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These are the proceedings of the Ninth European Conference on Symbolic and
Qualitative Approaches to Reasoning with Uncertainty, ECSQARU 2007, held
in Hammamet (Tunisia), October 31, November 1–2 2007. The biannual EC-
SQARU conferences are a major forum for advances in the theory and practice
of reasoning under uncertainty. The first ECSQARU conference was held in Mar-
seille (1991), and since then it has been held in Granada (1993), Fribourg (1995),
Bonn (1997), London (1999), Toulouse (2001), Aalborg (2003) and Barcelona
(2005).

The papers gathered in this volume were selected out of 120 submissions
from 25 countries, after a rigorous reviewing process by three Program Commit-
tee members and a restricted Program Committee. In addition to the regular
presentations, the technical program of ECSQARU 2007 also included invited
lectures by three outstanding researches: Thierry Denoeux (Pattern Recognition
and Information Fusion Using Belief Functions: Some Recent Developments),
Salem Benferhat (Qualitative Models for Reasoning Under Uncertainty: From
Non-monotonicity and Causality to Applications) and Anthony Hunter (Ele-
ments of Argumentation).

A special dedication to the memory of Philippe Smets, who collaborated with
our team for several years and who gave full support to the organization of EC-
SQARU in Tunisia. In his memory we have organized a permanent special session
grouping an overview of his main contributions in the artificial intelligence field.

Finally, I would like to thank the members of the Program Committee and
all the additional referees for their valuable work. I also want to express my
acknowledgment to all of my colleagues of the Organizing Committee for their
support in making this conference successful.

July 2007 Khaled Mellouli
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Pattern Recognition and Information Fusion Using
Belief Functions: Some Recent Developments

Thierry Denœux

HEUDIASYC, UTC, CNRS
Centre de Recherche de Royallieu

BP 20529, F-60205 Compiègne, France

The Transferable Belief Model (TBM) is a general framework for reasoning with uncer-
tainty using belief functions [8]. Of particular interest is the General Bayesian Theorem
(GBT), an extension of Bayes’s theorem in which probability measures are replaced by
belief functions, and no prior knowledge is assumed [7,6].

Until recently, applications of the GBT have been fairly limited, mainly because of
lack of methods for constructing belief functions from observation data. The availability
of such methods [4,2,1] as well as new combination rules for merging partially overlap-
ping items of evidence [5] now extend the applicability of the TBM to a wider class of
statistical pattern recognition and information fusion tasks. These recent developments
will be reviewed, and applications to various problems such as novelty detection [3] and
partially supervised learning using mixture models will be discussed.

This talk is mostly self-contained. Relevant material (papers, slides) can be found at
.
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Causality and Dynamics of Beliefs in Qualitative

Uncertainty Frameworks

Salem Benferhat
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Causality and belief changes play an important role in many applications. Re-
cently, Pearl [6] has proposed approaches based on probability theory using
causal graphs to give formal semantics to the notion of interventions. From
representational point of view, interventions are distinguished from observations
using the concept of the ”do” operator [4]. From reasoning point of view, han-
dling interventions consists in ”ignoring” the effects of all direct (and undirected)
causes related to the variable of interest.

This talk discusses causality in qualitative uncertainty frameworks, such as
ordinal conditional functions frameworks [7] or possibility theory frameworks [2],
with a particular focus on graphical models. We will also discuss the relationships
between qualitative handling of causality and belief changes (belief revision and
updating) [3], [5].

A first natural question is whethere the different equivalent representations of
interventions in probabilistic networks are still valid in qualitative settings. We
argue that this is the case since basically the main changes between probabilistic
networks and probabilistic causal networks concerns the graphical structure.

The second question that is addressed concerns computational issues. Namely,
we discuss whethere the handling of interventions, especially sequences of obser-
vations and interventions, has consequences on propagation algorithms. In par-
ticular, we are interested to know whethere one can reuse exisiting algorithms
and what are extra costs induced by handling interventions.

The last and most important question concerns new issues that are arised in
belief changes when handling interventions. We first point out that the order
in which observations and interventions are introduced is very important. Then
we argue that if one wants to respect this order then we need to change the
structure of the graphical model after each observation and intervetion.

Some part of this work has been jointly done with S. Smaoui [1].

Acknowlegment. This work is supported by a french national project ANR
Blanc Micrac.
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Abstract. Logic-based formalizations of argumentation, that take pros and cons
for some claim into account, have been extensively studied, and some basic prin-
ciples have been established (for reviews see [1–3]). These formalizations assume
a set of formulae and then exhaustively lay out arguments and counterarguments,
where a counterargument either rebuts (i.e. negates the claim of the argument)
or undercuts (i.e. negates the support of the argument). Recently attempts have
been made to refine these formalizations by using techniques for selecting the
more appropriate arguments and counterarguments by taking into account intrin-
sic factors (such as the degree of inconsistency between an argument and its coun-
terarguments) and extrinsic factors (such as the impact of particular arguments on
the audience and the beliefs of the audience). In this presentation, we consider the
need to take intrinsic and extrinsic factors into account, and then consider ways
that this can be done in logic in order to refine existing logic-based approaches
to argumentation. These refinements offer interesting options for formalizations
that may better capture practical argumentation for intelligent agents [3].
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Abstract. Several paradigms exist for modeling causal graphical models
for discrete variables that can handle latent variables without explicitly
modeling them quantitatively. Applying them to a problem domain con-
sists of different steps: structure learning, parameter learning and using
them for probabilistic or causal inference. We discuss two well-known
formalisms, namely semi-Markovian causal models and maximal ances-
tral graphs and indicate their strengths and limitations. Previously an
algorithm has been constructed that by combining elements from both
techniques allows to learn a semi-Markovian causal models from a mix-
ture of observational and experimental data. The goal of this paper is to
recapitulate the integral learning process from observational and experi-
mental data and to demonstrate how different types of inference can be
performed efficiently in the learned models. We will do this by proposing
an alternative representation for semi-Markovian causal models.

1 Introduction

This paper discusses causal graphical models for discrete variables that can han-
dle latent variables without explicitly modeling them quantitatively. In the un-
certainty in artificial intelligence area there exist several paradigms for such
problem domains. Two of them are semi-Markovian causal models and maxi-
mal ancestral graphs. Applying these techniques to a problem domain consists
of several steps, typically: structure learning from observational and experimen-
tal data, parameter learning, probabilistic inference, and, quantitative causal
inference.

We will discuss the fact that each of the existing approaches for causal mod-
eling with latent variables only focuses on one or a few of all the steps involved
in the process of modeling a problem.

Semi-Markovian causal models (SMCMs) are an approach developed by Tian
and Pearl [1,2]. They are specifically suited for performing quantitative causal
inference in the presence of latent variables. However, at this time no efficient
parametrisation of such models is provided and there is no algorithm for per-
forming efficient probabilistic inference. Furthermore there are no techniques to
learn these models from data issued from observations, experiments or both.

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 5–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Maximal ancestral graphs (MAGs) [3] are specifically suited for structure
learning in the presence of latent variables from observational data. However,
the techniques only learn up to Markov equivalence and provide no clues on
which additional experiments to perform in order to obtain the fully oriented
causal graph. See [4,5] for that type of results for Bayesian networks without
latent variables. Furthermore, as of yet no parametrisation for discrete variables
is provided for MAGs and no techniques for probabilistic inference have been
developed. There is some work on algorithms for causal inference, but it is re-
stricted to causal inference quantities that are the same for an entire Markov
equivalence class of MAGs [6,7].

We have chosen to use SMCMs as a final representation in our work, because
they are the only formalism that allows to perform causal inference while fully
taking into account the influence of latent variables. In previous work [8] we com-
bined the existing techniques to learn MAGs with newly developed methods to
provide an integral approach that uses both observational data and experiments
in order to learn fully oriented semi-Markovian causal models.

In this paper we develop an alternative representation for the probability dis-
tribution represented by a SMCM, together with a parametrisation for this rep-
resentation, where the parameters can be learned from data with classical tech-
niques. Finally, we discuss how probabilistic and quantitative causal inference
can be performed in these models with the help of the alternative representation
and its associated parametrisation.

The next section introduces some notations and definitions and we discuss
causal models with latent variables. After that we discuss structure learning
for those models and in the next section we introduce techniques for learning a
SMCM with the help of experiments. Then we introduce a new representation for
SMCMs that can easily be parametrised. We also show how both probabilistic
and causal inference can be performed with the help of this new representation.

2 Preliminaries

We start this section by introducing basic notations necessary for the under-
standing of the rest of this paper. Then we will discuss classical probabilistic
Bayesian networks followed by causal Bayesian networks. Finally we handle the
difference between probabilistic and causal inference, or observation vs. manip-
ulation.

2.1 Notations

In this work uppercase letters are used to represent variables or sets of variables,
i.e. V = {V1, . . . , Vn}, while corresponding lowercase letters are used to represent
their instantiations, i.e. v1, v2 and v is an instantiation of all vi. P (Vi) is used to
denote the probability distribution over all possible values of variable Vi, while
P (Vi = vi) is used to denote the probability of the instantiation of variable Vi

to value vi. Usually, P (vi) is used as an abbreviation of P (Vi = vi).



Causal Graphical Models with Latent Variables: Learning and Inference 7

The operators Pa(Vi), Anc(Vi), Ne(Vi) denote the observable parents, ances-
tors and neighbors respectively of variable Vi in a graph and Pa(vi) represents
the values of the parents of Vi. If Vi ↔ Vj appears in a graph then we say that
they are spouses, i.e. Vi ∈ Sp(Vj) and vice versa.

When two variables Vi, Vj are independent we denote it by (Vi⊥⊥Vj), when
they are dependent by (Vi �Vj).

2.2 Definitions

Both techniques are an extension of causal Bayesian networks for modeling sys-
tems without latent variables.

Definition 1. A Causal Bayesian Network is a triple 〈V,G, P (vi|Pa(vi))〉,
with:

– V = {V1, . . . , Vn}, a set of observable discrete random variables
– a directed acyclic graph (DAG) G, where each node represents a variable

from V
– parameters: conditional probability distributions (CPD) P (vi|Pa(vi)) of each

variable Vi from V conditional on its parents in the graph G.
– Furthermore, the directed edges in G represent autonomous causal relations

between the corresponding variables.

The interpretation of directed edges is different from a classical BN, where the
arrows only represent a probabilistic dependency, and not necessarily a causal
one.

This means that in a CBN, each CPD P (vi|Pa(vi)) represents a stochastic
assignment process by which the values of Vi are chosen in response to the values
of Pa(Vi) in the underlying domain. This is an approximation of how events are
physically related with their effects in the domain that is being modeled. For
such an assignment process to be autonomous means that it must stay invariant
under variations in the processes governing other variables [1].

In the above we made the assumption of causal sufficiency, i.e. that for ev-
ery variable of the domain that is a common cause, observational data can be
obtained in order to learn the structure of the graph and the CPDs. Often this as-
sumption is not realistic, as it is not uncommon that a subset of all the variables
in the domain is never observed. We refer to such a variable as a latent variable.

The central graphical modeling representation that we use are the semi-
Markovian causal models. They were first used by Pearl [1], and Pearl and Tian
[2] have developed causal inference algorithms for them.

Definition 2. A Semi-Markovian Causal Model (SMCM) is an acyclic
causal graph G with both directed and bi-directed edges. The nodes in the graph
represent observable variables V = {V1, . . . , Vn} and the bi-directed edges implic-
itly represent latent variables L = {L1, . . . , Ln′}.

See Figure 1(b) for an example SMCM representing the underlying DAG in (a).
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Fig. 1. (a) A problem domain represented by a causal DAG model with observable
and latent variables. (b) A semi-Markovian causal model representation of (a). (c) A
maximal ancestral graph representation of (a).

Maximal ancestral graphs are another approach to modeling with latent vari-
ables [3]. The main research focus in that area lies on learning the structure
of these models and on representing exactly all the independences between the
observable variables of the underlying DAG.

Ancestral graphs (AGs) are graphs that are complete under marginalisation
and conditioning. We will only discuss AGs without conditioning as is commonly
done in recent work [9,10,11].

Definition 3. An ancestral graph without conditioning is a graph with no
directed cycle containing directed → and bi-directed ↔ edges, such that there is
no bi-directed edge between two variables that are connected by a directed path.

Definition 4. An ancestral graph is said to be a maximal ancestral graph
if, for every pair of non-adjacent nodes Vi, Vj there exists a set Z such that Vi

and Vj are d-separated given Z.

See Figure 1(c) for an example MAG representing the underlying DAG in (a)
and corresponding to the SMCM in (b).

Definition 5. Let [G] be the Markov equivalence class for an arbitrary MAG G.
The complete partial ancestral graph (CPAG) for [G], PG, is a graph with
possibly the following edges →,↔, o−o, o→, such that

1. PG has the same adjacencies as G (and hence any member of [G]) does;
2. A mark of arrowhead (>) is in PG if and only if it is invariant in [G]; and
3. A mark of tail (−) is in PG if and only if it is invariant in [G].
4. A mark of (o) is in PG if not all members in [G] have the same mark.

See Figure 2 for the corresponding CPAG for the MAG shown in Figure 1(c).

3 Structure Learning with Latent Variables

Just as learning a graphical model in general, learning a model with latent vari-
ables consists of two parts: structure learning and parameter learning. Both can
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Fig. 2. The CPAG corresponding to the MAG in Figure 1(c)

be done using data, expert knowledge and/or experiments. In this section we dis-
cuss structure learning and we differentiate between learning from observational
and experimental data.

3.1 Learning from Observational Data

In the literature no algorithm for learning the structure of an SMCM exists. In
order to learn MAGs from observational data a constraint based learning algo-
rithm has been developed. It is called the Fast Causal Inference (FCI) algorithm
[12] and it uses conditional independence relations found between observable
variables to learn a structure. Recently this result has been extended with the
complete tail augmentation rules introduced in [13]. The results of this algo-
rithm is a complete partial ancestral graph (CPAG), representing the Markov
equivalence class of MAGs consistent with the data.

In a CPAG the directed edges have to be interpreted as representing ancestral
relations instead of immediate causal relations. More precisely, this means that
there is a directed edge from Vi to Vj if Vi is an ancestor of Vj in the underlying
DAG and there is no subset of observable variables D such that (Vi⊥⊥Vj |D).
This does not necessarily mean that Vi has an immediate causal influence on Vj ,
it may also be a result of an inducing path between Vi and Vj . An inducing path
between Vi and Vj is a path that can not be blocked by any subset of variables,
the official definition is given below:

Definition 6. An inducing path is a path in a graph such that each observable
non-endpoint node is a collider, and an ancestor of at least one of the endpoints.

A consequence of these properties of MAGs and CPAGs is that they are not
very suited for general causal inference, since the immediate causal parents of
each observable variable are not available and this information is needed to
perform the calculations. As we want to learn models that can perform causal
inference, we will discuss how to transform a CPAG into a SMCM next and
hence introduce a learning algorithm for SMCMs using both observational and
experimental data.
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3.2 Learning from Experimental Data

As mentioned above, the result of current state-of-the-art techniques that learn
models with implicit latent variables from observational data is a CPAG. This
is a representative of the Markov equivalence class of MAGs. Any MAG in that
class will be able to represent the same JPD over the observable variables, but
not all those MAGs will have all edges with a correct causal orientation.

Furthermore in MAGs the directed edges do not necessarily have an immediate
causal meaning as in CBNs or SMCMs, instead they have an ancestral meaning.
If it is your goal to perform causal inference, you will need to know the immediate
parents to be able to reason about all causal queries.

MAGs are maximal, thus every missing edge must represent a conditional
independence. In the case that there is an inducing path between two variables
and no edge in the underlying DAG, the result of the current learning algorithms
will be to add an edge between the variables. Again, although these type of edges
give the only correct representation of the conditional independence relations in
the domain, they do not represent an immediate causal relation (if the inducing
edge is directed) or a real latent common cause (if the inducing edge is bi-
directed). Because of this they could interfere with causal inference algorithms,
therefore we would like to identify and remove these type of edges.

To recapitulate, the goal of techniques aiming at transforming a CPAG must
be twofold:

– finding the correct causal orientation of edges that are not completely spec-
ified by the CPAG (o→ or o−o), and,

– removing edges due to inducing paths.

For the details of the learning algorithm we refer to [14] and [8]. For the re-
mainder of the paper we will focus on constructing an alternative representation
for SMCMs in order to perform inference.

4 Parametrisation of SMCMs

In his work on causal inference, Tian provides an algorithm for performing causal
inference given knowledge of the structure of an SMCM and the joint probability
distribution (JPD) over the observable variables. However, a parametrisation to
efficiently store the JPD over the observables is not provided.

We start this section by discussing the factorisation for SMCMs introduced
in [2]. From that result we derive an additional representation for SMCMs and
a parametrisation of that representation that facilitates probabilistic and causal
inference. We will also discuss how these parameters can be learned from data.

4.1 Factorising with Latent Variables

Consider an underlying DAG with observable variables V = {V1, . . . , Vn} and
latent variables L = {L1, . . . , Ln′}. Then the joint probability distribution can
be written as the following mixture of products:
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P (v) =
∑

{lk|Lk∈L}

∏
Vi∈V

P (vi|Pa(vi), LPa(vi))
∏

Lj∈L

P (lj), (1)

where LPa(vi) are the latent parents of variable Vi.
Remember that in a SMCM the latent variables are implicitly represented by

bi-directed edges, then consider the following definition.

Definition 7. In a SMCM, the set of observable variables can be partitioned
into disjoint groups by assigning two variables to the same group iff they are
connected by a bi-directed path. We call such a group a c-component (from
”confounded component”) [2].

E.g. in Figure 1(b) variables V2, V5, V6 belong to the same c-component. Then it
can be readily seen that c-components and their associated latent variables form
respective partitions of the observable and latent variables. Let Q[Si] denote
the contribution of a c-component with observable variables Si ⊂ V to the
mixture of products in equation 1. Then we can rewrite the JPD as follows:
P (v) =

∏
i∈{1,...,k}

Q[Si].

Finally, in [2] it is shown that each Q[S] could be calculated as follows. Let
Vo1 < . . . < Von be a topological order over V , and let V (i) = {Vo1 , . . . , Voi},
i = 1, . . . , n and V (0) = ∅.

Q[S] =
∏

Vi∈S

P (vi|(Ti ∪ Pa(Ti))\{Vi}) (2)

where Ti is the c-component of the SMCM G reduced to variables V (i), that
contains Vi. The SMCM G reduced to a set of variables V ′ ⊂ V is the graph
obtained by removing all variables V \V ′ from the graph and the edges that are
connected to them.

In the rest of this section we will develop a method for deriving a DAG from a
SMCM. We will show that the classical factorisation

∏
P (vi|Pa(vi)) associated

with this DAG, is the same as the one that is associated with the SMCM as above.

4.2 Parametrised Representation

Here we first introduce an additional representation for SMCMs, then we show
how it can be parametrised and finally, we discuss how this new representation
could be optimised.

PR-Representation. Consider Vo1 < . . . < Von to be a topological order O
over the observable variables V , and let V (i) = {Vo1 , . . . , Voi}, i = 1, . . . , n and
V (0) = ∅. Then Table 1 shows how the parametrised (PR-) representation can
be obtained from the original SMCM structure.

What happens is that each variable becomes a child of the variables it would
condition on in the calculation of the contribution of its c-component as in
Equation (2).
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Table 1. Obtaining the parametrised representation from a SMCM

Given a SMCM G and a topological order O,
the PR-representation has these properties:

1. The nodes are V , the observable variables of the SMCM.
2. The directed edges that are present in the SMCM are also

present in the PR-representation.
3. The bi-directed edges in the SMCM are replaced by a number

of directed edges in the following way:

Add an edge from node Vi to node Vj iff:
a) Vi ∈ (Tj ∪ Pa(Tj)), where Tj is the c-component of G

reduced to variables V (j) that contains Vj ,
b) except if there was already an edge between nodes Vi and Vj .

In Figure 3(a), the PR-representation of the SMCM in Figure 1(a) can be
seen. The topological order that was used here is V1 < V2 < V3 < V4 < V5 < V6
and the directed edges that have been added are V1 → V5, V2 → V5, V1 → V6,
V2 → V6, and, V5 → V6.

The resulting DAG is an I -map [15], over the observable variables of the
independence model represented by the SMCM. This means that all the inde-
pendences that can be derived from the new graph must also be present in the
JPD over the observable variables. This property can be more formally stated
as the following theorem.

Theorem 1. The PR-representation PR derived from a SMCM S is an I-map
of that SMCM.

Proof. Proving that PR is an I -map of S amounts to proving that all indepen-
dences represented in PR (A) imply an independence in S (B), or A ⇒ B. We
will prove that assuming both A and ¬B leads to a contradiction.

Assumption ¬B: consider that two observable variables X and Y are depen-
dent in the SMCM S conditional on some (possible empty) set of observable
variables Z: X �SY |Z.

V3

V1

V2

V5

V4

V6

V
1
,V

2
,V

4
,V

5
,V

6
V2,V3,V4

V 2,V4

(a) (b)

Fig. 3. (a) The PR-representation applied to the SMCM of Figure 1(b). (b) Junction
tree representation of the DAG in (a).
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Assumption A: consider that X and Y are independent in PR conditional on
Z: X⊥⊥PRY |Z.

Then based on X �SY |Z we can discriminate two general cases:

1. ∃ a path C in S connecting variables X and Y that contains no colliders and
no elements of Z.

2. ∃ a path C in S connecting variables X and Y that contains at least one
collider Zi that is an element of Z. For the collider there are three possibil-
ities:
(a) X . . . Ci → Zi ← Cj . . . Y
(b) X . . . Ci ↔ Zi ← Cj . . . Y
(c) X . . . Ci ↔ Zi ↔ Cj . . . Y

Now we will show that each case implies ¬A:

1. Transforming S into PR only adds edges and transforms double-headed
edges into single headed edges, hence the path C is still present in S and it
still contains no collider. This implies that X⊥⊥PRY |Z is false.

2. (a) The path C is still present in S together with the collider in Zi, as it has
single headed incoming edges. This implies that X⊥⊥PRY |Z is false.

(b) The path C is still present in S. However, the double-headed edge is
transformed into a single headed edge. Depending on the topological
order there are two possibilities:
– Ci → Zi ← Cj : in this case the collider is still present in PR, this

implies that X �PRY |Z
– Ci ← Zi ← Cj : in this case the collider is no longer present, but in

PR there is the new edge Ci ← Cj and hence X �PRY |Z
(c) The path C is still present in S. However, both double-headed edges are

transformed into single headed edges. Depending on the topological order
there are several possibilities. For the sake of brevity we will only treat a
single order here, for the others it can easily be checked that the same holds.
If the order is Ci < Zi < Cj , the graph becomes Ci → Zi → Cj , but there
are also edges from Ci and Zi to Cj and its parents Pa(Cj). Thus the
collider is no longer present, but the extra edges ensure that X �PRY |Z.

This implies that X⊥⊥PRY |Z is false and therefore we can conclude that PR is
always an I -map of S under our assumptions. �

Parametrisation. For this DAG we can use the same parametrisation as for
classical BNs, i.e. learning P (vi|Pa(vi)) for each variable, where Pa(vi) denotes
the parents in the new DAG. In this way the JPD over the observable vari-
ables factorises as in a classical BN, i.e. P (v) =

∏
P (vi|Pa(vi)). This follows

immediately from the definition of a c-component and from Equation (2).

Optimising the Parametrisation. Remark that the number of edges added
during the creation of the PR-representation depends on the topological order
of the SMCM.
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As this order is not unique, giving precedence to variables with a lesser amount
of parents, will cause less edges to be added to the DAG. This is because added
edges go from parents of c-component members to c-component members that
are topological descendants.

By choosing an optimal topological order, we can conserve more conditional
independence relations of the SMCM and thus make the graph more sparse,
leading to a more efficient parametrisation.

Note that the choice of the topological order does not influence the correctness
of the representation, Theorem 1 shows that it will always be an I -map.

4.3 Probabilistic Inference

Two of the most famous existing probabilistic inference algorithms for models
without latent variables are the λ − π algorithm [15] for tree-structured BNs,
and the junction tree algorithm [16] for arbitrary BNs.

These techniques cannot immediately be applied to SMCMs for two reasons.
First of all until now no efficient parametrisation for this type of models was
available, and secondly, it is not clear how to handle the bi-directed edges that
are present in SMCMs.

We have solved this problem by first transforming the SMCM to its PR-
representation which allows us to apply the junction tree (JT) inference al-
gorithm. This is a consequence of the fact that, as previously mentioned, the
PR-representation is an I -map over the observable variables. And as the JT
algorithm only uses independences in the DAG, applying it to an I -map of the
problem gives correct results. See Figure 3(b) for the junction tree obtained
from the parametrised representation in Figure 3(a). Although this seems to be
a minor improvement in this example, it has to be noted that this is the best
possible results for this structure. The complexity of the junction tree in general
will be dependent on the structure between the observed variables and on the
complexity of the c-components.

4.4 Causal Inference

In [2], an algorithm for performing causal inference was developed, however as
mentioned before they have not provided an efficient parametrisation.

In [6,7], a procedure is discussed that can identify a limited amount of causal
inference queries. More precisely only those whose result is equal for all the
members of a Markov equivalence class represented by a CPAG.

In [17], causal inference in AGs is shown on an example, but a detailed ap-
proach is not provided and the problem of what to do when some of the parents
of a variable are latent is not solved.

By definition in the PR-representation, the parents of each variable are exactly
those variables that have to be conditioned on in order to obtain the factor of
that variable in the calculation of the c-component, see Table 1 and [2]. Thus, the
PR-representation provides all the necessary quantitative information, while the
original structure of the SMCM provides the necessary structural information,
for Tian’s algorithm to be applied.
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5 Conclusions and Perspectives

In this paper we have introduced techniques for causal graphical modeling with
latent variables. We pointed out that none of the existing techniques provide a
complete answer to the problem of modeling systems with latent variables.

We have discussed concisely the structure learning process and in more de-
tail the parametrisation of the model and probabilistic and causal inference. As
the experimental structure learning approach relies on randomized controlled
experiments, in general it is not scalable to problems with a large number of
variables, due to the associated large number of experiments. Furthermore, it
cannot be applied in application areas where such experiments are not feasible
due to practical or ethical reasons.

SMCMs have not been parametrised in another way than by the entire joint
probability distribution, we showed that using an alternative representation,
we can parametrise SMCMs in order to perform probabilistic as well as causal
inference. Furthermore this new representation allows to learn the parameters
using classical methods.

We have informally pointed out that the choice of a topological order when
creating the PR-representation, influences the size and thus the efficiency of the
PR-representation. We would like to investigate this property in a more formal
manner. Finally, we have started implementing the techniques introduced in
this paper into the structure learning package (SLP)1 of the Bayesian networks
toolbox (BNT)2 for MATLAB.
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Abstract. This paper proposes a new method for learning causal
Bayesian networks from incomplete observational data and interventions.
We extend our Greedy Equivalence Search-Expectation Maximization
(GES-EM) algorithm [2], initially proposed to learn Bayesian networks
from incomplete observational data, by adding a new step allowing the
discovery of correct causal relationships using interventional data. Two
intervention selection approaches are proposed: an adaptive one, where
interventions are done sequentially and where the impact of each inter-
vention is considered before starting the next one, and a non-adaptive
one, where the interventions are executed simultaneously. An experimen-
tal study shows the merits of the new version of the GES-EM algorithm
by comparing the two selection approaches.

1 Introduction

Bayesian networks are becoming a popular tool for representing uncertainty in
artificial intelligence [12,17]. They have been implemented in several real appli-
cations in different areas such as medical diagnosis, pattern recognition, credit
assessment and fraud detection. Recently, a lot of research has been oriented
towards learning those models from data. There are two main approaches: The
score-based approach [3,5,6,10] which attempts to identify the network that max-
imizes a scoring function evaluating how well the network fits the data, and the
constraint-based one [18,19], which performs statistical tests to determine con-
ditional independence relationships among variables in the given data, and then
searches for a network consistent with these assumed relationships.

Since they perform learning from purely observational data, both approaches
suffer from a substantial problem consisting in the fact that they cannot dis-
tinguish between equivalent networks, and thus, cannot identify correctly the
causal network. In fact, learning about causal relationships is crucial for at least
two reasons, namely, it allows us to gain more understanding about the problem
domain, and to make predictions in the presence of interventions [19].

To learn causal networks, interventional data, i.e. samples conditioned on
the particular values of one or more variables that have been experimentally
manipulated, are required. Given such data, interventions allowing us to discover
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the correct causal relationships should be carefully selected. In other words, one
should decide which interventions are deemed most informative while respecting
available resources.

This paper proposes a new approach for learning causal Bayesian networks
from incomplete observational data, where some values of some variables are
missing, as well as interventional data. Indeed, the observational data may be
incomplete for several reasons such as noisy measurements, equipment malfunc-
tion or not entered values due to misunderstanding.

Roughly speaking, as first step, our approach makes use of the GES-EM al-
gorithm [2] to identify the Bayesian network equivalence class that best matches
the incomplete observational data. Next, in order to infer the causal Bayesian
network, we propose to extend this algorithm by adding a new step that al-
lows us to select efficiently appropriate interventions, and therefore, to discover
properly the causal relationships.

Two intervention selection approaches will be studied, namely an adaptive
one, where interventions are done sequentially, so the impact of each intervention
is considered before starting the next one, and a non-adaptive approach, where
the whole selected interventions are executed simultaneously.

The remainder of this paper is organized as follows: Section 2 provides some
notations and recalls basics of Bayesian networks as well as causal Bayesian net-
works. Section 3 describes the GES-EM algorithm used for learning Bayesian
network equivalence classes from incomplete observational data. Section 4 pro-
poses our new criteria and approaches to select efficiently appropriate interven-
tions and infer a correct causal Bayesian network. Finally, Section 5 describes
experimental study showing the merits of the new version of GES-EM and com-
paring the two proposed selection approach.

2 Background and Notations

The following syntactical conventions are used: U = {X1, ..., Xn} denotes the
universe defined as a finite set of n discrete random variables. A variable is
denoted by an upper case letter (e.g. X , Y , Xi) and a state or value of that
variable by the same lower-case letter (e.g. x, y, xi). A set of variables is denoted
by a bold-face capitalized letter (e.g. X, Y, Pa(Xi)) and the corresponding bold-
face lower-case letter (e.g. x, y, pa(Xi)) denotes an assignment or state for each
variable in a given set. Calligraphic letters (e.g. B, CB, G, E) denotes statistical
models both parameterized and non-parameterized.

2.1 Bayesian Networks

A Bayesian network B [12,17] is a pair (G, Θ). The first component is the struc-
ture G which is a Directed Acyclic Graph (DAG), where the set of vertices or
nodes represents the variables, and the set of directed edges or arcs corresponds
to dependence relationships between these variables. The second component,
namely the set of parameters Θ = {Θ1,Θ2, ...,Θn}, specifies all the conditional
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probability distributions. Θi = P (Xi | Pa(Xi)) denotes the conditional proba-
bility distribution of each node Xi given its parents, denoted by Pa(Xi).

Two Bayesian network structures G and G′ are said to be equivalent, denoted
by G ≈ G′, if they can be used to represent the same set of probability distribu-
tions. More formally, Chickering [4] provides the following definition:

Definition 1. Two DAGs G and G′ are equivalent if for every Bayesian network
B = (G,Θ), there exists a Bayesian network B′ = (G′,Θ′) such that B and B′
define the same probability distribution, and vice versa.

Moreover, Verma and Pearl [21] propose the following definition which deter-
mines graphically the equivalence of two DAGs.

Definition 2. Two DAGs are equivalent if and only if they have the same skele-
tons (i.e. the undirected graph resulting from ignoring the directionality of every
edge) and the same v-structures (i.e. ordered triples of nodes (X, Y, Z), such that
X → Y , Z → Y and X and Z are not adjacent).

Each set of equivalent DAGs defines an equivalence class of Bayesian networks,
denoted by E , which can be represented via a unique Completed Partially Di-
rected Graph (CPDAG), denoted by Pc [5]. A Partially Directed Acyclic Graph
(PDAG) is a graph that contains both directed and undirected edges. A com-
pelled edge is an edge that exists with the same orientation for every DAG
member of an equivalence class. If an edge is not compelled, then it is reversible.
Thus, a CPDAG Pc corresponding to an equivalence class E is a PDAG con-
sisting of a directed edge for every compelled edge in the equivalence class, and
an undirected edge for every reversible edge in the equivalence class [5].

2.2 Causal Bayesian Networks

Causal Bayesian networks, denoted by CB, are Bayesian networks with some par-
ticular properties concerning their interpretation [18,19]. More precisely, the par-
ent set of a given variable is seen as its immediate cause, and consequently, equiv-
alence hypothesis of Bayesian networks (expressed by definitions 1 and 2) is not
valid any more. For instance, although the two Bayesian networks X → Y and
X ← Y are equivalent, only one of them is a correct causal Bayesian network. In
fact, if we consider the first network X causes Y , then, manipulating the value of
X affects the value of Y. However, if we consider the second one, Y is a cause of
X , then manipulating X will not affect Y . To more illustrate this purpose we can
consider the famous link Asia−Tuberculosis in the Asia network [13]. It is clear
that visiting Asia may cause Tuberculosis, while having a Tuberculosis has no im-
pact on visiting Asia. Thus, a causal network is a proper Bayesian network but the
contrary is not always true. This means that its structure is more comprehensible
and more expressive than the standard Bayesian network. Furthermore, given a
causal network one can use it in different manners depending on the requirement.
In fact, if we want to determine how the observation of specific values (evidence)
affects the probabilities of query variable(s), then we can use probabilistic infer-
ence [12,17], while if the objective is to predict the effect of an intervention on
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the remaining variables, then we should use causal inference [14]. Obviously, if we
apply causal inference on standard Bayesian networks, then results can be biased.

3 Learning Bayesian Network Equivalence Classes from
Incomplete Observational Data: GES-EM Algorithm

Learning Bayesian networks from observational data is an unsupervised learning
problem, which aims to determine a network, or set of networks, that best fit
this data. Most learning methods, to date, are based on the assumption that the
observational data are complete, that is, the values of all variables are observed
for each record in the data [3,5,6,10]. Unfortunately, this assumption is unrealistic
since most real-world data rarely conform to the ideal of being complete, and
quite often involve missing information.

In [2], we have proposed a novel approach, named Greedy Equivalence Search-
Expectation Maximization (GES-EM), for learning Bayesian network equiva-
lence classes from incomplete data, and proved theoretically and experimentally
its efficiency. In fact, the main idea of this approach, is to alternate between
Expectation Maximization (EM) [7] iterations, which optimize the parameters
for the current equivalence class, and structure search iterations, which aim to
identify the possible neighbors of the current equivalence class using the Greedy
Equivalence Search (GES) algorithm [5].

Roughly speaking, GES-EM algorithm starts with an initial equivalence class
E0, containing a unique empty Bayesian network represented via the structure
G0, and the randomly initialized parameter set Θ0, then, it executes a single
edge insertion phase followed by a single edge deletion one.

These two phases are quite analogous, thus, we only present the single edge
insertion phase outlined by the following algorithm:

Algorithm 1. Single edge insertion phase
begin

i ← 0; Convergence ← false; Stop ← false;
while (not Convergence) and (not Stop) do

1. Run EM, using Gi and Θi, producing Θ′i;
2. Generate P+(E i) via applying all valid Insert operators to E i;
3. G+(E i) ← PDAG-to-DAG(P+(E i));
4. if G+(E i) �= ∅ then

4.1. Compute Q(G,Θ : Gi, Θ′i) for each G ∈ G+(E i);
4.2. (Gi+1,Θi+1) ← argmax Q(G,Θ : Gi,Θ′i);
4.3 if Q(Gi+1,Θi+1 : Gi,Θ′i) > Q(Gi,Θ′i : Gi,Θ′i) then

E i+1 ← DAG-to-CPDAG(Gi+1);
i ← i + 1;

4.4 else
Convergence ← true;

5. else
Stop ← true;

end
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Each iteration in this phase starts by running the EM algorithm [7] to conver-
gence, in order to find improved parameter values Θ′i for the current structure
Gi (step 1). Next, it applies all valid Insert operators [5] to E i in order to ob-
tain the set of its neighbors (step 2). This set is denoted by P+(E i) since each
resulting neighbor is a PDAG, denoted P , not necessarily completed.

Then, each neighbor P ∈ P+(E i) is converted into its consistent extension G
defined as a DAG having the same skeleton and the same set of v-structures as
P , and also the same orientation of every directed edge in P . This conversion
step is accomplished via the PDAG-to-DAG algorithm [8] (step 3).

The set of all obtained consistent extensions is denoted by G+(E i). If this set
is empty, the first phase ends and the second one starts from the current state
(step 5). Otherwise, each neighbor G ∈ G+(E i) is evaluated using the expected
Bayesian Information Criterion (BIC) score, denoted Q [9] (step 4.1).

Next, the highest scoring neighbor is selected (step 4.2) and compared to
the one found in the previous iteration. If it is lower, then the first phase ends
and the second one proceeds from the previous best state (step 4.4). Other-
wise, the best equivalence class is generated, via converting the best selected
consistent extension G to a CPDAG, using the conversion algorithm DAG-to-
CPDAG [5] (step 4.3). The obtained equivalence class becomes the current state
and the search continues until no neighbors are generated or a local maximum
is reached.

The second phase of GES-EM, i.e. the single edge deletion phase, is executed in
the same manner as the single edge insertion phase by replacing Insert operators,
in step 2, by Delete ones [5].

When the GES-EM ends, it returns the equivalence class which better fits the
initial data. Then, according to the equivalence definition, we can choose one
of the equivalent networks pertaining to it. This choice is generally done in an
arbitrary manner as proposed by [8]. Nevertheless, from a causal point of view,
this can compromise the network accuracy since we are not sure to return the
correct causal network. In fact, we should properly orient existing edges in order
to express causal influences between variables.

Obviously, this cannot be accomplished using the already explored observa-
tional data, and requires some additional information, known as interventional
data. Hence, using such data, the main idea is to extend the GES-EM algorithm
and correctly orient reversible edges in the returned equivalence class via a real
intervention selection strategy.

4 Selecting Appropriate Interventions

By interventions, we mean experiment, action or manipulation performed on a
given variable by fixing it to a single value and observing its impact on target
variables. The main issue here is how to select appropriate interventions?

To respond to this question, we first define intervention selection criteria
based on connectivity and costs, then, we propose two selection approaches
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optimizing these criteria: In the first one, which is adaptive, interventions are
executed sequentially by considering at each step the result of previous interven-
tions. While, in the second approach, which is non-adaptive, interventions are
done simultaneously.

Note that, within both approaches, each intervention execution is followed by
applying the PC rules [19] in order to infer directions of some additional edges,
which are not directly connected to the manipulated node. The PC rules can be
summarized as follows:

– R1: Directing edges without introducing new v-structures :
∀Xi, Xj ∈ U , if Xi → Xj and Xj and Xk are adjacent, Xi and Xk are not,
and there is no arrow into Xj then orient Xj-Xk as Xj → Xk

– R2: Directing edges without introducing cycles :
∀Xi, Xj ∈ U , if it exists a directed path between Xi and Xj , and an edge
Xi −Xj , then orient it as Xi → Xj .

4.1 Selection Criteria

It is clear that the selection of appropriate interventions will be made within
nodes having non-oriented neighbors (i.e neighbors which are neither parents
nor children). Thus, we will split the node set U into two subsets U+ (nodes
with no edges) and U− (nodes with at least one edge) and only consider nodes in
U−. For each of these nodes, we will define two criteria, the first is a topological
one relative to its connectivity, and the second concerns the practical aspect of
the intervention and more precisely to its cost.

Connectivity. Since our objective is to fully orient the CPDAG while min-
imizing interventions, the first considered criterion is the connectivity of each
node in U−. In fact, it seems obvious to manipulate variables susceptible to
orient the maximum number of edges, and hence to consider the connectivity as
a suitable criterion to insure this task. When manipulating a node Xi, we insure
certainly the orientation of its connected edges. However, it is difficult to predict
the impact of the intervention on the rest of the graph. In fact, an intervention
on a node with a small number of connected edges can orient the whole graph
as well as (and even better than) a one relative to a node having a great number
of connected edges.

Example 1. Let us consider the DAG in the Figure 1(a). Suppose that the
GES-EM algorithm generates the CPDAG of Figure 1(b). It is clear that the
node X3 has the highest number of connected edges, nevertheless, its manipula-
tion only orient the edges X3-X1, X3-X4, X3-X7, and X3-X8 (after applying PC
rules). However, despite its lower number of connected edges, an intervention on
X1 will orient the whole graph.

Meganck et al. [15] have proposed to use the connectivity criterion by only
considering the number of connected edges relative to each node Xi ∈ U−. Our
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Fig. 1. (a) Example of DAG (b) Example of resulted CPDAG from GES-EM algorithm

idea is to also consider edges connected to neighbors. More precisely, for each
node Xi ∈ U− we will consider its connected edges (this first level is denoted by
S1i), and also those relative to its neighbors except those linking them to it (this
second level is denoted by S2i). This choice is motivated by the fact that each
node is conditionally independent of all other nodes given its Markov blanket,
i.e. the set consisting of its parents, its children, and the other parents of its
children [17]. Hence, the connectivity criterion for each node Xi ∈ U− can be
expressed by the following weight:

W (Xi) =| S1i | + α | S2i | (1)

where α ∈ [0, 1[ is a calibrating coefficient relative to the importance that we give
to edges pertaining to the second level. The greater α is, the more the second
level is considered. Note that, the value 1 is excluded since the first level should
be always favored. Moreover, if α = 0 then we recover Meganck et al. criterion
[15]. The value of α can be fixed by an expert regarding the CPDAG topology.

Example 2. Let us reconsider the CPDAG presented by Figure 1(b) where
U+ = {X9} and U− = {X1, X2, X3, X4, X5, X6, X7, X8}. Table 1 gives the con-
nectivity weights with α = 0.6.

Table 1. Connectivity weights relative to the CPDAG of Figure 1(b)

Node S1 S2 W

X1 X1-X2, X1-X3 X3-X4, X3-X7, X3-X8, X2-X5, X2-X6 5.0
X2 X2-X1, X2-X5, X2-X6 X1-X3 3.6
X3 X3-X1, X3-X4, X3-X7, X3-X8 X1-X2 4.6
X4 X4-X3 X3-X1, X3-X7, X3-X8 2.8
X5 X5-X2 X2-X1, X2-X6 2.2
X6 X6-X2 X2-X1, X2-X5 2.1
X7 X7-X3 X3-X1, X3-X4, X3-X8 2.8
X8 X8-X3 X3-X1, X3-X4, X3-X7 2.8
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Note that X1 has the higher connectivity weight, and thus, it will be interesting
to choose it. In fact, regarding the real graph in Figure 1(a) the manipulation of
X1 will orient the whole graph.

Intervention cost. In real application, interventions do not always have the
same cost, moreover some of them, such as provoking earthquake or making
somebody sick, are unrealistic. Thus, it is interesting to consider the intervention
cost as a supplementary selection criterion by assigning to each node Xi ∈ U−

a cost, denoted by Cost(Xi) such that impossible interventions are marked by
an infinite cost (i.e. ∞). For the sake of simplicity, we consider that Cost(Xi) is
relative to both experimentation and evaluation costs on Xi.

4.2 Optimal Selection of Interventions

Regarding the connectivity and the intervention cost criteria, our objective is
to select best interventions, i.e. those susceptible to orient the maximal num-
ber of edges while minimizing the cost. To this end, we propose two differ-
ent approaches: the first is adaptive, where interventions are done sequentially,
and the second is non-adaptive, where the whole interventions are executed si-
multaneously. The selection phase (even adaptive or not) should be added as
an additional step to the GES-EM algorithm after the single edge insertion
and deletion phases in order to enable it to correctly learn causal relation-
ships.

Adaptive Selection Approach. In general, adaptive approaches [15,16,20]
search the most informative intervention to perform, following the impact of the
previously executed one. In this approach, we show as well how to make use
of the already defined selection criteria in order to properly choose best inter-
ventions. In fact, we take as input the CPDAG resulting from the GES-EM
algorithm, the list of node costs pertaining to U− (denoted by Cost), and the
total budget that the user is able to invest (denoted by Budget). Then, we se-
lect best intervention to perform according to the cost and connectivity criteria.
The key idea consists in calibrating the weight of each node Xi ∈ U− by its
manipulation cost as follows:

V (Xi) =
W (Xi)

Cost(Xi)
(2)

The intervention should be done on the node maximizing (2). The PC rules
are, then, applied to infer directions of some additional edges. The algorithm
stops when the whole graph is oriented, or if it is impossible to perform more
interventions due to the budget limitation. In this case, an expert can be con-
sulted to orient the remaining edges, or adjust the assigned budget. The outline
of the adaptive algorithm is as follows:
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Algorithm 2. Adaptive algorithm
Input: CPDAG Pc , Cost, Budget - Output: Causal Bayesian network CB
begin

repeat
∀Xi ∈ U−, compute V(Xi);
Perform experiment on XB such that V (XB) = maxXi∈U−(V (Xi));
Budget = Budget - Cost(XB);
for allXi ∈ S1B do

if Xi changes then Orient XB −Xi as XB → Xi;
else Orient it as XB ← Xi;

until U− = ∅ or ∀Xi ∈ U−, Budget < Cost(Xi);
return CB;

end

Meganck et al. [15] have addressed the selection problem by proposing several
adaptive optimization approaches based on the evaluation function expressed by
(2) with α = 0 (i.e. by just considering direct edges). We can mention, in par-
ticular, the optimistic and the pessimistic ones, namely MaxiMax and MaxiMin
approaches. Their principle is to first study different scenarios regarding each
intervention, then to select, with MaxiMax, the one that may direct the most
edges and with MaxiMin, the one that ensures the minimal number of inferred
edges.

The experimental study, given in Section 5, shows that our approach is com-
petitive with these approaches with lower theoretical complexity.

Non-Adaptive Selection Approach. In this approach, we adapt our selec-
tion criteria to choose and perform simultaneously the best set of interventions.
Therefore, the fundamental problem is how to select carefully this set in order
to orient efficiently the graph while respecting the available budget.

Such a problem can be formulated as a knapsack problem, where our objective
is to maximize the sum of node weights relative to the set of interventions, while
taking into account both the budget and the neighboring constraints. In fact,
the intervention set should not contain adjacent nodes in order to avoid useless
interventions.

More formally, this optimization problem can be formulated as follows:

Max

n∑
i

Ci ∗W (Xi) (3)

s.t.

⎧⎨⎩
∑n

i=1 Ci ∗ Cost(Xi) ≤ Budget
∀Xi, Xj ∈ U− s.t. Xi is a neighbor of ofXj , Ci + Cj ≤ 1
Ci ∈ {0, 1}.

where Ci = 1 (resp. Ci = 0) means that Xi is selected (resp. is not selected)
in the intervention set, denoted by UKn. The non adaptive algorithm can be
outlined as follows:
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Algorithm 3. Non-adaptive algorithm
Input: CPDAG Pc , Cost, Budget - Output: Causal Bayesian network CB
begin

Construct the interventional set UKn using (3);
Perform simultaneous experiments ∀Xi ∈ UKn;
for allXi ∈ UKn do

for allXj ∈ S1i do
if Xj changes then Orient Xi −Xj as Xi → Xj ;
else Orient it as Xi ← Xj ;

Apply PC rules R1 and R2 until no more edges can be oriented;
return CB;

end

5 Experimental Study

In this section, we present a comparative study between adaptive an non-adaptive
approaches. We also compare our adaptive heuristic with those proposed by
Meganck et al. [15] i.e. MaxiMax and MaxiMin. To this end, we considered the
well-known Insurance network [1] with 27 nodes and 52 arcs. The experimental
data were generated as follows:

– Observational data: we randomly sampled observational data sets of different
sizes (i.e. #ODS= 500, 1000, 5000) using the probabilistic logic sampling
method [11] on the Insurance network. Then, we randomly removed values
from each data set in order to get incomplete observational data sets with
various missing value percent (i.e. %mv).

– Interventional data: since real interventional data are not available, we gen-
erate them in a synthetic manner, by mutilating the original network. More
precisely, each intervention on a selected node is simulated by cutting all
its incoming arcs and then by applying the do() operator [18]. We approxi-
mately generate 1000 causal instances.

– Intervention costs: we have affected different costs in a logical manner by
assigning infinite costs to impossible interventions, such as age manipulation.

The comparison is based on three criteria: The total number of the performed
interventions, their cost and the percentage of oriented edges. Table 2 summa-
rizes obtained experimental results.

It is clear that both adaptive and non-adaptive approaches improve the GES-
EM algorithm since they allow a correct orientation of edges instead of a random
one.

A deep analysis of results relative to adaptive approaches (i.e. Weight, Maxi-
Max, MaxiMin) shows that they are competitive with respect to the three eval-
uation criteria. In fact, they consume almost the same budget with close inter-
ventions number and they provide the same improvements (i.e. percentage of
oriented edges).
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Table 2. Experimental results over Insurance network (values given in brackets are
relative to a limited budget, i.e. Budget= 120, remaining values are relative to an
unlimited budget, i.e. Budget= ∞)

Adaptive learning Non adaptive learning
Weight MaxiMax MaxiMin

#ODS=500, %mv=30, # initial edge =12

Total cost 140(90) 130(110) 130(80) 250(120)

Intervention number 4(3) 4(3) 3(2) 6(3)

% oriented edge 100(91.6) 100(91.6) 100(91.6) 100(66.6)

#ODS=1000, %mv=20, # initial edge =16

Total cost 120(120) 140(110) 120(120) 220(120)

Intervention number 4(4) 5(4) 4(4) 6(3)

% oriented edge 100(100) 100(93.7) 100(100) 100(75.0)

#ODS=5000, %mv=20, # initial edge =15

Total cost 1230(80) 1210(110) 1230(80) 220(100)

Intervention number 5(2) 5(3) 5(2) 6(3)

% oriented edge 93.3(66.6) 86.6(80.0) 86.6(66.6) 86.6(73.3)

Nevertheless, the MaxiMax and the MaxiMin approaches present a high theo-
retical complexity (i.e. O(n∗2k) where n is the number of nodes in the CPDAG
and k is the maximum number of edges relative to any Xi ∈ U) contrary to our
approach which is linear (i.e. O(n)) since it only computes the weight of each
node without considering different configurations of remaining links.

Experiments also show an additional interesting result regarding adaptive and
non adaptive approaches. In fact, it is clear that adaptive ones present better
results. This is unsurprising since the vocation of non-adaptive approaches is
to satisfy the objective function (i.e. maximizing connectivity weights) while
respecting the initial budget without considering eventual interactions between
interventions. Such a strategy can be adopted when the user has a fixed bud-
get with a possibility of multi-agent interventions since it allows him to save
execution time.

6 Conclusion

This paper proposes a novel approach for learning causal Bayesian networks from
incomplete observational data and interventions. The basic idea of our approach
is to extend the GES-EM [2] algorithm via performing an additional phase in
order to discover causal relationships. This phase is crucial since it permits us
to properly orient the reversible edges in the learned CPDAG.

More precisely, we have proposed two intervention selection approaches: an
adaptive one, where interventions are performed sequentially and where the im-
pact of each intervention is considered before starting the next one, and a non-
adaptive approach, where interventions are executed simultaneously.
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Obviously, the quality of the CPDAG issued from the GES-EM algorithm
have a direct impact on the final result. Actually we assume that the GES-EM
algorithm provides a correct CPDAG with respect to observational data. This is
not always true, in fact, if the initial CPDAG contains an edge Xi−Xj, such that
an intervention on Xi has no effect on Xj and vice versa, this means that this
link is wrong. In the current work, we save such edges, but an interesting future
work will be to revise the CPDAG using both observational and experimental
data.

Another line of research would be to consider incomplete interventional data
as it is the case in observational data. In fact, in some situations an experiment
can give us some missing values, thus it will be interesting to consider them
instead of rejecting them.
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Abstract. In this paper, we present an approach for measuring inconsistency in
a knowledge base. We first define the degree of inconsistency using a four-valued
semantics for the description logic ALC. Then an ordering over knowledge bases
is given by considering their inconsistency degrees. Our measure of inconsistency
can provide important information for inconsistency handling.

1 Introduction

Inconsistency has often been viewed as erroneous information in a knowledge base, but
this is not necessarily the best perspective on the problem. The study of inconsistency
handling in Artificial Intelligence indeed has a long tradition, and corresponding results
are recently being transferred to description logics which are a family of decidable
subsets of first-order logic.

There are mainly two classes of approaches to dealing with inconsistent descrip-
tion logic based knowledge bases. The first class of approaches is to circumvent the
inconsistency problem by applying a non-standard reasoning method to obtain mean-
ingful answers [1,2] – i.e. to ignore the inconsistency in this manner. The second class
of approaches to deal with logical contradictions is to resolve logical modeling errors
whenever a logical problem is encountered [3,4].

However, given an inconsistent knowledge base, it is not always clear which ap-
proach should be taken to deal with the inconsistency. Another problem is that when
resolving inconsistency, there are often several alternative solutions and it would be
helpful to have some extra information (such as an ordering on elements of the knowl-
edge base) to decide which solution is the best one. It has been shown that analyzing
inconsistency is helpful to decide how to act on inconsistency [5], i.e. whether to ignore
it or to resolve it. Furthermore, measuring inconsistency in a knowledge base in classical
logic can provide some context information which can be used to resolve inconsistency
[6,7,8].
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There are mainly two classes of inconsistency measures in classical logic. The first
class of measures is defined by the number of formulas which are responsible for an
inconsistency, i.e. a knowledge base in propositional logic is more inconsistent if more
logical formulas are required to produce the inconsistency [9]. The second class con-
siders the propositions in the language which are affected by the inconsistency. In this
case, a knowledge base in propositional logic is more inconsistent if more propositional
variables are affected by the inconsistency [6,10]. The approaches belonging to the sec-
ond class are often based on some paraconsistent semantics because we can still find
models for inconsistent knowledge bases using paraconsistent logics.

Most of the work on measuring inconsistency is concerned with knowledge bases in
propositional logic. In [11], the authors generalized the work on measuring inconsis-
tency in quasi-classical logic to the first-order case with restriction to prenex conjunc-
tive form (PCNF) since all first-order theories can be translated into PCNF. However,
it is still not clear how to properly perform PCNF on description logics (DLs) while
maintaining DLs structures.

The main contributions of this paper are summarized as follows:

– We present an approach for measuring inconsistency of a DL knowledge base.
– We define domain-dependent inconsistency for a consistent knowledge base. This

makes it possible to measure the inconsistency degree of a consistent DL knowl-
edge bases with respect to a domain.

– An ordering is given which provides a way to order all knowledge bases according
to their inconsistency degree. With respect to such an ordering, consistent knowl-
edge bases are always less inconsistent than all inconsistent knowledge bases.

At the same time, there are potential applications for inconsistency measures for
knowledge bases, as they provide evidences for reliability of knowledge bases when an
inconsistency occurs. In a scenario where knowledge bases are merged together, we can
give higher priority to knowledge bases which are less inconsistent. When resolving
inconsistency in the merged knowledge base, we can delete or weaken some axioms
from the knowledge base with lower priority.

In this paper, we propose an approach for measuring inconsistency in description
logic based knowledge bases. We first define the degree of inconsistency using a four-
valued semantics for description logic ALC. By analyzing the degree of inconsistency
of a knowledge base, we can either resolve inconsistency if the degree is high (e.g.
greater than 0.7) or ignore it otherwise. After that, an ordering over inconsistent knowl-
edge bases is given by considering their inconsistency degrees.

This paper is organized as follows. We first provide some basic notions for Descrip-
tion Logics in Section 2. Then, the concept of domain-dependent (in)consistency is
defined in Section 3. Our measure of inconsistency is then given in Section 4. Finally,
we discuss related work and conclude the paper in Section 5.

2 Preliminaries

2.1 The Description Logic ALC
We briefly review the terminology of the description logic ALC and its relation with
first order logic FOL. For comprehensive background reading, please refer to [12,13].
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Table 1. Syntax and semantics of ALC and translation from ALC to FOL

Constructor Syntax Φ(C, x) Semantics

atomic concept A A A(x) AI ⊆ ∆I

abstract role RA R R(x, y) RI ⊆ ∆I ×∆I

individuals I o o oI ∈ ∆I

conjunction C1 
 C2 Φ(C1, x) ∩ Φ(C2, x) CI ∩DI

disjunction C1 � C2 Φ(C1, x) ∪ Φ(C2, x) CI ∪DI

negation ¬C ¬A(x) ∆I \ CI

exists restriction ∃R.C ∃yR(x,y) ∧ Φ(C, y) {x | ∃y, (x, y) ∈ RI and y ∈ CI}
value restriction ∀R.C ∀yR(x,y) → Φ(C, y) {x | ∀y, (x, y) ∈ RI implies y ∈ CI}

Axiom Name Syntax Φ(·) Semantics

concept inclusion C1 � C2 ∀x, Φ(C1, x) → Φ(C2, x) CI
1 ⊆ CI

2

concept assertion C(a) Φ(C, a) aI ∈ CI

role assertion R(a, b) R(a,b) (aI , bI) ∈ RI

Corresponding to monadic predicates, dyadic predicates, and functional constants,
concept, role, and individual are fundamental notions of description logics. We as-
sume that we are given a set of concept names (i.e., atomic unitary predicates), a set of
role names (i.e., atomic binary predicates) and a set of individuals (i.e., functional con-
stants). Complex concepts (complex monadic formulae) in ALC can be formed from
these inductively as follows.

1. All atomic concept are concepts;
2. If C,D are concepts, then C �D, C D, and ¬C are concepts;
3. If C is a concept and R is a role, then ∀R.C and ∃R.C are concepts.

For example, suppose Doctor, Man are the given atomic concepts, hasChild is an
atomic role, and lucy, bill are two individuals. Then, Doctor  Man is a complex con-
cept representing male doctors; the complex concept ∀hasChild.Doctor means the
concept representing things whose children are all doctors, and ∃hasChild.� is a com-
plex concept corresponding to the set of individuals who have at least one child. Then
(DoctorMan)(bill) means that bill is a male doctor, and hasChild(lucy, bill) means
that bill is a child of lucy.

The formal definition of the semantics of ALC is given by means of interpretations
I = (∆I , ·I) consisting of a non-empty domain ∆I and a mapping ·I satisfying the
conditions in Table 1 whose third column is the translation Φ(C,x) ([14,13]) from
every concept C to a first-order formula, where a, b are constant symbols, y is a fresh
variable symbol and x is either the constant symbol a or a variable symbol. The unique
name assumption is adapted by Description Logics.

An ALC knowledge base (or knowledge base for simplicity) consists of a set of
assertions, called the ABox, and a set of inclusion axioms, calld the TBox. Assertions
are of the form C(a) or R(a, b), where a, b are individuals and C and R are concepts
and roles, respectively. Inclusion axioms are of the form C � D, where C and D are
concepts. The translation Φ(·) from an axiom to a FOL formula is also given in the
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Table 2. Semantics of ALC4 Concepts

Constructor Syntax Semantics

A AI = 〈P, N〉, where P, N ⊆ ∆I

R RI = 〈RP , RN〉, where RP , RN ⊆ ∆I ×∆I

o oI ∈ ∆I

C1 
 C2 〈P1 ∩ P2, N1 ∪N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

C1 � C2 〈P1 ∪ P2, N1 ∩N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

¬C (¬C)I = 〈N, P 〉, if CI = 〈P, N〉
∃R.C 〈{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj+(CI)},

{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj−(CI)}〉
∀R.C 〈{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj+(CI)},

{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj−(CI)}〉

third column of Table 1. Informally, an assertion C(a) means that the individual a is
an instance of the concept C, and an assertion R(a, b) means that the individual a is
related with the individual b via the property R. The inclusion axiom C � D means
that each individual of C is an individual of D.

An interpretation satisfies anALC knowledge base (i.e. is a model of the knowledge
base) iff it satisfies each axiom in both the ABox and the TBox. An ALC knowledge
base is called satisfiable (unsatisfiable) iff there exists (does not exist) such a model.
In ALC, reasoning tasks, i.e. the derivation of logical consequences, can be reduced to
satisfiability checking of ontologies [12,15].

From the translations fromALC axioms to FOL formulae shown in Table 1, ALC is
a subset of FOL, which is proven decidable [12].

2.2 Four-Valued Semantics for ALC
We consider the four-valued semantics forALC given in [2]. Semantically, four-valued
interpretations map individuals to elements of the domain of the interpretation, as usual.
For concepts, however, to allow for reasoning with inconsistencies, a four-valued inter-
pretation over a domain ∆I assigns to each concept C a pair 〈P,N〉 of (not necessarily
disjoint) subsets of ∆I . Intuitively, P is the set of elements known to belong to the ex-
tension of C, while N is the set of elements known to be not contained in the extension
of C. P and N are not necessarily disjoint and mutually complemental with respect to
the domain.

Formally, a four-valued interpretation is a pair I = (∆I , ·I) with ∆I as domain,
where ·I is a function assigning elements of ∆I to individuals, and subsets of (∆I)2 to
concepts, such that the conditions in Table 2 are satisfied, where functions proj+(·) and
proj−(·) are defined by proj+〈P,N〉 = P and proj−〈P,N〉 = N.

The idea of four-valued semantics is based on the idea of having four truth values,
instead of the classical two. The four truth values stand for true, false, unknown and
contradictory. We use the symbols t, f, ⊥̈, �̈, respectively, for these truth values, and
the set of these four truth values is denoted by FOUR. The correspondence between
truth values from FOUR and concept extensions are defined as follows:
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Table 3. Semantics of inclusion axioms in ALC4

Axiom Name Syntax Semantics

material inclusion C1 �→ C2 ∆I \ proj−(CI
1 ) ⊆ proj+(CI

2 )
internal inclusion C1 � C2 proj+(CI

1 ) ⊆ proj+(CI
2 )

strong inclusion C1 → C2 proj+(CI
1 ) ⊆ proj+(CI

2 ) and
proj−(CI

2 ) ⊆ proj−(CI
1 )

concept assertion C(a) aI ∈ proj+(CI)
role assertion R(a, b) (aI , bI) ∈ proj+(RI)

Definition 1. For instances a ∈ ∆I and concept names C,

– CI(a) = t, iff aI ∈ proj+(CI) and aI �∈ proj−(CI),
– CI(a) = f , iff aI �∈ proj+(CI) and aI ∈ proj−(CI),
– CI(a) = �̈, iff aI ∈ proj+(CI) and aI ∈ proj−(CI),
– CI(a) = ⊥̈, iff aI �∈ proj+(CI) and aI �∈ proj−(CI).

The correspondence between FOUR and role extensions can be defined in a similar
way.

Obviously, for the semantics defined above, we ensure that a number of useful equiv-
alences from classical DLs, such as the double negation law and the de Morgan Laws,
hold.

The increase of truth values for four-valued semantics allows for several ways to
define meaningful notions of four-valued implication. Indeed, there are three major
notions of implication in the literature [16]. Corresponding to them, we have three ways
to explain class inclusions in ALC: the material inclusion axiom, the internal inclusion
axiom, and the strong inclusion axiom, denoted as C �→ D, C � D, and C → D,
respectively, to distinguish from classical class inclusion C � D. The semantics of the
three different types of inclusion axioms is formally defined in Table 3 (together with
the semantics of concept assertions).

These three class inclusion axioms provide knowledge base engineers with a flexi-
ble way to define different knowledge bases according to their different semantics [2].
However, when 4-valued models are used to measure inconsistency, we will point out
that in Section 4.1 only one of them, the material inclusion, is proper. This is also a
reason why other 4-valued description logics [17,18] are not suitable for measuring
inconsistency.

We say that a four-valued interpretation I satisfies a four-valued knowledge base KB
(i.e. is a model of it) iff it satisfies each assertion and each inclusion axiom in KB. A
knowledge base KB is 4-valued satisfiable (unsatisfiable) iff there exists (does not exist)
such a model.

3 Domain-Dependent Inconsistency

In this section, we define a domain-dependent inconsistency in DLs. We first recall the
notion of inconsistency in DLs.
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Definition 2. A knowledge base KB is classically inconsistent iff KB has no classical
model. A knowledge base which is classically inconsistent is called an inconsistent
knowledge base. Otherwise, it is called a consistent knowledge base.

According to Definition 2, KB is inconsistent iff it has no classical model. However,
given a knowledge base which is consistent, it may be ”inconsistent” for a domain.

Example 3. Given a knowledge base KB = {T ,A}, where T = {A � ∃R.¬A} and
A = {A(a)}, KB is consistent because KB has a classical model I = 〈∆I , ·I〉, where
∆I = {a, b} and AI = {a}, RI = {(a, b)}. However, KB has no classical model with
respect to the domain {a}.

We have the following definition of domain-dependent inconsistency.

Definition 4. For a given domainD, we call KB domain-dependently inconsistent with
respect to D, denoted D-inconsistent, if KB has no classical model with respect to D.
Otherwise it is called D-consistent.

Example 5. (Example 3 continued) Consider two domains ∆I1 = {a} and ∆I2 =
{a, b}. It is easy to check that KB is ∆I1 -inconsistent, but ∆I2 -consistent.

Given another knowledge base KB′ = {A � ∃R.A,A(a)}, KB′ is both ∆I1 -consistent
and ∆I2 -consistent. Therefore, KB is “more inconsistent” than KB′. In the settings
where only finite domains are considered, such as databases, the concept of domain-
dependent (in)consistency can provide us with an approach to distinguish the extent of
inconsistency of two logically consistent knowledge bases.

We give an important property of domain-dependent (in)consistency.

Proposition 6. An ALC knowledge base KB is consistent, if and only if there exists a
positive integer N , such that for any finite domain D whose cardinality is greater than
N (i.e. |D| ≥ N ), KB is D-consistent.

The proposition holds because of the finite model property of ALC and the fact that it
is equality-free. It says that for a consistent knowledge base in ALC , it will be domain-
dependently consistent after the domain’s cardinality becomes greater than a finite pos-
itive integer. Obviously, this property does not hold for other DLs in general and neither
for FOL theories which do not have the finite model property or are not equality-free.

4 Inconsistency Measure

In this section, we measure inconsistency of anALC knowledge base using four-valued
models. In section 4.1 we discuss which kind of semantics of class inclusions as defined
in Table 3 is appropriate to be used for measuring inconsistency. In section 4.2, we
define the (domain-dependent) inconsistency degree of a knowledge base and study
specially the properties of the inconsistency degree for ALC knowledge bases. Finally,
in section 4.3, we give an ordering on knowledge bases based on the inconsistency
degrees.
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4.1 The Choice of Class Inclusion Axioms

Without explicit declaration, if a class inclusion axiom is expressed in the form C � D,
its semantics is the classical semantics as defined in Table 1. If it is in the form of
C �→ D,C � D, or C → D, it is interpreted under the four-valued semantics as
defined in Table 3.

Example 7. Consider T = {A � ¬A � A  ¬A} which is a TBox of an inconsistent
knowledge base. Based on four-valued semantics, we have the following three ways to
interpret the subsumption: T1 = {A � ¬A �→ A  ¬A}, T2 = {A � ¬A � A  ¬A},
and T3 = {A�¬A→ A¬A}, respectively. Now consider the following two 4-valued
interpretations:

I1 = (∆I1 , ·I1) : AI1 = 〈∆I1 , ∆I1〉
I2 = (∆I2 , ·I2) : AI2 = 〈∅, ∅〉

According to Table 3, T1 has a unique 4-valued model I1, while T2 and T3 both have I1
and I2 as 4-valued models.

In the above example, the difference between I1 and I2 is that I1 assigns contradiction
to the concept A, while I2 assigns nothing to a contradictory value, though knowl-
edge base T is inconsistent. Therefore, if we interpret a subsumption of an inconsistent
knowledge base as internal or strong class inclusion axiom, there may exist a 4-valued
model which does not assign contradiction to any concept or role name. We give a
proposition which shows an important property of material inclusion. We first intro-
duce some denotations.

Definition 8. Let I be a four-valued model of KB with domain ∆I , and let LKB be the
set of atomic concepts and roles occurring in KB. The inconsistency set of I for KB,
written ConflictOnto(I,KB), is defined as follows:

ConflictOnto(I,KB) = ConflictConcepts(I,KB) ∪ ConflictRoles(I,KB),

where ConflictConcepts(I,KB) = {A(a) | AI(a) = �̈, A ∈ LKB, a ∈ ∆I}, and
ConflictRoles(I,KB) = {R(a1, a2) | RI(a1, a2) = �̈, R ∈ LKB, a1, a2 ∈ ∆I}.

Intuitively, ConflictOnto(I,KB) is the set of conflicting atomic individual assertions.

Proposition 9. Given an ALC knowledge base KB=(T ,A), KB is inconsistent if and
only if ConflictOnto(I,KB) �= ∅ for very 4-valued model I of KB, provided that all
class inclusion axioms in T are explained as material inclusions.

According to Proposition 9 and the counterexample 7, it is more desirable to interpret
class inclusion by material inclusion. So, in the rest of this section, we choose only the
semantics of material inclusion as the 4-valued semantics of class inclusion. That is,
other semantics are not used to measure inconsistency of an an knowledge base, though
they are used to reason with an knowledge base in [2].
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4.2 Inconsistency Degree

In this section, we give formal definitions of the inconsistency degree of an inconsis-
tent knowledge base and the domain-dependent inconsistency degree for a consistent
knowledge base.To do this, we need the following notions.

Definition 10. For the knowledge base KB and a 4-valued interpretation I ,

GroundOnto(I,KB) = GroundConcepts(I,KB) ∪ GroundRoles(I,KB),

where GroundConcepts(I,KB) = {A(a) | a ∈ ∆I , A ∈ LKB}, GroundRoles(I,KB) =
{R(a1, a2) | a1, a2 ∈ ∆I , R ∈ LKB}.

Intuitively, GroundOnto(I,KB) is the collection of all atomic individual assertions.
In order to define the degree of inconsistency, we consider only interpretations with

finite domains. This is reasonable in practical cases because only a finite number of
individuals can be represented or would be used. This is also reasonable from the theo-
retical aspect becauseALC has the finite model property — that is, if a knowledge base
is consistent and within the expressivity of ALC, then it has a classical model whose
domain is finite.

Definition 11. The inconsistency degree of a knowledge base w.r.t. a model I ∈ M4
(KB), denote IncI(KB), is a value in [0, 1] calculated in the following way:

IncI(KB) =
|ConflictOnto(I,KB)|
|GroundOnto(I,KB)|

That is, the inconsistency degree of KB w.r.t. I is the ratio of the number of conflicting
atomic individual assertions divided by the amount of all possible atomic individual
assertions of KB w.r.t. I . It measures to what extent a given knowledge base contains
inconsistency w.r.t. I .

Example 12. Consider knowledge base KB1 =(T ,A), whereT ={A � B¬B},A =
{A(a)}. A 4-valued model of KB1 is as follows: I1 = (∆I1 , ·I1), where ∆I1 = {a},
AI1(a) = t, and BI1(a) = �̈. For this model, GroundOnto(I1,KB1) = {A(a), B(a)},
and B(a) is the unique element in ConflictOnto(I1,KB1). Therefore, IncI1(KB1) = 1

2 .

In [11], it has been shown that for a fixed domain, not all the models need to be con-
sidered to define an inconsistency measure because some of them may overestimate the
degree of inconsistency. Let us go back to Example 12.

Example 13. (Example 12 Continued) Consider another 4-valued model of KB1: I2 =
(∆I2 , ·I2), where ∆I2 = {a}, AI2(a) = �̈, BI2(a) = �̈. I1 and I2 share the same
domain. Since |ConflictOnto(I2,KB1)| = |{B(a), A(a)}| = 2, we have I1 ≤Incons I2
by Definition 14. This is because ·I2 assigns contradiction to A(a). However, A(a)
is not necessary a conflicting axiom in four-valued semantics. Therefore, we conclude
that IncI2(KB) overestimates the degree of inconsistency of KB1.

We next define a partial ordering on M4(KB) such that the minimal elements w.r.t. it
can be used to define the inconsistency measure for KB.
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Definition 14. (Model ordering w.r.t. inconsistency) Let I1 and I2 be two four-valued
models of a knowledge base KB such that |∆I

1| = |∆I
2|. We say the inconsistency of I1

is less than or equal to I2, written I1 ≤Incons I2, if and only if IncI1(KB) ≤ IncI2(KB).

The condition |∆I1 | = |∆I2 | in this definition just reflects the perspective that only
models with the same cardinality of domain are comparative. As usual, I1 <Incons I2
denotes I1 ≤Incons I2 and I2 �≤Incons I1, and I1 ≡Incons I2 denotes I1 ≤Incons I2
and I2 ≤Incons I1. I1 ≤Incons I2 means that I1 is more consistent than I2.

The model ordering w.r.t. inconsistency is used to define preferred models.

Definition 15. Let KB be a DL-based knowledge base and n(n ≥ 1) be a given car-
dinality. The preferred models w.r.t ≤Incons of size n, written PreferModeln(KB), are
defined as follows:

PreferModeln(KB) = {I | |∆I | = n; ∀I ′ ∈ M4(KB),|∆I′ |= n implies I ≤Incons I ′}

That is, PreferModeln(KB) is the set of all models of size n which are minimal with
respect to ≤Incons.

From Definition 14 and Definition 15, it is easy to see that for the preferred models
I1 and I2 with a same cardinality, inconsistency degrees of the knowledge base w.r.t
them are equal. That is, IncI1(KB) = IncI2(KB), which means I1 and I2 have the same
amount of contradictory atomic assertions, though the elements of their domains may
be quite different.

For simplicity, we say an interpretation is well-sized if and only if the cardinality of
its domain is equal to or greater than the number of individuals in KB. Because of the
unique name assumption of the DL ALC, an interpretation can be a model only if it is
well-sized. Moreover, the following theorem asserts the existence of preferred models
among the well-sized interpretations.

Theorem 16 For any given ALC knowledge base KB, preferred models among well-
sized interpretations always exist.

Above we have considered the inconsistency degrees of knowledge bases with respect
to four-valued models, especially with respect to preferred models. Now we define an
integrated inconsistency degree of a knowledge base allowing for different domains.

Definition 17. Given a knowledge base KB and an arbitrary cardinality n(n ≥ 1), let
In be an arbitrary model in PreferModelsn(KB). The inconsistency degree sequence of
KB, called OntoInc(KB), is defined as 〈r1, r2, ..., rn, ...〉, where rn = Inc(In,KB) if In

is well-sized. and let rn = ∗ otherwise.

In Definition 17, we use ∗ as a kind of null value. Given a domain with size n, we have
the following three cases: (1) if rn = ∗, it means that the knowledge knowledge base
has no 4-valued models with size n; (2)if rn = 0, it means that KB has a classical
model among its 4-valued models. (3) if rn > 0(�= ∗), it means KB has no classical
models but has 4-valued models.

From Theorem 16 and the unique name assumption of ALC the following property
holds obviously.
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Proposition 18. Assume KB is a knowledge base and OntoInc(KB) = 〈r1, r2, ...〉,
and N is the number of individuals of KB. Then

ri

{
= ∗ if 0 < i < N,

≥ 0(�= ∗) if i ≥ N.

This proposition shows that for a knowledge base, its inconsistency measure cannot
be a meaningless sequence — that is, each element is the null value ∗. Moreover, the
non-null values in the sequence start just from the position which equals the number of
individuals in the knowledge base, and remains greater than zero in the latter positions
of the sequence for inconsistent knowledge bases and becomes zero after n becomes
large enough for consistent ALC knowledge bases.

Example 19. (Example 7 continued) Obviously, for any four-valued model I =
〈∆I , ·I〉 of T , A must be assigned to 〈∆I , ∆I〉, therefore OntoInc(KB) = {1, 1, ...}.

Example 20. (Example 12 continued) Each preferred model I of KB1 must satisfy that
(1) it assigns one and only one individual assertion in {B(a), A(a)} to the contradic-
tory truth value �̈ — that is, BI(a) = �̈ and A(a) = t, or BI(a) = t and A(a) = �̈;
(2) it assigns other grounded assertions to truth values among the set {t, f, ⊥̈}. So
|Conf lictOnto(I,KB)| = 1. Consequently, OntoInc(KB1) = { 1

2 ,
1
4 , ...,

1
2n , ...}.

Example 21. (Example 5 continued) It is easy to check that OntoInc(KB′) =
〈1, 0, 0, ...〉, while OntoInc(KB′′) = 〈0, 0, ...〉. By definition 22, KB′ has more domain-
dependent inconsistency than KB′′, that is, KB′′ ≺Incons KB′.

4.3 Ordering Knowledge Bases with Respect to Their Inconsistent Degree

In this section, we define an ordering over all knowledge bases inspired by [19].

Definition 22. Given two knowledge bases KB1 and KB2, assume OntoInc(KB1) =
〈r1, r2, ...〉 and OntoInc(KB2) = 〈r′1, r′2, ...〉. We say KB1 is strictly less inconsistent
than KB2, written KB1 ≺Incons KB2, iff one of the following conditions holds:

1. N1 < N2

2. N1 = N2, rn ≤ r′n(∀n ≥ K), and there exists n0 ≥ K such that rn < r′n

where N1 = min{i : ri = 0}, N2 = min{i : r′i = 0},K = min{i : ri �= ∗, r′i �= ∗}.

N1 (or N2) is the first position from which the elements of the sequence 〈r1, r2, ...〉 (or
〈r′1, r′2, ...〉) become 0. For an inconsistent knowledge base, the position is infinite, so we
denote N1 = ∞ which is strictly greater than any finite number. So does N2. According
to Proposition 18, ≺Incons is well-defined. Moreover, an equality of two knowledge
bases can be defined by KB1 =Incons KB2 if and only if for all n ≥ K, rn = r′n.

By Definition 22 and Proposition 6, obviously, all consistent knowledge bases are
less inconsistent than any inconsistent knowledge base.

For consistent knowledge bases, according to Definition 22, one knowledge base is
less domain-inconsistent than the other if and only if 0 begins at an earlier position in
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its inconsistency degree sequence than that in the inconsistency degree sequence of the
other knowledge base.

For the ordering among inconsistent knowledge bases, we only compare the values
from the position at which both sequences have non-null values, according to Definition
22. This is because there exist infinite elements of sequences of their inconsistency
degree which are non-null, and non-zero. These elements together are to reflect the
useful information about the inconsistency of knowledge bases.

Example 23. (Example 20 continued) Suppose KB2 = {A � B  ¬B,A � C,A(a)}.
In its preferred models, the individual assertions related to C are not involved with
the contradictory truth value, so OntoInc(KB2) = { 1

3 ,
1
6 , ...,

1
3n , ...}. By definition 22,

KB2 ≺Incons KB1, which means that KB2 is less inconsistent than KB2.

Example 24. (Example 19, 21, 23 continued)

KB′′ ≺Incons KB′ ≺Incons KB2 ≺Incons KB1 ≺Incons KB.

5 Related Work and Conclusion

This paper provides a way to distinguish description logic based knowledge bases con-
sidering their different inconsistency degrees.

In the literature, there are basically two other works on defining four-valued seman-
tics for description logics [17,18]. However, their definitions of class inclusion axioms
are actually the same as the internal inclusion defined in Table 3, so that their approaches
are not suitable for measuring inconsistency according to our analysis in Section 4.1.

Our work is closely related to the work of inconsistency measuring given in [11],
where Quasi-Classical models (QC logic [20]) are used as the underlying semantics. In
this paper, we use four-valued models for description logics as the underlying seman-
tics. This is because QC logic needs to translate each formula in the theory into prenex
conjunctive normal form (PCNF). This is not practical, especially for a large knowl-
edge base, because it may be quite time consuming and users probably do not like their
knowledge bases to be modified syntactically. In this paper, we can see that four-valued
models also provide us with a novel way to distinguish knowledge bases with different
inconsistency degrees.

It is apparent that the inconsistency measure defined by our approach can be used
to compute each axiom’s contribution to inconsistency of a whole knowledge base by
adapting the method proposed in [8], thereby providing important information for re-
solving inconsistency in a knowledge base. Moreover, we find that four-valued models
may provide us with some way to quantify also the incompleteness degree of knowledge
bases because of the additional truth value ⊥̈ with respect to three-valued semantics,
which is among our future work.

In [11], every set of formulae definitely has at least one QC model because neither the
constant predicate t (tautology) nor the constant predicate f (false) is contained in the
language. However, corresponding to t and f , the top concept � and bottom concept
⊥ are two basic concept constructors for ALC. Due to space limitation, we presume
that the ontologies do not use � and ⊥ as concept constructors. The discussion of the
inconsistency measure for an arbitrary inconsistent ontology will be left as future work.
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For an implementation of our approach, the key point is to compute the number of
conflicting assertions in a preferred model with respect to any given finite domain. We
are currently working on the algorithm, which will be presented in a future paper.
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Abstract. Total preorders (tpos) are often used in belief revision to
encode an agent’s strategy for revising its belief set in response to new
information. Thus the problem of tpo-revision is of critical importance
to the problem of iterated belief revision. Booth et al. [1] provide a use-
ful framework for revising tpos by adding extra structure to guide the
revision of the initial tpo, but this results in single-step tpo revision only.
In this paper we extend that framework to consider double-step tpo re-
vision. We provide new ways of representing the structure required to
revise a tpo, based on abstract interval orders, and look at some desir-
able properties for revising this structure. We prove the consistency of
these properties by giving a concrete operator satisfying all of them.

1 Introduction

Total preorders (tpos for short) are used to represent preferences in many con-
texts. In particular, in the area of belief revision [2], a common way to encode an
agent’s strategy for revising its belief set is via a tpo ≤ over the set W of possible
worlds [3,4]. The agent’s current belief set is identified with the set of sentences
true in all the most preferred worlds, while upon receiving new evidence α, its
new belief set is calculated with the help of ≤, typically by taking it to be the
set of sentences true in all the most preferred worlds in which α holds. Of course
in order to enable a further revision, what is needed is not just a new belief set,
but also a new tpo to go with it. Thus the problem of tpo-revision is of critical
importance to the problem of iterated belief revision [5,6,7].

In the problem of belief set revision, the tpo ≤ can be thought of as extra
structure which is brought in to guide revision of the belief set. This extra struc-
ture goes beyond that given by the initial belief set, in the sense that the belief
set can be extracted from it. Thus one natural way to attack the problem of tpo
revision is to call up even more extra structure, let’s denote it by X , which simi-
larly goes beyond ≤ and can be used to guide revision of ≤. This is the approach
taken by Booth et al. [1] where X takes the form of a purely qualitative struc-
ture (to be described in more detail below). Other, more quantitative forms are
also conceivable [8]. Either way, X is used to determine a revised tpo ≤∗α given
any new evidence α. However, there is a problem with this approach regarding
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iterated tpo-revision: While the extra structure X tells us how to determine a
new tpo ≤∗α, it tells us nothing about how to determine the new extra structure
X∗

α to go with ≤∗α which can then guide the next revision. Clearly the problem
of iterated belief revision has simply re-emerged “one level up”. The purpose of
this paper is to investigate this problem in the particular case when the extra
structure X takes the form studied by Booth et al. [1].

The intuition behind the family of tpo-revision operators defined by Booth
et al. is that context ought to play a role when comparing different possible
worlds according to preference. The starting point is to assume that to each
possible world x are associated two abstract objects x+ and x−. Intuitively, x+

will represent x in contexts favourable to it, while x− will be the representative
of x in those contexts unfavourable to it. Then, along with the initial tpo ≤
over W to be revised, it is assumed an agent has a tpo � over this entire set
of objects W±. This new tpo � represents the additional structure X which is
used to encode the agent’s strategy for revising ≤ in response to new evidence
α. The arrival of α is seen as a context favourable to (a “good day” for) those
worlds consistent with α, and a context unfavourable to (a “bad day” for) for
all the other worlds. Thus the revised tpo ≤∗α is obtained by setting x ≤∗α y iff
xε � yδ, with the values ε, δ ∈ {+,−} dependent on whether x, y satisfy α or
not. As was shown by Booth et al. [1], the family of tpo-revision operators so
generated is characterised exactly by a relatively small list of rules, including
several well-known properties which have previously been proposed. The family
also includes as special cases several specific, and diverse, operators which have
previously been studied [7,9]. Thus, this framework constitutes an important
contribution to single-step tpo-revision.

The plan of the paper is as follows. In Section 2 we recall the framework for
single-step tpo-revision described by Booth et al. [1]. We give the formal defi-
nition of the orderings � described above and introduce a useful new graphical
representation of these orderings in terms of abstract intervals. In Section 3 we
introduce an alternative way of representing this structure which we call strict
preference hierarchies (SPHs). We show that these are equivalent to the � order-
ings. A consequence of this is that the problem mentioned above of determining
�∗α may be equivalently posed as the problem of revising SPHs. In Section 4 we
consider a few desirable properties which any good operator for revising SPHs
should satisfy, before proving the consistency of these properties in Section 5 by
providing an example of a concrete operator which is shown to satisfy them all.
We conclude and mention ideas for further research in Section 6.

Preliminaries: We work in a finitely-generated propositional language L. As
mentioned above, the set of propositional worlds is denoted by W . Given a
sentence α ∈ L, [α] denotes the set of worlds which satisfy α. Classical logical
equivalence over L is denoted by ≡. A total preorder is any binary relation ≤ (or
�) which is transitive and connected. For any such relation < (or ≺) denotes its
strict part (x < y iff both x ≤ y and y �≤ x) and ∼ its symmetric closure (x ∼ y
iff both x ≤ y and y ≤ x). For each α ∈ L it will be useful to define the tpo ≤α

over W generated by α by setting x ≤α y iff x ∈ [α] or y ∈ [¬α].
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2 Single-Step Revision of Tpos

We let W± = {xε | x ∈ W and ε ∈ {+,−}}, and we assume, for any x, y ∈ W
and ε, δ ∈ {+,−}, that xε = yδ only if both x = y and ε = δ. In other words all
these abstract objects are distinct. Then we assume a given order � over W±

satisfying the following conditions:

(�1) � is a total preorder
(�2) x+ � y+ iff x− � y−

(�3) x+ ≺ x−

Rule (�2) was split by Booth et al. [1] into two separate rules “x+ � y+ iff
x ≤ y” and “x− � y− iff x ≤ y”, which made reference to an explicitly given
initial tpo ≤ over W which is meant to be revised. However we can clearly recover
≤ from � satisfying the above three rules. We just define it by x ≤ y iff x+ � y+

(or x ≤ y iff x− � y−). In this case we say ≤ is the tpo over W associated to �,
or that � is ≤-faithful. From this ≤ in turn we can if we wish extract the belief
set associated to �: it is the set of sentences true in all the minimal ≤-worlds.
However in this paper the dynamics of the belief set is not so much the focus as
that of ≤, or indeed �.

How can we picture these orderings �? One way was given by Booth et al.
[1], using an assignment of numbers to a 2 × n array, where n is the number
of ranks according to the tpo associated to �. In this paper we would like to
suggest an alternative graphical representation which is perhaps more intuitive,
and is easier to work with when trying to construct examples. The idea is, for
each x ∈ W , to think of the pair (x+,x−) as representing an abstract interval
assigned to x. We can imagine that to each x we assign a “stick” whose left and
right endpoints are x+ and x− respectively. Condition (�1) says the endpoints
of all these possible sticks are totally preordered. (�2) says the left endpoints
of any two of these sticks always stand in exactly same relation to each other
as the right endpoints, just as if all the sticks have the same length. (�3) de-
mands the stick-lengths are non-zero. We may arrange the sticks in an order
such as the one shown in Figure 1, which shows the sticks associated to the
five worlds x1–x5. The further to the left an endpoint is, the lower, i.e., more
preferred, it is according to �. Thus we see for example that x+

1 ≺ x+
3 and

x−2 ∼ x+
4 .

We are assuming the sticks as having equal length, but this is mainly for visual
convenience. It has no semantic significance in the framework.

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

Fig. 1. Example interval ordering Fig. 2. Example revision
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10

11

00

01

Fig. 3. Example interval ordering

10

11

00

01

Fig. 4. Example revision

Given a tpo ≤ over W , we may use a ≤-faithful tpo � over W± to define a
revision operator ∗ for ≤. The idea is that when evidence α arrives it casts a more
favourable light on worlds satisfying α. So we consider α as signalling a “good”
day for the α-worlds, and a “bad day” for the ¬α-worlds. This leads us to define
a new, revised tpo ≤∗α by setting, for each x, y ∈ W , x ≤∗α y iff rα(x) � rα(y),
where, for any x ∈ W and α ∈ L,

rα(x) =
{

x+ if x ∈ [α]
x− if x ∈ [¬α].

In terms of our new picture, each world gets mapped to one of the endpoints
of the stick associated to it – left if it is an α-world and right if it is a ¬α-
world. From this the new tpo ≤∗α may be read off. For example in Figure 1
suppose we revise by α such that x4,x5 ∈ [α] and x1,x2,x3 ∈ [¬α]. Then
≤∗α may be read off by looking at the black circles in Figure 2. So we see
x1 ∼∗α x2 ∼∗α x4 <∗α x3 <∗α x5.

Example 1. For a more concrete example (recast from one in [1] which used the
old graphical representation) we assume L is generated from just two variables
p, q, leading to four worlds each of which we may denote as a pair of digits
denoting the truth-values of p, q respectively. The sticks associated to each world
are given in Fig. 3. The initial tpo ≤ is specified by 10 < 11 ∼ 00 < 01. Revising
by ¬p∧q leads to Fig. 4 from which we read off 10 ∼∗¬p∧q 01 <∗¬p∧q 11 ∼∗¬p∧q 00.

If we look at the belief set associated to the new tpo ≤∗¬p∧q in this example
then we see it does not contain the new evidence ¬p ∧ q due to the presence of
world 10 among the minimal worlds in ≤∗¬p∧q. Thus we see that, at the level
of belief sets, we are in the realm of so-called non-prioritised belief revision
[10].

Given a fixed initial tpo ≤ over W , if the revision operator ∗ for ≤ can be
defined from some ≤-faithful tpo � over W± as above then ∗ is said to be gen-
erated by �. Booth et al. [1] characterised the class of revision operators for ≤
which can be generated from some �. A revision operator ∗ can be generated
from a ≤-faithful tpo over W± iff it satisfies the following properties for any
α, γ ∈ L:
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(∗1) ≤∗α is a tpo over W

(∗2) α ≡ γ implies ≤∗α=≤∗γ
(∗3) If x, y ∈ [α] then x ≤∗α y iff x ≤ y

(∗4) If x, y ∈ [¬α] then x ≤∗α y iff x ≤ y

(∗5) If x ∈ [α], y ∈ [¬α] and x ≤ y then x <∗α y

(∗6) If x ∈ [α], y ∈ [¬α] and y ≤∗α x then y ≤∗γ x

(∗7) If x ∈ [α], y ∈ [¬α] and y <∗α x then y <∗γ x

Rule (∗1) just says revising a tpo over W should result in another tpo over W .
(∗2) is a syntax-irrelevance property. (∗3) and (∗4) are well-known as (CR1)
and (CR2) [6]. They say the relative ordering of the α-worlds, respectively the
¬α-worlds, should remain unchanged after receiving α. (∗5) was introduced in-
dependently by Booth et al. [5] and Jin & Thielscher [11]. It says if an α-world x
was considered at least as preferred as a ¬α-world y before receiving α, then after
receiving α, x should be strictly preferred to y. (∗6) says that if a world x is not
more preferred to a world y, even after receiving evidence α which clearly points
more to x being the case than it does to y, then there can be no evidence which
will lead to x being more preferred to y. (∗7) is similar. Rule (∗2) is actually
redundant in this list, since it can be proved from the other rules [1].

3 Strict Preference Hierarchies

A given ordering � over W± satisfying (�1)–(�3) represents the structure re-
quired to revise its associated tpo ≤ over W . In this section we introduce a way
of re-packaging that structure. As observed by Booth et al. [1], from a single �
we can extract three different notions of strict preference over W . First we have
the simple one given by x < y iff x+ ≺ y+ (equivalently x < y iff x− ≺ y−), i.e.,
< is just the strict part of the tpo over W associated to �. In terms of our new
graphical representation, x < y iff the stick corresponding to x lies to the left of
that associated to y, but possibly with some overlap. For example in Figure 1 we
have x1 < x3. A second, stronger notion of strict preference can be expressed by:
x ≪ y iff x− ≺ y+. In other words, x ≪ y iff x, even on a bad day, is preferred
to y or, in terms of the picture, iff the stick associated to x lies completely to the
left of that associated to y, and furthermore there is “daylight” between them.
E.g., in Figure 1 we see x2 ≪ x5. Finally a third case, intermediate between ≪
and <, can be expressed by: x � y iff x− � y+. In other words x � y iff x on
a bad day is at least as preferred to y. This third case captures a “hesitation”
[12] between strong strict preference ≪ and mere ordinary strict preference <.
We will have x � y and x �≪ y precisely when the right endpoint x− of the
x-stick and the left endpoint y+ of the y-stick are vertically aligned with each
other. E.g., in Figure 1 we have x1 �≪ x4 but x1 � x4.We are now in a position
to define our alternative representation of the structure used by Booth et al.

Definition 1. The triple S = (≪,�, <) of binary relations over W is a strict
preference hierarchy (over W ) (SPH for short) iff there is some relation � over
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W± satisfying (�1)–(�3) such that ≪,� and < can all be defined from � as
above. We shall sometimes say that S is relative to <.

Such “interval orderings” like the above have already been studied in the context of
temporal reasoning [13], as well as in preference modelling [12]. Indeed, concerning
the former case, the relations ≪,�,< could all be defined in terms of the relations
before, meets and overlaps between temporal intervals studied by Allen [13].

What are the properties of the three relations (≪,�, <)? A couple were
already mentioned by Booth et al. [1]. For example we already know from there
that ≪ and � are strict partial orders (i.e., irreflexive and transitive). But
what else do they satisfy? In particular how do they interrelate with each other?
Furthermore, given any arbitrary triple S = (≪,�, <) of binary relations over
W , under what conditions on S can we be sure that S forms an SPH, i.e., under
what conditions can we be sure there is some � satisfying (�1)–(�3) such that
S can be derived from � in the above manner. These questions are answered
by the following representation result for SPHs. We point out that part (iii) of
the “only if” part (but not the “if” part) was essentially already proved, in the
temporal reasoning context, by Allen [13].

Theorem 1. Let ≪,� and < be three binary relations over W . Then S =
(≪,�, <) is an SPH iff the following conditions hold (where x ≤ y iff y �< x):
(i). ≤ is a total preorder.
(ii). ≪⊆�⊆<.
(iii). The following are satisfied, for all x, y, z ∈ W :

(SPH1) z ≤ x and x ≪ y implies z ≪ y
(SPH2) x ≪ y and y ≤ z implies x ≪ z

(SPH3) z ≤ x and x � y implies z � y
(SPH4) x � y and y ≤ z implies x � z

(SPH5) z < x and x � y implies z ≪ y
(SPH6) x � y and y < z implies x ≪ z

The rules (SPH1)–(SPH6) each represent some sort of transitivity condition
across the relations of the SPH.

The “only if” direction of Theorem 1 is quite straightforward to prove, and in
fact easy to visualise given our new graphical representation of �. For the “if”
direction, we may translate any triple S = (≪,�, <) into a binary relation �S

over W± as follows: Given xε, yδ ∈ W±, if ε = δ then we set xε �S yε iff x ≤ y.
This ensures �S satisfies (�2). If ε �= δ but x = y then we declare x+ ≺S x−.
This ensures (�3) is satisfied. Finally if ε �= δ and x �= y then we set x+ �S y−

iff y �≪ x and x− �S y+ iff x � y. Then if S satisfies conditions (i)–(iii) from
the theorem, then �S satisfies (�1) in addition to (�2) and (�3). Furthermore
the SPH corresponding to �S is precisely S itself.

Two special limiting cases of SPHs were already mentioned by Booth et al. [1]:
Given any tpo ≤ over W with strict part <, the triples (∅, ∅, <) and (<,<,<)
each always forms an SPH, as can easily be seen by checking conditions (i)–(iii)
of the theorem. In fact these are the SPH forms of the well-known lexicographic
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tpo-revision operator [7] and Papini’s [9] “reverse” lexicographic tpo-revision
operator respectively.

SPHs seem closely related to the notion of “PQI interval order” studied by
Öztürk et al. [12]. Indeed several representation results in the same spirit as
Theorem 1 can be found in their work. The main difference with ours is that PQI
interval orders make use of an explicit numerical scale, so the endpoints of the
intervals are ordinary real numbers, whereas our intervals are “abstract”, having
endpoints only in some totally preordered set (but see Section 5 of this paper).
Also, with PQI interval orders, different possibilities (i.e., possible worlds for us)
may be assigned intervals of different length. It is even possible for the interval
assigned to one possibility to be completely enclosed in the interval assigned to
another. This is something we do not allow. We are currently examining in more
detail the relationship between SPHs and PQI interval orders.

To summarise the findings of this section, we now see we have two different,
but equivalent ways of describing the structure required to revise a tpo ≤:

1. As a ≤-faithful tpo � over W± satisfying (�1)–(�3).
2. As a triple (≪,�, <) of binary relations over W satisfying conditions (i)–

(iii) from Theorem 1 (with < being the strict part of ≤).

Recall that the revision operator ∗ for ≤ derived from a ≤-faithful tpo � over
W± is defined by setting x ≤∗α y iff rα(x) � rα(y). The next result shows how
we can describe ∗ purely in terms of the SPH corresponding to �.

Proposition 1. Let ≤ be a tpo over W and let � be a given ≤-faithful tpo over
W±. Let S = (≪,�, <) be the SPH corresponding to � and let ∗ be the revision
operator for ≤ derived from �. Then, for all x, y ∈ W ,

x ≤∗α y iff

⎧⎨⎩
x ∼α y and x ≤ y

or x <α y and y �≪ x
or y <α x and x � y.

Since the class of orderings � and the class of SPHs are equivalent, any way
of revising one of these two types of structure will automatically give us a way
of revising the other. We are free to use whichever one seems more appropriate
at the time. For the purpose of expressing desirable properties of revising �, it
is easier to express such properties in terms of SPHs than �.

4 Properties of SPH Revision

Given an SPH S and a sentence α, we want to determine the new SPH S � α
which is the result of revising the entire SPH S by α. Assume S = (≪,�, <)
and let’s denote S � α by (≪′,�′, <′). Firstly, we have the following three
fundamental properties:

(�1) S � α is an SPH
(�2) <′=<∗α
(�3) If α ≡ γ then S � α = S � γ
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In (�2), <∗α is the strict version of the tpo ≤∗α determined using ≤, � and ≪
as in Proposition 1. In other words, S�α should be an SPH relative to <∗α. (�3)
is a syntax-irrelevance property.

With <′ settled, it remains to specify ≪′ and �′. An initial suggestion for
the new strong strict preferences ≪′ might be to keep it unchanged. That is, to
set ≪′ equal to ≪. This can be seen as a pure application of minimal change
to ≪. In addition, it is easy to see that ≪ ⊆ <′ and so such a choice is not
at odds with part (ii) of Theorem 1. However, the following example shows this
can’t be done in general. For S � α to be an SPH it is necessary to satisfy

(SPH1) z ≤∗α x and x ≪′ y implies z ≪′ y

But if we set ≪=≪′ this might not hold in general. For suppose we are given
a portion of the � corresponding to S as follows:

x

y

z

So x ≪ y and z �≪ y. Now suppose we revise by a sentence α such that
z ∈ [α] and x, y ∈ [¬α].

x

y

z

Then z <∗α x, thus giving the required counterexample. Note, incidentally,
that it is still a counterexample if we assume y ∈ [α]. Thus there are times when
the set of strong strict preferences must change. In the above counterexample,
when we move from ≪ to ≪′ we must either lose x ≪ y, or gain z ≪ y.
How do we decide which? A useful approach is to distinguish between the case
y ∈ [¬α], as indicated in the counterexample above, and the case y ∈ [α]. In the
former case intuition dictates that x ≪ y ought to be retained since α does not
discriminate between x and y: they are both in [¬α]. Moreover, it is justifiable
to gain z ≪ y since we have caught z on a good day (z ∈ [α]) and y on a bad
day (y ∈ [¬α]). On the other hand, in the case where y ∈ [α] it can be argued
that the strong preference x ≪ y can be lost since we don’t have such a strong
case to prefer x over y anymore when x ∈ [¬α] and y ∈ [α]. Also, note that in
this case it seems reasonable to require that the relative ordering of z and y with
respect to <, � and ≪ ought to remain unchanged since α does not distinguish
between z and y: they are both in [α]. This brings us to what can be regarded
as the basic postulates for SPH revision, once (�1)-(�3) are included as well:

(�4a) If x ∼α y then x � y iff x �′ y

(�4b) If x ∼α y then x ≪ y iff x ≪′ y

(�5a) If x <α y then x ≤ y implies x �′ y

(�5b) If x <α y then x < y implies x ≪′ y
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Definition 2. The SPH-revision operator � is admissible iff it satisfies (�1)-
(�3), (�4a), (�4b), (�5a) and (�5b).

We refer to this as admissible SPH revision since it corresponds closely to admis-
sible revision as defined by [5]. (�4a) and (�4b) are versions of Darwiche and
Pearl’s (CR1) and (CR2) [6], or rules (∗3) and (∗4) defined earlier. They require
that the ordering of two elements x and y be unchanged, wrt to � and ≪,
provided that the circumstances for x and y are the same (i.e. either both are in
[α] or both are in [¬α]). This can be seen as an application of minimal change
to � and ≪. The postulates (�5a) and (�5b) are versions of rule (∗5) defined
earlier. In fact, in the presence of the fundamental rules (�1) and (�2), (�5a)
is a strengthening of (∗5). They ensure that a “widening of the gap” between x
and y occurs when x has a good day and y a bad day. This can be viewed as
making sure that the evidence α is taken seriously. A world x in [α] will be more
preferred with respect to a world y in [¬α], provided that y was not preferred
to x to start with. So, informally, admissible SPH revision effects a “slide to the
right” of those worlds in [¬α] in a manner similar to that described by Booth
et al. [5]. The difference here is that, with the aid of � and ≪, we can specify
more precisely how such a slide is allowed to take place.

We now turn to some additional properties and investigate how they square
up against admissible SPH revision. The first one we consider is
(�6) S �� = S

which states that everything remains unchanged if we revise by a tautology. And
indeed, (�6) follows immediately from (�2), (�4a) and (�4b).

Next we consider the pair of properties
(�7a) If x � y and x ��′ y then y <α x
(�7b) If x ≪ y and x �≪′ y then y <α x

which state that losing a �-preference or a ≪-preference of x over y must be
the result of y having a good day (y ∈ [α]) and x a bad day (x ∈ [¬α]). It’s easy
to verify that (�7a) follows from (�4a) and (�5a), while (�7b) follows from
(�4b) and (�5b).

Next is the pair of properties
(�8a) If x �� y and x �′ y then x <α y
(�8b) If x �≪ y and x ≪′ y then x <α y

which state that gaining a �-preference or an ≪-preference of x over y must
be the result of x having a good day (x ∈ [α]) and y a bad day (y ∈ [¬α]). It
turns out that (�8a) follows from (�1), (�2) and (�4a), while (�8b) follows
from (�1), (�2) and (�4b).

Next we mention a property not compatible with admissible SPH revision:

(�9) If (≪,� ∩ <∗α, <
∗
α) is an SPH then S � α = (≪,� ∩ <∗α, <

∗
α)

Property (�9) is an attempt to enforce the principle of minimal change with
respect to both� and ≪. To see that it is incompatible with admissible revision,
suppose S is of the form (∅, ∅, <), i.e., ≪=�= ∅. Assume furthermore that x < y
and suppose we then revise by α such that x <α y. Then (≪,� ∩ <∗α, <

∗
α) =
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(∅, ∅, <∗α) is an SPH and so (�9) dictates that S � α = (∅, ∅, <∗α). But observe
that admissible SPH revision, and more specifically (�5b), requires that x ≪′ y,
which contradicts ≪′= ∅.

The difference between the approach advocated by (�9) and admissible SPH
revision is that (�9) requires all three orderings to change as little as possible,
while with (�5a) and (�5b) we are advocating that the new evidence α overrides
the principle of minimal change.

Finally we mention a couple of plausible properties which go beyond those
of admissible revision, in that they relate the results of revising by different
sentences. We say sentences α, γ agree on worlds x, y iff either [x <α y and
x <γ y] or [x ∼α y and x ∼γ y] or [y <α x and y <γ x]. That is, α and γ both
“say the same thing” regarding the relative plausibility of x, y. The next 2 rules
express that whether or not x �′ y and x ≪′ y should depend only on S and on
what the input sentence says about the relative plausibility between x, y. They
express a principle of “Independence of Irrelevant Alternatives in the Input”.
Here we are writing S � α = (≪∗

α,�∗
α, <

∗
α) and S � γ = (≪∗

γ ,�∗
γ , <

∗
γ).

(�10a) If α and γ agree on x, y then x �∗
α y iff x �∗

γ y
(�10b) If α and γ agree on x, y then x ≪∗

α y iff x ≪∗
γ y

We omit the case for <∗α, <∗γ , since it was already proved to follow from (∗1)–(∗7)
from the Section 2 [1]. It is thus already handled by (�2). It can be shown that
adding these two rules to those for admissible revision leads to the redundancy
of (�3) and allows (�4a) and (�4b) to be replaced by the simple rule (�6).

5 A Concrete Revision Operator

In the previous section we proposed that any reasonable SPH-revision operator
should at the very least be admissible according to Definition 2. In this section we
demonstrate that such operators exist by defining a concrete admissible operator
for SPH revision. This operator employs yet more structure which goes beyond
SPHs and their corresponding orderings � over W±, and which is a step closer
to the PQI interval orders of Öztürk et al. [12] and also to semi-quantitative
representations of epistemic states such as that of Spohn [8]. But we expect
there will be other, interesting, admissible revision operators which can still be
defined in a purely qualitative fashion. This is a topic for further research.

To decribe our operator it will be useful to switch back to the �-representation
of our tpo-revising structure rather than work directly with SPHs. The basic idea
is to enrich the �-representation with numerical information. More precisely we
assume we are given upfront some fixed function p which assigns to each element
xε ∈ W± a real number p(xε) such that for all x ∈ W , p(x−) − p(x+) = a > 0,
where a is some given real number which is also fixed upfront. The idea is that
the smaller the number p(xε), the more preferred xε is. To each such assignment
p we may associate an ordering �p over W± given by xε �p yδ iff p(xε) ≤ p(yδ).
(But note that the mapping is not on-to-one – many different choices for p can
yield the same ordering over W±.) Essentially we replace our abstract intervals
(x+,x−) with the real intervals (p(x+), p(x−)), all of length a. It is obvious that
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�p satisfies (�1)–(�3). (Again, we point out it is not absolutely necessary for all
the intervals to be of the same length a in order for �p to satisfy (�2).)

To revise a given SPH S by sentence α we will use the following procedure:

1. Convert S to its corresponding tpo � over W±

2. Choose some p such that �=�p

3. Revise p to get a new assignment p ∗ α
4. Take S � α to be the SPH corresponding to �p∗α

Clearly the crucial step here is step 3. How should we determine p∗α? We propose
a very simple method here. We define p ∗ α by setting, for each xε ∈ W±,

(p ∗ α)(xε) =
{
p(xε) if x ∈ [α]
p(xε) + a if x ∈ [¬α]

In other words, the interval (p(x+), p(x−)) associated to x remains unchanged if
x satisfies α, but is “moved back” by amount a to (p(x−), p(x−)+a) if x satisfies
¬α. Essentially this boils down to nothing more than an operation familiar from
the context of Spohn-type rankings known as L-conditionalisation [14].

The following result reveals what S � α will look like.

Proposition 2. Assume S = (≪,�, <) and let S � α = (≪′,�′, <′) be as
defined in the above procedure, for suitable p in step 2. Then, for any x, y ∈ W ,
(i) <′=<∗α, where ∗ is the revision operator corresponding to S as in Prop. 1.
(ii)

x �′ y iff

⎧⎨⎩
x ∼α y and x � y

or x <α y and x ≤ y
or y <α x and p(x−) + a ≤ p(y+).

(iii)

x ≪′ y iff

⎧⎨⎩
x ∼α y and x ≪ y

or x <α y and x < y
or y <α x and p(x−) + a < p(y+).

From this result we can see that � satisfies (�2), (�4a), (�4b), (�5a) and (�5b).
We can also see from this that the result of revision depends on [α] rather than
α, thus (�3) is also satisfied. Meanwhile rule (�1) obviously holds. Thus:

Corollary 1. The SPH-revision operator � defined via the above procedure from
a given assignment p is admissible. Furthermore (�10a) and (�10b) also hold.

6 Conclusion

Motivated by the problem of iterated revision of tpos, we extended the one-step
revision framework of Booth et al. [1]. We revise not only the tpo, but also the
structure required to guide the revision of the tpo. We showed that this structure
may be described in terms of strict preference hierarchies (SPHs), and proved
the equivalence of this representation with that already described by Booth et
al.. We gave some properties which any reasonable SPH-revision operator should
satisfy, and proved their consistency by giving a concrete example of an SPH-
revision operator which satisfy them.
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For future work we plan to investigate more desirable properties, and to ex-
amine useful equivalent ways to reformulate the ones we already have. In this
paper all our properties are formulated as rules for single-step revision of SPHs.
But since an SPH encodes the structure required to revise its associated tpo,
these properties correspond to properties for double-step revision of tpos. To give
an example, property (�5a) corresponds to the following rule governing revision
of a tpo ≤ by α followed by β, which we denote for now by ≤∗α·β:

If x <α y and x ≤ y then x ≤∗α·β y.

As mentioned above we intend to come up with other concrete SPH-revision
operators, which perhaps can be described in purely qualitative terms rather
than requiring extra numerical information like the operator described in this
paper. Finally there seems to be a close connection between our work and the
work done on preference modelling by Öztürk et al. [12]. The possible relation-
ships between iterated belief revision and works such as these have, as far as we
are aware, not been previously explored. We plan to look more closely at this.
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Abstract. Many merging operators have been proposed to merge either flat or
stratified knowledge bases. The result of merging by such an operator is a flat
base (or a set of models of the merged base) irrespective of whether the origi-
nal ones are flat or stratified. The drawback of obtaining a flat merged base is
that information about more preferred knowledge (formulae) versus less preferred
knowledge is not explicitly represented, and this information can be very useful
when deciding which formulae should be retained when there is a conflict. There-
fore, it can be more desirable to return a stratified knowledge base as a merged
result. A straightforward approach is to deploy the preference relation over possi-
ble worlds obtained after merging to reconstruct such a base. However, our study
shows that such an approach can produce a poor result, that is, preference rela-
tions over possible worlds obtained after merging are not suitable for reconstruct-
ing a merged stratified base. Inspired by the Condorcet method in voting systems,
we propose an alternative method to stratify a set of possible worlds given a set
of stratified bases and take the stratification of possible worlds as the result of
merging. Based on this, we provide a family of syntax-based methods and a fam-
ily of model-based methods to construct a stratified merged knowledge base. In
the syntax based methods, the formulae contained in the merged knowledge base
are from the original individual knowledge bases. In contrast, in the model based
methods, some additional formulae may be introduced into the merged knowl-
edge base and no information in the original knowledge bases is lost. Since the
merged result is a stratified knowledge base, the commonly agreed knowledge
together with a preference relation over this knowledge can be extracted from the
original knowledge bases.

1 Introduction

Preference (or priority) is very important in many fields of computer science, such as,
in constraint satisfaction problems, in goal oriented decision making, and in system
configurations. A preference relation can be used to represent an ordering over beliefs
or goals. Preferences can be explicitly modelled in possibilistic logic (e.g. [5]) or using
an ordinal conditional function (e.g., [9,11]), or a preference relation. With explicit
preference information, a flat knowledge base can be extended to a stratified knowledge
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base, that is, propositions are divided into different strata according to the preferences
(or priorities) they are given [2,3].

When multiple knowledge bases are available, one objective is to extract an overall
view from them. This is known as knowledge base merging or belief merging. There
are mainly two families of knowledge base merging operators: model-based ones which
select some possible worlds (or interpretations) that are the closest to the original bases
(e.g. [7,8,10]) and syntax-based ones which pick some formulae in the union of the
original bases (e.g., [1,4]). It is worth noting that most of these merging operators (e.g.
[7,8,1,4]) take flat knowledge bases as input, and only a few of them (e.g. [10]) allow
the original knowledge bases to be stratified.

So far, all the merging operators, no matter whether model-based or syntax-based,
return a flat knowledge base (or a set of models) as the merged result. We argue that,
in practice, we may need a stratified knowledge base as the merged result which shows
preference among formulae, irrespective of whether the original knowledge bases are
flat or stratified. If a stratified knowledge base can be obtained as the result of merging,
the preference over formulae can be very useful to resolve conflicts, that is, a more
preferred formula should be retained in preference to a less preferred one if the two are
in conflict.

Intuitively, it seems straightforward that a stratified merged base should be con-
structed easily from a model-based merging method using the preference relation over
interpretations obtained after merging. However, our study of the merging methods in
[8,10] shows that such a method is not adequate.

In [8], the commensurability assumption is required, and so a number1 assigned to
an interpretation (possible world) can be compared with another number assigned to
another interpretation. On the other hand, although the commensurability assumption is
not explicitly required in [10], each interpretation is still assigned a vector of numbers,
each of which is the priority (or the absolute position) of the interpretation in the strati-
fication of interpretations in relation to an individual knowledge base, and the numbers
assigned in different stratifications are assumed comparable in order to establish the
pre-order relation over vectors of numbers.

We argue that the numbers about distances or priorities obtained from different strati-
fications should not be comparable if we do not have the commensurability assumption,
especially when knowledge bases are designed independently.

Inspired by the Condorcet method in voting systems, we provide an alternative
method to define a preference relation, called relative preference relation, over inter-
pretations. A relative preference relation considers whether an interpretation is more
preferred than another collectively from a set of pre-order relations (or stratifications)
over interpretations obtained from individual knowledge bases, but is independent of
the absolute priority ([10]) or the distance ([8]) of an interpretation in relation to each
single knowledge base, since these numbers are not assumed comparable. Then, the
stratification of interpretations is constructed from this relative preference relation.

1 This number can be the sum of distances between an interpretation and all the original knowl-
edge bases or a vector of numbers each of which is the distance between the interpretation and
a knowledge base.
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Following this, we provide two families of methods, namely syntax-based and model-
based, to construct a merged stratified knowledge base from the stratification of inter-
pretations. The syntax-based methods assume that formulae in the stratified knowledge
base are picked from the original bases. A disadvantage of these methods is that some
implicit beliefs are lost. The model-based methods use models to reconstruct formu-
lae in the merged base. These methods retain all the original knowledge and may also
introduce additional formulae which do not appear in any original knowledge bases.

This paper is organized as follows. In Section 2, we introduce the preliminaries. In
Section 3, we first explore a straightforward approach to constructing the stratification
of interpretations after merging and to constructing a merged stratified knowledge base.
We then provide an alternative approach to constructing the stratification of interpreta-
tions after merging by defining the concept of relative preference relation. In Section
4, we provide syntax-based methods for constructing a stratified knowledge base from
a stratification of interpretations. Then, in Section 5, we provide model-based methods
for constructing a stratified knowledge base. Finally, a brief comparison with related
work and a short summary of the paper are given in Section 6.

2 Preliminary

2.1 Stratified Knowledge Base

We consider a propositional languageL defined on a finite setA of propositional atoms,
which are denoted by p, q, r etc. A proposition φ is constructed by propositional atoms
with logic connections ¬,∧,∨,→ in the standard way. An interpretation ω (or possible
world) is a function that maps A onto the set {0, 1}. The set of all possible interpre-
tations on A is denoted as Ω. Function ω can be extended to any proposition in L in
the usual way, ω : L → {0, 1}. An interpretation ω is a model of (or satisfies) φ iff
ω(φ) = 1, denoted as ω |= φ.

A (flat) knowledge base is a finite set of propositional formulae. A knowledge base
K is consistent iff there is at least one interpretation that satisfies all propositions in K ,
and such interpretations are models of K . We use Mod(K) to denote the set of models
for K . K |= φ iff each model of K is a model of φ. For a set of models M , there exists
a proposition φM s.t. Mod(φM ) = M . Theoretically, φM is non-deterministic since
syntactically there can be more than one proposition that is satisfied by all the models
in M .

A stratified knowledge base [3,2] is a finite set K of propositional formulae with a
total pre-order relation� onK (a pre-order relation is a reflective and transitive relation,
and � on K is total iff for all φ and ψ in K , either φ � ψ or ψ � φ holds). Intuitively,
if φ � ψ then φ is regarded as more certain, more preferred or more important than
ψ. From the pre-order relation � on K , K can be stratified as K = (S1, . . . , Sn),
where Si contains all the minimal propositions of set

⋃n
j=i Sj w.r.t. �, i.e., Si = {φ ∈

K \ (∪i−1
j=1Sj) : ∀ϕ ∈ K \ (∪i−1

j=1Si), φ ≤ ϕ}. Each Si is called a stratum of K and is
non-empty. In the rest of this paper, we denote

⋃
K =

⋃n
i=1 Si. It is clear that for all φ

and ψ in K , φ � ψ iff φ ∈ Si, ψ ∈ Sj , and i ≤ j. For simplicity, when we mention a
knowledge base it is actually a stratified knowledge base unless it is stated otherwise in
the rest of this paper.
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2.2 Model Based Semantics

In [3,2], some model-based semantics are provided for stratified knowledge bases. In
these methods, a pre-order relation on interpretations is induced from a knowledge base
by an ordering strategy, and the minimal ones are regarded as the models of the knowl-
edge base. Therefore, a non-classical consequence relation can be defined as K �X φ
iff ω(φ) = 1 for all ω such that ω is minimal w.r.t the pre-order relation �X over
Ω, where �X is induced by K under the ordering strategy X . A strict relation ≺X is
defined as ω ≺X ω′ iff ω �X ω′ and ω′ ��X ω.

There are three widely used ordering strategies known as the best out, the maxsat,
and the leximin. For a knowledge base K = (S1, . . . , Sn), these ordering strategies are
defined as follows.

– best out ordering [2] Let rBO(ω) = mini{ω �|= Si}. Define mini∅ = +∞.
ω �bo ω′ iff rBO(ω) ≥ rBO(ω′).

– maxsat ordering [3] Let rMO(ω) = mini{ω |= Si}. ω �maxsat ω
′ iff rMO(ω) ≤

rMO(ω′).
– leximin ordering [2]: let Ki(ω) = {φ ∈ Si | ω |= φi}. Then the leximin ordering
�leximin on Ω is defined as: ω �leximin ω′ iff
• |Ki(ω)| = |Ki(ω′)| for all i, or
• there is an i s.t. |Ki(ω)| > |Ki(ω′)|, and |Kj(ω)| = |Kj(ω′)| for all j < i;

where |Ki| denotes the cardinality of set Ki.

Example 1. Let K = ({p}, {q}) be a knowledge base.

Table 1. Ranks calculated by different ordering strategies

ω rBO rMO r̄Leximin

00 1 +∞ 〈00〉
01 1 2 〈01〉
10 2 1 〈10〉
11 +∞ 1 〈11〉

The i-th digit in vector r̄Leximin(ω) represents |Ki(ω)|. For example, let ω = {01}
represent possible world ¬pq, then r̄Leximin(ω) = 〈01〉 means that K1(ω) = 0 and
K2(ω) = 1. Then {11} is the set of minimal models w.r.t the pre-order relations≺bo and
≺leximin, and set {11, 10} contains all the minimal models w.r.t the pre-order relation
≺maxsat. Therefore, K �BO p ∧ q, K �Maxsat p, and K �Leximin p ∧ q.

From a pre-order relation �X generated by the ordering strategy X from K , the inter-
pretations in Ω can be stratified as ΩK,X = (Ω1, . . . , Ωm), where each Ωi contains all
the minimal interpretations from

⋃n
j=i Ωj w.r.t. �X . Given ΩK1 = (Ω1, . . . , Ωn) and

ΩK2 = (Ω′1, . . . , Ω′n), ΩK1 = ΩK2 iff Ωi = Ω′i for all i where 1 ≤ i ≤ n. In the
following, we may omit subscripts K,X from ΩK,X when they are implicitly given.

As shown above, based on different ordering strategies, different conclusions are
drawn from the same knowledge baseK . Thus, selecting an ordering strategy for a given
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knowledge base is important. Also, it is possible that the same stratification on interpreta-
tions can be induced from different knowledge bases under different ordering strategies.

3 Approaches to Stratifying the Set of Interpretations

In a model-based merging method, a pre-order relation on interpretations is constructed
and a set of models (the minimal ones) is obtained as the result of merging flat or strat-
ified knowledge bases. The resulting knowledge base is a flat base. Intuitively, it seems
reasonable to recover a stratified merged knowledge base from the pre-order relation
over interpretations. Following this idea, we take merging operators in [10,8] as exam-
ples and investigate if this approach is feasible. Our study below in Section 3.1 shows
that a stratified merged knowledge base obtained this way can be counterintuitive. To
overcome this problem, we propose an alternative method to stratify a set of interpreta-
tions using the concept of relative preference relation in Section 3.2.

3.1 A Simple Approach

In [10], a model-based merging method is proposed for merging stratified knowledge
bases, however, the result is a flat knowledge base not a stratified one. The idea in the
paper can be stated as follows. From each stratified knowledge base K with a chosen
ordering strategy X , a stratification of interpretations is induced ΩK,X . In this way, an
interpretation has a priority level w.r.t each K which is its priority level in ΩK,X . Then,
each interpretation is associated with a vector of priority levels in relation to all the
knowledge bases. Finally, a pre-order relation over interpretations is defined based on
the lexicographical ordering over vectors of priorities and the interpretations which are
minimal w.r.t this ordering relation are regarded as the models of the merged knowledge
base. A straightforward approach to obtaining a stratified merged knowledge base is to
construct strata directly from this pre-order relation over interpretations. Unfortunately,
such a method is not as good as one may expect, as shown in the following example.

Example 2. Let K1 = ({p}, {q}, {r}) and K2 = ({r}, {q}, {p}) be two knowledge
bases. Using the leximin ordering strategy, two pre-order relations on interpretations
can be induced from them respectively, and a pre-order relation for the merged knowl-
edge base can be calculated under the leximin aggregation function as shown in Table
2. In Table 2, values in vector l̄ are obtained by concatenating the numbers in the second
and the third columns in ascending order.

Based on the lexicographical ordering over vectors of priorities, a pre-order rela-
tion is defined on Ω and it is stratified as Ω = ({111}, {110, 011}, {101}, {001, 100},
{010}, {000}). The minimal model is 111, so, the merged flat knowledge base is equiv-
alent to {p∧ q∧ r}, which seems reasonable. Note, in this paper we denote each model
by a bit vector consisting of truth values of atoms e.g. (p, q, r) in this example. So
ω1 = {000} means p, q and r are all false.

From this stratified Ω, we can infer that p ∧ ¬q ∧ r is less preferable than q ∧ (p ∨
r) ∧ (¬p ∨ ¬r) which means that, if only two of p, q, r are true, then q must be true. In
other words, q is more certain than both p and r. On the other hand, ¬p∧ q∧¬r is less
preferable than ¬q ∧ (p ∨ r) ∧ (¬p ∨ ¬r) which implies that when only one of p, q, r
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Table 2. Constructing the stratification of interpretations

ω ΩK1,leximin ΩK2,leximin l̄

000 8 8 〈88〉
001 7 4 〈47〉
010 6 6 〈66〉
011 5 2 〈25〉
100 4 7 〈47〉
101 3 3 〈33〉
110 2 5 〈25〉
111 1 1 〈11〉

holds, it should not be q, that is, q is less certain than both p and r now. This contradicts
with the previous inference. Therefore, taking the stratification of interpretations as a
way to construct a merged knowledge base may imply counterintuitive results.

If we take a flat knowledge base as a special case of a stratified knowledge base with
only one stratum, the merging methods in DA2 family [8] can be viewed as special
cases of merging stratified knowledge bases. Similarly, in these methods, a set of models
for a flat knowledge base is given as the result of an operator.

Example 3. Let K1 = K2 = K3 = K4 = K5 = {p} and K6 = K7 = K8 = K9 =
{¬p} be nine knowledge bases. Five of them say that p is true and four say that p is
false. Merging by δdD,sum1,sum2 , a specific operator in DA2 [8], the model with p is
true (having true value 1) is the only model for the merged knowledge base. In this
merging operator, dD is a distance measure between a formula and a possible world
and it is defined as dD(ω, φ) = 0 if ω |= φ, otherwise dD(ω, φ) = 1. sum1(ω,Ki) =
Σφ∈KidD(ω, φ) and sum2(ω, P ) = ΣKi∈P sum1(ω,Ki), which is the sum of distances
between knowledge bases Ki in a knowledge profile P (a knowledge profile is a finite
set of knowledge bases) and a possible world. In Table 3, values in the second to the
tenth columns are the distances between an interpretation and a knowledge base (using
sum1), values in the eleventh column are from sum2.

Now if we revise K6, ...,K9 as K ′
6 = K ′

7 = {¬p,¬p ∧ q} and K ′
8 = K ′

9 =
{¬p,¬p ∧ ¬q} respectively, then semantically, these four knowledge bases together
state the same conclusion as K6, ..., K9 do. That is, both sets of knowledge bases say
p is false. However, when we replace K6, ...,K9 with K ′

6, ...,K
′
9 and merge them with

K1, ...,K5, we get a different merged knowledge base K ′, whose models are {00, 01}
as shown in Table 4. Obviously, K ′ |= ¬p, K ′ �|= q and K ′ �|= ¬q.

Table 3. Merging knowledge bases using an operator in DA2

ω K1 K2 K3 K4 K5 K6 K7 K8 K9 sum2

¬p 1 1 1 1 1 0 0 0 0 5
p 0 0 0 0 0 1 1 1 1 4
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Table 4. Merging knowledge bases with an operator in DA2

ω K1 K2 K3 K4 K5 K′
6 K′

7 K′
8 K′

9 sum
00 1 1 1 1 1 1 1 0 0 7
01 1 1 1 1 1 0 0 1 1 7
10 0 0 0 0 0 2 2 2 2 8
11 0 0 0 0 0 2 2 2 2 8

The reason is that, in DA2, the commensurability assumption is required. Under this
assumption, although K ′

6, ...,K
′
9 collectively draw the same conclusion as K6, ...,K9,

when they are merged with the other bases, the preferability of the statement p is im-
plicitly decreased. That is why the merged result is changed.

To summarize, we believe that using the information on stratification over interpreta-
tions from a merging operator to construct a stratified knowledge base can not return a
satisfactory result.

3.2 Stratifying Interpretations by Relative Preference Relation

In the methods discussed above, an interpretation is associated with a number (or a vec-
tor of numbers) about its priority level(s) that determines which stratum (or strata) it is
in and this number (or a vector of numbers) is the absolute position(s) (stratum/strata)
it reflects. We argue that, the absolute position of an interpretation in a stratification is
not so important, since one could not tell how the preferences among items of beliefs
in other knowledge bases are determined. For instance, when one knowledge base re-
gards that Mod(p) are more preferable than Mod(q) and Mod(q) are more preferable
than Mod(r), then Mod(r) \ (Mod(p) ∪Mod(q)) are the third level of models to be
preferred. If other knowledge bases do not consider q, then these models (which are for
r) are underestimated if a merging process considers only the absolute position that a
model occurs in each stratification of interpretations.

We believe that only the relative preferences between interpretations induced from a
knowledge base by ordering strategy is meaningful in a merging process:

Definition 1 (Relative Preference Relation). Let {ΩK1,X1 , . . . , ΩKn,Xn} be a multi-
set. We define a binary relative preference relation R : Ω ×Ω as:

R(ω, ω′) iff |{ΩKi,Xis.t.ω ≺i ω
′}| < |{ΩKi,Xis.t.ω

′ ≺i ω}| where ≺i is the strict
partial order induced from ΩKi,Xi .

R(ω, ω′) means that more knowledge bases prefer ω than ω′. A relative preference
relation is partial, anti-symmetric and irreflective, and it is not transitive, so it is not a
total pre-order relation.

Definition 2 (Undominated Set). Let R be a relative preference relation over Ω × Ω
and let Q be a subset of Ω. Q is called an undominated set of Ω, if

∀ω ∈ Q,∀ω′ ∈ Ω \Q,R(ω′, ω) does not hold
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Q is a minimal undominated set of Ω if for any undominated set P of Ω, P ⊂ Q does
not hold.

We denote the set of minimal undominated sets of Ω w.r.t. R as UR
Ω .

Definition 3. Let R be a relative preference relation. A stratification of interpretations
Ω = (Ω1, . . . , Ωn) can be obtained from R such that Ωi = ∪Q where Q ∈ UR

Ω\∪i−1
j=1Ωj

based on Definition 2.

This way, the stratification of interpretations is independent of absolute priorities (or
positions) of interpretations and the commensurability assumptions is not required.

Since from a stratification of interpretations, a total pre-order relation can be induced,
the above definition also defines a total pre-order relation over interpretations.

Example 4. Let K1 = ({p}, {q}, {r}) and K2 = ({r}, {q}, {p}) be two knowledge
bases. If we apply ordering strategy leximin on both bases, we get two stratifications on
Ω as

ΩK1,leximin = ({111}, {110}, {101}, {100}, {011}, {010}, {001}, {000})
ΩK2,leximin = ({111}, {011}, {101}, {001}, {110}, {010}, {100}, {000})
Then a relative preference relation over Ω can be defined based on them. From this

relative preference relation, we can get a final stratification on Ω as
Ω = ({111}, {110, 011, 101}, {001, 010, 100}, {000}).
Obviously, p, q, r are symmetric and thus are equally preferred and this stratification

is better than that obtained in Example 2.

4 Syntax-Based Approaches to Constructing Stratified Knowledge
Bases

Based on the stratification of interpretations obtained in the above section, we explore
approaches to stratifying a merged knowledge base. We discuss syntax-based methods
in this section and investigate model-based methods in the next section.

In the syntax-based methods, we assume that we pick some (may not be all) propo-
sitions from the original knowledge bases and stratify them based on a stratification of
interpretations.

Definition 4. Let Ω = (Ω1, ..., Ωn) be a stratification of interpretations and S be a set
of propositions. Let X be an ordering strategy. A stratified knowledge base KX,Ω

S =
(S1, ..., Sm) is an X dominated construction from S w.r.t. Ω if

⋃m
i=1 Si ⊆ S and

ΩKX,Ω
S ,X = Ω.

Definition 5 (best out construction). Let Ω = (Ω1, . . . , Ωn) be a stratification of
interpretations and S be a set of propositions. We define Kbo,Ω

S = (S1, . . . , Sn−1)
where Si = {φ ∈ S | ∀ω ∈ Ωj , ω |= φ, ∀ j ∈ [1, n− i]} \

⋃i−1
j=1 Sj and Si �= ∅.

Proposition 1. Let Ω be a stratification of interpretations and S be a set of proposi-
tions. If there exists a stratified knowledge base K s.t. ΩK,bo = Ω and

⋃
K ⊆ S, then

Kbo,Ω
S defined in Definition 5 is a best out dominated construction from S w.r.t. Ω, that

is
⋃n−1

i=1 Si ⊆ S and ΩKbo,Ω
S ,bo = Ω.
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Example 5. Let Ω = ({011}, {111}, {101}, {000, 010, 100, 110, 001}) and let the set
of propositions be S = {p∨ q, r, q∨¬r,¬p∨¬r,¬p∧¬q}, then we can get a stratified
knowledge base based on S as Kbo,Ω

S = ({p ∨ q, r}, {q ∨ ¬r}, {¬p ∨ ¬r}) which
satisfies ΩKbo,Ω

S ,bo = Ω. This implies that there is a stratified knowledge base K such

that
⋃
K ⊆ S and ΩK,bo = Ω.

However, if we have S′ = {p ∨ q, r,¬q ∨ ¬r,¬p ∨ ¬r,¬p ∧ ¬q,¬p ∨ q}, then
we have Kbo,Ω

S′ = ({p ∨ q, r}, {¬p ∨ q}, {¬p ∨ ¬r}). In this case, ΩKbo,Ω

S′ ,bo =
({011}, {111}, {001, 101}, {000, 010, 100, 110}) �= Ω, which means that �K such
that ΩK,bo = Ω and

⋃
K ⊆ S′.

Definition 6 (maxsat construction). Let Ω = (Ω1, . . . , Ωn) be a stratification of in-
terpretations and S be a set of propositions. We define Kmaxsat,Ω

S = (S1, . . . , Sn)
where Si = {φ ∈ S | ∀ω ∈ Ωi, ω |= φ} \

⋃i−1
j=1 Sj and Si �= ∅.

Proposition 2. Let Ω be a stratification of interpretations and S be a set of proposi-
tions. If there exists a stratified knowledge base K s.t. ΩK,maxsat = Ω and

⋃
K ⊆ S,

then Kmaxsat,Ω
S is a maxsat-dominated construction from S w.r.t. Ω, that is

⋃n−1
i=1 Si ⊆

S and ΩKmaxsat,Ω
S ,maxsat = Ω.

Definition 7 (leximin construction). Let Ω = (Ω1, . . . , Ωn) be a stratification of in-
terpretations and S be a set of propositions. We define K leximin,Ω

S = (S1, . . . , Sn)
where Si = {φ ∈ S | ∀ω ∈ Ωi, ω |= φ, where ∀j > i,∀ω ∈ Ωj , ω �|= φ} and Si �= ∅.

Proposition 3. Let Ω be a stratification of interpretations and S be a set of proposi-
tions. If there exists a stratified knowledge base K = (S1, . . . , Sn) s.t. each Si is a
singleton set, ΩK,leximin = Ω and

⋃
K = S, then K leximin,Ω

S is a leximin dominated
construction from Ω, i.e. ΩKleximin,Ω

S ,leximin = Ω.

In this proposition, it is required that
⋃
K = S, because the leximin ordering strategy

is more syntax sensitive than best out and maxsat.

Example 6. Let Ω = ({011}, {101, 111}, {000, 010, 100, 110}, {001}) and let S =
{(p∨q)∧r, q ∨¬r,¬p∨¬r}. Then we have a stratified knowledge base K leximin,Ω

S =
({(p ∨ q) ∧ r}, {q ∨ ¬r}, {¬p ∨ ¬r}) which satisfies ΩKleximin,Ω

S ,leximin = Ω. This

implies that ∃K such that ΩK,leximin = Ω and
⋃
K = S.

For the above three methods, it is assumed that we know what propositions should
appear in the merged stratified knowledge base. This assumption comes from the intu-
ition that when merging stratified knowledge bases, only those propositions that appear
in some knowledge bases would be considered. This is consistent with the ideas in
syntax-based merging operators. However when merging knowledge bases, some im-
plicit knowledge can be drawn and such knowledge does not necessarily appear in any
of the individual knowledge bases.

Example 7. Let K1 = ({p ∧ q}) and K2 = ({¬p ∧ q}). From this, we can get two
stratifications on Ω using ordering strategy leximin as

ΩK1,leximin = ({11}, {00, 01, 10})
ΩK2,leximin = ({01}, {00, 10, 11})
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Based on these two stratifications, it is possible to define a relative preference rela-
tion R, and then Ω can be stratified as

ΩK = ({01, 11}, {00, 10})

Through this stratification, we can infer that q should be true and p be unknown (or
undefined) in the merged base, if we take the models in the first stratum as the models
of merging. But q as a proposition does not appear in K1 or K2. If we attempt to
reconstruct a stratified merged knowledge base from the set S = K1∪K2 = {p∧q,¬p∧
q} directly with either best out, or maxsat, or leximin, we can only get KΩK ,X

S = (∅).

So, if we restrict S to be as S ⊆
⋃

i(∪Ki) then implicit knowledge will be lost. One
way to overcome this is to allow S to be a bigger set, such as (a trivial one) S could be⋃
Cn(

⋃
K), where Cn is the classical deductive closure operator.

5 Model Based Approaches to Constructing Stratified Knowledge
Bases

An alternative to the syntax-based family of methods is to construct propositions for the
merged knowledge base directly from the stratification of interpretationsΩ = (Ω1, . . . ,
Ωn), rather than picking propositions from the original knowledge bases. In this section,
we investigate how such an approach can be established.

Definition 8. Let Ω=(Ω1, . . . , Ωn) be stratification of interpretations.DefineKbo,Ω =
(S1, . . . , Sn−1), where Si = φ(

⋃n−i
j=1 Ωj), i = 1, . . . , n− 1.

Proposition 4. Let Ω be a stratification of interpretations. Then ΩKbo,Ω,bo = Ω.

Example 8. Let Ω = ({11}, {10}, {00, 01}). Then Kbo,Ω = ({p}, {p ∧ q}), and
ΩKbo,Ω,bo = Ω.

Definition 9. Let Ω = (Ω1, . . . , Ωn) be a stratification of interpretations.
Define Kmaxsat,Ω = (S1, . . . , Sn−1), where Si = φ(

⋃ i
j=1 Ωj), i = 1, . . . , n− 1.

Proposition 5. Let Ω be a stratification of interpretations. Then ΩKmaxsat,Ω ,maxsat =
Ω.

Example 9. Let Ω = ({11}, {10}, {00, 01}). Then Kmaxsat,Ω = ({p ∧ q}, {p}), and
ΩKmaxsat,Ω ,maxsat = Ω.

Definition 10. Let Ω = (Ω1, . . . , Ωn) be a stratification of interpretations. Define
Ω′ = (Ω′0, . . . , Ω

′
2l−1) as:

1. Ω′i = ∅, i ∈ [0, 2l − n− 1]
2. Ω′2l−n+i−1 = Ωi, i ∈ [1, n]

where l is the smallest number s.t. 2l ≥ n.
Let Si = φ⋃

π(j,i)=0 Ω′
j
(1 ≤ i ≤ l), where π(j, i) = 0 if (j mod 2l−i+1) < 2l−i,

otherwise π(j, i) = 1.
Then we define KLeximin,Ω = (S1, . . . , Sl).
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In this definition, π(j, i) is in fact the value of ith (from the left hand) digit of j when
j is represented as a binary value with l-bits. For example, if we set l = 3 and we have
j = 3, then j can be represented as a binary value 011, so π(j, 2) = 1, since the second
digit of 011 is 1. We also have (3 mod 23−2+1) = 3 and 3 ≥ 23−2, so π(3, 2) = 1 too.

Proposition 6. Let Ω be a stratification of interpretations. Then ΩKleximin,Ω,leximin =
Ω.

Example 10. Let Ω = ({11}, {10}, {00, 01}). Then K leximin,Ω = ({p∧q}, {p∧¬q}),
and ΩKleximin,Ω,leximin = Ω.

When the interpretations are stratified into relatively a large number of strata, the
leximin dominated construction method can drastically reduce the number of strata
of the merged knowledge base compared to both best out and maxsat.

Example 11. Let Ω=({111},{110}, {101}, {100}, {011}, {010}, {001}, {000}). Then

K leximin,Ω = ({p}, {q}, {r})

However, the other two strategies both return a knowledge base with a lot more
propositions. That is

Kbo,Ω = ({p∨q∨r}, {p∨q}, {(p∨q)∧(p∨r)}, {p}, {p∧(q∨r)}, {p∧q}, {p∧q∧r})

and
Kmaxsat,Ω = ({p ∧ q ∧ r}, {p ∧ q}, {p ∧ (q ∨ r)}, {p}, {(p ∨ q) ∧ (p ∨ r)}, {p ∨

q}, {p ∨ q ∨ r})

6 Conclusion

In knowledge base merging, most existing methods merge either flat or stratified knowl-
edge bases and produce a flat base (or a set of models) as the result (e.g., [6,7,8,10]).
We argue that ideally a stratified merged base would be better since it has additional
information about which formulae are more preferred than others. Motivated by this,
we investigated how such a stratified merged base can be constructed.

We first looked at the possibility of recovering a stratified base based on the stratifica-
tion of interpretations obtained after applying a merging operator. However, the results
show that such a straightforward method can produce counterintuitive results. The main
reason is that almost all the merging methods, especially the model-based ones (which
return a set of models as the merged results), require an assumption of commensurabil-
ity, so the absolute position of each interpretation in each stratification of interpretations
is important. We argue that only the relative position of an interpretation w.r.t other in-
terpretations is important if we do not require this commensurability. Based on this, we
proposed a method to define a binary relative preference relation between interpreta-
tions and then this relation is used to stratify interpretations given a set of individual
stratifications of interpretations induced from the original knowledge bases.
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Following this, we proposed a family of syntax-based and model-based approaches
to stratifying a merged knowledge base. Properties of these stratification approaches are
also studied.

The idea of constructing a relative preference relation is inspired by Condorcet meth-
ods in voting systems or the social choice theory. The winner of votes by the Schulze
method, an instance of Condorcet methods, is exactly the same as the most preferred
interpretations in our approach to generate the stratification of interpretations using the
relative preference relation, when we treat a candidate as an interpretation and a boll as
a stratification of interpretations.

For future work, we will further investigate appropriate approaches to stratifying
merged knowledge bases and to discuss additional logical properties of our methods. In
contrast with merging flat knowledge bases, we believe that merging stratified knowl-
edge bases should put more emphasize on considering preferences of propositions and
thus should satisfy a different set of constraints or postulates to those for merging flat
bases.

Acknowledgement. This work is funded by the EPSRC projects with reference num-
bers: EP/D070864/1 and EP/D074282/1.
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Abstract. The problem of merging multiple sources information is cen-
tral in several domains of computer science. In knowledge representa-
tion for artificial intelligence, several approaches have been proposed for
propositional bases fusion, however, most of them are defined at a se-
mantic level and are untractable. This paper proposes a new syntactic
approach of belief bases fusion, called Removed Sets Fusion (RSF). The
notion of removed-set, initially defined in the context of belief revision
is extended to fusion and most of the classical fusion operations are syn-
tactically captured by RSF. In order to efficiently implement RSF, the
paper shows how RSF can be encoded into a logic program with answer
set semantics, then presents an adaptation of the smodels system de-
voted to efficiently compute the removed sets in order to perform RSF.
Finally a preliminary experimental study shows that the answer set pro-
gramming approach seems promising for performing belief bases fusion
on real scale applications.

1 Introduction

Merging information coming from different sources is an important issue in var-
ious domains of computer science like knowledge representation for artificial in-
telligence, decision making or databases. The aim of fusion is to obtain a global
point of view, exploiting the complementarity between sources, solving different
existing conflicts, reducing the possible redundancies. Among the various ap-
proaches of multiple sources information merging, logical approaches gave rise
to increasing interest in the last decade [1,2,3,4,5]. Most of these approaches have
been defined within the framework of classical logic, more often propositional,
and have been semantically defined. Different postulates characterizing the ra-
tional behavior of fusion operators have been proposed [6] and various operators
have been defined according to whether explicit or implicit priorities are avail-
able [6], [7], [8], [9], [10], [11]. More recently, new approaches have been proposed
like semantic merging for propositional bases, stemming from the Hamming dis-
tance [12] or syntactic fusion in a possibilistic framework [13,14] which is a real
advantage at a computational point of view.

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 66–77, 2007.
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This paper proposes a new approach for performing syntactic fusion of propo-
sitional belief bases. We show that the classical fusion operations Card, Σ, Max,
GMax, initially defined at the semantic level, can be expressed within our syn-
tactic framework. We then show that an efficient implementation of these oper-
ations, based on answer set programming, can be performed. In particular this
paper focuses on the following three issues:

– We extend the Removed Sets Revision to the fusion of propositional be-
lief bases, called Removed Sets Fusion (RSF). We show how the notion of
removed-set, roughly speaking, the subsets of clauses to remove to restore
consistency, initially defined in the context of belief bases revision [15,16]
is generalized to the case of belief bases fusion. We then show that classi-
cal fusion operations are captured within this framework since each fusion
strategy is encoded by a preference relation between subsets of clauses.

– In the last decade, answer set programming has been considered as a con-
venient tool to handle non-monotonic reasoning systems. Moreover, several
efficient systems have been developed [17], [18], [19], [20], [21]. We propose to
formalize the Removed Sets Fusion in terms of answer set programming and
to adapt the smodels system in order to compute preferred answer sets which
correspond to removed sets. Therefore, to propose an effective computational
fusion algorithm.

– The conducted preliminary experimental study illustrates the behaviour of
RSF for the Card, Σ strategies and seems promising for performing fusion
in real scale applications.

The rest of this paper is organized as follows. The next section fixes the
notations and gives a refresher on fusion, removed set revision and on answer
set programming. The paper then presents the Removed Set Fusion. It shows
how Removed Sets Fusion is encoded into logic programming with answer set
semantics and presents an adaptation of the Smodels system for computing
answer sets and performing Removed Sets Fusion. It then presents a preliminary
experimental study which illustrates the approach and shows that the answer
set programming implementation seems promising before concluding.

2 Background and Notations

We consider a propositional language L over a finite alphabet P of atoms. A
literal is an atom or the negation of an atom. The usual propositional connectives
are denoted by ¬, ∧, ∨ and Cn denotes the logical consequence. A belief base K
is a finite set of propositional formulae over a propositional language L.

2.1 Fusion

Let E = {K1, . . . ,Kn} be a multi-set of n consistent belief bases to be merged, E
is called a belief profile. The n belief bases K1, . . . ,Kn are not necessarily different
and the union of belief bases, taking repetitions into account, is denoted by �
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and their conjunction and disjunction are denoted by
∧

and
∨

respectively. For
the sake of simplicity, we denote by K the belief set consisting of the singleton
E = {K}.

We define a fusion operator ∆ as a function which associates to each belief
profile a classical consistent belief base denoted by ∆(E). In the literature, there
are two different ways for defining ∆(E) : either using some implicit priority or
not. In the following implicit priority is not assumed.

There are two straighforward ways for defining ∆(E) depending if the sources
are conflicting or not, the classical conjunctive merging : ∆(E) =

∧
Ki∈E Ki

suitable when the sources are not conflicting and the classical disjunctive merg-
ing : ∆(E) =

∨
Ki∈E Ki appropriate in case of conflicting sources. These two

opposite cases are not satisfactory, then several methods have been proposed for
fusion according to whether the bases have the same importance or not.

In particular, the following classical fusion operators have been proposed. The
Cardinality operator, denoted by Card, [1] which takes the number of the belief
bases of E into account. The Sum operator, denoted by Σ, [22,2]which follows
the point of view of the majority of the belief bases of E.

The Max-based operator, denoted by Max [4], which tries to satisfy all the
belief bases of E. The Leximax-based operator, denoted by GMax, [6] which
tries to satisfy all the belief bases of E, taking the belief bases into account,
according to a lexicographic ordering over them.

Different postulates characterizing the rational behaviour of fusion operators
have been proposed [6]. Moreover, the various operators have been classified
according to two families: the majority and the arbitration ones.

2.2 Answer Sets

A normal logic program is a set of rules of the form c← a1, ..., an, not b1, ..., not
bm where c, ai(1 ≤ i ≤ n), bj(1 ≤ j ≤ m) are propositional atoms and the
symbol not stands for negation as failure. For a rule r like above, we introduce
head(r) = c and body(r) = {a1, ..., an, b1, ..., bm }. Furthermore, let body+(r) =
{a1, ..., an} denotes the set of positive body atoms and body−(r) = {b1, ..., bm}
the set of negative body atoms, and body(r) = body+(r) ∪ body−(r).

Let r be a rule, r+ denotes the rule head(r) ← body+(r), obtained from r by
deleting all negative body atoms in the body of r.

A set of atoms X is closed under a basic program P iff for any rule r ∈ P ,
head(r) ∈ X whenever body(r) ⊆ X . The smallest set of atoms which is closed
under a basic program P is denoted by CN(P ).

The reduct or Gelfond-Lifschitz transformation [23], PX of a program P rela-
tively to a set X of atoms is defined by PX = {r+ | r ∈ P and body−(r)∩X = ∅}.

A set of atoms X is an answer set of P iff CN(PX) = X .

Definition 1. Let L be a set of literals and A be a set of atoms. L covers A iff
A ⊆ Atom(L).
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2.3 Smodels

Smodels is the first and simplest answer set solver [24]. It’s a Branch and Bound
algorithm (see Algorithm 1) that builds, as one goes along, a set of atoms A
representing a potential answer set. It uses the following functions: expand(A)
which computes the immediate consequences of A, conf lict(A) which detects
the conflicts that may arise after the expansion and heuristic(A) which tries
to reduce the search space by maximizing the number of deduced atoms. The
function heuristic(A) amounts to reduce the number of next atoms to select and
makes the conflicts detection faster.

Algorithm 1. smodels(A)
A ← expand(A)
if conflict(A) then

return false
else if A covers atom(E) then

return true
else

x ← heuristic(A)
if smodels(A ∪ {x}) then

return true
else

return smodels(A ∪ {not x})
end if

end if

2.4 Removed Sets Revision

We briefly recall the Removed Sets Revision approach. The Removed Sets Re-
vision [16] deals with the revision of a set of propositional formulae by a set of
propositional formulae 1. Let K and A be finite sets of clauses. The Removed
Sets Revision focuses on the minimal subsets of clauses to remove from K, called
removed sets [15], in order to restore the consistency of K ∪A. More formally:

Definition 2. Let K and A be two consistent sets of clauses such that K ∪ A
is inconsistent. R a subset of clauses of K, is a removed set of K ∪ A iff (i)
(K\R)∪A is consistent; (ii) ∀R′ ⊆ K, if (K\R′) ∪A is consistent then | R |≤|
R′ |2.

Let denote by R(K ∪A) the collection of removed sets of K ∪A, the Removed
Sets Revision (RSR) is defined as follows:

Definition 3. Let K and A be two consistent sets of clauses. The removed sets
revision is defined by: K ◦RSR A =def

∨
R∈R(K∪A) Cn((K\R) ∪A).

1 From now on, we consider propositional formulae in their equivalent conjunctive
normal form (CNF).

2 | R | denotes the number of clauses of R.
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3 Removed Sets Fusion

We propose a new syntactic fusion framework, Removed Set Fusion (RSF), which
aims at merging several consistent belief bases. The approach consists in remov-
ing subsets of clauses from the union of the belief bases, according to a given
strategy P in order to restore consistency. This framework captures the classical
fusion operators and can be efficiently implemented. It generalizes the previously
recalled RSR belief revision operation and requires a generalization of the notion
of removed set.

Let E = {K1, . . . ,Kn} be a belief profile where Ki, 1 ≤ i ≤ n is a consistent
belief base and let X and X ′ be two subsets of K1 � . . . �Kn.

Definition 4. Let E = {K1, . . . ,Kn} be a belief profile such that K1 � . . .�Kn

is inconsistent, X ⊆ K1� . . .�Kn is a potential removed set of E iff (K1� . . .�
Kn)\X is consistent.

The number of the potential removed sets is exponential with respect to the
number of clauses in E. Hence, only the most relevant potential removed sets,
according to a the chosen strategy, have to be selected. Therefore, a preference
relation according to any strategy P , denoted by ≤P , is defined and X ≤P X ′

means that X is preferred to X ′ according to P .

Definition 5. Let E = {K1, . . . ,Kn} be a belief profile such that K1 � . . .�Kn

is inconsistent, X ⊆ K1 � . . . �Kn is a removed set of E according to P iff

1. X is a potential removed set of E;
2. There is no X ′ ⊆ K1 � . . . �Kn such that X ′ <P X.

We denote by FPR(E) the collection of removed sets 3 of E according to P , the
Removed Set Fusion (RSF) is defined as follows.

Definition 6. Let E = {K1, . . . ,Kn} be a belief profile. The fusion operation
∆P (E) is defined by:

∆P (E) =
∨

X∈FPR(E){Cn((K1 � . . . �Kn)\X)}

Classical merging operators are easy to use in this context, by instanciating the
preceding definitions with the preference relations defined next.

3.1 Representing Classical Fusion Operations with RSF

We here define some of the classical merging operators (Card,Σ,Max, Gmax,...).
They can be encoded by preference relations over potential removed sets.

3 If K1 � . . . �Kn is consistent FPR(E) = ∅.
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Card operation. The Card operation is captured within our framework as
follows:

Definition 7. Let X and X ′ be two potential removed sets of E without repeti-
tion: X ≤Card X ′ iff |X | ≤ |X ′|.

The Card strategy minimizes the number of clauses to remove from E and does
not take repetitions into account. It is close to the Comb4 operator defined in
[1].

Σ operation. The Σ operation is captured within our framework as follows:

Definition 8. Let X and X ′ be two potential removed sets of E: X ≤Σ X ′ iff∑
1≤i≤n |X ∩Ki| ≤

∑
1≤i≤n |X ′ ∩Ki|.

The Σ strategy minimizes the number of clauses to remove from E taking repe-
titions into account. It corresponds to the intersection operator defined in [25].

Max operation. The Max operation is captured within our framework as
follows:

Definition 9. Let X and X ′ be two potential removed sets of E: X ≤max X ′

iff
max1≤i≤n |X ∩Ki| ≤ max1≤i≤n |X ′ ∩Ki| and X ⊆ X ′.

The Max strategy tries to spread the clauses to remove over the belief bases of
E and minimizes the number of clauses to remove from the belief base the most
involved in the inconsistency.

Gmax operation. The Gmax operation is captured within our framework as
follows:

Definition 10. For each potential removed sets X and each belief base Ki, we
define pi

X = |X∩Ki|. Let LE
X be the sequence (p1

X , . . . , pn
X) given in a decreasing

order. Let X and X ′ be two potential removed sets of E: X ≤Gmax X ′ iff LE
X <lex

LE
X′

4.

The GMax strategy is a refinement of the Max strategy it removes clauses from
the belief bases according to a decreasing order on the number of clauses involved
in the inconsistency.

Example. We use the following example [2] to illustrate our framework. Con-
sider the following situation : a teacher asks to his students which among the
following languages SQL (denoted by s), O2 (denoted by o) and Datalog (de-
noted by d) they would like to learn. The first one wants to learn SQL or O2 but
not Datalog (K1 = {¬d, s ∨ o}). The second one wants to learn only Datalog
or O2but not both K2 = {¬s, d∨o,¬o∨¬d}. The third one wants to learn all three

4 We denote by <lex the lexicographic order.
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K3 = {s, d, o}. Let E = {K1 �K2 �K3} be the corresponding belief profile. In
this case, the result of the fusion will be :

– FCardR(E) = {{¬s, d}, {s, d}} and ∆Card(E) = {{¬d, s ∨ o, d ∨ o,¬o ∨
¬d, s, o}, {¬d, s ∨ o,¬s, d ∨ o,¬o ∨ ¬d, o}}

– FΣR(E) = FCardR(E) and ∆Σ(E) = ∆Card(E)
– FMaxR(E) = {{¬s, d}} and ∆Max(E) = {{¬d, s ∨ o, d ∨ o,¬o ∨ ¬d, s, o}}
– FGMaxR(E) = FMaxR(E) and ∆GMax(E) = ∆Max(E)

We now present an implementation of RSF for the Card and Σ strategies.

4 Encoding RSF in Answer Sets Programming

We now show how we construct a logic program, denoted by PE , such that the
preferred answer sets of PE correspond to the removed sets of E.

We first show how to translate the Removed Set Fusion into a logic program,
in the spirit of Niemelä in [20], in order to obtain a one-to-one correspondence
between answer sets of PE and potential removed sets of E. The key idea of the
translation is to introduce for each clause, an atom which presence in the answer
set corresponds to the presence of the clause in a potential removed set. We then
define the notion of preferred answer set in order to perform RSF.

4.1 Translation into a Logic Program

Let E = {K1, . . . ,Kn} be an belief profile. The set of all positive literals of PE is
denoted by V +. The set of all negative literals of PE is denoted by V −. The set
of all atoms representing clauses is defined by R+ = {ri

c | c ∈ Ki} and CL(ri
c)

denotes the clause ofKi corresponding to ri
c inPE , namely ∀ri

c ∈ R+, CL(ri
c) = c.

To each answer set S of PE , we associate the potential removed set CL(R+ ∩ S).

1. The first step introduces rules in order to build a one-to-one correspondence
between answer sets of PE and interpretations of V +. For each atom, a ∈ V +

we introduce two rules : a ← not a′ and a′ ← not a where a′ ∈ V − is the
negative atom corresponding to a.

2. The second step excludes answer sets S which correspond to interpretations
which are not models of (K1 � . . . �Kn)\Ci with Ci = {c|rc ∈ S}. For each
clause c of Kj such that c = ¬bo ∨ . . . ∨ ¬bn ∨ bn+1 ∨ . . . ∨ bm, we introduce
the following rule rj

c ← bo, . . . , bn, b
′
n+1, . . . , b

′
m

This translation differs from the one proposed in [26] for RSR since we only
consider the positive atoms R+ representing the clauses.

Example. The logic program PE corresponding to the previous example is:

s ← not s′ s′ ← not s d ← not d′

d′ ← not d o ← not o′ o′ ← not o
r1

¬d ← d r1
s∨o ← s′, o′ r2

¬s ← s
r2

d∨o ← d′, o′ r2
¬d∨¬o ← d, o r3

s ← s′

r3
d ← d′ r3

o ← o′



Syntactic Propositional Belief Bases Fusion with Removed Sets 73

Let S be a set of atoms, we define IS such that IS = {a|a ∈ S} ∪ {¬a|a′ ∈ S}.
The following proposition establishes the correspondence between answer sets
and models of (K1 � . . . �Kn)\CL(R+ ∩ S).

Proposition 1. Let E = {K1, . . . ,Kn} be an belief profile. Let S ⊆ V be a
set of atoms. S is an answer set of PE iff IS is an interpretation of V + which
satisfies (K1 � . . . �Kn)\CL(R+ ∩ S).

In order to compute the answer sets corresponding to the removed sets we in-
troduce the notion of preferred answer set according to a strategy P .

Definition 11. Let PE be a logic program and let S and S′ be two set of atoms
of PE . S is a preferred answer set of PE according to a strategy P iff

– S is an answer set of PE ;
– for every answer set S′ of PE, S′ is not preferred to S according to P .

The correspondence between preferred answer sets and removed sets is given by
the following proposition for the strategies Card and Σ.

Proposition 2. Let E = {K1, . . . ,Kn} be an belief profile. X is a removed set
of E according to the strategy P iff there exists a preferred answer set S of PE

according to P such that CL(R+ ∩ S) = X.

Example. Let PE be the logic program of the previous example. The collection
of preferred answer sets of PE according to the strategies Card and Σ is : {S1 =
{s, d′, o, r2

¬s, r
3
d}, S2 = {s′, d′, o, r3

s , r
3
d}}. Since R+ = {r1

¬d, r
1
s∨o, r

2
¬s, r

2
d∨o, r

2
¬d∨¬o,

r3
s , r

3
d, r

3
o}, the removed sets are CL(R+ ∩ S1) = {¬s, d} and CL(R+ ∩ S2) =

{s, d}.

4.2 Computing the Preferred Answer Sets : The RSF Algorithm

The RSF algorithm computes the preferred answer sets corresponding to the
removed sets. This algorithm is a modification of Smodels algorithm that selects
the preferred answer sets according to a chosen strategy P . It builds, step by
step, a collection of candidate answer sets. At the end of the computation, this
collection contains all the preferred answer sets corresponding to the removed
sets.

The selection of the preferred answer sets is achieved thanks to the function
ConditionP (A), where A is a set of atoms. This function compares the current
answer set candidate to the preferred answer sets previously computed. The
three possible behaviors of the function ConditionP (A) are:

1. A cannot lead to any preferred answer set. In this case, the computation is
stopped and the algorithm backtracks;

2. A is complete and is equally preferred to the previously computed best an-
swer sets. In this case, A is added to the collection of candidates answer
sets;
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3. A is complete and is preferred to the previously computed best answer sets.
In this case, the collection reduced to A replaces the collection of candidates
answer sets.

Another adaptation of Smodels concerns the initial heuristic of Smodels. If
an atom a is selected then the atom a′ cannot be deduced anymore. The only
atoms that can be deduced are atoms that represent the rules ri

c. The use of the
standard heuristic leads to maximize the number of deduced ri

c which contradicts
the objective of RSF. It doesn’t allow us to take advantage of the pruning of
the search tree. We modify the initial heuristic in order to select the atoms that
minimize the number of deduced atoms. Therefore, the first computed answer
sets have greater chances to be preferred according to the chosen strategy. The
new function is called mheuristic(A).

Algorithm 2. Algorithm rsf(A)
A ← expand(A)
if conflict(A) then

return false
end if
if (1) ConditionP (A) = 1 then

return false
else if A is a subset of an already computed model then

return false
else if A covers atom(E) then

if (2) ConditionP (A) = 0 then
add A to the set of solutions
return true

else
(3){A} becomes the set of solutions
return true

end if
end if
x ← mheuristic(A)
rsf(A ∪ {x})
rsf(A ∪ {not x})

The adaptations of the original Smodels algorithm consist in: (i) avoiding all
the subsets of R+ leading to answer sets which removes more clauses than the
removed sets; (ii) not computing several times the same subsets of literals of
R+; (iii) taking advantage of possible cuts in the search space.

5 Preliminary Experimental Study

We now present the results of a preliminary experimental study of the RSF
approach. The tests were conducted on a Centrino cadenced at 1.73GHz and
equipped with 1GB of RAM.

As far as we know, there is no other implementation of the fusion of propo-
sitional belief bases nor benchmarks for fusion. The following preliminary tests
are not exhaustive enough to conclude about the efficiency of RSF. Nevertheless,
they show the practicability of the approach. In order to be able to conclude on
the efficiency of RSF, we plan to develop a more complete set of tests.
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Table 1. Results for nb = 3, sc = 3 and d = 20%

nc nv Succes(%) T ime(s)

100 1000 100 2, 1
200 2000 100 7, 2
400 4000 100 37, 6

nc nv Succes(%) T ime(s)

600 6000 100 105, 2
800 8000 100 221, 4
1200 12000 0 −

Table 2. Results for nb = 3, sc = 3 and d = 20% according to nv/nc

nc nv Succes(%) T ime(s)

400 200 40 68, 7
400 400 20 13, 5
400 800 70 17, 5

nc nv Succes(%) T ime(s)

200 100 90 2, 2
200 200 90 11, 1
200 400 90 2, 1

Benchmarks are randomly generated according to several parameters: the
number of bases (nb), the number of clauses in the bases (nc), the number of
variables in the bases (nv), the size of clauses in the bases (sc) and a parameter
that measures how belief bases differ (d).

Test bases are constructed as follows. We randomly construct an interpretation
and then we randomly generate clauses that satisfy it. From one base to another,
we change this interpretation according to the parameter(d) which represents the
percentage of changed variables. For each set of parameters, we launched 10 dif-
ferent sets of the test bases. A test is considered successfull if it computes all the
removed sets in less than 300 seconds and we keep the average run time of the
successfull tests. The experimentation gives the percentage of successfull tests
and the run time, in seconds, for the computation of all removed sets.

Table 1 shows the result of the behaviour of RSF algorithm for 3 bases con-
sisting on ternary clauses. The RSF approach performs the fusion of 3 bases
with a reasonable run time until a total number of about 3000 clauses and 8000
variables. Making nv/nc vary, table 2 shows a peak of difficulty when nv/nc
approaches 1.

Analysing the running time we have observed that the heuristic for choosing
the atoms is time consuming and has to be improved.

6 Conclusion

This paper presents a new approach for performing syntactic fusion of propo-
sitional beliefs bases and shows that the classical fusion operations Card, Σ,
Max, GMax, initially defined at the semantic level, can be expressed within
this syntactic framework.

The paper shows that RSF can be successfully encoded into answer set pro-
gramming for the strategies Card and Σ and proposes an implementation stem-
ming from Smodels system. It presents a preliminary experimental study that
seems promising for performing belief bases fusion on real scale applications. A
future work will conduct the implementation of Max and GMax strategies.
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A more extensive experimentation has to be conducted on real scale applica-
tions in order to provide a more accurate evaluation of the performance of RSF.
This will be conducted in a future work in the framework of an european project
in the context of fusion of spatial information. Moreover, the development of a
benchmarking platform for fusion will be useful, not only for testing RSF, but
more globally for anyone willing to work on practical implementations of fusion
operations.

Removed Set Fusion (RSF) makes it possible to efficiently implement the
classical Card and Σ fusion operators, moreover it generalizes Removed Set
Revision (RSR) since belief bases revision can be considered as the prioritized
merging of two belief bases [27] and RSR amounts to the fusion of two sources
according to the Card strategy.

Our framework could be extended according to several directions. A first
extension for dealing with constraints that the merged belief base ∆(E) has to
satisfy. A second extension to prioritized belief bases fusion.

A future work will detail the semantic characterization of RSF. This charac-
terization is provided from the set of clauses of K1 � · · · � Kn falsified by an
interpretation.
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Abstract. We describe COBA 2.0, an implementation of a consistency-based
framework for expressing belief change, focusing here on revision and contrac-
tion, with the possible incorporation of integrity constraints. This general frame-
work was first proposed in [1]; following a review of this work, we present
COBA 2.0’s high-level algorithm, work through several examples, and describe
our experiments. A distinguishing feature of COBA 2.0 is that it builds on
SAT-technology by using a module comprising a state-of-the-art SAT-solver for
consistency checking. As well, it allows for the simultaneous specification of re-
vision, multiple contractions, along with integrity constraints, with respect to a
given knowledge base.

1 Introduction

Given a knowledge base and a sentence for revision or contraction, the fundamental
problem of belief change is to determine what the resulting knowledge base contains.
The ability to change one’s knowledge is essential for an intelligent agent. Such change
in response to new information is not arbitrary, but rather is typically guided by vari-
ous rationality principles. The best known of these sets of principles was proposed by
Alchourron, Gardenfors, and Makinson [2], and has come to be known as the AGM
approach.

In this paper, we describe COBA 2.0, an implementation of a consistency-based ap-
proach to belief revision and contraction. The general methodology was first proposed
in [1]. In this approach, the AGM postulates for revision are effectively satisfied, with
the exception of one of the “extended” postulates. Similarly the contraction postulates
are satisfied with the exception of the controversial recovery postulate and one of the
extended postulates. Notably the approach is syntax independent, and so independent
of how a knowledge base and sentence for belief change is represented. COBA 2.0
implements this approach, and in a more general form. Thus a single belief change op-
eration will involve a single knowledge base and (possibly) a sentence for revision, but
along with (possibly) a set of sentences for contraction; as well integrity constraints are
handled, and in a straightforward fashion.

In Section 2, we give background terminology, notation, and implementation con-
siderations. Section 3 presents COBA 2.0’s high-level algorithm, in addition to work-
ing through two examples. Section 4 discusses COBA 2.0’s features, syntax, and input
checks, while Section 5 describes our experiments evaluating COBA 2.0 against a com-
parable solver. Lastly, Section 6 concludes with a summary.
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2 Preliminaries

To set the stage, we informally motivate our original approach to belief revision; con-
traction is motivated similarly, and is omitted here given space considerations. First, the
syntactic form of a sentence doesn’t give a clear indication as to which sentences should
or should not be retained in a revision. Alternately, one can consider interpretations, and
look at the models of K and α. The interesting case occurs when K ∪ {α} is unsat-
isfiable because K and α share no models. Intuitively, a model of K+̇α should then
contain models of α, but incorporating “parts” of models of K that don’t conflict with
those of α. That is, we will have Mod(K+̇α) ⊆ Mod(α), and for m ∈ Mod(K+̇α)
we will want to incorporate whatever we can of models of K .

We accomplish this by expressing K and α in different languages, but such that
there is an isomorphism between atomic sentences of the languages. In essence,
we replace every occurrence of an atomic sentence p in K by a new atomic sen-
tence p′, yielding knowledge base K ′ and leaving α unchanged. Clearly, under
this relabelling, the models of K ′ and α will be independent, and K ′ ∪ {α} will
be satisfiable (assuming that each of K , α are satisfiable). We now assert that
the languages agree on the truth values of corresponding atoms wherever consis-
tently possible. So, for every atomic sentence p, we assert that p ≡ p′ when-
ever this is consistent with K ′ ∪ {α} along with the set of equivalences ob-
tained so far. We obtain a maximal set of such equivalences, call it EQ, such
that K ′ ∪ {α} ∪ EQ is consistent. A model of K ′ ∪ {α} ∪ EQ then will be a
model of α in the original language, wherein the truth values of atomic sentences
in K ′ and α are linked via the set EQ. A candidate “choice” revision of K by
α consists of K ′ ∪ {α} ∪ EQ re-expressed in the original language. General re-
vision corresponds to the intersection of all candidate choice revisions. The follow-
ing section gives an example, once we have given a formal summary of the ap-
proach.

2.1 Formal Preliminaries

We deal with propositional languages and use the logical symbols�,⊥, ¬, ∨, ∧,⊃, and
≡ to construct formulas in the standard way. We write LP to denote a language over an
alphabet P of propositional letters or atomic propositions. Formulas are denoted by the
Greek letters α, β, α1, .... Knowledge bases, identified with belief sets or deductively-
closed sets of formulas, are denoted by K , K1, .... So K = Cn(K), where Cn(·) is
the deductive closure in classical propositional logic of the formula or set of formulas
given as argument. Given an alphabet P , we define a disjoint alphabet P ′ as P ′ =
{p′ | p ∈ P}. For α ∈ LP , α′ is the result of replacing in α each proposition p ∈ P by
the corresponding proposition p′ ∈ P ′ (and hence an isomorphism between P and P ′).
This definition applies analogously to sets of formulas.

A belief change scenario in LP is a triple B = (K,R,C) where K , R, and C are
sets of formulas in LP . Informally, K is a belief set that is to be modified so that the
formulas in R are contained in the result, and the formulas in C are not. An extension
determined by a belief change scenario is defined as follows.
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Definition 1 (Belief Change Extension). Let B = (K,R,C) be a belief change sce-
nario in LP , and a maximal set of equivalences EQ ⊆ {p ≡ p′ | p ∈ P} be such that
Cn(K ′ ∪R ∪ EQ) ∩ (C ∪ {⊥}) = ∅.

Then Cn(K ′ ∪R ∪EQ) ∩LP is a belief change extension of B. If there is no such
set EQ, then B is inconsistent and LP is defined to be the sole (inconsistent) belief
change extension of B.

In Definition 1, “maximal” is with respect to set containment, and the exclusive use of
“{⊥}” is to take care of consistency if C = ∅. Definition 1 provides a very general
framework for specifying belief change. Next, we can restrict the definition to obtain
specific functions for belief revision and contraction.

Revision and Contraction. For a given belief change scenario, there may be more than
one consistent belief change extension. We can thus use a selection function c that, for
any set I �= ∅, has as value some element of I .

Definition 2 (Revision). Let K be a knowledge base, α a formula, and (Ei)i∈I the
family of all belief change extensions of (K, {α}, ∅). Then, we define

1. K+̇cα = Ei as a choice revision of K by α with respect to some selection function
c with c(I) = i.

2. K+̇α =
⋂

i∈I Ei as the (skeptical) revision of K by α.

Definition 3 (Contraction). Let K be a knowledge base, α a formula, and (Ei)i∈I the
family of all belief change extensions of (K, ∅, {α}). Then, we define

1. K−̇cα = Ei as a choice contraction of K by α with respect to some selection
function c with c(I) = i.

2. K−̇α =
⋂

i∈I Ei as the (skeptical) contraction of K by α.

A choice change represents a feasible way in which a knowledge base can be revised
or contracted to incorporate new information. On the other hand, the intersection of all
choice changes represents a “safe,” skeptical means of taking into account all choice
changes.

Table 1 gives examples of skeptical revision. The knowledge base is in the first col-
umn, but with atoms already renamed. The second column gives the revision formula,
while the next lists the maximal consistent EQ set(s); the last column gives the results
of the revision, as a finite representation of Cn(K+̇α). For {p ∧ q}+̇(¬p ∨ ¬q), there
are two maximal consistentEQ sets {p ≡ p′} and {q ≡ q′} and thus two corresponding

Table 1. Skeptical Revision Examples

K′ α EQ K+̇α

p′ ∧ q′ ¬q {p ≡ p′} p ∧ ¬q
¬p′ ≡ q′ ¬q {p ≡ p′, q ≡ q′} p ∧ ¬q
p′ ∨ q′ ¬p ∨ ¬q {p ≡ p′, q ≡ q′} p ≡ ¬q
p′ ∧ q′ ¬p ∨ ¬q {p ≡ p′}, {q ≡ q′} p ≡ ¬q
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Table 2. Skeptical Contraction Examples

K′ α EQ K−̇α

p′ ∧ q′ q {p ≡ p′} p
p′ ∧ q′ ∧ r′ p ∨ q {r ≡ r′} r

p′ ∨ q′ p ∧ q {p ≡ p′, q ≡ q′} p ∨ q
p′ ∧ q′ p ∧ q {p ≡ p′}, {q ≡ q′} p ∨ q

choice extensions Cn(p∧¬q) and Cn(¬p∧q), respectively. Table 2 lists four skeptical
contraction examples.

The general approach, with |C| > 1, can be employed to express multiple contraction
[3], in which contraction is with respect to a set of (not necessarily mutually consistent)
sentences. Therefore, we can use the belief change scenario (K, ∅, {α,¬α}) to repre-
sent a symmetric contraction [4] of α from K . Refer to [1] for a discussion of the formal
properties of these belief revision and contraction operators.

Integrity Constraints. Definition 1 allows for simultaneous revision and contraction
by sets of formulas. This in turn leads to a natural and general treatment of integrity
constraints. To specify a belief change incorporating a set of consistency-based integrity
constraints [5,6], ICc, and a set of formulas as entailment-based constraints [7], ICe,
one can specify a belief change scenario by (K,R ∪ ICe, C ∪ ICc), where K , R, and
C are as in Definition 1, and ICc = {¬φ | φ ∈ ICc}. See [1] for details.

2.2 Implementation Considerations

Finite Representation. Definitions 1–3 provide an abstract characterization of revision
and contraction, yielding in each case a deductively-closed belief set. It is proven in [1]
that the same (with respect to logical equivalence) operators can be defined so that they
yield a knowledge base consisting of a finite formula. Consider K+̇α. Via Definitions
1 and 2, we determine maximal sets EQ where {K ′} ∪ {α} ∪ EQ is consistent. For
each such EQ set, we carry out the substitutions:

– for p ≡ p′ ∈ EQ, replace p′ with p in K ′,
– for p ≡ p′ /∈ EQ, replace p′ with ¬p in K ′.

It is shown that following this substitution, the resulting knowledge base and input for-
mula is logically equivalent to some choice revision; the disjunction of all such resulting
knowledge bases and input formula is equivalent to the skeptical revision.

For contraction (whereC �= ∅), we need to substitute into the resultingK all possible
combinations of truth value assignments for all elements in PEQ. Again, see [1] for
details.

Limiting Range of EQ. The range ofEQ can be limited to “relevant” atoms. Intuitively,
if an atomic sentence appears in a knowledge base K but not in the sentence for revision
α, or vice versa, then that atomic sentence plays no part in the revision process. The
same intuition extends to contraction. It was proven in [1] that for computing a belief
change extension of a belief change extension B = (K,R,C), we need consider only
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those atoms common to K and to (R ∪ C). That is, if Atoms(X) is the set of atoms
in set of formulas X , then in Definition 1 for forming K ′ and the set EQ we can limit
ourselves to considering atoms in Atoms(K) ∩ (Atoms(R) ∪Atoms(C)).

3 Algorithm

The results at the end of the last section lead to an algorithm for computing a belief
change extension for an arbitrary belief change scenario. After presenting our algo-
rithm, we will work through two example belief change scenarios.

Given a set K of formulas in LP , and sets Rev, ICe, Con, and ICc of formulas in
LP for revision, entailment-based integrity constraints, contraction, and consistency-
based integrity constraints, respectively, algorithm ComputeBCE returns a formula
whose deductive closure is a belief change extension of the belief change scenario B =
(K,Rev ∪ ICe, Con ∪ ICc), where ICc = {¬φ | φ ∈ ICc}.

Algorithm ComputeBCE invokes the following auxiliary functions:

Atoms(S) Returns the set of atoms appearing in any formula in set of formulas S.
P rime(K,CA) For set of formulas K and set of atoms CA, returns K but where

every atom p ∈ A is replaced by p′.
Initialize(K ′, R, Con, ICc) Given a formula K ′ and sets R, Con, ICc of formulas,

returns a set of formulas of form (K ′∧(
∧
R)∧¬φ∧ψ), for each φ ∈ (Con∪{⊥})

and ψ ∈ (ICc ∪ {�}).
Replace(K ′, p′, p) Returns K ′ with every occurrence of atom p′ replaced by p.
ForgetOutEquiv(K ′, Out) Input: formula K ′ and a set Out of equivalences of

atoms
Output: K ′ with every atom p such that (p′ ≡ p) ∈ Out is “forgotten”:

1. If Out = ∅, then return K ′.
2. OutAtoms := {p | (p′ ≡ p) ∈ Out}.
3. TA := PowerSet(OutAtoms).

//TA is the set of all truth assignments to OutAtoms.
4. KDisj := ⊥.
5. For each truth assignment π ∈ TA {

TempK := K ′.
KDisj := KDisj ∨ Substitute(TempK, π). }
//Substitute returns π applied to T empK.

6. Return KDisj.

Algorithm ComputeBCE(K,Rev, ICe, Con, ICc)
Let R = Rev ∪ ICe and C = Con ∪ ICc.
1. If R $ ⊥ or K $ ⊥, then return ⊥.
2. If (for any ψ ∈ ICc, R ∪ {ψ} $ ⊥), then return ⊥.
3. If (for any φ ∈ Con, R ∪ {¬φ} $ ⊥), then return ⊥.
4. If (for any φ ∈ Con and any ψ ∈ ICc

{¬φ} ∪ {ψ} $ ⊥), then return ⊥.
5. CA := Atoms(K) ∩ (Atoms(R) ∪Atoms(C)).
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6. K ′ := P rime(K,CA).
7. KRC := Initialize(K ′, R, Con, ICc).
8. In := Out := ∅.
9. For each e ∈ {p′ ≡ p | p ∈ CA} {

If ( for any θ ∈ KRC we have e ∪ {θ} $ ⊥ )
Then Out := Out ∪ {e}.
Else In := In ∪ {e}. }

10. For each e ∈ In: K ′ := Replace(K ′, p′, p).
11. For each e ∈ Out: K ′ := Replace(K ′, p′,¬p).
12. If (Con �= ∅) Then K ′ := ForgetOutEquiv(K ′, Out).
13. Return K ′ ∧ (

∧
Rev).

Algorithm ComputeBCE generates a belief change extension in non-deterministic
polynomial (NP) time; i.e., an extension can be computed by a deterministic polynomial
Turing machine using the answers given by an NP oracle. For this purpose, we currently
use the SAT-solver called Berkmin in the SAT4J library [8]. The solver performs the
consistency checks in lines 1 through 4 and within the for loop in Line 9. Before passing
any formula to the solver, we convert it first to conjunctive normal form (CNF). The
CNF formula, once created, is saved with its corresponding formula so that conversions
are not done repetitively.

The selection function (for the “preferred” EQ set) is left implicit in Line 9 of Al-
gorithm ComputeBCE; it is realized by the particular order chosen when treating the
atoms in CA. In COBA 2.0, however, we create an ordered (in ascending cardinality)
list L of all 2|CA| possible subsets of {p′ ≡ p | p ∈ CA}. To help streamline the search
for EQ sets and minimize memory usage, we represent each equivalence by a single bit
so that it is included in an EQ set e iff its corresponding bit is 1 in e’s bit-string. Fur-
thermore, the ordered list L can accommodate our subsequent search for maximal EQ
sets, whether the search be breadth-first or depth-first. On average, the running time
and memory usage of breadth-first search is comparable to that of depth-first search,
although in our experience neither is consistently superior.

3.1 Examples

We illustrate how COBA 2.0 computes belief change extensions by working through
two examples. The examples include belief revision and contraction.

Revision. Consider revising a knowledge base K = {p, q} by a formula α = ¬p ∨ ¬q.
We show how COBA 2.0 computes K+̇α:

1. Find the common atoms between the knowledge base and the revision formula.
CA = {p, q}

2. Create a new formula K ′ from K by priming the common atoms appearing in K .
K ′ = (p′ ∧ q′)

3. Find all maximal equivalence sets EQ = {b′ ≡ b | b ∈ CA} such that {K ′} ∪
{α} ∪ EQ is satisfiable.
EQ1 = {p′ ≡ p}
EQ2 = {q′ ≡ q}
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4. For each EQi, create a belief change extension by (a) unpriming in K ′ every
primed atom p′ if (p′ ≡ p) ∈ EQi, (b) replacing every primed atom p′ with ¬p if
(p′ ≡ p) /∈ EQi, and finally (c) conjoining K ′ with the revision formula.
K+̇c1{α} = (p ∧ ¬q) ∧ (¬p ∨ ¬q) ≡ (p ∧ ¬q)
K+̇c2{α} = (¬p ∧ q) ∧ (¬p ∨ ¬q) ≡ (¬p ∧ q)

5. The resulting knowledge base is the deductive closure of either the disjunction of
all belief change extensions for skeptical change, or one belief change extension
for choice change.
K+̇{α} = Cn((p ∧ ¬q) ∨ (¬p ∧ q))

Contraction. Consider contracting a knowledge base K = {p ∨ q} by a formula α =
p ∨ q. We show how COBA 2.0 computes K−̇α:

1. Find the common atoms between the knowledge base and the contraction formula.
CA = {p, q}

2. Create a new formula K ′ from K by priming the common atoms appearing in K .
K ′ = (p′ ∨ q′)

3. Find all maximal equivalence sets EQ = {b′ ≡ b | b ∈ CA} such that {K ′} ∪
{¬α} ∪ EQ is satisfiable.
EQ1 = {}

4. For each EQi, create a belief change extension by (a) unpriming in K ′ every
primed atom p′ if (p′ ≡ p) ∈ EQi, (b) replacing every primed atom p′ with ¬p if
(p′ ≡ p) /∈ EQi, and finally (c) taking the disjunction of all possible substitutions
of � or ⊥ into those atoms in K ′ that are in CA but whose corresponding equiva-
lences are not in EQi.
K−̇c1{α} = (�)

5. The resulting knowledge base is the deductive closure of either the disjunction of
all belief change extensions for skeptical change, or one belief change extension
for choice change.
Here, there is only one resulting knowledge base for skeptical change and for choice
change: K−̇{α} = Cn((¬⊥∨¬⊥)∨ (¬⊥∨¬�)∨ (¬�∨¬⊥)∨ (¬�∨¬�)) =
Cn(�)

4 Implementation

In this section, we describe the COBA 2.0 implementation. We discuss features, syntax,
and syntactic and consistency checks on input formulas.

4.1 Features

COBA 2.0 is available as an interactive Java applet, complete with a menu, text boxes,
buttons, and separate panels for belief change, integrity constraints, and snapshots. Via
the menu, users can import belief change scenarios from files, specify the type (skeptical
or choice) of belief change desired, and obtain a resulting knowledge base.
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Fig. 1. COBA 2.0’s Main Screen

Users may also

1. enter belief change scenarios in text boxes,
2. view logs of the changes made to the knowledge base (KB) list, the entailment-

based integrity constraints (EB IC) list, and the consistency-based integrity con-
straints (CB IC) list,

3. revert to an older KB, EB IC, or CB IC snapshot,
4. save any list to an output file,
5. view formulas in CNF or DNF,
6. turn off the various consistency checks,
7. preview, and then reject or commit, a resulting knowledge base, and
8. view the user manual and JavaDocs in external browser windows (if the applet is

running in an html document).

