
D. Borrajo, L. Castillo, and J.M. Corchado (Eds.): CAEPIA 2007, LNAI 4788, pp. 90–99, 2007.
© Springer-Verlag Berlin Heidelberg 2007

CTC: An Alternative to Extract Explanation from
Bagging

Ibai Gurrutxaga, Jesús Mª Pérez, Olatz Arbelaitz, Javier Muguerza, José I. Martín,
and Ander Ansuategi

Dept. of Computer Architecture and Technology, University of the Basque Country
M. Lardizabal, 1, 20018 Donostia, Spain
{i.gurrutxaga,txus.perez,

olatz.arbelaitz,j.muguerza,j.martin}@ehu.es
aansuategui001@ikasle.ehu.es
http://www.sc.ehu.es/aldapa

Abstract. Being aware of the importance of classifiers to be comprehensible
when using machine learning to solve real world problems, bagging needs a
way to be explained. This work compares Consolidated Tree’s Construction
(CTC) algorithm with the Combined Multiple Models (CMM) method proposed
by Domingos when used to extract explanation of the classification made by
bagging. The comparison has been done from two main points of view: accu-
racy, and quality of the provided explanation. From the experimental results we
can conclude that it is recommendable the use of CTC rather than the use of
CMM. From the accuracy point of view, the behaviour of CTC is nearer the be-
haviour of bagging than CMM’s one. And, analysing the complexity of the
obtained classifiers, we can say that Consolidated Trees (CT trees) will give
simpler and, therefore, more comprehensible explanation than CMM classifiers.
And besides, looking to the stability of the structure of the built trees, we could
say that the explanation given by CT trees is steadier than the one given by
CMM classifiers. As a consequence, the user of the classifier will feel more
confident using CTC than using CMM.

1 Introduction

The main objective of machine learning techniques when used to solve real world
problems is to automate knowledge acquisition for performing useful tasks. The most
pursued objective is probably accurate prediction (error or guess), but there are real
domains such as fraud detection, illness diagnosis, etc., where it is not enough to
obtain the right classification and the users wish to gain insight into the domain [5].
To solve this kind of problems, the learner’s output needs to be comprehensible. In
other situations where comprehensibility is not necessary, it will also be an advantage
for classifiers because it will help in processes of refinement.

In this context, classifiers can be divided in two main groups: classifiers with no
comprehensible output and classifiers with comprehensible output. In the first group
we can find artificial neural networks, support vector machines, multiple classifiers,

 CTC: An Alternative to Extract Explanation from Bagging 91

etc., that, due to their complexity and structure do not provide an explanation to the
classification. The second group includes classifiers that focus on representation, such
as decision trees and rule sets. Comprehensible methods are usually very dependent
on the training data. That is to say, classifiers induced from slightly different samples
of the same data set are very different in accuracy and structure [6]. As Turney found
when working on industrial applications of decision tree learning, not only to give an
explanation but the stability of that explanation is of capital importance: “the
engineers are disturbed when different batches of data from the same process result in
radically different decision trees. The engineers lose confidence in the decision trees
even when we can demonstrate that the trees have high predictive accuracy” [14].

Decision trees have been chosen as paradigm with comprehensive output in this
work. Since in a decision tree the explanation is given by its structure, if we want to
obtain a convincing explanation we need a way to build structurally steady trees with
small complexity. Multiple classifiers such as bagging and boosting [1][2][4][7][13]
reduce the error rate, but, even when the used weak classifiers are decision trees, a set
of them needs to be combined to make a decision on the whole, and, as a
consequence, comprehensibility disappears. Domingos explained it very clearly in
[5]: “while a single decision tree can easily be understood by a human as long as it is
not too large, fifty such trees, even if individually simple, exceed the capacity of even
the most patient”. Domingos proposes Combined Multiple Models (CMM) algorithm
[5] to extract explanation from bagging or any other multiple classifier.

We have developed a methodology for building classification trees based on
several subsamples, Consolidated Trees’ Construction Algorithm (CTC), which is less
sensitive to changes in the training set from a structural point of view. Therefore the
classification is contributed with a more steady explanation. The aim of this work is to
show that CTC algorithm can be used to extract explanation from bagging achieving
better results than CMM from three points of view: accuracy, complexity of the built
classifiers and stability in explanation.

