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Abstract. The EM algorithm is widely used in supervised and unsu-
pervised classification when applied for mixture model parameter esti-
mation. It has been shown that this method can be applied for partially
supervised classification where the knowledge about the class labels of
the observations can be imprecise and/or uncertain. In this paper, we
propose to generalize this approach to cope with imperfect knowledge at
two levels: the attribute values of the observations and their class labels.
This knowledge is represented by belief functions as understood in the
Transferable Belief Model. We show that this approach can be applied
when the data are categorical and generated from multinomial mixtures.

Keywords: Expectation Maximization, mixture models, Transferable
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1 Introduction

Operating within an imperfect environment and facing imprecise, uncertain and
even missing information is the real challenge in decision making. For instance, a
doctor has to make a decision even if he is not able to identify the exact disease
of his patient but he only knows that the patient has not such kind of diseases.
On the other hand, a controller system must be able to integrate multiple sensors
even when only a fraction may operate at a given time. In this context, most
standard classification methods encounter a real problem to meet these real life
situations which make them inappropriate to classify objects characterized by
such imperfect information.

The idea is thus to combine classification methods with theories managing
uncertainty as the belief function theory [11]. In the Transferable Belief Model’s
interpretation (TBM) [14], this theory provides a formalism for handling subjec-
tive and personal judgments and that can also deal with objective probabilities.
So, this theory is able to handle partial knowledge and cope with partial and
even total ignorance. Besides, this theory has provided a powerful tool to deal
with uncertainty in classification problems. We notably mention belief decision
trees [5], belief k-nearest neighbor [4], belief K-modes [2], etc.
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On the other side, the Expectation-Maximization (EM) algorithm [3] is a
generic approach for parameter estimation in incomplete data problems and has
been widely used in supervised and unsupervised classification [7, 8]. In this
context, data are assumed to be generated from a mixture model where each
component of the mixture or class is identified by a probability distribution.
In the supervised mode or discrimination, the class labels of the observations
are known a priori and are used to classify new observations with unknown class
labels. In the unsupervised mode or clustering, the class labels of the observations
are unknown a priori and the goal is to find a partitioning of the observations by
grouping similar observations together. Besides, when the class labels are only
partially known that is the actual class of the observations can be imprecise or
uncertain, the classification procedure becomes partially supervised.

Several works have been proposed in this uncertain context [1, 15]. In [1],
the class labels can be imprecise and a probabilistic model relating the impre-
cise label to the true class is assumed. In [15], the class labels can be imprecise
and/or uncertain and this knowledge is represented by belief functions. In both
approaches, uncertainty occurs only at the class labels of the observations. How-
ever, uncertainty may also appear in the values of the attributes.

We propose then to treat a more general case where uncertainty can arise not
only in the class labels but also in the values of the attributes characterizing
the observations. This method is based on both the EM approach and the belief
function theory as understood in the TBM.

The remainder of the paper is organized as follows. We start by presenting
the EM algorithm for learning mixture models. Next, we outline the necessary
background concerning the belief function theory and we describe the EM algo-
rithm within this framework. Then, we develop our generalized approach that
takes into account uncertainty in the attributes of the observations when data
are categorical and generated from multinomial mixtures.

2 The EM Algorithm for Learning Mixture Models

In the mixture modeling approach [9], the data X = {x1, ..., xn} are assumed
to be identically and independently distributed (iid) according to a probability
function given by:

f(xi|Θ) =
K∑

k=1

πkfk(xi|θk) , (1)

where K is the number of components in the mixture, πk are the mixing pro-
portions that must be non negative and sum to one, fk denotes a component,
i.e. a probability function parameterized by θk, and Θ = {(πk, θk), k = 1, ..., K}
are the parameters of the model to be estimated.

In this paper, we treat categorical data generated from multinomial mixture
models where each observation xi is described by D categorical attributes, with a
respective number of categories nb1, ..., nbD. The data X can be represented by n
binary vectors (xdj

i ; d = 1, ..., D, j = 1, ..., nbd) where xdj
i = 1 if the attribute xd

i
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has the category j and 0 otherwise. In this model, each component k is identified
by a D-dimensional multinomial distribution given by:

fk(xi|θk) =
D∏

d=1

nbd∏

j=1

(pdj
k )xdj

i , (2)

where the parameters θk are given by the probabilities pdj
k (d = 1, ..., D, j =

1, ..., nbd), that the attribute xd
i has the category j. In this model, the D variables

are assumed to be independent given the component k [6].