COBA 2.0 automatically simplifies formulas where applicable, for example, elim-
inating occurrences of � and ⊥ in subformulas. COBA 2.0 also automatically in-
forms users of any syntactically ill-formed input formulas. The consistency checks in
6. aboveand the syntax checks are elaborated on in Subsection 4.3. The applet, user
manual, Java code, and Javadocs of COBA 2.0 are accessible from [9].



86 J.P. Delgrande et al.

Fig. 2. COBA 2.0’s History Screen

4.2 Syntax

COBA 2.0 accepts almost all alphanumerical strings for atom names. The exceptions
are the symbols in the following list: ’, +, &, ˆ, ˜, =, >, ( and ). Note that T
and F stand for � and ⊥, respectively.

More complex formulas can be built from formulas A and B using connectives.

– ˜A for the negation of A
– (A&B) for the conjunction of A and B
– (A+B) for the disjunction of A and B
– (A>B) for A implies B
– (A=B) for A is equivalent to B

A top-level formula with a binary connective (&, +, >, or =) must be enclosed in
parentheses. Parentheses within a formula, however, are optional and are used only to
enforce precedence. For example, (a&b+c) is a valid input sentence and is different
from (a&(b+c)), whereas a top-level sentence like a&b is syntactically ill formed.
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Encoding Input Files. Input file formats (for belief change scenarios) vary according
to the list (KB, Revision, Contraction, EB IC, or CB IC) to which formulas are to be
added. Any KB file to be loaded should precede each knowledge base by a line “KB :”
(without the double quotes) and list each formula on a separate line. Each formula is
listed on a separate line in any Revision and EB IC input files. For any contraction and
CB IC input files, each line is interpreted as an independent formula for contraction and
as a CB IC, respectively.

Consider an example contraction file. While the formula (p&˜q) means that

(p&¬q) is to be removed from the consequences of the resulting knowledge base,
p
˜q

listed on two separate lines means that both p and ¬q are to be dropped from the con-
sequences of the resulting knowledge base.

As an example, the next table shows some valid input files.

KB Rev Cont EB IC CB IC
KB : q p (a&b+c) d
(p&q&r) ˜p ˜q (x&(y+z)) ˜d
(˜q+˜s)

4.3 Input Checks

COBA 2.0 performs syntax and consistency checks on all input formulas. The former
checks are always enforced, while the latter checks are optional but carried out by de-
fault. See below for details.

Syntax Checks. With regard to the syntax detailed earlier in Subsection 4.2, COBA 2.0
informs users of ill-formed input formulas. Thus, for example, the following ill-formed
input strings would be flagged with an appropriate message: q), q+, pˆ, p’, (p,
(p&(q), (p+q&), and (+q).

Consistency Checks. To preempt inconsistent belief change scenarios, COBA 2.0 pro-
hibits certain kinds of input formulas that result in inconsistent belief change scenarios.
This preemptive measure accords well with the consistency checks in lines 1 through
4 of Algorithm ComputeBCE in Section 3. Automatic consistency checks on input
formulas, although carried out by default, can be optionally disabled by users wishing
to speed up computations. One caveat is that, if these checks are disabled, F might be
obtained as the resulting knowledge base.

Let (
∧
Rev) denote the conjunction of all formulas in Rev for revision, (

∧
EBIC)

the conjunction of all entailment-based integrity constraints. The following inconsistent
belief change scenarios should be avoided; sample error messages, where applicable,
are italicised.

1. a contradiction in Rev: The conjunction of revisions is inconsistent!
2. a contradiction in EBIC: The conjunction of EB ICs is a contradiction!
3. a contradiction as a KB, revision, or EB IC formula: No error message; sentence

not added.
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4. a tautology as a contraction formula: No error message; sentence not added.
5. a contradiction as a CB IC formula: No error message; sentence not added.
6. conflict between (

∧
Rev) and (

∧
EBIC): The conjunction of revisions is incon-

sistent with the conjunction of EB ICs!
7. conflict between (

∧
Rev) and contraction formulas: The contraction indexed 0 is

inconsistent with the conjunction of revisions (indexing starts at 0)!
8. conflict between (

∧
Rev) and CB IC formulas: The CB IC indexed 1 is inconsistent

with the conjunction of revisions (indexing starts at 0)!
9. conflict between (

∧
EBIC) and contraction formulas: The contraction indexed 6

is inconsistent with the conjunction of EB ICs (indexing starts at 0)!
10. conflict between (

∧
EBIC) and CB IC formulas: The CB IC indexed 3 is incon-

sistent with the conjunction of EB ICs (indexing starts at 0)!
11. conflicting pairs of CB IC formulas and contraction formulas: The contraction in-

dexed 2 is inconsistent with the CB IC indexed 0 (indexing starts at 0)!

The aforementioned consistency checks correspond to the consistency checks on input
in Algorithm ComputeBCE from Section 3. Specifically, 1, 2, 3, and 6 correspond to
the checks (R $ ⊥) and (K $ ⊥) in Line 1 of ComputeBCE; 5, 8, and 10 to the
check (R ∪ {ψ} $ ⊥, for any ψ ∈ ICc) in Line 2 of ComputeBCE; 4, 7, and 9 to
the check (R ∪ {¬φ} $ ⊥, for any φ ∈ Con) in Line 3 of ComputeBCE; lastly, 11
to the check ({¬φ} ∪ {ψ} $ ⊥, for any φ ∈ Con and any ψ ∈ ICc) in Line 4 of
ComputeBCE.

5 Experiments

It has been shown that skeptical revision and contraction in our approach are ΠP
2 -hard

problems [1]. In [10] is was shown how the approach could be encoded using quantified
Boolean formulas (QBF). This allows us to compare COBA 2.0 with an implemented
version of the approach using the quantified Boolean formula solver QUIP [11].

For comparing the implementations, we created knowledge bases and revision sen-
tences made up of randomly generated 3-DNF formulas, and converted each to a QBF.
We also devised an experimental prototype of COBA 2.0 which performs structural
transformation (by replacing sub-formulas with new atoms) instead of the CNF con-
version of formulas (for consistency checks). Experiments were then conducted on
QUIP, and on both the stable version (the applet) and the experimental prototype of
COBA 2.0.

Preliminary experimental results reveal that most of COBA 2.0’s run-time is at-
tributed to its structural or CNF conversion of formulas and to its consistency checks.
The run-time of all three implementations shows an exponential growth rate. QUIP,
however, is relatively faster than both versions of COBA 2.0. The experimental proto-
type seems to be more than two orders of magnitude faster than the stable version of
COBA 2.0, and this observation suggests that structural transformation be done in lieu
of CNF conversion in our future implementation.
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6 Conclusion

We have presented COBA 2.0, an implementation of a consistency-based approach for
belief change incorporating integrity constraints. Operators for belief revision and con-
traction incorporating integrity constraints are readily defined in a general framework
that satisfies the majority of the AGM postulates, notably independence of syntactic
representation As demonstrated by COBA 2.0, the framework is easily implementable,
for the results of our operators are finite and vocabulary-restricted belief change can be
performed instead. Examples of how COBA 2.0 computes belief change are detailed in
Section 3.

Our preliminary experiments show that our stable version (the applet) still has much
potential for improvement. To this end, we devised an experimental prototype (with
structural transformation in lieu of CNF conversion) that seems to be more than two
orders of magnitude faster than the stable version (with CNF conversion). Hence, we
are optimistic that COBA 2.0 can be improved to achieve a similar run-time behaviour
as the monolithic QUIP system.

To our knowledge, COBA 2.0 is the most general belief change system currently
available, capable of computing arbitrary combinations of belief revision and contrac-
tion that (possibly) incorporate consistency-based and entailment-based integrity con-
straints. Moreover, COBA 2.0’s general framework is easily extensible to consistency-
based merging operators as detailed in [12], and currently we are refining our imple-
mentation so as to accommodate the merging of knowledge bases. The only comparable
system is described in [13]. However, it is based on another approach to belief change,
relying on stratified knowledge bases.

The applet, user manual, Java code, and Javadocs of COBA 2.0 are all accessible
at [9].
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Abstract. Measuring inconsistency in knowledge bases has been recognized as
an important problem in many research areas. Most of approaches proposed for
measuring inconsistency are based on paraconsistent semantics. However, very
few of them provide an algorithm for implementation. In this paper, we first give
a four-valued semantics for first-order logic and then propose an approach for
measuring the degree of inconsistency based on this four-valued semantics. After
that, we propose an algorithm to compute the inconsistency degree by introducing
a new semantics for first order logic, which is called S[n]-4 semantics.

1 Introduction

Measuring inconsistency in knowledge bases has been recognized as an important prob-
lem in many research areas, such as artificial intelligence [1,2,3,4,5], software engi-
neering [6] and the Semantic Web [7]. There mainly exist two classes of inconsistency
measures. The first class is defined by the number of formulas which are responsible for
an inconsistency [8]. The second class considers propositions in the language which are
affected by inconsistency [9,10,11,3,2]. The approaches belonging to the second class
are often based on some paraconsistent semantics because we can still find paraconsis-
tent models for inconsistent knowledge bases. The inconsistency degree considered in
this paper belongs to the second class.

In [9], three compatible kinds of classifications for inconsistent theories are pro-
posed, which actually provides three ways to define inconsistency measures for first-
order logic based on paraconsistent semantics. The first approach is defined by the
number of paraconsistent models. The underlying idea is that the less models, the more
inconsistent the knowledge base is. The second approach is defined by the number of
contradictions in a preferred paraconsistent model which has least contradictions, and
considering the number of non-contradictions in a preferred model which has most non-
contradictions. The third approach is defined by the number of atomic formulae which
have conflicting assignments and by the number of all ground atomic formulae. Among
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these three approaches, the first one is global in the sense that all paraconsistent models
are considered, while the latter two are local since they only consider the models with
least inconsistencies or most consistencies. Later on, an approach for measuring incon-
sistency in first-order logic is given in [3], which is based on the third approach in [9].

Although there exist many approaches to measuring inconsistency in a knowledge
base in a logical framework, very few of them provide efficient algorithms for im-
plementation. In this paper, we first give a four-valued semantics for first-order logic
and then propose an approach for measuring the degree of inconsistency based on this
four-valued semantics. Our definition of inconsistency degree is similar to the approach
given in [3]. The difference is that our approach is based on four-valued semantics and
their approach is based on first-order quasi-classical semantics. After that, we propose
an algorithm to compute the inconsistency degree by introducing a new semantics for
first order logic, which is called S[n]-4 semantics.

This paper is organized as follows. In the next section, we introduce the four-valued
semantics of first-order logic and its properties. In Section 3, we propose a definition of
inconsistency degree of a first-order theory, and then, in Section 4, we give an algorithm
to compute the inconsistency degree. Finally, we conclude the paper and discuss future
work in Section 5.

2 Four-Valued First-Order Models

In order to measure the inconsistency degree of a first-order theory, in this section we
define four-valued models for first-order theories. The inconsistency measurement stud-
ied in [2] is also by four-valued models. However, quantifiers and variables are not
considered there — that is, only four-valued propositional models are being used. For
first-order theories, an alternative semantic structure studied in [9] can be viewed as
a three-valued semantics. Besides the definition of four-valued models, we also study
how to reduce four-valued entailment to classical first-order entailment in this section,
which serves as one of the important bases for our algorithm.

Given a set of predicate symbols P and a set of function symbolsF (the set of 0-ary
functions is a set of constant symbols, denoted C), formulas are built up in the same way
as in classical first-order logic from predicates, functions, a set of variables V and the
set of logical symbols {¬,∨,∧, ∀, ∃,→,≡}, where α → β is the short form of ¬α∨β.

A first-order theory considered in this paper is a finite set of first-order formulae
without free variables. In this paper, whenever we want to clarify the arity of a function
or predicate, we may state the arity in parentheses following the function or predicate
symbol, e.g. f(n), P (n) means f, P are n-ary function and predicate, respectively. We
also use t (possibly with subscripts) for terms, Greek lowercase symbols α, φ for for-
mulas, and uppercase Γ for a first-order theory. The set of all predicates occurring in Γ
is denoted as P(Γ ). The cardinality of a set A is denoted by |A|.

The set of truth values for four-valued semantics [12,13] contains four elements:
true, false, unknown (or undefined) and both (or overdefined, contradictory). We use the
symbols t, f, N,B, respectively, for these truth values. The four truth values together
with the ordering� defined below form a lattice FOUR = ({t, f, B,N},�):

f � N � t, f � B � t, N and B are incomparable.
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The upper and lower bounds of two elements based on the ordering, and the operator ¬
on the lattice, are defined as follows:

– N ∧ t = N,B ∧ t = B,N ∧B = f , and for any x ∈ FOUR, f ∧ x = f ;
– f ∨N = N, f ∨B = B,N ∨B = t, and for any x ∈ FOUR, t ∨ x = t;
– ¬t = f,¬f = t,¬N = N,¬B = B, and for all x ∈ FOUR,¬¬x = x.

Formally, a four-valued interpretation I of a first-order theory is defined as follows.

Definition 1. A four-valued interpretation I = (∆I, ·I) contains a non-empty domain
∆I and a mapping ·I which assigns

– to each constant c an element of ∆I, written cI;
– to each truth value symbol the symbol itself: tI = t, fI = f, BI = B,NI = N .
– to each n-ary function symbol f(n) an n-ary function on∆I, written fI : (∆I)n �→

∆I, where (∆I)n =

n︷ ︸︸ ︷
∆I × ...×∆I

– to each n-ary predication symbol P (n) a pair of n-ary relations on ∆I, written
〈P+, P−〉, where P+, P− ⊆ (∆I)n.

Recall that a classical first-order interpretation maps each n-ary predicate to an n-ary
relation on the domain. A four-valued interpretation assigns a pairwise n-ary relation
〈P+, P−〉 to each n-ary predicateP , whereP+ explicitly denotes the set of n-ary vectors
which have the relation P under interpretation I and P− explicitly denotes the set of
n-ary vectors which do not have the relation P under interpretation I. If a four-valued
interpretation I satisfies P+ ∪ P− = ∆I and P+ ∩ P− = ∅, then it is a classical
interpretation.

The definition of a state σ remains the same as in classical semantics of first-order
logic, which is a mapping assigning to each variable occurring in V an element of the
domain. Due to space limitation, we omit its formal definition as well as the definition of
interpretation of terms based on states. We denote by σ{x �→ d} the state obtained from
σ by assigning d to x while leaving other assignments to other variables unchanged.

Given an interpretation I and a state σ, the four-valued semantics of an atomic for-
mula can be defined as follows.

Definition 2. Assume P (t1, ..., tn) is an n-ary predicate, where t1, ..., tn are terms. I is
a four-valued interpretation and σ is a state. Then the truth value assignment to atomic
predicates and equality is defined as follows:

(x ≡ y)I,σ = t, if and only if xσ = yσ

(x ≡ y)I,σ = f, if and only if xσ �= yσ

(P (t1, ..., tn))I,σ = t, if and only if (tσ1 , ..., t
σ
n) ∈ P I

+ and (tσ1 , ..., t
σ
n) �∈ P I

−

(P (t1, ..., tn))I,σ = f, if and only if (tσ1 , ..., t
σ
n) �∈ P I

+ and (tσ1 , ..., t
σ
n) ∈ P I

−

(P (t1, ..., tn))I,σ = B, if and only if (tσ1 , ..., t
σ
n) ∈ P I

+ and (tσ1 , ..., t
σ
n) ∈ P I

−

(P (t1, ..., tn))I,σ = N, if and only if (tσ1 , ..., t
σ
n) �∈ P I

+ and (tσ1 , ..., t
σ
n) �∈ P I

−

where ≡ is used for equality in first-order logic.
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Note that the truth assignment to equality is classical in the sense that an equality can
only obtain classical truth values t or f , while for common atomic predicates it may be
valued among {t, f, B,N}. Based on the semantics of atomic predicates, the semantics
of complex formulae can be defined deductively as follows:

Definition 3. Let ϕ and φ be two first-order formulae, γ(x1, ...,xn) be a formula con-
taining n free variables, I is a four-valued interpretation and σ is a state. Then,

(¬ϕ)I,σ = ¬(ϕ)I,σ ; (ϕ ∧ φ)I,σ = ϕI,σ ∧ φI,σ; (ϕ ∨ φ)I,σ = ϕI,σ ∨ φI,σ

(∀x1, ...,xn.γ(x1, ...,xn))I,σ =
∧

σ′=σ{x1 
→d1,...,xn 
→dn}
(γ(d1, ..., dn))I,σ′

(∃x1, ...,xn.γ(x1, ...,xn))I,σ =
∨

σ′=σ{x1 
→d1,...,xn 
→dn}
(γ(d1, ..., dn))I,σ′

Throughout the paper, we use the finite domain assumption such that the righthand of
the last two equations above are finite conjunctions and disjunctions, respectively.

A four-valued interpretation I is a 4-model of a first-order theory Γ if and only if
for each formula α ∈ Γ , αI ∈ {t, B}. A theory which has a 4-model is called 4-valued
satisfiable. Four-valued entailment for first-order logic can be defined in a standard way
as follows.

Definition 4. Suppose Γ is a first-order theory and α is a first-order formula. Γ 4-
valued entails α, written Γ |=4 α, if and only if every 4-model of Γ is a 4-model of
α.

Note that the four-valued interpretation of equality is the same as in classical first-order
logic. So for all positive integers n, a four-valued interpretation I = (∆I, ·I) is a 4-
model of formula En = ∃x1, ...,xn.

∧
1≤i,j≤n(xi �≡ xj) ∧ ∀y.

∨
1≤i≤n(y ≡ xi) if and

only if |∆I| = n.

Proposition 1. Given a first-order theory Γ without equality ≡ and without boolean
constants {t, f}, Γ always has 4-models of any domain size if UNA (the unique name
assumption1) is not considered. If UNA is used, Γ always has 4-models whose sizes are
equivalent to or larger than the number of constants in Γ .

Example 1. (Canonical example) Γ = {Penguin(tweety),Bird(fred), ∀x.Bird(x) →
Fly(x), ∀x.Penguin(x) → Bird(x), ∀x.Penguin(x) → ¬Fly(x)}. Obviously, Γ has no
two-valued models. However, it has the following 4-model I = (∆I, ·I), where ∆I =
{a, b} and ·I is defined as tweetyI = a, fredI = b,FlyI(a) = B,PenguinI(a) =
BirdI(a) = BirdI(b) = FlyI(b) = t,PenguinI(b) = f.

According to Proposition 1, we restrict our measurement of the inconsistency degree to
first-order theories which do not contain equality or {t, f} in this paper.

Our four-valued semantics is an extension of classical semantics. Additionally, 4-
valued entailment can be reduced to the classical entailment. The reduction in the propo-
sitional case is studied in [14]. We extend it to the first-order case.

1 That is, if c and d are distinct constants, then cI �= dI for each interpretation I.
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Theorem 1. Let Γ be a first-order theory in negation normal form and φ be a formula.
Γ |=4 φ if and only if Θ(Γ ) $ Θ(φ), where Θ(·) is a function defined on a set of
formulae as follows:

– Θ(c) = c, if c is a constant.
– Θ(ϕ) = ϕ, if ϕ is x ≡ y or x �≡ y;
– Θ(P (x1, ...,xn)) = P+(x1, ...,xn), where P+ is a new atomic n-ary predicate;
– Θ(¬P (x1, ...,xn)) = P−(x1, ...,xn), where P− is a new n-ary predicate;
– Θ(ϕ1(x1, ...,xn)◦ϕ2(y1, ..., ym)) = Θ(ϕ1(x1, ...,xn))◦Θ(ϕ2(y1, ..., ym)), where
◦ is ∧ or ∨;

– Θ(ϕ1(x1, ...,xn) → ϕ2(y1, ..., ym)) = Θ(¬ϕ1(x1, ...,xn)) ∨Θ(ϕ2(y1, ..., ym)).
– Θ(Qx.ϕ) = Qx.Θ(ϕ), where Q is ∀ or ∃.
– Θ(Γ ) = {Θ(ϕ) | ϕ ∈ Γ}.

Example 2. (Example 1 continued)
Θ(Γ )={Penguin+(tweety),Bird+(freg), ∀x.Bird−(x)∨Fly+(x), ∀x.Penguin−(x)∨
Bird+(x), ∀x.Penguin−(x) ∨ Fly−(x)}.

Example 3. (Example 2 continued)
Consider Γ ′ = Γ ∧Fly(a1)∧¬Fly(a1)∧En and ϕ =

∨
2≤j≤n(Fly(aj)∧¬Fly(aj))∨∨

1≤j≤n((Bird(aj)∧¬Bird(aj))∨(Penguin(aj)∧¬Penguin(aj))). Obviously,Θ(Γ ′) =
Θ(Γ ) ∧ Fly+(a1) ∧ Fly−(a1)) ∧ En and Θ(ϕ) =

∨
2≤j≤n(Fly+(aj) ∧ Fly−(aj)) ∨∨

1≤j≤n((Bird(aj)+ ∧ Bird−(aj)) ∨ (Penguin+(aj) ∧ Penguin−(aj))). According to
Theorem 1, we know that Γ ′ �|=4 ϕ because Θ(Γ ′) �$ Θ(ϕ). This example will be again
used in Example 7.

3 Inconsistency Measure by 4-Valued Semantics

To measure inconsistency of a theory, we consider only finite theory and only finite do-
mains in this paper. This is reasonable for practical cases because only finite individuals
can be represented or would be used.

Our approach to measuring inconsistency is based on the approach given in [3] which
is defined by means of first-order quasi-classical models instead of four-valued models.
The reason why we use 4-valued models is that the 4-valued semantics for the whole
first-order language can be implemented by a linear reduction to the classical semantics.
While for quasi-classical logic, this is only achieved restricted to propositional logic in
CNF [15]. Due to space limitation, we omit all proofs. The underlying idea comes from
[3].

Definition 5. Let Γ be a first-order theory and I = (∆I, ·I) be a four-valued model of
Γ . The inconsistency degree of Γw.r.t. I, denoted IncI(Γ ), is a value in [0, 1] calculated
in the following way:

IncI(Γ ) =
|ConflictTheo(I, Γ )|
|GroundTheo(I, Γ )|

where GroundTheo(I, Γ ) = {P (d1, ..., dn) | d1, ..., dn ∈ ∆I, P (n) ∈ P(Γ )}, and
ConflictTheo(I, Γ ) = {(P (d1, ..., dn))I = B | d1, ..., dn ∈ ∆I, P (n) ∈ P(Γ )}.
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That is, the inconsistency degree of Γ w.r.t. I is the ratio of the number of conflicting
atomic sentences divided by the amount of all possible atomic sentences formed from
atomic predicates occurring in Γ and individuals in the domain of I. It measures to
what extent a given first-order theory Γ contains inconsistencies w.r.t. I.

Example 4. (Example 1 continued) GroundTheo(I, Γ ) = {Bird(a), Penguin(a), Fly(a),
Bird(b), Penguin(b), Fly(b)}, ConflictTheo(I, Γ ) = {Fly(a)}. So IncI(Γ ) = 1

6 .

Let’s consider another 4-valued model I′ of Γ : tweetyI′
= a, fredI′

= b,FlyI′
(a) =

PenguinI′
(a) = BirdI′

(a) = BirdI′
(b) = FlyI′

(b) = B,PenguinI′
(b) = f. Obviously,

GroundTheo(I′, Γ ) = GroundTheo(I, Γ ), |GroundTheo(I′, Γ )| = 5, and IncI′(Γ ) =
5
6 .

From this example, we can see that for any given first-order theory, its different 4-valued
models might contain different percents of contradictions. According to this, we define
a partial ordering on the set of its models as follows.

Definition 6. (Model ordering w.r.t. inconsistency) Let I1 and I2 be two four-valued
models of a first-order theory Γ such that |∆I

1 | = |∆I
2 |. We say that I1 is less inconsis-

tent than I2, written I1 ≤Incons I2, if and only if IncI1(Γ ) ≤ IncI2(Γ ).

As usual, I1 <Incons I2 denotes I1 ≤Incons I2 and I2 �≤Incons I1, and I1 ≡Incons I2
denotes I1 ≤Incons I2 and I2 ≤Incons I1. I1 ≤Incons I2 means that I1 is more consis-
tent than I2. The models of size n which are minimal w.r.t ≤Incons are called preferred
models and they are formally defined as follows.

Definition 7. Let Γ be a first-order theory, M4(Γ ) be the set of 4-models of Γ , and
n(n ≥ 1) be a given cardinality. Preferred models of size n w.r.t. ≤Incons , written
PreferModeln(Γ ), are defined as follows:

PreferModeln(Γ ) = {I | |∆I| = n; ∀I′ ∈M4(Γ ), |∆I′ | = n implies I ≤Incons I′}.

By Proposition 1 and Definition 7, it is not hard to see that given a first-order theory
and an integer n, we can always find a preferred model if the unique name assumption
is not used. Otherwise, with the unique name assumption, we only can find a preferred
model provided n is not less than the number of constants appearing in the theory.

As a direct consequence of Definition 6 and Definition 7, the following corollary
shows that for any two preferred four-valued models of a first-order theory with the
same cardinality, the inconsistency degrees of the theory w.r.t. them are equal.

Corollary 2. Let Γ be a first-order theory and n(≥ 1) be any given positive integer.
Suppose I1 and I2 are two four-valued models of Γ such that |∆I1 | = |∆I2 | = n, and
{I1, I2} ⊆ PreferModeln(Γ ). Then IncI1(Γ ) = IncI2(Γ ).

Based on Corollary 2, the following definition of inconsistency degree of a first-order
theory is well-defined.

Definition 8. Given a first-order theory Γ and an arbitrary cardinality n(n ≥ 1), let
In be an arbitrary model in PreferModelsn(Γ ). The inconsistency degree of Γ , denoted
by TheoInc(Γ ), is defined as 〈r1, r2, ..., rn, ...〉, where rn = ∗ if PreferModeln(Γ ) = ∅,
and rn = IncIn(Γ ) otherwise. We use ∗ as a kind of null value.
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Following [3], we also use a sequence as the inconsistency degree of a first-order theory.
This sequence can reflect the inconsistency information of the theory with respect to
each finite size domain. For such sequences, the following property holds obviously.

Proposition 2. Given an inconsistent first-order theory Γ , assume |C| is the number of
constants of Γ and TheoInc(Γ ) = 〈r1, r2, ...〉. Then for i ≥ |C|, ri �= ∗ and ri > 0.

This proposition shows that for any given first-order theory, its inconsistency measure
cannot be a meaningless sequence (i.e., each element is the null value ∗) no matter
whether UNA is used or not. Moreover, the non-zero values in the sequence start at
least from the position which equals the number of constants in the first-order theory,
and remains greater than zero in the latter positions of the sequence.

Example 5. (Example 1 continued) If UNA is used, TheoInc(Γ ) = 〈∗, 1
6 , ...,

1
3n , ...〉.

If UNA is not used, TheoInc(Γ ) = 〈1
3 ,

1
6 , ...,

1
3n , ...〉. The 4-models which only assign

Fly(tweety) to B are among the preferred models in both cases.

4 Computational Aspects of Inconsistency Degree Sequences

A naive way to compute the inconsistency degree is to list all models to check which are
the preferred models, and then compute the number of contradictions in these models.
For a first-order theory, listing all models is not an easy and practical reasoning task.

In this section, we propose a practical way to compute the inconsistency degree by
reducing the computation of the inconsistency degree to classical entailment, such that
existing reasoners for first-order logic can be reused.

4.1 S[n]-4 Semantics

In this subsection, we define S[n]-4 semantics for first-order logic and show that S[n]-4
entailment can be reduced to classical entailment via four-valued entailment. We were
inspired by [16]. S[n]-4 semantics will serve as the basis for our algorithm for comput-
ing the inconsistency degrees in Section 4.2.

Throughout this section, we assume that there is an underlying finite set of predicates
P used for building all formulae and that Dn = {a1, ..., an}. The set of ground atomic
formulae Base(P ,Dn) is defined as the set {P (ai1 , ..., aim) | P (m) ∈ P , ai1 , ..., aim ∈
Dn}.

Definition 9. (S[n]-4 Interpretation) Let Dn = {a1, ..., an} be a domain of size n and
S be any given subset of Base(P ,Dn). A 4-valued interpretation I with domain Dn is
called an S[n]-4 interpretation if and only if it satisfies the following condition:

φI =
{

B if φ ∈ Base(P ,Dn) \ S,
N or t or f if φ ∈ S and {N, t, f} ⊆ FOUR

That is, I is an S[n]-4 interpretation if and only if it is a 4-valued interpretation with
domain of size n and assigns the contradictory truth value B to the ground atomic
formulae not in S, and it maps non-contradictory truth values to ground atomic formulae
in S.
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Definition 10. Let Γ be a first-order theory. An S[n]-4 interpretation I is an S[n]-4
model of Γ if and only if it is a 4-model of Γ . A theory is S[n]-4 satisfiable if and only
if it has an S[n]-4 model.

Example 6. Let P = {p(x), q(x, y)}, n = 2, D2 = {a1, a2}. Then Base(P ,D2) =
{p(a1), p(a2), q(a1, a1), q(a2, a2), q(a1, a2), q(a2, a1)}. Consider Γ = {∃x.(p(x) ∧
¬p(x)), ∀x∃y.q(x, y)}.

% Let S1 = {p(a2), q(a1, a1), q(a2, a2), q(a1, a2), q(a2, a1)}. Γ is S1[2]-4 satisfiable
and has the following S1[2]-4 model I: pI(a1) = B, and ϕI = t for all ϕ ∈ S1.

% Let S2 = {p(a1), p(a2)}. Γ is S2[2]-4 unsatisfiable since allS2[2]-4 interpretations
should map neither p(a1) nor p(a2) to B, so ∃x.p(x) ∧ ¬p(x) cannot be satisfied.

Theorem 3. (Monotonicity) For any positive integer n, assume the two sets S and S′

satisfying S ⊆ S′ ⊆ Base(P ,Dn). If a theory Γ is S[n]-4 unsatisfiable, then it is
S′[n]-4 unsatisfiable.

Proof. Assume that Γ is S[n]-4 unsatisfiable and that there exists an S′[n]-4 interpre-
tation IS′ satisfying Γ . We construct an S[n]-4 interpretation IS as follows.

φIS =
{

B if φ ∈ S′ \ S,
φIS′ otherwise.

Obviously, IS is an S[n]-4 model of Γ , which is a contradiction. �

Definition 11. (S[n]-4 entailment) A sentence φ is S[n]-4 implied by a theory Γ , de-
noted Γ |=4

S[n] φ, if and only if every S[n]-4 model of Γ is an S[n]-4 model of φ.

The relation between S[n]-4 satisfiability and S[n]-4 entailment is obvious.

Proposition 3. Γ is S[n]-4 unsatisfiable if and only if Γ |=4
S[n] f , where f ∈ FOUR.

The following theorem shows that S[n]-4 entailment can be reduced to 4-valued entail-
ment in first-order logic.

Theorem 4. For any n ≥ 1 and S ⊆ Base(P ,Dn), let S = {α1, ...,αm} and T =
Base(P ,Dn) \ S = {β1, ..., βk}, where m + k = n. Then the following claim holds:

Γ |=4
S[n] ϕ if and only if Γ ∧

∧
1≤i≤k

(βi ∧ ¬βi) ∧ En |=4 ϕ ∨
∨

1≤j≤m

(αj ∧ ¬αj),

where En = ∃x1, ...,xn.
∧

1≤i,j≤n(xi �≡ xj) ∧ ∀y.
∨

1≤i≤n(y ≡ xi).

The right side of the claim is explained as follows: for each 4-model I of Γ , if I satisfies

1. it has an n-size domain (i.e., En is satisfied by I) and
2. it assigns truth value B to each element in Base(P ,Dn) \ S (i.e., the conjunction∧

1≤i≤k(βi ∧ ¬βi) is satisfied by I),

then I is not an S[n]-4 model of Γ if and only if it assigns B to at least one element in S
(i.e., the disjunction

∨
1≤j≤m(αj ∧¬αj) is true under I). A formal proof is as follows.
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Proof. Let Γ ′ = Γ ∧
∧

1≤i≤k(βi ∧ ¬βi) ∧ En and let ϕ′ = ϕ ∨
∨

1≤j≤m(αj ∧ ¬αj).
(⇒) For any 4-model M4 of Γ ′, we show that M4 satisfies ϕ′. First, from the as-

sumption that M4 satisfies Γ ′, we know |∆M4 | = n and M4(βi) = B for 1 ≤ i ≤ k.
If there is j0, 1 ≤ j0 ≤ m such that M4(αj0 ) = B, then M4 is a 4-valued model of ϕ′.
Otherwise, if for each 1 ≤ j ≤ m, M4(αj) �= B, then M4 is an S[n]-4 model of Γ , so
M4 satisfies ϕ by hypothesis and therefore satisfies ϕ′.

(⇐) For any S[n]-4 model MS of Γ , we show that MS satisfies ϕ. By definition of
MS , |∆MS | = n, MS(βi) = B for 1 ≤ i ≤ k, and MS(αj) �= B for 1 ≤ j ≤ m. So
MS is a 4-model of Γ ′ but does not satisfy

∨
1≤j≤m(αj ∧ ¬αj). Then MS satisfies ϕ

by hypothesis and Γ |=S-4 ϕ. �

Corollary 5. Let S = {α1, ...,αm} and let T = Base(P ,Dn) \S = {β1, ..., βk}. Γ is
S[n]-4 unsatisfiable if and only if

Θ(Γ ∧
∧

1≤i≤k

(βi ∧ ¬βi)) ∧ En $
∨

1≤j≤m

Θ((αj ∧ ¬αj)).

Proof. This corollary holds by replacing φ with f in Theorem 4 and then performing
Θ(·) according to Theorem 1 with the fact that Θ(En) = En.

This theorem shows that S[n]-4 satisfiability can be reduced to classical entailment in
first-order logic.

4.2 Algorithm for Computing the Inconsistency Degree

In this section, we first study how the inconsistency degree of an inconsistent theory Γ
can be characterized by S[n]-4 satisfiability. Secondly, we give an algorithm to compute
the inconsistency degree by invoking a classical reasoner.

Without loss of generality, throughout this section, we assume that the n-size (n ≥ 1)
domain of any 4-valued interpretation is Dn = {a1, ..., an}. Whenever we talk about
S[n]-4 semantics used to compute the inconsistency degree of a first-order theory Γ ,
we always assume that the underlying finite set of predicates P is all the predicates
occurring in Γ — that is, P = P(Γ ) and Base(P ,Dn) = GroundTheo(Dn, Γ ).

Theorem 6. Let TheoInc(Γ ) = 〈r1, ..., rn, ...〉. If rn �= ∗, the equation

rn = 1− Bn

|GroundTheo(Dn, Γ )| (1)

holds, where Bn = max{|S| :S ⊆ GroundTheo(Dn, Γ ), so that Γ is S[n]-4 satisfiable}.

Proof. Let In be a preferred model and S be the set of atomic sentences all of which
are not assigned the contradictory value B under In. Therefore, Γ is S[n]-4 satisfiable
because In is already an S[n]-4 model of Γ . For any subset S′ ⊆ GroundTheo(Dn, Γ )
such that |S′| > |S|, we claim that Γ is S′[n]-4 unsatisfiable. Otherwise suppose IS′

is an S′[n]-4 model of Γ . Obviously, IS′ <Incons In, since |S′| > |S|, contradicting
the definition of In. Thus Bn = |GroundTheo(Dn, Γ )| − |ConflictTheo(In, Γ )|. By
Definition 5 and Definition 8, Equation 1 holds. �
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Theorem 6 shows that the computation of rn can be reduced to the problem of com-
puting the maximal cardinality of S such that S is a subset of GroundTheo(Dn, Γ ) and
Γ is S[n]-4 satisfiable. We are now ready to give an algorithm to compute each element
of the inconsistency degree sequence of a first-order theory Γ . The underlying idea is
that we test S[n]-4 satisfiability for each subset S of GroundTheo(Dn, Γ ) from size
|GroundTheo(Dn, Γ )| − 1 to 1. Whenever such subset has been found, the value of rn

is calculated by Equation 1 and the procedure ends.

Algorithm 1. Computing Inconsistency Degree(Γ, n)
Input: An inconsistent first-order theory Γ and a positive integer n
Output: rn // TheoInc(Γ ) = 〈r1, ..., rn, ...〉
1: N ← the number of constants in Γ
2: if n < N and UNA is used then
3: rn ← ∗
4: return rn

5: end if
6: Dn ← {a1, ..., an},
7: Σ ← GroundTheo(Dn, Γ ) // see GroundTheo(Dn, Γ ) in Definition 5
8: rn = 0 // The initial value of rn is set to 0
9: for l ← |Σ| − 1 to 1 do

10: S ← PopSubset(Σ, l)
// PopSubset(·, ·) is a procedure to return a subset of Σ with cardinality l. Once a
subset is returned, it will not be selected again.

11: while S �= ∅ do
12: if Γ is S[n]-4 satisfiable then
13: rn ← (1− l

|Σ| ) exit
14: // |S| = max{|S′| | S′ ⊆ GroundTheo(Dn, Γ ), Γ is S′[n]-4 satisfiable }.
15: else
16: S ← PopSubset(Σ, l)
17: end if
18: end while
19: if rn �= 0 then
20: exit // The subset used to compute rn has been found w.r.t. size l
21: else
22: l ← l−1 // We have to find a subset used to compute rn w.r.t. a smaller cardinality.
23: end if
24: end for
25: if l = 0 then
26: rn = 1
27: end if
28: return rn

In Algorithm 1, if UNA is used and the input n is strictly less than the number of
constants in Γ , then rn = ∗ is returned (see line 2 to line 5). If it is not the case, the ini-
tialization process follows till line 8. From line 9 to line 27 we have the main steps of the
algorithm to compute the inconsistency degree, where subsets of GroundTheo(Dn, Γ )
are selected one by one according to a decreasing size ordering, so that whenever the
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first subset S satisfying the condition in line 12, the inconsistency degree rn is com-
puted and the whole procedure ends. This is indeed the case because such S satisfies
Bn = |S| = max{|S′| | S′ ⊆ GroundTheo(Dn, Γ ), Γ is S′[n]-4 satisfiable}, where
Bn is defined as in Theorem 6. Since Γ is inconsistent, it is no necessity to test l = |Σ|
in line 9. Furthermore, if no proper subset S of GroundTheo(Dn, Γ ) can satisfy the
condition in line 12, then this means that all sentences in GroundTheo(Dn, Γ ) should
be assigned B by preferred models, thus rn = 1. This shows the correctness of this
algorithm as well.

For line 12, the condition of S[n]-4 satisfiability can be decided by classical entail-
ment of first-order logic according to Corollary 5, such that each rn in the inconsistency
degree sequence can be computed by invoking a classical reasoner. We give an example
to illustrate Algorithm 1.

Example 7. (Example 5 continued) We take the case that UNA is used and n ≥ 2.
GroundTheo(Dn, Γ ) = {Bird(ai),Fly(ai),Penguin(ai) | ai ∈ Dn} so that |Σ| = 3n.
For l = |Σ| − 1 = 3n − 1, assume that following subset of Σ is selected: S =
GroundTheo(Dn, Γ ) \ {Fly(a1)}. We have that Γ is S[n]-4 satisfiable because of the
result studied in Example 3. Then rn = 1 − l

3n = 1
3n , which equals the general repre-

sentation of the inconsistency degree of Γ in Example 5.

The computation of the inconsistency degree sequence 〈r1, ..., rn, ...〉 of a first-order
theory Γ can be achieved using Algorithm 1. However, a practical problem is that
the infinite style definition of TheoInc(Γ ) makes us unable to get the exact value of
TheoInc(Γ ) in finite time. We can however set a termination condition in order to guar-
antee that an answer will be obtained. Suppose time (resource) is used up, a possible
way is to use the already obtained partial sequences 〈r1, ..., rn〉 as an approximating
value of TheoInc(Γ ).

From Theorem 6 and Corollary 5, the computation of each element of an incon-
sistency degree sequence includes at most 2|Σ| times invoking a classical entailment,
where |Σ| ≤ KnM for any n ≥ 1 provided that the maximal arity of predicates in Γ is
M and the number of predicates in Γ is K . The worst case occurs when all subsets of
Σ have to be searched.

As to an optimization of the algorithm, the direct way is to properly design a proce-
dure PopSubset(·, ·) such that the correct S which makes Γ S[n]-4 satisfiable can be
found within as few steps as possible.

5 Conclusions and Future Work

In this paper, we have studied the computational aspects of calculating the inconsistency
degree of a first-order theory. Theoretically, we have shown the process of encoding the
calculation of the inconsistency degree as a first-order unsatisfiability decision problem
via the S[n]-4 semantics proposed in this paper.

The semi-decidability of first-order logic makes Algorithm 1 semi-computes the in-
consistency degree of first-order theory in the sense that we can be informed in finite
time when Γ is S[n]-4 unsatisfiable for a chosen S; However if the correct subset of S
such that Γ is S[n]-4 satisfiable is chosen, we actually cannot get the answer in finite
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time in general cases. Therefore we also have to set a time termination condition for
each computation of rn, and when time is used up, Γ can be roughly considered to be
S[n]-4 satisfiable and we can use this S to compute rn.

Considering the semi-decidability problem, the study of implementing our algorithm
on Description Logics which include a family of decidable fragments of first-order logic
becomes meaningful [17].

In the future, we will study how to extend the underlying idea of our algorithm to
compute other approaches to measuring inconsistency, such as the inconsistency degree
defined in [3]. In order to provide inconsistency degree information for real applica-
tions, we will also consider approximating approaches to measuring inconsistency in
future work.
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Abstract. There has been a significant amount of interest in recent years on how
to reason about inconsistent knowledge bases. However, with the exception of
three papers by Lozinskii, Hunter and Konieczny and by Grant and Hunter, there
has been almost no work on characterizing the degree of dirtiness of a database.
One can conceive of many reasonable ways of characterizing how dirty a database
is. Rather than choose one of many possible measures, we present a set of axioms
that any dirtiness measure must satisfy. We then present several plausible candi-
date dirtiness measures from the literature (including those of Hunter-Konieczny
and Grant-Hunter) and identify which of these satisfy our axioms and which do
not. Moreover, we define a new dirtiness measure which satisfies all of our ax-
ioms.

1 Introduction

It is an open secret that most commercial databases are dirty and in fact, there is a wide
range of companies (e.g. SAS, Ascential – previously known as Informix) that offer
data cleaning services. However, to date, with the exception of some ground-breaking
work [1,2,3], we are not aware of any work that attempts to actually characterize how
dirty a database is, and thus there is no objective measure to assess whether an allegedly
cleansed database is in fact significantly cleaner than the original.

In this paper, we focus on a more restricted scenario than [1,2,3]. We focus on in-
consistency in just relational databases (i.e. tables of tuples) with associated functional
dependencies [4] that form one of the most important types of integrity constraints used
in databases. Intuitively, functional dependencies say that when certain attribute values
are equal, then other attribute values must be equal as well. A good example of a func-
tional dependency is one which says that in the same database, each person’s salary is
unique. We also assume the existence of a total order on attributes (i.e. columns) in the
relational table that indicates how “reliable” those attributes are. Thus, in an employee
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database, we may choose to believe that the social security number attribute is more reli-
able than the salary attribute. However, unlike Hunter-Konieczny’s and Grant-Hunter’s
work which is primarily symbolic, our work is geared to inconsistency in numerical
data – this is critical in real world databases as they almost always contain numeric data
such as salary data, sales figures, shipping costs, etc.

We then propose a general set of three axioms that we believe any measure of
database dirtiness must satisfy when a single functional dependency is present. We
subsequently assess several dirtiness measures, both naive and from the past (includ-
ing the Hunter-Konieczny and Grant-Hunter measures) to see how they comply with
the axioms and show that they all fail to satisfy all the axioms. We finally define a
new dirtiness measure which satisfies all the axioms. Subsequently, we show how any
such single FD dirtiness measure can be used to build a dirtiness measure that handles
multiple functional dependencies and we present a couple of example measures of this
type.

2 Syntax and Notation

We assume the existence of a relational schema R = (A1, . . . , An) [4] where the Ai’s
are attributes. Each attribute Ai has an associated domain, dom(Ai). A tuple over R is a
member of dom(A1)×· · ·×dom(An). A databaseDB is any finite set of tuples overR.
In the rest of this paper, we assume R is arbitrary but fixed. For example, Fig. 1 shows a
database over the schema (Name,Age,Height) with the obvious domains. Each row in
the figure is a tuple. We assume the existence of a set of symbols called tuple variables
that range over the tuples in DB. A functional dependency for database DB is any
expression of the form ∀t, t′ ∈ DB, t.Ai1 = t′.Ai1∧. . .∧ t.Ait = t′.Ait ⇒ t.Ait+1 =
t′.Ait+1 ∧ . . . ∧ t.Aim = t′.Aim . For instance, in Fig. 1, t.Name = t′.Name ⇒
t.Age = t′.Age is an example of a functional dependency saying that two tuples about
the same person should agree on age.

Without loss of generality, we assume two functional dependencies cannot have
the same antecedent. We assume that the attributes in a table are totally ordered by a
reliability ordering >r (that can be derived, e.g., from inherent properties of attribute

DB

16330John

16030John

17437Paul

17137Paul

17237Paul

17032Matthew

17032Matthew

17228Mary

17028Mary

HeightAgeName

16330John

16030John

17437Paul

17137Paul

17237Paul

17032Matthew

17032Matthew

17228Mary

17028Mary

HeightAgeName

c1

c2

c3

c4

c5

Fig. 1. An example database
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domains or from historical error statistics). We write Ai >r Aj iff attribute Ai is more
reliable than attribute Aj .

3 Culprits, Clusters, and Dirtiness Functions

Our notion of database dirtiness is based on the concepts of culprits and clusters. Cul-
prits are just the duals of maximal consistent subsets which have been widely stud-
ied [1,2,3,5]. Clusters, on the other hand, do not seem to have been studied much in AI.
Both of these parameters will be used in our axiomatic characterization of the dirtiness
of a database.

Definition 1. Let DB be a database andFD a set of functional dependencies. A culprit
is a set c ⊆ DB such that c ∪ FD is inconsistent and ∀c′ ⊂ c, c′ ∪ FD is consistent.

Thus, culprits are minimal sets of database tuples that cause a functional dependency
violation. Let culprits(DB, FD) denote the set of culprits in DB w.r.t. FD.

Example 1. Consider a functional dependency fd stating that ∀t, t′ ∈ DB, t.Name =
t′.Name ⇒ t.Age = t′.Age ∧ t.Height = t′.Height. The relation in Fig. 1 has five
culprits w.r.t. fd, denoted by c1, c2, c3, c4, c5.

The following proposition states that the culprits(DB,FD) function is monotonic
w.r.t. DB.

Proposition 1. If DB′ ⊆ DB, then culprits(DB′, FD) ⊆ culprits(DB, FD).

Definition 2. Let DB be a database and FD a set of functional dependencies. Given
two culprits c, c′ ∈ culprits(DB,FD), we say that c and c′ overlap, denoted c ' c′,
iff c ∩ c′ �= ∅.

Definition 3. Let '∗ be the reflexive transitive closure of relation '. A cluster is a set
cl =

⋃
c∈e c where e is an equivalence class of '∗.

We denote with clusters(DB, FD) the set of all clusters in DB w.r.t. FD. We now
present an example of overlapping culprits and clusters.

Example 2. In Fig. 1, the pairs of overlapping culprits in database DB are
(c1, c1), (c2, c2), (c3, c3), (c4, c4), (c5, c5), (c3, c4), (c3, c5), (c4, c5), and all
of the symmetric pairs. Therefore, the clusters in DB are the sets cl1 =
{(Mary, 28, 170), (Mary, 28, 172)}, cl2 = {(John, 30, 163), (John, 30, 160)}, and
cl3 = {(Paul, 37, 172), (Paul, 37, 171), (Paul, 37, 174)}.

Clusters are important because they localize the inconsistencies. For instance, clusters
cl1, cl2, cl3 above tell us that there is something wrong with the Mary, John and Paul
triples respectively.

We now define single-dependency and multiple-dependency dirtiness functions.

Definition 4. A single-dependency (resp. multiple-dependency) dirtiness function δ
takes a database instance DB, a functional dependency fd (resp. a finite set FD of
functional dependencies), and a reliability ordering >r and returns as output a real
number in the left-closed, right-open interval [0,∞).
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4 Axioms

Our first axiom on single-dependency dirtiness functions δ says that consistent
databases have a dirtiness level of 0.

Axiom S1. If culprits(DB, {fd}) = ∅, then δ(DB, fd, >r) = 0.

Our second axiom is based on the statistical notions of standard deviation and variance
(which is the square of s.d.), which have been used for decades by the statistics commu-
nity as a measure of dirtiness in a data set, to define an axiom dirtiness functions should
satisfy.

We first generalize the notion of variance to string attributes. Given a numeric at-
tribute A, let varianceA : 2dom(A) → IR+ be the variance of A. When dom(A) is
a set of strings, varianceA builds on top of string similarity-evaluation function (e.g.
edit distance, Hamming distance, Levenshtein distance). Given a set of strings S and a
similarity-evaluation function sim : string×string → IR+, let smin be the first string
appearing in S according to lexicographic order. The varianceA(S) function returns
the variance of the set D = {sim(smin, s) | s ∈ S}.

From now on, the sequence of attributes in a functional dependency fd, ordered w.r.t.
>r, is denoted {Afd,1, . . . , Afd,m}. Thus, Afd,1 is the most reliable attribute in fd,
Afd,2 is the second most reliable attribute in fd, and so forth.

Definition 5. Let fd be a functional dependency, and cl, cl′ be two clusters.
We say that cl′ �fd

var cl, read “cl′ is less or equally varied than cl w.r.t.
fd” iff ∃j ∈ [1, m] s.t. varianceAfd,j

(cl′.Afd,j) ≤ varianceAfd,j
(cl.Afd,j),

and ∀i < j, varianceAfd,i
(cl′.Afd,i) = varianceAfd,i

(cl.Afd,i). We also
say that cl′ �fd

var cl, read “cl′ is less varied than cl w.r.t. fd” iff ∃j ∈
[1, m] s.t. varianceAfd,j

(cl′.Afd,j) < varianceAfd,j
(cl.Afd,j), and ∀i <

j, varianceAfd,i
(cl′.Afd,i) = varianceAfd,i

(cl.Afd,i).

The above definition says that cl′ is less or equally varied than cl w.r.t. fd iff as we
examine the attribute in fd in decreasing order of reliability, the first attribute on which
they have differing variances is one where cl′ has a lower variance than cl.

Definition 6. We say that DB′ is preferable to DB w.r.t. the dependency fd, denoted
DB′ (fd DB, iff there exists a function

α : clusters(DB′, {fd}) → clusters(DB, {fd})

such that ∀cl′ ∈ clusters(DB′, {fd}) it holds that:

– cl′ �fd
var α(cl′);

– cl′ and α(cl′) agree on all attributes that appear in the body of fd;

and at least one of the following conditions holds:

– ∃cl′ ∈ clusters(DB′, {fd}) such that cl′ �fd
var α(cl′);

– ∃cl ∈ clusters(DB, {fd}) such that �cl′ ∈ clusters(DB′, {fd}), α(cl′) = cl.
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Fig. 2. According to Axiom S2, DB′ has a lower dirtiness degree than DB

Intuitively, DB′ is preferable to DB with respect to variance if there is a mapping
between the clusters of DB′ and the clusters of DB such that (i) each of the clusters
in DB′ shows less or equal variance than its image; (ii) either there exists a cluster in
DB′ having strictly less variance than its image in DB, or there exists a cluster in DB
that does not belong to the codomain of the mapping.1 This definition leads us directly
to:

Axiom S2. If DB′ (fd DB, then δ(DB′, fd, >r) < δ(DB, fd, >r).

Example 3. Consider the databases in Fig. 2. Cluster cl4 shows lower variance than cl1;
Clusters cl2 and cl5 are equal; Cluster cl6 shows lower variance than cl3. Therefore,
Axiom S2 dictates that DB′ has a lower dirtiness degree than DB.

We also consider a weaker variant of Axiom S2 called S2′:

Axiom S2′. If DB′ (fd DB and ∀cl′ ∈ clusters(DB′, {fd}) cl′ ⊆ α(cl′), then
δ(DB′, fd, >r) < δ(DB, fd, >r).

The condition that ∀cl′ ∈ clusters(DB′, {fd}) cl′ ⊆ α(cl′) is not satisfied by the
databases in Fig. 2. Hence, Axiom S2′ does not impose any restrictions on δ. However,
if (Mary, 30, 170.5) and (Paul, 35, 171.5) were not present in DB′, then Axiom S2′

would instead require δ(DB′, fd, >r) < δ(DB, fd, >r).

5 Examples of Single-Dependency Dirtiness Functions

In this section, we present some single-dependency dirtiness functions.

5.1 Naive Culprits-Based Single-Dependency Dirtiness Functions

The following two simple dirtiness functions are based on culprits:

1. |culprits(DB, {fd})|
1 It has been argued that when the values of disagreeing attributes are too far apart, they should

simply be considered inconciliable [6]. In our case the objective is that of assessing the degree
of dirtiness, so we still look at variances.
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2.
∑

c∈culprits(DB,{fd}) |c|

The first measure above just counts the number of culprits, the second sums up the
number of tuples in each culprit.

Proposition 2. The naive culprits-based dirtiness functions satisfy Axioms S1 and S2′.

It is easy to see that these two measures, both of which seem reasonable at first
sight, do not satisfy Axiom S2. To see why, consider the databases in Fig. 2. Here, we
have |culprits(DB, {fd})| = |culprits(DB′, {fd})| and

∑
c∈culprits(DB,{fd}) |c| =∑

c∈culprits(DB′,{fd}) |c|, whereas Axiom S2 states that DB′ should have a lower dirt-
iness degree.

5.2 Naive Cluster-Based Single-Dependency Dirtiness Functions

We now define two cluster-based dirtiness functions:

1. |clusters(DB, {fd})|
2.

∑
cl∈clusters(DB,{fd}) |cl|

As in the case of the culprit based dirtiness functions, the first measure simply counts
the number of clusters, while the second counts the sum of the number of tuples in each
cluster.

Proposition 3. Dirtiness function 1 above satisfies Axiom S1.

It is easy to see that dirtiness function 1 above satisfies neither Axiom S2 nor S2′.
To see why, consider the databases shown in Fig. 2. Here, |clusters(DB, {fd})| =
|clusters(DB′, {fd})|, whereas Axiom S2 states that DB′ should have a lower dirti-
ness degree. Now consider DB’ without tuples (Mary, 30, 170.5) and (Paul, 35, 171.5).
We still have |clusters(DB, {fd})| = |clusters(DB′, {fd})|, whereas Axiom S2′

states that DB′ should have a lower dirtiness degree.

Proposition 4. Dirtiness function 2 above satisfies Axioms S1 and S2′.

Unfortunately, dirtiness function 2 above does not satisfy Axiom S2. To see why,
consider the databases shown in Fig. 2. In this case,

∑
cl∈clusters(DB,{fd}) |cl| =∑

cl∈clusters(DB′,{fd}) |cl|, whereas Axiom S2 states that DB should have a higher
dirtiness degree.

5.3 Functions Proposed in the Literature

In this section, we see how certain dirtiness functions proposed in the literature measure
up w.r.t. the axioms we have proposed. The following function was proposed in [2]:

|culprits(DB,FD)|
|DB ∪ FD|

This function looks at the ratio of the total number of culprits to the size of the database
and functional dependencies.
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Proposition 5. The dirtiness function above satisfies Axiom S1.

However, this dirtiness function does not satisfy either Axiom S2 nor S2′. The main
reason is that this function does not look at the tuples inside a cluster. We consider the
two axioms in turn:

(S2) Consider the databases shown in Fig. 3. We have |culprits(DB,{fd})|
|DB|+1 = 3

10 and
|culprits(DB′,{fd})|

|DB′|+1 = 1
3 , thus contradicting Axiom S2 which states that DB′

should have lower dirtiness than DB.
(S2′) The same example used for S2 shows that this function does not satisfy Ax-

iom S2′.

The following dirtiness function was proposed in [3]:

|culprits(DB,FD)|
|DB|+ |ground(FD)|

This function looks at the ratio of the number of culprits to the sum of the size of the
database and the number of ground instances of the functional dependencies.

Proposition 6. The dirtiness function above satisfies Axiom S1.

However, this dirtiness function does not satisfy either Axiom S2 nor S2′ because of
the fact that it does not examine clusters. We consider the two axioms in turn:

(S2) Consider the databases shown in Fig. 3. Suppose DB contains x > 2k − 1 more
tuples which do not add to the number of inconsistencies that were already present.
In this case we have |culprits(DB′,{fd})|

|DB′|+k = 1
3+k > |culprits(DB,{fd})|

|DB|+k , thus contra-
dicting Axiom S2 which states that DB′ should have lower dirtiness than DB.

(S2′) The same case considered for Axiom S2 shows that Axiom S2’ is also contra-
dicted.

The following function was proposed in [2,1]:

|DB|+ |ground(FD)| − log2|
⋃

∆∈MCS(DB∪FD)

mod(∆)|
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Fig. 3. A case where the Grant-Hunter measure does not satisfy neither axiom Axiom S2 nor S2′
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where MCS(DB ∪ FD) are the maximally consistent subsets of DB ∪ FD and
mod(∆) is the set of models of ∆. This function measures cleanliness with respect
to functional dependencies, thus Axiom S1 is not applicable. If we take the negative of
this function, the resulting dirtiness function does not satisfy Axioms S2 nor S2′. This
can easily be seen by observing that adding or removing consistent tuples has a linear
impact on the dirtiness measure while not changing the set of clusters.

5.4 A New Single-Dependency Dirtiness Function

Coming up with a single-dependency dirtiness function satisfying the axioms is a chal-
lenge. We now propose a new single-dependency dirtiness function δvar. Let DB be a
database, fd a functional dependency over DB, {Afd,1, . . . , Afd,m} the sequence of
attributes in fd ordered w.r.t. >r, and variancemax(i), with i ∈ [1,m], be the maxi-
mum possible variance for attribute Afd,i. Let B > 1 be any integer. Then:

δvar(DB, fd, >r) =
∑

cl∈clusters(DB,{fd})
wtV ar(cl, fd, >r)

where

wtV ar(cl, fd, >r) =

m∑
i=1

Bm−i · var′Afd,i
(cl.Afd,i);

var′Afd,i
(cl.Afd,i) = (B − 1) ·

varianceAfd,i(cl.Afd,i)

variancemax(i)
.

Intuitively, we first compute the variance of each attribute Afd,i in each cluster cl, and
normalize it to the range [0, (B − 1)] (this value is denoted as var′Afd,i

(cl.Afd,i)).
Then, for each cluster cl, we sum up the normalized variances of the attributes in fd,
with exponentially decreasing weights (with base B) when going from the most reliable
attribute to the less reliable one (this sum is denoted as wtV ar(cl, fd, >r)). The value
of δvar is finally computed as the sum of the wtV ar’s of all the clusters. The following
result says that δvar satisfies all three axioms.

Theorem 1. Function δvar satisfies Axioms S1, S2, and S2′.

The proof of the above theorem is rather involved, so we omit it for space reasons.
Table 1 summarizes which dirtiness functions satisfy which axioms. Note that the only
dirtiness function that satisfies all axioms is δvar.

6 Combining Dirtiness w.r.t. Multiple Functional Dependencies

Most databases will have multiple functional dependencies. In the previous sections,
we have looked at the situation where only one functional dependency is present. Com-
bining dirtiness w.r.t. multiple functional dependencies can lead to anomalies.
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Table 1. Single-dependency dirtiness functions

S1 S2 S2′

|culprits(DB, {fd})| � × �∑
c∈culprits(DB,{fd}) |c| � × �

|clusters(DB, {fd})| � × ×∑
cl∈clusters(DB,{fd}) |cl| � × �
|culprits(DB,F D)|

|DB∪F D| [2] � × ×
|culprits(DB,F D)|
|DB|+|ground(F D)| [3] � × ×

|DB|+ |ground(FD)|−
log2|

⋃
∆∈MCS(DB∪F D) mod(∆)| n/a × ×

[2,1]

δvar � � �

Example 4. Consider the database in Fig. 4(a) and the following functional dependen-
cies:

(fd1) ∀t, t′ ∈ DB, t.Name = t′.Name ⇒ t.Age = t′.Age ∧ t.Salary = t′.Salary
∧ t.Position = t′.Position

(fd2) ∀t, t′ ∈ DB, t.Salary = t′.Salary ⇒ t.Position = t′.Position

Here, clusters(DB, {fd1}) = {cl1, cl2}, and clusters(DB, {fd2}) = {cl3}. If we
look at the clusters with respect to both functional dependencies, i.e. if we consider
clusters(DB, {fd1, fd2}), then we obtain the set of all five tuples.

The following definition specifies what it means for a database to be “clearly cleaner”
than another database.

Definition 7. Given a single-dependency dirtiness function δ, we say that DB′ �FD

DB, read “DB′ is clearly cleaner than DB with respect to the set of dependencies
FD”, iff ∀fd ∈ FD, δ(DB′, fd, >r) ≤ δ(DB, fd, >r).
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Fig. 4. (a) A case where a single cluster may comprise tuples violating different functional de-
pendencies; (b) According to Axiom M1, DB′ is clearly cleaner than DB
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Suppose τ is a function that measures the dirtiness of a database DB based on a reli-
ability ordering >r and a set of functional dependencies, and suppose τ uses a single-
dependency dirtiness function δ to measure dirtiness in a database w.r.t. a single func-
tional dependency. Then we hypothesize that τ needs to satisfy the following axiom.

Axiom M1. If DB′ �FD DB, then τ(DB′, FD,>r) ≤ τ(DB,FD,>r).

This axiom merely says that if DB′ is clearly cleaner than DB, then τ must assign a
lower (or equal) level of dirtiness to DB′.

Example 5. Consider the databases in Fig. 4(b) and the following functional dependen-
cies:

(fd1) ∀t, t′ ∈ DB, t.Name = t′.Name⇒ t.Age = t′.Age ∧ t.Salary = t′.Salary
(fd2) ∀t, t′ ∈ DB, t.Salary = t′.Salary ⇒ t.Bonus = t′.Bonus

Here, clusters(DB, {fd1}) = {cl1, cl2}, clusters(DB, {fd2}) = {cl3},
clusters(DB′, {fd1})={cl4}, and clusters(DB′, {fd2})={cl5}. We can clearly see
that δ(DB′, fd1, >r) < δ(DB, fd1, >r) and δ(DB′, fd2, >r) < δ(DB, fd2, >r).
Therefore, Axiom M1 dictates that τ(DB′, FD,>r) ≤ τ(DB,FD,>r).

We now propose two dirtiness functions that support multiple functional dependencies,
both of which build on top of a single-dependency dirtiness function. Thus, even though
our axioms on multiple-dependency dirtiness functions are weak (because there is only
one axiom), things are actually more constrained than might be immediately apparent
because they are required to build on top of a single-dependency dirtiness function.

The first function we propose makes the conservative choice of taking the maximum
among the values returned by the single-dependency function.

Definition 8 (Pessimistic multiple-dependency dirtiness function). Let DB be a
database, FD a set of functional dependencies over DB, >r an ordering of the at-
tributes of DB, and δ a single-dependency dirtiness function: We define function τmax

as
τmax(DB,FD,>r) = maxfd∈FDδ(DB, fd, >r)

It is immediate to see that this multiple-dependency dirtiness function satisfies Ax-
iom M1.

Proposition 7. Function τmax satisfies Axiom M1.

The second dirtiness function takes into account the fact that some functional dependen-
cies might be more important than others, so violations of less important dependencies
should contribute less to dirtiness.

Definition 9 (Preference-based multiple-dependency dirtiness function). Let DB
be a database, FD a set of functional dependencies over DB, >r an ordering of the
attributes of DB, δ a single-dependency dirtiness function, and weight : FD → IN+:
We define function τwt as
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τwt(DB,FD,>r) =

∑
fd∈FD weight(fd) · δ(DB, fd, >r)∑

fd∈FD weight(fd)

The following straightforward result says that τwt also satisfies Axiom M1.

Proposition 8. Function τwt satisfies Axiom M1.

A special case of τwt takes the average of the dirtiness values returned by the single-
dependency function:

τavg(DB,FD,>r) =

∑
fd∈FD δ(DB, fd, >r)

|FD|

obtained by setting in τwt, ∀fd ∈ FD, weight(fd) = k for any fixed k ∈ IN+.

7 Related Work and Conclusions

There has been a tremendous amount of work in inconsistency management since the
60s and 70s when paraconsistent logics where introduced [7] and logics of inconsis-
tency [8,9] were developed. Subsequently, frameworks such as default logic [10], max-
imal consistent subsets [5] and inheritance networks [11] and others were used to gen-
erate multiple plausible consistent scenarios (often called “extensions”), and methods
to draw inferences were developed that looked at truth in all (or some) extensions. Ar-
gumentation methods [12] were used to reason about how certain arguments defeated
others. Methods to clean data and/or provide consistent query answers in the presence
of inconsistent data are also quite common [13,14,15,16]. For instance, [15] addresses
the basic concepts and results of the area of consistent query answering (in the standard
model-theoretic sense). They consider universal and binary integrity constraints, denial
constraints, functional dependencies, and referential integrity constraints. [16] presents
a cost-based framework that allows finding “good” repairs for databases that exhibit
inconsistencies in the form of violations to either functional or inclusion dependencies.
They propose heuristic approaches to constructing repairs based on equivalence classes
of attribute values; the algorithms presented are based on greedy selection of least repair
cost, and a number of performance optimizations are also explored.

However, we are aware of very few works on measuring the degree of inconsistency
in a database. All three methods deal with culprits only or with maximal consistent
subsets [1,2,3]. We believe we have made two important conceptual contributions in this
paper. First, we draw attention to the notion of a cluster and explain that clusters are very
important in measuring cleanliness of the database. Second, we have drawn attention to
the fact that well known statistical measures for measuring variation in a dataset (such
as standard deviation and variance) have a role to play in measuring the dirtiness of
a database. Based on these two ideas, we have developed single-dependency axioms
that we believe a dirtiness measure should satisfy when one functional dependency
is considered in isolation. We subsequently look at some obvious dirtiness measures
based on culprits and clusters, as well as past work, and show that these methods do
not satisfy our axioms. We then develop our own dirtiness measure that satisfies these
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axioms. Subsequently, we propose a single axiom for dirtiness functions that handle
multiple functional dependencies – however, such dirtiness functions are supposed to
be built on top of a dirtiness function for single dependencies. We present a couple of
alternative dirtiness functions that satisfy this axiom.

Future work will focus on the development of other multiple-dependency dirtiness
functions and experimental evaluations of how these dirtiness functions work in practice
in terms of computational overhead they impose. Moreover, we plan to build “cleaning”
operators that provably reduce dirtiness.
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Abstract. The Any-World Assumption (AWA) has been introduced for normal
logic programs as a generalization of the well-known notions of Closed World
Assumption (CWA) and the Open World Assumption (OWA). The AWA allows
any assignment (i.e., interpretation), over a truth space (bilattice), to be a de-
fault assumption and, thus, the CWA and OWA are just special cases. To answer
queries, we provide a novel and simple top-down procedure.

1 Introduction

The Any-World Assumption (AWA) for normal logic programs [16] is a generalization
of the notions of the Closed World Assumption (CWA) (which asserts that by default
the truth of an atom is false) and the Open World Assumption (OWA) (which asserts
that the truth of the atoms is supposed to be unknown by default). Essentially, the AWA
allows any interpretation over a truth space to be a default assumption. The truth spaces
considered are so-called bilattices [13] and the semantics generalizes the notions of
Kripke-Kleene, well-founded and stable model semantics [10,11,26].

The AWA has many applications (see [16]), among which: (i) Extended Logic Pro-
grams (ELPs) (e.g., [2,3,12]); (ii) many-valued logic programming with non-monotone
negation (e.g., [5,23]); (iii) paraconsistency (e.g., [1,3,4]) and (iv)representation of de-
fault rules by relying on the so-called abnormality theory [19].

In [16] a declarative and a fixed-point characterization for the AWA is presented. As
a consequence, in order to answer queries we have to compute the intended model I of
a logic programP by a bottom-up fixed-point computation and then answer with I(A).
[24] provides a top-down query answering procedure. However, it requires the ground-
ing of the logic program. Furthermore, queries are ground atoms only. This approach
is clearly not satisfactory in case we are looking for all answers to a query atom of the
form q(x). Indeed, the size of the grounded instance of a logic program as well as the
number of query instances q(c) to query may be large and generally exponential with
respect to the size of the non-ground expressions.

In this paper we further improve the query answering procedure related to the AWA.
We present a simple, yet general top-down query answering procedure, which focuses
on computing all answers of a query. This is important as it is quite natural that a
user would like the answers c to a query q(x) be ranked according to the degree of
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q(c). Essentially, the basic idea of our procedure is to collect, during the computation,
all correct answers incrementally together in a similar way as it is done for classical
Datalog [25]. Hence, for instance, we do not rely on any notion of atom unification,
but rather iteratively access relational tables using relational algebra. Besides being the
procedure novel for the AWA, we get for free a novel top-down query procedure for
many-valued normal logic programs. This is the first time the issue of computing all
answers has been addressed for many-valued normal logic programs under the OWA,
CWA or more generally under the AWA in a many-valued semantics setting.

We proceed as follows. In the next two sections we recall concisely the AWA (we
refer the interested reader to [16]). Then we present our top-down query procedure.

2 Preliminaries

Bilattice. The truth spaces we consider are bilattices [13]. Bilattices play an impor-
tant role in (especially in theoretical aspects of) logic programming, and in knowledge
representation in general, allowing to develop unifying semantical frameworks [10]. A
bilattice [13,10] is a structure B = 〈B,�t,�k〉 where B is a non-empty set and �t

(the truth order) and �k (the knowledge order) are both partial orderings giving B the
structure of a complete lattice. Meet (or greatest lower bound) and join (or least upper
bound) under �t are denoted ∧ and ∨, while meet and join under �k are denoted ⊗
and ⊕. Top and bottom under �t are denoted t and f, and top and bottom under �k

are denoted� and⊥, respectively. We assume that each bilattice has a negation, i.e., an
operator ¬ that reverses the �t ordering, leaves unchanged the �k ordering, and veri-
fies ¬¬x = x 1. We also provide a family F of �k and �t-monotone n-ary functions
over B to manipulate truth values. Furthermore, we assume that bilattices are infinitary
distributive bilattices in which all distributive laws connecting ∧,∨,⊗ and ⊕ hold. Fi-
nally, we also assume that every bilattice satisfies the infinitary interlacing conditions,
i.e., each of the lattice operations ∧,∨,⊗ and ⊕ is monotone w.r.t. both orderings (e.g.,
x �t y and x′ �t y′ implies x⊗ x′ �t y ⊗ y′).

Generalized Logic Programs. We extend logic programs where computable functions
f ∈ F are allowed to manipulate truth values (see [23,24]). 2 That is, we allow any
f ∈ F to appear in the body of a rule to be used to combine the truth of the atoms
appearing in the body. The language is sufficiently expressive to accommodate almost
all frameworks on many-valued logic programming with or without negation [23].

A term, t, is either a variable or a constant symbol. An atom, A, is an expression
of the form p(t1, . . . , tn), where p is an n-ary predicate symbol and all ti are terms. A
literal, L, is of the form A or ¬A, where A is an atom. A formula, ϕ, is an expression
built up from the literals, the truth values b ∈ B of the bilattice and the functions
f ∈ F . Note that the members of the bilattice (i.e., truth values) may appear in a
formula, as well as functions f ∈ F . A rule is of the form A ← ϕ where A is an atom

1 The dual operation to negation is conflation i.e., an operator ∼ that reverses the �k ordering,
leaves unchanged the �t ordering, and ∼∼ x = x. We do not deal with conflation in this
paper.

2 With computable we mean that for any input, the value of f can be determined in finite time.
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Table 1. Models, Kripke-Kleene, well-founded and H-founded models of P

Ii

q(a) q(b) r(a) r(b) p(a) p(b) KK(P) WF (P)
I1 ⊥ t t f ⊥ ⊥ •
I2 f t t f f f •
I3 t t t f t f

Hi

q(a) q(b) r(a) r(b) p(a) p(b)
H1 f f f f f f
H2 f f f f f f
H3 t f f f t f

s
Hi
P (Ii)

q(a) q(b) r(a) r(b) p(a) p(b) UP (Ii)
I1 f ⊥ ⊥ f f f {q(a), r(b), p(a), p(b)}
I2 f ⊥ ⊥ f f f {q(a), r(b), p(a), p(b)}
I3 ⊥ ⊥ ⊥ f t f −

and ϕ is a formula. For instance, p ← max(0, q + r − 1) is a rule dictating that p is
at least as true as the conjunction of q and r with respect to the Lukasiewicz t-norm
x ∧ y = max(0,x + y − 1). A generalized normal logic program, or simply logic
program, P , is a finite set of rules.

The notions of Herbrand universe HP of P and Herbrand base (as the set of all
ground atoms) BP of P are as usual. Additionally, given P , the generalized normal
logic program P∗ is constructed as follows: (i) set P∗ to the set of all ground instan-
tiations of rules in P ; (ii) replace several rules in P∗ having same head, A ← ϕ1,
A← ϕ2, . . . with A← ϕ1 ∨ϕ2 ∨ . . . (recall that ∨ is the join operator of the bilattice);
and (iii) if an atom A is not head of any rule in P∗, then add the rule A← f to P∗ (it is
a standard practice in logic programming to consider such atoms as false). This already
acts as a kind of default assumption on non-derivable facts. We will change this point
once we allow any default value as assumption later one. Note that in P∗, each atom
appears in the head of exactly one rule and that P∗ is finite.

We next recall the usual semantics of logic programs over bilattices (cf. [16]). For
ease, we will rely on the following simple example.

Example 1. Consider the logic program P with the following rules. q(x) ← q(x) ∨
¬r(x), p(x) ← p(x), r(a) ← t, and r(b) ← f. In Table 1 we report three models Ii of
P , the Kripke-Kleene and the well-founded model of P marked by bullets. The other
tables will be discussed later on.

Interpretations. An interpretation I on the bilattice B = 〈B,�t,�k〉 is a mapping
from atoms to members of B. I is extended from atoms to formulae in the usual way:
(i) for b ∈ B, I(b) = b; (ii) for formulae ϕ and ϕ′, I(ϕ ∧ ϕ′) = I(ϕ) ∧ I(ϕ′),
and similarly for ∨,⊗,⊕ and ¬; and (iii) for formulae f(A), I(f(A)) = f(I(A)),
and similarly for n-ary functions. �t,�k are extended from B to the set I(B) of all
interpretations point-wise: (i) I1 �t I2 iff I1(A) �t I2(A), for every ground atom A;
and (ii) I1 �k I2 iff I1(A) �k I2(A), for every ground atom A. With If and I⊥ we
denote the bottom interpretations under �t and �k respectively (they map any atom
into f and ⊥, respectively). 〈I(B),�t,�k〉 is a bilattice as well.

Models. I is a model of P , denoted I |= P , iff for all A ← ϕ ∈ P∗, I(A) = I(ϕ).
Note that usually a model has to satisfy I(ϕ) �t I(A) only, i.e., A ← ϕ ∈ P∗
specifies the necessary condition on A, “A is at least as true as ϕ”. But, as A ←
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ϕ ∈ P∗ is the unique rule with head A, the constraint becomes also sufficient (see
e.g., [10,16,17]). Among all the models, two models play a special role: namely the
Kripke-Kleene model (KKP), which is the �k-least model of P , and the Well-Founded
model (WFP ) [10,26]. It is well-know that the WFP is more informative (provides
more knowledge) than KKP . For the definition of the well-founded semantics over bi-
lattices refer to [10,17]. It is the generalization of the classical well-founded semantics
to bilattices. We obtain it as a special case of the AWA, too. Furthermore, we note that
the existence and uniqueness of KKP is guaranteed by the fixed-point characterization
based on the �k-monotone function ΦP : for an interpretation I , for any ground atom A
with (unique) A ← ϕ ∈ P∗, ΦP (I)(A) = I(ϕ). Then all models of P are fixed-points
of ΦP and vice-versa, and KKP can be computed in the usual way by iterating ΦP
over I⊥.

Classical Logic Programs. In classical logic programs the body is a conjunction of
literals, i.e., for A← ϕ ∈ P∗ (except for the case A← f ∈ P∗) ϕ = ϕ1∨ . . .∨ϕn and
ϕi = Li1∧. . .∧Lin . For a set of literals X , with¬.X we indicate the set {¬L : L ∈ X},
where for any atom A, ¬¬A is replaced with A. A classical interpretation (total or
partial) can be represented as a consistent set of literals, i.e., I ⊆ BP ∪ ¬.BP and for
all atoms A, {A,¬A} �⊆ I . Of course, the opposite is also true, i.e., a consistent set of
literals can straightforwardly be turned into an interpretation over FOUR.

The classical WF semantics has been defined in terms of the well-known notion of
unfounded set (see e.g., [14,26]), which identifies the set of atoms that can safely be
assumed false if the current information aboutP is given by an interpretation I . Indeed,
given a partial classical interpretation I and a classical logic programP , a set of ground
atoms X ⊆ BP is an unfounded set (i.e.,, the atoms in X can be assumed as false) for
P w.r.t. I iff for each atom A ∈ X , if A ← ϕ ∈ P∗, where ϕ = ϕ1 ∨ . . . ∨ ϕn and
ϕi = Li1 ∧ . . . ∧ Lin , then ϕi is false either w.r.t. I or w.r.t. ¬.X , for all 1 ≤ i ≤ n.
The greatest unfounded set for P w.r.t. I (which exists) is denoted by UP(I). Then, the
well-founded semantics WFP is defined to be [14]: WFP = “ �k-least model I of P
such that ¬.UP(I) ⊆ I”. As we will see next, the AWA generalizes this notion.

3 The AWA in Logic Programming

A hypothesis (denoted H) is always an interpretation over a bilattice and represents our
default assumption over the world. The principle underlying the Any-World Assumption
(AWA) is to regard an hypothesis H as an additional source of default information to
be used to complete the implicit knowledge provided by a logic program. The AWA H
dictates that any atom A, whose truth-value cannot be inferred from the facts and rules,
is assigned to the default truth value H(A). For comparison, under the CWA, H = If
is assumed, while under the OWA, H = I⊥ is assumed. Also note that any ground
atom A not appearing in the head of any rule and, thus, not derivable, is mapped (up
to now) into ‘false’. Now, according to the AWA, any such atom A should be mapped
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into H(A). If not specified otherwise, we change Point 3. of the definition of P∗ by
adding A ← H(A) to P∗. It should be noted that this implicitly affects also all defini-
tions based on P∗, e.g., the definitions of model and that of ΦP (which now maps such
atoms into H(A) rather than into f). To emphasize the impact of H to ΦP , we denote
the immediate consequence operator with ΦH

P in place of ΦP . Now, we proceed in two
steps.

The support. At first, we introduce the notion of support, denoted sH
P (I). The sup-

port is a generalization of the notion of unfounded sets. Indeed, sH
P (I) determines the

amount of default information, taken fromH , that can safely be joined to I . The support
generalizes the notion of unfounded sets as it turns out that for classical logic programs
P and H = If (see Table 1), sH

P (I) = ¬.UP(I) [16]. The principle underlying the sup-
port can be explained as follows. Consider a ground atom A and the rule A← ϕ ∈ P∗,
an interpretation I , which is our current knowledge about P , and a hypothesis H . We
would like to determine how much default knowledge can be ‘safely’ taken from H to
complete I . So, let us assume that J �k H amounts to the default knowledge taken
from H . J(A) is the default information provided by J to the atom A. The completion
of I with J is the interpretation I ⊕ J . In order to accept this completion, we have to
ensure that at least the assumed knowledge J(A) is entailed by P w.r.t. the completed
interpretation I ⊕ J , i.e., for A ← ϕ ∈ P∗, J(A) �k (I ⊕ J)(ϕ) = ΦH

P (I ⊕ J)(A)
should hold. Therefore, we say that an interpretation J is safe w.r.t. P , I and H iff
�k H and J �k ΦH

P (I ⊕ J). Note that safe interpretations correspond to unfounded
sets for classical logic programs [16]. Furthermore, like for unfounded sets, among all
possible safe interpretations, we are interested in the �k-maximal (which exists and
is unique). The �k-greatest safe interpretation is called the support provided by H
to P w.r.t. I and is denoted by sH

P (I). Table 1 reports the support for the logic pro-
gram of Example 1. Note that by definition under the OWA H = I⊥, sH

P (I) = I⊥
holds, as expected, while for classical logic programs sH

P (I) = ¬.UP(I), for H = If.
In summary, the support is an extension of the notion of unfounded sets (i) to logic
programming over bilattices; and to (ii) arbitrary default assumptions H . Finally, we
also recall that the support can effectively be computed as the iterated fixed-point of
the �k-monotone function σI,H

P (J) = H ⊗ ΦH
P (I ⊕ J). Indeed, [16] shows that the

iterated sequence of interpretations Ji below is �k-monotone decreasing and reaches
a fixed-point, Jλ = sH

P (I), for a limit ordinal λ, where J0 = H , Ji+1 = σI,H
P (Ji),

Jλ = infi<λ σI,H
P (Ji).

H-models. At second, among all models of a program P , let us consider those models,
which �k-subsume their own support. That is, we say that an interpretation I is a H-
model of P iff I |= P and sH

P (I) �k I . The �k-least H-model is called H-founded
model, and is denoted with HFP . H-models have interesting properties [16].

Proposition 1 ([16]). I is a H-model of P iff I = ΦH
P (I ⊕ sH

P (I)).
From a fixed-point characterization point of view, it follows immediately that the set of
H-models can be identified by the fixed-points of the �k-monotone immediate conse-
quence operator:

ΠH
P (I) = ΦH

P (I ⊕ sH
P (I)) .
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This guarantees the existence and uniqueness of the �k-least fixed-point of ΠH
P (I),

i.e., the H-founded model of a program P .
Note that the definition of H-founded model is nothing else than a generalization

from the classical setting to bilattices of the notion of well-founded model (recall that
the well-founded model is the least model satisfying ¬.UP(I) ⊆ I [14], which is a
special case of the definition of H-founded model). We conclude by remarking that [16]
also generalizes the stable model semantics to the AWA.

Example 2. Consider Example 1 and Table 1. Given the hypothesis Hi described in
the tables (note that H1 = H2 = If, i.e., the CWA is assumed), we observe that
sHi

P (Ii) �k Ii for i = 2, 3 and, thus, both I2 and I3 are H-models, while I1 is not.
Furthermore, it can be verified that both I2 and I3 are also H-founded models and that
I2 corresponds to the classical well-founded semantics, as expected.

We refer the reader to [16,24] for some applications of the AWA. For the sake of il-
lustrative purposes, we recall the following example: a rule expressing the fact that
a car may cross railway tracks if there is no crossing train may be represented by
Cross railway ← ¬Train is comming. In this situation, in order to safely cross
the railway there should be explicit evidence that the train is not coming and, thus, we
assume by default that H(Train is comming) = ⊥ (i.e., the atom is interpreted ac-
cording to the OWA) and H(Cross railway) = f (i.e., the CWA is assumed), for
safety.

Another example is the case where we also want to express default statements of the
form normally, unless something abnormal holds, then ϕ implies A. Such statements
were the main motivation for non-monotonic logics like Default Logic [22], Autoepis-
temic Logic [8,18,20,21] and Circumscription [19]. We can formulate such a statement
in a natural way, using abnormality theories, as A ← ϕ ∧ ¬Ab and Ab ← ¬A, where
Ab stands for abnormality, and then consider the hypothesisH(Ab) = f, i.e., by default
there are no abnormal objects.

4 Top-Down Query Answering

A query is an atom Q (query atom) of the form q(x), intended as a question about the
truth degree of all the instances of Q in the intended model of P . We also allow a query
to be a set {Q1, . . . , Qn} of query atoms. In that latter case we ask about the truth
degree of all instances of the atoms Qi in the intended model.

The procedure we devise in this paper is a generalization of the procedure presented
in [24]. We anticipate that the main reason why the procedure in [24] is not suitable to
be used for computing all answers to a query Q, given P , is that (i) [24] relies on P’s
grounded version P∗, which may be rather huge (exponential with respect to |P|, in
general) in applications with many facts; (ii) [24] answers ground queries only. Strictly
speaking, [24] can compute all answers of a query atom q(x) by submitting as query
the set of all ground instances q(c). This is clearly not feasible if the Herbrand universe
is large. The procedure presented here does not require grounding.

In the following, we assume that a logic program P is made out of an extensional
database (EDB), PE , and an intensional database (IDB), PI . The extensional database
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is a set of facts of the form r(c1, . . . , cn) ← b, where r(c1, . . . , cn) is a ground atom
and b is a truth value. For convenience, for each n-ary extensional predicate r, we rep-
resent the facts r(c1, . . . , cn) ← b in P by means of a relational n + 1-ary table tabr,
containing the records 〈c1, . . . , cn, b〉. Thus, the table contains all the instances of r to-
gether with their degrees. We assume that there cannot be two records 〈c1, . . . , cn, b1〉
and 〈c1, . . . , cn, b2〉 in tabr with b1 �= b2. The intensional database is a set of rules
for the form p(x) ← ϕ(x,y) in which the predicates occurring in the extensional
database (called extensional predicates) do not occur in the head of rules of the in-
tensional database. Essentially, we do not allow that the fact predicates occurring in PE

can be redefined by PI . We also assume that the intensional predicate symbol p occurs
in the head of at most one rule in the intensional database. Due to the expressiveness of
rule bodies, it is not difficult to see that logic programs can be put into this form.

For an atom A of the form p(x), an answer for p is a pair 〈θ, b〉, where θ = {x/c}
is a substitution of the variables x in p(x) with the constants in c and b ∈ L is a truth
degree. We say that the answer 〈θ, b〉 is correct for p with respect to the intended model
I of P iff I(p(c)) = b. That is, by substituting the variables in x using θ, the evaluation
of the query in the intended model is b. An answer set for p is a set of answers for p.
Of course, our goal is to determine the set of all correct answers for the query Q. For a
given n-ary predicate p and a set of answers ∆p of p, for convenience we represent ∆p

as an n + 1-ary table tab∆p , containing the records 〈c1, . . . , cn, b〉.
Given two answers δ1 = 〈θ, b1〉 and δ2 = 〈θ, b2〉 for the same atom P , we define

δ1 �k δ2 (δ1 +k δ2) iff b1 �k b2 (b1 +k b2). We write δ1 ≺k δ2 (δ1 (k δ2) iff
b1 ≺k b2 (b1 (k b2). If ∆1

p and ∆2
p are two sets of answers for p, we write ∆1

p �k ∆2
p

(∆1
p +k ∆2

p) iff for all δ1 ∈ ∆1
p there is δ2 ∈ ∆2

p such that δ1 �k δ2 (δ1 +k δ2). We
write ∆1

p ≺k ∆2
p (∆1

p (k ∆2
p) iff ∆1

p �k ∆2
p (∆1

p +k ∆2
p) and there is δ2 ∈ ∆2

p such
that for no δ1 ∈ ∆1

p, δ2 �k δ1 (δ2 +k δ1) holds.
We present now our top-down procedure tailored to compute all correct answer of

a query Q in the intended model. The basic idea of our procedure is to try to col-
lect, during the computation, all correct answers incrementally together. At first, con-
sider a general rule of the form p(x) ← ϕ(x,y). We note that ϕ(x,y) depends on
a computable function f and the predicates p1, . . . , pk, which occur in the rule body
ϕ(x,y). Assume that ∆p1 , . . . , ∆pk

are the answers collected so far for the predicates
p1, . . . , pk. Let us consider a procedure eval(p,∆p1 , . . . , ∆pk

), which computes the set
of answers 〈{x/c}, b〉 of p, by evaluating the body ϕ(x,y) over the data provided by
∆p1 , . . . , ∆pk

. Formally, let H be a hypothesis, let IH be an interpretation restricted to
the predicates p1, . . . , pk and tuples such that for all ni-ary predicates pi,

IH(pi(c)) =

⎧⎨⎩
b, if 〈c, b〉 ∈ tab∆pi

H(pi(c)) if pi is an extensional predicate and 〈c, b〉 �∈ tab∆pi

⊥ otherwise .

The intuition in the definition above is that to an atom pi(c) we assign the current truth
value if this truth value is known. Otherwise, we assign to it the default truth value taken
from the hypothesis (if pi is an extensional predicate). Then

eval(p,H,∆p1 , . . . , ∆pk ) = {〈{x/c}, b〉 | b =
∨
c′

IH(ϕ(c, c′)), b �= ⊥} ,
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where c′ is a tuple of constants occurring in
⋃

i ∆pi . We omit to report the tuple whose
degree is ⊥. The disjunction

∨
c′ is required as the free variables y in ϕ(x,y) may be

seen as existentially quantified.

Example 3. Consider P = {p(x) ← q(x, y), q(a, b) ← f, q(a, c) ← t}. Assume
∆q = {〈(a, b), f〉, 〈(a, c), t〉}. Then eval(p,∆q) = {〈a, t〉}, which amounts to evalu-
ate q(a, b) ∨ q(a, c).

We are not going to further investigate the implementation details of the eval(p,H,∆p1 ,
. . . , ∆pk

) procedure, though it has to be carefully written to minimize the number of
table look-ups and relational algebraic operations such as joins. It can be obtained
by means of a combination of SQL statements over the tables and the application of
the truth combination functions occurring in the rule body of p. We point out that
eval(p,H,∆p1 , . . . , ∆pk

) can also be seen as a query to a database made out by the
relations tab∆p1

, . . . , tab∆pk
and that any successive evaluation step corresponds to the

execution of the same query over an updated database. We refer the reader to e.g., [6,7]
concerning the problem of repeatedly evaluating the same query to a database that is
being updated between successive query requests. In this situation, it may be possible
to use the difference between successive database states and the answer to the query in
one state to reduce the cost of evaluating the query in the next state.

Query answering: Kripke-Kleene semantics. We start showing how to compute all
answers with respect to the Kripke-Kleene semantics, i.e., the �k-least fixed-point of
ΦH
P . The procedure is detailed in Table 2. Assume, we are interested in determining all

correct answers of q(x) w.r.t. the Kripke-Kleene semantics. We call the procedure with
Answer(P , Q,H). We start with putting the predicate symbols q ∈ Q in the active list
of predicate symbols A. At each iteration step (step 2) we select a new predicate p from
the queue A and evaluate it using the eval function with respect to the answers gathered
so far (steps 4 or 5). If the evaluation leads to a better answer set for p (step 6), we update
the current answer set v(p) and add all predicates p′, whose rule body contains p (the
parents of p), to the queue A, i.e., all predicate symbols that might depend on p are put
in the active set to be examined. At some point (even if cyclic definitions are present)
the active list will become empty and we have actually found all correct answers of
q(x). The procedure in Table 2 uses some auxiliary functions and data structures: (i)
for predicate symbol pi, s(pi) is the set of predicate symbols occurring in the rule body

Table 2. General top-down algorithm

Procedure Answer(P, Q, H)
Input: Logic program P , set Q of query predicate symbols, hypothesis H;
Output: Mapping v containing all correct answers of predicates in Q w.r.t. lfp(ΦH

P )
1. A := Q, dg := Q, in := ∅, for all predicate symbols p inP do v(p) = ∅, exp(p) = false
2. while A �= ∅ do
3. select pi ∈ A, A := A \ {pi}, dg := dg ∪ s(pi)
4. if (pi extensional predicate) ∧ (v(pi) = ∅) then v(pi) := tabpi
5. if (pi intensional predicate) then ∆pi

:= eval(pi, H, v(pi1 ), ..., v(piki
))

6. if v(pi) ≺k ∆pi
then v(pi) := ∆pi

, A := A ∪ (p(pi) ∩ dg)
7. if not exp(pi) then exp(pi) = true, A := A ∪ (s(pi) \ in), in := in ∪ s(pi)

endwhile
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of pi, i.e., the sons of pi; (ii) for predicate symbol pi, p(pi) = {pj : pi ∈ s(pj)},
i.e., the parents of pi; (iii) in step 5, pi1 , . . . , piki

are all predicate symbols occurring
in the rule body of pi, i.e., the sons s(pi) = {pi1 , . . . , piki

} of pi; (iv) the variable dg
collects the predicate symbols that may influence the result of the query predicates; (v)
the array variable exp traces the rule bodies that have been “expanded” (the predicate
symbols occurring in the rule body are put into the active list); (vi) the variable in
keeps track of the predicate symbols that have been put into the active list so far due to
an expansion (to avoid, to put the same predicate symbol multiple times in the active
list due to rule body expansion).

Example 4. Consider Example 1. Let us consider the hypothesis H = I⊥ (i.e., the
OWA). The extensional database is shown in the relational table tabr = {〈a, t〉, 〈b, f〉}.
Of course, tabr is also the set tab∆r of correct answers of predicate r, while it can be
verified (by a straightforward bottom-up fixed-point computation iterating ΦH

P over I⊥)
that the set of correct answers of predicate q is given by: ∆q = {〈b, t〉}. We do not
report the tuple 〈a,⊥〉, as if c does not occur in an answer set ∆ then its truth degree is
assumed to be⊥. We next show the computation ofAnswer(P , {q}, H). The execution
is shown below reporting also ∆pi and v(pi) at each iteration i. Each line is a sequence
of steps in the ‘while loop’. What is left unchanged is not reported.

1. A := {q}, pi := q, A := ∅, dg := {q, r}, ∆q := ∅
exp(q) := 1, A := {q, r}, in := {q, r}

2. pi := q, A := {r}, ∆q := ∅
3. pi := r, A := ∅, v(r) ≺k ∆r, v(r) := ∆r, A := {q}, exp(r) := 1
4. pi := q, A := ∅, v(q) ≺k ∆q, v(q) := ∆q, A := {q}
5. pi := q, A := ∅, ∆q = v(q)
6. stop. return v(q)

Iter i ∆pi
v(pi)

0. − v(pi) = ∅
1. ∆q = ∅ −
2. ∆q = ∅ −
3. ∆r = {〈a, t〉, 〈b, f〉} v(r) = ∆r

4. ∆q = {〈b, t〉} v(q) = ∆q

5. ∆q = {〈b, t〉} −

It can be shown that the procedure Answer behaves as expected.

Proposition 2. There is a limit ordinal λ such that after |λ| steps Answer(P , Q,H)
returns the set of all correct answers of P with respect to the predicates in Q and the
Kripke-Kleene semantics under hypothesis H .

Computatonally, it is well known that, despite the Herbrand base is finite, many-valued
logic programs may not have a finite bottom-up least model computation and our frame-
work does inherit the same problems as well. There are, however several useful options
to guarantee termination of the top-down procedure such as: (i) the bilattice has a finite
number of truth values; (ii) the truth combination function f in a rule body is a upper-
bounded, i.e., f(x1, . . . ,xn) �t xi, for all i (e.g., a t-norm satisfies this condition); (iii)
if B is [0, 1] × [0, 1], all f are continuos then for any ε > 0 the procedure stops after
a finite number of steps such that the final truth of an atoms diverges from the actual
value at most ε (this result is similar to the one established in [27]).

Query answering: H-founded semantics. As we have seen, the H-founded model of a
logic program P is the �k-least fixed-point of the operator ΠH

P (see Proposition 1) and
the support sH

P (I) coincides with the iterated fixed-point of the function σI,H
P (J) begin-

ning the computation with H . In the following, we show how we can slightly change the
Answer procedure to compute the support. That is, we want a top-down procedure that,
for a set of atoms p(x), computes all answers 〈{x/c}, b〉 such that sH

P (I)(p(c)) = b.
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So, let Support(P , Q,H, I) be the procedure, which is as the Answer procedure
except that:

– Step 1 is replaced with

P := PH
I , A := Q, dg := Q, in := ∅, for all predicate symbols p in P do v(p) = ∅, exp(p) = false

where logic program PH
I is obtained from P in the following way:

• for each intensional predicate p in P , replace the rule p(x) ← ϕ(x,y) in P with the
rule

p(x) ← H(p)(x)⊗ (I(pϕ)(x)⊕ ϕ(x,y)) . (1)

With H(p)(x) we mean a built-in predicate that given a substitution c for x, re-
turns H(p(c)). This can easily be encoded in the semantics, which we omit. The case
I(pϕ)(x) is similar: I(pϕ)(x) is a built-in predicate that given a substitution c for x,
returns

∨
c′ I(ϕ(c,c′)).

• for each extensional predicate r in P , replace the rule r(c) ← b in P with the rule

r(c) ← b′ , (2)

where b′ is the truth value b′ = H(r(c))⊗ b.
We point out that the rules above are the result of applying σI,H

P to the support sH
P (I) and

to all rules:

sH
P (I)(p(c)) = [H ⊗ ΦH

P (I ⊕ sH
P (I))](p(c)) = H(p(c))⊗ [I ⊕ sH

P (I)](
∨

c′ ϕ(c, c′))
= H(p(c))⊗ (I(

∨
c′ ϕ(c, c′))⊕ sH

P (I)(
∨

c′ ϕ(c, c′)))
= H(p(c))⊗ (

∨
c′ I(ϕ(c, c′))⊕∨

c′ sH
P (I)(ϕ(c,c′))) .

Since the above equation holds for all predicates p and all c, we get rules (1) and (2). Built-
in predicates do not count as sons and, thus, do not appear in the A, s, p, v, in, dg variables.

– Step 6 is replaced with
if v(pi) �k ∆pi

then v(pi) := ∆pi
, A := A ∪ (p(pi) ∩ dg) fi

Essentially, in Step 6 we replace ≺k with �k. This modification is motivated by the fact that
during the computation of the support, ∆pi is now decreasing in the knowledge order �k.

Example 5. Consider Example 1, interpretation I2 and hypothesis H2. We have seen
that I2 is the H-founded model of P w.r.t. H2 and corresponds to the well-founded
semantics of P . We next want to show the computation of Support(P , {q, r}, H2, I2).
We first determine PH2

I2
. As predicate p does not play any role in the computation, we

report the modified rule for predicate q and r only. PH2
I2

related to q and r is {q(x) ←
H2(q)(x) ⊗ (I2(qϕ)(x) ⊕ (q(x) ∨ ¬r(x))), r(a) ← ⊥, r(b) ← f} ⊆ PH2

I2
.

We recall that H2(q)(a) = H2(q)(b) = f and that I2(qϕ)(a) = I2(q(a) ∨ ¬r(a)) =
f, while I2(qϕ)(b) = t. Then, it can be verified that (by a straightforward fixed-point
computation iterating σI,H

P starting with H2) that the set of correct answers of predicate
q, r of P w.r.t. sH2

P (I2) are: ∆q = {〈a, f〉}, ∆r = {〈b, f〉}.
Below is a sequence of Support(P , {q, r}, H2, I2), returning the expected values.

1. A := {q, r}, pi := q, A := {r}, dg := {q, r}, ∆q �k v(q),
exp(q) := 1, A := {r, q}, in := {q, r}

2. pi := r, A := {q}, v(r) �k ∆r , v(r) := ∆r, exp(r) := 1
3. pi := q, A := ∅, ∆q = v(q)
4. stop. return v(q)

Iter i ∆pi
v(pi)

0. − v(pi) = ∅
1. ∆q = {〈a, f〉} v(q) = ∆q

2. ∆r = {〈b, f〉} v(r) = ∆r

3. ∆q = {〈a, f〉} −
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It can then be shown that:

Proposition 3. There is a limit ordinal λ such that after |λ| steps Support(P , Q,H, I)
returns the set of all correct answers of P with respect to the predicates in Q and the
support sH

P (I).
We are now ready to define the top-down procedureAnswerHF (P , Q,H), which com-
putes all correct answers to a query Q under the H-founded semantics. We define
AnswerHF (P , Q,H) as Answer(P , Q,H), except that Step 5 is replaced with the
statements

5. if (pi intensional predicate) then
5.1. Q′ : = s(pi);
5.2. I : = v;
5.3. supp : = Support(P, Q′, H, I);
5.4. v′ : = I⊕ supp;
5.5. ∆pi

:= eval(pi, H, v′(pi1 ), ..., v′(piki
)) fi

These steps correspond to the application of the ΠH
P (I) = ΦH

P (I ⊕ sH
P (I)) operator to

pi. Indeed, at first we ask about all the correct answers of the predicates occurring in
the body of pi w.r.t. the support and the current interpretation I : = v (Steps 5.1 - 5.3).
The variable supp holds these answers. Then we join them with I, i.e., we compute
I ⊕ sH

P (I) (Step 5.4), where this latter is defined pointwise: (i) v′ = v1 ⊕ v2 iff for all
p, v′(p) = v1(p) ⊕ v2(p) = {〈θ, b〉 | 〈θ, b1〉 ∈ v1(p), 〈θ, b2〉 ∈ v2(p), b = b1 ⊕ b2}
(if 〈θ, bi〉 �∈ vi(p) then bi = ⊥ is assumed). Finally, we evaluate the body of pi with
respect to I ⊕ sH

P (I) (Step 5.5), i.e., apply ΦH
P (I ⊕ sH

P (I)).
Example 6. Consider Example 1 and hypothesis H2 (i.e., the CWA). Let us compute all
correct answers to the query q(x) w.r.t. the well-founded semantics. As the interpreta-
tion I2 in Example 6 is the well-founded model (i.e., H2-founded model), we expect to
retrieve ∆q = {〈a, f〉, 〈b, t〉}. Below is the computation of AnswerHF (P , {q}, H2).

1. A := {q}, pi := q, A := ∅, dg := {q, r}, supp := {〈r(b), f〉},
v′ := {〈r(b), f〉},
v(q) ≺k ∆q, exp(q) := 1, A := {q, r}, in := {q, r}

2. pi := q, A := {r}, supp := {〈r(b), f〉},
v′ := {〈q(b), t〉, 〈r(b), f〉}, ∆q = v(q)

3. pi := r, A := ∅, supp := {〈r(b), f〉}, v′ := {〈q(b), t〉, 〈r(b), f〉},
v(r) ≺k ∆r, v(r) := ∆r, A := {q}, exp(r) := 1

4. pi := q, A := ∅, supp := {〈q(a), f〉, 〈r(b), f〉},
v′ := {〈q(a), f〉, 〈q(b), t〉, 〈r(a), t〉, 〈r(b), f〉},
v(q) ≺k ∆q, v(q) := ∆q, A := {q}

5. pi := q, A := ∅, supp := {〈q(a), f〉, 〈r(b), f〉},
v′ := {〈q(a), f〉, 〈q(b), t〉, 〈r(a), t〉, 〈r(b), f〉}, ∆q = v(q)

6. stop. return v(q)

Iter i ∆pi
v(pi)

0. − v(pi) = ∅
1. ∆q = {〈b, t〉} v(q) = ∆q

2. ∆q = {〈b, t〉} −
3. ∆r = {〈a, t〉, 〈b, f〉} v(r) = ∆r

4. ∆q = {〈a, f〉, 〈b, t〉} v(q) = ∆q

5. ∆q = {〈a, f〉, 〈b, t〉} −

Therefore, AnswerHF (P , {q}, H2) returns ∆q = {〈a, f〉, 〈b, t〉} as expected.

It can then be shown that:

Proposition 4. There is a limit ordinal λ such that after |λ| steps AnswerHF (P , Q,H)
returns the set of all correct answers of P with respect to the predicates in Q and the
H-founded semantics.

Termination of the query answering procedure is guaranteed whenever the termination
of the basic procedure in Figure 2 is guaranteed (e.g., the same options as for the Kripke-
Kleene semantics can be applied).
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5 Conclusions

We have presented a simple, general, yet effective top-down algorithm to retrieve all
correct answers to queries for normal logic programs under the AWA and, thus, under
the CWA and OWA. To the best of our knowledge, this is the first time the problem
of computing all answers has been addressed in this context, and under the CWA in
particular, where arbitrary monotone functions in the body can manipulate truth values
taken from a bilattice. We believe that its interest relies on its easiness for an effective
implementation. Computing all answers is the first step towards top-k query answering,
as it is developed in the context relational databases [9,15] and will be our primary topic
of future research.
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Abstract. In this paper we investigate logic which is suitable for reason-
ing about uncertainty in different situations. A possible-world approach
is used to provide semantics to formulas. Axiomatic system for our logic
is given and the corresponding strong completeness theorem is proved.
Relationships to other systems are discussed.

1 Introduction

This paper is partly inspired by J. M. Keynes’ work entitled ”A Treatise on
Probability” [10]. In this work, Keynes treats measuring and comparison of
probabilities. He sharply criticizes the thesis that in principle every degree of
probability can be measured, and argues that we are often not able to do that.

Keynes gives two sorts of examples. The first sort (in fact, very close to the
approach in [8]): when, although we can say that the probability that A occurs is
higher than the probability that B occurs, we still can not say how much is that
probability higher (two, three times). And the second sort: when probabilities
can not be compared at all. As illustration for impossibility of comparison of
probabilities we can give the following example: ”Suppose that there are three
sets of experiments whose aim is to express a generalization. The first set of
experiments is the most numerous, in the second set, the irrelevant conditions
were more carefully modified, and in the third case, the generalization is larger
than in the first two sets. Which of these generalizations is the most probable?
There is no answer.”

After analyzing Keynes’ demands that a system of probabilities should respect
the partial order among them, we came to the conclusion that it could be a lattice
with the smallest element 0 (impossibility) and the biggest one 1 (certainty). We
also consider it significant to keep the concept of (finite) additivity, although it
does not follow from the Keynes’ concept. We arrive thus to our operators M=a,
where a is an element of an ordered monoid.

One can argue that uncertainty should be measured by elements of more ab-
stract systems (algebras) rather than by real numbers (the unit interval [0, 1]).
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Such approach is taken in [7] where the unit interval is replaced by arbitrary
poset. Semantically, our approach is similar, except that we add a binary oper-
ation, with the structure of commutative monoid, to the partially ordered set
which is the range. Thus, our approach is mainly based on a binary operation
unlike the one in [7] which is based on a binary relation. We need the binary
operation in ordered to be able to express the (finite) additivity axiom. Main
difference is that [7] does not have any syntax, as their system is intended as a se-
mantics for default reasoning, while we introduce a logic for which our semantic
is sound and complete.

We consider measure logic, denoted by LPG+ , suitable for reasoning about
(generalized) measure. The language is obtained by adding measure operators to
classical propositional language. It allows making formulas such as M=aα, with
the intended meaning ”the measure of α is a”. The measure operators behave
like modal operators. As the corresponding semantics we introduce special types
of Kripke models with addition of measure defined over the sets of worlds. Our
emphasis is on complete axiomatizations of the logic. Following [12,14,18,21], we
propose (infinitary) axiomatic system for which we prove the strong completeness
theorem (’Every consistent set of formulas is satisfiable’).

The rest of the paper is organized as follows. In Section 2 we define some
basic notions and give a motivating example. In Section 3 the logic LPG+ is
introduced, and its syntax, semantics and axiomatization are given. We prove
the corresponding strong completeness theorem. We conclude in Section 4 with
some suggestions for further research.

2 Preliminaries

Any system designed for reasoning about the real world must be capable of
dealing with uncertain information. From a logical point of view, uncertainty
basically concerns formulas that can be either true or false, but their truth-
value is unknown due to incompleteness of the available information. Among
the different models of uncertainty, probability-like measure is one of the most
relevant. Namely, it is most often supposed that uncertainty is a measurable
feature, i.e. that uncertainty of an event can be expressed by the elements of a
set G which is partially ordered by ≤ and which possesses additional algebraic
structure ∗, 0, . . . So, measure of uncertainty is seen as a function µ : F → G,
where F is a given set of events. In our approach, the concept of event is classical:
F is a Boolean algebra. The assumption of ordering of the range G is necessary
for comparing degrees of uncertainty, i. e. for the formalization of the notions
’more uncertain than’ and ’less uncertain than’, etc., while the algebraic structure
is necessary for calculating uncertainty degrees of complex events. The usual
request is

if A ∩B = ∅, then µ(A ∪B) = µ(A) ∗ µ(B),
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where for the binary operation ∗ – so called composition law –: commutativity,
associativity, monotonicity in both components, neutral element (and continuity)
are required.

Definition 1. Let G = (G,≤, ∗, 0) be a partially ordered countable commutative
monoid and G+ = {x ∈ G | 0 ≤ x}. A function µ : F → G+ is called G+-
measure on F if the following conditions are satisfied:

1. µ(∅) = 0,
2. if A, B ∈ F and A ∩B = ∅, then µ(A ∪B) = µ(A) ∗ µ(B).

There are a number of structures whose subsets can be very suitable for mea-
suring of uncertainty.

1. additive monoid of nonnegative rational numbers (Q+,≤, +, 0);
2. ({0, 1

n , . . . , 1},≤,⊕, 0), x⊕ y = min{1,x + y};
3. ([0, 1]Q,≤,⊕, 0) ([0, 1]Q is the set of rational numbers from unit real interval

[0, 1];
4. (Q+(ε),≤, +, 0), where Q+(ε) is the set of nonnegative elements of the do-

main of the nonarchimedean field Q(ε) which is the smallest field obtained
by adding positive infinitesimal ε to rational numbers.

5. (Qn,≤, +, (0, . . . , 0)), Qn = Q× . . .Q︸ ︷︷ ︸
n

, ≤ is lexicographic order;

6. (ω,≤, +, 0);
7. (ω,≤, max, 0);
8. (Q+,≤, max, 0);

So called pseudo-additive measures have been studied and applied (Bacceli
et al. (1992), Maslov et al. (1992), Pap (1995), Sugeno et al. (1987)). For the
range of these measures is taken a semiring on the real interval [a, b], with the
corresponding operations pseudo-addition and pseudo-multiplication. A great
number of examples of these measures is given in [17]. We emphasise that these
measures can be applied in very different situations (system theory, optimization,
control theory, differential equations, difference equations, etc.).

Example 1. For the weather forcast, we can ask the question: ”Is the probability
that on Saturday will be a nice day higher than the probability that on Friday
will be a nice day?” Naturally, in order to answer this question we should first
define what means the rather vague notion of ”nice day”. If we suppose that
nice day is when the temperature is between 15◦ and 25◦, humidity 40%, the
wind slower than 3 m/s etc., then the probability of ’nice day’ is presented by
the (finite) sequence of probabilities that each relevant parameter takes a value
in corresponding interval. Therefore, it make sense to say that the probability of
’nice day on Saturday’ is higher than the probability of ’nice day on Friday’, if
each coordinate in probability for Saturday is higher or equal to the correspond-
ing one for Friday, in other cases the probabilities can not be compared.
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3 The Logic LPG+

3.1 Syntax

Let G stand for denumerable partially ordered commutative monoid.
The language of LPG+ consists of a countable set I = {p1, p2, . . .} of proposi-

tional letters, classical connectives ∧ and ¬, and a list of unary operators M=a

for every a ∈ G+.
The set ForC(LPG+) of all classical propositional formulas is defined induc-

tively as the smallest set X containing propositional letters and closed under the
usual formation rules: if α and β belong to X , then ¬α, α∧β are in X . Elements
of ForC(LPG+) will be denoted by α, β, . . . The set ForM (LPG+) of all measure
formulas is the smallest set Y containing all formulas of the form: M=aα, for each
α ∈ ForC(LPG+) and each a ∈ G+, and closed under the formation rules: if A
and B belong to Y , then ¬A and A∧B are in Y . The formulas from ForM (LPG+)
will be denoted by A, B, . . . Let For(LPG+) = ForC(LPG+) ∪ ForM (LPG+).
The formulas from For(LPP ) will be denoted by Φ, Ψ , . . .

Note that neither mixing of pure propositional formulas and measure formulas,
nor nested measure operators are allowed.

We use the usual abbreviations for the other classical connectives ∨, →, ↔.
Also, for every a from G+ we denote ¬M=a(α) by M �=a(α)

For α ∈ ForC(LPG+), and A ∈ ForM (LPG+), we abbreviate both α∧¬α and
A ∧ ¬A by ⊥ letting the context determine the meaning, while � denotes ¬⊥.

3.2 Semantics

The semantics for For(LPG+) will be based on the possible-world approach.

Definition 2. An LPG+−model is a structure M = 〈W,F ,µ, v〉 where:

– W is a nonempty set of objects called worlds,
– F is an algebra of subsets of W ,
– µ is a G+-measure on F ,
– v : W × I → {true, false} provides for each world w ∈ W a two-valued

evaluation of the propositional letters, that is v(w, p) ∈ {true, false}, for
each propositional letter p ∈ I and each world w ∈ W ; a truth-evaluation
v(w, ·) is extended to classical propositional formulas as usual.

If M is an LPG+−model and α ∈ ForC(LPG+), the set {w : v(w,α) = true} is
denoted by [α]M. We will omit the subscript M from [α]M and write [α] if M
is clear from the context. An LPG+−model M = 〈W,F ,µ, v〉 is measurable if
[α]M ∈ F for every formula α ∈ ForC(LPG+). In this section we focus on the
class of all measurable models (denoted by Meas(LPG+)).

Definition 3. The satisfiability relation is defined inductively by the following
conditions, for every LPG+−model M = 〈W,F ,µ, v〉:
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– if α ∈ ForC(LPG+), M |= α iff for every world w ∈W , v(w,α) = true,
– if α ∈ ForC(LPG+), M |= M=aα iff µ([α]) = a,
– if A ∈ ForM (LPG+), M |= ¬A iff M �|= A,
– if A, B ∈ ForM (LPP ), M |= A ∧B iff M |= A and M |= B.

A formula Φ ∈ For(LPG+) is satisfiable if there is a measurable LPG+-model
M = 〈W,F ,µ, v〉 such that M |= Φ; Φ is valid if for every measurable LPG+-
model M, M |= Φ; a set of formulas is satisfiable if there is a model in which
every formula from the set is satisfiable.

3.3 Axiomatic System

The axiomatic systemAx(LPG+) forLPG+ contains the following axiomschemata:

1. all ForC(LPG+)−instances of classical propositional tautologies,
2. all ForM (LPG+)−instances of classical propositional tautologies,
3. M=aα → ¬M=bα, a �= b,
4. M=0¬(α ↔ β) → (M=aα → M=aβ),
5. (M=aα ∧M=bβ ∧M=0(α ∧ β)) → M=a∗b(α ∨ β)

and inference rules:

1. From Φ and Φ → Ψ infer Ψ ,
2. From α infer M=0¬α,
3. From A → M �=aα, for every a ∈ G+, infer ¬A.

Note that the inference rule 3 is infinitary if and only if G is an infinite set.
By this rule, at the syntax level, we define the range of the measure.

Definition 4. A formula Φ is deducible from a set T of formulas (T $ Φ) if
there is an at most countable sequence of formulas Φ0, Φ1, . . . , Φ, such that every
Φi is an axiom or a formula from the set T , or it is derived from the preceding
formulas by an inference rule.

A formula Φ is a theorem ($ Φ) if it is deducible from the empty set, and a
proof for α is the corresponding sequence of formulas.

A set T of formulas is consistent if there is at least one formula fromForC (LPG+),
and at least one formula from ForP (LPG+) that are not deducible from T , otherwise
T is inconsistent.

A consistent set T of formulas is said to be maximal consistent if the following
holds:

– for every α ∈ ForC(LPG+), if T $ α, then α ∈ T and M=0¬α ∈ T , and
– for every A ∈ ForP (LPG+), either A ∈ T or ¬A ∈ T .

A set T is deductively closed if for every Φ ∈ For(LPG+), if T $ Φ, then Φ ∈ T .
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3.4 Soundness and Completeness

Theorem 1 (Soundness theorem). The axiomatic system Ax(LPG+) is sound
with respect to the class of measurable LPG+-models.

Proof. Soundness of our system follows from the soundness of propositional clas-
sical logic and from the properties of G+-measure.We can show that every in-
stance of an axiom schema holds in every measurable LPG+ -model, while the
inference rules preserve the validity.

Let M = 〈W,F ,µ, v〉 be an arbitrary measurable LPG+-model.
It is easy to see that if Φ is an instance of a classical propositional tau-

tology, then M |= Φ. Axioms 4 and 5 concern the properties of G+-measures
and obviously holds in every model. For example, let us consider Axiom 4. If
M |= M=0¬(α ↔ β) and M |= M=aα, then µ[¬(α ↔ β)] = 0 and µ[α] = a.
From [¬(α ↔ β)] = ([¬α] ∩ [β]) ∪ ([α] ∩ [¬β]) and ([¬α] ∩ [β]) ∩ ([α] ∩ [¬β]) = ∅
we have

0 = µ[¬(α ↔ β)] = µ([¬α] ∩ [β]) ∗ µ([α] ∩ [¬β]),

So, it follows that µ([¬α] ∩ [β]) = 0 and µ([α] ∩ [¬β]) = 0. Now, we have

µ[β] = µ([α] ∩ [β]) ∗ µ([¬α] ∩ [β]) = µ([α] ∩ [β])

and
µ[α] = µ([α] ∩ [β]) ∗ µ([α] ∩ [¬β]) = µ([α] ∩ [β]).

Hence, µ[β] = µ[α] = a, and M |= M=aβ.
Consider Rule 3. Suppose that M |= A → M �=aα, for every a ∈ G+. If

M �|= ¬A, then M |= A and M |= M �=aα, for each a ∈ G+, i.e. µ([α]) �= a, for
each a ∈ G+, which is a contradiction. �

It is easy to see that the following inference rule

from α ↔ β, infer M=aα ↔ M=aβ, for every a ∈ G+,

is derivable.
In order to prove the completeness theorem for our logic, we follow the Henkin

style procedure. We begin with some set of statements. Then, we describe how a
consistent set T of formulas can be extended to a suitable maximal consistent set,
and how a canonical model can be constructed out of such maximal consistent sets.

Theorem 2
(Deduction theorem) If T is a set of formulas, Φ is a formula, and T ∪{Φ} $
Ψ , then T $ Φ → Ψ , where Φ and Ψ are either both classical or both measure
formulas.

Proof. We use the transfinite induction on the length of the proof of Ψ from
T ∪ {Φ}. The classical cases follow as usual. Suppose Ψ = ¬A is obtained from
T ∪{Φ} by an application of Rule 3 with premises A → M �=aα, for each a ∈ G+.
In that case, we have:
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T ∪ {Φ} $ A → M �=aα, for each a ∈ G+,
T $ Φ → (A → M �=aα), for each a ∈ G+, by the induction hypothesis
T $ (Φ ∧A) → M �=aα, for each a ∈ G+,
T $ ¬(Φ ∧A), by Rule 3
T $ Φ → ¬A
T $ Φ → Ψ . �

Theorem 3. Every consistent set of formulas can be extended to a maximal
consistent set.

Proof. Let T be a consistent set, ConC(T ) the set of all classical formulas that
are consequences of T , A0, A1, . . . , an enumeration of ForP (LPG+), and α0, α1,
. . . , an enumeration of ForC(LPG+). We define a sequence of sets Ti, i = 0, 1,
2, . . . , such that:

1. T0 = T ∪ ConC(T ) ∪ {M=0¬α : α ∈ ConC(T )},
2. for every i ≥ 0, if T2i∪{Ai} is consistent, then T2i+1 = T2i∪{Ai}; otherwise

T2i+1 = T2i ∪ {¬Ai},
3. for every i ≥ 0, T2i+2 = T2i+1 ∪ {M=aαi}, for some a ∈ G+, so that T2i+2 is

consistent.

T0 is consistent because it is a set of consequences of a consistent set. Suppose
that T2i+1 is obtained by the step 2 of the above construction and that neither
T2i∪{Ai}, nor T2i∪{¬Ai} are consistent. It follows by the deduction theorem that
T2i $ Ai∧¬Ai, which is a contradiction. Consider the step 3. If T2i+1∪{M=aαi}
is not consistent for every a ∈ G+, then:
T2i+1 $M=aα → ⊥, a ∈ G+

T2i+1 $ �→ M �=aα, a ∈ G+

T2i+1 $ ¬� (by Rule 3)
i.e. T2i+1 is not consistent. Hence, it is always possible to produced the consistent
extension by the step 3.

We continue by showing that the set T = ∪i≥0Ti is a deductively closed set
which does not contain all formulas, and, as a consequence, that T is consistent. If
α ∈ ForC(LPG+), by the construction of T0, α and ¬α cannot be simultaneously
in T0. For a formula A ∈ ForP (LPG+), either A ∈ T or ¬A ∈ T , and the set T
does not contain both A = Ai and ¬A = Aj , because Tmax{i,j}+1 is a consistent
set. Next, note that for every Φ ∈ ForP (LPG+), if Ti $ Φ, then it must be
Φ ∈ T . Namely, if Ti $ Ak, for some i ≥ 0, and Ak �∈ T , then ¬Ak ∈ T , and
Tmax{i,2k+1}+1 is not consistent, which is a contradiction.

Suppose that T $ Φ. If Φ ∈ ForC(LPG+), then by the construction of T0,
Φ,M=0¬Φ ∈ T . Let Φ ∈ ForP (LPG+). Suppose that the sequence Φ1, Φ2, . . . , Φ
of formulas which forms the proof of Φ from T is countably infinite (otherwise
there must be some k such that Tk $ Φ, and it follows that Φ ∈ T ). We can show
that for every i, if Φi is obtained by an application of an inference rule, and all the
premises of Φi belong to T , then Φi ∈ T . Suppose Φi is obtained by Rule 1 and its
premises Φ1

i and Φ2
i belong to T . There must be some k such that Φ1

i , Φ
2
i ∈ Tk.

Since Tk $ Φi, it must be Φi ∈ T . If Φi is obtained by Rule 2, its premise
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belongs to T0 and the same holds for Φi. Suppose that Φi = ¬A is obtained
by the infinitary inference rule 3, and that the premises Φa

i = A → M �=aα,
a ∈ G+, belong to T . Suppose Φk �∈ T . Then A ∈ T , and A ∈ Ti, for some
i ≥ 0. On the other hand, if α = αj , then, by the step 3, for some aj ∈ G+,
M=ajαj ∈ T2j+2. Also, there is an index m so that Φ

aj

i = A → M �=ajαj ∈ Tm.
Hence, A,M=ajαj , A → M �=ajαj ∈ Tmax{i,2j+2,m}+1, which is a contradiction.

So, from T $ Φ, it follows Φ ∈ T , i.e., the set T is deductively closed. Since it
does not contain all formulas, T is consistent, while the construction guarantees
that it is maximal. �

Theorem 4 (Completeness theorem). Every consistent set T of formulas
has a measurable LPG+-model.

Proof. Using the maximal consistent extension T of the set T , we can define a
tuple M = 〈W,F ,µ, v〉, where:

– W contains all the classical propositional interpretations that satisfy the
set ConC(T ) of all classical consequence of the set T , i.e. W = {w : w |=
ConC(T )},

– for every α ∈ ForC(LPG+), [α] = {w ∈ W : w |= α} and F = {[α] : α ∈
ForC(LPG+)},

– v : W ×I → {true, false} is an assignment such that for every world w ∈ W
and every propositional letter p ∈ I, v(w, p) = true iff w |= p,

– µ : F → G+, such that µ([α]) = a iff M=aα ∈ T .

Note that, since w’s are classical propositional interpretations, in the above def-
inition of M we use w |= α to denote that the interpretation w satisfies α in the
sense of classical propositional logic.

First we have to prove that M is a measurable LPG+-model. F is an algebra
of subsets of W . Indeed, for an arbitrary formula α, W = [α ∨ ¬α] ∈ F . Also,
if [α] ∈ F , then the complement of [α] is the set [¬α], and it belongs to F , and
if [α1], . . . [αn] ∈ F , then the union [α1] ∪ . . . ∪ [αn] ∈ F because [α1] ∪ . . . ∪
[αn] = [α1 ∨ . . . ∨ αn]. Thus, F is an algebra of subsets of W . Next, we will
show that µ is an G+-measure on F . If [α] = [β], then, by the completeness
theorem for classical classical propositional logic, ConC(LPG+) $ α ↔ β, and
M=0¬α ↔ β ∈ T , by Rule 3. From Axiom 4, it follows that µ is well-defined.
Let [α] ∩ [β] = ∅, M=aα,M=bβ ∈ T . By the completeness theorem for classical
classical propositional logic and Rule 3, we have T $ M=0(α ∧ β). Thus, by
Axiom 5, it follows M=a∗b(α ∨ β) ∈ T , i.e. µ([α] ∪ [β]) = a ∗ b. Hence, M is a
measurable LPG+-model.

Finally, we can show that for every formula Φ, M |= Φ iff Φ ∈ T , and con-
sequently that the set T is satisfiable. If Φ is a classical formula, the statement
obviously holds. If Φ = M=aα, then

M |= M=aα iff µ([α]) = a iff M=a ∈ T . �
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4 Conclusion

We have presented a measure logic which is suitable for reasoning about different
models of uncertainty. This approach allows to extend standard probabilistic rea-
soning when we consider different additive structures (e.g. examples from section
2). Nonarchimedean additive monoids correspond to the first kind of Keynes’ re-
marks where two probabilities are comparable but still it is not possible to say
how many times one is higher than another. The second kind of Keynes’ remarks
(un-comparable probabilities) can be treated using partially ordered monoids.
We have given a sound and complete axiomatic system with infinitary rules of
inferences. This framework is very general and can be used for other similar
logics. For example, in a similar way we could extend propositional inuitionistic
logic. Namely, one could introduce the notion of an G+-measure in exactly the
same way as above on general domains as rings of sets.

It would be very useful to study the natural connections between LPG+ and
many other logics: temporal logics, possibility logic, conditional logic, multival-
ued logics, fuzzy logic, etc:

– If G is a set of sequences of rational numbers, and in M=aα the sequence a
denotes values of the probability of α along a discrete linear-time line, we
can enrich probabilistic reasoning with some temporal features.

– If the range of measure is the domain of the monoid ({0, 1, 2, . . .}∪{∞}, min,
∞), so that µ(W ) = 0 and µ(∅) = ∞, we obtain a plausibility space known
as ordinal ranking [8].

– If the range of measure is the unit interval [0, 1] and we choose ∗ to be max
(sup), i.e. µ(W ) = 1, µ(∅) = 0 and µ(A) = supw∈A(µ(w)), we obtain the
structures suitable for semantical characterization of possibility logic [3,4].

– If the range of measure is the unit interval [0, 1] provided with the binary
operation (a, b) �→ a+b+λab, where λ ∈ (−1, +∞), we obtain the well-known
fuzzy Sugeno λ−measure.

– The disjunctive fragment of fuzzy logic can be modelled if we choose ∗ to be
one of the well-known t-conorms [2,4,17,24].

As we stressed above, by suitable choice of the range G the logic LPG+ can be
adapted to many real situations which require reasoning about uncertainty. Thus,
the further investigations of the logic can be developed in various directions, both
practical and theoretical. It would be very interesting to develop procedures to
compare logics LPG+

1
and LPG+

2
, for different ranges G1 and G2.

An important example of logic LPG+ corresponds to G+-measure µ on a field
F of subsets of Ω, where (G,≤, ∗, 0) is a linearly ordered commutative monoid.
In that case we can introduce ’weaker’ operators: M≥a and M≤a, and then the

operator M=a is definable by them: M=aα
def= M≥aα ∧M≤aα. In a completely

analog way, we can give the corresponding axiomatization. Logic LPG+ can be
also extended so that it can permit qualitative comparison of uncertainty, in the
way similar to the one given in [15].

Finally, let us mention that decidability is very important for applicability of
a logic system. As in many similar logics [12,14,18] the problem of decidability,
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i. e. the problem of satisfiability of a formula is equivalent to satisfiability in G+

of a of equalities and negations of equalities of the forms: x1 ∗ x2 ∗ . . . ∗ xm = a
and x1 ∗ x2 ∗ . . . ∗ xm �= b, for some a and b from G+. It is obvious that the
logic LPG+ is decidable if the set G is finite. Also, for some infinite sets G the
corresponding logics are decidable. Determining more precisely for which infinite
sets G this holds seems to be an interesting subject for further investigation.
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Abstract. We define weak implication H �−→ϕ E (“H weakly implies E
under ϕ”) through the relation ϕ(E|H) = 1, where ϕ is a (coherent) con-
ditional uncertainty measure. By considering various such measures with
different levels of generality, we get different sets of “inferential rules”,
that correspond to those of default logic when ϕ reduces to a conditional
probability.

Keywords: conditional uncertainty measures, weak implication, default
logic.

1 Introduction

How can a seemingly loose concept like “weak implication” be embedded in a rig-
orous mathematical framework? There is a huge relevant literature on this matter,
and lack of space does not allow us to undertake a discussion or a review on this.
Just to recall some “semantic” aspects, let us consider the trivial statement “if it
rains on the spot x, then x is wet”; this is clearly a logical implicationR ⊆ W (with
obvious meaning of the symbols concerning the events R and W ). Conversely, as-
suming W (x is wet), we could conclude R (it rains on the spot x) if we are not
made aware of possible water sources around x: shortly, we may say “W weakly
implies R” (or else that the “rule” W ⊆ R rarely has exceptions).

Now, given a conditional (uncertainty) measure ϕ (for precise definitions, see
Section 2), we can represent the above situation by the notation W �−→ϕ R
and by assessing ϕ(R|W ) = 1, but for a rigorous formulation we need to say
something more on events and conditional events.

An event can be singled-out by a (nonambiguous) statement E, that is a
(Boolean) proposition that can be either true or false (corresponding to the two
“values” 1 or 0 of the indicator IE of E). The “logic of certainty” deals with
true and false as final, and not asserted, answers concerning a possible event,
while two particular cases are the certain event Ω (that is always true) and the
impossible event ∅ (that is always false): notice that only in these two particular
cases the relevant propositions correspond to an assertion. To make an assertion,
we need to say something extra-logical, such as “You know that E is false” (so
that E = ∅).

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 139–150, 2007.
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In this paper we consider different classes of conditional measures ϕ, and on
the basis of a suitable definition of weak implication we search for relevant “in-
ferential rules”, whose number should increase as the level of generality of the
measure ϕ decreases. In particular, we show that when ϕ reduces to a (coherent)
conditional probability P , we get exactly the rules for default reasoning (relevant
references are [15] and [16]) as given, e.g., by Lehmann & Magidor [13]. In other
words, in our framework default logic can be seen as a particular case of weak im-
plication – in terms of ϕ – when we take as ϕ a coherent conditional probability.

To make clear our “strategy”, let us refer to the more familiar case of proba-
bility. As it is well–known , a certain event (that is, an event known to be true)
has probability 1, but not conversely (so that we may have many possible events
whose probability is 1). Given a conditional event E|H , notice that P (E) = 1
does not imply P (E|H) = 1 (as in the usual framework where it is necessary to
assume P (H) > 0). We can take instead P (H) = 0 (the conditioning event H
– which must be a possible one – may in fact have zero probability, since in the
assignment of P (E|H) we are driven only by coherence [6]). Then a probability
equal to 1 can be, in our framework, updated .

Moreover, P (E|H) = 1 does not imply H ⊆ E: take in fact, e.g., an event
E with P (E) > 0 and an event H ⊃ E such that P (H) = P (E) (that is
P (Ec ∧ H) = 0). In particular, if we assert Hc ∨ E = Ω, then H ⊆ E (H
logically implies E), so we certainly have P (E|H) = 1.

It could appear that the most “natural” way to weaken inclusion should be
the requirement P (Hc ∨ E) = 1. But this weaker assumption in general is not
enough (whenever P (H) = 0) to get P (E|H) = 1, while P (E|H) = 1 always
entails P (Hc ∨ E) = 1. The two latter statements easily follow from

P (Hc ∨ E) = 1− P (H ∧ Ec) = 1− P (H)P (Ec|H) .

In other (semantic) words, we require that, even if a part of H is not inside E,
this part can be considered, in a sense, as “ignorable” (with respect to H itself),
while the probability of Hc ∨E can be equal to 1, due to the circumstance that
H may have probability equal to 0 even if a “large part” of it is not inside E.

Other relevant aspects and results, based on the truth values of conditional
events and on the ensuing logical relations involving unconditional ones, are
discussed in the paper [14].

The previous considerations should make clear why we choose (given a suitable
conditional measureϕ) as definition ofH �−→ϕ E simply the equalityϕ(E|H) = 1.

2 Conditional Measures and Coherent Partial
Assessments

We consider conditional measures ϕ(·|·) through a direct introduction of a func-
tion whose domain is an arbitrary set of conditional events.

We recall that in this way we can define a conditional measure for any pair
of events E, H , with H �= ∅, and the knowledge (or the assessment) of the
“joint” and “marginals” unconditional measures ϕ(E ∧ H) and ϕ(H) is not
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required. Obviously, if the latter are already given, there must exist suitable
rules that put them in relation with ϕ(E|H), but the converse is not necessarily
true. In particular, there is no need, as in the usual approaches – where the
conditional measure is introduced by definition as a suitable function of the two
aforementioned unconditional measures – of any specific assumption (such as –
referring to the case of probability – the requirement of positivity for the measure
of the given conditioning event).

Our interest is focused on conditional measures ϕ(·|·) such that there exist two
operations ⊕ and , which render ϕ formally (or, better, essentially) “similar”
to a conditional probability.

2.1 Decomposable Conditional Measures

Given a Boolean algebra E , a function

ϕ : E → [0, 1]

is a ⊕-decomposable measure if ϕ(Ω) = 1, ϕ(∅) = 0 and there exists a commuta-
tive, associative and increasing operation ⊕ from (IR+

o )2 to IR+
o , with 0 as neutral

element and such that the following condition holds: for every Ei, Ej ∈ E , with
Ei ∧ Ej = ∅,

ϕ(Ei ∨Ej) = ϕ(Ei)⊕ ϕ(Ej). (1)

Two particular well-known cases of decomposable measures are probability
(where ⊕ is the standard sum) and possibility (where ⊕ is the maximum).

Definition 1. Let ϕ be a real function defined on C = E ×H, with E a Boolean
algebra, H ⊆ E an additive set (i.e., closed with respect to finite logical sums)
with ∅ /∈ H. Then the function ϕ is a (⊕ , ,)–decomposable conditional measure
if there exist two commutative, associative and increasing operations ⊕ , , from
(IR+

o )2 to IR+
o , having, respectively, 0 and 1 as neutral elements, and with ,

distributive over ⊕, such that:
(C1) ϕ(E|H) = ϕ(E ∧H |H), for every E ∈ E and H ∈ H ,
(C2) for any given H ∈ H the function ϕ(·|H) is a ⊕-decomposable measure ,
(C3) for every A ∈ E and E, H, E ∧H ∈ H ,

ϕ
(
(E ∧A)|H

)
= ϕ(E|H), ϕ

(
A|(E ∧H)

)
.

Then different (decomposable) conditional measures can be obtained by particu-
lar choices of the two operations ⊕ and , . For example, choosing ordinary sum
and product, or max and any t-norm, we get, respectively, conditional proba-
bility as given by de Finetti [11] and (in an equivalent form) by Popper [?] (see
[5]), or conditional possibility (see [1]).

Note that (C1) and (C2) imply
(C1’) ϕ(H |H) = 1, for every H ∈ H .
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2.2 Weakly and Generalized Decomposable Measures

We introduce different classes of measures singled-out on the basis of the set of
events (conditional or not) where suitable properties of the operations ⊕ and ,
are required to hold.

Even if the above definition of decomposable measure is very general, never-
theless it is unable to capture many well known ones, for example belief functions
and convex capacities (known also as 2-monotone functions). In fact, not all the
uncertainty measures known in literature are decomposable as in Definition 1,
nevertheless a measure can be “decomposed” – as in eq. (1) – by an operation
satisfying weaker conditions: it means that the properties required to the opera-
tion ⊕ hold only on suitable subsets, in the sense that, if ϕ admits an operation
⊕ satisfying condition (1), then ⊕ is, with respect to the elements of the set

K = {(ϕ(A), ϕ(B)) : A,B ∈ E , A ∧B = ∅} ⊂ ϕ(E)× ϕ(E) ,

commutative, associative and admits ϕ(∅) as neutral element, and it is also
monotone in some subset of K, depending on the particular choice of ϕ.

We recall the definition of weakly decomposable measure introduced in [5].

Definition 2. Let E be a Boolean algebra of events; a function ϕ from E to [0, 1]
is a capacity if ϕ(Ω) = 1, ϕ(∅) = 0 and for every A ⊆ B we have ϕ(A) ≤ ϕ(B).

Definition 3. Let E be a Boolean algebra of events; a function ϕ from E to [0, 1]
is a weakly ⊕-decomposable measure if ϕ(∅) = 0, ϕ(Ω) = 1 and there exists a
binary operation ⊕ from ϕ(E) × ϕ(E) to ϕ(E), whose restriction to the set K is
increasing and is such that condition (1) holds.

As already noted, the operation ⊕ is, with respect to the elements of K, commu-
tative and associative, and by monotonicity requirement, it admits 0 as neutral
element. Nevertheless, as proved in [5], ⊕ needs not be extendible to a function
defined on the whole ϕ(E) × ϕ(E) (and so neither in [0, 1]2) satisfying the same
properties .

In [7], by relaxing the requirement of monotonicity for ⊕ onK, a weaker notion
(that holds for a large class of uncertainty measures) has been introduced.

Definition 4. Let E be a Boolean algebra of events; a function ϕ from E to
[0, 1] is a generalized ⊕-decomposable measure if it is a capacity and there exists
a binary operation ⊕ from ϕ(E) × ϕ(E) to ϕ(E), whose restriction to the set K
is such that condition (1) holds.

The condition on ϕ to be a capacity implies that ⊕ is increasing when restricted
to the pairs {(ϕ(F ), ϕ(E)), (ϕ(F ), ϕ(∅)) : E ∧ F = ∅}, i.e.

ϕ(F ) ⊕ ϕ(E) = ϕ(E ∨ F ) ≥ ϕ(F ) = ϕ(F )⊕ ϕ(∅).

Moreover, ⊕ admits ϕ(∅) as neutral element in K, while it is not assured that
ϕ(E)⊕ ϕ(F ) = ϕ(F ) even if ϕ(E) = 0 (so 0 is not the neutral element).
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The class of generalized ⊕-decomposable measures includes, for example, be-
lief functions (see [7]), which satisfy the further property that the operation ⊕
is strictly increasing with respect to the pairs of events of K′ ⊆ K, with

K′={(ϕ(A),ϕ(C)) , (ϕ(B), ϕ(C)) :A,B,C ∈ E , A ⊂ B,B ∧C=∅, ϕ(A) < ϕ(B)} .

As discussed in [10], even convex capacities, i.e. functions such that
ϕ(A ∨ B) ≥ ϕ(A) + ϕ(B) − ϕ(A ∧ B) for any A,B ∈ E , can be seen as gen-
eralized ⊕-decomposable measures strictly increasing with respect to the pairs
of events of the set K′.

In [10] it has been proved that, inside the class of generalized ⊕-decomposable
measures strictly increasing with respect to pairs of events in

K∗ = {(ϕ(∅), ϕ(A)) , (ϕ(A), ϕ(B)) : A,B ∈ E , A ∧B = ∅, ϕ(∅) < ϕ(A)} ,

there are also 0-monotone functions, i.e. those such that for any A,B ∈ E , with
A ∧B = ∅,

ϕ(A ∨B) ≥ ϕ(A) + ϕ(B).

Moreover, it is shown that not all generalized ⊕-decomposable measures
strictly increasing on K′ [K∗] are 0-monotone; it means that the former classes
are strictly larger than the latter.

2.3 Weakly and Generalized Decomposable Conditional Measures

We give now the definition of generalized [weakly] decomposable conditional
(uncertainty) measure (introduced in [5] and [7] having in mind that an operation
, should not be distributive over ⊕ on the whole ϕ(C) × ϕ(C), but only when
we restrict the domain of ⊕ to the set K).

Definition 5. A real function ϕ defined on C = E × H, with E a Boolean al-
gebra and H an additive set, such that ∅ �∈ H, is a generalized [weakly] (⊕,,)-
decomposable conditional measure if

(C1) ϕ(E|H) = ϕ(E ∧H |H), for every E ∈ E and H ∈ H ,
(C2) for any H∈H the function ϕ(·|H) is a generalized [weakly] ⊕-decomposable

measure,
(C3) there exists an operation , : ϕ(C)× ϕ(C) → ϕ(C) whose restriction to the

set
Γ = {(ϕ(E|H), ϕ(A|E ∧H)) : A,E ∈ E , H,E ∧H ∈ H}

is increasing, admits 1 as neutral element and is such that, for every A,E ∈
E and E ∧H,H ∈ H

ϕ(E ∧A|H) = ϕ(E|H), ϕ(A|E ∧H),

(C4) the operation , is distributive over ⊕ only on the following set

{(ϕ(H |K), (ϕ(E|H ∧K), ϕ(F |H ∧K))) : E ∧ F ∧H ∧K = ∅, H ∧K, K ∈ H}.

Notice that the operations , is commutative and associative with respect to the
elements of Γ .
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2.4 Partial Assessments and Coherence

All the above definitions are based on the assumption that the set of events
is a Boolean algebra and the set of conditional events is the cartesian product
of an algebra and an additive set. Nevertheless, in most situations the base of
knowledge is given by an arbitrary set of (conditional) events, and the function ϕ
on them summarizes the state of information. Making inference means enlarging
this assessment to new events, maintaining the rules required to the function
ϕ to represent uncertainty (for instance, to be a conditional probability). The
notion of coherence formally deals with this problem.

Definition 6. Given an arbitrary set of conditional events F , a real function ϕ
on F is a coherent generalized [weakly] conditional (⊕,,)-decomposable assess-
ment if there exists C ⊇ F , with C = E × H (where E is a Boolean algebra and
H an additive set), and a generalized [weakly] (⊕,,)-decomposable conditional
measure ϕ′(·|·) on C extending ϕ.

Characterizations of ϕ for coherent conditional probabilities have been given in
[2,4,6], for coherent conditional possibilities in [9,12], for coherent conditional
plausibility and belief functions in [3], and, finally, for coherent weakly (⊕,,)-
decomposable conditional measures in [5].

3 Weak Implication

Given (as measure of reference) a particular coherent conditional measure be-
longing to one of the classes introduced in Section 2, we adopt (taking into
account the considerations made in Sect. 2.4) the following definition of weak
implication:

Definition 7. An event A weakly implies an event C under ϕ (in symbols
A �−→ϕ C) iff ϕ(C|A) = 1.

We denote by ∆ϕ the set of given weak implications.

3.1 Weak Implication for Generalized Decomposable Conditional
Measures

First of all we notice that the single assessment ϕ(C|A) = 1 is coherent (not only
for events A ⊆ C) for every generalized unconditional measure, except when A
and C are incompatible. We remark that we can assign ϕ(C|A) = 1 also in the
case ϕ(C|Ω) = 0: then the only coherent value for ϕ(A|Ω) will be 0 (as for
conditional probability).

Finally, we recall that for any assessment ϕ(F) which is a coherent generalized
[weakly] (⊕,,)-decomposable conditional assessment, its enlargement to C =
E × H ⊇ F , is not unique (in general). Nevertheless for some events we can
have a unique coherent extension, so giving rise to the important concept of
entailment .
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Definition 8. If ϕ(F) contains a set of weak implications ∆ϕ and for some
event E|H ∈ F every extension necessarily assumes value equal to 1, then we
say that “∆ϕ entails H �−→ϕ E”

Theorem 1. Let F be a set of conditional events, ϕ(F) an assessment coherent
with a a generalized [weakly] (⊕,,)-decomposable conditional measure ϕ and
∆ϕ ⊆ ϕ(F) be the set of the relevant weak implications. Then the following
conditions hold:
(i) ∆ϕ entails A �−→ϕ A for any A �= ∅
(ii) (A = B) , (A �−→ϕ C) ∈ ∆ϕ entails B �−→ϕ C

(iii) (A ⊆ B) , (C �−→ϕ A) ∈ ∆ϕ entails C �−→ B

(iv) (A ∧B �−→ϕ C) , (A �−→ϕ B) ∈ ∆ϕ entails A �−→ϕ C

Proof. (i) amounts to ϕ(A|A) = 1 for every possible event A.
(ii) and (iii) trivially follow from elementary properties, in particular

monotonicity with respect to inclusion of generalized decomposable conditional
measures.

(iv) : from ϕ(C|A ∧B) = ϕ(B|A) = 1 it follows that ϕ(C|A) = 1, since

ϕ(C|A) ≥ ϕ(C|A ∧B), ϕ(B|A) = 1, 1 = 1 .

3.2 Dual Weak Implication

We recall that a function ϕ∗(·|·) is said the dual of a function ϕ(·|·) if for every
E|H ∈ E = B ×H one has:

ϕ∗(E|H) = 1− ϕ(Ec|H),

where Ec is the contrary of E.
In general, for a generalized [weakly] (⊕,,)-decomposable conditional mea-

sure ϕ the condition ϕ∗(E|H) = 1 (which is equivalent to ϕ(Ec|H) = 0) does
not hold, in other words ∆ϕ �= ∆ϕ∗ .

A stronger definition of weak implication is the following

Definition 9. An event A weakly implies an event C dually under ϕ (in for-
mulas A ⇒ϕ C) iff ϕ(C|A) = ϕ∗(C|A) = 1.

We denote by ∆(ϕ,ϕ∗) the set of given dual weak implications.
Obviously, for ⇒ϕ all the properties given in Theorem 1 hold; moreover for

⇒ϕ we have:

Theorem 2. Let F be a set of conditional events, ϕ(F) an assessment coherent
with a weakly (⊕,,)-decomposable conditional measure ϕ and ∆(ϕ,ϕ∗) ⊆ ϕ(F)
be the set of the relevant dual weak implications. Then the following conditions
hold:

(v) (A ⇒ϕ B) , (A ⇒ϕ C) ∈ ∆(ϕ,ϕ∗) entails A ∧B ⇒ϕ C;
(vi) (A ⇒ϕ B) , (B ⇒ϕ A) , (A ⇒ϕ C) ∈ ∆(ϕ,ϕ∗) entails B ⇒ϕ C;
(vii) (A ⇒ϕ B) , (A ⇒ϕ C) ∈ ∆(ϕ,ϕ∗) entails A ⇒ϕ B ∧ C
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Proof. If ϕ(B|A) = ϕ(C|A) = 1 and ϕ∗(B|A) = ϕ∗(C|A) = 1, then ϕ(Bc|A) =
ϕ(Cc|A) = 0 and, since ϕ is a weakly (⊕,,)-decomposable conditional measure,
then 0 is the neutral element of ⊕, and

1 = ϕ(C|A) = ϕ(C ∧B|A)⊕ ϕ(C ∧Bc|A) = ϕ(C ∧B|A) =

ϕ(C|A ∧B), ϕ(B|A) = ϕ(C|A ∧B).

Moreover, ϕ∗(C|A) = 1 implies ϕ(Cc ∧B|A) = 0, so it follows

0 = ϕ(Cc ∧B|A) = ϕ(Cc|A ∧B), ϕ(B|A) = ϕ(Cc|A ∧B)

that implies ϕ∗(C|A ∧B) = 1− ϕ(Cc|A ∧B) = 1. Then (v) holds.
If ϕ(B|A) = ϕ(A|B) = ϕ(C|A) = 1 and ϕ∗(B|A) = ϕ∗(A|B) = ϕ∗(C|A) = 1,

then ϕ(Bc|A) = ϕ(Ac|B) = ϕ(Cc|A) = 0 and, analogously to the previous case,
since 0 is the neutral element of ⊕,

1 = ϕ(C|A) = ϕ(C∧B|A)⊕ϕ(C∧Bc |A) = (ϕ(C|A∧B),ϕ(B|A)) = ϕ(C|A∧B)

that implies ϕ(C|B) = 1, since

ϕ(C|B) = ϕ(C ∧A|B) ⊕ ϕ(C ∧Ac|B) = ϕ(C|A ∧B), ϕ(A|B) = ϕ(C|A ∧B).

Analogously, ϕ(Cc|A ∧B) = ϕ(Cc|A) = 0 and ϕ(Cc|B)) = ϕ(Cc|A ∧B) = 0, so
ϕ∗(C|B) = 1. Then (vi) holds.

If ϕ(B|A) = ϕ(C|A) = 1 and ϕ∗(B|A) = ϕ∗(C|A) = 1, then, by duality
and monotonicity with respect to inclusion, ϕ(B ∧ Cc|A) = 0, so, since 0 is the
neutral element of ⊕,

1 = ϕ(B|A) = ϕ(B ∧ C|A)⊕ ϕ(B ∧Cc|A) = ϕ(B ∧ C|A).

Moreover, again

ϕ∗(B ∧ C|A) = 1− ϕ(Bc ∨ Cc|A) = 1− (ϕ(Bc|A)⊕ ϕ(B ∧ Cc|A)) = 1.

Then (vii) holds.

The same properties do not hold in general for �−→ϕ, as the following examples
show:

Example 1. Consider the following possibility over the algebra generated by the
logical independent events A,B,C

Π(A ∧B ∧ C) = Π(A ∧Bc ∧ Cc) =
1
4
,

Π(A ∧B ∧ Cc) = Π(A ∧Bc ∧ C) = Π(Ac ∧B ∧ Cc) = Π(Ac ∧Bc ∧ C) =
1
2
,

Π(Ac ∧B ∧ C) = Π(Ac ∧Bc ∧ Cc) = 1 ,
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hence
Π(A) = Π(A ∧B) = Π(A ∧ C) =

1
2
.

Taking as triangular norm T the ordinary product we obtain a T -conditional
possibility Π(·|·) such that Π(B|A) = Π(C|A) = 1, while Π(C|A ∧B) = 1

2 .
This shows that A �−→Π B and A �−→Π C, but A ∧B �−→Π C fails.
Note that the same conclusion follows by taking as triangular norm the min-

imum (which is not strict).

Example 2. Consider the following possibility over the algebra generated by the
logical independent events A,B,C

Π(A ∧B ∧ C) = Π(Ac ∧B ∧ C) =
1
4
,

Π(A ∧B ∧ Cc) = Π(A ∧Bc ∧ C) =
1
2
,

Π(A ∧Bc ∧ Cc) = Π(Ac ∧B ∧ Cc) = Π(Ac ∧Bc ∧ C) =
1
8
,

Π(Ac ∧Bc ∧ Cc) = 1 ,

hence Π(A) = Π(A ∧B) = Π(A ∧ C) = Π(B) = 1
2 , and Π(B ∧ C) = 1

4 .
Taking as triangular norm T the ordinary product we obtain a T -conditional

possibility Π(·|·) such that Π(B|A) = Π(C|A) = Π(A|B) = 1, but Π(C|B) = 1
2 .

Then A �−→Π B and B �−→Π A, but B �−→Π C fails.

Example 3. Consider the following possibility over the algebra generated by the
logical independent events A,B,C

Π(A ∧B ∧ C) =
1
2
, Π(Ac ∧B∗ ∧C∗) =

1
8
,

where B∗ – and analogously for C∗ – stands for B or Bc, and

Π(A ∧B ∧ Cc) = Π(A ∧Bc ∧ C) = 1 , Π(A ∧Bc ∧ Cc) =
1
8
,

hence, taking for , again the ordinary product, Π(B|A) = Π(C|A) = 1, while
Π(B ∧ C|A) = 1

2 .
Then A �−→Π B and A �−→Π C, but A �−→Π B ∧C fails.

Moreover, the properties (v), (vi), (vii) do not necessarily hold for ⇒ϕ when
ϕ is a generalized decomposable measure, as the following example shows:

Example 4. Consider the following convex capacity over the algebra E generated
by the logical independent events A,B,C:

ϕ(A ∧B ∧ C) = 0.2 , ϕ(A ∧B ∧ Cc) = ϕ(A ∧Bc ∧ C) = ϕ(A ∧Bc ∧ Cc) = 0 ,

ϕ((A ∧B ∧ Cc) ∨ (A ∧Bc ∧ C)) = 0 , ϕ((A ∧B ∧ C) ∨ (A ∧Bc ∧ Cc)) = 0.2
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ϕ((A ∧B ∧Cc) ∨ (A ∧Bc ∧ C)) = ϕ(A ∧Bc) = 0 ,

ϕ(A ∧B) = ϕ(A ∧ C) = 1 ,

so for any K ∈ E including (A∧B) or (A∧C) we have ϕ(K) = 1 and ϕ(Kc) = 0.
By considering any operation , having 1 as neutral elements and satisfying con-
ditions (C3) and (C4) of Definition 5, one gets ϕ(B|A) = ϕ(C|A) = ϕ(A|B) = 1
and ϕ(Bc|A) = ϕ(Cc|A) = ϕ(Ac|B) = 0 (so ϕ∗(B|A) = ϕ∗(C|A) = ϕ∗(A|B) =
1), while ϕ(C|A ∧B) = 0.2 = ϕ(C|B) = ϕ(B ∧ C|A).

Then, the statements (v), (vi) and (vii) do not hold.

Given a conditional measures ϕ, if for any H ∈ H the measure ϕ(·|H) is 0–
monotone, i.e. ϕ(E|H) + ϕ(Ec|H) ≤ ϕ(H |H) = 1, it follows (since ϕ(E|H) = 1
implies ϕ(Ec|H) = 0) ϕ∗(E|H) = 1, and then ∆ϕ coincides with ∆(ϕ,ϕ∗).

Thus, from the above results it comes out that for aweakly (⊕,,)-decomposable
conditional measureϕ on C = E×H such that, for anyH ∈ H, the measureϕ(·|H)
is 0–monotone, ∆ϕ satisfies all the properties (i) –(vii).

3.3 Weak Implication for Probabilities

Since a conditional probability is a particular weakly decomposable conditional
measure, and for any given conditioning event it is 0–monotone, it follows that
if ∆P is a set of weak implications induced by a conditional probability P (i.e.
H �−→P E means P (E|H) = 1) we have that properties (i) –(vii) hold.

Moreover, it satisfies a further property:

Theorem 3. Given a set ∆P of weak implication induced by a coherent condi-
tional probability, we have

(viii) (A �−→P C) , (B �−→P C) ∈ ∆P entails A ∨B �−→P C.

Proof. Since
P (C|A ∨B) =

= P (C|A)P (A|A ∨B) + P (C|B)P (B|A ∨B)− P (C|A ∧B)P (A ∧B|A ∨B) =

= P (A|A ∨B) + P (B|A ∨B)− P (C|A ∧B)P (A ∧B|A ∨B) ≥ 1 ,

we get P (C|A ∨B) = 1.

Remark. Properties (i)–(viii) correspond to those that, in default logic (see,
e.g., [13]), are called, respectively, Reflexivity, Left Logical Equivalence, Right
Weakening, Cut, Cautious Monotonicity, Equivalence, And, Or.

Many authors (cfr., e.g., [13]) claim (and we agree) that the following prop-
erties should be regarded as “unpleasant” (they in fact do not necessarily hold
in our framework: see [8]):

(Monotonicity)
(A ⊆ B) , (B �−→P C) ∈ ∆P entails A �−→P C

(Transitivity)
(A �−→P B) , (B �−→P C) ∈ ∆P entails A �−→P C
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(Contraposition)
(A �−→P B) ∈ ∆P entails Bc �−→P Ac

So they should be replaced by others, that we express below in our own no-
tation and interpretation: we show that these properties hold in our framework.
Since a widespread consensus among their “right” formulation is lacking, we
will denote them as cs–(Negation Rationality), cs–(Disjunctive Rationality), cs–
(Rational Monotonicity), where “cs” stands for “in a coherent setting”.

Notice that, given a weak implication H �−→P E, to say (H �−→P E) �∈ ∆P

means that the conditional event E|H belongs to the set C \∆P .
cs–(Negation Rationality)
If (A∧C �−→P B) , (A∧Cc �−→P B) �∈ ∆P then ∆P does not entail (A �−→P B).

Proof. Since (A ∧ C �−→P B) and (A ∧ Cc �−→P B) do not belong to ∆P , that
is P (B|A ∧ C) < 1 and P (B|A ∧ Cc) < 1 , then

P (B|A) = P (B|A ∧C)P (C|A) + P (B|A ∧ Cc)P (Cc|A) < 1 .

cs–(Disjunctive Rationality)
If (A �−→P C) , (B �−→P C) �∈ ∆P then ∆P does not entail (A ∨B �−→P C).

Proof. Starting from the equalities

P (C|A ∨B) = P (C|A)P (A|A ∨B) + P (C|Ac ∧B)P (Ac ∧B|A ∨B) =

= P (C|B)P (B|A ∨B) + P (C|A ∧Bc)P (A ∧Bc|A ∨B),
since P (C|A) < 1 and P (C|B) < 1, assuming P (C|A ∨B) = 1 would imply (by
the first equality) P (A|A ∨ B) = 0 and (by the second one) P (B|A ∨ B) = 0
(contradiction).
cs–(Rational Monotonicity)
If (A ∧B �−→P C) , (A �−→P Bc) �∈ ∆P then ∆P does not entail (A �−→P C).

Proof. If it were P (C|A) = 1, i.e.

1 = P (C|A ∧B)P (B|A) + P (C|A ∧Bc)P (Bc|A) ,

we would get either P (C|A ∧B) = P (C|A ∧Bc) = 1 or one of the following

P (C|A ∧B) = P (B|A) = 1 , P (C|A ∧Bc) = P (Bc|A) = 1

(contradiction).

4 Conclusions

The theory of default reasoning has been embedded in a general theory con-
cerning weak implication (an event H weakly implies an event E), expressed
through the relation ϕ(E|H) = 1 and considering various coherent conditional
uncertainty measures ϕ with different levels of generality. One of the main result
is that in our framework default logic can be seen as a particular case of weak
implication when we take as ϕ a coherent conditional probability.
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Abstract. A sufficient condition, in terms of a de Finetti style repre-
sentation, is given for a probability function in Inductive Logic (with re-
lations of all arities) satisfying Spectrum Exchangeability to additionally
satisfy Language Invariance. This condition is shown to also be necessary
in the case of homogeneous probability functions. In contrast it is proved
that (purely) t-heterogeneous probability functions can never be mem-
bers of a language invariant family satisfying Spectrum Exchangeability.

Keywords: Uncertain reasoning, inductive logic, probability logic, Spec-
trum Exchangeability, Language Invariance.

1 Introduction

In common with recent developments in Inductive Logic, see for example [15]
(and [1], [2], [3] for the classical approach), we shall work within a first order
predicate language L with finitely many relation symbols, countably many con-
stants a1, a2, a3, . . . and no function symbols. The intention here is that these
constants ai exhaust the universe. Let SL,QFSL respectively denote the sen-
tences and quantifier free sentences of L.

We say that a function w : SL → [0, 1] is a probability function on L if it
satisfies that for all θ, φ, ∃xψ(x) ∈ SL :

(P1) If � θ then w(θ) = 1
(P2) If � ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ)
(P3) w(∃xψ(x)) = limm→∞w(

∨m
i=1 ψ(ai))

(P1) and (P2) are the standard axioms for a probability function. (P3) is the
Gaifman axiom (see [4]) expressing the fact that the ai exhaust the universe
and that in consequence ∃xψ(x) should be equated with the infinite disjunction∨∞

i=1 ψ(ai).
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Throughout w, possibly with various annotations, will denote a probability
function on L and, for the purposes of motivation, we shall be thinking of prob-
abilities in the sense of de Finetti as subjective degrees of belief.

By a theorem of Gaifman (see [4], where in fact the axioms (P1-3) were first
formulated) any probability function defined on QFSL (i.e. satisfying (P1) and
(P2) for θ, φ ∈ QFSL) extends uniquely to a probability function on L. In
this sense then we can largely limit our considerations to probability functions
defined just on QFSL. Indeed, by the Disjunctive Normal Form Theorem it then
follows that w is determined simply by its values on the state descriptions, that
is sentences of the form

m∧
s=1

∧
c1,c2,...,crs∈{b1,b2,...,bn}

±Ps(c1, c2, ..., crs)

where the bi are distinct constants from L (i.e. choices of aj) and P1, P2, . . . , Pm

are the relations of L with arities r1, r2, . . . , rm respectively.
In Inductive Logic we are basically interested in the choice of probability

functions w on L when these are intended to represent the beliefs, i.e subjective
probabilities, assigned by a rational or logical agent in the absence of any prior
knowledge. The key restraint here is that this assignment should be rational or
logical and it is customary to identify this with the requirement that w satisfies
certain rational or common sense principles.1

A number of such principles have been suggested, see for example [1], [2], [3],
[5], [8], [11], [13], [14], [15], [17], the most basic of which asserts that w should
not treat the constants ai differently:

The Constant Exchangeability Principle (Ex)
For θ, θ′ ∈ QFSL, if θ′ is obtained from θ by replacing, respectively, the (distinct)
constant symbols b1, b2, . . . , bk from L occurring in θ by the (distinct) constant
symbols c1, c2, . . . , ck from L then w(θ) = w(θ′).

We remark that for a purely unary language L this principle corresponds
to the property of exchangeability in the sense of de Finetti. For a purely n-
ary language (with a fixed n > 1) the corresponding property is that of joint
exchangeability studied by Kallenberg et al, see [6], [7]. We shall henceforth
assume that all probability functions mentioned satisfy Ex. Notice that in this
case the value of w on the state description as above does not depend on the
choice of b1, b2. . . . , bn from amongst the aj and so we may without loss take
these to be a1, a2, . . . , an.

There are two other such ‘common sense’ principles which we shall be con-
cerned with in this paper. In order to explain the first of these we need to

1 The relevance of the results in this paper to practical uncertain reasoning is largely
of a cautionary nature. We show how certain, arguably rational, general require-
ments on the assignment of beliefs as probabilities in fact impose quite stringent
practical limits on the choices permitted. Thus the non-observance of this practical
straightjacket amounts to flouting rationality, as we have interpreted it.
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introduce some notation. Given a state description Θ(b1, b2, . . . , bn) where the
bi are distinct constants from L we say that bi, bj are indistinguishable mod Θ,
written bi ∼Θ bj , if for any relation P (x1,x2, . . . ,xr) of L and any t1, . . . , tr ∈
{1, . . . , n}, the sentence P (bt1 , bt2 , . . . , btr) appears positively as a conjunct in
Θ(b1, b2, . . . , bn) if and only if P (bs1 , bs2 , . . . , bsr) also appears positively as a
conjunct in Θ(b1, b2, . . . , bn) where 〈bs1 , bs2 , . . . , bsr〉 is the result of replacing
any number of occurrences of bi in 〈bt1 , bt2 , . . . , btr〉 by bj or vice-versa. Clearly
∼Θ is an equivalence relation.

Define the spectrum of Θ, denoted S(Θ), to be the multiset2 of sizes of the
(non-empty) equivalence classes with respect to ∼Θ.

The Spectrum Exchangeability Principle (Sx)
If Θ(b1, b2, . . . , bn), Φ(c1, c2, . . . , cn) are state description and S(Θ) = S(Φ) then
w(Θ) = w(Φ).

Clearly expressed in this form Sx implies Ex. In the early accounts of Inductive
Logic, for example [1], [2], [3], [8], the language L was taken to be purely unary,
that is the predicates of the language are just P1(x), P2(x), . . . , Ps(x) (but see
[9], [10]). In this case state descriptions have the simple form

n∧
i=1

αhi(bi
)

where the αh(x), h = 1, 2, . . . , 2s are the atoms of L, that is formulae of the form

±P1(x) ∧ ±P2(x) ∧ . . . ∧ ±Ps(x),

and Sx reduces to Atom Exchangeability, Ax, asserting that

w

(
n∧

i=1

αhi(bi)

)

depends only on the multiset of |{i |hi = j}| for j = 1, 2, . . . , 2s.
It appears that the principle Ax was acceptable to Johnson and Carnap and

the earlier investigators since it follows from Johnson’s Sufficientness Principle3

which they advocated.
The second principle which we shall be concerned with here is that of Lan-

guage Invariance. The motivation behind this principle is that whilst we may at
any one time be interested is some particular finite language L a rational choice
of beliefs for that language should be capable of extension to a larger language.
After all there is clearly no reason to suppose that there are only finitely many
relations in existence and that L has already included all of them.

2 Equivalently, we can define the spectrum as the vector of sizes of the (non-empty)
equivalence classes in non-decreasing order.

3 See for example [17] or [18] for a formulation of this Principle in the notation of this
paper.
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Language Invariance

The probability function w on L satisfies Language Invariance4 if there exist a
class of probability functions wL for each finite predicate language L (as usual
with constants ai and no function symbols) such that whenever L′ is a sublan-
guage of L then w restricted to SL′ equals wL′ (wL 	SL = wL′ ) and wL = w.

In this case we shall describe the wL as a language invariant family containing
w.

In the next section we shall derive a sufficient condition for a probability func-
tion satisfying Spectrum Exchangeability to also satisfy Language Invariance.

2 A Sufficiency Condition for Language Invariance

Before stating and proving the main result of this paper we need to introduce a
particular family of probability functions up

L.
Let

B = {〈x0,x1,x2, ....〉 |x1 ≥ x2 ≥ ... ≥ 0, x0 ≥ 0,
∞∑

i=0

xi = 1}

and endow B with the standard weak product topology inherited from [0, 1]∞.
Let

p = 〈p0, p1, p2, . . .〉 ∈ B.

For a state description Θ(b1, b2, . . . , bq) (from language L) and ‘colours’

c = 〈c1, c2, . . . , cq〉 ∈ {0, 1, 2, . . .}q

(where 0 stands for the special colour black) we define jp(Θ(b1, b2, . . . , bq), c)
inductively as follows:

Set jp(�, ∅) = 1. Suppose that at stage q we have defined the probability
jp(Θ(b1, b2, . . . , bq), c). Pick colour cq+1 from 0, 1, 2, . . . according to the proba-
bilities p0, p1, p2, . . . and let

c+ = 〈c1, . . . , , cq, cq+1〉.

If cq+1 is the same as an earlier colour, cj say, with cj �= 0 extend Θ(b1, b2, . . . , bq)
to the unique state description Θ+(b1, b2, . . . , bq, bq+1) for which bj ∼Θ+ bq+1.
On the other hand if cq+1 is 0 or a previously unchosen colour then randomly
choose Θ+(b1, b2, . . . , bq, bq+1) extending Θ(b1, b2, . . . , bq) such that ∼Θ and ∼Θ+

agree on {b1, b2, . . . , bq}2. Finally let jp(Θ+, c+) be jp(Θ, c) times the probability
as described of then going from Θ, c to Θ+, c+.

Having defined these jp(Θ, c) now set

up
L(Θ) =

∑
c

jp(Θ, c).

4 This differs from the earlier definition of Language Invariance given in [5] and [17]
which was restricted to purely unary languages L, L′.



Language Invariance and Spectrum Exchangeability in Inductive Logic 155

By a straightforward generalization of the result in [15] (where just two colours
were considered) up

L satisfies Sx (and hence also Ex).

Theorem 1. Let the probability function w on L satisfy Sx. Then for w to be a
member of a language invariant family all satisfying Sx it is sufficient that there
is a measure µ on the Borel subsets of B such that for θ ∈ SL,

w(θ) =
∫

B

up
L(θ)dµ. (1)

Furthermore in this case if L contains at least one non-unary relation then this
language invariant family containing w is unique.

We call µ as in this theorem the de Finetti prior of w.

Proof. Suppose that (1) holds. Let L extend L and for φ ∈ SL set

wL(φ) =
∫

B

up
L(φ)dµ, (2)

in other words wL has the same de Finetti prior as w, but the language has
changed. Since the up

L satisfy Sx, so do the wL. We claim that wL 	SL = w. To
show this it is enough to show that for a state description Θ(a) from language
L, wL(Θ(a)) = w(Θ(a)), and for this it is enough to show that

up
L(Θ(a)) = up

L(Θ(a)). (3)

Let Φ(a) be a state description for L extending Θ(a) (and with the same con-
stants a = 〈a1, a2, . . . , aq〉) and consider a summand jp

L(Φ(a), c) which yields
up
L(Θ(a)) via

up
L(Φ(a)) =

∑
c

jp
L(Φ(a), c).

This summand is formed by q choices of colours c1, c2, . . . , cq and an increasing
sequences of choices of state descriptions

Φ1(a1), Φ2(a1, a2), Φ3(a1, a2, a3), . . . , Φq(a1, a2, . . . , aq) = Φ(a).

Let Θk(a1, a2, . . . , ak) be the state description of L which Φk(a1, a2, . . . , ak) ex-
tends. Then

Θq(a1, a2, . . . , aq) = Θ(a1, a2, . . . , aq)

and for this same choice of colours c and Θk jp
L(Θ(a), c) is a contributing sum-

mand to up
L(Θ(a)). Furthermore the only difference between these two contri-

butions is that at each choice of the kth state description jp
L(Φ(a), c) receives

as a multiplicative factor one over the number of possible state descriptions in
L extending Φk−1(a1, a2, . . . , ak−1) whereas jp

L(Θ(a), c) receives as a multiplica-
tive factor one over the number of possible state descriptions in L extending
Θk−1(a1, a2, . . . , ak−1). Note that this depends on ck, a genuine choice being
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available only when ck is either zero or not equal to any previous cj . However,
since otherwise in each case these factors depend only on k, c and on the rela-
tions in L and L and not on the particular state descriptions Θk−1(a1, . . . , ak−1),
Φk−1(a1, . . . , ak−1), overall

jp
L(Θ(a), c) = Mjp

L(Φ(a), c)

where M is the number of possible choices (according to c) of state descriptions
of a in L extending Θ(a). But this means that

jp
L(Θ(a), c) =

∑
Ψ(a)

jp
L(Ψ(a), c)

where Ψ(a) runs over the M many state descriptions of a in L admitted by c
and extending Θ(a). Since

up
L(Θ(a)) =

∑
Ψ(a)

∑
c

jp
L(Ψ(a), c)

where the sum is over all extensions Ψ(a) in L of Θ(a), rearranging the summa-
tion on the right hand side yields

up
L(Θ(a)) = up

L(Θ(a)),

as required.

Of course the required ‘full’ language invariant family for w can now be ob-
tained by restricting/marginalizing these wL.

To show uniqueness suppose that L has some non-unary relation symbol and
that there are two different language invariant families containing w, say w′, w′′

are the members of these families defined on L ⊃ L and they differ on some
state description, Ψ(a1, a2, . . . , an) say.

We first define a well founded ordering on state descriptions Θ(a1, a2, . . . , an)
of L or L, for fixed n, by setting

Θ(a) 
 Φ(a) ⇐⇒ ∼Θ is a refinement of ∼Φ .

We now show
w′(Θ(a)) = w′′(Θ(a)) (4)

by induction on this ordering. The least point in this ordering is when the equiv-
alence classes of ∼Θ are all singletons. In this case let ΦL(a1, a2, . . . , an) be a
state description of L having this minimal spectrum. (This is where we need L
to contain a non-unary relation symbol, to ensure that such a state description
exists.) Then ∼Φ(a) must again be this minimal spectrum for any state descrip-
tion Φ(a1, a2, . . . , an) of L extending ΦL(a1, a2, . . . , an) and w′ must take the
same value on these by Sx. Hence, since

w(ΦL(a1, a2, . . . , an)) = w′(ΦL(a1, a2, . . . , an)) =
∑
Φ(a)

w′(Φ(a)),
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where the summation is over state descriptions Φ(a) extending ΦL(a), we see
that if M is the number of such Φ(a) then for any one of them

w′(Φ(a1, a2, . . . , an)) = M−1w(ΦL(a1, a2, . . . , an)).

Since this reasoning also applies to w′′ (4) holds in this base case.
Now suppose that (4) holds for all Φ(a)�Θ(a). Let ΘL(a) be a state descrip-

tion of L having the same spectrum as Θ(a). Then again,

w(ΘL(a)) =
∑
Φ(a)

w′(Φ(a)) (5)

where the Φ(a) range over state descriptions in L extending ΘL(a). Now all of
these Φ(a) are less or equal to Θ(a) in the ordering 
, and state descriptions
with the same spectrum as Θ(a) do itself appear on the right hand side of this
expression a non-zero number of times. Furthermore the identity (5) also holds
with the probability function w′′ in place of w′, and by the inductive hypothesis
these terms are the same except possibly for the w′′(Φ(a)) when Φ(a) has the
same spectrum as Θ(a). But then of course they must also be the same in this
case, as required to prove (4) and the theorem.

3 An Application

For this section assume that our default language L has at least one non-unary
relation. We first recall a classification5 of probability functions w on L satisfying
Sx.

We say that w is homogeneous if for all k

lim
r→∞

∑
|S(Θ(a1,a2,...,ar))|=k

w(Θ(a1, a2, . . . , ar)) = 0

where theΘ(a1, a2, . . . , ar) range over the possible state descriptions of a1, a2, . . . ,
ar in L. In other words the probability that all the ai will fall in some fixed finite
number of equivalence classes with respect to indistinguishability is zero.

We say that w is t-heterogeneous if

lim
r→∞

∑
|S(Θ(a1,a2,...,ar))|=t

w(Θ(a1, a2, . . . , ar)) = 1.

In other words the probability that all the ai will fall in some t (non-empty)
equivalence classes with respect to indistinguishability is 1.

The following theorem appears in [14], [15] for the case of a purely binary
language and will appear in [11] for general not purely unary languages.

5 Given in [14], [15] for binary languages and more generally in the forthcoming [11].
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Theorem 2. Let w satisfy Sx. Then there are probability functions w[t] satisfy-
ing Sx and constants ηt ≥ 0 for 0 ≤ t < ∞ such that

w =
∞∑

i=0

ηiw
[i],

∞∑
i=0

ηi = 1,

w[t] is t-heterogeneous for t > 0 and w[0] is homogeneous. Furthermore the ηi

are unique and so are the w[i] when ηi �= 0.

The following result6 will appear in the forthcoming paper [12].

Theorem 3. Let w be a homogeneous probability function on L (not purely
unary) satisfying Sx. Then there is a measure µ on the Borel subsets of B such
that for θ ∈ SL,

w(θ) =
∫

B

up
L(θ)dµ.

Using this result we have the following corollary to Theorem 1:

Corollary 1. Let w be a homogeneous probability function on L (not purely
unary) satisfying Sx. Then w satisfies Language Invariance.

This is, to our way of thinking, a rather surprising result. In fact, considering also
the uniqueness part of Theorem 1, it means that just knowing a homogeneous w
on a sublanguage consisting of a single non-unary relation is, provided we require
Sx to be preserved, enough to determine it on all extensions of that language.

In contrast to Corollary 1 however:

Proposition 1. Let t > 1 and let w be a t-heterogeneous probability function
on L (not purely unary) satisfying Sx. Then w is not a member of any language
invariant family all satisfying Sx.

Proof. Suppose that w is a t-heterogeneous probability function on L and a
member of some language invariant family. Let w′ be a member of this family
on L = L ∪ {P1, P2, . . . , Pt+1} where the Pi are new unary predicates.

Since L contains a non-unary relation we can find a state description
Θ(a1, a2, . . . , at+1) for L whose restriction ΘL(a1, a2, . . . , at+1) to L has a spec-
trum of length t + 1 (so all the a1, ..., at+1 are mutually distinguishable already
in L). If w′(Θ(a1, a2, . . . , at+1)) > 0 then w(ΘL(a1, a2, . . . , at+1)) > 0, con-
tradicting t-heterogeneity. Hence by Sx w′(Ψ(a1, a2, . . . , at+1)) = 0 whenever
Ψ(a1, a2, . . . , at+1) has spectrum of length t + 1 and consequently w′(Φ(a)) = 0
whenever the state description Φ(a) has spectrum of length greater than t. (Since
any such Φ(a) extends some Ψ(a1, a2, . . . , at+1) with spectrum of length t + 1).

Now let Θ(a1, a2, . . . , at) be a state description for L with spectrum of length t
whose restriction ΘL(a1, a2, . . . , at) to L has a spectrum of length 1. Notice that
6 A similar representation theorem can be proved for t-heterogeneous probability func-

tions, see [16], but that will not be needed here.
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since for any spectrum of length t we can find an extension of Θ(a1, a2, . . . , at)
with that spectrum it must, by t-heterogeneity be the case that w′(Θ(a1, a2, . . . ,
at)) > 0. Furthermore if Φ(a1, a2, . . . , at+j) is a state description for a1, a2, . . . ,
at+j in L extending Θ(a1, a2, . . . , at) and w′(Φ(a1, a2, . . . , at+j)) �= 0 it must be
the case that Φ(a1, a2, . . . , at+j) has spectrum of length t and in consequence the
restriction ΦL(a1, a2, . . . , at+j) to L must still have spectrum of length 1. Hence
for ΨL(a1, a2, . . . , ar) ranging over state descriptions for L and r > t,∑
|S(ΨL(a1,...,ar))|=1

w(ΨL(a1, . . . , ar)) ≥
∑

ΦL(a1,...,ar) extends ΘL(a1,...,at)
|S(ΦL(a1,...,ar))|=1

w(ΦL(a))

=
∑

ΦL(a1,...,ar) extends ΘL(a1,...,at)
|S(ΦL(a1,...,ar))|=1

w′(ΦL(a))

≥
∑

Φ(a1,...,ar) extends Θ(a1,...,at)

w′(Φ(a))

= w′(Θ(a1, . . . , at)).

Hence

lim
r→∞

∑
|S(ΨL(a1,...,ar))|=1

w(ΨL(a1, . . . , ar)) ≥ w′(Θ(a1, . . . , at)) > 0,

contradicting t-heterogeneity.

Notice however that it is certainly possible to have mixtures of t-heterogeneous
probability functions (for different t) which are language invariant. For example
if we take p = 〈p0, p1, p2, . . .〉 ∈ B with p0 = 0 and ps = 0 for s > t then up

L is
a convex combination of r-heterogeneous probability functions for r ≤ t and is
language invariant by Theorem 1.

Proposition 1 does not hold if t = 1, the trivial probability function on L
which gives probability 1 to all the ai being indistinguishable (i.e. 1, 2, 3, . . . all
being in the same equivalence class) provides, as L varies, the example of such
a language invariant family.

We finally observe that the requirement in Proposition 1 that L contains a
non-unary relation can be dropped if t < 2s where s is the number of unary
relation symbols in L.

4 Conclusion

Since both Sx and Language Invariance are (we would claim) desirable principles
in the context of assigning beliefs in the absence of any prior knowledge it is
pleasing to have a sufficiency theorem for such probability functions in terms of
the particularly simple functions up

L. This furthermore opens the possibility of
deriving certain other properties of such functions by moving the onus of the
task onto the much more malleable up

L, examples of which will be given in the
forthcoming [12].
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Abstract. A Ruspini partition is a finite family of fuzzy sets {f1, . . . , fn},
fi : [0, 1] → [0, 1], such that

∑n
i=1 fi(x) = 1 for all x ∈ [0, 1]. We analyze

such partitions in the language of Gödel logic. Our main result identifies
the precise degree to which the Ruspini condition is expressible in this
language, and yields inter alia a constructive procedure to axiomatize a
given Ruspini partition by a theory in Gödel logic.

1 Introduction

Let [0, 1] be the real unit interval. By a fuzzy set we shall mean a function
f : [0, 1] → [0, 1]. Throughout the paper, we fix a finite nonempty family

P = {f1, . . . , fn}

of fuzzy sets, for n ≥ 1 an integer. Moreover, we write n for the set {1, . . . , n}.
In several soft computing applications, the following notion of fuzzy partition

plays an important role. It is often traced back to [9, p. 28].

Definition 1. We say P is a Ruspini partition if for all x ∈ [0, 1]

n∑
i=1

fi(x) = 1 . (1)

By way of informal motivation for what follows, think of the real unit interval
[0, 1] as the normalized range of values of a physical observable, say “Temper-
ature”. Then each fi ∈ P can be viewed as a means of assigning a truth-value
to a proposition about temperature in some many-valued logic L . Had one no
information at all about such propositions, one would be led to identify them
with propositional variables Xi, subject only to the axioms of L . However,
the set P does encode information about X1, . . . , Xn. For example, consider
P = {f1, f2, f3} as in Fig. 1, and say f1, f2, and f3 provide truth-values for
the propositions X1 = “The temperature is low”, X2 = “The temperature is
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Fig. 1. A Ruspini partition {f1, f2, f3}

medium”, and X3 = “The temperature is high”, respectively. If L has a con-
junction ∧ interpreted by minimum, the proposition X1 ∧X3 has 0 as its only
possible truth-value, i.e., it is a contradiction. The set P then leads one to add
extra-logical axioms to L , e.g. ¬(X1 ∧ X3), in an attempt to express the fact
that one cannot observe both a high and a low temperature at the same time.
More generally, P implicitly encodes a theory over the pure logic L .

Throughout the paper, we shall take L to be Gödel logic. Recall that Gödel
(propositional) logic can be defined as the schematic extension of the intuition-
istic propositional calculus by the prelinearity axiom (α → β) ∨ (β → α). It can
also be semantically defined as a many-valued logic, as follows. Let us consider
well-formed formulas over propositional variables X1, X2, . . . in the language
∧,∨,→,¬,⊥,�. (We use ⊥ and � as the logical constants falsum and verum,
respectively). By an assignment we shall mean a function µ from (well-formed)
formulas to [0, 1] ⊆ R such that, for any two such formulas α, β,

µ(α ∧ β) = min{µ(α),µ(β)}
µ(α ∨ β) = max{µ(α),µ(β)}

µ(α → β) =
{

1 if µ(α) ≤ µ(β)
µ(β) otherwise

and µ(¬α) = µ(α → ⊥), µ(⊥) = 0, µ(�) = 1. A tautology is a formula α such
that µ(α) = 1 for every assignment µ. As is well-known, Gödel logic is complete
with respect to this many-valued semantics. We refer to e.g. [6] [7] for detailed
treatments.

This paper provides a thorough analysis of how the Ruspini condition on P is
reflected by the resulting theory over Gödel logic. In our main Theorem, we shall
eventually obtain a constructive procedure to axiomatize the theory implicitly
encoded by P . While it is to be expected that Gödel logic cannot precisely
capture addition of real numbers in the Ruspini condition (1), our main result
proves that, up to logical equivalence, (1) reduces to the notion of weak Ruspini
partition in Definition 7. In Section 2 we collect the necessary algebraic and
combinatorial background, and prove some preliminary results. In Section 3 we
establish our main result. The final Section 4 summarizes our findings.
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2 Preliminary Results

We make use of the algebraic counterpart of Gödel logic, namely, the variety
of Gödel algebras. These are Heyting algebras 〈G,∧,∨,¬,�,⊥〉 satisfying the
prelinearity condition (x → y) ∨ (y → x) = �.

The collection of all functions from [0, 1] to [0, 1] has the structure of a Gödel
algebra under the following operations, for f, g : [0, 1] → [0, 1].

(f ∧ g)(x) = min {f(x), g(x)}
(f ∨ g)(x) = max {f(x), g(x)}

(f → g)(x) =
{

1 if f(x) ≤ g(x)
g(x) otherwise

(¬f)(x) =
{

1 if f(x) = 0
0 otherwise.

The top and bottom elements of the algebra are the constant functions 1 and 0,
respectively.

