presents our experimental results. In the final section, we make some
conclusions.

D. Borrajo, L. Castillo, and J.M. Corchado (Eds.): CAEPIA 2007, LNAI 4788, pp. 180–189, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



TBL Template Selection: An Evolutionary Approach 181

2 Techniques

2.1 Genetic Algorithms

Genetic Algorithms (GAs) [5] are a family of computational models inspired in
the mechanisms of Evolution and Natural Selection. They model the solution of
the problem into a data structure called chromosome, or genotype or genome,
which represents the possible solutions, called individuals, or creatures or phe-
notypes. A series of genetic operators are applied to these chromosomes in order
to achieve a high optimization of the problem.

Two components play an important role in the GA method: the problem cod-
ification and the evaluation function. The problem codification is the mapping
that is made between the chromosomes and the individuals. Usually, the indi-
viduals are mapped into a string of 1’s and 0’s indicating the presence, or not,
of some feature or characteristic. The evaluation function takes one individual
and calculates its fitness. Usually, the fitness is a performance measure of the
individual as a solution to the problem.

Normally, a genetic algorithm starts with a random population of individuals,
which is influenced by the genetic operators over the generations. The main
objective of a generation is to keep the best individuals, enhancing the overall
fitness of the population, until some stopping criteria is achieved.

There are two kinds of genetic operators: selection and recombination. Selec-
tion operators use the evaluation function to decide which individuals have the
highest potential. These individuals should persist in the population and be used
by the other kind of operators.

The recombination operators are used to create new individuals using one or
more high potential individuals. The most famous operators in this class are
cross-over and mutation. The cross-over operator uses two or more fractions of
high potential individuals to build a new individual which is appended to the
next generation of the population. The mutation operator, on other hand, takes
one high potential individual and makes a slight change in one of its components.
The new individual is also appended in the next generation of the population.

2.2 Transformation Based Learning

Transformation Based error-driven Learning (TBL) uses a greedy error correct-
ing strategy. Its main propose is to generate an ordered list of rules that correct
classification mistakes in the training set, which have been produced by an initial
classifier.

The requirements of the TBL algorithm are: a training corpus, a template
set, an initial classifier and a score threshold. The learning method is a mistake-
driven greedy procedure that iteratively acquires a set of transformation rules
from the template set maximizing its score. The score from a rule can be defined
as the number of corrections that it achieves in the training corpus in some
iteration of the learning process, discounting the number of mistakes it makes
in the same corpus. At each iteration, the rule with best score (better than
the threshold) is chosen to be used in the generated classifier. The threshold
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value can be tuned to avoid overfitting to the training corpus. The classification
process of a new sample can be done by simply applying the baseline classifier
BC and the ordered rule set R. The pseudo-code of the TBL algorithm is shown
in Algorithm 1

Algorithm 1. The TBL Algorithm Pseudo-Code
input A training corpus C0, a template set T , a baseline classifier BC and an integer

threshold τ
Apply BC to C0 generating C1

R← {}
k← 1
repeat

Generate CRk, instantiating all candidate rules from T using Ck,
for all r such that r ∈ CRk do

score(r) ← #(good corrections of r) - #(bad corrections of r) in Ck

end for
Choose rM from CRk with highest positive score above τ
if rM exists then

Apply rM to Ck generating Ck+1

R← R + rM .
end if
k ← k + 1

until not rM exists
output R

TBL Templates. A TBL template can be any sequence of patterns that gen-
erates an error correction rule. For instance, in a Part-Of-Speech(POS) tagging
process, we can write a template like word[0] word[-1] pos[0], which tries to make
rules based on bi-grams, correcting the current POS tag based on the current
and previous words.

We define a template as being a sequence of Atomic Terms (ATs). An AT
is the smallest template unit which indicates the feature and conditions to be
instantiated in a template. It is meant to identify one peace of the context that
a TBL rule needs to test when applying to the target token. Some examples of
ATs are:

1. f[ds], which checks the feature f of a token, located ds tokens to the left or
right (depending of the sign) of the target token. For example: word[-1];

2. f[ds,de], which checks the feature f in an interval of tokens positioned be-
tween ds and de (included), in relation to the target token. For example:
word[-1,1];

3. f[ds,de] where(f’=v’), which checks the feature f of the token nearest to
the target token, within the closed interval of ds and de, for which the feature
f ’ equals v’ [6]. For example: word[-1,-5] where(pos=VBD).

