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Abstract. Being aware of the importance of classifiers to be comprehensible 
when using machine learning to solve real world problems, bagging needs a 
way to be explained. This work compares Consolidated Tree’s Construction 
(CTC) algorithm with the Combined Multiple Models (CMM) method proposed 
by Domingos when used to extract explanation of the classification made by 
bagging. The comparison has been done from two main points of view: accu-
racy, and quality of the provided explanation. From the experimental results we 
can conclude that it is recommendable the use of CTC rather than the use of 
CMM. From the accuracy point of view, the behaviour of CTC is nearer the be-
haviour of bagging than CMM’s one. And, analysing the complexity of the  
obtained classifiers, we can say that Consolidated Trees (CT trees) will give 
simpler and, therefore, more comprehensible explanation than CMM classifiers. 
And besides, looking to the stability of the structure of the built trees, we could 
say that the explanation given by CT trees is steadier than the one given by 
CMM classifiers. As a consequence, the user of the classifier will feel more 
confident using CTC than using CMM. 

1   Introduction 

The main objective of machine learning techniques when used to solve real world 
problems is to automate knowledge acquisition for performing useful tasks. The most 
pursued objective is probably accurate prediction (error or guess), but there are real 
domains such as fraud detection, illness diagnosis, etc., where it is not enough to 
obtain the right classification and the users wish to gain insight into the domain [5]. 
To solve this kind of problems, the learner’s output needs to be comprehensible. In 
other situations where comprehensibility is not necessary, it will also be an advantage 
for classifiers because it will help in processes of refinement.  

In this context, classifiers can be divided in two main groups: classifiers with no 
comprehensible output and classifiers with comprehensible output. In the first group 
we can find artificial neural networks, support vector machines, multiple classifiers, 
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etc., that, due to their complexity and structure do not provide an explanation to the 
classification. The second group includes classifiers that focus on representation, such 
as decision trees and rule sets. Comprehensible methods are usually very dependent 
on the training data. That is to say, classifiers induced from slightly different samples 
of the same data set are very different in accuracy and structure [6]. As Turney found  
when working on industrial applications of decision tree learning, not only to give an 
explanation but the stability of that explanation is of capital importance: “the 
engineers are disturbed when different batches of data from the same process result in 
radically different decision trees. The engineers lose confidence in the decision trees 
even when we can demonstrate that the trees have high predictive accuracy” [14].  

Decision trees have been chosen as paradigm with comprehensive output in this 
work. Since in a decision tree the explanation is given by its structure, if we want to 
obtain a convincing explanation we need a way to build structurally steady trees with 
small complexity. Multiple classifiers such as bagging and boosting [1][2][4][7][13] 
reduce the error rate, but, even when the used weak classifiers are decision trees, a set 
of them needs to be combined to make a decision on the whole, and, as a 
consequence, comprehensibility disappears. Domingos explained it very clearly in 
[5]: “while a single decision tree can easily be understood by a human as long as it is 
not too large, fifty such trees, even if individually simple, exceed the capacity of even 
the most patient”. Domingos proposes Combined Multiple Models (CMM) algorithm 
[5] to extract explanation from bagging or any other multiple classifier. 

We have developed a methodology for building classification trees based on 
several subsamples, Consolidated Trees’ Construction Algorithm (CTC), which is less 
sensitive to changes in the training set from a structural point of view. Therefore the 
classification is contributed with a more steady explanation. The aim of this work is to 
show that CTC algorithm can be used to extract explanation from bagging achieving 
better results than CMM from three points of view: accuracy, complexity of the built 
classifiers and stability in explanation.  

The paper proceeds describing the two alternatives used to extract explanation 
from bagging, CTC and CMM, in Section 2. Details about the experimental 
methodology are described in Section 3. In Section 4 we present an analysis of the 
experimental results: comparison in accuracy, complexity and structural stability of 
CTC and CMM algorithms. Finally Section 5 is devoted to show the conclusions and 
further work. 

2   Two Alternatives to Extract Explanation from Bagging 

The alternatives we are going to compare in this work, CTC and CMM, propose 
different strategies to combine the knowledge of the m classifiers used in bagging in a 
single one in order to maintain the explaining capacity of the final classifier. 

