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Abstract. The representation of both scales of cost and scales of benefit
is very natural in a decision-making problem: scales of evaluation of
decisions are often bipolar. The aim of this paper is to provide algebraic
structures for the representation of bipolar rules, in the spirit of the
algebraic approaches of constraint satisfaction. The structures presented
here are general enough to encompass a large variety of rules from the
bipolar literature, as well as having appropriate algebraic properties to
allow the use of CSP algorithms such as forward-checking and algorithms
based on variable elimination.

1 The Introduction

Soft constraints frameworks usually consider that preferences are expressed in
a negative way. For instance, Valued Constraint Satisfaction Problems (VCSPs,
[16]) aim at minimising an increasing combination of the violation costs pro-
vided by the constraints. This also is the case for all instances of semiring-based
CSPs [3], where the combination of the successive valuations provided by the
constraints decreases (worsens) the global evaluation. But problems often also
contain positive preference constraints which increase the global satisfaction de-
gree, so it is desirable to extend constraints approaches to such situations. For
example, if one is choosing a holiday apartment, one has to balance the (positive)
benefits of a decision, such as having a sea view, against the (negative) mon-
etary cost. This bipolar characteristic of the preferences in CSPs has recently
been advocated by Bistarelli, Pini, Rossi and Venable [4,14,15]. Bipolarity is
also an important focus of research in several domains, e.g. psychology [17,18],
multicriteria decision making [8,9], and more recently in AI: argumentation [1]
and qualitative reasoning [10,2,7].

There are basically two ways of representing a bipolar notion on a scale. The
first one is the so called univariate model proposed by Osgood et al [13]. It
consists of a scale with a central neutral element ranging from negative values
(below the neutral element) to positive values (higher than the neutral element).
This kind of model has recently been introduced into constraint programming
in [4,14,15]. Unlike this first model the bivariate model introduced by Cacioppo
and al. [5] (see for instance [9,8,7]) does not use one but two scales; this can
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be pictured with a horizontal axis encoding the intensity of positive values, and
the vertical axis the intensity of the negative ones. Thus the evaluation is not
necessarily totally positive nor totally negative, but can have both positive and
negative components. The original motivation for such a model comes from the
fact that a subject may feel at the same time a positive response and a negative
one for the same characteristic of an object. For a house, being close to a bus
station is both good (time is saved) and bad (it is noisy).

The aim of the present paper is to provide algebraic structures for the repre-
sentation of bivariate bipolar rules, in the spirit of the algebraic approaches of
constraint satisfaction. This is to enable combinatorial optimisation over expres-
sive languages of constraints, where both costs and benefits can be expressed.
The structure should be rich enough to encompass a large variety of rules from
the bipolar literature; but it should have appropriate algebraic properties to
allow the use of soft CSP algorithms. The next section discusses classes of bipo-
lar decision rules. Section 3 describes our basic algebraic structure and shows
how to represent some decision rules from the literature using this; special sub-
classes are also examined. Section 4 describes bipolar systems of constraints and
a forward checking algorithm for optimisation. In Section 5 we define a richer
algebraic structure, bipolar semirings, which allows more complex propagation
algorithms.

2 Bipolar Decision Rules

The purpose of a bipolar decision making procedure is to provide a comparison
relation � between alternatives, given, for each alternative d, a multiset P (d) of
positive evaluations and a multiset set N(d) of negative ones. In the context of
preference-based CSPs, N(d) corresponds to preference valuations provided by
some negative constraints, as in fuzzy CSPs and more generally, semiring-based
CSPs, and P (d) corresponds to the positive valuations provided by reward-based
constraints. The basic property of bipolar decision processes is that the bigger
P (d) (respectively, N(d)) is, the better (resp., worse) d is:

P (d′) ⊆ P (d) and N(d′) ⊇ N(d) =⇒ d � d′

Cumulative prospect theory [18] adds to this “bimonotonicity” axiom a second
principle: P (d) and N(d) must be separately evaluated by means of two functions
that provide an overall positive degree p(d) and an overall negative degree n(d).
According to bimonotonicity, p should be maximised and n minimised.

2.1 Univariate Models

Such models represent a situation where p and n are on the same scale and the
decision strategy can be modelled by computing a net predisposition: NP(d) =
f(p(d), n(d)), where f is increasing in its first argument and decreasing in its
second. Alternatives d are then ranked increasingly with respect to NP. The
most famous example is based on an aggregation by a sum:
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NP+(d) = p(d) − n(d) =
∑

v∈P (d) v −
∑

v∈N(d) v.