2.1 Maximum Likelihood Estimation

To estimate the parameters Θ, we generally apply the Maximum Likelihood
Estimation (MLE) principle: the parameters that have most likely generated the
data, are those that maximize the likelihood (or the log-likelihood for the sake
of simplicity) given by:

L(Θ|X) =
n∑

i=1

log(
K∑

k=1

πkfk(xi|θk)) . (3)

Generally, the maximization of this equation cannot be obtained analytically.
The classical approach to solve this problem is the EM algorithm [3] which
provides an iterative procedure for computing MLE. In order to use the EM
algorithm, the problem has to be reformulated as an incomplete data problem.

2.2 An Incomplete Data Problem

The idea is to introduce a set of “hidden” variables Z = {z1, ..., zn} that indicate
which component of the mixture has generated each observation. The problem
would decouple then into a set of simple maximizations. More precisely, zi =
(zi1, ..., zik, ...ziK) where zik = 1 if xi has been generated from the component k
and 0 otherwise. The whole data Y = {y1, ..., yn} where (yi = (xi, zi)), is then
the so-called augmented data or complete data. Using these indicator variables
Z, the equation (3) can be reformulated as the complete log-likelihood:

Lc(Θ|Y ) =
n∑

i=1

K∑

k=1

ziklog(πkfk(xi|θk)) . (4)

2.3 The EM Algorithm

The EM algorithm can now be applied by considering the variables Z as the
missing data. The algorithm provides a sequence of estimates Θ(t)1, of the pa-
rameters Θ by the iteration of two steps: an E-step (for Expectation) and a
M-step (for Maximization).
1 We use the subscript (t) to denote the iteration t of the EM algorithm.
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E-Step. The E-step computes the conditional expectation of the complete log-
likelihood Lc(Θ|Y ) given the observed data X and the current parameters Θ(t):

Q(Θ|Θ(t)) = E[Lc(Θ|X, Z)|X, Θ(t)] , (5)

which is a linear function of the missing data zik. So, at the iteration t, the
E-step just requires to compute the conditional expectation of zik given X and
Θ(t):

E[zik|X, Θ(t)] = t
(t)
ik . (6)

Actually, this quantity is nothing else then the posterior probability p(zik =
1|X, Θ(t)) that the observation xi has been generated by the component fk

estimated at the iteration t. This probability measure is computed through the
Bayes rule as follows:

t
(t)
ik =

π
(t)
k fk(xi|θ(t)

k )
∑K

l=1 π
(t)
l fl(xi|θ(t)

l )
. (7)

Using this result the equation (5) becomes:

Q(Θ|Θ(t)) =
n∑

i=1

K∑

k=1

t
(t)
ik log(πkfk(xi|θk)) . (8)

M-Step. The M-step updates the current parameters Θ(t) by maximizing
Q(Θ|Θ(t)) over Θ, so that to have an updated estimate Θ(t+1). The mixing
proportions πk are computed independently of the component parameters θk:

π
(t+1)
k =

1
n

n∑

i=1

t
(t)
ik . (9)

The update of the parameters θk depends on the nature of the mixed compo-
nents and can be obtained by analyzing the following equation:

n∑

i=1

K∑

k=1

t
(t)
ik

∂logfk(xi|θ(t)
k )

∂Θ
= 0 . (10)

3 Belief Function Theory

Before we turn to the EM approach under the TBM framework, we shall sketch
out some of the bases of the belief function theory. Details can be found in
[11, 14].

3.1 Basic Concepts

Let Ω be a finite non empty set of mutually exclusive elementary events related
to a given problem. Ω is generally called the frame of discernment. The set 2Ω

contains all the subsets of Ω: it is the power set of Ω.
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The impact of a piece of evidence held by an agent (whatever is it: a sensor,
a computer program, an expert, etc) among the propositions of Ω, is expressed
by the so-called basic belief assignment (bba). The bba is a function mΩ : 2Ω →
[0, 1] that satisfies:

∑
A⊆Ω mΩ(A) = 1.

The value mΩ(A), called a basic belief mass (bbm), is the quantity of belief
that supports exactly the proposition A and that due to the lack of information,
does not support any strict subset of A.

The belief function belΩ : 2Ω → [0, 1], with belΩ(A) =
∑

∅�=B⊆A mΩ(B),
expresses the total amount of belief assigned to the subsets implying A without
implying A.