More complex atomic terms can be defined in order to create more specialized
rules.
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3 Approaches

In this section, we show the genetic coding used in our experiments. The use of
genetic algorithms in conjunction with TBL has already been examined in [7],
where they are used in the TBL training process to generate the instantiated
rules and to provide an adaptive ranking. Nevertheless, they have not been
used in the evaluation of template sets what is our proposal. In all codings, the
template ordering is not taking into account, since it is the last criteria to be
used when two or more rules have the same score.

3.1 Genetic Coding

Fixed Context Window. In this approach, the chromosome is composed by
several sequences of possible atomic terms (ATs) of the simplest form f [ds]. The
value in the chromosome determines the presence or absence of the corresponding
AT in the template. The input for this coding is composed by the following items:
the list of possible features to be used, an integer value maxOffset, the number
of templates to be generated and an expected number of atomic terms in each
template. The generated templates are sequences of atomic terms of the form
f [ds], where ds ∈ {-maxOffset, +maxOffset}. An example of this coding is given
in Table 1, showing two templates with expected size 3, using 2 features, f1 and
f2, and maxOffset equals to 1. The chromosome shown in the Table 1 generates
the following two templates: f1[-1] f1[+1] f2[-1] f2[+1] and f2[-1] f2[0].

Table 1. Example of the Fixed Context Window Approach

Template 1 Template 2
f1[-1] f1[0] f1[+1] f2[-1] f2[0] f2[+1] f1[-1] f1[0] f1[+1] f2[-1] f2[0] f2[+1]

C1 1 0 1 1 0 1 0 0 0 1 1 0

Fixed List of Atomic Terms. Usually, it is easier to identify candidate atomic
terms by looking at the output errors of a Machine Learning Algorithm. In Fixed
List of Atomic Terms, the chromosome is very similar to the previous one, but it
can be composed by sequences of a given set of atomic terms. The chromosome
value also indicates the presence or the absence of the corresponding atomic term
in the template. The input for this coding is the list of possible atomic terms to
be used, and, as well, the number of templates to be generated and the expected
number of atomic terms. An example of this coding is given in Table 2, show-
ing two templates with expected size 3, using 6 different possible atomic terms

Table 2. Example of the Fixed List of Atomic Terms Approach

Template 1 Template 2
AT0 AT1 AT2 AT3 AT4 AT5 AT0 AT1 AT2 AT3 AT4 AT5

C1 0 1 1 0 0 1 1 0 1 0 1 0
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f1[−1], f1[−2], f2[0], f2[1], f1[0, 2] and f2[−2,−0] where{f1 = v1}. The chromo-
some shown in the Table 2 generates the following two templates: f1[−2] f2[0]
f2[−2,−0] where{f1 = v1} and f1[−1] f2[0] f1[0, 2].

Maximum Template Size. In this approach, the chromosome is quite similar
to the previous one, but instead of having an expected template size we establish
a maximum size for all templates. The chromosome value indicates the position
of the corresponding atomic term in the list. A value -1 indicates the absence of
an atomic term. The repetition of atomic terms in the same template is now a
possibility, but they are discarded. The input for this coding is the list of possible
atomic terms to be used, the number of templates to be generated and the maxi-
mum template size. An example of this coding is given in Table 3, showing three
templates with maximum size 4, using the same six possible previous atomic
terms. The chromosome shown in the Table 3 generates the following three tem-
plates: f1[−1] f1[−2] f2[1], f1[−2] f2[0] f2[1] f2[−2,−0] where{f1 = v1} and
f1[−2] f2[0] f2[1].