Another example is provided by qualitative reasoning [10]:

NPqual(d) = min(p(d), 1 − n(d))

where p(d) = maxv∈P (d) v and n(d) = maxv∈N(d) v. More generally, we can
consider that p(d) and n(d) are obtained by monotonic and associative combi-
nations of the valuations they contain, namely by a pair of t-conorms1 (⊗+, ⊗−):
p(d) =

⊗+
v∈P (d) v and n(d) =

⊗−
v∈N(d) v. It should be noticed that ⊗+ and ⊗−

can be different from each other—for some subjects, their combination of posi-
tive effects is more or less isomorphic to a sum, while for the negative scale, the
worst value is taken, i.e. ⊗− = max. The NP model thus encompasses more than
just the simple additive rule. In [4], net predisposition is generalised to semiring-
valued constraints through use of (i) two semirings, one, L+, for representing
positive degrees of preference, and the other, L−, for representing negative de-
grees of preference, equipped with their respective multiplications ⊗+ and ⊗−

and (ii) an operator ⊗ defined within L+∪L− for combining positive and negative
elements. The framework then aims at maximising (

⊗+
v∈P (d) v) ⊗ (

⊗−
v∈N(d) v).

2.2 Bivariate Models

Since they are fundamentally single-scaled, univariate models are not well suited
to the representation of all decision making situations. For instance, a conflicting
set whose strongest positive argument is equally strong as its strongest negative
argument is often difficult to rank (see e.g. [17]). Since a univariate model aggre-
gates a positive and a negative value into either a positive or a negative value,
and since such scales are totally ordered, it cannot account for situations of in-
comparability. Hence the necessity of bivariate models as first proposed by [5]
(see also [8]). As discussed in the introduction, a second reason is the necessity
of taking into account arguments that have both a positive and a negative as-
pect. Classical examples of such rules are provided by Pareto rules. In contrast
to net predisposition, these do not make any aggregation of p and n, but rather
consider that each of the two dimensions is a criterion and that the scales of the
criteria are not commensurate. Decision is then made on the basis of a Pareto
comparison:

Pareto: d � d′ ⇐⇒ p(d) ≥ p(d′) and n(d) ≤ n(d′)

Letting ⊗+ = ⊗− = max, one recovers the qualitative rule proposed in [7],
but once again, ⊗+ and ⊗− can be two different t-conorms.

The Pareto ordering is obviously rather weak, and it is natural to strengthen
it by adding extra orderings to represent tradeoffs. For example, in a Pareto
1 A t-conorm is an increasing associative and commutative operation on some ordered

scale L = [0L, 1L] with 0L as unit element and 1L as absorbing element. We formulate
here the rules in the way they apply in a constraint-based setting. Some of them
admit a more general definition accounting for non-independent arguments.
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system with both scales being {0, 1, 2, . . .}∪ {∞}, and both combinations being
addition, we might add extra orderings such as (1, 3) � (0, 0). The new ordering
� is then defined to be the smallest transitive relation which (i) extends both
the Pareto ordering and the extra orderings and (ii) satisfies the property that
⊗ is monotone over � (see Definition 1 below). In this example we could deduce
using the monotonicity property also that (2, 4) � (1, 1). Other instances of the
bivariate model in [5] are provided by qualitative reasoning, namely the order of
magnitudes formalism in [19] and the “bilexi” qualitative rule in [7].

3 Bipolar Valuation Structures

The constituent elements of a bipolar framework should be a set of valuations
A containing a subset of positive valuations (say, A+), and a set of negative
valuations (say, A−), a combination operator ⊗ and a comparison relation2 �
on A. � is a partial order (i.e., � is reflexive, antisymmetric and transitive, but
need not be complete).

A− contains a worst element, say ⊥ (which could be received upon the viola-
tion of some hard constraint), and A+ contains a best element  (which could
be received upon the ideal satisfaction of the goal(s)). Both share the neutral or
“indifferent” valuation, that should not modify the evaluation of a decision.

We also will need algorithms for optimisation in the combinatorial case, e.g.
branch and bound algorithms. This further restricts the algebraic framework we
are looking for: ⊗ should not be sensitive to the order in which the constraints
are considered, so is assumed to be commutative and associative; it also should
be monotonic w.r.t. �.