2.1   CMM Algorithm 

CMM proposes to recover the comprehensibility loss in bagging using the learning 
algorithm to model the produced data partitioning. The learning is done from 
randomly generated examples that are classified using the bagging. Finally these 
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examples will be used to build a classifier with comprehensible output. CMM is a 
general algorithm that can be used with different learners and ensemble methods but 
in this work we will use it to extract explanation from bagging when the selected 
learning algorithm is classification trees, specifically C4.5 release 8 of Quinlan [12]. 
The knowledge of this multi-classifier will be transmitted to CMM using it to 
artificially generate and label the examples that will be used to build it. 

Algorithm 1 shows Domingo’s CMM proposal adapted to the concrete 
implementation. N_S bootstrap samples are extracted from S, the original training set, 
and one C4.5 tree is built from each of them. n new examples  are generated using the 
probability distribution implicit in the generated C4.5 trees (n/N_S examples from 
each component C4.5 tree). The corresponding class (c) is assigned to each example 
based on the class the bagging of all the generated C4.5 trees assigns them (c= 
bagging M1,…, MN_S(x)). This way, the examples will be representative of the 
combination of basic classifiers. The CMM classifier will be the C4.5 tree built from 
the new sample obtained adding the n randomly generated examples to the original 
training set.  

Algorithm 1. CMM Algorithm for bagging and C4.5 

Inputs: 
S training set 
C4.5 classifier with comprehensible output  
bagging procedure for combining models  
N_S (Number_Samples) number of component models to generate 
n number of new examples to generate 
 

Procedure CMM (S, C4.5, bagging, N_S, n) 
 
for  i := 1 to N_S 
    Let Si be a bootstrap sample of S  
    Let Mi be the model produced by applying C4.5 to Si 
end for  
 
for  j := 1 to n 
    Let x be the randomly generated example  
    Let c be the class assigned to x by bagging M1,…, MN_S(x)  
    Let T = T ∪ {(x,c)} 
end for  
 
    Let M be the model produced by applying C4.5 to S ∪T   
 

2.2   CTC Algorithm 

CTC algorithm was created to solve a fraud detection problem where the class 
distribution needed to be changed and explanation was required. In this kind of 
problems, classification trees built from different subsamples are very different in 
structure and accuracy. CTC draws together the information of a set of subsamples 
building a single tree [10]. The structural consensus is achieved at each step of the 
tree’s building process. The different subsamples are used to make proposals about  
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the feature that should be used to split in the current node, and, only one feature is 
selected. The repetition of this process in every node leads to the construction of a 
single tree. In order to make the CTC comparable to CMM, the split function used is 
the gain ratio criterion (the same used by Quinlan in C4.5 [12]). The iterative process 
is described in Algorithm 2. 

CTC algorithm uses several subsamples to induce a single tree, therefore, if we 
want to use it to explain the classification made by bagging, the same subsamples 
used for bagging will be used to build the CT tree. 

The algorithm starts extracting a set of subsamples (N_S) from the original training 
set. The subsamples are obtained based on the desired resampling technique. In this 
case the bootstrap samples used for bagging will be used. LSi contains all the data 
partitions created from each subsample Si. When the process starts, the only existing 
partitions are the bootstrap subsamples of bagging. The pair (X,B)i is the split proposal 
for the first data partition in LSi. X is the feature selected to split and B indicates the 
proposed branches or criteria to divide the data in the current node. In the 
consolidation step, Xc and Bc are the feature and branches selected by a voting process 
among all the proposals. The process is repeated while LSi is not empty. The 
Consolidated Tree’s generation process finishes when, in the last subsample in all the 
partitions in LSi, most of the proposals are not to split it, so, to become it a leaf node. 
When a node is consolidated as a leaf node, the a posteriori probabilities associated to 
it are calculated averaging the a posteriori obtained from the data partitions related to 
that node in all the subsamples. Once the consolidated tree has been built it works the 
same way a decision tree does. 

Algorithm 2. CTC Algorithm 

    Generate N_S bootstrap samples (Si) from S  
CurrentNode := RootNode 
for  i := 1 to N_S 
    LSi := {Si}  
end for  
repeat 
    for  i := 1 to N_S 

CurrentSi := First(LSi) 
 LSi  := LSi - CurrentSi  

Induce the best split (X,B)i for CurrentSi 
    end for  
    Obtain the consolidated pair (Xc,Bc) based on (X,B)I, 1 ≤ i ≤ N_S 
    if (Xc,Bc) ≠ Not_Split 
       Split CurrentNode based on (Xc,Bc) 
       for i := 1 to N_S 