Table 3. Example of the Maximum Template Size Approach

Template 1 Template 2 Template 3
AT1 AT2 AT3 AT4 AT1 AT2 AT3 AT4 AT1 AT2 AT3 AT4

C1 1 3 -1 0 5 1 3 2 1 2 1 3

Template List. In this approach, the chromosome is composed of a sequence
of predefined templates. The idea here is to find a better subset of templates
than the one provided by an expert. Since TBL is a greedy algorithm, using
all templates may not lead to better results than using just one of its subsets.
The chromosome value indicates the presence or absence of the corresponding
template. The input for this coding is the list of possible templates to be used and
the expected number of templates to be used. An example of this coding is given
in Table 4, showing templates from the fixed template list, {τ00, τ01, τ02, τ03,
τ04, τ05, τ06, τ07, τ08, τ09, τ10, τ11}, with an expected number of seven templates.
The chromosome shown in the Table 4 generates the following template set:
{τ00, τ02, τ05, τ06, τ08, τ09, τ10}.

Table 4. Example of the Template List Approach

τ00 τ01 τ02 τ03 τ04 τ05 τ06 τ07 τ08 τ09 τ10 τ11

C1 1 0 1 0 0 1 1 0 1 1 1 0

3.2 Fitness Function

Using a training set, we train a TBL classifier for each individual. The F-measure
of the generated classifier for a validation set is used as the fitness value of the
individual.
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3.3 Cross-Over Operator

The cross-over operator generates a new chromosome by breaking apart two
chromosomes in a random point and combining them. Table 5 shows an example
of the cross-over operator for the chromosome described in the Fixed Context
Window approach.

3.4 Mutation Operator

The mutation operator generates a new chromosome by changing the value of
the atomic term in a template. Table 5 shows an example of the mutation process
for the chromosome described in the Fixed Context Window approach.

Table 5. Examples of the Cross-over and Mutation operator

Template 1 Template 2
f1[-1] f1[0] f1[+1] f2[-1] f2[0] f2[+1] f1[-1] f1[0] f1[+1] f2[-1] f2[0] f2[+1]

C1 1 0 1 1 0 1 0 0 0 1 1 0
C2 1 1 0 0 0 1 1 1 0 1 0 0

C1 ⊗C2 1 0 1 1 0 1 0 1 0 1 0 0
�C1 1 0 1 1 0 1 0 0 0 0 1 0

For the Maximum Template Size approach, instead of changing the value from
0 to 1 and vice-versa, the value is changed to another value in the interval [-1,
number of atomic terms - 1].

4 Experiments

We have chosen the English Base Noun Phrase Chunking to demonstrate the
quality of our genetic approaches. Base Noun Phrase Chunking consists in rec-
ognizing non-overlapping text segments that correspond to noun phrases (NPs).

The data used in the base NP chunking is the one of Ramshaw & Marcus
[3]. This corpus contains sections 15-18 and section 20 of the Penn Treebank,
and is pre-divided into a 8936-sentence (211727 tokens) training set and a 2012-
sentence (47377 tokens) test set. This corpus is tagged with POS tags and with
base NP tags.

A small excerpt of the training corpus is used by the genetic approach. Two
corpora are built: a GA-training set and a validation set. The GA-training and
validation sets are used by the genetic algorithm to, respectively, train and evalu-
ate the performance of the individuals. The best individual returned by the genetic
algorithm is applied to the whole training corpus, generating a TBL classifier. The
classifier is, then, applied to the test corpus and its performance is evaluated.

We use F-measure as our key statistics to evaluate the performance of the
generated classifiers. F-measure is the harmonic mean between precision and
recall. Precision informs how many good classifications the model predicted
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Fig. 1. Results for the Fixed Context Window approach

amongst all predictions made. Recall informs how many good classifications
were predicted amongst all true classifications.