3.1 Definition and Basic Properties

Definition 1. A bipolar valuation structure is a tuple A = 〈A, ⊗, �〉 where:
– � is a (possibly partial) order on A with a unique maximum element  and

a unique minimum element ⊥ (so for all a ∈ A,  � a � ⊥);
– ⊗ is a commutative and associative binary operation on A with neutral el-

ement 1 (for all a ∈ A, a ⊗ 1 = a); furthermore ⊗ is monotone over �: if
a � b then for all c ∈ A, a ⊗ c � b ⊗ c.

Notice that the assumption of the existence of elements  and ⊥ is not re-
strictive. If A does not contain them then we can add them whilst maintaining
the properties of ⊗, �, 1.

An element a is said to be positive if a � 1, and it is said to be negative if
a � 1. We write the set of positive elements of A as A+, and the set of negative
elements as A−. The following proposition gives some basic properties.

Proposition 1. Let A = 〈A, ⊗, �〉 be a bipolar valuation structure. Then
(i) ⊗ is increasing (resp. decreasing) with respect to positive (resp. negative)

elements: if a ∈ A and p � 1 � n then a ⊗ p � a � a ⊗ n;
2 Given a relation �, we use � to mean the strict part of �, so that a � b if and only

if a � b and b �� a (i.e., b � a does not hold).
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(ii) ⊥ (resp. ) is an absorbing element in A−(resp. A+);
(iii) for all p ∈ A+ and n ∈ A−, p ⊗ n � n and p � p ⊗ n, so that p ⊗ n is

between n and p.

(i) is a key property for bipolar systems, related to bimonotonicity mentioned
above. The third property follows from (i) and means that p ⊗ n is somewhere
between p and n—but it does not imply that p⊗n is either positive or negative.
It may happen that neither p ⊗ n � 1 nor 1 � p ⊗ n: the set A can contain
more elements than purely positive and purely negative ones, which gives it the
ability to represent conflicting values that have both a positive and a negative
component.

Define APN to be the set of all those elements of A which can be written as
a combination of a positive and a negative element, i.e.,

APN = {a ∈ A : a = p ⊗ n, n � 1 � p}.

APN contains A+, A− and all the valuations that are obtained by combining
positive and negative values: it is the core of the bipolar representation.

Proposition 2. Let A = 〈A, ⊗, �〉 be a bipolar valuation structure, then A−,
A+ and APN are each closed under ⊗. Moreover, APN contains A+ ∪ A−, in-
cluding 1, ⊥ and . Hence 〈APN , ⊗, �〉 is also a bipolar valuation structure.

Definition 2
A bipolar structure is bivariate iff A = APN . It is univariate iff A = A+ ∪ A−.

In particular, in a univariate system, the combination of a positive element and
a negative element is always comparable to the neutral element.

The framework of bipolar valuation structures is general enough to allow val-
uations outside APN , but they do not have such a simple interpretation in terms
of positive and negative values. Since we are interested in the representation of
bipolarity, we focus the paper on bivariate systems (which includes univariate
systems).

3.2 Examples

Additive net predisposition For representing NP+ we will use A = R∪{−∞, +∞}
with ⊗ = + and � = ≥. So, the neutral element 1 equals 0, A+ = R

+ ∪ {+∞},
A− = R

− ∪ {−∞}. We define −∞ ⊗ +∞ = −∞, since getting a conflict is
very uncomfortable and should be avoided. However, in practice, +∞ is never
allocated by any constraint.

Pareto: Pareto⊗
−,⊗+

denotes any Pareto rule built from two t-conorms ⊗−

and ⊗+, respectively in L− = [0−, 1−] and L+ = [0+, 1+]. The combination
is performed pointwise (using the two conorms) and pair (n, p) is preferred to
(n′, p′) if and only if it is better on each co-ordinate. The encoding of such
a rule is done using the a product structure: A = 〈L− × L+, (⊗−, ⊗+), �par〉
with 1 = (0−, 0+), ⊥ = (1−, 0+),  = (0−, 1+) where �par is simply defined
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by the Pareto principle: (n, p) �par (n′, p′) ⇐⇒ n ≤ n′ and p ≥ p′. As a
particular case, the qualitative Paretomax rule corresponds to the structure A =
〈[0, 1] × [0, 1], (max, max), �par〉 with 1 = (0, 0), ⊥ = (1, 0),  = (0, 1).