Divide CurrentSi based on (Xc,Bc) to obtain n subsamples {S1
i, …, Sn

i} 
LSi  := {S1

i, …, Sn
i} ∪ LSi  

        end for 
    else consolidate CurrentNode as a leaf  
    end if 
CurrentNode := NextNode 
 until ∀i, LSi is empty 
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3   Experimental Methodology 

Eleven databases of real applications from the UCI Repository benchmark [9] have 
been used for the experimentation: Breast-W, Iris, Heart-C, Glass, Segment, Voting, 
Lymph, Hepatitis, Hypo, Soybean-L, and KDDcup99. For KDDcup99, in order to 
reduce the experimentation cost, we have used a stratified sample of 4,941 examples 
where the number of classes has been reduced to two (attack / not attack). The used 
domains have a wide range of characteristics: the number of patterns goes from 148 to 
4,941; the number of features from 4 to 41; and the number of classes from 2 to 15. 

The validation methodology used in this experimentation has been to execute 5 
times a 10-fold stratified cross validation [8]. In each of the folds of the cross-
validation we have obtained 200 bootstrap samples. These subsamples have been used 
to explore the effect of the N_S parameter (12 values: 3, 5, 10, 20, 30, 40, 50, 75, 100, 
125, 150 and 200) in the particular implementation of bagging. So in each one of the 
50 folds of the cross validations 12 bagging classifiers have been built. We have 
selected for each database the value of N_S that minimizes error rate. Once this 
parameter has been fixed it has been used to build CT trees and CMM classifiers and 
compare them from two points of view: accuracy and quality of the explanation. The 
quality of explanation has been evaluated based on complexity and stability of the 
given explanation. Complexity has been measured as the number of internal nodes of 
the tree, and, the stability in explanation as structural stability of the tress which has 
been measured by Common parameter (number of identical nodes —level, variable 
and division— among two trees). Common has been normalized in respect to the 
complexity so that the parsimony principle was taken into account. We will call this 
measure %Common and it will quantify the identical fraction of two or more  
trees [11].  

In both cases, error and explanation, an analysis of the statistically significant 
differences has been done based on the recent work of Demšar [3].  

For building CMM classifiers the number of randomly generated examples (n) 
needs to be fixed. Taking into account the process used to generate examples (n/N_S 
examples are generated from each component C4.5 tree) and that the number of 
component C4.5 trees goes from 3 to 200, this number needs to be large enough to 
generate a minimum set of examples from each one of the C4.5 trees and, as the 
original sample is added to these examples to build the CMM, it also needs not to be 
too small compared to it. Domingos generated 1,000 artificial examples but the 
databases used for the experimentation were smaller than the ones used in our 
experimentation. As a consequence, the number has been fixed to max (1,000; (NPT * 
1.5)) being NPT the number of patterns of the training set.  

4   Experimental Results 

CTC and CMM algorithms have been compared from three points of view: error, 
complexity, and structural stability (measured based on Common and %Common). 
From a practical point of view, the complexity quantifies how simple the given expla-
nation is, Common and %Common quantify structural stability of the trees, whereas 
the error would quantify the “quality” of the explanation given by the tree. Evidently 
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an improvement in comprehensibility must be supported with a reasonable error rate. 
As a consequence, we will start the comparison from the accuracy point of view. 

4.1   Discriminating Capacity 

In the first step, the effect of N_S in bagging has been analyzed so that for each 
database the best number of samples could be selected. Table 1 shows the obtained 
results. We can observe that even if the use of several basic classifiers provides 
bagging with stability, the results are not exactly the same for different values of N_S. 
Minimum error rates for each database are marked in bold. It can be observed that the 
smallest average error is achieved when N_S is 100. The values of N_S obtaining best 
results have been selected to build CTC and CMM classifiers. 

