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Abstract. In this paper we present several interest points detectors
and we analyze their suitability when used as landmark extractors for
vision-based simultaneous localization and mapping (vSLAM). For this
purpose, we evaluate the detectors according to their repeatability under
changes in viewpoint and scale. These are the desired requirements for
visual landmarks. Several experiments were carried out using sequence
of images captured with high precision. The sequences represent planar
objects as well as 3D scenes.

1 Introduction

Acquiring maps of the environment is a fundamental task for autonomous mobile
robots, since the maps are required in different higher level tasks. As a result,
the problem of simultaneous localization and mapping (SLAM) has received
significant attention. Typical approaches use range sensors to build maps in two
and three dimensions (see, for example, [1,2,3] [4,5,6]). In recent years there is
an increasing interest on using cameras as sensors. Such approach is sometimes
denoted as visual SLAM (vSLAM). Cameras offer higher amount of information
and are less expensive than lasers. Moreover, they can provide 3D information
when stereo systems are used.

Usual approaches using vision apply a feature-based SLAM, in which visual
features are used as landmarks. The main issue when using vSLAM is how
select suitable features on the images to be used as reliable landmarks. When
the map to construct has three dimensions, the landmarks must additionally
be robust to changes in the scale and viewpoint. Different vision features has
been used for mapping and localization using monocular or stereo vision, as for
example, lines [7], region of interest [8]; and interest points, as SIFT [9,10,11],
Harris corner detector [12,13] or SURF [14]. The interest points detectors have
received most of the attention in vSLAM. The points detected are typically
invariant under rotation, translation, scale and only partially invariant under
changes in viewpoint. These theoretical properties made them suitable for been
used as visual landmarks. In practice, however, the stability of the points is
not always maintained and the matching between them becomes difficult. Some
solutions have been proposed to solve this problem, as combining several methods
in one detector [15] or tracking the points during several frames to keep the
stability [16,10]. However, the question of which interest point detector is more
suitable for vSLAM is still open.
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In this paper we present several evaluations of different point detectors that
are typically used in vSLAM. The extracted points used as landmarks should be
robust under scale and viewpoint changes. These requirements are necessary for
vSLAM, since the robot must be able to detect and associate new landmarks to
previous ones. Under these conditions we analyze the repeatability of the points
in consecutive images and the probability of been detected in future ones.

The rest of the paper is organized as follows. After discussing some related
work in Section 2, we present different interest point detectors in Section 3. Sec-
tion 4 introduces the evaluation methods used in this work. Several experiments
are presented in Section 5. We finally conclude in Section 6.

2 Related Work

Visual SLAM has been an interesting topic in mobile robotics for the last years.
Different methods has been used to extract visual landmarks. Lemaire and
Lacroix [7] use segments as landmarks together with and EKF-based SLAM
approach. Frintrop et al. [8] extract regions of interest (ROI) using the atten-
tional system VOCUS. Other authors use SIFT features as landmarks in the
3D space [9,16]. Little et al. [17] and Gil et al. [10] additionally track the SIFT
features to keep the most robust ones; and Valls Miro et al. [11] use SIFT to map
large environments. Harris corner detectors has also been used as landmarks for
monocular SLAM (Davison and Murray [12]) or in Autonomous Blimps (Hy-
gounenc et al. [13]). Finally, Murillo et al. [14] present a localization method
using SURF features.

In the context of matching and recognition, many authors have presented
their works evaluating several interest point detectors. The work presented by
Mikolajczyk and Schmid [18], uses different detectors to extract affine invariant
regions, but only focuses on the comparison of different description methods.
In [19], a collection of detectors is evaluated. The criteria used measures the
quality of these features for tasks like image matching, object recognition and
3D reconstruction. However they do not take into account the repeatability in
the successive frames of a sequence. In contrast to the previous works we evaluate
the different interest point detectors under the particular conditions of vSLAM.

3 Interest Point Detectors

Along this paper we suppose that a mobile robot is used for constructing the
map of the environment. The robot is equipped with a camera used to acquire
images. Interest points are then extracted from these images and used as land-
marks. We also suppose that the height of the camera on the robot is fixed as
well as its orientation. This is the typical configuration in visual SLAM systems.
Additionally, we assume that visual landmarks are static, i.e. they do not change
their position or oriention during the experiments. According to the previous cri-
terion, we following present five different interest point detectors used to extract
visual landmarks.
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3.1 Harris Corner Detector

The Harris Corner Detector [20] is probably the most widely interest point de-
tector used due to its strong invariance to scale, rotation and illumination varia-
tions, as well as image noise. The detector is based on the matrix C(x, y) which
is computed over a pxp patch for each interest point at position (x, y) as:

C(x, y) =
( ∑

I2
x

∑
IxIy∑

IxIy

∑
I2
y

)
, (1)

where Ix,Iy are the image gradients in horizontal and vertical direction. Let λ1

and λ2 be the eigenvalues of the matrix C(x, y), we define the auto-correlation
function R as:

R = λ1λ2 − k(λ1 + λ2)2 . (2)

This function will be sharply peaked if both of the eigenvalues are high. This
means that shifts in any direction will produce a significant increase, indicating
that it is a corner. A typical value for k is 0.04 [12].