We shall denote by G (P ) the Gödel subalgebra of the algebra of all functions
from [0, 1] to itself generated by P . For each integer k ≥ 0, we write Gk for the
free Gödel algebra on k free generators X1, . . . , Xk. Note that, since the variety
of Gödel algebras is locally finite, Gk is finite. Since G (P ) is generated by n
elements, there is a congruence Θ on Gn such that

Gn/Θ ∼= G (P ) , (2)

where ∼= denotes isomorphism of Gödel algebras. Congruences of finite Gödel al-
gebras are principal, so that Θ is generated by a single equation α(X1, . . . , Xn) =
� in the language of Gödel algebras. In logical terms, there is a single formula

αP ≡ αP (X1, . . . , Xn) (3)

over the n variables X1, . . . , Xn, such that the Lindenbaum algebra of the theory
axiomatized by the single axiom αP is isomorphic to G (P ). Note that αP is
uniquely determined by P up to logical equivalence. Intuitively, αP encodes all
relations between the fuzzy sets f1, . . . , fn that Gödel logic is capable to express.

In this section, we shall show how to obtain an explicit combinatorial repre-
sentation of the algebra G (P ) in terms of certain partially ordered sets (posets,
for short). Recall that, given a poset (F,≤) and a set Q ⊆ F , the downset of Q
is

↓ Q = {x ∈ F | x ≤ q, for some q ∈ Q}.

We write ↓ q for ↓ {q}. A poset F is a forest if for all q ∈ F the downset ↓ q
is a chain (i.e., a totally ordered set). A leaf is a maximal element of F . A tree
is a forest with a bottom element, called the root of the tree. A subforest of a
forest F is the downset of some Q ⊆ F . The height of a chain is the number of
its elements. The height of a forest is the height of an inclusion-maximal chain
of the forest.
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Let Sub(F ) denote the family of all subforests of a forest F . Notice that
Sub(F ) has a natural structure of Gödel algebra, where ∧ and ∨ are given by
union and intersection of subforests, and implication is defined, for F1, F2 ∈
Sub(F ), as

F1 → F2 = {q ∈ F | ↓ q ∩ F1 ⊆ ↓ q ∩ F2}.
The constants ⊥,� are the empty forest and F itself, respectively. Finally, nega-
tion is defined by ¬F1 = F1 → ⊥.

We introduce a specific forest built from assignments that plays a key role in
the following.

Definition 2. We say that two assignments µ and ν are equivalent over the
first n variables, or n-equivalent, written µ ≡n ν, if and only if there exists a
permutation σ : n→ n such that :

0 �0 µ(Xσ(1)) �1 · · · �n−1 µ(Xσ(n)) �n 1 , (4)

0 �0 ν(Xσ(1)) �1 · · · �n−1 ν(Xσ(n)) �n 1 ,

where �i ∈ {<,=}, for i = 0, . . . , n.

Clearly, ≡n is an equivalence relation. Throughout, we write Fn for the (finite)
set of equivalence classes of ≡n.

It is not difficult to show that if α(X1, . . . , Xn) is a well-formed formula in
Gödel logic, and µ, ν are two n-equivalent assignments, then

µ(α(X1, . . . , Xn)) = 1 if and only if ν(α(X1, . . . , Xn)) = 1. (5)

We can further endow Fn with a partial order.

Definition 3. Let [µ]≡n , [ν]≡n ∈ Fn, and let σ : n → n be a permutation such
that

0 �0 ν(Xσ(1)) �1 · · · �n−1 ν(Xσ(n)) �n 1 ,

0 �̃0 µ(Xσ(1)) �̃1 · · · �̃n−1 µ(Xσ(n)) �̃n 1 ,

where �i, �̃i ∈ {<,=}, for i = 0, . . . , n. We define [µ]≡n ≤ [ν]≡n if and only if
there exists an index k ∈ {0, . . . , n} such that

i) �̃i coincides with �i if 0 ≤ i ≤ k,
ii) �̃i coincides with = if k + 1 ≤ i ≤ n.

Example 1. Let µ, ν, ξ be assignments such that

– µ(X1) = 1, µ(X2) = 1/3, µ(X3) = 0, µ(X4) = 1,
– ν(X1) = 1, ν(X2) = 1/4, ν(X3) = 0, ν(X4) = 1/2,
– ξ(X1) = 1, ξ(X2) = 1/2, ξ(X3) = 0, ξ(X4) = 1/2.

For σ(1) = 3, σ(2) = 2, σ(3) = 4, σ(4) = 1, one has

– 0 = µ(X3) < µ(X2) < µ(X4) = µ(X1) = 1 ,
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– 0 = ν(X3) < ν(X2) < ν(X4) < ν(X1) = 1 ,
– 0 = ξ(X3) < ξ(X2) = ξ(X4) < ξ(X1) = 1 .

Thus, according to Definition 3, [µ]≡n ≤ [ν]≡n , and [ξ]≡n is uncomparable to
both [µ]≡n and [ν]≡n .

One checks that ≤ in Definition 3 indeed is a partial order on Fn, and (Fn,≤)
is in fact a forest [4, Lemma 3.3]. We immediately notice that

a) the roots of the trees are the classes of Boolean assignments,
b) the class [µ]≡n such that µ(X1) = · · · = µ(Xn) = 0 is the only tree having

height 1, and
c) the leaves are those classes of assignments in which no variable is set to 1.

For each i = 1, . . . , n, let χi = {[µ]≡n | µ(Xi) = 1} be the ith generating
subforest of Fn.

Proposition 1. Fix an integer k ≥ 0. (i) Sub(Fk) is (isomorphic to) the free
Gödel algebra on k free generators. A free generating set is given by the collection
of generating subforests. (ii) Up to isomorphism, the quotients of Sub(Fk) are
precisely the algebras of the form Sub(F ), for F ∈ Sub(Fk). (iii) The set of
prime filters ordered by reverse inclusion of Sub(F ) is order-isomorphic to F for
every F ∈ Sub(Fk).

Proof. The proof is a straightforward translation of [5, Remark 2 and Proposition
2.4] in the language of assignments. �

Figure 2 shows the forest F2, whose nodes are labelled by the ordering of vari-
ables under a given assignment as in (4). However, for the sake of readability,
here and in the following figure we write Xi instead of µ(Xi).

Fig. 2. The forest F2

As an immediate consequence of Proposition 1, we can reformulate (2) as
follows: P uniquely determines a congruence Θ′ on Sub(Fn), and a subforest
F (P ) of Fn such that

Sub(Fn)/Θ′ ∼= Sub(F (P )) ∼= G (P )

To relate Θ′ with the formula αP in (3) or, equivalently, with F (P ), we shall
give an explicit description of F (P ). To this end, it is convenient to introduce
the following notion.
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Definition 4. Let [µ]≡n ∈ Fn and x ∈ [0, 1]. We say [µ]≡n is realized by P at
x if there exists a permutation σ : n→ n such that

0 �0 fσ(1)(x) �1 · · · �n−1 fσ(n)(x) �n 1 ,

0 �0 µ(Xσ(1)) �1 · · · �n−1 µ(Xσ(n)) �n 1 ,

where �i ∈ {<,=}, i ∈ {0, . . . , n}.

Proposition 2.

F (P ) = ↓ {[µ]≡n ∈ Fn | [µ]≡n is realized by P at some x ∈ [0, 1]}

Proof. We construct a subdirect representation of G (P ) as follows. There exists
a finite set {x1, . . . ,xm} ⊆ [0, 1] such that for each y ∈ [0, 1], if [µ]≡n ∈ F (P ) is
realized by P at y, then it is also realized by P at xi, for some i ∈ m. Moreover,
one checks that evaluating the elements of G (P ) at xi yields a totally ordered
Gödel algebra Cxi that is a homomorphic image of G (P ) via the quotient map
qi given by restriction to xi. The homomorphism

s : G (P ) ↪→
m∏

i=1

Cxi

given by
g ∈ G (P ) �−→ (q1(g), . . . , qm(g))

is injective. Indeed, let g �= h ∈ G (P ), say g(y) > h(y) for y ∈ [0, 1]. For the
sake of brevity, we shall only deal with the case 1 > g(y) > h(y) > 0. Then
g(y) = fi(y) and h(y) = fj(y) for i �= j. Let [µ]≡n be the assignment realized by
P at y. There exists u ∈ m such that [µ]≡n is realized by P at xu, and therefore
fi(xu) > fj(xu), which proves s(g) �= s(h).

It now follows that s is a subdirect representation of G (P ). By Proposition
1(iii) we identify prime filters of G (P ) with elements of F (P ) ⊆ Fn. The
primes that are kernels of q1, . . . , qm must comprise all inclusion-minimal primes
of G (P ), i.e., all leaves of F (P ), for otherwise s could not be a subdirect repre-
sentation. Therefore, the classes [µ]≡n realized by P at some x ∈ [0, 1] comprise
all leaves of F (P ) (and possibly other elements). Since any forest is the downset
of its leaves the proposition is proved. �

Moreover, we associate with a formula α(X1, . . . , Xn) the uniquely determined
subforest of Fn, denoted Fα, as follows:

Fα = {[µ]≡n ∈ Fn | µ(α) = 1} .

By (5), Fα does not depend on the choice of µ. Clearly, Fα corresponds to
the quotient algebra Sub(Fn)/Θ′, where Θ′ is the congruence generated by
α(X1, . . . , Xn) = �. Finally, by the foregoing we have

FαP = F (P ) . (6)
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3 Gödel Approximation of Ruspini Partitions

Definition 5. We denote by Rn the subforest of Fn obtained by removing from
Fn the single tree having height 1, and the leaves of all the trees having height
2. We call Rn the Ruspini forest.

Fig. 3. The Ruspini forest R2

We now show how to explicitly axiomatize Rn.

Definition 6. We define the Ruspini axiom ρn = α ∨ β, where

α =
∨

1≤i<j≤n

(¬¬Xi ∧ ¬¬Xj) , and β =
∨

1≤i≤n

(Xi ∧
∧

1≤j �=i≤n

¬Xj) .

Lemma 1. Fρn = Rn .

Proof. Fix an assignment µ. Since

µ(¬¬X) =
{

0 if µ(X) = 0
1 otherwise,

µ(α) �= 1 if and only if at most one variable Xi0 satisfies µ(Xi0) �= 0.
Observe now that µ(β) = 1 if and only if there exists i ∈ n such that, for

j �= i, µ(Xi) = 1 and µ(Xj) = 0.
Therefore, µ(ρn) = µ(α ∨ β) �= 1 if and only if there exists i0 ∈ n such that,

for j �= i0, µ(Xi0) < 1 and µ(Xj) = 0. It is now straightforward to verify that
the latter condition holds if and only if [µ]≡n /∈ Rn. �

Let us introduce a property of P that we shall use in our main result. Let
λ : [0, 1] → [0, 1] be an order preserving map such that λ(0) = 0 and λ(1) = 1,
and let t = inf λ−1(1). If the restriction of λ to [0, t] is an order isomorphism
between [0, t] and [0, 1], we say λ is a comparison map.

Definition 7. We say P is a weak Ruspini partition if for all x ∈ [0, 1], there
exist y ∈ [0, 1], a comparison map λ, and an order isomorphism γ : [0, 1] → [0, 1]
such that

(i) λ(fi(y)) = fi(x), for all i ∈ n.
(ii)

∑n
i=1 γ(fi(y)) = 1.
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Lemma 2. Let [µ]≡n , [ν]≡n ∈ Fn and x, y ∈ [0, 1] such that [µ]≡n and [ν]≡n

are realized by P at x and y, respectively. Then the following are equivalent.

(i) [µ]≡n ≤ [ν]≡n .
(ii) There exists a comparison map λ : [0, 1] → [0, 1] with λ(fi(y)) = fi(x), for

all i ∈ n.

Moreover, the following are equivalent.

(iii) [µ]≡n is a leaf of Rn.
(iv) There exists an order isomorphism γ : [0, 1] → [0, 1] with

∑n
i=1 γ(fi(x)) =

1.

Proof. (i)⇒(ii). By Definitions 3 and 4, there exists a permutation σ : n → n
such that

0 �0 fσ(1)(y) �1 · · · �n−1 fσ(n)(y) �n 1 ,

0 �̃0 fσ(1)(x) �̃1 · · · �̃n−1 fσ(n)(x) �̃n 1 ,

where �i, �̃i ∈ {<,=}, and there is k ∈ {0, . . . , n} satisfying i) and ii) in
Definition 3. We deal with the case k < n only; the case k = n is a trivial variation
thereof. We define Λ by Λ(fσ(i)(y)) = fσ(i)(x), for 1 ≤ i ≤ k, and Λ(fσ(i)(y)) = 1
if k + 1 ≤ i ≤ n. We extend Λ to a comparison map as follows. Consider the
closed intervals I0 = [0, fσ(1)(y)], J0 = [0, fσ(1)(x)], Ii = [fσ(i)(y), fσ(i+1)(y)] and
Ji = [fσ(i)(x), fσ(i+1)(x)], for 1 ≤ i ≤ k. Now let us fix 0 ≤ h ≤ k. Note that if Ih

collapses to a point, then Jh also collapses to a point. Therefore in all cases we
can choose order isomorphisms λh : Ih → Jh. Moreover, set Ik+1 = [fσ(k+1)(y), 1]
and λk+1 : Ik+1 → {1}. Since λh and λh+1 agree at Ih ∩ Ih+1 by construction,
the function λ : [0, 1] → [0, 1] defined by λ(r) = λj(r) if r ∈ Ij , for 0 ≤ j ≤ k+1,
is a comparison map satisfying (ii).

(ii)⇒(i). Immediate from Definitions 3 and 4.
(iii)⇒(iv). It is an exercise to check that [µ]≡n is a leaf of Rn if and only if

exactly one of the following two cases hold.
Case 1. There exists i0 such that µ(Xi0) = 1 and µ(Xi) = 0 for i �= i0.

Let γ be the identity map. By Definition 4, we have
∑n

i=1 γ(fi(x)) = 1.
Case 2. For all i, µ(Xi) < 1, and there exist i0, i1 such that 0 < µ(Xi0) ≤ µ(Xi1).
Let us write

0 �0 fσ(1)(x) �1 · · · �n−1 fσ(n)(x) �n 1 ,

for some permutation σ and �i∈ {<,=}. We shall assume �0 is <. The case
where some fi takes value zero at x is entirely similar.

Now consider the (n − 1)-dimensional simplex1 Sn, given by the convex hull
of the standard basis of Rn. Let S(1)

n be the simplicial complex given by the first
barycentric subdivision of Sn. The (n − 1)-dimensional simplices of S(1)

n are in
bijection with permutations of n, and the solution set of the inequalities

0 ≤ r1 ≤ · · · ≤ rn ≤ 1 (7)
1 For all unexplained notions in combinatorial topology, please see [8].
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in Sn is an (n− 1)-dimensional simplex S ∈ S
(1)
n . Consider the equalities

ri = ri+1 (8)

for each i = 1, . . . , n− 1 such that �i is =. Then the solution set of (7) and (8)
is a nonempty face T of S. Consider next the strict inequalities⎧⎨⎩

ri < ri+1
0 < r1
rn < 1

(9)

for all i = 1, . . . , n − 1 such that �i is <. Then the solution set of (7), (8),
and (9) is the relative interior T ◦ of T . Since T is nonempty, T ◦ is nonempty.
The barycenter b = (b1, . . . , bn) of T lies in T ◦. Since b ∈ Sn, we have

∑n
k=1 bk.

Moreover, by construction,

0 �0 b1 �1 · · · �n−1 bn �n 1 .

We define Γ by Γ (fσ(i)) = bi. Arguing as in the proof of (i)⇒(ii), we conclude
that there is an extension of Γ to an order isomorphism γ : [0, 1] → [0, 1]
satisfying (iv).

(iv)⇒(iii). Suppose [µ]≡n is not a leaf of Rn. Thus, exactly one of the following
two cases holds.
Case 1. [µ]≡n ∈ Fn \Rn.

In this case there exists i0 such that µ(Xi0) < 1 and µ(Xi) = 0 for i �= i0.
Using Definition 4, we have

∑n
i=1 γ(fi(x)) < 1, for each order isomorphism γ.

Case 2. [µ]≡n ∈ Rn, but [µ]≡n ∈ Rn is not a leaf of Rn.
It is easy to check that there exist i0, i1 such that 0 < µ(Xi0) ≤ µ(Xi1 ) = 1.

Using Definition 4, we have fi1(x) = 1 and fi0(x) > 0, and thus
∑n

i=1 γ(fi(x)) >
1, for each order isomorphism γ. �

To state our main result we still need to show how to obtain a formula ψ[µ]≡n

associated with a given element [µ]≡n ∈ Fn such that ψ[µ]≡n
evaluates to 1

exactly on ↓ [µ]≡n . For this, we define the derived connective α � β = ((β →
α) → β). Given an assignement µ we have that

µ(α � β) =
{

1 if µ(α) < µ(β) or µ(α) = µ(β) = 1
µ(β) otherwise.

Suppose now that, for a given permutation σ : n→ n,

0 �0 µ(Xσ(1)) �1 · · · �n−1 µ(Xσ(n)) �n 1 ,

where �i ∈ {<,=}, i = 0, . . . , n. We associate to [µ]≡n the formula

ψ[µ]≡n
= (⊥  �0 Xσ(1)) ∧ (Xσ(1)  �1 Xσ(2)) ∧ · · · ∧ (Xσ(n)  �n �) ,

where  �i= � if �i is <, and  �i=↔ otherwise.
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Lemma 3. Fψ[µ]≡n
= ↓ [µ]≡n

Proof. We omit the straightforward verification. Compare [3,1] where a full-
fledged theory of normal forms is developed. �

Given a forest F ⊆ Fn let us indicate with Root(F ) the set of roots of F (i.e.
the classes of Boolean assignments over the first n variables). If r ∈ Root(F ),
we write Leaf(r, F ) for the set of leaves of F above the root r.

Definition 8. We say that a forest F is a Ruspini subforest if F ⊆ Rn and
each leaf of F is a leaf of Rn.

We write $ α if Gödel logic proves the formula α; equivalently, by completeness,
if µ(α) = 1 for all assignments µ. We can finally prove our main result.

Theorem. The following are equivalent.

(i) P is a weak Ruspini partition.
(ii) F (P ) is a Ruspini subforest.
(iii) $ α ∧ β ∧ γ, where

α = (αP → ρn),
β =

∧
r∈Root(Rn)

∧
l∈Leaf(r,Rn)

(
(ψl → αP ) ∨ ((ψl ∧ αP ) → ψr)

)
,

γ =
∧

r∈Root(Rn)

(
(ψr → αP ) → (

∨
l∈Leaf(r,Rn)(ψl → αP ))

)
.

Moreover, for any Ruspini subforest F there exists a Ruspini partition P ′ =
{f ′1, . . . , f ′n}, with f ′i : [0, 1] → [0, 1], such that F (P ′) = F .

Proof. (i) ⇒ (ii). By Lemma 2, we can reformulate Definition 7 in terms of
assignments as follows. For all [µ]≡n ∈ Fn realized by P at some x ∈ [0, 1], there
exists [ν]≡n ≥ [µ]≡n realized by P at some y ∈ [0, 1] such that [ν]≡n is a leaf of
Rn. Thus, by Proposition 2, F (P ) is exactly the downset of those leaves of Rn

realized by P at some x ∈ [0, 1].
(ii) ⇒ (iii). Let r ∈ Root(Rn). If r /∈ F (P ) then the set Leaf(r,F (P )) is

empty, and by (6) the formula αP evaluates to zero under all assignments µ
such that [µ]≡n ≥ r. Thus, for all l ∈ Leaf(r,Rn), (ψl ∧ αP ) is a contradiction
and (ψl ∧ αP ) → ψr is a tautology. Therefore, the conjucts of β indexed by
r /∈ F (P ) are tautologies. Moreover, since ψr and ψl evaluate to zero under all
assignments µ such that [µ]≡n � r, and to a value different from zero otherwise,
(ψr → αP ) ↔ (ψl → αP ) is a tautology for all l ∈ Leaf(r,Rn), and then
the conjucts of γ indexed by r /∈ F (P ) are tautologies. Let now r ∈ F (P ),
and let l ∈ Leaf(r,Rn). If l ∈ F (P ) then ψl → αP is a tautology, otherwise
(ψl ∧αP ) → ψr is a tautology. Thus, every formula in β indexed by r ∈ F (P ) is
a tautology. Moreover, Leaf(r,F (P )) �= ∅, and for l0 ∈ Leaf(r,F (P )), ψl0 → αP

is a tautology. Therefore, every formula in γ indexed by r ∈ F (P ) is a tautology.
We thus obtain that β and γ are tautologies. Since α also is a tautology by the
hypothesis F (P ) ⊆ Rn, we obtain that whenever (ii) holds, α ∧ β ∧ γ is a
tautology.
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(iii) ⇒ (i). Suppose P is not a weak Ruspini partition. By Definition 7, using
Lemma 2 and (6), there exists [µ]≡n ∈ FαP such that exactly one of the following
two condition hold.

(a) [µ]≡n ∈ Fn \Rn.
(b) [µ]≡n ∈ Rn is a maximal element of FαP , but it is not a leaf of Rn.

If (a) holds then, clearly, µ(α) �= 1. As to (b), let r ≤ [µ]≡n be a root of Fn. If
r = [µ]≡n , then the formula ψr → αP is a tautology, while ψl → αP does not
evaluate to 1 at l, for all l ∈ Leaf(r,Rn). Thus, γ is not a tautology. If r �= [µ]≡n

then for all l ∈ Leaf(r,Rn), l ≥ [µ]≡n , ψl → αP and (ψl ∧αP ) → ψr evaluate to
zero at l. Therefore β is not a tautology. In any case, α∧β∧γ is not a tautology.

Finally, we prove the last statement of the theorem. Let [µ1]≡n , . . . , [µm]≡n

be the leaves of F . Partition the interval [0, 1] into m intervals I1 = [0,x1],
I2 = (x1,x2],. . ., Im = (xm−1, 1 = xm]. We construct the functions f ′i as follows.
For i ∈ n, j ∈ m, we set f ′i(x) = Cij ∈ R if x ∈ Ij . The constants Cij are chosen
so that

(a) [µj ]≡n is realized by P ′ at xj ,
(b)

∑n
i=1 Cij = 1.

Obviously, it is always possible to choose Cij so that (a) holds. The proof of
(iii) ⇒ (iv) in Lemma 2 shows that, in fact, it is always possible to choose Cij

so that both (a) and (b) hold. �

In [2, Theorem 3] it is shown that the number of leaves of Fn is

Ln = 2
n∑

k=1

k!
{
n
k

}
, (10)

where
{
n
k

}
is the number of partitions of an n-element set into k classes, i.e.

the Stirling number of the second kind. The number
∑n

k=1 k!
{
n
k

}
is the nth

ordered Bell number, i.e. the number of all ordered partitions of n. Compare
sequence A000670 in [10].

Consider P ′ = {f ′1, . . . , f ′n}, where f ′i : [0, 1] → [0, 1]. In the light of Section 2,
let us say that P ′ is Gödel-equivalent to P if F (P ) = F (P ′), or, equivalently,
$ αP ↔ αP ′ . Then:

Corollary 1. The number of classes of Gödel-equivalent weak Ruspini partitions
of n elements is 2Ln−1 − 1, where Ln is given by (10).

Proof. A weak Ruspini partition P is characterized, up to Gödel-equivalence,
by the forest F (P ), and therefore by a subset of leaves of Rn. Noting that the
number of leaves of Rn is Ln − 1, and that for every weak Ruspini partition P ,
F (P ) �= ∅, the corollary follows. �

Corollary 2. (i) There is a Ruspini subforest F such that whenever F (P ) = F
then each fi ∈ P has a point of discontinuity. (ii) For all Ruspini subforests F
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with L leaves there is a choice of a Ruspini partition P ′ = {f ′1, . . . , f ′n}, with
F (P ′) = F such that each f ′i : [0, 1] → [0, 1] has at most L − 1 points of
discontinuity.

Proof. (i) It suffices to choose F ⊆ Rn as the forest of all Boolean assignments
which are leaves of Rn. (ii) The construction used in the proof of the last state-
ment of Theorem 3 yields the desired P ′. �

4 Conclusions

Our analysis shows that Gödel logic does not have sufficient expressive power
to capture the Ruspini condition (1). However, we have proved that Gödel logic
does capture the notion of weak Ruspini partition in Definition 7. Moreover,
our Theorem 3 shows that weak Ruspini partitions indeed are the best available
approximation of Ruspini partitions in Gödel logic: for each weak Ruspini parti-
tion P , there exists a Ruspini partition P ′ that is Gödel-equivalent to P . Thus,
there is no formula in Gödel logic telling P and P ′ apart. Moreover, Corollary
2 shows that one can always choose a Ruspini partition P ′ whose elements have
a bounded number of points of discontinuity. Finally, up to Gödel equivalence,
there is a finite number of weak Ruspini partitions of n elements, and Corollary
1 gives an exact formula to compute this number.
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Abstract. Reasoning with qualitative and quantitative uncertainty is
required in some real-world applications [6]. However, current extensions
to logic programming with uncertainty support representing and reason-
ing with either qualitative or quantitative uncertainty. In this paper we
extend the language of Hybrid Probabilistic Logic programs [29,27], orig-
inally introduced for reasoning with quantitative uncertainty, to support
both qualitative and quantitative uncertainty. We propose to combine
disjunctive logic programs [10,19] with Extended and Normal Hybrid
Probabilistic Logic Programs (EHPP [27] and NHPP [29]) in a unified
logic programming framework, to allow directly and intuitively to rep-
resent and reason in the presence of both qualitative and quantitative
uncertainty. The semantics of the proposed languages are based on the
answer sets semantics and stable model semantics of extended and nor-
mal disjunctive logic programs [10,19]. In addition, they also rely on the
probabilistic answer sets semantics and the stable probabilistic model
semantics of EHPP [27] and NHPP [29].

1 Introduction

Reasoning under uncertainty is crucial in most real-world applications such as
planning with uncertain domains and reasoning about actions with uncertain
effects—such as the actions that arises from robotics in real-world environments.
The literature is rich with different forms of uncertainty in logic programming.
These forms of uncertainty can be classified into qualitative and quantitative
models of uncertainty. Qualitative uncertainty is represented in logic program-
ming using disjunctive logic programs [19,10,2]. It often happens that a ∨ b ∨ c
occurs while we are uncertain which of these propositions is true [2]. There
might be states of the world where a is true or b is true or c is true or any
combinations of them might be also true [2]. On the other hand, quantitative
uncertainty is represented in logic programming by means of different formalisms
including probability theory (see [28] for a survey on these different formalisms).
Probabilistic logic programming is motivated by the need to provide the ability
to represent both logical as well as probabilistic knowledge by logic programs
(see [29] for a survey on these probabilistic logic programming frameworks).

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 173–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



174 E. Saad

The semantics of such frameworks provide ways to systematically derive logical
conclusions along with their associated probabilistic properties.

Among these probabilistic logic programming frameworks is Hybrid Proba-
bilistic Logic Programs (HPP) [28] that modifies the original Hybrid Proba-
bilistic Logic Programming framework of [4], and generalizes and modifies the
probabilistic annotated logic programming framework, originally proposed in [21]
and further extended in [22]. Probabilities in [28] are presented in form of inter-
vals where a probability interval represents the bounds on the degree of belief
a rational agent has about the truth of an event. The semantics of HPP [28],
intuitively, captures the probabilistic reasoning according to how likely are the
various events to occur. It was shown that the HPP [28] framework is more
suitable for reasoning and decision making tasks. In addition, it subsumes Lak-
shmanan and Sadri’s [14] probabilistic implication-based framework as well as it
is a natural extension of classical logic programming. As a step towards enhanc-
ing its reasoning capabilities, the framework of HPP was extended to cope with
non-monotonic negation [29] by introducing the notion of Normal Hybrid Prob-
abilistic Logic Programs (NHPP) and providing two different semantics namely;
stable probabilistic model semantics and well-founded probabilistic model se-
mantics. Furthermore, NHPP was extended to Extended Hybrid Probabilistic
Logic Programs (EHPP) [27] to cope directly with classical negation as well as
non-monotonic negation to allow reasoning in the presence of incomplete knowl-
edge. It was shown that Baral et al’s probabilistic logic programming approach
for reasoning with causal Bayes networks (P-log) [1] is naturally subsumed by
EHPP [27].

To this end, disjunctive logic programs are only used for representing and
reasoning under qualitative uncertainty and probabilistic logic programming,
represented by NHPP and EHPP, are only used for representing and reason-
ing under quantitative uncertainty. However, in some real-world applications,
representing and reasoning with both forms of uncertainty is required [6].

We propose to combine disjunctive logic programs [10,2] with Extended and
Normal Hybrid Probabilistic Logic Programs (EHPP [27] and NHPP [29]) in a
unified logic programming framework, to allow directly and intuitively to repre-
sent and reason in the presence of both qualitative and quantitative uncertainty.
This is achieved by introducing the notions of Extended and Normal Disjunc-
tive Hybrid Probabilistic Logic Programs (EDHPP and NDHPP). EDHPP and
NDHPP generalize extended and normal disjunctive logic programs of classical
logic programming [10,2], respectively, as well as, they generalize EHPP and
NHPP [27,29]. The semantics of EDHPP and NDHPP are based on the answer
sets semantics and stable model semantics of extended and normal disjunctive
logic programs [10,2]. The semantics of EDHPP employs the Open World As-
sumption, whereas, the semantics of NDHPP employs the Closed World As-
sumption. We show that EDHPP naturally subsumes extended disjunctive logic
programs[10] and EHPP [27], and NDHPP naturally subsumes normal disjunc-
tive logic programs [2] and NHPP [29].
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Another reason why the proposed languages are interesting is that, in addi-
tion to allowing representing and reasoning with both qualitative and quanti-
tative uncertainty, it can be also used in some real-world applications in which
quantitative uncertainly need to be defined over qualitative uncertainty, where
probabilistic measures are assigned over the possible outcomes of qualitative
uncertainty. For example, flipping a fair coin leads to a head or tail with 0.5
probability each. This fact can be implicitly represented as a disjunctive logic
program (since both events are equally likely) as head(coin) or tail(coin) with
{head(coin)} and {tail(coin)} as the possible answer sets, according to the an-
swer set semantics [10]. However, the explicit representation of probabilities and
the explicit assignment of probabilities to the possible outcome of flipping the
coin cannot be presented by disjunctive logic programs syntax and semantics.
Moreover, consider the coin is biased to the head, where flipping the coin out-
comes a head with 0.58 probability or a tail with 0.42 probability, in this case
disjunctive logic program cannot represent it neither implicitly nor explicitly. On
the other hand, the coin-flipping example cannot be represented intuitively and
directly in NHPP or EHPP either, since a corresponding notion of disjunctions
is not allowed in NHPP or EHPP.

2 Syntax

In this section we introduce the basic notions associated to the languages of
EDHPP and NDHPP described throughout the rest of the paper [4,29,27].
EDHPP (NDHPP) are EHPP (NHPP) with disjunctions of annotated literals
(atoms) in the head of rules.

Let C[0, 1] denotes the set of all closed intervals in [0, 1]. In the context
of EDHPP, probabilities are assigned to primitive events (literals) and com-
pound events (conjunctions or disjunctions of literals) as intervals in C[0, 1]. Let
[α1, β1], [α2, β2] ∈ C[0, 1]. Then the truth order asserts that [α1, β1] ≤t [α2, β2]
iff α1 ≤ α2 and β1 ≤ β2. The set C[0, 1] and the relation ≤t form a complete
lattice. In particular, the join (⊕t) operation is defined as [α1, β1] ⊕t [α2, β2] =
[max{α1,α2},max{β1, β2}] and the meet (⊗t) is defined as [α1, β1]⊗t [α2, β2] =
[min{α1,α2},min{β1, β2}] w.r.t. ≤t. The type of dependency among the prim-
itive events within a compound event is described by probabilistic strategies,
which are explicitly selected by the user. We call ρ, a pair of functions 〈c,md〉,
a probabilistic strategy (p-strategy), where c : C[0, 1] × C[0, 1] → C[0, 1], the
probabilistic composition function, which is commutative, associative, mono-
tonic w.r.t. ≤t, and meets the following separation criteria: there are two
functions c1, c2 such that c([α1, β1], [α2, β2]) = [c1(α1,α2), c2(β1, β2)]. Whereas,
md : C[0, 1] → C[0, 1] is the maximal interval function. The maximal interval
function md of a certain p-strategy returns an estimate of the probability range
of a primitive event, e, from the probability range of a compound event that
contains e. The composition function c returns the probability range of a con-
junction (disjunction) of two events given the ranges of its constituents. For con-
venience, given a multiset of probability intervals M = {{[α1, β1], . . . , [αn, βn]}},
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we use cM to denote c([α1, β1], c([α2, β2], . . . , c([αn−1, βn−1], [αn, βn])) . . .). Ac-
cording to the type of combination among events, p-strategies are classified into
conjunctive p-strategies and disjunctive p-strategies. Conjunctive (disjunctive)
p-strategies are employed to compose events belonging to a conjunctive (disjunc-
tive) formula (please see [4,28] for the formal definitions).

Let L be an arbitrary first-order language with finitely many predicate sym-
bols, function symbols, constants, and infinitely many variables. In addition, let
S = Sconj∪Sdisj be an arbitrary set of p-strategies, where Sconj (Sdisj) is the
set of all conjunctive (disjunctive) p-strategies in S. The Herbrand base of L is
denoted by BL. A literal is either an atom a or the negation of an atom ¬a, where
¬ is the classical negation. We denote the set of all literals in L by Lit. More
formally, Lit = {a|a ∈ BL} ∪ {¬a|a ∈ BL}. An annotation denotes a probabil-
ity interval and it is represented by [α1,α2], where α1,α2 are called annotation
items. An annotation item is either a constant in [0, 1], a variable (annotation
variable) ranging over [0, 1], or f(α1, . . . ,αn) (called annotation function) where
f is a representation of a monotonic total function f : ([0, 1])n → [0, 1] and
α1, . . . ,αn are annotation items.

The building blocks of the language of EDHPP are hybrid literals. Let us
consider a set of literals l1, . . . , ln and the p-strategies ρ and ρ′. Then l1∧ρ . . .∧ρ ln
and l1 ∨ρ′ . . . ∨ρ′ ln are called hybrid literals. bfS(Lit) is the set of all ground
hybrid literals formed using distinct literals from Lit and p-strategies from S,
such that for any collection of equivalent hybrid literals, Y = {l1 ∗ρ l2 ∗ρ . . . ∗ρ

ln, l2 ∗ρ l1 ∗ρ . . . ∗ρ ln, . . .}, where ∗ ∈ {∧,∨}, only one li1 ∗ρ li2 ∗ρ . . . ∗ρ lin ∈ Y
is in bfS(Lit). An annotated hybrid literal is an expression of the form L : µ,
where L is a hybrid literal and µ is an annotation. Note that any hybrid literal
L can be represented in terms of another hybrid literal L′ such that L = ¬L′,
since ¬¬a = a, (a1 ∧ρ a2) = ¬(¬a1 ∨ρ¬a2) and (a1 ∨ρ′ a2) = ¬(¬a1 ∧ρ′ ¬a2) and
∧ρ,∨ρ,∨ρ′ , and ∧ρ′ are associative and commutative.

The building blocks of the language of NDHPP are hybrid basic formulae. Let
us consider a collection of atoms a1, . . . , an and the p-strategies ρ and ρ′. Then
a1 ∧ρ . . . ∧ρ an and a1 ∨ρ′ . . . ∨ρ′ an are called hybrid basic formulae. bfS(BL) is
the set of all ground hybrid basic formulae formed using distinct atoms from BL
and p-strategies from S, such that for any collection of equivalent hybrid basic
formulae, X = {a1 ∗ρ a2 ∗ρ . . . ∗ρ an, a2 ∗ρ a1 ∗ρ . . . ∗ρ an, . . .}, where ∗ ∈ {∧,∨},
only one ai1 ∗ρ ai2 ∗ρ . . . ∗ρ ain ∈ X is in bfS(BL). An annotated hybrid basic
formula is an expression of the form F : µ where F is a hybrid basic formula
and µ is an annotation.

3 Extended and Normal Disjunctive Hybrid Probabilistic
Logic Programs

In this section we define the syntax, declarative semantics, the probabilistic an-
swer sets semantics of Extended Disjunctive Hybrid Probabilistic Logic Programs
(EDHPP), and the stable probabilistic model semantics of Normal Disjunctive
Hybrid Probabilistic Logic Programs (NDHPP).
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Definition 1 (Rules). An extended disjunctive hybrid probabilistic rule (ed-
rule) is an expression of the form
l1 : ν1 or . . . or lk : νk ← L1 : µ1, . . . , Lm : µm, not (Lm+1 : µm+1), . . . , not (Ln :
µn),
whereas a normal disjunctive hybrid probabilistic rule (nd-rule) is an expression
of the form
A1 : ν1 or . . . or Ak : νk ← F1 : µ1, . . . , Fm : µm, not (Fm+1 :
µm+1), . . . , not (Fn : µn), where l1, . . . , lk are literals, A1, . . . , Ak are atoms,
Li (1 ≤ i ≤ n) are hybrid literals, Fi (1 ≤ i ≤ n) are hybrid basic formulae, and
νi(1 ≤ i ≤ k),µi (1 ≤ i ≤ n) are annotations.

An ed-rulenot is an ed-rule without non-monotonic negation—i.e., n = m,
and a d-rule is an nd-rule without non-monotonic negation—i.e., n = m.

The intuitive meaning of an ed-rule, in Definition 1, is that, if for each Li : µi,
where 1 ≤ i ≤ m, the probability interval of Li is at least µi and for each
not (Lj : µj), where m+1 ≤ j ≤ n, it is not known (undecidable) that the prob-
ability interval of Lj is at least µj , then there exist at least li, where 1 ≤ i ≤ k,
such that the probability interval of li is at least νi. However, the meaning of
an nd-rule, is that, if for each Fi : µi, where 1 ≤ i ≤ m, the probability interval
of Fi is at least µi and for each not (Fj : µj), where m + 1 ≤ j ≤ n, it is not
provable that the probability interval of Fj is at least µj , then there exist at
least Ai, where 1 ≤ i ≤ k, such that the probability interval of Ai is at least νi.

Definition 2 (Programs). An extended (normal) disjunctive hybrid probabilis-
tic logic program over S, ed-program ( nd-program), is a pair P = 〈R, τ〉, where
R is a finite set of ed-rules (nd-rules) with p-strategies from S, and τ is a map-
ping τ : Lit → Sdisj (τ : BL → Sdisj). An extended (normal) disjunctive hy-
brid probabilistic logic program without non-monotonic negation is an ed-program
(nd-program) where each rule in the program is an ed-rulenot (d-rule).

The mapping τ in the above definition associates to each literal li (similarly for
atoms in nd-programs) a disjunctive p-strategy that will be employed to combine
the probability intervals obtained from different rules having li in their heads.
An ed-program (nd-program) is ground if no variables appear in any of its rules.

3.1 Satisfaction and Models

In this subsection, we define the declarative semantics of EDHPP and NDHPP.
We define the notions of interpretations, models, and satisfaction of ed-programs
and nd-programs.

Definition 3. A probabilistic interpretation (p-interpretation) of an ed-program
is a partial or total mapping h : bfS(Lit) → C[0, 1]. A probabilistic interpretation
(p-inter pretation) for an nd-program is a total mapping h : bfS(BL) → C[0, 1].

Since we allow both an event and its negation to be defined in p-interpretations
for ed-programs, more conditions need to be imposed on p-interpretations to
ensure their consistency. This can be characterized by the following definitions.
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Definition 4. A total (partial) p-interpretation h for an ed-program is incon-
sistent if there exists L,¬L ∈ bfS(Lit) (L,¬L ∈ dom(h)) such that h(¬L) �=
[1, 1]− h(L).

Definition 5. We say a set C, a subset of Lit, is a set of consistent literals if
there is no pair of complementary literals a and ¬a belonging to C. Similarly, a
consistent set of hybrid literals C∗ is a subset of bfS(Lit) such that there is no
pair of complementary hybrid literals F and ¬F belonging to C∗.

Definition 6. A consistent p-interpretation h of an ed-program is either not
inconsistent or maps a consistent set of hybrid literals C∗ to C[0, 1].

The notion of truth order can be extended to p-interpretations of nd-programs.
Given p-interpretations h1 and h2 of an nd-program P , we say (h1 ≤t h2) ⇔
(∀F ∈ bfS(BL) : h1(F ) ≤t h2(F )). The set of all p-interpretations of P
and the truth order ≤t form a complete lattice. In addition, given the p-
interpretations h1 and h2 for an ed-program P ′, we say (h1 ≤o h2) ⇔
(dom(h1) ⊆ dom(h2) and ∀L ∈ dom(h1), h1(L) ≤t h2(L)). The set of all p-
interpretations of P ′ and the partial order ≤o form a complete lattice.

Definition 7 (Probabilistic Satisfaction). Let P = 〈R, τ〉 be a ground ed-
program, h be a p-interpretation, and

r ≡ l1 : ν1or . . . or lk : νk ← L1 : µ1, . . . , Lm : µm, not (Lm+1 : µm+1), . . . ,not (Ln : µn).

Then
• h satisfies Li : µi(li : νi) (denoted by h |= Li : µi(h |= li : νi)) iff Li ∈
dom(h)(lj ∈ dom(h)) and µi ≤t h(Li)(νi ≤t h(li)).
• h satisfies not (Lj : µj) (denoted by h |= not (Lj : µj)) iff Lj ∈ dom(h)
and µj �t h(Lj) or Lj /∈ dom(h).
• h satisfies Body ≡ L1 : µ1, . . . , Lm : µm, not (Lm+1 : µm+1), . . . , not (Ln :
µn) (denoted by h |= Body) iff ∀(1 ≤ i ≤ m), h |= Li : µi and ∀(m+1 ≤ j ≤
n), h |= not (Lj : µj).
• h satisfies Head ≡ l1 : ν1 or . . . or lk : νk (denoted by h |= Head) iff there
exists at least i (1 ≤ i ≤ k) such that h |= li : νi.
• h satisfies Head ← Body iff h |= Head whenever h |= Body or h does not
satisfy Body.
• h satisfies P iff h satisfies every ed-rule in R and

– If li ∈ dom(h), 1 ≤ i ≤ k, is a literal, then we have cτ(li){{νi | l1 :
ν1 or . . . or lk : νk ← Body ∈ R, h |= Body, and h |= li : νi}} ≤t h(li).

– If l1, . . . , ln ∈ dom(h) are literals, then we have L = l1 ∗ρ . . . ∗ρ ln ∈
dom(h) and cρ{{h(l1), . . . , h(ln)}} ≤t h(L).

Observe that the definition of probabilistic satisfaction for nd-programs is the
same as the definition of probabilistic satisfaction for ed-programs described in
Definition 7. The only difference is that classical negation is not allowed in nd-
programs, in addition, p-interpretations of nd-programs are total mappings from
bfS(BL) to C[0, 1].
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Definition 8 (Models). A probabilistic model ( p-model) of an ed-program (nd-
program), with or without non-monotonic negation, P is a p-interpretation of P
that satisfies P .

Definition 9 (Minimal Models). Let P be an ed-program (nd-program). A
p-model h of P is minimal w.r.t. ≤o (≤t) iff there does not exist a p-model h′

of P such that h′ <o h (h′ <t h).

We call a minimal p-model of an ed-program a probabilistic answer set. It is pos-
sible to get a probabilistic answer set of an ed-program, P , and this probabilistic
answer set is inconsistent. If this is the case, we say P is inconsistent. If P is
inconsistent, LIT , where LIT : bfS(Lit) → [1, 1], is the probabilistic answer
set of P . We adopt this view from the answer sets semantics of classical logic
programming [10].

Example 1. Consider the following ed-program P = 〈R, τ〉, without non-
monotonic negation, where R contains
a : [0.1, 0.2] or ¬b : [0.15, 0.3] ¬c : [0, 0.21] ← a : [0.1, 0.13]
d : [0.12, 0.18]← ¬b : [0.1, 0.21] ¬d : [0.45, 0.55]← a : [0, 0.15],¬b : [0.02, 0.22],¬c : [0.1, 0.1]

and τ is any arbitrary assignment of disjunctive p-strategies. It is easy to verify
that P has two probabilistic answer sets h1 and h2, where
h1(a) = [0.1, 0.2] h1(¬ c) = [0, 0.21] and h2(¬ b) = [0.15, 0.3] h2(d) = [0.12, 0.18].

3.2 Probabilistic Answer Sets and Stable Probabilistic Model
Semantics

In this subsection we define the probabilistic answer set and the stable probabilis-
tic model semantics of ed-programs and nd-programs respectively. The semantics
are defined in two steps. First, we guess a probabilistic answer set (stable prob-
abilistic model) h for a certain ed-program (nd-program) P , then we define the
notion of the probabilistic reduct of P with respect to h. The probabilistic reduct
is an ed-program (nd-program) without non-monotonic negation. Second, we de-
termine whether h is a probabilistic answer set (stable probabilistic model) for P .
This is verified by determining whether h is a probabilistic answer set (minimal
p-model) of the probabilistic reduct of P w.r.t. h.

Definition 10 (Probabilistic Reduct). Let P = 〈R, τ〉 be a ground ed-
program (nd-program) and h be a p-interpretation. The probabilistic reduct Ph

of P w.r.t. h is P h = 〈Rh, τ〉 where:

Rh =

⎧⎨⎩ l1 : ν1 or . . . or lk : νk ← L1 : µ1, . . . , Lm : µm

l1 : ν1 or . . . or lk : νk ← L1 : µ1, . . . , Lm : µm,
not (Lm+1 : µm+1), . . . , not (Ln : µn) ∈ R and
∀(m + 1 ≤ j ≤ n), µj �t h(Lj) or Lj /∈ dom(h)

⎫⎬⎭
Note that the definitions of the probabilistic reduct for ed-programs and nd-
programs are similar. Except that classical negation is not allowed in nd-programs.
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In addition, p-interpretations in nd-programs are total mappings from bfS(BL) to
C[0, 1], therefore, for nd-programs, the condition Lj /∈ dom(h) is not applicable.

The probabilistic reduct P h is an ed-program (nd-program) without non-
monotonic negation. For any not (Lj : µj) in the body of r ∈ R with µj �t h(Lj)
means that it is not known (not provable for nd-program) that the probability
interval of Lj is at least µj given the available knowledge, and not (Lj : µj)
is removed from the body of r. In addition, for ed-program, if Lj /∈ dom(h),
i.e., Lj is undefined in h, then it is completely not known (undecidable) that the
probability interval of Lj is at least µj . In this case, not (Lj : µj) is also removed
from the body of r. If µj ≤t h(Lj) (similarly for nd-programs), then we know
that the probability interval of Lj is at least µj and the body of r is not satisfied
and r is trivially ignored.

Definition 11. A p-interpretation h of an ed-program (nd-program) P is a prob-
abilistic answer set (stable probabilistic model) of P if h is a minimal p-model
of P h.

The domain of a probabilistic answer set of an ed-program or a stable proba-
bilistic model of an nd-program represents an agent set of beliefs. However, the
probability intervals associated to these beliefs bound the agents belief degrees
on these beliefs.

ed-programs without classical negation (nd-programs), i.e., ed-programs that
contain no negative literals neither in head nor in the body of ed-rules, have
probabilistic answer sets with hybrid literals consist of only atoms (hybrid basic
formulae). Moreover, the definition of probabilistic answer sets coincides with the
definition of stable probabilistic models for nd-programs. This means that the
application of the probabilistic answer sets semantics to nd-programs is reduced
to the stable probabilistic model semantics for nd-programs. However, there are
a couple of main differences between the two semantics. A probabilistic answer
set may be a partial p-interpretation, however, a stable probabilistic model is a
total p-interpretation. In addition, each hybrid basic formula F with probability
interval [0,0] in a stable probabilistic model of an nd-program corresponds to
the fact that the probability interval of F is unknown, and hence undefined, in
its equivalent probabilistic answer set.

Proposition 1. Let P be an ed-program without classical negation. Then h is
a probabilistic answer set for P iff h′ is a stable probabilistic model of P , where
h(F ) = h′(F ) for each h′(F ) �= [0, 0] and h(F ) is undefined for each h′(F ) =
[0, 0].

Proposition 1 suggests that there is a simple reduction from ed-programs to
nd-programs. The importance of that is, under the consistency condition, com-
putational methods developed for nd-programs can be applied to ed-programs.

Example 2. Consider the following example adapted from [11]. Tom and Fred are
two policemen who are challenging their firing gun skills, by shooting a bottle at
a quite long distance. In one of the shoots, at the same time, both Tom and Fred
shoot a bottle and the bottle shattered. In fact, we cannot determine whether
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Tom or Fred is the one who shattered the bottle. However, from Tom’s shooting
experience on similar targets at similar distances, Tom is capable of hitting
targets with probability interval from 75% to 80%. Similarly, Fred can hit similar
targets with probability interval from 72% to 87%. Normally, a shooter shoots a
target. If a shooter sneezes while shooting, it is an exception. Hence, a shooter’s
shoot is abnormal with probability interval from 30% to 65% if a shooter sneezes
while shooting. It was heard that somebody sneezed, however, we do not know
whether Tom or Fred is the one who sneezed. A shooter shatters a bottle with
probability interval from 82% to 90% if a shooter is capable of hitting similar
targets with probability interval from 70% to 79%, and it is not known that a
shooter’s shoot is abnormal with probability interval from 30% to 60%. This can
be represented by the following ed-program P = 〈R, τ〉, where R contains:

sneeze(tom) : [1, 1] or sneeze(fred) : [1, 1] ←
ab(shoot, X) : [0.3, 0.65] ← shoot(X) : [1, 1], sneeze(X) : [1, 1]
shatter(X) : [0.82, 0.9] ← hit(X) : [0.7, 0.79], not (ab(shoot, X) : [0.3, 0.6])
shoot(tom) : [1, 1] ← shoot(fred) : [1, 1] ←
hit(tom) : [0.75, 0.8] ← hit(fred) : [0.72, 0.87] ←

and τ is any arbitrary assignment of disjunctive p-strategies. The ed-rules in
Example 2 encode two forms of uncertainty. Qualitative uncertainty represented
by the first ed-rule that arises from the fact that we do not know whether
Tom or Fred is the one who sneezed. And quantitative uncertainty represented
by the probability intervals associated to the various events presented in R.
The probability interval [1, 1] represents the truth value true. Therefore, the
rule sneeze(tom) : [1, 1] or sneeze(fred) : [1, 1] ← is intuitively interpreted
as a disjunctive rule in classical disjunctive logic programming. The above ed-
program P has two probabilistic answer sets h1 and h2, where

h1(sneeze(fred)) = [1,1] h2(sneeze(tom)) = [1,1]
h1(ab(shoot, fred)) = [0.3,0.65] h2(ab(shoot, tom)) = [0.3,0.65]
h1(shatter(tom)) = [0.82, 0.9] h2(shatter(fred)) = [0.82, 0.9]
h1(shoot(tom)) = [1,1] h2(shoot(tom)) = [1,1]
h1(shoot(fred)) = [1,1] h2(shoot(fred)) = [1,1]
h1(hit(tom)) = [0.75,0.8] h2(hit(fred)) = [0.72,0.87]
h1(hit(fred)) = [0.72,0.87] h2(hit(tom)) = [0.75,0.8]

For example, h1 can be verified as a probabilistic answer set of P by computing
the probabilistic reduct, P h1 = 〈Rh1 , τ〉, of P w.r.t. h1, where Rh1 contains

sneeze(tom) : [1, 1] or sneeze(fred) : [1, 1] ←
ab(shoot, tom) : [0.3, 0.65] ← shoot(tom) : [1, 1], sneeze(tom) : [1, 1]
ab(shoot, fred) : [0.3, 0.65] ← shoot(fred) : [1, 1], sneeze(fred) : [1, 1]
shatter(tom) : [0.82, 0.9] ← hit(tom) : [0.7, 0.79]
shoot(tom) : [1, 1] ← shoot(fred) : [1, 1] ←
hit(tom) : [0.75, 0.8] ← hit(fred) : [0.72, 0.87] ←
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It can be easily seen that h1 is a probabilistic answer set for P h1 . Now we show
that EDHPP and NDHPP naturally extend EHPP and NHPP respectively.

Proposition 2. The probabilistic answer sets semantics of EDHPP is equiva-
lent to the probabilistic answer sets semantics of EHPP [27] for all ed-programs
P = 〈R, τ〉 such that ∀ r ∈ R, k = 1. In addition, the stable probabilistic model
semantics of NDHPP is equivalent to the stable probabilistic model semantics of
NHPP [29] for all nd-programs P = 〈R, τ〉 such that ∀ r ∈ R, k = 1.

Let us show that the probabilistic answer sets semantics of EDHPP and the
stable probabilistic model semantics of NDHPP generalize the answer sets se-
mantics and the stable model semantics of extended and normal disjunctive logic
programs [2,10] respectively. An extended disjunctive logic program P can be
represented as an ed-program P ′ = 〈R, τ〉 where each extended disjunctive rule

l1 or . . . or lk ← l′1, . . . , l
′
m, not l′m+1, . . . , not l′n ∈ P

can be represented, in R, as an ed-rule of the form

l1 : [1, 1] or . . . or lk : [1, 1] ← l′1 : [1, 1], . . . , l′m : [1, 1], not (l′m+1 : [1, 1]), . . . , not (l′n : [1, 1]) ∈ R

where l1, . . . , lk, l′1, . . . , l
′
n are literals and [1, 1] represents the truth value true. τ

is any arbitrary assignment of disjunctive p-strategies. We call the class of ed-
programs that consists of only ed-rules of the above form as EDHPP1. Recall
that nd-programs are ed-programs without classical negation. NDHPP1 is the
same as EDHPP1, except that, only atoms (positive literals) are allowed to
appear in rules of the above form. The following result shows that EDHPP1 and
NDHPP1 subsume classical extended and normal disjunctive logic programs
[2,10].

Proposition 3. Let P1 be an extended disjunctive logic program. Then S1
′ is

an answer set of P1 iff h1 is a probabilistic answer of P1
′ ∈ EDHPP1 that

corresponds to P1 where h1(l) = [1, 1] iff l ∈ S1
′ and h1(l′) is undefined iff

l′ /∈ S1
′. Let P2 be a normal disjunctive logic program. Then S2

′ is a stable model
of P2 iff h2 is a stable probabilistic model of P2

′ ∈ NDHPP1 that corresponds
to P2 where h2(a) = [1, 1] iff a ∈ S2

′ and h2(b) = [0, 0] iff b ∈ BL \ S2
′.

In [1], a logical approach has been presented to reason with causal Bayes net-
works, by considering a body of logical knowledge, using the answer sets se-
mantics of classical logic programming [1]. Answer sets semantics has been used
to emulate the possible world semantics in [1]. In the following result, we show
that EDHPP naturally subsumes the probabilistic logic programming frame-
work (P-log) of [1]. This means that any P-log program can be represented as
an ed-program.

Proposition 4. The language of EDHPP subsumes P-log, a probabilistic logic
programming framework for reasoning with causal Bayes networks [1].
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4 Related Work

Many approaches have been proposed to augment logic programming with qual-
itative or quantitative uncertainty. Qualitative uncertainty is presented in log-
icprogramming by disjunctive logic programs [19,10,2], where EDHPP (NDHPP)
subsumes. However, quantitative uncertainty is represented in logic program-
ming by various formalisms including probability theory. Although, representing
and reasoning with both forms of uncertainty is needed [6], this issue has not
been addressed by the current work in qualitative or quantitative uncertainty in
logic programming. The main difference in this work is that we allow representing
and reasoning in the presence of both qualitative (represented by disjunctions)
and quantitative uncertainty (represented by probability theory) in a unified
logic programming framework. In addition, we allow the assignment of quanti-
tative uncertainly over qualitative uncertainty, where probabilistic measures are
assigned over the possible outcomes of qualitative uncertainty. The current work
in the literature supports either qualitative uncertainty [19,10,2] or quantitative
uncertainty [12,20,25,26,30,21,22,23,4,17,18,3,28,29,27].

The closest to our work are the frameworks presented in [30,18,1].
Although [30] allows disjunctions in the head of rules, the probabilistic logic

programming framework in [30] is used to represent and reason with quantitative
uncertainty to reason with Bayes networks. In addition, EDHPP (NDHPP) is
more expressive than [30], since, for example EDHPP, unlike [30], allows classical
negation, non-monotonic negation, different modes of probabilistic combinations
(since [30] considers independence of probabilities which is a fixed mode of prob-
abilistic combination), and compound events to appear in the body of rules, as
well as, Bayes reasoning and representation.

Similar to [30], another approach for probabilistic logic programming has been
provided in [18] for quantitative uncertainty reasoning. In [18], a possible world
semantics for reasoning about probabilities has been introduced by assigning
probabilistic measures over the possible worlds using normal disjunctive logic
programs. A probabilistic logic program in [18] consists of a set of normal dis-
junctive logic program clauses with associated probabilities. A normal disjunc-
tive clause in [18] is treated as a classical formula with an associated probability,
where the implication in such a clause is treated as material implication. In ad-
dition, an approximate semantics for probabilistic logic programming in [18] has
been presented, where probabilities are treated as a lattice of truth values. In this
case, the probability of a conjunction P rob(A ∧ B) = min(P rob(A), P rob(B))
and the probability of a disjunction P rob(A ∨ B) = max(P rob(A), P rob(B)).
This is considered a fixed mode of combination. Whereas, in our framework
conjunctions and disjunctions are treated differently according to the type of
dependency between events. In addition, unlike [18], we allow classical negation
and compound events to appear in the body of rules.

A logical approach has been presented in [1] to reason with causal Bayes
networks by considering a body of logical knowledge, by using the answer sets
semantics of classical answer set programming [10]. Although, full answer set
programming (logic programs with classical negation, non-monotonic negation,
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and disjunctions) is used, the probabilistic logic programming framework in [1]
is used to reason in the presence of quantitative uncertainty. Answer sets se-
mantics [10] has been used to emulate the possible world semantics. Proba-
bilistic logic programs of [1] is expressive and straightforward and relaxed some
restrictions on the logical knowledge representation part existed in similar ap-
proaches to Bayesian reasoning, e.g., [12,20,25,26,30]. Since [21,22,23,4] provided
a different semantical characterization to probabilistic logic programming, it
was not clear that how these proposals relate to [1]. However, the work pre-
sented in this paper and [29,27], which are modification and generalization of
the work presented in [21,22,23,4], are closely related to [1]. The framework
presented in this paper, as well as the framework of [27], is strictly syntacti-
cally and semantically subsumes probabilistic logic programs of [1]. This can
be argued by the fact that EDHPP naturally extends classical extended dis-
junctive logic programs with answer sets semantics [10], and probabilistic logic
programs of [1] mainly rely on extended disjunctive logic programs with an-
swer sets semantics [10] as a knowledge representation and inference mechanism
for reasoning with causal Bayes networks. In this sense, the comparisons estab-
lished between [1] and the existing probabilistic logic programming approaches
such as [12,20,25,26,30,21,22,23,4,17,18,3] also carry over to EDHPP and these
approaches. In addition, unlike [1], EDHPP does not put any restriction on the
type of dependency existing among events.

5 Conclusions and Future Work

We extended Extended and Normal Hybrid Probabilistic Logic Programs [27,29]
to Extended and Normal Disjunctive Hybrid Probabilistic Logic Programs, to
allow classical negation, non-monotonic negation, and disjunctions in the head
of rules. The extension is necessary to provide the capability of reasoning in
the presence of both qualitative and quantitative uncertainty in a unified logic
programming framework. In addition to the ability to assign quantitative un-
certainly over qualitative uncertainty, where probabilistic measures are assigned
over the possible outcomes of qualitative uncertainty. We developed semantical
characterizations of the extended languages, which rely on generalizations of the
answer sets semantics and the stable model semantics, originally developed for
extended and normal disjunctive logic programs [10,2], and the probabilistic an-
swer sets semantics and the stable probabilistic model semantics for Extended
and Normal Hybrid Probabilistic Logic Programs [27,29]. We showed that the
probabilistic answer sets semantics of EDHPP naturally generalizes the answer
sets semantics of extended disjunctive logic programs [10] and the probabilistic
answer sets semantics of EHPP [27]. In addition, the stable probabilistic model
semantics of NDHPP generalizes the stable model semantics of normal disjunc-
tive logic programs [2] and the stable probabilistic model semantics of NHPP [29].
Furthermore, we showed that the probabilistic answer sets semantics of EDHPP
is reduced to stable probabilistic model semantics of NDHPP. The importance
of that is computational methods developed for NDHPP can be applied to the
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language of EDHPP. Moreover, we showed that some commonsense probabilis-
tic knowledge can be easily represented in EDHPP and NDHPP. In addition,
we showed that EDHPP naturally subsumes the probabilistic logicprogramming
framework of [1]. The main topic of future research is to develop algorithms and
implementations for computing the semantics of EDHPP and NDHPP.
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Abstract. This paper is directed towards an infrastructure for handling both un-
certainty and vagueness in the Rules, Logic, and Proof layers of the Semantic
Web. More concretely, we present probabilistic fuzzy description logic programs,
which combine fuzzy description logics, fuzzy logic programs (with stratified
nonmonotonic negation), and probabilistic uncertainty in a uniform framework
for the Semantic Web. We define important concepts dealing with both proba-
bilistic uncertainty and fuzzy vagueness, such as the expected truth value of a
crisp sentence and the probability of a vague sentence. Furthermore, we describe
a shopping agent example, which gives evidence of the usefulness of probabilis-
tic fuzzy description logic programs in realistic web applications. In the extended
report, we also provide algorithms for query processing in probabilistic fuzzy
description logic programs, and we delineate a special case where query process-
ing can be done in polynomial time in the data complexity.

1 Introduction

The Semantic Web [1,4] aims at an extension of the current World Wide Web by stan-
dards and technologies that help machines to understand the information on the Web
so that they can support richer discovery, data integration, navigation, and automa-
tion of tasks. The main ideas behind it are to add a machine-readable meaning to web
pages, to use ontologies for a precise definition of shared terms in web resources, to use
KR technology for automated reasoning from web resources, and to apply cooperative
agent technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where the Ontology layer,
in form of the OWL Web Ontology Language [19], is currently the highest layer of suf-
ficient maturity. OWL consists of three increasingly expressive sublanguages, namely
OWL Lite, OWL DL, and OWL Full. OWL Lite and OWL DL are essentially very ex-
pressive description logics with an RDF syntax. As shown in [8], ontology entailment
in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability in the de-
scription logic SHIF(D) (resp., SHOIN (D)). On top of the Ontology layer, so-
phisticated representation and reasoning capabilities for the Rules, Logic, and Proof
layers of the Semantic Web are being developed next.

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 187–198, 2007.
© Springer-Verlag Berlin Heidelberg 2007



188 T. Lukasiewicz and U. Straccia

In particular, a key requirement of the layered architecture of the Semantic Web is to
integrate the Rules and the Ontology layer. Here, it is crucial to allow for building rules
on top of ontologies, that is, for rule-based systems that use vocabulary from ontology
knowledge bases. Another type of combination is to build ontologies on top of rules,
where ontological definitions are supplemented by rules or imported from rules. Both
types of integration have been realized in recent hybrid integrations of rules and ontolo-
gies under the loose coupling, called (loosely coupled) description logic programs (or
simply dl-programs), which have the form KB =(L, P ), where L is a description logic
knowledge base, and P is a finite set of rules involving queries to L [3].

Other research efforts are directed towards handling uncertainty and vagueness in
the Semantic Web, which are motivated by important web and semantic web appli-
cations. In particular, formalisms for handling uncertainty are used in data integration,
ontology mapping, and information retrieval, while dealing with vagueness is motivated
by multimedia information processing / retrieval and natural language interfaces to the
Web. There are several extensions of description logics and web ontology languages
by probabilistic uncertainty and fuzzy vagueness. Similarly, there are also extensions of
description logic programs by probabilistic uncertainty [9] and fuzzy vagueness [16,10].

Clearly, since uncertainty and vagueness are semantically quite different, it is impor-
tant to have a unifying formalism for the Semantic Web, which allows for dealing with
both uncertainty and vagueness. But even though there has been some important work
in the fuzzy logic community in this direction [5], to date there are no approaches to
description logic programs that allow for handling both uncertainty and vagueness.

In this paper, we try to fill this gap. We present a novel approach to description
logic programs, where probabilistic rules are defined on top of fuzzy rules, which are in
turn defined on top of fuzzy description logics. This approach allows for handling both
probabilistic uncertainty and fuzzy vagueness. Intuitively, it allows for defining several
rankings on ground atoms using fuzzy vagueness, and then for merging these rankings
using probabilistic uncertainty (by associating with each ranking a probabilistic weight
and building the weighted sum of all rankings). The main contributions are as follows:

– We present probabilistic fuzzy description logic programs, which combine (i) fuzzy
description logics, (ii) fuzzy logic programs (with stratified default negation), and
(iii) probabilistic uncertainty in a uniform framework for the Semantic Web.

– Such programs allow for handling both probabilistic uncertainty (especially for
probabilistic ontology mapping and probabilistic data integration) and fuzzy vague-
ness (especially for dealing with vague concepts). We define important concepts
dealing with both probabilistic uncertainty and fuzzy vagueness, such as the ex-
pected truth value of a crisp sentence and the probability of a vague sentence.

– We describe a shopping agent example, which gives evidence of the usefulness of
probabilistic fuzzy description logic programs in realistic web applications.

– In the extended report [11], we also give algorithms for query processing in prob-
abilistic fuzzy description logic programs, and we delineate a special case where
query processing is data tractable (under suitable assumptions about the underly-
ing fuzzy description logics), which is an important feature for the Web.

The rest of this paper is organized as follows. Section 2 gives a motivating example.
In Section 3, we recall combination strategies and fuzzy description logics. Section 4
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defines fuzzy dl-programs on top of fuzzy description logics. In Section 5, we then de-
fine probabilistic fuzzy dl-programs. Section 6 summarizes our main results and gives an
outlook on future research. Note that algorithms for query processing and data tractabil-
ity results as well as further technical details are given in the extended report [11].

2 Motivating Example

In this section, we describe a shopping agent example, where we encounter both proba-
bilistic uncertainty (in resource selection, ontology mapping / query transformation, and
data integration) and fuzzy vagueness (in query matching with vague concepts).

Example 2.1 (Shopping Agent). Suppose a person would like to buy “a sports car that
costs at most about 22 000 C and that has a power of around 150 HP”.

In todays Web, the buyer has to manually (i) search for car selling sites, e.g., using
Google, (ii) select the most promising sites (e.g., http://www.autos.com), (iii) browse
through them, query them to see the cars that they sell, and match the cars with our
requirements, (iv) select the offers in each web site that match our requirements, and
(v) eventually merge all the best offers from each site and select the best ones.

It is obvious that the whole process is rather tedious and time consuming, since e.g.
(i) the buyer has to visit many sites, (ii) the browsing in each site is very time consuming,
(iii) finding the right information in a site (which has to match the requirements) is not
simple, and (iv) the way of browsing and querying may differ from site to site.

A shopping agent may now support us as follows, automatizing the whole selection
process once it receives the request / query q from the buyer:

– Probabilistic Resource Selection. The agent selects some sites / resources S that it
considers as promising for the buyer’s request. The agent has to select a subset of
some relevant resources, since it is not reasonable to assume that it will access and
query all the resources known to him. The relevance of a resource S to a query is
usually (automatically) estimated as the probability P r(q|S) (the probability that
the information need represented by the query q is satisfied by the searching re-
source S, see e.g. [2,6]). It is not difficult to see that such probabilities can be
represented by probabilistic rules.

– Probabilistic Ontology Mapping / Query Reformulation. For the top-k selected
sites, the agent has to reformulate the buyer’s query using the terminology / onto-
logy of the specific car selling site. For this task, the agent relies on so-called trans-
formation rules, which say how to translate a concept or property of the agent’s
ontology into the ontology of the information resource (which is called ontology
mapping in the Semantic Web). To relate a concept B of the buyer’s ontology to
a concept S of the seller’s ontology, one often automatically estimates the proba-
bility P (B|S) that an instance of S is also an instance of B, which can then be
represented as a probabilistic rule [17,18,12].

– Vague Query Matching. Once the agent has translated the buyer’s request for the
specific site’s terminology, the agent submits the query. But the buyer’s request
often contains many so-called vague / fuzzy concepts such as “the price is around
22 000 C or less”, rather than strict conditions, and thus a car may match the buyer’s
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Table 1. Combination strategies of various fuzzy logics

Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic
a⊗ b max(a + b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a + b, 1) max(a, b) a + b− a · b max(a, b)

a � b min(1− a + b, 1)

{
1 if a  b

b otherwise
min(1, b/a) max(1− a, b)

� a 1− a

{
1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise
1− a

condition to a degree. As a consequence, a site / resource / web service may return
a ranked list of cars, where the ranks depend on the degrees to which the sold items
match the buyer’s requests q.

– Probabilistic Data Integration. Eventually, the agent has to combine the ranked lists
(see e.g. [14]) by considering the involved matching (or truth) degrees (vagueness)
and probability degrees (uncertainty) and show the top-n items to the buyer.

3 Preliminaries

In this section, we review combination strategies and fuzzy description logics, mainly
through some examples; more details are given in the extended report [11].

Combination Strategies. Rather than being restricted to a binary truth value among
false and true, vague propositions may also have a truth value strictly between false
and true. In the sequel, we use the unit interval [0, 1] as the set of all possible truth
values, where 0 and 1 represent the ordinary binary truth values false and true, re-
spectively. For example, the vague proposition “John is a tall man” may be more or less
true, and it is thus associated with a truth value in [0, 1], depending on the body height
of John. To combine and modify the truth values in [0, 1], we assume combination
strategies, namely, conjunction, disjunction, implication, and negation strategies, de-
noted⊗,⊕, �, and�, respectively, which are functions⊗,⊕, � : [0, 1]× [0, 1]→ [0, 1]
and � : [0, 1]→ [0, 1] that generalize the ordinary Boolean operators ∧, ∨, →, and ¬,
respectively, to the set of truth values [0, 1]. As usual, we assume that combination
strategies have some natural algebraic properties. Note that conjunction and disjunction
strategies are also called triangular norms and triangular co-norms [7], respectively.

Example 3.1. The combination strategies of various fuzzy logics are shown in Table 1.

Fuzzy Description Logics. Intuitively, description logics model a domain of interest
in terms of concepts and roles, which represent classes of individuals resp. binary re-
lations between classes of individuals. A knowledge base encodes in particular subset
relationships between concepts, subset relationships between roles, the membership of
individuals to concepts, and the membership of pairs of individuals to roles. In fuzzy de-
scription logics, these relationships and memberships then have a degree of truth in [0, 1].
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(a) (b) (c) (d)

Fig. 1. (a) Tra-function, (b) Tri-function, (c) L-function, and (d) R-function

We assume fuzzy generalizations of the description logics SHIF(D) and SHO-
IN (D) behind OWL Lite and OWL DL, respectively. We now describe the syntax of
fuzzy SHIF(D) and fuzzy SHOIN (D) (see especially [15]) and illustrate it through
an example. For a formal semantics and more details see [11]; for an implementation of
fuzzy SHIF(D), the fuzzyDL system, see http://gaia.isti.cnr.it/∼straccia.

The elementary ingredients are as follows. We assume a set of data values, a set
of elementary datatypes, and a set of datatype predicates (each with a predefined ar-
ity n � 1). A datatype is an elementary datatype or a finite set of data values. A fuzzy
datatype theory D= (∆D, ·D) consists of a datatype domain ∆D and a mapping
·D that assigns to each data value an element of ∆D, to each elementary datatype
a subset of ∆D, and to each datatype predicate of arity n a fuzzy relation over ∆D

of arity n (that is, a mapping (∆D)n → [0, 1]). We extend ·D to all datatypes by
{v1, . . . , vn}D = {vD

1 , . . . , vD
n }. Non-crisp predicates are usually defined by functions

for specifying fuzzy set membership degrees, such as the trapezoidal, triangular, left
shoulder, and right shoulder functions (see Fig. 1). Let A, RA, RD, I, and M be pair-
wise disjoint sets of atomic concepts, abstract roles, datatype roles, individuals, and
fuzzy modifiers, respectively.

A role is any element of RA ∪R−A ∪RD (where R−A is the set of inverses R− of
all R∈RA). We define concepts inductively as follows. Each A∈A is a concept, ⊥
and� are concepts, and if a1, . . . , an ∈ I, then {a1, . . . , an} is a concept (called oneOf).
If C, C1, C2 are concepts, R, S ∈RA ∪R−A, and m∈M, then (C1 � C2), (C1 � C2),
¬C, and m(C) are concepts (called conjunction, disjunction, negation, and fuzzy mod-
ification, respectively), as well as ∃R.C, ∀R.C, �nS, and nS (called exists, value,
atleast, and atmost restriction, respectively) for an integer n � 0. If D is a datatype and
T , T1, . . . , Tn ∈RD, then ∃T1, . . . , Tn.D, ∀T1, . . . , Tn.D, �nT , and nT are con-
cepts (called datatype exists, value, atleast, and atmost restriction, respectively) for an
integer n�0. We eliminate parentheses as usual.

A crisp axiom has one of the following forms: (1) C �D (called concept inclu-
sion axiom), where C and D are concepts; (2) R�S (called role inclusion axiom),
where either R, S ∈RA ∪R−A or R, S ∈RD; (3) Trans(R) (called transitivity axiom),
where R∈RA; (4) C(a) (called concept assertion axiom), where C is a concept and
a∈ I; (5) R(a, b) (resp., U(a, v)) (called role assertion axiom), where R∈RA (resp.,
U ∈RD) and a, b ∈ I (resp., a∈ I and v is a data value); and (6) a = b (resp., a �= b)
(equality (resp., inequality) axiom), where a, b∈ I. We define fuzzy axioms as follows:
A fuzzy concept inclusion (resp., fuzzy role inclusion, fuzzy concept assertion, fuzzy role
assertion) axiom is of the form α θ n, where α is a concept inclusion (resp., role inclu-
sion, concept assertion, role assertion) axiom, θ∈{, =, �}, and n∈ [0, 1]. Informally,
α  n (resp., α =n, α �n) encodes that the truth value of α is at most (resp., equal to,
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at least) n. We often use α to abbreviate α = 1. A fuzzy (description logic) knowledge
base L is a finite set of fuzzy axioms, transitivity axioms, and equality and inequality
axioms. For decidability, number restrictions in L are restricted to simple abstract roles.
Notice that L may contain fuzzy concept inclusion axioms (between general concepts).

Fuzzy SHIF(D) has the same syntax as fuzzy SHOIN (D), but without the oneOf
constructor and with the atleast and atmost constructors limited to 0 and 1.

Example 3.2 (Shopping Agent cont’d). The following axioms are an excerpt of the
fuzzy description logic knowledge base L that conceptualizes the site in Example 2.1:

Cars � Trucks �Vans � SUVs � Vehicles , (1)

PassengerCars � LuxuryCars � Cars , (2)

CompactCars �MidSizeCars � SportyCars � PassengerCars , (3)

Cars � (∃hasReview .Integer) 
 (∃hasInvoice .Integer) 
 (∃hasHP .Integer)


 (∃hasResellValue .Integer) 
 (∃hasSafetyFeatures .Integer) 
 . . . , (4)

(SportyCar 
 (∃hasInvoice .{18883}) 
 (∃hasHP .{166}) 
 . . .)(MazdaMX5Miata) , (5)

(SportyCar 
 (∃hasInvoice .{20341}) 
 (∃hasHP .{200}) 
 . . .)(VolkswagenGTI ) , (6)

(SportyCar 
 (∃hasInvoice .{24029}) 
 (∃hasHP .{162}) 
 . . .)(MitsubishiES) . (7)

Here, axioms (1)–(3) describe the concept taxonomy of the site, while axiom (4) de-
scribes the datatype attributes of the cars sold in the site. For example, every passenger
or luxury car is also a car, and every car has a resell value. Axioms (5)–(7) describe
the properties of some sold cars. For example, the MazdaMX5Miata is a sports car,
costing 18 883 C. Note that Integer denotes the datatype of all integers.

We may now encode “costs at most about 22 000 C” and “has a power of around 150
HP” in the buyer’s request through the following concepts C and D, respectively:

C = ∃hasInvoice .LeqAbout22000 and D = ∃hasHP .Around150HP ,

where LeqAbout22000 = L(22000, 25000) and Around150HP = Tri(125, 150, 175)
(see Fig. 1). The latter two equations define the fuzzy concepts “at most about 22 000 C”
resp. “around 150 HP”. The former is modeled as a left shoulder function stating that
if the price is less than 22 000, then the degree of truth (degree of buyer’s satisfaction)
is 1, else the truth is linearly decreasing to 0 (reached at the cost of 25 000). In fact, we
are modeling a case were the buyer would like to pay less than 22 000, though may still
accept a higher price (up to 25 000) to a lesser degree. Similarly, the latter models the
fuzzy concept “around 150 HP” as a triangular function with vertice in 150 HP.

The following fuzzy axioms are (tight) logical consequences of the above description
logic knowledge base L (under the Zadeh semantics of the connectives):

C(MazdaMX5Miata) = 1.0 , C(VolkswagenGTI ) = 1.0 , C(MitsubishiES ) = 0.32 ,

D(MazdaMX5Miata) = 0.36 , D(VolkswagenGTI ) = 0.0 , D(MitsubishiES) = 0.56 .

4 Fuzzy Description Logic Programs

In this section, we define fuzzy dl-programs, which are similar to the fuzzy dl-programs
in [10], except that they are based on fuzzy description logics as in [15], and that we
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consider only stratified fuzzy dl-programs here. Their canonical model associates with
every ground atom a truth value, and so defines a ranking on the Herbrand base. We first
introduce the syntax, and we then define the semantics of positive and stratified fuzzy
dl-programs in terms of a least model resp. an iterative least model semantics.

Syntax. Informally, a normal fuzzy program is a finite collection of normal fuzzy rules,
which are similar to ordinary normal rules, except that (i) they have a lower bound
for their truth value, and (ii) they refer to fuzzy interpretations rather than binary in-
terpretations, and thus every of their logical operators (that is, “←”, “∧”, and “not”)
is associated with a combination strategy (that is, “←” and “∧” are associated with a
conjunction strategy⊗, while “not” is associated with a negation strategy�) to specify
how the operator combines truth values. Formally, we assume a function-free first-order
vocabulary Φ with finite nonempty sets of constant symbols (which also belong to the
set I of all description logic individuals) and predicate symbols, and a set X of vari-
ables. A term is a constant symbol from Φ or a variable from X . If p is a predicate
symbol of arity k � 0 from Φ, and t1, . . ., tk are terms, then p(t1, . . ., tk) is an atom. A
literal is an atom a or a default-negated atom not a. A normal fuzzy rule r has the form

a ←⊗0 b1 ∧⊗1 b2 ∧⊗2 · · · ∧⊗k−1 bk∧⊗k

not�k+1 bk+1 ∧⊗k+1 · · · ∧⊗m−1 not�m bm � v ,
(8)

where m � k � 0, a, b1, . . . , bm are atoms, ⊗0, . . . ,⊗m−1 are conjunction strategies,
�k+1, . . . ,�m are negation strategies, and v ∈ [0, 1]. We call a the head of r, de-
noted H(r), while the conjunction b1 ∧⊗1 . . . ∧⊗m−1 not�m bm is the body of r.
We define B(r)= B+(r)∪B−(r), where B+(r)= {b1, . . . , bk} and B−(r)= {bk+1,
. . . , bm}. A normal fuzzy program P is a finite set of normal fuzzy rules.

Informally, a fuzzy dl-program consists of a fuzzy description logic knowledge base
L and a generalized normal fuzzy program P , which may contain queries to L. In
such a query, it is asked whether a concept or a role assertion logically follows from L
or not (see [3] for more background and examples of such queries). Formally, a dl-
query Q(t) is either (a) of the form C(t), where C is a concept, and t is a term, or
(b) of the form R(t1, t2), where R is a role, and t1 and t2 are terms. A dl-atom has
the form DL[S1 � p1, . . . , Sm � pm; Q](t), where each Si is an atomic concept or a
role, pi is a unary resp. binary predicate symbol, Q(t) is a dl-query, and m � 0. We
call p1, . . . , pm its input predicate symbols. Intuitively, Si � pi encodes that the truth
value of every Si(e) is at least the truth value of pi(e), where e is a constant (resp., pair
of constants) from Φ when Si is a concept (resp., role) (and thus pi is a unary (resp.,
binary) predicate symbol). A fuzzy dl-rule r is of the form (8), where any bi in the body
of r may be a dl-atom. A fuzzy dl-program KB = (L, P ) consists of a satisfiable fuzzy
description logic knowledge base L and a finite set of fuzzy dl-rules P . Substitutions,
ground substitutions, ground terms, ground atoms, etc., are defined as usual. We denote
by ground(P ) the set of all ground instances of fuzzy dl-rules in P relative to Φ.

Example 4.1 (Shopping Agent cont’d). A fuzzy dl-program KB = (L, P ) is given by
the fuzzy description logic knowledge base L in Example 3.2, and the set of fuzzy dl-
rules P , which contains only the following fuzzy dl-rule encoding the buyer’s request,
where⊗ may, e.g., be the Gödel conjunction strategy (that is, x⊗ y = min(x, y)):
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query(x) ←⊗ SportyCar (x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHP(x, y2)∧⊗
DL[LeqAbout22000 ](y1) ∧⊗ DL[Around150HP ](y2) � 1 .

Models of Fuzzy DL-Programs. We first define fuzzy (Herbrand) interpretations, the
semantics of dl-queries, and the truth of fuzzy dl-rules and of fuzzy dl-programs in
interpretations. In the sequel, let KB = (L, P ) be a (fully general) fuzzy dl-program.

We denote by HBΦ (resp., HU Φ) the Herbrand base (resp., universe) over Φ. In the
sequel, we assume that HBΦ is nonempty. A fuzzy interpretation I is a mapping I :
HBΦ→ [0, 1]. We denote by HBΦ the fuzzy interpretation I such that I(a)= 1 for
all a∈HBΦ. For fuzzy interpretations I and J , we write I ⊆ J iff I(a) J(a) for all
a∈HBΦ, and we define the intersection of I and J , denoted I ∩J , by (I ∩J)(a) =
min(I(a), J(a)) for all a∈HBΦ. Note that I ⊆HBΦ for all fuzzy interpretations I .
The truth value of a∈HBΦ in I under L, denoted IL(a), is defined as I(a). The truth
value of a ground dl-atom a = DL[S1 � p1, . . . , Sm � pm; Q](c) in I under L, de-
noted IL(a), is the supremum of v subject to L∪

⋃m
i=1 Ai(I) |= Q(c)� v and v ∈ [0, 1],

where Ai(I)= {Si(e)� I(pi(e)) | I(pi(e))> 0, pi(e)∈HBΦ}. We say I is a model of
a ground fuzzy dl-rule r of form (8) under L, denoted I |=L r, iff

IL(a) � IL(b1)⊗1 IL(b2)⊗2 · · · ⊗k−1 IL(bk) ⊗k

�k+1 IL(bk+1)⊗k+1 · · · ⊗m−1 �mIL(bm)⊗0 v ,

Here, we implicitly assume that⊗1, . . . ,⊗m−1,⊗0 are evaluated from left to right. We
say I is a model of KB = (L, P ), denoted I |= KB , iff I |=L r for all r∈ ground(P ).

Positive Fuzzy DL-Programs. Informally, positive fuzzy dl-programs have no default
negation: A fuzzy dl-program KB =(L, P ) is positive iff P is “not”-free.

For ordinary positive programs, as well as positive dl-programs KB , the intersection
of a set of models of KB is also a model of KB . A similar result holds for positive
fuzzy dl-programs KB . Hence, every positive fuzzy dl-program KB has as its canonical
model a unique least model, denoted MKB , which is contained in every model of KB .

Example 4.2 (Shopping Agent cont’d). The fuzzy dl-program KB = (L, P ) of Exam-
ple 4.1 is positive, and its minimal model MKB is given as follows:

MKB (query(MazdaMX5Miata)) = 0.36 , MKB (query(MitsubishiES)) = 0.32 ,

and all other ground instances of query(x) have the truth value 0 under MKB .

Stratified Fuzzy DL-Programs. We next define stratified fuzzy dl-programs, which are
composed of hierarchic layers of positive fuzzy dl-programs that are linked via default
negation. Like for ordinary stratified programs, as well as stratified dl-programs, a min-
imal model can be defined by a finite number of iterative least models, which naturally
describes as the canonical model the semantics of stratified fuzzy dl-programs.

For any fuzzy dl-program KB =(L, P ), let DLP denote the set of all ground dl-
atoms that occur in ground(P ). An input atom of a∈DLP is a ground atom with an
input predicate of a and constant symbols in Φ. A stratification of KB = (L, P ) (with
respect to DLP ) is a mapping λ : HBΦ ∪DLP→{0, 1, . . . , k} such that
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(i) λ(H(r))� λ(a) (resp., λ(H(r))> λ(a)) for each r ∈ ground(P ) and a ∈ B+(r)
(resp., a ∈ B−(r)), and

(ii) λ(a)� λ(a′) for each input atom a′ of each a ∈ DLP ,

where k � 0 is the length of λ. For i∈{0, . . . , k}, we define KB i = (L, Pi)= (L, {r ∈
ground(P ) | λ(H(r)) = i}), and we define HBPi (resp., HB�

Pi
) as the set of all a ∈

HBΦ such that λ(a)= i (resp., λ(a) i).
A fuzzy dl-program KB =(L, P ) is stratified iff it has a stratification λ of some

length k � 0. We define its iterative least models Mi⊆HBΦ with i∈{0, . . . , k} by:

(i) M0 is the least model of KB0;
(ii) if i > 0, then Mi is the least model of KB i such that Mi|HB�

Pi−1
=Mi−1|HB�

Pi−1
,

where Mi|HB�
Pi−1

and Mi−1|HB�
Pi−1

denote the restrictions of the mappings Mi

and Mi−1 to HB�
Pi−1

, respectively.

Then, MKB denotes Mk. Note that MKB is well-defined, since it does not depend on a
particular stratification λ. Furthermore, MKB is in fact a minimal model of KB .

5 Probabilistic Fuzzy Description Logic Programs

In this section, we introduce probabilistic fuzzy dl-programs as a combination of strat-
ified fuzzy dl-programs with Poole’s independent choice logic (ICL) [13]. This will
allow us to express probabilistic rules. Poole’s ICL is based on ordinary acyclic logic
programs P under different “atomic choices”, where each atomic choice along with P
produces a first-order model, and one then obtains a probability distribution on the set of
first-order models by placing a probability distribution on the different atomic choices.
Here, we use stratified fuzzy dl-programs rather than ordinary acyclic logic programs,
and thus we define a probability distribution on a set of fuzzy interpretations. In other
words, we define a probability distribution on a set of rankings on the Herbrand base.

Syntax. We now define the syntax of probabilistic fuzzy dl-programs and probabilistic
queries addressed to them. We first introduce fuzzy formulas, query constraints, and
probabilistic formulas, and we define choice spaces and probabilities on choice spaces.

We define fuzzy formulas by induction as follows. The propositional constants false
and true, denoted⊥ and�, respectively, and all atoms p(t1, . . . , tk) are fuzzy formulas.
If φ and ψ are fuzzy formulas, and ⊗, ⊕, �, and � are conjunction, disjunction, im-
plication, resp. negation strategies, then (φ∧⊗ ψ), (φ∨⊕ ψ), (φ⇒� ψ), and ¬� φ are
also fuzzy formulas. A query constraint has the form (φ θ r)[l, u] or (E[φ])[l, u] with
θ∈{�, >, <, }, r, l, u∈ [0, 1], and fuzzy formulas φ. Informally, the former asks for
the interval of the probability that the truth value v of φ satisfies v θ r, while the latter
asks for the interval of the expected truth value of φ. We define probabilistic formulas
inductively as follows. Each query constraint is a probabilistic formula. If F and G are
probabilistic formulas, then also ¬F and (F ∧ G). We use (F ∨G) and (F ⇒G) to
abbreviate ¬(¬F ∧¬G) resp. ¬(F ∧¬G), and eliminate parentheses as usual.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆HBΦ. Any
A∈C is an alternative of C and any a∈A an atomic choice of C. Intuitively, every
A∈C represents a random variable and every a∈A one of its possible values. A total
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choice of C is a set B⊆HBΦ such that |B ∩ A|= 1 for all A∈C. Intuitively, every
total choice B of C represents an assignment of values to all the random variables.
A probability µ on a choice space C is a probability function on the set of all total
choices of C. Intuitively, every µ is a probability distribution over the set of all variable
assignments. Since C and all its alternatives are finite, µ can be defined by (i) a mapping
µ :

⋃
C→ [0, 1] such that

∑
a∈A µ(a)= 1 for all A∈C, and (ii) µ(B)= Πb∈Bµ(b)

for all total choices B of C. Intuitively, (i) defines a probability over the values of each
random variable of C, and (ii) assumes independence between the random variables.

A probabilistic fuzzy dl-program KB = (L, P, C, µ) consists of a stratified fuzzy dl-
program (L, P ), a choice space C such that (i)

⋃
C ⊆HBΦ and (ii) no atomic choice

in C coincides with the head of any fuzzy dl-rule in ground(P ), and a probability µ
on C. Intuitively, since the total choices of C select subsets of P , and µ is a probability
distribution on the total choices of C, every probabilistic fuzzy dl-program compactly
represents a probability distribution on a finite set of stratified fuzzy dl-programs. A
probabilistic query to KB has the form ∃F , or ∃(α θ r)[L, U ], or ∃(E[α])[L, U ], where
F is a probabilistic formula, α is a fuzzy formula, r∈ [0, 1], and L, U are variables.

Example 5.1 (Shopping Agent cont’d). A probabilistic fuzzy dl-program KB =(L, P,
C, µ) is given by L of Example 3.2, the following set of fuzzy dl-rules P , which model
the query reformulation and retrieval steps using ontology mapping rules:

query(x) ←⊗ SportsCar (x) ∧⊗ hasPrice(x, y1) ∧⊗ hasPower (x, y2) ∧⊗

DL[LeqAbout22000 ](y1) ∧⊗ DL[Around150HP ](y2) � 1 , (9)

SportsCar (x) ←⊗ DL[SportyCar ](x) ∧⊗ scpos � 0.9 , (10)

hasPrice(x) ←⊗ DL[hasInvoice ](x) ∧⊗ hipos � 0.8 , (11)

hasPower (x) ←⊗ DL[hasHP ](x) ∧⊗ hhppos � 0.8 , (12)

the choice space C = {{scpos, scneg}, {hipos, hineg}, {hhppos, hhpneg}}, and the
probability distribution µ, which is given by the following probabilities for the atomic
choices scpos, scneg , hipos, hineg , hhppos, and hhpneg (which are 0-ary predicate sym-
bols), and then extended to all total choices by assuming independence:

µ(scpos) = 0.91 , µ(scneg) = 0.09 , µ(hipos) = 0.78 ,
µ(hineg) = 0.22 , µ(hhppos) = 0.83 , µ(hhpneg) = 0.17 .

Intuitively, C encodes three probabilistically independent random variables with the
binary domains {scpos, scneg}, {hipos, hineg}, and {hhppos, hhpneg}. Rule (9) is the
buyer’s request, but in a “different” terminology than the one of the car selling site.
Rules (10)–(12) are so-called ontology alignment mapping rules. For example, rule (10)
states that the predicate “SportsCar” of the buyer’s terminology refers to the concept
“SportyCar” of the selected side, with probability 0.91. Such mapping rules can be au-
tomatically built by relying on ontology alignment tools, such as oMap [17,18], whose
main purpose is to find relations among the concepts and roles of two different ontolo-
gies. oMap is particularly suited for our case, as it is based on a probabilistic model,
and thus the mappings have a probabilistic reading (see also [12]).

Semantics. A world I is a fuzzy interpretation over HBΦ. We denote by IΦ the set
of all worlds over Φ. A variable assignment σ maps each X ∈X to some t∈HU Φ.
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It is extended to all terms by σ(c)= c for all constant symbols c from Φ. The truth
value of fuzzy formulas φ in I under σ, denoted Iσ(φ) (or I(φ) when φ is ground), is
inductively defined by (1) Iσ(φ∧⊗ψ)= Iσ(φ)⊗Iσ(ψ), (2) Iσ(φ∨⊕ψ)= Iσ(φ)⊕Iσ(ψ),
(3) Iσ(φ⇒� ψ)= Iσ(φ) � Iσ(ψ), and (4) Iσ(¬�φ)= � Iσ(φ).

A probabilistic interpretation Pr is a probability function on IΦ (that is, a mapping
Pr : IΦ→ [0, 1] such that (i) the set of all I ∈IΦ with Pr(I)> 0 is denumerable, and
(ii) all Pr(I) with I ∈IΦ sum up to 1). The probability of φ θ r in Pr under a variable
assignment σ, denoted Prσ(φ θ r) (or Pr(φ θ r) when φ is ground), is the sum of all
Pr(I) such that I ∈IΦ and Iσ(φ) θ r. The expected truth value of φ under Pr and σ, de-
noted EPr ,σ[φ], is the sum of all Pr(I) · Iσ(φ) with I ∈IΦ. Notice that in the notion of
expected truth value, we combine probabilities and truth values. The truth of probabilis-
tic formulas F in Pr under σ, denoted Pr |=σ F , is inductively defined by (1) Pr |=σ

(φ θ r)[l, u] iff Prσ(φ θ r)∈ [l, u], (2) Pr |=σ (E[φ])[l, u] iff EPr ,σ[φ]∈ [l, u], (3) Pr
|=σ ¬F iff not Pr |=σ F , and (4) Pr |=σ (F ∧G) iff Pr |=σ F and Pr |=σ G.

A probabilistic interpretation Pr is a model of a probabilistic formula F iff Pr |=σF
for every variable assignment σ. We say Pr is the canonical model of a probabilis-
tic fuzzy dl-program KB =(L, P, C, µ) iff every world I ∈IΦ with Pr(I)> 0 is the
canonical model of (L, P ∪{p ← | p∈B}) for some total choice B of C with Pr (I) =
µ(B). Notice that every KB has a unique canonical model Pr . We say F is a conse-
quence of KB , denoted KB ‖∼F , iff the canonical model of KB is also a model of F . A
query constraint (φ θ r)[l, u] (resp., (E[φ])[l, u]) is a tight consequence of KB , denoted
KB ‖∼ tight (φ θr)[l, u] (resp., KB ‖∼ tight (E[φ])[l, u]), iff l (resp., u) is the infimum
(resp., supremum) of Prσ(φ θ r) (resp., EPr ,σ[φ]) subject to the canonical model Pr of
KB and all σ. A correct answer to ∃F is a substitution σ such that Fσ is a consequence
of KB . A tight answer to ∃(α θ r)[L, U ] (resp., ∃(E[α])[L, U ]) is a substitution σ such
that (α θ r)[L, U ]σ (resp., (E[α])[L, U ]σ) is a tight consequence of KB .

Example 5.2 (Shopping Agent cont’d). The following are some tight consequences of
the probabilistic fuzzy dl-program KB = (L, P, C, µ) in Example 5.1:

(E[query(MazdaMX5Miata)])[0.21, 0.21] , (E[query(MitsubishiES)])[0.19, 0.19] .

So, the agent ranks the MazdaMX5Miata first with degree 0.21 (= 0.36 · 0.91 · 0.78 ·
0.83) and the MitsubishiES second with degree 0.19 (= 0.32 · 0.91 · 0.78 · 0.83).

6 Summary and Outlook

We have presented probabilistic fuzzy dl-programs for the Semantic Web, which allow
for handling both probabilistic uncertainty (especially for probabilistic ontology map-
ping and probabilistic data integration) and fuzzy vagueness (especially for dealing with
vague concepts) in a uniform framework. We have defined important concepts related
to both probabilistic uncertainty and fuzzy vagueness. Furthermore, we have described
a shopping agent example, which gives evidence of the usefulness of probabilistic fuzzy
dl-programs in realistic web applications. In the extended report [11], we also provide
algorithms for query processing in such programs, which can be done in polynomial
time in the data complexity under suitable assumptions.
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An interesting topic of future research is to generalize probabilistic fuzzy dl-pro-
grams by non-stratified default negations, classical negations, and disjunctions. Another
interesting issue is to explore how to update probabilistic fuzzy dl-programs.

Acknowledgments. This work has been partially supported by the German Research
Foundation (DFG) under the Heisenberg Programme.
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Abstract. Dynamic epistemic logic (DEL) as viewed by Baltag et col.
and propositional dynamic logic (PDL) offer different semantics of events.
On the one hand, DEL adds dynamics to epistemic logic by introducing
so-called epistemic action models as syntactic objects into the language.
On the other hand, PDL has instead transition relations between possible
worlds. This last approach allows to easily introduce converse events. We
add epistemics to this, and call the resulting logic epistemic dynamic logic
(EDL). We show that DEL can be translated into EDL thanks to this use
of the converse operator: this device enables us to translate the structure
of the action (or event) model directly within a particular axiomatization
of EDL, without having to refer to a particular epistemic action (event)
model in the language (as done in DEL). It follows that EDL is more
expressive and general than DEL.

1 Introduction

Aim: reason about perception of events. To account for various modes of percep-
tion of events is the aim of a family of formal systems called dynamic epistemic
logics. These systems were proposed in a series of publications most promi-
nently by Plaza, Baltag, Gerbrandy, van Benthem, van Ditmarsch, and Kooi
[10,7,6,14,16,17]. Dynamic epistemic logics add dynamics to Hintikka’s epistemic
logic via transformations of its models.

The focus of dynamic epistemic logics is on particular events that are called
updates. Updates can be seen as announcements made to the agents. The sim-
plest case of updates are public announcements à la Plaza [10]; when the input
is propositional such announcements correspond to AGM expansion operations
[1]. Another example are group announcements à la Gerbrandy [6,7]. Note that
DEL-updates differ from Katsuno-Mendelzon-like updates as studied in the AI
literature [9].

In [2,4,3] and elsewhere, Baltag et col. proposed a dynamic epistemic logic
that was very influential. We refer to it in this paper by the term DEL. It has
been shown that their account subsumes all other dynamic epistemic logics,

� An extended version of this paper with proofs can be found at the following address:
ftp://ftp.irit.fr/IRIT/LILAC/ecsqaruEDL.pdf

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 199–209, 2007.
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justifying our acronym. The semantics of DEL is based on two kinds of models:
a static model M s (called state model by Baltag) and a (finite) dynamic model
Md (called epistemic action model by Baltag). M s models the actual world and
the agents’ beliefs about it, and is nothing but a good old epistemic model à
la Hintikka. Md models the actual event taking place and the agents’ beliefs
about it. An agent’s beliefs can be incomplete (event a occurred, but agent
cannot distinguish occurrence of a from occurrence of a′) and even unsound (a
occurred, but agent wrongly perceived some a′). M s and Md are then combined
by a restricted product construction which defines the situation after the actual
event took place, viz. the resulting actual world, and the agents’ beliefs about it.

Semantics of events: products vs. accessibility relations. Naturally, we would be
interested to express in DEL that an event a occurred, viz to give semantics to
the converse event a− within the framework of DEL. It is not clear how this
should work precisely. The only approach we are aware of is that of Yap [19]
who fails to get a complete characterization.

On the other hand, in PDL, events are interpreted as transition relations on
possible worlds, and not as restricted products of models as in DEL. Converse
events a− can then easily be interpreted by inverting the accessibility relation
associated to a. The resulting logic is called the tense extension of PDL.

To this we then add an epistemic operator. We call (tensed) Epistemic Dy-
namic Logic EDL the combination of epistemic logic and PDL with converse.1

A semantics in terms of transition relations is more flexible than DEL’s product
semantics: we have more options concerning the interaction between events and
beliefs. Our main contribution here is to account for this delicate relationship
by means of constraints on the respective accessibility relations: a no-forgetting
and a no-learning constraint, and a constraint of epistemic determinism.

Translating DEL into EDL. To demonstrate the power of our approach we pro-
vide a translation from DEL to EDL: we express the structure of a DEL dynamic
model Md by a nonlogical theory Γ (Md) of EDL, and prove that any formula ϕ
is valid in DEL if and only if it is a logical consequence of Γ (Md) in EDL.

So, unlike DEL , we avoid to refer to a semantical structure (viz. the DEL
dynamic model Md) in the very definition of the language. Encoding the struc-
ture of a DEL dynamic model Md by a nonlogical theory Γ (Md) of EDL is done
thanks to converse events. For example [a]Bi(〈a−〉� ∨ 〈b−〉�) expresses that
agent i perceives the occurrence of a as that of either a or b.

Organization of the paper. This paper is organized as follows. In section 2 we
introduce a language of belief, events and converse events. In section 3 we provide
a semantics for that language, and define our logic EDL. In section 4 we give

1 EDL is related to Segerberg’s Doxastic Dynamic Logic DDL [12,13]. Up to now re-
search on DDL focussed mainly on its relation with the AGM theory of belief revision,
and studied particular events of the form +ϕ (expansion by ϕ), ∗ϕ (revision by ϕ),
and −ϕ (contraction by ϕ). EDL and DDL coincides in what concerns propositional
announcements.
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Baltag’s restricted product semantics for the fragment of the language without
converse, and define his logic DEL. In section 5 we associate a theory Γ (Md)
to each dynamic model Md, and prove that the consequences of Γ (Md) in EDL
match the DEL-validities. This suggests that EDL is more expressive and general
than DEL, and we will concentrate on that point to conclude in section 6.

2 The Languages

We suppose given sets of propositional symbols PROP = {p, q, . . .}, agent sym-
bols AGT = {i, j, . . .}, and event symbols EVT = {a, b, . . .}. All these sets
may be infinite (while in DEL AGT and EVT have to be finite). From these
ingredients the multi-modal language is built classically as follows:

ϕ := ⊥|p|¬ϕ|ϕ ∧ ϕ′|Biϕ|[a]ϕ|[a−]ϕ, p ∈ PROP , i ∈ AGT , a ∈ EVT

The formula Biϕ reads “agent i believes that ϕ”. [a]ϕ reads “ ϕ holds after
every possible occurrence of event a”. [a−]ϕ reads “ϕ held before a”. The dual
modal operators B̂i, 〈a〉, and 〈a−〉 are defined in the usual way: B̂iϕ abbreviates
¬Bi¬ϕ; 〈a〉ϕ abbreviates ¬[a]¬ϕ; 〈a−〉ϕ abbreviates ¬[a−]¬ϕ.

The language LEDL of EDL is the entire language. The language LDEL of DEL
is the set of those formulas of LEDL that do not contain the converse operator
[a−]. Finally, the epistemic language LEL is the set of those formulas of LEDL

that do not contain any dynamic operator, i.e. built from PROP , the Boolean
operators and the Bi operators alone. For example [a]Bi[a−]⊥ is an LEDL-formula
(that is not in LDEL).

3 EDL: Epistemic Dynamic Logic with Converse

When designing models of events and beliefs the central issue is to account for
the interplay of these two concepts. In our PDL-based semantics this is done by
means of constraints on the respective accessibility relations. These will ensure
what we call no-forgetting, no-learning and epistemic determinism.

3.1 Semantics

EDL-models are of the form

M = 〈W, V , {Aa}a∈EVT , {Bi}i∈AGT 〉

where W is a set of possible worlds, V : PROP −→ 2W a valuation, and the
Aa ⊆ W ×W and Bi ⊆ W ×W are accessibility relations on W . The relation
A−1

a is the inverse of Aa. We sometimes view accessibility relations as mappings
from worlds to sets of worlds, and write for example A−1

a (w) = {v : 〈w, v〉 ∈
A−1

a } = {v : 〈v, w〉 ∈ Aa}.
We suppose that EDL-models satisfy the following constraints of no forgetting,

no learning and epistemic determinism:
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(nf) If v(Aa ◦ Bi ◦ A−1
b )v′ then vBiv

′.
(nl) If (Aa ◦ Bi ◦ A−1

b )(v) �= ∅ then (Bi ◦ Ab)(v) ⊆ (Aa ◦ Bi)(v).
(ed) If w1, w2 ∈ Aa(v) then Bi(w1) = Bi(w2).

To understand the no-forgetting principle, also known as perfect recall [5],
suppose that w results from the occurrence of event a in world v; if in world w,
the world w′ is an alternative for agent i, and w′ results from event b in a world
v′, then v′ was already possible for agent i in the world v (see figure below).

To understand the principle no-learning, also known as no miracle [15], assume
that agent i perceive the occurrence of a as that of b1, b2. . . or bn. Then, infor-
mally, the no-learning principle says that all such alternatives resulting from
occurrence of b1, b2,. . . , bn in i’s alternatives before a are indeed alternatives
after a. Formally, assume that agent i perceives b as a possible alternative of a
(i.e. (Aa ◦ Bi ◦ A−1

b )(v) �= ∅). If at v world w′ was a possible outcome of event b
for i, then w′ is possible for i at some w ∈ Aa(v) (see figure below).

Finally, the epistemic determinism principle says that an agent’s epistemic
state after an event does not depend on the particular nondeterministic out-
come. Formally, suppose we have vAaw1 and vAaw2. Then (ed) forces that the
epistemic states at w1 and w2 are identical: Bi(w1) = Bi(w2) (see figure below).
This follows from our hypothesis that events are feedback-free (also known as
uninformative events [8]): the agents cannot distinguish between their different
nondeterministic outcomes. These are events of which the agents only learn their
occurrence, but not their outcomes. Both public and private announcements are
examples of feedback-free events. Another example is the event of tossing a coin
without checking the result. An example of an event that is not feedback-free
is agent i’s event of testing if formula ϕ is true: beyond the mere occurrence of
the test, i also learns about its outcome, i.e. after the test i knows whether ϕ
is true or not. Thus the no-learning constraint is violated. Another example of
a non-feedback-free event is that of tossing a coin and looking at it: here the
epistemic determinism constraint is violated.
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Truth of a formula ϕ in a world w of a model M is noted M, w |= ϕ and is
defined as usual:

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff it is not the case that M, w |= ϕ

M, w |= ϕ ∧ ϕ′ iff M, w |= ϕ and M, w |= ϕ′
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M, v |= Biϕ iff M, v′ |= ϕ for every w′ ∈ Bi(v)
M, v |= [a]ϕ iff M, w |= ϕ for every w ∈ Aa(v)

M, w |= [a−]ϕ iff M, v |= ϕ for every v ∈ A−1
a (w)

Truth of ϕ in a EDL-model M is noted M |= ϕ and is defined as: M, w |= ϕ
for every w ∈ W . Let Γ be a set of LEDL-formulas. The (global) consequence
relation is defined by:

Γ |=EDL ϕ iff for every EDL-model M , if M |= ψ for every ψ ∈ Γ then M |= ϕ.

For example we have
{[b]ϕ, 〈a〉Bi〈b−〉�} |=EDL [a]Biϕ

and
|=EDL (Bi[b]ϕ ∧ 〈a〉Bi〈b−〉�)→ [a]Biϕ. (*)

Consider ϕ = ⊥ in (*): Bi[b]⊥ means that perception of event b was unex-
pected by agent i, while 〈a〉Bi〈b−〉� means that i actually perceives a as b. By
our no-forgetting constraint it follows that [a]Bi⊥ In fact, one would like to avoid
agents getting inconsistent: in such situations some sort of belief revision should
take place. We do not investigate this further here, and leave it to future work
to augment EDL by belief revision mechanisms.

3.2 Completeness

The axiomatics of EDL is made up of the principles of multi-modal logic K for
all the modal operators Bi, [a] et [a−], plus the axioms (Conv1), (Conv2), (NF)
et (NL) below:

(Conv1) �EDL ϕ→ [a]〈a−〉ϕ
(Conv2) �EDL ϕ→ [a−]〈a〉ϕ
(NF) �EDL Biϕ→ [a]Bi[b−]ϕ
(NL) �EDL 〈a〉B̂i〈b−〉� → ([a]Biϕ→ Bi[b]ϕ)
(ED) �EDL 〈a〉Biϕ→ [a]Biϕ

(Conv1) and (Conv2) are the standard conversion axioms of tense logic and
converse PDL. (NF), (NL) and (ED) respectively axiomatize no forgetting, no
learning and epistemic determinism.

We write Γ �EDL ϕ when ϕ is provable from the set of formulas Γ in this
axiomatics.

EDL is strongly complete:

Proposition 1. For every set of LEDL-formulas Γ and LEDL-formula ϕ,

Γ |=EDL ϕ if and only if Γ �EDL ϕ.

Proof. The proof follows from Sahlqvist’s theorem [11]: all our axioms (NF),
(NL), (ED) are of the required form, and match the respective constraints (nf),
(nl), (ed).
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3.3 Extensions of the Basic Logic

Wearegoing to studyhowour constraint (nl) evolveswhenweaddother constraints
on the epistemic accessibility relation Bi, as it is often done in epistemic logic.

Introspective Belief. In the literature, the notion of belief is often supposed
to satisfy positive and negative introspection. That is to say, the axioms of
transitivity (4) and of euclidianity (5) are valid: Biϕ→ BiBiϕ (4) and ¬Biϕ→
Bi¬Biϕ (5). Semantically, in that case every Bi satisfies:

(45) if wBiw
′ then Bi(w) = Bi(w′)

Proposition 2. Conditions (45), (nl), (nf) and (ed) are equivalent to conditions
(45), (nli), (nf) and (ed) where

(nli) Bi ◦ A−1
a ◦ Bi ◦ Aa ⊆ Bi

This proposition tells us that under (45), (nl) simplifies to (nli). The axiom
corresponding with (nli) is Biϕ→ Bi[a−]Bi[a]ϕ.

Knowledge. In the literature, the notion of knowledge is often supposed to
satisfy positive and negative introspection but also reflexivity (T): Biϕ → ϕ
(T). Semantically, (T) corresponds to

(t) wBiw

One can then show that with this extra condition Bi is an equivalence relation.

Proposition 3. Conditions (45), (t), (nl), (nf) ,(ed) are equivalent to (45), (t),
(nlt), (nf), (ed) where

(nlt) A−1
a ◦ Bi ◦ Aa ⊆ Bi.

Proposition 3 tells us that under (45) and (t), (nl) simplifies to (nlt). The axiom
corresponding with (nlt) is Biϕ→ [a−]Bi[a]ϕ and is somewhat symmetric w.r.t.
axiom (NF).

4 DEL: Static Models, Dynamic Models, and Their
Products

We here present the star-free version of Baltag’s dynamic epistemic logic DEL
[4,3].

4.1 Semantics

– Static models are just models of the form M s = 〈W, V, { s−→i}i∈AGT 〉,
where W is an arbitrary set, V : PROP −→ 2W a valuation and the s−→i ⊆
W×W are accessibility relations on W.
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– Dynamic models are of the form Md = 〈EVT , Pre, { d−→i}i∈AGT 〉, where
Pre : EVT −→ LEL is a precondition function associating epistemic formu-
las to events, and the d−→i ⊆ EVT×EVT are accessibility relations on EVT .

Intuitive interpretation. Informally, P re(a) is the precondition that a world
must fulfill so that the event a can take place in this world. For example
Pre(a) = � means that action a can take place in any world. When we have

d−→i (a) = {b} then the occurrence of a is perceived by agent i as the occur-
rence of b; when d−→i (a) = {b1, b2} then the occurrence of a is perceived by
agent i indistinguishably as the occurrence of b1 or b2; etc.

We recall that the set EVT is the set of atomic events. In DEL it is supposed
to be finite. Moreover, every d−→i is supposed to be serial : for every a ∈ EVT
there is at least one b ∈ EVT such that a

d−→i b.

Remark 1. The basic logic DEL does not validate introspective principles.
DEL can be extended as usual such that for every i ∈ AGT , the s−→i and
the d−→i are transitive and Euclidian.

– Product construction. Given M s = 〈W, V, { s−→i}i∈AGT 〉 and Md =
〈EVT , Pre, { d−→i}i∈EVT 〉, their product M s ⊗Md is a static model describ-
ing the situation after the event described by Md occurred in M s:

M s ⊗Md = 〈W′, V′, { s−→i
′
}i∈AGT 〉

where the new set of possible worlds is W′ = {〈w, a〉 : M s, w |= Pre(a)},
the new valuation is V′(p) = {〈w, a〉 : w ∈ V(p)}, and the new static
accessibility relation is defined by

〈w1, a1〉 s−→i
′ 〈w2, a2〉 iff w1

s−→i w2 and a1
d−→i a2.

– While the truth condition for the epistemic operator is just as in Hintikka’s
epistemic logic and in EDL, the product construction gives a semantics to
the [a] operator which is quite different from that of PDL and EDL:

M s, w |= [a]ϕ iff M s, w |= Pre(a) implies M s ⊗Md, 〈w, a〉 |= ϕ

Finally, validity of ϕ in DEL (noted |=DEL ϕ) is defined as usual as truth in
every world of every DEL-model. Note that validity means validity w.r.t. a
fixed dynamic model Md.

Remark 2. The truth condition for the dynamic operator highlights that
DEL is a dynamic extension of epistemic logic, while EDL is an epistemic
extension of PDL.
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4.2 Completeness

Suppose given a dynamic model Md. The axiomatics of DEL is made of the
principles of the multi-modal logic K for the modal operators Bi and [a], together
with the following axioms [4,3].

(A1) �DEL [a]p ↔ (Pre(a)→ p)
(A2) �DEL [a]¬ϕ ↔ (Pre(a)→ ¬[a]ϕ)
(A3) �DEL [a]Biϕ ↔ (Pre(a)→ Bi[b1]ϕ ∧ . . . ∧ Bi[bn]ϕ)

where b1, . . . , bn is the list of all b such that a
d−→i b.

We note �DEL ϕ when ϕ is provable from these principles. Note that this
axiomatization depends on a particular dynamic model Md.

For example for every dynamic model Md where Pre(a) = �, Pre(b) = p, and
d−→i (a) = {b} we obtain �DEL [a]Bip. Indeed, �DEL [a]Bip↔ (P re(a)→ Bi[b]p)

and �DEL Bi[b]p because �DEL [b]p.

5 From DEL to EDL

In this section we show that DEL can be embedded into EDL. We do that by
building a particular EDL-theory that encode syntactically the structure of a
given DEL dynamic model Md.

Definition 1. Let Md = 〈EVT , Pre, { d−→i}i∈AGT 〉 be a dynamic model. The
set of formulas Γ (Md) associated to Md (‘the theory of Md’) is made up of the
following non-logical axioms:

(1) p→ [a]p and ¬p→ [a]¬p, for every a ∈ EVT and p ∈ PROP;
(2) 〈a〉� ↔ Pre(a), for every a ∈ EVT ;
(3) [a]Bi(〈b−1 〉� ∨ . . . ∨ 〈b−n 〉�), where b1, . . . , bn is the list of all b such that

a
d−→i b;

(4) B̂iPre(b)→ [a]B̂i〈b−〉�, for every 〈a, b〉 ∈ d−→i.

Note that Γ (Md) is finite because in EDL both the set of events EVT and the
set of agents AGT are finite.

Axiom 1 encodes the fact that events do not change propositional facts of the
world where they are performed (cf the definition of V ′(p) in Section 4.1). Axiom
2 encodes the fact that an event a can occur in a world iff this world satisfies the
precondition of event a (cf the definition of W ′ in Section 4.1). Axiom 3 encodes
the modal structure of the dynamic model. Axiom 4 encodes the definition of

s−→i
′
(cf Section 4.1).

Example 1. Consider that AGT = {A; B} and PROP = {p}. In the figure below
is represented the dynamic models Md

1 and Md
2 corresponding respectively to the

public announcement of ϕ and the private announcement of ϕ, where ϕ ∈ LEL.
Here, P re(a) = ϕ in both models and P re(b) = �.
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Public announcement of ϕ : Private announcement of ϕ to A:

a : ϕ A,B�� a : ϕA 		 B
�� b : � A,B



Applying Definition 1, we get
Γ (Md

1 ) := {p → [a]p and ¬p → [a]¬p ; 〈a〉� ↔ ϕ ; [a]BA(〈a−〉�) ;
[a]BB(〈a−〉�) ; B̂Aϕ→ [a]B̂A〈a−〉�} ; B̂Bϕ→ [a]B̂B〈a−〉�}

and
Γ (Md

2 ) := {p→ [a]p and ¬p→ [a]¬p ; p→ [b]p and ¬p→ [b]¬p ; 〈a〉� ↔ ϕ
; 〈b〉� ↔ � ; [a]BA〈a−〉� ; [a]BB〈b−〉� ; [b]BA〈b−〉� ; [b]BB〈b−〉� ; B̂Aϕ →
[a]B̂A〈a−〉� ; B̂A� → [b]B̂A〈b−〉� ; B̂B� → [a]B̂B〈b−〉� ; B̂B� → [b]B̂B〈b−〉�}

It turns out that the axiom of determinism is a logical consequence of Γ (Md)
in EDL . This is comforting because the axiom of determinism is indeed valid in
DEL .

Lemma 1. For every LDEL-formula ϕ we have Γ (Md) |=EDL 〈a〉ϕ→ [a]ϕ.

Thanks to this lemma, we can now prove that for every formula ϕ of the
language LDEL, |=DEL ϕ if and only if Γ (Md) |=EDL ϕ. We first prove two lemmas.

Lemma 2. Let Md be a DEL dynamic model, and let ψ be a formula from LDEL.
If �|=DEL ψ then Γ (Md) �|=EDL ψ.

Lemma 3. Let Md be a DEL dynamic model, and let ψ be a formula from LDEL.
If |=DEL ψ then Γ (Md) |=EDL ψ.

Putting these two results together we obtain the following key result:

Theorem 1. Let Md be a DEL dynamic model. Let ψ be a formula from LDEL.
Then

|=DEL ϕ iff Γ (Md) |=EDL ϕ

It follows that

�DEL ϕ iff Γ (Md) �EDL ϕ

This thus provides a new axiomatization of DEL-validities. This new axiomati-
zation is just made of Γ (Md) together with the axiomatization of EDL .

6 Discussion and Conclusion

We have presented an epistemic dynamic logic EDL whose semantics differs
from that of Baltag et al.’s dynamic epistemic logic DEL. We have shown that
DEL can be embedded into EDL. This result allows to conclude that EDL is an
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interesting alternative to Baltag et al.’s logic, that allows to talk about agents’
perception of events just in the same way as DEL does. However, EDL is more
expressive than DEL because it allows to talk about past events. Another of its
advantages is that we can partly describe an event taking place and still draw
inferences from this partial description, whereas in DEL the action (event) model
has to specify everything. More generally, EDL seems more versatile than DEL
to describe events. This allows to model some events that could not be modelled
in DEL .

Let us demonstrate this last point by an example. Consider the situation where
there are two agents i and j, and there are two possible private announcements a
and b with respective preconditions p and ¬p. Suppose none of the agents knows
anything beyond the mere fact that both a and b could have happened, i.e.
〈a−〉�∨ 〈b−〉� is common knowledge. From this we should infer that the agents
do not know anything about the other agent’s perception (which is indeed true
in reality). We can model this last fact as follows. First we recursively define the
following set of formulas.

– Φ0
i = Φ0

j = {〈a−〉�, 〈b−〉�}
– Φn

i = {Biϕj : ϕj ∈ Φn−1
j } ∪ {

∧
{ϕj :ϕj∈Φn−1

j } B̂iϕj}

For example we have

Φ1
i = {Bi〈a−〉�, Bi〈b−〉�, B̂i〈a−〉� ∧ B̂i〈b−〉�} and

Φ2
j = {BjBi〈a−〉�, BjBi〈b−〉�, Bj(B̂i〈a−〉� ∧ B̂i〈b−〉�)} ∪
{B̂jBi〈a−〉� ∧ B̂jBi〈b−〉� ∧ B̂j(B̂i〈a−〉� ∧ B̂i〈b−〉�)}.

We naturally claim that the set of all (
∨

Φn
i )∧(

∨
Φn

j ) represents the fact that the
agents do not know anything about the other agent’s perception. Then we can
prove by induction on n that {〈a−〉� ∨ 〈b−〉�} �EDL (

∨
Φn

i ) ∧ (
∨

Φn
j ) for every

n.2 This indicates that the agents’ incomplete knowledge of what is going on is
correctly represented by {〈a−〉� ∨ 〈b−〉�}. Such situations cannot be described
in DEL because this would require an infinity of atomic DEL-events, and the
dynamic model Md would have to be infinite. So, in a sense, EDL seems to be
more appropriate to represent situations where agents have only little cues about
what is going on.

Another approach mapping DEL to automata propositional dynamic logic
is [18]. He does not resort to converse events and translates dynamic models
into a transformation on PDL programs. As we said in section 1, Yap intro-
duced converse events into DEL but she failed to get a reduction axiom for
the converse modal operator. Like us, she does not deal with belief revision
and we leave the integration of belief revision mechanisms into EDL to further
work. Another line of research is to study decidability and complexity of EDL .

2 The key observation is that  EDL Bi(〈a−〉� ∨ 〈b−〉�) → (Bi〈a−〉� ∨ Bi〈b−〉� ∨
(B̂i〈a−〉� ∧ B̂i〈b−〉�)).
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Abstract. The issue of formalizing skepticism relations between argu-
mentation semantics has been considered only recently in the literature.
In this paper, we contribute to this kind of analysis by providing a sys-
tematic comparison of a significant set of literature semantics (namely
grounded, complete, preferred, stable, semi-stable, ideal, prudent, and
CF2 semantics) using both a weak and a strong skepticism relation.

Keywords: Argumentation semantics, Skepticism.

1 Introduction

The increasing variety of argumentation semantics proposed in the literature
raises the issue of carrying out systematic principle-based comparisons between
different approaches. While limitations of example-based comparisons have been
pointed out earlier by several authors (see for instance [1,2]), studies on general
evaluation principles for argumentation semantics are appearing in the literature
only in very recent years. For instance, in [3] general rationality postulates for
argumentation systems are introduced, showing that there are argumentation
systems where they are violated. At the more abstract level of Dung’s argu-
mentation frameworks [4], in [5] several semantics evaluation criteria have been
introduced and exploited for a systematic assessment of both “traditional” and
more recent proposals.

In this work we consider another aspect of this kind of systematic comparison,
namely the issue of (partially) ordering argumentation semantics with respect to
their skepticism. After recalling the necessary background concepts in Section 2,
we review in Section 3 the definitions of the weak and strong skepticism relations
between semantics, first introduced in [6]. Argumentation semantics considered
in this paper are quickly described in Section 4, then Section 5 shows how they
are partially ordered according to the weak and strong skepticism relations. A
final discussion and conclusions are provided in Section 6.

2 Basic Concepts

The present work lies in the frame of the general theory of abstract argumenta-
tion frameworks proposed by Dung [4].
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Definition 1. An argumentation framework is a pair AF = 〈A,→〉, where A is
a set, and →⊆ (A×A) is a binary relation on A, called attack relation.

In the following we will always assume that A is finite. Since we will frequently
consider properties of sets of arguments, it is useful to extend to them the no-
tations defined for the nodes.

Definition 2. Given an argumentation framework AF = 〈A,→〉, a node α ∈ A
and two sets S, P ⊆ A, we define S → α � ∃β ∈ S : β → α; α → S � ∃β ∈
S : α→ β; S → P � ∃α ∈ S, β ∈ P : α→ β.

In Dung’s theory, an argumentation semantics is defined by specifying the crite-
ria for deriving, given a generic argumentation framework, the set of all possible
extensions, each one representing a set of arguments considered to be accept-
able together. Accordingly, a basic requirement for any extension E is that it is
conflict-free, namely �α, β ∈ E : α → β. All argumentation semantics proposed
in the literature satisfy this fundamental conflict-free property.

Given a generic argumentation semantics S, the set of extensions prescribed
by S for a given argumentation framework AF = 〈A,→〉 is denoted as ES(AF).
If ∀AF |ES(AF)| = 1, then the semantics S is said to follow the unique-status
approach, otherwise it is said to follow the multiple-status approach.

I-maximality is a relevant property of sets of extensions used in the following.

Definition 3. A set of extensions E is I-maximal iff ∀E1, E2 ∈ E, if E1 ⊆ E2
then E1 = E2. A semantics S satisfies the I-maximality criterion if and only if
∀AF, ES(AF) is I-maximal.

Note that I-maximality is a property of the set of extensions E per se and does not
imply that maximality is prescribed by the semantics-specific definition of what
an extension is. For instance any unique-status semantics necessarily satisfies I-
maximality according to Definition 3, independently of the fact that the unique
extension prescribed by the semantics is a maximal set in any sense.

It is also worth noting that it may be the case that ES(AF) = ∅, i.e. that a
semantics S is unable to prescribe any extension for some argumentation frame-
works AF. We adopt as a standpoint that such argumentation frameworks lie
outside the domain of definition of S and therefore have not to be considered
in the evaluation of its properties. Formally, for a generic semantics S let DS
be the set of argumentation frameworks where S admits at least one extension,
namely DS = {AF : ES(AF) �= ∅}. In the following, whenever we will refer to the
comparison of two semantics S1 and S2 with respect to a generic argumentation
framework AF we will implicitly assume that AF ∈ DS1 ∩ DS2 . In fact, one (or
even both) of the terms of comparison would be undefined otherwise.

3 Skepticism Relations

The notion of skepticism has often been used in informal ways to discuss se-
mantics behavior, e.g. by observing that a semantics is “more skeptical” than
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another one. Intuitively, a semantics is more skeptical than another if it makes
less committed choices about the justification of the arguments. A comparison
of skepticism between semantics can be based on a relationship �E between the
sets of extensions they prescribe. Given two sets of extensions E1, E2 of an argu-
mentation framework AF, E1 �E E2 will denote that E1 is at least as skeptical as
E2 in some sense. Then a relation of skepticism �S between semantics, induced
by �E , can be defined.

Definition 4. Let �E be a skepticism relation between sets of extensions. The
skepticism relation between argumentation semantics �S induced by �E is de-
fined as follows: for any argumentation semantics S1 and S2, S1 �S S2 ⇔
for any argumentation framework AF, ES1(AF) �E ES2(AF).

We will consider two actual skepticism relations between sets of extensions: a
weak relation, denoted as �E

W , and a strong relation, denoted as �E
S . These

relations have been introduced in [6] to which the reader is referred for more
extensive explanations, not reported here due to space limitation. As a starting
point, we recall that to compare a single extension E1 with a set of extensions E2,
the relation ∀E2 ∈ E2 E1 ⊆ E2 has often be used in the literature (for instance
to verify that the unique extension prescribed by grounded semantics is more
skeptical than the set of extensions prescribed by preferred semantics). A direct
generalization to the comparison of two sets of extensions is represented by the
following weak skepticism relation �E

W .

Definition 5. Given two sets of extensions E1 and E2 of an argumentation
framework AF, E1 �E

W E2 iff ∀E2 ∈ E2 ∃E1 ∈ E1 : E1 ⊆ E2.

Relation �E
W is in a sense unidirectional, since it only constrains the extensions

of E2, while E1 may contain additional extensions unrelated to those of E2. One
may consider also a more symmetric (and stronger) relationship �E

S , where it is
also required that any extension of E1 is included in an extension of E2.

Definition 6. Given two sets of extensions E1 and E2 of an argumentation
framework AF, E1 �E

S E2 iff E1 �E
W E2 and ∀E1 ∈ E1 ∃E2 ∈ E2 : E1 ⊆ E2.

By definition, given two sets of extensions E1 and E2 it holds that E1 �E
S E2 ⇒

E1 �E
W E2. Instantiating Definition 4 with �E

W and �E
S gives rise to two corre-

sponding skepticism relations between semantics, denoted as S1 and S2, ordered
by the same implication: S1 �S

S S2 ⇒ S1 �S
W S2.

It is worth noting that the skepticism relations introduced above are not
total orders, since in general there can be two sets of extensions (and therefore
two semantics) which are not comparable. We recall some properties (proved in
[6]) of the skepticism relations between sets of extensions (which are of course
“inherited” by the relations between semantics).

Proposition 1. Relations �E
W and �E

S are preorders, i.e. they are reflexive and
transitive. Relations �E

W and �E
S are also partial orders when the considered sets

of extensions are I-maximal, namely given two I-maximal sets of extensions E1
and E2, if E1 �E

W E2 and E2 �E
W E1 then E1 = E2.
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4 A Review of Extension-Based Argumentation
Semantics

We review the definition of several argumentation semantics which will be com-
pared according to the skepticism relations defined in previous section.

4.1 Traditional Semantics

Stable semantics relies on the idea that an extension should be able to reject the
arguments that are outside the extension itself [4].

Definition 7. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A
is a stable extension of AF if and only if E is conflict-free ∧ ∀α ∈ A : α /∈
E, E → α.

Stable semantics will be denoted as ST , and, accordingly, the set of all the stable
extensions of AF as EST (AF). Stable semantics suffers by a significant limitation
since there are argumentation frameworks where no extensions complying with
Definition 7 exist. No other semantics considered in this paper is affected by this
problem except the prudent version of stable semantics.

The requirement that an extension should attack all other external arguments
can be relaxed by imposing that an extension is simply able to defend itself from
external attacks. This is at the basis of the notions of acceptable argument and
admissible set [4].

Definition 8. Given an argumentation framework AF = 〈A,→〉, an argument
α ∈ A is acceptable with respect to a set E ⊆ A if and only if ∀β ∈ A : β →
α, E → β. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A is
admissible if and only if E is conflict-free and ∀β ∈ A : β → E, E → β.

The set of the arguments acceptable with respect to a set E is traditionally
denoted using the characteristic function FAF(E):

Definition 9. Given an argumentation framework AF = 〈A,→〉, the function
FAF : 2A → 2A which, given a set E ⊆ A, returns the set of the acceptable
arguments with respect to E, is called the characteristic function of AF.

Building on these concepts, the notion of complete extension can be introduced,
which plays a key role in Dung’s theory, since all semantics encompassed by his
framework select their extensions among the complete ones.

Definition 10. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A
is a complete extension if and only if E is admissible and every argument of A
which is acceptable with respect to E belongs to E.

The notion of complete extension is not associated to a notion of complete se-
mantics in [4], however, the term complete semantics has subsequently gained
acceptance in the literature and will be used to refer to the properties of the set
of complete extensions. Complete semantics will be denoted as CO.



214 P. Baroni and M. Giacomin

The well-known grounded semantics belongs to the unique-status approach
and its unique extension, denoted as GE(AF), can be defined as the least fixed
point of the characteristic function.

Definition 11. Given an argumentation framework AF = 〈A,→〉, the grounded
extension of AF, denoted as GE(AF), is the least fixed point (with respect to set
inclusion) of FAF.

Preferred semantics, denoted as PR, is obtained by simply requiring the property
of maximality along with admissibility.

Definition 12. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A
is a preferred extension of AF if and only if it is a maximal (with respect to set
inclusion) admissible set.

4.2 CF2 Semantics

CF2 semantics, first introduced in [7], is a SCC-recursive semantics [8] which fea-
tures the distinctive property of treating in a “symmetric” way odd- and even-
length cycles while belonging to the multiple-status approach. SCC-recursiveness
is related to the graph-theoretical notion of strongly connected components (SCCs)
of AF, namely the equivalence classes of nodes under the relation of mutual reach-
ability, denoted as SCCSAF. Due to space limitations, we can not examine in detail
the definition of CF2 semantics: the interested reader may refer to [7] and [8].

Definition 13. Given an argumentation framework AF = 〈A,→〉, a set E ⊆ A
is an extension of CF2 semantics iff

– E ∈ MCFAF if |SCCSAF| = 1
– ∀S ∈ SCCSAF (E ∩ S) ∈ ECF2(AF↓UPAF(S,E)) otherwise

where MCFAF denotes the set of maximal conflict-free sets of AF, and, for any
set S ⊆ A, AF↓S denotes the restriction of AF to S, namely AF↓S = 〈S,→
∩(S × S)〉, and UPAF(S, E) = {α ∈ S | �β ∈ E : β /∈ S, β → α}.

CF2 semantics can be roughly regarded as selecting its extensions among the
maximal conflict free sets of AF, on the basis of some topological requirements
related to the decomposition of AF into strongly connected components. In par-
ticular it turns out that when AF consists of exactly one strongly connected
component, the set of extensions prescribed by CF2 semantics exactly coincides
with the set of maximal conflict free sets of AF.

4.3 Semi-stable Semantics

Semi-stable semantics [9], denoted in the following as SST , aims at guaranteeing
the existence of extensions in any case (differently from stable semantics) while
coinciding with stable semantics (differently from preferred semantics) when
stable extensions exist. The definition of extensions satisfying these desiderata
is ingeniously simple.
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Definition 14. Given an argumentation framework AF = 〈A,→〉 a set E ⊆ A
is a semi-stable extension if and only if E is a complete extension such that
(E ∪ {α | E → α}) is maximal with respect to set inclusion.

4.4 Ideal Semantics

Ideal semantics [10] provides an alternative unique-status approach which is
less skeptical than grounded semantics, i.e. for any argumentation framework
the (unique) ideal extension is a (sometimes strict) superset of the grounded
extension. Also in this case the definition is quite simple.

Definition 15. Given an argumentation framework AF = 〈A,→〉 a set E ⊆ A
is ideal if and only if E is admissible and ∀P ∈ EPR(AF) E ⊆ P . The ideal
extension is the maximal (with respect to set inclusion) ideal set.

We will use the symbol ID to refer to the ideal semantics, and denote the ideal
extension of an argumentation framework AF as ID(AF).

4.5 Prudent Semantics

Prudent semantics [11,12] emphasizes the role of indirect attacks: forbidding
them leads to the definition of p(rudent)-admissible sets.

Definition 16. Given an argumentation framework AF = 〈A,→〉, an argument
α indirectly attacks another argument β, denoted as α ↪→ β, if there is an odd-
length path from α to β in the defeat graph corresponding to AF. A set S is
without indirect conflicts, denoted as icf(S), if and only if � ∃α, β ∈ S : α ↪→ β.

Definition 17. Given an argumentation framework AF = 〈A,→〉, a set of ar-
guments S ⊆ A is p(rudent)-admissible if and only if ∀α ∈ S α is acceptable
with respect to S and icf(S).

On this basis, the prudent version of several traditional notions of extensions
(and then of the relevant semantics) has been defined.

Definition 18. Given an argumentation framework AF = 〈A,→〉, a set of ar-
guments S ⊆ A is:
– a preferred p-extension if and only if S is a maximal (with respect to set

inclusion) p-admissible set;
– a stable p-extension if and only if icf(S) and ∀α ∈ (A \ S) S → α;
– a complete p-extension if and only if S is p-admissible and there is no argu-

ment α /∈ S such that α is acceptable with respect to S and icf(S ∪ {α}).

Definition 19. Given an argumentation framework AF = 〈A,→〉, the function
Fp

AF : 2A → 2A which, given a set S ⊆ A, returns the set of the acceptable argu-
ments with respect to S such that icf(S∪{α}) is called the p-characteristic function
of AF. Let j be the lowest integer such that the sequence Fp,i

AF(∅) is stationary for
i ≥ j: Fp,j

AF(∅) is the grounded p-extension of AF, denoted as GPE(AF).

The prudent versions of grounded, complete, preferred and stable semantics will
be denoted as GRP , COP , PRP and ST P , respectively.
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CF2

GRP COP

GR PRP

ID CO

SST PR

Fig. 1. �S
S relation for any argumentation framework

5 Skepticism Comparison of Argumentation Semantics

In this section we examine comparability between semantics according to the
relations �S

W and �S
S . Before entering the matter, a result which will be used in

the following and whose proof is immediate needs to be stated.

Lemma 1. Given two argumentation semantics S1 and S2, if for any argumen-
tation framework AF ES2(AF) ⊆ ES1(AF), then S1 �S

W S2.

Note also from Proposition 1 that, given two distinct semantics S1, S2 (i.e.
such that ∃AF : ES1(AF) �= ES2(AF)) satisfying the I-maximality criterion,
if S1 �S

W S2 then S2 �S
W S1 (and also S2 �S

S S1). Since all semantics re-
viewed in Section 4 are distinct and, with the exception of CO and COP, also
I-maximal, this fact will be implicitly exploited for relations not involving CO
and COP .

To begin our comparison, we examine �S
S whose Hasse diagram is shown in

Figure 1. Starting from the bottom, let us show that GRP �S
S GR, which, both

belonging to the unique-status approach, is equivalent to the inclusion relation
proved in Proposition 2.

Proposition 2. For any argumentation framework AF, GPE(AF) ⊆ GE(AF).

Proof. Recall from [4] that GE(AF) =
⋃

i≥1 Fi
AF(∅) and GPE(AF) = Fp,j

AF(∅),
where j is the lowest integer such that the sequence Fp,i

AF(∅) is stationary for i ≥ j.
Now, obviously F1

AF(∅) = Fp,1
AF(∅) (since both coincide with the set of unattacked

arguments in AF). Assume inductively that Fp,i
AF(∅) ⊆ Fi

AF(∅), then it holds that
Fp,i+1

AF (∅) ⊆ Fi+1
AF (∅). In fact, any α ∈ Fp,i+1

AF (∅) is defended by Fp,i
AF(∅), but then

it is also defended by Fi
AF(∅) ⊇ Fp,i

AF(∅), and therefore α ∈ Fi+1
AF (∅).

α β

Fig. 2. A mutual attack
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Going up in the diagram, since, as well-known, the grounded extension is in-
cluded in any complete extension, GR �S

S CO. On the other hand, CO �S
S GR, as

shown, for instance, by the example of Figure 2 where ECO(AF) = {∅, {α}, {β}},
while EGR(AF) = {∅}. Furthermore, it is easy to see that CO �S

S PR since any
preferred extension is also a complete extension and any complete extension, be-
ing an admissible set, is included in a maximal admissible set, i.e. in a preferred
extension. On the other hand, PR �S

S CO (indeed PR �S
W CO): considering

again Figure 2 we have EPR(AF) = {{α}, {β}}, ECO(AF) = {∅, {α}, {β}} and
there is no preferred extension E1 such that E1 ⊆ ∅ ∈ ECO(AF).

As to the upper-left part of the diagram, it is shown in [10] that GE(AF) ⊆
ID(AF), entailing that GR �S

S ID. Moreover, by definition, the ideal extension
is included in any preferred extension. It follows that ID �S

S PR and, since any
semi-stable extension is also a preferred extension [9], ID �S

S SST .
As to CF2 semantics, it is known [8] that ∀AF ∀E ∈ ECF2(AF) GE(AF) ⊆ E,

which, since GE(AF) ∈ ECO(AF) entails CO �S
W CF2. Moreover, it is known

[7] that ∀E′1 ∈ EPR(AF) ∃E2 ∈ ECF2(AF) : E′1 ⊆ E2 . Since in turn any
complete extension is included in a preferred extension, summing up we have
that CO �S

S CF2. On the other hand, since in the example of Figure 2 CF2
semantics behaves as preferred semantics, it follows that CF2 �S

S CO (indeed
CF2 �S

W CO).
Turning to the right bottom part, it is easy to see that COP �S

S CO. COP �S
W

CO follows from the fact that GPE(AF) ∈ ECOP(AF) and ∀E2 ∈ ECO(AF)
GPE(AF) ⊆ GE(AF) ⊆ E2 (using Proposition 2 for the first inclusion). More-
over, any complete prudent extension is an admissible set and is therefore in-
cluded in a preferred extension, which is also a complete extension of AF. On
the other hand, CO �S

S COP (indeed CO �S
W COP): considering Figure 3, we

have ECOP(AF) = {{δ, ε}, {α, ε}} (note in particular that α indirectly conflicts
with δ), while ECO(AF) = {{δ, ε, α}}.

Turning finally to preferred prudent semantics, since any preferred prudent
extension is also a complete prudent extension and any complete prudent exten-
sion is included in a preferred prudent extension, it holds that COP �S

S PRP .
Since in the example of Figure 2 complete prudent and preferred prudent be-
have as their traditional counterparts, it follows that PRP �S

S COP (indeed
PRP �S

W COP).
Let us consider now the weak skepticism relation �S

W , whose Hasse diagram
is shown in Figure 4: we will comment only on edges not implied by the relations
�S

S already examined. Starting from the bottom, since GPE(AF) ∈ ECOP(AF)
Lemma 1 directly entails that COP �S

W GRP . On the other hand, consid-
ering Figure 3 and recalling that ECOP(AF) = {{δ, ε}, {α, ε}}, we have that

β α

ε

δ γ

Fig. 3. Direct and indirect attacks
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CF2

PR

ID

GR = CO

GRP

COP

SST

PRP

Fig. 4. �S
W relation for any argumentation framework

AF 2AF1

γ

β

α

δ ε

β

δα

γ

Fig. 5. CF2 semantics is not comparable with some others

GPE(AF) = {{δ, ε}}, which entails GRP �S
W COP. The next difference with re-

spect to �S
S concerns grounded and complete semantics. We already know that

GR �S
W CO, we now note, by Lemma 1, that CO �S

W GR, since GE(AF) ∈
ECO(AF). Finally, again by Lemma 1, we have PR �S

W SST since it is shown
in [9] that any semi-stable extension is also a preferred extension.

While we have now proved the existence of all the edges shown in Figures 1
and 4, one might wonder whether additional relations hold. We prove that this is
not the case, starting from �S

W relation. Consider first CF2 semantics: it is not
comparable with ideal, preferred and semi-stable semantics. In fact, referring
to Figure 5, it holds that EPR(AF1) = ESST (AF1) = EID(AF1) = {{β, δ}}
while ECF2(AF1) = {{γ, δ}, {β, δ}, {α}}, therefore letting S be any of the three
considered semantics S �S

W CF2. On the other hand, it holds that EPR(AF2) =
ESST (AF2) = EID(AF2) = {∅}, while ECF2(AF2) = {{α, ε}, {β, ε}, {γ, ε}}, from
which it follows that CF2 �S

W S.
Turning to preferred prudent semantics, by transitivity of �S

W it is sufficient
to show GRP �S

W PRP, PRP �S
W SST and PRP �S

W CF2. As to the first
condition, in the example of Figure 3 it holds that EPRP(AF) = {{δ, ε}, {α, ε}}
while GPE(AF) = {δ, ε}. Then, letting S be any of the semantics shown in Fig-
ure 4 (except the complete prudent semantics), it holds that S �S

W PRP. As
to the second and third condition, in the example of Figure 6 taken from [12] it
holds that EPRP(AF) = {{η}}, while ESST (AF) = {{α, γ, η}, {β, δ, ζ}, {β, δ, η}}
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α ζ η

δ

ε

γ β

Fig. 6. Preferred prudent semantics is not comparable with many others

ε

δ

γβα

Fig. 7. A case showing that COP �S
S SST

and ECF2(AF) = {{α, γ, η}, {β, δ, ζ}, {β, δ, η}, {ε, β, η}, {ε, β, ζ}}. By transitiv-
ity, second condition implies PRP �S

W S for S ∈ {GRP,GR, CO, ID,PR}.
Turning to non-existence of edges in Figure 1, first note that S1 �S

W S2 ⇒
S1 �S

S S2. In particular, nothing remains to be said about CF2 and PRP
semantics. As to COP semantics, the example of Figure 7 shows that COP �S

S

SST since ESST (AF) = {{β, δ}}, while there is a complete prudent extension,
namely {α}, which is not included in any semi-stable extension. By transitivity
of �S

S, this also entails COP �S
S S for any S ∈ {GRP ,GR, ID}. On the other

hand, for any semantics S ∈ {GRP ,GR, ID,SST } we already know from Figure
4 that S is not comparable with PRP , which entails S �S

S COP. As to preferred
semantics, we already know that SST �S

S PR, while PR �S
S SST holds since

otherwise, by transitivity, it would be the case that COP �S
S SST . Similarly,

CF2CF2 PRP

SST = ST

COP

GRP

GR = CO

ID

PR

STP

STP

SST = ST

GRP COP

GR PRP

ID CO

PR

Fig. 8. �S
W and �S

S for argumentation frameworks where stable extensions exists
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from Figure 4 we have ID �S
S CO and SST �S

S CO. Furthermore, COP �S
S SST

implies CO �S
S ID and CO �S

S SST .
Having completed the analysis concerning argumentation semantics able to

prescribe extensions in any case, in Figure 8 we provide (without comments
and proofs due to space limitation) the Hasse diagrams restricted to the case of
argumentation frameworks where stable extensions exist (relations concerning
stable prudent semantics, when its extensions exist, are shown dashed).

6 Conclusions

We have provided a systematic skepticism comparison concerning a significant
range of both “traditional” and more recent argumentation semantics, using
both a weak and a strong comparison criterion. The weak criterion gives rise
to an almost linear ordering not including just CF2 and preferred prudent se-
mantics. Semantics related to the notion of stable extension, namely semi-stable,
stable and stable prudent turn out to be the least skeptical, while the notions
of grounded and complete extension (more so their prudent counterpart) pro-
vide a bottom reference for skepticism. Ideal and preferred semantics lie orderly
between grounded and stable-related semantics and can be regarded as “inter-
mediate”. So does CF2 semantics, while being not comparable with ideal and
preferred. It is also interesting to note that prudent versions of stable, grounded
and complete semantics tend to make “more extreme” the skepticism properties
of their traditional counterparts, while preferred prudent semantics shows a sort
of singularity being comparable only with complete prudent and stable prudent
semantics. The strong relation gives rise to a more complicated situation, where
grounded and complete semantics are not equivalent any more while grounded
prudent and complete prudent semantics are still the most skeptical in some
sense (but are incomparable each other). At the “top level”, stable-related, pre-
ferred, and CF2 semantics are not comparable and turn out to be less skeptical
than any other semantics they are comparable with. Ideal and complete seman-
tics play a sort of intermediate role between grounded and other less skeptical
semantics, while preferred prudent semantics is still somehow isolated.

While all the above remarks are interesting in some respect, one may be led to
conclude that it is probably the case that the strong relation is actually too de-
manding (as also observed when applying these criteria to a different kind of anal-
ysis in [13]), while the weak relation is more reasonable and gives rise, as a conse-
quence, to a more useful picture. Different pictures would be obtained considering
alternative notions of skepticism, which is a topic for future work. It has however
been proved in [14] that comparing the intersection of all extensions gives rise to
the same partial order as �S

W . Finally, it has to be remarked that skepticism can
be regarded as an attitude rather than an evaluation criterion for semantics: a
more (or less) skeptical semantics is not preferable per se. In fact, characterizing
the appropriate level of skepticism with respect to the requirements of a specific
reasoning context is an interesting open problem: an example of this kind of
investigation, concerning epistemic vs. practical reasoning, is given in [15].
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An Algorithm for Computing Semi-stable

Semantics�

Martin Caminada

Utrecht University / University of Luxembourg

Abstract. The semi-stable semantics for formal argumentation has
been introduced as a way of approximating stable semantics in situations
where no stable extensions exist. Semi-stable semantics can be located
between stable semantics and preferred semantics in the sense that every
stable extension is a semi-stable extension and every semi-stable exten-
sion is a preferred extension. Moreover, in situations where at least one
stable extension exists, the semi-stable extensions are equal to the stable
extensions. In this paper we provide an outline of an algorithm for com-
puting the semi-stable extensions, given an argumentation framework.
We show that with a few modifications, the algorithm can also be used
for computing stable and preferred semantics.

1 Introduction

Formal argumentation, as a technique for defeasible entailment, has gained popu-
larity since it combines a relatively easy to understand and human-style approach
to reasoning with the mathematical rigidness that is required for software im-
plementation [1]. It is also an interesting observation that many formalisms for
nonmonotonic reasoning can be expressed as instances of formal argumentation
[2].

Formal argumentation, in its most abstract form, is done using a set of ab-
stract arguments and a defeat relation between these arguments. Since an ar-
gument A may be defeated by another argument B which may in its turn be
defeated by a third argument C, the status of A (whether it can be accepted or
not) partly depends on the status of C. Thus, what is needed is an overall crite-
rion for determining which of the arguments can be considered to be ultimately
justified. Several of such criteria have been proposed, the most well-known of
these are grounded, preferred and stable semantics [2]. A relatively new pro-
posal is semi-stable semantics [3]. Semi-stable semantics can be placed between
stable semantics and preferred semantics, as every stable extension is also a semi-
stable extension and every semi-stable extension is also a preferred extension.
Moreover, semi-stable semantics can be seen as a way of approximating stable
semantics in situations where no stable extensions exist.
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In this paper we present an algorithm for computing all semi-stable extensions
of an argumentation framework. In order to keep the discussion brief, full formal
proofs are provided in a seperate technical report [4].

2 Argument-Based Semantics

In this section, we provide a brief introduction on argument based semantics and
the position of semi-stable semantics.

Definition 1. An argumentation framework is a pair (Ar , def ) where Ar is a
finite set of arguments and def ⊆ Ar ×Ar.

We say that an argument A defeats an argument B iff (A, B) ∈ def .
An argumentation framework can be represented as a directed graph in which

the arguments are represented as nodes and the defeat relation is represented
as arrows. In several examples throughout this paper, we will use this graph
representation.

The shorthand notation A+ and A− stands for, respectively, the set of argu-
ments defeated by A and the set of arguments that defeat A. Likewise, if Args is
a set of arguments, then we write Args+ for the set of arguments that is defeated
by at least one argument in Args , and Args− for the set of arguments that defeat
at least one argument in Args . In the definition below, F (Args) stands for the
set of arguments that are acceptable in the sense of [2].

Definition 2 (defense / conflict-free). Let A ∈ Ar and Args ⊆ Ar.
We define A+ as {B | A def B} and Args+ as {B | A def B with A ∈ Args}.
We define A− as {B | B def A} and Args− as {B | B def A with A ∈ Args}.
Args is conflict-free iff Args ∩ Args+ = ∅. Args defends an argument A iff
A− ⊆ Args+. We define the function F : 2Ar → 2Ar as F (Args) = {A | A is
defended by Args}.

In the definition below, definitions of grounded, preferred and stable semantics
are described in terms of complete semantics, which has the advantage of making
the proofs in the remainder of this paper more straightforward. These descrip-
tions are not literally the same as the ones provided by Dung [2], but as was first
stated in [5], these are in fact equivalent to Dung’s original versions of grounded,
preferred and stable semantics.

Definition 3 (acceptability semantics). A conflict-free set Args of argu-
ments is called

- an admissible set iff Args ⊆ F (Args).
- a complete extension iff Args = F (Args).
- a grounded extension iff Args is the minimal complete extension.
- a preferred extension iff Args is a maximal complete extension.
- a stable extension iff Args is a complete extension

that defeats every argument in Ar\Args.
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- a semi-stable extension iff Args is a complete extension
where Args ∪ Args+ is maximal (w.r.t. set-inclusion)

In [3] it is proved that every stable extension is also a semi-stable extension,
and the every semi-stable extension is also a preferred extension. Moreover, it is
observed that if the argumentation framework has at least one stable extension,
then the set of semi-stable extensions is equal to the set of stable extensions.
That is, when at least one stable extension exists, then stable semantics and
semi-stable semantics coincide.

3 A Brief Introduction to Argument Labellings

The concepts of admissibility, as well as those of complete, grounded, preferred,
stable or semi-stable semantics were originally stated in terms of sets of ar-
guments. It is equally well possible, however, to express these concepts using
argument labellings. This approach was originally proposed by Pollock [6] and
has recently been extended by Caminada [5]. The idea of a labelling is to as-
sociate with each argument exactly one label, which can either be in, out or
undec. The label in indicates that the argument is explicitly accepted, the label
out indicates that the argument is explicitly rejected, and the label undec indi-
cates that the status of the argument is undecided, meaning that one abstains
from an explicit judgement whether the argument is in or out.

Definition 4. A labelling is a function L : Ar −→ {in, out, undec}.

We write in(L) for {A | L(A) = in}, out(L) for {A | L(A) = out} and
undec(L) for {A | L(A) = undec}. Sometimes, we write a labelling L as a
triple (Args1,Args2,Args3) where Args1 = in(L), Args2 = out(L) and Args3 =
undec(L). We distinguish three special kinds of labellings. The all-in labelling
is a labelling that labels every argument in. The all-out labelling is a labelling
that labels every argument out. The all-undec labelling is a labelling that labels
every argument undec.

Definition 5. Let L be a labelling and A be an argument. We say that:

1. A is illegally in iff A is labelled in
but not all its defeaters are labelled out

2. A is illegally out iff A is labelled out
but does not have a defeater labelled in

3. A is illegally undec iff A is labelled undec but either all its defeaters are
labelled out or it has a defeater that is labelled in.

We say that a labelling has no illegal arguments iff there is no argument that is
illegally in, illegally out or illegally undec. We say that an argument is legally
in iff it is labelled in and is not illegally in. We say that an argument is legally
out iff it is labelled out and is not illegally out. We say that an argument is
legally undec iff it is labelled undec and is not illegally undec.
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Definition 6. An admissible labelling is a labelling without arguments that are
illegally in and without arguments that are illegally out.

Definition 7. A complete labelling is a labelling without arguments that are
illegally in, without arguments that are illegally out and without arguments that
are illegally undec.

Definition 8. Let L be a complete labelling. We say that L is a

– grounded labelling iff in(L) is minimal (w.r.t. set inclusion).
– preferred labelling iff in(L) is maximal (w.r.t. set inclusion).
– stable labelling iff undec(L) = ∅.
– semi-stable labelling iff undec(L) is minimal (w.r.t. set inclusion).

As an illustration of how the various types of labellings can be applied, consider
the two examples in Figure 1. For the example at the left hand side of Figure
1, there exists just one complete labelling: ({B, D}, {C}, {A}), which is then
automatically also grounded, preferred and semi-stable. The example at the left
hand side does not have any stable labellings. For the example at the right hand
side of Figure 1, there exist three complete labellings: (∅, ∅, {A, B, C, D, E}),
({A}, {B}, {C, D, E}) and ({B, D}, {A, C, E}, ∅). The first labelling is the
grounded labelling. The second and third labellings are both preferred labellings.
The third labelling is also a stable and semi-stable labelling.

As for the admissible labellings, it should be mentioned that each complete la-
belling is also an admissible labelling. However, sometimes there exist admissible
labellings that are not complete. Two examples of such labellings for the example
at the left hand side of Figure 1 are ({B}, ∅, {A, C, D}) and ({B}, {C}, {A, D}).

It is interesting to notice that an admissible labelling actually corresponds
with the notion of an admissible set.

Theorem 1. Let (Ar , def ) be an argumentation framework andArgs ⊆ Ar.Args
is an admissible set iff there exists an admissible labelling L with in(L) = Args.

The validity of Theorem 1 can be seen as follows. If Args is an admissible set,
then a labelling L with in(L) = Args , out(L) = Args+ and undec(L)
= Ar −in(L)−out(L) is an admissible labelling. Similarly, if L is an admissible
labelling then in(L) is conflict-free (otherwise at least one of the arguments in
in(L) would be illegally in). It can then be verified that in(L) defends itself, due
to the fact that L does not contain arguments that are illegally in or illegally
out. We refer to [4] for a full proof.

DC

A

B E

A B
C

D

Fig. 1. Two argumentation frameworks
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The notion of a complete labelling then corresponds to Dung’s notion of a
complete extension.

Theorem 2. Let (Ar , def ) be an argumentation framework and Args ⊆ Ar.
Args is a complete extension iff there exists a complete labelling L with in(L) =
Args.

The validity of Theorem 2 can be seen as follows. If Args is a complete extension
then a labelling with in(L) = Args , out(L) = Args+ and undec(L) = Ar −
in(L) − out(L) is a complete labelling. Similarly, if L is a complete labelling
then in(L) is at least an admissible set (this follows from Theorem 1). It can
then be verified that in(L) defends exactly itself, due to the fact that L does
not contain any arguments that are illegally in, illegally out or illegaly undec.
Hence, in(L) is a complete extension. Again, we refer to [4] for a full proof.

The notions of a grounded, preferred, stable and semi-stable labelling corre-
spond to he notions of a grounded, preferred, stable and semi-stable extension,
respectively.

Theorem 3. A set Args of arguments is (1) a grounded extension iff there
exists a grounded labelling L with in(L) = Args, (2) a preferred extension iff
there exists a preferred labelling L with in(L) = Args, (3) a stable extension
iff there exists a stable labelling L with in(L) = Args, and (4) a semi-stable
extension iff there exists a semi-stable labelling L with in(L) = Args

Before continuing with the backgrounds of the proposed algorithm, we first state
a few useful properties of complete and admissible labellings.

Lemma 1. Let L1 and L2 be two complete labellings of (Ar , def ). It holds that
in(L1) ⊆ in(L2) iff out(L1) ⊆ out(L2).

Lemma 2. Let L1 be an admissible labelling. There exists a preferred labelling
L2 with in(L1) ⊆ in(L2) and out(L1) ⊆ out(L2).

Lemma 3. Let L be a preferred labelling and L′ be an admissible labelling. It
holds that:

1. if in(L) ⊆ in(L′) then in(L) = in(L′)
2. if out(L) ⊆ out(L′) then out(L) = out(L′)

4 Formal Background of the Algorithm

Now that the preliminary concepts have been explained, it is time to treat the
main question of how to compute, given an argumentation framework, all the
semi-stable labellings. The idea is to do this by generating a set Labellings of
admissible labellings that includes at least all preferred labellings. Since every
semi-stable labelling is also a preferred labelling [3,5], this means that Labellings
also contains all semi-stable labellings. We then have to select those labellings
in Labellings with minimal undec to obtain the final answer.
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How does one generate an admissible labelling? A possible approach is to
start with the all-in labelling (the labelling in which every argument is labelled
in). This labelling trivially satisfies the absence of arguments that are illegally
out. However, for an admissible labelling also the absence of arguments that are
illegally in is required, and the all-in labelling may contain many arguments that
are illegally in. This means we need a way of changing the label of an argument
that is illegally in, preferrably without creating any arguments that are illegally
out. This is done using a sequence of transition steps. A transition step basically
takes an argument that is illegally in and relabels it to out. It then checks if, as
a result of this, one or more arguments have become illegally out. If this is the
case, then these arguments are relabelled to undec. More precisely, a transition
step can be described as follows.

Definition 9. Let L be a labelling and A an argument that is illegally in in L.
A transition step on A in L consists of the following:

1. the label of A is changed from in to out
2. for every B ∈ {A} ∪ A+, if B is illegally out, then change the label of B

from out to undec.

Theorem 4. Each transition step preserves the absence of arguments that are
illegally out.

The validity of Theorem 4 follows directly from point 2 of Definition 9.
A transition sequence starts with an initial labelling L0, on which a sequence

of successive transition steps is applied.

Definition 10. A transition sequence is a list [L0, A1,L1, A2,L2, . . . , An,Ln]
(n ≥ 0) where each Ai (1 ≤ i ≤ n) is an argument that is illegally in in labelling
Li−1 and every Li is the result of doing a transition step of Ai on Li−1. A
transition sequence is called terminated iff Ln does not contain any argument
that is illegally in.

As an illustration of how a transition sequence can be constructed, consider the
example at the left hand side of Figure 2. Assume the initial situation is the
all-in labeling L0 = ({A, B, C}, ∅, ∅). In this labelling both B and C are illegally
in since each of them has a defeater that is in, so they are both candidates
for a transition step. If we select B for a transition step, then the result is a
labelling L1 = ({A, C}, {B}, ∅). This labelling does not contain any arguments
that are illegally in, so the transition sequence [L0, B,L1] is terminated. If, at
the other hand, we select C for a transition step then the result is a labelling
L′1 = ({A, B}, {C}, ∅). This labelling still has an argument that is illegally in
(B), so we perform another transition step that relabels B from in to out.
However, as a result of doing that, C becomes illegally out since it has no longer
a defeater that is in, so C is relabelled from out to undec. The transition step
as a whole then yields L′2 = ({A}, {B}, {C}). This means that there exists a
second terminated transition sequence [L0, C,L′1, B,L′2].
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Now consider the example at the right hand side of Figure 2. Again, assume
that the initial labelling is the all-in labelling, so L0 = ({A, B, C}, ∅, ∅). Here,
all three arguments are in, so each of them can be selected for a transition step.
Assume, without loss of generality, that A is selected for a transition step. This
then yields a labelling L1 = ({B, C}, {A}, ∅). In this labelling, only C is illegally
in and can be selected for a transition step. During this transition step, after C is
relabelled from in to out, A becomes illegally out and is therefore relabelled to
undec. Thus, the transition step as a whole yields L2 = ({B}, {C}, {A}). In this
labelling B is illegally in since it has a defeater (A) that is undec. Therefore,
a transition step on B is performed during which B is relabelled from in to
out. Directly after doing that, however, not only C is illegally out but also B
itself is illegally out, so both of them are relabelled from out to undec. Thus,
the transition step as a whole yields L3 = {∅, ∅, {A, B, C}). This means that
there exists a terminated transition sequence [L0, A,L1, C,L2, B,L3]. It can be
verified that in the example at the right hand side of Figure 2 every terminated
transition sequence that starts with the all-in labelling finishes with L3.

Since for any finite argumentation framework, only a finite number of succes-
sive transition steps can be performed, this means that (again for finite argumen-
tation frameworks) each terminated transition sequence is finite. Furthermore,
for any terminated transition sequence, the final labelling is an admissible la-
belling. This is because each transition step preserves the absence of arguments
that are illegally out (Theorem 4) and after termination, we also do not have
any arguments that are illegally in.

Theorem 5. Let [L0, A1,L1, A2,L2, . . . , An,Ln] (n ≥ 0) be a terminated tran-
sition sequence where L0 is the all-in labelling. It holds that Ln is an admissible
labelling.

An interesting observation is that during the course of a transition sequence,
the set of in-labelled arguments monotonically decreases and the set of undec-
labelled arguments monotonically increases.

Proposition 1. Let [L0, A1,L1, . . . , An,Ln] be a transition sequence. For any
1 ≤ i ≤ n it holds that in(Li) ⊆ in(Li−1) and undec(Li) ⊇ undec(Li−1).

Proposition 1 is relevant with respect to the algorithm for generating the semi-
stable labellings. Suppose that a previously generated terminated transition se-
quence yielded an admissible labelling L and we are currently expanding a tran-
sition sequence [L0, A1,L1, . . . , Ai,Li]. If undec(Li) � undec(L) then we already
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know that the current transition sequence cannot yield a semi-stable labelling,
since expanding it to a terminated transition sequence [L0, A1,L1, . . . , An,Ln]
results in a labelling Ln with undec(Ln) � undec(L) (this follows from Propo-
sition 1 and the fact that undec(Li) � undec(L)). We then might as well stop
expanding the current transition sequence and instead try another possibility.

We define Labellings as the set of all final labellings from terminated transi-
tion sequences that start from the all-in labelling.

As we have now obtained that the result of any terminated transition sequence
starting from the all-in labelling is an admissible labelling, it directly follows that
each element ofLabellings is an admissible labelling. The next step, then, is to ex-
amine whether each semi-stable labelling will be an element ofLabellings. If this is
the case, then we can simply determine the semi-stable labellings as those elements
ofLabellingswhere undec is minimal. It turns out that this is indeed the case. This
can roughly be seen as follows. Let L be a preferred labelling. We now construct a
transition sequence that yields L. This is done in two phases. The first phase is to
perform a sequence of transition steps, starting from the all-in labelling, on each ar-
gument that is labelled out inL. This yields a labellingL′ with out(L′) = out(L),
undec(L′) = ∅ and in(L′) ⊇ in(L). Then, during the second phase, we continue
to perform transition steps, starting from L′, until we have reached termination;
that is, until there are no arguments that are illegally in anymore, yielding a la-
belling L′′. It can be verifed that this does not change he arguments that are out
in L′. Also, it cannot change the arguments that are in in L, since these are legally
in in L′. That is, we have that out(L′′) = out(L) and in(L′′) ⊇ in(L). From the
fact that L is a preferred labelling, it follows that (Lemma 3) in(L′′) cannot be a
strict superset of in(L). Therefore, we have that in(L′′) = in(L). From the fact
that in(L) and out(L′′) = out(L) it follows that undec(L′′) = undec(L), which
implies that L′′ = L. This leads to the following theorem.

Theorem 6. Let L be a preferred labelling. There exists a transition sequence
[L0, A1,L1, . . . , An,Ln] with L0 the all-in labelling and Ln = L.

From the fact that each semi-stable labelling is also a preferred labelling, it then
follows that for each semi-stable labelling, there exists a transition sequence that
yields it.

5 Optimizing the Algorithm

As was shown in Section 4, for the example at the left hand side of Figure 2
there are two terminated transition sequences starting from the all-in labelling:
one that yields ({A, C}, {B}, ∅) and one that yields ({A}, {B}, {C}). This is
because starting from the all-in labelling, we have two choices of arguments
to do a transition step on: B or C, since both of them are illegally in in L0
(the all-in labelling). If we choose B we will finally end up with a complete
labelling, but if we choose C then we will ultimately end up with a labelling
that is admissible but not complete (and therefore also not preferred or semi-
stable). An interesting question, therefore, is whether there is a way of avoiding
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such non-complete results by carefully choosing the right arguments to do the
transition steps on. While in general this question is difficult to answer, we do
propose a simple guideline that is helpful in many cases: choose an argument that
is superillegally in to do a transition step on, if such an argument is available.

Definition 11. Let L be a labelling of (Ar , def ). An argument A is superille-
gally in in L iff A is labelled in by L and is defeated by an argument that is
legally in in L or undec in L.

It directly follows that if an argument is superillegally in in L, then it is also
illegally in in L. The converse, however, may not be the case. As an example,
consider again the example at the left hand side of Figure 2. With the all-in
labelling, A is legally in, B and C are illegally in, and only B is superillegally
in. Thus, it makes sense to select B to do a transition step on.

The reason why arguments that are superillegally in are such good candidates
to perform a transition step on is that an argument that is superillegally in
will stay illegally in (although it may not necessarily stay super illegally in)
throughout the transition sequence, until a transition step is done on it. Thus,
we might as well perform a transition step on the superillegal argument as soon as
possible, since this prevents us from doing things we later regret (like performing
a transition step on argument C).

Theorem 7. Let L0 be a labelling where argument A is superillegally in and
[L0, A1,L1, . . . , An,Ln] be a transaction sequence where no transaction step is
performed on A (that is: A �∈ {A1, . . . , An}). It holds that A is illegally in in
Ln.

From Theorem 7 it follows that it may be a good strategy to select an argument
that is superillegally in to do a transition step on, whenever such an argument
is available. An interesting question is how such a strategy would affect the
results that were obtained earlier regarding correctness (each transition sequence
terminates with an admissible labelling) and completeness (for each preferred
labelling, there exists a transition sequence that produces this labelling).

As for correctness, the situation does not change. The result of a terminated
transition sequence is always an admissible labelling, regardless of which strategy
was used to select the arguments to do transition steps on. In [4] it is explained
that the new strategy also does not affect the completeness of the algorithm.
That is, if we consequently choose an (arbitrary) superillegal argument to do a
transition step on whenever such an argument is available, then we are still able
to produce all preferred labellings, and therefore also all semi-stable labellings.

6 The Actual Algorithm

Since the algoritm starts with the labelling in which every argument is labelled in,
we assume the presence of the constant all in, which stands for the all-in labelling.
There is one global variable (pot semi-stables)which stands the potential semi-
stable labellings, that is, the admissible labellings with minimal undec that have
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been found until now. If, during the search algorithm, one finds that the current
labelling is worse (that is: it has a proper superset of undec labelled arguments)
than an admissible labelling found earlier, then it is time to stop evaluating the
current transition sequence, since its final result will not be semi-stable anyway.

If there is no argument that is illegally in then we are at the end of a termi-
nated transition sequence and have obtained an admissible labelling. From the
previous check, we already know that this admissible labelling is not any worse
than what we already have found (it does not have a proper superset of undec
labelled arguments compared to a previously computed admissible labelling), so
we add it to the set of potential semi-stable labellings (pot semi-stables). We
then have to check if we found something that is actually better than what we
found earlier. If so, we need to delete some of the old results (remove it from
pot semi-stables).

If we have not reached the end of a terminated transition sequence, then there
is at least one argument that is still illegally in. We then distinguish two cases. If
there is at least one argument that is superillegally in then go for the argument
that is superillegally in. There is no need to be selective; any argument that is su-
perillegally inwill do for a transition step. If, however, there is no argument that is
superillegally in then we have to try each argument that is “normally” illegally in.

01. pot semi-stables = ∅; find semi-stables(all-in);
02. print pot semi-stables; end;
03.
04. procedure find semi-stables(L)
05. # if we have something worse than found earlier,
06. # then prune the search tree and backtrack
07. if ∃L′ ∈ pot semi-stables: undec(L′) � undec(L) then return;
08. # now see if the transition sequence has terminated
09. if L does not have an argument that is illegally in then
10. for each L′ ∈ pot semi-stables
11. # if old result is worse than new labelling: remove
12. if undec(L) � undec(L′) then
13. pot semi-stables := pot semi-stables - L′;
14. endif;
15. endfor;
16. # add our newly found labelling as a candidate; we already
17. # know that it is not worse than what we already have
18. pot semi-stables := pot semi-stables ∪ L;
19. return; # we are done with this one; try next possibility
20. else
21. if L has an argument that is superillegally in then
22. A := some argument that is superillegally in in L;
23. find semi-stables(transition step(A, L));
24. else
25. for each argument A that is illegally in in L
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26. find semi-stables(transition step(A, L));
27. endfor;
28. endif;
29. endif;
30. endproc;

7 Discussion

It is interesting to observe that the algorithm stated in Section 6 can also be used
to calculate, respectively, stable semantics and preferred semantics, by applying
a few changes.

For stable semantics, the modification is quite straightforward. Basically,
the idea (Definition 8) is only to yield labellings without undec-labelled ar-
guments. For this, we have to stop expanding a transition sequence as soon as
an undec-labelled argument is produced. Therefore, we have to replace line 7 by
if undec(L) �= ∅ then return.
Furthermore, we do not have to compare the sets of undec-labelled arguments
of the previous results with the current result, so the lines 10 until 15 can be
removed. Then, after renaming the variable pot semi-stables to stables and
renaming the procedure find semi-stables to find stables, the modifications
are finished and the result is an algorithm that calculates all stable extensions
of an argumentation framework.

For preferred semantics, the modification is slightly different. The idea is that
we still have to check for a condition that allows us to cut off the current transi-
tion sequence once we know that it will not yield a useful result. For semi-stable
semantics, it can be observed that the set of undec-labelled arguments keeps
increasing as the transition sequence progresses (Proposition 1). For preferred
semantics, it can be observed that the set of in-labelled arguments keeps de-
creasing as the transition sequence progresses (Proposition 1). In both cases,
there may come a point where the current transition sequence becomes worse
than a result found earlier, which means we might as well stop expanding it and
instead backtrack to another possibility.

The modification for preferred semantics is done as follows. First, the variable
pot semi-stables to renamed as pot preferreds and the procedure find semi
-stables is renamed as find preferreds. Line 7 is replaced by: if ∃L′ ∈
pot preferreds: in(L′) � in(L) then return;
Line 12 is replaced by: if in(L) � in(L′) then
The result, then, is an algorithm that calculates, given an argumentation frame-
work, all preferred extensions.

In [5], it was first examined how argument labellings are related to the tra-
ditional Dung-style argument semantics.It was found that a complete labelling
has a maximal set of in-labelled arguments iff it has a maximal set of out-
labelled arguments. In both cases, the labelling corresponds with a preferred
extension. Furthermore, it was found that a complete labelling has a minimal
set of in-labelled arguments iff it has a minimal set of out-labeled arguments iff



An Algorithm for Computing Semi-stable Semantics 233

it has a maximal set of undec-labelled arguments. In all three cases, the labelling
corresponds with the grounded extension. The only option left to be examined
consists of the labellings where the set of undec-labelled arguments is minimal.
It turned out that these did not correspond with any well-known semantics, and
this is how semi-stable semantics was discovered [3,5]. Thus, one can perhaps
think of semi-stable semantics as a missing link in the traditional hierarchy of
argumentation semantics.

Nevertheless, semi-stable semantics is more than just a purely theoretical no-
tion. Stable semantics, despite its property of the potential absence of stable
extensions, is still being used for the purpose of constraint satisfaction in fields
like answer set programming [7]. The idea is that a problem is specified in a
declarative way and that the set of potential solutions then corresponds with
the stable models of the thus described problem. In cases where no solutions
exists, there should therefore also not exist any stable models. Thus, the ab-
sence of stable models (or extensions) is not always an undesirable property.
This does assume, however, that the original problem was encoded in a way that
is perfectly correct. If, for instance, an answer set program contains an error,
then the result may well be a total absence of stable models, which is a situation
that can be notoriously hard to debug. With semi-stable semantics, however,
one obtains one or more models that can serve as a starting point to examine
where things went wrong. For instance, consider the example at the left hand
side of Figure 1. It has no stable extensions and its (only) semi-stable exten-
sion is ({B, D}, {C}, {A}). The fact that A is labelled undec can be seen as an
indication of what is “wrong” in this argumentation framework from the per-
spective of stable semantics. Similarly, if there exists an odd loop that causes the
absence of stable models, then this odd loop is flagged undec by a semi-stable
model. Thus, semi-stable semantics can give a good indication of where to start
debugging if no stable model exists. Semi-stable semantics does a better job here
than, for instance, preferred semantics. This is because there can be non-stable
preferred models (like ({A}, {B}, {C, D, E})) even in cases where stable mod-
els (like ({B, D}, {A, C, E}, ∅) do exist. With semi-stable semantics, one obtains
non-stable semi-stable models only if there is a real problem that prevents the
existence of stable models.

One particularly interesting application of semi-stable semantics would be an-
swer set programming and other forms of logic programming that use the stable
model semantics. At the time of writing, the author is exploring the possibilities
of applying semi-stable semantics to logic programming and answer set pro-
gramming. We believe this would be a useful approach for analyzing programs
for which no stable models exist.
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Abstract. Previous logic-based handling of arguments has mainly fo-
cused on explanation or justification in presence of inconsistency. As a
consequence, only one type of argument has been considered, namely
the explanatory type; several argumentation frameworks have been pro-
posed for generating and evaluating explanatory arguments. However, re-
cent investigations of argument-based negotiation have emphasized other
types of arguments, such as threats, rewards, tips, and warnings. In paral-
lel, cognitive psychologists recently started studying the characteristics
of these different types of arguments, and the conditions under which
they have their desired effect. Bringing together these two lines of re-
search, we present in this article some logical definitions as well as some
criteria for evaluating each type of argument. Empirical findings from
cognitive psychology validate these formal results.

Keywords: Argumentation, Negotiation, Threats/Rewards, Tips/Warn
ings.

1 Introduction

Argumentation is an established approach for reasoning with inconsistent knowl-
edge, based on the construction and the comparison of arguments, and it may
also be considered as an alternative method for handling qualitative uncertainty.
A basic idea behind argumentation is that it should be possible to say more about
the certainty of a particular fact than just assessing a certainty degree in [0, 1]. In
particular, it should be possible to assess the reason why a fact holds, under the
form of arguments, and combine these arguments for evaluating the certainty of
the fact they support. This combination process can be viewed as determining
the most acceptable among arguments.

Various argument-based frameworks have been developed in defeasible rea-
soning [1,6,8,20,22], for generating as well as for evaluating arguments. However,
in that explanation-oriented perspective, only one type of argument has been
considered, namely the explanatory type (reasons for believing, explanations for
states of affairs). Yet, another line of work [2,15,19] suggests that argumentation
can also play a key role in negotiation: E.g., an offer supported by a good ar-
gument has a better chance of being accepted by another agent. Argumentation
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may also lead an agent to change its goals, or may impose a particular response
onto an agent.

In addition to the explanatory arguments studied in classical argumentation
frameworks, the above works have emphasized other types of arguments such as
inducements, deterrents, and pieces of advice. For example, if an agent receives a
threat, it may accept an offer even though this offer has no particular appeal, so
as not to jeopardize the truly important goals targeted by the threat. In parallel,
cognitive psychologists have studied in recent years the characteristics of these
different types of arguments, and the conditions under which they have their
desired effect. Bringing together these lines of research, we present in this arti-
cle the formal definitions of the four basic non-explanatory arguments (threats,
rewards/promises, warnings, and tips1), as well as some criteria for evaluating
them. Empirical findings from cognitive psychology validate our formal results.

2 The Four Basic Non-explanatory Arguments

It has been pointed out that it is not possible to present an exhaustive classifi-
cation of arguments, because arguments operate within a particular context and
domain [24]. For example, when inferring from inconsistent knowledge bases,
arguments aim at finding the most supported beliefs. But during a negotiation,
the exchange of arguments may lead the agent which receives them to change
its goals or preferences.

statement: if α then β, where α is a potential action of listener

Is β desirable or undesirable for listener?

Is β a potential action of speaker? Is β a potential action of speaker?

TIP REWARD THREAT WARNING

desirable undesirable

no yes yes no

Fig. 1. A decision tree for classifying arguments, adapted from [17]

Nonetheless, some typologies exist that consider the kinds of arguments
thought to have persuasive force in human negotiation, both in artificial in-
telligence [15] and in cognitive psychology [17]. Building on previous research
[9,16], López-Rousseau and Ketelaar recently tested a simple yet remarkably ef-
ficient algorithm for predicting whether people will think of a given conditional
statement as expressing a threat, a reward, a tip, or a warning (see Figure 1).
1 Although the term ‘tip’ can evoke a small piece of heuristic information for making

something better, it must be understood here in the sense of a recommendation.
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Consider that a speaker is telling a listener: “If you do α, β will happen.” (Note
that α is necessarily a potential action of the listener.) The algorithm of [17]
focuses on two characteristics of β, namely: Is β something the speaker will
do, or something that will happen independently of the speaker? Is β something
good for the listener, or something bad? Quite remarkably, this simple algorithm
correctly predicted 92% of the classifications made by human subjects.

In parallel, other authors [4] elaborated an in-depth psychological analysis of
the motivational structure of such statements, and emphasized that the action
α itself, inasmuch as rewards or threats are concerned, should have positive or
negative consequences for the speaker. Indeed, why would the speaker attempt
to bribe the listener into doing α if the speaker had no interest in seeing that
α is done? Likewise, why would the speaker attempt to scare the listener out of
doing α if the speaker had no interest in seeing that α is not done?

Our goal in this article is to organize psychological analysis and empirical
results in a formal framework that will do justice to the psychological state of
the art. To our knowledge, this framework is the first to address all four types
of non-explanatory arguments, as well as the first to be entirely grounded in
experimental research.

3 Formal Definitions

In what follows, AC denotes a set of actions. {a1, . . . , an} is a set of agents
involved in a discussion. In addition to this set of agents, we suppose that we
have a neutral agent, denoted by a0, that may stand for impersonal powers such
as Nature itself. Let AG = {a0, a1, . . . , an} be the set of all agents. Each agent
is supposed to have the control over a subset of actions of AC. This captures the
fact that an agent is able to do some actions but not others. The function

F : AG −→ 2AC

retuns the actions under the control of each agent.
Each action performed by a given agent (including the neutral agent) is sup-

posed to have consequences for all agents. These consequences can be good,
neutral, or bad, and can be good or bad to different degrees. This notion of
consequence is captured by the following function:

Cons : AC ×AG −→ {−n, . . . , 0, . . . , +n},

where n is an integer that denotes the extremity of the consequence of some ac-
tion to some agent. Positive values of Cons denote good consequences, the higher
the value of Cons the better. Negative values of Cons denote bad consequences,
the lower the value of Cons the worse. The value 0 is attached to neutral con-
sequences. This simple, ordinal scale can be generalized to more sophisticated
scales, providing that they include a neutral point. Throughout the paper, we
suppose that agent S, the speaker, addresses a negotiation move (a statement)
to agent L, the listener, with S, L ∈ {a1, . . . , an}.
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Definition 1 (Argument). An argument is an expression of the form (ai, α)
−→ (aj , β) such that:

1. ai, aj ∈ AG,
2. α, β ∈ AC

The meaning of the above expression is that if agent ai performs action α, the
agent aj will perform action β.

3.1 Threats

Threats are used to coerce an agent into behaving in a certain way, by emphasiz-
ing the unpleasant measures the speaker would take otherwise. Different linguis-
tic expressions of threats are possible. The conditional expression is canonical,
but threats can easily be reformulated as conjunctions or disjunctions [11].

i) If you do α, I will do β,
ii) Do α and I will do β,
iii) Do not do α otherwise I will do β.

Example 1 (Tantrum).

i) If you throw a tantrum, I’ll ground you.
ii) Throw a tantrum and I will ground you.

iii) Don’t throw a tantrum, otherwise I will ground you.

Definition 2 (Threat). An argument of type threat, or a threat, is an argu-
ment (ai, α) −→ (aj , β) such that:

1. ai = L
2. α ∈ F(ai)
3. aj = S
4. Cons(α, aj) < 0
5. Cons(β, ai) < 0

Since S, L ∈ {a1, . . . , an}, neither can be the neutral agent. Points 1 and 2 are
common to the definition of threats, rewards, tips, and warnings. They ensure
that α is an action under the control of the listener; otherwise, the threat (re-
ward, etc.) would be useless. Point 3 ensures that β is an action of the speaker, a
characteristic feature of threats and warnings.2 Point 4 ensures that the speaker
does not attempt to prevent something that would actually be beneficial; other-
wise, the threat would be irrational. Finally, Point 5 ensures that β is something
unpleasant to the listener; otherwise, the threat would be misplaced.

In Example 1, α is meant to be an action of the listener (a child), namely,
throwing a tantrum. This action (or lack thereof) is presumed to be under the
control of the child. In contrast, β is meant to be an action of the speaker (the
mother), namely, grounding the child. The child throwing a tantrum is something
unpleasant to the mother, and being grounded is something unpleasant to the
child. The statement meets all the criteria in the definition of a threat.
2 We will return in section 5 to the fact that Definition 2 does not feature the condition

β ∈ F(aj).
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3.2 Rewards

Rewards are used to encourage another agent to behave in a certain way, by
emphasizing the pleasant measures the speaker will take in response. There are
two main linguistic expressions of rewards. As for threats, the conditional ex-
pression of rewards is canonical, but the conjunctive reformulation is possible.
Unlike threats, the disjunctive paraphrase is awkward [11].

i) If you do α, I will do β.
ii) Do α and I will do β.

Example 2 (Free CDS).

i) If you buy this computer, I’ll throw in a box of free CDs.
ii) Buy this computer and I’ll throw in a box of free CDs.

iii) Don’t buy this computer, otherwise I’ll throw in a box of free CDs.

Definition 3 (Reward). An argument of type reward, or a reward, is an ar-
gument (ai, α) −→ (aj , β) such that:

1. ai = L
2. α ∈ F(ai)
3. aj = S
4. Cons(α, aj) > 0
5. Cons(β, ai) > 0

Note that, due to the fact that S, L ∈ {a1, . . . , an}, neither can be the neutral
agent. Points 1 and 2 serve the same function as in the definition of threats.
Point 3 ensures that β is meant to be an action of the speaker, a characteristic
feature of threats and rewards. Point 4 ensures that the speaker does not attempt
to bring about something that would actually be detrimental; otherwise, the
reward would be irrational. Finally, Point 5 ensures that β is something pleasant
to the listener; otherwise, the reward would be misplaced.