Additive net prediposition is obviously univariate. The rules of the form
Pareto⊗

+,⊗−
are not univariate but bivariate. So also is the following rule.

Order of magnitude calculus (OOM): In the system of order of magnitude rea-
soning described in [19], the elements are pairs 〈σ, r〉 where σ ∈ {+, −, ±}, and
r ∈ Z ∪ {∞}. The system is interpreted in terms of “order of magnitude” values
of utility, so, for example, 〈−, r〉 represents something which is negative and has
order of magnitude Kr (for a large number K). Element 〈±, r〉 arises from the
sum of 〈+, r〉 and 〈−, r〉. 〈±, r〉 can be thought of as the interval between 〈−, r〉
and 〈+, r〉, since the sum of a positive quantity of order Kr and a negative quan-
tity of order Kr can be either positive or negative and of any order less than
or equal to r. Let Aoom = {〈±, −∞〉} ∪ {〈σ, r〉 : σ ∈ {+, −, ±}, r ∈ Z ∪ {+∞}}.
We write also 〈−, +∞〉 as ⊥, and 〈+, +∞〉 as .

The interpretation leads to defining ⊗ by: 〈σ, r〉 ⊗ 〈σ′, r′〉 = 〈σ, r〉 if r > r′;
it’s equal to 〈σ′, r′〉 if r < r′; and is equal to 〈σ ⊕ σ′, r〉 if r = r′, where ⊕ is
given by: +⊕+ = + and −⊕− = −, and otherwise, σ ⊕σ′ = ±. Operation ⊗ is
commutative and associative with neutral element 〈±, −∞〉. � is defined by the
following instances:3 (i) for all r and s, 〈+, r〉 � 〈−, s〉; (ii) for all σ ∈ {+, −, ±},
and all r, r′ with r ≥ r′: 〈+, r〉 � 〈σ, r′〉 � 〈−, r〉. The relation � is a partial order
with unique minimum element ⊥ and unique maximum element . The positive
elements and the negative elements are both totally ordered, and Aoom = APN .
However, there are incomparable elements, e.g. 〈±, r〉 and 〈±, s〉 when r �= s.

3.3 Important Subclasses of Bipolar Valuation Structures

Below we discuss some properties and special kinds of bipolar structures.

Unipolar scales: First of all, let us say that A is purely positive (resp., purely
negative) iff A = A+ (resp. A = A−). In such a structure, ⊥ = 1 (resp.  = 1).
The most classical example is provided by semiring-based CSPs where A = A−,
while purely positive preference structures are considered in [4].

Totally ordered scales: In most of the bipolar rules encountered in the literature,
� is complete on A+ ∪ A−, e.g. NP+, Paretomax,max and Aoom. Unless the
structure is univariate, this does not imply that � is complete, but that the
restriction of ⊗ on A+ (resp. A−) is a t-conorm (resp. a t-norm).

Strict monotonicity: A = 〈A, ⊗, �〉 is said to be strictly monotonic if for all
a, b ∈ A and for all c �= , ⊥, we have a � b ⇒ a ⊗ c � b ⊗ c. Qualitative rules
based on max and min operations are not strictly monotonic, while addition-
based frameworks often are. Failure of strict monotonicity corresponds to the

3 This definition is slightly stronger than the one in [19], which doesn’t allow 〈+, r〉 �
〈±, r〉 � 〈−, r〉; either order can be justified, but our choice has better computational
properties.
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well known “drowning effect”: without strict monotonicity, it may happen that
a decision d is not necessarily strictly preferred to d′ even though it is strictly
preferred to d′ by all constraints apart from one that judges them equally.

Idempotent structures: An element a ∈ A is said to be idempotent if a ⊗ a = a,
and ⊗ is said to be idempotent if every element of A is idempotent. The idem-
potence of ⊗ is very useful for having simple and efficient constraint propagation
algorithms. Idempotence, which is at work e.g. in Paretomax,max, Aoom and in
many unipolar structures (e.g. fuzzy CSPs), induces the drowning effect. Natu-
rally, idempotence and strict monotonicity are highly incompatible properties.
The range of compatibility of idempotence with a univariate scale is also very
narrow—it reduces the structure to a very special form:

Proposition 3. If bipolar valuation structure A is idempotent and univariate,
then for all p ∈ A+ and n ∈ A−, either p ⊗ n = p or p ⊗ n = n.