The plausibility function plΩ : 2Ω → [0, 1], with plΩ(A) =
∑

A∩B �=∅ mΩ(B),
quantifies the degree of belief committed to the propositions compatible with A.

Several special belief functions relative to particular states of uncertainty are
defined. The vacuous belief function quantifies a state of total ignorance, in which
no support is given to any particular subset of Ω. This function is defined as
follows [11]:

mΩ(Ω) = 1 and mΩ(A) = 0, ∀A ⊂ Ω . (11)

A Bayesian belief function is a belief function where the belief is only allocated
among elementary events of Ω [11].

A certain belief function is a Bayesian belief function where the whole belief
is assigned to a unique elementary event A: it expresses a state of total certainty.
This function is defined by:

mΩ(A) = 1 and mΩ(B) = 0, ∀B ⊆ Ω, A ∈ Ω and B �= A . (12)

3.2 Combination of Belief Functions

Let mΩ
E1

and mΩ
E2

be two bba’s induced from two distinct information sources
(E1 and E2) and defined on the same frame of discernment Ω. The joint impact
of both pieces of evidence is given by the conjunctive rule of combination [12]:

(mΩ
E1

∩©mΩ
E2

)(A) =
∑

B∩C=A

mΩ
E1

(B)mΩ
E2

(C) . (13)

3.3 The Pignistic Transformation

In the TBM, beliefs can be held at two levels: a credal level where beliefs are
entertained and quantified by belief functions, and a pignistic level, where deci-
sions are made. At this level, beliefs are transformed into probability measures
(denoted by BetPΩ) in order to choose the most likely hypothesis. The trans-
formation rule is called the pignistic transformation defined for all ωk ∈ Ω as:

BetPΩ(wk) =
∑

A�ωk

mΩ(A)
|A|

1
(1 − mΩ(∅))

. (14)
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3.4 The Generalized Bayesian Theorem

Smets [13] has generalized the Bayesian theorem (GBT), offering an interesting
tool for inverting conditional belief functions within the TBM framework. As-
sume that we have a vacuous a priori belief on a frame Ω, and we know for each
element ωi ∈ Ω, what would be our beliefs on another frame X if this element
happened. Suppose that we learn that the actual value of X is in x ⊆ X , then
the GBT allows us to derive the conditional belief function over the frame Ω
given the observation x. One has:

plΩ[x](ω) = 1 −
∏

ωi∈ω

(1 − plX [ωi](x)) . (15)

4 The Credal EM Approach

The Credal EM (CrEM) [15] is a variant of EM for partially supervised learning.
In this approach, the class label of the observations can be partially known. That
is, it can be imprecise and/or uncertain. This knowledge is represented by belief
functions as understood in the TBM.

The learning set is then given by: L = {(x1, m
Ω
1 ), ..., (xn, mΩ

n )}, where X =
{x1, ..., xn} are n iid observations derived from a mixture of K classes Ω =
{ω1, ..., ωK}, and mΩ

i : 2Ω → [0, 1] are the bba’s representing the a priori beliefs
of membership of the observations xi into the subsets of Ω.

E-Step. In the classical approach, the algorithm computes the a posteriori
probability t

(t)
ik that xi has been generated by the class k estimated at the current

iteration. The CrEM computes the mass mΩ[xi, Θ
(t)] that xi has been generated

by the class k with the current parameters Θ(t) through the GBT from its
corresponding plausibilities:

plΩ[xi](A) = 1 −
∏

ωj∈A

(1 − plX [ωj](xi)) , ∀A ⊆ Ω . (16)

These masses are then combined with the prior bba’s through the conjunctive
rule of combination. The resulting masses are given by:

m̂Ω[xi, Θ
(t)](A) =

∑

B∩C=A

mΩ[xi, Θ
(t)](B) mΩ

i (C) , ∀ A ⊆ Ω . (17)

M-Step. The M-step finds the most probable value of the mixture parameters.
This comes down to determine the parameters θ ∈ Θ that maximize the con-
ditional plausibility of the data given θ. Under the iid assumption, this term is
given:

∏n
i=1 plX [θ](xi).

The likelihood function to be maximized is then given by [15]:

Q(Θ|Θ(t)) =
n∑

i=1

∑

A⊆Ω

m̂Ω[xi, Θ
(t)](A)log(plX [A](xi)) . (18)

This equation is analogous to the equation (8) in the TBM framework.
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5 Generalized Credal EM

The CrEM provides an alternative for learning in an uncertain environment that
is more general than the one proposed in [1] which deals only with imprecise class
labels.