The paper proceeds describing the two alternatives used to extract explanation
from bagging, CTC and CMM, in Section 2. Details about the experimental
methodology are described in Section 3. In Section 4 we present an analysis of the
experimental results: comparison in accuracy, complexity and structural stability of
CTC and CMM algorithms. Finally Section 5 is devoted to show the conclusions and
further work.

2 Two Alternatives to Extract Explanation from Bagging

The alternatives we are going to compare in this work, CTC and CMM, propose
different strategies to combine the knowledge of the m classifiers used in bagging in a
single one in order to maintain the explaining capacity of the final classifier.

2.1 CMM Algorithm

CMM proposes to recover the comprehensibility loss in bagging using the learning
algorithm to model the produced data partitioning. The learning is done from
randomly generated examples that are classified using the bagging. Finally these

92 I. Gurrutxaga et al.

examples will be used to build a classifier with comprehensible output. CMM is a
general algorithm that can be used with different learners and ensemble methods but
in this work we will use it to extract explanation from bagging when the selected
learning algorithm is classification trees, specifically C4.5 release 8 of Quinlan [12].
The knowledge of this multi-classifier will be transmitted to CMM using it to
artificially generate and label the examples that will be used to build it.

Algorithm 1 shows Domingo’s CMM proposal adapted to the concrete
implementation. N_S bootstrap samples are extracted from S, the original training set,
and one C4.5 tree is built from each of them. n new examples are generated using the
probability distribution implicit in the generated C4.5 trees (n/N_S examples from
each component C4.5 tree). The corresponding class (c) is assigned to each example
based on the class the bagging of all the generated C4.5 trees assigns them (c=
bagging M1,…, MN_S(x)). This way, the examples will be representative of the
combination of basic classifiers. The CMM classifier will be the C4.5 tree built from
the new sample obtained adding the n randomly generated examples to the original
training set.

Algorithm 1. CMM Algorithm for bagging and C4.5

Inputs:
S training set
C4.5 classifier with comprehensible output
bagging procedure for combining models
N_S (Number_Samples) number of component models to generate
n number of new examples to generate

Procedure CMM (S, C4.5, bagging, N_S, n)

for i := 1 to N_S
 Let Si be a bootstrap sample of S
 Let Mi be the model produced by applying C4.5 to Si
end for

for j := 1 to n
 Let x be the randomly generated example
 Let c be the class assigned to x by bagging M1,…, MN_S(x)
 Let T = T ∪ {(x,c)}
end for

 Let M be the model produced by applying C4.5 to S ∪T

2.2 CTC Algorithm

CTC algorithm was created to solve a fraud detection problem where the class
distribution needed to be changed and explanation was required. In this kind of
problems, classification trees built from different subsamples are very different in
structure and accuracy. CTC draws together the information of a set of subsamples
building a single tree [10]. The structural consensus is achieved at each step of the
tree’s building process. The different subsamples are used to make proposals about

 CTC: An Alternative to Extract Explanation from Bagging 93

the feature that should be used to split in the current node, and, only one feature is
selected. The repetition of this process in every node leads to the construction of a
single tree. In order to make the CTC comparable to CMM, the split function used is
the gain ratio criterion (the same used by Quinlan in C4.5 [12]). The iterative process
is described in Algorithm 2.

CTC algorithm uses several subsamples to induce a single tree, therefore, if we
want to use it to explain the classification made by bagging, the same subsamples
used for bagging will be used to build the CT tree.

The algorithm starts extracting a set of subsamples (N_S) from the original training
set. The subsamples are obtained based on the desired resampling technique. In this
case the bootstrap samples used for bagging will be used. LSi contains all the data
partitions created from each subsample Si. When the process starts, the only existing
partitions are the bootstrap subsamples of bagging. The pair (X,B)i is the split proposal
for the first data partition in LSi. X is the feature selected to split and B indicates the
proposed branches or criteria to divide the data in the current node. In the
consolidation step, Xc and Bc are the feature and branches selected by a voting process
among all the proposals. The process is repeated while LSi is not empty. The
Consolidated Tree’s generation process finishes when, in the last subsample in all the
partitions in LSi, most of the proposals are not to split it, so, to become it a leaf node.
When a node is consolidated as a leaf node, the a posteriori probabilities associated to
it are calculated averaging the a posteriori obtained from the data partitions related to
that node in all the subsamples. Once the consolidated tree has been built it works the
same way a decision tree does.