For the four genetic formulations, we report the performance of the classifier
trained with the best template set produced by the use of different slices of the
GA-training set in the genetic approach. These results are compared with the
Baseline System (BLS), the same used by [3], and the handcrafted templates
(HC). Although, we fixed the τ parameter used in all experiments to the same
value used by the handcrafted templates, it could also be encoded and deter-
mined by the genetic algorithm without considerable loss of performance, since
its set of optimal values is very limited (usually, 0 ≤ τ ≤ 2). We start with 50
sentences for the genetic training process, increasing with 50 more examples in
each experiment. We also report the training time for each approach, in terms
of percentage of the training time for the handcrafted templates. The reported
training time includes both the selection of the best template set by the genetic
algorithm and the training of the TBL classifier. The BLS training time is not
reported since it is very small. Due to space constraints, we do not show the per-
formance of the population in the validation set over the ten fixed generations,
but it shows a consistent increase for all approaches.

The results for the Fixed Context Window (FCW) approach are reported in
Figure 1.The experiment is conductedusing the three possible features (word,POS
and NP tag) with a window size of five ([-2, +2]). The genetic algorithm generated
20 templates with an expected atomic term size of 3. As we can see, the results are
very good since we generate only 20 templates with the simplest atomic term. The
loss of F-measure is smaller than 1% in the best ga-training sets. Also the genetic
approaches takes less training time, since the templates are very simple.

Figure 2 shows the results for the Maximum Template Size (MTS) approach.
The atomic term list used is {npt[0], npt[−1], npt[−2], npt[1], npt[2], pos[0],
pos[1], pos[2], pos[−2], pos[−1], pos[−3,−1], pos[1, 3], word[0], word[1], word[2],
word[−1], word[−2], word[−3,−1], word[1, 3]}. The results are almost the same.
We do not use very complex atomic terms in order to maintain the simplicity of
the approaches, avoiding the need of a specialist to determine the atomic term
list. The genetic algorithm generated 20 templates with maximum atomic term
size of 5. The overall training time is increased, since we added atomic terms
that may instantiate more candidate rules.
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Fig. 2. Results for the Maximum Template Size approach

Fig. 3. Results for the Fixed List of Atomic Terms approach

The experiment using the Fixed List of Atomic Terms (FLAT) approach is quite
similar to the previous one, with same main parameters, and is reported in
Figure 3.The only difference is thatwedefine the expected template size,whichwas
fixed in 4. We can see that the results are very similar to the previous one, in terms
of F-measure and training time, since the two approaches are quite equivalent.

The last conducted experiment uses the Template List (TL) approach. In this
experiment, we try to find out a better combination of templates than the one
provided by a specialist. Here, we use the template set proposed in [3]. The
genetic generations are started with 80% of the templates activated. Figure 4
shows the results for this experiment. We can see that the template combination
found by our approach achieve better results than the template set proposed by
the specialist. However, this achievement implies in an increase of the overall
training time.

We conducted other experiments with the English text chunking (CK) and
Portuguese named entities (NE) tasks. The text chunking corpus is the same used
in [3] and in the Base NP experiments, with the text chunking tags. The named
entities corpus used is the same reported in [8]. The NE corpus was divided into
a 1722-sentence (27055 tokens) training set and a 378-sentence (6084 tokens)
test set. This corpus is tagged with POS tags and NE tags.

Due to space constraints, we show only the results of the best generated clas-
sifiers for each approach. The overall results in terms of F-measure and training
time are similar to the ones reported for the base NP chunking. Figure 5 shows
the results for the two experiments. The only aspect to except is that much more
relative training time was needed in the NE problem since the TBL template de-
signers managed to build very compact light templates with very short training
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Fig. 4. Results for the Template List approach

Fig. 5. Results for English Text Chunking and Portuguese Named Entities Extraction

times. That is why these relative training times are scaled by a factor of 1% in
Figure 5.

5 Conclusions

TBL Template construction is a highly expensive process with strong impact in
the classifier’s accuracy. In this paper, we presented an evolutionary approach
to help the creation of TBL templates. Our schemes use simple template design
and very little training data to develop a set of templates.

We show a set of experiments that demonstrate the applicability and the
effectiveness of the proposed method. The experimental results indicate that our
approach achieves much better accuracy than the base line algorithm. Moreover,
in many cases, our method slightly outperformed the F-measures obtained by the
handcrafted templates with compatible training time since the domain expert
was removed of most of the process.
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