In Example 2, α is an action under the control of the listener of the listener (a
customer), namely, buying a computer. In contrast, β is an action of the speaker
(the salesperson), namely, throwing in a box of free CDs. The customer buying
a computer is something desirable for the salesperson, and being given a box of
free CDs is something desirable to the customer. The statement meets all the
criteria in the definition of a reward.

3.3 Warnings

Warnings are addressed to another agent in an attempt to discourage a given
course of action, by emphasizing the unfortunate consequences that would fol-
low. In contrast to threats, these unfortunate consequences are not within the
control of the speaker [10], and the speaker has no particular stake in preventing
the course of action to occur [18]. Just as threats, warnings can be formulated
conditionally, conjunctively, or disjunctively.
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Example 3 (Computer Virus).

i) If you open this file, your computer will crash.
ii) Open this file and your computer will crash.

iii) Don’t open this file, otherwise your computer will crash.

Definition 4 (Warning). An argument of type warning, or a warning, is an
argument (ai, α) −→ (aj , β) such that:

1. ai = L
2. α ∈ F(ai)
3. aj �= S
4. Cons(β, ai) < 0

Points 1 and 2 are common to all four definitions. Point 3 states β should be an
action of another agent than the speaker (possibly an action by the impersonal
agent). This is characteristic of tips and warnings. Point 4 ensures that β is
an unpleasant consequence for the listener; otherwise, the warning would be
misplaced. Note that the definition of a warning differs in two important respects
from that of a threat. First, β is not an action of the speaker; second, it is not
necessary (though not excluded, either) that α harms the speaker.

In Example 3, α is meant to be an action of the listener (a computer user),
namely, opening a file. This action is under the control of the user. Action β
(namely, crashing the computer) is not meant to be an action of the speaker
(some hotline operator), but an action of a ‘neutral’ agent, the computer virus.
Finally, whilst the crashing of the computer is certainly undesirable to the lis-
tener, the opening of the file is of no concern to the speaker. The statement
meets all the criteria in the definition of a warning, but not the criteria in the
definition of a threat (or a reward, of course).

3.4 Tips

Tips are addressed to another agent in an attempt to encourage a given course
of action, by emphasizing the positive consequences that would follow. In con-
trast with rewards, these positive consequences are not within the control of the
speaker, and the speaker has no particular stake in seeing that the course of
action is taken. Just as rewards, tips can be formulated conditionally or con-
junctively, but sound awkward when paraphrased disjunctively.

Example 4 (Revise and Resubmit).

i) If you revise the paper, the editor will accept it.
ii) Revise the paper and the editor will accept it.

iii) Don’t revise the paper, otherwise the editor will accept it.

Definition 5 (Tip). An argument of type tip, or a tip, is an argument (ai, α)
−→ (aj , β) such that:
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1. ai = L

2. α ∈ F(ai)
3. aj �= S

4. Cons(β, ai) > 0

Points 1 and 2 are common to all four definitions. Point 3 states β should be
an action of another agent than the speaker (possibly an action by the imper-
sonal agent). This is characteristic of tips and warnings. Point 5 ensures that
β is indeed a pleasant consequence for the listener; otherwise, the tip would
be misplaced. Note that the definition of a tip differs from that of a reward in
two different respects. First, β is not an action of the speaker; second, it is not
necessary (though not excluded, either) that α benefits the speaker.

In Example 4, α is meant to be an action of the listener (a graduate student),
namely, revising a paper. This action is under the control of the student. Action
β (namely, accepting the paper) is not meant to be an action of the speaker (a
post-doctoral student met at a conference), but an action of a third agent, the
editor. Finally, the acceptance of the paper is of course desirable to the listener,
but the speaker has no particular stake in seeing that the paper is revised. The
statement meets all the criteria in the definition of a tip, but not the criteria in
the definition of a reward (or a threat, or a warning).

4 General Properties

We assume symmetrical control: An agent who controls action α also controls ¬α:
α ∈ F(ai) ⇐⇒ ¬α ∈ F(ai).3 Furthermore, we assume bipolar consequences:
When an action α has positive consequences for an agent, ¬α has negative
consequences for this same agent: Cons(α, ai) > 0 ⇐⇒ Cons(¬α, ai) < 0.

Proposition 1 (Exclusive Definitions). An argument (ai, α) −→ (aj , β) is
either a threat, or a reward, or a tip, or a warning, or none of these. All ors in
the previous sentence are exclusive.

It follows trivially from the definitions we have given that an argument can only
meet the criteria in one definition, but not two. An example of an argument
that does not satisfy any of the four definitions is (ai, α) −→ (a0, β), where
ai ∈ AG \ {S, L}. E.g., ‘If my CEO admits the fraud, her stocks will go down.’
We will get back to this kind of ‘consequential arguments’ [7] in the final section
of this article. Although Proposition 1 is straightforward, it is a genuine improve-
ment over previous frameworks that failed to give non-overlapping definitions of
threats, rewards, tips, and warnings [3,12].

Proposition 2 (From Threats to Rewards). If (ai, α)−→ (aj , β) is a threat,
then (ai,¬α) −→ (aj , γ) is a reward for any γ such that Cons(γ, aj) > 0.

3 Note that ¬α means ‘not executing α’ and not ‘executing some action with the
complementary effect of α’.
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Proof. If (ai, α) −→ (aj , β) is a threat, then ai = L, α ∈ F(ai), and aj = S.
The first three criteria for (ai,¬α) −→ (aj , γ) to be a reward are thus satisfied.
Furthermore, Cons(α, ai) < 0, which implies, under the assumption we have
made, that Cons(¬α, ai) > 0. The fourth criteria is satisfied. What remains to
be satisfied is the fifth criteria, i.e., Cons(γ, aj) > 0. Note that this criterion will
be automatically satisfied in the particular case where γ is ¬β.

Proposition 3 (From Rewards to Threats). If (ai, α) −→ (aj , β) is a re-
ward, then (ai,¬α) −→ (aj , γ) is a threat for any γ such that Cons(γ, aj) < 0.

Proof. Proof is similar to that of Proposition 2, and the same remark holds
about the particular case where γ is ¬β.

Example 5 (Threat to Reward, and Vice Versa). The threat ‘If you throw
a tantrum, I’ll ground you’ becomes a reward when its antecedent is negated and
its consequent replaced by anything desirable to the listener, e.g., ‘If you don’t
throw a tantrum, we’ll come back here another time.’ The reward ‘If you buy this
computer, I’ll throw in a box of free CDs’ becomes a threat when its antecedent is
negated and its consequent replaced by anything undesirable to the listener, e.g.,
‘If you don’t buy this computer, I’ll tell your wife about our affair.’

Proposition 4 (From Warnings to Tips). If (ai, α) −→ (aj , β) is a warning,
then (ai,¬α) −→ (aj , γ) is a tip for any γ such that Cons(γ, aj) > 0.

Proof. If (ai, α) −→ (aj , β) is a warning, then ai = L, α ∈ F(ai), and aj �= S.
The first three criteria for (ai,¬α) −→ (aj , γ) to be a tip are thus satisfied. What
remains to be satisfied is the fourth criteria, i.e., Cons(γ, aj) > 0. Note that this
criterion will be automatically satisfied in the particular case where γ is ¬β.

Proposition 5 (From Tips to Warnings). If (ai, α) −→ (aj , β) is a tip, then
(ai,¬α) −→ (aj , γ) is a warning for any γ such that Cons(γ, aj) < 0.

Proof. Proof is similar to that of Proposition 4, and the same remark holds
about the particular case where γ is ¬β.

Example 6 (Warning to Tip, and Vice Versa). The warning ‘If you open
this file, your computer will crash’ becomes a tip when its antecedent is negated
and its consequent replaced by anything desirable to the listener, e.g., ‘If you
don’t open this file, you can claim you never received it.’ The tip ‘If you revise
the paper, the editor will accept it’ becomes a warning when its antecedent is
negated and its consequent replaced by anything undesirable to the listener, e.g.,
‘If you don’t revise the paper, your co-authors will think poorly of you.’

5 The Strength of Non-explanatory Arguments

It is a standard perspective in argumentation research to assume that arguments
differ in strength, or persuasive force. This makes it possible for an agent to
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compare arguments and select the strongest one. In [3], different definitions are
proposed for computing the strength of threats and rewards. These computations
are based on the quality of information used to build the arguments. Within this
framework, threats and rewards are built from a knowledge base and a base of
goals. Thus, the strength of a threat will depend on the certainty level of the
beliefs used to build that threat, and on the importance of the threatened goal.
A threat is strong if it invalidates an important goal according to the most
certain beliefs. A threat is weaker if it involves beliefs of low certainty, or if it
only invalidates a goal of low importance. This framework, however, does not
entirely do justice to the complexity of evaluating threats. Even if a threat does
target an important goal of the listener and involves highly certain beliefs, other
aspects of the situation can make it weak, as suggested by experimental results
available in the cognitive psychology literature. Formally:

Definition 6 (Force of a Threat).
A threat (ai, α) −→ (aj , β) is strong iff:

– β ∈ F(aj), and
– Cons(β, aj) ≥ 0, and
– |Cons(β, ai)| - |Cons(α, aj)| ≤ δ, where δ is a threshold.

Otherwise, the threat is weak.

The first condition says that the action β should be under the control of the
speaker. If it is not, the threat is ‘degenerated’ [4], and will have little effect
on the listener, as empirically shown in, e.g., [18]. One might try to threaten a
journal editor to commit her to a psychiatric ward if one’s paper is not accepted,
but such a threat is unlikely to be taken seriously, as the speaker is unlikely to
have such a power. The second condition says that a threat is stronger if action
β has a positive side effect for the speaker, or, at least, does not harm the
speaker. The sentence ‘If you don’t behave, we will leave immediately’ has more
weight if the speaker is a mother looking forward to going home, than if she is
a mother who took her child to an important meeting. The third condition is
more subtle. It says that the threat should not be disproportionate, i.e., that
the punishment should be balanced to the offense if the threat is to be taken
seriously. As shown empirically by [25], a proportionate threat such as ‘If you tell
your brother that Santa does not exist, I’ll ground you’ is much more efficient
than its disproportionate version ‘If you tell your brother that Santa does not
exist, we will return all your presents to the store.’ Remarkably, this result does
not hold for rewards, as reflected in the following definition.

Definition 7 (Force of a Reward).
A reward (ai, α) −→ (aj , β) is strong iff:

– β ∈ F(aj), and
– Cons(β, aj) ≥ 0.

Otherwise, the reward is weak.
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Just like threats, a reward is strong only if it is indeed in the power of the speaker
to deliver the reward β. The reward is even more convincing if the speaker finds
a positive side effect in doing β. Unlike threats, rewards do not have to be pro-
portionate, because unlike threats, rewards engage the speaker [4,12]. As shown
in [25], the reward ‘If you behave, I’ll give you $100’ is just as credible that the re-
ward ‘If you behave, I’ll let you watch a cartoon tonight.’ While individuals may
think that promising $100 to a child is not very good parenting, they do not ques-
tion the fact that the parent will stay true to her promise and deliver the $100 if
the child does behave. These preliminary results do not preclude the possibility
that a limit may exist beyond which a reward is no longer credible (as a function
of the speaker’s resources? as a function of the listener’s assumptions about what
a fair reward should be?). Maybe this limit is only much more flexible for rewards
than it is for threats—this is still, however, an open empirical question.

Tips and warnings do not seem to have special requirements to be strong.
However, as for threats and rewards, a necessary condition for a tip or a warning
to be strong is that it is indeed in the power of the third (possibly neutral) agent
aj to take action β. Note that a tip (resp., a warning) might seem even stronger
is Cons(α, aj) < 0 (resp., Cons(α, aj) > 0)—that is, when the speaker suggests
a course of action that would be beneficial to the listener but detrimental to the
speaker herself, or when the speaker warns against a course of action that would
be detrimental to the listener but beneficial to the speaker herself. We do not
know, however, of any experimental data that would back up this intuition.

6 Related Works

This article does not deal with the notion of threat that is pervasive in research
on decision under risk, nor with the notion of threat that is involved in engi-
neering applications such as military target analysis, or intrusion detection in
computer security. Such applications revolve around evaluating how certain the
threat is, and how important its potential consequences. The use of fuzzy logic-
based techniques has been proposed for both applications [5,13,14]. Rather, in
this article we are concerned by the expression of a threat as a special type of
argument, and how it is perceived by another agent. We are also interested in
the dual notion of reward, and in the other duality represented by tips and
warnings. For that purpose, we have proposed a formal and abstract framework,
grounded in experimental results, in which these four types of arguments are
defined, distinguished, and evaluated.

A relevant line of work in artificial intelligence can be found in [12,15,21],
although the present approach is substantially different. [15,21] in particular do
not study tips and warnings, and do not consider threats and rewards as argu-
ments. Rather, threats and rewards are considered persuasive particles, speech
acts having preconditions and post-conditions. The preconditions must be satis-
fied before sending a particle, and the post-conditions represent the consequences
of that particle (more precisely, these consequences amounts to adding new
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beliefs in the listener’s beliefs base). A final and important difference between
the two approaches is our reliance on empirical data to ground our definitions
and validate our assumptions.

Cognitive psychologists have also explored arguments that are kindred to
threats, rewards, tips and warnings, and that our framework should easily han-
dle. For example, [7] showed that a statement such as ‘If my CEO admits the
fraud, her stocks will go down’ is perceived as an argument that the CEO will not
admit the fraud. The informal definition given for these ‘consequential’ condi-
tionals can easily be translated into our formal framework as (ai, α) −→ (a0, β),
where ai ∈ AG|{S, L} and Cons(β, ai) < 0. Likewise, the ‘persuasion’ condition-
als studied by [23] (e.g., ‘If the Kyoto accord is ratified, greenhouse gas emissions
will be reduced’) can easily be defined in our formal framework.

7 Conclusion

Different types of arguments are exchanged in negotiation dialogues in addition
to explanatory arguments. The most common are threats, rewards, warnings and
tips. Although there have been attempts at formalizing threats and rewards, no
effort has been done at providing a systematic formalization of all four argu-
ments, as well as the criteria to evaluate their strength. We have proposed such
a formalization, in which the differences between these arguments are clearly
identified, and their persuasive forces are discussed. Furthermore, in a collabo-
rative effort between psychologists and computer scientists, our formal choices
have been systematically guided by recent empirical findings from cognitive psy-
chology [4,9,10,16,17,18,25]. As a result, our formalization captures exactly what
we know of the way human agents exchange threats, rewards, tips, and warnings.
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Abstract. In this paper we study the acceptability of incompatible arguments
within Dung’s abstract argumentation framework. As an example we introduce
an instance of Dung’s framework where arguments are represented by proposi-
tional formulas and an argument attacks another one when the conjunction of
their representations is inconsistent, which we characterize as a kind of symmet-
ric attack. Since symmetric attack is known to have the drawback to collapse
the various argumentation semantics, we consider also two variations. First, we
consider propositional arguments distinguishing support and conclusion. Second,
we introduce a preference ordering over the arguments and we define the attack
relation in terms of a symmetric incompatibility relation and the preference rela-
tion. We show how to characterize preference-based argumentation using a kind
of acyclic attack relation.

1 Introduction

Dung’s abstract argumentation framework [10] is based only on sets (whose elements
are called arguments) carrying a binary relation (called the attack relation). Due to this
abstract perspective, it can and has been used in several ways, for example as a general
framework for non-monotonic reasoning, for argumentation, and as a component in
agent communication, dialogue, or decision making.

However, the increasing popularity of argumentation-based systems has revealed a
dilemma. On the one hand many users appreciate the abstract arguments of Dung’s
framework, enabling them to reason about arguments without being forced to use a pre-
scribed representation such as rules. On the other hand, in general they find it difficult
to think in terms of attack relations. For example, does the argument

“The soccer game is going to be very interesting, many people will watch the
game because it is Barcelona against Arsenal”

attack the argument

“The soccer game is going to be boring, because the first half was already won
by 6-0”

or vice versa? Typically, users specify only whether two arguments are incompatible,
i.e., whether two arguments cannot be held together. Incompatibility means here simply
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that a person cannot forward the two arguments without contradicting himself. This
means that the attack relation is symmetric, because if argument A is incompatible with
argument B, then argument B is incompatible with argument A.

In this paper we are therefore interested in incompatibility of arguments. However,
Besnard and Hunter [7] and Coste-Marquis et al. [9] have shown that symmetric attack
relations – as represented by propositional argumentation – are not very expressive in
the sense that the various semantics of Dung’s argumentation framework collapse to
selecting either a maximal conflict-free subset of arguments, or the intersection of the
maximal conflict-free subsets. We therefore propose that argumentation based systems
should use the following argumentation specification:

Argumentation Specification for Argumentation Based Systems. The user
specifies abstract arguments, a symmetric incompatibility relation on the argu-
ments, and a preference relation over the arguments. The system calculates first
the attack relation from the incompatibility relation and the preference relation,
and thereafter the acceptable arguments using one of Dung’s semantics.

This proposed specification leaves us the freedom to define the properties of the
preference relation and the way to define the attack relation from the other two relations.
For the preference relation most users prefer to use a transitive relation, so, for example,
a partial order or a total order. For the combination we can define, for example, that
argument A attacks argument B when A and B are incompatible and A is at least as
preferred as B [11], or B is not preferred to A [2,5].

The choice among these alternatives may depend on which alternative is most intuitive
for the user, but it seems that there is no strong preference for either of them. It may depend
also on the expressive power of the alternatives: if one representation can represent a
larger range of attack relations, it may be a better basis for argumentation based systems.
For example, do we again have a collapse of the various semantics, as in the case of
symmetric attack relations without a preference relation, or can we represent any kind
of attack relation and do we thus cover the full range of possibilities? As we show later
in this paper, the answer is often somewhere in the middle: we do not have a collapse of
the various semantics, but we can represent only a subset of all possible attack relations.

In this paper we are therefore interested in characterizing various kinds of alternative
argumentation frameworks, in the following sense. Given an argumentation framework
consisting of a set of arguments and one or more other mathematical elements, we de-
fine a mapping from the argumentation framework to a Dung’s abstract argumentation
framework. Then we say that the alternative framework is characterized by a property if
the following two conditions hold. First, for every possible mapping, the property holds
for Dung’s framework. Second, for every instance of Dung’s framework satisfying the
property, there is an instance of the alternative framework that is mapped onto it. We
say also that Dung’s theory together with the property is represented by the alternative
framework.

For example, we consider what we call a propositional argumentation framework in
which each argument A is represented by a formula prop(A) from propositional logic,
and we define the mapping to Dung’s framework as follows: argument A attacks argu-
ment B if prop(A) ∧ prop(B) is inconsistent. We then characterize the propositional
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argumentation theory by symmetric attack, if argument A attacks argument B, then ar-
gument B attacks argument A, together with the property that if argument A attacks
itself, then it attacks all other arguments too. Thus, this particular kind of symmetric
attack can be represented by propositional argumentation.

In particular, in this paper we address the following two questions:

1. Can the collapse of the argumentation semantics be avoided when we represent ar-
guments by pairs 〈H, h〉, where H is a set of propositional formulas supporting the
formula h (i.e., H logically implies h in propositional logic), a kind of propositional
argumentation promoted, for example, by Amgoud and Cayrol [2]?

2. How do we characterize an argumentation framework with an incompatibility re-
lation together with a preference relation over arguments, and the mapping that
argument A attacks argument B if and only if A and B are incompatible, and B is
not preferred to A, as suggested by Amgoud and Cayrol [2] and Bench-Capon [5]?

The results in this paper show that the attack relations which cannot be represented
contain a particular kind of cycles of attacking arguments. Attack cycles among ar-
guments have raised already considerable attention in the argumentation literature, in
particular due to the fact that odd cycles have a distinct behavior from even cycles, in
the sense that the former arguments are not contained in any acceptable preferred or
stable semantics, whereas some of the latter are. However, the problem with this dis-
tinct behavior is that for users it is very hard to distinguish, for example, a 5-cycle from
a 6-cycle. The fact that such cycles can no longer be represented, may be an alternative
explanation why it is easier for users to represent an incompatibility relation together
with a preference relation, than an attack relation.

The layout of this paper is as follows. In Section 2 we introduce Dung’s framework,
propositional and extended propositional argumentation, and we characterize them. In
Section 3 we introduce preference-based argumentation and we characterize it.

2 Propositional Argumentation

In this section we repeat Dung’s argumentation framework, we discuss basic propo-
sitional argumentation and we characterize it as a kind of symmetric attack. Then we
discuss an extended form of propositional argumentation and we characterize it. Finally
we introduce and discuss a notion of closure under supported arguments, and we show
that under this assumption extended propositional argumentation collapses to proposi-
tional argumentation.

2.1 Dung’s Framework

Argumentation is a reasoning model which consists of constructing arguments, de-
termining potential conflicts between arguments, and selecting acceptable arguments.
Dung’s framework [10] is based on a binary attack relation among arguments.

Definition 1 (Argumentation Framework). An argumentation framework is a tuple
〈A,R〉 where A is a set of arguments andR is a binary attack relation on A×A.
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The semantics of Dung’s argumentation framework is based on the two notions of de-
fence and conflict-freeness.

Definition 2 (Defence). A set of arguments S defends an argument A iff for each ar-
gument B of A which attacks A, there is an argument C in S which attacks B.

Definition 3 (Conflict-Free). A set of arguments S is conflict-free iff there are no
A, B ∈ S such that ARB.

The following definition summarizes various semantics of acceptable arguments pro-
posed in the literature. The output of the argumentation framework is derived from the
set of acceptable arguments which are selected with respect to an acceptability seman-
tics.

Definition 4 (Acceptability Semantics). Let S ⊆ A.

– S is admissible iff it is conflict-free and defends all its elements.
– A conflict-free S is a complete extension iff S = {A | S defends A}.
– S is a grounded extension iff it is the smallest (for set inclusion) complete extension.
– S is a preferred extension iff it is a maximal (for set inclusion) complete extension.
– S is a stable extension iff it is a preferred extension that attacks all arguments

in A\S.

Many properties and relations among these semantics have been studied by Dung and
others.

2.2 Basic Propositional Argumentation

In basic propositional argumentation, each argument is represented by a propositional
formula.

Definition 5. Let L be a language of propositional logic. A basic propositional argu-
mentation framework is a tuple 〈A, prop〉 where A is a set of arguments and prop is a
function from A to L.

An argument represented by a propositional formula p attacks an argument represented
by q if and only if p ∧ q is inconsistent.

Definition 6. 〈A, prop〉 represents 〈A,R〉 if and only if for all A, B ∈ A, we have
A R B iff prop(A) ∧ prop(B) is inconsistent in propositional logic. We say also that
R is represented by prop.

Example 1. Consider a propositional argumentation framework 〈{A, B, C, D}, prop〉
with prop(A) = p, prop(B) = ¬p ∧ q, prop(C) = q and prop(D) = r ∧ ¬r. We have
that A attacks B and vice versa, D attacks all other arguments and vice versa, and no
other attack relations hold.

Roughly, basic propositional argumentation corresponds to symmetric argumentation.

Theorem 1. If A is finite, then 〈A,R〉 can be represented by a basic propositional
argumentation framework if and only if the following two properties hold:



On the Acceptability of Incompatible Arguments 251

1. R is symmetric.
2. For all arguments A, B, if ARA, then ARB.

Proof. Soundness. Let 〈A, prop〉 be a basic propositional argumentation theory repre-
senting 〈A,R〉. Symmetry holds, because prop(A)∧prop(B) is inconsistent if and only
if prop(B) ∧ prop(A) is inconsistent (with respect to propositional logic). Moreover,
an argument A attacks itself, ARA, if and only if prop(A) is inconsistent. However, if
prop(A) is inconsistent, then prop(A) ∧ prop(B) is inconsistent as well, thus ARB.

Completeness. We prove it by construction. Let 〈A,R〉 be an arbitrary argumenta-
tion theory satisfying that R is symmetric and ∀A, B ∈ A, if ARA then ARB. Let
〈A1, . . . , A|A|〉 be a sequence of all the elements of A. Moreover, consider |A| propo-
sitional atoms pi, define

P =
∧

1≤i,j≤|A|
{¬(pi ∧ pj) | AiRAj},

prop(Ai) = pi ∧ P.

We prove that this basic argumentation framework represents 〈A,R〉 by showing that
∀A, B ∈ A, ARB if and only if prop(A) ∧ prop(B) is inconsistent.

Let p and q be the propositional atoms associated to A and B respectively. Suppose
that ARB. Then prop(A) = p ∧ P and prop(B) = q ∧ P . Since ARB then ¬(p ∧ q)
belongs to P . Thus prop(A) ∧ prop(B) is inconsistent.

Suppose that prop(A)∧ prop(B) is inconsistent. This means that (p∧P )∧ (q ∧P )
is inconsistent. Since p and q are propositional atoms and thus positive formulas, this
can hold only if either:

1. ¬(p∧q) belongs to P , which means that ARB. By symmetry of prop(A)∧prop(B)
we have also BRA.

2. We have pi = pj = p or pi = pj = q for some pi and pj , which means either A or
B attacks itself. But then by the second rule we have either ARB or BRA, and by
symmetry we have in both cases ARB and BRA.

Consequently, in both cases we have ARB. This concludes the proof.

2.3 Symmetric Attack Relations

Besnard and Hunter [7] and Coste-Marquis et al. [9] show that only two distinct forms
of acceptability are possible when the considered frameworks are symmetric. Those
forms of acceptability are quite rudimentary, but tractable; this contrasts with the gen-
eral case where all the forms of acceptability are intractable (except the ones based on
grounded extensions).

Theorem 2. [9] Let 〈A,R〉 be an argumentation framework where R is symmetric,
non-empty, and irreflexive. A ∈ A belongs to every preferred (equivalently, stable)
extension of 〈A,R〉 if and only if there is no B ∈ A such that BRA.
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Coste-Marquis et al. summarize that there are at most two distinct forms of acceptabil-
ity for symmetric argumentation frameworks: all the forms of skeptical acceptability
coincide with the notion of acceptability with respect to the grounded extension, and
credulous acceptability with respect to preferred extensions coincides with credulous
acceptability with respect to stable extensions.

Consequently, one has to consider more general acceptability notions if one wants to
get more than one semantics, as we do here; indeed, skeptical acceptability is rather poor
since it characterizes as acceptable only those arguments which are not attacked. For
these reasons, Coste-Marquis et al. turn to acceptability concepts for sets of arguments,
that is, the question is to determine whether or not it is reasonable to accept some
arguments together.

2.4 Extended Propositional Argumentation

Arguments can be represented by pairs 〈H, h〉, where H ∪ {h} is a set of propositional
formulas [12]. We call H the support and h the conclusion of the argument.

Definition 7. Let L be a language of propositional logic. An extended propositional
argumentation framework is a tuple 〈A, sup, con〉 where A is a set (of arguments),
sup : A → 2L is a (support) function from arguments to sets of formulas, and con :
A → L is a (conclusion) function from arguments to formulas such that for all A ∈ A,
sup(A) (proposition) logically implies con(A).

We have two kinds of attack. An argument 〈H, h〉 rebuts 〈K, k〉 if and only if h ∧ k is
inconsistent, and the former undercuts the latter if and only if {h} ∪K is inconsistent.
Note that using these definitions of rebut and undercut, due to the fact that sup(A)
logically implies con(A), we have that if A rebuts B, then also A undercuts B (but
not necessarily vice versa). We therefore consider undercutting only in the following
definition of representation.

Definition 8. 〈A, sup, con〉 represents 〈A,R〉 if and only if for all A, B ∈ A, we have
AR B iff {con(A)} ∪ sup(B) is inconsistent in propositional logic.

Example 2. Let 〈{A, B, C}, sup, con〉 be an extended propositional argumentation the-
ory with sup(A) = {¬p ∧ q}, con(A) = q, sup(B) = {p ∧ ¬q} and con(B) = p,
sup(C) = {p ∨ r,¬r ∨ s,¬s} and con(C) = p. We may represent this theory also by
A = 〈{¬p ∧ q}, q〉, B = 〈{p ∧ ¬q}, p〉, and C = 〈{p ∨ r,¬r ∨ s,¬s}, p〉. Note that
〈{¬p∧ q}, q〉 is an argument whereas 〈{¬p, q}, q〉 is not due to the minimality criterion
of the support of an argument. We have argument A attacks argument B and vice versa,
argument C attacks argument A, and no other attack relations hold.

Theorem 3. IfA is finite, then 〈A,R〉 can be represented by an extended propositional
argumentation framework if and only if for all arguments A, B ∈ A, if ARA, then
BRA.

Proof. Soundness. Let 〈A, sup, con〉 be an extended propositional argumentation
framework representing 〈A,R〉. Suppose that ARA. Then {con(A)} ∪ sup(A) is in-
consistent. Following Definition 7, sup(A) logically implies con(A). Hence, sup(A)
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must be inconsistent (con(A) is not necessarily inconsistent). But then we have for all
B ∈ A that {con(B)} ∪ sup(A) is inconsistent, i.e., that BRA.

Completeness. We prove it by construction. Let 〈A,R〉 be an arbitrary argumenta-
tion framework satisfying the condition that if ARA, then BRA. Let 〈A1, . . . , A|A|〉
be a sequence of all the elements of A. Moreover, consider |A| propositional positive
atoms pi, define

Pi = {¬(pi ∧ pj) | 1 ≤ j ≤ |A|, AjRAi},
sup(Ai) = {pi} ∪ Pi,

con(Ai) = pi.

We prove that the above extended propositional framework represents the argumenta-
tion framework 〈A,R〉, i.e. ∀A, B ∈ A, ARB iff {con(A)} ∪ sup(B) is inconsistent.

Suppose that ARB. Let p and q be the propositional atoms associated to A and B
respectively. We have conclusion con(A) = p and support sup(B) = {q} ∪ P with
P = {¬(q ∧ pj) | AjRB}. We have that ¬(q ∧ p) ∈ P due to ARB. Then it follows
that {con(A)} ∪ sup(B) is inconsistent.

Suppose now that {con(A)} ∪ sup(B) is inconsistent. This means that we have
that {p, q} ∪ {¬(q ∧ pj) | AjRB} = {p, q¬(q ∧ p1),¬(q ∧ p2), · · · ,¬(q ∧ pm)} is
inconsistent. Since p, q and pj are propositional atoms, and thus positive formulas, this
formula is inconsistent if and only if either:

1. there exists pj (j = 1, · · · , m) such that pj = p. Then ARB, or
2. there exists pj (j = 1, · · · , m) such that pj = q. Then BRB, and therefore due to

the second property ARB.

Hence, in both cases we have ARB. This concludes the proof.

2.5 Closure Under Supported Formulas

In propositional argumentation, we may have, for example, 〈{p∧q}, p〉 as an argument,
without having 〈{p∧q}, q〉 as an argument. However, in some cases the set of arguments
of an extended propositional theory has been generated in some way. In those cases, we
may want to consider some closure conditions.

Definition 9. Let 〈A, sup, con〉 be an extended propositional argumentation frame-
work.

– A set of arguments S ⊆ A is said to be closed under supported formulas iff for all
arguments A ∈ S and all propositional formulas p logically implied by sup(A) but
not by a strict subset of sup(A), there is an argument B ∈ S such that sup(B) =
sup(A) and con(B) = p.

– We say that 〈A, sup, con〉 is closed under supported formulas if A is.

If an argumentation framework is closed under supported formulas, then its complete
extensions are closed as well.

Lemma 1. If the argument 〈H, h〉 is in a complete extension, then 〈H,∧H〉 is also in
the extension.
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Lemma 2. If the argument 〈H,∧H〉 is in a complete extension, then 〈H, h〉 is in the
extension for all h logically implied by H , but not by a strict subset of H .

Theorem 4. If an extended propositional argumentation framework is closed under
supported formulas, then its complete extensions are closed under them as well.

A consequence of Theorem 4 is that under closure of supported formulas, extended
propositional argumentation framework can be reduced to propositional argumentation
framework. Consequently, under this assumption, we have again a collapse of the argu-
mentation semantics.

Example 3. Suppose we have an argument 〈{p ∧ q}, p〉 in a complete extension. Then
the lemmas show that we have also 〈{p ∧ q}, p ∧ q〉 (lemma 1) and thus 〈{p ∧ q}, q〉
(lemma 2). But then, clearly, there is no use of arguments like 〈{p ∧ q}, p〉. We can
restrict ourselves to arguments 〈{p ∧ q}, p ∧ q〉 (under the assumption of closure of
suported formulas, of course).

Thus, under the assumption of closure under supported formulas, the distinction be-
tween support and conclusion is just syntactic sugar.

3 Preferences Among Arguments

In this section we consider the extension of symmetric argumentation with preferences.
We start with some definitions concerning preferences.

Definition 10. A (partial) pre-order on a setA, denoted%, is a reflexive and transitive
relation.% is said to be total if for all A, B ∈ A we have A % B or B % A. & denotes
the strict order associated with %, i.e., A & B iff A % B and not B % A.

A preference relation on A is a pre-order % on A such that ∀A, B ∈ A, A % B (resp.
A & B) expresses that A is at least as preferred as (resp. strictly preferred to) B.

The new preference-based argumentation framework uses an incompatibility and a
preference relation. The incompatibility relation should not be interpreted as an attack
relation, since incompatibility relations are always symmetric, while attack relations are
often asymmetric.

Definition 11 (Incompatibility+Preference Argumentation Framework). An
incompatibility+preference argumentation framework is a triplet 〈A, C,%〉 where A
is a set of arguments, C is a symmetric binary incompatibility relation onA×A, and%
is a preference relation on A×A.

Starting with a set of arguments, a symmetric incompatibility relation, and a preference
relation, we exploit the latter two for specifying a Dung-style attack relation. Then we
use an arbitrary semantics of Dung to characterize the set of acceptable arguments. In
contrast to most other approaches [2,13] (but see [4,5] for exceptions), our approach to
reasoning about preferences in argumentation does not refer to the internal structure of
the arguments. The use of a symmetric incompatibility relation makes sense in many
applications such as dialogue when the internal structure of the arguments is not known
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and thus does not allow to know whether the attack relation is undercut or rebut. In-
stead we may only know that the two arguments cannot be used together, i.e., they are
incompatible.

Definition 12. Let 〈A,R〉 be an argumentation framework and 〈A, C,%〉 an incompat-
ibility+preference argumentation framework. We say that 〈A, C,%〉 represents 〈A,R〉
iff for all arguments A and B of A, we have A R B iff A C B and not B & A. We say
also thatR is represented by C and %.

Example 4. Let 〈{A, B}, {ACB, BCA}, {A % B}〉. A attacks B but not vice versa.

Since the attack relation is defined from the incompatibility and the preference rela-
tion, the other notions introduced by Dung can be applied also to the incompatibil-
ity+preference argumentation framework. For example, to determine the grounded se-
mantics of the incompatibility+preference framework, we first compute the attack rela-
tion, and then the grounded semantics as in the general case.

An acyclic/symmetric argumentation framework is an argumentation framework in
which the attack relation is acyclic/symmetric, etc. In this paper we define an acyclic
strict attack relation as follows. If there is a strict attack path where argument A1 attacks
argument A2 but not vice versa, argument A2 attacks argument A3 but not vice versa,
. . ., then argument An does not attack argument A1.

Definition 13 (Acyclic Argumentation Framework). An argument A strictly attacks
B if A attacks B and B does not attack A. A strict acyclic argumentation framework
is an argumentation framework 〈A,R〉 in which there is no sequence of arguments
〈A1, . . . , An〉 such that A1 strictly attacks A2, A2 strictly attacks A3, ..., An−1 strictly
attacks An, and An attacks A1.

To prove that acyclic attacks can be characterized by incompatibilities and preferences,
we have to show that the implication holds in both ways. We start with the implication
from right to left.

Lemma 3. If the incompatibility+preference argumentation framework 〈A, C,%〉 rep-
resents the argumentation framework 〈A,R〉, then 〈A,R〉 is a strictly acyclic argu-
mentation framework (in the sense of Definition 13).

Proof. We prove the lemma by contradiction. Assume there exists an incompatibil-
ity+preference argumentation framework 〈A, C,%〉 representing argumentation frame-
work 〈A,R〉 such that 〈A,R〉 is not a strictly acyclic argumentation framework. In
other words, there exists a sequence of strictly attacking arguments 〈A1, . . . , An〉 with
AnRA1. Since 〈A, C,%〉 represents 〈A,R〉, we have Ai C Ai+1 and not Ai+1 & Ai.
Due to symmetry of C, we have also Ai+1 C Ai. Since the attacks are strict, we do not
have not Ai & Ai+1, and we thus have Ai & Ai+1. Moreover, due to transitivity of %,
we have A1 & An. This implies that we cannot have AnRA1. Contradiction, thus the
lemma holds.

Now we show that the implication from left to right holds. We prove this lemma by
construction: given an acyclic argumentation framework, we construct an incompatibil-
ity+preference framework representing it.
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Lemma 4. If 〈A,R〉 is a strictly acyclic argumentation framework, then there is an
incompatibility+preference argumentation framework 〈A, C,%〉 that represents it.

Proof. By construction. Let 〈A,R〉 be a strictly acyclic argumentation framework.
Moreover, consider an incompatibility+preference argumentation framework 〈A, C,%〉
defined as follows:

– C = {(A, B) | ARB or BRA} is the symmetric closure of R
– % is the transitive and reflexive closure of the strict attack relations in R, i.e., the

transitive and reflexive closure of {(A, B) | ARB and not BRA}

We show that ∀A, B ∈ A, ARB if and only if ACB and not B & A. From left to right,
we show that ∀A, B ∈ A if ARB then ACB and not B & A. Suppose that ARB and
not ACB or B & A. By construction we have ACB due to ARB, and therefore we
have B & A. By construction B & A means that there is a sequence of strict attacks
BRA1, A1RA2, . . . , AnRA. Consequently, due to the acyclicity property, we do not
have ARB. Contradiction.

From right to left, we show that ∀A, B ∈ A if ACB and not B & A then ARB.
Suppose now that ACB, not B & A and not ARB. By construction ACB means that
either ARB or BRA holds. Since ARB does not hold by hypothesis we have BRA.
Also by construction BRA and not ARB implies that B % A. B % A and not B & A
implies A % B. Since A % B and not ARB, A % B must be added by reflexive
or transitive closure, and therefore there must be a sequence of strict attacks ARA1,
A1RA2, . . . , AnRB. Consequently, due to the acyclicity property, we do not have
BRA. Contradiction.

Summarizing, strictly acyclic argumentation frameworks are characterized by incom-
patibility+preference argumentation frameworks.

Theorem 5. 〈A,R〉 is a strictly acyclic argumentation framework (in the sense of Def-
inition 13) if and only if there is an incompatibility+preference argumentation frame-
work 〈A, C,%〉 that represents it (in the sense of Definition 12).

4 Related Work

Further developments of Dung’s framework have been studied along various directions:

– Dung’s abstract framework has been used mainly in combination with more de-
tailed notions of arguments, for example arguments consisting of rules, or argu-
ments consisting of a justification and a conclusion.

– Analogously, various kinds of attack relations have been distinguished, such as
rebutting and undercutting.

– Constraints have been imposed on the attack relations, such as symmetry in sym-
metric argumentation frameworks [9].

– There have been several attempts to modify or generalize Dung’s framework, for
example by introducing preferences [2], priorities [13], values [5], or collective
arguments [8].
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We believe that our approach of characterizing argumentation frameworks with prop-
erties of Dung’s attack relation is a powerful way to relate these various approaches in
argumentation theory. For example, though various authors present their argumentation
framework as an extension of Dung’s framework, which has the technical consequence
that they define also new notions of, for example, defence and acceptance, we can con-
sider also their argumentation framework as an alternative representation of Dung’s
framework, which has the consequence that we do not have to introduce such notions.

The main results of this paper are concerned with preference-based argumentation.
Simari and Loui [14] introduce preference relations over arguments, and various pro-
posals have been made how to specify and compute these preferences. The authors of
[13,15] consider arguments composed of defeasible rules, and they use the argument
structure to derive preference relations. For instance, one argument is more specific
about the current evidence than the other one, which makes the first argument stronger.
Alternatively, several authors [6,3,1] have built arguments from beliefs tagged with ex-
plicit priorities, such as certainty levels. The arguments using higher-level beliefs are
considered stronger than those using lower-level beliefs. Bench-Capon [5] does not
consider the structure of arguments but derives a preference ordering from the values
they promote. Since arguments promote only a single value, an argument is better than
another one if and only if the value promoted by the former is preferred to the value
promoted by the latter argument.

In [11] we consider a representation of Dung’s framework by an incompatibility and
preference argumentation framework, where A attacks B if and only if A and B are
incompatible, and A is at least as preferred as B. The acyclicity or loop condition that
characterizes this kind of argumentation framework is that if there is a cycle in the
sense that A1 attacks A2, . . . , An−1 attacks An, An attacks A1, then we have that A2
attacks A1, . . . , An attacks An−1, A1 attacks An. The representation used in this paper
is much more widely used, and the loop condition of this paper looks more natural than
the condition of [11].

5 Summary

Dung’s abstract argumentation framework [10] is based only on sets of arguments car-
rying a binary attack relation. In this paper we develop an abstract framework for in-
compatible arguments within Dung’s abstract argumentation framework. As an exam-
ple we introduce an instance of Dung’s framework where arguments are represented
by propositional formulas and an argument attacks another one when the conjunction
of their representations is inconsistent, which we characterize as a kind of symmetric
attack. Since symmetric attack is known to have the drawback to collapse the various
argumentation semantics, we consider two variations.

First, we consider propositional arguments distinguishing support and conclusion,
and consider the question whether the collapse of the argumentation semantics be
avoided when we represent arguments by pairs 〈H, h〉, where H is a set of proposi-
tional formulas supporting the formula h (i.e., H logically implies h in propositional
logic), a kind of propositional argumentation introduced by Amgoud and Cayrol [2].
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We show it is nearly as expressive as Dung’s framework. However, we show also that
when we extend it with a property which we call closure under supported formulas,
then a similar collapse arises.

Second, we consider an argumentation framework with an incompatibility relation
together with a preference relation over arguments, and the mapping that argument A
attacks argument B if and only if A and B are incompatible, and B is not preferred
to A, as suggested by Amgoud and Cayrol [2] and Bench-Capon [5]. We characterize
the attack relation by a particular kind of loop condition. If there is a sequence of strict
attacks 〈A1, . . . , An〉, i.e., A1 attacks A2 but not vice versa, A2 attacks A3 but not vice
versa, etc, then An does not attack A1.
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Abstract. In this paper we propose semantics for acceptablity in partial argu-
mentation frameworks (PAF). The PAF is an extension of Dung’s argumentation
framework and has been introduced in [1] for merging argumentation frame-
works. It consists in adding a new interaction between arguments representing
the ignorance about the existence of an attack.

The proposed semantics are built following Dung’s method, so that they gen-
eralize Dung’s semantics without increasing the temporal complexity.

1 Introduction

Argumentation has become an influential approach to treat AI problems including de-
feasible reasoning and some forms of dialogue between agents (see e.g. [2,3,4,5,6]).
Argumentation is basically concerned with the exchange of interacting arguments. Usu-
ally, the interaction takes the form of a conflict, called attack. For example, a logical
argument can be a pair 〈set of assumptions, conclusion〉, where the set of assumptions
entails the conclusion according to some logical inference schema. Then a conflict oc-
curs for instance if the conclusion of an argument contradicts an assumption of another
argument. The main issue for any theory of argumentation is the selection of acceptable
sets of arguments, based on the way arguments interact. Intuitively, an acceptable set of
arguments must be in some sense coherent and strong enough (e.g. able to defend itself
against all attacking arguments). It is convenient to explore the concept of acceptabil-
ity through argumentation frameworks, and especially Dung’s framework ([7]), which
abstracts from the nature of the arguments, and represents interaction under the form of
a binary relation “attack” on a set of arguments. Such an argumentation framework fits
well with situations where the knowledge about the interactions can be assumed to be
complete. That is, for each pair (a, b) of considered arguments, it is possible to prove
that there is an attack, or not.

There are numerous proposals by numerous researchers for capturing forms of ar-
gumentation in logic. Many of these logic-based argumentation systems are promising
for simulating argumentation forms which arise in the real-world. Nevertheless, it re-
mains some cases in which it is difficult to formalize logically the structure of the argu-
ments. For instance, professionals such as lawyers, journalists, politicians for instance
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use arguments for analyzing situations before presenting some information to a given
audience. An argument in that case can be a piece of text or of a discourse, used for
convincing the audience. In other cases, arguments are used for analyzing situations be-
fore making some decisions. Such arguments can be just positions that can be advanced
for or against options or other positions. More generally, argumentation can be based
on any kind of information coming from heterogeneous sources, objective information
such as measured or observed values for instance, or subjective information such as be-
liefs. So, arguments may have no explicit internal logical structure. Consider an agent
for which different kinds of information are available. Some kinds of information en-
able the agent to build logical arguments (for instance a, b, c), while other kinds of
information only permit to advance informal arguments (for instance d, e) for trying to
defeat other arguments. So, the agent can be sure that a attacks b and a does not attack
c, but the agent also wants to take into account an attack of e by d even if nothing can
be said about an attack of d by e. Moreover, the generation of arguments often takes
place in a resource-bounded environment, and the agent may not have enough time for
computing all the possible attacks. So, there is a need for the representation of partial
knowledge about the interactions between arguments.

In Dung’s framework, there is no space for ignorance. If a given pair of arguments
(a, b) does not appear in the graph of the attack relation, it means that certainly a does
not attack b. Another interpretation could be given, according to which there is some
uncertainty, and even ignorance about an attack of b by a. This interpretation enables to
complete the knowledge later on.

In this paper, we propose to investigate a new kind of abstract argumentation frame-
work in order to handle ignorance in argumentation, and to distinguish between cer-
tainty of non-attack and ignorance of attack. This new framework, called Partial Argu-
mentation Framework (or PAF), has recently been introduced in ([1,8]) for the partic-
ular purpose of merging argumentation systems. However, no formal study of a partial
argumentation framework has been made, especially concerning the key concept of ac-
ceptability. Such a study is the topic of this paper.

The paper is organized as follows : Dung’s abstract framework is recalled in Sec-
tion 2. Partial argumentation frameworks are defined in Section 3. Section 4 presents
the links between classical frameworks and partial frameworks. It is shown that a clas-
sical framework can be given different interpretations in terms of a partial framework.
On the other hand, it is shown that a partial framework represents a set of classical
frameworks. Acceptability in a partial framework is studied in Section 5. The main
properties of the proposed semantics are given in Section 6 (in particular some results
about temporal complexity).

2 Argumentation Frameworks (AF)

In [7], Dung has proposed an abstract framework for argumentation in which he focuses
only on the definition of the status of arguments. For that purpose, he assumes that a set
of arguments is given, as well as the different conflicts among them.

We briefly recall that abstract framework:
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Definition 1. An argumentation framework (AF) is a pair 〈A,R〉 of a set A of argu-
ments and a binary relation R on A called the attack relation. aiRaj means that ai

attacks aj (or aj is attacked by ai). An argumentation framework may be represented
by a directed graph, called the interaction graph, whose nodes are arguments and edges
represent the attack relation.

In Dung’s framework, the acceptability of an argument depends on its membership to
some sets, called extensions. These extensions are characterised by particular proper-
ties. It is a collective acceptability. Let AF = 〈A,R〉 be an argumentation framework,
let S ⊆ A, the main characteristic properties are:

Definition 2. S is conflict-free for AF iff there exist no ai, aj in S such that aiRaj .
An argument a is acceptable w.r.t. S for AF iff ∀b ∈ A such that bRa, ∃c ∈ S such

that cRb. S is acceptable for AF iff ∀a ∈ S, a is acceptable w.r.t. S for AF.

Then several semantics for acceptability have been defined in [7]. For instance:

Definition 3. S is an admissible set for AF iff S is conflict-free and acceptable for AF.
S is a preferred extension of AF iff S is maximal for ⊆ among the admissible sets

for AF.

3 Partial Argumentation Frameworks (PAF)

In [1,8], an extension of Dung’s argumentation framework has been proposed in order
to take into account the possible ignorance about the attack between arguments.

Definition 4. A partial1 argumentation framework (PAF) is a tuple 〈A,R, I,N〉 where
A is a set of arguments and R, I and N are three binary relations on A making a
partition ofA×A.R represents the attack relation,N represents the non-attack relation
and I represents the ignorance relation2.

Intuitively, (a, b) ∈ Rmeans that “a certainly attacks b”, (a, b) ∈ N means that “a cer-
tainly does not attack b”, (a, b) ∈ I means that “the agent does not know the nature of
the interaction between a and b”. More generally, (a, b) ∈ I may be interpreted as “the
agent is not certain of the existence of an attack from a to b, but it is possible that this at-
tacks exists”. Note that the set of arguments is not assumed finite in the above definition.

In the following, we have chosen to represent a PAF graphically as in [1,8]: an attack
(resp. ignorance) from a to b is represented by a plain (resp. dotted) edge from a to b,
and the non-attack relation is not explicitly represented3.

1 A notion of “partiality” has already been introduced in [9], but with a very different viewpoint
(this “partiality” refers to a notion of approximate arguments in order to solve computational
issues), clearly not related to our partial argumentation framework.

2 Though R, I and N make a partition of A × A, these 3 relations must appear in the tuple
because, a priori, we do not know which relation can be deduced by the complementation of
the two other ones.

3 Such a representation is judicious in the case there are many non-attacks.
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Example 1.

Consider PAF = 〈{a, b, c}, {(a, b), (b, c), (a, c)},
{(c, a)}, {(a, a), (b, b), (c, c), (b, a), (c, b)}〉 rep-
resented by:

a b c

4 From AF to PAF, and Vice-Versa

4.1 Viewing an AF as a Particular PAF

In Dung’s framework, (a, b) �∈ R is classically interpreted as “there is no attack from
a to b”. This interpretation can be said “closed” because there is no doubt about the
interaction between a and b. There is an analogy with the well-known Closed World
Assumption. So, the closed interpretation considers that an AF is a PAF where I is the
empty set, i.e. 〈A,R, ∅,A×A\R〉. This is the more complete interpretation: for each
pair (a, b) of arguments, either one knows that a attacks b, or one knows that a does not
attack b.

A more cautious interpretation, called “open”, considers that there is some ignorance
about the interaction from a to b when (a, b) �∈ R and a and b are different. However,
intuitively it seems sound to remove the self-attacks4. So, (a, a) �∈ R will always be
interpreted by (a, a) ∈ N . So, the open interpretation considers that an AF is a PAF
whereN is reduced to the set of pairs (a, a) which are not inR, i.e. 〈A,R, {(a, b)|a �=
b and (a, b) �∈ R}, {(a, a)|(a, a) �∈ R}〉.

So, a given AF can be interpreted by two PAFs according to the agent’s attitude:
PAFc (closed attitude) or PAFo (open attitude).

Example 2.

Consider AF = 〈{a, b}, {(a, b)}〉
with its PAFc = 〈{a, b}, {(a, b)}, {},
{(a, a), (b, b), (b, a)}〉 and its PAFo =
〈{a, b}, {(a, b)}, {(b, a)}, {(a, a), (b, b)}〉
represented by:

a b

AF

a b

PAFc

a b

PAFo

More generally, many other PAFs can be obtained from a given AF, keeping the same
set of argumentsA, the same attack relationR, and taking I as a subset of {(a, b)|a �=
b and (a, b) �∈ R}.

4.2 Viewing a PAF as a Set of AFs

Using the notion of completion, introduced in [1,8], a PAF compactly represents a set
of AFs.

4 In order to avoid the derivability of the arguments which could be self-attacked: in Dung’s
approach, whatever the semantics, an argument a which is derivable is such that (a, a) �∈ R.
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Definition 5. Let PAF = 〈A,R, I,N〉. Let AF = 〈A,R′〉. AF is a completion of PAF
if and only ifR ⊆ R′ ⊆ R∪I. The set of all completions of PAF is denoted by C(PAF).

Note that if I is the empty set, the PAF has only one completion. This is the case for
instance when PAF is the closed PAF associated with AF = 〈A,R〉. AF is the unique
completion of its closed PAF.

Example 3. Consider PAF = 〈A = {a, b, c}, R = {(a, b)}, I = {(a, c), (b, c)},
A×A \ (R∪ I)〉. PAF has the following completions:

a

b

c

a

b

c

a

b

c

a

b

c

5 Semantics for PAF

As for the AFs, we are interested in a collective acceptability. So, we have to restate the
notions of conflict-free set and acceptable set in the context of PAF.
Let PAF = 〈A,R, I,N〉. Let S ⊆ A.

Definition 6. S isR-conflict-free for PAF iff there exist no ai, aj in S such that aiRaj .
S isRI-conflict-free for PAF iff there exist no ai, aj in S such that aiRaj or aiIaj .

The R-conflict-free notion corresponds exactly to Dung’s conflict-free notion (see
Property 3). The RI-conflict-free notion is a more cautious one. If S is RI-conflict-
free, we are sure that for any pair (a, b) of arguments in S, a does not attack b.

Definition 7. An argument a is R-acceptable w.r.t. S for PAF iff ∀b ∈ A such that
bRa, ∃c ∈ S such that cRb. S is R-acceptable for PAF iff ∀a ∈ S, a is R-acceptable
w.r.t. S for PAF.

An argument a is RI-acceptable w.r.t. S for PAF iff ∀b ∈ A such that bRa or bIa,
∃c ∈ S such that cRb. S is RI-acceptable for PAF iff ∀a ∈ S, a is RI-acceptable
w.r.t. S for PAF.

The R-acceptability corresponds exactly to Dung’s acceptability (see Property 3). The
RI-acceptability is a very cautious acceptability: in order to accept a, first we consider
not only known attacks on a but also potential attacks on a, and secondly S must defend
a only with certainly known attacks.

Following Dung’s method, several semantics for admissibility can be defined. In par-
ticular such semantics can be obtained by the combination of the above defined notions
of conflict-free and acceptability. However, among the four possible combinations, two
of them are equivalent because of the following property:

Property 1. If S is R-conflict-free and RI-acceptable for PAF then S is RI-conflict-
free for PAF.
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Proof. Consider (a, b) ∈ S × S such that aIb. S is RI-acceptable so ∃c ∈ S such that cRa

which is contradictory with S R-conflict-free. So S is also RI-conflict-free.

Definition 8. S is an admissible set for PAF iff S is R-conflict-free andR-acceptable
for PAF.

S is aR-admissible set for PAF iff S isRI-conflict-free andR-acceptable for PAF.
S is a RI-admissible set for PAF iff S is RI-conflict-free and RI-acceptable for

PAF.

Note that the first admissibility corresponds exactly to Dung’s admissibility (see Prop-
erty 3). And the following interesting property holds:

Property 2. S isRI-admissible for PAF⇒ S isR-admissible for PAF⇒ S is admis-
sible for PAF.

The proof is obvious. Due to Definitions 6, 7, 8.
Then using the maximality for⊆, three kinds of preferred extensions can be defined.

Definition 9. S is a preferred extension of PAF iff S is maximal for ⊆ among the
admissible sets for PAF.

S is aR-preferred extension of PAF iff S is maximal for⊆ among theR-admissible
sets for PAF.

S is a RI-preferred extension of PAF iff S is maximal for ⊆ among the RI-
admissible sets for PAF.

Example 4. Consider the PAF represented by the following figure:

a

b

c

d

e

{a, c} isR-conflict-free but it is notRI-conflict-free.
c isR-acceptable w.r.t. {a} but it is notRI-acceptable
w.r.t. {d}.
{e, d, a, c} is a preferred extension but it is not a R-
preferred extension or a RI-preferred extension (be-
cause it is notRI-conflict-free).
{e, a} is a R-preferred extension but it is not a RI-
preferred extension. {e} is the RI-preferred exten-
sion.

6 Properties

The first properties are about the inclusion links between the different types of exten-
sions. Then, some properties about complexity of the derivability process are given.

6.1 Inclusion Links

The main property explicits the links between the less cautious semantics for a given
PAF = 〈A, R, I, N〉 and Dung’s semantics for the associated AF = 〈A,R〉 (same
set of arguments and same attack relation). It also gives the particular links between the
semantics for PAF and Dung’s semantics for the associated AF when PAF is the closed
PAF of AF:
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Property 3.

1. The conflict-free sets for AF are exactly the R-conflict-free sets for PAF;
2. Let S ⊆ A, a is acceptable w.r.t S for AF iff a isR-acceptable w.r.t. S for PAF;
3. The admissible sets for AF are exactly the admissible sets for PAF;
4. The preferred extensions of AF are exactly the preferred extensions of PAF.

In the particular case where I = ∅ (for instance, if PAF is the closed PAF of AF):

1. The conflict-free sets for AF are exactly the RI-conflict-free sets for PAF;
2. Let S ⊆ A, a is acceptable w.r.t S for AF iff a isRI-acceptable w.r.t. S for PAF;
3. The admissible sets for AF are exactly theR-admissible sets for PAF and theRI-

admissible sets for PAF ;
4. The preferred extensions of AF are exactly the R-preferred extensions of PAF and

theRI-preferred extensions of PAF.

The proof is obvious due to Definitions 6, 7, 8 and 9 and to the fact that PAF and AF
use the same set of arguments and the same attack relation. And for the particular case,
the proof also uses the fact that I = ∅ when PAF is the closed PAF of AF.

The following properties show the inclusion links between semantics for PAF.

Property 4.

1. The set of all admissible (resp. R-admissible, RI-admissible) sets for PAF is a
complete partially ordered set in (2A,⊆).

2. For every admissible (resp. R-admissible, RI-admissible) set S for PAF, there
exists at least one preferred extension (resp. R-preferred extension, RI-preferred
extension) E of PAF s.t. S ⊆ E.

3. There always exists at least one preferred extension (resp. R-preferred extension,
RI-preferred extension) of PAF.

Proof.
The case concerning the admissible sets and the preferred extensions is obtained directly of [7]
and Property 3. The case concerning the R-admissible sets and the R-preferred extensions is
given by (the proof is the same type for theRI-admissible sets and theRI-preferred extensions):

1. For proving that a set S is a complete partially ordered set (cpo), we must to prove that (i) S
has a least element, and that (ii) each directed subset of S has a least upper bound in S.
For the point (i), it is easy to see that the set of the R-admissible sets has a least element
w.r.t. ⊆ since ∅ is always R-admissible for PAF.
For the point (ii), let X = {S1, . . . , Sn} be a directed set of R-admissible sets for PAF.
Hence, every Sj is R-admissible and for all Sj and Sk, there exists a R-admissible set S
such that Sj ⊆ S and Sk ⊆ S. Clearly, if the upper bound

∨
X of X exists, then

⋃
j Sj ≤∨

X (because the order considered is ⊆). Hence,
⋃

j Sj =
∨

X and
∨

X exists, if
⋃

j Sj is
R-admissible.
Proof that

⋃
j Sj is R-admissible. Every Sj is R-admissible, hence if a ∈ Sj , a is R-

acceptable w.r.t. Sj and then a is R-acceptable w.r.t.
⋃

j Sj .
Now, assume that

⋃
j Sj is not RI-conflict-free. Then, there exists a ∈ Si and b ∈ Sj such

that aRb or aIb. In other words, Si ∪ Sj is not RI-conflict-free. But, as X is a directed
set, there exists S ⊇ Si ∪ Sj such that S is R-admissible, hence RI-conflict-free. This
contradicts the fact that aRb or aIb. Hence,

⋃
j Sj is RI-conflict-free.
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2. Direct of the previous point (take X the set of all R-admissible sets containing S;
∨

X is a
R-preferred subset containing S).

3. Obvious because ∅ is a R-admissible set for PAF.

The following property shows the cautiousness of the RI-preferred semantics w.r.t.
the R-preferred semantics and the cautiousness of the R-preferred semantics w.r.t. the
preferred semantics in a PAF.

Property 5. Let E be a RI-preferred extension (resp. R-preferred extension) of PAF.
There always exists at least oneR-preferred extension (resp. preferred extension) E′ of
PAF such that E ⊆ E′.

Proof. Obvious because RI-admissibility for PAF implies R-admissibility for PAF which im-
plies admissibility for PAF and, following Property 4, a RI-preferred extension of PAF is in-
cluded in at least one R-preferred extension of PAF which is included in at least one preferred
extension of PAF.

A consequence of the previous property (and of Property 3) is the fact that every R-
preferred extension (resp.RI-preferred extension) of PAF = 〈A,R, I,N〉 is included
in at least one preferred extension of AF = 〈A,R〉. So, our semantics is more con-
strained than Dung’s semantics.

The following property shows that an argument which is certainly unattacked is always
in an extension of the PAF:

Property 6. Let a ∈ A such that �b ∈ A and (bIa or bRa).

1. a belongs to each preferred extension of PAF;
2. a belongs to at least oneR-preferred extension (but not always to eachR-preferred

extension) of PAF;
3. a belongs to eachRI-preferred extension of PAF.

Proof. The first point is obvious because a is non-attacked so we can use Dung’s results.
The second point is given by: {a} is RI-conflict-free and R-acceptable. So {a} is R-admis

sible and is included in at least one R-preferred extension.
However, the PAF a b c has two R-preferred extensions {a} and

{b} and a does not belong to each one.
For the last point, let E be a RI-preferred extension. If a �∈ E, consider E ∪ {a}, which

strictly contains E. E ∪{a} is RI-conflict-free and also RI-acceptable since no argument in A
attacks or ignores a. That contradicts the fact that E is a ⊆-maximal RI-admissible set.

The next properties give some information about handling the cycles of attack or igno-
rance5 in a PAF.

5 A cycle {a0, . . . , an−1} of attack or ignorance is a set of n arguments defined by: ∀i =
0 . . . n − 1, aiRa(i+1)modulo n or aiIa(i+1)modulo n, and �T ⊆ {a0, . . . , an−1} such that T
is a cycle; so our cycle is always elementary (it does not contain 2 edges with the same initial
extremity or the same ending extremity). n is the length of the cycle.
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Property 7. Let a ∈ A such that aIa. a belongs neither to aR-preferred extension nor
to aRI-preferred extension of PAF (but a may belong to a preferred extension of PAF).

Let a ∈ A such that aRa. There is no preferred extension (resp.R-preferred exten-
sion,RI-preferred extension) of PAF which contains a.

The proof is obvious due to the fact that {a} is not RI-conflict-free when aIa, and is
notR-conflict-free when aRa.

Property 8. Let {a0, . . . , an−1} be an odd-length cycle of attack or ignorance which
is certainly unattacked6. There is no RI-admissible set for PAF which can contain an
element of the cycle.

Proof. The proof is realized by reductio ad absurdum. Assume that ∃E RI-admissible set and
∃ai on the cycle such that ai ∈ E. If ai ∈ E then ai is RI-acceptable w.r.t. E. However,
ai belongs to the cycle, so ai is certainly not unattacked and there must have in E arguments
for defending it. Consider a new numbering of the arguments of the cycle defined by: a′

0 is
a(i+1)modulo n, . . . , a′

n−1 is ai. With this numbering, one can identified the set of the arguments
of the cycle (they must be on the cycle due to the assumption that the cycle is certainly unattacked)
which can be mandatory for making ai RI-acceptable w.r.t. E: {a′

n−3, . . . , a
′
2, a

′
0}. So, ai and

a(i+1)modulo n must belong to E if ai is RI-acceptable w.r.t. E. This is contradictory with the
fact that E is RI-conflict-free, so the initial assumption is false and ai �∈ E.

This property does not hold in the case of even cycles. Thus, our approach departs from
[10] who consider that odd-length and even-length cycles in an argumentation frame-
work should be considered in the same way. We think that our approach is more cautious.

Note that even if there is no cycle in a PAF, one can have severalR-preferred exten-
sions of this PAF (which is not possible with Dung’s approach). For instance, consider
the PAF a b c , with the twoR-preferred extensions {a} and {b}.

The last properties of this section give some links between a PAF and its completions
or between an AF and its closed or open PAFs.

Property 9. Let S ⊆ A. S is RI-conflict-free for PAF iff S is conflict-free for any
completion of PAF.

Proof. ⇒ Assume there exists a completion AF′ = 〈A,R′〉 of PAF such that S is not conflict-
free for AF′. There exists a pair (a, b) of arguments in S such that aR′b. By definition of a
completion, R′ ⊆ R∪ I, so S is not RI-conflict-free for PAF.

⇐ If S is conflict-free for any completion of PAF, then S is conflict-free for the completion
〈A,R ∪ I〉, which means exactly that S is RI-conflict-free for PAF.

We also have a link between the conflict-free property for an AF and the conflict-free
property for its open or closed PAF:

Property 10. Let S ⊆ A. If S is conflict-free (in Dung’s sense) for AF, then S is R-
conflict-free (resp.RI-conflict-free) for the open (resp. closed) PAF associated with AF.

The proof is obvious.

6 i.e. such that there do not exist x ∈ A \ {a0, . . . , an−1} and 0 ≤ i ≤ n − 1 such that xRai

or xIai.
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Property 11. Let S ⊆ A. S is RI-admissible for PAF ⇒ S is admissible for each
completion of PAF.

The proof follows Property 9 and uses the fact that if a is RI-acceptable w.r.t. S for
PAF then a is acceptable w.r.t. S for 〈A,R′〉 withR ⊆ R′ ⊆ R ∪ I.

Property 12. Let AF′ = 〈A,R′〉 a completion of PAF. Let E be a preferred extension
of AF′. The fact that a ∈ E does not imply that there exists aR-preferred extension or
aRI-preferred extension of PAF which contains a.

Proof. Consider PAF represented by:
AF1

a

b

c

AF2

a

b

c

PAF

a

b

c

(completions) TheR-preferred extensions of PAF are {a} and {b}.
The RI-preferred extension of PAF is {a}.
The preferred extension of AF1 is {a, c} and the pre-
ferred extension of AF2 is {a, b}.
c belongs to the extension of AF1 but it belongs nei-
ther to a R-preferred extension of PAF, nor to the
RI-preferred extension of PAF.

Property 13. If E is a RI-preferred extension of PAF then for each completion AFi

of PAF, i = 1 . . . n, there exists a preferred extension of AFi denoted by Ei such that
E ⊆ E1 ∩ . . . ∩ En.

Proof. E is RI-admissible for PAF. From Property 11, E is admissible in each completion AFi

of PAF. So, from [7], for each AFi, there exists a preferred extension Ei of AFi containing E.
So, E ⊆ E1 ∩ . . . ∩En.

6.2 Complexity Results

Now, let us consider some complexity issues. Indeed, in an AI perspective, it is im-
portant to determine how hard are the new inference relations we pointed out w.r.t. the
computational point of view. We assume the reader acquainted with basic notions of
complexity theory, especially the complexity classes P, NP, coNP and the polynomial
hierarchy (see e.g. [11]), and with complexity results in Dung’s framework (see [12]).

[13] have shown that considering sets of arguments (instead of single arguments)
as input queries for the inference problem7 does not lead to a complexity shift when
Dung’s inference relations are considered. As to inference relations concerning the
PAFs, the same conclusion can be drawn.

First of all, it is easy to show that, given a finite partial argumentation framework
PAF, deciding whether a given argument R-interacts or I-interacts with a givenargu-
ment is in P, and deciding whether a set of arguments is R-conflict-free for PAF and
deciding whether a set of arguments isRI-conflict-free for PAF are in P. Accordingly,
deciding whether a given set of arguments is admissible for PAF, deciding whether a

7 The purpose is to determine whether such sets are derivable from a given finite argumentation
framework AF.
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given set of arguments is R-admissible for PAF and deciding whether a given set of
arguments is RI-admissible for PAF are in P.

Besides, deciding whether a set of arguments S is a preferred extension of PAF,
deciding whether a set of arguments S is a R-preferred extension of PAF and deciding
whether a set of arguments S is aRI-preferred extension of PAF are in coNP (in order
to show that the complementary problem is in NP, it is sufficient to guess a proper
superset S′ of S and to check in polynomial time that S′ is admissible for PAF, R-
admissible for PAF orRI-admissible for PAF).

Property 14. Let PAF = 〈A,R, I,N〉 be a finite partial argumentation framework and
S ⊆ A.

1. Deciding whether S is included in a preferred extension of PAF (resp. in a R-
preferred extension of PAF, in a RI-preferred extension of PAF) is NP-complete;

2. Deciding whether S is included in all preferred extensions of PAF (resp. in all
R-preferred extensions of PAF, in all RI-preferred extensions of PAF) is Πp

2 -
complete.

Proof. For the first problem: Membership: Deciding whether a given set of argu-
ments S is included in a preferred extension of PAF is in NP (according to Property 4, it is
sufficient to guess a set E ⊆ A and to check in polynomial time if E is an admissible set for
PAF and to check that S is included in E). Hardness: We build in polynomial time a polynomial
functional reduction f from the problem to decide whether a given set of arguments S is included
in a preferred extension of AF = 〈A,R〉. Let AF = 〈A,R〉 be a finite argumentation framework
and S ⊆ A. f : 〈AF = 〈A,R〉, S ⊆ A〉 �→ 〈PAFc = 〈A,R, ∅, (A × A) \ R〉, S′ ⊆ A〉
with S′ = S. According to Property 3, S is included in a preferred extension of AF iff S′ is
included in a preferred extension of PAFc. As, according to [13], deciding whether a given set of
arguments S is included in a preferred extension of AF is in NP-complete, deciding whether a
given set of arguments S is included in a preferred extension of AF is in NP-complete.

For the second problem: Membership: Deciding whether a given set of arguments
S is included in every preferred extension of PAF is in Πp

2 (in order to show that the com-
plementary problem is in Σp

2 , it is sufficient to guess a set E ⊆ A and to check in poly-
nomial time using an NP oracle that E is a preferred extension of AF and that S is not in-
cluded in E). Hardness: We build in polynomial time a polynomial functional reduction f from
the problem to decide whether a given set of arguments S is included in all preferred exten-
sions of AF = 〈A,R〉. Let AF = 〈A,R〉 be a finite argumentation framework and S ⊆ A.
f : 〈AF = 〈A,R〉, S ⊆ A〉 �→ 〈PAFc = 〈A,R, ∅, (A × A) \ R〉, S′ ⊆ A〉 with S′ = S.
According to Property 3, S is included in all preferred extensions of AF iff S′ is included in all
preferred extensions of PAFc. As, according to [13], deciding whether a given set of arguments
S is included in all preferred extensions of AF is in Πp

2 -complete, deciding whether a given set
of arguments S is included in all preferred extensions of AF is in Πp

2 -complete.
The proof is similar for the R-preferred extensions and the RI-preferred extensions.

7 Conclusion

In this paper, we have studied an extension of Dung’s argumentation framework (AF)
introduced in [1,8]. This extension, called “partial argumentation framework” (PAF),
consists in introducing another interaction between arguments which represents some
ignorance about the existence of an attack between two arguments. In [1,8], the PAFs
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have been used in order to merge different AFs. Here, we have proposed a more formal
study of acceptability semantics in a PAF.

So we have generalized the basic notions proposed by Dung (conflict-free set, ac-
ceptability of an argument, admissibility) to the PAF and we have identified several
interesting semantics.

The main properties of these semantics concern the inclusion links between them;
a taxonomy of these semantics can be found where the more general case is given by
Dung’s semantics which take into account only the attacks, and the less general case is
given by the semantics, proposed in this paper, which take into account attacks and ig-
norance in the same time in the notion of conflict-free and in the notion of acceptability
of an argument.

Another fundamental property concerns the complexity of the problems related to
our new semantics: the generalisation to a PAF does not imply an increasing cost of the
temporal complexity in the worst case (the complexity results are exactly the same as
those given for the AF).

Future works concern the development of algorithms in order to compute efficiently
the extensions of our semantics. A more theoretical issue is to apply our semantics di-
rectly on the merging process proposed in [1,8] in order to reduce the cost of this merging.
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Abstract. In Dung’s argumentation system, acceptable sets of arguments are de-
fined as sets of arguments that attack all their attackers, and that do not contain
any direct contradiction. However, in many applications, the presence of indirect
contradictions should prevent a set from being acceptable. The family of prudent
semantics has been proposed as an answer to this problem. We are interested in
this paper in determining whether a given set of arguments is included in at least
one acceptable set under the prudent preferred semantics. To this end, we propose
a dialectical framework and several proof theories.

1 Introduction

Argumentation is a general approach for nonmonotonic reasoning, whose main fea-
ture is the use of arguments to draw conclusions based on the way arguments interact
([1,2]). Argumentation has applications in various domains such as law, medicine, e-
democracy. At a high level of abstraction, argumentation systems can be represented
by a set of abstract arguments (whose internal structure and origin is unknown), and a
binary relation between these arguments describing how they contradict one another.
Such a representation, proposed by Dung in [3], is powerful enough to encompass
several problems related to nonmonotonic reasoning and logic programming. Dung’s
framework has been refined and extended by several authors (e.g. [4,5,6,7,8]).

One of the most important questions concerning abstract argumentation systems is to
define which arguments are acceptable. The common ground of Dung [3]’s acceptability
semantics is that a set of arguments is acceptable if it attacks all its attackers and if it
does not contain two arguments such that one directly attacks the other. However, in an
application domain such as law, it may not be suitable, and even not prudent, that an
acceptable set of arguments contains indirect contradictions. For example, consider the
case of a barrister who wants to prove the innocence of her client; the set of arguments
she will present to the court should not contain any argument that casts a doubt on
her defence, and an argument acceptable in Dung’s sense, but that indirectly attacks an
argument of the defence, may cast a doubt. [7] presents another example that illustrates
that indirect contradictions are not suitable either in the context of a political discourse.

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 271–282, 2007.
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As an answer to this problem, Devred et al. [6] proposed a refinement of Dung’s
semantics that avoids indirect contradictions: the prudent semantics. Acceptable sets of
arguments under these semantics are called p-extensions. In this paper, we are interested
in the prudent semantics that defines preferred p-extensions. This semantics is adapted
from a widespread Dung’s semantics, the preferred semantics.

A question frequently addressed for Dung’s argumentation framework is: is a given
argument in some/all extensions of an argumentation system? This allows to know the
credulously/sceptically accepted arguments. Several works, e.g. [9,10,11,12], give an-
swers to this question for Dung’s preferred semantics, [13] gives an answer for Dung’s
grounded semantics; these answers are presented in the form of dialogues, or of sets of
dialogues, which explain the answer given. Such dialogues differ from dialogues such
as the ones by [14,15], since they do not aim at resolving a conflict of opinion between
participants, by making or conceding claims, and asking for or providing reasons for
the claims; their goal is only to prove the acceptability of an argument.

The question of the acceptability of an argument is in fact a particular case of a more
general question, that is: is a given set of arguments included in some/all extensions of
an argumentation system? In other words, is a set of arguments credulously/sceptically
accepted?

The acceptability of an argument comes down to checking the acceptability of the set
that contains this single argument. However, notice that the problem of the credulous
acceptance of a set of arguments does not boil down to the credulous acceptance of
each of its arguments. Actually, two arguments may be acceptable because each of
them belongs to an acceptable set of argument, but, because they may contradict each
other, they do not belong to a same acceptable set of arguments, and thus the set that
contains these two arguments is not included in any extension.

Our goal in this paper is to give an answer to the credulous acceptance problem for
a set of arguments under the prudent preferred semantics. [10]’s dialectical framework
has been designed to draw proofs for the acceptability of an argument, but it can be
easily extended to the acceptability of a set of arguments, as it has already been partially
done by [11]. So we first present an extended framework, and we then adapt [10]’s proof
theories for an argument under the preferred semantics to a set of arguments under the
prudent preferred semantics.

The paper is built as follows: Dung’s framework and the prudent semantics are pre-
sented in Section 2. Section 3 presents the extension of [10]’s dialectical framework to
a set of arguments. Section 4 presents dialectical proof theories for the acceptability of
a set of arguments under the prudent preferred semantics. We conclude in Section 5.

2 Argumentation Framework and Semantics

This section briefly presents Dung’s argumentation framework [3], the preferred seman-
tics, and Devred et al. prudent preferred semantics [6].

Definition 1. [3] An argumentation framework is a pair 〈A, R〉 where A is a finite set
of so-called arguments and R is a binary relation over A (R ⊆ A × A). Given two
arguments a and b, (a, b) ∈ R means that a attacks b (a is said to be an attacker of b).
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d � c � b � a

e ��

Fig. 1. Argumentation framework AF1

An argumentation framework is nothing but a directed graph, whose vertices are the
arguments and edges correspond to the elements of R.

Example 1. Let AF1 = 〈A, R〉 be an argumentation framework with A = {a, b, c, d, e}
and R = {(b, a), (e, b), (c, b), (d, c)}. The graph for AF1 is depicted on Figure 1.

In the following definitions and notations, we assume that an argumentation framework
〈A, R〉 is given.

Dung’s semantics rely upon the notion of defence1 defined as follows:

Definition 2. [3] An argument a ∈ A is defended by a set S ⊆ A if and only if for
every b ∈ A that attacks a, there exists c ∈ S that attacks b.

Based on defence and on the rejection of direct attacks between arguments, Dung de-
fines admissible sets and preferred extensions.

Definition 3. [3] Let S ⊆ A be a set of arguments.

– S is conflict-free if and only if for every a, b ∈ S, we have (a, b) �∈ R.
– S is admissible if and only if S is conflict-free and every argument in S is defended

by S.
– S is a preferred extension if and only if it is maximal w.r.t. ⊆ among the set of

admissible sets.

Example 2 (Example 1 (contd)). {a, d} is conflict-free. a is defended by {e}. {a, d, e},
{a, e}, {d, e}, {e}, {d} and ∅ are the admissible sets. {a, d, e} is the unique preferred
extension of AF .

In this example, argument d does not directly attack a, but it attacks an attacker of an
attacker of a: the attack of d on a is indirect. Even though a is defended by {e}, the
presence of d in the preferred extension casts a doubt on the acceptability of a. For ap-
plications where this may be a problem (e.g. political discourse, lawyer’s defence), the
definition of acceptability should be refined in order for an acceptable set of argument
to be without any indirect attack. This is what Devred et al. [6] did by defining prudent
semantics.

Definition 4. [6] Let a, b ∈ A be two arguments. a indirectly attacks b if and only if
there exists an odd-length path from a to b.

Definition 5. [6] Let S ⊆ A be a set of arguments.

– S is without indirect conflict if and only if there is no pair of arguments a and b of
S such that a indirectly attacks b.

1 This notion of defence is originally defined by Dung as “acceptability with respect to a set”.
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– S is p-admissible if and only if every a ∈ S is defended by S and S is without
indirect conflict.

– S is a preferred p-extension if and only if S is p-admissible, and S is maximal w.r.t.
⊆ among the set of p-admissible sets.

Notice that, since the empty set is always p-admissible, every argumentation framework
has at least one preferred p-extension. Moreover, any argument that is part of an odd-
length cycle indirectly attacks itself: therefore, such an argument never belongs to a
p-admissible set. Devred et al. [6] also showed that every p-admissible set is included
in at least one preferred p-extension, and that every preferred p-extension is included in
a preferred extension.

Example 3 (Example 1 (contd)). d indirectly attacks a. {a, e} is without indirect con-
flict, but it is not the case for {a, d}. {a, e}, {d, e}, {d}, {e} and ∅ are the p-admissible
sets. {a, e} and {d, e} are the preferred p-extensions.

This example shows that preferred p-extensions capture well the idea that, if an argu-
ment indirectly attacks another, these arguments should not be accepted together in a
same set: either the one is accepted, or the other, but not both.

Now, an important issue in argumentation is to be able to decide, given any definition
of acceptability, which arguments are acceptable. This is how this issue is formally
defined for the prudent preferred semantics:

Definition 6. Let S ⊆ A be a set of arguments.

– S is credulously accepted under the prudent preferred semantics if and only if S is
included in at least one preferred p-extension of 〈A, R〉.

– S is sceptically accepted under the prudent preferred semantics if and only if S is
included in every preferred p-extension of 〈A, R〉.

We say that an argument a ∈ A is credulously (resp. sceptically) accepted under the
prudent preferred semantics if and only if the set {a} is.

Example 4 (Example 1 (contd)). e is sceptically accepted (and indeed, credulously ac-
cepted). a is credulously, but not sceptically, accepted under the prudent preferred se-
mantics. The same holds for d. However, the set {a, d} is not included in any preferred
p-extension: it is neither sceptically, nor credulously accepted. As regards {a, e}, it is
credulously, but not sceptically, accepted.

3 Dialectical Framework

[10] proposed a dialectical framework to build proofs for the acceptability of an argu-
ment under the preferred semantics. An extension of this framework for the acceptabil-
ity of a set of arguments was presented in [11], but this extension is less general than
the one we present now.

Basically, a dialectical proof is formalized by a dialogue between two players, a
proponent, PRO, and an opponent, OPP. A dialogue takes place in a given argumen-
tation framework and is governed by rules expressed in a so-called legal-move func-
tion.
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In the sequel, given a set A, A∗ denotes the set of finite sequences of elements from
A; given a set S ⊆ A, #(S) denotes the cardinality of S.

Definition 7. A dialogue type is a tuple (A, R, φ) where 〈A, R〉 is an argumentation
framework and φ : A∗ → 2A is a function called legal-move function. A move in A is a
pair [P, x] where P ∈ {PRO, OPP} and x ∈ A. For a move µ = [P, x], we use pl(µ)
to denote P and arg(µ) to denote x. A dialogue d for a finite set S ⊆ A in (A, R, φ)
(or φ-dialogue for short) is a countable sequence µ0µ1 . . . of moves in A such that:

1. the first #(S) moves are played by PRO to put forward the elements of S
2. the subsequent moves are played alternatively by OPP and PRO
3. ∀i > #(S), arg(µi+1) ∈ φ(arg(µ0) . . . arg(µi))

If S contains a single argument x, we say that d is about x (i.e. arg(µ0)).

So OPP and PRO play in turn, after PRO has put forward all the elements of S. The
legal-move function defines what moves can be used to continue the dialogue. When
the set of arguments returned by the legal-move function is empty, the dialogue cannot
be continued.

Notation 1. Let d = µ0µ1 . . . µi be a finite φ-dialogue:

– µi is denoted by last(d);
– φ(arg(µ0) . . . arg(µi)) is denoted by φ(d);
– length(d) denotes the number of moves in d;
– PRO(d) denotes the set of arguments advanced by PRO during d;
– The extension of d with a move µ in A such that µ0µ1 . . . µiµ is a φ-dialogue is

denoted by the juxtaposition d.µ.

Definition 8. The sequence β is a prefix of the sequence α or α is an extension of β if
and only if there exists a sequence γ such that α is obtained by the concatenation of β
and γ, that is, α = β.γ.

We define two winning criteria:

Definition 9. Given a dialogue type (A, R, φ):

– A φ-dialogue d is won by PRO if and only if d is finite, cannot be continued (that
is, φ(d) = ∅), and pl(last(d)) = PRO.

– A φ-winning strategy for a set of arguments S is a non-empty finite set D of finite
φ-dialogues for S such that: ∀d ∈ D, ∀d′ prefix of d such that pl(last(d′)) = PRO
and length(d′) ≥ #(S), ∀y ∈ φ(d′), ∃d′′ ∈ D such that d′′ is won by PRO and
d′′ is an extension of the juxtaposition d′.[OPP, y].

In other words, a φ-winning strategy for a set of arguments S must show that any φ-
dialogue about S where the first #(S) moves have been put forward and where PRO
plays the last move, can be extended in a φ-dialogue won by PRO whatever the re-
sponse of OPP to this last move.



276 C. Devred and S. Doutre

Notation 2. If D is a φ-winning strategy for a set of arguments S, we denote by PRO(D)
the set ∪d∈DPRO(d).

The definition of a dialogue which is won will be used in section 4.1 to define sequential,
concise proofs. Winning strategies will be used in section 4.2 to define detailed proofs,
that explain clearly each step of the proof.

The following result provides a simpler characterization of φ-winning strategies for
a set of arguments in which only dialogues which cannot be continued are considered.
It is a straightforward extension of [10]’s result to a φ-winning strategy for a set of
arguments.

Proposition 1. There exists a φ-winning strategy for a set of arguments S if and only if
there exists a finite non-empty set D of finite φ-dialogues for S won by PRO such that:
∀d ∈ D, ∀d′ prefix of d such that last(d′) is played by PRO and length(d′) ≥ #(S),
∀y ∈ φ(d′), ∃d′′ ∈ D such that d′′ is an extension of the juxtaposition d′.[OPP, y].

4 Credulous Acceptance Problem

The credulous acceptance problem for a set of arguments under the prudent preferred
semantics is to decide if a given set of arguments S is included in at least one preferred
p-extension. The answers that we are going to give for this problem are adapted from
the ones by [10,11] for the credulous acceptance problem under the preferred semantics.

First, the answer to the problem is trivial if S is not without indirect conflict: such a
set is never included in any p-admissible set. Now, if S is without indirect conflict, the
answer should take the form of a proof: if S is credulously accepted, the proof should
exhibit a p-admissible set of arguments that contains S; the proof should also exhibit
attackers of this set, and the structure of the proof should show how the set defends
itself against these attackers (that is, how every argument of the set is defended by the
set).

The dialogues introduced in the previous section enable us to distinguish arguments
that defend S from those that attack it: the former, as well as the arguments of S itself,
are labelled “PRO” in the dialogue, whereas the latter are labelled “OPP”. The proof
theories that we present below are based on dialogues such that for every attacker, that
is, for every move [OPP, z], there is always a preceding move [PRO, y] in the sequence,
such that z attacks y. This PRO-argument y justifies/explains the presence of z in the
proof. Similarly, every defender in a proof, that is, every move of the form [PRO, y]
that is not in the first #(S) moves, must be immediately preceded in the dialogue by an
attacker against which it defends, that is, a move [OPP, x] such that y attacks x.

Other restrictions can be put on the moves that can appear in a proof of credulous
acceptance. Before we present them, we introduce some notations.

Notation 3. Given an argumentation framework 〈A, R〉, let a ∈ A and S ⊆ A.

– ReflI = {a ∈ A | a belongs to an odd-length cycle}
– R+(a) = {b ∈ A | (a, b) ∈ R};
– R−(a) = {b ∈ A | (b, a) ∈ R};
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– RI±(S) = {b ∈ A | there exists some a ∈ S such that a indirectly attacks b or
such that b indirectly attacks a}.

Let d be a finite φ-dialogue. RI±(PRO(d)) contains the arguments which indirectly
attack or which are indirectly attacked by an argument advanced by PRO during d.
ReflI contains the arguments which belong to an odd-length cycle. If d is to be a proof
of acceptance, then PRO attempts to build a p-admissible set of arguments, so PRO
cannot choose any argument in RI±(PRO(d)) for pursuing the dialogue d, nor any
argument in ReflI. Moreover, PRO should not have to repeat itself, that is, it should
not have to play an argument that already belongs to PRO(d). In the sequel, POSSI(d)
denotes the set of arguments which may be chosen by PRO to extend a set (already
without indirect conflict) PRO(d):

POSSI(d) = A \ (PRO(d) ∪RI±(PRO(d)) ∪ ReflI).

Note that it is useless for OPP to advance an argument which is attacked by PRO(d).

4.1 Sequential Proof Theories

The following legal-move function leads to a dialectical proof theory, in which OPP is
not obliged to respond to the last argument advanced by PRO. It is adapted from the
legal-move function φ1 of [10].

Definition 10. Given an argumentation framework 〈A, R〉, let φp1 : A∗ → 2A be
defined by:

– if d is a dialogue of odd length (next move is by OPP),

φp1(d) = R−(PRO(d)) \R+(PRO(d));

– if d is a dialogue of even length (next move is by PRO),

φp1(d) = R−(arg(last(d))) ∩ POSSI(d).

Combining a dialogue type (A, R, φp1) and the first winning criterion (dialogue won),
we obtain φp1-proofs:

Definition 11. Let S be a non-empty set without indirect conflict. A φp1-proof for S is
a φp1-dialogue for S won by PRO.

A φp1-proof for a set that contains only one argument x is a proof for the credulous
acceptance problem for this argument; we say that it is a φp1-proof for x. In this case,
the condition that S has to be without indirect conflict comes down to checking that x
does not attack itself.

The following result establishes the soundness and the completeness of the φp1-proof
theory. Note that it is only complete for argumentation frameworks for which the set of
arguments is finite2.

2 This result is an extension of [11]’s Proposition 3 to the prudent preferred semantics.
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Fig. 2. Argumentation framework AF2

Proposition 2. Let 〈A, R〉 be an argumentation framework, and let S ⊆ A. If d is a
φp1-proof for S, then PRO(d) is a p-admissible set containing S. If S �= ∅ is in a
preferred p-extension of 〈A, R〉, and if A is finite, then there exists a φp1-proof for S.

Example 5 (Example 1 (contd)). d = [PRO, a].[OPP, b].[PRO, c].[OPP, d] is a φp1-
dialogue about a lost by PRO. However, the φp1-dialogue d′ = [PRO, a].[OPP, b].
[PRO, e] is won by PRO. Hence d′ is a φp1-proof for a; a is credulously accepted
under the prudent preferred semantics.

Example 6. Let AF2 = 〈A, R〉 with A = {a, b, c, d, e, i, n} and R = {(c, b), (b, a),
(c, d), (d, e), (e, n), (i, e)}. The graph for AF2 is depicted on Figure 2.

S1 = {a, n} is without indirect conflict. The only φp1-dialogues for S1 are d1 =
[PRO, a].[PRO, n].[OPP, b], d2 = [PRO, a].[PRO, n].[OPP, e].[PRO, i].[OPP, b]
and d′1 (resp. d′2) that is identical to d1 (resp. d2) except that the first two moves are
swapped. In all these dialogues, PRO cannot respond to the argument b played by
OPP, since the only attacker of b is c, and c indirectly attacks an argument already
put forward by PRO, that is, n. Hence none of these dialogues is won by PRO, so
there exists no φp1-proof for S1. Then S1 is not credulously accepted under the prudent
preferred semantic.

S2 = {a, i} is without indirect conflict. d3 = [PRO, a].[PRO, i].[OPP, b].[PRO, c]
is a φp1-proof for S2. Hence S2 is credulously accepted under the prudent preferred
semantic.

Notice that the φp1 legal-move function could be refined in order to obtain shorter
dialogues. For example, in the case where PRO may have several possible arguments
to put forward, PRO should preferably play an argument that is not attacked.

The sequentiality of the φp1-proof theory makes it easy to implement. A drawback
is that, in a φp1-dialogue, it is not possible to see which argument is attacked by the
argument in a move by OPP: it can be any of the arguments already played by PRO,
not necessarily the last one. Consequently, a φp1-proof for a set S does not show how
each argument of the resulting p-admissible set is made acceptable, that is, it does not
show the lines of defence for each argument. This is particularly true for the arguments
of S: one cannot see why each of them is on its own acceptable.

This very last point can be solved by defining a proof as a coherent set of φp1-proofs,
one for each argument of S.

Definition 12. Let (A, R, φp1) be a dialogue type, and let S ⊆ A. A Φp1-proof for S is
a set E of φp1-proofs such that the following two conditions hold:

1. for every a ∈ S, there exists one and only one d ∈ E such that d is a φp1-proof for
a, and

2. ∪d∈E(PRO(d)) is without indirect conflict.
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The following result establishes the soundness and the completeness of the Φp1-proof
theory:

Proposition 3. Let 〈A, R〉 be an argumentation framework, and let S ⊆ A. If E is a
Φp1-proof for S, then ∪d∈E(PRO(d)) is a p-admissible set containing S. If S �= ∅ is in
a preferred p-extension of 〈A, R〉, and if A is finite, then there exists a Φp1-proof for S.

Example 7 (Example 6 (contd)). d4 = [PRO, a].[OPP, b].[PRO, c] is the unique φp1-
proof for a. d5 = [PRO, n].[OPP, e].[PRO, i] is the unique φp1-proof for n. d6 =
[PRO, i] is the unique φp1-proof for i.

Consider the set S1 = {a, n}. {d4, d5} is a set of φp1-proofs, one for each argument
of S1, but PRO(d4)∪PRO(d5) = {a, c, n} contains an indirect conflict between c and
n. So {d4, d5} is not a Φp1-proof for S1, and since there is no other candidate set of
φp1-dialogues, we prove again that S1 is not credulously accepted.

Now consider the set S2 = {a, i}. PRO(d4) ∪ PRO(d6) = {a, c, i} is without
indirect conflict. So {d4, d6} is a Φp1-proof for S2.

A Φ1-proof is a set of sequential proofs that shows not only why the set of arguments
is acceptable, but also why each argument of the set is. However, it still does not show
the lines of defence for each argument inside each proof.

To solve this drawback, we define a new legal-move function and proof theory.

4.2 Detailed Proof Theory

[10] proposed a legal-move function φ2 such that each advanced argument attacks
the immediately preceding one. Combined with the second winning criterion (winning
strategy), it allows to design proof theories that make clear, for each argument of the
proof, the lines of defence. We adapt this proof theory to our acceptance problem under
the prudent preferred semantics, in order to define a proof theory for a set of arguments
S that shows precisely the lines of defence for each argument of the proof. This proof
theory takes the form of a coherent set of proofs for the acceptability of each argument
of S.

Definition 13. Given an argumentation framework 〈A, R〉, let φp2 : A∗ → 2A be
defined by:

– if d is a dialogue of odd length (next move is by OPP),

φp2(d) = R−(arg(last(d))) \R+(PRO(d));

– if d is a dialogue of even length (next move is by PRO),

φp2(d) = φp1(d) = R−(arg(last(d))) ∩ POSSI(d).

We define a notion of a φp2-proof for an argument only. This notion could be extended
to a set of arguments, but since our goal here is to define an explicit proof theory that
shows precisely the line of defense for each argument, we do not need to consider this
extension.
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Definition 14. Let x be an argument that does not belong to ReflI. A φp2-proof for x is
a φp2-winning strategy D for {x} such that PRO(D) is without indirect conflict.

The φp1-proof theory for an argument is equivalent to the φp2-proof theory as shown by
the following proposition. Thus, the latter too is sound and complete for the credulous
acceptance problem 3.

Proposition 4. There exists a φp1-proof for the argument x if and only if there exists a
φp2-proof for x.

Now we define a proof theory for a set of arguments:

Definition 15. Let (A, R, φp2) be a dialogue type, and let S ⊆ A. A Φp2-proof for S is
a set E of φp2-proofs such that the following two conditions hold:

1. for every a ∈ S, there exists one and only one D ∈ E such that D is a φp2-proof
for a, and

2. ∪D∈E(PRO(D)) is without indirect conflict.

The following result establishes the soundness and the completeness of the Φp2-proof
theory:

Proposition 5. Let 〈A, R〉 be an argumentation framework, and let S ⊆ A. If E is a
Φp2-proof for S, then ∪D∈E(PRO(D)) is a p-admissible set containing S. If S �= ∅ is
in a preferred p-extension of 〈A, R〉, and if A is finite, then there exists a Φp2-proof for
S.

Example 8. Let AF3 = 〈A, R〉 as depicted on Figure 3. A φp2-proof for a should
contain at least two φp2-dialogues: one that shows how a is defended against b, and
another that shows how it is defended against c. δ1 = [PRO, a].[OPP, c].[PRO, n] is
a φp2-dialogue about a won by PRO that shows how a is defended against c. δ2 =
[PRO, a].[OPP, b] is a φp2-dialogue about a that cannot be continued by PRO since
the only attacker of b is i, and i indirectly attacks a. So δ2 is not won by PRO, and since
there exists no φp2-dialogue that shows that a can be defended against b, there exists no
φp2-proof for a, and hence no Φp2-proof for {a}; a is not credulously accepted under
the prudent preferred semantics.

Consider now an extension of AF3 with an argument d such that d attacks b. There
exists in this new framework a φp2-dialogue that shows that a can be defended against
b: δ3 = [PRO, a].[OPP, b].[PRO, d], won by PRO. D1 = {δ1, δ3} is a φp2-winning
strategy for a. Since PRO(D1) = PRO(δ1)∪PRO(δ3) = {a, n, d} is without indirect
conflict, D1 is a φp2-proof for a. Hence {D1} is a Φp2-proof for {a}, a is credulously
accepted under the prudent preferred semantics.

Consider the set S = {a, n} in the new framework. δ4 = [PRO, n] is a φp2-dialogue
about n won by PRO. D2 = {δ4} is a φp2-proof for n. Since PRO(D1) ∪ PRO(D2)
is without indirect conflict, {D1, D2} is a Φp2-proof for S.

3 This result is an extension of [10]’s Proposition 3.12 to the prudent preferred semantics.
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Fig. 3. Argumentation framework AF3

4.3 Towards a Generalization to Other Acceptance Problems

The φp1-proof theory is adapted from the proof theory proposed in [11] for Dung’s pre-
ferred semantics. As regards the Φp1 and Φp2-proof theories, they could in turn be easily
modified to answer the acceptance problem of a set of arguments under the preferred
semantics.

More generally, the dialectical proof theories presented here rely upon two legal-
move functions: φp1 and φp2. These functions are adapted from [10]’s legal-move func-
tions φ1 and φ2. The main difference between the two approaches lies in the definition
of POSSI(d), that is, in the set of arguments PRO is allowed to play for pursuing a
dialogue d. Actually, in [10], the goal was for PRO to build an admissible set, whereas
PRO’s goal here is to build a p-admissible set; the arguments to be excluded are the
ones that would generate an indirect conflict, whereas for [10] it is those that would
generate a direct conflict.

This small difference suggests that [10]’s legal-move functions and dialectical fra-
mework could be, as easily as for the prudent preferred semantics, adapted to any other
semantics that is based on a variant of Dung’s notion of admissibility. [16] has recently
proposed a generalization of these variants in a Constrained argumentation framework.
We plan to study how the dialectical framework and the proof theories presented here
could be generalized to this framework.

5 Conclusion

Our contribution in this paper is twofold: first, we have proposed a dialectical frame-
work that allows to design proofs for acceptance problems for a set of arguments. Sec-
ond, we have proposed proof theories in this framework for the credulous acceptance
problem for a set of arguments under the prudent preferred semantics.

Depending on the application where the acceptance problem would have to be
solved, the one or the other of these theories would be used. For example, if a quick an-
swer to the problem is needed, with a minimal proof, then the φp1-proof theory should
be chosen. On the contrary, if a detailed, explicit proof of the answer is needed, no
matter how long it is, then the Φp2-proof theory would be ideal.

Due to a lack of space, we have presented here neither the detailed proofs of our
results, nor the algorithms that we have designed to build the dialectical proof theories
proposed. These algorithms, and the proofs of our results, can be found in [17].

As a future work, we plan to study the generalization of this approach for credulous
acceptance problems to Constrained argumentation frameworks. We also plan tostudy
the problem of sceptical acceptance under the prudent preferred semantics, that is, de-
termining whether a set of arguments is included in every preferred p-extension.
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Abstract. Many types of inter-agent dialogue, including information
seeking, negotiation and deliberation can be seen as varieties of argu-
mentation. Argumentation is especially appropriate where demonstra-
tion is not possible because the information is incomplete and uncertain
or because the parties involved in the argument have different perspec-
tives on an issue. Argumentation frameworks provide a powerful tool for
evaluating the sets of conflicting arguments which emerge from such di-
alogues. Originally argumentation frameworks considered arguments as
completely abstract entities related by a single attack relation, which al-
ways succeeded. Use of the frameworks in practical applications such as
law, e-democracy and medicine has motivated a distinction between suc-
cessful and unsuccessful attacks, determined by properties of the conflict-
ing arguments. This remains insufficient to capture a range of phenomena
which arise from procedural and contextual considerations. These require
that a successful attack depend not only on the properties of the con-
flicting arguments but also on the nature of the attack and the context
in which it is made. In this paper we present an analysis of arguments,
their properties and relations which can accommodate a wide range of
such phenomena. Our analysis is extensible for we can add components
to each system while preserving an overarching argumentation frame-
work. We first capture the abstract notions of original argumentation
frameworks, and then introduce a system which embraces properties of
arguments. This system is further extended in two ways to include prop-
erties of relations between arguments. We illustrate each system with a
characteristic example and discuss the particular features of argumenta-
tion which they can address.

Keyword: argumentation.

1 Introduction

Many types of inter-agent dialogue, including information seeking, negotiation
and deliberation can be seen as varieties of argumentation. Argumentation is
especially appropriate where demonstration is not possible, through incomplete-
ness and uncertainty of information, or because the parties in the dialogue differ
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in their beliefs, perspectives or interests. Argumentation frameworks (AF), intro-
duced by Dung [1], provide a tool for evaluating the sets of conflicting arguments
which emerge from such dialogues. In [1], arguments are entirely abstract, and
they are related by a single binary relation, the attacks relation between argu-
ments (for an alternative, see [2]); arguments and attacks are homogenous, and
attacks always succeed. The status of arguments is evaluated relative to a subset
of the arguments in the framework. An argument is acceptable with respect to
such a set if it is not attacked by any member of that set, and any arguments
which attack it are attacked by some member of the set. A considerable amount
of useful theoretical work has addressed issues arising from Dung’s AF such
as the different semantics that can be described when differently characterised
subsets of the AF are used to defend arguments as well as the complexity and
algorithmic issues relating to decision problems within these AFs [3].

The level of abstraction used by Dung is appropriate for some purposes, such
as the arguments of logic and mathematics. However, the framework is too ab-
stract in contexts where it is acknowledged that arguments are not homogenous:
for example, we speak of weak and strong arguments, where it is helpful to dis-
tinguish between an argument attacking another argument, and an argument
being sufficiently strong relative to the argument being attacked for that attack
to successfully defeat that argument. Accordingly, there have been proposals
which ascribe properties to arguments which can be used to represent these rel-
ative strengths (e.g. preference based AFs (PAFs) of [4] and value based AFs
(VAFs) of [5]). In PAFs and VAFs, the properties are used to filter attacks:
effectively, those attacks which are regarded as unsuccessful are removed. Once
the properties have played their part, the framework can then be regarded as
a Dung-style AF, and thus these approaches can benefit from the theoretical
results applying to AFs.

PAFs and VAFs have extended the range of problems to which AFs are appro-
priate. However, they cannot handle other situations. For example, both PAFs
and VAFs use a single ordering on preferences or values with respect to which
the attacks are filtered. Yet in some cases, the various interested parties may not
agree on an order for preferences or values. Instead, who is empowered to resolve
a given conflict may depend on the types of the arguments involved. An exam-
ple is the English legal system in which juries decide matters of fact and judges
decide matters of law. These examples relate to properties of arguments, but it
may also be that attacks are not homogenous and need to be differentiated. Some
types of attack may refute an argument while others may only cast some doubt,
which can, in the appropriate circumstances, be disregarded. For example, we
may decide that while rebutting attacks must always be respected, undercutting
attacks can be ignored under some kind of ceteris paribus assumption.

These are but two examples of situations which we want analyze in terms
compatible with an abstract AF by adding subsystems which are refinements
of an AF and enable information necessary to the resolution of the dispute to
be represented and considered. As the subsystems can be extended with addi-
tional predicates, relations, and functions, we call it an extensible argumentation
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system. The additional information only filters the attack relation, thus reducing
the subsystem to an abstract AF, which we do not modify. As these subsystems
are refinements of an abstract AF, we maintain our understanding of them at
that abstract level. Moreover, as the subsystems can be related to one another,
we have a unified approach to meeting the disparate needs for additional infor-
mation, and so avoid the production of new systems in an ad hoc manner each
time a new phenomenon is encountered.

The paper is structured as follows. First we describe ExArS0, an Extensible
Argumentation System, which is simply Dung’s original AF described in our
typed, functional decomposition style. This provides both the foundation for
further extension and provides an introduction to our notation. We introduce
this style of notation because it provides a clear computational model, facilitates
specification of complex functions out of basic components and functions, and
is straightforward to implement in a functional programming language. It can
also be used to prove properties of the model, although that is not the focus
of this paper. Remaining with a familiar extension, we then describe ExArS1,
which corresponds to a VAF. A very similar extension would lead to PAF. The
next extension, ExArS2, is novel, and provides the machinery needed to handle
the situation where different parties to a deliberation are given responsibility
to decide conflicts on arguments of different types. Finally, we introduce a sec-
ond novel extension, ExArS3, which distinguishes different kinds of attack. In
ExArS3 we restrict ourselves to the well known varieties of attack (rebuttal,
undercut and premise defeat), but further extension could be made to deal with
the increased range of attacks found in, for example, the Carneades system [6].
We conclude the paper with some discussion of areas of argumentation which
could motivate further extensions.

2 An Extensible Argumentation System

An Extensible Argumentation System (ExArS) is comprised of argument ob-
jects, relations, and definitions of auxiliary concepts. Here, we provide only those
components of the system as are needed to make our point before extending it
to account for some other phenomena. We use subscripting to differentiate the
systems. Our assumption is that [1] is the most abstract system. For clarity, all
elements are subscripted to indicate the extensible system to which they belong.

We assume boolean and object types. The boolean type has two subsorts:
true and false. Initially, we have but one sort of object type, namely, argu-
ments. Expressions of the form object → boolean are to be understood as
functions from objects to truth-values; that is, in this instance, it expresses the
characteristic function such that an expression of that type denotes a set of
objects. By the same token, (object × object) → boolean denotes a set of
ordered pairs of objects, which is a relation. The most basic system only has a
set of arguments, the nodes, and a single attack relation between arguments, the
arcs between the nodes.



286 A.Z. Wyner and T.J.M. Bench-Capon

Definition 1. ExArS0

– Arg0, a set of argument names, a1,...,an, of type argument which denote
arguments.

– ArgAtt0, an attack relation defined on Arg0, where we read ArgAtt0(a1,
a2) as argument a1 attacks0 argument a2. ArgAtt0 is of type (argument ×
argument) → boolean. We assume that no argument attacks itself: ∀x ∈
Arg0 ¬ArgAtt0(x, x).

The assumption that arguments do not attack themselves follows [3]; it is op-
tional and not crucial to our discussion.

We give a sample of the main auxiliary definitions of [1], which are notational
variants of the original definitions. Suppose S is a subset of Arg0.

Definition 2. Acceptability, Admissibility, and Extensions

– x ∈ Arg0 is acceptable0 to S if: ∀y ∈ Arg0 where ArgAtt0(y, x),
∃z ∈ S where ArgAtt0(z, y).

– S is conflict-free0 if: ∀x, y ∈ S ¬ArgAtt0(x,y).
– A conflict-free0 set S is admissible0 if: ∀x ∈ S, x is acceptable0 to S.
– S is a preferred extension0 if: S is a maximal admissible0 set.

Definitions for stable extension, coherence, credulously accepted, and skeptically
accepted follow suit. Note that context distinguishes between the mathematical
sense of extension as in preferred extension from the sense as in enlarging the
scope or operation of an AF.

3 First Extension – Value-Based Argumentation

The Value-based argumentation framework of [5] builds on [1]. The principal
intuition is that an argument attack may succeed or fail relative to a value that
is ascribed to an argument ; that is, intuitively, if there is an argument that I
should go eat pastry, and it is attacked by an argument that I should diet, I
might still accept that I should go eat pastry because I value pleasure more than
fitness. Here we provide it as our first example of an extension to ExArS0; it is
a notational variant of [5]. We only provide some of the key clauses.

Definition 3. ExArS1

– Arg1, a set of arguments.
– ArgAtt1, an attack relation defined on Arg1.
– Val is set of value names, v1,...,vn, of type value, which denote values. We

assume Val1 is defined for ExArS1.
– RankingScheme is a total ordering of Val; it is is understood as an audience.

For x, y ∈ Val, if RankingScheme(x, y), we say that x is preferred to y in the
audience RankingScheme. A RankingScheme is of type (value × value) →
boolean. We assume a RankingScheme1 is defined for ExArS1.
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In addition to these components, arguments are assigned a value.

Definition 4. Argument-Value Ascription

∀x ∈ Arg1 ∃y ∈ Val1 AssignArgVal(x) = y, where AssignArgVal is a function
from arguments to values. We assume AssignArgVal1 is defined for ExArS1.

Definitions of argument defeat, acceptability, conflict-free, and admissibility are
relativized to audiences, which rank the values of the arguments. Notice, in
particular, that the success or failure of an argument attack is determined with
respect to a property ascribed to arguments. Suppose S is a subset of Arg1.

Definition 5. Defeat, Acceptability, and Admissiblity

– For arguments x, y ∈ Arg1, x defeats1 y with respect to RankingScheme1 if:
ArgAtt1(x,y) ∧ ¬RankingScheme1(AssignArgVal1(y), AssignArgVal1(x))

– x ∈ Arg1 is acceptable1 to S if: ∀y ∈ Arg1 that defeats1 x,
∃z ∈ S that defeats1 y.

– S is conflict-free1 if: ∀x, y ∈ S [¬ArgAtt1(x,y) or
¬RankingScheme1(AssignArgVal1(x), AssignArgVal1(y))]

– A conflict-free1 set S is admissible1 if: ∀x ∈ S, x is acceptable1 to S.

As with the Dungian framework, we can define notational variants of the notions
of preferred extensions, sceptically and credulously acceptable, as well as notions
relating to value orders such as objectively and subjectively acceptable as in [5].

To this point, we have but recast familiar argumentation frameworks into our
language. The main advantage, as shown in the subsequent section, is that we
can then extend the basic components of these frameworks to address a range of
additional issues and problems in the argumentation literaure while keeping the
basics of the framework intact. For example, in a VAF, the additional information
about values is used to filter the attack relation, leaving only successful attacks
(i.e. those in which an argument is defeated) to be used in the calculation of ad-
missible sets. Thus, the extended system reduces to an abstract AF. Furthermore,
we have done so in a manner consistent with an abstract AF, so the relationship
between the abstract AF and the extension is clear and not ad hoc. Our frame-
work also provides a means to compare and contrast argumentation proposals.

4 Second Extension – Adjudication

In this section, we extend ExArS1 to account for issues in argumentation which
have not previously been accounted for in a Dungian style analysis. Note that
it can, but need not, be that the extensions add to or further specify previous
extensions; the key point for our purposes is just that every extension extends
the abstract AF of ExArS0 in such a way as to add filters on the attack relation.
In this extension, we have multiple audiences, which may themselves be ordered.
We also differentiate attack relations, which is to label the arcs. Using the attack
relation in this way is novel in the AF literature.
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In ExArS1, we had but one ranking of values (i.e. one audience), and attacks
succeeded or failed with respect to that ranking and the values of arguments.
However, in an argument, there may be two or more audiences, which means
there are two (or more) different rankings of the values [7]. In this case, we must
consider Multi-agent Systems, where we associate audiences with agents. For
instance, we can label one audience for a government official GovtOff and another
for a religious minister RelMin: for values vi and vj , in RankingSchemeGovtOff ,
vi is preferred to vj while in RankingSchemeRelMin, vj is preferred to vi. Clearly,
these conflict. Any two (or more) distinct audiences could be so represented.
Moreover, the different audiences may have different capacities to argue about
the outcome of an attack. For example, suppose that the values are vi = economic
well-being and vj = spiritual well-being; with respect to some particular issues,
the government official’s valuation of the arguments is paramount, while in others
it is the religious minister’s, leaving aside how such determinations are made.
We call this adjudication, for a means to resolve a conflict between competing
value systems is provided.

To account for such cases, we subsort the ranking schemes and the attack
relations, where one subsort represents the GovtOff and another the RelMin.
The outcome of the attack relation is relative to the label on the arc and the
associated ranking scheme: if the arc is labelled with GovtOff, then we use the
ranking scheme for the GovtOff in order to determine the outcome of the attack;
if the arc is labelled with RelMin, then we instead use the ranking scheme for
the RelMin.

For clarity, we provide the extension along with an example of two ranking
schemes. We turn to the attack relations in a moment.

Example 1. ExArS2

– Arg2 is {a1, a2, a3, a4}.
– ArgAtt2 is {<a1, a2>, <a2, a1>, <a2, a3>, <a3, a4>, <a4, a3>}.
– Val2 is {v1, v2}.
– RankingSchemeSet2 is a set of elements which are of type RankingScheme

and total orderings of Val2.
– AssignArgVal2 is a function from elements of Arg2 to elements of Val2.
– RankingSchemeRelMin ∈ RankingSchemeSet2 is {<v2,v1>}

RankingSchemeGovtOff ∈ RankingSchemeSet2 is {<v1,v2>}.

We have variables of type RankingScheme. Suppose the values of arguments are:

Example 2. Argument-Value Ascription

– AssignArgVal2(a1) = v1
– AssignArgVal2(a2) = v2
– AssignArgVal2(a3) = v1
– AssignArgVal2(a4) = v2

The key novelty in this extension is the introduction of labels for the arcs, which
subsort the attack relation.
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Example 3. Subsorts of Argument Attacks

– ArgAttSet2 is a set of subsets of ArgAtt2.
– ArgAttRelMin ∈ ArgAttSet2 is {<a1,a2>, <a2,a1>}
– ArgAttacksGovOff ∈ ArgAttSet2 is {<a2,a3>, <a3,a4>, <a4,a3>}

The subsorts of attacks represent who has the control of the attack. Depending
on which agent has control of the attack, we relativize the ranking scheme to
that agent’s values. Thus, we express which agent’s values determine the success
or failure of the attack. We assume a function from arcs to ranking schemes:

Definition 6. Function from Arcs to Ranking Schemes

ArcRankFun is a function from arcs to ranking schemes of type
<argument, argument> → RankingScheme. Given arguments x, y ∈ Arg2,
ArcRankFun(x, y) ∈ RankingSchemez, where RankingSchemez ∈
RankingSchemeSet2, and ArgAttz(x, y), where ArgAttz ∈
ArgAttSet2. The subscript z associates arc controllers with ranking
schemes. Thus, (ArcRankFun (x, y)) (AssignArgVal2 (x),
AssignArgVal2 (y)) is true or false relative to a ranking scheme and con-
troller of an arc. We assume an ArcRankFun2 is defined for ExArS2.

We have given an example of how attack relations are relativized, but additional
definitions may be required such as partitioning the attack relations to avoid
conflicts between the agents or ordering the attack relations, giving priority to
one over the other. Such additions could be used to define procedural contexts,
which will be left to future work.

With this, our definitions for notions such as argument defeat and admissibil-
ity are relativized to the ordered values of the audience, supposing S is subset
of Arg2.

Definition 7. Defeat, Acceptability, and Admissiblity

– For arguments x, y ∈ Arg2, x defeats2 y with respect to the values of the
agent which controls that arc if: ArgAtt2(x,y) ∧
¬(ArcRankFun2 (x, y)) (AssignArgVal2(y), AssignArgVal2(x)).

– x ∈ Arg2 is acceptable2 to S if: ∀y ∈ Arg2 that defeats2 x,
∃z ∈ S that defeats2 y.

– S is conflict-free2 if: ∀x, y ∈ S [ ¬ArgAtt2(x,y) or
¬ (ArcRankFun (x, y)) (AssignArgVal2(x), AssignArgVal2(y))].

– A conflict-free2 set S is admissible2 if: ∀x ∈ S, x is acceptable2 to S.

Given these definitions and examples 1-3, the set {a2, a3} is admissible2 in
ExArS2. If we had used only one of the rankings, as we would have been obliged
to do in ExArS1, either would have given a different result. However, we would
not be able to represent distinct controls over attacks. Using the specification,
we can filter the attack relations to get back to an abstract AF structure; in
doing so, we can homogenize the extension with the abstract Dungian analysis.
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5 Third Extension – Internal Structure of Arguments

In some argumentation theories ([8], [6]), argument objects are related to state-
ments and have a mereological (i.e. part) structure, where arguments have state-
ments which are assumptions, a statement which is a conclusion, and a reasoning
relation between the assumptions and conclusion.1. With such structure, we can
represent fine-grained argument attacks such as attacks on assumptions, conclu-
sions, and reasoning relations as found in common-sense argumentation. This is
relevant not only to incorporate well-known approaches to argumentation into
a Dungian style framework (e.g. Toulmin Structures), but more importantly
to provide an analysis of procedural contexts, wherein different sorts of argu-
ments and argument attacks are allowable in a given context. Some approaches
to argumentation which make use of structured arguments (e.g. [6]) cannot be
characterized as an extension of ExArS0 as they do not provide definitions for
attack or admissible sets of arguments. As we do provide such definitions, we
can homogenize such arguments to a Dungian analysis, which is a novel analysis.

For our purposes, an argument has assumptions, a conclusion, and a reasoning
relation. Arguments are in relation to statements. The reasoning relation is the
conditional as used in Defeasible Logic [9]. A variety of attack relations are
defined with respect to the part of the argument under attack. These attacks
correspond to familiar notions of rebuttal, undercutting and assumption defeat.

We do not need values or multiple agents as in ExArS2; the extensions do
not strictly need to extend any extension other than ExArS0, though they can.
We introduce statements and reasoning relations as first-class objects which are
in relation to an argument.

Definition 8. ExArS3

– Arg3 is a set of arguments {a1, . . . , an}.
– Stat3 is a set of atomic statement names {s1, ..., sn}, which denote atomic

propositions and are of type statement. If s is a statement, then ¬s is a
statement. In no model can s and ¬s both hold in any context; s and ¬s are
called contraries. ¬s is the only complex statement.

– ArgAtt3, an attack relation defined on Arg3.
– ReasRel3 is a set of reasoning relation names {r1, ..., rn}, which denote

reasons and are of type reasoning relation.

The assumptions and reasoning relations are related to the argument.

Definition 9. Argument Relations

– If s ∈ Stat3 and a ∈ Arg3, then Assum(a,s) is a well-formed relation. It is
read as the statement s is an assumption of argument a. The assumption
relation is of type (argument → statement) → boolean; it is a many-to-
many relation.

1 In other approaches [6], there is a different typology, which is not relevant in this
paper.
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– If a ∈ Arg3 and r ∈ ReasRel3, then ReasRelFunc(a) = r is a function from
arguments to reasoning relations. It is read as the reasoning relation of ar-
gument a is r. The function is of type argument → reasoning relation.

To specify a conclusion, we first define the set of assumptions.

Definition 10. Set of Assumptions

λs Assum(a,s) is the set of statements which are assumptions of a given
argument a, where a ∈ Arg3 and ∀ s ∈ λs Assum(a,s), s ∈ Stat3.
It is a set of type statement → boolean.

A conclusion is a statement which is functionally related to the argument, as-
sumptions, and reasoning relation. For our purposes here, we assume an argu-
ment only has one conclusion just as it has only one reasoning relation.

Definition 11. Conclusion Function

For a ∈ Arg3, λs Assum(a,s), ReasRelFunc(a), and s ∈ Stat3,
Conclusion(a) = s is a function from an argument to an implied statement
s given the argument’s assumptions and reasoning relation.

For brevity, we make the following assumptions without formally specifying
them. Two arguments a1 and a2 are identical when they have the same as-
sumptions, conclusions, and reasoning relations. Furthermore, an argument a1 is
a subargument of another argument a2 if the conclusions and reasoning relations
of a1 are the same as a2, but the set of assumptions of a1 is a proper subset
of a2. Finally, given two arguments with the same assumptions and reasoning
relation, the same conclusion must follow. With them, we have the following:

Definition 12. Argument Distinction

∀x, y ∈ Arg3 DistinctArg(x,y) if: x and y are not identical arguments and
neither is a subargument of the other.

In contrast to previous Dungian analyses, we can analytically define the notion of
attack: the arguments are not only distinct, but their conclusions are contraries.

Definition 13. General Argument Attack

Where ArgAtt3 ⊆ (Arg3 × Arg3), ∀x, y ∈ Arg3 ArgAtt3(x,y) if:
DistinctArg(x,y) ∧ Conclusion(x) = ¬Conclusion(y).

This definition correlates to the more familiar rebuttal attack; it claims that any
attack of one argument on another is at least an attempt to rebut. In contrast,
it is unclear in virtue of what one argument attacks another in [1], and by the
same token, in virtue of what arguments hold together in an admissible set.

We have defined the most general sort of attack. However, we can have sub-
sorts of attacks keyed to the mereological structure of the arguments, which is



292 A.Z. Wyner and T.J.M. Bench-Capon

an analytic basis for labelling the attack arcs. For our purposes here, we can
have attacks on assumptions or attacks on rules, though one could define other
sorts of attacks given other subproperties of arguments. In effect, the subsort of
attack expresses why the conclusion is denied.

An attack on the reasoning relation means that where one argument attacks
another, the arguments differ in terms of the reasoning relation. This correlates
to the more familiar undercutting attack.

Definition 14. Reason Relation Attack

Where ReasonRelAtt ⊂ ArgAtt3, ∀ x, y ∈ Arg3 ReasonRelAtt(x, y) if:
ReasonRelFun(x) �= ReasonRelFun(y).

This sort of attack specifies that we do not accept the conclusion of the attacked
argument because we do not accept the reasoning relation which led to the
conclusion.

An attack on an assumption means that the assumption of one argument is
the contrary of the conclusion of another argument. This correlates to the more
familiar premise defeat (i.e. assumption defeat).

Definition 15. Assumption Attack

Where AssumAttack ⊂ ArgAtt3, ∀y,z ∈ Arg3 AssumAttack(y,z) if:
∃x [x ∈ λs(Assum(z,s)) ∧ Conclusion(y) = ¬x]

To this point, we have defined subsorts of attacks in terms of reasoning relations
and assumptions. Given additional properties ascribed to arguments, we could
define further subsorts of attacks such as attacks on presuppositions or exceptions
as in [6]; as well, we could analytically define support of one argument by another.

We can use such subsorts of attack to define different procedural contexts. For
example, in reasoning about the economy, there may be a rule which can be un-
dercut in certain contexts. However, in a particular model, one might abstract
to normal contexts, and since there are no exceptions to the rules in normal con-
texts, undercutting can be ignored. Thus, we model procedural contexts where
we understand them as contexts in which certain sorts of attacks can be applied,
while other attacks are ruled out or ignored.

Given subsorts of attacks, we can relatively define defeat, acceptability,
conflict-free, and admissibility in a variety of ways. For instance, with Gen-
eral Argument Attack, we have definitions similar to [1], supposing S is a
subset of Arg3.

Definition 16. Defeat, Acceptability, and Admissiblity

– For x, y ∈ Arg3, x defeats3 y with respect to contrary conclusions if:
ArgAtt3(x,y).

– x ∈ Arg3 is acceptable3 to S if: ∀y ∈ Arg3 that defeats3 x,
∃z ∈ S that defeats3 y.

– S is conflict-free3 if: ∀x, y ∈ S ¬ArgAtt3(x,y).
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– A conflict-free3 set S is admissible3 if: ∀x ∈ S, x is acceptable3 to S.

Definitions for preferred extension and other semantic notions follow suit. Alter-
natively, instead of defining these notions based on argAtt, we could define a
notion of defeat with respect to assumptions.

Definition 17. Defeat with respect to Assumptions

For arguments x, y ∈ Arg3, x defeats3 y with respect to asssumptions: As-
sumAttack(x,y) ∧ ¬∃z ∈ Arg3 AssumAttack(z,x).

We can similarly define defeat with respect to rules. Another approach would
be to impose an ordering on the attack relations, so making the defeat of an
argument depend on an additional ordering parameter. Clearly, other notions
can be defined given the different ways that arguments can attack and defeat
one another. However, we leave further refinement and application for future
research.

As with the previous extensions, this extension provides more fine-grained
ways to define the attack relation and the defeats relation. However, once the
defeat relation is determined for a particular set of arguments, we can abstract
to the Dungian level of analysis. Thus, the examples in [6], for instance, can be
accommodated in this framework.

6 Discussion

The paper is based on a range of sources ([1], [5], [6], and [10]). Our aim has
been to adopt and adapt them into a cohesive and coherent formal argumen-
tation system, while retaining the key observations and analyses of each. The
key novel contributions of the paper are in two areas. First, we have provided
a general format to extend the Dungian Framework in a number of fruitful di-
rections to account for an additional spectrum of problems in argumentation.
Second, we have introduced and applied labelled arcs in two extensions, showing
how these can be used to represent and reason about complex issues in argu-
mentation.

For future work, we mention how our system can be extended to critical
questions [10]. First, we assume a notion of supporting arguments in AFs as
have been introduced in [11]. To model critical questions, we subsort the attacks
with respect to further subproperties of arguments, for instance, an argument
from expert opinion. Where an argument from expert opinion is under discussion,
we have the critical question Is the expert really qualified to offer an opinion on
the case at hand? Following [12], where questions denote the set of statements
which answer the question, we can suppose this question denotes The expert
is qualified. . . , an argument which supports an assumption of the argument
under discussion, and The expert is not qualified. . . , an argument which attacks
it. Whether the argument is defeated depends on which of these arguments is
sustained.
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7 Conclusion

In this paper, we have shown how the Dungian Argumentation Framework can
be extended in a variety of ways to address additional aspects of argumentation
which had not previously been provided for. The manner of the extensions allows
these additional aspects to be presented in a uniform and consistent way. Key
among the extensions is the creation of labelled arcs which represent attack
relations. With such arcs, we can distinguish sorts of attacks, which leads to a
range of different ways to define admissible sets of arguments.
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Abstract. This work addresses the problem of providing explanation capabili-
ties to an argumentation system. Explanation in defeasible argumentation is an
important, and yet undeveloped field in the area. Therefore, we move in this di-
rection by defining a concrete argument system with explanation facilities.

We consider the structures that provide information on the warrant status of
a literal. Our focus is put on argumentation systems based on a dialectical proof
procedure, therefore we study dialectical explanations. Although arguments rep-
resent a form of explanation for a literal, we study the complete set of dialectical
trees that justifies the warrant status of a literal, since this set has proved to be a
useful tool to comprehend, analyze, develop, and debug argumentation systems.

1 Introduction

There has been attention focused on the role of explanations from several areas of Ar-
tificial Intelligence –especially from the expert systems community [1,2,3]. A few of
them treat explanations in relation with argument systems [4]. In the literature, often
an argument is regarded as an explanation for a certain literal. That is, the claim being
explained is put under discussion, and only then it will be accepted or not. In belief
revision, the role of explanations has also been studied [5]: a new perception is accom-
panied by an explanation, which is used (when needed) to resolve inconsistency with
the agent’s current beliefs. The piece of knowledge having the “best” explanation is the
one that prevails, and is accepted as a new belief.

We are concerned with the type of explanations that give the necessary information to
understand the warrant status of a literal. Since our focus is put on argumentation sys-
tems based on a dialectical proof procedure, we study dialectical explanations (from
now on, δ-Explanations). Although we recognize arguments as an explanation for a lit-
eral, we are interested in obtaining the complete set of dialectical trees that justify the
warrant status of a literal. We show how δ-Explanations can be a useful tool to com-
prehend and analyze the interactions among arguments, and for aiding in the encoding
and debugging of the underlying knowledge base. Several examples, generated with an
implemented system that returns, for a given query, both the answer and the associated
δ-Explanation, are given throughout the paper.
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An interesting review about explanations in heuristic expert systems is given in [1],
in which a definition is given: “...explaining consists in exposing something in such a
way that it is understandable for the receiver of the explanation –so that he/she improves
his/her knowledge about the object of the explanation– and satisfactory in that it meets
the receiver’s expectations.” In our approach, we explain through exposing the whole
set of dialectical trees related to the queried literal. We believe that this information is
understandable from the receiver’s point-of-view, because all the arguments built, their
statuses (i.e., defeated/undefeated), and their interrelations are explicitly shown. This
type of information would be satisfactory for the receiver, because it contains all the
elements at stake in the dialectical analysis that supports the answer.

An empirical analysis about the impact of different types of explanations in the con-
text of expert systems is given in [2]. The typology there described includes: 1) trace:
a record of the inferential steps that led to the conclusion; 2) justification: an explicit
description of the rationale behind each inferential step; 3) strategy: a high-level goal
structure determining the problem-solving strategy used. From this typology, the au-
thors claim that –through their empirical analysis– the most useful type of explanation
is “justification”. We contend that the type of explanations we propose correspond to
both the “justification” and the “strategy” types; that is, we are giving not only the strat-
egy used by the system to achieve the conclusion, but also the rationale behind each
argument, which is clearly stated by its role in the dialectical tree.

We agree with [4], in that “argumentation and explanation facilities in knowledge-
base systems should be investigated in conjunction”. Therefore, we propose a type of
explanation that attempts to fill the gap in the area of explanations in argument systems.
Our approach is to provide a higher-level explanation in a way that the whole context
of a query can be revealed. The examples given in this paper stress this point.

This paper is organized as follows: first we will briefly outline the DELP concepts,
then we will introduce δ-Explanations and their relation with DELP’s answers, and
finally we will discuss the related literature.

2 DeLP Overview

Defeasible Logic Programming (DELP) combines results of Logic Programming and
Defeasible Argumentation. The system is fully implemented and available online [6]. A
brief explanation is included below (see [7] for full details). It has the declarative capa-
bility of representing weak information in the form of defeasible rules, and a defeasible
argumentation inference mechanism for warranting the entailed conclusions. A DELP-
program P is a set of facts, strict rules and defeasible rules defined as follows. Facts
are ground literals representing atomic information or the negation of atomic informa-
tion using the strong negation “∼” (e.g., chicken(little) or ∼scared(little)). Strict
Rules represent non-defeasible information and are denoted L0 ← L1, . . . , Ln, where
L0 is a ground literal and {Li}i>0 is a set of ground literals (e.g., bird← chicken)
or ∼innocent← guilty). Defeasible Rules represent tentative information and are de-
noted L0 –≺L1, . . . , Ln, where L0 is a ground literal and {Li}i>0 is a set of ground
literals. (e.g., ∼flies –≺chicken or flies –≺chicken, scared).
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When required, P is denoted (Π , ∆) distinguishing the subset Π of facts and strict
rules, and the subset ∆ of defeasible rules (see Example 1). Strong negation is allowed
in the head of rules, and hence may be used to represent contradictory knowledge.
From a program (Π , ∆) contradictory literals could be derived. Nevertheless, the set Π
(which is used to represent non-defeasible information) must possess certain internal
coherence. Therefore, no pair of contradictory literals can be derived from Π .

A defeasible rule is used to represent tentative information that may be used if noth-
ing could be posed against it. Observe that strict and defeasible rules are ground. How-
ever, following the usual convention [8], some examples use “schematic rules” with
variables. To distinguish variables, as usual, they start with an uppercase letter.

Example 1. Consider the DELP-program (Π1, ∆1) where:

Π1 =

⎧⎨⎩
(bird(X)← chicken(X)) chicken(little)
chicken(tina) bird(rob)
scared(tina)

⎫⎬⎭
∆1=

⎧⎨⎩
flies(X) –≺bird(X)
flies(X) –≺chicken(X), scared(X)
∼flies(X) –≺chicken(X)

⎫⎬⎭
This program has three defeasible rules representing tentative information about the

flying ability of birds in general, and about regular chickens and scared ones. It also has
a strict rule expressing that every chicken is a bird, and three facts: ‘tina’ and ‘little’
are chickens, and ‘tina’ is scared.

From a program is possible to derive contradictory literals, e.g., from (Π1, ∆1) of Ex-
ample 1 it is possible to derive flies(tina) and∼flies(tina). For the treatment of con-
tradictory knowledge DELP incorporates a defeasible argumentation formalism. This
formalism allows the identification of the pieces of knowledge that are in contradiction,
and a dialectical process is used for deciding which information prevails as warranted.
This dialectical process (see below) involves the construction and evaluation of argu-
ments that either support or interfere with the query under analysis. Once the analysis is
done, the generated arguments will represent an explanation for the query. As we will
show next, arguments that explain an answer for a given query will be shown in a partic-
ular way using dialectical trees. The definition of dialectical tree will be included below,
but first, we will give a brief explanation of other related concepts (for the details see [7]).

Definition 1 (Argument Structure). Let (Π , ∆) be a DELP-program, 〈A, L〉 is an
argument structure for a literal L from (Π , ∆), if A is the minimal set of defeasible
rules (A⊆∆), such that: (1) there exists a defeasible derivation for L from Π ∪ A, and
(2) the set Π ∪ A is non-contradictory.

Example 2. From the DELP-program (Π1, ∆1) the following arguments can be ob-
tained (due to space restrictions ‘tina’ will be abbreviated to ‘t’ and ‘flies(tina)’ to ‘f’):
〈A1, f〉 = 〈{flies(t) –≺bird(t)}, flies(t)〉
〈A2,∼f〉 = 〈{∼flies(t) –≺chicken(t)},∼flies(t)〉
〈A3, f〉 = 〈{flies(t) –≺chicken(t), scared(t)}, flies(t)〉

In DELP a literal L is warranted if there exists a non-defeated argument A sup-
porting L. To establish if 〈A, L〉 is a non-defeated argument, defeaters for 〈A, L〉 are
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considered, i.e., counter-arguments that by some criterion are preferred to 〈A, L〉. It is
important to note that in DELP the argument comparison criterion is modular and thus,
the most appropriate criterion for the domain that is being represented can be selected.
In the examples in this paper we will use generalized specificity [9], a criterion that fa-
vors two aspects in an argument: it prefers (1) a more precise argument (i.e., with greater
information content) or (2) a more concise argument (i.e., with less use of rules). Using
this criterion in Ex. 2 〈A3, f〉 is preferred to 〈A2,∼f〉 (more precise) and 〈A2,∼f〉 is
preferred to 〈A1, f〉 (the later use the strict rule bird(X)← chicken(X)).

A defeater D for an argument A can be proper (D is preferred to A) or blocking
(same strength). Since defeaters are arguments, there may exist defeaters for them, and
defeaters for these defeaters, and so on. Thus, a sequence of arguments called argu-
mentation line is constructed, where each argument defeats its predecessor. To avoid
undesirable sequences, that may represent circular or fallacious argumentation lines, in
DELP an argumentation line has to be acceptable, that is, it has to be finite, an argument
can not appear twice, and supporting arguments, i.e., in odd positions, (resp. interfering
arguments) have to be not contradictory (see [7]).

Example 3. (Extends Ex. 2) The argument 〈A2,∼f〉 is a proper defeater of 〈A1, f〉,
and 〈A3, f〉 is a proper defeater of 〈A2,∼f〉. Hence, [〈A1, f〉, 〈A2,∼f〉, 〈A3, f〉] is
an acceptable argumentation line.

Clearly, there can be more than one defeater for a particular argument A. Therefore,
many acceptable argumentation lines could arise from A, leading to a tree structure.
Given an argument 〈A0, h0〉, a dialectical tree [7] for 〈A0, h0〉, denoted T (〈A0, h0〉), is
a tree where every node is an argument. The root of T (〈A0, h0〉) is 〈A0, h0〉, and every
inner node is a defeater (proper or blocking) of its parent. Leaves correspond to non-
defeated arguments. In a dialectical tree every path from the root to a leaf corresponds
to a different acceptable argumentation line. Thus, a dialectical tree provides a structure
for considering all the possible acceptable argumentation lines that can be generated
for deciding whether an argument is defeated. We call this tree dialectical because it
represents an exhaustive dialectical analysis for the argument in its root.

Given a literal h and an argument 〈A, h〉 to decide whether a literal h is warranted,
every node in the dialectical tree T (〈A, h〉) is recursively marked as “D” (defeated) or
“U” (undefeated), obtaining a marked dialectical tree T ∗(〈A, h〉). Nodes are marked by
a bottom-up procedure that starts marking all leaves in T ∗(〈A, h〉) as “U”s. Then, for
each inner node 〈B, q〉 of T ∗(〈A, h〉), (a) 〈B, q〉 will be marked as “U” iff every child
of 〈B, q〉 is marked as “D”, or (b) 〈B, q〉 will be marked as “D” iff it has at least a child
marked as “U”.

Given an argument 〈A, h〉 obtained from P, if the root of T ∗(〈A, h〉) is marked as
“U”, then we will say that T ∗(〈A, h〉) warrants h and that h is warranted from P .

In this paper, marked dialectical trees will be depicted as a tree of labelled triangles
where edges denote the defeat relation (in Figure 1 three marked dialectical trees are
shown). A double arrow edge represents a blocking defeat, whereas a single arrow
represents a proper defeat. An argument 〈A, h〉 will be depicted as a triangle, where
its upper vertex is labelled with the conclusion h, and the set of defeasible rules A are
associated with the triangle itself. At the right of each node the associated mark (“U”
or “D”) will be shown.
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Example 4. (Extends Ex. 3) Figure 1 shows the marked dialectical tree for T ∗(〈A1, f〉)
(the leftmost tree), which has only one argumentation line. Observe that the argument
〈A2,∼f〉 interferes with the warrant of ‘flies(tina)’ and the argument 〈A3, f〉 reinstates
〈A1, f〉. The root of T ∗(〈A1, f〉) is marked as “U” and therefore the literal ‘flies(tina)’
is warranted.

3 DeLP Answers and δ-Explanations

Next, we will define queries, answers and explanations. We will introduce two types
of queries: ground (called DELP-queries) and schematic. For both types of queries we
will define explanations and a way to obtain the corresponding answer, that is: YES, NO,
UNDECIDED or UNKNOWN.

Definition 2 (Queries). A DELP-query is a ground literal that DELP will try to war-
rant. A query with at least one variable will be called schematic query and will represent
the set of DELP-queries that unify with the schematic one.

The dialectical process for warranting a query involves the construction and evaluation
of several arguments that either support or interfere with the query under analysis. These
generated arguments are connected through the defeat relation and are organized in
dialectical trees. Observe that given a query Q there could exist different arguments
that support Q, and each argument will generate a different dialectical tree. Therefore,
as we will show below, the returned answer for Q will be only ‘the tip of the iceberg’ of
a set of several dialectical trees that have been explored to support the resulting answer.

Thus, to understand why a query has a particular answer, it is essential to consider
which arguments have been generated and what connections exist among them. In
DELP, δ-Explanations for answers will be the set of dialectical trees that have been
explored to obtain a warrant for that query. The definition for a δ-Explanation for a
DELP-query follows, whereas explanations for schematic queries will be introduced
by the end of this Section.

3.1 δ-Explanations for DELP-Queries

We contend that δ-Explanations are a central part of an argumentation system whose
proof procedure is based on dialectical trees, because they allow to visualize the reason-
ing carried out by the system, and the support for the answer. It is clear that without this
information at hand it will be very difficult to understand the returned answer. Next, we
will introduce explanations for ground queries. Then, we will generalize explanations
for schematic queries. Given a literal L, the complement with respect to strong negation
will be denoted L (i.e., a=∼a and ∼a=a).

Definition 3 (δ-Explanation).
Let P be a DELP-program and Q a DELP-query. Let 〈A0, Q〉,. . .,〈An, Q〉 be all the
arguments for Q from P, and 〈B0, Q〉,. . .,〈Bm, Q〉 be all the arguments for Q from
P. Then, the explanation for Q in P is the set of marked dialectical trees EP (Q) =
{T ∗(〈A0, Q〉),. . .,T ∗(〈An, Q〉)} ∪ {T ∗(〈B0, Q〉),. . .,T ∗(〈Bm, Q〉)}.

Now it is possible to define DELP-answers in terms of their δ-Explanation.
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Fig. 1. δ-Explanation for flies(tina)

Definition 4 (DELP-answer). Given a DELP-program P and a DELP-query Q, the
answer for Q is either:
YES, if at least one tree in EP (Q) warrants Q.
NO, if at least one tree in EP (Q) warrants Q.
UNDECIDED, if no tree in EP (Q) warrants Q nor Q.
UNKNOWN, if Q is not in the signature of P .

Example 5. (Extends Ex. 4) Figure 1 shows the δ-Explanation for the DELP-query
‘flies(tina)’, where two dialectical trees for ‘flies(tina)’ are marked “U”. There-
fore, ‘flies(tina)’ is warranted and the answer is YES. Note that the δ-Explanation of
Figure 1 is also an explanation for query ‘∼flies(tina)’ which answer is NO. Finally,
observe that the answer for ‘walks(tim)’ is UNKNOWN, because it is not in the program
signature.

Remark 1. The explanation for complementary literals will always be the same, since
it is composed by both the trees for the literal and the trees for its complement.

As we will show in the examples below, the semantics of the programs is sensitive to the
addition or deletion of rules and facts. That is, a new fact added to a program can have
a big impact on the number of arguments that can be built from the modified program.
Taking into account this characteristic and considering the many possible interactions
among arguments via the defeat relation (that lead to the construction of different dialec-
tical trees), δ-Explanations become essential for understanding the reasons that support
an answer.

Example 6. Consider the DELP-program (Π6, ∆6):

Π6 = {q, t} ∆6 =
{

(r –≺q) (∼r –≺q, s)
(r –≺s) (∼r –≺t)

}
where the following arguments can be built:
〈R1,∼r〉 = 〈{∼r –≺t},∼r〉 〈R2, r〉 = 〈{r –≺q}, r〉
From this program the answer for the query ‘r’ is UNDECIDED, and Figure 2 shows
its δ-Explanation. Note that, although the literal ‘s’ is in the program signature (in the
body of a rule), there is no supporting argument for it. Therefore, the answer for query
‘s’ is UNDECIDED, and the δ-Explanation is the empty set (i.e., E(Π6,∆6)(s)=∅).

Remark 2. DELP-queries with UNKNOWN answers always have an empty δ-Explana
tion. However, DELP-queries that have UNDECIDED answers may have empty or non-
empty explanations. Finally, DELP-queries with YES or NO answers will always have
a non-empty explanation.
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Fig. 2. δ-Explanation E(Π6,∆6)(r)

Example 7 shows how the introduction of a single fact in (Π6, ∆6) makes a significant
difference in E(Π6,∆6)(r).

Example 7. (Extends Ex. 6) Consider the DELP-program (Π6 ∪ {s}, ∆6) where the
fact ‘s’ is added to the program of Example 6. If we query for ‘r’ again, we get the
answer NO with the δ-Explanation shown in Figure 3. Note that this δ-Explanation
consists now of two more trees than the one in the previous example. This is so because
there are two newly generated arguments:

〈R3, r〉 = 〈{r –≺s}, r〉 〈R4,∼r〉 = 〈{∼r –≺q, s},∼r〉
It is our contention that, in DELP, the answer for a query can be easily explained by
presenting the user the associated dialectical trees. From this set of trees the answer
becomes thoroughly justified, and the context of the query is revealed. The following
examples have more elaborated DELP-programs and the δ-Explanations show that a
defeater D for A may attack an inner point of A.

Example 8. Consider the DELP-program (Π8, ∆8):

∆8 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a –≺b) (b –≺c)
(∼b –≺d) (d –≺e)
(∼d –≺f, e) (∼b –≺e)
(a –≺x) (x –≺c)
(∼x –≺e) (a –≺h)
(h –≺f ) (∼h –≺i)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Π8 = {c, e, f}

where the following arguments can be built:
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Fig. 3. δ-Explanation E(Π6∪{s},∆6)(r)
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〈B1, b〉 = 〈{b –≺c}, b〉 〈B2,∼b〉 = 〈{∼b –≺e},∼b〉
〈X1, x〉 = 〈{x –≺c}, x〉 〈X2,∼x〉 = 〈{∼x –≺f},∼x〉
〈D1, d〉 = 〈{d –≺e}, d〉 〈D2,∼d〉 = 〈{(∼d –≺f, e)},∼d〉
〈A1, a〉 = 〈{(a –≺h), (h –≺f)}, a〉

From (Π8, ∆8) the answer for ‘a’ is YES, and the answer for ‘∼a’ is NO. As stated
in Remark 1, although both queries have different answers, they both have the same
δ-Explanation, which is depicted in Figure 4. In that figure, sub-arguments are repre-
sented as smaller triangles contained in the triangle which corresponds to the main
argument at issue. For instance, the argument 〈B2,∼b〉 defeats 〈B1, b〉 that is a subar-
gument of 〈{(a –≺b), (b –≺c)}, a〉.

Example 9. Consider the DELP-program (Π8 ∪ {i}, ∆8) where the fact ‘i’ is added
to the program of Example 8. Now the argument 〈H2,∼h〉 can be generated which is a
defeater for 〈H1, h〉 (a subargument of 〈A1, a〉):
〈H2,∼h〉 = 〈{∼h –≺i},∼h〉 〈H1, h〉 = 〈{h –≺f}, h〉
Here, argument H2 blocks argument H1 (subargument of A1), leaving no undefeated
arguments for ‘a’; then, the answer for both ‘a’ and ‘∼a’ is UNDECIDED. The rest of
the explanation remains the same as the one in Figure 4.

From the DELP programmer point-of-view, δ-Explanations give a global idea of the
interactions among arguments within the context of a query. This is an essential de-
bugging tool when programming: if unexpected behaviour arises, the programmer can
check the given explanations to detect errors.

In the previous examples we have not shown an explanation associated with a query
with an UNKNOWN answer, because this type of answers have an empty δ-Explanation.
Finally, observe that queries that do not correspond to the intended domain of the pro-
gram will return the answer UNKNOWN. This will capture errors like querying for “fly”
instead of “flies”, or a query like “penguin(X)” in Example 1.

3.2 Explanations for Schematic Queries

A schematic query is a query that has at least one variable (see Definition 2), and hence,
it represents the set of DELP-queries that unify with it. Now, we will extend the defini-
tion of δ-Explanation to include schematic queries. Consider again the DELP-program
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U

a

B1

D1

b

a

D

D2

~d
U

D
B2
U

~b~b

�
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�

X1

X2

~x
U
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a�

Fig. 4. δ-Explanation E(Π8,∆8)(a)
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of Example 1, the schematic query flies(X) has actually infinite terms that unify with
variable X . However, all queries with terms that are not in the program signature will
produce an UNKNOWN answer and therefore an empty explanation. Thus, the set of in-
stances of a schematic query that will be considered for generating an explanation will
refer only to those instances of DELP-queries that contain constants from the program
signature. An explanation for a schematic query will be the set of δ-Explanations of
those instances whose answers are YES, NO, or UNDECIDED.

Definition 5 (Generalized δ-Explanation).
Let P be a DELP-program and Q a schematic query. Let {Q1, . . . , Qz} be all the
instances of Q so that their DELP-answer is different from UNKNOWN. Let EP (Qi)
be the δ-Explanation for the DELP-query Qi (1 ≤ i ≤ z) from program P . Then, the
generalized δ-Explanation for Q in P is EP (Q) = { EP (Q1), . . ., EP (Qz)}.

Observe that a δ-Explanation (Definition 3) is a particular case of a Generalized δ-
Explanation, where the set EP (Q) is a singleton.

Example 10. Consider again the DELP-program (Π1, ∆1), and suppose that we want
to know if from this program it can be warranted that a certain individual does not fly.
If we query for ∼flies(X), the answer is YES, because there is a warranted instance:
∼flies(little). The supporting argument is (‘little’ was abbreviated to ‘l’):
〈B1,∼flies(l)〉 = 〈{∼flies(l) –≺chicken(l)},∼flies(l)〉
The trees of the generalized explanation are shown in Figure 5. This explanation also
shows that the other instance (∼flies(tina)) is not warranted.

It is important to note that the answer for the schematic query flies(X) is also YES,
but with a different set of warranted instances: flies(tina) and flies(rob). The sup-
porting argument for instance ‘X = tina’ was already discussed, and the undefeated
argument for instance ‘X = rob’ is:
〈C1, flies(rob)〉 = 〈{flies(rob) –≺bird(rob)}, flies(rob)〉

The generalized δ-Explanation for flies(X) is the same as the one for ∼flies(X),
depicted in Figure 5 (see Remark 1).

Definition 6 (DELP-answer for a schematic query). Given a DELP-program P and
a schematic query Q, the answer for Q is
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Fig. 5. Generalized δ-Explanation for ‘∼flies(X)’
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– YES, if there exists an instance Qi of Q such that at least one tree in EP (Qi)
warrants Qi.

– NO, if for every instance Qi of Q that is in the signature of P, there is no tree in
EP (Qi) that warrants Qi, and there exists an instance Qi of Q such that at least
one tree in EP (Qi) warrants Qi.

– UNDECIDED, if for every instance Qi of Q that is in the signature of P , there is no
tree in EP (Qi) that warrants Qi nor Qi.

– UNKNOWN, if there is no instance Qi of Q such that Qi is in the signature of P.

Observe that Definition 4 is a particular case of the previous definition, where there is a
single instance of Q.

Example 11. Consider the following DELP-program:

Π11 =
{

adult(peter) adult(annie)
unemployed(peter) student(annie)

}

∆11 =

⎧⎨⎩
has a car(X) –≺adult(X)
∼has a car(X) –≺unemployed(X)
∼has a car(X) –≺student(X)

⎫⎬⎭
where the following arguments can be built(‘has a car’ was replaced by ‘car’, ‘annie’
by ‘a’, and ‘peter’ by ‘p’):
〈A1, car(a)〉 = 〈{car(a) –≺adult(a)}, car(a)〉
〈A2,∼car(a)〉 = 〈{∼car(a) –≺student(a)},∼car(a)〉
〈P1, car(p)〉 = 〈{car(p) –≺adult(p)}, car(p)〉
〈P2,∼car(p)〉 = 〈{∼car(p) –≺unemployed(p)},∼car(p)〉

When querying for ‘has a car(X)’, variable ‘X’ unifies with both ‘annie’ and
‘peter’. Then, DELP builds arguments for both instances:A1 andA2 for ‘X = annie’,
and P1 and P2 for ‘X = peter’. From Figure 6, it is clear that no argument is unde-
feated, i.e., there is no tree that warrants ‘has a car(X)’, for either of the two in-
stances. Therefore, the answer is UNDECIDED, and the variable remains unbound.

Schematic queries give us the possibility of asking more general questions than ground
queries. Now we are not asking whether a certain piece of knowledge can be believed,
but we are asking if there exists an instance of that piece of knowledge (related to an
individual) that can be warranted in the system. This could lead to deeper reasoning as
we may pose a query, gather the warranted instances and continue reasoning with those
individuals.
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Fig. 6. Generalized δ-Explanation for ‘has a car(X)’
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The δ-Explanations system receives a DELP-program P, a query Q and an argument
comparison criterion C, and returns a δ-Explanation EX along with the proper answer
ANS. The system is described by the following algorithm in a Prolog-like notation:

d_Explanations(P,C,Q,EX,ANS):- warrants(P,C,Q,WSQ),
complement(Q,NQ), warrants(P,C,NQ,WSNQ),
get_trees(WSQ,WSNQ,EX), get_answer(Q,WSQ,WSNQ,ANS).

warrants(Q,WS):- findall((Q,TREES),warrant(Q,TREES),WS).
get_answer(_,WSQ,WSNQ,yes):- WSQ \= [].
get_answer(_,WSQ,WSNQ,no):- WSNQ \= [].
get_answer(Q,_,_,unknown):- not_in_signature(Q).
get_answer(_,_,_,undecided).

Predicate warrant/2 takes a query and attempts to warrant it; it does so by building
dialectical trees. In case the query is warranted, the dialectical trees built are ‘saved’
along with the query. Different instances of a query can be obtained via backtracking.
Predicate warrants/2 takes a query Q and returns all its warranted instances (along
with their corresponding trees) within a list. Predicate get trees/3 retrieves the di-
alectical trees information from the warranted instances for both Q and ∼Q. Finally,
predicate get answer/4 takes the query, both lists of warranted instances (for Q and
∼Q), and returns the answer.

The above described system is fully implemented and offers support for queries,
answers and explanations. Explanations are written into an XML file, which is parsed
by a visualization applet. The visualization of trees belonging to dialectical explanations
is enhanced by allowing the user to zoom-in/out, implode/explode arguments, etc. The
internal structure of an argument is hidden when imploding, and a unique tag is shown
instead.

Lemma 1 (δ-Explanation Soundness). Let P be a DELP-program, C an argument
comparison criterion, and Q a schematic query posed to P. Let E be the δ-Explanation
returned in support of the answer A. Then E justifies (Definition 6) A.

Lemma 2 (δ-Explanation Completeness). Let P be a DELP-program, C an argu-
ment comparison criterion, and Q a schematic query posed to P . Let E be the δ-
Explanation returned in support of the answer A. Then E contains all the possible
justifications (Definition 6) for any instance of A.

4 Related Work

A very thorough survey relating explanation and argumentation capabilities can be
found in [4]. Although the authors are mainly concerned about negotiation/persuasion,
and interactive/collaborative explanations, the discussion Section of that article poses
really interesting issues about the integration of explanation and argumentation; for in-
stance, whether the same knowledge base can be used to generate both explanatory and
argumentative information. In our approach, we do extract all the information from the
given knowledge base (i.e., the DELP-program) to return both kinds of information.
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In [4], the authors claim that these two areas (i.e., argumentation and explanation
facilities in knowledge-base systems) should be “investigated in conjunction”. Our pa-
per tries to move forward in that direction, providing means to “better understand the
mechanisms underlying the activities of explanation and argumentation”.

Recently, Douglas Walton [10] has offered a dialogue theory of explanation. In that
work a successful explanation is defined as transfer of understanding in a dialogue
system where a questioner and a respondent take part. The questioner begins by asking
a question seeking to understand some piece of information and the respondent gives
a reply that conveys understanding of that information to the questioner. His approach
follows a different path than ours, focussing in the distinction between explanation and
argument and defining an explanation as a new speech act.

Our approach handles δ-Explanations within argumentation systems through a
graphical representation of dialectical trees. Visualization in argumentation has been
addressed in [11]. In that paper, the objective is to provide a visual tool that does not
require the reader to understand logic to be able to follow the argumentative process
shown by the system. To achieve this, they use an animated argumentation space: ar-
guments are introduced one by one in the process to allow for a more comprehensive
visualization. They also allow to see this space in a static manner. Both ways give
the user the possibility to navigate the space at will, or in auto-pilot mode. Every ele-
ment taking part of the argumentation process is represented graphically: conflicts are
highlighted and arguments are tagged with the role they are playing in the whole pro-
cess.

Although the article by Schroeder uses argumentation trees in a similar way as we do,
we focus on explanations; that is, we are concerned with providing the whole context
corresponding to the query. Our explanations are represented in such a way that they
are useful to both humans and software agents.

5 Conclusions and Future Work

Future work includes further research about additional information that can be attached
to the current form of the δ-Explanations. In particular, we are currently formalizing
the notion of discarded arguments. These arguments are discarded by the system in the
sense that their introduction into an acceptable argumentation line renders it fallacious.
At the moment, we have singled out two reasons for an argument A to be discarded:
(1) Non-attacking arguments: when A conflicts with the last argument in the line, but
does not attack it (i.e., the last argument is better thanA wrt. the comparison criterion);
(2) Double-blocking arguments: when the final argument in the line An is a blocking
defeater of the preceding argumentAn−1, andA is, in turn, a blocking defeater forAn.
More dialectical constraints can be considered thus adding more types of discarded
arguments. It is interesting to show discarded arguments within a δ-Explanation, be-
cause the user has the possibility of analyzing why a particular argument has not been
included into the explanation. Sometimes, it is not clear why these situations occur.

We have addressed the problem, not often considered, of providing explanation ca-
pabilities to an argumentation system. We have defined a concrete argument system
with explanation facilities. We consider the structures that provide information on the
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warrant status of a literal. As the system has been implemented, we are developing
applications that uses the δ-Explanation system as subsystem.

References

1. Lacave, C., Diez, F.J.: A review of explanation methods for heuristic expert systems. Knowl.
Eng. Rev. 19(2), 133–146 (2004)

2. Ye, L.R., Johnson, P.E.: The impact of explanation facilities on user acceptance of expert
systems advice. MIS Q. 19(2), 157–172 (1995)

3. Guida, G., Zanella, M.: Bridging the gap between users and complex decision support sys-
tems: the role of justification. In: ICECCS ’97: Proc. 3rd IEEE International Conference
on Engineering of Complex Computer Systems, Washington, pp. 229–238. IEEE Computer
Society Press, Los Alamitos (1997)

4. Moulin, B., Irandoust, H., Bélanger, M., Desbordes, G.: Explanation and argumentation ca-
pabilities: Towards the creation of more persuasive agents. Artif. Intell. Rev. 17(3), 169–222
(2002)

5. Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Explanations, belief revision and defeasible
reasoning. Artif. Intell. 141(1), 1–28 (2002)

6. DeLP: http://lidia.cs.uns.edu.ar/delp
7. Garcı́a, A.J., Simari, G.R.: Defeasible logic programming: An argumentative approach. The-

ory and Practice of Logic Programming 4(1), 95–138 (2004)
8. Lifschitz, V.: Foundations of logic programs. In: Brewka, G. (ed.) Principles of Knowledge

Representation, pp. 69–128. CSLI Pub. (1996)
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Abstract. There has recently been many proposals to adopt an ar-
gumentative approach to decision-making. As the underlying assump-
tions made in these different approaches are not always clearly stated,
we review these works, taking a more classical decision theory perspec-
tive, more precisely a multicriteria perspective. It appears that these
approaches seem to have much to offer to decision models, because they
allow a great expressivity in the specification of agents’ preferences, be-
cause they naturally cater for partial specification of preferences, and be-
cause they make explicit many aspects that are usually somewhat hidden
in decision models. On the other hand, the typically intrinsic evaluation
used in these approaches is not always the most appropriate, and it is
not always clear how the multicriteria feature is taken into account when
it comes to aggregating several arguments that may potentially interact.

1 Introduction

Decision-support systems aim at helping the user to shape a problem situation,
formulate a problem and possibly try to establish a viable solution to it. Under
such a perspective decision aiding can be seen as the construction of the rea-
sons for which an action is considered a “solution to a problem” rather than
the solution itself [Tso07]. Indeed the problem of decisions accountability is al-
most as important as the decision itself. Decision support can therefore be seen
as an activity aiming to construct arguments through which a decision maker
will convince first herself and then other actors involved in a problem situation
that “that action” is the best one (we are not going to discuss the rationality
hypotheses about “best” here). Decision Theory and Multiple Criteria Decision
Analysis have focussed on such issues for a long time, but more on how this
“best solution” should be established and less on how a decision maker should
be convinced about that (for exceptions on that see [BMP+00, BS02]).

More recently, in the field of artificial intelligence, argumentation has been
put forward as a very general approach allowing to support different kinds of
decision-making [BG96, PV02, Pol87, PJ98, AP06]. Typically, one will construct
for each possible decision (alternative) a set of positive arguments, and a set of
negative arguments. However, decision-makers do not simply list pro and cons:
they exchange arguments, some of them interacting with others, attacking or
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reinstalling previous arguments put forward (by the other party, or sometimes
indeed by itself). Distinguishing what eventually should count as acceptable
arguments has been the study of numerous studies, and necessitates to value the
arguments. Cayrol and Lagasquie-Schiex [CLS05] distinguish intrinsic valuation
of arguments (without any consideration for the other arguments –for instance it
may be based on the credibility of the source), and interaction-based valuation of
arguments (simply resulting of the interactions between arguments –for instance
some may be better supported than others, etc.). In the seminal work of Dung
[Dun95], different semantics are proposed, which interpret differently what (sets
of, in this case) arguments should be considered acceptable, only based on their
interaction-based valuation. More recently, some approaches propose to take
both aspects into account, see e.g. [KP98]. Once the valuation has been made, it
is then possible to select the acceptable arguments. Usually, only a crisp selection
is allowed: arguments are acceptable or not; however a more gradual acceptability
is also possible [CLS05]. Our objective in this paper is to clarify the connections
between argumentation and decision-making, and more precisely to inspect the
recent proposals that have been put forward to handle (multi-criteria) decision-
making in an argumentative framework.

The rest of this paper is as follows. In Section 2, we examine more carefully
what it means to argue for an action, especially when different points of view
can be considered to assess that action. We confront the different proposals put
forward in the literature to our multicriteria perspective and discuss some hidden
assumptions that they make. In Section 3, we move on to the following step by
inspecting how aggregation can then be performed. Section 4 concludes.

2 Arguing over Actions

Before reviewing the literature on argument-based decision making (focusing
especially on how they account for the fact that different criteria may be in-
volved), we start by briefly recalling what makes decision over actions different
from decision over beliefs.

2.1 Arguments Meet Beliefs, Actions, and “Points of View”

Argumentation is usually conceived as a process for handling (potentially con-
flicting) beliefs. In AI, many systems have been proposed that allow to capture
the defeasible nature of this kind of reasoning. Under this perspective, the basic
building block (the argument) can typically be defined as a premise/conclusion
pair, whereby you state that this conclusion should be reached under these
premises. What is discussed here is the truth-value of the conclusion, so an ar-
gument supporting a conclusion basically asserts some evidence to believe that
this conclusion holds.

When it comes to decision-making though, this rather crude argument scheme
needs to be refined. Indeed, as it has been recognized for a long-time now, a
significant difference exists between argumentation for beliefs and argumentation
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for actions [FP97, FP98]. This is best explained by means of a simple example,
inspired by [FP97]. Saying that some symptoms “support” a given diagnosis,
and that this diagnosis in turn “support” a given medication are two different
things. The first —epistemic— argument is typically a defeasible proof of the
doctor’s diagnosis. The latter —practical— argument is a recommendation that
this course of action should be chosen, which can for instance be defeated by
the fact that other medications may turn out to be better options. So the same
word “support” must be interpreted differently.

But we need to make more precise what is exactly meant by “an argument is
in favour of an action a”. The intuitive reading is that action a will have “good
consequences”. So we must first somehow valuate the outcome of the action. In
decision models, this would typically be done by using an ordered scale defining
the different values that can be used to assess the action (for instance, marks
from 0 to 20 for students). Now what counts as a positive or negative outcome
is specific to each agent, and depends of its (subjective) preferences. That is,
you must classify the outcome of the actions. In decision models, one classical
approach is that the agent uses an evaluation scale and specify a frontier, that
is, a neutral point (or zone), thus inducing a bipolar scale. This will in turn allow
us to determine what counts as an argument pro, or against, the action.

Let us suppose that we want to select a candidate for a given position, and
that we have a number of candidates applying for it. We need to evaluate the
outcome of each possible action, that is, how good is the situation induced by
accepting each given candidate. For instance, a desired consequence is to have
a strong enough candidate as far as academic level is concerned. Let us suppose
that this is assessed by using a bipolar scale referring to marks, where 12 stands
for our neutral point. Then, we could say that according to “marks”, we have
an argument in favour of accepting this candidate if its mark is more than 12.

Intuitively, as we said before, performing an action will bring about a state
of the world which will be judged desirable or not. In general however, it is
possible that you may have different valuations that you assign to a given action,
depending on different points of view that you take to evaluate that action. Very
often, these different valuations cannot be merged into a single point of view.
This has been recognized in particular in multi-criteria decision-making, where
a criterion is regarded as a point of view against which it is possible to compare
different actions. Now, the definition of a neutral point for each point of view
defines what we shall call here a neutral action, a special action against which
each action can be compared.

2.2 Discussion of Existing Approaches

In [FP97], Fox and Parsons proposed one of the first account that tried to ad-
vocate an argumentative approach to decision-making, building on Fox’s earlier
work [FBB80]. They recognize and clearly state what makes argumentation for
actions different from argumentation for beliefs, and put forward the following
argument scheme:
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Fox and Parsons’ Argument Scheme
We should perform A (A has positive expected value)
Whose effects will lead to the condition C
Which has a positive value

As explained by Fox and Parsons, the advantage of this representation is that
it makes explicit three inference steps: (i) that C will indeed result from action
A, (ii) that C has some positive value, and eventually (iii) that A has a positive
expected value. Clearly, steps (ii) and (iii) requires additional information in
order to be able to assign values to situations, and to decide whether the action
has indeed a positive expected value. The valuation of the condition is subjective
(dependent of the agent’s preference), and represented here by “labelling the
proposition describing C with a sign drawn from a dictionary”, which can be
qualitative or not and plays the role of a scale. Interestingly, they also allow for
different points of view over which values can be assigned.

So for instance, opting for a given candidate (say a) could lead to an outcome
where the chosen candidate has a mark of 14 (this would be captured by the
first epistemical step e1 of the scheme, where ga stands for the justification of
this step). Together with the two following steps, this could be represented with
this scheme as follows:

chosea → mark = 14 : ga : + e1
mark = 14 : va : + v1
chosea : (e1, v1) : + ev1

The last step concludes that this action has a positive expected value. More
interestingly, the second step (v1) means that the condition mark = 14 is posi-
tively evaluated by our agent (noted by symbol +) (it then counts as a positive
argument), where va is the justification for this value assignment. Although this
aspect is not deeply explored in the paper, a very interesting feature of this ap-
proach is then that it makes explicit the grounds allowing to assign this value
to this condition: what may count ha obvious candidates to justify this value
assignment, if we take the view of the multicriteria-decision approach, would be
the user’s preferences (“I consider that the mark is good from 12”), as well as
the preference model used (“I consider this to be a positive argument as long as
it is beyond the limit previously stated”).

But we could also directly encode within this scheme that opting for a given
candidate would lead to an outcome where the condition that the chosen candi-
date has a mark over 12 is satisfied, a fact that we consider positive. This could
be represented as follows (the last step does not vary)

chosea → mark ≥ 12 : ga : + e1
mark ≥ 12 : va : + v1

meaning that the condition mark ≥ 12 is positively evaluated by our agent
(noted by symbol +) (it then counts as a positive argument), where va is the
justification for this value assignment. In this case, the nature of this justification
is less clear, for it leads to support the agent’s preferences.
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These two alternative ways of representing argument schemes about actions
seem somewhat unsatisfactory. On the one hand, chosing to directly represent
the neutral action drawn from the agent’s preferences drops the relation linking
an action and its consequences. On the other hand, not representing it assumes
it is somehow encoded within a “value assignment” mechanism. Finally, this
approach does not really acknowledge that actions themselves can be evaluated
against a number of meaningful, predefined, dimensions: in fact, each condition
induces a new dimension against which the action can be evaluated.

One of the most convincing proposal recently put forward to account for
argument-based decision-making is the one by Atkinson et al. [ABCM06, Atk06].
They propose an extension of the “sufficient condition” argument scheme pro-
posed by Walton [Wal96].

Atkinson’s Argument Scheme
In the circumstances R
We should perform A
Whose effects will result in state of affairs S
Which will realise a goal G
Which will promote some value V

To avoid confusion with the previous approach, we must first make clear that
the notion of value is used here in a different sense. As we shall see, it plays a
role comparable to that of a criteria in multi-criteria decision making. Atkinson
explains [Atk05] that values should not be confused with goals as “they provide
the actual reasons for which an agent wishes to achieve a goal”. Goals refer
to single values, but an action can bring about a state of affairs that satisfy
many goals, hence affecting different values. So, unlike the previous one, this
approach explicitly represents both action’s consequences, and states actually
desired by the agent (preferences). We believe this distinction remains important
even if there is no discrepancy between observed and inferred states [BCP06].
Technically, a function value maps goals to pairs 〈v, sign〉 where v ∈ V , and sign
belongs to the scale {+,−, =} (but Modgil [Mod06] adds a notion of degree to
which the value is promoted). For instance, using our running example, we could
have

value(mark ≥ 12) = 〈academic level, +〉

meaning that the value (criteria) academic quality is promoted when the mark
is over 12.

In this approach, values clearly play the role of criteria. So it looks like speci-
fying goals amounts to specifying a (potentially partial) neutral action. However,
the declarative nature of goals allows for more flexible classifications than what
we typically have in decision models1. For instance, it is possible to easily express
that

value(age ≥ 18 ∧ age ≤ 32) = 〈youth, +〉

1 Although some approaches try to overcome these limitations, see for instance [aC96].
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the value “youth” is only promoted when the age falls between 18 and 32. It
is also important to note that values are eventually assigned to state of affairs
via goals. So the justification of value assignment to states is implicitly given by
the fact that the goal is reached (or not). One potential problem is that it does
not leave any other option if we were to provide some additional justification
(for instance related to preference model used). We also refer to [BCP06] for a
detailed discussion related to this scheme.

In [ABP05], Amgoud et al. propose an approach explicitly linking argumen-
tation to multi-criteria decision-making. They see an argument as a 4-tuple
〈S, x, c, g〉 where

– S is the support of the argument,
– x is the conclusion of the argument (the action)
– c is the criterion which is evaluated for x,
– g is the goal and represents the way c is satisfied by x

It is required that S is consistent when we add the fact that the action x has
taken place. Here, in a way that is reminiscent of the previous approach, each
goal g is explicitly associated to a criterion by means of a propositional formula
g → c, although the possibility of having goals referring to different criteria is
also mentioned. In this approach, unlike in [Atk05], the use of (bipolar) scale is
explicitly mentioned: the goals will fall either on the negative or on the positive
side. Their approach also allows for quantitative measure of how good are the
attained goals. So for instance, we may specify that knowledge base has several
strata

G+
2 = {mark ≥ 16}; G+

1 = {16 > mark ≥ 12}; G−1 = {mark < 12}

which means that the marks are considered as “good” from 12, and even “very
good” from 16, while it is unsufficient when it is below 12. This comes together
with formulae of the form

mark ≥ 16→ academic level

which explicitly states that the goal G+
2 affects the criteria “academic level”.

Now each decision will have some consequences, that will in turn fulfill some
goals or not. It is then possible to identify arguments pro and cons a given
decision x, by simply scanning the knowledge base and checking which positive
(resp. negative) goals are satisfied by the occurrence of a given decision x.

In a very recent proposal, Morge and Mancarella [MM07] propose a multi-
attribute argumentation framework for opinion explanation. Here, a main goal
is split into sub-goals and so on. They make a distinction between high level goals
(“abstract goals that reveal the user’s need”), and low-level goals (“criteria for
evaluating different alternatives”). As for the satisfaction of a goal by a given
decision, this is explicitly stated by:

– decision rules of the form R : g ← D, B1, . . . , Bn meaning that the goal g can
be achieved by decision D, given that conditions B1, . . . , Bn are satisfied.
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– goal rules of the form R : g ← g1, . . . , gn meaning that the head of the rule
is reached if the goals listed in the body are reached

The notion of priority between rules allows to refine decision rules, in order to
make more complex aggregation. So for instance; if we were to specify that we
would chose an alternative if it meets one out of two goals, we would specify
that

R0 : g0 ← g1, g2

R1 : g0 ← g1

R2 : g0 ← g2

together with the preferential information that R0 % {R1, R2}
Now if we inspect what plays the role of a criteria in this approach, it is

difficult to say. In fact, there is no notion properly corresponding to that of a
criteria: there is no point of view against it is possible to compare alternatives. It
would be tempting to say that there exists an implicit preference model stating
that the decision-maker prefers to satisfy goals, rather than not. However it is
deceptive. It could well be that we have the following preference ordering between
rules:

R0 : g0 ← g1, g2

R1 : g0 ← ¬g1

R2 : g0 ← ¬g2

again with R0 % {R1, R2}
In that case, it is clearly not possible to evaluate on a single point of view. It

is only possible to say that we would prefer an action satisfying both g1 and g2,
rather than only ¬g1 or g2. Only when the set of rules exhibits a very specific
structure is it possible to interpret goals as proper criteria. In general however,
this approach is more expressive and cater for preference models where “coali-
tions” of criteria are considered, which makes the comparison more difficult.

2.3 Discussion

In the previous section we have discussed several approaches to argument-based
decision-making. What we have seen is that each approach is rather marginally
different from the other ones, but that, by making explicit different steps of the
process, they focus on different aspects of the process. Fox and Parsons are the
only ones to explicitly represent the justification of a value assignment, however,
they do not fully explore this avenue; and hardwire the possibility of having
different criteria. Atkinson makes this latter distinction clear, but on the other
hand, do not cater for an explicit representation of all the justifications of the
value assignment (this only rely on the logical satisfaction: a goal is reached
or not, which justifies the value assignment). In this case, it is not possible to
represent or indeed challenge the preference structures used. Amgoud et al. also
rely on the logical satisfaction of goals to justify the value assignment, but the
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goals are ordered in a way that indeed allows to refine the preference structure,
to express various degrees of satisfaction of a goal. Still, this is directly encoded
in the knowledge base and cannot be discussed in the process. Also, by using
a bipolar scale, they constrain the syntax of goals and prevent themselves from
using the full expressivity provided by the logic. Overall, it is important to
emphasize that the definition of the argument scheme is of primary importance:
by expliciting the inference steps of an argument, we also define what counts as
valid “critical question”, that is how arguments will interact with each others
(how they can be attacked and so on).

There are, on the other hand, many similarities between these approaches.
First, the evaluation is made possible by an explicit representation of the conse-
quences of the action. By relying on logic to represent these states of affairs, it is
more expressive than the ordered scale that is usually used in decision models.
One further possibility that is offered by this representation is that profile may
be only partially defined, whereas in decision models you would require each
action to be evaluated on each different criteria.

The third, perhaps most striking similarity, is that they all rely on a method of
intrinsic evaluation, and use more or less explicitly a neutral action. In decision
models, on the other hand, the canonical case is the pairwise evaluation, that
is, actions are evaluated against each others, and not against a neutral action.
Although the use of neutral action can be justified, it has some consequences
and drawbacks that, we feel, is important to emphasize:

– the adoption of a neutral action makes very important the definition of each
neutral point, that is, the frontier (or more generally zone). In particular,
a seemingly insignificant modification of the frontier can have tremendous
consequences (as we shall see in the next section).

– in the context of multiparty decision-making, the problem is made even more
thorny because it also generates potential conflicts as to what should count
as positive or negative arguments, when agents would maybe more easily
come up with an agreement if two alternatives were compared.

To elaborate on the point mentioned above, we refer to a recent discussion on
the UAI (Uncertainty in Artificial Intelligence) list where the problem of “where
to draw the line” emerged as a thread of discussion. A very illustrative real
example of this problem was given, as reported here:

The contested 2000 US Presidential election and the question of “hang-
ing chads.” [...] in many instances the perforation was partial – leaving
a hanging chad, a scrap of paper hanging from the voting card. So how
was one to decide whether or not a partial perforation was or was not
a vote for the position or person next to the perforation? One method,
sometimes used, was to have the vote counter ask, “What intent does
this perforation indicate?” Another approach was possible: It is use-
less or impossible to try to determine or guess the voter’s intention. One
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must instead ask whether this perforation looks more like a vote than a
non-vote 2.”

So for instance two agents could discuss whether a given value should count as
a positive goal or a negative argument, one arguing that this is not high enough
a mark to be counted as a positive argument... while, it would be more practical
to simply ask the agents to simply say whether they prefer an alternative versus
another wrt. this given criterion.

3 Aggregation

Once you have decided what counts as arguments pro and con, for each possible
decision, it is necessary to aggregate them to eventually decide what alternative
to select. At this point, there is an important question to be asked: how is it
that you handle potential interactions between arguments that refer to different
criteria?

– if you assume that these interactions do not exist, or do not take them into
account, then you might first aggregate arguments independently on each
criterion, and then aggregate the resulting criteria using a given operator;

– if you take into account these interactions, then it is necessary to design an
aggregation process that will aggregate arguments labelled by criteria.

There are many rational ways to aggregate sets of pro and cons. Bonnefon
and Fargier [BF06] offer a nice overview of different possible approaches. These
approaches take into account the fact that the arguments are bipolar and qual-
itative. The importance of arguments is described on totally ordered scale of
magnitude. In order to compare these qualitative, bipolar sets, they present sev-
eral procedures: the Pareto comparison (sets of arguments are compared as a
problem of bi-criteria decision), the implication rule (this rule focuses on the
most important arguments in the situation), the cardinality rules (based on a
levelwise comparison by cardinality), and so on. The characterization of these
rules was introduced in [DF05], and [BF06] present an extensive empirical as-
sessment of the descriptive validity of these rules. What Amgoud et al. show
in [ABP05] is that it is possible to retrieve various classical aggregation opera-
tors in their framework. They propose to compare decision in terms of positive
and negative arguments (using a complex scheme for evaluating the strength of
argument, which depends on three parameters : the certainty level, the impor-
tance degree of the criterion, and the (dis)satisfaction degree of the criterion).
Two principles based on preference relation between the arguments are pro-
posed : promotion focus (take into account only the supporting arguments) and
preventing focus (considers only the arguments against decisions). They show
that the presented framework captures different multiple criteria decision rules
to select the best decision. The rule for the choice is characterized by the fact

2 [P. Tiller, post on UAI list in response to L. Zadeh].
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that the criteria have or not the same importance level. In this approach how-
ever, the potential interaction between arguments, as analysed in the seminal
work of Dung [Dun95], is not considered. To the best of our knowledge, the
value-based argumentation framework of [BC02] is the only approach so far that
proposes to compute the acceptable arguments from a set of labelled arguments.
Indeed, an argument refers to a given criterion (or “value” in the sense previ-
ously mentioned in the work of Atkinson [Atk05]). Argument systems, in the
sense of Dung [Dun95], hence record interaction between arguments, possibly
related to different values. Audiences are different ways to order those values. It
is then possible to identify those arguments that will be accepted regardless of
the chosen audience (objectively acceptable), while some others arguments can
only be subjectively acceptable. In this case, the interaction between arguments
pertaining to different criteria is fully recognized. The aggregation of values re-
mains rather limited though, for it is only possible to order the values to reflect
their degree of importance. So for instance it would not be possible to use an
aggregation operator like the majority.

We conclude by a further remark related to the choice of the method of eval-
uation (intrinsic or pairwise). Both techniques may provide different, even con-
tradictory, results, depending on the choice of the profile. Consider the following
example. We assume that each criteria on an evaluation scale form 0 to 9. We
take the neutral action to be p = [5, 5, 5], meaning that the neutral point on
each criteria is 5, and consider the following performance table :

g1 g2 g3

a 8 6 8
b 7 4 2
c 9 7 4

We will now use the following notation: c & p since [+, +,−], to specify that
c is preferred to p because a strict majority of arguments (two arguments out
of three) supports this proposition (only the last criteria disagrees with this).
We will now compare the results obtained by aggregation, comparing the cases
where an intrinsic or pairwise evaluation is used.

– in the case of intrinsic evaluation, we get a & p since [+, +, +] and c &
p since [+, +,−]. The obtained set of argument for a dominates that obtained
for c: any rational aggregation method will give the outcome that a & c.

– in the case of a pairwise comparison (we don’t need to use the neutral action
then), we have on the other hand c & a since [+, +,−], hence c & a

This simply illustrates that both methods may return contradictory results,
which is easily explained by the fact that the categorisation as argument pro
or con may make the preference model rather coarse-grained (of course, we do
not discuss here the possibility of using a more detailed bipolar scale, as men-
tionned earlier in this paper).
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4 Conclusion

The primary aim of this paper was to offer a critical review of existing ap-
proaches adopting an argumentative stance towards decision-making, adopting
the viewpoint of (multicriteria) decision theory. We emphasized in particular that
arguments pro or against a given action are generally regarded as resulting from
a comparison against a neutral action (drawn from the agent’s preferences). This
intrinsic evaluation technique departs from the pairwise evaluation, and raises
some difficulties it is good to be aware of. On the other hand, it appears that
these approaches seem to have much to offer to decision models, because they
allow a great expressivity in the specification of agents’ (possibly partial) prefer-
ences, and because they make explicit many aspects that are usually somewhat
hidden in decision models. At the level of aggregation, despite recent progresses,
the question of how the multicriteria feature should be taken into account when
it comes to aggregating several arguments (that may potentially interact and
refer to different criteria) remains largely unexplored.
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Abstract. The binary representation is widely used for representing
focal sets of Dempster-Shafer belief functions because it allows to com-
pute efficiently all relevant operations. However, as its space requirement
grows exponentially with the number of variables involved, computations
may become prohibitive or even impossible for belief functions with larger
domains. This paper proposes shared ordered binary decision diagrams
for representing focal sets. This not only allows to compute efficiently all
relevant operations, but also turns out to be a compact representation
of focal sets.

1 Introduction

Dempster-Shafer theory is a well founded and widely accepted theory for un-
certain reasoning and includes probability theory as a special case. Its main
building blocks are belief potentials together with two operations called combi-
nation and marginalization. Given a set of variables V , a belief potential ϕ on
domain d(ϕ) ⊆ V typically encodes a piece of evidence or an uncertain event.

The main computational problem in Dempster-Shafer theory is to marginal-
ize the joint combination of belief potentials ϕ1, . . . , ϕn to a certain domain of
interest Q ⊆ V , i.e. to compute (ϕ1 ⊗ · · · ⊗ ϕn)↓Q. However, it is often compu-
tationally prohibitive or even impossible to compute first the joint combination.
Instead, the variables in V \Q are eliminated one after another according to a
variable elimination sequence. At each step of this elimination process, first the
joint combination of a subset of the remaining potentials is computed and then
the resulting potential is marginalized to a smaller domain where the current
elimination variable does not occur anymore.

For the elimination process to be executed as fast as possible, belief potentials
have to be encoded appropriately. Above all, the encoding of the focal sets of
belief potentials is particularly important and should allow to execute efficiently
the following four operations: (1) intersection, (2) projection, (3) extension and
(4) equality testing.

In the last few years, research has focussed on the binary representation of
focal sets. This encoding has a number of advantages, for example the above
four operations can easily be implemented and are executed efficiently on cur-
rent microprocessors. However, as its space requirement grows linearly with the
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number of focal sets and exponentially with the number of variables involved,
computations may become prohibitive or even impossible for belief potentials
with large domains.

In the knowledge compilation map [1,2] of Darwiche and Marquis, the binary
representation of focal sets corresponds to the language MODS. Interestingly, the
knowledge compilation map contains besides MODS another language which sup-
ports the above four operations in polytime. This language is called OBDD< and
corresponds to the language of ordered binary decision diagrams. Although the
size of an OBDD can be exponential in the number of variables, this upper limit
is only rarely attaint in practice. Therefore, the language of OBDD is an in-
teresting candidate for encoding the focal sets of belief potentials. A possible
solution would be to encode the focal sets as a sequence of OBDDs. However,
this paper goes a step further and investigates on the usability of shared ordered
binary decision diagrams for encoding the focal sets of belief potentials. This
encoding not only allows to compute efficiently all four relevant operations for
focal sets, but often also turns out to be a compact representation of focal sets.

This paper is structured as follows. We start in Section 2 with an overview of
Dempster-Shafer theory. Then, Section 3 introduces the binary representation
of focal sets. Section 4 gives a short introduction to BDDs and Section 5 then
shows how to encode the focal sets of belief potentials using SOBDDs. Finally,
we close with some concluding remarks in Section 6.

2 Multivariate Dempster-Shafer Theory

The foundation of Dempster-Shafer theory [3,4,5,6] was laid in [7,8] where Demp-
ster studied upper and lower bounds of probability distributions induced by a
multivalued mapping. Shafer then continued Dempster’s work and developed a
theory of evidence [9]. He proposed to call set functions having the structure
of Dempster’s lower probabilities belief functions. Nowadays, Dempster-Shafer
theory is often used to represent uncertain knowledge. Its building blocks are
belief potentials which encode pieces of evidence.

In this paper we consider multivariate belief potentials only. Let V denote the
set of all variables. Every variable x ∈ V has a finite set Θx of possible values. In
order to make life easier, we restrict ourself to binary variables1. Without loss of
generality, we can then assume that Θx = {0, 1} for all x ∈ V . Throughout this
paper, if not specified otherwise, let D = {x1, . . . , xn} be a subset of variables.
The elements of the corresponding cartesian product ΘD = Θx1 × · · · ×Θxn are
called configurations of D. Note that ΘD has exactly 2n configurations.

2.1 Different Representations

Similar to complex numbers where c ∈ C can be represented in polar or rect-
angular form, there are different ways to represent a belief potential ϕ. It can
1 The more general case of non-binary variables leads to shared ordered multi-valued

decision diagrams (SOMDD) [10].
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be represented as a mass function [ϕ]m, as a belief function [ϕ]b or as a com-
monality function [ϕ]q. The mass function representation has certain advantages
compared to the other representations. Above all, the main operations for belief
potentials can be stated easier using mass functions.