However, this approach is not fitted to situations where the values of the
attributes characterizing the observations are also partially known. This could
involve missing data (some attribute values are missing), imprecise data (we only
know that the value of such attributes belongs to a subset of possible values),
or uncertain data (we only have some beliefs about the actual value of such
attributes).

In this section, we develop a generalization of the CrEM approach that copes
with these situations. We first introduce a method that takes into account miss-
ing data, then we propose a more general approach that integrates imprecise
and uncertain knowledge. Hence, our approach deals with uncertainty in class
and attribute values. Besides, we should note that our method deals only with
categorical data.

5.1 Learning from Missing Data

In the previous sections, only one aspect of the EM algorithm has been high-
lighted: learning mixture models. Another important aspect of EM is to learn
from data sets with missing values [3, 8]. In this section, we propose to combine
this application of EM with that of learning mixture parameters in the TBM
framework [15].

We assume that the data X are made up of two components: an observed
component Xo and a missing component Xm. Each object xi in the missing
component is divided into (xo

i , x
m
i ) where xo

i denotes the observed attribute
values of xi and xm

i the missing attributes, and each xi can have different missing
attributes.

The conditional expected complete data likelihood given the observed data
and the current parameters is then written as follows:

E[Lc(Θ|Xo, Xm, Z)|Xo, Θ(t)] . (19)

So, there are two forms of incomplete data: the variables zik that indicate for
each object, which class it comes from, and the missing data xm

i . The E-step gives
an estimation of both forms of missing data: E[zik|Xo, Θ(t)] and E[xm

i |Xo, Θ(t)].
The M-step uses then the completed data to update the mixture model param-
eters Θ.

E-Step. The first term to be estimated is given by t
(t)
ik , the probability that xi

has been generated from the class k. These probabilities are derived through the
pignistic transformation from the masses m̂Ω[xi, Θ

(t)]:

t
(t)
ik =

∑

A�ωk

m̂Ω[xi, Θ
(t)](A)

|A|
1

1 − m̂Ω[xi, Θ(t)](∅)
. (20)
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The masses m̂Ω[xi, Θ
(t)] express the beliefs of membership of xi into the

classes of Ω computed as in the CrEM approach (see equation (17)) and mea-
sured only over the observed values xo

i .
The second term gives for each missing attribute xd

i in xm
i , the probability

that the attribute xd
i takes the category j (for j = 1, ..., nbd). Since we assume

that within each class the attributes are independent, for each class k, we have
a different estimation of xdj

i given by p
dj(t)
k computed at the current iteration.

M-Step. The M-step updates the current parameters using these expected val-
ues. The mixing proportions πk are updated using the tik as in equation (9).

The parameters θk given by the probabilities pdj
k are updated by:

pdj(t+1)

k =
∑n

i=1 t
(t)
ik xdj

i∑n
i=1 t

(t)
ik

, (21)

where
∑n

i=1 t
(t)
ik xdj

i is the estimated number of objects in the class k in which the
attribute xd

i has the category j and
∑n

i=1 t
(t)
ik is the total estimated number of

objects in the class k. So, tikxdj
i has to be substituted by tikpdj

k for the missing
components.

5.2 Learning from Partial Knowledge

In this subsection, we propose an approach that integrates imprecise and uncer-
tain knowledge regarding the attribute values characterizing the objects of the
learning set. As the prior knowledge about the class labels presented before, this
knowledge is represented by belief functions.

The data X , are divided here into two components: a component known with
certainty denoted by Xc and an uncertain component Xu. That is, each xi of
Xu is divided into (xc

i , x
u
i ) where xc

i are the well defined attributes and xu
i are

the partially known attributes.
For uncertain attributes, we use a set of bba’s mΩd

i : 2Ωd → [0, 1] to express
the a priori beliefs of the actual value of these attributes. 2Ωd

denotes the power
set corresponding to the set of possible values of the attribute d.

Example 1. Let us consider three attributes given by: the salary, the marital
status, and the place of residence with respective possible categories:
Ωsalary = {low, medium, high} ,
ΩmariStat = {single, married, divorced, widowed} ,
ΩplaceRes = {apartment, house} .