Table 1. Error values for bagging in 11 databases and different values of N_S 

Bagging
N_S 03 05 10 20 30 40 50 75 100 125 150 200

Breast-w 5.61 5.24 5.35 4.64 4.84 4.78 4.78 4.75 4.64 4.61 4.64 4.70
Iris 5.87 6.40 5.87 6.53 6.13 5.87 5.73 5.47 5.47 5.33 5.47 5.33
Heartc 24.34 23.41 21.91 21.58 21.97 21.50 21.44 20.91 20.39 20.53 20.53 20.46
Glass 29.68 27.47 26.45 24.59 24.69 24.37 23.70 23.62 23.13 24.18 23.71 23.85
Segment 3.75 3.18 2.80 2.64 2.57 2.48 2.47 2.38 2.40 2.42 2.39 2.43
Voting 4.05 3.82 3.73 3.50 3.59 3.54 3.50 3.59 3.45 3.46 3.41 3.50
Lymph 21.10 20.77 20.29 19.38 18.85 19.56 19.41 19.07 18.82 19.17 19.17 18.60
Hepatitis 20.11 18.05 17.80 17.88 17.89 18.36 17.37 16.96 16.97 17.08 16.61 16.83
Hypo 0.82 0.75 0.78 0.77 0.75 0.76 0.76 0.76 0.76 0.75 0.76 0.75
Soybean_large 13.24 11.24 10.41 10.00 9.17 9.38 9.45 9.24 9.03 9.10 9.10 9.38
kddcup 0.37 0.31 0.36 0.33 0.32 0.32 0.30 0.32 0.30 0.28 0.28 0.28
Average 11.72 10.97 10.52 10.17 10.07 10.08 9.90 9.73 9.58 9.72 9.64 9.65

 

Before starting with the comparison of CTC and CMM we compare in Table 2 er-
ror rates achieved for both algorithms, C4.5 (as base classifier) and bagging, so that 
we situate CTC and CMM in respect to them. Results in Table 2 show that as we 
expected bagging is the algorithm achieving the smallest error rates, whereas the 
largest ones are achieved with C4.5. CTC and CMM are situated among these two 
algorithms, being the error of CMM slightly smaller in average.  

The multiple test proposed by Demšar in [3] has been used to deeper analyse the 
differences among the four algorithms. With this aim, we need to rank each algorithm 
for every database. Average rank values are: bagging (1.36), CTC (2.50), C4.5 (3.05) 
and CMM (3.09). Even if in results in Table 2 we could see that in average CMM 
achieves smaller error rate than CTC, this was an effect of the average. Rank values 
show that, if instead of analysing absolute values we analyse the rank, CTC is in sec-
ond position, whereas CMM is in the 4th one, even behind C4.5. 
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Table 2. Error values for C4.5, bagging, CTC and CMM in 11 databases. N_S fixed based on 
best results obtained for bagging. 

 C4.5 N_S Bagging CMM CTC
Breast-w 5.63 125 4.60 5.26 5.60 
Iris 5.75 125 5.33 5.34 4.14 
Heartc 23.96 100 20.39 22.85 23.42
Glass 31.55 100 23.13 28.16 29.85
Segment 3.24 75 2.38 3.27 3.33 
Voting 3.41 150 3.41 3.69 3.36 
Lymph 20.44 200 18.60 20.77 20.19
Hepatitis 20.29 150 16.61 18.51 20.95
Hypo 0.71 5 0.75 0.78 0.73 
Soybean_large 11.02 100 9.03 11.57 10.67
kddcup 0.46 200 0.28 0.50 0.46 
Average 11.50  9.50 10.97 11.16

 

Next step is to analyse whether significant differences among the 4 algorithms ex-
ist using Friedman test [3]. The critical value (α=0.05) is 2.9223 and the achieved 
value has been FF= 6.3293. As a consequence significant differences exist. And we 
need to use a post-hoc test. We will use Nemenyi test [3] to compare all classifiers to 
each other and Bonferroni-Dunn test [3] to compare all classifiers with a control clas-
sifier (C4.5 in our work). Nemenyi test (for 4 algorithms, 11 databases and α=0.05) 
says that if the difference among average ranks is smaller than 1.4142 there is not 
significant difference among the compared algorithms, whereas the critical value for 
Bonferroni-Dunn is 1.3179.  

5

 

Fig. 1. Results for Nemenyi and Bonferroni-Dunn for C4.5, bagging, CTC and CMM 
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Figure 1 shows graphically results for these tests based on CD ((Critical Differ-
ence)) diagrams. In Nemenyi’s test (upper line in the figure) two algorithms are con-
nected by a line if no significant differences exist whereas for Bonferroni-Dunn test 
(lower line in the figure) there are significant differences with the control classifier 
only if the corresponding point is outside the line. Graphs show that based on both 
kind of tests, there are not significant differences among bagging and CTC (there are 
significant differences among bagging and the rest of the algorithms) but neither 
among CTC and the rest of the algorithms.  