Mass Functions. A mass function [ϕ]m on D assigns to every subset X of ΘD

a value in [0, 1], that is [ϕ]m : 2ΘD → [0, 1]. The following condition must be
satisfied: ∑

X⊆ΘD

[ϕ(X)]m = 1. (1)

Sometimes, a second condition, [ϕ(∅)]m = 0, is imposed. A mass function
for which this additional condition holds is called normalized, otherwise it is
called unnormalized. A set X ⊆ ΘD for which [ϕ(X)]m > 0 is called focal set
of ϕ. Note that a belief potential ϕ is completely specified by the collection
{(X1, [ϕ(X1)]m), . . . (X, [ϕ(X)]m)} where X1, . . . , X are the focal sets of ϕ.
The set of all focal sets of a belief potential ϕ is denoted by FS(ϕ).

2.2 Operations for Belief Potentials

The two main operations for belief potentials are combination and marginaliza-
tion. Intuitively, these two operations correspond to aggregation and focusing.
Suppose ϕ1 and ϕ2 are potentials on D1 and D2. The combination of these two
potentials is given by Equation (2) and produces an unnormalized potential on
domain D = D1 ∪D2. Similarly, suppose that ϕ is a potential on D and C ⊆ D.
The marginalization of ϕ to C is given by Equation (3) and produces a potential
on domain C.

[ϕ1 ⊗ ϕ2(X)]m =
∑

X↑D
1 ∩X↑D

2 =X

[ϕ1(X1)]m · [ϕ2(X2)]m (2)

[ϕ↓C(X)]m =
∑

Y ↓C=X

[ϕ(Y )]m (3)

Another useful operation is extension and is given by Equation 4. It takes a
potential ϕ on domain C ⊆ D and produces a potential on domain D. Using the
extension operation, combination can be rewritten as given in Equation (5).

[ϕ↑D(X)]m =
{

[ϕ(Y )]m if X = Y ↑D,
0 otherwise. (4)

[ϕ1 ⊗ ϕ2(X)]m =
∑

X1∩X2=X

[ϕ↑D1 (X1)]m · [ϕ↑D2 (X2)]m (5)

2.3 Operations for Focal Sets

Combination and marginalization use some operations for focal sets. These op-
erations are:
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– intersection (X1 ∩X2),
– projection (X↓C),
– extension (X↑D) and
– equality testing (X = Y ).

Equality testing is used to group together identical focal sets when combining
or marginalizing belief potentials.

Projection of Focal Sets. It is computed when a belief potential is marginal-
ized. If c = (r1, . . . , rn) ⊆ ΘD is a configuration of D and C ⊆ D, then c↓C

denotes the projection of c to C. It is obtained by removing all components of c
which correspond to variables in D \ C. For a focal set X ⊆ ΘD, the projection
of X to C is a subset of ΘC and is denoted by X↓C . It is obtained by projecting
each element of X to C, that is X↓C = {c↓C : c ∈ X}.

Extension of Focal Sets. It is computed when two belief potentials are com-
bined. For a focal set X ⊆ ΘC and C ⊆ D, the extension of X to D is a
subset of ΘD and is denoted by X↑D. It is given by the cylindrical extension
X↑D = X ×ΘD\C .

Example 1. Let D = {x1, x2, x3}. ΘD consists of 8 configurations and is given
by ΘD = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.
There are 256 different subsets X ⊆ ΘD. On the very left side of Figure 1, the
subset X = {(0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)} is represented in a 3-dimensional
cube of which the axes are given by the variables x1, x2 and x3. The pro-
jection of X to the set of variables C = {x1, x2} is given by Y = X↓C =
{(0, 1), (1, 0), (1, 1)} and is also represented on the left side of Figure 1.

Example 2. Let C = {x1, x2}. ΘC then consists of 4 configurations. The subset
Y = {(0, 1), (1, 0), (1, 1)} is represented on the right side of Figure 1. For D =
{x1, x2, x3}, the extension of Y to D corresponds to the cylindrical extension
given by Z = Y ↑D = {(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} and is
represented on the very right side of Figure 1.

(a) Projection (b) Extension

Fig. 1. Projection and extension of a focal set
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3 The Binary Representation

A representation which was already proposed in [11] is to use bitstrings for focal
sets. This representation is based on a global ordering <g of all variables called
the variable encoding order. We suppose in the following that all given sets of
variables respect this global ordering, meaning that xi, xk ∈ D and i < k implies
xi <g xk.

In [12], different algorithms were presented which efficiently perform the oper-
ations on belief potentials where focal sets are encoded using the binary represen-
tation. These algorithms rely on a small set of basic functions for manipulating
arbitrary long bitstrings and can be implemented very easily in programming
languages which support arbitrary long integer numbers. Belief function com-
putations then turn out to be extremely efficient if the domains of the belief
potentials are relatively small.

3.1 Focal Sets as Bitstrings

Let D = {x1, . . . , xn} ⊆ V be a subset of variables respecting the variable
encoding order. ΘD = {c0, . . . , cm−1} consists of exactly m = 2n configurations.
The index r of each configuration cr = (r1, . . . , rn) ∈ ΘD is determined by the
values r1 to rn and

r =
n∑

i=1

(
ri · 2n−i

)
. (6)

A focal set X ⊆ ΘD can now be represented unambiguously by a bitstring
BD(X) = 〈bm−1 · · · b0〉 where

bi =
{

1 if ci ∈ X,
0 otherwise.

The bitstring BD(X) determines a unique integer number which is composed
of exactly 2n bits.

Example 3. Let D = {x1, x2, x3}, C = {x1, x2} and X ⊆ ΘD given by X =
{(0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)}. Figure 1 displays from left to right the focal
sets X , Y = X↓C and Z = Y ↑D. Therefore, Y ⊆ ΘC and Z ⊆ ΘD. The following
bitstrings are associated with these three focal sets:

BD(X) = 〈01101100〉,BC(Y ) = 〈1110〉 and BD(Z) = 〈11111100〉.

3.2 Operations for Focal Sets

Several algorithms were presented in [12] to compute the relevant operations on
focal sets. For D = {x1, . . . , xn}and C ⊆ D, two of these algorithms compute
the projection BC(X↓C) and the extension BD(Y ↑D) for focal sets X ⊆ ΘD and
Y ⊆ ΘC given as bitstrings BD(X) and BD(Y ), respectively.
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In the following, we describe only the special case where C = D \ {xi} for
an arbitrary variable xi ∈ D. We introduce first a notation which is helpful
for describing projection and extension of focal sets given as bitstrings. For this
purpose, the set of variables D is divided into

D = {x1, . . . , xi−1︸ ︷︷ ︸
UD(xi)

, xi, xi+1, . . . , xn︸ ︷︷ ︸
VD(xi)

}.

Thus, UD(xi) corresponds to the set of variables in D which are to the left of xi

and similarly VD(xi) to the set of variables in D which are to the right of xi. In
the following, let u = |ΘUD(xi)| = 2i−1 and v = |ΘVD(xi)| = 2n−i.

Projection of Focal Sets. Let BD(X) be the bitstring for a focal set X ⊆ ΘD.
It has 2n bits and is composed of 2u smaller blocks each having v bits:

BD(X) = 〈Bu
2Bu

1Bu−1
2 Bu−1

1 · · · B2
2B2

1B1
2B1

1〉

The corresponding bitstring BC(X↓C) has 2n−1 bits and is composed of u blocks:

BC(X↓C) = 〈RuRu−1 · · ·R2R1〉

Each one of these smaller blocksRk has v bits and is equal to the logical inclusive
OR of the blocks Bk

2 and Bk
1 .

Extension of Focal Sets. Let BC(Y ) be the bitstring for a focal set Y ⊆ ΘC .
It has 2n−1 bits and is composed of u smaller blocks each having v bits:

BC(Y ) = 〈BuBu−1 · · · B2B1〉

The corresponding bitstring BD(Y ↑D) has 2n bits and is composed of 2u blocks:

BD(Y ↑D) = 〈BuBuBu−1Bu−1 · · · B2B2B1B1〉

Therefore, each one of the smaller blocks is repeated twice.

3.3 The Main Problem: Space Requirement

The space requirement of the binary representation of focal sets grows linearly
with the number of focal sets and exponentially with the number of variables
involved. Therefore, belief function computations may become prohibitive or
even impossible for belief potentials with large domains.

4 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [13,14,15] is a data structure which is used to
represent and manipulate Boolean functions. It corresponds to a rooted directed
acyclic graph with one or two terminal nodes and several decision nodes. The
terminal nodes are called 0-sink and 1-sink and represent the Boolean constants
⊥ and �, respectively. Every decision node u has a label var(u) and two child
nodes called high(u) and low(u), respectively.
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Example 4. The BDD shown on the right side of Figure 2 consists of three
decision nodes and two terminal nodes. Typically, high(u) of a decision node u
is drawn with a solid flash whereas low(u) is drawn with a dashed flash.

4.1 Boolean Functions

Boolean functions are functions from Bn → B where B = {0, 1}. Its building
blocks are Boolean variables x1, . . . , xn and the Boolean constants ⊥ and �. If
f and g are Boolean functions, then also ¬f , f ∧ g and f ∨ g.

Definition 1. Let f(x1, . . . , xn) be a Boolean function. Then

fxi←0 = f(x1, . . . , xi−1, 0, xi+1, . . . , xn) (7)
fxi←1 = f(x1, . . . , xi−1, 1, xi+1, . . . , xn) (8)

are the positive and negative cofactors of f with respect to xi.

4.2 Construction of BDDs

The construction of a BDD for a Boolean function f is based on the Shannon
expansion of f . This states that

f(x1, . . . , xn) ≡ (x ∧ fx←1) ∨ (¬x ∧ fx←0) (9)

for all Boolean functions f(x1, . . . , xn) and variables x ∈ {x1, . . . , xn}. It allows
to construct a BDD for a given Boolean function f(x1, . . . , xn) by the recursive
procedure shown by Algorithm 1.

Algorithm 1. BUILD(f(x1, . . . , xn))
input : Boolean function f(x1, . . . , xn)
output: BDD node which represents f

if (f ≡ ⊥) then return 0-sink ;
if (f ≡ �) then return 1-sink ;
Select variable x;

t = BUILD(fx←1);
e = BUILD(fx←0);
return MK(x, t, e);

4.3 Reduction Rules

In order to minimize the size of BDDs, some reduction rules are always applied:

1. Two terminal nodes with the same label are merged.
2. Two decision nodes with the same label and the same children are merged.
3. If a decision node has identical children, it is removed from the graph and

all incoming edges are redirected to its child.
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0 1 1 1 1 1 1 1

x3 x3 x3 x3

x2 x2

x1

0 1

x3

x2

x1

Fig. 2. Reduction rules for Boolean function f(x1, x2, x3) = x1 ∨ x2 ∨ x3

Example 5. A BDD for the Boolean function f(x1, x2, x3) = x1∨x2∨x3 is shown
on the left side of Figure 2. After the application of the above three reduction
rules, the OBDD shown on the right side of Figure 2 is obtained.

In Algorithm 1, the function MK(var, high, low) takes care of these reduction
rules which may considerably decrease the number of nodes of a BDD. In the
following, we restrict the discussion to reduced BDDs and refer to them simply
as BDDs.

4.4 Ordering

A heavy impact on the size of BDDs has the order in which the variables are se-
lected when Shannon expansion is applied. If the variables are selected according
to a predefined total order, then the variables on all paths from the root node of
a BDD occur in the same ordering. This class of BDDs is called ordered binary
decision diagrams (OBDD).

Every node u of an OBDD represents a Boolean function fu. An important
property of OBDDs is that they are a canonical representation of Boolean func-
tions. This means that equivalent Boolean functions are represented by the same
OBDD node.

5 Binary Decision Diagrams for Dempster-Shafer Theory

An OBDD u represents a corresponding Boolean function fu. Consequently, a
collection {fu1 , . . . , fu�} of Boolean functions can be represented by a collection
{u1, . . . , u} of OBDDs. However, these OBDDs might share common factors.
Therefore, it is worthwhile to extend sharing to different OBDDs so that sub-
graphs can be used by several OBDDs. The class of diagrams of this type is
called shared ordered binary decision diagrams (SOBDD) [16,17] and is given
by a forest of multi-rooted directed acyclic graphs. Note that each node of an
SOBDD together with the set of all its successor nodes corresponds to an OBDD.
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5.1 Focal Sets and Shared Ordered Binary Decision Diagrams

A belief potential ϕ on domain D = {x1, . . . , xn} is completely specified by the
collection {(X1, [ϕ(X1)]m), . . . , (X, [ϕ(X)]m)} where X1, . . . , X ∈ FS(ϕ) are
the focal sets of ϕ. We are now going to associate a SOBDD to these focal sets.
For that purpose, first, we have to associate a Boolean function fX(x1, . . . , xn)
to every focal set X ∈ FS(ϕ). This can be done by

fX(r1, . . . , rn) = 1 ⇐⇒ (r1, . . . , rn) ∈ X. (10)

Therefore, every focal set X ⊆ ΘD has an associated Boolean function fX .
Given a variable encoding order, fX is unequivocally determined by an OBDD
uX . The collection of OBDDs {uX1 , . . . , uX�

} then forms a SOBDD which con-
tains for every focal set X ∈ FS(ϕ) a node which represents the associated
Boolean function fX .

Example 6. Let D = {x1, x2} and ϕ be a belief potential with focal sets X1 =
{(1, 1)}, X2 = {(0, 1), (1, 1)}, X3 = {(0, 1), (1, 0), (1, 1)}, X4 = ΘD and corre-
sponding masses 0.1, 0.2, 0.3 and 0.4, respectively. These four focal sets cor-
respond to the Boolean functions fX1(x1, x2) = x1 ∧ x2, fX2(x1, x2) = x2,
fX3(x1, x2) = x1 ∨ x2 and fX4(x1, x2) = �, respectively. If x1 < x2 is the
variable ordering then the collection {fX1 , fX2 , fX3 , fX4} of Boolean functions
is represented by the SOBDD shown in Figure 3. The four corresponding nodes
are indicated in the graph.

It is well known that there are classes of Boolean functions that have OBDDs
of size exponential in the number of variables, regardless of the ordering chosen
[18]. However, this upper limit is rarely obtained in practice. In most cases,
a collection of boolean functions can be represented very compactly using an
SOBBD.

x1 x1

x2

1 0

fX1

fX2

fX3

fX4

Fig. 3. SOBDD for the focal sets of the belief potential ϕ
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5.2 Operations on Focal Sets

The four main operations on focal sets translate into corresponding operations
on OBDDs.

Intersection. The intersection of two OBDDs u and v is performed by Algo-
rithm 2. An interesting point to note is that a cache is used to store computed
results. Without the cache, the runtime of AND would grow exponentially with
the number of variables. If all computed results are stored then the time com-
plexity of intersection is polynomial in the product of the size of each OBDD.
However, as there may be a huge number of intermediate results it is often not
possible to store all intermediate results. As a consequence, the worst case per-
formance of practical implementations of AND is exponential in the number of
variables, but the exponential behavior is rarely observed.

Algorithm 2. AND(u, v)
input : OBDD nodes u and v representing boolean functions fu and fv

output: OBDD node representing the boolean function fu ∧ fv

if (terminal case) then return terminal result ;
if (cache has entry {u, v} ) then return cache result ;
With x being the top variable of {u, v}

t = AND(fu
x←1, fv

x←1);
e = AND(fu

x←0, fv
x←0);

r = MK(x, t, e);
InsertIntoCache({u, v}, r);
return r ;

Projection. Let D = {x1, . . . , xn} and C = D \ {x} for x ∈ D. In addition, let
X ⊆ ΘD be a focal set with associated Boolean function f(x1, . . . , xn). Using
OBDDs, the projection of X to C can then be obtained by existential quantifi-
cation denoted by ∃x.f(x1, . . . , xn). It is given as follows:

∃x.f(x1, . . . , xn) = fx←0 ∨ fx←1

Therefore, projection can be implemented by two calls to RESTRICT and one
call to OR. These are both functions which manipulate OBDDs. For example,
the function OR is very similar to Algorithm 2. Concerning the complexity of
this operation, the same remarks as for intersection apply.

Extension. If focal sets are represented using an SOBDD, then this operation
is not needed. Let C ⊆ D, X ⊆ ΘC and Y = X↑D. The corresponding Boolean
functions fX and fY are equivalent and consequently, the same OBDD node is
associated with fX and fY .

Equality Testing. This can be performed extremely efficient using OBDDS.
Because OBDDs are a canonical representation of Boolean functions, the time
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complexity of equality testing is O(1). Two Boolean functions are equivalent if
and only if they are represented by the same OBDD, i.e. if the same OBBD node
is associated with both Boolean functions.

6 Conclusion and Outlook

The binary representation of focal sets is extremely efficient if the domains of
the belief potentials involved is small. However, as its space requirement grows
linearly with the number of focal sets and exponentially with the number of
variables involved, belief function computations may become prohibitive or even
impossible for belief potentials with large domains.

This paper has taken a look on the use of shared ordered binary decision
diagrams for encoding the focal sets of belief functions. This encoding allows to
execute efficiently the four main operations on focal sets. But most importantly,
it often also turns out to be a very compact representation of focal sets.

Practical tests using examples from different application domains have now to
be conducted in order to compare these two representations. Preliminary tests
based on the freely available software package CUDD [19] are very promising.
Our first conclusions obtained from these tests indicate that the binary represen-
tation is more suited for belief function computations involving small domains.
If larger domains are involved, then the SOBDD representation is much better
suited. As a consequence, the best encoding for focal sets is most probably based
on a hybrid approach.
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Abstract. When merging belief functions, Dempster rule of combina-
tion is justified only when information sources can be considered as inde-
pendent. When this is not the case, one must find out a cautious merging
rule that adds a minimal amount of information to the inputs. Such a
rule is said to follow the principle of minimal commitment. Some condi-
tions it should comply with are studied. A cautious merging rule based
on maximizing expected cardinality of the resulting belief function is
proposed. It recovers the minimum operation when specialized to pos-
sibility distributions. This form of the minimal commitment principle
is discussed, in particular its discriminating power and its justification
when some conflict is present between the belief functions.

Keywords: belief functions, least commitment, dependence.

1 Introduction

There exist many fusion rules in the theory of belief functions [13]. When several
sources deliver information over a common frame of discernment, combining
belief functions by Dempster’s rule [4] is justified only when the sources can
be assumed to be independent. When such an assumption is unrealistic and
when the precise dependence structure between sources cannot be known, an
alternative is to adopt a conservative approach to the merging of the belief
functions (i.e. by adding no extra information nor assumption in the combination
process). Adopting such a cautious attitude means that we apply the “least
commitment principle”, which states that one should never presuppose more
beliefs than justified. This principle is basic in the frameworks of possibility
theory, imprecise probability [15], and the Transferable Belief Model (TBM) [14].
It can be naturally exploited for cautious merging belief functions.

In this paper, we study general properties that a merging rule satisfying the
least commitment principle should follow when the sources are logically consis-
tent with one another. An idempotent cautious merging rule generalizing the
minimum rule of possibility theory is proposed. Section 2 recalls some basics
about belief functions. Section 3 recalls an approach to the conjunctive merging
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of belief functions proposed by Dubois and Yager in the early nineties and shows
it provides a natural least committed idempotent merging rule for belief func-
tions, where least commitment comes down to maximizing expected cardinality
of the result. Finally, Section 4 discusses limitations of the expected cardinality
criterion, raising interesting issues on the non-unicity of solutions, and discussing
other rules proposed in the literature especially when some conflict is present
between the sources.

2 Preliminaries

Let X be the finite space of cardinality |X | with elements X = x1, . . . , x|X|.

Definition 1. A basic belief assignment (bba) [10] is a function m from the
power set of X to [0, 1] s.t. m(∅) = 0 and

∑
A⊆X m(A) = 1.

Let MX the set of bba’s on 2|X|. A set A s.t. m(A) > 0 is called a focal set.
The number m(A) > 0 is the mass of A. Given a bba m, belief, plausibility and
commonality functions of an event E ⊆ X are, respectively

bel(E) =
∑
A⊆E

m(A) ; pl(E) =
∑

A∩E �=∅
m(A) = 1− bel(Ac) ; q(E) =

∑
E⊆A

m(A)

A belief function measures to what extent an event is directly supported by
the available information, while a plausibility function measures the maximal
amount of evidence that could support a given event. A commonality function
measures the quantity of mass that may be re-allocated to a particular set from
its supersets. The commonality function increases when bigger focal sets receive
greater mass assignments, hence the greater the commonality degrees, the less
informative is the belief function. A bba is said to be non-dogmatic if m(X) > 0
hence q(A) > 0, ∀A �= ∅.

A bba m can also be interpreted as a probability family [15] Pm such that
Bel(A) and Pl(A) are probability bounds: Pm = {P |∀A ⊂ X, Bel(A) ≤ P (A) ≤
Pl(A)}. In the sequel of the paper, we mainly focus on two special kinds of bbas
: namely, possibility distributions and generalized p-boxes.

A possibility distribution [16] is a mapping π : X → [0, 1] from which two dual
measures (respectively the possibility and necessity measures) can be defined :
Π(A) = supx∈A π(x) and N(A) = 1 − Π(Ac). In terms of bba, a possibility
distribution is equivalent to a bba whose focal sets are nested. The plausibility
(Belief) measure then reduces to a Possibility (Necessity) measure.

A p-box [9] is a pair of cumulative distributions [F , F ] defining a probability
family P[F ,F ] = {P |F (x) ≤ F (x) ≤ F (x) ∀x ∈ )}. A generalized p-box [6] is
a generalization of a p-box, defined on an arbitrary (especially, finite) ordered
space (whereas usual p-boxes are defined on the real line). If an order ≤R is
defined on X , to any bba, a generalized p-box can be associated s.t. F (x)R =
Pl({xi|xi ≤R x}) and F (x)R = Bel({xi|xi ≤R x}), but it retains only a part of
the information contained in the bba, generally.
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Dubois and Prade [7] defined three information orderings based on different
notions related to belief functions :

– pl-ordering. if pl1(A) ≤ pl2(A) ∀A ⊆ X , we write m1 �pl m2;
– q-ordering. if q1(A) ≤ q2(A) ∀A ⊆ X , we write m1 �q m2;
– s-ordering. if m1 is a specialization of m2, we write m1 �s m2.

Informally, a bba m2 is a specialization of a bba m1 if every mass m1(A) can be
reallocated to subsets of A in m2 (i.e. the mass m1(A) “flows down” to subsets
B ⊆ A in m2) so as to recover m2. If m2 is a specialization of m1, it means that
beliefs represented by the bba m2 are more focused than those from the bba
m1. In other words, m2 can be judged more informative than m1. If we interpret
bbas in terms of probability families, another means to compare them in terms
of imprecision is to compare such families. We can say that m1 is more precise
than m2 iff Pm1 ⊂ Pm2 . This is equivalent to the pl-ordering. More generally if
we have m1 �x m2 (x corresponding to one of the three orderings), we say that
m2 is x-less committed than m1. Dubois and Prade proved that m1 �s m2 imply
m1 �q m2 and m1 �pl m2, but that the reverse is not true (hence, s-ordering is
the strongest ordering of the three).

As these relations are partial orders, comparing bbas with respect to s, pl or
q-ordering can be complex and often leads to incomparability (i.e. non unic-
ity of the solution). A simpler tool for comparing bbas is to measure the non-
commitment of a bba by its expected cardinality, which reads

I(m) =
∑

A⊆X

m(A)|A|

where |A| is the cardinality of A. Expected cardinality is an imprecision measure,
and its value is the same as the cardinality of the fuzzy set equivalent to the
contour function (i.e. I(m) =

∑
xi∈X pl(xi)). It is coherent with specialization

ordering (and hence with the two others) since if m1 is a specialization of m2,
then I(m1) ≤ I(m2). This definition is the one we will use in the sequel.

3 A Least-Committed Merging Rule

A bba built by merging two different bbas m1, m2 is supposed to be obtained
by the following procedure, denoting Fi the set of focal sets of mi:

1. A joint bba m is built on X × X , having focal sets of the form A × B
where A ∈ F1, B ∈ F2 and preserving m1, m2 as marginals. It means that
m1(A) =

∑
B∈F2

m(A, B) and likewise for m2.
2. Each joint mass m(A, B) should be allocated to the subset A∩B only, where

A and B are focal sets of m1 and m2 respectively.

We call a merging rule satisfying these two conditions conjunctive1, and denote
Mm1∩m2

X the set of conjunctively merged bba’s. The idea behind the conjunctive

1 A disjunctive merging rule could be defined likewise, changing ∩ into ∪.
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approach is to keep as much information as possible from the fusion process.
However not every bba m∩ obtained by conjunctive merging is normalized (i.e.
one may get m(∅) �= 0). It is clear that a merged bba m∩ on X in the above
sense is a specialization of both m1 and m2.

In fact three situations may occur

– Mm1∩m2
X contains only normalized belief functions. It means that ∀A ∈

F1, B ∈ F2, A ∩ B �= ∅. Only in that case does the result of merging by
Dempster rule of combination belong toMm1∩m2

X . The two bbas are said to
be logically consistent.

– Mm1∩m2
X contains both subnormalized and normalized bbas. It means that

∃A, B, A∩B = ∅ and that the marginal-preservation equations have solutions
which allocate zero mass m(A, B) to such A×B.

– Mm1∩m2
X contains only subnormalized belief functions. A result from [3]

indicates that this situation is equivalent to Pm1 ∩ Pm2 = ∅. The two bbas
are said to be conflicting.

A cautious merging rule is then one that selects a least committed bba in
Mm1∩m2

X for any of the three orderings given above. In order to avoid incom-
parabilities, we define a least-committed bba in Mm1∩m2

X as one with maximal
expected cardinality I(m). A conjunctive merging rule is denoted ⊕, and a least-
committed merging rule

∧
.

Now suppose m1 = m2 = m. The least committed specialisation of m is m
itself. Hence the following natural requirement:

Idempotence. The least-committed rule
∧

should be idempotent.

The following proposition directly follows from this requirement:

Proposition 1. Let m1 be a specialization of m2, then the result of the least
committed rule

∧
should be m1 *m2 = m̂12 = m1.

Although very important, this result concerns very peculiar cases and does not
give us guidelines as to how general bbas should be combined to result in a
least-committed bba (in the sense of expected cardinality). In [8], by using the
concept of commensurate bbas, Dubois and Yager show that there are a lot of
idempotent rules that combine two bbas, each of them giving different results.
In the following, we slightly generalize the notion of bba and consider it as a
relation between the power set of X and [0, 1]. In other words, a generalized bba
may assign several weights to the same subset of X .

Definition 2. Let m be a bba with focal sets A1, . . . , An and associated weights
m1, . . . , mn. A split of m is a bba m′ with focal sets A′1, . . . , A

′
n′ and associated

weights m′1, . . . , m′n′
s.t.

∑
A′

j=Ai
m′j = mi

In other words, a split is a new bba where the original weight given to a focal
set is separated in smaller weights given to the same focal set, with the sum of
weights given to a specific focal set being constant. Two generalized bbas m1,m2
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are said to be equivalent if pl1(E) = pl2(E) and bel1(E) = bel2(E) ∀E ⊆ X .
If m1 and m2 are equivalent, it means that they are splits of the same regular
bba [8]. In the following, a bba should be understood as a generalized one.

Definition 3. Let m1, m2 be two bbas with respective focal sets {A1, . . . , An},
{B1, . . . , Bk} and associated weights {m1

1, . . . , m
n
1}, {m1

2, . . . , m
k
2}. Then, m1

and m2 are said to be commensurate if k = n and there is a permutation σ

of {1, . . . , n} s.t. mj
1 = m

σ(i)
2 , ∀i = 1, . . . , n.

Two bbas are commensurate if their distribution of weights over focal sets can
be described by the same vector of numbers. In [8], Dubois and Yager propose
an algorithm, given a prescribed ranking of focal sets on each side, that makes
any two bbas commensurate by successive splitting. Based on this algorithm,
they provide an idempotent rule

⊕
that allows to merge any two bbas. This

merging rule is conjunctive and the result depends on the ranking of focal sets
used in the commensuration algorithm, summarized as follows:

– Let m1, m2 be two bbas and {A1, . . . , An}, {B1, . . . , Bk} the two sets of
ordered focal sets with weights {m1

1, . . . , m
n
1}, {m1

2, . . . , m
k
2}

– By successive splitting of each bbas (m1, m2), build two generalised bbas
{R1

1, . . . , R
l
1}and{R1

2, . . . , R
l
2}withweights{m1

R1
, . . . , ml

R1
},{m1

R2
, . . . , ml

R2
}

s.t. mi
R1

= mi
R2

and
∑

Ri
1=Aj

= mj
1,
∑

Ri
2=Bj

= mj
2.

– Algorithm results in two commensurate generalised bbas mR1 , mR2 that are
respectively equivalent to the original bbas m1, m2.

Once this commensuration is done, the conjunctive rule
⊕

proposed by Dubois
and Yager defines a merged bba m12 ∈ Mm1∩m2

X with focal sets {Ri
1
⊕

2 = Ri
1 ∩

Ri
2, i = 1, . . . , l} and associated weights {mi

R1
⊕

2
= mi

R1
= mi

R2
, i = 1 . . . , l}.

The whole procedure is illustrated by the following example.

Example 1. Commensuration

l mRl Rl
1 Rl

2 Rl
1
⊕

2
m1 m2 1 .5 A1 B1 A1 ∩B1

A1 .5 B1 .6 2 .1 A2 B1 A2 ∩B1
A2 .3 B2 .2→ 3 .2 A2 B2 A2 ∩B2
A3 .2 B3 .1 4 .1 A3 B3 A3 ∩B3

B4 .1 5 .1 A3 B4 A3 ∩B4

From this example, it is easy to see that the final result crucially depends of the
chosen rankings of the focal sets of m1 and m2. In fact, it can be shown that
any conjunctively merged bba can be produced in this way.

Definition 4. Two commensurate generalised bbas are said to be equi-commen-
surate if each of their focal sets has the same weight.

Any two bbas m1, m2 can be made equi-commensurate. In our example, bbas
can be made equi-commensurate by splitting the first line into five similar lines
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of weight 0.1 and the third line into two similar lines of weight 0.1. Every line
then has weight 0.1, and applying Dubois and Yager’s rule to these bbas yields a
bba equivalent to the one obtained before equi-commensuration. Combining two
equi-commensurate bbas {R1

1, . . . , R
l
1}, {R1

2, . . . , R
l
2} by Dubois and Yager rule

results in a bba s.t every focal element in {R1
1
⊕

2, . . . , R
l
1
⊕

2} has equal weight
mR1

⊕
2 (0.1 in our example). The resulting bba is still inMm1∩m2

X .

Proposition 2. Any merged bba inMm1∩m2
X can be reached by means of Dubois

and Yager rule using appropriate commensurate bbas equivalent to m1 and m2
and the two appropriate rankings of focal sets.

Proof. We assume masses (of marginal and merged bbas) are rational numbers.
Let m ∈ Mm1∩m2

X be the merged bba we want to reach by using Dubois and
Yager’s rule. Let m(Ai, Bj) be the mass allocated to Ai ∩ Bj in m. It is of
the form k12(Ai, Bj) × 10−n where k12, n are integers. By successive splitting
followed by a reordering of elements Rj

1, we can always reach m. For instance,
let kR be equal to the greatest common divisor of all values k12(Ai, Bj). Then,
k12(Ai, Bj) = qij × kR, for an integer qij . Then, it suffices to re-order elements
Rk

1 by a re-ordering σ s.t. for qij of them, Rk
1 = Ai and R

σ(k)
2 = Bj . Then,

by applying Dubois and Yager’s rule, we obtain the result m. From a practical
standpoint, restricting ourselves to rational numbers has no importance: rational
numbers being dense in reals, this means that we can always get as close as we
want to any merged bba.

For cautious merging, it is natural to look for appropriate rankings of focal sets
so that the merged bba obtained via commensuration has maximal cardinality.
The answer is : rankings should be extensions of the partial ordering induced by
inclusion (i.e. Ai < Aj if Ai ⊂ Aj ). This is due to the following result:

Lemma 1. Let A, B, C, D be four sets s.t. A ⊆ B and C ⊆ D. Then, we have
the following inequality

|A ∩D|+ |B ∩ C| ≤ |A ∩ C|+ |B ∩D| (1)

Proof. From the assumption, the inequality |(B \A)∩C| ≤ |(B \A)∩D| holds.
Then consider the following equivalent inequalities:

|(B \A) ∩ C|+ |A ∩C| ≤ |A ∩C|+ |(B \A) ∩D|
|B ∩C| ≤ |A ∩C|+ |(B \A) ∩D|

|A ∩D|+ |B ∩C| ≤ |A ∩C|+ |A ∩D|+ |(B \A) ∩D|
|A ∩D|+ |B ∩C| ≤ |A ∩C|+ |B ∩D|

hence the inequality (1) is true.

When using equi-commensurate bbas, masses in the formula of expected cardi-
nality can be factorized, and expected cardinality then becomes:
I(m)R1

⊕
2 = mR1

⊕
2

∑l
i=1 |Ri

1
⊕

2| = mR1
⊕

2

∑l
i=1 |Ri

1 ∩ Ri
2|, where mR1

⊕
2 is

the smallest mass enabling equi-commensuration. We are now ready to prove
the following proposition.
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Proposition 3. If m ∈Mm1∩m2
X is minimally committed for expected cardinal-

ity, there exists an idempotent conjunctive merging rule
∧

constructing m by
the commensuration method, s.t. focal sets are ranked on each side in agreement
with the partial order of inclusion.

Proof. Suppose m̂12 ∈ Mm1∩m2
X is minimally committed for expected cardi-

nality. It can be obtained by commensuration. Let mR1 , mR2 be the two equi-
commensurate bbas with n elements each derived from the two original bbas
m1, m2. Suppose that the rankings used display four focal sets Ri

1, R
j
1, R

i
2, R

j
2,

i < j, such that Ri
1 ⊃ Rj

1 and Ri
2 ⊆ Rj

2. By Lemma 1, |Rj
1 ∩ Rj

2| + |Ri
1 ∩ Ri

2| ≤
|Rj

1 ∩ Ri
2| + |Ri

1 ∩ Rj
2|. Hence, if we permute focal sets Ri

1, R
j
1 before apply-

ing Dubois and Yager’s merging rule, we end up with a merged bba mR′
1
⊕

2

s.t. I(mR1
⊕

2) ≤ I(mR′
1
⊕

2
). Since any merged bba can be reached by splitting

m1,m2 and by inducing the proper ranking of cocal sets of the resulting bbas
mR1 , mR2 , any merged bba m̂12 ∈ Mm1∩m2

X maximizing expected cardinality
can be reached by Dubois and Yager’s rule, using rankings of focal sets in ac-
cordance with the inclusion ordering.

Ranking focal sets in accordance with inclusion is neither sufficient nor the only
way of maximizing expected cardinality when merging two given bbas, as shown
by the following examples.

Example 2. Let m1,m2 be two bbas of the space X = x1, x2, x3. Let m1(A1 =
{x1, x2}) = 0.5,m1(A2 = {x1, x2, x3}) = 0.5 be the two focal sets of m1 and
m2(B1 = {x1, x2}) = 0.2,m2(B2 = {x2}) = 0.3,m2(B3 = {x1, x2, x3}) = 0.5 be
the focal sets of m2. The following table shows the result of Dubois and Yager’s
merging rule after commensuration:

l mRl Rl
1 Rl

2 Rl
1
⊕

2
1 .2 A1 B1 A1 ∩B1 = {x1, x2}
2 .3 A1 B2 A1 ∩B2 = {x2}
3 .5 A2 B3 A2 ∩B3 = {x1, x2, x3}

Although focal sets Bi are not ordered by inclusion ( B1 ⊃ B2), the result
maximizes expected cardinality (the result is m2, which is a specialization of
m1). This shows that the technique based on proposition 3 is not necessary
(nevertheless, the same result is obtained by using order B2, B1, B3).

Now, consider the same bba m1 and another bba m2 s.t. m2(B1 = {x2}) = 0.3,
m2(B2 = {x2, x3}) = 0.3, m2(B3 = {x1, x2}) = 0.1, m2(B4 = {x1, x2, x3}) =
0.3. m2 is no longer a specialization of m1, and the order B1, B2, B3, B4 is one of
the two possible extensions of the partial order induced by inclusion. The result
of Dubois and Yager’s rule gives us:

l mRl Rl
1 Rl

2 Rl
1
⊕

2
1 .2 A1 B1 A1 ∩B1 = {x2}
2 .3 A1 B2 A1 ∩B2 = {x2}
3 .1 A2 B2 A2 ∩B2 = {x2, x3}
4 .1 A2 B3 A2 ∩B3 = {x1, x2}
5 .3 A2 B4 A1 ∩B4 = {x1, x2, x3}
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and the expected cardinality of the merged bba is 1.8. If, instead of the order
B1, B2, B3, B4, we choose the order B1, B3, B2, B4 (i.e. the other extension of the
partial order induced by inclusion), applying Dubois and Yager’s rule gives us a
merged bba of expected cardinality 2.0, which is higher than the previous one.
Hence, we see that proposition 3 is not sufficient in general to reach maximal
cardinality. Thus, proposition 3 gives us guidelines for combining belief functions
so as to maximise cardinality, but further conditions should be stated to select
the proper total orderings of focal sets.

4 Beyond Least-Commitment Based on Expected
Cardinality

Least committed merging by expected cardinality maximisation is coherent with
specialization since if an s-least committed bba exists, then it has maximal ex-
pected cardinality. But other notions of minimal commitment exist, that do not
relate to expected cardinality. This section discusses arguments pro and con the
use of this notion, first for logically consistent bbas and then for more general ones.

4.1 Retrieving the Minimum Rule of Possibility Theory

For the special case of possibility distributions, the order between focal sets in-
duced by inclusion is complete. It means that, in this case, applying proposition 3
results in an unique consonant merged bba with contour function min(π1, π2),
which corresponds to the usual minimum operator [8]. As the minimum is the
most cautious conjunctive merging operator in possibility theory, it shows that
our proposition is coherent with and thus justifies the possibilistic approach, as
suggested by Smets[12]. One may also conjecture that merged bbas that max-
imize expected cardinality are also least-committed in the sense of the relative
specificity of their contour functions (m1 is less committed than m2 in this sense
if pl1(x) ≥ pl2(x) ∀x ∈ X). Nevertheless, the minimum of two possibility distri-
butions is not the only cardinality maximizer, as the next example shows:

Example 3. Consider the two following possibility distributions π1,π2, expressed
as belief structures m1, m2

π1 = m1 π2 = m2

Focal sets Mass Focal sets Mass
{x1, x2, x3} 0.5 {x3, x4, x5} 0.5

{x0, x1, x2, x3, x4} 0.5 {x2, x3, x4, x5, x6} 0.5

The following merged bbas C1, C2 ∈Mm1∩m2
X have the same contour function,

hence (maximal) expected cardinality equal to 2.

C1 = πmin C2

Focal sets Mass Focal sets Mass
C11 = {x3} 0.5 C21 = {x3, x4} 0.5

C12 = {x2, x3, x4} 0.5 C22 = {x2, x3} 0.5

This interesting example is discussed below.
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4.2 Refining Expected Cardinality by the pl- or q-Ordering

As maximizing expected cardinality is coherent with s-least commitment and can
lead to non-uniqueness of the solution, discriminating different solutions can be
done by using pl- or q-ordering. Choosing one or the other matters, since even for
the simple example 3, we have C1 �pl C2 and C2 �q C1. Since C1 �pl C2 is equiv-
alent to PC1 ⊂ PC2 (e.g. the probability distribution p(x2) = 0.5, p(x4) = 0.5 is
inside PC2 , and not in PC1), choosing the pl ordering is coherent with a prob-
abilistic interpretation of belief functions and shows the limitation of proposi-
tion 3. Note that in the example, the bba C2 is the generalized p-box (with the
order x1 <R x2 <R . . . <R xn on elements of X) corresponding to the possibil-
ity distribution C1. It is not surprising that PC1 ⊂ PC2 , since the probability
family induced by a possibility distribution is included in the family induced by
its corresponding p-box [1].

Besides, choosing the q−ordering to discriminate solutions (which yields C1 in
example 3) seems more in accordance with proposition 3 (and thus with the par-
ticular case of possibility distributions). Moreover, as the commonality function
increases when larger focal sets receive greater mass assignments, it could be ar-
gued that the q−ordering is more in accordance with the TBM approach. Smets
[12] suggests without proof that in the case of merging possibility distributions,
the minimum rule is least q−committed, like in the example.

4.3 Minimizing Conflict

When two bbas are not logically consistent (i.e. there are focal elements Ai,Bj

for which Ai ∩ Bj = ∅), a conjunctively merged bba that maximizes expected
cardinality may not, in general, minimize conflict (i.e. m ∈ Mm1∩m2

X s.t. m(∅)
is minimal). This is illustrated by the following example:

Example 4. Consider the two following possibility distributions π1,π2, expressed
as belief structures m1, m2

π1 = m1 π2 = m2

Focal sets Mass Focal sets Mass
{x1, x2} 0.5 {x4} 0.5

{x0, x1, x2, x3, x4} 0.5 {x2, x3, x4, x5, x6} 0.5

And the following table shows the result of applying the minimum (thus maximis-
ing expected cardinality) and the unnormalized Dempster rule of combination

Min(π1, π2) unnormalized Dempster’s rule
Focal sets Mass Focal sets Mass Focal sets Mass
{x2, x3, x4} 0.5 {x2} 0.25 {x2, x3, x4} 0.25

∅ 0.5 {x4} 0.25 ∅ 0.25

With Dempster rule, conflict value is 0.25 and expected cardinality is 1.25, while
with the minimum, the conflict value is 0.5 and expected cardinality is 1.5.
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Provided one considers that minimizing the conflict is as desirable as finding a
least-committed way of merging the information, this can problematic. A pos-
sible alternative is then to find m ∈ Mm1∩m2

X that is least-committed among
those for which m(∅) is minimal. This problem was studied by Cattaneo in [2].
Cattaneo proposes to find the merged bba m ∈ Mm1∩m2

X that maximizes the
following function:

F (m) = m(∅)f(0) + (1−m(∅))
∑
A �=∅

m(A)log2(A) (2)

with f(0) a real number s.t. f(0) < |X |. In the above equation, m(∅)f(0) can
be seen as a penalty given to the evaluation of the merged belief when conflict
appears, while the second part of the right-hand side of equation (2) is equivalent
to expected cardinality where |A| is replaced by log2(|A|) (more generally, we
can replace |A| by any non-decreasing function f(|A|) from N to R). A similar
strategy (penalizing the appearance of conflict) could thus be adopted with ex-
pected cardinality (or with any function f(|A|)), nevertheless, it would not be
without inconvenient:

– adding penalty to conflict is computationally less efficient than using ex-
pected cardinality alone, since proposition 3 does not hold.

– Cattaneo mentions that associativity and conflict minimization are incom-
patible, while our rule is at least associative in the case of possibility distri-
butions (other cases still have to be explored).

Now, the claim that a cautious conjunctive rule should give a merged bba where
the conflict is minimized is questionable. This is shown by our small example 4,
where minimizing the conflict, by assigning zero mass to empty intersections
while respecting the marginals, produces the bba m({x2}) = 0.5, m({x4}) = 0.5,
which is the only probability distribution distribution in Pm1 ∩Pm2 . Indeed, this
bba is the most precise possible result, and its informational content is clearly
more adventurous than the bba corresponding to min(π1, π2).

4.4 Least Commitment Based on the Weight Function

Any non dogmatic belief function with bba m can be uniquely represented as the
conjunctive combination of the form m =

⊙
A �=X Aw(A) [11], where w(A) is a

positive weight, and Aw(A) represents the (generalized ) simple support function
with bba µ such that µ(A) = 1 − w(A) and µ(X) = w(A), and

⊙
denotes

the unnormalized Dempster rule of combination. Note that if w(A) ∈ [0, 1],
µ is a simple support bba. Otherwise, it is not a bba. Denoeux [5] introduces
another definition of least commitment calling a bba m1 less w-committed than
m2 whenever w1(A) ≤ w2(A), ∀A �= X . Denoeux proposes to apply the following
cautious rule to weight functions:

w12(A) = min(w1(A), w2(A)), ∀A �= X.
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and he shows that it produces the weight function of the least w-committed
merged bba among those that are more w-committed than both marginals m1
and m2. If a bba is less w-committed than another one, then it is a specialisation
thereof. Our conjunctive merging only requires the result to be more s-committed
than m1 and m2. which is a weaker condition than to be more w-committed.
Now, apply both rules to the following example (2 of [5]).

Example 5. : Consider X ={a, b, c}, m1 defined by m1({a, b})=0.3, m1({b, c}) =
0.5, m1(X) = 0.2; m2 defined by m2({b}) = 0.3, m2({b, c}) = 0.4, m2(X) = 0.3.
Results of both rules are given in the following table

Denoeux’s rule (mD) Max. Exp. Card. rule (mC)
Focal Sets Mass Focal Sets Mass Focal Sets Mass Focal Sets Mass
{b} 0.6 {b, c} 0.2 {b} 0.3 {X} 0.2
{a, b} 0.12 {X} 0.08 {b, c} 0.5

In this example, our conjunctive cautious rule yields a merged bba mC that
is s-less committed (and hence has a greater expected cardinality) than mD, the
one obtained with Denoeux’s rule. Nevertheless, the merged bba obtained by
maximizing expected cardinality is not comparable in the sense of the w-ordering
with any of the three other bbas (m1, m2, m

D), nor does it fulfil Denoeux’s
condition of being more w-committed than m1 and m2. The cautious w-merging
of possibility distributions does not reduce to the minimum rule either. Thus, the
two approaches are at odds. As it seems, using the w-ordering allows to easily
find a unique least-committed element, at the expense of restricting the search to
a subset ofMm1∩m2

X due to the use of the w-ordering (which can be questioned
in the scope of a cautious approach). See [5] for a more detailed discussion on
these issues.

In his paper, Denoeux generalizes both
⊙

and his cautious rule with triangu-
lar norms. However, the set of non-dogmatic belief functions equipped with

⊙
forms a group, as is the product of positive w-numbers. So the relevant setting
for generalizing the product of weight functions seems to be the one of uninorms.
But the minimum is not a uninorm on the positive real line. It is the greatest
t-norm on [0, 1], in particular, greater than product, and this property is in
agreement with minimal commitment of contour functions. But the minimum
rule no longer dominates the product on the positive real line, so that the bridge
between Denoeux’s idempotent rule and the idea of minimal commitment is not
obvious beyond the w-ordering.

5 Conclusions

When our knowledge about the dependencies existing between multiple sources is
poor, Dempster rule of combination cannot be applied. The merging of bbas should
follow the principle of least-commitment, or said differently, we should adopt a
cautious attitude. Nevertheless, the various definitions of least-commitment often
lead to indecision (i.e. to non-unicity of the solution). In this paper, we have stud-
ied the maximisation of the expected cardinality of the merged bba and proposed
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an idempotent merging rule, based on the commensuration of bbas respecting the
partial ordering induced by inclusion between focal sets. It encompasses the min-
imum rule on possibility distributions, thus justifying it in terms of least commit-
ment. However more investigations are needed to make our proposition practically
convenient and to articulate the expected cardinality criterion with other notions
of least commitment, based on generalized forms of bba cardinality, on the compar-
ison of contour functions, and other information orderings in the theory of belief
functions.
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Abstract. A new method is proposed for building a predictive belief function
from statistical data in the Transferable Belief Model framework. The starting
point of this method is the assumption that, if the probability distribution PX of
a random variable X is known, then the belief function quantifying our belief re-
garding a future realization of X should have its pignistic probability distribution
equal to PX . When PX is unknown but a random sample of X is available, it is
possible to build a set P of probability distributions containing PX with some
confidence level. Following the Least Commitment Principle, we then look for a
belief function less committed than all belief functions with pignistic probabil-
ity distribution in P . Our method selects the most committed consonant belief
function verifying this property. This general principle is applied to the case of
the normal distribution.

Keywords: Dempster-Shafer theory, Evidence theory, Transferable Belief Model,
possibility distribution, statistical data.

1 Introduction

The Transferable Belief Model (TBM) is gaining increasing interest as a formal frame-
work for information fusion, decision making under uncertainty and imprecise data
analysis [14,21,18]. However, it is no always clear how to quantify various uncertain-
ties using belief functions as required in this framework, especially when statistical data
are involved. A contribution to this problem will be presented here.

More precisely, the problem considered in this paper can be described as follows.
Let X be a random variable with unknown probability distribution PX . We would like to
quantify the beliefs held by an agent about a future realization of X from past indepen-
dent observations X1, . . . , Xn drawn from the same distribution. In [5], it was argued that
a belief function bel(·; X1, . . . , Xn) solution to this problem should verify two properties:
it should be less committed than PX with a given probability (i.e., for a given proportion
of realizations of the random sample), and it should converge towards PX in probability
as the size of the sample tends to infinity. Several methods for constructing such belief
functions (refered to as predictive belief functions) were proposed in [5] in the special
case where X is discrete, based on multinomial confidence intervals. This approach was

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 344–355, 2007.
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recently extended to the continuous case using confidence bands on the unknown cu-
mulative probability distribution instead of multinomial confidence intervals [1], and a
similar approach in the context of Possibility Theory was presented in [12].

In the above approach, the second requirement demanding that, in the long run, the
predictive belief function converge towards the probability distribution of X is based on
Hacking’s frequency principle [11,17], which equates the degree of belief of an event to
its probability (long run frequency), when the latter is known. This principle, however,
can be questioned. For instance, consider the result X of a coin-tossing experiment,
with X ∈ {H, T }, where H and T stand for “Head” and “Tail”, respectively. If the coin
is known to be perfectly balanced, then PX({H}) = PX({T }) = 0.5. If asked about our
opinion regarding the result of the next toss, should we necessarily assign a degree
of belief 0.5 to the event that this toss will bring a “Head”? This requirement seems
hard to justify. However, if we are forced to bet on the result of this random experi-
ment, then it seems reasonable to assign equal odds to the two elementary events. In the
TBM, degrees of chance are not equated with degrees of belief: decision making is as-
sumed to be handled at the pignistic level, which is distinguished from the credal level
at which beliefs are entertained [21,20]. The pignistic transformation converts each be-
lief function bel into a pignistic probability distribution BetP that is used for decision
making. As a consequence, we may replace Hacking’s principle by the weaker require-
ment that the pignistic probability of an event be equal to its long run frequency, when
the latter is known. Coming back to the coin example, this requirement leads to the
constraint BetP({H}) = BetP({T }) = 0.5, which defines a set of admissible belief func-
tions. Among this set, the Least Commitment Principle [16] dictates to choose the least
committed one (i.e., the least informative), which is here the vacuous belief function.

In the above example, the probability distribution of X was assumed to be known. In
the more realistic situation considered here, we only have partial information about this
distribution, in the form of a random sample X1, . . . , Xn. In that case, it is possible to
construct a set P of probability distributions defined, e.g., by a parametric confidence
region. A natural extension of the above line of reasoning is then to require that bel
be less committed than any belief function with pignistic probability distribution in P .
This leads to the definition of a set of admissible belief functions, among which the
most committed one can be chosen. This is the principle of the approach presented in
this paper.

The rest of this paper is organized as follows. The background on the TBM will first
be recalled in Section 2. The proposed approach will be formalized in Section 3. It will
then be applied to the case of the normal distribution in Section 4. Section 5 will finally
conclude the paper.

2 Background on the TBM

This section provides a short introduction to the main notions pertaining to the theory
of belief functions that will be used throughout the paper, and in particular, its TBM
interpretation. We first consider the case of belief functions defined on a finite domain
[14], and then address the case of a continuous domain [19].
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2.1 Belief Functions on a Finite Domain

Let X = {ξ1, . . . , ξK} be a finite set, and let X be a variable taking values in X . Given
some evidential corpus, the knowledge held by a given agent at a given time over the
actual value of variable X can be modeled by a so-called basic belief assignment (bba)
m defined as a mapping from 2X into [0, 1] such that:∑

A⊆X
m(A) = 1. (1)

Each mass m(A) is interpreted as the part of the agent’s belief allocated to the hypothesis
that X takes some value in A [14,21]. The subsets A ∈X such that m(A) > 0 are called
the focal sets of A. When the focal sets are nested, m is said to be consonant.

Equivalent representations of m include the belief, plausibility and commonality
functions defined, respectively, as:

bel(A) =
∑
∅�B⊆A

m(B), (2)

pl(A) =
∑

B∩A�∅
m(B), (3)

and
q(A) =

∑
B∩A�∅

m(B), (4)

for all A ⊆ X . When m is consonant, then the plausibility function is a possibility
measure: it verifies pl(A∪B) = max(pl(A), pl(B)) for all A, B ⊆X . The corresponding
possibility distribution is defined by poss(x) = pl({x}) = q({x}) for all x ∈ X , and the
commonality function verifies q(A∪B) = min(q(A), q(B)) for all A, B ⊆X . Conversely,
any possibility measure Π with possibility distribution poss(x) = Π({x}) for all x ∈ X
is a plausibility function corresponding to a consonant bba m defined as follows [7]. Let
πk = poss(ξk), and let us assume that the elements of X have been arranged in such a
way that π1 ≥ π2 ≥ . . . ≥ πK . Then, we have:

m(A) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 − π1 if A = ∅,
πk − πk+1 if A = {ξ1, . . . , ξk} for some k ∈ {1, . . . ,K − 1},
πK if A =X ,
0 otherwise.

(5)

In the TBM, the Least commitment Principle (LCP) plays a role similar to the princi-
ple of maximum entropy in Bayesian Probability Theory. As explained in [16], the LCP
states that, given two belief functions compatible with a set of constraints, the most
appropriate is the least informative. To make this principle operational, it is necessary
to define ways of comparing belief functions according to their information content.
Several such partial orderings, generalizing set inclusion, have been proposed [22,8].
Among them, the q- and pl-ordering relations are defined as follows:

– m1 is said to be q-more committed than m2 (noted m1 �q m2) if q1(A) ≤ q2(A), for
all A ⊆X ;
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– m1 is said to be pl-more committed than m2 (noted m1 �pl m2) if pl1(A) ≤ pl2(A),
for all A ⊆X ;

The interpretation of these and other ordering relations is discussed in [8] from a set-
theoretical perspective, and in [9] from the point of view of the TBM. In general, q- and
pl-orderings are distinct notions, and none of them implies the other. However, these
two orderings are equivalent in the special case of consonant belief functions: if m1 and
m2 are consonant, then

m1 �q m2 ⇔ m1 �pl m2 ⇔ poss1 ≤ poss2.

The TBM is a two-level mental model in which belief representation and updating
take place at a first level termed credal level, whereas decision making takes place at a
second level called pignistic level [21]. To make decisions, any bba m such that m(∅) < 1
is mapped into a pignistic probability function Betp = Bet(m) given by

Betp(x) =
∑

A⊆X ,A�∅

m(A)
1 − m(∅)

1A(x)
|A| , ∀x ∈X , (6)

where 1A denotes the indicator function of A defined by 1A(x) = 1 if x ∈ A, 0 otherwise.
Conversely, let us assume that we know the pignistic probability function p0 of an

agent and we would like to find the q-least committed (q-LC) belief function associated
to p0. As shown in [9,10], the solution is a consonant belief function, called the q-LC
isopignistic belief function. It is defined by the following possibility distribution:

poss(x) =
∑

x′∈X
min(p0(x), p0(x′)). (7)

If m is the bba associated to poss, we note m = Bet−1
LC(p0).

2.2 Continuous Belief Functions on R

Belief functions on R may be defined by replacing the concept of bba by that of basic
belief density (bbd) [4,15,19]. A normal bbd m is a function taking values from the set
of closed real intervals into [0,+∞), such that

�

x≤y

m([x, y]) dx dy = 1. (8)

The belief, plausibility and commonality functions can be defined in the same way as
in the finite case, replacing finite sums by integrals. In particular,

bel([x, y]) =
∫ y

x

∫ y

u
m([u, v])dvdu, (9)

pl([x, y]) =
∫ y

−∞

∫ +∞
max(x,u)

m([u, v])dvdu, (10)
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q([x, y]) =
∫ x

−∞

∫ +∞
y

m([u, v])dvdu, (11)

for all x ≤ y. The domains of these integrals may be represented as in Figure 1, where
each point in the triangle corresponds to an interval with upper and lower bounds indi-
cated on the horizontal and vertical axes, respectively.

a b

a

b
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to

x

y

a b

a

b
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to

x

y

a b

a

b
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to

x

y

(a) (b)

(c)

Fig. 1. The belief, plausibility and commonality functions are defined as integrals of the bbd with
support [a, b] on the shaded area of triangles (a), (b) and (c), respectively

A pignistic probability distribution Bet f = Bet(m) can be defined as in the discrete
case. It is a continuous distribution with the following probability density [19]:

Bet f (x) = lim
ε→0

∫ x

−∞

∫ +∞
x+ε

m([u, v])
v − u

dvdu. (12)

The expression of the q-LC isopignistic bbd m = Bet−1
LC( f0) associated with a uni-

modal probability density f0 with mode ν was also derived in [19]. The focal sets of
m are the level sets of the density function f0. They are intervals Ib = [a, b] such that
f0(a) = f0(b). Given the upper bound b of any such interval, the lower bound is uniquely
defined by a = γ(b) for all b ≥ ν. The bbd is defined by

m([a, b]) = θ(b)δ(a − γ(b)),
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with
θ(b) = (γ(b) − b) f ′0(b),

where f ′0 is the derivative of f0 and δ is the Dirac delta function. Note that m is con-
sonant. Consequently, the associated plausibility function is a possibility measure. The
corresponding possibility distribution poss is given by:

poss(x) = pl({x}) =
⎧⎪⎪⎨⎪⎪⎩
∫ +∞

x
(γ(t) − t) f ′0(t)dt if x ≥ ν∫ +∞

γ−1(x)
(γ(t) − t) f ′0(t)dt otherwise.

If f0 is symmetrical, then γ(x) = 2ν − x, and the above equation simplifies to

poss(x) =

⎧⎪⎨⎪⎩2(x − ν) f0(x) + 2
∫ +∞

x
f0(t)dt if x ≥ ν

2(ν − x) f0(x) + 2
∫ x

−∞ f0(t)dt otherwise.
(13)

3 Consonant Belief Function Induced by a Set of Pignistic
Probabilities

Let us now assume that the pignistic probability distribution p0 of an agent is only
known to belong to a set P of probability distributions and, as before, we seek to
approximate the agent’s bba m0. The problem is again underdetermined, as we can only
say that m0 belongs to the set M (P) = Bet−1(P) defined by

M (P) = {m | Bet(m) ∈P}
=
⋃
p∈P

M (p),

where M (p) = Bet−1(p) denotes the set of bbas whose pignistic probability distribution
is equal to p (see Figure 2).

According to the LCP, m0 should be approximated by a bba m∗ less committed than
m0, with respect to some ordering �. In general, the set M (P) does not contain a
LC element. However, we may define the admissible set M ∗(P) as the set of bbas
dominating (i.e., less committed than) all bbas in M (P):

M ∗(P) = {m′ | m � m′,∀m ∈M (P)}.
It is then natural to choose m∗ as the most committed element in M ∗(P), if this element
exists. The solution of this problem is not obvious in the general case. However, a
simple solution can be found if we restrict the search to the subset C ∗(P) ⊂M ∗(P) of
consonant bbas less committed than all bbas in M (P), and we consider the q-ordering.

For all p ∈ P , let mp = Bet−1
LC(p) be the q-LC isopignistic bba induced by p. It is

consonant. Let possp denote the corresponding possibility distribution. Bba mp is the
q-least committed bba in the set M (p) of bbas whose pignistic probability distribution
is p. Consequently, a consonant bba m belongs to C ∗(P) if and only if it is q-less
committed than mp, for all p ∈P , ie, if and only if

possp ≤ poss, ∀p ∈P ,
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M(p’)

Credal level

Pignistic level

Less committedMore committed

p

Bet-1

m*

P

M(P) M*(P)

mp

mp’

mp’’

p’

p’’

M(p)

M(p’’)

C*(P)

Fig. 2. Definition of the q-most committed dominating (q-MCD) bba m∗ associated to a set P of
probability distribution. The set M (P) contains all bbas with pignistic probability function in
P . The set M ∗(P) contains all bbas dominating (i.e., less committed than) all bbas in M (P).
The q-MCD bba m∗ is the q-most committed consonant bba in M ∗(P).

where poss is the possibility distribution associated to m. It follows that the q-most
committed element in C ∗(P) is defined by the following possibility distribution

poss∗(x) = sup
p∈P

possp(x), ∀x ∈X . (14)

Possibility distribution poss∗ will be referred to as the q-most committed dominating
(q-MCD) possibility distribution associated to P . The corresponding bba will be noted
m∗.

Example 1. Let us consider a frame X = {ξ1, ξ2, ξ3}with three elements, and a set P =

{p, p′, p′′} of three probability distributions shown in the first three columns of Table 1.
The possibility distributions poss, poss′, poss′′ associated with the corresponding q-LC
isopignistic bbas are displayed in Table 1. Note that there is no q-LC element among
these three bbas. Possibility distribution poss∗ is shown in the last column of Table 1.
Using (5), we obtain the corresponding bba as

m∗({ξ1}) = 0.35, m∗({ξ1, ξ2}) = 0.05, m∗(X ) = 0.6.

Remark 1. By definition, the q-MCD bba m∗ is the q-most committed element among
all consonant bbas that are q-less committed than all bbas in M (P). The restriction
to consonant bbas is justified by the existence and unicity of a solution in C ∗(P),
whereas the existence of a q-most committed element in M ∗(P) is not guaranteed
in general. Additionally, finding the solution in C ∗(P) is computationally tractable in
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Table 1. Pignistic probabilities and corresponding q-LC isopignistic possibility distributions of
Example 1

x p(x) p′(x) p′′(x) poss(x) poss′(x) poss′′(x) poss∗(x)
ξ1 0.7 0.6 0.65 1 1 1 1
ξ2 0.2 0.25 0.1 0.5 0.65 0.3 0.65
ξ3 0.1 0.15 0.25 0.3 0.45 0.6 0.6

several cases of practical interest, as will be shown below, and the result usually has
a very simple expression. It may happen, however, that a q-most committed element
in M ∗(P) exists, and that it is strictly more committed than m∗. This is the case, in
particular, when function qmax defined by

qmax(A) = max
p∈P

qp(A), ∀A ⊆X

is a commonality function, qp being the commonality function associated to mp, . In
that case, the corresponding bba mmax is obviously the q-most committed element in
M ∗(P). This is the case in Example 1: it may be shown that qmax = max(q, q′, q′′) is
a commonality function, and the corresponding bba mmax is strictly q-more committed
than m∗.

Remark 2. The approach presented here is different from that introduced in [5] and [2],
in which we searched for the pl-most committed bba m◦, in the set M ◦(P) of bbas that
are less committed than all probability measures in P . In this alternative approach, the
solution is obtained as the lower envelope P∗ of P , when it is a belief function. This is
the case, in particular, when P is a p-box [2], or when it is constructed from a multi-
nomial confidence region with K ≤ 3 [5]. Different heuristics were introduced in [5]
for constructing a belief function less committed than P∗ when P∗ is not a belief func-
tion. The approach adopted here usually yields a simpler result as it produces consonant
belief functions. Additionally, it may be argued to be more in line with the two-level
structure of the TBM, as it does not directly compare probabilities at the pignistic level
with belief functions at the credal level.

4 Application to the Normal Distribution

Let us now assume that X has a normal distribution with mean µ and variance σ2. If
these two parameters are known, then the possibility distribution poss associated with
the q-LC isopignistic bbd is given by (13):

poss(x; µ, σ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2(x−µ)
σ
√

2π
exp
(
− (x−µ)2

2σ2

)
+ 2
(
1 −Φ

(
x−µ
σ

))
if x ≥ µ

2(µ−x)
σ
√

2π
exp
(
− (x−µ)2

2σ2

)
+ 2Φ

(
x−µ
σ

)
otherwise,

(15)

where Φ is the standard normal cumulative distribution function.
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Fig. 3. Shape of Mood’s exact region: the Mood Exact Region for α = 0.1, α1 = α2 and n =
25. Without loss of generality, x = 0 and s2 = 1. The points with coordinates (̂µ−, (σ̂+)2) and
(̂µ+, (σ̂+)2) are denoted A and B, respectively.

When µ and σ2 are unknown but an iid sample X1, . . . , Xn is available, then it is
possible to define a joint confidence region for µ and σ2 [3]. In particular, the Mood
exact confidence region at level 1 − α = (1 − α1)(1 − α2) is defined by

R(X1, . . . , Xn) =

{
(µ;σ2) : X − u1−α1/2

σ√
n
≤ µ ≤ X + u1−α1/2

σ√
n
,

nS 2

χ2
n−1;1−α2/2

≤ σ2 ≤ nS 2

χ2
n−1;α2/2

⎫⎪⎪⎬⎪⎪⎭ , (16)

where X is the sample mean, S 2 = (1/n)
∑n

i=1(Xi −X)2 is the sample variance, u1−α1/2 is
the upper α1/2 percentile of a standard normal distribution, and χ2

n−1;α2/2
and χ2

n−1;1−α2/2

are the lower and upper α2/2 percentiles of a χ2
n−1 distribution. The shape of that region

is illustrated in Figure 3. Values of α1 and α2 yielding a region of smallest possible size
for a fixed confidence level are given in [3].

Let P denote the set of Gaussian distributions with parameters contained in con-
fidence region R. Applying the principle outlined in Section 3, we may obtain the
q-MCD possibility distribution poss∗ for any x by maximizing poss(x; µ, σ) given by
(15) with respect to µ and σ, under the constraint (µ, σ2) ∈ R. The result is given by
the following proposition.

Proposition 1. The q-MCD possibility distribution poss∗ associated with the Mood
confidence confidence region R at level (1 − α1)(1 − α2) is

poss∗(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
poss(x; µ̂−, σ̂+) if x < µ̂−
1 if µ̂− ≤ x ≤ µ̂+
poss(x; µ̂+, σ̂+) if x > µ̂+,

(17)

with
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Fig. 4. Plot of poss∗(x) for x = 0, s2 = 1, α = 0.1, α1 = α2, and n = 10, 30, 100 and∞

σ̂+ =

⎛⎜⎜⎜⎜⎜⎝ nS 2

χ2
n−1;α2/2

⎞⎟⎟⎟⎟⎟⎠
1/2

,

µ̂− = X − u1−α1/2
σ̂+√

n
, µ̂+ = X + u1−α1/2

σ̂+√
n
.

Proof. We have by definition

poss∗(x) = sup
(µ,σ2)∈R

poss(x; µ, σ).

If x ∈ [̂µ−, µ̂+], then we can get poss(x, µ, σ) = 1 by setting µ = x and σ = σ̂+. If
x < µ̂−, then the value 1 cannot be reached. However, we obtain using standard calculus
for x < µ:

∂poss(x; µ, σ)
∂µ

= − (x − µ)2

σ3
√

2π
exp

(
− (x − µ)2

2σ2

)
< 0

and
∂poss(x; µ, σ)

∂σ
=

(µ − x)3

σ4
√

2π
exp

(
− (x − µ)2

2σ2

)
> 0.

Consequently, poss(x; µ, σ) is maximized by jointly minimizing µ and maximizing σ,
and the maximum is reached for (µ, σ) = (̂µ−, σ̂+). Similarly, we get for x > µ̂+:

∂poss(x; µ, σ)
∂µ

=
(x − µ)2

σ3
√

2π
exp

(
− (x − µ)2

2σ2

)
> 0

and
∂poss(x; µ, σ)

∂σ
=

(x − µ)3

σ4
√

2π
exp

(
− (x − µ)2

2σ2

)
> 0.

Consequently, the maximum of poss(x, µ, σ) for x > µ̂+ is reached for (µ, σ) = (̂µ+, σ̂+).
�
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Figure 4 shows the possibility distribution poss∗(x) for x = 0, s2 = 1, α = 0.1 and
various values of n. The case n = ∞ corresponds to the situation where parameters
µ and σ2 are known: in that case, poss∗ is simply que q-LC isopignistic possibility
distribution induced by the normal pignistic distribution with µ = 0 and σ2 = 1.

5 Conclusion

A new method for generating a belief function from statistical data in the TBM frame-
work has been presented. The starting point of this method is the assumption that, if
the probability distribution PX of a random variable is known, then the belief function
quantifying our belief regarding a future realization of X should be such that its pig-
nistic probability distribution equals PX . In the realistic situation where PX is unknown
but a random sample of X is available, it is possible to build a set P of probability
distributions containing P with some confidence level. Following the LCP, it is then
reasonable to impose that the sought belief function be q-less committed than all be-
lief functions whose pignistic probability distribution is in P . Our method selects the
q-most committed consonant belief function verifying this property, referred to as the q-
MCD possibility distribution induced by P . This general principle has been illustrated
in the case of the normal distribution.

In conjunction with the General Bayesian Theorem [16,6], the q-LC isopignistic
transformation has proved useful to tackle classification problems using the TBM [13].
In this approach, the parameters of the pignistic distributions were assumed to be given
by experts or estimated using large samples. Using the tools presented in this paper, it
will be possible to apply this methodology to a wider range of problems where only
small datasets are available. Future work in this direction will be reported in forthcom-
ing papers.
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On the Orthogonal Projection of a Belief
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Abstract. In this paper we study a new probability associated with
any given belief function b, i.e. the orthogonal projection π[b] of b onto
the probability simplex P . We provide an interpretation of π[b] in terms
of a redistribution process in which the mass of each focal element is
equally distributed among its subsets, establishing an interesting anal-
ogy with the pignistic transformation. We prove that orthogonal projec-
tion commutes with convex combination just as the pignistic function
does, unveiling a decomposition of π[b] as convex combination of basis
pignistic functions. Finally we discuss the norm of the difference between
orthogonal projection and pignistic function in the case study of a qua-
ternary frame, as a first step towards a more comprehensive picture of
their relation.

1 Introduction

The theory of evidence (ToE) is one of the most popular uncertainty theories,
thanks perhaps to its nature of quite natural extension of the classical Bayesian
methodology. Indeed, the notion of belief function (b.f.) [1] generalizes that of
finite probability, with classical probabilities forming a subclass P of b.f.s called
Bayesian belief functions. The interplay of belief and Bayesian functions is of
course of great interest in the theory of evidence. In particular, many people
worked on the problem of finding a probabilistic approximation of an arbitrary
belief function. Several papers [2,3,4,5,6,7,8,9,10] have been published on this
issue, mainly in order to find efficient implementations of the rule of combina-
tion aiming to reduce the number of focal elements. The connection between
belief functions and probabilities is as well crucial in Smets’ “Transferable Belief
Model” [11].

The study of the links between belief functions and probabilities has recently
been posed in a geometric setup [12,13]. In robust Bayesian statistics, there
is a large literature on the study of convex sets of probability distributions
[14,15,16,17]. On our side, in a series of works [18,19] we proposed a geometric
interpretation of the theory of evidence in which belief functions are represented
as points of a simplex called belief space B, a polytope whose vertices are all the
b.f.s focused on a single event A, mb(A) = 1, mb(B) = 0 ∀B �= A. The region P
of Bayesian b.f.s is also a simplex, part of the border of B. The relation between
belief and probability measures can then be naturally studied in this framework.

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 356–367, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



On the Orthogonal Projection of a Belief Function 357

In this paper we use tools provided by the geometric approach to introduce a
new probability function π[b] associated with any given belief function b, precisely
the orthogonal projection of b onto the probability simplex P . We thoroughly
discuss its interpretation and properties, and its relations with other known
Bayesian approximations of belief functions, i.e. pignistic function and relative
plausibility of singletons. We show that π[b] is inherently related to a redistribu-
tion process similar to that of the pignistic transformation, in which though the
mass of each focal element is reassigned to all its subsets. We prove that, just as
the pignistic function does, the orthogonal projection commutes with respect to
the convex combination operator, yielding an interesting decomposition of π[b]
in terms of convex combination of basis pignistic functions.

2 A Geometric Approach to the ToE

A basic belief assignment (b.b.a.) over a finite set or “frame of discernment” [1] Θ
is a function m : 2Θ → [0, 1] on its power set 2Θ .= {A ⊆ Θ} such that m(∅) = 0,∑

A⊆Θ m(A) = 1, m(A) ≥ 0 ∀A ⊆ Θ. Subsets of Θ associated with non-zero
values of m are called focal elements. The belief function b : 2Θ → [0, 1] associated
with a basic belief assignment m on Θ is defined as: b(A) =

∑
B⊆A m(B). The

unique b.b.a. mb associated with a given b.f. b can be recovered by means of
the Moebius inversion formula mb(A) =

∑
B⊆A(−1)|A−B|b(B). In the ToE a

probability function is simply a special belief function assigning non-zero masses
to singletons only (Bayesian b.f.): mb(A) = 0, |A| > 1. A dual mathematical
representation of the evidence encoded by a b.f. b is the plausibility function
(pl.f.) plb : 2Θ → [0, 1], where the plausibility plb(A) of an event A is given by
plb(A) .= 1 − b(Ac) = 1 −

∑
B⊆Ac mb(B) =

∑
B∩A �=∅mb(B) where Ac denotes

the complement of A in Θ.
Motivated by the search for a meaningful probabilistic approximation of belief

functions we introduced the notion of belief space [19], as the space of all belief
functions defined on a given frame of discernment Θ. A belief function b : 2Θ →
[0, 1] is completely specified by its N − 1 belief values {b(A), A ⊆ Θ, A �= ∅},
N

.= 2|Θ|, and can then be represented as a point of RN−1. The belief space
associated with Θ is the set of points BΘ of RN−1 corresponding to a belief
function. We will assume the domain Θ fixed, and denote the belief space with
B. It is not difficult to prove [19] that B is convex. Let bA

.= b ∈ B s.t. mb(A) = 1,
mb(B) = 0 ∀B �= A be the unique belief function assigning all the mass to a
single subset A of Θ (A-th basis belief function). It can be proved that [19] the
belief space B is the convex closure of all basis belief functions bA: B = Cl(bA, ∅ �
A ⊆ Θ), where Cl denotes the convex closure operator:

Cl(b1, ..., bk) =
{
b ∈ B : b = α1b1 + · · ·+ αkbk :

∑
i αi = 1, αi ≥ 0 ∀i

}
. (1)

The convex space delimited by a collection of (affinely independent [20]) points
is called simplex. Each b.f. b ∈ B can be written as a convex sum as b =∑
∅�A⊆Θ mb(A)bA. Geometrically, the b.b.a. mb is the set of coordinates of b
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Fig. 1. In a binary frame Θ2 = {x, y} the belief space B is a simplex with vertices
{bΘ = [0, 0]′, bx = [1, 0]′, by = [0, 1]′}. A belief function b and the corresponding plau-
sibility function plb are always located in symmetric positions with respect to the set
P of probabilities on Θ. The associated relative plausibility p̃lb and belief b̃ of single-
tons are shown as the intersections of the probabilistic subspace with the line joining
plb and bΘ = [0, 0]′ and the line passing through b and bΘ respectively. The other
Bayesian functions related to b all coincide with the center of the segment of consistent
probabilities P [b].

in the simplex B. Analogously, the set P of all Bayesian belief functions on
Θ is the simplex determined by all the basis b.f.s associated with singletons:
P = Cl(bx, x ∈ Θ). PL.F.s can also be seen as points of RN−1 [19].

3 Orthogonal Projection: Binary Case

It may be helpful to visually render these concepts in a simple example. Figure 1
shows the geometry of belief and plausibility functions for a binary frame Θ2 =
{x, y}. Since b(Θ) = plb(Θ) = 1 for all b, we can represent belief and plausibility
vectors as points of a plane with coordinates b = [b(x) = mb(x), b(y) = mb(y)]′,
plb = [plb(x) = 1−mb(y), plb(y) = 1−mb(x)]′ respectively.

Each pair of functions (b, plb) determines a line which is orthogonal to P , where
b and plb lie on symmetric positions on the two sides of the Bayesian region. The
set of probabilities P [b] consistent with b, i.e. P [b] .= {p ∈ P : p(A) ≥ b(A) ∀A ⊆
Θ} in the simple binary case forms a segment in P (see Figure 1 again), whose
center of mass is well known [21,22,18] to be Smets’ pignistic function [23]

BetP [b] =
∑
x∈Θ

bx

∑
A⊇{x}

mb(A)
|A| = bx

(
mb(x) +

mb(Θ)
2

)
+ by

(
mb(y) +

mb(Θ)
2

)
.

(2)
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It is interesting to notice though that it also coincides with the orthogonal
projection π[b] of b onto P : π[b] = BetP [b] = P [b]. On the other side, both
relative plausibility p̃lb and relative belief b̃ of singletons

p̃lb(x) .= plb(x)∑
y∈Θ

plb(y)
, b̃(x) .= b(x)∑

y∈Θ

b(y) (3)

even though consistent with b, do not follow the same scheme.
In the following we will study the geometry of the orthogonal complement of

P and analyze the properties of the associated Bayesian function, the orthogonal
projection π[b] of b onto the probability simplex P .

4 Orthogonal Projection

Let us then denote with a(v1, .., vk) the affine subspace of some Cartesian space
Rm generated by the points v1, ..., vk ∈ Rm, i.e. the set {v ∈ Rm : v =
α1v1 + · · ·+ αkvk,

∑
i αi = 1}. The orthogonal projection π[b] of b onto a(P) is

obviously guaranteed to exist as a(P) is nothing but a linear subspace of RN−1

(on which b lives). By definition, the orthogonal projection π[b] is the solution
of the optimization problem

π[b] = argmin
p∈P
‖p− b‖L2 = arg min

p∈P

√∑
A⊆Θ

|p(A)− b(A)|2 (4)

and is then naturally the unique solution of the Bayesian approximation problem
when choosing the L2 distance in the belief space.

An explicit calculation of π[b] requires a description of the orthogonal com-
plement of a(P) in RN−1. Let n = |Θ| be the cardinality of Θ.

4.1 General Form of the Orthogonal Projection

We need to find a necessary and sufficient condition for an arbitrary vector
v =

∑
A⊆Θ vAXA, where {XA, A ⊆ Θ} is a reference frame in RN−1, to be

orthogonal to the probabilistic subspace a(P). If we compute the scalar product
〈v, by − bx〉 between v and the generators by − bx of a(P ) we get〈 ∑

A⊆Θ

vAXA, by − bx

〉
=

∑
A⊆Θ

vA[by − bx](A).

After remembering that, by definition, bA(B) = 1 if B ⊇ A, 0 elsewhere, we can
see that these vectors display a special symmetry

by − bx(A) =

⎧⎨⎩
1 A ⊇ {y}, A �⊃ {x}
0 A ⊇ {x}, {y} or A �⊃ {x}, {y}
−1 A �⊃ {y}, A ⊇ {x}
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which allows us to write 〈v, by − bx〉 =
∑

A⊇y,A �⊃{x} vA−
∑

A⊇{x},A �⊃{y} vA. The
orthogonal complement a(P)⊥ of a(P) will then be expressed as

a(P)⊥ =
{
v :

∑
A⊇{y},A �⊃{x}

vA =
∑

A⊇{x},A �⊃{y}
vA ∀y �= x

}
.

If the vector v, in particular, is a belief function∑
A⊇{y},A �⊃{x}

b(A) =
∑

A⊇{y},A �⊃{x}

∑
B⊆A

mb(B) =
∑

B⊆{x}c

mb(B) · 2n−1−|B∪{y}|

since 2n−1−|B∪{y}| is the number of subsets A of {x}c containing both B and y,
and the orthogonality condition becomes∑

B⊆{x}c

mb(B)21−|B∪{y}| =
∑

B⊆{y}c

mb(B)21−|B∪{x}|

∀y �= x, after erasing the common factor 2n−2. Now, events B ⊆ {x, y}c appear in
both summations, with the same coefficient (since |B∪{x}| = |B∪{y}| = |B|+1)
and the equation reduces to∑

B⊇{y},B �⊃{x}
mb(B)21−|B| =

∑
B⊇{x},B �⊃{y}

mb(B)21−|B|
(5)

∀y �= x, the desired orthogonality condition. (5) can be used to prove that [24]

Theorem 1. The orthogonal projection π[b] of b onto a(P) can be expressed in
terms of the b.b.a. mb of b in the following equivalent forms:

∑
A⊇{x}

mb(A)21−|A| +
∑
A⊆Θ

mb(A)
(1− |A|21−|A|

n

)
(6)

∑
A⊇{x}

mb(A)
(1 + |Ac|21−|A|

n

)
+

∑
A �⊃{x}

mb(A)
(1− |A|21−|A|

n

)
. (7)

From (7) we can see that π[b] is indeed a probability, since both 1+|Ac|21−|A| ≥ 0
and 1 − |A|21−|A| ≥ 0 ∀|A| = 1, ..., n. This is not at all trivial, as π[b] is the
projection of b onto the affine space a(P), and could have in principle assigned
negative masses to one or more singletons. π[b] is hence a valid candidate to the
role of probabilistic approximation of the b.f. b.

Unnormalized case. It is interesting to note that the above results hold for
unnormalized belief functions [25] too. The orthogonality results of Section 4.1
are still valid as the proof of Theorem 1 [24] does not concern the mass of the
empty set. The orthogonal projection π[b] of a u.b.f. b is then well defined and
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is still given by Equations (6),(7) where this time the summations on the right
hand side include ∅ too:

π[b](x) =
∑

A⊇{x}
mb(A)21−|A| +

∑
∅⊆A⊆Θ

mb(A)
(1− |A|21−|A|

n

)
π[b](x) =

∑
A⊇{x}

mb(A)
(1 + |Ac|21−|A|

n

)
+

∑
∅⊆A �⊃{x}

mb(A)
(1− |A|21−|A|

n

)
.

4.2 Orthogonality Flag and Redistribution Process

Theorem 1 does not apparently provide any intuition about the meaning of π[b]
in terms of degrees of belief. If we process Equation (7) though we can reduce π
to a new Bayesian function strictly related to the pignistic function [24].

Theorem 2. π[b] = P̄(1−kO[b])+kO[b]O[b], where P̄ is the uniform probability
and O[b](x) is the Bayesian b.f.

O[b](x) =
Ō[b](x)
kO[b]

=

∑
A⊇{x}mb(A)21−|A|∑

A⊆Θ mb(A)|A|21−|A| . (8)

As 0 ≤ |A|21−|A| ≤ 1 for all A ⊆ Θ, kO[b] assumes values in the interval [0, 1].
Theorem 2 then implies that the orthogonal projection is always located on
the line segment joining the uniform, non-informative probability P̄ and the
Bayesian b.f. O[b]. By Equation (8) it turns out that π[b] = P̄ iff O[b] =
P̄ (since kO[b] > 0). The meaning to attribute to O[b] becomes clear when
we notice that the condition (5) under which a b.f. b is orthogonal to a(P)
can be rewritten as

∑
B⊇{y},B �⊃{x}mb(B)21−|B| +

∑
B⊇{y},{x}mb(B)21−|B| =∑

B⊇{x},B �⊃{y}mb(B)21−|B|+
∑

B⊇{y},{x}mb(B)21−|B| ≡
∑

B⊇{y}mb(B)21−|B|

=
∑

B⊇{x}mb(B)21−|B| ≡ Ō[b](x) = const ≡ O[b](x) = const = P̄ ∀ x ∈ Θ.
Therefore π[b] = P̄ iff b⊥a(P), and O − P̄ measures the non-orthogonality of b
with respect to P . O[b] deserves then the name of orthogonality flag.

A compelling link can be drawn between orthogonal projection and pignistic
function through the orthogonality flag O[b]. Let us define the two b.f.

b||
.=

1
k||

∑
A⊆Θ

mb(A)
|A| bA, b2||

.=
1

k2||

∑
A⊆Θ

mb(A)
2|A|

bA,

k|| and k2|| their normalization factors.

Theorem 3. O[b] is the relative plausibility of singletons of b2|| ; BetP [b] is the
relative plausibility of singletons of b||.

Proof. By definition of plausibility function

plb
2|| (x) =

∑
A⊇{x}

mb
2|| (A) =

1
k2||

∑
A⊇{x}

mb(A)
2|A|

=
Ō[b]
2k2||

,

∑
x∈Θ

plb
2|| (x) =

1
k2||

∑
x∈Θ

∑
A⊇{x}

mb(A)
2|A|

=
kO[b]
2k2||
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as kO[b] is the normalization factor for Ō[b]:∑
x∈Θ

Ō[b](x) =
∑
x∈Θ

∑
A⊇{x}

mb(A)21−|A| =
∑
A⊆Θ

mb(A)|A|21−|A| = kO[b].

Hence p̃lb
2|| (x) = Ō[b]/kO[b] = O[b], i.e.

plb||(x) =
∑

A⊇{x}
mb||(A) =

1
k||

∑
A⊇{x}

mb(A)
|A| =

1
k||

BetP [b](x)

and since
∑

x BetP [b](x) = 1, p̃lb||(x) = BetP [b](x).

The two functions b|| and b2|| represent two different processes acting on b (see
Figure 2). The first one redistributes the mass of each focal element among its
singletons (yielding directly a Bayesian b.f. BetP [b]). The second one distributes
the b.b.a. of each event A among its subsets B ⊆ A (∅, A included). In this second
case we get an unnormalized [25] b.f. bU with mbU (A) =

∑
B⊇A

mb(B)
2|B| whose

relative belief of singletons (3) b̃U is in fact the orthogonality flag O[b].

Example. Let us consider as an example the belief function b on the ternary
frame: mb(x) = 0.1, mb(y) = 0, mb(z) = 0.2, mb({x, y}) = 0.3, mb({x, z}) = 0.1,
mb({y, z}) = 0, mb(Θ) = 0.3. To get the orthogonality flag O[b] we need to apply
the redistribution process of Figure 2 to each focal element of b. In this case their
masses are divided among their subsets as follows:

mb(x) = 0.1 ,→ m′(x) = m′(∅) = 0.1/2 = 0.05,
mb(z) = 0.2 ,→ m′(z) = m′(∅) = 0.2/2 = 0.1,
mb({x, y}) = 0.3 ,→ m′({x, y}) = m′(x) = m′(y) = m′(∅) = 0.3/4 = 0.075,
mb({x, z}) = 0.1 ,→ m′({x, z}) = m′(x) = m′(z) = m′(∅) = 0.1/4 = 0.025,
mb(Θ) = 0.3 ,→ m′(Θ) = m′({x, y}) = m′({x, z}) = m′({y, z}) =

= m′(x) = m′(y) = m′(z) = m′(∅) = 0.3/8 = 0.0375.

By summing contributions related to singletons on the right hand side we get

mbU (x) = 0.05 + 0.075 + 0.025 + 0.0375 = 0.1875,
mbU (y) = 0.075 + 0.0375 = 0.1125, mbU (z) = 0.1 + 0.025 + 0.0375 = 0.1625

whose sum is the normalization factor kO[b] = mbU (x) + mbU (y) + mbU (z) =
0.4625 and by normalizing O[b] = [0.405, 0.243, 0.351]′. The orthogonal projec-
tion π[b] is finally the convex combination of O[b] and P̄ = [1/3, 1/3, 1/3]′ with
coordinate kO[b]: π[b] = P̄(1−kO[b])+kO[b]O[b] = [1/3, 1/3, 1/3]′ ·(1−0.4625)+
0.4625 · [0.405, 0.243, 0.351]′ = [0.366, 0.291, 0.342]′.

4.3 Orthogonal Projection and Convex Combination

As a confirmation of this relationship, orthogonal projection and pignistic func-
tion both commute with convex combination.
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x

x

y

y

z

z

A

A

m'(x) = m'(y) = m'(z) = 1/3 m(A)

m'(  ) = m'(x) = m'(y) = m'(z) = 

= m'({x,y}) = m'({x,z}) = 

m'({y,z}) = m'(A) = 1/8 m(A)

Fig. 2. Redistribution processes associated with pignistic transformation and orthogo-
nal projection. In the pignistic transformation (top) the mass of each focal element
is distributed among its elements. In the orthogonal projection (bottom), instead
(through the orthogonality flag), the mass of each f.e. is divided among its subsets.
In both cases, the related relative belief of singletons yields a Bayesian belief function.

Theorem 4. Orthogonal projection and convex combination commute, i.e. if
α1 + α2 = 1 then π[α1b1 + α2b2] = α1π[b1] + α2π[b2].

Proof. By Theorem 2 π[b] = (1− kO[b])P̄ + Ō[b] where the coefficient is kO[b] =∑
A⊆Θ mb(A)|A|21−|A| and Ō[b](x) =

∑
A⊇{x}mb(A)21−|A|. Hence

kO[α1b1 + α2b2] =
∑
A⊆Θ

(
α1mb1(A) + α2mb2(A)

)
|A|21−|A| = α1kO[b1] + α2kO[b2],

Ō[α1b1 + α2b2](x) =
∑

A⊇{x}

(
α1mb1(A) + α2mb2(A)

)
21−|A| = α1Ō[b1] + α2Ō[b2]

which in turn implies (since α1 + α2 = 1) π[α1b1 + α2b2] = (1 − α1kO[b1] −
α2kO[b2])P̄+α1Ō[b1]+α2Ō[b2] = α1

[
(1−kO[b1])P̄+Ō[b1]

]
+α2

[
(1−kO[b2])P̄+

Ō[b2]
]

= α1π[b1] + α2π[b2].

This property can be used to find an alternative expression of the orthogonal
projection as convex combination of the pignistic functions associated with all
basis belief functions.

Lemma 1. The orthogonal projection of a basis belief function bA is given by

π[bA] = (1− |A|21−|A|)P̄ + |A|21−|A|P̄A,

with P̄A = 1
|A|

∑
x∈A bx the center of mass of all probabilities with support in A.

Proof. By Equation (8) kO[bA] = |A|21−|A|, so that Ō[bA](x) = 21−|A| if x ∈ A,
0 otherwise. This implies

O[bA](x) =
{ 1
|A| x ∈ A

0 x �∈ A
=

1
|A|

∑
x∈A

bx = P̄A.
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Theorem 5. The orthogonal projection can be expressed as a convex combina-
tion of all the non-informative probabilities with support on a single event A:

π[b] = P̄
(
1−

∑
A �=Θ

αA

)
+
∑
A �=Θ

αAP̄A, αA
.= mb(A)|A|21−|A|. (9)

Proof. π[b] = π
[∑

A⊆Θ mb(A)bA

]
=
∑

A⊆Θ mb(A)π[bA] by Theorem 4, which

by Lemma 1 becomes
∑

A⊆Θ mb(A)[(1 − |A|21−|A|)P̄ + |A|21−|A|P̄A] = (1 −∑
A⊆Θ mb(A)|A|21−|A|)P̄ +

∑
A⊆Θ mb(A)|A|21−|A|P̄A which can be written as(

1−
∑
A⊆Θ

mb(A)|A|21−|A|
)
P̄ +

∑
A �=Θ

mb(A)|A|21−|A|P̄A + mb(Θ)|Θ|21−|Θ|P̄

i.e. Equation (9).

As P̄A = BetP [bA], we recognize that

BetP [b] =
∑
A⊆Θ

mb(A)BetP [bA],

π[b] =
∑
A �=Θ

αABetP [bA] +
(
1−

∑
A �=Θ

αA

)
BetP [bΘ],

i.e. both orthogonal projection and pignistic function are convex combinations of
all the basis pignistic functions. However, as kO[bA] = |A|21−|A| < 1 for |A| > 2,
the orthogonal projection turns out to be closer to the vertices associated with
events of lower cardinality (see Figure 3-left).

_

BetP[b]
π[b]

P

|A|<3

x

_

A
P

P[b ] = Cl(b ,x  A) 
A

|A|>2

P[b ] 
Θ

∋

Θ

Θ

_

P
{x,y}

b =y

BetP[b] = π[b]

_

P
{y,z}

_

P
{x,z}

_

P
{y}

_

P

b =x

_

P
{x}

b =z

_

P
{z}

Fig. 3. Left: Orthogonal projection π[b] and pignistic function BetP [b] are both located
on the simplex whose vertices are all the basis pignistic functions, i.e. the uniform
probabilities associated with each single event A. However, the convex coordinates of
π[b] are weighted by a factor kO[bA] = |A|21−|A|, yielding a point which is closer to
vertices related to lower size events. Right: Orthogonal projection and pignistic function
coincide in the ternary case Θ3 = {x, y, z}.



On the Orthogonal Projection of a Belief Function 365

Example: Ternary Case. Let us consider as an example a ternary frame Θ3 =
{x, y, x}, and a belief function on Θ3 with b.b.a. mb(x) = 1/3, mb({x, z}) = 1/3,
mb(Θ3) = 1/3, mb(A) = 0 A �= {x}, {x, z}, Θ3. According to Equation (9)

π[b] = 1/3P̄{x} + 1/3P̄{x,z} + (1− 1/3− 1/3)P̄ = 1
3bx + 1

3
bx+bz

2 +
+ 1

3
bx+by+bz

3 = bx(1
3 + 1

6 + 1
9 ) + bz(1

6 + 1
9 ) + by

1
9 = 11

18bx + 1
9by + 5

18bz

and the orthogonal projection is the barycenter of the simplex Cl(P̄{x}, P̄{x,z}, P̄)
(see Figure 3-right). On the other side BetP [b](x) = mb(x)+ mb(x,z)

2 + mb(Θ3)
3 =

11
18 , BetP [b](y) = 1

9 , BetP [b](z) = 1
6 + 1

9 = 5
18 i.e. BetP [b] = π[b]. This is true

for each belief function b ∈ B3, since for the above expressions when |Θ| = 3
αA = mb(A) for |A| ≤ 2, and 1−

∑
A αA = 1−

∑
A �=Θ mb(A) = mb(Θ).

4.4 A Quantitative Analysis of the Distance Between BetP and π

An exhaustive description of the relationship between orthogonal projection and
pignistic function would require a quantitative analysis of their distance as the
degrees of belief of b vary in the belief space.

Considered the fact that π[b] is the solution of the Bayesian approximation
problem when using the L2 norm (4), a sensible choice is measuring their distance
by computing the L2 norm of their difference vector:

‖π[b]−BetP [b]‖L2

.=
√∑

x∈Θ

|π[b](x) −BetP [b](x)|2.

Let us then measure their difference in the simplest case in which they are
distinct: a frame Θ = {x, y, z, w} of size 4. Their analytic expressions

BetP [b](x) =
1
4
mb(Θ) + mb(x) +

1
2
(mb({x, y}) + mb({x, z}) + mb({x, w}))+

+
1
3
(mb({x, y, z}) + mb({x, y, w}) + mb({x, z, w}));

π[b](x) =
1
4
mb(Θ) + mb(x) +

1
2
(mb({x, y}) + mb({x, z}) + mb({x, w}))+

+
5
16

(mb({x, y, z}) + mb({x, y, w}) + mb({x, z, w})) +
1
16

mb({y, z, w})
(10)

are very similar to each other. Basically the difference is that π[b] counts also
the masses of focal elements in {x}c (with a small contribution), while BetP [b]
by definition does not. If we compute their difference BetP [b](x) − π[b](x) =
1
48 [mb({x, y, z}) + mb({x, y, w}) + mb({x, z, w}) − 3 mb({y, z, w})] we can ana-
lyze the behavior of their L2 distance as b varies. After introducing the simpler
notation

y1 = mb({x, y, z}), y2 = mb({x, y, w}), y3 = mb({x, z, w}), y4 = mb({y, z, w}),

we can maximize (minimize) the norm above (y1 + y2 + y3 − 3y4)2 + (y1 +
y2 + y4 − 3y3)2 + (y1 + y3 + y4 − 3y2)2 + (y2 + y3 + y4 − 3y1)2 by imposing
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∂
∂yi
‖BetP [b](y) − π[b](y)‖2 = 0 subject to y1 + y2 + y3 + y4 = 1. The unique

solution turns out to be y = [1/4, 1/4, 1/4, 1/4]′ which corresponds to (after re-
placing this solution in (10) BetP [b] = π[b] = P̄ where P̄ = [1/4, 1/4, 1/4, 1/4]′

is the uniform probability on Θ. The distance between pignistic function and or-
thogonal projection is minimal (zero) when all size 3 subsets have the same mass.

It is then natural to suppose that their difference must be maximal when
all the mass is concentrated on a single size-3 event. This is in fact correct:
‖BetP [b]−π[b]‖2 is maximal and equal to 12+12+12+(−3)2 = 12 when yi = 1,
yj = 0 ∀j �= i, i.e. the mass of one among {x, y, z}, {x, y, w}, {x, z, w}, {y, z, w}
is one.

Other distances could of course be chosen to assess the difference between
Bayesian approximations in the probability simplex: A natural generalization of
L2 is the Mahalanobis distance

√
(p− p′)′Σ(p− p′) (where Σ is a covariance

matrix) which is often used in statistics. Our intuition on the problem suggests
that the above results should hold for a wide class of such functions: Experimen-
tal validation is though needed.

5 Conclusions

In this paper we introduced a new Bayesian b.f. associated with any given belief
function b, i.e. the orthogonal projection of b onto the probability simplex P , by
definition the solution of the probabilistic approximation problem when using
the classical L2 distance. Even though π[b] has been derived through purely
geometric considerations, it exhibits strong links with the pignistic function. Its
interpretation in terms of rationality principles similar to those formulated for
the pignistic transformation is still unclear, as it is to decide whether or not
π[b] is consistent with b. The redistribution process of Section 4.2 is a first step
in this direction: The orthogonal projection is the result of a more “cautious”
approach (with respect to BetP ) in which the mass of higher-size events is not
divided among singletons, but among subsets.
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Abstract. Based on the canonical decomposition of belief functions,
Smets introduced the concept of a latent belief structure (LBS). This
concept is revisited in this article. The study of the combination of LBSs
allows us to propose a less committed version of Dempster’s rule, result-
ing in a commutative, associative and idempotent rule of combination for
LBSs. This latter property makes it suitable to combine non distinct bod-
ies of evidence. A sound method based on the plausibility transformation
is also given to infer decisions from LBSs. In addition, an extension of the
new rule is proposed so that it may be used to optimize the combination
of imperfect information with respect to the decisions inferred.

1 Introduction

The theory of belief functions [14] is recognized as a rich framework for represent-
ing and reasoning with imperfect information. Contrary to probability theory, it
allows in particular the representation of different forms of ignorance. However,
when decisions have to be made in an uncertain context, rationality principles
[13] justify the use of a probability distribution. There exist different methods for
the transformation of a belief function to a probability distribution; in particular
the pignistic transformation [17] and the plausibility transformation [2]. In this
article, two results related to the latter transformation are presented. First, it
can be extended to transform a so-called latent belief structure (LBS) [16] into
a probability distribution. Second, two ways of modeling negative statements
become equivalent with the extension of this transformation.

Equipped with a well-defined means to use LBSs with respect to decision
making, this paper deepens their study. The analysis of the combination of LBSs
leads to families of conjunctive combination rules. One of these rules is idempo-
tent, a property required for the combination of LBSs obtained from, e.g., belief
functions based on non distinct bodies of evidence.

The rest of this paper is organized as follows. The mathematical concept of
LBS and Smets’s tentative interpretation of a LBS will first be recalled in Section
2. Combination rules for LBSs will then be studied in Section 3. Section 4 will
describe decision making from LBSs and Section 5 will conclude the paper.
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ments that helped to improve this paper.
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2 Latent Belief Structures

2.1 Background Material on Belief Function Theory

The presentation of belief function theory adopted here is in line with the one
of the transferable belief model (TBM) [17]. The beliefs held by a rational agent
Ag on a finite frame of discernment Ω = {ω1, ..., ωK} are represented by a basic
belief assignment (BBA) mΩ

Ag defined as a mapping from 2Ω to [0, 1] verifying∑
A⊆Ω m (A) = 1. For A ⊆ Ω, if m (A) > 0 holds, then A is called a focal set

(FS) of m. A BBA m is called: normal if ∅ is not a FS; vacuous if Ω is the only
FS; dogmatic if Ω is not a FS; categorical if is has only one FS different from
Ω; simple if it has at most two FSs, Ω included. If m is a simple BBA (SBBA)
defined by m (A) = 1 − w and m (Ω) = w for A �= Ω, it is noted Aw; if A = Ω
then we write Ω if no confusion can occur. Note that normality is not required
by the TBM. Equivalent representations of a BBA m exist. In particular the
belief, plausibility, and commonality functions are defined, respectively, by:

bel (A) =
∑

∅�=B⊆A

m (B) , (1)

pl (A) =
∑

B∩A �=∅
m (B) , (2)

and
q (A) =

∑
B⊇A

m (B) , (3)

for all A ⊆ Ω. Two distinct BBAs m1 and m2 can be combined using the TBM
conjunctive combination rule, noted ∩©, or using Dempter’s rule [14], noted ⊕.
Assuming that m1 ∩©2 (∅) �= 1, those rules are defined by:

m1 ∩©2 (A) =
∑

B∩C=A

m1 (B)m2 (C) , ∀A ⊆ Ω , (4)

m1⊕2 (A) =
{

0 if A = ∅,
m1 ∩©2 (A) /

(
1−m1 ∩©2 (∅)

)
otherwise. (5)

Under conflicting information, i.e. m1 ∩©2 (∅) > 0, the legitimacy of the normal-
ization operation involved by Dempster’s rule has been questioned. Indeed, the
conflict may originate from different situations such as unreliable sources of in-
formation or a lack of exhaustiveness of Ω, in which cases other normalization
operations may be reasonable [6].

The pignistic and the plausibility transformations allow the transformation
of a BBA m to probability distributions noted respectively BetPm and PlPm.
They are defined as follows:

BetPm ({ωk}) =
∑

{A⊆Ω,ωk∈A}

m (A)
(1−m (∅)) |A| , (6)

PlPm ({ωk}) = κ−1pl ({ωk}) , (7)

with κ =
∑K

j=1 pl ({ωj}).
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2.2 Canonical Decomposition of a Belief Function

The canonical decomposition of a belief function, introduced in [16], is based on
a generalization of the canonical representation of a separable BBA m defined by
Shafer [14]. A BBA is called separable if it can be written as the ∩© combination
of SBBAs. For a separable BBA m, one has thus:

m = ∩©A⊂ΩAw(A), (8)

with w (A) ∈ [0, 1] for all A ⊂ Ω. Through the definition of a generalized SBBA,
Smets [16] proposed a means to canonically decompose any non dogmatic BBA
(NDBBA). A generalized SBBA is defined as a function µ from 2Ω to R by:

µ (A) = 1− w, µ (Ω) = w, µ (B) = 0 ∀B ∈ 2Ω\ {A, Ω} , (9)

for A �= Ω and w ∈ [0, +∞). Extending the SBBA notation, any generalized
SBBA can be written Aw; when w ≤ 1, µ is thus a SBBA. When w > 1,
µ is called inverse SBBA. Smets showed that any NDBBA can be uniquely
represented as the ∩© combination of non categorical generalized SBBAs; the
expression for this decomposition is then the same as (8) with w ∈ (0, +∞) this
time. The weights w (A) for each A ∈ 2Ω\ {Ω} are obtained as follows:

w (A) =
∏

B⊇A

q (B)(−1)|B|−|A|+1

. (10)

The weight function, w : 2Ω\ {Ω} → (0, +∞), is thus yet another equivalent
representation of a NDBBA m.

If Aw1 and Aw2 are two SBBAs, their combination by ∩© is the SBBA Aw1w2 .
From the commutativity and associativity of the ∩© rule, the combination of two
NDBBAs m1 and m2 with respective weight functions w1 and w2 is written:

m1 ∩©2 = ∩©A⊂ΩAw1(A)·w2(A). (11)

Details on normalized versions of those results can be found in a recent exposi-
tion of the canonical decomposition [3]. Other combinations of belief functions
have been proposed. In particular the cautious rule [3], noted ∧©, possesses the
idempotence property. It is defined as follows (∧ is the minimum operator):

m1 ∧©2 = ∩©A⊂ΩAw1(A)∧w2(A). (12)

2.3 Decombination Rule

In the area of belief revision [8], the addition of beliefs without retracting others
is known as expansion; the inverse operation, contraction, allows the removal of
beliefs. In belief function theory, those operations are performed respectively by
the ∩© and �∩© rules. Different authors [16,15,10] have studied the �∩© rule which
is either called the decombination [16] or removal [15] rule. Let q1 and q2 be the
commonality functions of two NDBBAs, the decombination is defined by:

q1 �∩©2 (A) = q1 (A) /q2 (A) , ∀A ⊆ Ω. (13)
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The resulting function may not be a belief function. In this case it is called a
pseudo belief function [16] or signed belief function [10].

The interest of this operator is motivated by the following example. Suppose
you are in a state of ignorance about the actual state ω0 of the world Ω. Suppose
that you then have some good reasons to believe in A, for A ⊂ Ω; you perform
an expansion of your beliefs (here your ignorance) by the SBBA Ax (if the good
reasons amounts to (1− x), for x small), which is equivalent to the combination
Ω ∩©Ax. Later, another information arrives telling you that the first information
was not valid. This can be handled in at least three ways, all of them bringing
you to the state of indecision that this example intuitively leads to. Note that
this situation is illustrated by the Pravda bias example [16].

First of all, the second information can be understood as: the negation of the
first information holds true. This results in an expansion of belief in favor of Ā. It
leads to the state of belief Ax ∩©Āx, yielding bel (A) = bel

(
Ā
)

which is indeed a
state of indecision. This solution produces however a share of conflict (m (∅) > 0)
depending on the value of x. This conflict cannot be escaped whatever further
information you receive [10], unless an arbitrary normalization operation is used.

Another way of interpreting the second information is that all conclusions
that may be drawn from the first information must be cancelled, i.e. you should
come back to the state of belief in which you were before receiving the first
information [10]. This means here that you should come back to the state of
ignorance, i.e. bel (Ω) = 1, which is a state of indecision. This interpretation
of the example may be treated in two ways. It may be argued that both ways
involve a contraction in their development as showed by the following reasoning.

The first way of treating this second interpretation of the example consists in
contracting the belief you had in favor of A, which amounts to do Ax �∩©Ax = Ω.
The ignorance state is thus recovered. The second method uses the discounting
operation [14]. This operation is based on the use of a second frameR = {R, NR}
which represents a meta-knowledge mR on the reliability of the information that
is given to you. If the first source of information is reliable then your belief on Ω
is the one given by this source; this is noted mΩ

Ag [{R}] = mΩ
S where S denotes

the first source of information. If the source of information is not reliable then
your belief is vacuous: mΩ

Ag [{NR}] (Ω) = 1. Let us suppose that before you
receive the second information, you are a priori almost certain that S is reliable:
mR

Ag ({R}) = 1 − ε, and mR
Ag (R) = ε, with ε a small positive real number.

Your belief on Ω is computed by ∩© combining mR
Ag with mΩ

Ag [{R}] and then
marginalizing this belief on Ω. To be in a state of indecision after receiving the
second information, mR

Ag ({R}) = 0 must hold. It is possible by a contraction of
your initial mR

Ag. It is also possible through the ∩© combination of your initial
mR

Ag with a BBA mR ({NR}) = 1; this solution implies however the use of a
categorical belief (see [3] for a discussion on dogmatic beliefs).

More generally, the �∩© rule allows a form of non monotonic reasoning in the
belief function theory. Indeed if for A ⊆ Ω you have a belief bel (A) > 0 then
it will be impossible without this operator to obtain later bel

(
Ā
)

= 1 by an
expansion with other beliefs, unless normalization is used.



372 F. Pichon and T. Denœux

Smets [16] goes further than the interpretation of removal of beliefs that is
given to the �∩© operator. He introduces states of debt of belief (also called diffi-
dent beliefs). Indeed, Smets reformulates the example so that the second source
of information gives good reasons not to believe in A. He argues that if the
weights of the good reasons to believe A and not to believe A counterbalance
each other, then you should be in a state of ignorance. Those states of debt of
belief are used by Smets to introduce the LBSs recalled in the next subsection.

Note that the existence of positive and negative information is generally coined
under the term bipolarity. Other authors have tried to model such dual informa-
tion in the belief function theory; in particular we can cite the work of Dubois
et al. [7], and of Labreuche et al. [11]. The question of the relevance of debt of
belief remains open. Nonetheless, the next subsection shows that decombination
is useful at least mathematically and thus deserves attention.

2.4 Confidence and Diffidence

Let Aw1 and Aw2 be two non categorical SBBAs, hence A1/w2 is an inverse
SBBA. The decombination of Aw1 by Aw2 , i.e. Aw1 �∩©Aw2 , is equal to the ∩©
combination of Aw1 with A1/w2 [16]. Let w be the weight function of a NDBBA
m. Partition 2Ω into two (disjoint) subsets: C = {A : A ⊂ Ω, w (A) ∈ (0, 1]}, and
D = {A : A ⊂ Ω, w (A) ∈ (1,∞)}. A NDBBA m can then be written:

m =
(

∩©A∈CAw(A)
)

�∩©
(

∩©A∈DA
1

w(A)

)
(14)

Any NDBBA is thus the result of combinations and decombinations of non cat-
egorical SBBAs or, equivalently, any NDBBA is equal to the decombination of a
separable NDBBA by a separable NDBBA. Smets called the separable NDBBA,
noted mc and obtained from the set C, the confidence component and the sepa-
rable NDBBA, noted md and obtained from the set D, the diffidence component.
We can thus write: m = mc �∩©md. The weight functions of mc and md, defined
from 2Ω\ {Ω} to (0, 1] and called the confidence and diffidence weight functions,
are noted wc and wd. They can easily be found from the original weight function
w of a NDBBA m as follows: wc (A) = 1∧w (A) , and wd (A) = 1∧ 1

w(A) , for all
A ⊂ Ω.

From the canonical decomposition of a belief function, Smets defined a LBS
as a pair of BBAs

(
mc, md

)
allowing the representation of belief states in which

positive and negative items of evidence (reasons to believe and not to believe [16])
occur. Definition 1 is more specific, in that it imposes that this pair be made of
separable NDBBAs. Definition 2 defines a concept also introduced in [16].

Definition 1 (Latent Belief Structure). A latent belief structure is defined
as a pair of separable NDBBAs mc and md called respectively the confidence and
diffidence components. A LBS is noted using a upper-case L.

Definition 2 (Apparent Belief Structure). The apparent belief structure
associated with a LBS L = (mc, md) is the signed belief function obtained from
the decombination mc �∩©md of the confidence and diffidence components of L.
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The motivation for Definition 1 is due to the following observation: if mc and
md are two NDBBAs, then we can always find two separable NDBBAs m′c and
m′d such that mc �∩©md = m′c �∩©m′d, hence a LBS can be merely defined as a pair
of separable NDBBAs. A LBS is thus a generalization of a NDBBA.

The properties linking these definitions are the following. By definition, the
apparent belief structure associated to a LBS may or may not be a belief function.
Further, an infinity of LBSs correspond to the same apparent belief structure.
Besides, among the infinity of LBSs corresponding to the same apparent belief
structure, one LBS has a particular structure: it is then called a canonical LBS
(see Definition 3 below). In particular, an infinity of LBSs can yield the same
NDBBA, for instance the LBSs (A0.2, A0.3) and (A0.6, A0.9) correspond to the
same NDBBA A2/3 and the canonical LBS of this NDBBA is

(
A2/3, Ω

)
. Remark

that the canonical decomposition of a NDBBA m yields the canonical LBS of
m. Example 1 shows how a CLBS can be generated from expert opinions. Note
that LΩ will be used to denote the LBS obtained from the vacuous BBA.

Definition 3 (Canonical Latent Belief Structure). A CLBS is a LBS ver-
ifying: ∀A ⊂ Ω, wc(A) ∨ wd(A) = 1 where ∨ denotes the maximum operator.

Example 1. Suppose Ω = {a, b, c} and the sets A = {a, b} , B = {b, c} , C =
{a, c}. Now, a first expert gives the opinion A ∼ B which, according to the
elicitation technique proposed in [1], means that he believes equivalently in A
and B, i.e. bel1 (A) = bel1 (B). A second expert gives the opinion: C ∼ B, i.e
bel2 (C) = bel2 (B). Given those constraints on bel1 and bel2, the BBAs m1 and
m2 of Table 1 on page 7 may be produced using the method proposed in [1] for
a certain set of parameters required by the method.

3 Combination of LBSs

This section studies mathematical operations on LBSs. Let us first express two
known operations of belief function theory using LBSs.

Let
(
mc

1, m
d
1
)

and
(
mc

2, m
d
2
)

be the CLBSs associated with two NDBBAs m1

and m2. Then
(
mc

1 ∩©mc
2, m

d
1 ∩©md

2
)

is a LBS associated with m1 ∩©m2. This lead
Smets to define the conjunctive combination of two LBSs as follows.
Definition 4. The conjunctive combination of two LBSs L1 and L2 is a LBS
noted L1 ∩©2. It is defined by the weight functions (15) and (16):

wc
1 ∩©2 (A) = wc

1 (A) · wc
2 (A) , (15)

wd
1 ∩©2 (A) = wd

1 (A) · wd
2 (A) . (16)

The vacuous LBS LΩ is a neutral element for ∩©, i.e. L ∩©LΩ = L for all LBSs L.
The cautious rule of combination [3] can also be expressed in terms of LBSs.
Definition 5. ([4, Proposition 6]) The cautious combination of two LBSs L1
and L2 is a LBS noted L1 ∧©2. It is defined by the following weight functions:

wc
1 ∧©2 (A) = wc

1 (A) ∧ wc
2 (A) , (17)

wd
1 ∧©2 (A) = wd

1 (A) ∨wd
2 (A) . (18)
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Table 1. Two NDBBAs and their CLBSs

A m1 (A) wc
1 (A) wd

1 (A) mc
1 (A) md

1 (A) m2 (A) wc
2 (A) wd

2 (A) mc
2 (A) md

2 (A)

∅ 0 1 1 0 0 0 1 1 0 0
{a} 0 1 1 0 0 0 1 1 0 0
{b} 0 1 5/9 4/9 4/9 0 1 1 0 0
{a, b} 0.4 1/3 1 2/9 0 0 1 1 0 0
{c} 0 1 1 0 0 0 1 5/9 4/9 4/9
{a, c} 0 1 1 0 0 0.4 1/3 1 2/9 0
{b, c} 0.4 1/3 1 2/9 0 0.4 1/3 1 2/9 0

Ω 0.2 1/9 5/9 0.2 1/9 5/9

It is clear that those two rules belong to different families of combination rules:
the ∩© rule is purely conjunctive whereas the ∧© rule is both conjunctive and
disjunctive [4], hence they treat the diffidence component in different ways. The
remainder of this section is devoted to the proposal of other purely conjunctive
rules. One of those rules is particularly interesting since it is idempotent; the
motivation for its definition relies on the least commitment principle of the TBM.

3.1 Least Commitment Principle (LCP)

The LCP is similar to the principle of maximum entropy in Bayesian Probabil-
ity Theory. It postulates that given a set M of BBAs compatible with a set of
constraints, the most appropriate BBA is the least informative. This principle
becomes operational through the definition of partial orders allowing the infor-
mational comparison of BBAs. Such orders, generalizing set inclusion, are [5]:

– pl-order: for all A ⊆ Ω, iff pl1 (A) ≤ pl2 (A) then m1 �pl m2;
– q-order: for all A ⊆ Ω, iff q1 (A) ≤ q2 (A) then m1 �q m2;
– s-order: m1 �s m2, i.e. m1 is a specialization of m2, iff there exists a square

matrix S with general term S (A, B), A, B ⊆ Ω such that
∑

B⊆Ω S (A, B) =
1, ∀A ⊆ Ω, and S (A, B) > 0 ⇒ A ⊆ B, ∀A, B ⊆ Ω, and m1 (A) =∑

B⊆Ω S (A, B) m2 (A), ∀A ⊆ Ω.

A BBA m1 is said to be x-more committed than m2, with x ∈ {pl, q, s}, if
m1 �x m2. A particular case of specialization is the dempsterian specialization
[9], noted �d: m1 �d m2, iff there exists a BBA m such that m1 = m ∩©m2. This
condition is stronger than specialization, i.e. m1 �d m2 ⇒ m1 �s m2.

It is reasonable to say that a SBBA Aw1 is more committed than a SBBA
Aw2 , if w1 ≤ w2. Hence a BBA m1 obtained from the combination by ∩© of
SBBAs, i.e. a separable BBA, will be more committed than another separable
BBA m2 if w1 (A) ≤ w2 (A) for all A ∈ 2Ω\ {Ω}; this is equivalent to the
existence of a separable BBA m such that m1 = m ∩©m2. This new partial order,
defined for separable BBAs and noted m1 �w m2 with m1 and m2 two separable
BBAs, is consequently stricly stronger than d-ordering as a non-separable BBA
m such that m1 = m ∩©m2, i.e. m1 �d m2, can easily be found. Let us also
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remark that, using a special representation of categorical BBAs, Denoeux [4,
Proposition 3] has shown that �w may be seen as generalizing set inclusion,
much as the x-orderings, with x ∈ {pl, q, s}, do.

All those partial orders can be extended to LBSs. In particular, the LBS
L1 ∩©2 = (mc

1 ∩©2, m
d
1 ∩©2) obtained from the combination by ∩© of two LBSs

L1 = (mc
1, m

d
1) and L2 = (mc

2, m
d
2) has the following properties: for i ∈ {1, 2},

mc
1 ∩©2 �w mc

i , and md
1 ∩©2 �w md

i , i.e. the ∩© rule produces a LBS L1 ∩©2 which is
both w-more committed in confidence and in diffidence than the LBSs L1 and L2.
To simplify the presentation, a LBS L which is both w-more committed in confi-
dence and in diffidence than a LBS L

′
will be noted L �l L

′
(l stands for latent).

Informally, the l-order seems natural as it exhibits properties similar to those of
classical orderings. To see that, simply replace l by x with x ∈ {d, s, q, pl} and L
by m in the following expressions: ∀L, L �l LΩ and L1 ∩©2 �l L1, L1 ∩©2 �l L2.

3.2 Combination of Non-distinct LBSs

As remarked in [5], it is possible to think of �x as generalizing set inclusion.
This reasoning can be used to see conjunctive combination rules as generalizing
set intersection. Denœux [3] considers thus the following situation. Suppose we
get two reliable sources of information. One states that ω is in A ⊆ Ω, whereas
the other states that it is in B ⊆ Ω. It is then certain that ω is in C such that
C ⊆ A and C ⊆ B. The largest subset C satisfying those constraints is A ∩B.

Suppose now that the sources provide the NDBBAs m1 and m2 and let L1 and
L2 be the equivalent CLBSs of those NDBBAs. Upon receiving those two pieces
of information, the agent’s state of belief should be represented by a LBS L12,
i.e.

(
mc

12, m
d
12
)
, more informative than L1 and L2. Let Sx (L) be the set of LBSs

L′ such that L′ �x L. Hence L12 ∈ Sx (L1) and L12 ∈ Sx (L2), or equivalently
L12 ∈ Sx (L1) ∩ Sx (L2). According to the LCP, the x-least committed LBS
should be chosen in Sx (L1) ∩ Sx (L2). This defines a conjunctive combination
rule if the x-least committed LBS exists and is unique. Proposition 1 shows that
the l-order may be an interesting solution for this problem.

Proposition 1. Let L1 and L2 be two LBSs. The l-least committed element in
Sl (L1)∩Sl (L2) exists and is unique (the proof is trivial by Proposition 1 of [3]).
It is defined by the following confidence and diffidence weight functions:

wc
1∧∧©2 (A) = wc

1 (A) ∧ wc
2 (A) , A ∈ 2Ω\ {Ω} , (19)

wd
1 ∧∧©2 (A) = wd

1 (A) ∧wd
2 (A) , A ∈ 2Ω\ {Ω} . (20)

Definition 6 (Weak Rule). Let L1 and L2 be two LBSs. Their combination
with the weak rule is defined as the LBS whose weight functions are given by
(19) and (20). It is noted: L1∧∧©2.

This rule is commutative, associative and idempotent. In addition, ∩© is distribu-
tive with respect to ∧∧©. Those properties originate from the properties of the ∧©
rule [3] since there is a connection between the partial orders on which those two
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rules are built. We can thus see that the combination by the ∧∧© rule consists in
combining the confidence and diffidence components by the ∧© rule.

The ∧∧© rule exhibits other properties: LΩ is a neutral element and if L1 �l L2,
the result of the least committed combination of those LBSs is L1 ∧∧©L2 = L1.
Further, using the l-order in the derivation of the rule allows the construction of a
’weaker’, or l-less committed, version of Dempster’s rule, i.e. L1 ∩©L2 �l L1 ∧∧©L2.

Note that the apparent form of a LBS L1∧∧©2, produced by the ∧∧© combina-
tion of two CLBSs L1 and L2 obtained from two NDBBAs m1 and m2, may
not be a BBA. However, if m1 and m2 are separable BBAs then the apparent
form of the LBS L1∧∧©2 is a BBA since a separable BBA yields a LBS whose
diffidence component is vacuous and the ∧∧© combination consists in combining
the confidence component of L1 and L2 by the ∧© rule. It can also be shown that
the combination by the ∧© rule of two consonant BBAs does not always yield a
consonant BBA. A consonant BBA is separable [4, Proposition 2], hence the ∧∧©
rule applied to two CLBSs obtained from two consonant BBAs will yield a LBS
whose apparent form is a separable BBA which is not necessarily consonant.

Example 2. The left-hand part of Table 2 shows the weight functions resulting
from the weak (∧∧©), the conjunctive ( ∩©), and the cautious ( ∧©) combinations of
the expert opinions of Example 1. Note that wd

1 ∧©2 (A) = 1, for all A ⊂ Ω.

Table 2. Weight functions obtained from different combinations (left). Plausibility
transformations of the LBSs obtained with those combinations (right, see Section 4).

A wc
1 ∧∧©2 (A) wd

1 ∧∧©2 (A) wc
1 ∩©2 (A) wd

1 ∩©2 (A) wc
1 ∧©2 (A) P lP1 ∧∧©2 P lP1 ∩©2 P lP1 ∧©2

∅ 1 1 1 1 1
{a} 1 1 1 1 1 9/19 0.23 1/3
{b} 1 5/9 1 5/9 1 5/19 0.385 1/3
{a, b} 1/3 1 1/3 1 1/3
{c} 1 5/9 1 5/9 1 5/19 0.385 1/3
{a, c} 1/3 1 1/3 1 1/3
{b, c} 1/3 1 1/9 1 1/3

Interestingly, the idea of distinctness conveyed by the derivation of the ∧∧© rule
relates, in part, to the foci of the SBBAs underlying a complex belief state.
Indeed let us assume that two bodies of evidence, yielding the LBSs L1 and L2,
are non distinct, then L1∧∧©2 �= L1 ∩©2 iff C1 ∩ C2 �= ∅ or D1 ∩ D2 �= ∅, with
Ci = {A : A ⊂ Ω, wc

i (A) < 1} and Di =
{
A : A ⊂ Ω, wd

i (A) < 1
}
. The effect of

this view of distinctness is illustrated in Example 3 of Section 4, where double
counting the SBBA implicitly shared by two agents is avoided.

3.3 Generalizing the Weak Rule

In the same vein as Denœux [3], it is possible to derive infinite families of conjunc-
tive combination rules for LBSs. The ∩© and ∧∧© rules are then merely instances of
these families. This extension is based on the observation that the ∩© rule uses the
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product, whereas the ∧∧© rule uses the minimum of weights belonging to the unit
interval. Now, these two operations on this interval are binary operators known
as triangular norms (t-norms). Replacing them by any positive t-norm � yields
�© operators, which possess the following properties: commutativity, associativ-
ity, neutral element LΩ and monotonicity with respect to �l, i.e. ∀L1, L2 and
L3, L1 �l L2 ⇒ L1 �©L3 �l L2 �©L3. Only the ∧∧© rule is idempotent. Operators
exhibiting a behavior between ∩© and ∧∧© can be obtained using parameterized
families of t-norms such as the Dubois and Prade family defined by:

x�DP
γ y = (xy) / (max (x, y, γ)) for x, y, and γ ∈ [0, 1] . (21)

Note that the ∩© and ∧∧© rules are recovered for γ = 1 and γ = 0 respectively. The
parameterization is what make those rules attractive: they allow the fine-tuning
of the behavior of a system. Indeed, the γ parameter may be related to some
subjective judgment on the distinctness of the items of evidence. It can also be
learnt from data as done in [12] through the use of the plausibility transformation
extended to LBSs (see Section 4): the conjunctive combination of two LBSs is
then optimized with respect to the decisions inferred.

4 Decision Making with LBSs

This section provides a means to transform a LBS into a probability distribution.
The plausibility transformation is of particular interest here due to one of its
properties: it is invariant with respect to the combination by ∩© [18], which is not
the case of the pignistic transformation. Proposition 2 reformulates this property
for the �∩© rule using the decombination operator in probability theory, noted /
and defined in [15] as follows. Let P1 and P2 be two probability distributions:

P1 / P2 ({ωk}) = κ−1P1 ({ωk}) /P2 ({ωk}) , ∀ωk ∈ Ω (22)

with κ =
∑K

j=1 P1 ({ωj}) /P2 ({ωj}).

Proposition 2 (PlP is invariant with respect to �∩©). Let m1 and m2 be
two NDBBAs:

PlPm1 �∩©m2 = PlPm1 / PlPm2 . (23)

Proof. For all ωk ∈ Ω, let us denote αk = pl1 ({ωk}) = q1 ({ωk}) , βk =
pl2 ({ωk}). From Equation (13) we have:

PlPm1 �∩©m2 ({ωk}) = (αk/βk) /(
K∑

i=1

(αi/βi)) . (24)

Besides,

PlPm1 / PlPm2 ({ωk}) =

((
αk∑K
i=1 αi

)
/

(
βk∑K
i=1 βi

))
/

⎛⎝ K∑
j=1

(
αj∑

K
i=1 αi

)
(

βj∑
K
i=1 βi

)
⎞⎠
(25)

(24) and (25) are equal. ��
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Using Proposition 2, a LBS L =
(
mc, md

)
can be transformed into a probability

distribution as follows:

PlPL = PlPmc / PlPmd . (26)

Example 3. The right side of Table 2 shows three qualitatively different prob-
ability distributions computed using (26). They are obtained from the expert
opinions of Example 1 combined with different combination rules. It is interest-
ing to note that the application of the ∩© and ∧∧© rule yields opposite decisions.
This is easily explained through the observation of the SBBAs underlying the
two opinions. We see in particular that both opinions share a SBBA focused on
the set {b, c}: if we think of the opinions as based on distinct bodies of evidence,
then the reasons for which expert 1 believes in {b, c} are different from the rea-
sons of expert 2, hence the combined belief in favor of the set {b, c} should be
stronger than the individual beliefs. On the other hand, if the experts base their
beliefs in {b, c} on the same items of evidence then the combined belief in favor
of the set {b, c} should not be stronger than the individual beliefs. Consequently
with the ∩© rule we have w ({b, c}) < w ({a, c}) = w ({a, b}) which makes the
two singletons b and c more probable, actually much more probable than a. This
difference is then only partially moderated by the diffidence in b and c so that
eventually b and c remain more probable than a. However, with the ∧∧© and the ∧©
rules, we have w ({b, c}) = w ({a, c}) = w ({a, b}), which yields equiprobability
for the three singletons. Besides, the ∧∧© rule keeps the information relating to
the diffidence in b and c, hence a is more probable than b and c with this rule.

Proposition 3 shows that two ways of modeling negative statements become
equivalent when PlP is used. Indeed, according to Smets’s vocabulary [16], for
A ⊂ Ω, having good reasons to believe in not A is equivalent to having good
reasons not to believe (or having a debt of belief) in A. It can also be formulated
using the terminology used in belief revision: the expansion by Āα is equivalent
to the contraction by Aα, for α ∈ (0, 1]. Let P lP∼ denote the equivalence relation
between LBSs defined by L1

P lP∼ L2 iff PlPL1 ({ωk}) = PlPL2 ({ωk}), ∀ωk ∈ Ω.

Proposition 3. Āα P lP∼ A
1
α , for α ∈ (0, 1].

Proof. ∀ωk ∈ A, A ⊂ Ω,

PlPĀα ({ωk}) =
α∣∣Ā∣∣+ |A|α , (27)

PlPA1/α ({ωk}) =
1

|A|+
∣∣Ā∣∣ 1

α

. (28)

(27) and (28) are equal. ��

Propositions 2 and 3 define equivalence classes with respect to the plausibility
transformation in which there is at least one separable BBA; for instance we have:(
Ā0.6, A0.5

) P lP∼
(
Ā0.3, Ω

)
. Note also that the combination by ∩© of any two LBSs
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belonging to two different equivalence classes always falls in the same equivalence
class, for instance if L1

P lP∼ L2 and L3
P lP∼ L4, then e.g. L1 ∩©L3

P lP∼ L2 ∩©L4. It
can easily be shown that this is not true for the ∧© and ∧∧© rules.

Eventually, from Proposition 3, remark that Aα ∩©Āα P lP∼ Aα �∩©Aα, ∀A ⊆ Ω

with α ∈ (0, 1]. Now, let BetP∼ denote the equivalence relation between BBAs
defined by m1

BetP∼ m2 iff BetPm1 ({ωk}) = BetPm2 ({ωk}), for all ωk ∈ Ω.
The two ways of modeling negative statements will yield the same probability
distribution, i.e. Aα ∩©Āα BetP∼ Aα �∩©Aα, with the pignistic transformation iff
|A| =

∣∣Ā∣∣; a stricter condition than the one of the plausibility transformation.

5 Conclusion

In this article, latent belief structures have been revisited. The mathematical
simplicity of this generalization of non dogmatic belief functions has allowed the
analysis of the unnormalized version of Dempster’s rule, which resulted in the
introduction of infinite families of conjunctive combination rules. Two potential
uses of these rules have been proposed. First they may permit to relax the
hypothesis of distinctness inherent to the use of Dempster’s rule. Second, they
may be used to optimize the combination of imperfect information with respect
to the decisions inferred. An extension of the plausibility transformation has been
also provided to transform a LBS into a probability distribution and two ways of
modeling negative statements were proved equivalent under this extension. The
interest of this formalism in concrete applications is currently being investigated.
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Pod vodárenskou věž́ı 2, CZ - 182 07, Prague 8, Czech Republic

milan.daniel@cs.cas.cz

Abstract. This contribution deals with a belief processing which en-
ables managing of multiple and overlapping elements of a frame of dis-
cernment. An outline of the Dempster-Shafer theory for such cases is
presented, including several types of constraints for simplification of its
large computational complexity. DSmT — a new theory rapidly devel-
oping the last five years — is briefly introduced. Finally, it is shown that
the DSmT is a special case of the general Dempster-Shafer approach.

Keywords: Belief functions, Dempster-Shafer theory, DSm theory, Con-
straints, Overlapping elements, Exclusive elements, Non-separable ele-
ments.

1 Introduction

Belief functions are one of the widely used formalisms for uncertainty represen-
tation and processing that enable representation of incomplete and uncertain
knowledge, belief updating and combination of evidence. They were originally
introduced as a principal notion of the Dempster-Shafer Theory (DST) or the
Mathematical Theory of Evidence [6].

For a combination of beliefs, Dempster’s rule of combination is used in DST.
Since the Dempster-Shafer theory publication, a series of modifications of Demp-
ster’s rule were suggested and alternative approaches were created. The classical
ones are Dubois-Prade’s rule [4] and Yager’s rule of belief combination [10].

A new approach is the Dezert-Smarandache (or Dempster-Shafer modified)
theory (DSmT) with its DSm rule of combination. There are two main differ-
ences: 1) mutual exclusivity of elements of a frame of discernment is not assumed
in general; mathematically, this means that belief functions are not defined on the
power set of the frame but on a so-called hyper-power set, i.e., on the Dedekind
lattice defined by the frame; 2) a new combination mechanism which overcomes
the problems with conflict among the combined beliefs and which also enables a
dynamic fusion of beliefs.
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The classical Shafer’s frame of discernment with exclusive elements is consid-
ered the special case of a so-called hybrid DSm model.

On the other hand, as it is presented in this study, the DSm approach is a spe-
cial case of the Dempster-Shafer theory working on a frame of discernment with
overlapping elements. The same holds true for both the basic DSm free model
and any hybrid DSm models. To prove this, an outline of the Dempster-Shafer
theory on frames with overlapping elements is formalized in this contribution.

Useful preliminaries are presented in Sect. 2. The third section presents a
general outline of the Dempster-Shafer theory on a frame of discernment with
overlapping and multiple elements. In Sect. 4, an important emphasis is de-
voted to constraints, which are used for better specification of the types of belief
functions used in a given application area and for necessary decrease of a large
computational complexity to a level comparable with the complexity of DSmT.
A special focus is devoted to non-separable elements of a frame, which are crucial
for relation with DSmT, see Sect. 4.3. A series of problems for future research
are opened throughout the entire Sect. 4. The subsequent section briefly recalls
DSmT, and Sect. 6 presents a special case of the Dempster-Shafer theory which
is equivalent to DSmT, including subcases equivalent to particular hybrid models
of DSmT.

2 Preliminaries

Let us assume an exhaustive finite frame of discernment Ω = {ω1, ..., ωn}, whose
elements are mutually exclusive.

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1], such that∑
A⊆Ω m(A) = 1, the values of bba are called basic belief masses (bbm).1 A belief

function (BF) is a mapping Bel : P(Ω) −→ [0, 1], Bel(A) =
∑
∅�=X⊆A m(X),

belief function Bel uniquely corresponds to bba m and vice-versa.
P(Ω) = {X |X ⊆ Ω} is often denoted also by 2Ω. Let us define also a re-

stricted power set as P(Ω|X) = {Y |X ⊆ Y ⊆ Ω}, there is P(Ω|∅) = P(Ω) and
P(Ω|Ω) = {Ω}. A Borel field (or σ-field) on Ω is a subset B ⊆ P(Ω) such that
∅ ∈ B, Ω ∈ B, A ∈ B for all A ∈ B, and A ∪B ∈ B for all A, B ∈ B.

Dempster’s (conjunctive) rule of combination ⊕ is given as (m1 ⊕ m2)(A) =∑
X∩Y =A Km1(X)m2(Y ) for A �= ∅, where K = 1

1−κ , κ=
∑

X∩Y =∅m1(X)m2(Y ),
and (m1 ⊕m2)(∅) = 0, see [6]; putting K = 1 and (m1 ⊕m2)(∅) = κ we obtain
the non-normalized conjunctive rule of combination ∩©, see e. g. [9].

Yager’s rule of combination Y©, see [10], is given as (m1 Y©m2)(∅) = 0,
(m1 Y©m2)(A) =

∑
X,Y⊆Θ, X∩Y =A m1(X)m2(Y ) for ∅ �= A ⊂ Θ, and

(m1 Y©m2)(Θ) = m1(Θ)m2(Θ) +
∑

X,Y⊆Θ, X∩Y =∅m1(X)m2(Y );
Dubois-Prade’s rule of combination DP© is given as (m1DP©m2)(A) =∑
X,Y⊆Θ, X∩Y =A m1(X)m2(Y ) +

∑
X,Y⊆Θ, X∩Y =∅,X∪Y =A m1(X)m2(Y ) for ∅ �=

A ⊆ Θ, and (m1DP©m2)(∅) = 0, see [4].

1 m(∅) = 0 is often assumed in accordance with Shafer’s definition [6]. A classical
counter example is Smets’ Transferable Belief Model (TBM) which admits m(∅) ≥ 0.
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3 Dempster-Shafer Theory on Frame of Discernment
with Overlapping or Multiple Elements

Let us assume an exhaustive finite frame of discernment Ω = {ω1, ..., ωn}, whose
elements are not mutually exclusive now. The elements of the frame can be over-
lapping as in the motivation example of DSmT (see Sect. 5.1) and in applications
of DSmT (see the second parts of each of the volumes [7,8]), or several of them
can be true at a time, thus we work with k-tuples of elements and we search for
the right k-tuple, we work with belief about k-tuples and sets of k-tuples2.

We can use a power set P(Ω) (or P(Ω) \ ∅ to be more precise) instead of Ω
and we apply the Dempster-Shafer approach to it. Hence we obtain a basic belief
assignment as a mapping m : P(P(Ω)) −→ [0, 1], such that

∑
A⊆P(Ω) m(A) =

1, and a belief function as a mapping Bel : P(P(Ω)) −→ [0, 1], Bel(A) =∑
∅�=X⊆A m(X), for any A ∈ P(P(Ω)), which represent our belief on P(P(Ω)).
To express a belief about a subset A of the original frame Ω (i.e., a belief that

some element of A is in the true k-tuple), we have to sum our belief over sets of
k-tuples intersecting A. Hence we obtain Bel′(A) =

∑
{Y ∈X|Y ∩A �=∅}=X m(X) =∑

(∀Y∈X)(Y ∩A �=∅) m(X) = Bel(
⋃

ωi∈A P(Ω|{ωi})) for A ⊆ Ω; specially
Bel′({ωa}) = Bel(P(Ω|{ωa})) for ωa ∈ Ω.

In our approach, we have to distinguish whether a belief mass is assigned to an
element ωi of the frame of discernment (or to a set of elements {ωj1 , ..., ωjk

}) ex-
clusively or non-exclusively, in our approach; i.e., we have to distinguish whether
the belief mass is assigned just to 1-tuple (ωi) only, or whether all k-tuples in-
cluding ωi are considered, or some set of k-tuples including ωi is in question.

Example 1. Let suppose a 3-element frame of discernment Ω = {a, b, c}.
(i) Let two believers (agents) assign belief masses non-exclusively to elements
a and b respectively. Thus one assigns his belief mass to the set of all k-tuples
containing element a: A = {(a), (a, b), (a, c), (a, b, c)} = P(Ω|{a}), the second
analogically assigns his belief mass to the set of all k-tuples containing element
b: B = {(b), (a, b), (b, c), (a, b, c)} = P(Ω|{b}). When combining their beliefs us-
ing Dempster’s rule (or its alternatives mentioned above), we have to assign
the resulting belief mass to intersection of the sets A ∩ B = {(a, b), (a, b, c)} =
P(Ω|{a, b}), i.e. to the set of all k-tuples containing both a and b.
(ii) If our believers assign their belief masses to the same elements exclusively,
we obtain Ax = {(a)}, Bx = {(b)}, and Ax ∩ Bx = ∅, as both beliefs are in
contradiction, hence the belief mass should be normalized, assigned to union or
to whole Ω, according to the combination rule which is used.
(iii) Let our believers assign their belief masses non-exclusively to elements a or
b and a or c respectively. Thus their belief masses are assigned to the set of all k-
tuples containing element a or b: AB = {(a), (b), (a, b), (a, c), (b, c), (a, b, c)} and
2 All k-tuples which we speak about in this paper have non-repeating members. They

are just sets. There is neither ordering nor repeating of their elements. We use
brackets to underline that elements of k-tuple appear simultaneously together, to
distinguish it from a set of tuples where we know that just one of them appears (just
one of them is right).



384 M. Daniel

to the set of all k-tuples containing element a or c: AC = {(a), (c), (a, b), (a, c),
(b, c), (a, b, c)}. Within the combination the resulting belief is assigned to inter-
section AB ∩AC = {(a), (a, b), (a, c), (b, c), (a, b, c)}.
(iv) In the fully exclusive version of the previous case, we have AxBx = {(a), (b)}
and AxCx = {(a), (c)} with intersection AxBx ∩AxCx = {(a)}.
(v) Let the first assign his belief mass non-exclusively to a and exclusively to
b, and the second exclusively to a or non-exclusively to c. Hence we obtain sets
ABx = {(a), (b), (a, b), (a, c), (a, b, c)} and AxC = {(a), (c), (a, c), (b, c), (a, b, c)}
with intersection ABx ∩AxC = {(a), (a, c), (a, b, c)}.
(vi) And there is a series of other possibilities as as basic belief assignment is
defined on P(P(Ω)).

In a special case, all belief masses are assigned to all elements and their sets exclu-
sively by all believers, thus we have just sets of exclusive elements {(a)}, {(b)},
{(c)}, {(a), (b)}, {(a), (c)}, {(b), (c)}, {(a), (b), (c)}, i.e., we work on P({(a), (b),
(c)}) when assuming the frame from Example 1 above. In the same way it
holds for any finite frame of discernment, when all belief masses are assigned
exclusively to single elements (1-tuples) (ωi) and sets of them, i.e., we work on
P({(ω1), ..., (ωn)}) in such a case. Hence we have shown that the following fact
holds:

Fact 1. The Dempster-Shafer approach to belief on a classical exclusive frame
of discernment is a special case of our generalized approach working with over-
lapping or multiple elements.

3.1 Decreasing of Computational Complexity

When considering a full system of belief functions defined on the ”double” power
set P(P(Ω)) for a finite frame of discernment Ω = {ω1, ..., ωn}, a computational
complexity corresponds to the size of P(P(Ω)), i.e. to 22n

, thus we obtain pos-
sibly 16, 256, 65 536, ... different belief masses for n = 2, 3, 4, ... .

Even if we do not accept positive belief masses and beliefs for empty set
and empty tuples (0-tuples) in accordance with the classis Dempster-Shafer ap-
proach, i.e., positive belief masses are accepted only on P(P(Ω) \ ∅) \ ∅, we can
have still 22n−1 − 1 positive values, thus we obtain 7, 127, 32 767, ... values for
n = 2, 3, 4, ... . Hence general belief functions are hardy computable even for
n = 5, as we have the original complexity only divided by two.

Nevertheless, we do not need all combinatorically possible n-tuples and all
their sets in any application, thus we can use some constraints for their genera-
tion. Hence the computational complexity can be significantly decreased almost
down to computational complexity of the classical Dempster-Shafer approach,
i.e. to O(2n), because the classical Dempster-Shafer approach is a special case
as we have shown above. A restriction of definition domain of belief assignment
and belief functions using constraints corresponds to the assumption that they
can be defined on a more general form of domain, on Borel fields (σ-fields), [5].
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4 Constraints for Definition of Belief Assignments

We have seen that to decrease a computational complexity it is necessary to make
as many restrictions of domain as possible with respect to a processed application
to decrease a computational complexity. A simple way is non-distinguishing of
some elements, i.e. a coarsening of the original frame of discernment Ω; this
simply decreases n itself.

Another possibility is acceptation of exclusivity of some elements, i.e. admis-
sion of possibility of overlapping only for some elements of the frame. Thus we
have a kind of coarsening on P(Ω) this time.

The third type of constraint is assuming that some class of sets (k-tuples) is
forced to have zero belief mass, similarly, as is assumed for the empty set in the
classic Dempster-Shafer approach.

4.1 Non-distinguishable Elements Coarsening of Frame of
Discernment Ω

Let some elements of a frame of discernment be mutually non-distinguishable or
mutually equivalent in an application in question. Thus we have an equivalence
relation E on the frame of discernment Ω and we can make a coarsening of Ω
according to it. It is the same as if we defined basic belief assignment on the
”double” power set of classes of equivalence E instead of the original Ω. Hence
n = |Ω| is decreased to m = |E|, from cardinality of Ω to number of equivalence
classes of relation E .

This simple case can really decrease computational complexity of real appli-
cations, but it is not interesting from a theoretical point of view.

4.2 Exclusive and Non-exclusive Elements Coarsening of Power Set
of P(Ω)

Let us assume that some elements of the frame of discernment Ω are exclusive
now. Let us assume, e.g., 3-element frame Ω = {a, b, c}, where a is mutually
exclusive with b, we can denote it Excl(a, b). a and b cannot appear at a time,
thus both {(a, b)} and {(a, b, c)} are equivalent to the empty set, i.e. {(a, b)} ≡
{(a, b, c)} ≡ ∅, and their belief masses must be equal to 0. There remain 5 possible
k-tuples (a), (b), (c), (a, c), (b, c), and belief assignment is defined on the power
set of 5-element set {(a), (b), (c), (a, c), (b, c)}. Hence we have 25− 1 subsets, i.e.
at most 31 positive values of basic belief masses instead of original 27− 1 = 127.

We have the following equivalence on ”double” power set P(P(Ω)): ∅ ≡
{(a, b)} ≡ {(a, b, c)} ≡ {(a, b), (a, b, c)}, {(a)} ≡ {(a), (a, b)} ≡ {(a), (a, b, c)} ≡
{(a), (a, b), (a, b, c)}, {(a), (a, c)} ≡ {(a), (a, b), (a, c)} ≡ {(a), (a, c), (a, b, c)} ≡
{(a), (a, b), (a, c), (a, b, c)}, etc. ...

If a is moreover mutually exclusive with c, i.e., if {(a, b)} ≡ {(a, b, c)} ≡ ∅ ≡
{(a, c)}, we have at most 24 − 1 = 15 positive values of basic belief masses.

Let us, now, assume a special case of general finite frame of discernment
Ω = {ω1, ..., ωn}, where only ω1 and ω2 are not exclusive and all the other
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elements are mutually exclusive each other and also mutually exclusive with ω1
and ω2. There is n+1 tuples (ω1, ω2), (ω1), (ω2), ..., (ωn), which are not equivalent
to ∅, whereas all the other tuples are equivalent to empty set. Hence we have
at most 2n+1 − 1 ∼ 2(2n − 1) positive belief masses for set of tuples. Thus the
computational complexity is only roughly twice higher in comparison with the
classical Dempster-Shafer approach using only exclusive elements.

In general, more complex cases of exclusivity constraints can appear, e.g.
Excl(a, b, c)&Excl(d, e) on Ω = {a, b, c, d, e}, where elements a, b, c are all mu-
tually exclusive and other two d, e are again mutually exclusive, i.e. {(a, b)} ≡
{(a, c)} ≡ {(b, c)} ≡ {(a, b, c)} ≡ {(d, e)} ≡ ∅, i.e. also {(a, b, ...)} ≡ {(a, c, ...)} ≡
{(b, c, ...)} ≡ {(a, b, c, ...)} ≡ {(d, e, ...)} ≡ ∅.

All the above coarsening have a common feature that some subclass of P(Ω) is
equivalent to the empty set, and all other subsets of Ω (i.e. k-tuples) are mutually
non-equivalent. It remains an open question whether it would be reasonable to
consider also some more general equivalence on P(Ω) as constraint for definition
of belief assignments, e.g. the equivalence as it follows {(a, b)} ≡ {(a, c)} ≡
{(a, b, c)} ≡ ∅, {(b, c)} ≡ {(b)} �≡ ∅ (and {(a)} �≡ {(c)} �≡ {(b)} ≡ {(b, c)} �≡
{(a)} �≡ ∅, {(c)} �≡ ∅). Whether it is reasonable to consider exclusivity of a
couple or generally k-tuple of elements of Ω, and similarly.

4.3 Non-separable Elements Forced Zero Belief Masses

Let us assume now that one element ωa of the frame is not separable from the
others 3, i.e., that it is not possible to assign any belief mass neither to single (ωa)
nor to any set of k-tuples containing ωa separately from the other elements; i.e.,
that any belief mass in favour of ωa must be assigned to the set of all k-tuples con-
taining ωa, and any belief mass in favour of the m-tuple (ωa, ωi2 , ..., ωim), where
2 ≤ m ≤ n− 1, must be assigned to all k-tuples containing {ωa, ωi2 , ..., ωim} for
all m < k ≤ n.

Similarly, any belief mass in favour of set {(ωa), (ωj2), ..., (ωjm)}, where 2 ≤
m ≤ n − 1, must be assigned to union of the set of all k-tuples containing ωa

with {(ωj2), ..., (ωjm)}, and analogously for any belief mass in favour of the set
of tuples including some tuple(s) with ωa. All other sets of tuples containing at
least one tuple containing ωa are forced to have zero basic belief mass, they are
constrained to have zero basic belief mass, or simply constrained (to zero).

Let us show it on the following example on a simple frame of discernment.

Example 2. Let us assume Ω = {a, b, c} again. Let a be not separable from
b and c now. No believer can assign anything separately to single {(a)} or to
{(a), (a, b)} as anything that is believed in favour of a must be assigned to set
of all tuples including a, etc.

Thus (a), (a, b), (a, c) and their sets are forced to have zero belief masses. What
is believed in favour of a must be assigned to {(a), (a, b), (a, c), (a, b, c)}, and
similarly for {(a), (a, b)} and {(a), (a, c)}. What is believed in favour of {(a, b)}
3 We need this for the restriction of the ”double” power set to the definition domain

of the DSmT, see Sections 5 and 6.
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must be assigned to {(a, b), (a, b, c)}, what is believed in favour of {(a, c)} must
be assigned to {(a, c), (a, b, c)}, only the set {(a, b, c)}, which includes all the
elements simultaneously, behaves as is usual. Thus all other proper subsets of
{(a), (a, b), (a, c), (a, b, c)} are forced to have zero belief masses, i.e. constrained
(to zero). Hence all the following sets are also constrained: {(a)}, {(a), (a, b)},
{(a), (a, c)}, {(a), (a, b, c)}, {(a), (a, b), (a, c)}, {(a), (a, b), (a, b, c)}, {(a), (a, c),
(a, b, c)}, {(a, b)}, {(a, c)}, and {(a, b), (a, c)}. We can count that there are 10
proper subsets of {(a), (a, b), (a, c), (a, b, c)}, which are constrained to zero.

Let us note a very important fact that neither {(a)}, {(a, b)}, {(a, c)} nor any
from the other seven constrained subsets of {(a), (a, b), (a, c), (a, b, c)} must be
equivalent to the empty set. These sets are non-empty in general, they only have
zero belief masses. Otherwise, all five subsets which are allowed to take positive
belief masses would be equivalent to {(a, b, c)}, which is not our case.

Let us take one of the above 10 sets and denote it as X , and let Y be
a subset (P(Ω) \ ∅) \ {(a), (a, b), (a, c), (a, b, c)}, i.e., subset of {(b), (c), (b, c)}.
Anything that is believed in favour of X ∪ Y must be assigned to union of Y
with the entire set to what is assigned which is believed in favour of X , i.e. to
{(a), (a, b), (a, c), (a, b, c)} ∪ Y , {(a, b), (a, c), (a, b, c)} ∪ Y , {(a, b), (a, b, c)} ∪ Y
{(a, c), (a, b, c)}∪ Y , or to {(a, b, c)}∪ Y , respectively. As there are 7 non-empty
subsets of {(b), (c), (b, c)}, i.e. 7 options for the selection of Y , there is in combi-
nation with 10 options for X other 70 subsets of P(Ω), which are constrained to
have zero belief mass; thus together 80 sets of k-tuples are constrained to zero.

E.g., what is believed in favour of {(a), (b)} = {(a)} ∪ {(b)} must be assigned
to {(a), (a, b), (a, c), (a, b, c)}∪{b} = {(a), (b), (a, b), (a, c), (a, b, c)} and {(a), (b)}
must have zero belief mass, which is believed in favour of {(b), (a, b), (a, c)} =
{(a, b), (a, c)}∪{b}must be assigned to {(a, b), (a, c), (a, b, c)}∪{b} = {(b), (a, b),
(a, c), (a, b, c)} and {(a, b), (a, c), (a, b, c)} must have zero belief mass, and simi-
larly.

The number of non-empty sets of tuples on our 3-element frame of discernment
was decreased from 223−1− 1 = 127, which have possibly positive belief mass in
a general case, to 127−80 = 47, which are allowed to obtain positive belief mass
in our example. The more elements is non-separable, the more is decreased the
number of sets of tuples, which are allowed to obtain positive believe masses.

Let us turn our attention to a general finite case, where ωa is non-separable from
the other elements again. We can use a restricted power set for description of sets
of tuples containing ωa as P(Ω|{ωa}), similarly to the above example, some of its
elements (sets of tuples) are forced to have a zero belief mass, the others are not.
We can observe that sets of tuples A({ωa}), which are allowed to take positive
belief masses (when ωa is non-separable), are equal to some restricted power set
of the frame or more generally to a union of some restricted power sets. Trivially,
the set of all tuples containing ωa is allowed, thus P(Ω|{ωa}) ∈ A({ωa}). For
more general X ⊆ P(Ω|{ωa}) it holds that X ∈ A({ωa}) iff
(∃(ωa11 , ..., ωa1k1

), ..., (ωam1 , ..., ωamkm
))(X =

⋃m
i=1 P(Ω|{ωai1 , ..., ωaiki

})).
This can be demonstrated by the previous Example 2, where the follow-

ing holds true: {(a), (a, b), (a, c), (a, b, c)} = P({a, b, c}|{a}), {(a, b), (a, b, c)} =
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P({a, b, c}|{a, b}), {(a, c), (a, b, c)} = P({a, b, c}|{a, c}), {(a, b), (a, c), (a, b, c)} =
P({a, b, c}|{a, b}) ∪ P({a, b, c}|{a, c}), and {(a, b, c)} = P({a, b, c}|{a, b, c}). All
other subsets of P({a, b, c}|{a}) are constrained to zero, see above.

Let us denote the set of all subsets of P(Ω|{ωa}) which are in A({ωa}) as
A0({ωa}). For completely general X ⊆ P(Ω) it holds that
X∈A({ωa}) iff (∃X0, X1)(X =X0∪X1, X0∈A0({ωa}), X1 ⊆ P(Ω) \ P(Ω|{ωa})).

This can be demonstrated by the previous Example 2 again, where have the
following: {(b), (a, b), (a, c), (a, b, c)} = (P({a, b, c}|{a, b}) ∪ P({a, b, c}|{a, c}))∪
{(b)}, {(b), (a, b), (b, c), (a, b, c)} = P({a, b, c}|{a, b})∪{(b), (b, c)}, and similarly.

We have to underline a principal difference between constraints defined by ex-
clusive elements or non-distinguishable elements and just presented constraint
defined by non-separable elements. The previous two classes of constraints de-
crease a size of a definition domain of generalized basic belief assignments and
belief functions, which are defined on the power sets (of k-tuples) or on their sub-
sets, which are Borel fields in general. Whereas the present type of constraints
keeps the original power set (or Borel field in full generality) as the definition
domain, but some parts of the definiton domains are forced to obtain always
zero belief masses. The first two cases reducing a structure as classes of a con-
straining equivalence E on P(P(Ω)) are used instead of the whole P(P(Ω)). In
the present case the whole structure is kept; nevertheless, some of its parts are
constrained to zero, hence a computational complexity is decreased regardless
of keeping the structure.

To finish this subsection, it remains to show that class A({ωa}) of the subsets
of P(Ω) which are allowed to have positive belief masses, is closed with respect to
classic rules, especially Dempster’s rule, i.e., that combination is really performed
in the non-constrained part of a corresponding definition domain.

Idea of proof: We have to show that class A({ωa}) is closed with respect
to combination. I.e., that no positive belief mass is assigned to any set out
of A({ωa}) within the belief combination. All the classic combination rules,
Dempster’s rule, Yager’s rule and Dubois-Prade rule computes values of result-
ing basic belief masses using multiples of original values. If one of two input
basic belief masses is equal zero, then also their multiple is zero, and there
is no problem there. Thus it is sufficient to focus our attention only to mul-
tiples of two positive values, i.e. values assigned to sets X and Y both from
A({ωa}). The corresponding multiple is assigned to intersection X ∩ Y if it
is non-empty, otherwise it is normalized by Dempster’s rule, assigned to the
whole frame by Yager’s rule, or assigned to union X ∪ Y by Dubois-Prade rule.
P(Ω) = P(Ω|{ωa})∪ (P(Ω)\P(Ω|{ωa})) ∈ A({ωa}). Thus it is enough to show
that A({ωa}) is closed w.r.t. operations of intersection and union.

X ∩ Y = (
⋃m

i=1 P(Ω|{ωai1 , ..., ωaiki
}) ∪ X1) ∩ (

⋃r
j=1 P(Ω|{ωaj1 , ..., ωajkj

}) ∪ Y1) =⋃m,r
i,j=1(P(Ω|{ωai1 ..., ωaiki

}) ∩ P(Ω|{ωaj1 , ..., ωajkj
}) ∪ (

⋃m
i=1 P(Ω|{ωai1 , ..., ωaiki

}) ∩
Y1) ∪ (

⋃r
j=1 P(Ω|{ωaj1 , ..., ωajkj

}) ∩ X1) ∪ (X1 ∩ Y1) =
⋃m,r

i,j=1(P(Ω|{ωai1 ..., ωaiki
} ∪

{ωaj1 , ..., ωajkj
}) ∪ (X1 ∩ Y1) ∈ A({ωa}).
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X∪Y = (
⋃m

i=1 P(Ω|{ωai1 , ..., ωaiki
})∪X1)∪(

⋃r
j=1 P(Ω|{ωaj1 , ..., ωajkj

})∪Y1) =
(
⋃m

i=1 P(Ω|{ωai1 ..., ωaiki
})∪

⋃r
j=1 P(Ω|{ωaj1 , ..., ωajkj

}))∪(X1∪Y1) ∈ A({ωa}).
��

Similarly to the previous subsection, more general constraining conditions using
non-separable elements should be discussed and investigated in future.

4.4 Overview of Constraints

Let us make a brief overview of possible types of constraints to summarize this
section. There can be the following types of constraints to better specify a type
of used belief functions and to decrease computational complexity:

– coarsening of the original frame of discernment Ω, i.e., an equivalence on the
frame, belief assignment and belief functions are defined on the ”double”
power set of a coarsened frame of discernment,

– exclusive elements — coarsening of P(Ω), i.e. an equivalence on P(Ω):
• mutual exclusivity of an element with all the other elements of the frame,
• mutual exclusivity of an element with a group of elements of the frame,
• mutual exclusivity of groups of elements of the frame,

– more general coarsening of P(Ω), i.e. still the power set of equivalence classes,
– subsets of ”double” power sets, i.e. more general Borel fields on P(Ω),
– non-separable elements:
• elements non-separable from all the other elements of the frame Ω,
• elements non-separable from a subset of Ω,
• non-separability of groups of elements of the frame,

parts of a definition domain (i.e. parts of the power set or of Borel field in
general) are constrained to zero,

– a combination of previous constraints.

We can see that only several simple classes of constraint have been discussed
here, namely such that are necessary for solving the tasks of DSmT, and that
there is a wide area still open for future investigation.

5 A Brief Introduction to DSm Theory

The DSm theory (DSmT) is a new theory which appeared five years ago in 2002
[3], and which is in permanent dynamic evolution, see [7,8], and the anouncement
of a new volume. For the brand new advances of DSmT we can see its homepage.

5.1 Dedekind Lattice, Basic DSm Notions

Dempster-Shafer modified Theory or Dezert-Smarandache Theory (DSmT) by
Dezert and Smarandache [3,7] allows mutually overlapping elements of a frame of
discernment. Thus, a frame of discernment is a finite exhaustive set of elements
Ω = {ω1, ω2, ..., ωn}, but not necessarily exclusive in DSmT. As an example, we
can introduce a three-element set of colours {Red, Green, Blue} from the DSmT
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homepage4: DSmT allows that an object can have 2 or 3 colours at the same
time: e.g. it can be both red and blue, or red and green and blue in the same
time, it corresponds to a composition of the colours from the 3 basic ones.

DSmT uses basic belief assignments and belief functions defined analogically
to the classic Dempster-Shafer theory (DST), but they are defined on a so-called
hyper-power set or Dedekind lattice (which does not satisfy the conditions of
Borel field), instead of the classic power set of the frame of discernment.

The Dedekind lattice, more frequently called hyper-power set DΩ in DSmT,
is defined as the set of all composite propositions built from elements of Ω with
union and intersection operators ∪ and ∩ such that ∅, ω1, ω2, ..., ωn ∈ DΩ, and
if A, B ∈ DΩ then also A∪B ∈ DΩ and A∩B ∈ DΩ, no other elements belong
to DΩ (ωi ∩ ωj �= ∅ in general, ωi ∩ ωj = ∅ iff ωi = ∅ or ωj = ∅).

Thus the hyper-power set DΩ of Ω is closed to ∪ and ∩ and ωi ∩ ωj �= ∅ in
general, hence DΩ is not a Borel field. Whereas the classic power set 2Ω of Ω is
closed to ∪, ∩ and complement, and ωi ∩ ωj = ∅ for every i �= j.

Examples of hyper-power sets. Let Ω = {ω1, ω2}, we have DΩ = {∅, ω1 ∩
ω2, ω1, ω2, ω1 ∪ ω2}, i.e., |DΩ| = 5. Let Ω = {ω1, ω2, ω3} now, we have DΩ =
{α0, α1, ...α18}, where α0 = ∅, α1 = ω1 ∩ ω2 ∩ ω3, α2 = ω1 ∩ ω2, α3 = ω1 ∩
ω3, ..., α17 = ω2 ∪ ω3, α18 = ω1 ∪ ω2 ∪ ω3, i.e., |DΩ| = 19 for |Ω| = 3.

5.2 DSm Models

If we assume a Dedekind lattice (hyper-power set) according to the above defi-
nition without any other assumptions, i.e., all elements of an exhaustive frame
of discernment can mutually overlap themselves, we refer to the free DSm model
Mf (Ω), i.e. about the DSm model free of constraints. In general, it is possible to
add exclusivity or non-existential constraints into DSm models, we speak about
hybrid DSm models in such cases.

An exclusivity constraint ω1 ∩ ω2
M1≡ ∅ says that elements ω1 and ω2 are

mutually exclusive in model M1, whereas both of them can overlap with ω3. If
we assume exclusivity constraints ω1 ∩ ω2

M2≡ ∅, ω1 ∩ ω3
M2≡ ∅, ω2 ∩ ω3

M2≡ ∅,
another exclusivity constraint directly follows them: ω1 ∩ ω2 ∩ ω3

M2≡ ∅. In this
case all the elements of the 3-element frame of discernment Ω = {ω1, ω2, ω3} are
mutually exclusive as in the classic Dempster-Shafer theory, and we call such
hybrid DSm model as Shafer’s model M0(Ω).

A non-existential constraint ω3
M3≡ ∅ brings a piece of additional information

about a frame of discernment saying that ω3 is impossible; it forces all the belief
masses of X ⊆ ω3 to be equal to zero for any basic belief assignment in model
M3. It represents a sure meta-information with respect to generalized belief
combination which is used in a dynamic fusion.

5.3 The DSm Rules of Combination

There is a series of combination rules in DSmT. Originally in [3], only the DSm
classic and the hybrid DSm rules were considered, i.e. the generalized conjunctive
4 www.gallup.unm.edu/∼smarandache/DSmT.htm
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rule and a slightly extended generalization of the Dubois-Prade rule, in fact, for
detail see [2]. For a possibility of better comparison of the DSmT with the classic
Dempster-Shafer theory also Dempster’s and Yager’s rules were generalized to
the DSm hyper-power sets in [2]. Besides some new rules were defined in [8].

6 Dempster-Shafer Theory on a Frame of Discernment
with Overlapping and Fully Non-separable Elements

6.1 Definition Domain of Belief Functions

Let us assume the Dempster-Shafer theory with overlapping elements of a frame
of discernment in the sense of Sect. 3. Let us more assume that all the elements
of the frame of discernment are non-separable from the others in the sense of
Sect. 4.3. Belief assignments and belief functions are defined on P(P(Ω)), but a
lot of the subsets of P(Ω) are constrained to have zero belief masses.

We have shown that the set of non-constrained elements is closed under ∩
and ∪ in Sect. 4.3. The set of all k-tuples containing ωi, i.e. P(Ω|{ωi}), is not
constrained for any ωi, as we assume only non-separability constraints. Such
a set corresponds to a belief assigned in favour of ωi, for any ωi ∈ Ω, and
positive belief masses are allowed for all unions and intersections iteratively
applied to these sets. Thus hyper-power set DΩ generated by Ω is included
in our constrained P(P(Ω)). Moreover, hyper-power set DΩ is equivalent to
the constrained P(P(Ω)) as all non-constrained proper subsets of P(Ω|{ωi})
are in a form P(Ω|{ωi} ∪ X) = P(Ω|{ωi}) ∩ P(Ω|X) for some X ⊂ Ω, in
our case. Hence the P(P(Ω)) constrained by full non-separability of all ele-
ments of Ω is equivalent to the free DSm model Mf(Ω), where an element
{(ω11, ..., ω1k1), ..., (ωj1, ..., ωjkj )} of P(P(Ω)) fully corresponds to the disjunc-
tive normal form of an element (ω11∩ ...∩ω1k1 )∪ ...∪(ωj1∩ ...∩ωjkj ) ofMf (Ω).

As we can combine together the constraints given by non-separable elements
and the exclusivity constraints given by exclusive elements of Ω, we can add
exclusivity constraints in the same way as in DSmT. And a strange DSm non-
existence constraint is equivalent to exclusivity of an element ωi with whole Ω
including ωi itself, i.e., all k-tuples including ωi are equivalent to the empty set
for k ≥ 1 (including (ωi)), hence they are constrained. Thus for any hybrid DSm
model M(Ω), there is a set of constraints such that constrained P(P(Ω)) is
equivalent to M(Ω). Hence we have just proved the following theorem.

Theorem 1. Any DSm model M(Ω) is a special case of the constrained double
power set P(P(Ω)) from the Dempster-Shafer approach to overlapping elements.

6.2 Several Notes to Belief Combination

We have shown above that DSmT is a special case of Demspter-Shafer theory
from the perspective of their respective definition domains. Thus, also all com-
bination rules from DSmT can be used and studied from the point of view of
the Dempster-Shafer theory. Trivially, Dempster’s and Yager’s rules which have
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been generalized from the Dempster-Shafer theory on frames of discernment with
exclusive elements to DSmT are common to the both of these approaches.

An interesting open problem for future is to investigate the full relation of
the hybrid DSm rule and of the Dubois-Prade rule on the frame of discernment
with overlapping elements including different types of the constrained ”double”
power sets. Also analogically, relation of a family of new DSm PCR rules to both
the full and constrained ”double” power sets.

7 Conclusion

DSmT brings the new domain of belief functions with a lot of variants via various
hybrid DMs models. We have proved that any DSm hybrid model is a special case
of constrained ”double” power set P(P(Ω)) of the frame of discernment used in
the Dempster-Shafer theory for frames of discernment with overlapping elements.
We have shown that the DSm belief combination can be also interpreted from
the point of view of the Dempster-Shafer theory.

This enables us to cover the entire DSmT using the approach of the Dempster-
Shafer theory, and it also allows for a better placement of the DSmT among the
other approaches to the belief functions.

To achieve this, we have suggested several types of constraints in the Dempster-
Shafer theory on overlapping and multiple elements. We have formalized basic
types of these constraints in this paper, and we have opened a series of new ques-
tions for future research here.
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Abstract. Traditional Dempster Shafer belief theory does not provide a simple
method for judging the effect of statistical and probabilistic data on belief func-
tions and vice versa. This puts belief theory in isolation from probability theory
and hinders fertile cross-disciplinary developments, both from a theoretic and an
application point of view. It can be shown that a bijective mapping exists between
Dirichlet distributions and Dempster-Shafer belief functions, and the purpose of
this paper is to describe this correspondence. This has three main advantages; be-
lief based reasoning can be applied to statistical data, statistical and probabilistic
analysis can be applied to belief functions, and it provides a basis for interpret-
ing and visualizing beliefs for the purpose of enhancing human cognition and the
usability of belief based reasoning systems.

1 Introduction

Belief theory has its origin in a model for upper and lower probabilities proposed by
Dempster in [1]. Shafer later proposed a model for expressing beliefs described in his
book [8]. The main idea behind belief theory is to abandon the additivity principle of
probability theory, i.e. that the sum of probabilities on all pairwise exclusive possibili-
ties must add up to one. Instead, belief theory gives observers the ability to assign so-
called belief mass to any subset of the frame of discernment, i.e. non-exclusive subsets
as well as the whole frame itself. The advantage of this approach is that ignorance, i.e.
the lack of information, can be explicitly expressed by assigning belief mass to subsets
of the frame, or to the whole frame.

While classic Dempster-Shafer belief theory represents a powerful framework for
representing partial ignorance in reasoning, there is no simple connection to probability
theory and statistics allowing statistical data to be interpreted as belief functions and
vice versa. A more direct relationship between belief theory and probability calculus
would make it possible to compute and compare expected consequences and utilities1

of the various courses of action.

1 See e.g. M.R.B. Clarke’s response to Philippe Smets’ Chapter on belief functions [9].
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In this paper we show how belief functions can be directly interpreted as Dirichlet
probability density functions and vice versa. Models for representing uncertainty us-
ing the Dirichlet Distribution have been presented in the literature, with for example
mappings to upper and lower probabilities which in some sense can represent belief
functions, but none of the previously described models provide a direct mapping to be-
lief functions on the form of bbas. This is precisely the contribution if this paper. Our
method for mapping belief functions to statistical data is simple and direct. This makes
it possible to perform belief based reasoning directly on statistical data, and statistical
reasoning directly on belief functions. This also provides a basis for various visualiza-
tions of belief functions that facilitate human understanding of beliefs and improve the
usability of belief based reasoning systems.

The remainder of this paper is organized as follows: Sec.2 gives an overview of
previous approaches. Sec.3 gives an overview of the belief function theory necessary
for this presentation. Then, Sec.4 presents the Dirichlet multinomial model. In Sec.5,
the mapping between Dirichlet distribution and belief distribution functions is detailed,
and Sec.6 describes some applications of the mapping.

2 Previous Approaches

The Imprecise Dirichlet Model (IDM) for multinomial data is described by Walley [11]
as a method for determining upper and lower probabilities. The model is based on vary-
ing the base rate over all possible outcomes. The probability expectation value of an
outcome resulting from assigning the total base rate (i.e. equal to one) to that outcome
produces the upper probability, and the probability expectation value of an outcome re-
sulting from assigning a zero base rate to that outcome produces the lower probability.
The upper and lower probabilities are interpreted as the upper and lower bounds for
the relative frequency of the outcome. While this is an interesting interpretation of the
Dirichlet distribution, it can not be taken literally, as will be shown in Sec.4.

Utkin (2005) [10] defines a method for deriving beliefs and plausibilities based on
the IDM, where the lower probability is interpreted as the belief and the upper proba-
bility is interpreted as the plausibility. This method can produce unreasonable results in
practical applications, and Utkin provides extensions to the Imprecise Dirichlet Model
to overcome some of these problems. In our view the belif and plausibility functions
can not be based on the base rate uncertainty of the Dirichlet distributions. The base
rates are determined by the structure of the state space when it is known, and must be
estimated on a subjective basis when not known [7]. In belief theory, the state space
structure is used when e.g. computing the pignistic probability expectations, but it is
independent of the bba.

An indirect quantitative method for determining belief functions from statistical data
is described in Shafer’s book [8] (p.237). Shafer’s method requires the specification of
an auxiliary frame of discernment of possible probability values for the elements of the
primary frame of discernment. The method can then be used to determine belief func-
tions on the auxiliary frame of discernment based on statistical data. The awkwardness
of this method makes it difficult to use in practical applications.
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3 Belief Theory

In this section several concepts of the Dempster-Shafer theory of evidence [8] are re-
called in order to introduce notations used throughout the article. Let Θ = {θi; i =
1, · · ·k} denote a finite set of exhaustive and exclusive possible values for a state vari-
able of interest. The frame of discernment can for example be the set of six possible
outcomes of throwing a dice, so that the (unknown) outcome of a particular instance
of throwing the dice becomes the state variable. A bba (basic belief assignment2), de-
noted by m, is defined as a belief distribution function from the power set 2Θ to [0, 1]
satisfying:

m(∅) = 0 and
∑
x⊆Θ

m(x) = 1 . (1)

Values of a bba are called belief masses. Each subset x ⊆ Θ such that m(x) > 0 is
called a focal element of Θ.

A bba m can be equivalently represented by a non additive measure: a belief function
Bel: 2Θ → [0, 1], defined as

Bel(x) �
∑
∅�=y⊆x

m(y) ∀ x ⊆ Θ . (2)

The quantity Bel(x) can be interpreted as a measure of one’s total belief commit-
ted to the hypothesis that x is true. Note that functions m and Bel are in one-to-one
correspondence [8] and can be seen as two facets of the same piece of information.

A few special classes of bba can be mentioned. A vacuous bba has m(Θ) = 1, i.e. no
belief mass committed to any proper subset of Θ. This bba expresses the total ignorance.
A Bayesian bba is when all the focal elements are singletons, i.e. one-element subsets
of Θ. If all the focal elements are nestable (i.e. linearly ordered by inclusion) then we
speak about consonant bba. A dogmatic bba is defined by Smets as a bba for which
m(Θ) = 0. Let us note, that trivially, every Bayesian bba is dogmatic.

We will use X to denote the power set of Θ, defined by X = 2Θ\Θ, which can also
be expressed as X = {xi; xi ⊂ Θ}. Thus all proper subsets of Θ are elements of X .
By considering X as a state space in itself, a general bba on Θ becomes a particular
bba on X called a Dirichlet bba. We define m(X) = m(Θ). A belief mass on a proper
subsets of Θ then becomes a belief mass on an element of X . Dirichlet bba’s on X are
characterised by having mutually disjoint focal elements, except the whole state space
X itself. This is defined as follows.

Definition 1 (Dirichlet bba). Let X be a state space. A bba where the only focal el-
ements are X and/or singletons of X , is called a Dirichlet belief mass distribution
function, or Dirichlet bba for short.

Fig.1.b below illustrates a Dirichlet bba on X , where the shaded circles around sin-
gletons and the shaded ellipse around X represent belief masses on those subsets. The
focal elements in this example are X , x1, x2 and x4.

2 Called basic probability assignment in [8], and Belief Mass Assignment (BMA) in [3,4].
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The number of elements in X is |X | = 2|Θ| − 2 when excluding ∅. For example,
Fig.1.b illustrates X as having cardinality 6, meaning that it is the power set of a ternary
frame of discernment. The subsets of Θ and the elements of X carry the same belief
masses, so is natural to make the correspondence as simple as possible. The following
example defines a possible correspondence between subsets of Θ and elements of X .

x1 = θ1 x4 = θ1 ∪ θ2 X = Θ
x2 = θ2 x5 = θ1 ∪ θ3
x3 = θ3 x6 = θ2 ∪ θ3

(3)

Under this correspondence between the belief masses on X and on Θ, the focal elements
of Θ are θ1, θ2, θ4 and Θ as shown in Fig.1.a

(a) Focal elements ofΘ (b) Focal elements of X

Fig. 1. Correspondence between belief masses on state space Θ and its power set X

The number of focal elements of a Dirichlet bba on X can be at most |X |+1, which
happens when every element as well as X is a focal element.

The name “Dirichlet” bba is used because bba’s of this type are equivalent to Dirich-
let probability density functions under a specific mapping. A bijective mapping between
Dirichlet bba’s and Dirichlet probability density functions is defined in [5], and is also
described in Section 5 below.

4 The Dirichlet Multinomial Model

The cumulative rule of combination, to be described in detail in the following sec-
tions, is firmly rooted in the classical Bayesian inference theory, and is equivalent to the
combination of multinomial observations. For self-containment, we briefly outline the
Dirichlet multinomial model below, and refer to [2] for more details.

4.1 The Dirichlet Distribution

We are interested in knowing the probability distribution over the disjoint elements of
a state space. In case of a binary state space, it is determined by the Beta distribution.
In the general multinomial case it is determined by the Dirichlet distribution, which
describes the probability distribution over a k-component random variable p(xi), i =
1 . . . k with sample space [0, 1]k, subject to the simple additivity requirement

k∑
i=1

p(xi) = 1 . (4)
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Because of this additivity requirement, the Dirichlet distribution has only k − 1 de-
grees of freedom. This means that knowing k−1 probability variables and their density
uniquely determines the last probability variable and its density.

The Dirichlet distribution captures a sequence of observations of the k possible out-
comes with k positive real parameters α(xi), i = 1 . . . k, each corresponding to one of
the possible outcomes.

In order to have a compact notation we define a vector �p = {p(xi) | 1 ≤ i ≤ k} to
denote the k-component random probability variable, and a vector �α = {αi | 1 ≤ i ≤
k} to denote the k-component random evidence variable [α(xi)]ki=1.

The �α vector represents the a priori as well as the observation evidence. The weight
of the a priori evidence can be expressed as a constant C, and this weight is distributed
over all the possible outcomes as a function of the base rate.

The elements in a state space of cardinality k can have a base rate different from the
default value a = 1/k. It is thereby possible to define a base rate as a vector �a with
arbitrary distribution over the k mutually disjoint elements xi with i = 1 . . . k, as long
as the simple additivity requirement expressed as

∑k
i=1 a(xi) = 1 is satisfied. The total

evidence α(xi) for each element xi can then be expressed as:

α(xi) = r(xi) + C a(xi) , where the constant C is the a priori weight. (5)

The selection of the a priori weight C will be discussed below. The Dirichlet distri-
bution over a set of k possible states xi can thus be represented as a function of the base
rate vector �a, the a priori weight C and the observation evidence �r.

Definition 2. Dirichlet Distribution

Let Θ be a state space consisting of k mutually disjoint elements. Let �r represent the
evidence vector over the elements of Θ and let �a represent the base rate vector over the
same elements. Then the multinomial Dirichlet density function over Θ can be expressed
as:

f(�p | �r,�a) =
Γ

(
k∑

i=1
(r(xi) + Ca(xi))

)
k∏

i=1
Γ (r(xi) + Ca(xi))

k∏
i=1

p(xi)(r(xi)+Ca(xi)−1) (6)

where r(x1), . . . r(xk) ≥ 0, a(x1), . . . a(xk) ∈ [0, 1],
∑k

i=1 a(xi) = 1, .

The notation of Eq.(6) is useful, because it allows the determination of the probability
distribution over state spaces where each element can have an arbitrary base rate. Given
the Dirichlet distribution of Eq.(6), the probability expectation of any of the k random
probability variables can now be written as:

E(p(xi) | �r,�a) =
r(xi) + Ca(xi)

C +
∑k

i=1 r(xi)
. (7)

It is normally required that the a priori distribution in case of a binary state space
X = {x, x} is uniform, which means that α(x) = α(x) = 1. Because of the additivity
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of �a, then necessarily the a priori weight C = 2. Should one assume an a priori uniform
distribution over state spaces other than binary, the constant, and also the common value
would be different. The a priori weight C will always be equal to the cardinality of the
state space over which a uniform distribution is assumed.

Selecting C > 2 will result in new observations having relatively less influence over
the Dirichlet distribution. This could be meaningful e.g. as a representation of specific
a priori information provided by a domain expert. It can be noted that it would be
unnatural to require a uniform distribution over arbitrary large state spaces because it
would make the sensitivity to new evidence arbitrarily small.

For example, requiring a uniform a priori distribution over a state space of cardinal-
ity 100, would force the constant C to be C = 100. In case an event of interest has
been observed 100 times, and no other event has been observed, the derived probability
expectation of the event of interest will still only be about 1

2 , which would seem totally
counterintuitive. In contrast, when a uniform distribution is assumed in the binary case,
and the same evidence is analysed, the derived probability expectation of the event of
interest would be close to 1, as intuition would dictate. A good discussion of the choice
of C can be found in [11].

It is here timely to revisit the Imprecise Dirichlet Model (IDM) described by Walley
[11]. According to this model, the upper and lower probability values for an outcome
xi are defined as:

IDM Upper probability: P (xi) =
r(xi) + C

C +
∑k

i=1 r(xi)
(8)

IDM Lower probability: P (xi) =
r(xi)

C +
∑k

i=1 r(xi)
(9)

It can easily be shown that these values can not be literally interpreted as upper and
lower bounds for for the relative frequency. For example, assume an urn containing 9
red balls and 1 black ball, meaning that the relative frequencies of red and black balls are
p(red) = 0.9 and p(black) = 0.1 The a priori weight is set to C = 2. Assume further
that an observer picks one ball which turns out to be black. According to Eq.(9) the
lower probability is then P (black) = 1

3 . It would be incorrect to literally interpret this
value as the lower bound for the relative frequency because it obviously is greater than
the actual relative frequency of black balls. In other words, if P (black) > p(black) then
P (black) can impossibly be the lower bound. This case shows that the upper and lower
probabilities defined by the IDM should be interpreted as an expectation value range,
because that would make it consistent with the fact that actual relative frequencies can
be outside the range.

4.2 Visualizing Dirichlet Distributions

Visualising Dirichlet distributions is challenging because it is a density function over
k − 1 dimensions, where k is the state space cardinality. For this reason, Dirichlet
distributions over ternary state spaces are the largest that can be practically visualised.

With k = 3, the probability distribution has 2 degrees of freedom, and the equation
p(x1) + p(x2) + p(x3) = 1 defines a triangular plane as illustrated in Fig.2.
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Fig. 2. Triangular plane

In order to visualise probability density over the triangular plane, it is convenient to
lay the triangular plane horizontally in the X-Y plane, and visualise the density dimen-
sion along the Z-axis.

Let us consider the example of an urn containing balls of the three different types:
the balls can be marked with x1, x2 or x3 (i.e. k = 3). Let us first assume that no
other information than the cardinality is available, meaning that the default base rate
is a = 1/3, and that r(x1) = r(x2) = r(x3) = 0. Then Eq.(7) dictates that the
expected a priori probability of picking a ball of any specific colour is the default base
rate probability, which is 1

3 . The a priori Dirichlet density function is illustrated on the
left side of Fig.3.

Let us now assume that an observer has picked (with return) 6 balls of type x1, 1
ball of type x2 and 1 ball of type x3, i.e. r(x1) = 6, r(x2) = 1, r(x3) = 1, then
the a posteriori expected probability of picking a ball of type x1 can be computed as
E(p(x1)) = 2

3 . The a posteriori Dirichlet density function is illustrated on the right side
in Fig.3.

4.3 Coarsening Example: From Ternary to Binary

We reuse the example of Sec.4.2 with the urn containing red, black and yellow balls,
but this time we create a binary partition of x1 = {red} and x2 = {black, yellow}. The
base rate of picking a red ball is set to the relative atomicity of red balls, expressed as
a(x1) = 1

3 .
Let us again assume that an observer has picked (with return) 6 red balls, and 2

“black or yellow” balls, i.e. r(x1) = 6, r(x2) = 2.
Since the state space has been reduced to binary, the Dirichlet distribution is reduced

to a Beta distribution which is simple to visualise. The a priori and a posteriori density
functions are illustrated in Fig.4.

The a posteriori expected probability of picking a red ball can be computed with
Eq.(7) as E(p(x1)) = 2

3 , which is the same as before the coarsening, as described in
Sec.4.2. This shows that the coarsening does not influence the probability expectation
value of specific events.
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Fig. 4. Visualising prior and posterior Beta distributions

5 Mapping Between Dirichlet Distribution and Belief Distribution
Functions

In this section we will define a bijective mapping between Dirichlet probability distri-
butions described in Sec.4, and Dirichlet bba’s described in Sec.3.

Let X = {xi; i = 1, · · ·k} be a state space where each singleton represents a
possible outcome of a state variable. It is assumed that X is the power set of a frame of
discernment Θ. Let m be a general bba on Θ and therefore a Dirichlet bba on X , and
let f(�p | �r,�a) be a Dirichlet probability distribution function over X .