Algorithm 2. CTC Algorithm

 Generate N_S bootstrap samples (Si) from S
CurrentNode := RootNode
for i := 1 to N_S
 LSi := {Si}
end for
repeat
 for i := 1 to N_S

CurrentSi := First(LSi)
 LSi := LSi - CurrentSi

Induce the best split (X,B)i for CurrentSi
 end for
 Obtain the consolidated pair (Xc,Bc) based on (X,B)I, 1 ≤ i ≤ N_S
 if (Xc,Bc) ≠ Not_Split
 Split CurrentNode based on (Xc,Bc)
 for i := 1 to N_S

Divide CurrentSi based on (Xc,Bc) to obtain n subsamples {S1
i, …, Sn

i}
LSi := {S1

i, …, Sn
i} ∪ LSi

 end for
 else consolidate CurrentNode as a leaf
 end if
CurrentNode := NextNode
 until ∀i, LSi is empty

94 I. Gurrutxaga et al.

3 Experimental Methodology

Eleven databases of real applications from the UCI Repository benchmark [9] have
been used for the experimentation: Breast-W, Iris, Heart-C, Glass, Segment, Voting,
Lymph, Hepatitis, Hypo, Soybean-L, and KDDcup99. For KDDcup99, in order to
reduce the experimentation cost, we have used a stratified sample of 4,941 examples
where the number of classes has been reduced to two (attack / not attack). The used
domains have a wide range of characteristics: the number of patterns goes from 148 to
4,941; the number of features from 4 to 41; and the number of classes from 2 to 15.

The validation methodology used in this experimentation has been to execute 5
times a 10-fold stratified cross validation [8]. In each of the folds of the cross-
validation we have obtained 200 bootstrap samples. These subsamples have been used
to explore the effect of the N_S parameter (12 values: 3, 5, 10, 20, 30, 40, 50, 75, 100,
125, 150 and 200) in the particular implementation of bagging. So in each one of the
50 folds of the cross validations 12 bagging classifiers have been built. We have
selected for each database the value of N_S that minimizes error rate. Once this
parameter has been fixed it has been used to build CT trees and CMM classifiers and
compare them from two points of view: accuracy and quality of the explanation. The
quality of explanation has been evaluated based on complexity and stability of the
given explanation. Complexity has been measured as the number of internal nodes of
the tree, and, the stability in explanation as structural stability of the tress which has
been measured by Common parameter (number of identical nodes —level, variable
and division— among two trees). Common has been normalized in respect to the
complexity so that the parsimony principle was taken into account. We will call this
measure %Common and it will quantify the identical fraction of two or more
trees [11].

In both cases, error and explanation, an analysis of the statistically significant
differences has been done based on the recent work of Demšar [3].

For building CMM classifiers the number of randomly generated examples (n)
needs to be fixed. Taking into account the process used to generate examples (n/N_S
examples are generated from each component C4.5 tree) and that the number of
component C4.5 trees goes from 3 to 200, this number needs to be large enough to
generate a minimum set of examples from each one of the C4.5 trees and, as the
original sample is added to these examples to build the CMM, it also needs not to be
too small compared to it. Domingos generated 1,000 artificial examples but the
databases used for the experimentation were smaller than the ones used in our
experimentation. As a consequence, the number has been fixed to max (1,000; (NPT *
1.5)) being NPT the number of patterns of the training set.

4 Experimental Results

CTC and CMM algorithms have been compared from three points of view: error,
complexity, and structural stability (measured based on Common and %Common).
From a practical point of view, the complexity quantifies how simple the given expla-
nation is, Common and %Common quantify structural stability of the trees, whereas
the error would quantify the “quality” of the explanation given by the tree. Evidently

 CTC: An Alternative to Extract Explanation from Bagging 95

an improvement in comprehensibility must be supported with a reasonable error rate.
As a consequence, we will start the comparison from the accuracy point of view.