One can have:
x1 = ({low(0.2), medium(0.8)}, married(1), house(1)), where the attribute sala-
ry is uncertain (with mΩsalary

1 (low) = 0.2 and mΩsalary

1 (medium) = 0.8) and the
remaining attributes are perfectly known.
x2 = ({medium, high}(1), married(1), ΩplaceRes(1)), where the attribute salary
is imprecise, the attribute marital status is perfectly known and the attribute
place of residence is totaly unknown.
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This representation is then a generalization of the previous one since it covers
the case where attribute values are missing. This is handled through vacuous
belief functions. We also notice that the certain case, where all the attributes
are perfectly known, can also be modeled here through certain belief functions.

E-Step. The E-step estimates both the variables zik and the uncertain values of
xu

i . The first values are again given by tik estimated over the certain component
of xi.

The second values denoted by E[xu
i |Xo, Θ(t)] are first estimated using the

current parameters p
dj(t)
k . These probabilities which can be written in the form

of Bayesian masses mΩd(t)

ik , are then combined with the a priori masses through
the conjunctive rule of combination, to integrate our initial beliefs about the
attribute values. The resulting masses denoted by m̂Ωd(t)

ik , are given by:

m̂Ωd(t)

ik (A) =
∑

B∩C=A

mΩd(t)

ik (B)mΩd

i (C) , ∀A ⊆ Ωd . (22)

The updated estimation of xdj
i expressing the probability that the attribute

xd
i has the category j, is denoted by p̂

dj(t)
ik . These probabilities are derived from

the resulting combined masses using the pignistic transformation:

p̂
dj(t)
ik =

∑

A�ωdj

m̂Ωd(t)

ik (A)
|A|

1
(1 − m̂Ωd(t)

ik (∅))
, (23)

where ωdj denotes the category j of the attribute d.

M-Step. The M-step uses these estimations to update the current parameters
as detailed in the previous subsection. The term tik p̂dj

ik is used for the uncertain
values in the equation (21).

Note that in both methods, the E and M steps are iterated until the likelihood
function Q(Θ|Θ(t)) − Q(Θ|Θ(t−1)) becomes inferior to some threshold ε fixed a
priori. This function is given in equation (8). As the classical EM approach [3],
the proposed algorithms converge at a stationary point of the mixture parameters
and provide a local maximum of the likelihood function.

6 Experimental Results

In order to evaluate our proposed method which consists in a partially super-
vised EM classification approach with imperfect knowledge at the attribute and
class values, we have implemented two algorithms in Matlab V 7.0. Both algo-
rithms deal with uncertain class labels. Besides, the former (GenCrEM1) handles
missing attribute values, whereas the latter (GenCrEM2) deals with uncertain
and/or imprecise attribute values.

We have then applied these algorithms on real databases obtained from the
UCI Machine Learning Repository [10]. We have modified these databases in or-
der to disturb their certainty: we have randomly eliminated some attribute values
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Table 1. Description of databases

Database #instances #attributes #classes

Balance scale 625 4 3
Wisconsin breast cancer 699 8 2
Car evaluation 1728 6 4

for the GenCrEM1, and we have randomly introduced bba’s in some attribute
values for GenCrEM2 by considering their initial certain values. Moreover, in
both cases, we have randomly generated bba’s on the class labels by taking into
account the initial true labels. In Table 1, a brief description of these databases
is given.

We have tested both algorithms for different percentages of missing and un-
certain attribute values respectively for the GenCrEM1 and the GenCrEM2. We
have then applied the CrEM [15] on the certain attribute part of the databases.
Table 2 gives the percentages of correctly classified instances (PCC) compared
with the initial classification for each database. The mean PCC’s obtained from
the three methods and measured over the considered databases are given in
Figure 1.

It is found that the PCC’s produced by GenCrEM1 are higher than the PCC’s
given by CrEM for the three databases and for the three considered percentages
of imperfect data (20%, 30% and 40%). For instance, in the Car evaluation
database and with 40% of imperfect data, the PCC is equal to 70.61% for CrEM
and 77.8% for GenCrEM1. Besides, the results given by GenCrEM2 are better
than the ones given by GenCrEM1 in all the test cases. For instance, the PCC
is equal to 80.36% for GenCrEM1 and 83, 62% for GenCrEM2 in the Balance
scale database and with 30% of imperfect data. So, GenCrEM2 which is the
generalized case, is very appropriate to integrate additional knowledge about
the objects of the learning set even if this knowledge is uncertain. Furthermore,
it is shown that while the PCC’s of our method remain nearly constant and quite
high (around 80% for GenCrEM1 and 83% for GenCrEM2) when the percentage
of imperfect data increases, the PCC of CrEM shows considerable decrease from
75.3% (for 20% of imperfect data) to 69.89% (for 40% of imperfect data). So,