For the bijective mapping between m and f(�p | �r,�a), we require equality between
the pignistic probability values ℘(xi) derived from m, and the probability expectation
values E(p(xi)) of f(�p | �r,�a). For all xi ∈ X , this constraint is expressed as:
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℘(xi) = E(p(xi) | �r,�a) (10)

0

m(xi) + a(xi)m(X) =
r(xi) + a(xi)C

C +
∑k

t=1 r(xt)
(11)

We also require that m(xi) be an increasing function of r(xi), and that m(X) be a
decreasing function of

∑k
t=1 r(xt). In other words, the more evidence in favour of a

particular outcome, the greater the belief mass on that outcome. Furthermore, the less
evidence available in general, the more vacuous the bba (i.e. the greater m(X)). These
intuitive requirements together with Eq.(11) imply the bijective mapping defined by
Eq.(12).

For m(X) �= 0 :⎧⎪⎨⎪⎩
m(xi) = r(xi)

C +
∑

k
t=1 r(xt)

m(X) = C
C +

∑
k
t=1 r(xt)

⇔

⎧⎪⎨⎪⎩
r(xi) = Cm(xi)

m(X)

1 = m(X) +
∑k

i=1 m(xi)
(12)

Next, we consider the case of zero uncertainty. In case m(X) −→ 0, then necessarily∑k
i=1 m(xi) −→ 1, and

∑k
i=1 r(xi) −→ ∞, meaning that at least some, but not

necessarily all, of the evidence parameters r(xi) are infinite.
We define η(xi) as the the relative degree of infinity between the corresponding

infinite evidence parameters r(xi) such that
∑k

i=1 η(xi) = 1. When infinite evidence
parameters exist, any finite evidence parameter r(xi) can be assumed to be zero in any
practical situation because it will have η(xi) = 0, i.e. it will carry zero weight relative to
the infinite evidence parameters. This leads to the bijective mapping defined by Eq.(13).

For m(X) = 0 :

⎧⎨⎩
m(xi) = η(xi)

m(X) = 0
⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r(xi) = η(xi)

k∑
t=1

r(xt) = η(xi)∞

1 =
k∑

t=1
m(xt)

(13)

In case η(xi) = 1 for a particular evidence parameter r(xi), then r(xj) =∞ and all
the other evidence parameters are finite. In case η(xj) = 1/l for all j = 1 . . . l, then all
the evidence parameters are all equally infinite.

6 Applications of the bba-Dirichlet Correspondence

Having established the mapping between Dirichlet distributions and belief mass dis-
tributions in the form of bbas, it is possible to investigate how tools from traditional
probability theory can be used in belief theory and vice versa.
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Bayesian updating is for example performed by simple addition of observation vari-
ables. Let �rA and �rB be two sets of observations of the same set of outcomes. The
Dirichlet distribution of the combined observation is obtained by simple vector addi-
tion of �rA and �rB . Mapping this vector sum to the bba space results in an operator
called the cumulative fusion rule for belief [6] which represents a generalization of the
consensus operator used in subjective logic [4].

Similarly, the average of statistical observations can be computed by taking the av-
erage of two sets of observations represented as vectors. Mapping the average vector to
the bba space results in an operator called the averaging fusion rule for beliefs [6].

Any operator from belief theory can be translated and be applied to Dirichlet distri-
butions, such as e.g. Dempster’s orthogonal rule. Interestingly this rule becomes very
different from traditional Bayesian updating. For a binary state space X = {x, x},
Dempster’s orthogonal rule can be expressed as

mA *mB :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m(x) = mA(x)mB(x)+mA(x)mB(X)+mA(X)mB(x)
1−mA(x)mB(x)−mA(x)mB(x)

m(x) = mA(x)mB(x)+mA(x)mB(X)+mA(X)mB(x)
1−mA(x)mB(x)−mA(x)mB(x)

m(X) = mA(X)mB(X)
1−mA(x)mB(x)−mA(x)mB(x)

(14)

The Beta distribution represents the binary case of the Dirichlet distribution. Let r
represent the observation parameter of x and let s represent the observation parameter
of x. Bayesian updating dictates that (rA, sA) + (rB , sB) = (rA + rB , sA + sB)
whereas Dempster’s orthogonal rule is expressed as:

(rA, sA)* (rB , sB) :

⎧⎪⎨⎪⎩
r = rArB+2(rA+rB)

(r+s+2)2−rAsB−sArB

s = sAsB+2(sA+sB)
(r+s+2)2−rAsB−sArB

(15)

Combining statistical observation evidence according to the binomial Dempster’s
orthogonal rule of Eq.(15) is certainly new in the field of Bayesian probability theory.
Generalisation to a multinomial expression is straightforward.

Belief functions on binary state spaces can be expressed as opinions in subjective
logic, and visualised with the opinion triangle of subjective logic. Opinions correspond
to Beta distributions which are also convenient to visualise. A simple online demon-
stration shows the correspondence between opinions and Beta density functions.This is
shown in Fig.5, which is a screen capture of an online demonstration3.

The example visualises opinions about three different statements x, y and z. Each
belief is visualised in different ways, i.e. in the form of 1) points in an opinion triangle,
2) beta density functions, 3) coloured/shaded bars, and 4) fuzzy verbal categories.

The interpretation of the opinion triangle and the beta PDF need no further expla-
nation, as they have been described in the previous sections. Suffice to mention that
the leftmost PDF refers to x, the middle PDF refers to y and the rightmost PDF refers
to z.

3 http://www.fit.qut.edu.au/ josang/sl/demo/BV.html



Interpreting Belief Functions as Dirichlet Distributions 403

Fig. 5. Example visualisations of binomial opinions

The horizontal shaded bars are actually coloured in the online demonstration, which
makes them easier to interpret. The first horizontal bar, representing the belief in x,
consists of a dark shaded area representing bx, and a light shaded area representing
axux (i.e. the amount of uncertainty that contributes to E(x), so that the total length of
the dark and light shaded areas together represent E(x).

The second horizontal bar, representing the belief in y, consists of a green (leftmost)
area representing by , an amber (middle) area representing uy, and a red (rightmost) area
representing dy , as well as a black vertical line within the amber area indicating E(y).
The second horizontal bar thus uses the traffic light metaphor, where green indicates
“go”, red indicates “stop” and amber indicates “caution”.

The third horizontal bar, representing the belief in z, simply has a single dark shaded
area representing E(z).

7 Conclusion

The mapping between beliefs and probability distribution functions puts belief theory
and statistical theory firmly together. This is important in order to make belief theory
more practical and easier to interpret, and to make belief theory more acceptable in the
main stream statistics and probability communities.
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Abstract. The Transferable Belief Model (TBM) relies on belief func-
tions and enables one to represent and combine a variety of knowledge
from certain up to ignorance as well as conflict inherent to imperfect
data. A lot of applications have used this flexible framework however, in
the context of temporal data analysis of belief functions, a few work have
been proposed. Temporal aspect of data is essential for many applications
such as surveillance (monitoring) and Human-Computer Interfaces. We
propose algorithms based on the mechanisms of Hidden Markov Mod-
els usually used for state sequence analysis in probability theory. The
proposed algorithms are the “credal forward”, “credal backward” and
“credal Viterbi” procedures which allow to filter temporal belief func-
tions and to assess state sequences in the TBM framework. Illustration
of performance is provided on a human motion analysis problem.

1 Introduction

Analysis of state sequence is important in many fields such as Signal Processing
and Computer Vision [1,2,3]. State sequence analysis is generally performed in
Bayesian framework using Hidden Markov models (HMM) [1,2] where probabil-
ities are used to handle uncertainty on states. In HMM, one can only observe
some features related to states but not the states directly in part because of noise.
Given a sequence of noise observations, HMM machinery is able to retrieve the
best sequence of states using a Viterbi decoding [1] relying on a forward propa-
gation scheme. The latter is used for state filtering (online) whereas smoothing
(offline) is performed using a backward procedure. Particular combinations of
forward–backward procedures allow to estimate HMM parameters such as the
state transition matrix [1]. Usual HMM can only be applied on probabilities.

Transferable Belief Model (TBM) [4] can model more complex cases of uncer-
tainty than probabilities. It is a general model used to represent and combine a
variety of knowledge. In particular, doubt and conflict are explicitly emphasized.
Doubt smartly represents ignorance (useful to initialize HMM and to represent
state transition) and conflict emphasizes the contradiction within a fusion pro-
cess (can be exploited for state sequence analysis [5]).

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 405–417, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The TBM has seldom been used for temporal data and state sequence analysis
in a noise context. In this paper a method is proposed for this purpose and that
we call credal HMM (CrHMM). The CrHMM combines the genericity of TBM
and mechanisms of HMM. The idea to generalize HMM to evidence theory was
initiated by Pieczynski et al. (see [6] for a recent work) but the generalization
is based on Dempster’s rule of combination (with normalization) and assumes
that either the prior or (exclusively) the observation is evidential (and generally
a simple BBA obtained by discounting). Therefore, the combination yields a
Bayesian belief function. The formalism proposed in this paper handles general
belief functions (as understood in TBM), is strongly based on conflict and relies
on Smets’ work concerning Evidential Network [7,8,9]. Moreover, a first credal
Viterbi algorithm is proposed.

Credal forward-backward algorithms are expressed by commonalities in order
to mimick their counterpart in HMM. Then, particular combinations of credal
forward-backward algorithms are presented for CrHMM learning. Lastly, a credal
Viterbi decoding algorithm is proposed to retrieve the best sequence of states
when knowledge on observations and priors is modelled by belief functions. Both
the credal forward and the credal Viterbi decoding generate one criterion (based
on conflict information) used for inference in the context of competing CrHMMs.
Illustrations of algorithms capabilities concern human motion analysis in videos.

Section 2 presents HMM machinery. Section 3 describes some TBM’s tools
used in this paper. Section 4 is devoted to the credal version of the forward
algorithm. Section 5 focuses on the extension of the backward algorithm and
on some variables useful for learning credal HMM. Section 6 presents the credal
Viterbi decoding. Lastly, illustrations are provided.

2 Hidden Markov Models: Basics

In this section, main elements of HMM are recalled. For the remainder of this
paper, we assume the reader is familiar with basics in HMM. The reader can
read the well known tutorial of Rabiner [1] for details. We will refer to it several
times in this paper. All conditions of independance are assumed to be satisfied
in both the probabilistic [1] and credal cases [7,10]. Fig. 1 depicts forward and

Fig. 1. Computation (from [1]) of forward (αt) and backward (βt) variables using
past and observations likelihood (bsi). Circles for states and arrows for propagation
direction.
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backward processes explained hereafter. This figure will be widely used for the
generalization in TBM framework.

An HMM is a stochastic state machine for the recognition of state sequence
from observations. A sequence is supposed to be composed of N states st

i at time
t ∈ {1 . . . T} and at any time st

i ∈ Ωt where Ωt is called frame of discernment
(FoD) defined by Ωt = {st

1, s
t
2, . . . s

t
N}. The time t will be explicitly denoted

as superscript of states when required, for instance st
i is the state si at t. At a

given time t, states are said hidden and only observations denoted Ot ∈ )F are
effectively measured, one at each time t. Typically, observations Ot represent a
set of F features values. Models of observations are used to infer the likelihood
l of states given observations, i.e. [1] bsi(Ot) = l(st

i|Ot) = P (Ot|st
i). These

likelihoods are generally provided by a mixture of Gaussians (MoG) for each
state [1]. Then, inference on Ωt is performed by Bayes’ theorem providing the
posterior probability of state si given observations and priors. Sequence analysis
by an HMM requires a transition matrix A = [aij ] = P (st

j |st−1
i ) (Markovian

assumption), a prior π (πi for state si) and observation models (MoG). These
three elements represent a particular HMM λ. In case distinct sequences are to
be recognized, one particular HMM λ is necessary for each sequence. An HMM is
used for several tasks [2]: online filtering (forward variable α), offline smoothing
(γ-variable obtained from backward β and α), learning (ξ-variable obtained from
β, α and γ) and evaluation (Viterbi decoding δ) of states sequences.

3 TBM Background

In this section are recalled some basics of TBM used to derive the CrHMM.

3.1 Basic Concepts

An agent’s belief is expressed on a finite FoD Ωt and is represented by a basic be-
lief assignment (BBA) mΩt from 2Ωt to [0, 1] with respect to

∑
Si⊆Ωt

mΩt(Si) =
1. For the sake of simplicity, braces around sets will be forgotten, {st

1, s
t
3} =

{st
1} ∪ {st

3} ≡ st
1 ∪ st

3. Belief functions are non-additive measures and this al-
lows to explicitly model doubt between states. This is a fundamental difference
with probability theory. In the sequel, a singleton is denoted with small cap (e.g.
st

i ∈ Ωt) whereas big cap is used for union of singletons (e.g. St
i ⊆ Ωt).

A BBA mΩt can be converted into plausibility plΩt and commonality qΩt

functions. These functions represent belief in different ways, emphasize some
particularities and allow to decrease some computational aspects. We denote
fΩt ∈ {qΩt , plΩt , mΩt} these functions which are in one-to-one correspondance.
The relations that we will use are defined ∀Si, Sk ⊆ Ωt by:

plΩt(Si) =
∑

Si∩Sk �=∅
mΩt(Sk) (1)

mΩt(Si)=
∑

Sk⊇Si

(−1)|Sk|−|Si|qΩt(Sk) (2)
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mΩt(Si) =
∑

Sk⊇Si

(−1)|Sk|−|Si|qΩt(Sk) (3)

qΩt(Si) =
∑

Sk⊆Si

(−1)|Sk|+1plΩt+1(Sk) (4)

3.2 Combination, Extension and Marginalization

Given two distinct [10] BBAs, mΩt
1 and mΩt

2 defined on the same FoD Ωt, the
conjunctive rule of combination (CRC) is defined ∀Si, Sk, Sl ⊆ Ωt by:

(mΩt
1 ∩©mΩt

2 )(Sl) =
∑

Si∩Sk=Sl

mΩt
1 (Si) ·mΩt

2 (Sk) (5)

and equivalently (qΩt
1 ∩© qΩt

2 )(Sl) = qΩt
1 (Sl) · qΩt

2 (Sl) (commonalities simplifies
computation). The disjunctive rule of combination (DRC) is [11,7]:

(mΩt
1 ∪©mΩt

2 )(Sl) =
∑

Si∪Sk=Sl

mΩt
1 (Si) ·mΩt

2 (Sk) (6)

In case FoDs are different, e.g. one wants to combine mΩt and mΩt+1 , then BBAs
must be extended on the common FoD Ωt ×Ωt+1 before combination using the
so-called vacuous extension [7] denoted “↑”. E.g. mΩt is redefined as:

mΩt↑Ωt×Ωt+1(S) =

⎧⎨⎩
mΩt(Si) if S = Si ×Ωt+1

and Si ⊆ Ωt

0 otherwise
(7)

After combination by the CRC or by the DRC, the result mΩt×Ωt+1 can be
marginalized onto Ωt+1 or Ωt. Assuming the marginal is computed on Ωt+1, the
marginalization operator, denoted “↓”, is defined ∀Sj ⊆ Ωt+1 by:

mΩt×Ωt+1↓Ωt+1(Sj) =
∑

S⊆Ωt×Ωt+1

S↓Ωt+1=Sj

mΩt×Ωt+1(S)
(8)

with “S↓Ωt+1 = Sj” means Sj is the projection of S on Ωt+1.

3.3 Conditioning and Ballooning Extension

In a state sequence, conditional beliefs describes how true can be the states in
Sj ⊆ Ωt+1 given the previous states in Si ⊆ Ωt. Given two BBAs: mΩt

i defined
by mΩt

i (Si) = 1 and mΩt×Ωt+1 , the conditional belief mΩt+1 [St
i ] is defined by:

mΩt+1 [St
i ] =

(
m

Ωt↑Ωt×Ωt+1
i ∩©mΩt×Ωt+1

)↓Ωt+1

(9)

Conversely, if a conditional BBA mΩt+1 [st
i] is provided ∀si ∈ Ωt, it is possible to

cancel the conditioning revision using the ballooning extension [7]. Let us denote
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vj = ((si × Ωt+1) ∩ S)↓Ωt+1) (where si × Ωt+1 is called cylindrical extension of
state (singleton) si ∈ Ωt on Ωt ×Ωt+1), then Smets proves [7]:

qΩt×Ωt+1(S) =
∏

si∈Ωt

qΩt+1 [si](vj) (10)

Ballooning extension and vacuous extension [7] are used in this paper in order
to compute a belief on a joint space Ωt × Ωt+1.

3.4 The Generalized Bayesian Theorem

Bayes’ theorem was extended in TBM framework by Smets [7] and is called
the Generalized Bayesian Theorem (GBT). The GBT alleviates the problem of
priors since belief functions allow to represent total ignorance.

Definition. Given a vacuous prior (mΩt(Ω) = 1) and the set of conditional
beliefs fΩt+1 [si], the posterior fΩt+1(Sj), ∀Sj ∈ Ωt+1 is:

fΩt+1(Sj) =
∑

Si⊆Ωt

fΩt+1 [Si](Sj) ·mΩt(Si) (11)

Since the conditional belief is initially given conditionally to each singleton state
si ∈ Ωt, the belief defined conditionally to a subset Si is obtained by the DRC
(Eq. (6)) assuming distinctness [7]:

fΩt+1 [Si] = ∪©
si∈Si

fΩt+1 [si], ∀Si ⊆ Ωt (12)

Eq. (11)-(12) are the core of Evidential Networks [7,8,10].

Motivation: From Likelihood to Belief Function. Assume a set of features
Ot taking values in )F . As emphasized in [12], often the conditional belief over
)F given si is represented by a probability function. In this case pl"

F

[si](Ot) =
P (Ot|si) = l(si|Ot), so the vector of plausibilities equals the vector of likelihoods
of si given Ot [7,12]. Given the likelihoods l(si|Ot) for each si ∈ Ωt, then for
Ot ∈ )F and for each S ⊆ Ωt, Smets [7] proves:

qΩt

b [Ot](S) =
∏

si∈S

l(si|Ot) (13)

where qΩt

b [Ot] is the posterior commonality conditionally to Ot and defined on
Ωt. It is the counterpart of the probability bsi(Ot) [1] but now the commonality
is defined for union of states.

3.5 Decision-Making

After combination of multiple sources of belief, a resulting BBA mΩt is obtained.
Decision-making under uncertainty and imprecision based on belief functions
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must be made either on the pignistic probability [7] or on plausibilities [12], both
assign a value to each element (singleton) si ∈ Ωt. In the sequel, the pignistic
probability is used and it is defined by:

BetP{mΩt}(si) =
∑

Sk⊆Ωt

|si ∩ Sk|
|Sk|

mΩt(Sk)
1−mΩt(∅) (14)

where mΩt(∅) is the conflict value and 1−mΩt(∅) is a normalizing coefficient.

4 Filtering Belief Functions: Credal Forward Algorithm

In HMM, the forward algorithm allows to filter (online) probabilities that evolves
along time. The forward algorithm relies on the forward variable generally de-
noted α(t) [1].

A similar credal forward algorithm can be obtained. Commonalities are used
in order to mimick their counterpart based on probabilities. The algorithm is a
simple propagation scheme that follows left part of Fig. 1. The credal forward
algorithm consists of three steps:

1. Initialization : ∀Si ⊆ Ω1, apply Eq. (15).
2. Induction: 1 ≤ t ≤ T − 1, Sj ⊆ Ωt+1, apply Eq. (16).
3. Termination: apply Eq. (17).

We denote fΩt
α ∈ {qΩt

α , plΩt
α , mΩt

α } the credal version of the forward variable.
Subscripts α, a and b are used to mimick, respectively, the forward variable,
transition probabilities and observations likelihood as defined for usual HMM [1].

4.1 Initialization

One asset of using belief functions is the possibility to explicitly model a vacuous
prior for t = 1 (no prior):

qΩt=1
α (Si) = 1, ∀Si ⊆ Ωt (15)

or equivalently mΩt=1
α (Ω) = 1. This lack of information is well handled and

smartly represented using belief functions whereas probabilities require priors.
One can also use more complex initialization such as consonant belief functions.

4.2 Induction

Induction can be retrieved from Smets’ work on Evidential Network [7,8]. It
relies on the credal forward variable. Given:

1. mΩt
α the BBA of the forward variable of states at t,

2. q
Ωt+1
a [Si], ∀Si ⊆ Ω the set of conditional commonality distribution which

links states and set of states from t to t+1 (obtained from Eq. (11) and (12)),
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3. q
Ωt+1
b [Ot] the observations, obtained e.g. from a mixture of Gaussians and

GBT (Eq. (13)) at t + 1.

The credal forward variable is a commonality that combines past information,
transition and current observations (left part of Fig. 1) by:

q
Ωt+1
α (Sj) =

( ∑
Si⊆Ωt

mΩt
α (Si) · qΩt+1

a [Si](Sj)
)
· qΩt+1

b [Ot](Sj) (16)

defined ∀Sj ⊆ Ωt+1. This equation has a close form compared to the probability-
based forward pass but this one works on belief functions and on sets of states.
The first part is the application of the GBT with priors (mΩt

α (Si)) and condi-
tional commonalities (qΩt+1

a [Si](Sj)). The second part represents observations
(qΩt+1

b [Ot](Sj)) conjunctively combined using the CRC.

4.3 Termination Step

In HMM, the termination step of the forward algorithm [1] is
∑

si∈ΩT
αT (si) =

P (O1:T |λ) and represents the state sequence probability. However, we can not
apply the same termination step with the credal version because belief on focal
sets of mΩt

α always sum to 1 for any t. Actually, the BBA obtained at T does
not reflect the whole sequence but only the belief on states at T . Instead, we
propose to exploit conflict for state sequence analysis. The proposed criteria has a
similar role to the log-likelihood used for MAP classification. Given several HMM
λ1 . . . λk . . . λK , the best model λ∗ explaining observations on [1, T ] minimizes
conflict along the sequence of observations O1:T :

L1
c(λ) =

1
T

T∑
t=1

log(mΩt
α [λ](∅)) (17)

λ∗ = argmin
k

L1
c(λk) (18)

During induction, we keep track of this conflict and then normalize the BBA.
Eq. (17) is similar to the one proposed and justified by Ristic and Smets [13]
where it is used as a distance measure between objets for association purpose.
Using commonalities, the computation in the credal forward algorithm is close
to the probability-based version [1] but the former is greedy (see [14,7] for com-
putational solutions).

5 Smoothing and Towards Learning

State sequence can be filtered offline, this is called smoothing [2]. Smoothing is
used for learning HMM parameters. Rabiner [1] presents three variables used
for smoothing/learning: the backward (β) variable (as in right part of Fig. 1),
the γ-variable and the ξ-variable. The first one is generally combined with the
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forward variable for offline smoothing. The ξ-variable is exploited for learning the
transition matrix of HMM. Learning the transition matrix includes an iterated
procedure that we will not be developed for the CrHMM. We only propose the
equivalent expressions of the three variables.

5.1 The Credal Backward Induction

Likewise to the credal forward variable, the credal backward variable is com-
puted using belief propagation and following the right part of Fig. 1. The credal
backward induction is defined ∀Si ⊆ Ωt by:

qΩt

β (Si) =
∑

Sj⊆Ωt+1

((
m

Ωt+1
β ∩©m

Ωt+1
b [Ot]

)
(Sj) · qΩt

a [Sj ](Si)
)

(19)

where
(
m

Ωt+1
β ∩©m

Ωt+1
b [Ot]

)
(Sj) is the value of the BBA on set Sj resulting

from the combination by the CRC of both m
Ωt+1
β and m

Ωt+1
b [Ot]. Since only

q
Ωt+1
a [Si](Sj) is known (i.e. the conditional belief of proposition Sj at t + 1

given Si at t), it is required to derive q
Ωt+1
a [Sj ](Si) from it. For that, we use

the Generalized Likelihood Principle [7] which postulates that pl
Ωt+1
a [Si](Sj) =

plΩt
a [Sj ](Si), where pl

Ωt+1
a [Si](Sj) is the conditional plausibility (Eq. (1)) of being

in state Sj at t + 1 given Si at t and which is known. From plausibility plΩt
a [Sj ],

commonality qΩt
a [Sj ] is derived by Eq. (4). The backward variable is initialized

with a vacuous prior.

5.2 The Credal γ Variable

The joint observation of both the credal forward and backward variables can be
obtained by the CRC:

qΩt
γ = qΩt

α ∩© qΩt

β (20)

obtained ∀Si ⊆ Ωt. The credal variable qΩt
γ might be useful for learning HMM

parameters in the credal case. Another role of qΩt
γ is to assess the best state s∗t

at t of the current sequence by s∗t = argmax si∈Ωt
BetP{mΩt

γ }(si) for 1 ≤ t ≤ T
and where BetP is defined by Eq. (14).

5.3 The Credal ξ Variable

Since the probability-based ξ variable is used to learn the transition matrix [1],
it would be interesting to define it in TBM framework for further learning. In
case learning might be done online or offline, we propose hereafter two versions
of the credal ξ variable: one to estimate it on-the-fly and denoted f

Ωt−1×Ωt

ξon
and

one for the off-line case denoted f
Ωt×Ωt+1
ξoff

, both defined on the product space
of two successive time slices. The joint space allows to explicitly model the link
(transition) between each couple of states likewise to the transition matrix but
the credal version explicitly models doubt between states.
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On-Line Estimation. In the online case, only the available information up to
time t are combined. Thus it is based on the credal forward algorithm, observa-
tions (at t), priors (if available, at t− 1) and conditional beliefs (t given t− 1).
We define it for Si ⊆ Ωt−1, Sj ⊆ Ωt and S ⊆ Ωt ×Ωt−1 as:

q
Ωt−1×Ωt

ξon
(S) = q

Ωt−1↑Ωt−1×Ωt
α (S)× q

Ωt−1×Ωt
a (S)× qΩt

b [Ot]↑Ωt−1×Ωt(S) (21)

and where q
Ωt−1×Ωt
a (S) is computed by Eq. (10). Moreover, the marginalization

of q
Ωt−1×Ωt

ξon
onto Ωt results in the forward variable, i.e. qΩt

α = q
Ωt−1×Ωt↓Ωt

ξon
.

Off-Line Estimation. For the offline case, both backward (up to t + 1) and
forward (up to t) propagations are combined. The link between t and t + 1 is
made by the conditonal belief. We define it ∀S ⊆ Ωt ×Ωt+1 by:

q
Ωt×Ωt+1
ξoff

(S) = q
Ωt↑Ωt×Ωt+1
α (S)× q

Ωt+1↑Ωt×Ωt+1
β (S)

× q
Ωt+1
b [Ot]↑Ωt×Ωt+1(S)× q

Ωt×Ωt+1
a (S)

(22)

There is one commonality q
Ωt×Ωt+1
ξoff

at each time. The joint form of the con-

ditional belief is obtained by applying Eq. (10) on q
Ωt+1
a [Sj ](Si) as explained

Section 5.1 for the backward variable. Note that marginalizing q
Ωt×Ωt+1
ξoff

onto

Ωt+1 yields the credal γ variable, i.e. q
Ωt+1
γ = q

Ωt×Ωt+1↓Ωt+1
ξoff

.

6 Credal Viterbi Procedure

The goal is to determine which state si ∈ Ωt−1 at t − 1 (current candidate)
accounts for the ended-state sequence sj at time t (current hypothesis).

State-of-knowledge between t and t − 1 is given by Eq. (21). Therefore, like-
wise to the probabilistic case, the credal Viterbi relies on the forward pass.
Since it is required to test each hypothesis sj ⊆ Ωt, the BBA obtained from
Eq. (21) and (3) is conditioned on the current hypothesis sj . Moreover, it is
necessary to determine which state si is the best candidate therefore, the condi-
tioning result is marginalized onto the space Ωt−1 where the current candidate
si is defined. Hence, the BBA used for decision is formally defined by:

m
Ωt−1
dec [sj ] = m

Ωt−1×Ωt

ξon
[sj ]↓Ωt−1 (23)

Conditioning is equivalent to a conjunctive combination with a categorical belief
mass of the form m

Ωt−1×Ωt

j (sj) = 1 (Section 3.3). Therefore, a conflict may
appear and quantifies the incoherence of being in state sj at t. This conflict is
used in the decision process and it is the core of the credal Viterbi procedure.
Let us denote Ct(sj) the value of the coherence at time t:

Ct(sj) = 1−m
Ωt−1
dec [sj ](∅) (24)
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Decision must be made on the pignistic probability distribution (Eq. (14)) de-
fined over Ωt−1 from Eq. (23). This space, Ωt−1, is characterized by a set of
coherences Ct−1(si) (si is used because time index is t − 1) computed at the
previous time slice from Eq. (24). Therefore, coherences are taken into account
in the decision process performed at time t on space Ωt−1 by weighting the
pignistic probabilities defined over Ωt−1:

Pt[sj ](si) = Ct−1(si) ·BetP{mΩt−1
dec [sj ]}(si) (25)

It is required to normalize the coherences in order to obtain a probability distri-
bution. The BBA m

Ωt−1
dec [sj ] is obtained at time t from knowledge at both t and

t − 1 (it is projected onto Ωt−1) whereas coherences concern time index t − 1
(not t) obtained at the previous time. From the obtained (weighted) probability
distribution (Eq. (25)), the decision (choosing the best candidate si) is made.

Lastly, we compute another log-contradiction criteria L2
c(λ) using the results

of the credal Viterbi procedure (see step 4b)). Indeed, when the path is recovered,
we take into account the coherence along the sequence. The basic idea is that
the lower the conflict along the path, the better the sequence corresponds to the
model λ. We define it in the following algorithm:

1. Initialization : ∀si ∈ Ω1, C1(si) = 1, L2
c(λ) = 0 and ψΩ1(si) = 0

2. Recursion: 2 ≤ t ≤ T − 1, ∀sj ∈ Ωt, ∀si ∈ Ωt−1

a) Compute m
Ωt−1
dec [sj ] with Eq. (23)

b) Pt[sj ](si) = Ct−1(si) ·BetP{mΩt−1
dec [sj ]}(si)

c) ψt(sj) = argmax si∈Ωt−1
[Pt[sj ](si)]

d) Compute Ct(sj) with Eq. (24)
3. Termination: s∗T = argmax ∀sj∈ΩT

[max∀si∈ΩT −1 PT [sj ](si)]
4. Path Backtracking:

a) s∗t = ψt+1(s∗t+1)
b) L2

c(λ) ← L2
c(λ) + log(1−Ct(s∗t ))

where ”←” is an assignment in order to update the second proposed log-
contradiction criteria. The variable Ct is computed at t for all sj ⊆ Ωt (line d))
and is used for the next step.

Transition and Ambiguity Detection. The coherence measure is used for
states transition detection. When the decision is made (step 3)), one can compel
the probability (step 2b)) to be greater than a given threshold σ in order to trust
the decision (e.g. σ = 1/N with N the number of states).

7 Illustration: Human Motion Analysis

Our aim is to illustrate some of the proposed algorithms : smoothing, evaluation
and classification a posteriori. For that, we use data of previous communica-
tions [15,16] that concern the recognition of three athletics jumps (activity):
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long jumps, pole vaults and high jumps. For this paper, each activity is mod-
elled by one HMM and one CrHMM. Each model of activity is made of four
states (actions) with Ωt = {running, jumping, falling, standing}. Given a set of
features extracted at each video frame, a likelihood on each action is computed
using a mixture of gaussians. Likelihoods at each video frame are transformed
into belief on actions using Eq. (13). HMM parameters are learned using Baum-
Welch algorithm [1] on the half of the database. Learning CrHMM is still in its
infancy: actually we proposed some equations in previous sections that need to
be embedded in an iterated procedure such as CrEM [17] in order to compute
it. The credal transition matrix is thus computed from the probabilistic one by
transforming each conditional probability into conditional consonant BBA [18]
that is discounted contextually [19] to spread beliefs on subsets (thus we obtain
a ”filled” matrix).

Smoothing. We use the credal γ variable (Eq. (20)) that combines both forward-
backward algorithms to filter (offline) a noise BBA. Fig. 2-top shows the smooth-
ing results with likelihoods (blue dots) vs. pignistic probabilities (red line) after
application of the credal γ variable.

Inference. We apply the credal Viterbi algorithm on the previous set of like-
lihoods in order to decode the best sequences of states. The results of both
the credal (Fig. 2-bottom-left) and probabilistic (Fig. 2-bottom-right) Viterbi
decoding are shown. The proposed credal Viterbi scheme is able to detect the
transitions (which size varies) as well as ambiguous instants (where the largest
pignistic is low). These information are represented by green stems on the figure
(with σ = 1/N = 0.25). The credal Viterbi yields better decoding here.

Classification. In order to assess the recognition criteria integrated in the
Viterbi decoding (L2

c), we propose a classification problem. We use 26 videos
(about 3000 frames) of pole vaults analyzed by the three models (long jump (λ1),
high jump (λ2) and pole vault (λ3) models). We compare the criteria L2

c (λ∗ =
argmin k={1,2,3} L2

c(λk)) to the usual log-likelihoods (Ll, λ∗ = argmax k={1,2,3}
Ll(λk)). We assess two things:

1) The classification rate: we compute it by dividing the number of correctly
classified videos by 26. We obtain 81% for the CrHMM and 58% for the usual
HMM. The classification rate is better for the CrHMM mainly because of doubt
that is used to model knowledge about states. When a wrong decision is made
in a HMM, it is propagated. In the credal Viterbi (CrHMM), the decision is not
propagated since we keep the belief mass for the next instant.

2) The mean square of the difference between the two best normalized criteria
values (by ranking the values for the criteria Ll and L2

c): it reflects the “discrim-
inative power” during classification (ideally one criteria equals 1 and the two
others are null). We obtain 7% for the CrHMM and 1% for the usual HMM.
This means that the CrHMM is much more discriminative than the HMM on
this dataset therefore, the decision is more reliable.
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Fig. 2. Results: (top) Gaussian mixture outputs (blue dots) and smoothing by credal
γ variable (red, bold). (bottom-left) Credal Viterbi decoding in CrHMM. (bottom-
right) Viterbi decoding of HMM. Ground truth: running on [12, 65], jumping on
[66, 103], falling on [104, 154] (there is no standing-up action in this sequence).

8 Conclusion

We have presented a general methodology to use HMM machinery in Trans-
ferable Belief Model (TBM) framework which is useful when knowledge is rep-
resented by belief functions instead of probabilities. The proposed modelling
exploits doubt and conflict emphasized in the TBM. Experiments have illus-
trated some concepts and demonstrated encouraging results for video-oriented
applications. Future work will be focused on learning and comparison with fuzzy
HMM.
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Abstract. In this paper we propose a new tool called OWL-CM (OWL
Combining Matcher) that deals with uncertainty inherent to ontology
mapping process. On the one hand, OWL-CM uses the technique of sim-
ilarity metrics to assess the equivalence between ontology entities and on
the other hand, it incorporates belief functions theory into the mapping
process in order to improve the effectiveness of the results computed
by different matchers and to provide a generic framework for combining
them. Our experiments which are carried out with the benchmark of On-
tology Alignment Evaluation Initiative 2006 demonstrate good results.

1 Introduction

Semantic heterogeneity has been identified as one of the most important issue in
information integration [5]. This research problem is due to semantic mismatches
between models. Ontologies which provide a vocabulary for representing knowl-
edge about a domain are frequently subjected to integration.

Ontology mapping is a fundamental operation towards resolving the seman-
tic heterogeneity. It determines mappings between ontologies. These mappings
catch semantic equivalence between ontologies. Experts try to establish map-
pings manually. However, manual reconciliation of semantics tends to be tedious,
time consuming, error prone, expensive and therefore inefficient in dynamic en-
vironments, and what’s more the introduction of the Semantic Web vision has
underscored the need to make the ontology mapping process automatic.

Recently, a number of studies that are carried out towards automatic ontology
mapping draw attention to the difficulty to make the operation fully automatic
because of the cognitive complexity of the human. Thus, since the (semi-) au-
tomatic ontology mapping carries a degree of uncertainty, there is no guarantee
that the outputted mapping of existing ontology mapping techniques is the exact
one.

In this context, we propose a new tool called OWL-CM (OWL Combining
Matcher) with the aim to show how handling uncertainty in ontology mapping
process can improve effectiveness of the output. It uses the Dempster-Shafer

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 418–429, 2007.
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theory of evidence [11] to deal with uncertainty inherent to the mapping process,
especially when interpreting and combining the results returned by different
matchers. Our approach is based on similarity metrics in order to assess the
correspondence between ontology entities. We carried out experiments with the
data sets of the Ontology Alignment Evaluation Initiative 2006 and preliminary
tests show high precision and acceptable recall.

The rest of the paper is organized as follows. In section 2, we present a scope
for the related works. Section 3 introduces the terminology material to our work.
In section 4, we explain how evidential theory is applied by OWL-CM to handle
uncertainty. Section 5 describes the architecture of our tool and the correspond-
ing algorithm. Section 6 is devoted to experiments based on qualitative metrics.
Section 7 concludes the paper and points out on some future directions.

2 Related Works

The approach that we propose is complementary to the methods that had been
developed towards (semi-) automatic mapping between ontologies and database
schemas. We are mainly based on four works. The first one [9] describes a domain
specific multi-agent ontology mapping solution in the AQUA query answering
system. It uses evidential formalism in order to incorporate uncertainty. This
approach fits particularly for a query-answering scenario, where answer needs to
be created in real time. As the context of our work is different from this one,
the mapping approaches will be necessarily different. The second [1] presents a
framework that uses evidential formalism for interpreting and combining results
computed by several matchers. The third one [2] proposes a prototype for not
full ontology mapping in the context of interaction between agents in an open
and peer-to-peer environment. This prototype is based on the principles intro-
duced in the previous framework. As opposed to Besana ([1], [2]), in our work
we perform a full mapping. Finally, QOM [7] is an example of system that uses
similarity metrics to compare features of ontology entities (e.g., their labels, sub-
classes, domains and ranges of properties, restrictions, etc.). QOM is not fit for
a particular context like our tool. However, as opposed to our approach, it does
not deal with uncertainty. It considers the similarity metric between ontological
entities as a weighted combination of similarities of various features of entities.
We also note that QOM considers both the quality of mapping results as well as
the run-time complexity. However, we currently concentrate on the effectiveness
of the mapping generation algorithm and leave the efficiency issue aside.

3 Preliminaries

In this section we draw up a list of preliminary concepts to use throughout the
paper.

1. Knowledge Model: We define an ontology O as follows:

O := (C, Hc, Rc, Rd, Hrc, Hrd, I, Ri, A)
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- C: Set of concepts (instances of ’owl:Class’);
- Hc: Subsumption hierarchy of C (a binary relation: ’rdfs:subClassOf’);
- Rc: Set of relations between single concepts (instances of ’owl:Object

Property’);
- Rd: Set of relations that relate single concepts to data types (instances

of ’owl:DatatypeProperty’);
- Hrc: Subsumption hierarchy of Rc (’rdfs:subPropertyOf’);
- Hrd: Subsumption hierarchy of Rd (’rdfs:subPropertyOf’);
- I: Sets of individuals (instances of classes c ∈ C);
- Ri: Set of property instances;
- A: Set of axioms that can be used to infer knowledge from already ex-

isting one.
2. Candidate Mapping: We define a candidate mapping as a pair of entities

(ei
1, ej

2) that is not yet in map.

3. Result Mapping: We define a result mapping as a pair of entities that had
been related, 〈ei

1,≡, ej
2〉 denotes that entity ei

1 is equivalent to entity ej
2,

whereas 〈ei
1,⊥, ej

2〉 denotes that the two entities are not equivalent.

4. Ontology Mapping Algorithm: We define an ontology mapping algorithm
as a partial function map that receives two ontologies O1 and O2 and returns
a set M of result mappings.

map : O ×O→M
M = {〈ei

1, r, ej
2〉|ei

1 ∈ O1, ej
2 ∈ O2}

r : e× e→ {≡,⊥}
with ∀ ei

1(∃ ej
2 : map(ei

1, ej
2) = 〈ei

1,≡, ej
2〉 ∨

∀ ej
2 : map(ei

1, ej
2) = 〈ei

1,⊥, ej
2〉)

e ∈ {C ∪Rc ∪Rd ∪ I}

5. Similarity Measure: The similarity measure, sim, is a function defined in
[3] based on the vocabularies ε1 of the ontology O1 and ε2 of the ontology
O2 as follows:

sim: ε× ε×O ×O → [0..1]

- sim(a, b) = 1 ⇔ a = b: two objects are assumed to be identical.
- sim(a, b) = 0 ⇔ a �= b: two objects are assumed to be different and have

no common characteristics.
- sim(a, a) = 1: similarity is reflexive.
- sim(a, b) = sim(b, a): similarity is symmetric.
- Similarity and distance are inverse to each other.

A similarity measure function assesses the semantic correspondence between
two entities based on some features. In table 1, we draw up the list of similar-
ity measures employed depending on the type of entities to be mapped (some
similarity measures definitions are described in appendix A). Furthermore,
we distinguish between two types of similarity: the syntactic one assessed by
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Table 1. Features and Measures for Similarity

Entities to be compared No. Feature (f) Similarity measure

Concepts: C 1 (label, C1) simstrsim(C1, C2)
2 (sound (ID), C1) simstreql(C1, C2)
3 (label, C1) simstrsyn(C1, C2)
4 (C1,equalTo, C2) relation simexpeql(C1, C2)
5 (C1,inequalTo, C2) relation simexpineq(C1, C2)
6 all (direct-sub-concepts, S1) simsetsim(S1, S2)

Relations: Rc 7 (sound (ID), R1) simstreql(R1, R2)
8 (domain, R1)∧(range, R1) simobjeql(R1, R2)
9 (domain, R1)∧(range, R1) simobjineq(R1, R2)
10 all (direct-sub-properties, S1) simsetsim(S1, S2)

Relations: Rd 131 (sound (ID), R1) simstreql(R1, R2)
12 (domain, R1)∧(range, R1) simobjeql(R1, R2)∧

simstreql(R1, R2)
13 (domain, R1) simobjineq(R1, R2)
14 all (direct-sub-properties, S1) simsetsim(S1, S2)

Instances: I 15 (label, I1) simstrsim(I1, I2)
16 (ID, I1) simstreql(I1, I2)
17 (I1,equalTo, I2) relation simexpeql(I1, I2)
18 (I1,inequalTo, I2) relation simexpineq(I1, I2)
19 (direct-parent-concept, I1) simobjeql(I1, I2)

the measures that evaluate distance between strings (e.g., String similarity
and String equality) and the other measures dedicated to assess semantic
similarity (e.g., String synonymy, Explicit equality and Set similarity).

6. SEE (Semantic Equivalent Entity): Depending on the type of entities,
we formally define the semantic equivalence between two entities as follows:

Definition (SEE). An entity ej
2 is semantically equivalent to an entity

ei
1 such that (ei

1, ej
2) ∈ {C1×C2 ∪ I1 × I2}, i.e., 〈ei

1,≡, ej
2〉, if at

least one of the following conditions is true:
simexpeql(ei

1, ej
2) = 1, or

∀simk, with k �= expeql, simk(ei
1, ej

2) = 1

An entity ej
2 is semantically equivalent to an entity ei

1 such that
(ei

1, ej
2) ∈ {Rc

1 ×Rc
2 ∪Rd

1 ×Rd
2}, i.e., 〈ei

1,≡, ej
2〉, if:

∀simk, simk(ei
1, ej

2) = 1

7. USEE (Uncertain Semantic Equivalent Entity): We extend the defini-
tion of SEE to USEE in order to be used throughout the process of handling
uncertainty when performing and combining matchers.
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Definition (USEE). An entity that we said to be uncertain and semanti-
cally equivalent to an ontological entity e ∈ O1 is a pair (Θ, m), where:

Θ = E, E ∈ {C2, Rc
2, Rd

2, I2}
m is a belief mass function.

4 Handling Uncertainty

The Dempster-Shafer theory of evidence [11] presents some advantages that
encourage us to choose among other theories. In particular, it can be used for
the problems where the existing information is very fragmented, and so the
information can not be modelled with a probabilistic formalism without making
arbitrary hypotheses. It is also considered as a flexible modelling tool making it
possible to handle different forms of uncertainty, mainly the ignorance. Moreover,
this theory provides a method for combining the effect of different beliefs to
establish a new global belief by using Dempster’s rule of combination.

The belief mass function m(.) is the basic concept of this theory ([11], [12]).
It assigns some belief mass in the interval [0,1] to each element of the power
set 2Θ of the frame of discernment Θ. The total mass distributed is 1 and the
closed world hypothesis (i.e. m(∅) = 0) is generally supported. In our work,
Θ = {e1

2,. . . , en
2}, where ei

2 ∈ O2. The letter Φ in table 2 is the set of all
candidate mappings.

Table 2. Frame of Discernment and Candidate Mappings Set

e1
2 . . . em

2

e1
1 (e1

1, e1
2) . . . (e1

1, em
2)

. . . . . . . . . . . .
en

1 (en
1, e1

2) . . . (en
1, em

2)

⇒ Θ⎫⎬
⎭ Φ

In order to discover USEEs, we use n functions called matchers (matcherk)1.
A matcher compared to a ”witness” that brings evidence in favor or against an
advanced hypothesis. Matchers produce USEEs in order to support uncertainty.
Some matchers are reliable than others. This is reflected in the confidence that
is assigned to each matcher. The confidence is expressed like the mass that is
distributed to Θ. For instance, if matcher1 has a confidence of .6, then the masses
assigned to the subsets should be normalized to sum .6, and .4 should be always
affected to Θ.

We use Dempster’s rule of combination to aggregate the produced USEEs. Fig-
ure 1 illustrates the architecture that we propose to discover USEEs. In addition,
this theory makes it possible to express total ignorance. For instance, if the set that
contains the entities having the same sound as the entity in question is empty, then
the matcher matcher2 will return a belief mass function m(Θ) = 1.
1 The index k is the no. of the matcher in the table 1.
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Fig. 1. Architecture for discovering USEEs

5 OWL-CM: Architecture and Algorithm

We give here the architecture of our proposed tool OWL-CM and the corre-
sponding algorithm.

5.1 Architecture

The proposed architecture (see figure 2) contains four components. The trans-
former takes as input two ontologies (O1 and O2) and constructs for each one a
database (DB1 and DB2). The database schema meets the standard schema that
we designed based on some axioms of RDF(S) and OWL languages. The figure 3
is a part of the class diagram of the database. The filters decide on result map-
pings. Whereas simple matchers and complex matchers assess the equivalence
between entities.

5.2 Algorithm

The algorithm of ontology mapping follows five steps (see figure 4). In this paper,
we just describe the first step of pre-mapping and the second one which performs

Fig. 2. Architecture of OWL-CM
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Fig. 3. Part of the Class Diagram of DB

the iteration about concepts mapping. The other ones will be described in in-
coming paper. The step of pre-mapping is devoted principally to convert each
ontology formalism into a database by the transformer component. The first it-
eration of mapping performs alternately two tasks. One task uses some filters in
order to screen the candidate mappings list and decide on the result mappings.
The other task is devoted to the practicability of evaluating the similarity be-
tween concepts based on simple matchers and complex matchers.

Algorithm Ontology Mapping

A. Pre-mapping:
1. Convert O1 into DB1 and O2 into DB2.
2. E2ML ← ∅, RML ← ∅.

B. Iteration1: Concepts Mapping
1. Initialize the following variables:

– E2ML ← {e2mis}, where each e2mi = {(ci
1, c1

2),. . . , (ci
1, cm

2)}
2. Screening: For each e2mi ∈ E2ML:

2.1 Perform the filters f1, f2, f3. In this case the filters return SEEs.
2.2 Bring e2mi and RML up to date.

3. Uncertainty handling: For each e2mi ∈ E2ML:
3.1 Perform the simple matchers sm1, sm2, sm3. Each smi return an

USEEi.
3.2 Combine USEE1, USEE2, USEE3. The result is a BMF1.
3.3 Compute bel and pl for each Si ⊆ Θ based on resulting belief mass

function.
4. Screening: For each e2mi ∈ E2ML:

4.1 Perform the filters f4, f5.
4.2 Bring e2mi and RML up to date.

5. Uncertainty handling: For each e2mi ∈ E2ML that was modified:
5.1 Perform the complex matcher cm1.
5.2 Perform the simple matchers sm1, sm2, sm3.
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Fig. 4. Algorithm Steps

5.3 Combine USEE1 of cm1 and USEE1, USEE2, USEE3 of smis. The
result is a BMF2.

6. Screening: like in step 4.
7. Last screening: It is based on the following hypothesis: If Θ of an e2mi

is a singleton and this remaining concept cj
2 isn’t a member of any other

frame of discernment of another e2mk, then we suppose that this concept
is the SEE of the concept ci

1 which is in the process of being matched.
For each e2mi ∈ E2ML:
7.1 Perform the filter f6.
7.2 Bring e2mi and RML up to date.

8. Iteration1 ending:
4.1 Edit the result.
4.2 Save a copy of the variable RML to be used during the following

iterations.

6 Effectiveness Tests

The tests have been carried out with the data of the Ontology Alignment Eval-
uation Initiative 2006. We used data of the benchmark whose URL is:

http://oaei.ontologymatching.org/2006/benchmarks

The reference ontology is about bibliographic references. It contains 33 named
classes, 24 object properties, 40 data properties, 56 named individuals and 20
anonymous individuals. The complete ontology is that of the test 101. The on-
tologies are described in OWL-DL. In each test there are some information that
have been retracted from the reference ontology. These various alterations makeit
possible to evaluate the algorithm when some information are lacking. Table 3
presents what has been retracted from the reference ontology in some tests.

There are two categories of metrics to consider when evaluating an algorithm
or a system. The first category evaluates the performance and is based on speed
and space parameters. The second category evaluates the goodness of the al-
gorithm output. Some of these metrics are derivatives of well-known metrics
from the information retrieval domain [6]. Our experiments are restricted to the
following metrics that belong to the second category:
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Table 3. Ontologies of some tests

Test Alterations in the reference ontology

101 No information has been discarded

102 Irrelevant ontology

103 It compares the ontology with its generalization in OWL Lite

104 It compares the ontology with its restriction in OWL Lite

201 No names (each label or identifier is replaced by a random one)

202 No names, no comment (comments have been suppressed as well)

203 No comments (there was misspelling)

204 Naming conventions are used for labels. Comments have been suppressed.

221 All subclass assertions to named classes are suppressed

223 The specialization hierarchy is expansed

230 Classes are flattened

240 Properties are suppressed and the specialization hierarchy is expansed

– Precision: The proportion of correct result mappings among those found:

Prec = TruePositives
(TruePositives+FalsePositives)

– Recall : The proportion of correct result mappings found:

Rec = TruePositives
(TruePositives+FalseNegatives)

– FMeasure: The harmonic mean of precision and recall:

FM = 2× (precision×recall)
(precision+recall)

TruePositives is the number of correct result mappings contained in the
answer list of the algorithm, FalsePositives is the number of incorrect result
mappings an answer list contains, and FalseNegatives is the number of result
mappings that the algorithm incorrectly predicted to be irrelevant.

6.1 Tests 101-104

Our results (see figure 5) show that our mapping algorithm enabled us to achieve
100% precision and 100% recall in the tests 101,103 and 104. The test 102 also
shows the performance of the algorithm.

6.2 Tests 201-204

As the ontology 201 does not contain names and the ontology 202 contains neither
names nor comments, we will not consider the results of these tests. In fact, our
algorithm considers concept and property IDs as well as there labels therefore the
only information that can be used to create these result mappings in the test 201
the ”rdfs:comment” but our algorithm does not use it. Although the performed
tests are not worth considering, even though they reveal a higher precision. The
results of tests 203 and 204 (see figure 5) show that our algorithm creates the map-
ping with high precision for these tests. Recall values are also considerable.
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6.3 Tests 221-247

Different categories of alteration regarding the specialization hierarchy, the prop-
erties, the instances, and/or the classes, have been carried out in each of these
tests. The precision/recall rate of ontology mapping during these tests (see figure
5) is very high. This result confirms that our algorithm takes both syntactic and
semantic similarity into account.

Fig. 5. Results of tests

6.4 Comments

Since the main goal of this work is to strengthen the precision of the ontology
mapping with developing an approach that deals with uncertainty inherent to
the mapping process, the means of the three metrics are encouraging (see table
4) compared to the ones resulted from the work of [9].

Concerning the benchmark, it served as an experiment bed to assess both strong
and weak points of our algorithm and gives an idea of the prospects for improving
the algorithm effectiveness. But, it does not present tests to interpret the use of
some similarity measures based on the explicit assertions such as explicit equality.

We also draw attention to the fact that these tests assess only the effectiveness
of the algorithm. Further, we will consider the run-time complexity.

7 Conclusion and Future Work

The ontology mapping is a core task towards interoperability between systems
that use different ontologies. It addresses the problem of semantic heterogeneity

Table 4. Comparison between OWL-CM and DSSim

Prec Rec FM

OWL-CM 0,9822 0,8528 0,9474

DSSim 0.98 0.55 0.7
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between sources. This problem is getting worse in the Semantic Web where various
issues which are linked to uncertainty in information systems occur. The results
obtained with our algorithm turned out to be good, and compare positively with
those obtained by other authors [9]. But the proposed work is still subject to im-
provements. In our future work we will implement the remaining three iterations
of the algorithm. We will also investigate other possibilities that have been re-
vealed during experiments and concerning the efficiency of our algorithm. Finally,
we mention that there are some systems that worth studying in future work, such
as Falcon-AO [8], HMatch [4], and OWL-CtxMatch [10].
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Appendix A. Similarity Measures

The list includes some definitions presented in [7], and some others that we pro-
pose.

– String Similarity measures the similarity of two strings on a scale from 0 to
1, based on Levenshtein’s EditDistance (ed).

simstrsim(c, d) := max(0, min(|c|,|d|)−ed(c,d)
min(|c|,|d|) )

– String Equality is a strict measure to compare strings. All characters (char
(x) at position x) of the two strings have to be identical.

simstreql(c, d) :=

⎧⎨
⎩

1 c.char(i) = d.char(i), ∀i ∈ [0, |c|] with |c| = |d|,

0 otherwise.

– String Synonymy checks if two strings are synonyms, based on WORD-
NET.

simstrsyn(c, d) :=

⎧⎨
⎩

1 c and d are synonyms,

0 otherwise.

– Explicit Equality checks whether a logical assertion already forces two enti-
ties to be equal. In an OWL ontology, this assertion is expressed by using the
axiom “owl:sameAs”. We refer to these assertions as “equalTo”.

simexpeql(a, b) :=

⎧⎨
⎩

1 ∃ assertion (a,“equalTo”,b),

0 otherwise.

– Set Similarity measures the similarity of two sets of entities. Given two sets
E and F, it compares the entities ei with all the entities fj , and vice versa. The
comparison is based on one or more similarity measures that are listed above.

simsetsim(E, F ) :=

⎧⎨
⎩

1 if C1, C2, C3, or C4,

0 otherwise.

C1 : (E = F ) : |{ei ∈ F}| = |{fj ∈ E}| = |E| = |F |;
C2 : (E ⊂ F ) : |{ei ∈ F}| = |E| and |{fj ∈ E}| �= |F |, and |E|

|F | ≥ .75;

C3 : (E ⊃ F ) : |{ei ∈ F}| �= |E| and |{fj ∈ E}| = |F |, and |F |
|E| ≥ .75;

C4 : (E ∩ F �= ∅) : |{ei ∈ F}| �= |E| and |{ei ∈ F}| �= 0and |{fj ∈ E}| �= |F |,
and |{ei∈F}|

|F | ≥ .75 and |{fj∈E}|
|E| ≥ .75.
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Abstract. The paper deals with quality measures of rules extracted
from data, more precisely with measures of the whole extracted rulesets.
Three particular approaches to extending ruleset quality measures from
classification to general rulesets are discussed, and one of them, capable
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1 Introduction

Logical formulas of specific kinds, usually called rules, are a traditional way of
formally representing knowledge. Therefore, it is not surprising that they are also
the most frequent representation of the discovered knowledge in data mining. Ex-
isting methods for rules extraction are based on a broad variety of paradigms and
theoretical principles. However, methods relying on different underlying assump-
tions can lead to the extraction of different or even contradictory rulesets from
the same data. Moreover, the set of rules extracted with a particular method can
substantially depend on some tunable parameter or parameters of the method,
such as significance level, thresholds, size parameters, tradeoff coefficients etc.
For that reason, it is desirable to have measures of various qualitative aspects of
the extracted rulesets. So far, such measures are available only for sets of clas-
sification rules, and their dependence on tunable parameters can be described
only for classification into two classes [1,2]. As far as more general kinds of rules
are concerned, measures of quality have been proposed only for individual rules
[3,4,5,6,7], or for contrast sets of rules, which finally can be replaced with a single
rule [8,9]; if a whole ruleset is taken into consideration, then only as a context
for measuring the quality of an individual rule [10,11].
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The present paper notices that the existing quality measures for sets of clas-
sification rules can be extended in various ways to general rulesets and focuses
on extensions capable to represent uncertain validity of rulesets for particular
objects. The proposed extensions are introduced in Section 3, after the basic
typology and important examples of rules extraction methods are recalled in
the next section, and before the dependence on method parameters, treated
in Section 4. The paper concludes with an illustration on the well-known iris
data.

2 Methods for the Extraction of Rules from Data

2.1 Typology of Rules Extraction Methods

The most natural base for differentiating between existing rules extraction meth-
ods is the syntax and semantics of the extracted rules. Syntactical differences
between them are, however, not very deep since principally, any rule r from a
ruleset R has one of the forms Sr ∼ S′r, or Ar → Cr, where Sr, S′r, Ar and
Cr are formulas of the considered logic, and ∼, → are symbols of its language,
defined in such a way that Sr ∼ S′r is symmetric with respect to Sr, S′r in the
sense that its validity always coincides with that of Sr ∼ S′r whereas Ar → Cr

is not symmetric with respect to Ar, Cr in that sense. More precisely, ∼ and →
are the connectives equivalence (≡) and implication, respectively, in the case of
a propositional logic, whereas they are generalized quantifiers in the case of a
predicate logic. To distinguish the involved formulas in the asymmetric case, Ar

is called antecedent and Cr consequent of r.
The more important is the semantic of the rueles (cf. [5]), especially the dif-

ference is between rules of the Boolean logic and rules of a fuzzy logic. Due
to the semantics of Boolean and fuzzy formulas, the former are valid for crisp
sets of objects, whereas the validity of the latter is a fuzzy set on the universe
of all considered objects. Boolean rulesets are extracted more frequently, espe-
cially some specific types of them, such as classification rulesets [1,6]. These are
sets of asymmetric rules such that (Ar)r∈R and {Cr}r∈R partition the set O of
considered objects, where {Cr}r∈R stands for the distinct formulas in (Cr)r∈R.
Abandoning the requirement that (Ar)r∈R partitions O (at least in the crisp
sense) allows to generalize those rulesets also to fuzzy antecedents. For Boolean
antecedents, however, this requireme nt entails a natural definition of the valid-
ity of the whole ruleset R for an object x. Assuming that all information about
x conveyed by R is conveyed by the rule r covering x (i.e., with Ar valid for x),
the validity of R for x can be defined to coincide with the validity of Cr for x.

As far as the Boolean predicate logic is concerned, generalized quantifiers
both for symmetric and for asymmetric rules were studied in the 1970s within
the framework of the observational logic [12]. In that logic, the truth function
TfQ of a generalized quantifier Q is solely a function of the four-fold table
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S′r ¬S′r
Cr ¬Cr

Sr Ar a b
¬Sr ¬Ar c d

. (1)

Hence, TfQ is a {0, 1}-valued function on quadruples of nonnegative integers. For
symmetric rules, associational quantifiers are used, defined through the condition

a′ ≥ a & b′ ≤ b & c′ ≤ c & d′ ≥ d & TfQ(a, b, c, d) = 1 → TfQ(a′, b′, c′, d′) = 1. (2)

For asymmetric rules, the more specific implicational quantifiers are used, which
are defined through the stronger condition

a′ ≥ a & b′ ≤ b & TfQ(a, b, c, d) = 1 → TfQ(a′, b′, c′, d′) = 1. (3)

Observe that this condition covers the frequently encountered association rules
[5,13,14,15] (since they have been proposed independently of observational logic,
the terminology is a bit confusing here: although associational rules are asym-
metric, their name evokes the quantifier for the symmetric ones).

Orthogonally to the typology according to the semantics of the extracted
rules, all extraction methods can be divided into two large groups:

– Methods that extract logical rules from data directly, without any interme-
diate formal representation of the discovered knowledge. Such methods have
always formed the mainstream of the extraction of Boolean rules: from the
observational logic methods [12] and the method AQ [16,17] in the late 1970s,
through the extraction of association rules [13,14,15] and the method CN2
[18], relying on a paradigm similar to that of AQ, to the recent methods
based on inductive logic programming [19,20] and genetic algorithms [21].
They include also important methods for fuzzy rules, in particular ANFIS
[22,23] and NEFCLASS [24,25], fuzzy generalizations of observational logic
[26,27] and a recent method based on fuzzy transform [28].

– Methods that employ some intermediate representation of the extracted
knowledge, useful by itself. This group includes two important kinds of
methods: classification trees [29,30] and methods based on artificial neu-
ral networks (ANN). The latter are used both for Boolean and for fuzzy
rules [32,33,34] (cf. also the survey papers [35,36]).

2.2 Important Examples of Rules Extraction Methods

In this subsection, the basic principles of four important rules extraction meth-
ods will be recalled. Their choice attempts to reflect the various aspects of the
differences within the spectrum of the existing methods. In particular:

– methods 1.-3. extract Boolean rules, method 4. fuzzy rules;
– among the Boolean methods, 1. extracts classification rules, 2. predicate rules

with an associational quantifier, and 3. with an implicational quantifier;
– 2. and 3. are direct methods without an intermediate representation, 1. is a

classification tree method, and 4. is ANN-based.
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1. The method CART [29] recursively partitions data with axis-orthogonal hy-
perplanes, where the choice between different partitions relies on some im-
purity index, based on estimates p̂(c|v) of the conditional probability that an
object in the vertex v belongs to the class c. For testing, the implementation
of CART in MATLAB has been used, with the impurity index being either
the Gini index

∑
c �=c′ p̂(c|v)p̂(c′|v), or the deviance −

∑
p̂(c|v) ln p̂(c|v).

2. The Fisher quantifier ∼F
α , α ∈ (0, 1) has its truth function Tf∼F

α
defined in

such a way that the rule Sr ∼F
α S′r is valid exactly for those data for which

statistical testing of the null hypothesis of independence of Ar and Cr against
the alternative of their positive dependence with the one-tailed Fisher exact
test leads to rejecting the null hypothesis on the significance level α [12].

Hence, Tf∼F
α
(a, b, c, d) = 1 iff ad > bc &

a+min(b,c)∑
i=a

(
a+c

i

)(
b+d

a+b−i

)(
a+b+c+d

a+b

) ≤ α. For

testing, the implementation in the LISP-Miner system [37] was used.
3. The quantifier founded implication →s,θ, s, θ ∈ (0, 1] has its truth function

Tf→s,θ
defined in such a way that the rule Ar →s,θ Cr is valid exactly for

those data for which the conditional probability p(Cr|Ar) of the validity of
Cr conditioned on Ar, estimated with the unbiased estimate a

a+b , is at least
θ, whereas Ar and Cr are simultaneously valid in at least the proportion
s of the data [12]. Hence, Tf→s,θ

= 1 iff a
a+b ≥ θ & a

a+b+c+d ≥ s. As was
pointed out in [38], rules with this quantifier are actually association rules
with support s and confidence θ. Also in this case, the implementation in
LISP-Miner was used for testing.

4. An ANN-based method for the extraction of rules of any fuzzy propositional
logic that was proposed in [39]. It extracts always a single rule Sr ≡ S′r with
atomic S′r and Sr in disjunctive normal form (DNF), each atom of which
contains a single object variable modelled with a finitely-parameterized fuzzy
set (e.g., Gaussian, triangular, sigmoid). The architecture of the ANN reflects
the construction of the Sr. An example output of such ANN is depicted in
Figure 1. For testing, the method has been implemented in MATLAB [39].

3 Ruleset Quality Measures – Classification and Behind

3.1 Existing Measures of Quality for Classification Rulesets

A survey of measures for classification rulesets (with possibly fuzzy antecedents)
has been given in the monograph [1]. Space limitation allows to recall here only
the main representatives of the first two from the 4 classes of measures considered
there, neglecting the other classes, inseparability and resemblance:
1. Inaccuracy measures the discrepancy between the true class of the considered

objects and the class predicted by the ruleset. Its most frequently encoun-
tered representative is the quadratic score (also called Brier score):

Inacc =
1
|O|

∑
x∈O

∑
C∈{Cr}r∈R

(
δC(x)− δ̂C(x)

)2
, (4)
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Fig. 1. A 2-dimensional cut for the dimensions x3 and x4 of the graph of a mapping
computed by a neural network with 12 input neurons, 5 hidden neurons and 1 output
neuron, each input of which corresponds to a variable modelled with a Gaussian fuzzy
set, whereas the output returns the truth grade of the equivalent formulas

where | | denotes cardinality,O is the considered set of objects, δC(x) ∈ {0, 1}
is the validity of the proposition C for x ∈ O, and δ̂C(x) is the agreement
between C and the class predicted for x by R. Hence, δ̂C(x) = max

Cr=C
‖Ar‖x,

where ‖Ar‖x ∈ 〈0, 1〉 is the truth grade of Ar for x in the considered logic.
2. Imprecision measures the discrepancy between the probability distribution of

the classes, conditioned on the values of attributes occurring in antecedents,
and the class predicted by the ruleset. Its most common representative is

Impr =
1
|O|

∑
x∈O

∑
C∈{Cr}r∈R

(
δC(x)− δ̂C(x)

) (
1− δ̂C(x)

)2
. (5)

3.2 Extensions to More General Kinds of Rules

In the particular case of classification rulesets with Boolean antecedents, some
algebra allows to substantially simplify (4)–(5):

Inacc =
2|O−|
|O| = 1− |O

+| − |O−|
|O| , Impr =

|O−|
|O| = 1− |O

+|
|O| , where (6)

O+ = {x ∈ O : R is valid for x}, O− = {x ∈ O : R is not valid for x}. (7)

This not only shows that, in the case of Boolean antecedents, the quadratic score
is sufficient to describe also the imprecision, but also suggests an approach how
to extend those measures to general rulesets: to use (6)–(7) as the definition
of measures (4)–(5). More generally, any measure of quality of classification
rulesets with Boolean antecedents (e.g., any measure surveyed in [1]) that can
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be reformulated by means of O+ and O−, can be extended in such a way that
the reformulation is used as the definition of that measure for general rulesets.

For sets of asymmetric rules, also the notion of covering an object by a rule,
which was recalled in Section 2, can be generalized. Notice, however, that for
fuzzy antecedents, the validity of Ar, r ∈ R is a fuzzy set on O. Consequently,
the setOR of objects covered byR is a fuzzy set onO, with membership function

µR(x) = ‖(∃r ∈ R) Ar‖x = max
r∈R
‖Ar‖x. (8)

Therefore, various generalizations of classification measures to general rulesets of
asymmetric rules are possible: wherever O occurs in the definition of a measure
for classification rulesets, either O or OR can occur in its general definition,
provided OR �= ∅. To allow unified treatment of symmetric and asymmetric
rules, OR = O will be formally defined for the former. Observe that due to (8),
OR = O holds also for classification rulesets with Boolean antecedents.

A key feature of this approach is a multiple possible definition of validity of
a general ruleset for an object. Indeed, any of the following definitions has its
own justification, and coincides with the one given in Section 2 for classification
rulesets with Boolean antecedents, thus being its correct extension:

(i) If the validity of R for x is viewed as the simultaneous validity of all rules,
which in the case of fuzzy rules can be generalized to validity in at least a
prescribed truth grade tmin. Hence, R is valid for x iff (∀r ∈ R) r is valid
for x, or more generally, iff (∀r ∈ R) ‖r‖x ≥ tmin. Notice that for individual
objects, only the validity according to a propositional logic can be considered
(since the validity of quantifiers depends on the set O as a whole).

(ii) If the validity of R for x is viewed as the validity of most of its rules,
provided x is covered by R:

R is valid for x iff µR(x)|{r ∈ R : r is valid for x}| >
> µR(x)|{r ∈ R : ¬r is valid for x}|. (9)

Notice that in terms of truth grades, the condition for the validity of R for
x reads

∑
r∈R ‖Sr ≡ S′r‖x >

∑
r∈R ‖¬(Sr ≡ S′r)‖x for symmetric rules, and

µR(x)
∑

r∈R ‖Ar → Cr‖x > µR(x)
∑

r∈R ‖¬(Ar → Cr)‖x for asymmetric
rules. Moreover, (9) implies that R is not valid for x with µR(x) = 0.

(iii) If the validity ofR for x is viewed, provided x is covered byR, as uncertain,
i.e., as a value from 〈0, 1〉, the sets O+ and O− from (7) turn to fuzzy sets
on O with membership grades µ+ and µ−, respectively, such that

µ+(x) =
|{r ∈ R : r is valid for x}|

|R| if µR(x) > 0, (10)

µ−(x) =
|{r ∈ R : ¬r is valid for x}|

|R| if µR(x) > 0, (11)

adopting µ+(x) = 0, µ−(x) = 1 if µR(x) = 0 for compatibility with (ii).
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In the sequel, the paper focuses on measures capable to represent the uncertain
validity of rulesets, thus defined according to (iii). For them, the cardinalities
used in the definitions are |O+/−| =

∑
x∈O

µ+/−(x). For example, the measure

Inacc = 1−

∑
x∈O

(µ+(x)− µ−(x))

|O| (12)

is a generalization of (4), whereas the measures

Impr1 = 1−

∑
x∈O

µ+(x)

|O| , Impr2 = 1−

∑
x∈O

µ+(x)

|OR|
= 1−

∑
x∈O

µ+(x)∑
x∈O

µR(x)
(13)

are generalizations of (5). Observe that for symmetric rules, as well as for clas-
sification rulesets with Boolean antecedents, OR = O implies Impr2 = Impr1.
Moreover, if the considered logic has the involutive negation, e.g., the Boolean,
�Lukasiewicz or product-�Lukasiewicz logic (in applications, the choice of a fuzzy
logic is often restricted to the involutive negation), then in addition |O+|+|O−| =
|OR|, thus only one of the measures Inacc and Impr1 is needed, like in (6).

4 Influence of Method Parameters on Ruleset Quality

4.1 ROC Curves for Two-Class Classification

The rulesets that a particular method extracts from given data can substantially
depend on values of various parameters of the method, such as tree depth or size
for the CART method, significance level for the Fisher quantifier, support and
confidence for association rules, or the number of hidden neurons and parameters
of the input fuzzy sets for the ANN-based method proposed in [39]. Then also the
results of applying quality measures to the ruleset depend on those parameter
values. So far, the influence of parameter values has been systematically studied
only for dichotomous classification when R = {A → C,¬A → ¬C}. In that
case, putting Ar = A, Cr = C allows the information about the validity of A
and C for O to be again summarized by means of the four-fold table (1), which
also depends on the parameter values. The influence of the parameter values
on the result of dichotomous classification is usually investigated by means of
the measures sensitivity = a

a+c and specificity = d
b+d [1]. Connecting points (1-

specificity,sensitivity) = ( b
b+d , a

a+c ) for the considered parameter values forms
a curve with graph in the unit square, called receiver operating characteristic
(ROC), due to the area where such curves have first been in routine use. In
machine learning, a modified version of those curves has been proposed, in which
the points connected for considered parameter values are (b, a) [2]. The graph of
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such a curve then lies in the rectangle with vertices (0, 0) and (b + d, a + c), and
is called NP-graph, due to the employed notation P = a + c, N = b + d.

The graphs of ROC curves and NP-graphs can provide information about the
influence of parameter values not only on the sensitivity and specificity, but also
on other measures. It is sufficient to complement the graph with isolines of the
measure and to investigate their intersections with the original curve [2].

4.2 Extensions of ROC Curves to More General Kinds of Rules

Observe that the information about the validity of R for objects x ∈ O can
be also viewed as information about the validity of a ruleset R′ = {A → C}.
However, R′ is not any more a classification ruleset, but only a general one,
which can be described only by means of the above introduced sets OR, O+,
O−. In particular, |O+| = a and |O−| = b, which suggests the possibility to
generalize NP-graphs to general rulesets by means of a curve connecting points
(|O−|, |O+|) for the considered values of method parameters. For a generalization
of ROC curves to general rulesets, those points have to be scaled to the unit
square. Since the resulting curve will be used to investigate the dependence on
parameter values, the scaling factor itself must be independent of those values.
The only available factor fulfilling this condition is the number of objects, |O|
(the other available factors, |OR|, |O+| and |O−| depend on the evaluations ‖Sr‖
and ‖S′r‖, or ‖Ar‖ and ‖Cr‖, which in turn depend on the parameter values).
Consequently, the proposed generalization of ROC curves will connect points
( |O

−|
|O| , |O

+|
|O| ).

It can be shown, using general results valid for any fuzzy logic [40], that
whatever fuzzy logic is used in connection with the definition of the validity
of R for x ∈ O according to (iii) on page 435, the points ( |O

−|
|O| , |O

+|
|O| ) always

lie below the diagonal ([0, 1], [1, 0]) (which is also trivially true if the defini-
tions (i) or (ii) are used). This is depicted in Figure 2, together with isolines of
the three example measures introduced in (12)–(13). Observe that the isolines of
Impr2 depend on the relationship between the cardinalities |O+| =

∑
x∈O µ+(x),

Fig. 2. Isolines of the measures introduced in (12)–(13), drawn with respect to the

coordinates ( |O−|
|O| , |O+|

|O| ) of points forming the proposed generalization of ROC curves
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|O−| =
∑

x∈O µ−(x) and |OR| =
∑

x∈O µR(x). The isolines depicted in Fig-
ure 2(c) correspond to the relationship |OR| = |O+| + |O−|, which is true in
�Lukasiewicz logic (thus in particular also in Boolean logic).

5 Illustration Using Fisher Iris Data

The proposed approach has been so far tested for six rules extraction methods
(including the four recalled in Section 2) on three benchmark data sets, as well
as on data from one real-world data mining task [41]. Here, it will be illustrated
with some results obtained for the best known benchmark set, the iris data,
originally used in 1930s by R.A. Fisher [42].

As to the methods from Section 2, the method CART has been used with trees
of 2–6 leaves, each combined with Gini index and deviance, the Fisher quantifier
with 5 significance levels, the founded implication with combinations of 10 values
of s and 7 values of θ, and the ANN-based method from [39] with combinations of
2–4 hidden neurons and 3 particular fuzzy sets modelling input variables, each of
them interpreted in �Lukasiewicz and in product-�Lukasiewicz logic. All methods
were used to extract traditional rules for the iris data, concerning relationships
between the values of the descriptive attributes (length and width of petals and
sepals) and the kind of iris. In addition, the Fisher quantifier has been used
to extract also rules concerning relationships between the values of different
descriptive attributes. For the split of the data into training and test set, 10-fold
cross validation was employed. Consequently, altogether 10 ∗ (2 ∗ 5 + 2 ∗ 5 + 10 ∗
7 + 2 ∗ 3 ∗ 3) = 1080 rulesets were extracted with those methods from the iris
data. The number of rules in a CART ruleset equals the number of leaves of the
tree, and always one DNF rule is extracted with the ANN-based method. On

Table 1. Results obtained for the rulesets extracted from the iris data, averaged over
a 10-fold cross validation

CART Gini index deviance

leaves 2 3 4 5 6 2 3 4 5 6
Impr1 0.40 0.08 0.04 0.02 0.16 0.40 0.08 0.04 0.02 0.16

Fisher quantifier rules as in other methods only descriptive attributes

significance level α 0.1% 0.5% 1% 5% 10% 0.1% 0.5% 1% 5% 10%
rules 77.4 104.6 111.8 151 158 159.2 228.6 277.6 427.6 520.8
Impr1 0.24 0.25 0.26 0.27 0.27 0.21 0.21 0.22 0.22 0.22

founded implication rules Inacc Impr1 Impr2 s = 0.09 rules Inacc Impr1 Impr2
s = θ = 0.8 71.7 0.12 0.06 0.06 θ = 0.8 29.3 0.11 0.07 0.04
0.05 θ = 0.9 59.8 0.09 0.05 0.04 θ = 0.9 25.7 0.19 0.15 0.04

ANN-based method [39] Gaussian input triangular input sigmoid input

hidden neurons 2 3 4 2 3 4 2 3 4
Impr1: �Lukasiewicz logic 0.04 0.05 0.04 0.20 0.20 0.18 0.30 0.25 0.25
product-�Lukasiewicz logic 0.69 0.69 0.69 0.11 0.18 0.18 0.69 0.69 0.68
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Fig. 3. Generalized ROC curves for rulesets extracted from the iris data by means of
the founded implication: (a) changing s, θ = 0.9; (b) changing θ, s = 0.15

the other hand, the size of rulesets extracted using the Fisher quantifier or the
founded implication can vary considerably (Table 1).

Results obtained when applying the measures introduced in (12)–(13) to the
extracted rulesets are given in Table 1. Since Impr2 = Impr1 for CART, the
Fisher quantifier and the ANN-based method, and since always logics with the
involutive negation have been used, solely Impr1 has been computed for those
methods. For the founded implication, only 4 from the 70 combinations of values
of s and θ are given in the table, due to space limitations. Apart from confirming
the expectation that the most precise classification to the kinds of iris is achieved
with a specific classification method, the results show that the choice of values
of method parameters has a much greater impact on the ruleset quality than
the choice of the method itself. Whereas even methods relying on quite different
theoretical principles yielded rulesets of comparable quality, inappropriate values
of parameters turned the method from a useful one to a quite useless one. Finally,
two examples of the proposed generalization of ROC curves for rulesets extracted
by means of the founded implication are shown in Figure 3. According to Section
4, combining these curves with the isolines of Inacc, Impr1 and Impr2 allows to
investigate the dependence of those measures on the values of the parameters s
and θ (for a fixed value of the other parameter).

6 Conclusions

The paper has dealt with quality measures of rules extracted from data, though
not in the usual context of individual rules, but in the context of whole rulesets.
Three kinds of extensions of measures already in use for classification rulesets
have been discussed, and one of them, capable to represent the uncertain validity
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of general rulesets, has been elaborated in some detail. In particular, the concept
of ROC-curves has been generalized, to enable investigating the dependence of
general rulesets on the values of parameters of the extraction method.

The extent of the paper did not allow more then only to sketch the basic
ideas of the proposed approach. However, the approach has already been tested
on rulesets extracted from three benchmark and one real-world data sets by
means of six methods attempting to cover a possibly broad spectrum of rules
extraction methods. The results of those tests, a small sample of which has
been presented in the last section, indicate that the approach is feasible and can
contribute to the ultimate objective of quality measures: to allow comparing the
knowledge extracted with different data mining methods and investigating how
the extracted knowledge depends on the values of their parameters.
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Abstract. TAN (Tree-augmented Naïve Bayes) classifier makes a compromise 
between the model complexity and classification rate, the study of which has 
now become a hot research issue. In this paper, we propose a discriminative 
method that is based on KL (Kullback-Leibler) divergence to learn TAN 
classifier. First, we use EAR (explaining away residual) method to learn the 
structure of TAN, and then optimize TAN parameters by an objective function 
based on KL divergence. The results of the experiments on benchmark datasets 
show that our approach produces better classification rate. 

Keywords: TAN classifier, discriminative learning, KL divergence, EAR. 

1   Introduction 

Classification is an important research issue in the fields of Machine Learning, Data 
Mining and Pattern Recognition. Bayesian classifier is a powerful classification 
model which is on the basis of Bayes statistics and Bayesian Networks. In particular, 
Naïve Bayes classifier [1] is the simplest, effective and widely used Bayesian 
classifier, but it assumes that all the attributes are conditionally independent given the 
class label. In order to improve the performance of Naïve Bayes classifier, Nir 
Friedman et al. [2] introduced the TAN (Tree-augmented Naïve Bayes) classifier 
which released the conditional independence restriction. They showed that in the 
structure of TAN classifier, each attribute has the class node and at most one other 
attribute as its parents. TAN classifier is more accurate than Naïve Bayes classifier on 
most of benchmark datasets. 

GBN (General Bayesian Network) classifier is another kind of classifier which 
further generalizes the conditional independence assumption. Because there is no 
restriction to the relationship between each pair of attributes, GBN is the most 
accurate network that represents realistic problem and would achieve a higher 
classification rate theoretically. But Friedman et al. found that Naïve Bayes classifier 
outperforms GBN classifier on a large number of benchmark datasets. The reason is 
that the objective function used in the standard learning of Bayesian classifier 
attempts to optimize the joint probability of attributes and the class variable. Then 
perform classification by computing the posterior probability of class variable with 
Bayes rule. This method is known as generative learning. Because of the mismatch 
between the objective function and the goal of classification, generative learning of 
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Bayesian classifiers could not achieve the highest classification accuracy though it 
can accurately approximate the entire data. 

So how to construct a Bayesian classifier with higher classification accuracy 
becomes a hot research issue in recent years. The discriminative learning of Bayesian 
classifier attempts to learn a discriminant function or model the class posterior 
probability directly. A standard approach to learn discriminative classifiers directly 
optimizes the conditional likelihood of class variable given the attributes in the 
datasets. The coherence of the objective function and classification task makes 
discriminative classifier achieve higher accuracy. 

Discriminative learning of Bayesian classifiers has attracted widespread attention 
in recent years, most approaches of which trained the structures or the parameters of 
Bayesian classifiers by maximizing the conditional likelihood. As for fixed structures, 
Greiner and Zhou [3] introduced an optimization algorithm named ELR for the 
parameter learning. This approach computes the maximum conditional likelihood 
parameters by a conjugate gradient method. ELR can learn the parameters of any 
arbitrary structure and works better than generative parameter learning methods. 
Grossman et al. [4] used conditional likelihood to learn the structures of the Bayesian 
networks while the parameters are set by “observed frequency estimate” (OFE)[5]. 
This approach use a hill-climbing search: at each search step, add, delete, or reverse a 
single arc in the structure and score the model until the conditional likelihood score 
gets a maximum. Pernkopf et al. [6] trained the Bayesian classifiers by learning 
discriminatively both parameters and structures. 

In this paper, we introduce a discriminative learning method of TAN classifier 
based on KL (Kullback-Leibler) divergence. First, we use EAR (explaining away 
residual) method to learn the structure of TAN classifier, and then optimize the 
parameters of TAN classifier with an objective function based on KL divergence. 
Experimental results on benchmark datasets from UCI repository show that our 
approach to learning TAN classifier produces better classification accuracy than 
generative learning methods. 

This paper is organized as follows: In section 2, we introduce some basic concepts 
of Bayesian classifier. In section 3, we present the discriminative approach to learning 
both the TAN structure and the TAN parameters. In section 4, we report the 
experimental results on benchmark datasets from UCI repository. And we draw 
conclusions in section 5. 

2   Bayesian Network Classifier 

Given an i.i.d (independent identically distributed) training dataset D = {Z1, …, Zd, 
…, ZN}, where Zd represents an instance. Each instance Z is denoted by a lower case 
vector {x1, x2, …, xn, xn+1}, where the first n random variables denote the special 
values taken by n attributes X1, X2, …, Xn of the Bayesian classifier and the random 
variable xn+1 (xn+1 C = {c1, c2, …, cm}) denotes the value of class label Xn+1, and m is 
the cardinality of the set C. 

Given an unknown instance in which the class label is unsigned, the goal of 
classification is to correctly predict the value of class variable. 
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A Bayesian classifier perform classification task by calculating the posterior 
probability of class label given predictive attributes using Bayes rule [7]: 

1
1

1' 1

( ,..., , | )
( | ,..., , )

( ,..., , ' | )
n i

i n m
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P x x c
P c x x

P x x c

θθ
θ

=

=  . 
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Where is the parameters of the Bayesian classifier. 
Generally speaking, a Bayesian classifier takes all the possible assumptions such as 

ci i = 1, 2, …, m into account and chooses the maximal posterior (maximum a 
posteriori, MAP)[8] as the class value. So a vector of attributes {x1, x2, …, xn} is 
designated as ci if and only if 

1
1
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j m

c P c x x
≤ ≤
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Naïve Bayes classifier has a simple structure as shown in fig. 1 (a), in which each 
attribute has the class label as its parent and the class has no parent. It captures the 
main assumption that each attribute is independent from other attributes given the 
state of the class variable. But this assumption is unrealistic. In order to correct the 
limitation of Naïve Bayes classifier, Friedman et al. [2] presented TAN classifier. A 
TAN is a structural augmentation of Naïve Bayes classifier, where the class variable 
has no parents and every attribute has the class variable and at most one other 
attribute as its parents. The structure of TAN classifier is shown in fig. 1 (b). GBN 
(General Bayesian Network) is a more complex model of Bayesian classifiers. GBN 
deals with the class variable as a general attribute, and it represents the factual 
relationship between all the variables. The structure of GBN is illustrated as fig. 1 (c). 

C

X4X3X2X1

(a) Naïve Bayes classifier 
strcuture

C

X4X3X2X1

(b) TAN classifier 
strcuture

C

X4

X3X2

X1

(c) GBN classifier 
strcuture

 

Fig. 1. Structures of various Bayesian network classifiers 

Learning a Bayesian network classifier corresponds to the fact to find a model that 
veritably describes the relationship between the variables according to the given data. 
There are two steps while learning a TAN classifier. The first step is to determine a 
structure of TAN. In order to construct a directed acyclic graph, we should figure out 
the parents for each variable. The second step is to specify the parameters given the 
TAN structure. That is to calculate the conditional probability distribution of the TAN 
structure. 

Chow and Liu described an algorithm [9] to construct a tree-like Bayesian 
network. Friedman et al. introduced a procedure [2] to learn the structure of TAN 
classifier. This method follows the general outline of Chow and Liu’s procedure, 
except that it uses conditional mutual information (CMI) between two attributes given 
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the class label instead of mutual information between the two attributes. The 
procedure is illustrated as follows: 

a. Compute the CMI between each pair of attributes Xi, Xj (i j). 

, ,

( , | )
( , | ) ( , , ) log

( | ) ( | )
i j

i j
i j i j

x x c i j

P x x c
I X X C P x x c

P x c P x c
= ⋅  . (3) 

b. Build a complete undirected graph in which the vertices are the attributes X1, 
X2, …, Xn. Note that the weight of each edge connecting Xi and Xj is the CMI 
value between them. 

c. Build a maximum weighted spanning tree. 
d. Choose a variable as the root node and set the direction of each edge to be 

outward from it in order to transform the undirected graph into a directed 
graph. 

e. Construct a TAN model by adding class vertex C and adding the arc from C to 
each Xi. 

As each attribute variable has the class variable and at most one other attribute as 
its parents, we denote the parameters of TAN as the following form: 

( | )ijk c i iP X k jθ π= = =  . (4) 

Where c represents the value of class variable and i represents another parent of 
vertex Xi except for the class variable. Note that if vertex Xi has only one parent, the 
class variable, i is null. This parameter denotes a special conditional probability table 
entry that the variable Xi takes the kth value assignment given that its parent i takes 
the jth assignment. 

Generative learning method optimizes the parameters of a Bayesian classifier by 
maximizing the likelihood (ML) of data. Given a directed acyclic graph S of a 
Bayesian network classifier B, the log likelihood objective function is 

1

1 1 1
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In this function, Zd is the dth instance of training dataset denoted by a lower case 
vector {x1

d, x2
d, …, xn

d, xn+1
d} and N is the total number of instances in the dataset. 

This joint likelihood can be decomposed as a linear form of the log of parameters. 
Each parameter for the instance is denoted as ( | )d d

c i iP X k jπ= = . 

It is easy to calculate the parameters of ML estimate which are just observed 
frequency estimates. After the generative learning procedures of TAN structure and 
parameters, we have already learned a TAN classifier and could perform 
classification with it. 

3   Discriminative Learning of TAN Classifier Based on KL 
Divergence 

In this paper, we learn the TAN classifier in a discriminative way. First we use the 
procedure proposed by Friedman to learn the TAN structure, in which we compute 
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the EAR (explaining away residual) value instead of CMI between each pair of 
variables. Given the TAN structure, we then estimate the parameters by optimizing an 
objective function based on KL divergence. 

3.1   Discriminative learning of TAN structure 

It is a generative approach to learn the structure of a TAN classifier by computing 
CMI, since CMI produces a guaranteed nondecrease in the joint likelihood over all 
variables while augmenting the structure [10]. 

Bilmes introduced a discriminative criterion named explaining away residual 
(EAR)[10] which calculates the subtraction between CMI and unconditional mutual 
information. 

( , | ) ( , )i j i jI X X C I X X− =  

, , ,

( , | ) ( , )
( , , ) log ( , ) log

( | ) ( | ) ( ) ( )
i j i j

i j i j
i j i j

x x c x xi j i j

P x x c P x x
P x x c P x x

P x c P x c P x P x
⋅ − ⋅  . 

(6) 

Bilmes [11] has proved that optimizing the EAR value is equivalent to decreasing 
the divergence between the true posterior and the resultant approximate posterior. 
Improving EAR measure is in fact an approximation to maximizing the log 
conditional likelihood. So EAR method is a discriminative approach of TAN structure 
learning. 

In this paper, we use EAR measure to construct TAN structure. But we add an 
edge between two variables if necessary when their EAR value is larger than zero, as 
we are interested in the extra information that Xj provides to Xi given the class 
variable. 

3.2   Discriminative Parameter Learning Based on KL Divergence 

In information theory, KL (Kullback-Leibler) divergence [12] is used to depict the 
difference between two distributions. And it is also called cross entropy. Given two 
distribution p(x) and q(x), the KL divergence between p(x) and q(x) is 

( )
( ; ) ( ) log

( )x

p x
KL p q p x

q x
= ⋅  . (7) 

In Bayesian learning, we use KL divergence to describe the difference between the 
empirical distribution p̂  and the true distribution p. Kaizhu Huang optimizes an 

objective function [13] including KL divergence to solve the parameter learning 
problem of Naïve Bayes classifier, and the experimental results show that 
discriminative Naïve Bayes classifier outperforms the generative one. In this paper, 
we introduce KL divergence into discriminative parameter learning of TAN classifier 
by optimizing a discriminative objective function similar to that in SVM [14]. 

In a two-class classification problem, we can partition a dataset into two subsets S1 
and S2 according to the value of class variable. We use 

1p̂  and 
2p̂  to represent 

respectively the empirical distributions for subset S1 and S2, which are initialized as 
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the observed frequency estimates. We use p1 and p2 to represent the corresponding 
true distributions. 

For discriminative Bayesian learning, we should not only approximate the 
distribution of each subset as accurately as possible, but also augment the divergence 
between true distributions of the two subsets. So we can use the following formula as 
a measure function: 

( ) ( ) ( ){ }212211 ,,ˆ,ˆmin ppDivWppKLppKL ⋅++  . (8) 

In the objective function, the first two items describe how accurate the distribution 
p1 and p2 approximate the two sub-datasets S1 and S2, and they provide the inner-class 
information. The last item is the key part in discriminative learning, which describes 
the inter-class information. Namely, this item makes the divergence between two 
distributions of the two classes as big as possible. W is a penalty factor. The larger 
this factor, the bigger divergence between classes. If this factor is 0, the objective 
function contains only the first two items which make the TAN parameters 
approximate the dataset. We use the opposite of KL divergence measure to represent 
the third item. 

( )1 2 1 2, ( , )Div p p KL p p= −  . (9) 

The objective function can be written as follows: 
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           s.t.         0 ( | ) 1c i ip X k jπ≤ = = ≤  , 

| |

1
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ix
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k
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=

= = = , where c = 1, 2; i = 1, …, n . 
 

Where c represents the value of the class variable, and for the two-class classification, 
c takes value of 1 and 2. ˆ ( | )c i ip X k jπ= = (c=1, 2; i=1, 2, …, n) is the empirical 

distribution with respect to the dataset and ( | )c i ip X k jπ= = (c=1, 2, i=1, 2,…, n) is 

the true distribution that is to be optimized. 
So far we have transformed the discriminative parameter learning problem into a 

nonlinear optimization problem under linear constraints. This optimization problem 
can be solved by mathematic approach such as gradient projection method. 

4   Experimental Analysis 

To evaluate the performance of our discriminative TAN classifier, we did 
experiments on 10 benchmark datasets from Machine Learning Repository in UCI. 
The detailed information of these datasets is listed in Table 1. 
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Table 1. Description of datasets used in experiments 

Dataset name # Attribute # Class # Instance 
AUSTRALIAN 14 2 690 
CLEVELAND 13 2 303 

DIABETES 8 2 768 
DMPLEXER 14 2 1000 

GERMAN 20 2 1000 
HEART 13 2 270 

HORSE-COLIC 22 2 368 
HUNGARIAN 13 2 294 

SONAR 60 2 208 
TIC-TAC-TOE 9 2 958 

 
The attributes in the datasets are discrete nominal or continuous numeric, but TAN 

classifier can only deal with nominal attributes. All the continuous attributes are 
discretized before used for classification. We use Laplace estimation instead of the 
zero probability in the conditional probability tables. Namely, a conditional 
probability is adjusted with Laplace correction values, 1 is added to the numerator and 
the number of values of the attribute is added to the denominator. 

All the experiments are done based on Weka system [15]. The TAN classifiers are 
trained with generative and discriminative parameters on generative and 
discriminative structures. And we compare our discriminative TAN classifier with 
other 3 classifiers. In our experiments, we use CMI as a generative approach, EAR as 
a discriminative method for structure learning of TAN. The parameter training is 
performed with ML and KL, where ML is a generative way and KL is utilized as a 
discriminative method. The penalty factor W is set as 0.05. We use 5-fold cross-
validation to evaluate the performance of these classifiers. 

Table 2 shows the experimental results of all the four classifiers over the datasets 
in Table 1. The bottom line in Table 2 gives the average classification accuracy of 
each classifier over the ten datasets. From Table 2, we find that CMI+KL classifier 
outperforms CMI+ML on 5 of 10 datasets, and losses on 2 datasets. EAR+KL works 
better than EAR+ML on 4 datasets, and losses on 2 datasets. On the other hand, 
EAR+ML classifier outperforms CMI+ML and EAR+KL exceeds CMI+KL in terms 
of classification accuracy. Finally, we see that the EAR+KL TAN classifier achieves 
the highest classification rate on 6 datasets and obtains the best performance on 
average. This suggests that the discriminative parameter learning method based on 
KL divergence and discriminative structure learning method are always effective to 
improve classification accuracy compared with generative methods. 

In the above experiments, penalty factor W in objective function is set empirically 
as 0.05. Because the choice of this factor would influence the classification result, we 
have done experimental study on parameter sensitivity before our experiments and list 
our analyses on the following two datasets. 
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Table 2. Experiment results: Classification accuracy (%) of 4 TAN classifiers 

Dataset name TAN-CMI-ML TAN-CMI-KL TAN-EAR-ML TAN-EAR-KL 

AUSTRALIAN 84.9275� 83.6232� 84.9275� 83.4783�

CLEVELAND 81.1881 81.1881 82.5083 82.5083 

DIABETES 77.6042� 76.5625� 77.2135� 76.4323�

DMPLEXER 54.5 55.1 56.1 56.7 

GERMAN 74.4 74.4 75.1 75.1 

HEART 80.7407 82.2222 81.8519 82.5926 

HORSE-COLIC 81.25 81.7935 81.25 81.25 

HUNGARIAN 81.6327 81.6327 83.3333 83.3333 

SONAR 75.4808 76.4423 76.9231 77.4038 

TIC-TAC-TOE 76.5136 77.7662 71.6075 72.2338 

Average 76.8238 77.0731 77.0815 77.1032
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Fig. 2. Classification Accuracy on dataset SONAR 

Fig. 2 and Fig. 3 show the sensitivity of the penalty factor W. The star solid line 
represents classification accuracy of EAR+KL method on the datasets, and plus solid 
line denotes that of CMI+KL algorithm. In these accuracy curves, the horizontal axis 
lists the values of the penalty factor W which is ranging from 0 to 0.1, and the vertical 
axis measures the classification accuracy. 
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Fig. 3. Classification Accuracy on dataset TIC-TAC-TOE 

We can empirically find that when penalty factor is set as 0, the classification 
results of EAR+KL and CMI+KL methods are the same as those of EAR+ML and 
CMI+ML. In Fig. 2, EAR+KL model reaches a maximum of 78.3654% when the 
penalty factor is 0.07, but CMI+KL model reaches a maximum 77.4038% at 0.03. We 
can make a compromise when the penalty factor is 0.05. In Fig. 3, both EAR+KL and 
CMI+KL models reach the most accurate classification results at 0.05. The bigger the 
penalty factor value, the worse the accuracy. So we set the penalty factor W as 0.05 in 
all our experiments. 

5   Conclusion and Future Work 

This paper proposes a discriminative learning method of TAN classifier based on KL 
divergence. We use EAR (explaining away residual) method for discriminative 
learning of TAN structure and optimize TAN parameters with an objective function 
based on KL divergence. The experimental results show that our approach to learning 
TAN classifier could achieve better accuracy than others. 

In this paper, we present our discriminative TAN learning algorithm for two-class 
classification problems but not multi-class ones. So a direction of our future work 
includes extending our algorithm to handle multi-class classification problem. Our 
future work also includes applying our discriminative learning method to a wider 
variety of datasets and choosing the penalty factor W in objective function more 
automatically according to the datasets. 
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Abstract. Discriminative learning of Bayesian network classifiers has
recently received considerable attention from the machine learning com-
munity. This interest has yielded several publications where new meth-
ods for the discriminative learning of both structure and parameters have
been proposed. In this paper we present an empirical study used to il-
lustrate how discriminative learning performs with respect to generative
learning using simple Bayesian network classifiers such as naive Bayes or
TAN, and we discuss when and why a discriminative learning is preferred.
We also analyzed how log-likelihood and conditional log-likelihood scores
guide the learning process of Bayesian network classifiers.

1 Introduction

Supervised classification is a part of machine learning used in many fields such
as bioinformatics, computer vision, speech recognition or medical diagnosis. In
general, supervised classification problems are defined in terms of two different
kinds of variables: the predictive variables, X = (X1, . . . , Xn), and the class
variable or response, C. A supervised classifier attempts to learn the relation
between the predictive and the class variables. Hence, it is able to assign a class
value to a new data sample x = (x1, . . . , xn) whose response is unknown.

Over the last few years, Bayesian networks [1,2] have received considerable
attention from the machine learning community since they are powerful prob-
abilistic tools that enable a simple and efficient representation of probability
distributions. Furthermore, there is an outstanding use of Bayesian networks as
classifiers in supervised classification problems [3].

A Bayesian network is defined as a pair B = {G, Θ}, where G is a directed
acyclic graph whose arcs define the (in)dependencies between the variables and
Θ are the parameters of the model that represent the conditional probability
tables for the factorization given by the graph. Thus, given a Bayesian network
model B, we can write the joint probability distribution as:

p(x|B) =
n∏

i=0

p(xi|pai,B) (1)

where X0 denotes, in this case, the class variable C, and pai, with i = 0, ..., n
represents the value of the parents of Xi, being the parents of Xi (Pai) defined
by G.

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 453–464, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In general, learning a Bayesian network classifier requires finding a network
structure (structural learning) that represents the (in)dependencies among the
variables in the problem, and then determining the appropriate parameters for
that structure (parametric learning). The structural learning searches through
the space of directed acyclic graphs for the one that observes the model restric-
tions and optimizes a model selection criterion. Thus, by setting model restric-
tions we reduce the model complexity. Naive Bayes and tree augmented naive
Bayes (TAN) are probably the most popular Bayesian network classifiers. Naive
Bayes assumes that all the predictive variables are independent given the class
variable [4], while TAN [5] relaxes naive Bayes assumption by allowing the pre-
dictive variables to form up to a tree. Additionally, in the literature there are
other proposals that set different restrictions in the model structure. For in-
stance, k-dependent Bayesian classifier [6] allows predictive variables to have up
to k predictive variables as parents, and Bayes network augmented naive Bayes
(BAN) [7] makes no restrictions in the relations between predictive variables.

Both structural and parametric methods to learn a Bayesian network classifier
are often described as either generative or discriminative. A generative method
to learn Bayesian network classifiers models the joint probability distribution of
the predictive variables and the class, p(C, X), while a discriminative method
models the conditional probability distribution of the class given the predictive
variables, p(C|X). Bayesian network classifiers are considered generative models
since the learning process usually maximizes the log-likelihood (LL) which is
defined as the probability of the dataset D given the model B:

LL =
N∑

l=1

log p(c(l), x(l)|B) (2)

where N is the number of samples in dataset D. Additionally, we abuse the
notation by writing c(l) and x(l) to represent the fact that C and X take the
values given in the l-th sample of the dataset D.

On the other hand, there have been a number of recent proposals in the liter-
ature for a discriminative learning of both structure and parameter of Bayesian
networks classifiers by maximizing the conditional log-likelihood (CLL):

CLL =
N∑

l=1

log p(c(l)|x(l),B) (3)

Greiner et al. [8] introduce a conjugate gradient method to obtain the parame-
ters of the model by maximizing CLL. Similarly, Roos et al. [9] and Feelders and
Ivanovs [10] propose ways to map the parameters of Bayesian network classifiers
to logistic regression models in order to obtain the parameters of the Bayesian
network classifiers that maximizes CLL. Santafé et al. [11] present an algorithm
based on sufficient statistics which is able to obtain the parameters that maxi-
mize the CLL score for Bayesian network classifiers. Moreover, there are a few
proposals for the discriminative learning of the structure: Grossman and Domin-
gos [12] use CLL and a hill climbing method to learn the structure of a Baysian
network classifier but the parameters are learned with a generative method;



Discriminative vs. Generative Learning of Bayesian Network Classifiers 455

Santafé et al. [13] learn both structure and parameter by maximizing CLL; Guo
and Greiner [14] and Pernkopf and Bilmes [15] compare the performance of dif-
ferent discriminative approaches to learn Bayesian network classifiers.

It is thought [16,17] that discriminative learning should be preferred for clas-
sification purposes since it directly models the discriminative function p(C|X).
A generative approach, on the contrary, deals with a more general problem,
modeling p(C, X), to solve a more specific one, model p(C|X). However, in
practice, discriminative approaches do not always perform better than genera-
tive approaches [18].

In this work, we present a comparison between generative and discriminative
learning for structure and parameters of naive Bayes and TAN models. We per-
form experiments that attempt to illustrate some hypotheses about discrimina-
tive and generative learning that have been stated in the literature. Additionally,
we also evaluate how LL and CLL scores are able to guide the learning of both
structure and parameters.

The rest of the paper is organized as follows. In Section 2 we introduce the
Bayesian network classifiers used in the paper as well as the generative and
discriminative methods used to learn the structure and the parameters of these
classifiers. Section 3 presents an empirical study of generative and discriminative
learning methods using synthetic and real datasets. These experiments are used
to illustrate the behavior of both generative and discriminative methods under
different conditions. Finally, Section 4 exposes some conclusions yielded from
the paper.

2 Classification Models

In this paper, we take into consideration naive Bayes and TAN models. Naive
Bayes does not require the learning of the structure since it does not depend on
the dataset but only on the number of variables and their states. However, its
parameters can be learned by either generative or discriminative methods. On
the other hand, TAN models need for both structural and parametric learning
which can be also approached by either generative or discriminative methods.

2.1 Generative Learning of TAN Structures

In order to learn a generative TAN structure, we use the original method pro-
posed by Friedman et al. [5]. It maximizes the LL score by constructing a maxi-
mum spanning tree using the mutual information between each pair of predictive
variables given the class variable.

I(Xi, Xj |C) =
∑

xi,xj ,c

p(xi, xj , c) log
p(xi, xj |c)

p(xi|c)p(xj |c)
(4)

with i = 1, . . . , n; j = 1, . . . , n and i �= j.
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2.2 Discriminative Learning of TAN Structures

Conditional log-likelihood can be maximized when learning TAN structures by
maximizing a metric known as explaining away residual (EAR) (see Equation
5). This score was introduced by Bilmes [19] and also used in [15] and [20] to
learn discriminative TAN models.

EAR = I(Xi, Xj |C)− I(Xi, Xj) (5)

The EAR is in fact an approximation to the expected log-posterior. Therefore,
the maximization of EAR is equivalent to maximize CLL.

The learning algorithm used to learn a discriminative structure of a TAN is
similar to Friedman et al.’s algorithm [5] but using the EAR metric instead of
I(Xi, Xj|C) in order to guide the structural search [15,20]. In this paper, we
name the TAN model whose structure is learned by the method described above
as conditional TAN (cTAN) model.

2.3 Generative Learning of Parameters

A generative learning of the parameters of a model can be performed by maxi-
mizing the LL score, that is, the well-known maximum likelihood estimation of
the parameters. This is the most used method because the decomposability of
the LL score leads to a simple and efficient estimation of the parameters. The
maximum likelihood parameters are given by:

θijk =
Nijk

Nij
(6)

where θijk ∈ Θ represents the conditional probability p(xk
i |paj

i ), Nijk is a suffi-
cient statistic of the dataset that denotes the number of samples where variable
Xi takes its k-th (xk

i ) value and Pai their j-th configuration (paj
i ). Additionally,

Nij =
∑

k Nijk.

2.4 Discriminative Learning of Parameters

In order to maximize CLL when learning the parameters of a model, we use the
TM algorithm proposed by Santafé et al. [11]. This is a variation of the general
TM algorithm [21] adapted to the discriminative learning of the parameters in
Bayesian network classifiers. The general idea of the algorithm is that the CLL
can be approximated, using an iterative process, by a function based only on the
LL. Thus, we are able to map the sufficient statistics of the conditional model,
p(C|X), with those in the unconditional model, p(C, X), and therefore, it is
possible to obtain the parameters that maximize the CLL by maximizing the
approximation of CLL in terms of LL.

3 Discriminative vs. Generative Learning

There is a strong belief in the scientific community that discriminative learning
has to be preferred in reasoning tasks. The maximization of the LL score does
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not necessarily lead to improve the classification rate [5]. In fact, LL score not
only depends on CLL but also on the marginal log-likelihood:

LL =
N∑

l=1

log p(c(l)|x(l)),B) +
N∑

l=1

log p(x(l)|B) (7)

As can be seen in Equation 7, only the first term (CLL) is related to classi-
fication since the second one, marginal likelihood, is only relevant to model the
relation between predictive variables but not for classification purposes. More-
over, as the number of predictive variables increases, the second term in Equation
7 should become much more relevant than the first one. Therefore, a criteria re-
lated to the LL score might be adequate to learn the (in)dependencies between
variables captured in the dataset but could be inadequate to learn a classification
model, especially with a high number of predictive variables. By contrast, the
CLL score is directly related to the discrimination function p(c|x). The max-
imization of CLL also involves minimizing the entropy of the class given the
predictive variables, H(C|X), [20,22]. Minimizing H(C|X) should be desirable
for learning classification models because we minimize the uncertainty remain-
ing in the class variable once the value of X is known. Additionally, CLL is also
related to the Kullback-Leibler divergence between the empirical and the model
posterior class distribution [20,22].

On the other hand, it is quite usual to restrict the model complexity when
learning Bayesian network classifiers. For instance, in this work, we use naive
Bayes, and TAN models, which are Bayesian network classifiers with restricted
network complexity. However, the model underlying the dataset (or the model
which generated the data) may be more complex than the classifier that we
use to model the dataset. Therefore, the estimation of both CLL (first term in
Equation 7) and marginal log-likelihood (second term in Equation 7) is biased
by the complexity restrictions that we set when learning the Bayesian network
classifier. Hence, if the assumptions (or the restrictions) in the model that we
learn are true, that is, the classification model learned from a dataset is close to
the one that has generated this dataset, generative learning may present a good
performance since it is able to model the relations between variables. Therefore,
as generative learning is computationally more efficient, it may be preferred. By
contrast, when the learned model is different from the true model, generative
learning should perform worse than discriminative learning [16] because the bias
for the generative model is higher.

In this section we present several experiments with both synthetic and real
dataset from UCI [23] in order to illustrate the ideas introduced above. The
Bayesian network classifiers used in the experiments neither deal with contin-
uous variables nor missing values. Therefore, continuous variables have been
discretized using Fayyad and Irani’s method [24] and data samples containing
missing values were ignored.

3.1 Synthetic Datasets

As was pointed before, it is thought that if the modeling assumptions (or re-
strictions) that we set when learning the Bayesian network classifier from data
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are incorrect, a discriminative approach should be preferred because the bias is
smaller. In this section we attempt to illustrate this behavior by learning classifi-
cation models from datasets which have been sampled from random models with
different structural complexity (NB, TAN and p(C, X) models) and where the
number of predictive variables vary in {8,12,16}, each predictive variable takes
up to three states and the number of classes vary in {2,3}. For each configuration,
we generate 10 random models and each one of these models is sampled 50 times
to obtain 50 different datasets with 40,80,120,200,300,400 and 500 samples. This
process yields 500 different datasets for each model configuration and dataset
size. The datasets are used to learn NB, TAN and cTAN classifiers using both
generative and discriminative approaches to learn the parameters (Section 2).
The models used in these experiments may seem quite simple to the reader since
the number of variables is not very high. The computational resources required
to deal with the joint probability model prevent us for using more variables.
Nevertheless, we think that these models are able to illustrate the performance
of both generative and discriminative learning approaches.

Figure 1 shows how naive Bayes, TAN and cTAN models learned with both
discriminative and generative parameter learning approaches perform in datasets
sampled from random naive Bayes models. We can see in the plots that a naive
Bayes model learned with a generative parameter learning approach performs
better than the rest of the models. This is because a naive Bayes is enough to
capture all the relations between variables. By contrast, TAN and cTAN models
are overestimating the relations between variables, they create artificial relations
that are not really represented in the dataset and that may lead them to obtain a
worse classification rate than the naive Bayes model. Additionally, discriminative
learning of the parameters for TAN models seems to perform slightly better
than generative learning because the relations between variables assumed by the
TAN model are not true in this case. However, we can not appreciate relevant
differences between discriminative and generative structural learning.

Similarly, Figure 2 shows the results for datasets sampled from random TAN
models. In this case, naive Bayes can not capture the relations between predic-
tive variables. Hence, naive Bayes models obtain a worse classification rate than
TAN and cTAN models. The performance of TAN and cTAN models is, again,
very similar when the parameters are learned by a generative method, but a
discriminative learning of the parameters for cTAN models (that is, discrimi-
native learning of both structure and parameters) obtains, in this experiment,
a worse classification rate. This is something surprising because the difference
between generative and discriminative learning is significant for cTAN but not
for TAN models. We think that the CLL function for cTAN models (when they
are learned from a dataset sampled from TAN models) may present many local
maxima where the TM algorithm can be trapped and thus the resultant model
obtains a poor classification rate.

In general, we can see that, as expected, the generative learning performs
better (or very similar) than the discriminative approach when the restrictions
in the model that we are learning agree with the model used to generate the
dataset.
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Fig. 1. Experiments with datasets sampled from random NB. Solid lines represent
generative learning while dotted lines discriminative learning. � denotes NB models;
� TAN models and ◦ cTAN models. Each point in the plot represents the classification
rate on average over 500 different datasets.

On the other hand, we would also like to test how naive Bayes, TAN and
cTAN classifiers behave when the datasets are generated by using more complex
models such as joint probability distributions, p(C, X) (see Figure 3). In this
experiment, the structural restrictions of the models that we are learning from
the datasets (naive Bayes, TAN and cTAN) do not agree with the model that
generate the data. Therefore, discriminative learning performs better, in terms of
classification rate, than generative learning, at least for the parameter learning.
However, the discriminative learning of TAN structures (cTAN models) performs
very similar to the generative learning of the structure (TAN models).

3.2 UCI Repository

In this section, we develop a simple experiment that illustrates the use of the
LL and CLL to guide the learning process of the parameters for a naive Bayes,
TAN and cTAN models in real problems obtained from UCI repository.

Once the structure of the model is learned with the corresponding method
described in Section 2, we obtain ten thousand different parameter sets at ran-
dom and evaluate the LL, CLL and the classification rate of each classifier in
the datasets. Then, we plot LL vs. classification rate and CLL vs. classification
rate to evaluate the tendency of both LL and CLL scores with respect to the
classification rate. Due to lack of space, we only show results for Breast, Hepati-
tis, Chess and Flare datasets but results for other UCI datasets are available at
www.sc.ehu.es/ccwbayes/members/guzman/discVSgen.
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Fig. 2. Experiments with datasets sampled from random TAN. Solid lines represent
generative learning while dotted lines discriminative learning. � denotes NB models;
� TAN models and ◦ cTAN models. Each point in the plot represents the classification
rate on average over the 500 different datasets.
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Fig. 3. Experiments with datasets sampled from random joint probability distribu-
tions. Solid lines represent generative learning while dotted lines discriminative learn-
ing. � denotes NB models; � TAN models and ◦ cTAN models. Each point in the plot
represents the classification rate on average over the 500 different datasets.
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Fig. 4. Plot of the relation between LL, CLL and classification rate for Chess dataset

Fig. 5. Plot of the relation between LL, CLL and classification rate for Breast dataset

Figure 4 shows how the LL score is not related to the classification rate.
However, in the same dataset, some correlation appears between CLL and clas-
sification rate. On the other hand, in Figures 5 and 6 it can be seen that there
is some unclear relationship between LL and classification rate but CLL is much
more correlated to the classification rate than LL. In fact, we can clearly appre-
ciate in Figures 5 and 6 that as the CLL value increases, classification rate also
increases. Nevertheless, other datasets from UCI such as Flare (Figure 7) present
a clear relationship between LL and classification rate, but they also present a
similar or stronger relationship between CLL and classification rate. From these
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Fig. 6. Plot of the relation between LL, CLL and classification rate for Hepatitis dataset

Fig. 7. Plot of the relation between LL, CLL and classification rate for Flare dataset

experiments (see also supplementary content on the web site) we can observe
that CLL is more related to the classification rate than LL. Hence, in general,
CLL and therefore discriminative learning seems a better approach to learn the
parameters of Bayesian network classifiers when we want to maximize the clas-
sification rate. Nonetheless, the discriminative learning of the structure of TAN
models (cTAN) does not seem to contribute to obtain a better classification rate
than the generative leaning (TAN models).



Discriminative vs. Generative Learning of Bayesian Network Classifiers 463

4 Conclusions

In this paper we present a comparison between generative and discriminative
methods to learn simple Bayesian network classifiers such as naive Bayes and
TAN models. We empirically evaluate these methods in both synthetic and real
datasets obtained from UCI repository in order to illustrate when discrimina-
tive learning is preferred. With these experiments, we corroborate some ideas
stated by the machine learning community about generative and discriminative
learning. Therefore, we show how, although it depends on the dataset of ev-
ery specific problem, CLL score is preferred to LL score to learn, at least, the
parameters of Bayesian network classifiers. Ideally, when the model underlying
the dataset is simpler than the model we learn, the generative approach should
be preferred since it is computationally more efficient and obtains a better or
similar classification rate than the discriminative approach. However, when the
model underlying the dataset is complex, discriminative learning seems a better
choice. Obviously, this recommendation is difficult to follow because the model
underlying the dataset for a real problem is usually unknown.
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464 G. Santafé, J.A. Lozano, and P. Larrañaga
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20. Perez, A., Larrañaga, P., Inza, I.: Information theory and classification error in
probabilistic classifiers. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS 2006.
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Abstract. In this paper we describe an approach to classifying objects
in a domain where classifications are uncertain using a novel combina-
tion of argumentation and data mining. Classification is the topic of a
dialogue game between two agents, based on an argument scheme and
critical questions designed for use by agents whose knowledge of the do-
main comes from data mining. Each agent has its own set of examples
which it can mine to find arguments based on association rules for and
against a classification of a new instance. These arguments are exchanged
in order to classify the instance. We describe the dialogue game, and in
particular discuss the strategic considerations which agents can use to
select their moves. Different strategies give rise to games with different
characteristics, some having the flavour of persuasion dialogues and other
deliberation dialogues.

1 Introduction

In this paper we describe an approach to classifying objects in a domain not
governed by strict rules which makes use of a novel combination of argumentation
and data mining techniques. Our scenario is that classification is performed by
two agents, each of which has their own set of records of past examples recording
the values of a number of features presumed relevant to the classification and
the correct classification. One of the agents will propose a classification, and
a set of justifying reasons for the classification. This proposal is based on the
application of an association rule mined from the agent’s set of examples to the
case under consideration. The classification is the consequent of the rule, and
the antecedent gives the justifying reasons. The other agent will then use its set
of examples to play “devil’s advocate” and attempt to overturn the proposed
classification. We call our system PADUA (Protocol for Argumentation Dialogue
Using Association Rules).

This interaction can be viewed as a form of dialogue game (e.g. [5]), based
on the exchange of arguments. Dialogue games come in a variety of flavours
[11], including Persuasion, where each participant tries to persuade the other
participant of its own thesis, by offering arguments that support this thesis, and
Deliberation, in which the participants exchange arguments to reach an agreed
decision, with neither of them committed to a particular position at the outset.
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Our interaction has aspects of both, with the balance different according to
the dialogue strategies employed. Formal Dialogue Games [7] are interactions
between two or more players, where each player moves by making utterances,
according to a defined set of rules known as a Dialogue Game Protocol, which
gives the set of moves possibly expected after a previous move; choosing the best
move among these moves is the Strategy Problem.

As mentioned above, the key idea of PADUA is to form arguments directly
from some set of records providing examples relating to a particular domain,
avoiding any need for expert analysis of the data, or knowledge representation.
The repository of background knowledge used by each participant can be con-
sidered to be a binary valued data set where each record represents a previous
case and each column an attribute taken from the global set of attributes de-
scribed by the background knowledge. Given this set up we can apply Associ-
ation Rule Mining (ARM) [1] techniques to the data set to discover relations
between attributes, expressed in the form of Association Rules (ARs). In order
to use this information, we follow the notion of presumptive argumentation as
the instantiation of argument schemes subject to challenge through characteris-
tic critical questions introduced by Walton [11]. PADUA makes use of a custom
argument scheme and associated critical questions. In this paper we shall discuss
the strategy problem in PADUA, and the consequences of the strategy used for
the dialogue type.

The rest of this paper is organized as following: Section 2 describes the ar-
gument scheme and the basic structure of the PADUA protocol. Section 3 gives
some necessary background on strategies in dialogue systems. Section 4 discusses
in detail the suggested strategy heuristics to be applied in PADUA protocol. Sec-
tion 5 gives a detailed example of the suggested strategy, and some discussion
of the relation between these strategies and dialogue types.

2 PADUA Protocol

The model of argumentation we will follow is that of [11] in which a prima facie
justification is given through the instantiation of an argument scheme. This
justification is then subject to a critique through a number of critical questions
which may cause the presumptive conclusion to be withdrawn.

The basic argument scheme is one we have devised for the purpose, Argument
from Proposed Rule. The Premises are:

1. Data Premise: There is a set of examples D pertaining to the domain.
2. Rule Premise: From D a Rule R can be mined with a level of confidence

greater than some threshold T. R has antecedents A and a conclusion which
includes membership of class C.

3. Example Premise: Example E satisfies A.
4. Conclusion: E is a C because A.
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This can be subject to a number of critical questions:

– Can the case be distinguished from the proposed rule? If D supports another
Rule R2 and the antecedents of R2 subsume those of R, and are satisfied by
E, and the confidence of R2 is below T, this suggests that these additional
features may indicate we are dealing with some kind of exception to R.

– Does the rule have unwanted consequences? If the conclusion of R includes
some fact F not satisfied by E, this suggests that R is not applicable to E.

– Is there a better rule with the opposite conclusion? If there is another rule
R3 which can be mined from D and the antecedents of R3 are satisfied by
E, and the confidence of R3 is greater than that of R, this suggests that R
is not applicable to E.

– Can the rule be strengthened by adding additional antecedents? This does not
challenge the classification, but rather the justification for the classification.
If there is another Rule R4 which can be mined from D and the antecedents
of R4 subsume those of R, and are satisfied by E, and the confidence of R4
is greater than that of R, this suggests that the additional features should
be included in the justification of the classification.

– Can the rule be improved by withdrawing consequences? This challenges nei-
ther the classification, nor the justification, but the rule proposed. If there
is another Rule R5 which can be mined from D and the conclusions of R
subsume those of R5 and include a feature not satisfied by E, provided the
confidence of R5 remains above the threshold, this suggests that the addi-
tional features should be excluded from the rule justifying the classification.

This argument scheme and these critical questions form the basis of the PADUA
dialogue game.

2.1 Dialogue Scenario

The proposed dialogue game consists of two players (the proponent and the
opponent) which have conflicting points of views regarding some case (C). The
proponent claims that the case falls under some class (c1), while the opponent
opposes the proponent’s claim, and tries to prove that case actually falls under
some other class (c2 = ¬c1). Each player tries to establish its point of view by the
means of arguments based on association rules, which are mined from player’s
own database, using an association rule mining technique as described in [4].

The proponent starts the dialogue by proposing some AR (R1 : P → Q),
to instantiate the argument scheme. The premises (P ) match the case, and the
conclusion (Q) justifies the agent’s position. Then the opponent has to play a
legal move that would undermine the initial rule proposed by the proponent:
these moves are based of the five critical questions described above. As can
be seen from the questions, four of these moves involve some new rule. This
is mined from the opponent’s background database, and represents an attack
on the original rule. The turn then goes back to the proponent which has to
reply appropriately to the last move. The game continues until one player has
no adequate reply. Then this player loses the game, and the other player wins.



468 M. Wardeh, T. Bench-Capon, and F. Coenen

2.2 PADUA Framework

The formal framework we suggest Argumentation Dialogue Framework (ADF )
is defined as follows:

ADF =< P, Attr, C, M, R, Conf, playedMoves, play > (1)

Where P : denotes the players of the dialogue game. Attr: denotes the whole set of
attributes in the entire framework. C: denotes the case argued about. M : denotes
the set of possible (legal) moves. R: denotes the set of rules that govern the
game. Conf : denotes the confidence threshold, all the association rules proposed
within this framework must satisfy this threshold. playedMoves: denotes the set
of moves played in the dialogue so far, this set of played moves represents the
commitment store of the dialogue system under discussion. Finally, play: is a
function that maps players to some legal move.

2.3 PADUA Players

Each player in PADUA game (∀p ∈ P = Pro, Opp.)is defined as a dialogical
agent [3]:

∀p ∈ P : p =< namep, Attrp, Gp, Σp, >>p> (2)

where: namep: is the player (agent) name, here: ∀p ∈ P then name(p) ∈
{pro, opp}. Attrp: is the set of attributes this player can understand. Gp: is
the set of goals this player tries to achieve, here Gp is defined as a subset of
the attributes set Attrp, i.e. Gp is the set of attributes (classes) this player
tries to prove true. Σp: is the set of ARs the player has mined from its back-
ground database, hence fore p is defined as follows: ∀p ∈ P : Σp = {r1 . . . rm},
where ri =< Prem, Con, Conf > is an association rule and can be read as
Prem→ Conc with a confidence =Conf . The elements of Prem and Conc are
defined as a tuple < attribute, value >, where attribute ∈ Attrp, and value is
the list of values assigned to this attribute in the given rule. >>p: represents
the preferences order over Σp, a definition of this preference relation ship is sug-
gested as >>p: Σp ×Σp → {true, false}, but the exact implementation of this
relation may differ from player to player.

2.4 PADUA Legal Moves

The set of moves (M) consists of 6 possible moves, one based on instantiating the
argument scheme and five based on the critical questions against an instantiation.
They are identified as follows:

1. Propose Rule: p plays this move to propose a new rule with a confidence
higher than some confidence threshold.

2. Distinguish:this move is played to undermine a previously played move, as it
adds some new premise(s) to this rule, such that the confidence of the new
rule is lower than the confidence of the original rule (and/or lower than some
acceptance threshold).
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3. Unwanted Consequences: Here p suggests that certain consequences (conclu-
sions) of some rule do not match the case under discussion.

4. Counter Rule: p plays this move to propose a new rule that contradicts the
previous rule. The confidence of the proposed counter rule should be higher
than the confidence of the previous rule (and/or than the threshold Conf).

5. Increase Confidence: p plays this move to add some new premises to a pre-
vious rule so that the overall confidence rises to some acceptable level.

6. Withdraw Unwanted Consequences: p plays this move to exclude the un-
wanted consequences of the rule it previously proposed, while maintaining a
certain level of confidence.

This defines the formal dialogue game. We now consider the strategies that
might be used when playing the game. First we consider some related previous
work on developing strategies for formal dialogue games.

3 Dialogue Strategies: Background

This section discusses some previous argumentation systems that have consid-
ered argument selection strategies:

Moore, in his work with the DC dialectical system [8], concluded from his
studies that an agent’s argumentation strategy is best analyzed at three levels:

1. Maintaining the focus of the dispute.
2. Building its point of view or attacking the opponent’s one.
3. Selecting an argument that fulfils the objectives set at the previous two

levels.

The first two levels refer to the agent’s strategy, i.e. the high level aims of
the argumentation, while the third level refers to the tactics, i.e. the means to
achieve the aims fixed at the strategic levels. Moore’s requirements form the
basis of most other research into agent argumentation strategies.

In [2] a computational system was suggested that captures some of the heuris-
tics for argumentation suggested by Moore. This system requires a preference
ordering over all the possible arguments, and a level of prudence to be assigned
to each agent. The strength of an argument is defined according to the complex-
ity of the chain of arguments required to defend this argument from the other
arguments that attack it. An agent can have either a “build” or a “destroy”
strategy. When using the build strategy (b-strategy), an agent tries to assert
arguments the strength of which satisfies its prudence level. If the b-strategy
fails, it switches to the destroy strategy (d-strategy), where it tries to use any
possible way to attack the opponent’s arguments. The basic drawback of this
approach is that computational limits may affect the agent’s choice.

In [6] a three layer system was proposed to model argumentation strategies:
the first layer consists of the “default” rules, which have the form (utterance
- condition); the higher two layers provide preference orderings over the rules.
The system is shown to be deterministic, i.e. a particular utterance is selected
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in a given situation every time, but this system still requires hand crafting of
the rules.

In [10], a decision heuristic was proposed to allow the agents to decide which
argument to advance. The idea behind this work is that an agent should, while
attempting to win a dispute, reveal as little of what it knows as possible, as
revealing too much information in a current dialogue might damage an agent’s
chances of winning a future argument. A new argumentation framework was
developed to represent the suggested heuristics and arguments. The main short-
coming of this approach is the exponential complexity of the algorithms used.

4 Strategies and Tactics for PADUA

In PADUA, a player p ∈ P must select the kind of move to be played, and also
the particular content of this move depending on: the thesis this player aims to
prove true (or false), the case under discussion, the player’s set of association
rules, the amount of information this agent is willing to expose in its move, and
the player’s current state in the dialogue. All these factors must be considered in
the strategy the player adopts and the tactics applied to implement this strategy.

Table1 lists the possible next moves after each of the legal moves in PADUA
protocol. A player must select a single move to play in its turn; moreover every
possible next move is associated with a set of possible rules: this set contains the
rules that match the selection criteria of the move, i.e. their confidence, premises
and conclusion match this move. Except for unwanted consequences, the moves
introduce a new rule. Proposing a counter rule leads to a switch in the rule
being considered, so entering a nested dialogue. The notion of move (act) and

Table 1. Possible Moves

Move Next Move New Rule

1 2,3,4 yes

2 1,3,5 yes

3 1,6 No

4 1,2,3 Nested Dialogue

5 2,3,4 yes

6 2,3,4 yes

content selection is argued to be best captured at different levels, as suggested
by Moore [8]. In [2] the first level of Moor’s layered strategy was replaced with
different profiles for the agents involved in the interaction. We also adopt this
approach. Here we also add another level to Moore’s structure (level 0) which
distinguishes PADUA games into two basic classes. In one players attempt to
win using as few steps as possible, i.e. the move’s type and content are chosen
so that the played move gives the opponent’s the least freedom to plan its next
move. In the other, games that are played to fully explore the characteristics of
the underlying argumentation system, and dialogue game, so here the move’s
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type and content are chosen so that the played move will restrict the opponent’s
freedom to plan its next move to the least extent possible. The layered strategy
system we adopt is defined as follows:

– Level 0: Define the game mood: i.e. Win mode or Dialogue mode.
– Level 1: Define the players (agents) profiles.
– Level 2: Choose to build or destroy: where in a Build mode the player tries

to build its own thesis, while in a Destroy mode the player tries to destroy
the opponent’s thesis.

– Level 3: Choose some appropriate argumentative content: depending on the
tactics and heuristics suggested.

4.1 Agent Profile

In [3], which used arguments based on standard if then rules, five classes of
agent profiles were defined as follows:

1. Agreeable Agent: Accept whenever possible.
2. Disagreeable Agent: Only accept when no reason not to.
3. Open-minded Agent: Only challenge when necessary.
4. Argumentative Agent: Challenge whenever possible.
5. Elephant Child Agent: Question when ever possible.

In this paper we consider only the first two profiles (i.e. agreeable and dis-
agreeable agents), as these attitudes are the most appropriate for the particular
argument scheme we are using.

4.2 PADUA Strategy

The function Play is defined as follows:

Play : P ×Mposs ×Rposs × playedMoves× S× →M (3)

Where: P is the set of game players; playedMoves is the set of moves played in
the dialogue so far; and M is the set of possible (legal) moves. Mposs: is the set of
the possible moves this player can play Mposs ⊆M (as defined in Table1). Rposs:
is the set of legal rules that this agent can put forward in the dialogue (Rposs ⊆
2Σp); this set contains the rules that match the each of the possible moves. S: is
the Strategy Matrix, and has the form S = [gm, profileP , sm] where: gm ∈ Gm:
is the game mode, where Gm = {win, dialogue}, profileP ∈ ProfileP : is the
player profile, where ProfileP = {agreeable, disagreeable}, and finally, sm ∈
Sm: is the strategy mode, where Sm = {build, destroy}.

4.3 PADUA Tactics

A set of tactics are suggested to fulfil the strategic considerations discussed
above; these concern the best move to play and, where applicable, the content
of the chosen move, i.e. the best rule to be put forward in the dialogue.
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Legal Moves Ordering. Legal moves’ ordering defines the order in which legal
(possible) moves are considered when selecting the next move. All games begin
with Propose Rule: there are three possible responses to this, and these in turn
have possible responses. The preference for these moves depends on whether the
agent is following a build or a destroy strategy. In a destroy strategy the agent
will wish to discredit the rule proposed by its opponent, and hence will prefer
moves such as unwanted consequences and distinguish. In contrast when using a
build strategy an agent will prefer to propose its own rule, and will only attempt
to discredit its opponents rule if it has no better rule of its own to put forward.
The preferred order for the two strategies is shown in Table2.

Whether players are agreeable or disagreeable will have an influence on whether
the agent wishes to dispute the rule put forward by its opponent, and, the nature
of the challenge if one is made.

Table 2. Possible Moves Preferences

Last Move Build Mode Destroy Mode

1 4,3,2 3,2,4

2 1,3,5 3,5,1

3 1,6 6,1

4 1,3,2 3,2,1

5 1,3,2 3,2,1

6 1,3,2 3,2,1

Agreeable Players. An agreeable player ap ∈ P accepts a played rule without
challenging it if:

1. An exact match of this rule can be found in its own set of association rule
(Σap) with a higher or similar confidence.

2. Can find partial match of this rule in its own set of association rule (Σap), a
rule rpm ∈ Σap is considered to be a partial match of another rule r ∈ Σap

if it has the same conclusion (consequences) of r, it’s set of premises is
a superset of rule r premises, and all these premises match the case; and
finally it has a higher or similar confidence.

Otherwise the agreeable agent challenges the played move, depending whether
it wishes to build or destroy using the legal moves preferences shown in Table2
selecting a rule using the following content tactics:

1. Confidence: Confidence of moves played by agreeable agent should be con-
siderably lower/higher than the attacked rule, otherwise the agent agrees
with its opponent.

2. Consequences: Consequences always contain a class attribute.
Minimum changes to previous move consequences.
As few attributes as possible.

3. Premises: Premises are always true of the case.
Minimum changes to previous move premises.
As few attributes as possible.
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Disagreeable Players. A disagreeable agent accepts a played rule if and only if
all possible attacks fail, and so does not even consider whether its data supports
the rule; the choice of the attack (i.e legal move) to be played depends on the
preferences shown in Table2 and the choice of rule is in accordance with the
following content tactics:

1. Confidence: Confidence of moves played can be:
(a) Considerably different from last move
(b) Slightly different from last move.
The choice of confidence depend on the general mode of game whether it’s
in a win-mood or a dialogue-mood.

2. Consequences: Consequences always contain a class attribute.
As few attributes as possible.

3. Premises: Premises are always true of the case.
As few attributes as possible.

Best Move. Table 3 brings these considerations together and shows the best
move relative to the agent type and the game mode, for each of the move types.
For example in win mode an agent will want to propose a rule with high con-
fidence, as one which the opponent is likely to be forced to accept, whereas in
game mode, where a more thorough exploration of the search space is sought,
any acceptable rule can be used to stimulate discussion.

Table 3. Best move content tactics

Best Moves
Agreeable Disagreeable

Win mode Game mode Win mode Game mode

propose High confidence Average confi-
dence

High confidence Average confi-
dence

Fewest attributes Average at-
tributes

Fewest attributes Fewest attributes

distinguish Lowest confi-
dence

Average drop Lowest confi-
dence

Average drop

Fewest attributes Fewest attributes Fewest attributes Fewest attributes

Unwanted con-
sequences

If some conse-
quences are not
in or contradict
the case

Only if some con-
sequences contra-
dict the case

If some consequences are not in or
contradict the case

Counter rule Average confi-
dence

High confidence High confidence Average confi-
dence

Fewest attributes Fewest attributes Average at-
tributes

Fewest attributes

Increase Confi-
dence

Highest confi-
dence

Average increase Highest confi-
dence

Average increase

Fewest attributes Fewest attributes Fewest attributes Fewest attributes

Withdraw un-
wanted conse-
quences

The preferable reply to unwanted consequences attack → selecting cri-
teria is the same of the very last move that led to the unwanted conse-
quences.
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5 Example

Our example domain concerns the voting records of US members of Congress,
on the basis of which we wish to classify them according to party affiliation.
Although there will be typical Democrat and Republican views on various issues,
people may vote against the party line for personal or regional reasons. Some
members of Congress may be more maverick than others. Thus, while there is
no defining issue which will allow us to classify with certainty, we can argue for a
classification on the basis of voting records. The data set we use is taken from [9],
and it represents the U.S. House of Representatives members of Congress (in the
1984 US congressional elections) on the 16 key votes identified by the (CQA).
The congressional voting records database contains 435 instances, among which
(45.2%) are Democrats and (54.8%) are Republicans. The dataset original 17
binary attributes (including the class attribute) were normalized to 34 unique
numerical attributes, each corresponds to certain attribute value. This dataset
was horizontally divided into two equal size datasets, each of which was assigned
to a player in PADUA framework. Rules were mined from this dataset using
30% support, and 70% confidence thresholds.

We have experimented by running several PADUA dialogue games, starting
from the same case. The difference between the games lays in the underlying
strategy options of each agent that participate in each of these games.

Table 4 shows the attributes of the case used in the example.

Table 4. Example Case

Case: [5, 7, 13, 15, 17, 21, 24, 26, 29]
5: adoption-of-the-budget -

resolution=y.
7: physician-fee-freeze=n.

13: anti-satellite- test-ban=y. 15: aid-to-nicaraguan -contras=y.
17: mx-missile=y. 21: synfuels-corporation-cutback=y.
24: education-spending=n. 26: superfund-right-to-sue=n.
29: duty-free- exports=y.

As an illustration, we will describe the run with two disagreeable agents play-
ing in win mode, the proponent (Prop) using a build strategy and the oppo-
nent (Opp) a destroy strategy. Prop begins by proposing a rule to justify saying
that the member of Congress concerned is a Democrat: R1: Democrat because
education-spending=n and duty-free-exports =y with a (97.66%) confi-
dence. Opp can reply by distinguishing this rule, since adding the premise aid-
to-nicaraguan-contras=y reduces confidence to 80.43%. Prop now proposes
a new rule: R2: Democrat because mx-missile=y and duty-free-exports=y
with a (98.63%) conifednce. This rule cannot be distinguished or countered since
there is no better rule for Republican and so Prop wins.
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Note how, Opp, being in destroy mode, uses first the distinguish move and only
proposes a rule if this move cannot be played. In build mode Opp plays a rule
of its own. Note also that the distinction made greatly reduces the confidence,
whereas a distinction with a less drastic effect could have been played in game
mode. When Opp is an agreeable agent it would simply accepts the proposed
rule, as it too can mine the rule with sufficient confidence. Where Prop is in
destroy mode, it responds to the distinction with an increase confidence move,
forcing Opp to propose a rule of its own.

As would be expected, in game mode, longer dialogues are produced. Where
the agents are both agreeable, game mode leads to a series of rule proposals
until a mutually acceptable one is found. Where Opp is in destroy mode, Prop’s
proposals will be met by a distinction, and where Opp is in build mode it will
produce counter proposals as long as it can. Where Prop is in destroy mode it
will make use of the unwanted consequences move to refute Opp’s distinction
if possible. Where both agents are disagreeable and in win mode, because the
game does not terminate on the proposal of an acceptable rule, this last move,
refuting a distinction by pointing to unwanted consequences which cannot be
met with a withdraw consequences move, is what ends the game.

6 Discussion

Padua provides a way of determining the classification of cases on the basis of
distributed collections of examples related to the domain without the need to
share information, and without the need for analysis and representation of the
examples. The argumentation leads to a classification which, while uncertain, is
mutually acceptable and consistent with the different collections of examples.

Different strategies for move selection give rise to dialogues with different
characteristics. Using disagreeable agents gives rise to a persuasion dialogue,
since the opponent will do anything possible to avoid accepting the proposal.
Win mode will lead to the swiftest resolution: game mode between disagreeable
agents will lead to a lengthier exchange, and concession may be forced without
the best argument being produced. A dialogue between two agreeable agents has
the characteristics of a deliberation dialogue in that here the opponent is happy
to concede once an acceptable proposal has been made. Win mode may be a very
short exchange, since this simply verifies that Prop’s best rule is also acceptable
with respect to the second agent’s data set. When game mode is used, the game
has the flavour of brainstorming in that more ideas, even some which are less
promising, will be explored.

Further work will empirically explore our system to examine the efficiency and
quality of classifications and the effect of giving the individual data sets used
by the agents particular characteristics. We also intend to explore domains in
which classification is into a enumerated set of options rather than binary, and
develop an extended version of the game with more than two participants.
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Joaqúın Abellán, Andrés Cano, Andrés R. Masegosa, and Seraf́ın Moral

Department of Computer Science and Artificial Intelligence.
University of Granada, Spain

{jabellan,acu,andrew,smc}@decsai.ugr.es

Abstract. In this work, we present a semi-naive Bayes classifier that
searches for dependent attributes using different filter approaches. In
order to avoid that the number of cases of the compound attributes be
too high, a grouping procedure is applied each time after two variables
are merged. This method tries to group two or more cases of the new
variable into an unique value. In an emperical study, we show as this
approach outperforms the naive Bayes classifier in a very robust way and
reaches the performance of the Pazzani’s semi-naive Bayes [1] without
the high cost of a wrapper search.

1 Introduction

The naive Bayes classifier [14] is a probabilistic classifier that makes very strong
independence assumptions and performs very well on many data sets. It simpli-
fies the learning task by assuming that the attributes are independent given the
variable to classify (no structural learning is required).

We shall use X = {X1, . . . , Xn} to denote features describing the instances to
be classified and C for the class variable. The supervised classification problem
under naive Bayes classifier assumptions reduces to find c∗ such as:

c∗ = argc max P (C = c)
∏

i

P (Xi = xi|C = c)

There are many attempts to improve the accuracy of the naive Bayes clas-
sifier taking advantage of interdependence between attributes. These methods
are collectively called semi-naive Bayesian methods [5]. A comparation of such
methods can be found in [6]. Pazzani [1] proposes one of such methods. That
classifier carries out a search into the whole set of attribute pairs with the aim of
merging them and creating a new compound attribute with the Cartesian prod-
uct of the value sets of the original attributes. A joining operation is carried out
when the predictive accuracy, estimated by a leave-one-out process, of the naive
Bayes classifier with the joined variables is better than the classifier without the
joining operation. Pazzani also evaluates two greedy algorithms for the model
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selection. A forward sequential selection and joining (FSSJ) scheme where each
non-selected variable is evaluated in two different ways in each step: considering
it joined with each one of the already selected or joined variables (in this case
there are so many evaluations as selected variables in this step) and considering
it independent of the selected ones given the class variable. In each step, the
most promising operation, joining or addition, over a non selected variable in
terms of accuracy is carried out. The backward sequential elimination and join-
ing (BSSJ) scheme employs the same ideas but starting with all the variables
and selecting the most promising operation between joining or removing over
the non-removed variable set. In both cases, the procedure stops where there is
no improvement with the possible operations. The experimental study shows a
lighter outperformance of the BSSJ scheme but with a huge computation cost
that makes this last methodology prohibited in many classification problems.
The FSSJ scheme shows the best trade-off in terms of accuracy and efficiency.

In a posterior work, Domingos et al. [7] try to show that an entropy based
metric for measuring the degree of dependence of the attributes is not a good
criterion for joining variables. The used measure is taken from Kononenko [5]:

D(Xi, Xj|C) = H(Xi|C) + H(Xj |C)−H(Xi, Xj |C)

where H stands for the entropy with probabilities estimated from the relative
frequencies in the learning sample D.

D(Xi, Xj |C) measure is zero when Xi and Xj are completely independent
given C and increases with their degree of dependence.

In an empirical study, they show as the semi-naive Bayes method of Pazzani
[7] using this entropy based measure for the joining criterion, instead of the
estimated accuracy, does not outperform the naive Bayes classifier in none of
eleven UCI data sets in a significant way. They finally suggest that accuracy
based metrics are better score for joining variables than metrics measuring the
degree of dependence between attributes.

Nevertheless, the main problem of the Pazzani approach [1] is the high-cost
associated to accuracy based metrics since a cross validation process is carried
out at each step.

However, in a recent work, Abellán [2] successful employs uncertainty mea-
sures based on imprecise probabilities, such us maximum entropy [3,4], to decide
the joining of two variables, showing that the used of new entropy based mea-
sures it is a plausible possibility for this kind of classifiers.

In this work, we propose and study three new filter measures to choose the
variables to join, which are much less costly than Pazzani’s criterion. One of
the problems associated with the process of joining variables is that the number
of possible values grows exponentially as a function of the number of merged
variables. To avoid this, we also introduce a complementary grouping process
for reducing the number of states of the new joined variables.

In an empirical study we show that our approach, based on the combination
of joining variables and grouping cases, outperforms the naive Bayes classifier
and reaches the performance of the Pazzani semi-naive Bayes procedure with a
much less computational cost.



A Semi-naive Bayes Classifier with Grouping of Cases 479

The rest of the paper is organized as follows. Section 2 describes the proposed
classifier. Concretely, Section 2.1 describes the joining process and Section 2.2
the grouping method. In Section 3 the experimental results are showed. Finally,
in Section 4 the conclusions and future developments are exposed.

2 The Semi-naive Bayes with Grouping Cases

Firstly, the process to join variables is exposed. Here, we have evaluated several
metrics to decide about the joining of two variables. Then, a grouping process is
described in order to reduce the number of states of the joined variables. Again,
several metrics are proposed and evaluated. And finally, the whole steps of the
classifier are depicted.

2.1 Joining Criterion

Following the same scheme of [1] and [5], all possible pairs of variables are con-
sidered at each step with a given metric. The metric evaluates the convenience
of joining the two variables with respect to keeping them separated. In this way,
the most suitable ones are merged by creating a new compound variable with
the Cartesian product of the value sets of the original variables. This procedure
is used in an iterative way: the old joined variables are removed and the new one
is included as a candidate to be joined again with another variable. The process
continues until there is not more suitable variable pairs to be joined.

In this work, we propose three filter metrics as a joining criterion. Each one
has a joining condition (JC(Xi, Xj)) that tests whether the variables Xi and
Xj can be joined and a joining metric (JM) that allows to select the most
suitable pair that should be joined.

Bayesian Dirichlet equivalent Metric (BDe). Bayesian scoring criteria
have been widely used to choose between several alternative models [8], because
of the inherent penalty that they give to the more complex models in order to
prevent against over-fitting.

The Bayesian scores measure the quality of a model, Mi, as the posterior
probability of the model giving the learning data D. Usually the logarithm of
this quantity is considered for computational reasons giving rise to:

Score(Mi : D) = lnP (Mi|D) = lnP (D|Mi) + lnP (Mi)− lnP (D)

This value can be computed under suitable hypothesis. The BDe (Bayesian
Dirichlet equivalent) [8] supposes an uniform prior probability over the possible
models and a prior Dirichlet distribution over the parameters with independence
for the parameters of different conditional distributions. Usually a global sample
size, S, is considered and then it is assumed that for each variable Z the prior
probability about the vector (P (z))z is Dirichlet with the same parameters S/kZ

for all values P (z), where kZ is the number of possible values of Z.
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The metric for joining attributes Xi and Xj is computed as the difference:
Score(M1 : D) − Score(M2 : D), where M1 is a naive Bayes model in which
Xi and Xj are joined and M2 a model in which they are considered conditional
independent given the class. Under global sample size S, this difference can be
computed as:

JMBDe(Xi, Xj) =
∑

c

ln
(

Γ (S/kC)
Γ (S/kC + Nc)

) (
TC,Xi,Xj − TC,Xi − TC,Xj

)
where

TC,Xi,Xj
=

∑
xi,xj

(
Γ (S/(kC .kXi

.kXj
) + Ncxixj

)

Γ (S/(kC .kXi
.kXj

))

)
, TC,Xk

=
∑
xk

(
Γ (S/(kC .kXk

) + Ncxk
)

Γ (S/(kC .kXk
))

)

Γ (.) is the gamma function (Γ (α + 1) = α.Γ (α)), Ncxixj is the number of
occurrences of [C = c, Xi = xi, Xj = xj ] in the learning sample D (analogously
for Nc and Nxkc).

We select the pair Xi, Xj with greatest metric and the attributes are merged
if the joining condition is verified i.e.

JCBDe = [JMBDe > 0]

The Expected Log-Likelihood Under Leaving-One-Out (L10). The
score of a model Mi for a set of data D is obtained by adding for each vector of
cases (x, c) ∈ D, the logarithm of P (c|x), where the probability P is obtained
by estimating the parameters of Mi with D−{(x, c)}. That is, an estimation of
the log-likelihood of the class [9] is carried out with a wrapper leaving-one-out
procedure.

The metric for joining attributes Xi and Xj is computed as the difference of
scores between the model in which Xi and Xj are joined and the model in which
they are considered conditional independent given the class. However, this value
can depend on the remaining attributes and can be difficult to compute in a
closed form. For that reason we compute it considering that only variables Xi

and Xj and C are in the model. This can be considered as an approximation
which allows a fast computation. This metric is computed as:

JML1O(Xi, Xj) =
∑

c,xi,xj

Ncxixj

[
ln

(
P ∗(xi, xj |c)P ∗(c)∑
c′ P ∗(xi, xj |c′)P ∗(c′)

)]
−

−Ncxixj

[
ln

(
P ∗(xi|c)P ∗(xj |c)P ∗(c)∑

c′ P ∗(xi|c′)P ∗(xj |c′)P ∗(c′)

)]
where the probabilities P ∗ are estimated from the sample using the Laplace
correction and discounting 1 the absolute frequencies of values (c, xi, xj) in the
sample:



A Semi-naive Bayes Classifier with Grouping of Cases 481

P ∗(xi, xj |c) =
Nxixjc

Nc + kXi
kXj

− 1
, P ∗(c) =

Nc

N + kC − 1
, P ∗(xk|c) =

Nxk

Nc + kXk
− 1

and for c′ �= c:

P ∗(xi, xj|c′) =
Nxixjc′ + 1

Nc′ + kXi
kXj

, P ∗(c′) =
Nc′ + 1
N + kC

, P ∗(xk|c′) =
Nxk

+ 1

Nc′ + kXk

In this way, we assume that the attributes Xi and Xj are suitable to be joined
if the following condition is checked:

JCL1O(Xi, Xj) = [JML1O(Xi, Xj) > 0]

Log-Likelihood Ratio Test (LRT). The last approach to decide when joining
two variables is based on a log-likelihood ratio test [10]. The log-likelihood ratio
test (LRT) have been used to compare two nested models, M1 and M2 (in
our case M1 is the model with merged variables and M2 the simpler model
with conditionally independent variables). The log-likelihood ratio criterion is
expressed by:

LRT = −2. ln
(

supθ PM2 (D|θ)
supθ PM1 (D|θ)

)
= −2.

∑
c,xi,xj

Ncxy ln
(

Ncxi.Nxjc

Nc.Ncxixj

)
where PMi (D|θ) is the likelihood of the data under model Mi and parameters
θ. The supθ PMi(D|θ) is obtained computing the likelihood of the data when
parameters are estimated with maximum likelihood (in our models the param-
eters are equal to the relative frequencies in the sample). The third part of the
equality shows the closed form to compute LRT .

Asymptotically, LRT is distributed as chi-square random variable with de-
grees of freedom equal to the difference in the number of parameters between
the two models.

In our case, LRT follows a chi-square distribution with (kXi − 1)(kXj − 1)kC

degrees of freedom [10], where kXi is the number of cases of Xi. The null hypoth-
esis (H0) of the test is Xi and Xj are independent given the class. We consider a
significance level α and compute this LRT metric as the p-value of the following
test:

JMLRT (Xi, Xj) = χ2
(kXi

−1)kXj
−1)kC

(LRT )

The associated criterion is that the null hypothesis is rejected. But the ques-
tion is that this test is valid for the comparison of two models, while in our
algorithm it is applied many times over the n(n−1)

2 possible variable pairs (n is
the actual number of active variables) increasing the possibilities of a mistake of
the LRT. In order to avoid this effect, the α level is divided by a corrector factor
ρ =

∑
t=1..R

1
t that makes harder the rejection of null hypothesis.

Thus, the joining criterion condition is expressed by:

JCLRT (Xi, Xj) = [JMLRT (Xi, Xj) > (1 − α

ρ
)]

where R = n(n−1)
2 is the number of tests, JMLRT is the joining criterion metric

and JCLRT is the joining criterion condition.
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The Joining Algorithm (JA). This algorithm corresponds to the process
for joining the dependent variables in a recursive form. It considers the three
different joining criteria (i.e. BDe, L10, LRT). The process is quite simple. It
joins the variables with highest score, while the joining condition is verified.

Algorithm 1. Joining Algorithm (JA)

Z = {X1, ..., Xn};
end = false;
while (#(Z) ≥ 2 ∨ ¬end)

– {Xi, Xj} = arg max{Xr,Xs}{JM(Xr, Xs) : {Xr , Xs} ∈ Z};
– if JC(Xi, Xj) then

• T = Xi × Xj ; Z = Z \ {Xi, Xj}; Z = Z ∪ T ;
– else end=true;

return Z;

2.2 Grouping Process

As we have already commented, an important problem of joining two attributes
is that the number of estimated parameters is much greater, concretely, if Xi and
Xj are considered independent given C, (kXi +kXj−2).kC parameters have to be
estimated, while if Xi and Xj are joined, we have to estimate (kXi .kXj − 1).kC

parameters. For example, if we join two variables with 7 possible values, the
resulting variable will have 49 cases and for some of these combinations, it is
possible that there are very few cases in the learning data and the corresponding
estimated parameters will have very low reliability.

To solve this problem, we propose a mechanism to group similar states of an
attribute. It will be applied to each variable resulting of a joining operation and
before any other joining of variables is considered. In this way we try to reduce
the number of states before computing the cartesian product with another vari-
able with the expectation of avoiding a combinatorial explosion in the number of
states and making easier the possibility of further combinations of this variable.

The process consists in evaluating each pair of states using a given criterion
(based on the same principles we used in the joining process), and when the
presence of the two states does not suppose a significative benefit with respect
to consider them as a unique state, they will be grouped in a single state. Our
aim is obviously to reduce the introduced complexity in the model with the
joining of the variables.

Grouping Criteria. The same principles used in the Joining Process are valid
to define new criteria for this purpose.

To fix the notation, let X be the considered variable. We will assume that
xi and xj are two possible states of this variable. X{i,j} will be the variable in
which the elements xi and xj has been grouped into a single state. We will work
only with the subsample DX(i,j) given by examples from the original sample
in which it is verified that X = xi or X = xj . In order to make the criterion
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independent of the other possible states of variable X and their frequencies, we
work as if xi and xj were the only possible values of variable X . In this situation,
groping xi and xj implies to build an attribute with a single state. A variable
with only one state, is useless. So the grouping criteria will check whether X
(with two possible values xi, xj) is relevant to C under sample DX(i,j). M1 will
be the more complex model with X relevant to C and M2 will represent the
simpler model in which X is irrelevant to C (xi and xj have been grouped).

The metric for grouping xi and xj into a single state is denoted by GM(xi, xj)
and the condition by GC(xi, xj).

In this way the three evaluated Grouping Criteria are:

BDe Score (BDe). The difference between the BDe scores of making X de-
pendent or independent of C produces:

GMBDe(xi, xj) = TxiC + TxjC − TC

where
TxkC = ln

(
Γ ( S

2 )

Γ ( S
2 + Nxk

)

) ∑
c

ln

(
Γ ( S

2kC
+ Nxkc)

Γ ( S
2kC

)

)

TC = ln

(
Γ (S)

Γ (S + Nxi
+ Nxj

)

) ∑
c

ln

(
Γ ( S

kC
+ Nc)

Γ ( S
kC

)

)

In these expressions S is a parameter (the global sample size) and the fre-
quencies are measured in subsample DX(i,j).
In this way, we assume that the states xi and xj are suitable to be grouped,
grouping condition, when:

GCBDe(xi, xj) = [GMBDe(xi, xj) ≤ 0]

Leave One-Out Score (L10). As before we compute the logarithm of the
likelihood of the learning sample DX(i,j) under the two models M1 and
M2, but each time we compute the likelihood of a case, we remove this case
of the sample to estimate the parameters (this can be done by decreasing
the associated frequencies by 1). It is assumed that we apply the Laplace
correction to estimate the probabilities. The resulting formula is expressed
by:

GML10(xi, xj)=
∑

c

Nxic

(
ln

Nxic

Nxi + kC − 1

)
+

∑
c

Nxjc ln
(

Nxjc

Nxj + kC − 1

)
−

∑
c

Nc ln
(

Nc

Nxi + Nxj + (kC − 1)− 1

)
The grouping condition is expressed like in BDe metric:

GCL10(xi, xj) = [GML10(xi, xj) ≤ 0]
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Log-Likelihood Ratio Test (LRT). As in Section 2.1, we apply the log-
likelihood ratio test to compare models M1 and M2. The statistic is:

LRT = −2.
∑

c

Nxic. ln

(
Nxic(Nxi + Nxj )

Nxi .Nc

)
− 2.

∑
c

Nxjc. ln

(
Nxjc(Nxi + Nxj )

Nxj .Nc

)

The null hypothesis (H0) is the simpler model M2 (the model with the states
xi and xj grouped). In this case LRT follow a chi-square distribution (kC−1)
degree of freedom. The criterion is the p-value of this test:

GMLRT (xi, xj) = χ2
kC−1(LRT )

The associated criterion is that the null hypothesis is rejected. Such as the
equivalent joining criterion, the α level is divided by a corrector factor ρ =∑

t=1...R
1
t where R = k(k−1)

2 is the number of tests and k is the number
of active states in the variable X .

GCLRT (xi, xj) = [GMLRT (xi, xj) > (1− α

ρ
)]

The Grouping Algorithm (GA). This algorithm is the process for grouping
the irrelevant states of a variable in a recursive form. The only variation is the
considered grouping criterion. We want to notice the similarity with Algorithm
1. In both cases, a model selection and a model transformation is carried out.

Algorithm 2. Grouping Algorithm (GA)

SX = {x1, ..., xn}; end = false;
while (#(SX) ≥ 2 ∨ ¬end)

– {xi, xj} = arg max{xr,xs}{GM(xr, xs) : {xr, xs} ∈ SX};
– if GC(xi, xj) then

• t = {xi ∪ xj}; SX = SX \ {xi, xj}; SX = SX ∪ t;
– else end=true;

return SX ;

In the experimental results, presented in Section 3 Table 2, we are going to see
that there are not important differences between the three proposed criteria. But
the main advantage of the introduction of this grouping process is the reduction
in the complexity of final models as well as in the time needed to build the
classifier. The experimental results show a reduction of 50% in time.

2.3 The Classifier

Once we have described the joining and grouping processes, we are going to
describe how to compose these two processes:
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Algorithm 3. A Semi-naive Bayes with Grouping of Cases (Semin-NB-G)
Z = {X1, ..., Xn};
end = false;
while (#(Z) ≥ 2 ∨ ¬end)

– {Xi, Xj} = arg max{Xr,Xs}{JM(Xr , Xs) : {Xr , Xs} ∈ Z};
– if JC(Xi, Xj) then

• T = Grouping(Xi × Xj); Z = Z \ {Xi, Xj}; Z = Z ∪ T ;
– else end=true;

return Grouping(Z);

As we can see, the grouping process is applied each time that two attributes to
be joined are selected. At the end, the grouping method is applied again over all
attributes with the aim of processing the attributes that have not been selected
to be joined.

As three distinct metrics can be used in the joining or groping process, there
are nine possible schemes to define the classifier. In the next section, we are going
to see as the LRT criterion in the joining process and the L1O in the grouping
process reach the best results.

The combination of the joining and grouping procedures has an important
potential. It can perform some additional preprocessing tasks as side effects as
the removing of irrelevant variables.

3 Experimental Results

In this section we are going to carry out an empirical study of the proposed pro-
cedures. For this analysis, several data sets have been taken from UCI repository.
Due to implementation simplicity reasons, we didn’t consider data sets with miss-
ing values although our methods could be easily extended. The continuous values
are discretized by the Fayyad, Irani method [11]. Due to the lack of space, only the
names of the databases are shown: anneal, balance-scale, german-credit, diabetes,
glass, heart-statlog, ionosphere, iris, lymphography, sonar, vehicle, vowel and zoo.

For the experiments, we have used the Elvira environment [12] and Weka
platform [13]. The evaluation of the classifiers was achieved by a 10-fold-cross
repeated 10 times scheme and the comparison between classifiers was done using
the corrected paired t-test implemented in Weka [13]. The significance level used
by all the statistical tests was 0.05.

In that way, we resume the evaluations across the different data sets counting
the number of statistically significant improvements (denoted as Wins (W) or
by the symbol ◦), degradations (denoted as Defeats (D) or by the symbol •) and
when there is not any statistically significant change (denoted as Ties (T)).

3.1 Evaluating Joining Criteria

For this purpose, we compare the results given by Joining Algorithm (JA) using
the three proposed criteria without grouping. In this way, we compare these re-
sults respect to the naive Bayes classifier, Table 1(a), and respect to the Pazzani’s
semi-naive Bayes classifier, Table 1(b).
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Table 1. Joining Criteria Evaluation

Dataset NB JABDe JAL1O JALRT

anneal 95.95 97.82 ◦ 96.09 97.29
balance-scale 71.56 71.48 69.40 • 69.40 •
german-credit 75.04 74.54 70.23 • 73.99
pima-diabetes 75.26 75.27 73.31 75.18
Glass 71.94 70.32 67.35 71.50
heart-statlog 82.56 81.81 75.11 • 82.89
ionosphere 89.40 89.86 65.78 • 90.09
iris 93.33 93.20 91.33 93.33
lymphography 85.10 85.75 59.00 • 86.17
sonar 76.71 75.46 55.82 • 74.98
vehicle 61.06 68.63 ◦ 43.31 • 68.88 ◦
vowel 61.99 63.22 62.36 66.57 ◦
zoo 93.98 92.29 91.39 93.88
Average 79.53 79.97 70.81 80.32
W/T/D 2/11/0 0/6/7 2/10/1
(%)Percent of cases corrected classified

NB JABDe JAL1O JALRT

-0.13 -0.10 -0.14 -0.09 ◦
-0.60 -0.60 -0.54 ◦ -0.54 ◦
-0.53 -0.53 -0.61 • -0.54
-0.54 -0.52 ◦ -0.53 -0.51
-0.91 -0.90 -1.03 -0.88
-0.47 -0.44 ◦ -0.49 -0.40 ◦
-1.62 -1.04 ◦ -0.50 ◦ -0.81 ◦
-0.22 -0.21 -0.29 -0.22
-0.43 -0.40 -0.82 • -0.38
-0.84 -0.60 ◦ -0.67 -0.56 ◦
-2.00 -0.68 ◦ -1.21 ◦ -0.68 ◦
-1.01 -0.99 -1.83 • -0.93 ◦
-0.12 -0.16 -0.39 • -0.12
-0.73 -0.55 -0.70 -0.51

5/8/0 3/6/4 7/6/0
(LL) Mean Log-Likelihood

◦, • statistically significant improvement or degradation

(a) Naive Bayes comparison respect to Joining Algorithm (JA)
with the tree proposed joining criteria: BDe, L10 and LRT

SemiNB JBDe JL1O JLRT

Average 78.83 79.97 70.81 80.32
W/T/D 0/12/1 0/6/7 0/12/1
(%)Percent of cases corrected classified

SemiNB JBDe JL1O JLRT

-0.58 -0.55 -0.70 -0.51
4/8/1 1/6/6 4/8/1

(LL) Mean Log-Likelihood
(b) Semi-NB comparison respect to Joining Algorithm (JA)
with the tree proposed joining criteria: BDe, L10 and LRT

As we can see in Table 1(a), the BDe and LRT criteria allow to outperform the
naive Bayes classifier in terms of accuracy and mean log-likelihood. In fact, the
joining process is designed to minimize the log-likelihood metric and it achieves
it in a very robust way, in none of the once data bases there is a significant
deterioration. In addition, these two criteria reach the performance of the semi-
naive Bayes classifier [1], Table 1(b). LTR criterion appears to be slightly better
than BDe. On the other side, the L10 performance is clearly bad. We have not
found any founded reason for that. One possible reason is L10 criterion tests the
joining of two variables without considering the other ones. The experiments are
carried out with the full set of attributes and then the final behaviour can be
different from what was initially expected.

3.2 Evaluating Grouping Criteria

In previous subsection, the LRT criterion has been selected as the most suitable
one for joining variables. So we fix it and now we are going to evaluate which
criterion could be the most suitable for grouping cases using the Semin-naive
Bayes with Grouping of Cases (SNB-G). In the Table 2, the obtained results
with the three possible criteria are shown. As we can see, there is almost no
difference among them, though L1O criterion seems to be the best one. Here
it does not suffer the same problem when it was applied to joining variables.
Perhaps, this is due to the fact that grouping is simpler operator than joining.
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Table 2. Grouping Criteria Evaluation

Dataset NB GBDe GL1O GLRT

Average 79.53 80.26 80.61 79.75

W/T/D 2/11/0 3/9/0 2/11/0

(%)Percent of cases corrected classified

NB GBDe GL1O GLRT

-0.73 -0.49 -0.49 -0.50

6/7/0 7/6/0 5/8/0

(LL) Mean Log-Likelihood
Description: NB comparison respect to SNB-G with the JLRT joining

criterion and the three proposed Grouping Criteria: BDe, L10 and LRT.

3.3 Comparing with Pazzani Semi-naive Bayes

In Table 1(b) we could see as the LRT is a good metric for joining variables, in
fact, it reaches the performance of the semi-naive Bayes with a less computational
cost. In this subsection, we are going to compare the SNB-G algorithm, with a
joining process using the LRT metric and a grouping of cases using the L1O
metric. These results are show in Table 3(a)(b) and the model building time
comparison is shown in Table 3(c).

Table 3. Semi-NB, SNB-G and NB Comparison

Dataset Semi-NB SNB-G NB

Average 78.83 80.61 79.53

W/T/D 1/12/0 1/10/2

(a) Percent of corrected classified

Semi-NB SNB-G NB

-0.58 -0.49 -0.73

5/7/1 4/6/3

(b) Mean Log-Likelihood

Semi-NB SNB-G
40.34 0.54

(c) Building Time (sec)

In the Table 3, we can see as our proposed procedure reaches the performance
of the Panzzani’s semi-naive Bayes classifier in terms of percentage of correct
classifications while it outperformances it in terms of log-likelihood. In addition
to this, we can see as our algorithm is more robust than the Pazzani’s classifier
when it is compared respect to the naive Bayes classifier because the performance
of Pazzani’s classifier is worse in a significative way in several data bases.

Another main point to analyze is the compared computational cost of these
two approaches. In Table 3(c), we can see as the average model building time of
the Pazzani’s semi-naive Bayes is eighty times greater than our approach.

3.4 State of the Art Classifiers Comparison

In this section, we compare our approach with the state of the art of the classifiers
with the best performance in the UCI repository. These classifiers are naive
Bayes (NB), Tree-Augmented Naive Bayes (TAN), Averaged One-Dependence
Estimators (AODE) [15] and Lazy Bayesian Rules (LBR) [15]. Also it is included
the result of the semi-naive Bayesian classifier of Pazzani [1] again.

As we can see in Table 4, our proposal SNB-G outperforms the Naive Bayes
classifier in terms of accuracy prediction and mean of log-likelihood in a robust
way. At the same time, its performance is comparable to AODE, TAN and LBR
and it outperforms the Pazzani’s Semi-NB.
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Table 4. SNB-G state of the art classifiers Comparison

Dataset SNB-G NB AODE TAN LBR Semi-NB
Average 80.61 79.53 81.57 81.53 81.10 78.83
W/T/D 0/10/3 1/11/1 0/13/0 0/13/0 0/12/1
(%)Percent of cases corrected classified

SNB-G NB AODE TAN LBR Semi-NB
-0.49 -0.73 -0.48 -0.49 -0.60 -0.58

0/6/7 4/8/1 0/12/1 0/8/5 1/7/5
(LL) Mean Log-Likelihood

4 Conclusion and Future Work

In this paper we have presented a combination of two procedures as a prepro-
cessing step for a naive Bayes classifier: a method to join variables and a method
to group cases of a variables. We have shown that the combined application of
them is very efficient and the performance is similar to more costly wrapper
methods in terms of accuracy and better in terms of log-likelihood.

The main points for future researh are the application to real problems in
which there are a high number of variables and fast classifiers are convenient
(for example the junk mail classification problem) and also the generalization of
the methodology to other models, as classification trees or TAN models.
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Abstract. In the field of attribute mining, several feature selection
methods have recently appeared indicating that the use of sets of de-
cision trees learnt from a data set can be an useful tool for selecting
relevant and informative variables regarding to a main class variable.
With this aim, in this study, we claim that the use of a new split cri-
terion to build decision trees outperforms another classic split criterions
for variable selection purposes. We present an experimental study on a
wide and different set of databases using only one decision tree with each
split criterion to select variables for the Naive Bayes classifier.

Keywords: Variable selection, classification, decision tree, Naive Bayes,
Imprecise probabilities, uncertainty measures.

1 Introduction

It is possible to apply classification methods on a given database containing sev-
eral samples where each sample also contains a set of values belonging to an
attribute or predictive variable set and a variable labeled class variable. In the
field of machine learning, the classification subject is based on the use of several
techniques that infer rules from a given data set so as to be able to predict new
values of the class variable (discrete or discretized) using a new set of values
for the remaining variables (known as attribute variables). The data set used to
obtain these rules is labeled the training data set and the data set used to check
the classifier is called the test data set. Classification has important and distin-
guished applications in the fields of medicine, bioinformatics, physics, pattern
recognition, economics, etc., and is used for disease diagnosis, meteorological
forecasts, insurance, text classification, etc.

The existence of redundant or irrelevant variables in a database can cause a de-
terioration in the performance of many classification methods. When databases
contain a large number of variables, as in bioinformatics or text field classifica-
tion where there are commonly several thousands of variables (genes or words),
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this excessive amount of information could become unmanageable. It is therefore
necessary to select a smaller number of variables in order to reduce or remove
any irrelevant or redundant information present in the data and to enable auto-
matic treatment of these data sets. In order to solve this topic, several methods
have appeared which obtain a significant subset of variables for classification
purposes. In Hall and Holmes [11], we can find a detailed description of this
kind of method.

In recent literature, several methods have been defined which use decision
trees to select variables with very good results. Li et al. [14], for example, detail
a selection variable method for genetic databases that uses 20 decision trees
learnt from the training data set. In Lau and Schultz [13], a large number of
simple decision trees built from several partitions of the data set are used with
the aim of selecting relevant genes. In Ratanamahatana and Gunopulos [18], five
decision trees are learnt from small partitions of the training data set to obtain
the variable subset. What all these methods have in common is that they use
the first levels of the decision trees where the most significant variables are.

In this article, we will use the Naive Bayes classifier [9] as a base classifica-
tion method and we will use a filter1 method for variable selection that builds
decision trees independently of the Naive Bayes classifier. In fact, this way of se-
lecting variables using a decision tree should not favour the Naive Bayes classifier
because this is based on the independency of the attribute variables given the
class variable and when a decision tree is used for variable selection, correlated
variables are obtained, also a decision tree could not delete redundant variables.
But, our target here is not to present a variable selection method using only one
decision tree, we want to compare split criterions for this aim. In the future, we
want to present complex methods of variable selection that use a set of decision
trees obtained with the best split criterion possible.

In this paper, the selected variables are taken from the first levels of the
decision trees that will be built using four different split criterions. Three of
them have been widely used: Info-Gain, used in Quinlan’s ID3 classifier [16];
Info-Gain Ratio, used in Quinlan’s C4.5 classifier [17]; Gini Index, widely used in
statistics as an impurity measure of a partition. We are going to compare these
three split criterions with a previously proposed one, the Imprecise Info-Gain
[3], also successful used to build classification decision trees. This last measure
is based on a maximum entropy measure on the imprecise Dirichlet model [21].

We will see how by using the set of variables in the first three and the first four
levels of one decision tree we can obtain a smaller variable subset in relation to
the original one. In addition, by using the Naive Bayes classifier with this smaller
variable subset, we will attain the same performance as if the whole variable set
was used. Although (as we have already mentioned) the aim of this work is not
to propose a variable selection method using a single decision tree, we intend to
show how the decision trees built with the Imprecise Info-Gain split criterion get
smaller and more informative feature subsets than the classic split criterions. In
that way, this split criterion is likely to be better when it would be used in the

1 It not depend on the classification method used.
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already mentioned complex variable selection methods based on many decision
trees, which should provide a more informative attribute variable subset than
the obtained one with a single decision tree.

For this analysis, we will use a wide series of databases which are commonly
used in classification tasks. Using these databases, the performance of the Naive
Bayes will be analyzed before and after the application of each variable selection
method and also the number of their selected variables. The computational cost
of these variable selection methods will also be evaluated using another special
series of data sets with a large number of variables.

Section 2 briefly describes the Naive Bayes classifier (which is used as a base
classifier) and also describes the set of split criteria used for building the decision
trees that are simultaneously used in the variable selection scheme. Section 3
shows the databases used in the experimental work as well as the obtained
results. Section 4 analyzes the experimental results. Finally, Section 5 explores
the conclusions and future lines of work.

2 Previous Knowledge

2.1 Naive Bayes

The success of the model developed by Duda and Hart [9] is mainly due to its
simplicity, efficiency and effectiveness in classification problems. Before describ-
ing the classifier, we will probabilistically describe the supervised classification
problem.

Let D be a database, with size N , and with values in a set L of (discrete
or discretized) attribute variables {Xi| i = 1, . . . , r}, where each variable has a
set of possible states or cases ΩXi = {xi

1, x
i
2, ..., x

i
|ΩXi

|}, and a class variable
C, whose states are ΩC = {c1, c2, ..., ck}. The objective is to obtain information
from the database so that given an observation (a set of values of all the attribute
variables) it is possible to associate this with a value of the class variable.

If we represent the new sample as x, with x = {x1
hi

, .., xr
hr
}. The Naive Bayes

predicts value ci in the following way: arg maxci (P (ci|x)) .
Now, based on the supposition that the attribute variables are independent

given the class variable, it can be expressed as

arg max
ci

⎛⎝P (ci)
r∏

j=1

P (xj
hj
|ci)

⎞⎠ .

2.2 Decision Trees and Split Criteria

A decision tree is a simple structure that can be used as a classifier. Within a
decision tree, each node represents an attribute variable and each branch repre-
sents one of the states of this variable. A tree leaf specifies the expected value of
the class variable depending on the information contained in the training data
set. When we obtain a new sample or instance of the test data set, we can make
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a decision or prediction about the state of the class variable following the path to
the tree from the root until a leaf using the sample values and the tree structure.
Associated to each node is the most informative variable which has not already
been selected in the path from the root to this node (as long as this variable
provides more information than if it had not been included). In this last case,
a leaf node is added with the most probable class value for the partition of the
data set defined with the configuration given by the path until the tree root.

In order to measure the quantity of information, several criteria or metrics
can be used, and these are called split criteria. In this article, we will analyze the
following ones: Info-Gain, Info-Gain Ratio, Gini Index, and Imprecise Info-Gain.

Info-Gain [IG]. This metric was introduced by Quinlan as the basis for his ID3
model [16]. This model has the following main features: it was defined to obtain
decision trees with discrete variables, it does not work with missing values, a
pruning process is not carried out, and it is based on Shannon’s entropy [19].
This split criterion can therefore be defined on a variable Xi given the class
variable C in the following way:

IG(Xi, C) = H(C)−H(C|Xi),

where H(C) is the entropy of C: H(C) = −
∑

j p(cj) log p(cj), with p(cj) =
p(C = cj), the probability of each value of the class variable estimated in
the training data set; and H(Xi) is known as split info. In the same way,
H(C|Xi) = −

∑
t

∑
j p(cj |xi

t) log p(cj |xi
t). Finally, we can obtain the following

reduced expression for the Info-Gain criterion:

IG(Xi, C) = −
∑

t

∑
j

p(cj , x
i
t) log

p(cj , x
i
t)

p(cj)p(xi
t)

.

This criterion is also known as the Mutual Information Criterion and is widely
used for measuring the dependence degree between an attribute variable and
the class variable. It tends to select attribute variables with many states and
consequently results in excessive ramification.

Info-Gain Ratio [IGR]. In order to improve the ID3 model, Quinlan intro-
duces the C4.5 model, where the Info-Gain split criterion is replaced by an
Info-Gain Ratio criterion which penalizes variables with many states. A proce-
dure can then be defined to work with continuous variables, it is possible to work
with missing data, and a posterior pruning process is introduced.

The Info-Gain Ratio of an attribute variable Xi on a class variable C can be
expressed as:

IGR(Xi, C) =
IG(Xi, C)

H(Xi)
.

Gini Index [GIx]. This criterion is widely used in statistics for measuring the
impurity degree of a partition of a data set in relation to a given class variable
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(we can say that a partition is “pure” when it only has a single associated value
of the class variable). The work by Breiman et al. [8] can be mentioned as a
reference for the use of the Gini Index in decision trees.

In a given database, the Gini Index of a variable Xi can be defined as:

gini(Xi) =
∑

j

(1− p2(xi
j)).

In this way, we can define the split criterion based on the Gini Index as:
GIx(Xi, C) = gini(C|Xi)− gini(C),
where

gini(C|Xi) =
∑

t

p(xi
t)gini(C|Xi = xi

t).

We can see that the expression GIx is written in a different way to that used for
the previous split criteria because now the variable with the highest gini(C|Xi)
value is selected (contrary to what happens with the entropy).

Imprecise Info-Gain [IIG]. The Imprecise Info-Gain criterion was first used
for building simple decision trees in Abellán and Moral’s method [3] and in a
more complex procedure in Abellán and Moral [5]. In a similar way to ID3, this
tree is only defined for discrete variables, it cannot work with missing values,
and it does not carry out a posterior pruning process. It is based on the appli-
cation of uncertainty measures on convex sets of probability distributions. More
specifically, probability intervals are extracted from the database for each case
of the class variable using Walley’s imprecise Dirichlet model (IDM) [21], which
represents a specific kind of convex sets of probability distributions, and on these
the entropy maximum is estimated. This is a total measure which is well known
for this type of set (see Abellán, Klir and Moral [6]).

The IDM depends on a hyperparameter s and it estimates that (in a given
database) the probabilities for each value of the class variable are within the
interval:

p(cj) ∈
[

ncj

N + s
,
ncj + s

N + s

]
,

with ncj as the frequency of the set of values (C = cj) in the database. The value
of parameter s determines the speed with which the upper and lower probability
values converge when the sample size increases. Higher values of s give a more
cautious inference. Walley [21] does not give a definitive recommendation for
the value of this parameter but he suggests values between s = 1 and s = 2. In
Bernard [7], we can find reasons in favor of values greater than 1 for s.

If we label K(C) and K(C|(Xi = xi
t)) for the following sets of probability

distributions q on ΩC :

K(C) =

{
q| q(cj) ∈

[
ncj

N + s
,
ncj + s

N + s

]}
,

K(C|(Xi = xi
t)) =

{
q| q(cj) ∈

[
n{cj ,xi

t}
N + s

,
n{cj ,xi

t} + s

N + s

]}
,
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with n{cj ,xi
t} as the frequency of the set of values {C = cj , Xi = xi

t} in the
database, we can define the Imprecise Info-Gain for each variable Xi as:

IIG(Xi, C) = S(K(C)) −
∑

t

p(xi
t)S(K(C|(Xi = xi

t))),

where S() is the maximum entropy function of a convex set.
For the previously defined intervals and for a value of s between 1 and 2, it

is very easy to obtain the maximum entropy using procedures of Abellán and
Moral [2,4] or the specific one for the IDM of Abellán [1].

3 Experimentation

In order to experimentally validate how the Imprecise Info-Gain (IIG) split
criterion is more informative than the classic ones, we have built a decision tree
for each data set with each of the exposed criteria in the previous section. We
have selected the variables that independently appear in the first three or the
first four levels of these trees and we have applied the Naive Bayes classifier
before and after the selection. For the IIG criterion, we have used a value of
s = 1.5 because it obtains a trade-off between size of the tree and classification
accuracy (considering all the values between s = 1 and s = 2).

In order to check the above procedure, we have used a wide and different set
of 27 known databases, obtained from the UCI repository of machine learning
databases which can be directly downloaded from ftp://ftp.ics.uci.edu/machine-
learning-databases. A brief description of these can be found in Table 1, where
column “N” is the number of instances in the databases, column “Att” is the
number of attribute variables, column “Nom” is the number of nominal variables,
column “k” is the number of cases or states of the class variable (always a nominal
variable) and column “Rang” is the range of states of the nominal variables of
each database.

Table 1. Data Base Description

Data Base N Att Num Nom k Range
1. Anneal 898 38 6 32 6 2-10
2. Audiology 226 69 0 69 24 2-6
3. Autos 205 25 15 10 7 2-22
4. Br-cancer 286 9 0 9 2 2-13
5. Colic 368 22 7 15 2 2-6
6. Cr-german 1000 20 7 13 2 2-11
7. Diab-pima 768 8 8 0 2 -
8. Glass-2 163 9 9 0 2 -
9. Hepatitis 155 19 4 15 2 2
10. Hypothyroid 3772 29 7 22 4 2-4
11. Ionosfere 351 35 35 0 2 -
12. Kr-vs-kp 3196 36 0 36 2 2-3
13. Labor 57 16 8 8 2 2-3
14. Letter 20000 16 16 0 2 -
15 Lymph 146 18 3 15 4 2-8

. . . . . . . . . . . . . . . . . . . . . . . .

Data Base N Att Num Nom k Range
. . . . . . . . . . . . . . . . . . . . . . . .

16. Mfeat-pix 2000 240 240 0 10 5-7
17. Mushroom 8123 22 0 22 2 2-12
18. Optdigits 5620 64 64 0 10 -
19. Segment 2310 19 16 0 7 -
20. Sick 3772 29 7 22 2 2
21. Sol-flare1 323 12 0 12 2 2-6
22. Sonar 208 60 60 0 2 -
23. Soybean 683 35 0 35 19 2-7
24. Sponge 76 44 0 44 3 2-9
25. Vote 435 16 0 16 2 2
26. Vowel 990 11 10 1 11 2
27. Zoo 101 16 1 16 7 2
Ad 3279 1558 1555 3 2 2
Isolet 7797 617 617 0 26 -
Ovarian 253 15154 15154 0 2 -
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For our experimentation, we have used Weka software [22] on Java 1.5, and
we have added the necessary methods to build decision trees using the IIG split
criterion and for the others split criteria. Also, we have added the filters needed
to automatically eliminate the variables which are not selected by any of the
split criteria.

We have applied the following preprocessing: databases with missing values
have been replaced with mean values (for continuous variables) and mode (for
discrete variables) using Weka’s own filters. In the same way, continuous variables
have been discretized in five equal frequency intervals. Using equal frequency dis-
cretization is therefore of no benefit to any of the selection methods presented,
as with Fayyad and Irani’s discretization method [10] based on entropy.

In the experimentation, for each preprocessed database we have applied the
following procedure of 10-fold-cross validation repeated 10 times: for each parti-
tion of training/test sets we build a decision tree using the training set and select
the variables in the first three levels of the tree; we select this set of variables
on the original database, i.e. without preprocessing, with the same partitions
and apply Naive Bayes on these training/test sets generated. The procedure is
repeated using now the first fourth levels. These results are compared follow-
ing the same validation procedure using the results of the Naive Bayes classifier
(with no variable selection scheme).

In Table 2 we can see the results of the right classification percentage using
the variables of the first three levels of the decision tree for each split criterion
and the Naive Bayes as the base classifier. Column NB contains the results of
the Naive Bayes Classier using the whole set of variables of the data set and the
others the results for the selection scheme using the different split criteria. This
table also presents a test for statistically significant differences for the accuracy
means between the Naive Bayes and for each of the proposed selection schemes.
This test is a corrected two-tailed paired t-test [15] with a 5% significance level2.
◦ represents a statistically significant improvement in the accuracy mean in re-
lation to the Naive Bayes and also • a statistically significant deterioration in
the accuracy mean in relation to the Naive Bayes. In the last row of this table
(W/T/D), we can see the accumulated number of wins (◦), ties and defeats (•)
in the statistical tests for each method and in relation to the Naive Bayes. Table
4 shows the mean number of selected variables using the same notation and the
same procedure to compare this measure.

If we fix one of the split criterions as base classifier and we compare with it the
another three criterions, a total of 81 (= 3 criterions · 27 databases) comparisons
can be achieved. All the wins and defeats (using the already mentioned T-test
at 5%) in these 81 comparisons for each split criterion are shown in Table 3(a)
as percentage values. In Table 3(b), it is shown the distribution of wins, ties and
defeats in the number of selected variables when there is not any statistically
significative difference in the accuracy prediction between the split criterions.