Invertibility: The notion of cancellation is captured by the property of invert-
ibility. Element a is said to be invertible if there exists element b ∈ A with
a ⊗ b = 1. A structure is said to be invertible if every element in A − {, ⊥} is
invertible. A − {, ⊥} then forms a commutative group under ⊗. This property
is important for the framework in [4,14,15] and fits well with univariate scales.
For instance, it is easy to show that when � is complete on A+, invertibility is
a sufficient condition for making a bivariate system univariate.

On the other hand, associativity implies that 1 is the only element a which is
both idempotent and invertible, since if a⊗ b = 1 then a = a⊗1 = a⊗ (a⊗ b) =
(a ⊗ a) ⊗ b = a ⊗ b = 1. This means that when ⊗ is idempotent a positive
argument can never be exactly cancelled by a negative argument: invertibility is
strongly related to strict monotonicity.

Proposition 4. If bipolar valuation structure A is invertible then it is strictly
monotonic.

This problem is avoided in [4,14,15] by not assuming associativity on their uni-
variate scale. But invertibility should not be considered as a norm, and bivariate
systems are generally not invertible.

4 Bipolar Constraints and Optimisation

4.1 Bipolar Systems of Constraints

Let X be a set of variables, where variable x ∈ X has domain D(x). For U ⊆ X ,
we define D(U) to be the set of all possible assignments to U , i.e.,

∏
x∈U D(x).

Let A = 〈A, ⊗, �〉 be a bipolar valuation structure. An A-constraint ϕ [over
X ] is defined to be a function from D(sϕ) to A, where sϕ, the scope of ϕ, is
a subset of variables associated with ϕ. We shall also refer to ϕ as a bipolar
constraint.
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Definition 3. A bipolar system of constraints, over a bipolar valuation structure
A, is a triple (X, D, C) where X is a set of variables, D the associated domains
and C a multiset of A-constraints over X.

Bipolar constraint ϕ allocates a valuation ϕ(d) to any assignment d to its scope.
More generally, if d is an assignment to a superset of sϕ, and e is the projection
of d to sϕ, then we define ϕ(d) to be ϕ(e). For any assignment d of X , the bipolar
evaluation of d is val(d) =

⊗
ϕ∈C ϕ(d).

Many requests can be addressed to a bipolar system of constraints. The
most classical one, the optimisation request, searches for one undominated so-
lution: d is undominated if and only if there does not exist any d′ such that
val(d′) � val(d). Variants include the search for several (or all the) undominated
solutions. The associated decision problem, for a given bipolar valuation struc-
ture A = 〈A, ⊗, �〉 can be written as:

[BCSPA]: Given a bipolar system of constraints over A and a ∈ A, does there
exist an assignment d such that val(d) � a.

Proposition 5. Let A = 〈A, ⊗, �〉 be a bipolar valuation structure. Suppose
that testing b � a is polynomial, and computing the combination of a multiset of
elements in A is polynomial. Suppose also that A contains at least two elements.
Then BCSPA is NP-complete.

Indeed, given these assumptions, for any A, the problem BCSPA is in NP, since
we can guess assignment d, and test val(d) � a in polynomial time. It is NP-hard
if A has more than one element since then  and ⊥ must be different and so
either 1 �= ⊥ or 1 �=  (or both); in either case we can use a reduction from
3SAT, by considering bipolar constraints which only take two different values: 1
and either ⊥ or .

4.2 Forward Checking Algorithm

This section describes a generalization of the Forward Checking algorithm for
finding an undominated complete assignment in bipolar systems of constraints.
For the sake of brevity, we assume that all the constraints in C are either unary
or binary; however, it is not hard to modify the algorithm to be able to deal
with constraints of higher arity.