3.2 Harris-Laplace

The interest points extracted by the Harris-Laplace detector [21] are invariant
to rotation and scale. These points are detected by a scale adapted Harris func-
tion and selected in scale-space by the Laplacian operator. The selected scale
determines the size of the support region.

3.3 SIFT

The Scale-Invariant Feature Transform (SIFT) is an algorithm that detects dis-
tinctive keypoints from images and computes a descriptor for them. This algo-
rithm was initially presented by Lowe [22] and used in object recognition tasks.
The interest points extracted are said to be invariant to image scale, rotation,
and partially invariant to changes in viewpoint and illumination. SIFT features
are located at maxima and minima of a difference of Gaussians (DoG) function
applied in scale space. They can be computed by building an image pyramid
with resampling between each level [23]. In this work, we only use the detected
points and we discard the descriptors.

3.4 SURF

Speeded Up Robust Features (SURF) is a scale and rotation invariant detector
and descriptor which was recently presented by Bay et al. [24]. This detector
is based on the Hessian matrix because of its accuracy and low computational
time. SURF is based on sums of 2D Haar wavelet responses and makes an ef-
ficient use of integral images. According to [24], this algorithm outperforms
existing methods with respect to repeatability, robustness and distinctiveness
of the descriptors. As with SIFT features, we concentrate only on the detected
points and we discard the descriptors.
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3.5 SUSAN

SUSAN (Smallest Univalue Segment Assimilating Nucleus) is an approach to low
level image processing [25]. The SUSAN principle is implemented using digital
approximation of circular masks. If the brightness of each pixel within a mask is
compared with the brightness of that mask’s nucleus, then an area of the mask
can be defined which has the same brightness as the nucleus. SUSAN has been
traditionally used for object recognition.

4 Evaluation Methods

To evaluate the previous methods we use sequences of images representing the
same scene under different scales and viewpoints. In this section we explain how
these sequences were evaluated. We first introduce the tracking method used to
follow the interest points in each frame of the sequences. We then describe the
measurements used to study the repeatability and robustness of each method
under changes in scale an viewpoint. In this work we do not study the invariance
under changes in illumination.

4.1 Tracking

For each image in a sequence, we first extract the interest points using the
methods explained in Section 3. To track each point in successive images we
try to match the interest points using the homography matrix for each pair of
consecutive images as follows [26]. Given a point Y in 3D space, we assume that
this point projects at position y1 = P1Y in image I1 and at position yi = PiY
in image Ii, with projection matrices P1 and Pi. If we suppose that the point Y
is detected in both images, then

yi = H1i × y1, with H1i = PiP
−1
1 . (3)

The homography matrix H1i can be computed by selecting manually four corre-
spondences of coplanar points between images 1 and i. Given a detected point
in one image, we predict its position in the consecutive image using the homog-
raphy matrix. If the predicted position lies at a distance below 2 pixels from an
interest point detected in the second image, then we consider that the interest
point is successfully tracked. If no interest point lies in the neighborhood of the
predicted point, then the tracking of the point is lost. This method has been
applied to sequences of images containing planar objects, since the computation
of the homography matrix can only be made for coplanar points in the space. In
the case of 3D images a similar method was used but with manual correction if
the interest point in the second image was not found because of some occlusion.

An example of a tracking using this method is shown in Figure 1 in which the
interest points were extracted with the Harris detector (white points). In this
sequence, the red points in the last image indicate points that could be tracked
along the whole sequence. The blue points are those ones that have been lost
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Fig. 1. Sequence of images with persistent points (red), lost points (blue) and points
detected (white)

from the previous image. A point that is lost, even only once, is rejected by
our tracking algorithm since we have considered that this kind of points are not
stable enough for our purpose.

4.2 Evaluation Measurements

As explained in Section 3, we want to evaluate the detectors according to the
SLAM requirements. In this sense, we have followed a repeatability criterion
which means that the detection is independent of changes in the imaging con-
ditions, i. e. scale and viewpoint. Applying our tracking method we first define
the survival ratio Si in the frame i as:

Si =
npi

np0

· 100 , (4)

where npi and np0 are the number of points detected in the frame i and the first
frame respectively. A perfect detector would detect the same points in the first
and the last frame, i.e. Si = 100% for every frame. However, as we will see in
the experiments, we normally observe a decreasing tendency in Si, meaning that
some of the points observed in the first frame are lost in subsequent frames.

When the robot explores the environment, it is desirable to extract visual
landmarks that are stable and can be detected in a number of p consecutive
frames [17,10]. As a result, the number of landmarks in the map is reduced and
also the complexity of the SLAM problem. However, setting p poses a problem:
if p is low, a high number of spurious points will be integrated in the map. If
p is high, the number of landmarks in the map will be too low. For example,
when the robot turns, the landmarks disappear rapidly from the camera field of
view and will not be integrated in the map if p is high. Taking into account this
requirement we analyze for how many frames we should track a landmark before
integrating it in the map. We use the following conditional probability:

P (tfa |tfb
) =

tfa

tfb

, (5)

where tfi is the number of points tracked until frame fi. This value represents
the probability of an interest point to be tracked until frame fa given that it was
tracked until frame fb. This value ranges between 0 and 1. It is 0 when all points
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Fig. 2. The top sequence shows images of a poster from different viewpoints. The
bootom sequence shows the same poster with changes in scale.

tracked until fb are lost in frame fa, and 1 if both frames fa and fb contains the
same tracked points.