2 These test have been widely presented in the literature for this type of experiments,
for example in Hall and Holmes [11]. As reviewers comment us, consider others
non-parametric test for this type of experiments could be a better choice.
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Table 2. Right Classifications Percentage using 3 levels

DB NB IG IGR GIx IIG
1. 86.59 85.24 • 82.60 • 82.32 • 83.63 •
2. 72.64 73.14 27.95 • 70.86 71.76
3. 57.41 60.13 59.70 59.79 61.87
4. 72.70 72.35 72.56 72.45 73.83
5. 78.70 81.99 ◦ 84.33 ◦ 83.26 ◦ 83.56 ◦
6. 75.16 74.79 73.94 74.70 73.61
7. 75.75 75.89 75.90 75.77 76.07
8. 62.43 62.01 62.07 61.88 62.33
9. 83.81 82.37 81.62 82.56 81.18
10. 95.30 94.63 • 94.34 • 94.34 • 94.19 •
11. 82.17 89.43 ◦ 87.47 ◦ 87.98 ◦ 84.34
12. 87.79 90.43 ◦ 90.43 ◦ 90.43 ◦ 90.43 ◦
13. 93.57 87.40 83.50 88.77 88.97
14. 64.07 63.93 62.40 • 65.28 ◦ 63.93
15. 83.13 81.47 79.37 80.87 77.81

. . . . . . . . . . . . . . . . . . . . . . . .

DB NB IG IGR GIx IIG
. . . . . . . . . . . . . . . . . . . . . . . .

16. 93.36 85.10 • 83.77 • 86.85 • 89.26 •
17. 95.76 98.85 ◦ 98.76 ◦ 98.80 ◦ 98.44 ◦
18. 91.39 88.36 • 29.53 • 88.29 • 88.59 •
19. 80.17 81.41 80.27 80.36 87.37 ◦
20. 92.75 93.97 ◦ 95.26 ◦ 94.06 ◦ 96.33 ◦
21. 93.02 95.58 ◦ 96.08 ◦ 95.92 ◦ 97.31 ◦
22. 67.71 63.44 67.41 63.82 67.58
23. 92.94 84.44 • 35.56 • 78.11 • 86.11 •
24. 92.11 92.82 94.75 93.45 95.00
25. 90.02 94.21 ◦ 93.58 ◦ 93.56 ◦ 94.92 ◦
26. 66.79 66.07 64.66 65.77 65.31
27. 95.07 92.98 83.05 • 92.69 92.89

Aver 82.31 81.94 75.59 81.59 82.47
W/T/D 7/15/5 7/12/8 8/14/5 7/15/5
◦, • statistically significant improvement or degradation

Table 3. Split Criterion Comparison with 3 levels

Method W(%) D (%)

IG 12.3 6.2
IGR 2.5 24.7
GIx 9.9 8.6
IIG 18.5 3.7

(a) Wins and Defeats

percentage over the

prediction accuracy

WNV (%) DNV (%) TNV (%)

13.6 28.4 39.5
21.0 17.3 34.6
2.5 40.7 38.3
54.3 4.9 18.5

(b) W, D and T percentage

over the number of variables

when the accuracy is the same

Total W (%) Total D(%)

25.9 34.6
23.5 42.0
12.3 49.4
72.8 8.6

(c) Accumulated percentage of

Wins and Defeats in prediction

accuracy and number of variables

In this, one wins indicates a statistically significant smaller number of selected
variables.

In that way, IG criterion gets a better prediction accuracy in the 12.3% of the
cases and a worst prediction accuracy in the 6.2% of the comparisons. When the
prediction accuracy is the same, IG selects a smaller number of variables in the
13.6% of the total comparisons; a greater number in the 28.4% and the same
number in the 39.5% (Note that 12.3%+6.2%+13.6%+28.4%+39.5%=100%). In
that way, IG outperforms the another three criterions in the 25.9% ( = 12.3%
+ 13.6% ) of the times, while IG is outperformed by one criterion in the 34.6%
( = 6.2% + 28.4% ) of the comparisons.

In Tables 5 and 6, we can see the same analysis and comparisons as in the
previous cases but using the first four levels of the decision trees for variable
selection.

In order to analyze the efficiency and computing time of each criterion, we
have built a decision tree with only the first three levels for each of the following
databases with a large number of variables: Ad, Isolet and Ovarian. The first
two databases have been discretized with Fayad and Irani’s method [10] as there
is hardly any variable with one state (only one in Isolet); Ovarian has been
discretized with the equal frequency method for the same reasons as in the
the previous 27 databases. The results for the tree size and the tree-building
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Table 4. Mean Number of Selected Variables using 3 levels

DB NB IG IGR GIx IIG
1. 38.00 8.90 ◦ 3.00 ◦ 5.68 ◦ 7.09 ◦
2. 69.00 6.71 ◦ 3.67 ◦ 6.70 ◦ 4.94 ◦
3. 25.00 11.27 ◦ 10.79 ◦ 11.89 ◦ 9.76 ◦
4. 9.00 7.79 ◦ 6.90 ◦ 7.77 ◦ 3.73 ◦
5. 22.00 8.02 ◦ 8.04 ◦ 7.91 ◦ 5.28 ◦
6. 20.00 11.65 ◦ 10.56 ◦ 11.27 ◦ 9.89 ◦
7. 8.00 7.92 7.90 7.94 3.20 ◦
8. 9.00 7.52 ◦ 8.00 ◦ 7.75 ◦ 5.39 ◦
9. 19.00 8.38 ◦ 5.52 ◦ 8.25 ◦ 5.68 ◦
10. 29.00 6.60 ◦ 6.60 ◦ 6.60 ◦ 3.00 ◦
11. 34.00 12.03 ◦ 6.51 ◦ 13.01 ◦ 4.78 ◦
12. 36.00 3.00 ◦ 3.00 ◦ 3.90 ◦ 3.00 ◦
13. 16.00 5.05 ◦ 3.84 ◦ 5.01 ◦ 2.87 ◦
14. 16.00 8.00 ◦ 9.02 ◦ 9.26 ◦ 8.00 ◦
15. 18.00 8.68 ◦ 6.10 ◦ 8.49 ◦ 6.64 ◦

. . . . . . . . . . . . . . . . . . . . . . . .

DB NB IG IGR GIx IIG
. . . . . . . . . . . . . . . . . . . . . . . .

16. 240.00 30.94 ◦ 23.87 ◦ 32.21 ◦ 30.21 ◦
17. 22.00 3.00 ◦ 3.05 ◦ 3.00 ◦ 3.00 ◦
18. 64.00 18.51 ◦ 5.14 ◦ 20.32 ◦ 19.03 ◦
19. 19.00 9.63 ◦ 11.76 ◦ 11.12 ◦ 10.68 ◦
20. 29.00 7.30 ◦ 7.27 ◦ 8.14 ◦ 4.82 ◦
21. 12.00 6.59 ◦ 6.65 ◦ 6.41 ◦ 0.59 ◦
22. 60.00 15.29 ◦ 17.69 ◦ 17.32 ◦ 7.82 ◦
23. 35.00 12.37 ◦ 3.00 ◦ 9.92 ◦ 12.07 ◦
24. 44.00 3.66 ◦ 3.00 ◦ 3.66 ◦ 2.07 ◦
25. 16.00 4.77 ◦ 5.47 ◦ 5.19 ◦ 3.33 ◦
26. 11.00 9.45 ◦ 9.57 ◦ 9.01 ◦ 9.72 ◦
27. 16.00 5.99 ◦ 3.60 ◦ 6.02 ◦ 6.41 ◦

Aver 34.67 9.22 7.39 9.40 7.15
W/T/D 26/1/0 26/1/0 26/1/0 27/0/0
◦, • statistically significant improvement or degradation

Table 5. Split Criterions Comparison respect to NB using 4 levels

NB IG IGR GIx IIG
Mean 82.31 82.41 78.87 82.28 82.96

W/T/D 7/16/4 9/11/7 8/15/4 8/15/4

(a) Mean of the right classification percentage

across data bases and num. of Wins(W), Ties

(T) and Defeats(D) comparison respect to NB.

Original IG IGR GIx IIG
34.67 12.80 11.01 13.10 10.91

0/3/24 0/2/25 0/3/24 0/1/26

(b) Mean number of selected variables across

data bases and num. of W, T and D compari-

son respect to original number of variables.

Table 6. Split Criterions Comparison with 4 levels

Method W(%) D (%)

IG 6.2 11.1
IGR 4.9 13.6
GIx 4.9 7.4
IIG 17.3 1.2

(a) Wins and Defeats percent.

over the prediction accuracy

WNV (%) DNV (%) TNV (%)

13.6 23.5 45.7
16.0 28.4 37.0
8.6 34.6 44.4
55.6 7.4 18.5

(b) W, D and T percentage

over the number of variables

when the accuracy is the same

Total W (%) Total D(%)

19.8 34.6
21.0 42.0
13.6 42.0
72.8 8.6

(c) Accumulated percentage

of W and D in prediction

accuracy and num. of vars.

Table 7. Tree Size/Computing Time (seconds) for 3 levels using the whole set

Data Base IG IGR GIx IIG
Ad 126/6.36 13/6.53 146/6.3 58/6.55
Isolet 353/7.78 55/9.38 369/7.86 244/11.2
Ovarian 26/3.75 19/3.41 26/3.41 19/3.34

Mean (nodes/sec) 24.04 4.48 25.91 12.11

processing time can be seen in Table 7. In the final row, we can also see the mean
number of nodes that each method can create per second in these databases.
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4 Result Analysis

We will first analyze the results jointly. Looking at Table 2, we can see that
although variables from only one tree are selected, each criterion performs well
(except for some databases with the IGR criterion) in relation to the Naive Bayes
while using a very small number of variables (see Table 4). We can therefore
see how these are both promising and efficient methods for selecting variables
although (as we mentioned at the start) the aim of this work is not to propose
a selection variable method but rather to analyze which of these criteria would
be the most suitable for use in the complex variable selection methods based on
the building of a large number of decision trees.

The obtained improvement using four levels (Table 5) is generally not as
significant if we take into account that 20% and 30% more variables are selected.
In fact, the most significant variables in relation to the class variable are usually
in the first levels of the decision trees. In return, with the IGR criterion, the
obtained improvement in the change between the first three and the first four
levels is more significant; we must take into account that this method usually
selects variables with a lower number of states and therefore needs more levels
of the tree to reach a high number of variables.

We see in Tables 2 and 5 that there are not many differences between the
results obtained using any of the criteria for selecting variables and the results
obtained by the Naive Bayes, if we see the number of statistical tests W/T/D
shown in the last row. The IGR criterion is notorious for obtaining bad results in
certain databases such as Audiology, Optdigits and Soybean where the penalty of
this method over the variables with a high number of states might be excessive.

In order to compare the results in relation to the accuracy between the dif-
ferent methods, firstly, we must pay attention to Tables 3(a) and Table 6(a). In
the first table, we can see how the IIG method is statistically better than the
others. It outperforms in the 18.5% and only is outperformed by a 3.7% of the
cases. For four levels is a bit better.

Another strong point in favour of IIG appears in Tables 3(b) and 6(b). When
the split criterions get the same accuracy, IIG selects a statistically significative
smaller number of variables in the 54.3% of the cases with three levels and the
55.6% with four levels.

In that way, Tables 3(c) and 6(c) show the percentage of comparisons where
there is an improvement in the prediction accuracy or in the number of selected
variables when there is the same accuracy. As we can see, IIG gets an outper-
forming in the 72.8% of the cases and it is only defeated in the 8.6%. That
performing is much better than whichever of the another three split criterions.

As we can see, IIG is a definitive winner in this study considering a trade-off
of the results and the number of variables obtained using first levels of a single
decision tree. IIG is the only one that improves on the mean accuracy of the
Naive Bayes using the first three and the first four levels. In absolute terms,
with 3 levels, NB is outperformed by IIG in 12 cases and NB outperform IIG
in 15 cases. With 4 levels, the contrary situations happens and if we consider
all the variables obtained by a tree with the IIG criterion, NB is outperformed
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in 15 cases and outperform IIG in 11 cases, being IIG again the best criterion
considering accuracy and number of variables (we can not present all these results
here by limitations of space for this paper).

About the others criteria, we can see that IG and GIx are very similar with
respect to the percentage of right classifications and the number of selected vari-
ables, with the IGR performing worst in relation to the mean accuracy although
better than IG and GIx in terms of the number of variables.

In order to apply these simple methods as the basis for other more complex
ones, we must take into account the time needed for each method to build the
decision tree. For this purpose, we can analyze the study carried out with the
databases with a high number of attribute variables in Table 7. It is evident that
both IG and GIx can build more nodes in the decision tree per second, followed
by IIG and then IGR (which takes on average three times as long as IIG).
However, if we take into account the time spent building the tree, we can see
that there is hardly any difference between them , except in Isolet where IIG
obtains the worst results.

Using the times in Table 7, in our opinion, none of the methods stands out as
negative. Perhaps the only bad data for the IIG criterion is that the Isolet tree
was the most costly in terms of the computational time, and IIG spends 20%
longer than IGR and 42% longer than IG or GIx, but data about the average
number of nodes built per second and the time needed in the other two databases
with an extremely large number of variables indicates that these differences are
not very important.

5 Conclusions and Future Work

Using the known Naive Bayes classifier as a reference, we have introduced an ex-
perimental study of split criterions for variable selection methods on this classifier.
These methods select the variables from the first levels of the decision trees built
using several split criteria. The aim of this work is to analyze which split criterion
obtains the most significant variable subset using only one decision tree, with the
aim to use this best criterion in future complex selection methods which uses a set
of decision trees. We have used the already known split criteria: Info-Gain (IG),
Info-Gain Ratio (IGR), and the Gini Index (GIx). We have also added another
split criterion based on imprecise probabilities and uncertainty measures (IIG).

The studies carried out in this work reveal that the IIG criterion is clearly
better than the others considering a trade-off accuracy and number of variables
selected in the 27 different databases used in the experimental results. This does
not mean that its use in the more complex methods that we referenced ([13,14])
was better, although it is logical to think that we will obtain a more significant
set of variables using a lower number of decision trees.

In the future, our first aim is to apply the previously mentioned complex
criteria using decision trees with the IIG split. For this purpose, we want to
use it on gene expression databases where there are a large number of attribute
variables and variable selection allows us to extract knowledge as it is possible
to identify the most relevant genes that induce a given disease.
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Abstract. We describe the family of multi-dimensional Bayesian network clas-
sifiers which include one or more class variables and multiple feature variables.
The family does not require that every feature variable is modelled as being de-
pendent on every class variable, which results in better modelling capabilities
than families of models with a single class variable. For the family of multi-
dimensional classifiers, we address the complexity of the classification problem
and show that it can be solved in polynomial time for classifiers with a graph-
ical structure of bounded treewidth over their feature variables and a restricted
number of class variables. We further describe the learning problem for the sub-
family of fully polytree-augmented multi-dimensional classifiers and show that
its computational complexity is polynomial in the number of feature variables.

1 Introduction

Many real-life problems can be viewed as classification problems, in which an instance
described by a number of features has to be classified in one of several distinct classes.
Bayesian network classifiers have gained considerable popularity for solving such clas-
sification problems. The success of especially naive Bayesian classifiers and the more
expressive tree-augmented network classifiers is readily explained from their ease of
construction from data and their generally good performance. Not all classification
problems are one-dimensional, however: in many problems an instance has to be as-
signed to a most likely combination of classes instead of to a single class. In our appli-
cation in oncology, for example, we have to classify an oesophageal tumour in terms
of its depth of invasion, its spread to lymph nodes, and whether or not it has given rise
to haematogenous metastases [5]; in another application, in veterinary medicine, we
have to establish a diagnosis for a pig herd in which multiple diseases may be present.
Since the number of class variables in a traditional Bayesian network classifier is re-
stricted to one, such classification problems cannot be modelled straightforwardly. One
approach is to construct a compound class variable that models all possible combina-
tions of classes. The class variable may then easily end up with an inhibitively large
number of values. Moreover, the structure of the problem is not properly reflected in
the model. Another approach is to develop multiple classifiers, one for each original
class. Multiple classifiers, however, cannot model interaction effects among the various
classes. As a consequence they may imply a combination of marginal classifications
that does not constitute a most likely explanation of the observed features.

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 501–511, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. An example multi-dimensional Bayesian network classifier with class variables Ci and
feature variables Fj

In a recent workshop paper, we introduced the family of multi-dimensional Bayesian
network classifiers to provide for modelling classification problems in which instances
can be assigned to multiple classes [6]. A multi-dimensional Bayesian network classi-
fier includes one or more class variables and multiple feature variables. It models the
relationships between the variables by acyclic directed graphs over the class variables
and over the feature variables respectively, and connects the two sets of variables by
means of a bi-partite directed graph; an example multi-dimensional classifier is depicted
in Figure 1. As for one-dimensional Bayesian network classifiers, we distinguished be-
tween different types of multi-dimensional classifier by imposing restrictions on their
graphical structure. A fully tree-augmented multi-dimensional classifier, for example,
has directed trees over its class variables and over its feature variables.

In the present paper, we address the computational complexity of the classifica-
tion problem for multi-dimensional Bayesian network classifiers. Classification with
a multi-dimensional classifier amounts to solving the maximum probability assignment
(MPA) problem, which is known to be NP-hard in general [1]. We show, however, that
the classification problem can be solved in polynomial time if the graphical structure
over the classifier’s feature variables has bounded treewidth and the number of class
variables is restricted.

Having studied the learning problem for fully tree-augmented multi-dimensional
classifiers in our earlier workshop paper, we now address learning fully polytree-augme-
nted classifiers. These classifiers have polytree structures over their class variables and
over their feature variables respectively. We present an algorithm for learning these
polytree structures from data. Our algorithm is polynomial in the number of feature vari-
ables involved and is guaranteed to exactly recover the classifier’s graphical structure if
the available data reflect the independences of a polytree-augmented multi-dimensional
model.

The paper is organised as follows. In Section 2, we briefly review the most
commonly used Bayesian network classifiers. In Section 3, we describe the family of
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multi-dimensional classifiers and introduce some of its subfamilies. In Section 4 we
address the complexity of classification with a multi-dimensional classifier. In Section
5, we study the subfamily of fully polytree-augmented multi-dimensional classifiers and
show how the polytree structures over the class variables and over the feature variables
can be recovered from data. The paper is rounded off with our concluding observations
in Section 6.

2 Preliminaries

Before reviewing the most commonly used Bayesian network classifiers, we intro-
duce our notational conventions. We consider Bayesian networks over a finite set V =
{X1, . . . , Xk}, k ≥ 1, of discrete random variables, where each Xi takes a value in a
finite set Val(Xi). For a subset of variables Y ⊆ V we use Val(Y ) = ×Xi∈Y Val(Xi)
to denote the set of joint value assignments to Y . A Bayesian network now is a pair
B = 〈G, Θ〉, where G is an acyclic directed graph whose vertices correspond to the
random variables and Θ is a set of parameters; the set Θ includes a parameter θxi|Πxi

for each value xi ∈ Val(Xi) and each joint value assignment Πxi ∈ Val(ΠXi) to the
set ΠXi of parents of Xi in G. The network B defines a joint probability distribution
PB over V which factorizes as PB(X1, . . . , Xk) =

∏k
i=1 θXi|ΠXi

.
Bayesian network classifiers are Bayesian networks that are tailored to solving prob-

lems in which instances described by a number of features have to be classified in one of
several distinct classes. The set of random variables V of a Bayesian network classifier
is partitioned to this end into a set VF = {F1, . . . , Fm}, m ≥ 1, of feature variables
and a singleton set VC = {C} with the class variable. By imposing restrictions on the
network’s graphical structure, a number of different types of classifier are defined. A
naive Bayesian classifier, for example, has a directed tree for its graph G, in which the
class variable C is the unique root and each feature variable Fi has C for its only par-
ent. Since its graph has a fixed topology, learning a naive Bayesian classifier amounts to
establishing maximum-likelihood estimates from the available data for its parameters
θC and θFi|C , i = 1, . . . , m.

A tree-augmented network (TAN) classifier allows limited conditional dependence
among its feature variables. It has the structure of a naive Bayesian classifier, but it
allows each feature variable to have at most one other feature variable as a parent; the
subgraph induced by the set of feature variables, moreover, is a directed tree. Learning
a TAN classifier amounts to determining a tree over the feature variables of maximum
likelihood given the available data, and establishing estimates for its parameters. The
maximum-likelihood tree of the classifier is readily constructed by a maximum-weight
spanning tree algorithm [4]. The notion of allowing a limited form of dependence be-
tween the feature variables has been generalised to k-dependence Bayesian (kdB) clas-
sifiers [10]. A kdB classifier also has the structure of a naive Bayesian classifier, but
it allows each feature variable Fi to have a maximum of k feature variables for its
parents. Note that the family of kdB classifiers includes the subfamily of naive Bayes-
ian classifiers and the subfamily of TAN classifiers. An efficient heuristic algorithm
for constructing kdB classifiers from data is available [10]; to the best of our knowl-
edge, there is no exact algorithm to determine a maximum-likelihood structure over the
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feature variables for k ≥ 2. Yet another approach to allowing limited dependence
among the feature variables has resulted in forest-augmented network (FAN) classi-
fiers [8]. In a FAN classifier, exactly k feature variables are allowed to depend on an-
other feature variable; the subgraph induced by the set of feature variables then is a
forest containing exactly k arcs. A maximum-likelihood forest again is constructed by
a maximum-weight spanning-tree algorithm [4].

3 Multi-dimensional Classifiers

The various types of Bayesian network classifier reviewed above include a single class
variable and as such are one-dimensional. We now describe a family of Bayesian net-
work classifiers that may include multiple class variables [6].

Definition 1. A multi-dimensional Bayesian network classifier is a Bayesian network
B = 〈G, Θ〉 of which the graphical structure equals

G = 〈VC ∪ VF , AC ∪AF ∪ACF 〉,

where

– VC = {C1, . . . , Cn}, n ≥ 1, is the set of class variables and VF = {F1, . . . , Fm},
m ≥ 1, is the set of feature variables;

– AC ⊆ VC × VC is the set of arcs between the class variables and AF ⊆ VF × VF

is the set of arcs between the feature variables;
– ACF ⊆ VC × VF is the set of arcs from the class variables to the feature variables

such that for each Fi ∈ VF there is a Cj ∈ VC with (Cj , Fi) ∈ ACF and for each
Ci ∈ VC there is an Fj ∈ VF with (Ci, Fj) ∈ ACF .

The subgraph GC = 〈VC , AC〉 of G is called the classifier’s class subgraph; the sub-
graph GF = 〈VF , AF 〉 is called its feature subgraph. The subgraph GCF = 〈V, ACF 〉
is called the feature selection subgraph of the classifier.

Within the family of multi-dimensional Bayesian network classifiers, again different
types of classifier are distinguished based upon their graphical structures [6]. In a
fully naive multi-dimensional classifier, for example, both the class subgraph and the
feature subgraph are empty. This subfamily of bi-partite classifiers includes the one-
dimensional naive Bayesian classifier as a special case; reversely, any such bi-partite
classifier has an equivalent naive Bayesian classifier with a single compound class vari-
able. Another type of multi-dimensional classifier is the fully tree-augmented multi-
dimensional classifier in which both the class subgraph and the feature subgraph are
directed trees. We further distinguish the subfamily of multi-dimensional classifiers in
which the class and feature subgraphs are polytrees, that is, are singly connected. We
refer to these classifiers as fully polytree-augmented multi-dimensional classifiers.

4 The Complexity of Classification

Classification with a one-dimensional Bayesian network classifier amounts to estab-
lishing a value of highest probability for the class variable. Finding such a value is
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equivalent to computing the posterior probability distribution over the class variable.
This problem is known to be NP-hard in general [3], yet can be solved in polynomial
time for Bayesian networks of bounded treewidth. Since naive Bayesian classifiers and
TAN classifiers have very small treewidth, for example, classification with these models
is performed in polynomial time.

Classification with a multi-dimensional classifier amounts to finding a joint value
assignment of highest posterior probability for the set of class variables. Finding such
an assignment, given values for all feature variables involved, is equivalent to solving
the maximum probability assignment, or MPA, problem. This problem is also known
to be NP-hard in general [1], and can also be solved in polynomial time for Bayesian
networks of bounded treewidth. Unfortunately, multi-dimensional Bayesian network
classifiers can have large treewidths, depending upon the topological properties of their
various subgraphs. Building upon a result for undirected bi-partite graphs [2], we have
the following upper bound on the treewidth of a multi-dimensional classifier.

Theorem 1. Let G = 〈VC ∪ VF , AC ∪ AF ∪ ACF 〉 be the graphical structure of a
multi-dimensional classifier and let GF be its feature subgraph. Then,

treewidth(G) ≤ treewidth(GF )+ |VC |,

where treewidth(H) of a directed graph H is taken to be the treewidth of its morali-
sation Hm, that is, of the undirected graph obtained from H by connecting the sets of
parents of each variable and subsequently dropping all directions.

Proof. We consider the feature subgraph GF of the classifier, and its moralisation Gm
F .

Let T = {Cli | i = 1, . . . , n} be a tree decomposition of Gm
F with n = treewidth(GF ),

where each element Cli ⊆ VF constitutes a clique in the decomposition. Now let T ′ =
{Cli ∪ VC | Cli ∈ T } be the set that is obtained by adding all class variables to
each element Cli of the decomposition T . Then, T ′ is a tree decomposition of the
moralisation Gm of G, with treewidth treewidth(GF )+ | VC |. The property stated in
the theorem now follows. ��

From the theorem we conclude that the classification problem for a multi-dimensional
classifier can be solved in polynomial time if the treewidth of the feature subgraph
is bounded and the number of class variables is restricted. We observe that for most
applications the number of class variables indeed is much smaller than the number of
feature variables. The number of class variables can in fact often be considered constant
in terms of the number of feature variables. The connectivity of the class subgraph
then is irrelevant for the feasibility of classification. The theorem’s proof further shows
that the treewidth of a multi-dimensional classifier attains its maximum with a full bi-
partite feature selection subgraph. The treewidth then grows linearly with the number of
class variables, regardless of the treewidth of the class subgraph. If the feature selection
subgraph is not a full directed bi-partite graph, however, the classifier’s treewidth may
grow at a lesser rate, which depends not just on the topological properties of the feature
selection subgraph but of those of the class subgraph as well.
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5 Recovery of Fully Polytree-Augmented Classifiers

Within the family of multi-dimensional Bayesian network classifiers, we distinguished
between different types of model. In our earlier workshop paper, we focused on the sub-
family of fully tree-augmented multi-dimensional classifiers and presented a polyno-
mial algorithm for constructing maximum-likelihood directed trees over the class vari-
ables and over the feature variables of such a classifier. In the remainder of the present
paper, we focus on the subfamily of fully polytree-augmented multi-dimensional classi-
fiers and study the learning problem for this subfamily. We will show more specifically
that previous results of polytree recovery can be extended to construct polytrees over
the class variables and over the feature variables of a multi-dimensional classifier.

The recovery of polytree structures has been addressed before by Rebane and Pearl
who introduce polytrees as a subfamily of graphical models [9]. They show that, if a
probability distribution has a polytree for a perfect map, then this polytree can be recov-
ered optimally from the distribution. By optimal recovery they mean that the underlying
undirected graph, or skeleton, of the polytree can be recovered precisely and the direc-
tions of all edges in the causal basins of the polytree can be determined uniquely, where
a causal basin is a sub-polytree composed of a node with more than one parent plus
the descendants of this node and all the direct parents of these descendants. Note that
the recovered polytree thus in essence is a partially directed skeleton which defines an
equivalence class of polytrees modelling the same independence relation.

Before showing how the results of Rebane and Pearl can be extended to provide
for the recovery of the polytrees of a fully polytree-augmented classifier, we introduce
some notations. For any mutually disjoint sets of variables X, Y, Z with X, Y �= ∅, we
use (X | Z | Y )G to indicate that the sets X and Y are d-separated by the set Z in
the directed graph G; ¬(X | Z | Y )G then indicates that X and Y are not d-separated
by Z in G. We further use X ⊥P Y | Z to denote that, under probability distribution
P , the sets X and Y are independent given Z; X �⊥P Y | Z denotes that X and Y are
dependent given Z under P .

The following lemma now shows that for the class variables of a multi-dimensional
classifier, d-separation restricted to the class subgraph is equivalent to d-separation in
the classifier’s entire graphical structure.

Lemma 1. Let G = 〈V, A〉 be the graphical structure of a multi-dimensional classifier
and let GC = 〈VC , AC〉 be its class subgraph. For any mutually disjoint X, Y, Z ⊆ VC

with X, Y �= ∅, we have that (X | Z | Y )GC if and only if (X | Z | Y )G.

Proof. Let X, Y, Z ⊆ VC with X, Y �= ∅. To prove the property stated in the lemma,
we distinguish between the two cases where Z = ∅ and Z �= ∅.

To show that (X | ∅ | Y )GC if and only if (X | ∅ | Y )G, we first assume that
(X | ∅ | Y )GC . We consider a path from X to Y in G. If this path contains class
variables only, it is blocked by ∅ in GC by the assumption. The path then is also blocked
by ∅ in G. If the path contains a feature variable, it includes at least one converging
node. It thus is blocked by ∅ in G. We conclude that (X | ∅ | Y )G. Now assume that
¬(X | ∅ | Y )GC . From the assumption, we have that there exists at least one path from
X to Y in GC that is not blocked by ∅. This path remains unblocked by ∅ if we extend
the graph from GC to G. We conclude that ¬(X | ∅ | Y )G.
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To show for Z �= ∅ that (X | Z | Y )GC if and only if (X | Z | Y )G, we first assume
that (X | Z | Y )GC . We consider a path from X to Y in G. If this path contains class
variables only, it is blocked by Z in GC by the assumption. It then is also blocked by
Z in G. If the path contains a feature variable, then this feature variable is a converging
node on the path. Since Z includes class variables only, neither this feature variable nor
its descendants are included in Z . The path therefore is also blocked by Z in G. Now
assume that ¬(X | Z | Y )GC . From the assumption, we have that there exists a path
from X to Y in GC that is not blocked by Z . This path is also not blocked by Z in G,
from which we conclude that ¬(X | Z | Y )G. ��

The importance of the previous lemma lies in the following corollary which essentially
states that if a probability distribution has a multi-dimensional classifier for a perfect
map, then its marginal distribution over the class variables has the classifier’s class
subgraph for a perfect map.

Corollary 1. Let P be a probability distribution that is representable by a
multi-dimensional classifier G = 〈V, A〉 with the class subgraph GC = 〈VC , AC〉.
Let PC be the marginal distribution of P over the class variables VC . Then, PC is
representable by the class subgraph GC .

From the corollary we have that the polytree class subgraph of a fully polytree-augmented
multi-dimensional classifier can be recovered without having to consider the feature vari-
ables. Based upon this observation, we propose the following algorithm for recovering
the polytree class subgraph. The algorithm is based on the Generating Polytree recovery
algorithm from Rebane and Pearl [9].

Class Polytree Recovery (CPR) Algorithm

1. For every two class variables Ci, Cj ∈ VC , Ci �= Cj , compute the mutual infor-
mation I(Ci; Cj) as a weight for the edge between Ci and Cj , where for any two
variables X and Y the term I(X ; Y ) is defined as

I(X ; Y ) =
∑
x,y

P (x, y) · log
P (x, y)

P (x)P (y)
,

with P (X, Y ) denoting the joint distribution of X and Y .

2. Using Kruskal’s algorithm [7] with the weights from Step 1, construct an undirected
maximum weighted spanning tree over the class variables VC .

3. Using the mutual-information terms from Step 1, determine, from the terms equal
to zero, the multi-parent variables in the tree of Step 2 and establish the directions
for the edges in the resulting causal basins.

The following theorem states that if a probability distribution has a multi-dimensional
classifier with a polytree class subgraph for a perfect map, then this polytree is recovered
by the CPR algorithm in the optimal sense of Rebane and Pearl.
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Theorem 2. If a probability distribution P is representable by a multi-dimensional
classifier with a polytree class subgraph, then the CPR algorithm serves to optimally
recover this polytree class subgraph from the distribution.

Proof. We consider a probability distribution P that is representable by a multi-
dimensional classifier with a polytree class subgraph GC = 〈VC , AC〉. From Corol-
lary 1 we have that GC is a perfect map for the marginal distribution PC of P over
the class variables VC . The property stated in the theorem now results from applying
Theorems 1 and 2 from [9] to the marginal distribution PC . ��

Note that the above theorem attaches the condition that the probability distribution is
representable by a multi-dimensional classifier with a polytree class subgraph, to the
recovery of this subgraph by the CPR algorithm. Rebane and Pearl need the same con-
dition to guarantee optimal polytree recovery for their algorithm. If the condition of
representability is not met by a probability distribution under study, then no guarantees
can be given for the partially directed polytree that is recovered by their algorithm. A
similar observation holds for our algorithm, albeit that a slightly weaker condition could
be formulated: for the CPR algorithm optimal recovery is also guaranteed if the proba-
bility distribution P under study has a multi-dimensional classifier with a polytree class
subgraph for an I-map such that this class subgraph is a perfect map for the marginal
distribution of P over the class variables.

Having studied the recovery of the polytree class subgraph of a fully polytree-
augmented multi-dimensional classifier, we now turn to the recovery of its polytree
feature subgraph. We begin by presenting an algorithm to this end.

Feature Polytree Recovery (FPR) Algorithm

1. For every two feature variables Fi, Fj ∈ VF , Fi �= Fj , compute the conditional
mutual information I(Fi; Fj | VC) given the class variables VC as a weight for the
edge between Fi and Fj , where for any two variables X and Y the term I(X ; Y |
Z) given the variables Z , is defined as

I(X ; Y | Z) =
∑
x,y,z

P (x, y, z) · log
P (x, y | z)

P (x | z) · P (y | z)
,

with P (X, Y, Z) denoting the joint distribution of X, Y and Z .

2. Using Kruskal’s algorithm with the weights from Step 1, construct an undirected
maximum weighted spanning tree over the feature variables VF .

3. Using the conditional mutual information terms from Step 1, determine, from the
terms equal to zero, the multi-parent variables in the tree from Step 2 and establish
the directions for the edges in the resulting causal basins.

The following theorem now states that the FPR algorithm optimally recovers the poly-
tree feature subgraph of a multi-dimensional classifier with such a subgraph. Note that,
in contrast with the class subgraph, the recovery of the feature subgraph cannot be stud-
ied without considering the class variables. More specifically, if a probability distribu-
tion has a multi-dimensional classifier with a polytree feature subgraph for a perfect
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map, then it is not guaranteed that this subgraph is a perfect map for the marginal dis-
tribution over the feature variables.

Theorem 3. If a probability distribution P is representable by a multi-dimensional
classifier with a polytree feature subgraph, then the FPR algorithm serves to optimally
recover this polytree feature subgraph from the distribution.

Proof. We first show that Step 2 of the FPR algorithm correctly recovers the skeleton
of the polytree feature subgraph of the classifier. We consider three different feature
variables X, Y, Z ∈ VF for which X ⊥P Y | {Z} ∪ VC under the distribution P .
Analogous to the proof of Theorem 1 from [9], this implies

min
[
I(X ; Z | VC), I(Z; Y | VC)

]
> I(X ; Y | VC).

We observe that the inequality also holds if X ⊥P Y | VC , since then I(X ; Y | VC) =
0. The inequality therefore holds for any triplet of variables X − Z − Y which are
adjacent in the polytree feature subgraph GF of the classifier. From this observation,
we have that Kruskal’s algorithm will never include an edge between any two feature
variables that are not directly linked in this polytree. We conclude that Step 2 of the
FPR algorithm returns the skeleton of the polytree.

The proof that Step 3 of the algorithm correctly finds the directions of the edges in
the causal basins of the polytree feature subgraph, is immediate from the proof of The-
orem 2 in [9], once we observe that the adjacent triplet X → Z ← Y is characterised
by X ⊥P Y | VC , while triplets X → Z → Y and X ← Z → Y are characterised by
X �⊥P Y | VC . ��

The CPR and FPR algorithms presented above constitute the main procedures of learn-
ing fully polytree-augmented multi-dimensional classifiers from data. From Theorems
2 and 3, we have that the algorithms are guaranteed to find the classifier’s polytree sub-
graphs if the available data reflect the independences of a polytree-augmented multi-
dimensional model.

The overall learning algorithm has a computational complexity that is polynomial in
the number of feature variables, for classifiers in which the number of class variables is
constant in terms of the number of feature variables. The most costly step in the learn-
ing process is Step 2 of the FPR algorithm in which conditional mutual-information
terms are computed for all pairs of feature variables. The larger the set Val(VC) of
joint value assignments to the class variables VC , the more costly the computations in-
volved in the recovery of the feature subgraph become. Moreover, a larger set of joint
value assignments Val(VC) limits the practicability of the FPR algorithm as presented
above, especially for applications in which relatively few data are available. In some
cases, however, it suffices to condition the mutual-information terms on a strict subset
of the set of class variables VC . We consider as an example the graphical structure from
Figure 1 and assume that it is a perfect map for a distribution P . From the graph, it is
apparent that Fi⊥P Fj | {C2} for any combination of feature variables with i = 1, 2
and j = 4, 5. In combination with the inequality from the proof of Theorem 3, this
observation implies that the FPR algorithm can recover the polytree feature subgraph
using the weights I(Fi; Fj | {C2}). Establishing whether conditioning on a smaller set
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of class variables would suffice for recovering the feature subgraph in general, is an
issue for further research.

To conclude, we recall that our earlier algorithm for learning fully tree-augmented
classifiers also involves the computation of conditional mutual-information terms [6].
We would like to note here that the computed conditional mutual-information terms
play different roles in the two learning algorithms. In the construction of a tree feature
subgraph the weights play just a quantitative role, in that the algorithm favours the in-
clusion of arcs with large weights. In the recovery of a polytree feature subgraph as pre-
sented above, the weights also play a qualitative role, in that the algorithm uses the prop-
erty that zero weights between variables are equivalent to (conditional) independence.

6 Conclusions

We investigated the family of multi-dimensional Bayesian network classifiers which
include one or more class variables and multiple feature variables. More specifically, we
studied the computational complexity of the classification problem for this family and
showed that it can be solved in polynomial time for classifiers with a graphical structure
of bounded treewidth over the feature variables and with a limited number of class
variables. We further described the learning problem for the subfamily of fully polytree-
augmented multi-dimensional classifiers and showed that the polytree structures over
a classifier’s class variables and feature variables can be recovered from data which
correctly reflects the independencies of a polytree-augmented classifier. Our algorithm
for this purpose has a complexity that is polynomial in the number of variables involved.

Preliminary experimental results have hinted at the benefits of multi-dimensional
classifiers. In experiments on small data sets, the multi-dimensional classifiers provided
higher accuracy than their one-dimensional counterparts. In combination with feature
selection they also led to classifiers with fewer parameters for the conditional proba-
bility tables. In the near future we will conduct a more extensive experimental study in
which we test the performance of our multi-dimensional classifiers on larger data sets.
We will then study various subfamilies of classifiers with different types of graphical
structure. For these families, we will also investigate the treewidths found in practice to
assess the practicability of using multi-dimensional classifiers in real-life settings.
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Abstract. In this article, we shall present a method for combining clas-
sification trees obtained by a simple method from the imprecise Dirich-
let model (IDM) and uncertainty measures on closed and convex sets of
probability distributions, otherwise known as credal sets. Our combine
method has principally two characteristics: it obtains a high percentage
of correct classifications using a few number of classification trees and it
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1 Introduction

Until recently, the fundamental tool used in classification (an important problem
in the field of machine learning) was the classic probability theory. In this article,
our starting point shall be the classification methods which use closed and convex
sets of probability distributions, otherwise known as imprecise probabilities or
credal sets, and uncertainty measures on these. The problem of classification
may generally be defined in the following way: we have a set of observations,
called the training set, and we wish to obtain a set of laws in order to assign
a value of the variable to be classified (also called class variable) to each new
observation. The set used to verify the quality of this set of laws is also called
the test set. Classification has important applications in medicine, character
recognition, astronomy, banking, etc. A classifier may be represented using a
Bayesian network, a neural network, a classification tree, etc. Normally, these
methods use the probability theory in order to estimate the parameters with a
stopping criterion in order to limit the complexity of the classifier and to annul
the dependence of the results with the training database.
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We shall use the theory of imprecise probabilities (Walley [27]) in order to
construct a classification tree. This structure is easy to understand and an ef-
ficient classifier. It has its origin in Quinlan’s ID3 algorithm [23]. As a basic
reference, we should mention the book by Breiman et al. [11]. We shall use the
imprecise Dirichlet model [28] (IDM) in order to estimate the probabilities of
membership to the respective classes defined by the class variable.

In Abellán and Moral [2,4], we studied how to quantify the uncertainty of a
set of probabilities by extending the measures which are used in the theory of
evidence of Dempster [12] and Shafer [25] (DST). We shall consider two main
origins of uncertainty: conflict and non-specificity. In Abellán and Moral [3,4] and
Abellán, Klir and Moral [9], we present functions which verify the fundamental
properties that this type of function must verify on more general theories than
DST (Dubois and Prade [13], Klir and Wierman [21]).

In the original method of classification of Abellán and Moral [5], to build a
classification tree we begin with an empty tree and in order to branch at each
node, we select the variable with the greatest degree of total uncertainty re-
duction in relation to the variable to be classified. In the theory of probability,
branching always implies a reduction in entropy. It is therefore necessary to in-
clude an additional criterion so as not to create excessively complex models with
data dependence. With credal sets, although the conflict produced by branching
is smaller, the non-specificity is greater. The stopping criterion is very simple:
when branching produces an increase in uncertainty (a decrease in conflict is not
offset by an increase in non-specificity). Finally, we shall use a frequency criterion
in order to obtain the value of the variable to be classified in the corresponding
leaf.

As we say above, to represent the information of a sample for a class variable,
we use the IDM, that represents an especial case of credal sets. In Abellán [1], it
can be seen that intervals from the IDM can be represented by belief functions.
Then, we can say that our original procedure [5] could be considered as a belief
decision tree. In the literature, we can found others works about belief decision
trees, as the one of Elouedi et al. [15] and the one of Vannoorenberghe [26].

In this article, we shall develop a first experimental study of a procedure
which combines various trees obtained by simple classification trees. These trees
shall be obtained as in the simple method defined in Abellán and Moral [5], with
a variation of the system for choosing the variable which we shall use as the
root node. For this aim, we shall create a sequence of variables which are more
informative than the variable to be classified by default and we shall use each
one as the root node in each tree. The rest of the process for completing each
tree shall be similar to that described in [5]. Finally, we shall proceed to classify
the new cases by considering all the results obtained in each tree. We shall see
how the results obtained in this first tree combination work are quite promising.

For our experimentation, we will use a wide set of databases which are com-
monly used in classification tasks. To check the results obtained, as reference,
we compared them with the ones of the known classification method of Naive
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Bayes [14] and with the ones of an improved version of C4.5 method of Quinlan
[24].

In Section 2 of this article, we shall present necessary notations and definitions.
In Section 3, we shall describe the method for combining simple trees in detail.
In Section 4, we shall check our procedure with a series of databases which are
widely used in classification. Section 5 is devoted to the conclusions and future
works.

2 Previous Knowledge

2.1 Naive Bayes

The success of the model developed by Duda and Hart [14] is mainly due to its
simplicity, efficiency and effectiveness in classification problems. Before describ-
ing the classifier, we will probabilistically describe the supervised classification
problem.

Let D be a database, with size N , and with values in a set L of (discrete
or discretized) attribute variables {Xi| i = 1, . . . , r}, where each variable has a
set of possible states or cases ΩXi = {xi

1, x
i
2, ..., x

i
|ΩXi

|}, and a class variable
C, whose states are ΩC = {c1, c2, ..., ck}. The objective is to obtain information
from the database so that given an observation (a set of values of all the attribute
variables) it is possible to associate this with a value of the class variable.

If we represent the new sample as x, with x = {x1
hi

, .., xr
hr
}. The Naive Bayes

predicts value ci in the following way:

arg max
ci

(P (ci|x)) .

Now, based on the supposition that the attribute variables are independent given
the class variable, it can be expressed as

arg max
ci

⎛⎝P (ci)
r∏

j=1

P (xj
hj
|ci)

⎞⎠ .

2.2 Decision Trees and Split Criteria

A decision tree (or classification tree) is a simple structure that can be used as a
classifier. Within a decision tree, each node represents an attribute variable and
each branch represents one of the states of this variable. A tree leaf specifies the
expected value of the class variable depending on the information contained in
the training data set. When we obtain a new sample or instance of the test data
set, we can make a decision or prediction about the state of the class variable
following the path to the tree from the root until a leaf using the sample values
and the tree structure. Associated to each node is the most informative variable
which has not already been selected in the path from the root to this node (as
long as this variable provides more information than if it had not been included).
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In this last case, a leaf node is added with the most probable class value for the
partition of the data set defined with the configuration given by the path until
the tree root.

In order to measure the quantity of information, several criteria or metrics can
be used, and these are called split criteria. In this article, we will focus on the
following ones: Info-Gain Ratio (Quinlan [24]) and Imprecise Info-Gain (Abellán
and Moral [5]).

Info-Gain Ratio. In order to improve the ID3 model [23], Quinlan introduces
the C4.5 model [24], where the Info-Gain split criterion is replaced by an Info-
Gain Ratio criterion which penalizes variables with many states. C4.5 model is
defined to work with continuous variables, it is possible to work with missing
data, and it has a posterior pruning process that is introduced to improve the
results and to obtain less complex structures.

The Info-Gain Ratio of an attribute variable Xi on a class variable C can be
expressed as:

IGR(Xi, C) =
IG(Xi, C)

H(Xi)
,

with
IG(Xi, C) = H(C)−H(C|Xi),

where H(C) is the entropy of C: H(C) = −
∑

j p(cj) log p(cj), with p(cj) =
p(C = cj), the probability of each value of the class variable estimated in the
training data set.

An improved version of C4.5, called J48, can be obtained in Weka software
[29].

Imprecise Info-Gain. The Imprecise Info-Gain criterion was first used for
building decision trees in Abellán and Moral’s method [5]. In a similar way to
ID3, this tree is only defined for discrete variables, it cannot work with missing
values, and it does not carry out a posterior pruning process. It is based on the
application of uncertainty measures on convex sets of probability distributions.
More specifically, probability intervals are extracted from the database for each
case of the class variable using Walley’s imprecise Dirichlet model (IDM) [28],
which represents a specific kind of convex sets of probability distributions, and
on these the entropy maximum is estimated. This is a total measure which is
well known for this type of set (see Abellán, Klir and Moral [9]).

The IDM depends on a hyperparameter s and it estimates that (in a given
database) the probabilities for each value of the class variable are within the
interval:

p(cj) ∈
[

ncj

N + s
,
ncj + s

N + s

]
,

with ncj as the frequency of the set of values (C = cj) in the database. The value
of parameter s determines the speed with which the upper and lower probability
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values converge when the sample size increases. Higher values of s give a more
cautious inference. Walley [28] does not give a definitive recommendation for
the value of this parameter but he suggests values between s = 1 and s = 2. In
Bernard [10], we can find reasons in favor of values greater than 1 for s.

If we label K(C) and K(C|(Xi = xi
t)) for the following sets of probability

distributions q on ΩC :

K(C) =

{
q| q(cj) ∈

[
ncj

N + s
,
ncj + s

N + s

]}
,

K(C|(Xi = xi
t)) =

{
q| q(cj) ∈

[
n{cj ,xi

t}
N + s

,
n{cj ,xi

t} + s

N + s

]}
,

with n{cj ,xi
t} as the frequency of the set of values {C = cj , Xi = xi

t} in the
database, we can define the Imprecise Info-Gain for each variable Xi as:

IIG(Xi, C) = S(K(C)) −
∑

t

p(xi
t)S(K(C|(Xi = xi

t))),

where S() is the maximum entropy function of a credal set.
For the previously defined intervals and for a value of s between 1 and 2, it is

very easy to obtain the maximum entropy for these using Abellán’s procedure
[1].

3 Combination of Trees

Database Monks1 is an artificial dataset which comprises six attribute variables:
Headshape, Bodyshape, Issmiling, Holding, Jackecolor and Hastie; and one variable
to be classified that reaches two possible states: c0 when Jackecolor reaches it
first possible state or when Headshape=Bodyshape. If we apply our classification
tree method using IIG split criterion with k-10 folds cross validation on Monks1,
we obtain a percentage of correct classifications of 79.5%, but changing the root
node with the second more informative variable (by IIG) we can obtain a 100%
percentage of correct classifications. This leads us to develop the idea of varying
the way the root node is chosen.

We propose a new classification method by combining trees obtained by the
simple method described in the previous section. For this, we need to fix a
number of trees that we shall provisionally call η which must be lower than the
number of attribute variables in the database which are more informative than
the variable to be classified. Using the notation from the previous section, we
can describe the method in the following way:

1. Obtain the following αij values and the attribute variables Zj :

α1 = min
Xi∈L1

{IIG(Xi, C)} , Z1 = arg(α1);

α2 = min
Xi∈L2

{IIG(Xi, C)} , Z2 = arg(α2);

. . . . . .
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αη = min
Xi∈Lη

{IIG(Xi, C)} , Zη = arg(αη);

where the previous Lj sets are as follows:

L1 = L,

L2 = L1 − {Z1},

L3 = L2 − {Z2},

. . .

Lη = Lη−1 − {Zη−1}.

2. Using each variable of the set {Zj| j = 1, 2, · · · , η} as the root variable,
obtain η simple trees using the IIG split criterion.

3. In order to classify a new case, apply the new case to each of the η trees. Let
nj

ci
be the frequency obtained for the value of the variable to be classified ci

in the tree j. Obtain the following relative frequencies (probabilities):

qi =
∑

j

nj
ci∑

ci
nj

ci

,

for each ci.
For the new case, the value obtained ch shall be: ch = arg(maxi{qi}).

It can be seen how the idea is to create a sequence of variables which improve
(whenever possible) the uncertainty by default of the variable to be classified.
This sequence helps us to create a set of simple classification trees using these
variables as root nodes. In each tree, having chosen the variable that we use as
a tree’s root node, the procedure continues as in the one originally described.
In other words, the procedure only modifies the choice of the root node. When
we have the set of trees used for classification, for a new instance, we select the
value ch of the class variable C with greatest sum of probabilities over all the
trees.

There are many references in the literature about the strategies for combin-
ing classifiers (see [18]). There are several ways to use more than one classifier
in a classification problem. An approach consists of combining them through
majority voting or different linear and non linear combinations. An important
characteristic of the method presented above, as shown in Step 3, is that we use
a decision criterion of maximum probability, where the probabilities obtained
from each classification tree are considered with the same importance, i.e. they
are considered with the same weight.

4 Experimentation

In order to check the above procedure, we have used a wide and different set
of 27 known databases, obtained from the UCI repository of machine learning
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Table 1. Database Description

Database N Attrib Num Nom k Range
Anneal 898 38 6 32 6 2-10
Audiology 226 69 0 69 24 2-6
Autos∗ 205 25 15 10 7 2-22
Breast-cancer 286 9 0 9 2 2-13
Colic∗ 368 22 7 15 2 2-6
Credit-german∗ 1000 20 7 13 2 2-11
Diabetes-pima∗ 768 8 8 0 2 -
Glass-2∗ 163 9 9 0 2 -
Hepatitis∗ 155 19 4 15 2 2
Hypothyroid∗ 3772 29 7 22 4 2-4
Ionosfere∗ 351 35 35 0 2 -
Kr-vs-kp 3196 36 0 36 2 2-3
Labor∗ 57 16 8 8 2 2-3
Letter∗ 20000 16 16 0 2 -

. . . . . . . . . . . . . . . . . . . . . . . .

Database N Attrib Num Nom k Range
. . . . . . . . . . . . . . . . . . . . . . . .

Lymph 146 18 3 15 4 2-8
Mfeat-pixel 2000 240 240 0 10 5-7
Mushroom 8123 22 0 22 2 2-12
Optdigits 5620 64 64 0 10 -
Segment∗ 2310 19 16 0 7 -
Sick∗ 3772 29 7 22 2 2
Solar-flare1 323 12 0 12 2 2-6
Sonar∗ 208 60 60 0 2 -
Soybean 683 35 0 35 19 2-7
Sponge 76 44 0 44 3 2-9
Vote 435 16 0 16 2 2
Vowel 990 11 10 1 11 2
Zoo 101 16 1 16 7 2

databases which can be directly downloaded from ftp://ftp.ics.uci.edu/machine-
learning-databases. A brief description of these can be found in Table 1, where
column “N” is the number of instances in the databases, column “Attrib” is the
number of attribute variables, column “Nom” is the number of nominal variables,
column “k” is the number of cases or states of the class variable (always a nominal
variable) and column “Range” is the range of states of the nominal variables of
each database.

For our experimentation, we have used Weka software [29] on Java 1.5, and
we have added the necessary methods to build decision trees using the IIG
split criterion, which has been taken from the Elvira platform [16] and to build
combined classification trees based on IIG. In this experimentation, we have
used the parameter of the IDM s = 1.5 because it obtains a better trade-off
between size of the tree and accuracy in classification than with the others
values between s = 1 and s = 2.

We have applied the following preprocessing: databases with missing values
have been replaced with mean values (for continuous variables) and mode (for
discrete variables) using Weka’s own filters. In the same way, continuous vari-
ables have been discretized in five equal frequency intervals. We have not used
Fayyad and Irani’s known discretization method [17] because for 13 of the 19
databases with continuous variables (these are marked in Table 1 with ∗) this
leaves a large number of variables with only one state so it is the same as re-
moving them. Using equal frequency discretization is therefore of no benefit to
any of the classification methods presented. We note that the preprocessing has
been applied using the training set and then translate it to the test set. For each
database, we have repeated 10 times a k-10 folds cross validation procedure.

We would also like to compare the results with other known method, using
the same databases and the same preprocessing. In Tables 2 and 3, therefore,
we present the results obtained on the databases uses. To use as reference, in
Table 2, we have inserted column NB, that corresponds to Naive Bayes percent-
age of correct classifications and column J48, in Table 3, that corresponds to
an improved version of the C4.5 method of Quinlan [24], based on the ID3 [23],
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Table 2. Percentage of correct classifications compared with NB

Database NB M1 M2 M3 M4 M5 M6

Anneal 93.30 99.51 ◦ 99.53 ◦ 99.70 ◦ 99.50 ◦ 99.71 ◦ 99.70 ◦
Audiology 71.40 76.29 76.29 78.76 ◦ 78.41 ◦ 77.71 ◦ 77.89 ◦
Autos 62.32 74.31 ◦ 77.75 ◦ 79.64 ◦ 79.73 ◦ 80.47 ◦ 80.90 ◦
Breast-cancer 72.94 73.79 74.29 73.75 74.07 74.56 74.42
Colic 77.99 84.75 ◦ 83.77 ◦ 83.90 ◦ 84.12 ◦ 84.77 ◦ 84.80 ◦
Credit-german 75.14 70.71 • 70.42 • 72.02 • 72.71 73.30 73.55
Diabetes-pima 74.49 75.42 74.48 75.13 74.48 74.84 74.41
Glass-2 76.40 73.79 78.98 81.03 82.31 82.12 82.07
Hepatitis 84.91 81.53 82.28 81.76 81.95 81.45 81.38
Hypothyroid 94.98 96.52 ◦ 96.32 ◦ 96.22 ◦ 96.43 ◦ 96.48 ◦ 96.51 ◦
Ionosphere 89.00 89.12 88.86 90.08 90.79 90.91 90.94
Kr-vs-kp 87.79 99.20 ◦ 99.21 ◦ 99.21 ◦ 99.26 ◦ 99.27 ◦ 99.33 ◦
Labor 94.73 87.83 87.83 90.83 91.90 92.90 93.17
Letter 68.00 79.89 ◦ 82.21 ◦ 83.30 ◦ 84.81 ◦ 85.51 ◦ 85.61 ◦
Lymph 86.04 75.04 • 75.56 • 77.95 • 78.01 • 78.62 • 79.37
Mfeat-pixel 93.36 79.97 • 83.25 • 85.95 • 87.04 • 87.90 • 88.59 •
Mushroom 95.52 100.00 ◦ 100.00 ◦ 100.00 ◦ 100.00 ◦ 100.00 ◦ 100.00 ◦
Optdigits 91.60 77.47 • 81.61 • 86.94 • 89.49 • 90.85 90.89
Segment 84.32 92.85 ◦ 93.35 ◦ 93.55 ◦ 93.61 ◦ 93.55 ◦ 93.61 ◦
Sick 92.07 93.63 ◦ 93.61 ◦ 93.55 ◦ 93.59 ◦ 93.58 ◦ 93.77 ◦
Solar-flare1 93.02 97.78 ◦ 97.56 ◦ 97.72 ◦ 97.81 ◦ 97.78 ◦ 97.75 ◦
Sonar 77.49 67.59 • 71.13 71.52 72.04 72.71 73.26
Soybean 92.20 91.11 91.42 92.24 92.20 91.83 92.27
Sponge 92.11 93.89 93.64 95.00 95.00 95.00 94.71
Vote 90.23 95.21 ◦ 95.91 ◦ 95.95 ◦ 96.16 ◦ 95.97 ◦ 96.06 ◦
Vowel 60.44 69.30 ◦ 70.44 ◦ 74.05 ◦ 77.47 ◦ 80.64 ◦ 81.53 ◦
Zoo 94.08 97.82 98.11 98.02 96.93 97.82 97.24

Average 83.92 84.98 85.84 86.96 87.40 87.79 87.92
W/T/D 12/10/5 12/11/4 13/10/4 13/11/3 13/12/2 13/13/1

◦, • statistically significant improvement or degradation

which uses a classification tree with classic probabilities1. Columns Mi corre-
spond to the results of the classification method which combines i simple trees
as described above, being M1 the simple classification tree using IIG criterion.

Also, in these Tables, we present a test for statistically significant differences
for the accuracy means between the Naive Bayes and for each Mi in Table 2 and
between J48 and each Mi in Table 3. This test is a corrected two-tailed paired
t-test [22] with a 5% significance level. ◦ represents a statistically significant
improvement in the accuracy mean in relation to the Naive Bayes in Table 2 and
also • a statistically significant deterioration in the accuracy mean in relation to
the Naive Bayes (respectively with J48 in Table 3). In the last row of this table
(W/T/D), we can see the accumulated number of wins (◦), ties and defeats (•)
1 J48 method can be obtained via Weka software, available in

http://www.cs.waikato.ac.nz/ ml/weka/
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Table 3. Percentage of correct classifications compared with J48

Database J48 M1 M2 M3 M4 M5 M6

Anneal 98.68 99.51 ◦ 99.53 ◦ 99.70 ◦ 99.50 ◦ 99.71 ◦ 99.70 ◦
Audiology 77.22 76.29 76.29 78.76 78.41 77.71 77.89
Autos 78.02 74.31 77.75 79.64 79.73 80.47 80.90
Breast-cancer 75.26 73.79 74.29 73.75 74.07 74.56 74.42
Colic 85.78 84.75 83.77 83.90 84.12 84.77 84.80
Credit-german 71.57 70.71 70.42 72.02 72.71 73.30 73.55
Diabetes-pima 75.17 75.42 74.48 75.13 74.48 74.84 74.41
Glass-2 76.97 73.79 78.98 81.03 82.31 82.12 82.07
Hepatitis 81.18 81.53 82.28 81.76 81.95 81.45 81.38
Hypothyroid 96.86 96.52 96.32 • 96.22 • 96.43 • 96.48 • 96.51
Ionosphere 89.58 89.12 88.86 90.08 90.79 90.91 90.94
Kr-vs-kp 99.44 99.20 99.21 99.21 99.26 99.27 99.33
Labor 88.63 87.83 87.83 90.83 91.90 92.90 93.17
Letter 80.89 79.89 • 82.21 ◦ 83.30 ◦ 84.81 ◦ 85.51 ◦ 85.61 ◦
Lymph 78.08 75.04 75.56 77.95 78.01 78.62 79.37
Mfeat-pixel 78.66 79.97 83.25 ◦ 85.95 ◦ 87.04 ◦ 87.90 ◦ 88.59 ◦
Mushroom 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Optdigits 78.98 77.47 81.61 ◦ 86.94 ◦ 89.49 ◦ 90.85 ◦ 90.89 ◦
Segment 92.64 92.85 93.35 93.55 ◦ 93.61 ◦ 93.55 ◦ 93.61 ◦
Sick 93.62 93.63 93.61 93.55 93.59 93.58 93.77
Solar-flare1 97.84 97.78 97.56 97.72 97.81 97.78 97.75
Sonar 71.80 67.59 71.13 71.52 72.04 72.71 73.26
Soybean 92.63 91.11 91.42 92.24 92.20 91.83 92.27
Sponge 92.50 93.89 93.64 95.00 95.00 95.00 94.71
Vote 96.27 95.21 95.91 95.95 96.16 95.97 96.06
Vowel 76.75 69.30 • 70.44 • 74.05 77.47 80.64 ◦ 81.53 ◦
Zoo 92.61 97.82 98.11 98.02 96.93 97.82 97.24

Average 85.84 84.98 85.84 86.96 87.40 87.79 87.92
W/T/D 1/24/2 4/21/2 5/21/1 5/21/1 6/20/1 6/21/0

◦, • statistically significant improvement or degradation

in the statistical tests for each method and in relation to the Naive Bayes and
J48, in Tables 2 and 3 respectively.

In Table 4, we can see a comparison of the accumulated number of wins
and defeats (and also the difference between these) across the whole series of
databases and taking in each case each one of the combined methods Mi, with
i > 1, and the Naive Bayes, J48 and the simple method M1. The number of
wins and defeats are taken from the previously described statistical tests for a
statistically significant difference between the accuracy mean of two classifiers,
and the significance level used is 5%.

The choice of the values of η = 2, 3, 4, 5, 6 is due in part to the set of databases
selected for the experiments. As we can see, there are databases with only 8
attribute variables. Evidently, the number of simple trees selected should depend
on the number of available attribute variables that are more informative than
the class variable. We have taken databases which do have aspects which may
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Table 4. Number of Wins (Wi) and Defeats (Di) comparison over the right classifica-
tion percentage between Mi, with i > 1 and NB, J48 and M1

W2 D2 W2-D2 W3 D3 W3-D3 W4 D4 W4-D4 W5 D5 W5-D5 W6 D6 W6-D6

NB 12 4 8 13 4 9 13 3 10 13 2 9 13 1 12
J48 4 2 2 5 1 4 5 1 4 6 1 5 6 0 6
M1 3 0 3 7 0 7 8 0 8 7 0 7 8 0 8

be clearly differentiated between, such as the number of cases of the variable to
be classified, database size, number of cases of the attribute variables, etc.

On the basis of the results obtained, we can make the following comments:

– In all the databases the results of the combined method M2 are better or
similar in average than the ones of the M1, NB, J48 methods. With only 2
simple classification trees we can equalize the results of a more complex pro-
cedure such that J48 method and improve the ones of NB and our simple
procedure M1, as we can see in Tables 2 and 3. With 3, 4, 5 or 6 simple clas-
sification trees we can obtain differences in favor of our combined methods
Mi, with i > 1, as we can see in Table 4.

– In base on Tables 2 and 3, we can say that the choice of 2, 3, 4, 5 or 6 trees
to combine could be insufficient when we work with databases with very
large sets of attribute variables, therefore we believe that the number of
trees should depend on the database to be considered. It would be necessary
to continue experimenting to see when increasing the number of trees (after
taking the results) decreases the number of correct classifications for each
database.

5 Conclusions and Future Works

We have presented a first procedure for the combination of classification trees
obtained using the IDM and uncertainty measures. By combining a low number
of simple classification trees, this method is able to obtain considerable better
percentage of correct classifications than the known Naive Bayes and than an
improved version of C4.5 (J48).

Another characteristic of our method is that it can be executed in paral-
lel. Recently, with the availability of large databases in application areas (as
in bioinformatics, medical informatics, scientific data analysis, financial anal-
ysis, telecommunications, retailing, and marketing) it is becoming increasingly
important to execute data mining tasks in parallel. By the definition of our com-
bined procedure, it is possible to obtain each classification tree (changing the
root node) in parallel before combining them.

This is a first result and as we have said in the experimentation section, it
needs to be studied further. We think that it would be necessary to carry out
more experiments with more varied databases and artificial databases in order to:
(1) Analyze in proof how the results vary according to the number of trees taken;
(2) Ascertain the ideal relationship between the number of treesand the number
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of attribute variables or the number of attribute variables more informative than
the variable to be classified.

We have created a sequence of attribute variables which improve the uncer-
tainty by default of the variable to be classified. Then, another interesting aspect
that the method involves is the possibility of introduce a combination method
which take into account the informative value obtained for each root node with
respect to the class variable. This value could be considered as a weight of each
tree in the combination method.
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Abstract. The EM algorithm is widely used in supervised and unsu-
pervised classification when applied for mixture model parameter esti-
mation. It has been shown that this method can be applied for partially
supervised classification where the knowledge about the class labels of
the observations can be imprecise and/or uncertain. In this paper, we
propose to generalize this approach to cope with imperfect knowledge at
two levels: the attribute values of the observations and their class labels.
This knowledge is represented by belief functions as understood in the
Transferable Belief Model. We show that this approach can be applied
when the data are categorical and generated from multinomial mixtures.

Keywords: Expectation Maximization, mixture models, Transferable
Belief Model, partially supervised classification.

1 Introduction

Operating within an imperfect environment and facing imprecise, uncertain and
even missing information is the real challenge in decision making. For instance, a
doctor has to make a decision even if he is not able to identify the exact disease
of his patient but he only knows that the patient has not such kind of diseases.
On the other hand, a controller system must be able to integrate multiple sensors
even when only a fraction may operate at a given time. In this context, most
standard classification methods encounter a real problem to meet these real life
situations which make them inappropriate to classify objects characterized by
such imperfect information.

The idea is thus to combine classification methods with theories managing
uncertainty as the belief function theory [11]. In the Transferable Belief Model’s
interpretation (TBM) [14], this theory provides a formalism for handling subjec-
tive and personal judgments and that can also deal with objective probabilities.
So, this theory is able to handle partial knowledge and cope with partial and
even total ignorance. Besides, this theory has provided a powerful tool to deal
with uncertainty in classification problems. We notably mention belief decision
trees [5], belief k-nearest neighbor [4], belief K-modes [2], etc.
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On the other side, the Expectation-Maximization (EM) algorithm [3] is a
generic approach for parameter estimation in incomplete data problems and has
been widely used in supervised and unsupervised classification [7, 8]. In this
context, data are assumed to be generated from a mixture model where each
component of the mixture or class is identified by a probability distribution.
In the supervised mode or discrimination, the class labels of the observations
are known a priori and are used to classify new observations with unknown class
labels. In the unsupervised mode or clustering, the class labels of the observations
are unknown a priori and the goal is to find a partitioning of the observations by
grouping similar observations together. Besides, when the class labels are only
partially known that is the actual class of the observations can be imprecise or
uncertain, the classification procedure becomes partially supervised.

Several works have been proposed in this uncertain context [1, 15]. In [1],
the class labels can be imprecise and a probabilistic model relating the impre-
cise label to the true class is assumed. In [15], the class labels can be imprecise
and/or uncertain and this knowledge is represented by belief functions. In both
approaches, uncertainty occurs only at the class labels of the observations. How-
ever, uncertainty may also appear in the values of the attributes.

We propose then to treat a more general case where uncertainty can arise not
only in the class labels but also in the values of the attributes characterizing
the observations. This method is based on both the EM approach and the belief
function theory as understood in the TBM.

The remainder of the paper is organized as follows. We start by presenting
the EM algorithm for learning mixture models. Next, we outline the necessary
background concerning the belief function theory and we describe the EM algo-
rithm within this framework. Then, we develop our generalized approach that
takes into account uncertainty in the attributes of the observations when data
are categorical and generated from multinomial mixtures.

2 The EM Algorithm for Learning Mixture Models

In the mixture modeling approach [9], the data X = {x1, ..., xn} are assumed
to be identically and independently distributed (iid) according to a probability
function given by:

f(xi|Θ) =
K∑

k=1

πkfk(xi|θk) , (1)

where K is the number of components in the mixture, πk are the mixing pro-
portions that must be non negative and sum to one, fk denotes a component,
i.e. a probability function parameterized by θk, and Θ = {(πk, θk), k = 1, ..., K}
are the parameters of the model to be estimated.

In this paper, we treat categorical data generated from multinomial mixture
models where each observation xi is described by D categorical attributes, with a
respective number of categories nb1, ..., nbD. The data X can be represented by n
binary vectors (xdj

i ; d = 1, ..., D, j = 1, ..., nbd) where xdj
i = 1 if the attribute xd

i
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has the category j and 0 otherwise. In this model, each component k is identified
by a D-dimensional multinomial distribution given by:

fk(xi|θk) =
D∏

d=1

nbd∏
j=1

(pdj
k )xdj

i , (2)

where the parameters θk are given by the probabilities pdj
k (d = 1, ..., D, j =

1, ..., nbd), that the attribute xd
i has the category j. In this model, the D variables

are assumed to be independent given the component k [6].

2.1 Maximum Likelihood Estimation

To estimate the parameters Θ, we generally apply the Maximum Likelihood
Estimation (MLE) principle: the parameters that have most likely generated the
data, are those that maximize the likelihood (or the log-likelihood for the sake
of simplicity) given by:

L(Θ|X) =
n∑

i=1

log(
K∑

k=1

πkfk(xi|θk)) . (3)

Generally, the maximization of this equation cannot be obtained analytically.
The classical approach to solve this problem is the EM algorithm [3] which
provides an iterative procedure for computing MLE. In order to use the EM
algorithm, the problem has to be reformulated as an incomplete data problem.

2.2 An Incomplete Data Problem

The idea is to introduce a set of “hidden” variables Z = {z1, ..., zn} that indicate
which component of the mixture has generated each observation. The problem
would decouple then into a set of simple maximizations. More precisely, zi =
(zi1, ..., zik, ...ziK) where zik = 1 if xi has been generated from the component k
and 0 otherwise. The whole data Y = {y1, ..., yn} where (yi = (xi, zi)), is then
the so-called augmented data or complete data. Using these indicator variables
Z, the equation (3) can be reformulated as the complete log-likelihood:

Lc(Θ|Y ) =
n∑

i=1

K∑
k=1

ziklog(πkfk(xi|θk)) . (4)

2.3 The EM Algorithm

The EM algorithm can now be applied by considering the variables Z as the
missing data. The algorithm provides a sequence of estimates Θ(t)1, of the pa-
rameters Θ by the iteration of two steps: an E-step (for Expectation) and a
M-step (for Maximization).
1 We use the subscript (t) to denote the iteration t of the EM algorithm.
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E-Step. The E-step computes the conditional expectation of the complete log-
likelihood Lc(Θ|Y ) given the observed data X and the current parameters Θ(t):

Q(Θ|Θ(t)) = E[Lc(Θ|X, Z)|X, Θ(t)] , (5)

which is a linear function of the missing data zik. So, at the iteration t, the
E-step just requires to compute the conditional expectation of zik given X and
Θ(t):

E[zik|X, Θ(t)] = t
(t)
ik . (6)

Actually, this quantity is nothing else then the posterior probability p(zik =
1|X, Θ(t)) that the observation xi has been generated by the component fk

estimated at the iteration t. This probability measure is computed through the
Bayes rule as follows:

t
(t)
ik =

π
(t)
k fk(xi|θ(t)

k )∑K
l=1 π

(t)
l fl(xi|θ(t)

l )
. (7)

Using this result the equation (5) becomes:

Q(Θ|Θ(t)) =
n∑

i=1

K∑
k=1

t
(t)
ik log(πkfk(xi|θk)) . (8)

M-Step. The M-step updates the current parameters Θ(t) by maximizing
Q(Θ|Θ(t)) over Θ, so that to have an updated estimate Θ(t+1). The mixing
proportions πk are computed independently of the component parameters θk:

π
(t+1)
k =

1
n

n∑
i=1

t
(t)
ik . (9)

The update of the parameters θk depends on the nature of the mixed compo-
nents and can be obtained by analyzing the following equation:

n∑
i=1

K∑
k=1

t
(t)
ik

∂logfk(xi|θ(t)
k )

∂Θ
= 0 . (10)

3 Belief Function Theory

Before we turn to the EM approach under the TBM framework, we shall sketch
out some of the bases of the belief function theory. Details can be found in
[11, 14].

3.1 Basic Concepts

Let Ω be a finite non empty set of mutually exclusive elementary events related
to a given problem. Ω is generally called the frame of discernment. The set 2Ω

contains all the subsets of Ω: it is the power set of Ω.
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The impact of a piece of evidence held by an agent (whatever is it: a sensor,
a computer program, an expert, etc) among the propositions of Ω, is expressed
by the so-called basic belief assignment (bba). The bba is a function mΩ : 2Ω →
[0, 1] that satisfies:

∑
A⊆Ω mΩ(A) = 1.

The value mΩ(A), called a basic belief mass (bbm), is the quantity of belief
that supports exactly the proposition A and that due to the lack of information,
does not support any strict subset of A.

The belief function belΩ : 2Ω → [0, 1], with belΩ(A) =
∑
∅�=B⊆A mΩ(B),

expresses the total amount of belief assigned to the subsets implying A without
implying A.

The plausibility function plΩ : 2Ω → [0, 1], with plΩ(A) =
∑

A∩B �=∅mΩ(B),
quantifies the degree of belief committed to the propositions compatible with A.

Several special belief functions relative to particular states of uncertainty are
defined. The vacuous belief function quantifies a state of total ignorance, in which
no support is given to any particular subset of Ω. This function is defined as
follows [11]:

mΩ(Ω) = 1 and mΩ(A) = 0, ∀A ⊂ Ω . (11)

A Bayesian belief function is a belief function where the belief is only allocated
among elementary events of Ω [11].

A certain belief function is a Bayesian belief function where the whole belief
is assigned to a unique elementary event A: it expresses a state of total certainty.
This function is defined by:

mΩ(A) = 1 and mΩ(B) = 0, ∀B ⊆ Ω, A ∈ Ω and B �= A . (12)

3.2 Combination of Belief Functions

Let mΩ
E1

and mΩ
E2

be two bba’s induced from two distinct information sources
(E1 and E2) and defined on the same frame of discernment Ω. The joint impact
of both pieces of evidence is given by the conjunctive rule of combination [12]:

(mΩ
E1

∩©mΩ
E2

)(A) =
∑

B∩C=A

mΩ
E1

(B)mΩ
E2

(C) . (13)

3.3 The Pignistic Transformation

In the TBM, beliefs can be held at two levels: a credal level where beliefs are
entertained and quantified by belief functions, and a pignistic level, where deci-
sions are made. At this level, beliefs are transformed into probability measures
(denoted by BetPΩ) in order to choose the most likely hypothesis. The trans-
formation rule is called the pignistic transformation defined for all ωk ∈ Ω as:

BetPΩ(wk) =
∑

A$ωk

mΩ(A)
|A|

1
(1−mΩ(∅)) . (14)
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3.4 The Generalized Bayesian Theorem

Smets [13] has generalized the Bayesian theorem (GBT), offering an interesting
tool for inverting conditional belief functions within the TBM framework. As-
sume that we have a vacuous a priori belief on a frame Ω, and we know for each
element ωi ∈ Ω, what would be our beliefs on another frame X if this element
happened. Suppose that we learn that the actual value of X is in x ⊆ X , then
the GBT allows us to derive the conditional belief function over the frame Ω
given the observation x. One has:

plΩ[x](ω) = 1−
∏

ωi∈ω

(1 − plX [ωi](x)) . (15)

4 The Credal EM Approach

The Credal EM (CrEM) [15] is a variant of EM for partially supervised learning.
In this approach, the class label of the observations can be partially known. That
is, it can be imprecise and/or uncertain. This knowledge is represented by belief
functions as understood in the TBM.

The learning set is then given by: L = {(x1, m
Ω
1 ), ..., (xn, mΩ

n )}, where X =
{x1, ..., xn} are n iid observations derived from a mixture of K classes Ω =
{ω1, ..., ωK}, and mΩ

i : 2Ω → [0, 1] are the bba’s representing the a priori beliefs
of membership of the observations xi into the subsets of Ω.

E-Step. In the classical approach, the algorithm computes the a posteriori
probability t

(t)
ik that xi has been generated by the class k estimated at the current

iteration. The CrEM computes the mass mΩ[xi, Θ
(t)] that xi has been generated

by the class k with the current parameters Θ(t) through the GBT from its
corresponding plausibilities:

plΩ[xi](A) = 1−
∏

ωj∈A

(1− plX [ωj](xi)) , ∀A ⊆ Ω . (16)

These masses are then combined with the prior bba’s through the conjunctive
rule of combination. The resulting masses are given by:

m̂Ω[xi, Θ
(t)](A) =

∑
B∩C=A

mΩ[xi, Θ
(t)](B) mΩ

i (C) , ∀ A ⊆ Ω . (17)

M-Step. The M-step finds the most probable value of the mixture parameters.
This comes down to determine the parameters θ ∈ Θ that maximize the con-
ditional plausibility of the data given θ. Under the iid assumption, this term is
given:

∏n
i=1 plX [θ](xi).

The likelihood function to be maximized is then given by [15]:

Q(Θ|Θ(t)) =
n∑

i=1

∑
A⊆Ω

m̂Ω[xi, Θ
(t)](A)log(plX [A](xi)) . (18)

This equation is analogous to the equation (8) in the TBM framework.
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5 Generalized Credal EM

The CrEM provides an alternative for learning in an uncertain environment that
is more general than the one proposed in [1] which deals only with imprecise class
labels.

However, this approach is not fitted to situations where the values of the
attributes characterizing the observations are also partially known. This could
involve missing data (some attribute values are missing), imprecise data (we only
know that the value of such attributes belongs to a subset of possible values),
or uncertain data (we only have some beliefs about the actual value of such
attributes).

In this section, we develop a generalization of the CrEM approach that copes
with these situations. We first introduce a method that takes into account miss-
ing data, then we propose a more general approach that integrates imprecise
and uncertain knowledge. Hence, our approach deals with uncertainty in class
and attribute values. Besides, we should note that our method deals only with
categorical data.

5.1 Learning from Missing Data

In the previous sections, only one aspect of the EM algorithm has been high-
lighted: learning mixture models. Another important aspect of EM is to learn
from data sets with missing values [3, 8]. In this section, we propose to combine
this application of EM with that of learning mixture parameters in the TBM
framework [15].

We assume that the data X are made up of two components: an observed
component Xo and a missing component Xm. Each object xi in the missing
component is divided into (xo

i , x
m
i ) where xo

i denotes the observed attribute
values of xi and xm

i the missing attributes, and each xi can have different missing
attributes.

The conditional expected complete data likelihood given the observed data
and the current parameters is then written as follows:

E[Lc(Θ|Xo, Xm, Z)|Xo, Θ(t)] . (19)

So, there are two forms of incomplete data: the variables zik that indicate for
each object, which class it comes from, and the missing data xm

i . The E-step gives
an estimation of both forms of missing data: E[zik|Xo, Θ(t)] and E[xm

i |Xo, Θ(t)].
The M-step uses then the completed data to update the mixture model param-
eters Θ.

E-Step. The first term to be estimated is given by t
(t)
ik , the probability that xi

has been generated from the class k. These probabilities are derived through the
pignistic transformation from the masses m̂Ω[xi, Θ

(t)]:

t
(t)
ik =

∑
A$ωk

m̂Ω[xi, Θ
(t)](A)

|A|
1

1− m̂Ω[xi, Θ(t)](∅) . (20)
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The masses m̂Ω[xi, Θ
(t)] express the beliefs of membership of xi into the

classes of Ω computed as in the CrEM approach (see equation (17)) and mea-
sured only over the observed values xo

i .
The second term gives for each missing attribute xd

i in xm
i , the probability

that the attribute xd
i takes the category j (for j = 1, ..., nbd). Since we assume

that within each class the attributes are independent, for each class k, we have
a different estimation of xdj

i given by p
dj(t)
k computed at the current iteration.

M-Step. The M-step updates the current parameters using these expected val-
ues. The mixing proportions πk are updated using the tik as in equation (9).

The parameters θk given by the probabilities pdj
k are updated by:

pdj(t+1)

k =
∑n

i=1 t
(t)
ik xdj

i∑n
i=1 t

(t)
ik

, (21)

where
∑n

i=1 t
(t)
ik xdj

i is the estimated number of objects in the class k in which the
attribute xd

i has the category j and
∑n

i=1 t
(t)
ik is the total estimated number of

objects in the class k. So, tikxdj
i has to be substituted by tikpdj

k for the missing
components.

5.2 Learning from Partial Knowledge

In this subsection, we propose an approach that integrates imprecise and uncer-
tain knowledge regarding the attribute values characterizing the objects of the
learning set. As the prior knowledge about the class labels presented before, this
knowledge is represented by belief functions.

The data X , are divided here into two components: a component known with
certainty denoted by Xc and an uncertain component Xu. That is, each xi of
Xu is divided into (xc

i , x
u
i ) where xc

i are the well defined attributes and xu
i are

the partially known attributes.
For uncertain attributes, we use a set of bba’s mΩd

i : 2Ωd → [0, 1] to express
the a priori beliefs of the actual value of these attributes. 2Ωd

denotes the power
set corresponding to the set of possible values of the attribute d.

Example 1. Let us consider three attributes given by: the salary, the marital
status, and the place of residence with respective possible categories:
Ωsalary = {low, medium, high} ,
ΩmariStat = {single, married, divorced, widowed} ,
ΩplaceRes = {apartment, house} .

One can have:
x1 = ({low(0.2), medium(0.8)}, married(1), house(1)), where the attribute sala-
ry is uncertain (with mΩsalary

1 (low) = 0.2 and mΩsalary

1 (medium) = 0.8) and the
remaining attributes are perfectly known.
x2 = ({medium, high}(1), married(1), ΩplaceRes(1)), where the attribute salary
is imprecise, the attribute marital status is perfectly known and the attribute
place of residence is totaly unknown.



532 I. Jraidi and Z. Elouedi

This representation is then a generalization of the previous one since it covers
the case where attribute values are missing. This is handled through vacuous
belief functions. We also notice that the certain case, where all the attributes
are perfectly known, can also be modeled here through certain belief functions.

E-Step. The E-step estimates both the variables zik and the uncertain values of
xu

i . The first values are again given by tik estimated over the certain component
of xi.

The second values denoted by E[xu
i |Xo, Θ(t)] are first estimated using the

current parameters p
dj(t)
k . These probabilities which can be written in the form

of Bayesian masses mΩd(t)

ik , are then combined with the a priori masses through
the conjunctive rule of combination, to integrate our initial beliefs about the
attribute values. The resulting masses denoted by m̂Ωd(t)

ik , are given by:

m̂Ωd(t)

ik (A) =
∑

B∩C=A

mΩd(t)

ik (B)mΩd

i (C) , ∀A ⊆ Ωd . (22)

The updated estimation of xdj
i expressing the probability that the attribute

xd
i has the category j, is denoted by p̂

dj(t)
ik . These probabilities are derived from

the resulting combined masses using the pignistic transformation:

p̂
dj(t)
ik =

∑
A$ωdj

m̂Ωd(t)

ik (A)
|A|

1
(1 − m̂Ωd(t)

ik (∅))
, (23)

where ωdj denotes the category j of the attribute d.

M-Step. The M-step uses these estimations to update the current parameters
as detailed in the previous subsection. The term tik p̂dj

ik is used for the uncertain
values in the equation (21).

Note that in both methods, the E and M steps are iterated until the likelihood
function Q(Θ|Θ(t)) −Q(Θ|Θ(t−1)) becomes inferior to some threshold ε fixed a
priori. This function is given in equation (8). As the classical EM approach [3],
the proposed algorithms converge at a stationary point of the mixture parameters
and provide a local maximum of the likelihood function.

6 Experimental Results

In order to evaluate our proposed method which consists in a partially super-
vised EM classification approach with imperfect knowledge at the attribute and
class values, we have implemented two algorithms in Matlab V 7.0. Both algo-
rithms deal with uncertain class labels. Besides, the former (GenCrEM1) handles
missing attribute values, whereas the latter (GenCrEM2) deals with uncertain
and/or imprecise attribute values.

We have then applied these algorithms on real databases obtained from the
UCI Machine Learning Repository [10]. We have modified these databases in or-
der to disturb their certainty: we have randomly eliminated some attribute values
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Table 1. Description of databases

Database #instances #attributes #classes

Balance scale 625 4 3
Wisconsin breast cancer 699 8 2
Car evaluation 1728 6 4

for the GenCrEM1, and we have randomly introduced bba’s in some attribute
values for GenCrEM2 by considering their initial certain values. Moreover, in
both cases, we have randomly generated bba’s on the class labels by taking into
account the initial true labels. In Table 1, a brief description of these databases
is given.

We have tested both algorithms for different percentages of missing and un-
certain attribute values respectively for the GenCrEM1 and the GenCrEM2. We
have then applied the CrEM [15] on the certain attribute part of the databases.
Table 2 gives the percentages of correctly classified instances (PCC) compared
with the initial classification for each database. The mean PCC’s obtained from
the three methods and measured over the considered databases are given in
Figure 1.

It is found that the PCC’s produced by GenCrEM1 are higher than the PCC’s
given by CrEM for the three databases and for the three considered percentages
of imperfect data (20%, 30% and 40%). For instance, in the Car evaluation
database and with 40% of imperfect data, the PCC is equal to 70.61% for CrEM
and 77.8% for GenCrEM1. Besides, the results given by GenCrEM2 are better
than the ones given by GenCrEM1 in all the test cases. For instance, the PCC
is equal to 80.36% for GenCrEM1 and 83, 62% for GenCrEM2 in the Balance
scale database and with 30% of imperfect data. So, GenCrEM2 which is the
generalized case, is very appropriate to integrate additional knowledge about
the objects of the learning set even if this knowledge is uncertain. Furthermore,
it is shown that while the PCC’s of our method remain nearly constant and quite
high (around 80% for GenCrEM1 and 83% for GenCrEM2) when the percentage
of imperfect data increases, the PCC of CrEM shows considerable decrease from
75.3% (for 20% of imperfect data) to 69.89% (for 40% of imperfect data). So,

Table 2. Experimental results

Balance scale Wisconsin b.c. Car evaluation

percent imperf obj 20% 30% 40% 20% 30% 40% 20% 30% 40%

CrEM (in %) 75.25 71.67 69.5 73.87 70.33 69.56 76.8 73.23 70.61
GenCrEM1 (in %) 80.67 80.36 80.62 81.26 82.5 82.69 78.73 78.26 77.8
GenCrEM2 (in %) 82.4 83.62 82.85 84.53 83.82 84.68 82.13 81.75 82.28
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Fig. 1. Experimental results

our proposed approach is more appropriate to handle partially known attribute
values.

We should mention that with our proposed method and if all the attribute
bba’s are certain, the results are equivalent to the CrEM. Besides, if both at-
tribute and class values are perfectly known, that is when we are in a state of
total certainty, the results are analogous to those obtained from the classical EM
algorithm [3]. Note that when the class labels are imprecise, the CrEM produces
very similar results than [1]. So our proposed approach is a generalization of
these methods.

7 Conclusion

In this paper, we have proposed an EM approach for learning in an uncertain
environment. The uncertainty is represented by belief functions as understood
in the TBM. This approach is adapted for cases where not only the knowledge
about the classes of the objects can be partial but also their characteristics.
Our method provides a more flexible tool to deal with these situations. Future
works are concerned with both continuous and mixed data. We will also focus
on the model selection issue which notably includes the choice of the mixture
components.
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Abstract. This paper presents a new direction in the area of compil-
ing Bayesian networks. The principal idea is to encode the network by
logical sentences and to compile the resulting encoding into an appropri-
ate form. From there, all possible queries are answerable in linear time
relative to the size of the logical form. Therefore, our approach is a po-
tential solution for real-time applications of probabilistic inference with
limited computational resources. The underlying idea is similar to both
the differential and the weighted model counting approach to inference
in Bayesian networks, but at the core of the proposed encoding we avoid
the transformation from discrete to binary variables. This alternative
encoding enables a more natural solution.

1 Introduction

As Bayesian networks (BN) are more and more applied to complex real-world
applications, the development of fast and flexible inference methods becomes
increasingly important. In the last decades, researchers have developed various
kinds of exact and approximate inference algorithms, each of them with cor-
responding advantages and disadvantages. Some methods are particularly de-
signed for real-time inference with limited computational resources such as time
or memory. See [1] for a comprehensive and compact survey.

Two particular inference methods are the weighted model counting [2] and
the differential approach [3,4]. The former suggests to view a BN as a CNF
model counting problem. It encodes the given BN as a CNF, and employs tech-
niques used in the state-of-the-art SAT and model counting engines to solve
the problem. The differential approach suggests to view a BN as a multi-linear
function (MLF), the so-called network polynomial, from which answers to prob-
abilistic queries are retrieved by differentiating the polynomial. Relative to the
given BN, the network polynomial is exponential in size, but it is possible to
efficiently encode it by a CNF of linear size. As suggested in [5], this CNF is
then compiled into a decomposable negation normal form (DNNF) with the ad-
ditional properties of smoothness and determinism [6]. The resulting sd-DNNF
is an intermediate step, from which an arithmetic circuit is extracted, whose size
is not necessarily exponential relative to the original BN. This arithmetic circuit

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 536–547, 2007.
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is guaranteed to compute the original network polynomial, and can therefore be
used to obtain all necessary partial derivatives in time (and space) linear to its
size. In its essence, the aim of the whole procedure is to generate a preferably
optimal factoring of the network polynomial.

Such a logical approach is beneficial in many ways. The most important ad-
vantage is the ability to encode context-specific independences or other local reg-
ularities in the given conditional probability tables [4,7]. This inherently includes
appropriate solutions for the particular type of CPT obtained from noisy-OR and
noisy-AND nodes or from purely logical relations. In comparison with classical
inference methods such as join-tree propagation or message-passing, which do
not directly exploit such local structures, there has been reports of tremendous
improvements in both compile time and online inference [8,9]. Another advan-
tage is the ability to efficiently update numerical computations with minimal
computational overhead. This is a key prerequisite for experimental sensitivity
analyses.

1.1 Overview of the Method

In [10], we showed how to use the CNF encoding from [2] as a starting point
for a compilation in the sense of [3,5], but our analysis was restricted to bi-
nary variables only. In this paper, we will break out of the binary case and
discuss the compilation of BNs with (finite) discrete variables. For this, a dis-
crete variable ΘX|y is attributed to each conditional probability distribution
P (X |y) in the CPT of a network variable X with a finite set of states ΩX , e.g.
ΩX = {high, medium, low}. As a result, the generated logical representation ψ
consists of two types of variables, the ones linked to the CPT entries and the
network variables. The corresponding sets of variables are denoted by Θ and ∆,
respectively.

In order to use the logical representation ψ to compute the posterior prob-
ability P (q|e) = P (q, e)/P (e) of a query event q ∈ ΩQ = ΩQ1 × · · · × ΩQr

given the evidence e ∈ ΩE = ΩE1 × · · · × ΩEs , it is sufficient to look at the
simpler problem of computing prior probabilities P (x) of arbitrary conjunctions
x ∈ ΩX = ΩX1 × · · ·×ΩXt in order to obtain corresponding numerators P (q, e)
and denominators P (e). Our solution for this consists of the following three
steps:

1. Condition ψ on x ∈ ΩX to obtain ψ|x.
2. Eliminate (forget) from ψ|x the variables ∆. The resulting logical represen-

tation of [ψ|x]−∆ consists of variables from Θ only.
3. Compute the probability of the event represented by [ψ|x]−∆ to obtain

P (x) = P ([ψ|x]−∆). For this, we assume that the variables ΘX|y ∈ Θ are
probabilistically independent and that P (ΘX|y=θx|y) = P (X=x|y) are the
respective marginal probabilities for θx|y ∈ ΩΘX|y and x ∈ ΩX .

For the choice of an appropriate target compilation language for ψ, it is thus
necessary to select a language that supports two transformations (conditioning
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Table 1. Main differences between [2], [5], [10] and the paper at hand

Approach [2] [5] [10] paper at hand

Encoding Type 1 2 1 1

Multi-state transformation to transformation to not no
Variables binary variables binary variables allowed transformation

Logical Compilation no yes yes yes

and forgetting) and one query (probability computation) in polynomial time.
At first sight, just by looking at the results given in [11], it seems that no
such language exists. However, as we will see in this paper, we can exploit the
fact that the variables in ∆ satisfy a certain property w.r.t. ψ. The particular
form of forgetting such deterministic variables is called deterministic forgetting,
and we shall see that it is (at least) supported by two languages. However,
since probability computations are only supported by one of them our search
for an appropriate target compilation language for BNs thus leads to multi-state
directed acyclic graphs (MDAG) which satisfy the properties of decomposability,
determinism, and no-negations, denoted as cdn-MDAG. This language is the
only representation language that supports all necessary operations of the above
procedure in polynomial time. The suggested use of cdn-MDAGs has an obvious
advantage over the existing compilation methods: There is no need to replace
discrete variables with � > 2 states by � − 1 (or �) binary variables. Both the
model counting and the differential approach are based on this replacement.

1.2 Contribution and Outline

The conclusion that cdn-MDAGs (the multi-state version of d-DNNFs) should
be used as target compilation language for BNs confirms Darwiche’s precursory
work in [5], but it also shows that Darwiche’s additional requirement of smooth-
ness is not really needed. While the actual reasons for this conclusion and the
exact role of smoothness remain rather nebulous in [5], a precise and conclusive
explanation in terms of the (extended) knowledge compilation map is given in
this paper.

Compared with previous works on representing BNs by logical formulae, our
approach differs from [2] in the handling of multi-state variables, and the fact
that [2] does not at all talk about logical compilation. Yet, the encoding is the
same in the case of binary variables. Compared with [5], the encoding is already
different in the binary case (see detailed discussion in Section 4 of [10]). In
addition, we do not transform the multi-state variables into binary ones. The
Table 1 summarizes the main differences between [2], [5], [10] and the paper at
hand.

The proposed encoding or this paper enables a more direct computational
procedure in terms of a few basic operations of the knowledge compilation map.
In our opinion, this is a significant simplification over Darwiche’s original method
of viewing posterior probabilities as partial derivatives of multi-linear functions,
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from which the rather cumbersome process of transforming the CNF encoding
via a smooth d-DNNF to an arithmetic circuit (with all negative literals set to
1) results. In the light of this paper, some steps of this process appear as an
unnecessary detour, e.g., the transformation of multi-state variables into binary
variables or the requirement of smoothness. In a nutshell, we believe that the
method of this paper is an important contribution to the area of compiling BNs,
mainly as a significant advancement in terms of clarity and simplicity.

The structure of this paper is as follows. Section 2 provides a short sum-
mary of possible representations of Cartesian indicator functions (CIF) and the
corresponding knowledge compilation map. Then, we formalize the concepts of
deterministic variables and deterministic forgetting, and extend the knowledge
compilation map accordingly. The topic of Section 3 is the logical representa-
tion and evaluation of BNs. This part includes the main theorems of the paper.
Section 4 concludes the paper.

2 Representing Cartesian Indicator Functions

Let V = {V1, . . . , Vv} be a set of v variables and suppose that ΩVi denotes the
finite set of states of Vi. A finite indicator function f is defined by f : ΩV → B,
where ΩV = ΩV1 × · · · × ΩVv and B = {0, 1}. To emphasize the fact that f
is a mapping from the Cartesian product ΩV1 × · · · × ΩVv to B, f is called a
Cartesian indicator function (CIF). The so-called satisfying set Sf = {x ∈ ΩV :
f(x) = 1} = f−1(1) of f is the set of v-dimensional vectors x ∈ ΩV for which
f evaluates to 1. Composed CIFs will be specified using the logical connectors
∧, ∨, ¬, →, and ↔ in their usual interpretation. Special cases of finite CIFs are
Boolean functions (BF), where ΩVi = B, and therefore ΩV = Bv.

2.1 Representation Languages

To start with the least restrictive view w.r.t. possible representation languages,
consider the concept of a multi-state DAG (or MDAG for short). According to
[11], MDAGs are rooted, directed, acyclic graphs, in which each leaf node is
represented by � and labeled with � (true), ⊥ (false), or X=x, where X ∈ V is
a variable, and x ∈ ΩX is one of its states. Each internal node is represented by
� (logical and), � (logical or), or ♦ (logical not). The set of all possible MDAGs
of V is called language and denoted by MDAGV or simply MDAG. In a MDAG, each
node α represents a finite CIF fα by

fα =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∧t
i=1fβi , if α is an �-node with children β1, . . . , βt,
∨t

i=1fβi , if α is an �-node with children β1, . . . , βt,
¬fψ, if α is a ♦-node with the child ψ,
1, if α is a �-node labeled with �,
0, if α is a �-node labeled with ⊥,

fX=x, if α is a �-node labeled with X=x,
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Y =y3X=x1Y =y1 Y =y2 X=x2

ϕ

Fig. 1. The finite CIF f represented as the MDAG ϕ

where fX=x(x) with x ∈ ΩV is defined by

fX=x(x) =

{
1, if x is the corresponding value of X in x,

0, otherwise.

The MDAG depicted in Fig. 1 represents the finite CIF f = ([Y =y1]∧ [X=x1])∨
([Y =y2] ∧ ¬[X=x2]) ∨ ([X=x2] ∧ [Y =y3]).

Our convention is to denote MDAGs by lower-case Greek letters such as ϕ,
ψ, or the like. Two MDAGs ϕ, ψ are equivalent, denoted by ϕ ≡ ψ, iff fϕ = fψ.
Furthermore, ϕ entails ψ, denoted by ϕ |= ψ, iff fϕ(x) ≤ fψ(x) for all x ∈ Ω.
The set of variables included in ϕ ∈ MDAG is denoted by vars(ϕ) ⊆ V. The
number of edges of ϕ is called its size and is denoted by |ϕ|. MDAGs may satisfy
various properties [11], but in the context of this paper, only three of them are
relevant:

– Decomposability (c): the sets of variables of the children of each �-node
α in ϕ are pairwise disjoint (i.e. if β1, . . . , βn are the children of α, then
vars(βi) ∩ vars(βj) = ∅ for all i �= j);

– Determinism (d): the children of each �-node α in ϕ are pairwise logically
contradictory (i.e. if β1, . . . , βn are the children of α, then βi ∧ βj ≡ ⊥ for
all i �= j);

– No-Negation (n):1 ϕ does not contain any ♦-node.

A decomposable and deterministic MDAG is called cd-MDAG, and cd-MDAG
refers to the corresponding language, a sub-language of MDAG. The example shown
in Fig. 1 is a cd-MDAG.

Another important sub-language is cn-MDAG. It refers to the sub-language
of MDAG where decomposability and no-negation are satisfied. cdn-MDAG is the
sub-language of cn-MDAG, where determinism is satisfied in addition to decom-
posability and no-negation. This language includes Darwiche’s d-DNNF language
as a special case, when all variables are binary. Other sub-languages are obtained
from considering further properties, e.g. OMDD (ordered multivalued decision di-
agram) is the sub-language of cdn-MDAG satisfying decision, read-once, and or-
dering. For a more comprehensive overview and a detailed discussion we refer to
[11].

1 No-negation corresponds to simple-negation in [12,13].



Logical Compilation of Bayesian Networks with Discrete Variables 541

Table 2. Sub-languages of the MDAG language and their supported queries and transfor-
mations.

√
means ”supports”, • means ”does not support”, ◦ means ”does not support

unless P = NP”, and ? means “unknown”.

CO/CE VA/IM CT/PR/PEQ EQ SE TC FO SFO AND AND2 OR OR2 NOT

MDAG ◦ ◦ ◦ ◦ ◦ √ ◦ √ √ √ √ √ √

cn-MDAG
√ ◦ ◦ ◦ ◦ √ √ √ ◦ ◦ √ √ ◦

cd-MDAG
√ √ √

? ◦ √ ◦ ◦ ◦ ◦ ◦ ◦ √

cdn-MDAG
√ √ √

? ◦ √ ◦ ◦ ◦ ◦ ◦ ◦ ?

OMDD
√ √ √ √ ◦ √ • √ • ◦ • ◦ √

2.2 Succinctness, Queries, and Transformations

A language L1 is equally or more succinct than another language L2, denoted
by L1 � L2, if any sentence α2 ∈ L2 has an equivalent sentence α1 ∈ L1 whose
size is polynomial in the size of α2. A language L1 is strictly more succinct than
another language L2, denoted by L1 ≺ L2, iff L1 � L2 and L2 �� L1. With respect
to the above-mentioned languages, we have the following proven relationships
[11]:

MDAG ≺
{
cn-MDAG ≺
cd-MDAG �

}
cdn-MDAG ≺ OMDD.

It is still unknown whether cd-MDAG is strictly more succinct than cdn-MDAG or
not.

Queries are operations that return information about a finite CIF without
changing its MDAG representation. The most important queries are consis-
tency (CO), validity (VA), clause entailment (CE), term implication (IM), senten-
tial entailment (SE), equivalence (EQ), model counting (CT), probabilistic equiva-
lence (PEQ), and probability computation (PR).

Finally, a transformation is an operation that returns a MDAG representing a
modified finite CIF. The new MDAG is supposed to satisfy the same properties as
the language in use. The most important transformations are (term) condition-
ing (TC), forgetting (FO), singleton forgetting (SFO), general/binary conjunction
(AND/AND2), general/binary disjunction (OR/OR2), and negation (NOT).

If a language supports a query or transformation in polynomial time with
respect to the size of the involved MDAGs, we say that it supports this query
or transformation. Table 2 shows the supported queries and transformations of
the considered languages [11].

2.3 Deterministic Variables

It is interesting to see in Table 2 that forgetting is supported by cn-MDAG but not
by cdn-MDAG or cd-MDAG. This is a consequence of the fact that forgetting does not
preserve determinism in general. Let us now have a look at the particular case
of variables which preserve determinism while being forgotten, i.e. we formalize
the idea of determined variables as introduced in [14].
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Definition 1. For ϕ ∈ MDAG, the variable X ∈ V is called deterministic w.r.t.
ϕ, denoted by X ||ϕ, iff [ϕ|x] ∧ [ϕ|x′] ≡ ⊥ for all states x, x′ ∈ ΩX , x �= x′.

The process of forgetting deterministic variables will be discussed in the next
subsection. Before, let’s have a look at some basic properties of deterministic
variables. In the following, let X be a variable with ΩX = {x1, . . . , xm}.

Theorem 1. X ||ϕ implies X ||ψ for all ψ ∈ MDAG with ψ |= ϕ.

Theorem 2. Let ϕ =
∧m

i=1((X=xi) ↔ ϕi) such that ϕi ∧ ϕj ≡ ⊥ and X /∈
vars(ϕi) for all i, j ∈ {1, . . . , m}. This implies X ||ϕ.

The proofs are analog to the proofs of the corresponding theorems in [10]. An
immediate consequence is the following corollary, which is necessary to prove
one of the main theorems of Section 3.

Corollary 1. Let ϕ =
∧m

i=1((X=xi) ↔ ϕi) such that ϕi ∧ ϕj ≡ ⊥ and X /∈
vars(ϕi) for all i, j ∈ {1, . . . , m}. This implies X ||ϕ ∧ ψ for all ψ ∈ MDAG.

For the forgetting of more than one variable, it is useful to generalize the defini-
tion of a single deterministic variable to sets of deterministic variables.

Definition 2. For ϕ ∈ MDAG, the set of variables X = {X1, . . . , Xn} ⊆ V
is called deterministic w.r.t ϕ, denoted by X ||ϕ or simply X1, . . . , Xn ||ϕ, iff
[ϕ|x] ∧ [ϕ|x′] ≡ ⊥ for all instantiations x,x′ ∈ ΩX, x �= x′.

Note that X, Y ||ϕ implies X ||ϕ and Y ||ϕ, while the converse is not always
true.

2.4 Deterministic Forgetting

Let W ⊆ V be a subset of variables, X ∈ V a single variable, and ϕ an arbitrary
MDAG. Forgetting the variables W from ϕ generates a new MDAG ϕ−W, in
which the variables from W are no longer included, and such that its satisfying
set Sϕ−W is the projection of Sϕ to the restricted set of variables V \W. In the
literature, forgetting was originally called elimination of middle terms [15], but it
is also common to call it projection, variable elimination, or marginalization [16].
There is also a one-to-one analogy to the elimination of existential quantifiers in
quantified (Boolean) formulas [17], as discussed below.

Singleton forgetting is forgetting with W = {X}. A general and simple way
to realize singleton forgetting is by constructing a MDAG of the form

ϕ−X =
∨

x∈ΩX

[ϕ|x].

Note that if X is binary, ϕ−X is logically equivalent to the quantified Boolean
formula (∃x)ϕ. It is easy to see that singleton forgetting preserves the properties
of simple-negation and decomposability (if present), while determinism is not
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preserved (the children of the new �-node are not necessarily logically contra-
dictory). This is the reason why singleton forgetting is only supported by MDAG
and cn-MDAG, but not by cd-MDAG or cdn-MDAG (see Table 2).

Forgetting multiple variable is usually realized as a sequence of singleton for-
getting. In general, this may result in an exponential blow-up of the MDAG size,
but the decomposability of cn-MDAG allows to keep this blow-up under control.
This is the reason why cn-MDAG is the only language to support forgetting in
general. For the details of a corresponding algorithm (for binary variables), we
refer to [18].

Now let’s turn our attention to the special case of forgetting deterministic
variables. One way to look at it is to define two additional transformations called
deterministic forgetting (FOd) and deterministic singleton forgetting (SFOd). They
correspond to FO and SFO, respectively, but are only applicable to deterministic
variables.

For X ||ϕ, the children of the new �-node of
∨

x∈ΩX
[ϕ|x] are logically contra-

dictory by definition. In other words, forgetting deterministic variables preserves
determinism. Thus, we can use the forgetting algorithm of cn-MDAG for forgetting
deterministic variables in the context of cdn-MDAG. As a consequence, SFOd and
FOd are both supported by cdn-MDAG, as stated in the following theorem.

Theorem 3.

a) MDAG supports SFOd, but it does not support FOd unless P = NP .
b) cn-MDAG and cdn-MDAG support FOd and SFOd.
c) cd-MDAG and OMDD support SFOd.

The proof is analog to the one given in [10]. Whether cd-MDAG and OMDD support
FOd is an open question.

3 Compiling Bayesian Networks

The goal of this section is to show that the probability distribution induced
by a BN can be represented by a so-called multi-state CNF (MCNF) [11] (1st
subsection) and that the cdn-MDAG compilation of this MCNF can be used
to efficiently compute arbitrary posterior probabilities (2nd subsection). The
proposed MCNF representation is similar but not equivalent to the one proposed
by Darwiche in [5], for details consider [10]. However, if all variables of the
network are binary, the MCNF is equivalent to the CNF proposed in [2].

A Bayesian network (BN) is a compact graphical model of a complex prob-
ability distribution over a set of variables ∆ = {X1, . . . , Xn} [19]. It consists of
two parts: a DAG representing the direct influences among the variables, and
a set of conditional probability tables (CPT) quantifying the strengths of these
influences. The whole BN represents the exponentially sized joint probability
distribution over its variables in a compact manner by

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|parents(Xi)),
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X

Y

Z

P (X=x0) = P (ΘX=θx0)
P (X=x1) = P (ΘX=θx1)

P (Y =y0|x0) = P
(
ΘY |x0=θy0|x0

)

P (Y =y1|x0) = P
(
ΘY |x0=θy1|x0

)

P (Y =y0|x1) = P
(
ΘY |x1=θy0|x1

)

P (Y =y1|x1) = P
(
ΘY |x1=θy1|x1

)

P (Z=z0|x0y0) = P
(
θZ|x0y0=θz0|x0y0

)

P (Z=z1|x0y0) = P
(
θZ|x0y0=θz1|x0y0

)

P (Z=z0|x0y1) = P
(
θZ|x0y1=θz0|x0y1

)

P (Z=z1|x0y1) = P
(
θZ|x0y1=θz1|x0y1

)

P (Z=z0|x1y0) = P
(
θZ|x1y0=θz0|x1y0

)

P (Z=z1|x1y0) = P
(
θZ|x1y0=θz1|x1y0

)

P (Z=z0|x1y1) = P
(
θZ|x1y1=θz0|x1y1

)

P (Z=z1|x1y1) = P
(
θZ|x1y1=θz1|x1y1

)

Fig. 2. Example of a Bayesian network

where parents(Xi) denotes the parents of node Xi in the DAG. Figure 2 depicts
a small BN with three variables X , Y , and Z.

3.1 Logical Representation

Consider a variable X ∈ ∆ with parents(X) = {Y1, . . . , Yu} = Y, ΩX =
{x1, . . . , xt}, and the corresponding CPT. Since X has u parents, the CPT will
have |ΩY| ≥ 2u conditional probability distributions, i.e. one conditional proba-
bility distribution P (X |y) for each instantiation y ∈ ΩY of Y. For each P (X |y),
we introduce an auxiliary variable ΘX|y with ΩΘX|y = {θx1|y, . . . , θxt|y}. Assum-
ing that the variables ΘX|y represent probabilistically independent events, we
define their respective marginal probabilities by P (ΘX|y=θx|y) = P (X=x|y), as
shown in Fig. 2.

To see how the proposed logical representation of the BN works, take a closer
look at one particular instantiation y of parents(X). The idea is that if y hap-
pens to be the true state of parents(X), then ΘX|y=θx|y is supposed to logically
imply X=x. This logical relationship between Y1=y1, . . . , Yu=yu, ΘX|y=θx|y
with y = y1 · · · yu ∈ ΩY and X=x is expressed by the implication in the follow-
ing logical expression. By taking the conjunction of all such implications over all
instantiations y, we obtain a logical representation ψX of the node X with its
relationship to its parents:

ψX=
∧

y∈ΩY
y=y1···yu

⎛⎜⎝ ∧
θx|y∈ΩΘX|y

(
[Y1=y1] ∧ · · · ∧ [Yu=yu] ∧ [ΘX|y=θx|y] → [X=x]

)⎞⎟⎠
A logical representation ψ∆ of the whole BN is the conjunction

ψ∆ =
∧

X∈∆

ψX

over all network variables X ∈ ∆. This sentence includes two types of variables,
the ones linked to the CPT entries and the network variables. The respective sets
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of variables are denoted by Θ and ∆, respectively.2 Note that ψX and therewith
ψ∆ is a MCNF, as each of its implications can be written as a clause. For the BN
of Fig. 2, we have Θ = {ΘX , ΘY |x0 , ΘY |x1 , ΘZ|x0y0 , ΘZ|x0y1 , ΘZ|x1y0 , ΘZ|x1y1},
∆ = {X, Y, Z}, and

ψ∆=
∧

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[ΘX=θx0 ]→[X=x0]

[ΘX=θx1 ]→[X=x1]

}
from ψX

[X=x0]∧[ΘY |x0=θy0|x0 ]→[Y =y0]

[X=x0]∧[ΘY |x0=θy1|x0 ]→[Y =y1]

[X=x1]∧[ΘY |x1=θy0|x1 ]→[Y =y0]

[X=x1]∧[ΘY |x1=θy1|x1 ]→[Y =y1]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ from ψY

[X=x0]∧[Y =y0]∧[ΘZ|x0y0=θz0|x0y0 ]→[Z=z0]

[X=x0]∧[Y =y0]∧[ΘZ|x0y0=θz1|x0y0 ]→[Z=z1]

[X=x0]∧[Y =y1]∧[ΘZ|x0y1=θz0|x0y1 ]→[Z=z0]

[X=x0]∧[Y =y1]∧[ΘZ|x0y1=θz1|x0y1 ]→[Z=z1]

[X=x1]∧[Y =y0]∧[ΘZ|x1y0=θz0|x1y0 ]→[Z=z0]

[X=x1]∧[Y =y0]∧[ΘZ|x1y0=θz1|x1y0 ]→[Z=z1]

[X=x1]∧[Y =y1]∧[ΘZ|x1y1=θz0|x1y1 ]→[Z=z0]

[X=x1]∧[Y =y1]∧[ΘZ|x1y1=θz1|x1y1 ]→[Z=z1]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

from ψZ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3.2 Computing Posterior Probabilities

The goal of a BN is the computation of the posterior probability P (q|e) =
P (q, e)/P (e) of a query event q ∈ ΩQ given the observed evidence e ∈ ΩE.
As mentioned in Section 1, it is sufficient to look at the simpler problem of
computing prior probabilities P (x) of arbitrary conjunctions x ∈ ΩX. The fol-
lowing theorem states that the essential step to solve this problem is to forget
the propositions ∆ from ψ∆ (or any equivalent form of it) conditioned on x.

2 The representation of a BN by a logical sentence ψ∆ over two sets of variables Θ
and ∆, together with the given marginal probabilities for the variables in Θ and
the corresponding independence assumptions, puts this approach in the broader
context of probabilistic argumentation [20,21]. This is a theory of formal reasoning
which aims at unifying the classical fields of logical and probabilistic reasoning.
The principal idea is to evaluate the credibility of a hypothesis by non-additive
probabilities of provability (or degrees of support). This is a natural extension of the
classical concepts of probability (in probability theory) and provability (in logic)
[20]. The non-additivity of this measure is an important characteristic to distinguish
properly between uncertainty and ignorance, but the particularity of the model in
this paper always causes the resulting probabilities of provability to degenerate into
ordinary (additive) probabilities. The embedding into the theory of probabilistic
argumentation has no practical significance for the method and goals of this paper,
but it allows inference in BNs to be seen from a totally new perspective. We expect
this perspective to be useful as a starting point to study inference in BNs with
missing parameters.
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Theorem 4. P (x) = P
(
[ψ∆|x]−∆

)
.

This guarantees that the computed values are correct. To ensure that this compu-
tation requires only polynomial time, we need to compile ψ∆ into an appropriate
language, one that simultaneously supports TC, FO, and PR. According to Table 2,
there is no such language, but the following theorem allows us to replace FO, not
supported by cdn-MDAG, by FOd, supported by cdn-MDAG.

Theorem 5. ∆ || ψ∆.

As a consequence of this simple theorem, we arrive at the main message of this
paper, namely that cdn-MDAG is the most suitable target compilation language
for BNs, since it supports TC, FOd, and PR, and thus allows to compute posterior
probabilities in polynomial time.

For the compilation of the MCNF ψ∆ into a cdn-MDAG, we can use the
state-of-the-art CNF to d-DNNF or any CNF to OBDD complier [6,22] in the
binary case. For the general case, we are currently working on the adaption of
these algorithms.

4 Conclusion

The approach proposed in this paper extends a logical inference method for
BNs with binary variables to BNs with multi-state variables. We expect its
contribution to be theoretically and practically significant. On the theoretical
side, based on an extended knowledge compilation map, the paper provides a
precise explanation of why cdn-MDAGs are apparently the most suitable logical
representations for BNs. This is mainly a consequence of the fact that some of
the involved variables are deterministic. The paper also demonstrates how to
reduce the problem of logical inference in BNs to three basic logical operations.
Compared to Darwiche’s differential approach, this view fits much better into
the picture of the knowledge compilation map, as the reduction to these essential
elements no longer requires us to talk about network polynomials, multi-linear
functions, partial derivatives, arithmetic circuits, or smoothness. In this sense,
we also see our paper as an attempt to clarify the theoretical mechanisms and
connections behind this kind of inference algorithms and as a good example to
demonstrate the usefulness of the knowledge compilation map.

On the practical side, the paper provides precise step-by-step instructions to
implement a new encoding and inference method for BNs in terms of a few simple
operations for cdn-MDAGs. Compared to Darwiche’s differential approach, this
will lead to more transparent implementations. Finally, with respect to possible
applications other than BNs, other situations with deterministic variables may
be detected, for which forgetting becomes tractable in the case of cdn-MDAGs.
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Abstract. It is often desirable that a probabilistic network is mono-
tone, e.g., more severe symptoms increase the likeliness of a more serious
disease. Unfortunately, determining whether a network is monotone is
highly intractable. Often, approximation algorithms are employed that
work on a local scale. For these algorithms, the monotonicity of the arcs
(rather than the network as a whole) is determined. However, in many
situations monotonicity depends on the ordering of the values of the
nodes, which is sometimes rather arbitrary. Thus, it is desirable to or-
der the values of these variables such that as many arcs as possible are
monotone. We introduce the concept of local monotonicity, discuss the
computational complexity of finding an optimal ordering of the values of
the nodes in a network, and sketch a branch-and-bound exact algorithm
to find such an optimal solution.

1 Introduction

In many probabilistic networks [9] that are used for classification in real problem
domains, the variables of the network can be distinguished into observable input
variables, non-observable intermediate variables and a single output variable. For
example, in a medical domain the observable variables represent clinical evidence
such as observable symptoms and test results, the output variable functions as a
classification of a disease, and the intermediate variables model non-observable
facts that are relevant for classification. Often, the relations between observable
symptoms and the classification variable are monotone, e.g., higher values for
the observable variable ‘fever’ makes higher values of the classification variable
‘flu’ more likely, independent of the value of other variables such as ‘headache’.
Such a network is monotone in distribution [10] if higher-ordered configurations
of the observable variables make higher-ordered outputs more (isotone) or less
(antitone) likely.

When a domain expert indicates that a certain relation ought to be mono-
tone, the joint probability distribution should be such, that this property is
reflected in the network. If monotonicity is violated, the probability distribution
in the network can be revised in cooperation with the expert. Unfortunately,
determining whether a network is monotone in distribution is, in general, highly
� The work of this author was partially supported by the Netherlands Organisation
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intractable ([10]). One approach to overcome this unfavorable complexity, is by
approximating the decision (i.e, sometimes have ‘undecidable’ as outcome) like
the algorithm discussed in [10]. This algorithm uses qualitative influences (see
e.g. [12] for an introduction in qualitative networks or QPNs) that summarize
the direction of the influence of variables by signs. However, the use of these signs
of course requires an ordering on the values of the variables under consideration.
Such an ordering might be implicit, for example large > medium > small or true
> false. But in practice, there are often variables in a network which do not have
such ‘natural’ orderings. As it is desirable to have as many as possible monotone
influences (to minimize the offending context), it is important to choose an or-
dering for the values of these variables that maximizes the number of monotone
arcs. Or, equivalently, minimizes the number of ‘?’ signs in the corresponding
QPN.

In this paper, we determine the computational complexity of this optimiza-
tion problem. In Section 2, we introduce some notations and definitions. We
show that optimizing the number of monotone arcs is NP-complete and hard to
approximate (Section 3). We suggest a branch-and-bound strategy as an exact
algorithm in Section 4. Finally, we conclude our paper in Section 5.

2 Preliminaries

Let B = (G, Γ ) be a Bayesian network where G = (V, A) is an acyclic directed
graph, and Γ , the set of conditional probability distributions, is composed of
rational probabilities. Let Pr be the joint probability distribution of B. The
conditional probability distributions in Γ are assumed to be explicit, i.e., rep-
resented with look-up tables. For any variable X ∈ V (G), let Ω(X) denote the
set of values that X can take. A node X is denoted as a predecessor of Y if
(X, Y ) ∈ A(G). The set of all predecessors of Y is denoted as π(Y ). If, for a
node Y , π(Y ) is the set X = {X1, . . . , Xn}, the configuration template X is
defined as Ω(X1) × . . . × Ω(Xn); a particular instantiation x of X1, . . . , Xn will
be denoted as a configuration of X.

2.1 Local Monotonicity

Monotonicity can be defined as stochastical dominance (monotone in distribu-
tion) or in a modal sense (monotone in mode). In this paper, we discuss mono-
tonicity in distribution only, and we focus on local effects, i.e., influences between
two variables which are directly connected. A network is locally monotone if all
qualitative influences along the arcs in the network are either positive or negative.

Definition 1 (local monotonicity). Let F be the cumulative distribution func-
tion for a node X ∈ V (G), defined by F (x) = Pr(X ≤ x) for all x ∈ Ω(X). For
any arc (X, Y ) ∈ A(G), let Z denote the configuration template π(Y ) \ X, and
let z denote an individual configuration of Z. With (X, Y ), a positive influence is
associated if x < x′ → F (y | xz) ≥ F (y | x′z) for all y ∈ Ω(Y ), x, x′ ∈ Ω(X),
and z ∈ Z. Similarly, a negative influence is associated with this arc if x < x′ →
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F (y |xz) ≤ F (y |x′z) for all y ∈ Ω(Y ), x, x′ ∈ Ω(X), and z ∈ Z. We will denote
an arc associated with an positive or negative influence as a isotone, respectively
antitone arc. B = (G, Γ ) is locally monotone if all arcs in A(G) are either isotone
or antitone.

2.2 Interpretations

The above notions of monotonicity assumed an implicit ordering on the values of
the variables involved. Such an ordering is often trivial (e.g., x > x̄ and always >
sometimes > never) but sometimes it is arbitrary, like an ordering of the values
{ trachea, mediastinum, diaphragm, heart }. Nevertheless, a certain ordering is
necessary to determine whether the network is monotone, or to determine which
parts of the network are violating monotonicity assumptions. Thus, for nodes
where no a priori ordering is given, we want to order the values of these nodes
in a way that maximizes the number of monotone arcs or the number of nodes
with only monotone incoming arcs (depending on the specific application).

We define the notion of an interpretation of X to denote a certain ordering on
Ω(X), the set of values of X . Note, that the number of distinct interpretations
of a node with k values equals k!, the number of permutations of these values.
Nevertheless, in practice, the number of values a variable can take is often small.
For example, in the Alarm network [2], the number of values is at most four,
and in the Oesophageal network [11] it is at most six. In this paper, we assume
that k is small and can be regarded as a fixed constant.

Definition 2 (interpretation). An interpretation of X ∈ V (G), denoted IX ,
is a total ordering on Ω(X). For arbitrary interpretations we will often use σ
and τ . We use the superscript T to denote a reverse ordering: if σ = (x1 < x2 <
. . . < xn), then σT = (xn < . . . < x2 < x1). The interpretation set IX is defined
as the set of all possible interpretations of X. Note that an arc is isotone for a
given interpretation σ if and only if it is antitone for σT and vice versa, and
that the interpretations in IX are pairwise symmetric. In the remainder, when
σ, τ ∈ IX are distinct, then we also assume that σ �= τT .

2.3 Monotonicity Functions and Schemes

We define a monotonicity function, which determines whether a certain combi-
nation of interpretations for the two nodes of an arc makes the arc isotone or
antitone. When a node has more than one predecessor (say π(Y ) = {X1, X2}),
the arc (X1, Y ) is monotone for a certain combination of interpretations σ ∈ IX1

and τ ∈ IY , when it is isotone for all values1 of X2, or when it is antitone for
all values of X2. We define the monotonicity function of (X1, Y ) for a particular
given value x2 ∈ Ω(X2) as a partial monotonicity function, to emphasise the
conditional monotonicity of (X1, Y ).

1 Note that the ordering of the elements in Ω(X2) is irrelevant for the local mono-
tonicity of (X1, Y ).
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Definition 3 ((partial) monotonicity function). Consider the arc x1 =
(X1, Y ) ∈ A(G), where Y has auxiliary predecessors (say x2 . . . xn), whose con-
figuration template we denote with ZN . Assume σ ∈ IX1 and τ ∈ IY . Then
MX1Y (σ, τ) is true if and only if x1 is either isotone (denoted M+

X1Y ) or anti-
tone (denoted M−

X1Y ) for interpretations σ and τ , for all possible configurations
of ZN . The partial monotonicity function MX1Y (σ, τ |zN ) is true if and only if x1
is isotone or antitone for interpretations σ and τ , given a specific configuration
zN of ZN .

Observe, that MXY (σ, τ) = MXY (σT , τ) = MXY (σ, τT ) = MXY (σT , τT ) since
MXY = M+

XY ∨ M−
XY , and M+

XY (σ, τ) ↔ M−
XY (σT , τ). Partial monotonicity

functions and schemes can be combined for multiple configurations of ZN . In-
formally, the combined partial monotonicity function for instantiation xφ and
xψ is true for a certain combination of interpretations, if the individual partial
monotonicity functions are all isotone, or all antitone, for that combination.

Definition 4 (combining partial monotonicity functions). Consider again
the arc x1 as defined before, with ZN as the configuration template of π(Y ) \ X1.
Then, for δ ∈ {+, −},

M δ
X1Y (σ, τ |zφ) ∧ M δ

X1Y (σ, τ |zψ) = M δ
X1Y (σ, τ |zφ ∧ zψ)

and consequently, ∧
zN∈ZN

M δ
X1Y (σ, τ |zN ) = M δ

x1Y (σ, τ)

With every monotonicity function MXY , a binary matrix MXY is associated,
denoted as the monotonicity scheme of MXY . Similarly, a partial monotonicity
scheme MXY|zN is associated with the corresponding partial monotonicity func-
tion. These matrices have dimensions 1

2 | IX | × 1
2 | IY |, since the interpretations

in I are pairwise symmetric. We will often illustrate these matrices using a grid,
where shaded areas denote monotone combinations of interpretations in IX and
IY .

Using these definitions, in the following section we will discuss the problem
of optimizing the number of monotone arcs, i.e., choosing an interpretation for
the values of all nodes, such that the number of arcs that are isotone or an-
titone is maximal. Note that a network where some nodes are fixed (i.e., an
interpretation is given) can be translated in an equivalent network with non-
fixed interpretations, where the number of monotone arcs will be optimal if
and only if that particular interpretation is chosen. For example, if the order-
ing of a node C with values {low , mid , high} and degree n is to be fixed at
low < mid < high , we can enforce this condition by adding n + 1 dummy
nodes D with Ω(D) = {T, F} and arcs from C to these nodes that are only
monotone if C has ordering low < mid < high , for example Pr(T | low ) = 0.2,
Pr(T | mid) = 0.4, Pr(T | high) = 0.6. It can be easily verified that the optimal
number of monotone arcs enforces the given ordering on C. In a similar way,
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a partial order can be guaranteed, e.g., the variable ‘Stereo Sound’ with values
{none, left , right , both} where no obvious ordering for ‘left ’ and ‘right ’ exists, but
none ≺ left ≺ both and none ≺ right ≺ both.

3 Optimizing the Number of Monotone Arcs

In this section, we formalize the problem of optimizing the number of mono-
tone arcs, and show that it is NP-complete, i.e., infeasible in general. A similar
complexity result is established for the derived problem of optimizing the num-
ber of nodes with only monotone incoming arcs. Both problems can be used as
a measure for the size of the monotonicity-violating context. Furthermore, we
prove that these problems — apart from infeasible to solve exactly — are hard
to approximate as well. In the remainder of this section, we assume that the
reader is familiar with NP-completeness proofs; more background can be found
in textbooks like [6] and [7].

In the formal problem definitions, we assume that the (conditional) probabil-
ities in the network are specified using rationals, rather than reals, to ensure an
efficient coding of these probabilities. Since these probabilities are often specified
by experts or approximated using learning methods, this is a realistic constraint.
Furthermore, we assume that the conditional probabilities in the network are
coded explicitly, i.e., using look-up tables, rather than using some computable
function. Lastly, for technical reasons we formulate our problems as decision
problems (returning ‘yes’ or ‘no’), rather than functions (returning a number).

Max-Local Monotonicity
Instance: Let B = (G, Γ ) be a Bayesian network where Γ is composed
of rational probabilities, and let Pr be its joint probability distribution.
Let Ω(X) denote the set of values that X ∈ V (G) can take, and let k be
a positive integer ≤| A(G) |.
Question: Is there an interpretation IX for all X ∈ V (G), such that the
number of arcs in G that are monotone in distribution is at least k?

Max-Nodes-Local Monotonicity
Instance: Let B = (G, Γ ) and Ω(X) be as above, and let k be a positive
integer ≤| V (G) |.
Question: Is there an interpretation IX for all X ∈ V (G), such that the
number of nodes in G that have only incoming arcs that are monotone in
distribution, is at least k?

In our hardness proof, we use the Graph 3-Colorability problem, defined
in [6]. In this problem, the instance is an undirected graph G = (V, E), and we
want to know whether there is a function f : V → {1, 2, 3}, such that f(u) �= f(v)
whenever (u, v) ∈ E, i.e., all nodes can be colored with three colors, such that
no adjacent nodes have the same color.
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3.1 NP-Completeness Proof

Let G = (V, E) be an instance of the Graph 3-Colorability problem. From
this undirected graph G, we construct the directed graph G′ = (V ′, A) as follows
(See Figure 1):

– if X ∈ V (G), then X ∈ V ′.
– if (X, Y ) ∈ E(G), then E1, E2, E3, E4, E5, E6 ∈ V ′.
– if (X, Y ) ∈ E(G), then (X, E1), . . . , (X, E6), (Y, E1), . . . , (Y, E6) ∈ A.
– Ω(X) = {x1, x2, x3} for all X ∈ V ′

We number the interpretations of all nodes in V ′ as follows:

– i1 = x2 < x1 < x3.
– i2 = x1 < x2 < x3.
– i3 = x1 < x3 < x2.

Now, for all nodes Ei we construct a conditional probability table such that
M(IX , IEi) has the following monotonicity scheme:

Ei E1 E2 E3 E4 E5 E6

IX {i1, i2} {i1, i2} {i1, i3} {i1, i3} {i2, i3} {i2, i3}
IEi {i2, i3} {i1, i3} {i1, i2} {i2, i3} {i1, i2} {i1, i3}

and the probability table for the arc (Y, Ei) is such, that (Y, Ei) is a monotone
relation if and only if IY = IEi . An example of such a table is given in Table 1; the
other tables can be generated likewise. Observe, that a graphical representation
of these schemes would be a 2 × 2 square, which is transposed from the origin.
We claim that, in the thus constructed network, there is a maximum of eight
arcs that have a monotone relation, if IX = IY , and nine arcs if IX �= IY . We
assume, without loss of generality, that IY = i1. If we choose IEi = e1 for all Ei,
then all six outgoing arcs from Y to Ei have monotone relations. Now there are
two cases:

– IX = i1. There are two monotone relations: (X , E2) and (X , E3). Both E2
and E3 have only monotone incoming arcs.

– IX = i2 or i3. There are three monotone relations: either (X , E2), (X , E5)
and (X , E6); or (X , E3), (X , E5) and (X , E6), which all have only monotone
incoming arcs.

Note that there is no way to make more than three monotone arcs. We will use
this construct to prove NP-hardness.

Theorem 1. Max-Local Monotonicity and Max-Nodes-Local Mono-
tonicity are NP-complete.

Proof. Membership of NP is trivial for both problems. Using a certificate that
consists of interpretations for all vertices, we can easily test whether at least k
arcs are monotone in distribution, or at least k nodes have the property that all
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Y

X

E1 E2 E3 E4 E5 E6

Fig. 1. Construction with 6 extra nodes

Table 1. Conditional probability table for node E1 with incoming arcs from X and Y

Pr(E |y1, X) Pr(E |y2, X) Pr(X |y3, X)
e1 e2 e3 e1 e2 e3 e1 e2 e3

x1 0.42 0.30 0.28 v1 0.44 0.28 0.28 v1 0.44 0.28 0.28
x2 0.28 0.44 0.28 v2 0.28 0.44 0.28 v2 0.28 0.44 0.28
x3 0.28 0.30 0.42 v3 0.28 0.28 0.44 v3 0.28 0.28 0.44

incoming arcs are monotone in distribution. To prove NP -hardness, we construct
a transformation from the Graph 3-Colorability problem. Let G = (V, E) be
an instance of this problem, and let G′ = (V ′, A) be the directed acyclic graph
the is constructed from this instance, as described above. If and only if 9× | E |
arcs in G′ are monotone, then all nodes X and Y that were adjacent in G, have
different interpretations, hence G would be 3-colorable. Since G′ = (V ′, A) can
be computed from G = (V, E) in polynomial time, we have a polynomial-time
transformation from Graph 3-Colorability to the Max-Local Monotoni-
city problem, which proves NP-hardness of the latter. A similar argument holds
for the number of nodes with only monotone incoming arcs, therefore Max-No-
des-Local Monotonicity is NP-hard as well. 
�

3.2 Approximation

When confronted with intractable (e.g., NP-hard) problems, a number of options
are available. One could try to find polynomial algorithms for particular instances
(special cases) of the problem, try to construct an exact algorithm that works
reasonably fast most of the time, or try to approximate the problem. In the latter
case, one tries to find a solution that is close to optimal, in reasonable time.
Not all problems are easy to approximate. An example of an NP-hard problem
which can be approximated in polynomial time within an arbitrary margin is
Scheduling Independent Tasks [3]: given a set of tasks of variable length
and a set of processors on which they run, which schedule leads to a minimum
total finishing time? Other problems are very hard to approximate. For example,
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the well known Travelling Salesman Problem cannot be approximated in
general within any fixed constant factor, unless P = NP.

Optimization problems can be classified based on the character of the perfor-
mance ratio of their approximation algorithms. We will give a short introduction
on this classification; for a more thorough introduction the reader can refer to
e.g. [8], [5], or [1]. For maximization problems, the ratio R(X, Y ) of an approxi-
mation algorithm Y , given instance X , is defined as R(X, Y ) = OPT (X)

APPY (X) , where
OPT (X) denotes the optimal solution for X , and APPY (X) denotes the solu-
tion, given by algorithm Y . The class of all optimization problems is denoted
with NPO. A subset of this class is the class APX. A problem A belongs to APX
if it is approximable within a fixed ratio, i.e. there is an algorithm T and a ratio r,
such that for all instances X , R(X, T ) ≤ r. A problem A belongs to PTAS (has a
polynomial time approximation scheme) if it is approximable within any ratio r
in time polynomial in the input size, and it belongs to FPTAS (has a fully polyno-
mial time approximation scheme) if this approximation is polynomial in r as well.

In this section, we will show that Max-Local Monotonicity is APX-hard.
This hardness result is a very strong indicator that there is no polynomial time
approximation scheme for it – otherwise, all problems in APX would enjoy such
a PTAS – and that the problem can only be approximated within a constant
factor. We will reduce Max-3color-Subset [8], a known APX-hard problem,
to Max-Local Monotonicity using a so-called A-reduction. In [4], an A-
reduction is defined as a reduction from A to B, such that an approximation
for B within a fixed ratio r implies an approximation for A within a fixed ratio
c(r), where c is a computable function Q ∩ (1, ∞) → Q ∩ (1, ∞). If there is an
A-reduction from A to a known APX-hard problem B, then A is APX-hard as
well. We will show that the reduction from 3color constructed in the previous
section is actually an A-reduction to Max-3color-Subset.

Theorem 2. Max-Local Monotonicity A-reduces to Max-3color-Sub-
set.

Proof. Let G = (V, E) be an instance of Max-3color-Subset, and let G′ =
(V ′, A) be the directed acyclic graph the is constructed from this instance, as
described in Section 3.1. Let OPT (3C) denote the maximum number of nodes
in G that can be colored with three colors, and let APPY (3C) be the number
of nodes colorable with three colors with a certain approximation algorithm Y .
The ratio r of this approximation is then

OPT (3C)
APPY (3C)

By construction, G′ has an optimal solution 8 | V | + OPT (3C), and Y would
approximate this to 8 |V | + APPY (3C), with ratio

r′ =
8 | V | + OPT (3C)
8 | V | + APPY (3C)

But then, there clearly exists a function c such that r ≤ φ ⇒ r′ ≤ c(φ). 
�
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Corollary 1. Max-Local Monotonicity is APX-hard.

4 A Branch-and-Bound Algorithm

In the previous section we proved that there does not exist a PTAS for Max-
Local Monotonicity unless APX = PTAS. However, there might exist ap-
proximations for Max-Local Monotonicity that are within a fixed ratio r.
Nevertheless, r may be very large and such approximations may not be partic-
ularly useful. Therefore, we now construct an exact algorithm for this problem,
based on a so-called branch-and-bound strategy (see for example [13]). In such a
strategy, the set of possible solutions is partitioned (the branch step), and upper
(or lower, for minimalization problems) bounds for this partition are calculated.
Whenever these bounds are lower than or equal to the current best solution
(i.e., further exploration of these branches will not lead to a better solution)
the branch is terminated, and other, yet unvisited branches are explored. This
procedure continues until all branches terminate (we can return an optimal solu-
tion), or a given ratio between current best solution and upper bound is reached
(we can return a ‘good enough’ solution).

4.1 Initial Heuristic - A Lower Bound

In this section we discuss how a lower bound on the number of monotone arcs can
be calculated in polynomial time (for fixed k). First we will present a procedure
to compute monotonicity schemes efficiently, exploiting a particular property
of monotonicity functions. We will distinguish between factorizing and non-
factorizing monotonicity schemes, and we will show how a lower bound heuristic
can be calculated, using arcs with factoring monotonicity schemes, in polynomial
time.

Trivially, computing a monotonicity scheme for any node takes O((k!)2), since
there are k! interpretations for both ends of the arc, and computing local mono-
tonicity takes linear time. Notice that the complexity of calculating schemes for
an arc whose endpoint has multiple predecessors, is proportional in the size of
the input (i.e., the conditional probability table). If all other variables in the
graph have an arc towards this endpoint, there are

∏n
i=1 | Xi | configurations

that we need to consider. However, the conditional probability table has size
O(

∏n
i=1 | Xi |) as well, since we assumed explicit probability representation.

This running time can be reduced to O(1
2 (k!)2) in the worst case, and O(2(k!))

in the best case, by exploiting the following observation. If a relation X → Y is
monotone for two distinct interpretations σ, σ′ ∈ IX given an interpretation τ ∈
IY , then there are at least two equal columns in the joint probability table, i.e.,
Pr(yk |xi) = Pr(yk |xj) for all yk ∈ Ω(Y ). But then, MXY (σ, τ ′) = MXY (σ′, τ ′)
for all interpretations τ ′ ∈ IY . Of course, in two distinct interpretations2 there
exist i and j such that xi ≤ xj in one interpretation and xj ≤ xi in the other.
From this property follows, that two columns in a monotonicity scheme are
2 Note that we defined σ and σ′ to be distinct, only if also σ′ �= σT .
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either equal or disjoint. It suffices to observe that there exists a τ ∈ IY such
that MXY (σ, τ) = MXY (σ′, τ) = true to conclude that this is the case for all
τ ∈ IY .

To compute a lower bound heuristic, we consider only arcs that have factoriz-
ing monotonicity schemes. We use these factorizing schemes to calculate allowed
sets for each variable.

Definition 5 (factorizing monotonicity scheme). MXY is called factor-
izing over IX and IY if there exist subsets I+

X ⊆ IX and I+
Y ⊆ IY such that

MXY (σ, τ) is true if and only if σ ∈ I+
X and τ ∈ I+

Y.

For a variable Z, let π(Z) denote its set of predecessors and let σ(Z) denote
its set of children. Then, if all arcs (X ∈ π(Z), Z) and (Z, Y ∈ σ(Z)) have a
factoring monotonicity scheme, an interpretation IZ for Z that is an element of⋂

X∈π(Z) MXZ ∩⋂
Y ∈σ(Z) MZY �= ∅ is always an interpretation that can be cho-

sen for Z without violating local monotonicity of the network. Of course, not all
monotonicity schemes are factoring. If π(Z)f and σ(Z)f denote the predecessors,
respectively children of Z such that (X ∈ π(Z)f , Z), respectively (Z, Y ∈ σ(Z)f )
are arcs with factoring monotonicity schemes, we will denote MZ as the allowed
set of Z, where MZ =

⋂
X∈π(Z)f

MXZ ∩ ⋂
Y ∈σ(Z)f

MZY ∩ IZ. Note, that the
allowed set consists of interpretations that can be chosen, if all arcs without fac-
toring monotonicity schemes would be removed. In other words, there exists a
network G′ = (V, A′) where A′ is the (possibly empty) set of arcs with factoring
monotonicity schemes, and the allowed set of all Z ∈ V (G′) is the set of interpre-
tations that can be chosen without violating monotonicity of G′. Now, we can
calculate a lower bound for the maximal number of arcs in G that can be made
monotone as follows. We initialise MZ to IZ for all Z ∈ V ′ and A+ to the empty
set, and iteratively consider arcs in A′. If an arc does not cause any allowed set
to become empty, it is added to A+, and M is adapted for both endpoints of
that arc. On the other hand, if the arc does lead to an empty allowed set, it is
dismissed. After considering all arcs in A′, | A+ | is a lower bound.

4.2 Branching and Bounding

Using this lower bound, we consecutively branch on the possible interpretations
of the nodes, terminating branches whose upper bound is not higher than the
current best solution (or lower bound). While different strategies can be followed
to choose a node to branch on at any step in the algorithm, a reasonable heuristic
is to pick the node that has the highest degree of all unexplored nodes. We fix the
interpretation of the variable we branch on (i.e., the allowed set is a singleton,
corresponding with the branch value) and calculate how many factorizing arcs
remain monotone in the network. This value is added to the number of non-
factorizing arcs; this is an upper bound for the total number of monotone arcs
in the network.

Of course, there are many degrees of freedom in this branch-and-bound strat-
egy. We chose to compute rather loose bounds; one can compute tighter bounds
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Fig. 2. An example graph

by considering a number of non-factoring arcs that can be made monotone. Nev-
ertheless, the constraints imposed by these arcs might require re-evaluation of
all allowed sets in the network, so there is a tradeoff between the tightness of the
bounds - and thus the number and depth of the branches - and the time needed
to calculate such bounds.

4.3 An Example

We will use the graph in Figure 2 as a example to sketch our branch-and-bound
algorithm. We assume that, for every variable, only four interpretations are rele-
vant; we will denote a particular interpretation with indexed lowercase variables,
e.g., IC = {c1, c2, c3, c4}. On the right part of Figure 2, the monotonicity schemes
for the arcs in the graph are shown. For example, (A, B) is monotone if IA = a1
and IB = b2.

We start with the heuristic lower bound calculated in Section 4.1. The fac-
torizing arcs are (B, C), (C, D), (C, E), and (D, E), and if we consider these
in this order and calculate the allowed sets for all nodes, we will find that we
can make at least three arcs monotone, namely (B, C), (C, D), and (D, E). The
lower bound will thus be three in this example. Now we branch on one of the
nodes with maximal degree, say C, and explore the branches IC = c1, IC = c2,
IC = c3, and IC = c4, terminating branches with an upper bound lower than
three. Eventually, the algorithm will find the optimal solutions {IA = a3, IB =
b4, IC = c3, ID = d1, IE = e2 ∨ e3}.

5 Conclusion

Optimising the number of monotone arcs in a network, and thus minimising the
number of ‘?’s in the corresponding QPN, is a computationally hard problem,
and hard to approximate as well. We proposed a branch-and-bound approach
to calculate optimal orderings. This approach may work rather well in practice
with ‘real world’ networks, provided that the number of values per node is small.
However, for networks where some nodes have a large range of possible values,
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this approach will be infeasible. Other methods must be used in such cases to
calculate or approximate an optimal solution. Currently, we are working on an
implementation of this branch-and-bound algorithm.
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Abstract. Dynamic Bayesian networks are a special type of Bayesian
network that explicitly incorporate the dimension of time. They can be
distinguished into repetitive and non-repetitive networks. Repetitiveness
implies that the set of random variables of the network and their inde-
pendence relations are the same at each time step. Due to their struc-
tural symmetry, repetitive networks are easier to use and are, therefore,
often taken as the standard. However, repetitiveness is a very strong as-
sumption, which normally does not hold, as particular dependences and
independences may only hold at certain time steps.

In this paper, we propose a new framework for independence modu-
larisation in dynamic Bayesian networks. Our theory provides a method
for separating atemporal and temporal independence relations, and of-
fers a practical approach to building dynamic Bayesian networks that are
possibly non-repetitive. A composition operator for temporal and atem-
poral independence relations is proposed and its properties are studied.
Experimental results obtained by learning dynamic Bayesian networks
from real data show that this framework offers a more accurate way for
knowledge representation in dynamic Bayesian networks.

1 Introduction

Probabilistic graphical models are increasingly adopted as tools for the modelling
of domains involving uncertainty. For the development of practical applications
especially Bayesian networks have gained much popularity. When considering
these application domains, it appears that so far only limited attention has
been given to the modelling of uncertain time-related phenomena, which occur
in many of these domains. Bayesian networks in which some notion of time is
explicitly dealt with are usually called dynamic Bayesian networks (DBNs) [3]. In
some domains involving time, such as speech recognition, the use of special DBNs
has been extensively explored (e.g. [1]), and technical issues such as concerning
reasoning (e.g. [7]) and learning (e.g. [2]) in DBNs have been investigated.

DBNs are distinguished into two main classes: repetitive and non-repetitive
networks. Repetitive networks have the same set of random variables and inde-
pendence relations at each time step, whereas in non-repetitive networks the set
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of random variables and also the independence relations between these random
variables may vary in time. The simpler structure of repetitive networks provides
significant advantages in terms of ease of modelling and computational complex-
ity. Therefore, they are often seen as the standard DBN model (see [6] for an
overview). However, repetitiveness is a very strong assumption that normally
will not hold.

Recently, scientific evidence has become available that non-repetitive DBNs
may also be practically useful [8]. We think that separating temporal and atem-
poral information in DBNs can be valuable, as it: (i) helps experts gain more
insight into the relations in the networks, (ii) provides an opportunity for learn-
ing procedures to obtain more accurate models, and (iii) may help overcome
computational limitations. However, so far no research has been carried out to
characterise temporal and atemporal independence relations.

In this paper, a new framework for independence modularisation in DNBs is
proposed, based on a theoretically grounded separation of temporal and atem-
poral independences. This distinction allows us to investigate isolated parts of
the independence relations. Having given these individual parts of the network,
we can construct both repetitive and non-repetitive DBNs. In this paper, we
analyse the necessary properties to correctly join independence relations from
these individual parts and define a join operator to carry out the composition of
these independence relations. Finally, we provide experimental evidence of the
usefullness of non-repetitive DBNs.

2 Motivating Example: The Disease Course of VAP

A real-world non-repetitive DBN of the disease course of a form of pneumonia is
used as motivating example in this paper. As we will see, at each time step we
have different independence relations offering an accurate model of the evolution
of the disease.

We briefly describe the clinical features of pneumonia and then discuss the
construction of a DBN for this disease. Pneumonia develops frequently in ICU
patients, as these patients are critically ill and often they need respiratory sup-
port by a mechanical ventilator. After admission to a hospital, all patients be-
come colonised by bacteria. In particular, mechanically ventilated patients run
the risk of subsequently developing pneumonia caused by these bacteria; this type
of pneumonia is known as ventilator-associated pneumonia, or VAP for short.
Typical signs and symptoms of VAP include: high body temperature, decreased
lung function (measured by the PaO2/FiO2 ratio) and evidence of pneumonia on
the chest X-ray. By carrying out a dependency analysis on a retrospective, tem-
poral dataset, with data of ICU patients collected during a period of three years,
we were able to study how independence information changed in the course of
time. Taking the duration of mechanical ventilation as the parameter defining
the time steps, we have focused on modelling the course of the development of
VAP at 3, 4 and 5 days after admission. The resulting DBN is shown in Fig. 1.
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Fig. 1. The non-repetitive DBN for VAP; temporal arcs are depicted by dotted arrows

This small network already shows the need for employing non-repetitiveness
in the structure of a DBN, and, therefore, has motivated us to develop a theory
that distinguishes between temporal and atemporal independence information
and allows building a non-repetitive DBN in a correct and seamless fashion.

3 Basic Notions

We will be concerned in this paper with acyclic directed graphs (ADGs), denoted
as a pair G = (V, A), where V is a set of vertices and A ⊆ V × V is a set of
arcs. A directed path is a sequence of vertices v1, v2, . . . , vm, with (vk, vk+1) ∈ A
for each k, also denoted by vk → vk+1, where v1, v2, . . . , vm−1 are required to
be distinct. A directed cycle is a directed path with v1 = vm. A trail θ in a
graph is a sequence of unique vertices v1, v2, . . . , vm, where we have for each k
that vk → vk+1 or vk+1 → vk; each arc occurs only once. A subtrail of a trail
v1, v2, . . . , vm is a sequence vi, vi+1, . . . , vj , i < j. A trail θ connecting vertices u
and v is also written as u ∼ v. The set of all trails of an ADG G is denoted by
Θ. A graph G′

|Θ′ = (V ′, A′) is said to be a reduced subgraph of graph G = (V, A)
with associated set of trails Θ if V ′ ⊆ V , A′ consists of all arcs of the set of trails
Θ′ with Θ′ ⊆ Θ, and Θ′ is based on the set of vertices V ′.

Let X be a set of discrete random variables and let V act as its index set, i.e.,
Xv with v ∈ V denotes a random variable and XW with W ⊆ V denotes a set
of random variables. Furthermore, let P denote a joint probability distribution
(JPD) of XV . The set XU is said to be conditionally independent of XW given
XZ , with U, W, Z ⊆ V , if

P (XU | XW , XZ) = P (XU | XZ) . (1)

These independence relations in P can also be represented by means of an ADG
G, in which the entire set of independence relations is denoted by ⊥⊥G. In the
graph, arcs represent dependences, and absence of arcs represents (conditional)
independences.

Independences can be read off from an ADG by the d-separation criterion,
defined as follows [5]: a trail θ in an ADG G is said to be blocked by a set Z if
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one of the following conditions is satisfied: (i) v ∈ Z and v appears on the trail
θ, and either no or only one of the arcs of θ meeting at v is directed to v; (ii)
v �∈ Z, δ(v)∩Z = ∅, where δ(v) are the descendants of v, and both arcs meeting
at v on θ are directed to v (convergent connection). It is said that the sets U
and W are d-separated by Z if any trail between a vertex in U and a vertex in
W is blocked by the set Z; formally: U ⊥⊥G W | Z. Otherwise, U and W are
d-connected by Z, denoted by U �⊥⊥G W | Z.

A Bayesian network is defined as a pair B = (G, P ), where G = (V, A) is an
acyclic directed graph representing relations of random variables XV , P is the
JPD on XV , and each independence represented in G is also a valid independence
in the JPD P .

4 Dynamic Bayesian Networks

In this section, the foundation for independence modularisation in DBNs is de-
veloped, based on the separation of temporal and atemporal independences.

DBNs are an extension of ordinary Bayesian networks and allow modelling
the uncertainty involved in time-oriented processes. As a start, a representation
of time is required, which in this paper is denoted by T and is assumed to be a
subset of the set of the natural numbers; a time point t is then a member of T .
The graphical representation of a DBN consists of two parts: (i) an atemporal
part, and (ii) a temporal part. We subsequently define these parts.

An acyclic directed graph Gt = (Vt, A
a
t ), with set of vertices Vt and set of

arcs Aa
t ⊆ Vt × Vt, t ∈ T , is called a timeslice at time t, and its set of arcs Aa

t is
called the set of atemporal arcs. Timeslices will be depicted by rectangles. The
set of all timeslices G of a DBN is taken as:

G = {Gt | t ∈ T } = (VT , Aa) . (2)

Let Gt = (Vt, A
a
t ) and Gt′ = (Vt′ , Aa

t′), t, t′ ∈ T , t �= t′, be two distinct timeslices.
Then, an arc (u, v) ∈ Vt × Vt′ with t < t′ is called a temporal arc. The set of
temporal arcs of the set of all time slices G is denoted by At. Thus, temporal
arcs connect vertices in different timeslices; they direct always from the past to
the future and are drawn as dotted arrows.
Example 1. Consider Fig. 2; here the set of timeslices is equal to G = {G1,
G2, G3}. Timeslice G2 is defined as G2 = (V2, A

a
2), where the set of its ver-

tices is equal to V2 = {q2, s2, v2, z2} and the set of its atemporal arcs Aa
2 =

{(q2, s2), (v2, z2)}). Moreover, the temporal arcs are equal to At = {(u1, v2),
(w1, v2), (v2, r3)}.
Temporal arcs connect timeslices; this allows to construct temporal networks.
Definition 1. (temporal network) Let G = (VT , Aa) be a set of timeslices.
Then, a temporal network N is defined as a pair N = (VT , A), where A =
Aa ∪ At.
Clearly, as each timeslice Gt ∈ G is an acyclic directed graph, and timeslices are
connected by temporal arcs pointing from the past to the future, N is also an
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u1
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v2

z2

r3
s2

1 2 3

Fig. 2. An example of a dynamic Bayesian network

acyclic directed graph. A DBN is defined as a pair DBN = (N, P ), where P is
the JPD on the entire set of random variables.

Both temporal and atemporal relations in the network can be represented by
means of trails. An atemporal trail contains no temporal arcs and is denoted
by θa. A temporal trail consists of at least one temporal arc and is denoted by
θt. The sets of all atemporal and temporal trails are denoted by Θa and Θt,
respectively.

Example 2. Fig. 2 includes temporal trails θt
1 = u1 → v2 ← w1 and θt

2 = z2 ←
v2 → r3, and the only two atemporal trails are θa

1 = q2 → s2 and θa
2 = v2 → z2.

With regards to the temporal relationships we only need to consider temporal
trails that result into a reduced temporal network.

Definition 2. (reduced temporal network) Let N = (VT , A) be a temporal
network. Then, N|Θt = (VT , AΘt) is called a reduced temporal network if its set
of arcs AΘt ⊆ A consists of all the arcs included on the temporal trails in Θt.

Observe that the reduced temporal network is based on the set of temporal trails,
which may consist of both atemporal and temporal trails. A further partitioning
of the reduced temporal network is based on its set of arcs. This partitioning is
obtained by decomposing a reduced temporal network into two parts, where one
part consists of only atemporal and the another part of only temporal arcs. The
atemporal part of the reduced temporal network is denoted by Na

|Θt = (VT , Aa
Θt),

where VT is the set of vertices and Aa
Θt ⊆ Aa consists of all atemporal arcs in the

reduced temporal network. The temporal part of the reduced temporal network
is denoted by N t

|Θt = (VT , At
Θt), where At

Θt ⊆ At consists of all temporal arcs
in the reduced temporal network.

As a DBN includes temporal and atemporal elements, the question is how to
distinguish between these relations. Vertices U and W are said to be atemporally
d-separated (temporally d-separated) by Z, denoted by ⊥⊥G (⊥⊥N|Θt ), if all the
atemporal (temporal) trails connecting U and W are d-separated given Z. Atem-
poral d-separation of vertices belonging to only one timeslice Gt is denoted by
⊥⊥Gt . Finally, ⊥⊥N denotes the set of independences in the temporal network N .

Fig. 3 shows an example of a temporal network and includes the various
temporal and atemporal parts defined above.
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Fig. 3. Temporal and atemporal parts of a temporal network: (a) temporal network,
(b) reduced temporal network, (c) atemporal part of the reduced temporal network,
and (d) temporal part of the reduced temporal network

5 The Join Operator

In this section, we study the correct composition of the temporal and atemporal
independence relations in DBNs.

Suppose we want to join two independence relations ⊥⊥ and ⊥⊥′, both defined
on the same set of variables. Then, the following three situations need to be
considered: (i) joining one dependence and one independence statement; (ii)
joining two dependence statements; (iii) joining two independence statements.

To correctly join the statements from situations (i) and (ii) a dependence
preservation property is proposed below. Similarly, in order to deal with situation
(iii), an independence concatenation property is defined below.

5.1 Dependence Preservation

The reason that dependence preservation is required for joining dependence and
independence or dependence and dependence statements can be explained in
terms of the concepts of consistency and dominance; these terms are interpreted
as follows.

Let the independence relations ⊥⊥ and ⊥⊥′ be defined on the same vertex set V .
Then, if there exist statements U ⊥⊥ W | Z and U �⊥⊥′ W | Z for arbitrary, mu-
tually disjoint sets of vertices U, W, Z ⊆ V , then these independence statements
and, therefore, independence relations ⊥⊥ and ⊥⊥′ are said to be inconsistent.



566 I. Flesch and P. Lucas

u1 q2

z3

r3

w3

1 2 3

(a)

u1 q2

z3

r3

w3

1 2 3

(b)

Fig. 4. Temporal networks (a) and (b)

Otherwise, the statements are consistent. If we wish to join independence rela-
tions together, and two independence relations are inconsistent, a choice has to
be made between the independence and dependence. In other words, one state-
ment has to dominate the other one. If the relations ⊥⊥ and ⊥⊥′ are inconsistent
due to the statements U ⊥⊥ W | Z and U �⊥⊥′ W | Z, then U �⊥⊥′ W | Z is said
to dominate U ⊥⊥ W | Z. Furthermore, the dominance of dependences also in-
dicates that two dependence statements, mentioned for situation (ii), also have
to be joined into a dependence statement. Since dominance has to be taken into
account when joining independence relations, the following property is defined.

Definition 3. (dependence preservation) Let ⊥⊥, ⊥⊥′ and ⊥⊥′′ be indepen-
dence relations all defined on V . Suppose that U �⊥⊥ W | Z or U �⊥⊥′ W | Z, or
both, then it holds that U �⊥⊥′′ W | Z for all U, W, Z ⊆ V . It is said that ⊥⊥′′

satisfies the dependence preservation property with regard to ⊥⊥ and ⊥⊥′.

5.2 Independence Concatenation

The independence concatenation property takes into account how independence
relations are combined.

Definition 4. (independence concatenation) Let ⊥⊥, ⊥⊥′ and ⊥⊥′′ be inde-
pendence relations all defined on V . Suppose that for some U, W, Z ⊆ V in-
dependences U ⊥⊥ W | Z and U ⊥⊥′ W | Z hold and then it also holds that
U ⊥⊥′′ W | Z. Then, it is said that ⊥⊥′′ satisfies the independence concatenation
property with regard to the set of vertices U , W and Z in relations ⊥⊥ and ⊥⊥′.

In the remaining part of this section, we investigate how the independence con-
catenation property can be applied to ADGs. The following example indicates
that joining independences is not straightforward in these graphs, since an in-
dependence may change into a dependence.

Example 3. Consider Fig. 4. In both the atemporal and temporal parts of (a)
and (b) vertex u1 is conditionally independent of w3 given z3; formally, we have
that u1 ⊥⊥Na

|Θt
w3 | z3 and u1 ⊥⊥Nt

|Θt
w3 | z3. In the reduced temporal network of

(a) u1 is still conditionally independent of w3 given z3; however, in the reduced
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temporal network of (b), u1 is conditionally dependent of w3 given z3; formally:
u1 ⊥⊥N|Θt w3 | z3 and u1 �⊥⊥N|Θt w3 | z3.

Thus, it is necessary to investigate how to join two independence statements. As
mentioned above, in Bayesian networks d-separation criterion is used to read-off
independence statements, based on the study of the arc directions in the trails in
the graphical representations. Therefore, when we want to join two independence
relations ⊥⊥G and ⊥⊥G′ into ⊥⊥G′′ , we need to investigate the trails in graph G′′

obtained from the set of trails of the graphs G and G′. Then, any trail in G′′ can
be partitioned into a set of subtrails, called special subtrails, where each subtrail
consists of arcs obtained from only one of the graphs G or G′.

Example 4. Reconsider Fig. 3 and suppose we want to join the atemporal and
temporal parts (c) and (d) of the reduced temporal network obtaining the entire
independence relation of the reduced temporal network (b). Suppose we want to
determine the relation between vertices u1 and z2. Then, we need to study trail
u1 → v2 → z2 in graph (b), which consists of two special subtrails, atemporal
trail v2 → z2 in (c) and temporal trail u1 → v2 in (d).

Considering the issues mentioned above, when we need to join two independence
statements, we only need to analyse trails in G′′ that consist of more than one
special subtrail; otherwise the relation is just an independence statement, since
its arcs belong only to one of the graphs G or G′.

After having singled out the set of special subtrails of a trail, we can determine
the independence relations from the trail by looking at these subtrails. This is
done by examining the independence and dependence statements, derived from
⊥⊥G and ⊥⊥G′ , between the initial and end vertex of each special subtrail, while
conditioning on the same set of vertices as from the entire trail. Then, if at
least one of these two statements is a dependence, according to the dependence
preservation property, the initial and end vertex of the special subtrail will be
conditionally dependent in G′′. However, in the case of two independence state-
ments we need to apply d-separation. Furthermore, we also need to consider the
set of so-called shared vertices of a trail, which are the vertices that connect the
special subtrails of this trail. These considerations give rise to an easier way of
the composition of two independence statements:

Proposition 1. Let the independence relations ⊥⊥G, ⊥⊥G′ and ⊥⊥G′′ both defined
on V and let U ⊥⊥G W | Z, U ⊥⊥G′ W | Z for U, W, Z ⊆ V hold in graphs
G = (V, A) and G′ = (V, A′), respectively. Let A′′ ⊆ A ∪ A′. Let trail θ connect
the two vertices u ∈ U and w ∈ W with each other, and let θ1, . . . , θn be the
special subtrails of θ. Then, θ is blocked by Z if one of the following condition
holds:

– the trail θ consists of only one special subtrail;
– for one of the special subtrails θi = v1, v2, . . . , vm we have v1 ⊥⊥G vm | Z and

v1 ⊥⊥G′ vm | Z and θi is blocked by Z in G′′ according to d-separation;
– one of the shared vertices blocks θ according to d-separation.

The independence U ⊥⊥G′′ W | Z holds if each trail connecting any vertex in U
and W is blocked by Z satisfying the independence concatenation property.
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5.3 The Join Operator

Next, the join operator is defined and a significant property of this operator is
considered.

Definition 5. (join operator) Let ⊥⊥ and ⊥⊥′ be two independence relations
defined on the same vertex set V . The join of these two relations, denoted by
⊥⊥ ◦ ⊥⊥′=⊥⊥′′, is then again an independence relation, ⊥⊥′′, defined on V , that
satisfies the dependence preservation and the independence concatenation prop-
erties.

Proposition 2. Let G = (V, A), G′ = (V, A′) and G′′ = (V, A′′) be three ADGs,
where A ∪ A′ ⊆ A′′. Then, it holds that ⊥⊥G′′⊆⊥⊥G ◦ ⊥⊥G′ .

Proof. The graph G′′ contains at least as many arcs as the union of the graphs
G and G′. Thus, ⊥⊥G′′ contains possibly extra dependences in addition to those
in ⊥⊥G and ⊥⊥G′ . As the join operator satisfies the independence concatenation
property, any independence that results from applying d-separation to G′′ is
preserved by joining ⊥⊥G and ⊥⊥G′ . Hence, it follows that ⊥⊥G′′⊆⊥⊥G ◦ ⊥⊥G′ . �

6 Temporal and Atemporal Interaction

Based on the results above, in this section we investigate how to employ the
join operator for combining the temporal and atemporal relations underlying
temporal networks to support the modelling of non-repetitive DBNs.

6.1 Joining Atemporal and Reduced Temporal Networks

In this section, we start by considering the relations ⊥⊥G and ⊥⊥Gt . The follow-
ing proposition establishes that the join operator ◦ can be interpreted as the
intersection of the independence relations in Gt.

Proposition 3. Let DBN = (N, P ) with temporal network N = (VT , A), set of
timeslices G = (VT , Aa), A = Aa ∪ At, and the joint probability distribution P .
Then, it holds that:

(i) ⊥⊥G= ∩t∈T ⊥⊥Gt;
(ii) �⊥⊥G= ∪t∈T �⊥⊥Gt.

The graph-theoretic interpretation of dependence preservation and independence
concatenation for reduced temporal networks is investigated next.

Proposition 4. Let Na
|Θt and N t

|Θt be the atemporal and temporal parts of
reduced temporal network N|Θt. Then, the dependence preservation and inde-
pendence concatenation properties hold for the independence relations ⊥⊥Na

|Θt
,

⊥⊥Nt
|Θt

and ⊥⊥N|Θt .
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(⊥⊥Gt)t∈T ◦ = ∩t∈T ⊥⊥Gt ⊥⊥G

⊥⊥Na
|Θt

⊥⊥Nt
|Θt

◦ ⊥⊥N|Θt

◦ ⊥⊥N

Fig. 5. Joining temporal and atemporal independence relations

Next we will show that the join operator can be used to merge the two inde-
pendence relations, proving its soundness and completeness. Soundness of the
join operator means that all independence statements obtained by joining two
independence relations can be read off from the union of the underlying graphs,
whereas completeness means that none of the independence statements of the
union of the graphs has been omitted in the resulting independence relation.

Theorem 1. Let ⊥⊥Na
|Θt

, ⊥⊥Nt
|Θt

, and ⊥⊥N|Θt be constructed as defined above.
Then, it holds that ⊥⊥N|Θt =⊥⊥Na

|Θt
◦ ⊥⊥Nt

|Θt
, i.e. the join operator is sound and

complete.

Proof. Soundness follows from the independence concatenation property. By
this property only independence statements that hold can be derived, because it
is based on Proposition 1 and, therefore, on temporal d-separation. Completeness
follows from Proposition 2 by substituting Na

|Θt , N t
|Θt , and N|Θt for acyclic

directed graphs G, G′ and G′′, respectively. �

6.2 Joining It All Together

In this subsection, the temporal and atemporal independence relations are joined
together, yielding the relation ⊥⊥N . To start, the following proposition and the-
orem show that these relations can be linked to each other by means of the join
operator.

Proposition 5. Let G and N|Θt be the atemporal and temporal parts of temporal
network N . Then, the dependence preservation and independence concatenation
properties hold for the independence relations ⊥⊥G, ⊥⊥N|Θt and ⊥⊥N .

Theorem 2. Let ⊥⊥G, ⊥⊥N|Θt and ⊥⊥N be constructed as defined above. Then,
it holds that ⊥⊥N=⊥⊥G ◦ ⊥⊥N|Θt , i.e. the join operator is sound and complete.

Proof. Soundness and completeness are similar to those of Theorem 1. �

Fig. 5 provides a summary of propositions 3, 4 and 5. Finally, the various inde-
pendence relations can be compared to each other.

Proposition 6. The following properties hold:

– ⊥⊥N|Θt ⊆⊥⊥Na
|Θt

and ⊥⊥N|Θt ⊆⊥⊥Nt
|Θt

;
– ⊥⊥N⊆⊥⊥G and ⊥⊥N⊆⊥⊥N|Θt .
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Fig. 6. The repetitive DBN for VAP
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Fig. 7. The log-likelihoods of the repetitive and non-repetitive DBNs

7 Experimental Results

Using available temporal data of 876 patients with and without VAP, we exper-
imentally compared repetitive and non-repetive DBNs with the aim of demon-
strating the usefullness of the framework. The experiments were done using
Murphy’s BNT toolbox [6].

First, based on the non-repetitive DBN of progression of VAP, shown in Fig. 1,
a repetitive DBN was constructed; it is shown in Fig. 6. The graphical structure
of the non-repetitive network was obtained by using the join operator described
in Section 6. Evaluation of the quality of the two DBNs was done using stratified
tenfold cross-validation, i.e., the VAP dataset was divided randomly into 10
parts, where 9 parts acted as training sets, whereas the remaining part acted
as a test set. The entire cross-validation process was repeated 10 times. In the
process, the probability distributions of the DBNs were estimated using the EM
algorithm [4].

As a measure of the quality of the two DBNs use was made of the log-likelihood
function l [4]:

l(B; D) =
∑
d∈D

log PB(d),
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where B denotes a DBN, D denotes the test set of data of patients from the ICU
with and without VAP, and d ∈ D denotes a tuple with patient data. The higher
the value of the log-likelihood is, the better the distribution fits to the data. For
each iteration of cross-validation, the average log-likelihood was computed.

The experimental results obtained are shown in Fig. 7. On the abcis are the
iteration numbers of individual tenfold cross-validation processes. Although the
log-likelihood varied for each of the DBNs between the different iterations, the
log-likelihood for the non-repetitive DBN is always better than for the repeti-
tive DBN. Thus, there exist datasets for which non-repetitive DBNs outperform
repetitive DBNs, at the same time offering a more natural and precise form of
knowledge representation.

8 Conclusions

The aim of the research described in this paper was to develop a framework
for modelling non-repetitive and repetitive DBNs, based on a modularisation of
independence relations. It appeared that by distinguishing between temporal and
atemporal independence relations, modelling DBNs can be greatly facilitated.

How to build a DBN from its atemporal and temporal parts is not obvious.
This problem was tackled by the introduction of a join operator with special se-
mantics. Using the join operator allows one to build DBNs in a modular fashion,
which in particular is important when designing non-repetitive DBNs. As far as
we know, our paper offers the first systematic method for building non-repetitive
DBNs.

The practical usefulness of the method in the context of learning DBNs from
data was also explored, using a real-world problem, and evidence of the validity
of the method was obtained.
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Abstract. In this paper we focus on the problem of belief aggregation,
i.e. the task of forming a group consensus probability distribution by
combining the beliefs of the individual members of the group. We pro-
pose the use of Bayesian Networks to model the interactions between
the individuals of the group and introduce average and majority canon-
ical models and their application to information aggregation. Due to
efficiency restrictions imposed by the Group Recommending problem,
where our research is framed, we have had to develop specific inference
algorithms to compute group recommendations.

1 Introduction

In this paper we investigate the value of using Bayesian Networks (BN) to repre-
sent how different individuals in a group interact in order to achieve a final choice
or recommendation. Although aggregating information is a common task to a
number of disciplines, including statistics, decision theory, economics, political
science, psychology, etc., our research is framed in the problem of Group Rec-
ommending, task included in the more general field of Recommending Systems
(RS). The the objective is to obtain the most appropriate recommendations for
groups of people where their members may be inter-related in different ways.
In this problem it is usual to assume that the individuals do not have observed
those items that might be recommended. This kind of RS is appropriate for do-
mains where a group of people participates in a single activity such as watching
a movie or going on holiday and also situations where a single person must make
a decision about a group of people. This is a relatively novel problem (research
started focusing on group recommending at the start of the 21st century [1,2])
and has hardly been researched in the literature.

Since the focus of this paper is on the combination of individuals opinions, we
will discuss, non the process by which the individuals reach their opinion, neither
the relationships between the members of the group. In this case we shall assume
that all the individuals use the same set of labels to express their preferences on
an item, and that these preferences are represented by means of a probability
distribution (probably estimated from a data set). On the other hand, we will
not discuss about subjects such as how the groups are formed or how long they
have existed.

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 572–584, 2007.
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According to [3] “... there is nothing close to a single well-accepted normative
basis for group beliefs, group preferences or group decision making.” In this paper
we show how different common decision rules in the literature could be managed
by a proper design of canonical models with the language of BN, giving some
new lights into the combination processes, particularly:

– The average strategy, AVG, which obtains the group rate as the average of
the members’ rates.

– The majority strategy, MAJ, which obtains the group rate as a simply count-
ing of the votes that every group’s member gives for an item. The final rate
will be that one with more votes in the count.

The second section of this paper presents related work on information ag-
gregation. Section 3 describes how to model the group interaction by means
of BN topology, and presents the use of both average and majority gates. Sec-
tion 4 presents some experimental results obtained when applying the proposed
methodology to recommend movies for group of users. Finally, Section 5 includes
our conclusions and some comments about further research.

2 Related Work

There are many papers focusing on combination of probabilistic information,
ranging from a pure statistical approach (see [4,5] for a review) to more applied
problems, as the combination of classifiers [6], prediction markets [7], various
sources of information in a single BN [8] or different BNs into a unique model [3].

In general, the methods for combining information are dichotomized [4] into
mathematical and behavioural approaches. Mathematical approaches consist of
processes or analytical models that operate on the individual probability dis-
tributions to produce a single “combined” probability distribution; whereas be-
havioural approaches attempt to generate agreement among expert by having
them interact in some way. Since this paper is focused on mathematical ap-
proaches we are going review those paper relevant to this subject.

Combining Probability Distributions: Mathematical approaches can be
further distinguished into axiomatic approaches (considering a set of assumptions
that the combination criteria might satisfy) and Bayesian approaches [4]:

– Axiomatic approach: Common functions to deal with belief aggregation are:
i) Linear Opinion Pool where the probability of the group , Pr(G), is ob-
tained as the weighted arithmetic average over the probabilities of the indi-
viduals, Pr(Vi), i = 1, . . . , n, i.e. Pr(G) =

∑n
i=1 wiPr(Vi), wi being weights

summing one.
ii) Logarithmic Opinion Pool (weighted geometric average) defined as Pr(G)
= α

∏n
i=1 Pr(Vi)wi , α being a normalization constant and the weights wi

(called expert weights) typically are restricted to sum one. If the weights are
equal to 1/n, then the combined distribution is proportional to geometric
average.
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– Bayesian Approach [5,4] has been used to combine expert information. This
approach assumes that if there is a decision maker who has prior probability
over the group vote Pr0, and a likelihood function over individual opinions
given the group vote, then, taking the individuals opinions as evidence the
group priors over the pattern of vote can be updated according to Bayes
rule. Usually, an in order to obtain efficient combinations, it is assumed that
individuals opinion are conditionally independent given the group vote.

Group Recommending: Although the problem of group recommending is
relatively new, the same dichotomy can be found, depending on whether they
use individuals opinions to get to a consensus recommendations [9,10,11] or
not [1,2,12]. In general, when focusing on “mathematical” approaches, ad hoc
combinations criteria have been used. For instance [2], which selects the music
stations to be played at a gym, computes the group preference for each (music)
category by summing the squared individual preferences. Then, using a weighted
random selection operator, the next music station to be played is selected.

Related to collaborative-based group RS is Polylens [1], which is an extension
of the MovieLens [13] system that recommends movies to groups of users. These
systems use nearest neighbour algorithms to find those individuals which are
similar to group tastes and to obtain recommendations which merge the vot-
ing preferences of these individuals according to the principle of least misery
(minimum criterion).

3 Modeling Group Decision Networks

As mentioned before, in this paper we shall not consider questions about how
groups are formed nor how they are managed. We shall therefore assume that we
know the composition of the groups, and our problem is to study how this infor-
mation can be represented in the BN and also how to predict recommendations
for groups, i.e. how the inference processes can be performed.

We propose to identify a group as an entity where recommendations are made
by considering the particular recommendations of its members in some way.
Figure 1 shows a typical situation where each member of the group has a guess
about the probability of relevance of a given item. In order to model group be-
haviour we propose that the group node (G) has as parents (Pa(G)) the set of
nodes representing its individuals (right hand side of Figure 1). In this paper
we shall not discuss the case where the combination mechanism might be repre-
sented by means of a “naive-Bayes-like” approach, i.e. a root group node having
as children the set of individuals. This modelization might be related to the
classical Bayesian Approach for combining probability distributions. Following
with our model, in Figure 1 we use dashed lines to represent the idea that the
individuals opinion would be obtained by considering different pieces of infor-
mation. It is interesting to note that we do not impose any restriction about
the dependences or independences between the members of the group, i.e. the
individuals might use information of some common variables when predicting



Average and Majority Gates 575

A
B C DMember D

Member A

Member B Member C

G
Group 

Opinion

Fig. 1. Modeling group’s interactions

their votes. We will only assume that the group opinion is independent of the
information sources, IS, given that we know the opinion of its members, i.e.
I(G|Pa(G)|IS).

With the idea of being general, the predicted rate for the ith group, Gi,
will be obtained by considering the individuals opinions, possibly updated after
knowing new pieces of evidence, ev. Ideally, the opinion obtained by merging
these individuals probabilities should represent the information of the group.
Considering the proposed BN representation, the posterior probability of the
group voting with rate s is obtained by means of

Pr(Gi = s|ev) =
∑

pa(Gi)

Pr(Gi = s|pa(Gi)) × Pr(pa(Gi)|ev).

being pa(Gi) a particular configuration for the parent set of Gi, i.e an instance
of its members. We shall denote by R = {1, . . . , r} the set of possible rating
alternatives. These conditional probability distributions can be considered as a
“social value function” describing how the opinions of the members affect the
group’s recommendation.

One of our objectives is to obtain combining strategies able to be implemented
in real-time situations. Therefore the reduction of the computational complex-
ity becomes a key design parameter. Thus, since in real Group Recommending
applications, the problem is to select those items, Ik, with higher probability
of being liked by the group, i.e. for each pair item–group we have to compute
the probability Pr(Gi|Ik) and considering that there usually exists a large set of
unobserved items in the system (which act as the evidence) this process becomes
computationally expensive and therefore it is necessary to look for efficient al-
gorithms. It is also interesting to note that with this requirement in mind, we
propose to use canonical models to define the probabilities P (Gi|pa(Gi)). In gen-
eral, since the group might be large, it implies important savings in storage (we
do not need to store the exponential number of conditional probability values)
and also efficient inference algorithms could be obtained.
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3.1 Weighted Sum Gate

With this gate we are modeling that the group rate can be considered as the
average vote of its members. This situation can be represented by means of the
following additive canonical model, which is an extension of [14]:

P (Gi = k|pa(Gi)) =
|Pa(Gi)|∑

j=1

w(vj,s, gi,k), (1)

where w(vj,s, gi,k) can be interpreted as the weight (effect) that the jth group
member voting the sth value has in the kth rate of the group Gi. The only
restriction that we have to impose is that w are a set of non-negative weights
verifying that ∑

k∈R

∑
Vj∈Pa(Gi)

w(vj,t, gi,k) = 1, ∀ pa(Gi)

It is interesting to note that by the way of defining how to compute the weights
w we can control the bias of the individuals (bias is related to the preference of
a user to one particular vote and its capability to predict the group judgements)
and also the relative quality (importance) of the individuals in the group. For
example, given the group in Figure 1 with R = {1, 2, 3}, assuming that all the
users are equal for prediction purposes and that there is no individual bias, i.e.
the weights might be defined as follows

w(vj,t, gi,k) =
{ 1

|Pa(Gi)| if k = t,

0 otherwise.
(2)

Then, we have that Pr(Gi|1, 2, 2, 2) = {0.25, 0.75, 0.0} and Pr(Gi|1, 2, 2, 3) =
{0.25, 0.5, 0.25}.

Propagating with canonical weighted-sum. Assuming that, given the mem-
bers opinion, the group’s rating is independent of the IS, the exact a posteri-
ori probabilities for group nodes, Pr(Gi = s|ev), can be computed efficiently by
means of a straight application of the following theorem1:

Theorem 1. Let Gi be a group node, let V1, . . . , Vn be the individuals in the
group. If the conditional probability distributions can be expressed with a canon-
ical weighted sum and the evidence, ev, belongs to the information sources, IS,
then the exact a posteriori probability distribution for the group can be computed
using the following formula:

Pr(gi,s|ev) =
n∑

j=1

r∑
t=1

w(vj,t, gi,s) · Pr(vj,t|ev).

1 Due to the lack of space, we do not include the proof of the theorems.
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We consider this theorem important because it expresses that exact propa-
gation can be done without imposing any restriction about the dependence or
independence among individuals patterns of rating. Moreover, when there is no
individual bias, i.e., the weights can be defined as w(vj,t, gi,s) = wj if t = s, and
0 otherwise, our model coincides with the classical Linear Opinion Pool. Thus
Linear Opinion Pool can be considered as a particular case of the average gate.

3.2 Majority Gate

Our objective in this section is to model the Majority criterion where the final
decision will depend on a simple counting of the votes received for each rating
from the individuals. The rate which receives the largest number of votes is then
selected as the consensus (majority) decision. This is the usual combination
strategy when, for each individual, we only know the label representing his/her
rate.

Definition 1 (Majority Gate). A group node Gi is said that represents a
majority combination criterion if given a configuration of its parents pa(Gi) the
conditional probability distributions can be represented as

Pr(Gi = s|pa(Gi)) =
{ 1

m if s = argmaxk count(k, pa(Gi))
0 otherwise (3)

where count(k, pa(Gi)) is a function returning the number of occurrences of
the state k in the configuration pa(Gi), and m is the number of states where
count(k, pa(Gi)) reaches the maximum value.

For example, considering a node Gi with five parents and with three candidate
rates, ranging from 1 to 3, then Pr(Gi|1, 1, 2, 1, 1) = (1, 0, 0) and Pr(Gi|1, 2,
2, 1, 3) = (0.5, 0.5, 0). This representation of the majority gate implies an impor-
tant saving in storage (we can compute its values when needed). Nevertheless,
and in order to combine the individuals opinions, we need to perform the expo-
nential number of computations. We shall see how these computations can be
performed efficiently.

Propagating with majority gates: A key idea behind majority criterion is
that the order in which the individuals are considered does not matter, and
therefore there exist many different configurations collapsing to the same sit-
uation. For example, consider that four individual vote with 1 and one indi-
vidual votes with 2. In this case there are five different configurations repre-
senting the same situation, i.e. pa1(Gi) = {2, 1, 1, 1, 1}, pa2(Gi) = {1, 2, 1, 1, 1},
pa3(Gi) = {1, 1, 2, 1, 1}, pa4(Gi) = {1, 1, 1, 2, 1} and pa5(Gi) = {1, 1, 1, 1, 2}.

It must be noticed that since the order is not a factor, we might talk about
combinations. We will denote by ∆(Gi) the set of combinations with repetition
from the individual votes in Pa(Gi) and we use δ(Gi) or < > to denote a single
combination. Thus, the above situation should be represented by δ(Gi) =<
1, 1, 1, 1, 2 >. Considering that the number of parents of Gi is n and that each
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parent has r different states we find that the number of possible combinations
with repetition is CRr

n = (n + r − 1)!/(n!(r − 1)!)
The next theorem shows that in order to combine the different individual

rates we only need to take into account the probability distributions associated
to the set of combinations with repetition.

Theorem 2. Let Gi a group node in a BN whose conditional probability distri-
butions are represented using a majority gate, let ∆(Gi) be the set of possible
combinations with repetition of the values in its parent set, Pa(Gi), then

Pr(Gi = s|ev) =
∑

δ(Gi)∈∆(Gi)

Pr(Gi = s|δ(Gi))Pr(δ(Gi)|ev) (4)

This theorem shows that if we know Pr(δ(Gi)|ev), the combination of the infor-
mation with a majority gate could be done in a time proportional to the size of
CRr

n, i.e. in the order of O(nr−1). Taking into account that in many situations
r << n, this implies important savings with respect to considering the number
of possible configurations, O(rn). For instance, if n = 20 and r = 2 we have that
CRr

n = 21 whereas the number of configurations (permutations) is more than 1
million.

Nevertheless, to compute Pr(δ(Gi)|ev) we must sum over all the possible
configurations in the combination, i.e.

Pr(δ(Gi)|ev) =
∑

pa(Gi)∈δ(Gi)

Pr(pa(Gi)|ev)

where pa(Gi) ∈ δ(Gi) represents that the combination with repetition δ(Gi) can
be obtained from the configuration pa(Gi) by removing the order constraints.
Thus, since we shall need to compute these probability values for all the possi-
ble combinations, we find that an exponential number of computations will be
required to obtain the group decision.

Assuming independence to approximate Pr(δ(Gi)|ev). Since we want
to compute Pr(δ(Gi)|ev) efficiently, we propose to approximate this joint dis-
tribution by assuming independence between the individuals. Although this as-
sumption might be very restrictive, it has been demonstrated very fruitful in
practical purposes when combining information [4,6].