We assume that we have implemented a function UB(S) that, given a finite
subset S of A, returns some upper bound of them (with respect to �). UB(S)
might be implemented in terms of repeated use of a function ∨(·, ·) where ∨(a, b)
is an upper bound of both a and b (i.e., ∨(a, b) � a, b). For example, if least upper
bounds exist, we can set ∨(a, b) to be some least upper bound of a and b. In
particular, if � is a total order, we can use max. However, very often � is not a
total order, e.g., for the Pareto rule. For each constraint ϕ we write also UB(ϕ)
for UB({ϕ(d) : d ∈ D(sϕ)}, i.e. an upper bound over the values of ϕ. UB(ϕ) is
an important parameter: in a bipolar system of constraints, future constraints
cannot be neglected, since they can increase the current evaluation. In other
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terms, setting UB(ϕ) = 1 is not sound—while UB(ϕ) =  is sound but generally
inefficient, both because  is generally not provided by any constraint (nothing
is perfect) and because it is not far from being absorbing (and is so on A+). In
practice, for each ϕ, UB(ϕ) can be pre-computed.

The handling of UB(ϕ) is the main difference between classical Forward Check-
ing and bipolar Forward Checking. The structure of the algorithm is very clas-
sical: the top level procedure, BestSol, returns global parameter d∗, which will
then be an undominated solution, and global parameter b∗ which equals val(d∗).
The algorithm performs a tree search over assignments, pruning only when there
can be no complete assignment below this point with better val than the current
best valuation b∗ (which is initialised as ⊥).

Without loss of generality, we assume that for each x ∈ X there exists ex-
actly one unary constraint ϕx on x (if there exists more, we can combine them;
if there exists none, we can set ϕx(v) = 1 for all v ∈ D(x)). The algorithm
involves, for each variable x, a unary constraint μx, which is initially set to
being equal to ϕx. The backtracking is managed with the help of two proce-
dures: StoreDomainsUnary(i) takes a backup copy of the variable domains and
the values of the unary constraints μx at tree depth i; RestoreDomainsUnary(i)
restores them as they were at point StoreDomainsUnary(i).

We write an assignment d to a set of n variables as a set of assignments x := v.
In particular, {} designates the assignment to the empty set of variables.

procedure BestSol
b∗ := ⊥
for all variables x, for all v ∈ D(x), set μx(v) := ϕx(v)
FC(0, {}, 1)
Return d∗ and b∗

procedure FC(i, d,CurrentVal )
If i = n then
if CurrentVal � b∗ then b∗ := CurrentVal; d∗ := d

Else
Choose an unassigned variable x
StoreDomainsUnary(i)
For all v in D(x)
If PropagateFC(x, v,CurrentVal ) then FC(i+1, d∪{x := v}, CurrentVal ⊗μx(v))
RestoreDomainsUnary(i)

boolean function PropagateFC(x, v,CurrentVal )
PastVal := CurrentVal ⊗ μx(v)
futureConstr = {ϕ linking two unassigned variables}
FutureVal :=

⊗
ϕ∈futureConstr UB(ϕ)

// Propagate forward on the future variables:
For all ϕ linking x to an unassigned variable y
For all values v′ in D(y)
set μy(v′) := μy(v′) ⊗ ϕ(x = v, y = v′)

Uppery := UB({μy(v′) : v′ ∈ D(y)})
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// Pruning the domains
For all unassigned variables y and all v′ ∈ D(y)

VarsValy :=
⊗

y′unassigned, y′ �=y Uppery′

UppBdy(v′) := μy(v′) ⊗ VarsValy ⊗ PastVal ⊗ FutureVal
If not(UppBd y(v′) � b∗) remove v′ from D(y)
If D(y) = ∅ then return FALSE (and exit PropagateFC)

Return TRUE

The soundness of the pruning condition is ensured by the monotonicity of ⊗
and the transitivity of �. But it can also be sound in some structures that do
not fulfill these conditions. In particular, even if ⊗ is not monotone over � then
the algorithm will still be correct if operator ∨ ensures that ∀c ∈ A, ∨(a, b) ⊗ c
is an upper bound of a ⊗ c and b ⊗ c.

The family of Forward Checking algorithms includes more complex versions
than the one extended here, e.g. Reversible Directional Arc Consistency(RDAC)
and other improvements [12]. The algebraic structure presented in Section 3 is
rich enough to allow them to work soundly. But more sophisticated algorithms
for constraint optimisation, which use more complex constraint propagation (e.g.
using variable elimination), require more than a simple upper bound operator.
This is the topic of the next section.