Expression (5) gives a prediction of the survival of an interest point in future
frames if the movement of the robot maintains similar. This expression can be
used to estimate the number of frames p a landmark has to be tracked before it
is incorporated in the map.

5 Experiments

In order to evaluate the different interest point detectors, we captured 12 se-
quences of viewpoint changing images each containing 21 images. For each image
we increased the angle in 2.5 degrees. Additionally we captured 14 sequences of
images with scale changes each containing 12 images. In this last case the cam-
era moved 0.1 meters in each image. The sequences contain images of planar
objects (as posters) and 3D scenes. Examples of both types of images are shown
in Figure 2 and Figure 3 respectively.

All images were captured using a STH-MDCS2 stereo head from Videre De-
sign. Only one of the stereo images was used at each time to form the sequences.
The stereo head was mounted on a robotic arm to achieve constant variations of
viewing angle and distance change. Finally, the images were captured at different
resolutions (320x240, 640x480 and 1280x960), so that the set of images could be
as much representative as possible.

In a first experiment we analyze the repeatability of the different detectors
in the sequences with changes in the viewpoint. In SLAM it is important that
the landmarks detected with a certain angle and distance are also detected from
different ones. This comes from the fact that a mobile robot will see the same
point in the scene from different poses in the environment. For this experiment
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Fig. 3. The top sequence shows images of a 3D scene from different viewpoints. The
bottom sequence shows a similar scene with changes in scale.

we use as data all the sequences simultaneously and we calculate Expression (4)
using the interest points of the images in all sequences, that is, npi =

∑s=12
s=1 nps

i

for all the 12 sequences.
As the left image of Figure 4 suggests, the Harris detector seems to be the most

stable, being able to maintain almost 30% of the initial points in all images of the
sequences with viewpoint changes of 50 degrees. Similar results are obtained when
using Harris at different scales (right image of Figure 4). The SIFT detector obtain
also good results at different viewpoints, but it gets worse under changes in scale.

Figure 5 presents a different way of comparing the detectors. In this case, the
plots show the probability that a point is found in the last frame given that
it was tracked until the frame i, as shown in Expression (5). Again the Harris
detector gives the best results under changes in viewpoint and scale. We can
see that, for example, a Harris-point which is tracked for 10 frames will have a
probability of 0.7 of being tracked until frame 20.

Although the plots of Figure 4 and Figure 5 contain similar information, the
second one can be used to further discriminate between different detectors. For
example, in the right image of Figure 4, the SIFT, SURF and Harris-Laplace
descriptors show a similar behavior, however the right image in Figure 5 shows
that the SURF descriptor is more stable. If we follow a landmark extracted
with the SURF descriptor for 6 frames, it will have a probability of 0.5 of being
tracked until frame 12, while this probability decreases to 0.4 when the point
was extracted using SIFT or Harris-Laplace.

Table 1 presents the number of interest points detected in the first image and
the number of points that were tracked until the last frame. It can be clearly seen
that the number of points detected differs when using different methods. This
stems from the fact that we are using an heterogeneous image database and it is
not possible to adjust each of the detectors in a way that the number of detected
points is the same for all the methods. For instance, the parameters for each of
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Fig. 4. The left plot shows the survival ratio for each of the frames in the sequences
with change in viewpoint. The right plot shows the same value in the sequences with
change in scale.
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Fig. 5. The figures show the probability of a point being detected in the last frame given
that it was detected in the frame i of the sequences: left with changes in viewpoint,
and right with changes in scale

Table 1. Number of points detected in the first and last image of each sequence

Changes in Viewpoint Harris Harris Laplace SUSAN SIFT SURF

Number of points detected in the first image 2064 2588 2967 3808 10372

Number of points tracked to the last image 568 282 68 407 1415

Changes in Scale Harris Harris Laplace SUSAN SIFT SURF

Number of points detected in the first image 5728 5685 6421 8207 24996

Number of points tracked to the last image 1594 788 465 1058 4295

the five methods can be adjusted in a way that the number of points detected in a
single image would be equal. However, the same parameters applied to a different
image would result in differing number of points detected. In consequence, the
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results presented here are normalized to the number of points that appear in the
first frame, so that they can be compared.

6 Conclusions

In this paper we presented an evaluation of different interest point detectors. We
focused on the use of interest points in visual-based SLAM. For this purpose we
analyzed each detector according to the properties desired for visual landmarks:
repeatability and accuracy. The results of the experiments showed the behavior
of five different detectors under changes in viewpoint and scale. We believe that
this information will be usefull when selecting an interest point detector as visual
landmark extractor for SLAM.
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