4.1 Discriminating Capacity

In the first step, the effect of N_S in bagging has been analyzed so that for each
database the best number of samples could be selected. Table 1 shows the obtained
results. We can observe that even if the use of several basic classifiers provides
bagging with stability, the results are not exactly the same for different values of N_S.
Minimum error rates for each database are marked in bold. It can be observed that the
smallest average error is achieved when N_S is 100. The values of N_S obtaining best
results have been selected to build CTC and CMM classifiers.

Table 1. Error values for bagging in 11 databases and different values of N_S

Bagging
N_S 03 05 10 20 30 40 50 75 100 125 150 200

Breast-w 5.61 5.24 5.35 4.64 4.84 4.78 4.78 4.75 4.64 4.61 4.64 4.70
Iris 5.87 6.40 5.87 6.53 6.13 5.87 5.73 5.47 5.47 5.33 5.47 5.33
Heartc 24.34 23.41 21.91 21.58 21.97 21.50 21.44 20.91 20.39 20.53 20.53 20.46
Glass 29.68 27.47 26.45 24.59 24.69 24.37 23.70 23.62 23.13 24.18 23.71 23.85
Segment 3.75 3.18 2.80 2.64 2.57 2.48 2.47 2.38 2.40 2.42 2.39 2.43
Voting 4.05 3.82 3.73 3.50 3.59 3.54 3.50 3.59 3.45 3.46 3.41 3.50
Lymph 21.10 20.77 20.29 19.38 18.85 19.56 19.41 19.07 18.82 19.17 19.17 18.60
Hepatitis 20.11 18.05 17.80 17.88 17.89 18.36 17.37 16.96 16.97 17.08 16.61 16.83
Hypo 0.82 0.75 0.78 0.77 0.75 0.76 0.76 0.76 0.76 0.75 0.76 0.75
Soybean_large 13.24 11.24 10.41 10.00 9.17 9.38 9.45 9.24 9.03 9.10 9.10 9.38
kddcup 0.37 0.31 0.36 0.33 0.32 0.32 0.30 0.32 0.30 0.28 0.28 0.28
Average 11.72 10.97 10.52 10.17 10.07 10.08 9.90 9.73 9.58 9.72 9.64 9.65

Before starting with the comparison of CTC and CMM we compare in Table 2 er-
ror rates achieved for both algorithms, C4.5 (as base classifier) and bagging, so that
we situate CTC and CMM in respect to them. Results in Table 2 show that as we
expected bagging is the algorithm achieving the smallest error rates, whereas the
largest ones are achieved with C4.5. CTC and CMM are situated among these two
algorithms, being the error of CMM slightly smaller in average.

The multiple test proposed by Demšar in [3] has been used to deeper analyse the
differences among the four algorithms. With this aim, we need to rank each algorithm
for every database. Average rank values are: bagging (1.36), CTC (2.50), C4.5 (3.05)
and CMM (3.09). Even if in results in Table 2 we could see that in average CMM
achieves smaller error rate than CTC, this was an effect of the average. Rank values
show that, if instead of analysing absolute values we analyse the rank, CTC is in sec-
ond position, whereas CMM is in the 4th one, even behind C4.5.

96 I. Gurrutxaga et al.

Table 2. Error values for C4.5, bagging, CTC and CMM in 11 databases. N_S fixed based on
best results obtained for bagging.

 C4.5 N_S Bagging CMM CTC
Breast-w 5.63 125 4.60 5.26 5.60
Iris 5.75 125 5.33 5.34 4.14
Heartc 23.96 100 20.39 22.85 23.42
Glass 31.55 100 23.13 28.16 29.85
Segment 3.24 75 2.38 3.27 3.33
Voting 3.41 150 3.41 3.69 3.36
Lymph 20.44 200 18.60 20.77 20.19
Hepatitis 20.29 150 16.61 18.51 20.95
Hypo 0.71 5 0.75 0.78 0.73
Soybean_large 11.02 100 9.03 11.57 10.67
kddcup 0.46 200 0.28 0.50 0.46
Average 11.50 9.50 10.97 11.16

Next step is to analyse whether significant differences among the 4 algorithms ex-
ist using Friedman test [3]. The critical value (α=0.05) is 2.9223 and the achieved
value has been FF= 6.3293. As a consequence significant differences exist. And we
need to use a post-hoc test. We will use Nemenyi test [3] to compare all classifiers to
each other and Bonferroni-Dunn test [3] to compare all classifiers with a control clas-
sifier (C4.5 in our work). Nemenyi test (for 4 algorithms, 11 databases and α=0.05)
says that if the difference among average ranks is smaller than 1.4142 there is not
significant difference among the compared algorithms, whereas the critical value for
Bonferroni-Dunn is 1.3179.