To make a deeper analysis of CTC and CMM we will make the statistical tests pro-
posed by Demšar for two algorithms (Sign Test and Wilcoxon Signed-Ranks Test). 
We can use the signs obtained when calculating relative improvements of CTC with 
respect to CMM presented in Table 3 for the Sign Test. Results in Table 3 show that 
CTC has smaller error than CMM in 6 databases out of 11 (in bold) obtaining an 
average relative improvement of 2.28%. However, none of the two tests finds signifi-
cant differences (α=0.05) in the set of 11 databases we have used (for the Sign test the 
statistic should be at least 9 and it should be smaller than 10 for Wilcoxon test). As a 
consequence we could say that even if in accuracy the behaviour of CTC and CMM is 
similar, it is slightly better for CTC. 

Table 3. Relative improvement of CTC with respect to CMM for each database; average 
relative improvement and values of the statistics of the Sing Test and Wilcoxon Test 

 CTC - CMM
Breast-w 6.46% 
Iris -22.46% 
Heartc 2.52% 
Glass 6.00% 
Segment 1.89% 
Voting -8.84% 
Lymph -2.81% 
Hepatitis 13.18% 
Hypo -6.15% 
Soybean_large -7.73% 
kddcup -7.20% 
Average -2.28% 
Sign Test 6 
Wilcoxon Test 31 

4.2   Explaining Capacity 

Comprehensibility or explaining capacity of classification trees and quality of the 
given explanation can be measured by complexity and stability (common & 
%common). These values are shown in Table 4. If we analyse the complexity, results 
show that in 10 databases out of 11, trees obtained with CTC are simpler than the 
ones obtained with CMM with a relative average improvement of 32.08%. Similar 
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behaviour is found when analysing the stability. In most of the databases Common and 
%Common are larger for CTC than for CMM (with average relative improvements of 
36.33% and 118.41%). If we look to the statistics for the Sign Test and Wilcoxon Test 
(in the two last rows in Table 4) we find that there are significant differences in favour 
of CTC in the three parameters. So, we can state that from the explanation point of view 
CT classifiers are simpler and more stable than CMM classifiers. 

Table 4. Explanation related values: Complexity, Common and %Common for CTC and CMM 

 Complexity Common %Common
 CTC CMM CTC CMM CTC CMM 
Breast-w 4.02 3.52 2.71 2.56 68.41 74.10
Iris 3.42 5.42 1.81 2.87 53.02 53.15
Heartc 22.51 34.54 1.91 1.55 8.49 4.47 
Glass 34.71 54.14 4.97 3.56 14.34 6.58 
Segment 62.64 100.24 14.79 12.95 23.51 12.94
Voting 5.13 6.74 4.35 3.11 84.74 46.35
Lymph 12.33 21.74 4.12 2.29 33.28 10.56
Hepatitis 10.16 28.30 2.14 1.57 21.04 5.57 
Hypo 5.98 7.38 2.83 2.52 48.44 34.72
Soybean_large 25.98 39.36 9.42 4.52 36.25 11.48
kddcup 15.80 25.42 5.42 3.04 34.27 11.82
Average 18.43 29.71 4.95 3.69 38.71 24.70
Sign Test  10  10  9 
Wilcoxon Test  1  5  4 

5   Conclusions  

Being aware of the importance of classifiers to be comprehensible when using 
machine learning to solve real world problems, we propose in this work CTC 
algorithm as an alternative to the Combined Multiple Models (CMM) algorithm 
proposed by Domingos to extract explanation from bagging. We have compared both 
proposals from three points of view: accuracy, complexity of the built classifiers and 
stability in explanation. 

From the experimental results we can conclude that it is recommendable the use of 
CTC rather than the use of CMM. From the accuracy point of view, the behaviour of 
both algorithms, CTC and CMM, is similar, although the behaviour of CTC is nearer 
to bagging’s one than the behaviour of CMM. Based on Demšar proposal for 
statistical analysis we can say that there are not significant differences among bagging 
and CTC whereas these differences exist if we compare bagging with CMM or C4.5. 
After analysing the complexity of both kinds of trees, we can say that CT trees will 
give simpler and as a consequence more comprehensible explanation than CMM 
classifiers. We could say this explanation is 32.08% simpler. And besides, looking to 
how steady the structure of the built trees is, we could say that the explanation 
fraction maintained common in Consolidated Trees at least twice as big as the one 
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maintained CMM classifiers. As a consequence, the explanation given to bagging 
using CTC will be simpler and more stable than the one given by CMM. 

There are many things that can be done in the future related to this work. Firstly 
the experimentation can be extended to more databases. The way the classification is 
made in CTC can be changed: it can be seen as a multiple classifier system that 
classifies the same way bagging does but with a single structure. Related to the 
measure of stability in explanation, other structural measures can be tried. 
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