5 Bipolar Semirings

An important computational technique for multivariate problems (such as CSPs)
is sequential variable elimination (bucket elimination). This calls for the struc-
ture to be rich enough to allow the definition of an internal operator ∨ that not
only provides an upper bound of its operands (and thus admits  as absorb-
ing element and ⊥ as a neutral element) but is also assumed to be associative,
commutative and idempotent. Unsurprisingly, the kind of structure needed is a
semiring, but of a more general form than the semirings usually used in con-
straint programming. A (commutative) semiring is a set A endowed with two
operations ∨ and ⊗ which are both commutative and associative and such that
⊗ distributes over ∨.

Definition 4. A bipolar semiring is a tuple 〈A, ⊗, ∨, �〉 where: 〈A, ⊗, �〉 is a
bipolar monotonic valuation structure; ∨ is an associative, commutative and
idempotent operation on A with neutral element ⊥ and absorbing element ,
satisfying:

Distributivity: for all a, b, c ∈ A, a ⊗ (b ∨ c) = (a ⊗ b) ∨ (a ⊗ c);
Monotonicity of ∨ over �: i.e., a � b =⇒ a ∨ c � b ∨ c.

Notice that, since a � ⊥, and ∨ is monotone over �, we have a ∨ b � ⊥ ∨ b = b.
We therefore have the following:

Proposition 6. Let 〈A, ⊗, ∨, �〉 be a bipolar semiring. Then for any a, b ∈ A,
a ∨ b � a, b.



Algebraic Structures for Bipolar Constraint-Based Reasoning 633

Hence Definition 4 implicitly requires a ∨ b to be an �-upper bound for a and b,
which is an important property for branch-and-bound and variable elimination
algorithms. When � is a total order, finding a suitable ∨ is immediate: choose
∨ = max. When � is an upper semi-lattice, a ∨ b will be the least upper bound
of a and b. For instance, when A is the product of a totally ordered positive scale
and a totally ordered negative scale, as in the Pareto case, we can use pointwise
application of maximum. In the OOM framework 〈σ, r〉 ∨ 〈σ′, r′〉 is the better
of the two elements if they are comparable; otherwise, their least upper bound
is equal to 〈+, max(r, r′)〉. It can be shown that 〈Aoom, +, ∨, �, 〉 is a bipolar
semiring.

Importantly, semiring properties are sufficient for variable elimination to be
correct (see e.g., [11]). Hence Definition 4 enables the use of such methods within
a branch and bound tree search as a way of generating global upper bounds of a
set of bipolar constraints (in particular, as a way to compute a stronger value of
FutureVal in the above algorithm). However, sequential variable elimination is
only practical in certain situations, in particular, if the scopes of the constraints
are such that the treewidth is small. Otherwise one can use a mini-buckets
[6] approach for generating an upper bound of the least upper bound, since
it has been shown that sufficient conditions for this technique to be applicable
to general soft constraints, are that A forms a semiring, the two operators are
monotone over the ordering, and a ∨ b � a, b for all a, b ∈ A.

Notice that ∨ itself defines a comparison relation �∨ on A, as in semiring-
based CSPs: for all a, b ∈ A, a �∨ b ⇐⇒ a ∨ b = a. It follows that for any
a ∈ A, we have ⊥ �∨ a �∨  and that ∨ and ⊗ are monotone with respect to
�∨. Hence if 〈A, ⊗, ∨, �〉 is a bipolar semiring then 〈A, ⊗, ∨, �∨〉 is as well. It
is also easy to show that �∨ is a partial order (it is antisymmetric) but is not
necessarily complete. Moreover, by Proposition 6, a �∨ b ⇒ a � b. Hence if is
optimal (i.e. non dominated) with respect to � then it is optimal w.r.t. �∨.

6 Conclusion

The representation of both scales of cost and scales of benefit is very natural in a
decision-making problem. We have abstracted the kind of properties assumed in
such bipolar reasoning to produce algebraic valuation structures which, firstly, al-
low the representation of many natural forms of bipolar reasoning, and secondly,
have sufficient structure to allow optimisation algorithms. As well as bipolar
univariate models, our framework can also represent bivariate models for bipo-
lar reasoning, which allow the kind of incomparability found in many natural
systems for reasoning with positive and negative degrees of preference.

This paper has proposed a generalization of the forward checking algorithm
for handling the optimization in bipolar structures. This algorithm actually ap-
plies to rather general algebraic structures, even to structures similar to bipolar
valuation structures but which are not fully monotonic.
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