5

Fig. 1. Results for Nemenyi and Bonferroni-Dunn for C4.5, bagging, CTC and CMM

 CTC: An Alternative to Extract Explanation from Bagging 97

Figure 1 shows graphically results for these tests based on CD ((Critical Differ-
ence)) diagrams. In Nemenyi’s test (upper line in the figure) two algorithms are con-
nected by a line if no significant differences exist whereas for Bonferroni-Dunn test
(lower line in the figure) there are significant differences with the control classifier
only if the corresponding point is outside the line. Graphs show that based on both
kind of tests, there are not significant differences among bagging and CTC (there are
significant differences among bagging and the rest of the algorithms) but neither
among CTC and the rest of the algorithms.

To make a deeper analysis of CTC and CMM we will make the statistical tests pro-
posed by Demšar for two algorithms (Sign Test and Wilcoxon Signed-Ranks Test).
We can use the signs obtained when calculating relative improvements of CTC with
respect to CMM presented in Table 3 for the Sign Test. Results in Table 3 show that
CTC has smaller error than CMM in 6 databases out of 11 (in bold) obtaining an
average relative improvement of 2.28%. However, none of the two tests finds signifi-
cant differences (α=0.05) in the set of 11 databases we have used (for the Sign test the
statistic should be at least 9 and it should be smaller than 10 for Wilcoxon test). As a
consequence we could say that even if in accuracy the behaviour of CTC and CMM is
similar, it is slightly better for CTC.

Table 3. Relative improvement of CTC with respect to CMM for each database; average
relative improvement and values of the statistics of the Sing Test and Wilcoxon Test

 CTC - CMM
Breast-w 6.46%
Iris -22.46%
Heartc 2.52%
Glass 6.00%
Segment 1.89%
Voting -8.84%
Lymph -2.81%
Hepatitis 13.18%
Hypo -6.15%
Soybean_large -7.73%
kddcup -7.20%
Average -2.28%
Sign Test 6
Wilcoxon Test 31

4.2 Explaining Capacity

Comprehensibility or explaining capacity of classification trees and quality of the
given explanation can be measured by complexity and stability (common &
%common). These values are shown in Table 4. If we analyse the complexity, results
show that in 10 databases out of 11, trees obtained with CTC are simpler than the
ones obtained with CMM with a relative average improvement of 32.08%. Similar

98 I. Gurrutxaga et al.

behaviour is found when analysing the stability. In most of the databases Common and
%Common are larger for CTC than for CMM (with average relative improvements of
36.33% and 118.41%). If we look to the statistics for the Sign Test and Wilcoxon Test
(in the two last rows in Table 4) we find that there are significant differences in favour
of CTC in the three parameters. So, we can state that from the explanation point of view
CT classifiers are simpler and more stable than CMM classifiers.

Table 4. Explanation related values: Complexity, Common and %Common for CTC and CMM

 Complexity Common %Common
 CTC CMM CTC CMM CTC CMM
Breast-w 4.02 3.52 2.71 2.56 68.41 74.10
Iris 3.42 5.42 1.81 2.87 53.02 53.15
Heartc 22.51 34.54 1.91 1.55 8.49 4.47
Glass 34.71 54.14 4.97 3.56 14.34 6.58
Segment 62.64 100.24 14.79 12.95 23.51 12.94
Voting 5.13 6.74 4.35 3.11 84.74 46.35
Lymph 12.33 21.74 4.12 2.29 33.28 10.56
Hepatitis 10.16 28.30 2.14 1.57 21.04 5.57
Hypo 5.98 7.38 2.83 2.52 48.44 34.72
Soybean_large 25.98 39.36 9.42 4.52 36.25 11.48
kddcup 15.80 25.42 5.42 3.04 34.27 11.82
Average 18.43 29.71 4.95 3.69 38.71 24.70
Sign Test 10 10 9
Wilcoxon Test 1 5 4

5 Conclusions

Being aware of the importance of classifiers to be comprehensible when using
machine learning to solve real world problems, we propose in this work CTC
algorithm as an alternative to the Combined Multiple Models (CMM) algorithm
proposed by Domingos to extract explanation from bagging. We have compared both
proposals from three points of view: accuracy, complexity of the built classifiers and
stability in explanation.