Table 2. Experimental results

Balance scale Wisconsin b.c. Car evaluation

percent imperf obj 20% 30% 40% 20% 30% 40% 20% 30% 40%

CrEM (in %) 75.25 71.67 69.5 73.87 70.33 69.56 76.8 73.23 70.61
GenCrEM1 (in %) 80.67 80.36 80.62 81.26 82.5 82.69 78.73 78.26 77.8
GenCrEM2 (in %) 82.4 83.62 82.85 84.53 83.82 84.68 82.13 81.75 82.28
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Fig. 1. Experimental results

our proposed approach is more appropriate to handle partially known attribute
values.

We should mention that with our proposed method and if all the attribute
bba’s are certain, the results are equivalent to the CrEM. Besides, if both at-
tribute and class values are perfectly known, that is when we are in a state of
total certainty, the results are analogous to those obtained from the classical EM
algorithm [3]. Note that when the class labels are imprecise, the CrEM produces
very similar results than [1]. So our proposed approach is a generalization of
these methods.

7 Conclusion

In this paper, we have proposed an EM approach for learning in an uncertain
environment. The uncertainty is represented by belief functions as understood
in the TBM. This approach is adapted for cases where not only the knowledge
about the classes of the objects can be partial but also their characteristics.
Our method provides a more flexible tool to deal with these situations. Future
works are concerned with both continuous and mixed data. We will also focus
on the model selection issue which notably includes the choice of the mixture
components.

References

[1] Ambroise, C., Govaert, G.: EM algorithm for partially known labels. In:
IFCS’2000, Namur, Belgium, vol. 1, pp. 161–166 (2000)

[2] Ben Hariz, S., Elouedi, Z., Mellouli, K.: Clustering approach using belief func-
tion theory. In: Euzenat, J., Domingue, J. (eds.) AIMSA 2006. LNCS (LNAI),
vol. 4183, pp. 162–171. Springer, Heidelberg (2006)



Belief Classification Approach Based on Generalized Credal EM 535

[3] Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, series B 39,
1–38 (1977)

[4] Denoeux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer
theory. IEEE Transactions on Systems, Man and Cybernetics 25(5), 804–813
(1995)

[5] Elouedi, Z., Mellouli, K., Smets, P.: Belief decision trees: theoretical foundations.
International Journal of Approximate Reasoning 28, 91–124 (2001)

[6] Everitt, B.: An introduction to latent variable models. Chapman and Hall, Sydney
(1984)

[7] Figueiredo, M.A.T., Jain, A.K.: Unsupervised learning of finite mixture models.
IEEE Transaction on Pattern Analysis and Machine Intelligence 24(3), 381–396
(2002)

[8] Ghahramani, Z., Jordan, M.I.: Supervised learning from incomplete data via an
EM approach. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in
Neural Information Processing Systems, vol. 6, pp. 120–127. Morgan Kaufmann
Publishers, San Francisco (1994)

[9] McLachlan, G.J., Basford, K.E.: Mixture models. Inference and application to
clustering. Marcel Dekker, New York (1989)

[10] Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine
learning databases (1998),
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[11] Shafer, G.: A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton
(1976)

[12] Smets, P.: The combination of evidence in the transferable belief model. IEEE
Pattern analysis and Machine Intelligence 12(5), 447–458 (1990)

[13] Smets, P.: Belief functions: The disjunctive rule of combination and the generalized
Bayesian theorem. International Journal of Approximate Reasoning 9, 1–35 (1993)

[14] Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66,
191–234 (1994)

[15] Vannoorenberghe, P., Smets, P.: Partially supervised learning by a credal EM
approach. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 956–
967. Springer, Heidelberg (2005)

http://www.ics.uci.edu/~mlearn/MLRepository.html

	Belief Classification Approach Based on Generalized Credal EM
	Introduction
	The EM Algorithm for Learning Mixture Models
	Maximum Likelihood Estimation
	An Incomplete Data Problem
	The EM Algorithm

	Belief Function Theory
	Basic Concepts
	Combination of Belief Functions
	The Pignistic Transformation
	The Generalized Bayesian Theorem

	The Credal EM Approach
	Generalized Credal EM
	Learning from Missing Data
	Learning from Partial Knowledge

	Experimental Results
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