From the experimental results we can conclude that it is recommendable the use of
CTC rather than the use of CMM. From the accuracy point of view, the behaviour of
both algorithms, CTC and CMM, is similar, although the behaviour of CTC is nearer
to bagging’s one than the behaviour of CMM. Based on Demšar proposal for
statistical analysis we can say that there are not significant differences among bagging
and CTC whereas these differences exist if we compare bagging with CMM or C4.5.
After analysing the complexity of both kinds of trees, we can say that CT trees will
give simpler and as a consequence more comprehensible explanation than CMM
classifiers. We could say this explanation is 32.08% simpler. And besides, looking to
how steady the structure of the built trees is, we could say that the explanation
fraction maintained common in Consolidated Trees at least twice as big as the one

 CTC: An Alternative to Extract Explanation from Bagging 99

maintained CMM classifiers. As a consequence, the explanation given to bagging
using CTC will be simpler and more stable than the one given by CMM.

There are many things that can be done in the future related to this work. Firstly
the experimentation can be extended to more databases. The way the classification is
made in CTC can be changed: it can be seen as a multiple classifier system that
classifies the same way bagging does but with a single structure. Related to the
measure of stability in explanation, other structural measures can be tried.

Acknowledgments

This work was partly funded by the Diputación Foral de Gipuzkoa and the E.U.
The lymphography domain was obtained from the University Medical Centre, In-

stitute of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. Soklic
for providing the data.

References

1. Bauer, E., Kohavi, R.: An Empirical Comparison of Voting Classification Algorithms:
Bagging, Boosting, and Variants. Machine Learning 36, 105–139 (1999)

2. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)
3. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Ma-

chine Learning Research 7, 1–30 (2006)
4. Dietterich, T.G.: An Experimental Comparison of Three Methods for Constructing En-

sembles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning 40,
139–157 (2000)

5. Domingos, P.: Knowledge acquisition from examples via multiple models. In: Proc. 14th
International Conf. on Machine Learning Nashville, TN, pp. 98–106 (1997)

6. Drummond, C., Holte, R.C.: Exploiting the Cost (In)sensitivity of Decision Tree Splitting
Criteria. In: Proc. of the 17th Int. Conf. on Machine Learning, pp. 239–246 (2000)

7. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proceedings
of the 13th International Conference on Machine Learning, pp. 148–156 (1996)

8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer,
Heidelberg (2001)

9. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning
databases. University of California, Department of Information and Computer Science, Ir-
vine, CA (1998), http://www.ics.uci.edu/ mlearn/MLRepository.html

10. Pérez, J.M., Muguerza, J., Arbelaitz, O., Gurrutxaga, I., Martín, J.I.: Combining multiple
class distribution modified subsamples in a single tree. Pattern Recognition Letters 28(4),
414–422 (2007)

11. Pérez, J.M., Muguerza, J., Arbelaitz, O., Gurrutxaga, I., Martín, J.I.: Consolidated Trees:
an Analysis of Structural Convergence. In: Williams, G.J., Simoff, S.J. (eds.) Data Mining.
LNCS (LNAI), vol. 3755, pp. 39–52. Springer, Heidelberg (2006)

12. Quinlan, J.R. (eds.): C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Mateo, California (1993)

13. Skurichina, M., Kuncheva, L.I., Duin, R.P.W.: Bagging and Boosting for the Nearest
Mean Classifier: Effects of Sample Size on Diversity and Accuracy. In: Roli, F., Kittler, J.
(eds.) MCS 2002. LNCS, vol. 2364, pp. 62–71. Springer, Heidelberg (2002)

14. Turney, P.: Bias and the quantification of stability. Machine Learning 20, 23–33 (1995)

	CTC: An Alternative to Extract Explanation from Bagging
	Introduction
	Two Alternatives to Extract Explanation from Bagging
	CMM Algorithm
	CTC Algorithm

	Experimental Methodology
	Experimental Results
	Discriminating Capacity
	Explaining Capacity

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