Firstly, and with the idea of being general, we are going to introduce some
notation: Let π(x) be any configuration of n independent variables X1, . . . Xn.
As these variables are independent Pr(π(x)) =

∏n
i=i Pr(xi,j), xi,j being the

value that variable Xi takes in the configuration π(x). Let δk be a combination
with repetition of a subset of k variables, X1, . . . Xk, and s ∈ δk represents the
fact that there exists at least one variable taking the value s in the combination
δk. Also, we say that δk−1 is a s-reduction of δk, denoted by δ↓s

k , if δk−1 can be
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<1,1,1,2,2>

<1,1,1,2>

<1,1,2,2>

<1,1,1>

<1,1,2>

<1,2,2>

<1,2>

<2,2>

<1,1>

<1>

<2>

Fig. 2. Recursion graph for computing Pr(< 1, 1, 1, 2, 2 >)

obtained by removing a value s from the combination δk. The following theorem
shows how Pr(δn) can be computed recursively:

Theorem 3. Let δn be any combination with repetition from the set of X1, . . . , Xn.
Then, if Xi is independent of Xj , ∀i �= j, the probability associated with the com-
bination δn can be computed as

Pr(δn) =
{

Pr(x1,k) if n = 1, with δ1 =< k >∑
s∈δn

Pr(δ↓s
n−1)Pr(xn,s) if n > 1

(5)

A first idea should be to apply directly this result to compute Pr(δ(Gi)|ev).
For instance, Figure 2 shows the recursion graph for the computation of Pr(<
1, 1, 1, 2, 2 >), where each different combination obtained after a reduction has
been displayed only once. The key observation is that the number of (sub)combi-
nations obtained after applying a reduction process is relatively small. Thus,
a recursive algorithm may encounter each one of them many times in different
branches of its recursion graph. For example, Figure 2 shows that the (sub)combi-
nation Pr(< 1, 1, 2 >) should be computed two times and the (sub)combination
Pr(< 1, 1 >) three times. Moreover, some of these subproblems might also
appear when computing different joint probabilities, like Pr(< 1, 1, 2, 2, 2 >).
Therefore, applying directly Theorem 3 does more work than necessary.

We propose to compute every probability for a given subcombination just once
and then saves its values in a table, thereby avoiding the work of recomputing
this probability every time the subcombination is encountered.

The next algorithm shows how to compute the joint probability distributions
for all the possible combinations with replacement in the set ∆. We follow a
bottom-up approach where we first compute the probabilities associated with
the (sub)combinations with lower size, being the size the number of variables
used to form the combinations with repetition, and these probabilities will be
used as the base of the calculus for the combinations with greater size. Ini-
tially, when considering the first variable X1, we have r different combinations
with replacement, one for each possible value of the variable X1. Then, in a
general stage, we found out that the probabilities associated with each combi-
nation δk of the first k variables are used in the computation of the probabilities
of r different combinations with size k + 1, one for each possible value of the
variable Xk+1. Each one of these combinations will be denoted by δk∪s with
1 ≤ s ≤ r.
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Computing Pr(∆)
Pr(δ1) = Pr(X1)
for ( k = 1; k<n; k++ )

for each δk ∈ CRr
k do // for each combination of size k

for (s = 1; s<=r; s++ ) //for each value of Xk+1
Pr(δk∪s)+ = Pr(δk) × Pr(xk+1,s)

An inspection of the algorithm yields a running time of T (n) =
∑n

i=1 rCRr
i ,

i.e. T (n) ∈ O(rnr), being much more efficient than applying directly the recursive
algorithm from Theorem 3. For example, in case of bivaluated variables, as the
usual case in decision problems, we have a quadratic algorithm for combining
the output of the different individuals. With respect to the memory needed to
store the intermediate results we find out that the values in the stage k are only
used in the stage k − 1, therefore the used memory is in the order of O(CRr

n).

4 Experimentation: Recommending Movies for Groups

In order to study the performance of the use of AVG or MAJ gates when combin-
ing probabilistic information we consider the following problem: The prediction
of the rate with which a group of people might score a given movie.

The data sets: With respect to the used datasets, they have been obtained
from MovieLens2. Since MovieLens does not include group information we have
decided to build them from the MovieLens training sets3. We have used two
different criteria trying to capture different processes behind the creation of a
group: (C1) Implementing the idea of the group of my colleagues, we set each user
as the group administrator and we look for the 10 most similar users (those which
are positively correlated with the administrator in the training dataset). Then,
we select those groups of five individuals with the only restriction that at least
they have rated (observed) one movie in common. Note that since similarities
are not transitive, this criterion does not imply necessarily having groups with
highly correlated members. (C2) Second, we have decided to fix a group (also
with five individuals) with the only restriction that all the members of the group
must rate at least four common movies.

With respect of the group test sets, they are obtained from each one of the
MovieLens test sets. Particularly, whenever we find a movie in the test sets
which has been rated by all the members of a group we include the tern (group
ID, movie ID, group rate) in its group test dataset. Note that the group rate is
obtained, by means of a deterministic function CombineRate(r1, . . . , rn), as the
2 MovieLens was collected by the GroupLens Research Project at the University of

Minnesota. The dataset contains 1682 movies and 943 users, containing 100,000
transactions where a user rates a movie using a scale from 1 to 5.

3 With the idea of using 5 fold cross validation, we have used 5 different data subsets,
each one obtained by splitting MovieLens into two disjoint sets, the first one for
training (with 80% of the data) and the second one for test (with 20% of the data).
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average or the majority individual’s true rate, r1, . . . , rn. Therefore, combining
the decision used by a group to rate a movie and the criterion used to form a
group, we obtain four different test datasets, i.e. AVG-C1 and MAJ-C1 (with a
mean of 115 different records) and AVG-C2 and MAJ-C2 (with a mean of 17524
records).

Selecting a rate: Given Pr(X) encoding a probability distribution over the
candidate rates, the problem is to determine which is the output rate that should
be recommended for X . Two basic alternatives might be considered for the
RateSelection process:

MP Maximum a posteriori probability, i.e. rate = arg maxs{Pr(X = s|ev)}.
AP A posteriori average rate, i.e. rate =

∑r
k=1 k × Pr(X = k|ev)}.

Experimental framework: The objective is to predict which is the rate that
a group of people will use to score an unobserved movie, I. We assume that for
each member of the group, Vk, we know a probability distribution representing
the belief about how this individual should rate this movie, i.e. Pr(Vk = s|I).
Particularly, in this experimentation, these probabilities are estimated using a
Collaborative-based RSs [12], i.e. they have been estimated by considering the
ratings that users similar to Vk have given to the movie I.

In this framework it might be possible that, for a given user Vk, none of the
users similar to him had rated the movie I. In this situation the probabilities
Pr(Vk|I) have been estimated without information. Therefore, and in order to
study the bias that the a priori distribution might produce in the predicted rate,
we will consider a modification of the approaches used to select a rate: The
idea is to use only the new piece of evidence that each candidate rate receives,
computed as the difference between the a priori (without evidence) and the a
posteriori probability values, i.e. Pr(Ga = s|ev) − Pr(Ga = s). Note that this
idea could be used with both AP (denoted by PD+AP) or MP (denoted by
PD+MP) in the RateSelection process.

In order to study the performance of the combination methods, we are going
to consider two different situations: In the first one, that could be considered
the Baseline (see left hand side of table below), the predicted rate is defined as
the average or majority rate of r1, . . . , rn, being rk the rate that, individually,
each member predicts using RateSelection. The second alternative (right hand
side below) consists on, firstly using the AVG or MAJ gates, combining the indi-
viduals probability distributions into a unique group distribution which ideally
represents the group pattern of vote (CombineProb(Pr1, . . . , P rn)). Then, the
group rate is selected.

Baseline Using Group Layer
For each Vk ∈ G do Pr(G|ev) = CombineProb(Pr1, . . . , P rn)

rk = RateSelection(Prk) G_rate = RateSelection( Pr(G|ev))
G_rate = CombineRate(r1, . . . , rn)
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Table 1. Experimental Results

(C1) Using Similarity (C2) Common movies

Group Comb. Rate Baseline Group layer Baseline Group layer
Dec. Gate Selection %S MAE %S MAE %S MAE %S MAE

AVG AVG AP 47,53 0,566 45,37 0,590 57,40 0,441 58,90 0,422
PD+AP 60,86 0,398 61,42 0,402 66,76 0,337 64,76 0,361

MAJ MP 45,63 0,495 62,13 0,394 44,33 0,486 62,12 0,392
PD+MP 44,99 0,497 62,32 0,392 45,05 0,481 61,86 0,395

MAJ AVG AP 43,01 0,655 40,72 0,683 47,82 0,578 48,23 0,567
PD+AP 54,64 0,476 58,24 0,446 56,30 0,457 58,44 0,438

MAJ MP 59,34 0,461 60,10 0,424 55,11 0,493 58,05 0,446
PD+MP 59,19 0,461 60,29 0,422 55,72 0,486 58,35 0,443

Two different accuracy measures will be considered [13]: the percentage of
success (%S), which measures the frequency with which the system makes correct
predictions and the mean absolute error (MAE), which measures the average
absolute deviation between a predicted rate and the group’s true rate.

Table 1 presents the average results obtained after repeating the experiment
with the 5 folds. First column represents the criterion used in the test dataset
to decide the group rate. Second column represents the canonical model used
in the group layer. In this experimentation, we have used an unbiased uniform
weighting scheme in the AVG gate, i.e. w(vj,s, gi,k) = 1/|Pa(Gi)| if k = s and
0 in the other cases. Note that this model corresponds with the classical Linear
Opinion Pool when all the users are considered equivalent for prediction pur-
poses. Third column represents the criteria used in the RateSelection process.
The next two columns represents how the groups have been constructed. In this
table, the results for each particular dataset can be found in the cells indexed
by the pair (Group Dec., group construction criterion).

From this table, as general conclusions, we can say that: i) it is better to use
BN (the AVG or MAJ gates) to combine individual preferences, ii) MAJ gate
could be preferable in the case it is unknown how the group (true) decisions
are obtained (quite good results have been obtained using also MAJ gates when
the “real” group vote is obtained using AVG), iii) With respect to the AVG
gate, it seems preferable to use PD+AP to correct the a priori bias of the AVG
gate. Also, better results have been obtained when the groups have been formed
without considering similarities (we believe that these results can be improved
by using proper weights in AVG gate), iv) With respect to MAJ gate it seems
to perform better when considering similar users. No significant differences can
be found between the use of MP or PD+MP.

5 Conclusions

A general BN-based model for combine probabilistic information in a group
recommending framework has been proposed in this paper. With this model the
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interaction among the individuals when deciding a group rate are represented
intuitively by means of the use of AVG (average) and MAJ (majority) canonical
modes. Linear time inference algorithms (assuming independence in the case of
MAJ gate) have been developed to compute the a posteriori distribution for
the group. These distributions represent the group preferences for a given item.
Experimental results show the validity of our proposal.

By way of future work, we are planning to evaluate the model with real
data, involving real groups to determine the quality of the recommendations
provided and also to apply these methodology to problems as the combination
of classifiers.
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Abstract. In the score plus search based Bayesian networks structure
learning approach, the most used method is hill climbing (HC), because
its implementation is good trade-off between CPU requirements, accu-
racy of the obtained model, and ease of implementation. Because of these
features and to the fact that HC with the classical operators guarantees
to obtain a minimal I-map, this approach is really appropriate to deal
with high dimensional domains. In this paper we revisited a previously
developed HC algorithm (termed constrained HC, or CHC in short) that
takes advantage of some scoring metrics properties in order to restrict
during the search the parent set of each node. The main drawback of
CHC is that there is no warranty of obtaining a minimal I-map, and so
the algorithm includes a second stage in which an unconstrained HC is
launched by taking as initial solution the one returned by the constrained
search stage. In this paper we modify CHC in order to guarantee that
its output is a minimal I-map and so the second stage is not needed.
In this way we save a considerable amount of CPU time, making the
algorithm best suited for high dimensional datasets. A proof is provided
about the minimal I-map condition of the returned network, and also
computational experiments are reported to show the gain with respect
to CPU requirements.

1 Introduction

Data mining goal can be understood as compressing the available data into
a more compact representation called model. Later this model can be used to
tackle different descriptive (e.g. identifying dependences relations, clusters, etc.)
or predictive (e.g. classification, computing posterior beliefs) tasks. Bayesian
Networks (BNs) [20,16,17] have become one of the favorite knowledge represen-
tation formalisms for model-based data mining because of their double descrip-
tive/predictive capability and their innate uncertainty management.

Bayesian Networks (BNs) are graphical models able to represent and manipu-
late efficiently n-dimensional probability distributions [20]. The knowledge base
a BN encodes can be viewed as a double representation model divided into a
qualitative (a directed acyclic graph or dag) and a quantitative part (a set of
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locally specified probability distributions). Thus, descriptive tasks are carried
out by performing relevance analysis over the graph, while predictive tasks are
based on a clever use of the (in)dependences codified in the dag to allow ef-
ficient probabilistic inference. Being BNs so attractive models and due to the
increasing availability of data, it is not strange the large number of works found
in the literature to tackle with the BN structure learning problem. Somewhat
generalizing, there are two main approaches for learning BNs:

• Score+search methods. A function f is used to score a network/dag with re-
spect to the training data, and a search method is used to look for the network
with best score. Different scoring metrics (Bayesian and non-Bayesian [17, ch.
8][14]) and search methods (mainly of heuristic nature because the NP-hardness
of BN structure learning problem [9]) have been proposed.
• Constraint-based methods. The idea underlying these methods is to satisfy as
many independences present in the data as possible [21][17, ch. 10]. Statistical
hypotheses testing is used to determine the validity of conditional independence
sentences. There also exist hybrid algorithms that combine these two approaches,
e.g. [2] or even hybrid scoring metrics [4].

In BN structure learning in the space of dags, local search-based approach
([14,8,6,7,13][17, ch. 9]) is the outstanding one when dealing with large datasets
(specially large number of variables), because its good trade-off between re-
sources required (e.g. CPU time) and accuracy of the obtained model.

In this work we focus on local search methods and concretely in one of its sim-
pler versions, hill climbing, with the goal of showing how its efficiency (CPU time
requirements) can be reduced without decreasing their accuracy. Thus, we follow
the research line started in [15] where a constrained hill climbing (CHC) algo-
rithm for BN structure learning was proposed. In [15] we took advantage during
the local search of some interesting properties of scoring metrics, to remove as
candidate parents (of X) those nodes found as conditionally independent given
the current parent set. As we do this at each step of CHC the number of statis-
tics to be computed significantly decreases and so CHC is faster than pure HC.
However, this way of proceeding can finish in a suboptimal solution, so the last
step of CHC is to launch an unconstrained HC by taking the solution previously
found as starting point. Here, we propose a new version of CHC that avoids the
last step, resulting in a faster one. We provide theoretical results about the type
of networks obtained and also an experimental comparison with CHC and HC.

The paper is structured as follows: We begin in Section 2 with some prelimi-
naries about Bayesian networks and local search in the space of graphs. Sections
3 and 4 constitute the core of this paper, because in them we develop the algo-
rithm we propose and experimentally evaluate it. Finally, in Section 5 we present
our final conclusions and outline future research.

2 Preliminaries

In this section we set the notation and review basics concepts about BNs and
BNs structural learning by using local search.
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2.1 Bayesian Networks Basics

A Bayesian Network (BN) [20] is a tuple B = (G,P), where: (a) G = (V , E) is
a dag whose nodes V = {X1, X2, . . . , Xn} represent the problem variables and
whose topology (arcs in E) encodes conditional (in)dependence relationships
among the variables; and (b) P is a set of locally specified conditional probability
distributions {P (Xi|paG(Xi) : i = 1, . . . , n}, paG(Xi) being the parent set of Xi

in G. From these conditional distributions we can recover the joint distribution
over V :

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|paG(Xi)) (1)

We denote that variables in X are conditionally independent (through d-
separation) of variables in Y given the set Z, in a dag G as 〈X,Y|Z〉G. The
same sentence but in a probability distribution p is denoted as Ip(X,Y|Z). A
dag G is an I-map of a probability distribution p if 〈X,Y|Z〉G =⇒ Ip(X,Y|Z),
and is minimal if no arc can be eliminated from G without violating the I-map
condition. G is a D-map of p if 〈X,Y|Z〉G ⇐= Ip(X,Y|Z). When a dag G is both
an I-map and a D-map of p, it is said that G and p are isomorphic models. It is
always possible to build a minimal I-map of any given probability distribution
p, but some distributions do not admit an isomorphic model [20]. In general,
when learning Bayesian networks from data our goal is to obtain a dag being a
minimal I-map of the probability distribution encoded by the dataset.

2.2 Learning BNs by Local Search

The problem of learning the structure of a BN can be stated as follows: Given a
training dataset D = {v1, . . . ,vm} of instances (configurations of values) of V ,
find the dag G∗ such that

G∗ = arg max
G∈Gn

f(G : D) (2)

where f(G : D) is a scoring metric which evaluates the merit of any candidate
dag G with respect to the dataset D, and Gn is the set containing all the dags
with n nodes.

Local Search (concretely Hill-Climbing) methods traverse the search space
starting in an initial solution and doing a finite number of steps. At each step
the algorithm only considers local changes, i.e. neighbor dags, and chooses that
resulting in the greatest improvement of f . The algorithm stops when there is
no local change yielding an improvement of f . Because of this greedy behavior
the execution stops when the algorithm is trapped in a solution that most times
locally maximizes f rather than globally maximizing it. Different strategies are
used to try to escape from local optima: restarts, randomness, etc.

The effectiveness and efficiency of a local search procedure depends on sev-
eral aspects, like the neighborhood structure considered, the starting solution or
the ability of fast evaluation of candidate subgraphs (neighbors). The neighbor-
hood structure considered is directly related with the operators used to generate
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neighbors by applying local changes. In BN learning, the usual choices for local
changes in the space of dags are arc addition, arc deletion and arc reversal. Of
course, except in arc deletion we have to take care of avoiding to introduce di-
rected cycles in the graph. Thus, there are O(n2) possible changes, n being the
number of variables. With respect to the starting solution, the empty network is
usually considered although random starting points or perturbed local optima
are also used, specially in the case of iterated local search.

Efficient evaluation of neighbors/dags is based on an important property of
scoring metrics: decomposability in presence of full data. In the case of BNs
decomposable metrics evaluate a given dag as the addition of its nodes family
score, i.e., the subgraphs formed by a node and its parents in G. Formally, if f
is decomposable then:

f(G : D) =
n∑

i=1

fD(Xi, PaG(Xi)) (3)

fD(Xi, PaG(Xi))=fD(Xi, PaG(Xi) : Nxi,paG(Xi)) (4)

where Nxi,paG(Xi) are the statistics of the variables Xi and PaG(Xi) in D, i.e,
the number of instances in D that match each possible instantiation of Xi and
Pa(Xi).

Thus, if a decomposable metric is used, a procedure that changes only one
arc at each move can efficiently evaluate the neighbor obtained by this change.
This kind of (local) methods can reuse the computations carried out at previ-
ous stages, and only the statistics corresponding to the variables whose parents
has been modified need to be recomputed. It is clear that a hill climbing algo-
rithm using the operators above described can take advantage of this operation
mode, concretely it has to measure the following differences when evaluating the
improvement obtained by a neighbor dag:

1. Addition of Xj → Xi: fD(Xi, PaG(Xi) ∪ {Xj})− fD(Xi, PaG(Xi))
2. Deletion of Xj → Xi: fD(Xi, PaG(Xi) \ {Xj})− fD(Xi, PaG(Xi))
3. Reversal of Xj → Xi: It is obtained as the sequence: deletion(Xj → Xi) plus

addition(Xi → Xj), so we compute [fD(Xi, PaG(Xi) \ {Xj})
−fD(Xi, PaG(Xi))] + [fD(Xj , PaG(Xj) ∪ {Xi})− fD(Xj , PaG(Xj))]

3 Fast-CHC: An One Iteration Constrained Hill Climbing
for Learning BNs

Apart from decomposability there are other desirable properties of scoring met-
rics. Among them the following one was the key point in the design of CHC [15]
algorithm:

Definition 1. Let D be a dataset containing m iid samples from some distri-
bution p. Let G be any dag, and G′ the dag obtained by adding edge Xi → Xj

to G. A scoring metric is locally consistent if in the limit as m grows large, the
following two conditions hold:
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1. If ¬Ip(Xi, Xj |PaG(Xj)), then f(G : D) < f(G′ : D)
2. If Ip(Xi, Xj|PaG(Xj)), then f(G : D) > f(G′ : D)

Usually considered scoring metrics as BDe, MDL and BIC are locally consistent
[8]. From Definition 1 it can (asymptotically) be assumed that the differences
computed by a locally consistent scoring metric f can be used as conditional
independence tests over the dataset D. To do this, it is enough to suppose that
D constitutes a sample which is isomorphic or that the distribution p is faithfull
to a DAG, that is, a perfect-map of p can be obtained via D. In fact, CHC [15]
is not the only approach to learn BNs in which the difference between scores is
used as a conditional independence test, thus in [1,19,18] Bayesian metrics have
been used to perform conditional tests finding that, in general, they are more
reliable than traditional chi-square based conditional test.

CHC algorithm [15] can be viewed as a two-iterations algorithm: in the first
one it takes advantage of this property to constrain the number of modifications
(neighbors) to be explored at each iteration of the hill climbing procedure; and,
in the second one an unconstrained hill climbing is launched by taking as starting
point the solution obtained in the first phase. This second iteration is necessary to
ensure that the solution finally returned is an I-map. Table 1 shows the algorithm
CHC (and Fast-CHC).

As we can see CHC (and Fast-CHC) restricts the neighborhood of a dag G
by constraining the set of allowed parents for each node Xi. To do this, we
associate a set of forbidden parents (FP) to each node. The content of FP (Xi) is
modified by using the information provided by the differences computed at the
current step, concretely we use definition 1 (locally consistent metric) to update
FP (Xi):

– Addition. If when adding Xj → Xi we get d < 0, then (asymptotically)
Ip(Xi, Xj|PaG(Xi)), and so we do not have to test1 anymore the addition
of Xj as parent of Xi.

– Deletion. This case is analogous to addition. Now, if we get d > 0 when delet-
ing Xj → Xi, then again we have that (asymptotically) Ip(Xi, Xj |PaG(Xi)).

Here, we have used metric differences as a sort of conditional independence
tests, but in a more general framework, we could use any conditional indepen-
dence test to manage the FP set. In our work we use metric differences to get
reliable test and to save CPU time because all the necessary scores to do the
test have been previously computed.

The main goal of this work is to investigate how to avoid the second HC
iteration, because it needs a considerable amount of CPU time which degrades
the whole performance of CHC algorithm. However, to avoid this second iteration
we must guarantee that the dag obtained in the first one is an I-map. To do this
we have to introduce some changes into CHC algorithm, obtaining a new version

1 In fact there are two versions of CHC, one based on forbidding the arc, i.e., Xj as
parent of Xi, and other base on forbiding the undirected edge, i.e., Xj as parent of
Xi but also Xi as parent of Xj .
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Table 1. Algorithm(s) for learning Bayesian networks by using hill climbing-based
approaches. Hill climbing is described in normal text, while if underlined text is added
we get CHC algorithm. Finally in step 5 we add the modifications needed to get Fast-
CHC (marked in boldface and preceded by [Fast-CHC]).

Algorithm Fast-CHC
1. Initialization: Choose a dag G as the starting point. ∀Xi do FP (Xi) = ∅.

2. Neighbors generated by addition: For every node Xi and every node
Xj /∈ (PaG(Xi) ∪ FP (Xi)) compute the difference d between G and

G ∪ {Xj → Xi} as described in Section 2.2. If d < 0 then add {Xj} to

FP (Xi) and add {Xi} to FP (Xj). Of course, neighbors in which adding

Xj → Xi induces a directed cycle are not taken into account. Store the
change which maximizes d.

3. Neighbors generated by deletion: For every node Xi and every node
Xj ∈ PaG(Xi) compute the difference d between G and G \ {Xj → Xi} as
described in Section 2.2. If d > 0 then add {Xj} to FP (Xi) and add {Xi}
to FP (Xj). Store the change which maximizes d.

4. Neighbors generated by reversal: For every node Xi and every node
Xj ∈ PaG(Xi), such that, Xi /∈ FP (Xj) compute the difference d between

G and G \ {Xj → Xi} ∪ {Xi → Xj} as described in Section 2.2. In this case
d = d1 + d2, where d1 is the difference obtained by removing Xj as parent

of Xi, and d2 is the difference obtained by adding Xi as parent of Xj .

If d1 > 0 or d2 < 0 then add {Xj} to FP (Xi) and add {Xi} to FP (Xj).

Again, modifications inducing directed cycles are avoided. Store the change
maximizing d.

5. From the three changes stored in the previous steps takes the one which
maximizes d. If d ≤ 0 then stops the algorithm and
- [HC,Fast-CHC] return G
- [CHC] return HC(G)

else:
- [HC,CHC] modify G by applying the selected change and return to step 2
- [Fast-CHC] modify G by applying the selected change and in the case of
adding Xj → Xi, then

re-compute FP (Xi) and FP (Xj) as FP (Xi) = FP (Xi) \ AdjG(Xj)
∀Xa ∈ AdjG(Xj), them re-compute FP (Xa) = FP (Xa) \ {Xi}
and FP (Xj) = FP (Xj) \ AdjG(Xi).
∀Xb ∈ AdjG(Xi), them re-compute FP (Xb) = FP (Xb) \ {Xj}

Return to step 2.

that we call Fast Constrained Hill Climbing (Fast-CHC), shown in Table 1 and
discussed in the next paragraphs.

First, let us discuss about two basic points: monotonicity and termination.
We can easily see that Fast-CHC is monotone with respect to f , i.e., f(G : D) ≤
f(G′ : D), where G′ is the neighbor of G which maximizes the difference d. From
this monotonic behavior and due to the fact that Fast-CHC stops when there is
no neighbor of G which improves f(G) termination is guaranteed.
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Now, let us discuss about the two more important properties of HC-based
BNs learning algorithms: (1) HC algorithms are efficient because of their local
behavior, and (2) under faithfulness conditions and no matter which starting
point is used, they guarantee to obtain an I-map minimal of p [15]. Because of
these two properties HC algorithms are very good candidates to be used in high
dimensional databases, and so, it is very interesting for us to contribute with
new improvements that try to speedup HC algorithms but maintaining at the
same time the quality of their output. In [15] we demonstrate that an algorithm
that only restricts the parents set by using the subset FP () could get stuck in
a locally sub-optimal solution, and so we introduce a second (unconstrained)
HC iteration to ensure the I-map condition. Here, CHC algorithm is updated
to Fast-CHC by (1) re-computing FP () subsets when addition is the selected
operator, and (2) removing the second HC iteration. Concretely, when addition
of Xj → Xi is the selected movement, then we remove any node adjacent to Xj

from FP (Xi) and any node adjacent to Xi from FP (Xj), beside we also remove
the inverse direction, i. e., if we remove Xa from FP (Xb) then we remove Xb

from FP (Xa).
The following proposition proves the type of output provided by algorithm

Fast-CHC.

Proposition 1. Let D be a dataset containing m iid samples from some distri-
bution p. Let Ĝ be the dag obtained by running Fast-CHC algorithm by taking
a dag G0 as the initial solution, i.e., Ĝ = Fast-CHC(G0). If the metric f used
to evaluate dags in Fast-CHC is locally consistent, then under the faithfulness
assumption Ĝ is a minimal I-map of p in the limit as m grows large.

Proof sketch: Because of the faithfulness assumption there exists dag G∗ being a
perfect-map of p, where each variable Xi is conditionally independent of the rest
given their MarkovBlanket, i.e., ∀Xi and ∀Xj /∈MB(Xi), Ip(Xi, Xj|MBG∗(Xi)),
where MBG∗(Xi) = PaG∗(Xi) ∪ ChG∗(Xi) ∪ PaG∗(ChG∗(Xi)). Thus, our first
step is to prove that Ĝ is an I-map of G∗, which reduces to prove that in Ĝ we have
a superset of MBG∗(Xi) for each Xi, i. e., MBG∗(Xi) ⊆ MBĜ(Xi). Our second
step will be to prove that this I-map is also minimal.

[(1) Ĝ is an I-map of G∗] First at all, we have to note that if an adjacency
Xi −Xj is in G∗ then it is also in Ĝ because there is not subset S of variables,
such that, Ip(Xi, Xj |S). Therefore, MBĜ(Xi) includes PaG∗(Xi) ∪ ChG∗(Xi).
Now we prove that PaG∗(ChG∗(Xi)) is also included in MBĜ(Xi). The three
following cases must be considered:

• Case a) Let us suppose that Xi → Xj ← Xpj is in Ĝ and in G∗, then by
definition of MB Xpj is included in MBĜ(Xi). • Case b) Let us suppose Xi →
Xj → Xpj is in Ĝ and Xi → Xj ← Xpj is in G∗. Then, according to our data we
should have ¬Ip(Xi, Xpj |PaĜ(Xpj )) and by def. 1 we obtain fD(Xpj , PaG(Xpj )∪
{Xi})− fD(Xpj , PaG(Xpj )) > 0, thus we must have the arc Xi → Xpj included
in Ĝ. Notice that Xi does not belong to FP (Xpj ) due to the step of Fast-
CHC that when the arc Xj → Xpj is included in Ĝ then we remove Xi from
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FP (Xpj ), if it is already included, besides if Xi → Xj is included in a later step,
then again Xi is removed from FP (Xpj ) due to in the last step of Fast-CHC
when we remove the “indirected” link from FP (). Therefore Xpj ∈ MBĜ(Xi).
• Case c) Let us suppose Xi → Xj is in G∗ and Xi ← Xj is in Ĝ. Suppose
also that Xi ← Xj − Xpj is in Ĝ (it is the same case in any orientation, the
reasoning is symmetrical) and Xi → Xj ← Xpj is in G∗. Then, according to
our data we should have ¬Ip(Xi, Xpj |PaĜ(Xi)) and applying definition 1 we
obtain fD(Xi, PaG(Xi)∪{Xpj})−fD(Xi, PaG(Xi)) > 0, thus we must have the
arc Xi ← Xpj or Xi → Xpj included in Ĝ. Notice that Xpj does not belong to
FP (Xi) due to the step of Fast-CHC that when the arc Xj → Xi is included in Ĝ
then we remove Xpj from FP (Xi), and simirlarly Xi is removed from FP (Xpj ),
if they are already included, therefore in any case Xpj ∈MBĜ(Xi).
[(2) Ĝ is a minimal I-map of G∗] To prove the minimal condition let us suppose
the converse. Then, because of the Markov Condition there exists Xj ∈ PaĜ(Xi)
such that Ip(Xi, Xj |PaĜ(Xi)). If so, Ĝ cannot be a local optimum because there
is (at least) a deletion operation with positive difference. �

To end with this section we briefly discuss about related work. Thus, the un-
derlying idea in CHC [15] and Fast-CHC has been previously used heuristically
in the sparse candidate algorithm [13]. However, the operation mode of that
algorithm is far enough of our proposal because the sparse candidate is in fact
an iterated HC that at each (outer) iteration restricts the number of candidate
parents for each variable Xi to the k most promising ones, k being the same
value for every variable. Another important issue is that the parameter k must
be specified and, in general, it will be dependent of the problem being considered.
The sparse candidate algorithm can be viewed as a general framework where we
can use any search algorithm in each outer iteration and, in general, the I-map
condition in its output is not guaranteed.

Another algorithm very related to this work is the so-called MaxMin Hill-
climbing [22]. This is a two iterations algorithm that in its first stage tries to
recover the Markov Blanket for each variable while in the second stage a HC
algorithm is launched but restricted to the set of adjacencies previously found.
The MaxMin algorithm output, in general, is not a minimal I-map minimal.

A different approach [10] consist of obtaining a graph skeleton based on con-
ditional independece test of order 0 and 1, and later an evolutionary algorithm
is run but constrained to used only the edges in the skeleton instead of the
complete graph. This algorithm is highly CPU demanding and again the I-map
minimal condition is not guaranteed.

Finally, our approach is also related to classical constraint-based BN learning
algorithm: PC [21], because it uses conditional independence tests I(X,Y |Z) to
guide the search and some of its modifications as [1] where score differences are
used as conditional independences test. However, the main difference between
such algorithms and our approach relies in the fact that we set the current
parents as a d-separator set in G, while like-PC algorithms need to perform
tests with respect to all the possible subsets of adjacentG(X) \ {Y }.
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4 Experimental Results

In this section we evaluate experimentally the proposed algorithm. We test Fast-
CHC in two different scenarios, the first one is for modeling or representing
several domains as Bayesian networks, for this task we start with a database
of cases and an algorithm for learning Bayesian networks is used to model the
conditional independences that the data present. In this case the performance
criteria could be the better the found networks model the data the better is
the algorithm used; the measures we have used are two: the BDeu score of the
returned network; and (a transformation of) the Kullback-Leibler (KL) diver-
gence of the resulting networks with respect to the data used as training set. As
it is described in [6], the larger is the KL value the better is the network. BDeu
(Bayesian Dirichlet equivalent with uniform priors) with equivalent sample sam-
ple equal to 1 have been used during the search and so to score the obtained
networks. Apart from these quality measures, we have take into account the ef-
ficiency (CPU time and number of statistics computed) in the learning process.
CPU time is shown relative to fast-CHC, that is, we use value 1 for CHC and
then a value of l means that a give algorithm needs l times the CPU-time used
by fastCHC to learnt the model. With respect to statistics we use a cache in
order to only count the number of different statistics computed.

As a second scenario, we have considered a predictive task instead of the de-
scriptive one, thus a typical use of Bayesian networks is to use them as classifiers.
We focus on naive-Bayes (BN) augmented classifiers [12], where a NB structure
is used as initial solution and then a search process (HC, CHC and fast-CHC)
is launched but constrained to not modifying arcs related to the class variable.
This type of classifiers are known as Bayesian networks Augmented Naive Bayes
classifiers (BAN). In our evaluation again we attend to two parameters: quality
of the resulting network and efficiency. Quality is measure by using accuracy and
Brier score, and computed by using a 5x2 cross validation process. For efficiency,
again we use CPU-time and different statistics computed.

All the experiments have been carried out in the same computer (Pentium
IV with 3GHz, 2Gb of RAM memory and 250Gb of hard disk) in order to fairly
compare reported CPU-time. All the algorithms have been written in Java using
as framework the Elvira software [11].

The datasets used in the experiments come from different sources. Due to
space restrictions we cannot show here details about them, but we show this
information in [http://www.dsi.uclm.es/simd/experiments/chc/datasets.html].

In table 2 we show the results we have obtained when modelling data by using
Bayesian networks. We can see that the quality values for Fast-CHC algorithm
are always lower but are close to those yield by HC and CHC algorithms,except
for sheep database. This result is not somewhat surprisingly because of we are
considering in our experiments databases of real domains in several cases and
in all the cases databases of limited size. Nonetheless, if we attend to efficiency
results we can see that statistics calculated by Fast-CHC are reduced in a 68.2%
compared to HC and in a 56.9% compared to CHC for the clean1 database.
This is a great reduction, even more if we take into account that this two
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Table 2. Experimental results for the algorithms tested on learning Bayesian networks

database algorithm Time KL div. Score Stat.
alarm HC 3.90 9.17 -54891 3498

CHC 2.41 9.25 -54864 2286
Fast-CHC 1 9.17 -55215 1175

clean1 HC 6.82 44.47 -12079 67557
CHC 5.09 44.96 -12106 49837
Fast-CHC 1 42.54 -12570 21459

farmer101 HC 8.78 28.66 -147750 28471
CHC 20.24 28.12 -148995 22904
Fast-CHC 1 26.37 -151112 10762

insurance HC 2.42 8.42 -133263 1902
CHC 1.84 8.39 -133401 1458
Fast-CHC 1 8.31 -134035 960

lrs HC 3.22 80.70 -29928 21820
CHC 2.73 80.23 -30768 21117
Fast-CHC 1 77.29 -31306 13758

sheep HC 8.23 10.97 -199829 1341
CHC 4.19 10.63 -202443 940
Fast-CHC 1 10.59 -202391 627

Table 3. Results of our experiments for the algorithms tested in a classification task

database algorithm Time Brier Accuracy KL div. Score Stat.
farmer50 HC 57.97 0.60 0.66 17.06 -53595 5025

CHC 40.81 0.60 0.66 17.02 -53840 3628
Fast-CHC 1 0.60 0.66 16.56 -54141 1527

kr-vs-kp HC 3.36 0.07 0.96 4.94 -18045 4707
CHC 2.43 0.07 0.96 4.94 -18060 3194
Fast-CHC 1 0.08 0.95 4.67 -18260 1791

optdigits HC 4.32 0.10 0.94 21.62 -164164 5930
CHC 3.38 0.10 0.94 21.49 -164589 4769
Fast-CHC 1 0.10 0.94 20.24 -165443 1800

sheep BAN 189.45 0.47 0.67 8.80 -116296 958
CHC 198.70 0.48 0.67 9.04 -116189 709
Fast-CHC 1 0.48 0.67 8.76 -117103 329

soybean BAN 23.01 0.11 0.92 14.57 -6043 2967
CHC 33.66 0.11 0.92 14.57 -6047 2328
Fast-CHC 1 0.11 0.92 14.28 -6100 803

algorithms (HC and CHC) take more benefit from the cached statistics because
they perform more search steps and it is more likely that a computed score was
needed later. The smallest reduction with respect to HC is 36.9% and 34.8% for
CHC. Furthermore, if we look at the time needed to learn the networks we can
see than the reduction range is 88.6% to 58.7% with respect to HC and 95%
to 45.7% with respect to CHC. Therefore, the advantage of fast-CHC for really
large domains is clear.

In the case of classifiers the efficiency results are even better. The reduction
in time for Fast-CHC can reach 99% with respect both other algorithms, and
the lower limit is higher too: 70.2% for HC and 58.8% for CHC. This advantage
is even better when we look to number of computed statistics, where we got re-
duction rates which ranges from 72.9% to 62% with respect HC and from 65.5%
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to 43.9% with respect to CHC. If we now pay attention to quality results, we get
the same conclusion than in the descriptive task with respect to network score
and KL. However, when classification parameters are considered as accuracy and
Brier score, Fast-CHC compares better with respect to HC and CHC. Thus, there
is only a case in which it gets slightly worse accuracy than (C)HC (kr-vs-kp),
and two cases in which it gets slightly worse Brier score than HC.

5 Concluding Remarks

In this paper we have proposed a new version of constrained hill-climbing search
algorithm for learning Bayesian network structure. The method consists in the
use of a hill climbing algorithm with the classical operators (addition, deletion
and reversal) but in which we restrict the neighborhood by using a list of parents
not allowable for each variable. The main novelty here is that at each iteration
the forbidden parents sets are modified in order to theoretically ensure that the
output of the proposed algorithm is a minimal I-map. The underlying idea of the
method relies on the theoretical property of local consistency exhibited by some
scoring metrics as BDe, MDL and BIC. Apart from proving that the new version
always returns a minimal I-map, we have conducted computational experiments
in order to analyse the savings with respect to CPU time achieved by this new
CHC version. Furthermore, experiments have been designed in two different
tasks: (1) descriptive modelling of a data set by using a Bayesian network, and
(2) predictive behaviour of a BAN classifier learnt by using CHC. We have
reported quality and efficiency data about all the experiments. With respect
to quality the models learnt by using fast-CHC are slightly worse than those
learnt by using HC and CHC, but the difference is remarkably smallest when
classification statistics (accuracy and Brier score) are used. With respect to
efficiency the advantage of fast-CHC is clear.

Our main conclusion is that when the domain complexity grows, fast-CHC
can be of great utility because it can obtain a Bayesian network model quickly,
perhaps less accurate than the one obtained by using CH or CHC if they have
enough time to return any.

For future research, we plan to carry out a more systematic experimentation
and extend the comparative analysis to other related approaches. Furthermore,
different local search methods and search spaces (as PDAGs [8] and RPDAGs
[3]) will be considered.
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596 J.A. Gámez, J.L. Mateo, and J.M. Puerta

References

1. Abellán, J., Gomez-Olmedo, M., Moral, S.: Some Variations on the PC Algorithm.
In: Proc of The third European Workshop on Probabilistic Graphical Models (2006)

2. Acid, S., de Campos, L.M.: A hybrid methodology for learning belief networks:
Benedict. International. Journal of Approximate Reasoning 27(3), 235–262 (2001)

3. Acid, S., de Campos, L.M.: Searching for Bayesian Network Structures in the Space
of Restricted Acyclic Partially Directed Graphs. Journal of Artificial Intelligence
Research 18, 445–490 (2003)

4. de Campos, L.M.: A Scoring Function for Learning Bayesian Networks based
on Mutual Information and Conditional Independence Tests. Journal of Machine
Learning Research 7, 2149–2187 (2006)

5. de Campos, L.M., Fernández-Luna, J.M., Gámez, J.A., Puerta, J.M.: Ant colony
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1 LIP6 – université Paris 6 – France
2 IHEC – Carthage – Tunisie

3 ISIG – Université de Kairouan

Abstract. Message-passing inference algorithms for Bayes nets can be
broadly divided into two classes: i) clustering algorithms, like Lazy Prop-
agation, Jensen’s or Shafer-Shenoy’s schemes, that work on secondary
undirected trees; and ii) conditioning methods, like Pearl’s, that use di-
rectly Bayes nets. It is commonly thought that algorithms of the former
class always outperform those of the latter because Pearl’s-like methods
act as particular cases of clustering algorithms. In this paper, a new vari-
ant of Pearl’s method based on a secondary directed graph is introduced,
and it is shown that the computations performed by Shafer-Shenoy or
Lazy propagation can be precisely reproduced by this new variant, thus
proving that directed algorithms can be as efficient as undirected ones.

1 Introduction

In the last years, Bayesian nets (BN) [1,2,3] have become an increasingly pop-
ular knowledge representation framework for reasoning under uncertainty. They
combine a directed acyclic graph (DAG) encoding a decomposition of a joint
probability distribution over a set of random variables with powerful exact infer-
ence techniques [3,4,5,6,7,8,9,10,11,12,13,14]. These can answer various queries
including belief updating, i.e., computing the posterior probability of every vari-
able given a set of observations, finding the most probable explanation, i.e., find-
ing a maximum probability assignment of the unobserved variables, finding the
maximum a posteriori hypothesis, i.e., finding an assignment to a subset of un-
observed variables maximizing their probability. This paper will be restricted to
belief updating.

Although the BN’s graphical structure is very efficient in its ability to provide
a compact storage of the joint probability, it is not well suited for probabilistic
computations when the DAG is multiply-connected [15]. A much more efficient
structure called a join or junction tree and representing an alternative decom-
position of the joint probability has been introduced in the 90’s [16,9] to serve
as a support for inference algorithms [9,10,12,17] (Fig. 1.c). Unlike the original
BN, this new structure is undirected and, since [15]’s paper, the idea that prop-
agation based on undirected graphs always outperform the variants of Pearl’s
algorithm (based on directed graphs) [18,19,3,20] has often been conveyed in the
literature. However, in a BN, the arc orientations provide some independence
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a) a Bayes net b) triangulated graph c) Shafer-Shenoy’s join tree
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Fig. 1. A Bayesian network and one of its join trees

information called d-separation that can be effectively exploited to reduce the
inference computational burden [21] but that is lost by junction trees. For in-
stance, in Fig. 1.a, if the value of A is known, then d-separation asserts that B
is independent of C, D, F , G and I. Hence, upon receiving a new evidence on
B, only the a posteriori probabilities of E and H need be updated.

The aim of this paper is to show how undirected inference techniques such
as Shafer-Shenoy’s method [12,17] or Lazy Propagation [10] can be viewed as a
variant of Pearl’s algorithm. More precisely, it is shown that the computations
performed by both algorithms in a join tree derived from a variable elimination
technique similar to [7] can be precisely reproduced by Pearl with local condi-
tioning performed on a particular DAG. The advantage of translating undirected
inference techniques into directed ones is that d-separation can easily be applied
to speed-up computations (see above). As for Lazy Propagation, which already
uses d-separation, the advantage lies in the possibility of improving online tri-
angulations or even avoiding them. Moreover, keeping the secondary structure
used for computations as close as possible to the original one is attractive as
it minimizes the quantity of information lost passing from one structure to the
other (triangulation actually loses d-separation informations). This can prove
useful for instance in hybrid propagation methods [22,23] where approximate al-
gorithms are used on some subgraphs of the BN, to select the most appropriate
stochastic algorithm for each approximated subgraph, e.g., in some particular
cases, it can be proved that logic sampling converges faster than Gibbs sampling.

The paper is organized as follows: Section 2 presents BN and describes Shafer-
Shenoy’s method. Section 3 illustrates on an example how the same computations
can be conducted using a particular DAG and a general scheme for constructing
this DAG is derived. Section 4 presents Pearl’s method with local condition-
ing and shows why a new variant, when applied on such DAG, corresponds to
Shafer-Shenoy. Section 5 extends these results to binary join trees and to Lazy
Propagation. Finally Section 6 concludes the paper.

2 Bayesian Networks and Shafer-Shenoy’s Algorithm

Definition 1. A Bayesian network is a triple (V ,A,P), where V={X1, . . . , Xn}
is a set of random variables; A ⊆ V × V is a set of arcs which, together with
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V, constitutes a directed acyclic graph G = (V ,A); P = {P (Xi|Pai) : Xi ∈ V}
is the set of conditional probability matrices of each random variable Xi given
the values of its parents Pai in graph G. The BN represents a joint probability
distribution over V having the product form: P (X1, . . . , Xn) =

∏n
i=1 P (Xi|Pai).

Thus, in the BN of Fig. 1.a, P (V) can be decomposed as P (A)P (B|A)P (C|A)
P (D|A)P (E|B)P (F |C)P (G|D)P (H |E,F )P (I|F,G). Shafer-Shenoy’s algorithm
uses a secondary undirected structure called a join (or junction) tree to perform
probabilistic inference, see Fig. 1.c. As shown by [24], this structure can always
be constructed from a triangulated graph (Fig. 1.b) resulting from an elimina-
tion sequence of the random variables. Here, we used H ,I,E,D,C,B,A,F ,G. The
cliques (resp. separators) of the join tree, i.e., the ellipses (resp. rectangles), are
initially filled with functions (called potentials) of the variables they contain.
Usually, cliques are filled with the conditional probabilities of the BN and sepa-
rators with unity tables, i.e., tables filled with 1’s. Shafer-Shenoy then performs
inference by sending messages in both directions along the edges of the junction
tree. A message sent from a clique Ci to an adjacent clique Cj through separator
Sij = Ci∩Cj is computed by multiplying the potentials stored in Ci by the mes-
sages received from all the adjacent cliques of Ci except Cj and then summing
out the result over the variables not in Sij . For instance, on Fig 2, message ❶

corresponds to
∑

G P (A)×②×④×⑤. Semantically, these operations correspond
to marginalizing out from the joint probability the variables in Ci\Sij .

①

②

③

⑥

⑦ ⑧

⑤ ④

❹ ❻

❸❷

❺ ❶

ACF ADG

AF AG

FG AF

FGI ABF BF EBF

AFG

EF HEF

P (B|A)P (I|F,G)

P (A)

P (E|B) P (H|E,F )

P (D|A)P (G|D)P (F |C)P (C|A)

Fig. 2. The join tree and Shafer-Shenoy’s inward and outward pass

As for the order in which messages are generated, Shafer-Shenoy advocates to
use an asynchronous algorithm, but we prefer presenting here a collect/diffusion
(or inward/outward) method as it is more convenient for the next Sections and
it is well known that both schemes produce the same set of messages:

Algorithm 1 (generation of messages)
1. choose an arbitrary clique, e.g., AFG, as the current clique;
2. inward pass: the current clique asks its adjacent cliques for their messages.

In turn, they recursively ask their other adjacent cliques for messages. When
a clique has received all the messages it waited for, it sends its own message.

3. outward pass: after the inward pass, clique AFG sends messages to its
neighbors; they recursively send messages to their other adjacent nodes, and
so on.
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Following the elimination sequence mentioned above, the messages sent during
the inward and outward pass are computed as shown in the Table below. In this
table, messages like 1lK represents |K|-matrices filled with 1’s and those like
P (T )K represent |T | × |K|-matrices filled with P (T ) for every value of K:

Table 1. Shafer-Shenoy’s inward and outward pass computations

in: elim node sending clique computation message

H HEF 1lEF =
∑

H P (H |E,F ) ①

I FGI 1lF G =
∑

I P (I |F, G) ②

E EBF 1lBF =
∑

E P (E|B) × ① ③

D ADG P (G|A) =
∑

D P (D|A)P (G|D) ④

C ACF P (F |A) =
∑

C P (F |C)P (C|A) ⑤

B ABF 1lAF =
∑

B P (B|A) × ③ ⑥

out: message computation

❶ P (A,F ) =
∑

G P (A)1lF GP (G|A)P (F |A) =
∑

G P (A) × ② × ④ × ⑤

❷ P (A)F =
∑

G P (A)1lF GP (G|A)1lAF =
∑

G P (A) × ② × ④ × ⑥

❸ P (A)G =
∑

F P (A)1lF GP (F |A)1lAF =
∑

F P (A) × ② × ⑤ × ⑥

❹ P (B, F ) =
∑

A P (B|A)P (A,F ) =
∑

A P (B|A) × ❶

❺ P (F, G) =
∑

A P (A)P (G|A)P (F |A)1lAF =
∑

A P (A) × ④ × ⑤ × ⑥

❻ P (E,F ) =
∑

B P (E|B)P (B,F ) =
∑

B P (E|B) × ❹

Computation of a posteriori marginal probabilities is performed in a similar
way, except that new informations (evidence) about some random variables are
entered into cliques as if they were part of the product decomposition of P (V).

3 Constructing a New DAG for Shafer-Shenoy

The aim of this Section is to provide a generic algorithm based on a DAG that
produces precisely the same computations as those of the preceding Section. Note
that, for the moment, this algorithm is not related to Pearl’s method. This will
be the topic of the next Section. Here, our purpose is only the construction of a
new graph. This one is usually different from the original BN and, to explain how
it can be derived from the latter, it is best mimicking Shafer-Shenoy’s algorithm
using the same elimination ordering as before.

Before any elimination occurs, the conditional probabilities of the product
decomposition of P (V) are stored in the nodes of the BN as shown in Fig. 3.a.
As mentioned in the preceding Section, eliminating variable H (resp. I) amounts
to substitute P (H |E,F ) (resp. P (I|F,G)) by

∑
H P (H |E,F ) = 1lEF (resp.∑

I P (I|F,G) = 1lFG). Such operations can be performed on the BN by replac-
ing the probabilities stored in H and I by 1lEF and 1lFG (Fig. 3.b). As shown in
Table 1, eliminating E is achieved by computing 1lBF =

∑
E P (E|B)1lEF . If a

node in the BN had the knowledge of both P (E|B) and 1lEF , it would be able to
perform this operation. Unfortunately, 1lEF and P (E|B) are stored in nodes H
and E respectively. Hence either a message containing P (E|B) should be sent
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to H or a message containing 1lEF should be sent to E. In this paper, to decide
between these alternatives, the following rule will always be applied :

Rule 1. Assume an algebraic operation F on some matrices stored into nodes
Xi1 , . . . , Xik

of V needs to be performed. Let Xip be any node such that no Xiq ,
q = p, is a descendant of Xip , i.e., Xiq cannot be reached from Xip following a
sequence of arcs (along their directions). Then all the Xiq ’s, q = p, will send to
Xip a message containing the matrix they store, and Xip will perform F .

Using rule 1, to mimic the elimination of node H , node E must send to H message
P (E|B) and H computes 1lBF =

∑
E P (E|B)1lEF . H then replaces its own

probability 1lEF by 1lBF . As E sent its conditional probability, it need not store
anything anymore. Similarly, when eliminating D, node D should send message
P (D|A) and G should substitute P (G|D) by P (G|A) =

∑
D P (D|A)P (G|D).

The elimination of C leads to C sending message P (C|A) to F and F replacing
P (F |C) by P (F |A) =

∑
C P (F |C)P (C|A). Of course, neither C nor D should

store a conditional probability anymore since they already transmitted their
own (Fig. 3.c). The elimination of B should be performed by computing 1lAF =∑

B P (B|A)1lBF . As 1lBF and P (B|A) are stored in H and B respectively, by
rule 1, B should send a message to H . This implies adding a new arc (B,H) as
illustrated on Fig. 3.d. Moreover, as after sending its message to H , B does not
store a matrix anymore, it will never send any other message, hence arc (B,E)
can be safely removed. This is illustrated by representing (B,E) by a dashed
arc. Eliminating A requires several messages sent to either H or G (here rule 1
cannot settle), H was chosen arbitrarily on Fig. 3.e. Finally, eliminating F can
be performed either by H transmitting a message to I or the converse. This
example justifies the following scheme for constructing the new DAG:

Algorithm 2 (construction of a directed secondary structure)
1. Assign to every node Xk of the original BN a label L(Xk) = {Xk} ∪ Pak;
2. For every node Xk, in their order of elimination, let VXk

= {Xk1 , . . . , Xkp}
be the set of nodes the labels of which contain Xk. Select among VXk

a node
Xi according to rule 1 and, for every node Xj in VXk

\{Xi}, add an arc
(Xj , Xi) if necessary, remove the other arcs outcoming from Xj. Let L(Xi) =
∪Xkj

∈VXk
L(Xkj )\{Xk} and let L(Xkj ) = ∅ for all kj = i.

The following lemma summarizes this Section:

Lemma 1. Shafer-Shenoy’s inward pass can be precisely reproduced by con-
structing the DAG resulting from Algorithm 2, sending messages downward along
the solid arcs of this DAG and computing new messages as described above, the
latter being obtained by multiplying the messages received by a node by the con-
ditional probability stored into the node.

4 A New Variant of Pearl’s Algorithm

Pearl’s-like methods are applied on DAG such as a BN but, as they need singly-
connected networks, i.e., graphs without loops, to produce correct answers, they
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Fig. 3. The construction of a directed secondary structure

often use a preprocess called cutset conditioning that transforms the BN into a
singly-connected graph on which computations are then performed. The trans-
formation advocated by [19] consists of applying the following algorithm:

Algorithm 3 (local cutset). Let (V ,A,P) be a BN. Select some arcs in graph
G = (V ,A) the removal of which keeps the graph connected while removing all
cycles. Assign to every remaining arc (Xi, Xj) initial label Xi. For each arc
(Xk, Xj) removed, there still exists exactly one trail joining Xk to Xj, i.e., a
sequence of arcs that, without taking into account their directions, can be followed
to reach Xj from Xk. Add Xk to the label of every arc on this trail.

For instance, applying Algorithm 3 on the graph of Fig. 4.a results in the graph
of Fig. 4.c: arcs (A,B) and (C,F ) have been chosen arbitrarily to be removed.
Fig. 4.b shows the initial labels of the remaining arcs. Trail B,E,H, F, I, G,D,A
joins B and A, hence A is added to the label of every arc of this trail. Similarly,
trail F, I,G,D,A,C joins F and C, thus C should be added to the label of every
arc of this trail, hence resulting in Fig. 4.c. Once labels have been established,
[19] advocates to use the following propagation algorithm:

Algorithm 4 (Pearl’s-like method with local conditioning)
1. Select an arbitrary node, say Xi, in the graph resulting from Algorithm 3 (for

instance node I in the graph of Fig. 4.c).
2. inward pass: the current node asks its adjacent nodes for their messages. In

turn, they recursively ask their other adjacent nodes for messages. When a
node has received all the messages it waited for, it sends its own message.
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3. outward pass: after the inward pass, node Xi sends to its neighbors messages;
they recursively send messages to their other adjacent nodes, and so on.

A message sent by a node Xj to one of its children (resp. parents) Xk is the sum
over the variables not belonging to the label of arc (Xj , Xk) (resp. (Xk, Xj)) of
the product of P (Xj |Paj) by all the messages sent to Xj except that sent by Xk.

a) a Bayesian network b) initial labels c) final labels

F FF

H IIHIH

E GG E G

C CCB DD B D

F

B D

GF
ACF

ACGAF

ACDAB

A
AC

AC

AE

E

B

A A

E

A
A

Fig. 4. Local conditioning and arc labeling

For instance, in Fig. 4.c, I would send a message to F equal to λ(ACF ) =∑
IG P (I|F,G)π(ACG), where π(ACG) is the message sent to I by G. Note that

λ(ACF ) and π(ACG) are messages of size A×C×F and A×C×G respectively.
Thus arc labels indicate the size of messages sent throughout the network.

Now, let us come back to the unification of Pearl’s and Shafer-Shenoy’s al-
gorithms. Applying the labeling algorithm below, which is a simple variant of
Algorithm 3, to the secondary structure resulting from Algorithm 2, we obtain
the graph of Fig. 5.a. It is striking that the labels correspond precisely to the size
of the messages sent by Shafer-Shenoy, as described in the preceding Section.

Algorithm 5 (secondary structure labeling). Let G be a BN and G′ be
the result of the application of Algorithm 2 to G. For every arc (Xi, Xj) in G′,
assign label {Xi} if it also belongs to G, else ∅. For each arc (Xk, Xj) removed,
add Xk to the label of every arc on the trail still joining Xj to Xk.

The messages of the inward pass of Algorithm 4 performed on the graph of
Fig. 5.a are precisely the same as those of Shafer-Shenoy. For instance, the mes-
sage from H to I is equal to

∑
A,B,E,H P (E|B) × P (B|A) × P (A) × P (F |A) ×

P (G|A)×P (H |E,F ) =
∑

A P (A)P (F |A)P (G|A)×
∑

B P (B|A)×
∑

E P (E|B)×∑
H P (H |E,F ). The last sums are those of Shafer-Shenoy as they correspond to

the messages and computations mentioned in Fig. 3. This suggests that Pearl can
perform the same computations as Shafer-Shenoy when appropriately ordering
its sequence of products and summations. This is, in essence, quite similar to the
algorithm in [25], except that we use BN for inference rather than a secondary
structure related only to computations and not to the original graph.

For the outward pass, Algorithm 4 will also produce messages of the same
size as Shafer-Shenoy. However, if care is not taken, computations may be more
time-consuming than in Shafer-Shenoy. For instance, assuming that I is selected
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Fig. 5. Arc labeling on the new Shafer-Shenoy’s DAG

at step 1, the outward pass will start by I sending to H message
∑

I P (I|F,G) =
1lFG. The message sent by H to G is:

πF,G =
∑

A,B,E,F,H P (E|B)P (B|A)P (A)P (H |E,F )1lFGP (F |A) (1)
=

∑
A,F P (A)P (F |A)1lFG

∑
B P (B|A)

∑
E P (E|B)

∑
H P (H |E,F ) (2)

=
∑

A,F P (A)P (F |A)1lFG1lAF , (3)

the latter being message ❶. Now, to actually perform the computations of (3)
rather than those of (1), remind the sequence of messages sent to H , i.e., first
P (E|B) from E, then P (B|A) from B, and finally P (A), P (F |A) and P (G|A)
from A, F and G. The corresponding products/sums performed when these
messages were received are described in Table 2. Remark that (3) corresponds
to multiplying P (A)P (F |A) by the output of the penultimate computation
(the third one) and by the message sent by I, and then to summing out un-
wanted variables. When H computes messages sent to F and A, the same el-
ement of the stack 1lAF can be used to calculate

∑
A,G P (A)P (G|A)1lFG1lAF

and
∑

F,G 1lFG1lAFP (F |A)P (G|A). The former message corresponds to Shafer-
Shenoy’s ❷. The latter is never sent by Shafer-Shenoy, but it will eventually be
computed to obtain the marginal probability of A, F or G as it corresponds
to the product of the messages sent to clique AFG or, when multiplied by
P (A), to the product of the messages sent via separators AF , FG and AF .
Similarly, when H computes the message sent to B, it should use the second
element of the stack to avoid computing twice

∑
H P (H |E,F ). Thus, to behave

as Shafer-Shenoy, Pearl should store in each node a stack of the temporary com-
putations performed during the inward pass (see Table 2) and use this stack
during the outward pass. Note that this does not actually require more space
than in Shafer-Shenoy’s algorithm since, in the latter, these temporary matrices
are stored within separators.

Additional savings can be gained observing that once H has sent messages
to A, F , G, the product of the messages it received from I and these nodes
will be used for computing those sent to E and B. Thus, provided each time a
node sends messages to some other nodes it keeps track of the product of the
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Table 2. H ’s stack of temporary inward pass computations

stack index stack content sender

1 1lEF =
∑

H P (H |E, F )
2 1lBF =

∑
E P (E|B)1lEF E

3 1lAF =
∑

B P (B|A)1lBF B
4 P (F, G) =

∑
A P (F |A)P (G|A)P (A)1lAF A,F, G

messages the latter sent it, it can be shown that Pearl will perform the same
computations as Shafer-Shenoy. For instance, once messages to A, F and G have
been sent, node H can store P (A,F ) =

∑
G P (A)P (F |A)P (G|A)1lFG. Then it

can compute
∑

A,F P (A,F )1lBF , which is precisely the message it should send
to B. Note that it also corresponds to the product of the messages sent to clique
ABF by Shafer-Shenoy and that 1lBF is the top of H ’s stack when matrix 1lAF

has been popped. Then H can store P (B,F ) =
∑

A P (B|A)P (A,F ), and it can
send to E message

∑
F P (B,F )1lEF , which corresponds to the product of the

messages sent to clique EBF by Shafer-Shenoy. Note again that 1lEF is the top
of H ’s stack once 1lBF has been popped. Finally, messages sent to C and D
correspond to marginalizations of the messages sent to cliques ADG and ACF .
This justifies the following Proposition:

Proposition 1 (unification of Pearl and Shafer-Shenoy). Let G be a BN.
Let G′ be the result of the application of Algorithms 2 and 5 on G, according to
an elimination ordering σ. Assign to each node Xi an empty stack T (Xi). Using
the two passes below, Pearl performs the same computations as Shafer-Shenoy:

Inward pass: Messages are like in Algorithm 4. For each message sent by a
node Xi, let Q be the union of P (Xi|Pai) and the set of messages received by
Xi. Let S be the set of variables of these factors ordered according to σ. For
every Xk ∈ S, select the factors in Q that contain Xk; remove them from Q,
multiply them and sum the result over Xk. Add the result to Q and to Xi’s stack,
and indicate which senders sent these factors.

Outward pass: Messages are like in Algorithm 4. For each node Xi in σ’s
reverse order, let M be the message received by Xi during the outward pass
(if any). Compute messages to Xi’s adjacent nodes as follows: Let S be the
variables in the “sender” column at the top of Xi’s stack T (Xi). For all nodes
Xk in S, send a message to Xk equal to the sum over the variables not in the
label of arc (Xk, Xi) of the product of M by the messages sent to Xi by nodes
in S\{Xk} and the stack content of the element just under the top if it exists
else P (Xi|Pai). After messages have been sent to all nodes in S, pop Xi’s stack
once. If the sender’s column is empty, pop it again. Update M by multiplying
it by the messages sent to Xi by all nodes in S and sum over the variables not
belonging to any factor in T (Xi). Iterate the process until the stack is empty.
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5 Extension to Binary Join Trees and Lazy Propagation

It is well known that, in general, Shafer-Shenoy’s algorithm is slower than Jensen’s
and that, to be competitive, it needs to be run in a binary join tree, that is, in
a tree where no node has more than 3 neighbors. Algorithms do exist to map a
general join tree into a binary one [17]. The problem with general join trees comes
from the outward phase and is illustrated on Fig. 6.a: assume that messages ①,
②, ③ and ④ were sent during the inward phase, then messages ❶, ❷, ❸ and ❹ of
the outward phase are computed as:

❶ =
∑

F P (A)×①×②×③ ❷ =
∑

G P (A)×①×②×④,
❸ =

∑
A P (A)×①×③×④ ❹ =

∑
G P (A)×②×③×④.

②

①

❾

③

④
⑤
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② ③
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❽ ❻
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Fig. 6. Join trees vs. binary join trees

Remark that some products are done several times. To avoid these redundan-
cies, Shenoy proposes to modify the join tree so that no node has more than 3
neighbors (Fig. 6.b). Computations in this new structure are then:

⑤ = P (A)×①×② ❺ =
∑

F ③×⑤ ❻ =
∑

G ④×⑤,
❼ = ③×④ ❽ =

∑
A P (A)×❼×① ❾ =

∑
G P (A)×❼×④.

Actually, message ❼ captures the idea that product ③ × ④ should not be per-
formed several times. But avoiding these redundancies can also be obtained by
observing that if we multiply during the inward phase the messages that arrive
one by one and we store these results into a stack (see the left part of Table 3),
then the outward phase messages can be computed by using this stack and mul-
tiplying by the messages on the right part of the Table. As is noticeable, from
bottom up, these products can be computed incrementally requiring only one
product for each line. This justifies the following proposition:

Proposition 2 (binary join tree unification). Applying the algorithm of
Proposition 1 with the rules below is equivalent to performing Shafer-Shenoy in
a binary join tree:

Inward pass: When messages arrive to node Xi, perform the products one by
one and store all of them into Xi’s stack.

Outward pass: send outward messages to Xi’s neighbor in the reverse order in
which these neighbors sent their messages during the inward phase.
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Table 3. Binary join trees and the product of messages

inward sending clique inward phase products outward phase products

initial potential P (A) ×❷ × ❸ × ❹ = ❾

ACF P (A) × ① ×❸ × ❹ = ❽

FGI P (A) × ① × ② ×❹ = ❻

ABF P (A) × ① × ② × ③ = ❺

The second extension we should mention is the unification with Lazy Propa-
gation [10]. The latter is essentially similar to Jensen’s or Shafer-Shenoy’s algo-
rithms in that it uses a join tree to perform propagation of potentials. However,
it departs from these algorithms in the following manner:

1. Instead of storing only one potential in each clique, it stores a list of po-
tentials (or conditional probability tables). It performs products on some
potentials only when necessary, i.e., when they contain a variable that is to
be marginalized-out.

2. It recognizes summations like
∑

H P (H |T ) the result of which is known for
sure to be 1.

3. It uses d-separation to avoid sending a message from one clique to another if
the random variables of these cliques are independent due to some evidence.

In our algorithm, using d-separation is quite obvious since we are working on a
BN, and avoiding computing unity summations is easy: it only requires to know
which variables of the conditional probability tables are on the left of condition-
ing bars. As for the first feature, our algorithm can be easily adapted: it is suf-
ficient manipulate lists of potentials instead of performing directly all the prod-
ucts. Hence, Pearl’s algorithm can be adapted to behave as Lazy Propagation.

6 Conclusion

This paper has shown that Pearl’s-like methods could be adapted using a new
secondary directed structure and an appropriate ordering to perform the same
computations as Shafer-Shenoy or Lazy Propagation, thus proving that directed
inference methods could be as efficient as undirected ones. The advantage of
using directed secondary structures is twofold: first, it enables to perform quite
simply d-separation analyses and, secondly, it enables to limit the amount of
information lost during triangulation by keeping the secondary structure as close
as possible of the original one. For instance, there are cases in which even if
the BN contains cycles, Pearl’s algorithm can compute correctly all marginal a
posteriori probabilities without needing any conditioning, e.g., when the parent
nodes of the cycle sinks are independent. In such cases, working on a directed
structure is better than working on an undirected one since the latter requires
an unnecessary triangulation.
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Abstract. This paper deals with decision-making under uncertainty
when the worth of acts is evaluated by means of Sugeno integral on a
finite scale. One limitation of this approach is the coarse ranking of acts
it produces. In order to refine this ordering, a mapping from the common
qualitative utility and uncertainty scale to the reals is proposed, whereby
Sugeno integral is changed into a Choquet integral. This work relies on
a previous similar attempt at refining possibilistic preference functionals
of the max-min into a so-called big-stepped expected utility, encoding a
very refined qualitative double lexicographic ordering of acts.

1 Introduction

In the framework of decision under uncertainty, it has been pointed out that in-
formation about preference and uncertainty in decision problems cannot always
be quantified in a simple way, but only qualitative evaluations can sometimes be
attained. As a consequence, the topic of qualitative decision theory is a natural
one to consider [1]. A trade-off between purely symbolic and purely numerical
approaches to ranking decisions consists in using a single qualitative scale for
assessing beliefs and utilities. In [2] two possibilistic qualitative criteria, an op-
timistic and a pessimistic one, whose definitions only require a common linearly
ordered scale for utility and uncertainty have been proposed. Later, a wider
family of decision criteria called monotonic utilities and that encompasses both
possibilistic decision criteria, have been investigated [3]. It is based, mathemat-
ically speaking, on a Sugeno integral [11]. Unfortunately, monotonic utilities in
general and possibilistic utilities in particular, may suffer from a lack of decisive-
ness power: the principle of Pareto efficiency is not respected: namely, when two
actions have the same potential consequence in some given, likely state of the
world, they may be equally preferred by qualitative decision criteria, although
one may have much better consequences than the other, in the remaining states
of the world.

Some authors tried to use the idea of lexicographic refinements with Sugeno
integral. Murofushi [7] considered refining Sugeno integral with respect to a ca-
pacity by a vector of Sugeno integrals with respect to a sequence of capacities.
This supposes a much richer information than the one available in decision mak-
ing under uncertainty. Grabisch [5] proposed to use the fact that Sugeno integral
is a median to refine it by cancelling the median terms when equal and com-
paring the values around the median via a leximin. Here we try to generalize
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the weighted extension of the leximin and the leximax to possibilistic integrals,
proposed by Fargier and Sabbadin [4]. These authors have indeed shown that in
the possibilistic case the order induced on decisions can be refined by expected
utility, so that the strict consistency with the Pareto principle can be recovered.
It can thus be asked if the same question can be solved for Sugeno integrals since
prioritized minimum and maximum are special cases of fuzzy integrals.

The paper is structured as follows. In Section 2, we first give some back-
ground on qualitative preference functionals, and point out the “drowning effect”
that generates a lack of decisiveness power. It is shown that the only situations
where Sugeno integral satisfies the principle of efficiency are degenerate. Section
3 presents lexicographic refinements of Sugeno integrals. In particular, it shows
that for any Sugeno integral with respect to a capacity, there exists a Choquet
integral with respect to the same ordering of events that refines it. Another
kind of refinement based on Moebius transforms is then considered. Proofs are
omitted for the sake of brevity.

2 Limitations of Qualitative Preference Functionals

2.1 Definitions

Let S be a set of potential states of the world and X be a set of possible
consequences. F = XS denotes the set of potential acts, associating to each
possible state s a consequence f(s) ∈ X . In this paper, S and X are supposed
to be finite. Three particular sub classes are worthwhile noticing.

– Constant acts: each such act is identified with some x ∈ X , i.e., ∀s ∈
S,x(s) = x

– We will also often refer to the notion of compound act . For any set of states
A, fAg is the act defined by: fAg(s) = f(s) for all s ∈ A, and fAg(s) = g(s)
for all s ∈ A.

– For any pair of consequences x and y in X , xAy will denote for short the
act defined by: xAy(s) = x for all s ∈ A, and xAy(s) = y for all s ∈ A. Such
a compound act will be called a binary act.

Consider again the set F of acts. In our framework, we assume that it is pos-
sible to evaluate uncertainty and preferences by means of a finite totally ordered
scale (L,≤) whose top and bottom elements are denoted � and ⊥ respectively.
We will also write αi the elements of L, with (α0 = � > α1 > . . . > αl = ⊥).

The mapping from the set of consequences to L is a utility function µ :
X → L. It is supposed that the top and bottom elements of L are in µ(X) =
{µ(x),x ∈ X}. If not, just add an ideal consequence denoted � and a totally
bad consequence denoted ⊥ to X , that will be identified with the bounds of L.

Uncertainty is assumed to be captured by means of a set function γ : 2S → L
which is a monotonic measure (or a capacity), i.e. is such that: γ(∅) = ⊥,
γ(S) = �, A ⊆ B ⇒ γ(A) ≤ γ(B). This kind of set-function is very general and
represents the minimal requirement for the representation of partial belief. When
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numerical, this family includes probability measures and most other well-known
representations of partial belief (including belief and plausibility functions, ne-
cessity and possibility measures...).

In the following, we assume without loss of generality that for any A ⊆ S,
there exists x such that γ(A) = µ(x) (if there is no such x in the original
consequence set, just add an element to X having this utility value). This is a
classical assumption of existence of a certainty equivalent for each lottery.

The utility of an act f can then be defined as a Sugeno integral [11], a quali-
tative counterpart of weighted sum, where the sum is replaced by a sup (a max
in the finite case) and the product by an inf (a min in the finite case):

Sγ,µ(f) = max
i

min(αi, γ(Fi)) (1)

where Fi = {s,µ(f(s)) ≥ αi)}. Sugeno integral computes the median of its
arguments. For a binary act xAy where x � y, Sγ,µ(xAy) is the median value
in the set {µ(x),µ(y), γ(A)}.

This Sugeno integral thus defines a weak order on F (i.e. complete and tran-
sitive relation) representing the preferences of the Decision Maker over acts:

f �sug
γ,µ g ⇔ Sγ,µ(f) ≥ Sγ,µ(g). (2)

When there is no ambiguity about γ and µ, we simply use the notation �sug.

2.2 Limitations of Qualitative Preference Functionals

As said in the introduction, monotonic utilities suffer from a lack of decisiveness
power and can even fail to satisfy the principle of efficiency of Pareto. This gen-
eral principle says that, if f is as least as good as g on each state, and better
than g on some non null state s, then f should be strictly preferred to g. We
put a restriction on null events, which by definition do not play any role in the
decision. Formally, let � be a preference relation on F :

Null Events. An event A is said to be null1 with respect to a preference relation
� on acts iff ∀f, g, h ∈ F , fAh � gAh

Remark that if A and B are null, so is A ∪ B and reciprocally. So, it can be
said that a state s is null iff {s} is null.

Weak Pareto Dominance. Actf weaklyPareto-dominates g (denotedf�Pareto

g) iff ∀s not null , f(s) ≥ g(s).

1 If � is defined by a Sugeno integral, A null implies γ(A) = ⊥ but γ(A) = ⊥
does not imply that A is null. For instance let S = {s1, s2, s3} and let γ be the
necessity measure built on the possibility distribution π(si) = �, ∀si. Consider the
acts h = f = �{s1}� and g = ⊥{s1}�. Obviously, γ({s1}) = ⊥. But s1 is not a
null state; indeed, Sγ,µ(f{s1}h) = Sγ,µ(f) = � > Sγ,µ(g{s1}h) = Sγ,µ(g) = ⊥. In
the context of Sugeno integral, A null rather means that γ(A ∪ B) = γ(B) ∀B.
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Pareto Strict Preference. f dominates g according to Pareto (f �Pareto g)
iff f �Pareto g and not g �Pareto f

The principle of efficiency of Pareto is then classically defined as an agreement
with Pareto’s strict preference.

Pareto Efficiency Principle. A preference relation � on F satisfies the prin-
ciple of Pareto efficiency iff f �Pareto g =⇒ f � g

Let us go back to the weak order induced by Sugeno integral. It is obviously
in agreement with weak dominance, but not with strict dominance. Consider
for instance an event A which is not certain but quite likely (γ(A) > ⊥) and
consequence x such µ(x) = γ(A) > ⊥. Then consider acts f, g that both ensure
x on A but differ on the opposite event

f : f(s) = x if s ∈ A, f(s) = ⊥ if s /∈ A, g : g(s) = x whatever s ∈ S.
Then Sγ,µ(g) = µ(x), but also Sγ,µ(f) = max(min(µ(x), γ(A)), min(µ(⊥), γ(S)))
= µ(x). Hence f ∼ g. This means that the fact that µ(g(s)) > µ(f(s)) on A is
not taken into account. Technically, the weak utility of ⊥ is ”drowned” by the
coefficient min(µ(x), γ(A)) in the computation of Sγ,µ(f). More generally, the
standard expression of Sugeno integral (1) uses two operators that are monotonic
but not strictly (namely, max and min), hence two nested drowning effects.

The drowning effect is also often understood as an incapacity to obey the
well-known Sure-Thing Principle (STP) [9].

STP: ∀f, g, h, h′, fAh � gAh ⇔ fAh′ � gAh′

This principle indeed insures that identical consequences do not influence the
relative preference between two acts, hence the impossibility of a drowning effect.
The Pareto efficiency and Sure Thing principles are close to each other. Indeed,
when the preference is complete and transitive (it is a weak order), as it is the
case here, the STP is a sufficient condition for Pareto-efficiency.

It has been shown by Marichal [6] that the STP is generally not compatible
with Sugeno integrals. We can moreover prove that the Sugeno integral is almost
incompatible not only with the STP, but also with the less demanding principle
of Pareto efficiency. This is the first result of this paper.

Theorem 1. Under the assumption of existence of certainty equivalents for bi-
nary acts, then: �sug

γ,µ is Pareto-efficient if and only if there exist a unique state
s∗ such that ∀A, γ(A) = � if s∗ ∈ A, γ(A) = ⊥ if s∗ /∈ A.

This means that Sugeno integral cannot be efficient unless applied when there
is no uncertainty at all. These impossibility results are not necessarily damning.
It is now established [4] that two of the Sugeno integrals, namely those that
are defined upon a possibility distribution can be refined by an expected utility.
This means that, when γ is a possibility measure, there always exist a probability
distribution p and a (risk-prone) utility function u∗ such that f �sug

γ,µ g implies
f �EU+ g, EU+ being the expected utility based on p and u∗. This expected
utility confirms all strict preferences decided by the qualitative rule, but can
break ties left by the latter. As any expected-utility-based preference relation,
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it satisfies the Sure Thing Principle and thus the principle of Pareto efficiency.
An alternative (risk-averse) utility function u∗ and an expected utility EU− can
similarly be built if γ is a necessity measure. It can thus be asked if the same
question can be solved for discrete Sugeno integrals since prioritized minimum
and maximum are special cases of fuzzy integrals.

At a first glance, the answer is negative. One basic reason why prioritized
maximin and minimax aggregations can be refined by a weighted average with
fixed weights is that these operations do not violate the STP in a drastic way. In-
deed the ordering relations induced by possibility and necessity measures satisfy
a weaker independence condition:

Axiom WSTP:∀f, g, h, h′, fAh � gAh ⇒ fAh′ � gAh′.

So modifying two acts by altering their common consequences never results
in a strong preference reversal. On the contrary, such a preference reversal is
clearly possible for Sugeno integrals because for a fuzzy measure γ and three
sets A, B, C, where C is disjoint from both A and B, one may have γ(A) > γ(B)
and γ(B ∪C) > γ(A∪C). This feature makes it impossible to refine rankings of
acts induced by Sugeno integrals by means of another functional which satisfies
the Sure Thing Principle. In particular, a Sugeno integral with respect to a given
fuzzy measure cannot be refined by some expected utility with respect to a single
probability distribution. Several lines can nevertheless be explored in order to
partially recover efficiency, as shown in the next section.

3 Toward Lexicographic Refinements of the Sugeno
Integral

The general idea is to define refinements of �sug
γ,µ , i.e. relations � such that:

f �sug
γ,µ g =⇒ f � g. For the reason laid bare just before, if �sug

γ,µ violates
the WSTP, none of its refinements can satisfy it. We can nevertheless try to
satisfy the so-called Comonotonic Sure Thing Principle. Recall that two acts
f, g are comonotonic iff there exists a single permutation σ on the states of S
that rearrange the values of both µ(f) and µ(g) in non-decreasing order, i.e.
such that:

µ(f(sσ(1))) ≤ µ(f(sσ(2))) ≤ · · · ≤ µ(f(sσ(n)))

µ(g(sσ(1))) ≤ µ(g(sσ(2))) ≤ · · · ≤ µ(g(sσ(n)))

Hence the Comonotonic Sure Thing Principle stipulates:

CSTP ∀f, g, h, h′ comonotonic , ∀A ⊆ S : fAh � gAh ⇐⇒ fAh′ � gAh′

Sugeno integral generally does not satisfy CSTP, but it obeys its weak form
forbidding preference reversals.

WCSTP ∀f, g, h, h′ comonotonic , ∀A ⊆ S : fAh � gAh ⇐⇒ fAh′ � gAh′
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It should thus be possible to get refinements that satisfy CSTP. The first
idea consists in going back to the basics of Fargier and Sabbadin’s work, and
the so-called big-stepped transformation, that can be applied to any max-min
form. The second idea is to exploit the similarity between expressions of Sugeno
integral and of discrete Choquet integral [10][8]. In particular, while Choquet
integrals are additive for comonotonic acts, Sugeno integrals are both maxitive
and minitive for such acts. The natural idea is thus to look for a Choquet integral
as a refinement of Sugeno integrals. Finally, the qualitative Moebius transform
of a fuzzy measure can be turned into a probabilistic mass function via a trans-
formation that directly yields a Choquet integral.

3.1 Lexicographic Refinements of Maximin Aggregations

Let −→a = (a1, ..., an) and
−→
b = (b1, ..., bn) be some vector of evaluations using a

common and finite ordered scale L = (α0 = � > α1 > . . . > αl = ⊥).
A usual way of escaping the drowning effect is to refine the ordering on vectors

induced by the max (resp. min) aggregation using the leximax (resp. leximin)
ordering. Let −→a ,

−→
b ∈ Ln. Then

−→a �lmax
−→a ⇔ or

{
∀j, a(j) = b(j)
∃i,∀j < i, a(j) = b(j) and a(i) > b(i)

(3)

−→a �lmin
−→
b ⇔ or

⎧⎨⎩
∀j, a(j) = b(j)
∃i,∀j > i, a(j) = b(j) and a(i) > b(i) (4)

where, for any −→w ∈ Ln, w(k) is the k-th greatest element of −→w (i.e. w(1) ≥ . . . ≥
w(n)). In practice, applying a leximin (resp. leximax) comparison on vectors
comes down to rearranging their components in increasing (resp. decreasing) or-
der, then comparing the ordered vector lexicographically, hence the name leximin
(resp. leximax).

Following [4] the same type of approach can be used to refine the ranking
induced by a max-min aggregation of entries in matrices. Let us consider any
weak order (i.e. complete and transitive relation) � on vectors of Lm. The defi-
nition of leximin and leximax procedures can be applied to matrices n×m, since
the rows of the matrices can be rearranged in increasing and decreasing order
according to �. So, denoting � (resp. ≡) the strict (resp. symmetric) part of
�, we can compare any two matrices [a] and [b] according to Leximin(�) and
Leximax(�):

[a] �lmax(�) [b]⇔ or

{
∀j,−→a (j) ≡

−→
b (j)

∃i,∀j < i,−→a (j) ≡
−→
b (j) and −→a (i) �

−→
b (i)

(5)

[a] �lmin(�) [b]⇔ or

{
∀j,−→a (j) ≡

−→
b (j)

∃i,∀j > i,−→a (j) ≡
−→
b (j) and −→a (i) �

−→
b (i)

(6)
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where for any matrix [w] ∈ (Lm)n, −→w (k) is the k-th greatest line of [w] accord-
ing to � (i.e. −→w (1) � . . . � −→w (n)). Now, just let � be the leximin or the lexi-
max ranking of vectors (this is possible, since these relations are complete and
transitive). Then, nested lexicographic ordering procedures Leximax(�lmin),
Leximin(�lmax) can be recursively defined, in order to compare L-valued ma-
trices.

Consider for instance the relation �lmax(�lmin) obtained by the procedure
Leximax(�lmin). It applies to matrices of dimensions n×m with coefficients in
(L,≥). In practice, the comparison comes down to rearranging [a] and [b] such
that terms in each row are reordered increasingly w.r.t. ≥ and rows are arranged
lexicographically top-down in decreasing order. Let [a�] and [b�] be rearranged
matrices [a] and [b]. Let a∗

i. (resp. b∗i.) be row i of a∗ (resp. b∗). Then:

[a] �lmax(�lmin) [b]⇔ or
{
∀i, a�

i· =lmin b�
i·

∃k ≤ p s.t. ∀i < k, a�
i· =lmin b�

i· and a�
k· >lmin b�

k·

Relation �lmax(�lmin) is a weak order. [a] �lmax(�lmin) [b] if and only if [a∗] =
[b∗], i.e. both matrices have the same coefficients up to the above described
rearrangement. As expected , �lmax(�lmin) refines the ranking obtained by the
max-min aggregation:

max
i

min
j

aij > max
i

min
j

bij implies [a] �lmax(�lmin) [b].

and especially, if [a] Pareto-dominates [b] in the strict sense (∀i, j, aij ≥ bij

and ∃i∗, j∗ such that ai∗j∗ > bi∗j∗), then [a] �lmax(�lmin) [b].
We can now show that this ordering can be encoded by a (double) big-stepped

transformation, generalizing the result of [4] established for m = 2

Theorem 2. There exist a transformation χ : L → [0, +∞) such that:

[a] �lmax(�lmin) [b] ⇐⇒
∑

i=1,n

∏
i=1,m

χ(ai,j) >
∑

i=1,n

∏
i=1,m

χ(bi,j)

As a matter of fact, the following transformation can be used to capture the
leximax(leximin) ordering:

χ∗(αl) = 0; χ∗(αi) =
v

NMi+1 , i = 0, k − 1 (7)

where N ≥ max(2, n), M ≥ max(2, m) and v is any positive normalization
factor. For instance for M = 2 the series: v

N , v
N2 ; v

N4 , v
N8 ,... can be chosen.

The choice of N, M, v does not really matter provided that M, N satisfy the
constraints N ≥ max(2, n) and M ≥ max(2, m).

3.2 Capacity-Preserving Refinements of Sugeno Integrals

In the standard expression of Sugeno integral (equation (1)), the two opera-
tors max and min are monotonic but not strictly, hence two nested drowning
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effects. The simplest idea to refine Sugeno integral is to use the Leximax(�lmin)
procedure. This leads to the following decision rule:

f �lsug g ⇐⇒ [f ]γ,u �lmax(�lmin) [g]γ,u (8)

where ∀f ∈ XS , [f ]γ,u is a (l + 1)× 2 matrix on L = (α0 > α1 > . . . > αl) with
coefficients fi1 = αi and fi2 = γ(Fαi), i = 0, l.

The properties of �lmax(�lmin) are thus inherited:

Theorem 3. �lsug is a complete and transitive relation that refines the ranking
of acts induced by Sγ,µ. Moreover, f ∼lsug g iff ∀α, γ(Fα) = γ(Gα)

The last point indicates that acts equivalent with respect to stochastic dominance
will not be discriminated by �lsug. Now, being a Leximax(�lmin) procedure,
�lsug can be encoded by a sum of products. We can for instance use the “big-
stepping” function χ provided by equation 7. Let us set N = l + 1, M = 2 and
choose the normalization factor so that χ(γ(S)) = 1. We can now immediately
derive a new evaluation function Elsug, that provides a refinement of the ranking
induced by Sγ,µ:

Elsug(f) =
∑
α∈L

χ∗(α) · χ∗(γ(Fα)) (9)

Theorem 4. f �lsug g ⇐⇒ Elsug(f) ≥ Elsug(g)

It should be noticed that Elsug(1LA0L) = χ∗(γ(A)) and more generally that:

∀x �P y : Elsug(xAy) ≥ Elsug(xBy)
⇐⇒ xAy �lsug xBy
⇐⇒ γ(A) ≥ γ(B) (10)

i.e. when utility degrees are Booleans, the comparison of events in the sense of
Elsug is perfectly equivalent to the one in terms of γ — that is why we say that
this refinement preserves the capacity. More generally, the procedure is perfectly
unbiased in the sense that the original information, i.e. the ordinal evaluation
of the likelihood of the events on L and the one of the utility degrees of the
consequence on the same scale is preserved.

As expected, �lsug is ordinally equivalent to a Choquet integral, namely the
one based on the utility u′ = χ∗ ◦ u and the capacity ν = χ∗ ◦ γ.

Theorem 5. f �lsug g ⇐⇒ Chχ∗◦γ,χ∗◦µ(f) ≥ Chχ∗◦γ,χ∗◦µ(g) where

Chχ∗◦γ,χ∗◦µ(f) =
∑

αi∈L

χ∗(αi) · (χ∗(γ(Fαi))− χ∗(γ(Fαi−1)))

The intuition behind this result is that the ranking of acts is not modified when
replacing χ∗(γ(αi)) by χ∗(γ(αi))−χ∗(γ(αi+1)) in the definition of Elsug (equa-
tion 9) since when γ(αi+1) is negligible with respect to γ(αi). We thus get the
Choquet integral.

Corollary 1. �lsug satisfies the comonotonic Sure Thing Principle.
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It can be noticed that when the capacity is a possibility measure Π (resp. a
necessity measure N), �lsug does not recover the ranking of acts provided by
expected utility EU+ (resp. EU−). The procedures share the same principles,
but they are different. The ordering �lsug is �lmax(�lmin) applied to a (l+1)×2
matrix, whose lines are pairs (α, Π(Fα)). On the other hand the definition of
EU+ is based on to an expression tailored to possibility measure (SΠ,u(f) =
maxs min(u(f(s)), π(s))). EU+ thus applies �lmax(�lmin) to an |S| × 2 matrix,
whose lines are pairs (π(s),µ(f(s))).

The contrast between the two approaches appears clearly when comparing
binary acts �A⊥. �lsug considers that the information about the likelihood of
events contained capacity should be respected, and indeed �A⊥ �lsug �B⊥ iff
Π(A) ≥ Π(B). On the contrary, �EU+

does not preserve this order over events
but refines it: the possibility ordering of event becomes a big-stepped probability
ordering.

3.3 A State-Based Refinement

As suggested in the previous section, different formulations of the Sugeno integral
may lead to different refinements. For instance, the idempotence of min and max
enable the following expression:

Sγ,µ(f) = max
s∈S

min(µ(f(s)), γ(Fµ(f(s))))

We can then use the χ∗ transformation (again, with N ≥ |S|).

Elstates(f) =
∑

s

χ∗(µ(f(s))) . χ∗(γ(Fµ(f(s)))) (11)

The following equivalent formulation is more practical.

Elstates(f) =
∑

i

|{s,µ(f(s)) = αi}| . χ∗(αi) . χ∗(γ(Fi)) (12)

Let �lstates be the preference ordering induced by Elstates. It is a refinement
of �sug and does generally not satisfy the STP. But it satisfies the comonotonic
STP. Interestingly, it holds that if �sug satisfies WSTP, then �lstates satisfies
STP.

Elstates induces an order on binary acts that can be different from the one
encoded by γ. Indeed, Elstates(�A⊥) = |A|.χ(γ(A)). So, A ∼lstates B ⇐⇒
(γ(A) = γ(B) and |A| ∼ |B|), and A �lstates B ⇐⇒ (γ(A) > γ(B) or (γ(A) =
γ(B) and |A| > |B|). We get the refinement of the original ranking of events ac-
cording to γ by the ranking in terms of cardinality.

Moreover, it turns out that �lsug and �lstates are not comparable: �lstates is
not a refinement of �lsug , nor is �lsug a refinement of �lstates, as shown by the
following counter example.
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Example 1
Let f g π

s1 0.8 0.8 0.8
s2 0.6 0.8 0
s3 0.7 0.6 1

Then Sγ,µ(f) = Sγ,µ(g) = 0.8. The vectors of pairs (αi, γ(Fi)) are:
((0.8, 0.8), (0.7, 1), (0.6, 1)) for f and ((0.8, 0.8), (0.7, 0.8), (0.6, 1)) for g.
Hence Elsug(f) > Elsug(g). Now use pairs (µ(f(s)), γ(Aµ(f(s))). We get:
((0.8, 0.8), (0.7, 1), (0.6, 1)) for f and ((0.8, 0.8), (0.8, 0.8)(0.6, 1)) for g.
Hence Elstates(g) > Estates(f). Elsug and Elstates make opposite rankings, hence
one cannot refine the other.

On this example, the choice of Elsug is closer to the intuition than the one of
Estates, because g is better than f only on an impossible state while f is as least
as good as g on each non-impossible state. Clearly, the problem with Estates is
that impossible states may influence the decision.

3.4 Refinement Using Moebius Transforms

Another approach to the same problem may start from the expression of Sugeno
integral involving all subsets of S:

Sγ,µ(f) = max
A⊆S

min(γ#(A),uA(f)) (13)

where uA(f) = mins∈A u(f(s)) and γ#(A) = γ(A) if γ(A) > maxB�A γ(B), and
0L otherwise. γ# is the qualitative Moebius transform of γ 2. The above expres-
sion of the Sugeno integral has the standard maxmin form w.r.t. a possibility
distribution (on the power set of S). Consider the increasing transformation
χ∗ that changes a max-min aggregation into a sum-of-products encoding of its
Leximax(�lmin) refinement

EU lex#(f) =
∑

A∈2S

χ∗(uA(f)).χ∗(γ#(A)) (14)

Notice that here the referential is neither S nor L, but 2S ; so, in the definition
of χ∗, we set N = 2Card(S). We normalize the transformation in such a way that∑

A∈2S χ∗(γ#(A)) = 1. So, the function m∗ : 2S �→ [0, 1]:

m∗(A) = χ∗(γ#(A))

is a positive mass assignment. Note that m∗ is a big-stepped mass function in
the sense that:

m∗(A) > 0 =⇒ m∗(A) >
∑

B⊆S, s. t.m∗(B)<m∗(A)

m∗(B). (15)

2 It is a qualitative counterpart of the following expression of the Choquet integral:
Chν(f) =

∑
A⊆S mν(A) × uA(f)

where mν is the Moebius transform of a numerical capacity ν.
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In particular, if γ#(A) > 0L then m∗(A) > maxB�A m∗(B). Now, it is easy
to show that χ∗(uA(f)) = χ∗(mins∈A u(f(s))) = mins∈A χ∗(u(f(s))). Then:

EU lex#(f) =
∑
A⊆S

m∗(A) . min
s∈A

χ∗(u(f(s))) (16)

is a Choquet integral w.r.t. a belief function. Letting Bel∗(A) =
∑

B⊆A m∗(B)
be the induced belief function, the obtained Choquet integral reads:

EU lex#(f) = ChBel∗(f) =
∑

i=0,...,m−1

χ(αi).(Bel∗(Fαi+1)−Bel∗(Fαi)) (17)

This shows that any Sugeno integral can be refined by a Choquet integral w.r.t
a belief function. In summary:

Theorem 6. For any Sugeno integral Sγ,µ, there exist a Choquet integral
ChBel∗,u∗ with respect to a belief function Bel∗ and a utility function u∗ such
that:

Sγ,µ(f) > Sγ,µ(g) =⇒ ChBel∗,u∗(f) > ChBel∗,u∗(g)

Contrary to the Choquet integral presented in the Section 3.2, the capacity γ is
generally not preserved under the present transformation. The resulting Choquet
integral is always pessimistic, and sometimes much more, sometimes not more
refined than the original criterion. Two extreme particular cases are interesting
to consider:

– If γ is a possibility measure Π , then γ#(A) is positive on singletons of
positive possibility only. In other words, γ# coincides with the possibility
distribution of Π and the Moebius expression of the Sugeno integral coincides
with the expression of the optimistic possibilistic criterion. So m∗ is a regular
big-stepped probability and the Choquet integral collapses to the regular
expected utility EU+.

– On the contrary if γ is a necessity measure N , ChBel∗,u∗ does not collapse
at all with the pessimistic expected utility EU−. Indeed, if γ is a necessity
measure N , γ#(A) is positive on alpha-cuts of the possibility distribution
only. So the mass assignment m∗ is positive on the nested family of sets Ai,
and the belief function Bel∗ is a necessity measure ordinally equivalent to
the original one. In this case, the resulting Choquet integral preserves the
necessity measure. Only the “max-min” framing of the Sugeno integral has
been turned into a “sum-product” framing: the transformation has preserved
the nature of the original capacity and the refinement identified in Section
3.2 is retrieved.

4 Conclusion

This paper tries to bridge the gap between qualitative and quantitative
criteria for decision-making under uncertainty with a view to increase their
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discrimination power. It is shown that qualitative criteria can be refined by sym-
metric lexicographic procedures. These procedures can be simulated by quanti-
tative criteria using big-stepped scale transformations that preserve the order-
of -magnitude and negligibility phenomena pervading the qualitative criteria.
When uncertainty is encoded by means of qualitative possibility and necessity
measures, a big-stepped expected utility criterion is known to provide a maximal
refinement. Here we study the case when uncertainty is encoded by a general
qualitative capacity and the criterion is a Sugeno integral. Our results indicate
that a Choquet integral is the natural choice for defining refined rankings.

Numerous questions remain open and are not considered here by lack of space,
for instance the detailed study of the refinements of a capacity and the question
of the (non) unicity of the maximal refinement. Can the capacity-preserving
refinement be improved by refining the capacity in a second step? How to relate
the various refinements obtained by the various expressions of Sugeno integral?
Lastly, finding complete act-driven axiomatics of the new decision rules proposed
here is also in order, by putting together Savage axioms and Sugeno integral
axioms in some way.
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Abstract. The representation of both scales of cost and scales of benefit
is very natural in a decision-making problem: scales of evaluation of
decisions are often bipolar. The aim of this paper is to provide algebraic
structures for the representation of bipolar rules, in the spirit of the
algebraic approaches of constraint satisfaction. The structures presented
here are general enough to encompass a large variety of rules from the
bipolar literature, as well as having appropriate algebraic properties to
allow the use of CSP algorithms such as forward-checking and algorithms
based on variable elimination.

1 The Introduction

Soft constraints frameworks usually consider that preferences are expressed in
a negative way. For instance, Valued Constraint Satisfaction Problems (VCSPs,
[16]) aim at minimising an increasing combination of the violation costs pro-
vided by the constraints. This also is the case for all instances of semiring-based
CSPs [3], where the combination of the successive valuations provided by the
constraints decreases (worsens) the global evaluation. But problems often also
contain positive preference constraints which increase the global satisfaction de-
gree, so it is desirable to extend constraints approaches to such situations. For
example, if one is choosing a holiday apartment, one has to balance the (positive)
benefits of a decision, such as having a sea view, against the (negative) mon-
etary cost. This bipolar characteristic of the preferences in CSPs has recently
been advocated by Bistarelli, Pini, Rossi and Venable [4,14,15]. Bipolarity is
also an important focus of research in several domains, e.g. psychology [17,18],
multicriteria decision making [8,9], and more recently in AI: argumentation [1]
and qualitative reasoning [10,2,7].

There are basically two ways of representing a bipolar notion on a scale. The
first one is the so called univariate model proposed by Osgood et al [13]. It
consists of a scale with a central neutral element ranging from negative values
(below the neutral element) to positive values (higher than the neutral element).
This kind of model has recently been introduced into constraint programming
in [4,14,15]. Unlike this first model the bivariate model introduced by Cacioppo
and al. [5] (see for instance [9,8,7]) does not use one but two scales; this can
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be pictured with a horizontal axis encoding the intensity of positive values, and
the vertical axis the intensity of the negative ones. Thus the evaluation is not
necessarily totally positive nor totally negative, but can have both positive and
negative components. The original motivation for such a model comes from the
fact that a subject may feel at the same time a positive response and a negative
one for the same characteristic of an object. For a house, being close to a bus
station is both good (time is saved) and bad (it is noisy).

The aim of the present paper is to provide algebraic structures for the repre-
sentation of bivariate bipolar rules, in the spirit of the algebraic approaches of
constraint satisfaction. This is to enable combinatorial optimisation over expres-
sive languages of constraints, where both costs and benefits can be expressed.
The structure should be rich enough to encompass a large variety of rules from
the bipolar literature; but it should have appropriate algebraic properties to
allow the use of soft CSP algorithms. The next section discusses classes of bipo-
lar decision rules. Section 3 describes our basic algebraic structure and shows
how to represent some decision rules from the literature using this; special sub-
classes are also examined. Section 4 describes bipolar systems of constraints and
a forward checking algorithm for optimisation. In Section 5 we define a richer
algebraic structure, bipolar semirings, which allows more complex propagation
algorithms.

2 Bipolar Decision Rules

The purpose of a bipolar decision making procedure is to provide a comparison
relation � between alternatives, given, for each alternative d, a multiset P (d) of
positive evaluations and a multiset set N(d) of negative ones. In the context of
preference-based CSPs, N(d) corresponds to preference valuations provided by
some negative constraints, as in fuzzy CSPs and more generally, semiring-based
CSPs, and P (d) corresponds to the positive valuations provided by reward-based
constraints. The basic property of bipolar decision processes is that the bigger
P (d) (respectively, N(d)) is, the better (resp., worse) d is:

P (d′) ⊆ P (d) and N(d′) ⊇ N(d) =⇒ d � d′

Cumulative prospect theory [18] adds to this “bimonotonicity” axiom a second
principle: P (d) and N(d) must be separately evaluated by means of two functions
that provide an overall positive degree p(d) and an overall negative degree n(d).
According to bimonotonicity, p should be maximised and n minimised.

2.1 Univariate Models

Such models represent a situation where p and n are on the same scale and the
decision strategy can be modelled by computing a net predisposition: NP(d) =
f(p(d), n(d)), where f is increasing in its first argument and decreasing in its
second. Alternatives d are then ranked increasingly with respect to NP. The
most famous example is based on an aggregation by a sum:
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NP+(d) = p(d)− n(d) =
∑

v∈P (d) v −
∑

v∈N(d) v.

Another example is provided by qualitative reasoning [10]:

NPqual(d) = min(p(d), 1− n(d))

where p(d) = maxv∈P (d) v and n(d) = maxv∈N(d) v. More generally, we can
consider that p(d) and n(d) are obtained by monotonic and associative combi-
nations of the valuations they contain, namely by a pair of t-conorms1 (⊗+,⊗−):
p(d) =

⊗+
v∈P (d) v and n(d) =

⊗−
v∈N(d) v. It should be noticed that ⊗+ and ⊗−

can be different from each other—for some subjects, their combination of posi-
tive effects is more or less isomorphic to a sum, while for the negative scale, the
worst value is taken, i.e. ⊗− = max. The NP model thus encompasses more than
just the simple additive rule. In [4], net predisposition is generalised to semiring-
valued constraints through use of (i) two semirings, one, L+, for representing
positive degrees of preference, and the other, L−, for representing negative de-
grees of preference, equipped with their respective multiplications ⊗+ and ⊗−

and (ii) an operator⊗ defined within L+∪L− for combining positive and negative
elements. The framework then aims at maximising (

⊗+
v∈P (d) v)⊗ (

⊗−
v∈N(d) v).

2.2 Bivariate Models

Since they are fundamentally single-scaled, univariate models are not well suited
to the representation of all decision making situations. For instance, a conflicting
set whose strongest positive argument is equally strong as its strongest negative
argument is often difficult to rank (see e.g. [17]). Since a univariate model aggre-
gates a positive and a negative value into either a positive or a negative value,
and since such scales are totally ordered, it cannot account for situations of in-
comparability. Hence the necessity of bivariate models as first proposed by [5]
(see also [8]). As discussed in the introduction, a second reason is the necessity
of taking into account arguments that have both a positive and a negative as-
pect. Classical examples of such rules are provided by Pareto rules. In contrast
to net predisposition, these do not make any aggregation of p and n, but rather
consider that each of the two dimensions is a criterion and that the scales of the
criteria are not commensurate. Decision is then made on the basis of a Pareto
comparison:

Pareto: d � d′ ⇐⇒ p(d) ≥ p(d′) and n(d) ≤ n(d′)

Letting ⊗+ = ⊗− = max, one recovers the qualitative rule proposed in [7],
but once again, ⊗+ and ⊗− can be two different t-conorms.

The Pareto ordering is obviously rather weak, and it is natural to strengthen
it by adding extra orderings to represent tradeoffs. For example, in a Pareto
1 A t-conorm is an increasing associative and commutative operation on some ordered

scale L = [0L, 1L] with 0L as unit element and 1L as absorbing element. We formulate
here the rules in the way they apply in a constraint-based setting. Some of them
admit a more general definition accounting for non-independent arguments.
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system with both scales being {0, 1, 2, . . .}∪ {∞}, and both combinations being
addition, we might add extra orderings such as (1, 3) � (0, 0). The new ordering
� is then defined to be the smallest transitive relation which (i) extends both
the Pareto ordering and the extra orderings and (ii) satisfies the property that
⊗ is monotone over � (see Definition 1 below). In this example we could deduce
using the monotonicity property also that (2, 4) � (1, 1). Other instances of the
bivariate model in [5] are provided by qualitative reasoning, namely the order of
magnitudes formalism in [19] and the “bilexi” qualitative rule in [7].

3 Bipolar Valuation Structures

The constituent elements of a bipolar framework should be a set of valuations
A containing a subset of positive valuations (say, A+), and a set of negative
valuations (say, A−), a combination operator ⊗ and a comparison relation2 �
on A. � is a partial order (i.e., � is reflexive, antisymmetric and transitive, but
need not be complete).

A− contains a worst element, say ⊥ (which could be received upon the viola-
tion of some hard constraint), and A+ contains a best element � (which could
be received upon the ideal satisfaction of the goal(s)). Both share the neutral or
“indifferent” valuation, that should not modify the evaluation of a decision.

We also will need algorithms for optimisation in the combinatorial case, e.g.
branch and bound algorithms. This further restricts the algebraic framework we
are looking for: ⊗ should not be sensitive to the order in which the constraints
are considered, so is assumed to be commutative and associative; it also should
be monotonic w.r.t. �.

3.1 Definition and Basic Properties

Definition 1. A bipolar valuation structure is a tuple A = 〈A,⊗,�〉 where:
– � is a (possibly partial) order on A with a unique maximum element � and

a unique minimum element ⊥ (so for all a ∈ A, � � a � ⊥);
– ⊗ is a commutative and associative binary operation on A with neutral el-

ement 1 (for all a ∈ A, a ⊗ 1 = a); furthermore ⊗ is monotone over �: if
a � b then for all c ∈ A, a⊗ c � b⊗ c.

Notice that the assumption of the existence of elements � and ⊥ is not re-
strictive. If A does not contain them then we can add them whilst maintaining
the properties of ⊗, �, 1.

An element a is said to be positive if a � 1, and it is said to be negative if
a � 1. We write the set of positive elements of A as A+, and the set of negative
elements as A−. The following proposition gives some basic properties.

Proposition 1. Let A = 〈A,⊗,�〉 be a bipolar valuation structure. Then
(i) ⊗ is increasing (resp. decreasing) with respect to positive (resp. negative)

elements: if a ∈ A and p � 1 � n then a⊗ p � a � a⊗ n;
2 Given a relation �, we use � to mean the strict part of �, so that a � b if and only

if a � b and b �� a (i.e., b � a does not hold).
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(ii) ⊥ (resp. �) is an absorbing element in A−(resp. A+);
(iii) for all p ∈ A+ and n ∈ A−, p ⊗ n � n and p � p ⊗ n, so that p ⊗ n is

between n and p.

(i) is a key property for bipolar systems, related to bimonotonicity mentioned
above. The third property follows from (i) and means that p⊗ n is somewhere
between p and n—but it does not imply that p⊗n is either positive or negative.
It may happen that neither p ⊗ n � 1 nor 1 � p ⊗ n: the set A can contain
more elements than purely positive and purely negative ones, which gives it the
ability to represent conflicting values that have both a positive and a negative
component.

Define APN to be the set of all those elements of A which can be written as
a combination of a positive and a negative element, i.e.,

APN = {a ∈ A : a = p⊗ n, n � 1 � p}.

APN contains A+, A− and all the valuations that are obtained by combining
positive and negative values: it is the core of the bipolar representation.

Proposition 2. Let A = 〈A,⊗,�〉 be a bipolar valuation structure, then A−,
A+ and APN are each closed under ⊗. Moreover, APN contains A+ ∪ A−, in-
cluding 1,⊥ and �. Hence 〈APN ,⊗,�〉 is also a bipolar valuation structure.

Definition 2
A bipolar structure is bivariate iff A = APN . It is univariate iff A = A+ ∪A−.

In particular, in a univariate system, the combination of a positive element and
a negative element is always comparable to the neutral element.

The framework of bipolar valuation structures is general enough to allow val-
uations outside APN , but they do not have such a simple interpretation in terms
of positive and negative values. Since we are interested in the representation of
bipolarity, we focus the paper on bivariate systems (which includes univariate
systems).

3.2 Examples

Additive net predisposition For representing NP+ we will useA = R∪{−∞,+∞}
with ⊗ = + and � = ≥. So, the neutral element 1 equals 0, A+ = R+ ∪ {+∞},
A− = R− ∪ {−∞}. We define −∞ ⊗ +∞ = −∞, since getting a conflict is
very uncomfortable and should be avoided. However, in practice, +∞ is never
allocated by any constraint.

Pareto: Pareto⊗−,⊗+
denotes any Pareto rule built from two t-conorms ⊗−

and ⊗+, respectively in L− = [0−, 1−] and L+ = [0+, 1+]. The combination
is performed pointwise (using the two conorms) and pair (n, p) is preferred to
(n′, p′) if and only if it is better on each co-ordinate. The encoding of such
a rule is done using the a product structure: A = 〈L− × L+, (⊗−,⊗+),�par〉
with 1 = (0−, 0+),⊥ = (1−, 0+),� = (0−, 1+) where �par is simply defined



628 H. Fargier and N. Wilson

by the Pareto principle: (n, p) �par (n′, p′) ⇐⇒ n ≤ n′ and p ≥ p′. As a
particular case, the qualitative Paretomax rule corresponds to the structure A =
〈[0, 1]× [0, 1], (max,max),�par〉 with 1 = (0, 0), ⊥ = (1, 0), � = (0, 1).

Additive net prediposition is obviously univariate. The rules of the form
Pareto⊗+,⊗−

are not univariate but bivariate. So also is the following rule.

Order of magnitude calculus (OOM): In the system of order of magnitude rea-
soning described in [19], the elements are pairs 〈σ, r〉 where σ ∈ {+,−,±}, and
r ∈ Z∪ {∞}. The system is interpreted in terms of “order of magnitude” values
of utility, so, for example, 〈−, r〉 represents something which is negative and has
order of magnitude Kr (for a large number K). Element 〈±, r〉 arises from the
sum of 〈+, r〉 and 〈−, r〉. 〈±, r〉 can be thought of as the interval between 〈−, r〉
and 〈+, r〉, since the sum of a positive quantity of order Kr and a negative quan-
tity of order Kr can be either positive or negative and of any order less than
or equal to r. Let Aoom = {〈±,−∞〉} ∪ {〈σ, r〉 : σ ∈ {+,−,±}, r ∈ Z ∪ {+∞}}.
We write also 〈−,+∞〉 as ⊥, and 〈+,+∞〉 as �.

The interpretation leads to defining ⊗ by: 〈σ, r〉 ⊗ 〈σ′, r′〉 = 〈σ, r〉 if r > r′;
it’s equal to 〈σ′, r′〉 if r < r′; and is equal to 〈σ ⊕ σ′, r〉 if r = r′, where ⊕ is
given by: +⊕+ = + and −⊕− = −, and otherwise, σ⊕σ′ = ±. Operation ⊗ is
commutative and associative with neutral element 〈±,−∞〉. � is defined by the
following instances:3 (i) for all r and s, 〈+, r〉 � 〈−, s〉; (ii) for all σ ∈ {+,−,±},
and all r, r′ with r ≥ r′: 〈+, r〉 � 〈σ, r′〉 � 〈−, r〉. The relation � is a partial order
with unique minimum element ⊥ and unique maximum element �. The positive
elements and the negative elements are both totally ordered, and Aoom = APN .
However, there are incomparable elements, e.g. 〈±, r〉 and 〈±, s〉 when r = s.

3.3 Important Subclasses of Bipolar Valuation Structures

Below we discuss some properties and special kinds of bipolar structures.

Unipolar scales: First of all, let us say that A is purely positive (resp., purely
negative) iff A = A+ (resp. A = A−). In such a structure, ⊥ = 1 (resp. � = 1).
The most classical example is provided by semiring-based CSPs where A = A−,
while purely positive preference structures are considered in [4].

Totally ordered scales: In most of the bipolar rules encountered in the literature,
� is complete on A+ ∪ A−, e.g. NP+, Paretomax,max and Aoom. Unless the
structure is univariate, this does not imply that � is complete, but that the
restriction of ⊗ on A+ (resp. A−) is a t-conorm (resp. a t-norm).

Strict monotonicity: A = 〈A,⊗,�〉 is said to be strictly monotonic if for all
a, b ∈ A and for all c = �,⊥, we have a � b ⇒ a ⊗ c � b ⊗ c. Qualitative rules
based on max and min operations are not strictly monotonic, while addition-
based frameworks often are. Failure of strict monotonicity corresponds to the

3 This definition is slightly stronger than the one in [19], which doesn’t allow 〈+, r〉 �
〈±, r〉 � 〈−, r〉; either order can be justified, but our choice has better computational
properties.
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well known “drowning effect”: without strict monotonicity, it may happen that
a decision d is not necessarily strictly preferred to d′ even though it is strictly
preferred to d′ by all constraints apart from one that judges them equally.

Idempotent structures: An element a ∈ A is said to be idempotent if a⊗ a = a,
and ⊗ is said to be idempotent if every element of A is idempotent. The idem-
potence of ⊗ is very useful for having simple and efficient constraint propagation
algorithms. Idempotence, which is at work e.g. in Paretomax,max, Aoom and in
many unipolar structures (e.g. fuzzy CSPs), induces the drowning effect. Natu-
rally, idempotence and strict monotonicity are highly incompatible properties.
The range of compatibility of idempotence with a univariate scale is also very
narrow—it reduces the structure to a very special form:

Proposition 3. If bipolar valuation structure A is idempotent and univariate,
then for all p ∈ A+ and n ∈ A−, either p⊗ n = p or p⊗ n = n.

Invertibility: The notion of cancellation is captured by the property of invert-
ibility. Element a is said to be invertible if there exists element b ∈ A with
a⊗ b = 1. A structure is said to be invertible if every element in A− {�,⊥} is
invertible. A− {�,⊥} then forms a commutative group under ⊗. This property
is important for the framework in [4,14,15] and fits well with univariate scales.
For instance, it is easy to show that when � is complete on A+, invertibility is
a sufficient condition for making a bivariate system univariate.

On the other hand, associativity implies that 1 is the only element a which is
both idempotent and invertible, since if a⊗ b = 1 then a = a⊗1 = a⊗ (a⊗ b) =
(a ⊗ a) ⊗ b = a ⊗ b = 1. This means that when ⊗ is idempotent a positive
argument can never be exactly cancelled by a negative argument: invertibility is
strongly related to strict monotonicity.

Proposition 4. If bipolar valuation structure A is invertible then it is strictly
monotonic.

This problem is avoided in [4,14,15] by not assuming associativity on their uni-
variate scale. But invertibility should not be considered as a norm, and bivariate
systems are generally not invertible.

4 Bipolar Constraints and Optimisation

4.1 Bipolar Systems of Constraints

Let X be a set of variables, where variable x ∈ X has domain D(x). For U ⊆ X ,
we define D(U) to be the set of all possible assignments to U , i.e.,

∏
x∈U D(x).

Let A = 〈A,⊗,�〉 be a bipolar valuation structure. An A-constraint ϕ [over
X ] is defined to be a function from D(sϕ) to A, where sϕ, the scope of ϕ, is
a subset of variables associated with ϕ. We shall also refer to ϕ as a bipolar
constraint.
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Definition 3. A bipolar system of constraints, over a bipolar valuation structure
A, is a triple (X,D,C) where X is a set of variables, D the associated domains
and C a multiset of A-constraints over X.

Bipolar constraint ϕ allocates a valuation ϕ(d) to any assignment d to its scope.
More generally, if d is an assignment to a superset of sϕ, and e is the projection
of d to sϕ, then we define ϕ(d) to be ϕ(e). For any assignment d of X , the bipolar
evaluation of d is val(d) =

⊗
ϕ∈C ϕ(d).

Many requests can be addressed to a bipolar system of constraints. The
most classical one, the optimisation request, searches for one undominated so-
lution: d is undominated if and only if there does not exist any d′ such that
val(d′) � val(d). Variants include the search for several (or all the) undominated
solutions. The associated decision problem, for a given bipolar valuation struc-
ture A = 〈A,⊗,�〉 can be written as:

[BCSPA]: Given a bipolar system of constraints over A and a ∈ A, does there
exist an assignment d such that val(d) � a.

Proposition 5. Let A = 〈A,⊗,�〉 be a bipolar valuation structure. Suppose
that testing b � a is polynomial, and computing the combination of a multiset of
elements in A is polynomial. Suppose also that A contains at least two elements.
Then BCSPA is NP-complete.

Indeed, given these assumptions, for any A, the problem BCSPA is in NP, since
we can guess assignment d, and test val(d) � a in polynomial time. It is NP-hard
if A has more than one element since then � and ⊥ must be different and so
either 1 = ⊥ or 1 = � (or both); in either case we can use a reduction from
3SAT, by considering bipolar constraints which only take two different values: 1
and either ⊥ or �.

4.2 Forward Checking Algorithm

This section describes a generalization of the Forward Checking algorithm for
finding an undominated complete assignment in bipolar systems of constraints.
For the sake of brevity, we assume that all the constraints in C are either unary
or binary; however, it is not hard to modify the algorithm to be able to deal
with constraints of higher arity.

We assume that we have implemented a function UB(S) that, given a finite
subset S of A, returns some upper bound of them (with respect to �). UB(S)
might be implemented in terms of repeated use of a function ∨(·, ·) where ∨(a, b)
is an upper bound of both a and b (i.e., ∨(a, b) � a, b). For example, if least upper
bounds exist, we can set ∨(a, b) to be some least upper bound of a and b. In
particular, if � is a total order, we can use max. However, very often � is not a
total order, e.g., for the Pareto rule. For each constraint ϕ we write also UB(ϕ)
for UB({ϕ(d) : d ∈ D(sϕ)}, i.e. an upper bound over the values of ϕ. UB(ϕ) is
an important parameter: in a bipolar system of constraints, future constraints
cannot be neglected, since they can increase the current evaluation. In other



Algebraic Structures for Bipolar Constraint-Based Reasoning 631

terms, setting UB(ϕ) = 1 is not sound—while UB(ϕ) = � is sound but generally
inefficient, both because � is generally not provided by any constraint (nothing
is perfect) and because it is not far from being absorbing (and is so on A+). In
practice, for each ϕ, UB(ϕ) can be pre-computed.

The handling of UB(ϕ) is the main difference between classical Forward Check-
ing and bipolar Forward Checking. The structure of the algorithm is very clas-
sical: the top level procedure, BestSol, returns global parameter d∗, which will
then be an undominated solution, and global parameter b∗ which equals val(d∗).
The algorithm performs a tree search over assignments, pruning only when there
can be no complete assignment below this point with better val than the current
best valuation b∗ (which is initialised as ⊥).

Without loss of generality, we assume that for each x ∈ X there exists ex-
actly one unary constraint ϕx on x (if there exists more, we can combine them;
if there exists none, we can set ϕx(v) = 1 for all v ∈ D(x)). The algorithm
involves, for each variable x, a unary constraint µx, which is initially set to
being equal to ϕx. The backtracking is managed with the help of two proce-
dures: StoreDomainsUnary(i) takes a backup copy of the variable domains and
the values of the unary constraints µx at tree depth i; RestoreDomainsUnary(i)
restores them as they were at point StoreDomainsUnary(i).

We write an assignment d to a set of n variables as a set of assignments x := v.
In particular, {} designates the assignment to the empty set of variables.

procedure BestSol
b∗ := ⊥
for all variables x, for all v ∈ D(x), set µx(v) := ϕx(v)
FC(0, {}, 1)
Return d∗ and b∗

procedure FC(i, d,CurrentVal )
If i = n then
if CurrentVal � b∗ then b∗ := CurrentVal; d∗ := d

Else
Choose an unassigned variable x
StoreDomainsUnary(i)
For all v in D(x)
If PropagateFC(x, v,CurrentVal ) then FC(i+1, d∪{x := v}, CurrentVal ⊗µx(v))

RestoreDomainsUnary(i)

boolean function PropagateFC(x, v,CurrentVal )
PastVal := CurrentVal ⊗ µx(v)
futureConstr = {ϕ linking two unassigned variables}
FutureVal :=

⊗
ϕ∈futureConstr UB(ϕ)

// Propagate forward on the future variables:
For all ϕ linking x to an unassigned variable y
For all values v′ in D(y)
set µy(v′) := µy(v′) ⊗ ϕ(x = v, y = v′)

Uppery := UB({µy(v′) : v′ ∈ D(y)})



632 H. Fargier and N. Wilson

// Pruning the domains
For all unassigned variables y and all v′ ∈ D(y)

VarsValy :=
⊗

y′unassigned, y′ �=y Uppery′

UppBdy(v′) := µy(v′) ⊗ VarsValy ⊗ PastVal ⊗ FutureVal
If not(UppBd y(v′) � b∗) remove v′ from D(y)
If D(y) = ∅ then return FALSE (and exit PropagateFC)

Return TRUE

The soundness of the pruning condition is ensured by the monotonicity of ⊗
and the transitivity of �. But it can also be sound in some structures that do
not fulfill these conditions. In particular, even if ⊗ is not monotone over � then
the algorithm will still be correct if operator ∨ ensures that ∀c ∈ A, ∨(a, b)⊗ c
is an upper bound of a⊗ c and b⊗ c.

The family of Forward Checking algorithms includes more complex versions
than the one extended here, e.g. Reversible Directional Arc Consistency(RDAC)
and other improvements [12]. The algebraic structure presented in Section 3 is
rich enough to allow them to work soundly. But more sophisticated algorithms
for constraint optimisation, which use more complex constraint propagation (e.g.
using variable elimination), require more than a simple upper bound operator.
This is the topic of the next section.

5 Bipolar Semirings

An important computational technique for multivariate problems (such as CSPs)
is sequential variable elimination (bucket elimination). This calls for the struc-
ture to be rich enough to allow the definition of an internal operator ∨ that not
only provides an upper bound of its operands (and thus admits � as absorb-
ing element and ⊥ as a neutral element) but is also assumed to be associative,
commutative and idempotent. Unsurprisingly, the kind of structure needed is a
semiring, but of a more general form than the semirings usually used in con-
straint programming. A (commutative) semiring is a set A endowed with two
operations ∨ and ⊗ which are both commutative and associative and such that
⊗ distributes over ∨.

Definition 4. A bipolar semiring is a tuple 〈A,⊗,∨,�〉 where: 〈A,⊗,�〉 is a
bipolar monotonic valuation structure; ∨ is an associative, commutative and
idempotent operation on A with neutral element ⊥ and absorbing element �,
satisfying:

Distributivity: for all a, b, c ∈ A, a⊗ (b ∨ c) = (a⊗ b) ∨ (a⊗ c);
Monotonicity of ∨ over �: i.e., a � b =⇒ a ∨ c � b ∨ c.

Notice that, since a � ⊥, and ∨ is monotone over �, we have a ∨ b � ⊥∨ b = b.
We therefore have the following:

Proposition 6. Let 〈A,⊗,∨,�〉 be a bipolar semiring. Then for any a, b ∈ A,
a ∨ b � a, b.
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Hence Definition 4 implicitly requires a∨ b to be an �-upper bound for a and b,
which is an important property for branch-and-bound and variable elimination
algorithms. When � is a total order, finding a suitable ∨ is immediate: choose
∨ = max. When � is an upper semi-lattice, a ∨ b will be the least upper bound
of a and b. For instance, when A is the product of a totally ordered positive scale
and a totally ordered negative scale, as in the Pareto case, we can use pointwise
application of maximum. In the OOM framework 〈σ, r〉 ∨ 〈σ′, r′〉 is the better
of the two elements if they are comparable; otherwise, their least upper bound
is equal to 〈+,max(r, r′)〉. It can be shown that 〈Aoom,+,∨,�, 〉 is a bipolar
semiring.

Importantly, semiring properties are sufficient for variable elimination to be
correct (see e.g., [11]). Hence Definition 4 enables the use of such methods within
a branch and bound tree search as a way of generating global upper bounds of a
set of bipolar constraints (in particular, as a way to compute a stronger value of
FutureVal in the above algorithm). However, sequential variable elimination is
only practical in certain situations, in particular, if the scopes of the constraints
are such that the treewidth is small. Otherwise one can use a mini-buckets
[6] approach for generating an upper bound of the least upper bound, since
it has been shown that sufficient conditions for this technique to be applicable
to general soft constraints, are that A forms a semiring, the two operators are
monotone over the ordering, and a ∨ b � a, b for all a, b ∈ A.

Notice that ∨ itself defines a comparison relation �∨ on A, as in semiring-
based CSPs: for all a, b ∈ A, a �∨ b ⇐⇒ a ∨ b = a. It follows that for any
a ∈ A, we have ⊥ �∨ a �∨ � and that ∨ and ⊗ are monotone with respect to
�∨. Hence if 〈A,⊗,∨,�〉 is a bipolar semiring then 〈A,⊗,∨,�∨〉 is as well. It
is also easy to show that �∨ is a partial order (it is antisymmetric) but is not
necessarily complete. Moreover, by Proposition 6, a �∨ b ⇒ a � b. Hence if is
optimal (i.e. non dominated) with respect to � then it is optimal w.r.t. �∨.

6 Conclusion

The representation of both scales of cost and scales of benefit is very natural in a
decision-making problem. We have abstracted the kind of properties assumed in
such bipolar reasoning to produce algebraic valuation structures which, firstly, al-
low the representation of many natural forms of bipolar reasoning, and secondly,
have sufficient structure to allow optimisation algorithms. As well as bipolar
univariate models, our framework can also represent bivariate models for bipo-
lar reasoning, which allow the kind of incomparability found in many natural
systems for reasoning with positive and negative degrees of preference.

This paper has proposed a generalization of the forward checking algorithm
for handling the optimization in bipolar structures. This algorithm actually ap-
plies to rather general algebraic structures, even to structures similar to bipolar
valuation structures but which are not fully monotonic.
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Abstract. Qualitative Choice Logic (QCL) is a convenient tool for rep-
resenting and reasoning with “basic” preferences. However, this logic
presents some limitations when dealing with complex preferences that,
for instance, involve negated preferences. This paper proposes a new logic
that correctly addresses QCL’s limitations. It is particularly appropriate
for handling prioritized preferences, which is very useful for aggregating
preferences of users having different priority levels. Moreover, we show
that any set of preferences, can equivalently be transformed into a set of
normal form preferences from which efficient inferences can be applied.

1 Introduction

Decision analysis and Artificial Intelligence have been developed almost sepa-
rately. Decision analysis is concerned with aggregation schemes and has relied
mostly on numerical approaches, while Artificial Intelligence deals with reasoning
and has an important logically oriented tradition [5]. Artificial Intelligence meth-
ods can contribute to a more implicit and compact representation of “agent’s”
preferences. This line of research has been recently illustrated in various ways
by AI researchers [9,7,12,2].

Recently, a new logic for representing choices and preferences has been pro-
posed [1]. This logic, called Qualitative Choice Logic (QCL), is an extension of
propositional logic. The non-standard part of QCL logic is a new logical con-
nective ×, called Ordered disjunction, which is fully embedded in the logical
language. Intuitively, if A and B are propositional formulas then A × B means:
“if possible A, but if A is impossible then at least B”. As a consequence, QCL
logic can be very useful to represent preferences for that framework. However,
it presents some limitations. Assume that we want to represent the options con-
cerning a travel from Paris to Vancouver. Assume that a travel agency has the
following rules “customers preferring Air France to KLM also buy a hotel pack-
age” and “customers preferring KLM to Air France do not buy a hotel package”.
When a travel agency meets a customer that actually prefers Air France to KLM,
the expected behavior of its information system is to propose a hotel package to
that customer. Unfortunately, the QCL logic does not allow us to infer such a
conclusion. It will infer both that a package should and should not be proposed.
In fact, the way negation is handled in QCL logic is not fully satisfactory. In
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QCL when a negation is used on a QCL formula with ordered disjunctions, that
negated QCL formula is logically equivalent to a propositional formula obtained
by replacing the ordered disjunction (×) by the propositional disjunction (∨).
This is really a limitation, since for instance QCL does not make a distinction
between the three rules: “Air France × KLM ⇒ FirstClass” (people preferring
Air France to KLM travel in first class), “KLM × Air France⇒FirstClass” (peo-
ple preferring KLM to Air France travel in first class) and “Air France ∨ KLM
⇒ FirstClass” (people flying on Air France or KLM travel in first class). In
their two page short paper [4] these limitations of QCL have been informally
advocated, however no rigorous solution is proposed.

This paper proposes a new logic called PQCL (Prioritized Qualitative Choice
Logic). It is a new logic in the sense that negation, conjunction and disjunction
departs from the ones used in standard QCL. However, it is based on the same
QCL language. Our logic is dedicated for handling prioritized preferences and its
inference relation correctly deals with negated preferences. In many applications,
agent’s preferences do not have the same level of importance. For instance, an agent
who provides the two preferences : ” I prefer AirFrance to KLM”, and ” I prefer a
windows seat to a corridor seat”, may consider that the first preference statement
is more important that the second preference statement. Our logic can manage
such prioritized preferences using prioritized conjunction, and disjunction.

One of the strong point of the PQCL logic proposed in this paper, is that
its inference relation can be constructed in two equivalent ways. The first way
is based on inference rules that define the satisfaction degree for any formula.
The second way is based on a normal form function that equivalently transforms
any set of preferences into a set of normal form preferences, from which efficient
inferences can be applied. Indeed, having a set of preferences in a normal form
allows us to reuse various non-monotonic approaches such as possibilistic logic
[10] or compilation of stratified knowledge bases [16].

The rest of this paper is organized as follows. First, we recall QCL language,
and we describe QCL logic limitations. Then, we introduce our new logic, called
PQCL, that deals with prioritized preferences. We present the inference relation
for our PQCL logic and show how PQCL theories can be transformed into
normal form theories. Last section concludes the paper.

2 The QCL language

This section presents the QCL language, which is in fact composed of three en-
capsulated sub-languages: Propositional Logic Language, the set of Basic Choice
Formulas (BCF ) or normal form preferences and the set of General Choice For-
mulas (GCF ). These sub-languages are presented in the following subsections.

2.1 Basic Choice Formulas (BCF )

Let PS denotes a set of propositional symbols and PROPPS denotes the set
of propositional formulas that can be built using classical logical connectives
(⇔,⇒,∧,∨,¬) over PS.
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Basic choice formulas are ordered disjunctions of propositional formulas. They
propose a simple way to order available alternatives. Given a set of propositional
formulas a1, a2, ..., an, the formula a1×a2× . . .×an

1 is used to express and
ordered list of alternatives: some ai must be true, preferably a1, but if this is
not possible then a2, if this is not possible a3, etc.

The language composed of basic choice formulas is denoted by BCFPS , is
the smallest set of words defined inductively as follow:

1. If φ ∈ PROPPS then φ ∈ BCFPS

2. If φ,ψ ∈ BCFPS then (φ×ψ) ∈ BCFPS

3. Every basic choice formula is only obtained by applying the two rules above
a finite number of times.

BCF formulas represent simples alternatives between propositional formulas.
In the rest of this paper BCF formulas are also called normal form formulas.
The language of basic choice formulas has strong relationships with possibility
theory, in particular with guaranteed possibility distributions, (see [1] for more
details).

2.2 General Choice Formulas (GCF )

General Choice Formulas represent any formula that can be obtained from PS
using connectors ×,∧,∨,¬ on propositional formulas. The language composed
of general choice formulas, denoted by QCLPS, is defined inductively as follows:

1. If φ ∈ BCFPS then φ ∈ QCLPS

2. If φ,ψ ∈ QCLPS then (φ ∧ ψ),¬(ψ), (φ ∨ ψ), (φ×ψ) ∈ QCLPS .
3. The language of QCLPS is only obtained by applying the two rules above

a finite number of times.

GCF formulas represent the whole set of formulas that can be built using four
connectives (×,∧,∨,¬).

Example 1. The formula “AirFrance × KLM” is a Basic Choice Formula, while
the formula “(AirFrance ×¬ KLM)∨ (Class 1 × Class 2)” is a General Choice
Formula.

For lake of space, we do not recall the inference process for QCL language. See
[1] for a full description of QCL.

3 Limitations of QCL

As advocated in the introduction, the original QCL inference relation has a
couple of (intuitively) undesirable properties. In the scope of a negation sym-
bol or when occurring in the antecedent of a (material) implication, ordered
1 The operator × is associative. Hence, a1×a2× . . . ×an is used as a shorthand for

((( a1×a2)×a3) . . . ×an . . .))) .
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disjunctions have not got their intended preferential reading. In fact, negated
QCL formula is equivalent to plain propositional formula, obtained by replacing
ordered disjunction by a standard disjunction, for instance :

¬(a1×a2× . . .×an) ≡ ¬a1 ∧ ¬a2 ∧ ... ∧ ¬an.

This means that, the double negation of any QCL formula is not equivalent to
that formula, namely ¬¬(φ) is not equivalent to φ. As a negative consequence,
QCL does not make distinction between the following three rules :

1. ¬(AirFrance × KLM) ∨ FirstClass,
2. ¬(KLM × AirFrance) ∨ FirstClass,
3. ¬(AirFrance ∨ KLM) ∨ FirstClass.

They are all equivalent to the propositional formula (¬AirFrance∧¬KLM)∨
FirstClass.

4 Prioritized Qualitative Choice Logic (PQCL)

This section proposes a new logic called Prioritized Qualitative Choice Logic
(PQCL), which is characterized by new definitions of negation, conjunction and
disjunction that are useful for aggregating preferences of users having different
priority levels and overcome the QCL limitations. As in standard propositional
logic, an interpretation I is an assignment of the classical truth values T,F to
the atoms in PS. I will be represented by the set of its satisfied literals. The
main features of our PQCL logic are :

– The semantics of any formula is based on the degree of satisfaction of a
formula in a particular model I. If an interpretation I satisfies a formula
φ, then its satisfaction degree should be unique. We will use the notation
I|∼PQCL

i φ to express that I satisfies φ to a degree i.
– Negation: Negation should be as a close as possible to the one of propositional

logic. In particular, a double negation of a given formula should recover the
original formula, namely we want ¬(¬φ) to be equivalent to φ.
Note that one cannot simply define I|∼i¬φ iff “I|∼iφ is not true”. Indeed,
this implies that the satisfaction degree of a negated formula is not unique
(which is not desirable). Namely, if one accepts I|∼i¬φ iff I|∼iφ is not true,
then if a given interpretation I satisfies φ to a degree 1 (namely, I|∼1φ), then
this means that I|∼2¬φ and I|∼3¬φ are valid (since I|∼2¬φ and I|∼3¬φ are
not valid), hence ¬φ is satisfied to different degrees which is not desirable.
An additional feature is that the negation should be decomposable with
respect to the conjunction and the disjunction, and it should satisfy De
Morgan law.

– Prioritized preferences: Our PQCL logic should deal with prioritized pref-
erences, encoded by means of a prioritized conjunction (resp. disjunction).
For instance, an agent who provides the two preferences : ” I prefer AF to
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KLM”, and ” I prefer a Windows seat to a Corridor seat” which we can for-
mulate by ”(AF × KLM) ∧(Windows×Corridor)” may consider that (AF
× Windows) is more important than (KLM × Corridor).

4.1 The PQCL Inference Relation

Before formally defining |∼PQCL, we need to introduce the notion of optionality,
which is a revised version of the one given in [1].

Definition 1 (Optionality). Let φ1 and φ2 be two formulas in QCLPS. The
optionality of a formulas is a function that assigns to each formula a strictly
positive integer.

– opt(A) = 1 , A is a atom.
– opt(φ1×φ2)= opt(φ1)+ opt(φ2).
– opt(φ1 ∧ φ2)= opt(φ1)× opt(φ2).
– opt(φ1 ∨ φ2)= opt(φ1)× opt(φ2).
– opt(¬(φ1)) = opt(φ1).

The optionality of a formula indicates the number of satisfaction degrees that a
formula can have. The main difference with the original definition of optionality
given in [1] concerns the three last definitions of optionality. In particular, in [1]
opt(¬φ) always equals 1 (since ¬φ is equivalent to a propositional formula). In
our new logic ¬φ has the same optionality as φ. Note that the optionality of a
propositional formulas is equal to 1.

The justification of optionality degree is directly related to the definition of of
satisfaction degrees associated with interpretations. Let us explain, when dealing
with prioritized preferences, why there are opt(φ1)× opt(φ2) options to satisfy
(φ1∧φ2). First, opt(φ1) (resp. opt(φ2)) means that φ1 (resp. φ2) can be satisfied
to a degree 1(first option of φ1), to a degree 2(second option of φ1),...,to a degree
opt(φ1)(the last option for φ1), (resp. 1, 2,...,opt(φ2)). Intuitively, given (φ1∧φ2),
the best and preferred solution is the one which satisfies the first option of φ1
and the first option of φ2. Then the second preferred solution is the one that still
satisfies the first option of φ1, but only satisfies the second option of φ2. And
more generally, an interpretation w is preferred to an interpretation w′, if :

1. either w satisfies φ1 to a degree i, and w′ satisfies φ1 to a degree j with j >
i, or

2. both w and w′ satisfy φ1 to a same degree, but the degree on which φ1 is
satisfied in w is lower than the degree on which φ2 is satisfied in w′.

Clearly, there are opt(φ1)× opt(φ2) options to satisfy φ1 ∧ φ2. And the worst
solution is the one which satisfies φ1 to a degree equal opt(φ1) and φ2 to a degree
equal opt(φ2).

Given these optionality degrees associated with formulas, we are now able to
define |∼PQCL. This is given by the following definition.

Definition 2 (The satisfaction relation). Let φ1,φ2 be two formulas from
QCLPS. Let I be an interpretation. The following items give the definition of a
satisfaction degree k of a formula φ1by I, denoted by I|∼PQCL

k φ1.
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1. I|∼PQCL
k a iff k = 1 and a ∈ I (for propositional atoms a).

2. I|∼WQCL
k ¬a iff k = 1 and ¬ a ∈ I (for propositional atoms a).

3. I|∼PQCL
k (φ1×φ2) iff (I|∼PQCL

k φ1) or (I|∼PQCL
n φ2 and there is no m such

that I|∼PQCL
m φ1, and k = n + opt(φ1)).

4. I|∼PQCL
k (φ1 ∨ φ2) iff one of the following cases is satisfied :

(a) (I|∼PQCL
1 φ1) or (I|∼PQCL

1 φ2) and k = 1.
(b) (There exists i > 1, I|∼PQCL

i φ1) and [ ∃ m such that I |∼PQCL
m φ2], and

k = (i-1) × opt(φ2) + 1.
(c) (There exists i > 1 such that I|∼PQCL

i φ1 or  ∃ l, such that I|∼PQCL
l φ1)

and (there is j > 1, I|∼PQCL
j φ2), and k = j.

5. I|∼PQCL
k (φ1 ∧ φ2) iff I|∼PQCL

i (φ1) and I|∼PQCL
j (φ2) and k =(i-1)×opt(φ2)

+ j.
6. I|∼PQCL

k ¬(φ1 ∨ φ2) iff I|∼PQCL
k ¬φ1 ∧ ¬φ2.

7. I|∼PQCL
k ¬(φ1 ∧ φ2) iff I|∼PQCL

k ¬φ1 ∨ ¬φ2.
8. I|∼PQCL

k ¬(φ1×φ2) iff I|∼PQCL
k ¬φ1×¬φ2.

9. I|∼PQCL
k ¬(¬φ1) iff I|∼PQCL

k φ1.

Let us explain the definition of our inference relation. Items (2), (6), (7), (8),
(9) deals with the satisfaction of negated formulas. They simply say that the
negation is decomposable, and satisfies De Morgan rule. Items (5) and (6) deals
with the satisfaction of conjunction and the satisfaction of disjunction. Clearly,
they deal with prioritized preferences. The way the degree is defined on φ1 ∧ φ2
reflects some lexicographical ordering between individual satisfaction degree of
φ1 and φ2. Namely, given two interpretations I, I ′ then I is strictly preferred to
I ′, if :

1. either I|∼iφ1 and I ′|∼jφ1 with i < j,
2. or (I|∼iφ1 and I ′|∼iφ1) and (I|∼kφ2 and I ′|∼lφ2 with k < l).

Example 2. Let us illustrate the inference relation of PQCL by the following
example. Let φ = (AF×KLM) ∧ (W×C), and I = {KLM,C}. The formula φ
is of the form (φ1 ∧ φ2) with φ1 = (AF×KLM) and φ2 = W×C.

We have I|∼PQCL
i=2 φ1 and I|∼PQCL

j=2 φ2 (by using item (3) of Definition 2). Thus,
applying item (5) of Definition 2, we obtain I|∼PQCL

k φ and k = (i-1)×opt(φ2)+j
= 4.

Comparing to the original QCL inference relation defined in [1], only the item (1)
and the item (3) are the same. All others are different. Namely, our definition of
negation, conjunction and disjunction are completely different. However, there is
situation where QCL and PQCL collapse. It is when restricting to propositional
or basic choice formulas, more precisely :

Proposition 3. 1. Let φ be a propositional formula, and I an interpretation,
then : I|∼QCL

1 φ iff I|∼PQCL
1 φ iff I |= φ.

2. Let φ = a1×a2× . . .×an be a basic choice formula namely, ai are proposi-
tional formulas, then : I|∼QCL

k φ iff I|∼PQCL
k φ iff I |= a1 ∨ a2 ∨ ... ∨ an and

k = min{j |I |= aj}.
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Namely, a basic choice formula a1×a2× . . .×an is satisfied to a degree k by an
interpretation I if I satisfies ak but fails to satisfy ai for all 1 ≤ i < k.

The above proposition shows that our definitions of disjunction and conjunc-
tion extend the ones of classical logic when they are applied to propositional
formulas. But of course they are non-classical since they can be used on non-
propositional (general QCL) formulas.

Now, we define an inference relation between a PQCL theory and a propo-
sitional formula. It follows the same steps defined in [1]. Let K be a set of
propositional formulas which represents knowledge or integrity constraints, and
let T be a set of preferences. We need to define the notion of preferred models.

Definition 4. Let Mk(T ) denote the subset of formulas of T satisfied by a
model M to a degree k. A model M1 is K∪T -preferred over a model M2 if there
is a k such that | Mk

1 (T )| > | Mk
2 (T )| and for all j < k: | M j

1 (T )| = | M j
2 (T )|.

M is a preferred model of K ∪ T iff :

1. M is model of K, and
2. M is maximally (K ∪ T )-preferred.

The following definition gives the inference relation between ( K ∪ T ) and a
propositional formula φ.

Definition 5. Let K be a set of formulas in PROPPS and T be a set of for-
mulas in GCFPS , and φ be a formula in PROPPS .
K ∪ T |∼PQCL

k φ iff φ is satisfied in all preferred models of K ∪ T .

The following contains an example which shows that PQCL overcomes one the
limitations of QCL advocated in the introduction. Note that if one wants to
express that φ1,φ2 are equally really, then it is en-ought to separately put them
in T .

Example 3. Let us consider the example given in the introduction where our
knowledge base K contains ¬KLM ∨¬AirFrance (1) and T contains the fol-
lowing preferences:⎧⎨⎩

¬(AirFrance×KLM) ∨HotelPackage (2)
¬(KLM×AirFrance) ∨ ¬HotelPackage (3)
AirFrance×KLM (4)

To give the preferred model of K∪T , we should firstly give the satisfaction degree
of the formulas (1), (2), (3) and (4) for each interpretation, so for instance,
by using Definition 2. Let I = {AirFrance, hotelpackage}, We have I |= ¬KLM
∨¬AirFrance, I|∼PQCL

1 AirFrance×KLM (using Proposition 1).
Consider now the preference (2), namely ¬(AirFrance×KLM) ∨ Hotel

Package. Using item (8) of Definition 2, we get I|∼PQCL
2 ¬(AirFrance

×KLM), and I|∼PQCL
1 HotelPackage. Using item (4)-a of Definition 2, we

get I|∼PQCL
1 (¬AirFrance×KLM) ∨ HotelPackage. Similarly, we also have

I|∼PQCL
1 ¬(KLM×AirFrance) ∨ ¬HotelPackage, since I|∼PQCL

1 ¬(KLM×
AirFrance).
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Table 1. The models of K ∪ T by using PQCL

AirFrance KLM Hotelpackage (1) (2) (3) (4)
F F F 1 1 1 -

F F T 1 1 1 -

F T F 1 1 1 2

F T T 1 1 2 2

T F F 1 2 1 1

T F T 1 1 1 1
T T F - - 1 1

T T T - 1 - 1

The following truth table summarizes for each formula (1), (2), (3), (4) from
K and T we are interested in, whether it is satisfied (T) (to some degree) or not
(-) by a given interpretation.

In original QCL logic, K ∪ T is declared to be inconsistent. With our PQCL
logic, K∪T has one preferred model (bold line), I = {AirFrance, Hotelpackage},
from which we obtain the expected conclusion K ∪ T |∼PQCLHotelpackage.

5 Normalization Form

In this section, we show that any set of preferences, can equivalently be trans-
formed into a set of normal form preferences, which are simply basic choice
formulas.

We need to introduce the notion of equivalence between two formulas in
QCLPS . It is given by the following definition:

Definition 6. Two QCLPS formulas φ1 and φ2 are said to be equivalent, de-
noted simply by φ1 ≡ φ2, if:

– For all interpretation I, and integer k we have I|∼PQCL
k φ1 iff I|∼PQCL

k φ2.
– opt(φ1) = opt(φ2).

The following introduces a normal form function, which associates with each
general choice formula, its corresponding basic choice formula. This normal form
function, denoted by N , will allow us to transform any set of preferences into
a set of basic choice formulas. This is very important from computation point
of view, since it allow us to reuse various non-monotonic approaches such as
possibilistic logic [10] or compilation of stratified knowledge bases [16].

Let φ be a formula in QCLPS , let φ1 = a1×a2× . . .×an, and φ2 = b1×b2× . . .
×bm be two basic choice formulas. The idea in defining the normal form of φ, de-
noted by N (φ), is very simple. If φ is of the forme φ1×φ2 (resp. ¬φ1, φ1 ∧ φ2,
φ1∨φ2) thenN (φ) is simply the result of applying × (resp. ¬, ∧, ∨) to the normal
form of its components. Namely:

1. N (¬φ1) ≡ N (¬N (φ1)).
2. N (φ1 ∧ φ2) ≡ N (N (φ1) ∧ N (φ2)).
3. N (φ1 ∨ φ2) ≡ N (N (φ1) ∨ N (φ2)).
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4. N (φ1×φ2) ≡ N (N (φ1)×N (φ2)).
If φ is already a basic choice formula, then N (φ) is always equal to φ, namely

5. ∀φ1 ∈ BCFPS ,N (φ1) = φ1.
Hence, it only remains to define N (φ1 ∧ φ2) (resp. N (φ1 ∨ φ2), N (¬φ1))
where φ1 and φ2 are normal form. This is given by items 6, 7, 8. Namely:

6. N (φ1 ∧ φ2)≡ c11× . . .× c1m× c21× . . .× c2m× cn1× . . .× cnm, with
cij = ai ∧ bj .

7. N (φ1 ∨ φ2)≡ d11× . . .× d1m× d21× . . .× d2m× dn1× . . .× dnm, with
dij = ai ∨ bj .

8. N (¬φ1) ≡ ¬a1×¬a2×...×¬an.

Property 6 confirms the meaning of prioritized conjunction. Indeed, assume
a1×a2× . . .×an denotes a preference of a user A, and b1×b2× . . .×bm denotes a
preference of B. Applying, prioritized conjunction allows to select solutions that
privileges A. For instance, a1bm (which represents the best choice for A and the
worst choice for B) is preferred to a2b1 (which represents the best choice for B
and the second choice for A).

Proposition 7. Let K be a set of propositional formulas and T be a set of
general choice formulas. Let T ′ be a set of basic choice preferences obtained
from T by replacing each φ in T by N (φ), then ∀φ, K ∪ T |∼PQCLφ iff K ∪
T ′|∼PQCLN (φ).

A sketch of proof is provided in the appendix.
As a consequence, for any formula in QCLPS , we have two possibilities to

implement it:

1. Using a relation of satisfaction on general choice formulas, as indicated in
Definition 2, or

2. Normalize or generate a set of basic choice formulas from any set of prefer-
ences, we then apply the inference relation from BCF theories as indicated
in Proposition 3,

Example 4. Let us illustrate Proposition 7 by the following example. Let φ =
((a×b) ∨ ¬c) ∧ (c×b), and I = {b,c}. We use two different ways to give the
satisfaction degree of this formula.

1. We normalize the set of preferences into a set of normal form preferences :
The formula ((a×b)∨¬c)∧ (c×b) is a general choice formula, thus using the
normal form function, we have
N (((a ×b) ∨ ¬c) ∧ (c×b)) ≡ N ( N ((a ×b) ∨ ¬c) ∧ N (c ×b)),
≡ N ([(a ∨¬c)×(b ∨ ¬c)] ∧ (c×b)),
≡ N ([(a ∨¬c) ∧ c]×[(a ∨ ¬c) ∧ b]× [(b ∨¬c) ∧ c]×[(b ∨ ¬c) ∧ b]),
≡ (a ∧c)×((a ∨ ¬c) ∧ b)×(b ∧ c)×((b ∨ ¬c) ∧ b)

The obtained formula is a basic choice formula, using Proposition 3, we
have I |= (a ∧ c) and I |= ((a ∨ ¬c) ∧ b) but I |= (b ∧ c), thus I |∼PQCL

3 φ.
2. Now, we use directly Definition 2 :

The formula φ is of the form (φ1 ∧φ2) with φ1 = (a×b)∨¬c and φ2 = c×b.
We have I|∼PQCL

j=1 φ2. The formula φ1 is of the form φ′ ∨ φ′′ with φ′ = a×b
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and φ′′ = ¬c. So we have I|∼PQCL
i′=2 a×b and I |= ¬c, then I|∼PQCL

i φ1 and
i = (i′-1)×opt(φ′′) + 1 = (2-1)× 1 + 1 = 2. Lastly, we apply item (5) of
Definition 2 we obtain, I|∼PQCL

k φ and k = (i-1)×opt(φ2)+ j = 3. Hence, we
get the same result.

6 Conclusions

The problem of representing preferences has drawn attention from Artificial In-
telligence researchers. The paper on preference logic [17] addresses the issue
of capturing the common-sense meaning of preference through appropriate ax-
iomatizations. The papers on preference reasoning [11,12,6] attempt to develop
practical mechanisms for making inference about preferences and making de-
cisions. A principal concept there is Ceteris Paribus preference: preferring one
outcome to another, everything else being equal. The work on prioritized logic
programming and non-monotonic reasoning [3,14,15] has potential applications
to databases. CP-nets [6,8] use Bayesian-like structure to represent preferences
under again Ceteris Paribus principle. However, in the majority of theses works,
the negation in the context of representing preferences is not discussed, and few
of them integrated prioritized preferences.

In this paper, a new logic for representing prioritized preferences has been
proposed. This logic is characterized by new definitions of negation, conjunction
and disjunction that are useful for aggregating preferences of users having differ-
ent priority levels and overcome the QCL limitations. It generalizes the way the
inference is done by presenting an inference framework based on normal form
function or directly by using the satisfaction relation.

A future work is to apply our methods to alarms filtering. Indeed, existing
alerts correlations and alerts filtering do not use take into account adminis-
trator’s preferences. Our PQCL will be basically use to compactly represent
administrator’s preferences, and will be use to rank-order alerts to be presented
to netwok administrator.
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Appendix. Proof of Proposition 7

For sake of space, we can only give the sketch of proof of the conjunction and
disjunction. Let φ1 = a1×a2× . . .×an, and φ2 = b1×b2× . . .×bm.

1. Let us give the proof of I|∼PQCL
k (φ1 ∧ φ2) iff I |=kN (φ1 ∧ φ2).

Recall that : N (φ1 ∧ φ2)≡ c11× . . .× c1m× c21× . . .× c2m× . . .× cn1
× . . .× cnm, with cij = ai∧ bj . Let us consider different cases of satisfaction
of ai

′s and bi
′s by the interpretation I.

– Suppose that there exists i > 0 and j > 0 such that I |=i a1× . . .× an

and I |=j b1× . . .× bm, this also means that I |= ¬a1 ∧ ... ∧ ¬ai−1 ∧ ai

and I |= ¬b1 ∧ ... ∧ ¬bj−1 ∧ bj.
This means that I falsifies { c11, . . . , c1m, c21, . . . , c2m, . . . , ci1, . . . ,

ci(j−1)}, but I satisfies cij(= ai ∧ bj). We have (i-1)×m + j -1 items
which are not satisfied before satisfying (ai ∧ bj). So, this means that
I |=k c11× . . .× c1m× c21 × . . .× c2m× cn1× . . .× cnm, namely I |=k

φ1 ∧ φ2 and k = (i-1)×m + j.
Hence using item (5) of Definition 2, we can check that we also have

K ∪ T |∼PQCL
k φ1 ∧ φ2 and k= (i-1)×opt(φ2) + j.
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– There is no i such that I |=i a1× . . .× an or there is no j such that
I |=j b1× . . .× bm . This means that I either falsifies all ai

′s, or I
falsifies all bj

′s. Thus I falsifies cij ( = ai ∧ bj), namely there is no k
such that I |=k (φ1 ∧ φ2). Hence K ∪ T  |∼PQCLφ1 ∧ φ2.

2. Let us give the proof of I|∼PQCL
k (φ1 ∨ φ2) iff I |=kN (φ1 ∨ φ2).

Recall that : N (φ1 ∨ φ2)≡ d11× . . .× d1m× d21× . . .× d2m× . . .× dn1
× . . .× dnm, with dij = ai∨ bj . Let us consider different cases of satisfaction
of ai

′s and bi
′s by the interpretation I.

– Suppose that there exists i > 0 or j > 0 such that I |=i a1× . . .× an

and I |=j b1× . . .× bm. This means that there exists k > 0 such that
I |=k dk. We can distinguish different cases :

- If i = 1 or j = 1, then I satisfies { d11, d12, . . . , d1(j−1), d1j , . . . , d1m,
d21, ... di1} but I falsifies the rest of items. In this case, the first
satisfied item is d11, thus I |=1 d11× . . .× d1m× d21× . . .× d2m×
. . .× dn1× . . .× dnm. Hence I |=1 (φ1 ∨ φ2).
Using item (4)-a of Definition 2, we can check that we also have
K ∪ T |∼PQCL

k φ1 ∨ φ2 and k =1.
- If i > 1 or j > 0, then I falsifies { d11, d12, . . . , d1(j−1), d21, . . . ,

d2(j−1), ... di1, ..., di(j−1)} but I satisfies { d1j ,..., d2j , . . . , dij}.
In this case, we have (j-1) not satisfied items before the first sat-
isfied item d1j , thus I |=j d11× . . .× d1m× d21× . . .× d2m×
. . .× dn1× . . .× dnm. Hence I |=j (φ1 ∨ φ2).
Using item (4)-c of Definition 2, we have K ∪ T |∼PQCL

k φ1 ∨ φ2 and
k =j.

– There is no i such that I |=i a1× . . .× an and there is j such that
I |=j b1× . . .× bm. This means that I |= ¬a1∧...∧¬ai−1∧¬ai∨...∨¬an

and ∃ j > 0 such that I |= ¬b1 ∧ ... ∧ ¬bj−1 ∧ bj .
This also means that I falsifies { d11, . . . , d1(j−1), ..., d21, . . . , d2(j−1)

. . . , d(i−1)(j−1)}, but I satisfies the items {d1j , d2j ,..., d(i−1)j , dij}. So,
d1j is the first satisfied item and all the items before d1j are not satisfied,
namely we have at least (j-1) not satisfied items before the first satisfied
item (a1∨bj), this means that I |=k d11× . . .× d1m× d21× . . .× d2m×
. . .× dn1× . . .× dnm, hence I |=j (φ1 ∨ φ2).

Using item (4)-c of Definition 2, we have also K ∪T |∼PQCL
k (φ1 ∨φ2),

and k = j.
– There is i such that I |=i a1× . . .× an and there is no j such that

I |=j b1× . . .× bm. This means that there ∃ i > 0 such that I |= ¬a1
wedge... ∧ ¬ai−1 ∧ ai and  ∃ j such that I |= ¬b1 ∧ ... ∧ ¬bj−1 ∧ ¬bj .

This means that I falsifies { d11, . . . , d1(j−1), d1j ..., d21, . . . , d2(j−1),
d2j ,
..., d(i−1)(j−1)}, but I satisfies the items {di1, ..., d(i)(j−1), dij}. So, di1
is the first satisfied item and all the items before di1 (=ai ∨ b1) are not
satisfied, namely we have at least (i-1)×m not satisfied items, this means
that I |=k d11× . . .× d1m× d21× . . .× d2m× . . .× dn1× . . .× dnm, so
I |=k (φ1 ∨ φ2), and k = (i-1)×m +1.
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Hence using item (4)-b of Definition 2, we have also K∪T |∼PQCL
k (φ1∨

φ2), and k = (i-1)×opt(φ2) +1.
– There is no i such that I |=i a1× . . .× an and there is no j such that

I |=j b1× . . .× bm. This means that I either falsifies all ai
′s, I falsifies

all bj
′s. Hence I falsifies all dij ( = ai ∨ bj).

Hence, there is no k such that I |=k (φ1 ∨φ2), so K ∪T  |∼PQCL(φ1 ∨
φ2).
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Abstract. Dung’s abstract theory of argumentation has become established as
a general framework for non-monotonic reasoning, and, more generally, reason-
ing in the presence of conflict. In this paper we extend Dung’s theory so that an
argumentation framework distinguishes between: 1) attack relations modelling
different notions of conflict; 2) arguments that themselves claim preferences, and
so determine defeats, between other conflicting arguments. We then define the
acceptability of arguments under Dung’s extensional semantics. We claim that
our work provides a general unifying framework for logic based systems that fa-
cilitate defeasible reasoning about preferences. This is illustrated by formalising
argument based logic programming with defeasible priorities in our framework.

1 Introduction

A Dung argumentation framework [7] consists of a set of arguments Args and a bi-
nary conflict based relation R on Args. A ‘calculus of opposition’ is then applied to
the framework to evaluate the winning (justified) arguments under different extensional
semantics. The underlying logic, and definition of the logic’s constructed arguments
Args and relation R, is left unspecified, thus enabling instantiation of a framework
by various logical formalisms. Dung’s seminal theory has thus become established as
a general framework for non-monotonic reasoning, and, more generally, reasoning in
the presence of conflict. A theory’s inferences can be defined in terms of the claims of
the acceptable arguments constructed from the theory (an argument essentially being
a proof of a candidate inference - the argument’s claim - in the underlying logic). In-
deed, many of the major species of logic programming and non-monotonic logics (e.g.
default, autoepistemic, non-monotonic modal logics and certain instances of circum-
scription) turn out to be special forms of Dung’s theory [7,5].

Dung’s abstract framework has been refined (e.g., [1] [4]) to explicitly model the
role of preferences. The relation R can then denote either attack or defeat between
arguments, where defeat represents a successful attack by additionally accounting for
the relative strengths of (preferences between) attacking arguments. However, prefer-
ence information is assumed pre-specified and external to the underlying logical for-
malism. This contrasts with the way people normally argue and reason about, as well
as with, uncertain, defeasible and possibly conflicting preference information. This has
led to works extending the underlying object level logical languages with rules for de-
riving priorities amongst rules; for example, in default logic [6] and logic programming
formalisms [11]. One can then construct ‘priority arguments’ whose claims determine
preferences between other mutually attacking arguments to determine the direction of
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the successful attacks (defeats). Arguments claiming conflicting priorities may be con-
structed and preferences between these can be established on the basis of other priority
arguments. However, these works are restricted to basing argument strength on the pri-
orities of their constituent rules. More recent work [9,10] organises Dung frameworks
into a hierarchy so that given mutually attacking arguments in a level n framework, one
can reason about the strengths of, and relative preferences between these arguments
(rather than their constituent rules) in a first order logic instantiating a level n + 1
framework, and thus determine the direction of defeat between the n framework argu-
ments. This allows for argument strength based on a range of criteria, including criteria
that relate to the argument as a whole, such as the value promoted by the argument
[4]. However, a limitation is that the separation between object level n and meta-level
n + 1 reasoning means that argumentation at level n cannot, when appropriate, affect
the outcome of argumentation at level n + 1.

In this paper we extend Dung’s framework to include arguments that claim prefer-
ences between other arguments and so determine whether attacks succeed as defeats.
The extended framework also distinguishes between different types of conflict (attack)
that have been formalised in the literature. These differences manifest in terms of how
defeat is then determined. We then define evaluation of the justified arguments of an
extended framework under Dung’s extensional semantics. We aim at an abstract unify-
ing theory in which approaches of the type described in the preceding paragraph can
now be formalised and extended. This is illustrated by an example taken from [10], in
which argumentation about values and value orderings can now be formalised in a sin-
gle extended framework. We also formalise [11]’s argument based logic programming
with defeasible priorities in our extended framework. In contrast with [11], we can then
evaluate the justified arguments under all of Dung’s semantics. We also claim our work
will facilitate future development of argumentation systems formalising argumentation
about preferences. We comment further on future work in the concluding section.

2 Extended Argumentation Frameworks

Given a Dung argumentation framework (Args,R) where R ⊆ (Args × Args) is the
attack relation, we summarise how existing argumentation based formalisms evaluate
the defeat relation given a preference relation on arguments. If A and B symmetrically
attack ((A, B), (B, A) ∈ R), then A (B) defeats B (A) if B (A) is not preferred to
A (B). We call such attacks preference dependent. An example of a symmetric attack
is when A and B claim logically contradictory conclusions. Examples of preference
dependent asymmetric attacks - (A, B) ∈ R and (B, A) /∈ R - also occur. A does not
defeat B if B is preferred to A. This may lead to both A and B being justified, which
is appropriate only if A and B do not logically contradict. For example, in value based
argumentation over action [3], B may justify an action, and A claims the action has an
undesirable side-effect. Preferring B to A may then result in both arguments being justi-
fied; the action is chosen while acknowledging it’s undesirable side-effect. Asymmetric
attacks may also be preference independent (pi) in that A defeats B irrespective of any
relative preference. For example, in logic programming systems (e.g.[11]) in which A
proves (claims) what was assumed non-provable (through negation as failure) by B.
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Suppose now that A preference dependent (pd) attacks B, and there is an argument
C claiming a preference for B over A. Hence A does not successfully attack (defeat)
B. Intuitively, C is an argument for B’s repulsion of, or defence against, A’s attack on
B. We can say that C defence attacks A’s attack on B. If in addition, B pd attacks A,
then B now defeats A unless there is some C′ claiming a preference for A over B and
so defence (d) attacking B’s attack on A. C and C′ claim contradictory preferences and
so pd attack each other. These pd attacks can themselves be subject to d attacks in order
to determine the defeat relation between C and C′ and so A and B. We now formally
define the elements of an Extended Argumentation Framework.

Definition 1. An Extended Argumentation Framework (EAF) is a tuple (Args, Rpd,
Rpi, Rd) such that Args is a set of arguments, and:

– Rpi ⊆ Args×Args
– Rpd ⊆ Args×Args
– Rd ⊆ (Args×Rpd)
– If (A, (B, C)), (A′, (C, B)) ∈ Rd then (A, A′), (A′, A) ∈ Rpd

Notation 1. From hereon, if every pd attack in Rpd is symmetric, then we refer to the
EAF as a symmetric EAF (sEAF). Also:

– A ⇀ B denotes (A, B) ∈Rpd. If in addition (B, A) ∈Rpd, we may write A � B.
– A ↪→ B denotes (A, B) ∈ Rpi

– C � (A ⇀ B) denotes (C,(A, B)) ∈ Rd.

From hereon definitions are assumed relative to an EAF (Args, Rpd, Rpi, Rd), where
arguments A, B, . . . are assumed to be in Args, and S is a subset of Args. We now
formally define two defeat relations that are parameterised w.r.t. some set S of argu-
ments. This accounts for a pd attack’s success being relative to preference arguments in
S, rather than relative to some externally given preference ordering.

Definition 2
− A S-1-defeats B iff (A, B) ∈ Rpi; or (A, B) ∈ Rpd and ¬∃C ∈ S s.t. (C,(A, B)) ∈
Rd

− A S-2-defeats B iff (A, B) ∈ Rpi; or (A, B) ∈ Rpd and (B, A) /∈ Rpi and ¬∃C ∈
S s.t. (C,(A, B)) ∈ Rd

− A strictly S-1(2)-defeats B iff A S-1(2)-defeats B and B does not S-1(2)-defeat A.

S-2-defeat is deployed in works such as [11] in which pi attacks over-ride contrary pd
attacks. From hereon we simply write ‘S-defeat’, and only distinguish between S-1 and
S-2 when relevant. Also, we may write A →S B to denote that A S-defeats B.

Example 1. Let ∆ be the EAF:

A � B, C � (A ⇀ B)
A and B S-defeat each other for S = ∅, {A} and {B}. B {C}-defeats A but A does
not {C}-defeat B (B strictly {C}-defeats A). If ∆ also contained the pi attack A ↪→ B,
then for any S ⊆ Args, B S-1-defeats A but does not S-2-defeat A.

We now define the notion of a conflict free set S ⊆ Args.
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Definition 3. S is conflict free iff ∀A, B ∈ S:

1. (A, B) /∈ Rpi; and
2. if (A, B) ∈ Rpd then (B, A) /∈ Rpd, and ∃C ∈ S s.t. (C,(A, B)) ∈ Rd.

Suppose S = {A, B, C}, where C � (A ⇀ B) and it is not the case that B ⇀ A.
Hence, A and B do not S-defeat each other and S is conflict free. Note that S′ = {A, B}
is not conflict free. Only for symmetric EAFs in which every pd attack is symmetric,
can one show that every subset of a conflict free set is conflict free.

3 Defining Acceptability Semantics

Given a Dung framework (Args,R), a single argument A is defined as acceptable w.r.t.
some S ⊆ Args, if for every B such that (B, A) ∈ R, there exists a C ∈ S such that
(C, B) ∈ R. Intuitively, C ‘reinstates’ A. Dung then defines the acceptability of a set
of arguments under different extensional semantics. The definition is given here, where
S ⊆ Args is conflict free if no two arguments in S are related byR.

Definition 4. Let S ⊆ Args be a conflict free set. Then:

– S is an admissible extension iff each argument in S is acceptable w.r.t. S
– S is a preferred extension iff S is a set inclusion maximal admissible extension
– S is a complete extension iff each argument which is acceptable w.r.t. S is in S
– S is a stable extension iff ∀B /∈ S, ∃A ∈ S such that (A, B) ∈ R

We now motivate definition of the acceptability of an argument w.r.t. a set S for an EAF,
so that we can then apply the above defined extensional semantics. Consider example 1.
Is A acceptable w.r.t. S = {A}? (which amounts to asking whether {A} is admissible).
We have that B →S A. The only argument that can reinstate A is A itself, via the defeat
A →S B that is based on A successfully pd attacking B (i.e., {A}’s admissibility is
contingent on B not being preferred to A). However, the success of A’s pd attack on B
is challenged by the d attack from the argument C (expressing that B is preferred to A).
Hence, we need to ensure that C is S-defeated by some argument in S that effectively
‘reinstates’ the S-defeat A →S B. There is no such argument and so A is not acceptable
w.r.t. S. Intuitively, since C is not attacked we will always conclude a preference for B
over A. This precludes A being acceptable w.r.t. any S since this requires that B not be
preferred to A. The above suggests the following definition of the ‘local’ acceptability
of an S-defeat w.r.t. a set S:

Definition 5. Let (Args, Rpd, Rpi, Rd) be an EAF. Then C →S B is locally accept-
able w.r.t. S ⊆ Args iff:

1. (C, B) ∈ Rpi; or
2. if (C, B) ∈ Rpd, then ∀B′ ∈ Args s.t. (B′,(C, B)) ∈ Rd, there ∃C′ ∈ S s.t.

C′ →S B′

However, the above definition does not suffice for EAFs that contain asymmetric pd
attacks. In figure 1-a), the acceptability of A1 w.r.t. S (and so the admissibility of S
given that A2 is not attacked and so must be acceptable) is under consideration. B1 →S
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Fig. 1. Checking the acceptability of arguments A1 and A w.r.t. S in a) and b) respectively

A1 and A1 →S B1, and by definition 5, A1 →S B1 is acceptable w.r.t. S since
A2 →S B2. However, an admissible extension corresponds to a defendable position
in which all arguments can coherently said to be ‘winning’, and {A1, A2} does not
represent such a position. Intuitively, B3, expressing that B2 is preferred to A2, is not
attacked and so must be a winning argument. This means that A2 cannot successfully pd
attack B2, and since this pd attack is asymmetric, A2 and B2 (expressing a preference
for B1 over A1) must be winning. Therefore, A1 cannot be a member of an admissible
extension since its membership is contingent on B1 not being preferred to A1. Hence,
we should therefore check the ‘global’ acceptability of A1 →S B1, in the sense that
A2 →S B2 should itself be acceptable w.r.t. S; it is not, since no argument in S S-
defeats B3.

Definition 6. Given (Args, Rpd, Rpi, Rd), C →S B is globally acceptable w.r.t. S ⊆
Args iff there exists a set of S defeats DS = {X1 →S Y1, . . . , Xn →S Yn}, such that:

1. C →S B ∈ DS

2. for i = 1 . . .n, Xi ∈ S
3. ∀X →S Y ∈ DS s.t. (X, Y ) ∈ Rpd, ∀Y ′ s.t. (Y ′,(X, Y )) ∈ Rd, there ∃X ′ →S Y ′

∈ DS

in which case we say that DS is a reinstatement set for C →S B.

We can now define two notions of acceptability:

Definition 7. A is locally, respectively globally, acceptable w.r.t. S, iff:
∀B s.t. B →S A, ∃C ∈ S s.t. C →S B and C →S B is locally, respectively globally,
acceptable w.r.t. S.

In figure 1-b), A is locally and globally acceptable w.r.t. S. In the latter case there is a
reinstatement set for C →S B: {C →S B, C1 →S B1, C2 →S B2}. Note that if in
addition there was an argument B3 such that B3 � (C2 ⇀ B2) and no argument in
S that S defeats B3, then no reinstatement set for C →S B would exist. A would be
locally, but not globally, acceptable w.r.t. S.

Extensional semantics for EAFs are now given by definition 4, assuming either lo-
cal or global acceptability, conflict free defined as in definition 3, and for the stable
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semantics, ‘A S-defeats B’ replaces ‘(A, B) ∈ R’. For the complete, preferred and
stable semantics, an argument is said to be sceptically justified if it belongs to all exten-
sions, and credulously justified if it belongs to at least one extension. From hereon, we
will assume the extensional semantics defined in terms of global acceptability, and sim-
ply write ‘acceptable’ rather than ‘globally acceptable’. However, note the following1:

Proposition 1. Let ∆ be a symmetric EAF. S is an admissible extension of ∆ as de-
fined by local acceptability iff S is an admissible extension of ∆ as defined by global
acceptability.

We now state that Dung’s fundamental lemma [7] and the theorem that follows from
this lemma also hold for EAFs:

Lemma 1. Let S be an admissible extension of an EAF, and let A and B be arguments
that are acceptable w.r.t S. Then:

– S′ = S ∪ {A} is admissible
– B is acceptable w.r.t. S′

Theorem 1. Let ∆ be an EAF.

1. The set of all admissible extensions of ∆ form a complete partial order w.r.t. set
inclusion

2. For each admissible S there exists a preferred extension S′ of ∆ such that S ⊆ S′

Proof of lemma 1 shows that for the lemma not to hold, A would have to d attack some
(C, B) ∈ Rpd where C →S B is in a reinstatement set that licenses the acceptability
of A (A′) w.r.t. S. But then this would contradict A being acceptable w.r.t. S. Given
theorem 1 and the fact that ∅ is an admissible extension of every EAF, we can state that
every EAF possesses at least one preferred extension. Theorem 1 also implies that it
is sufficient to show an admissible extension containing A to determine whether A is
credulously justified under the preferred semantics. Note also, that it is straightforward
to show that every stable extension of an EAF is a preferred extension but not vice versa.

In [7], the characteristic function F of a Dung framework (Args,R) is defined, such
that for any S ⊆ Args, F (S) = {A|A is acceptable w.r.t. S}. If S is conflict free,
and S ⊆ F (S), respectively S = F (S), then S is an admissible, respectively com-
plete, extension. Dung then also defines the inherently sceptical grounded semantics,
by defining the grounded extension as the least fixed point of F . Here, we similarly
define the grounded extension of a symmetric EAF.

Definition 8. Let ∆ = (Args, Rpd, Rpi, Rd) be a symmetric EAF and let 2ArgsC be
the set of all conflict free subsets of Args. Then the characteristic function F of ∆ is
defined as follows:

– F : 2ArgsC �→ 2Args

– F (S) = {A ∈ Args|A is acceptable w.r.t. S}
1 Space limitations preclude inclusion of proofs here. However all proofs can be found in a

technical report at http://acl.icnet.uk/ sm/TechnicalReport.pdf.
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Proposition 2. F is monotonic, i.e., if S ⊆ S′ then F (S) ⊆ F (S′).

The monotonicity of F gives it a constructive flavour and guarantees the existence of a
least fixed point. The following also holds:

Proposition 3. Let S ⊆ F (S). If S is conflict free then F (S) is conflict free.

Defining a sequence F1 = F (∅), Fi+1 = F (Fi), propositions 2 and 3 imply that Fi+1 ⊇
Fi, where each Fj in the sequence is conflict free. Indeed, the sequence can be used to
construct the least fixed point of a ‘finitary’ symmetric EAF in which for any argument
A or pd attack (B, C), the set of arguments attacking A, respectively (B, C), is finite.

Proposition 4. Let ∆ be a symmetric EAF and let the following sequence be defined:

F1 = F (∅), Fi+1 = F (Fi)

If ∆ is finitary then
⋃∞

i=1(Fi) is the least fixed point (grounded extension) of ∆.

For ∆1 in fig.2, F1={A, H}, F2 = {A, H, G}, F3 = {A, H, G, C}, F4 = {A, H, G, C, E}
where F (F4) = F4 is the grounded extension.

A B C

D E

FG
H

∆1=
FG

A1 A2

B2

B1 A3
D1 D2

E1

∆2=
B1 B2

C1

Fig. 2. EAFs ∆1 and ∆2

Notice that F applied to conflict free sets for EAFs containing asymmetric pd attacks
is not monotonic. Consider C ⇀ B ↪→ A, B � (C ⇀ B), where A is acceptable
w.r.t. {C} but not w.r.t. the conflict free superset {C, B}. This makes discussion of the
grounded semantics for arbitrary EAFs more involved, and is beyond the scope of this
paper2. Note also, that given the following notion of ‘strict acceptability’:

Definition 9. A is strict-acceptable w.r.t. S iff ∀B s.t. B S-defeats A, ∃ C ∈ S s.t. C
strictly S-defeats B (where strict S defeat is defined as in definition 2).

then lemmas 2 and 3 below imply that the grounded extension of a symmetric EAF can
be obtained by a characteristic function defined in terms of strict-acceptability.

Lemma 2. LetS be an admissible extension of a symmetric EAF. IfA is strict-acceptable
w.r.t. S then A is acceptable w.r.t. S.

Lemma 3. Let Fi be defined for a symmetric EAF as in proposition 4. Then ∀A ∈ Fi,
if ∃B s.t. B Fi-defeats A, then ∃C ∈ Fi such that C strictly Fi-defeats B.

2 However, note that assuming the iteration of F in proposition 4 w.r.t. arbitrary EAFs, it can be
shown that ∀i, F i ⊆ F i+1.
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Proposition 5. Let ∆ be a symmetric EAF, Fst be defined (as in definition 8) on the
basis of strict-acceptability, and F1

st = Fst(∅), Fi+1
st = Fst(Fi

st). Then ∀i, Fi
st = Fi.

Referring to ∆1 in figure 2, E is strict-acceptable w.r.t. F3 since D F3-defeats E, and
since G ∈ F3, C strictly F3-defeats D.

As discussed in the introduction, a number of works (e.g. [1] [4]) extend Dung ar-
gumentation frameworks with pre-defined preference orderings that enable definition
of defeat given an attack relation. In [4], if A attacks B, then A defeats B only if the
value promoted by B is not ranked higher than the value promoted by A according to
some given pre-defined ordering on values. We conclude this section with an example
that extends [4] to illustrate argumentation based reasoning about values and value or-
derings. The example is taken from [10] in which argumentation about preferences in
a level n Dung framework determines the successful attacks (defeats) in a level n − 1
framework. Here, the argumentation now takes place in a single EAF. Consider ∆2
in fig.2 in which A1 and A2 are arguments for the medical actions ‘give aspirin’ and
‘give chlopidogrel’ respectively. These arguments relate the current beliefs that warrant
the actions bringing about states of affairs that realise a desired goal and so promote a
value. We assume their construction in a BDI logic, as described in [3]. A1 and A2 both
promote the value of efficacy. They symmetrically pd attack since they claim alterna-
tive actions for the goal of preventing blood clotting. In [10], first order argumentation
systems are defined for reasoning about possibly conflicting valuations of arguments
and value orderings. Argument B1 is based on clinical trial 1’s conclusion that A2’s
chlopidogrel is more efficacious than A1’s aspirin at preventing blood clotting. Hence
B1 � (A1 ⇀ A2). However, B2 is based on clinical trial 2’s conclusion that the oppo-
site is the case. Hence B1 � B2. At this stage neither A1 or A2 are sceptically justified
under the preferred/complete/stable semantics. However, C1 is an argument claiming
that trial 1 is preferred to trial 2 since the former uses a more statistically robust design.
Now A2 and not A1 is sceptically justified. However, A3 promoting the value of cost,
states that chlopidogrel is prohibitively expensive and so asymmetrically pd attacks A2.
However, D1 � (A3 ⇀ A2) where D1 is a value ordering ranking efficacy over cost.
Hence, A3 does not defeat A2 and so A2 remains sceptically justified. However, D2
now ranks cost over efficacy. Now neither A2 or A1 are sceptically justified. Finally,
E1 is a utilitarian argument stating that since financial resources are low, use of chlopi-
dogrel will compromise treatment of other patients, and so one should preferentially
rank cost over efficacy (such a trade of is often made in medical contexts). Hence, A1
is now sceptically justified; aspirin is now the preferred course of action.

4 Formalising Logic Programming with Defeasible Priorities in an
EAF

In this section we show how an EAF can be instantiated by the arguments and their
relations defined by a modified version of [11]’s argument based logic programming
with defeasible priorities (ALP-DP). In ALP-DP , (S, D) is a theory where S is a set
of strict rules of the form s : L0 ∧ . . . ∧ Lm → Ln and D a set of defeasible rules
r : L0 ∧ . . . ∧ Lj∧ ∼ Lk ∧ . . .∧ ∼ Lm ⇒ Ln. Each rule name r (s) is a first order
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term. From hereon head(r) denotes the consequent Ln of the rule named r. Each Li is
a strong literal, i.e., an atomic first order formula, or such a formula preceded by strong
negation ¬. Weak negation is denoted by ∼, so that each ∼ Li is a weak literal read as
“there is no evidence that Li is the case”. For any atom A, we say that A and ¬A are
the complement of each other. In the metalanguage, L denotes the complement of a lit-
eral L. As usual, a rule with variables is a scheme standing for all its ground instances.
The language contains a two-place predicate symbol≺ for expressing priorities on rule
names. Any S is also assumed to contain the strict rules:

• o1 : (x ≺ y)∧ (y ≺ z) → (x ≺ z) • o2 : (x ≺ y)∧ ¬(x ≺ z) → ¬(y ≺ z)
• o3 : (y ≺ z) ∧ ¬(x ≺ z) → ¬(x ≺ y) • o4 : (x ≺ y) → ¬(y ≺ x)

Definition 10. An argument A based on the theory (S, D) is:

1. a finite sequence [r0, . . . , rn] of ground instances of rules such that:

• for every i (0 ≤ i ≤ n), for every strong literal Lj in the antecedent of ri there is
a k < i such that head(rk) = Lj . If head(rn) = x ≺ y then A is called a ‘single-
ton priority argument’.
• no distinct rules in the sequence have the same head;

or:
2. a finite sequence [r01 , . . . rn1 ,. . .,r0m , . . . rnm ], such that for i=1 . . .m, [r0i , . . . rni ]

is a singleton priority argument. We say that A is a ‘composite priority argument’
that concludes the ordering

⋃m
i=1 head(rni)

In ALP-DP, arguments are exclusively defined by 1). Preferences between arguments
are then parameterised w.r.t. a set T , based on the ordering claimed by the set of sin-
gleton priority arguments in T . Here, we have additionally defined composite priority
arguments in 2), so that an ordering, and hence a preference, is claimed by a single
argument. This is the only modification we introduce to ALP-DP as defined in [11].

Example 2. Let S = {o1 . . . o4} and D be the set of rules:

r1 : ⇒ a, r2 : ⇒ ¬a, r3 : a ⇒ b, r4 : ¬a ⇒ ¬b,
r5 : ⇒ r2 ≺ r1, r6 : ⇒ r1 ≺ r2, r7 : ⇒ r4 ≺ r3, r8 : ⇒ r6 ≺ r5
Amongst the arguments that can be constructed are:
A1 = [r1], A2 = [r2], A3 = [r1, r3], A4 = [r2, r4], B1 = [r5], B2 = [r6], B3 = [r5, r7], B4
= [r6, r7], B5 = [r7], C1 = [r8]

The following definitions assume arguments are relative to a theory (S, D). [11] defines:

Definition 11. For any arguments A, A′ and literal L:

– A is strict iff it does not contain any defeasible rule; it is defeasible otherwise.
– A′ is a sub-argument of A iff A′ is a subsequence of A.
– L is a conclusion of A iff L is the head of some rule in A
– L is an assumption of A iff ∼ L occurs in some antecedent of a rule in A.
– If T is a sequence of rules, then A + T is the concatenation of A and T

[11] motivates definition of attacks between arguments that account for the ways in
which arguments can be extended with strict rules:
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Definition 12. A1 attacks A2 iff there are sequences S1 and S2 of strict rules such that
A1 + S1 is an argument with conclusion L and

1. A2 + S2 is an argument with a conclusion L, in which case A1 and A2 are said to
symmetrically conclusion-conclusion attack on the the pair (L,L); or

2. A2 is an argument with an assumption L, in which case A1 is said to undercut A2

In example 2, if we had the additional rules s : a → b and r9 :∼ b ⇒ c, then A1 +
[s] would undercut A5 = [r9]. Note that B3 = [r5, r7] and B4 = [r6, r7] conclusion-
conclusion attack since [r5, r7] has the conclusion r2 ≺ r1 and [r6, r7] + [o4] has
the conclusion ¬(r2 ≺ r1). Also, A3 and A4 conclusion-conclusion attack on the pairs
(a,¬a) and (b,¬b). To determine a preference amongst conclusion-conclusion attacking
arguments ALP-DP defines the sets of relevant rules to be compared:

Definition 13. If A+S is an argument with conclusion L, the defeasible rules RL(A+
S) relevant to L are:

1. {rd} iff A includes defeasible rule rd with head L
2. RL1(A + S) ∪ . . . ∪ RLn(A + S) iff A is defeasible and S includes a strict rule s

: L1 ∧ . . . ∧ Ln → L

We define ALP-DP’s ordering on these sets and hence preferences amongst arguments,
on the basis of an ordering concluded by a single composite priority argument (rather
than a set of singleton priority arguments as in ALP-DP):

Definition 14. Let C be a priority argument concluding the ordering ≺. Let R and R′

be sets of defeasible rules. Then R′ > R iff ∀r′ ∈ R′, ∃r ∈ R such that r ≺ r′.

Definition 15. Let C be a priority argument concluding≺. Let (L1, L1), . . . , (Ln, Ln)
be the pairs on which A and B conclusion-conclusion attack, where for i = 1 . . .n,
Li and Li are conclusions in A and B respectively. Then A is preferred≺ to B if for
i = 1 . . .n, RLi(A + Si) > RLi

(B + S′
i)

In example 2, B3 concludes r2 ≺ r1, r4 ≺ r3, and so Ra(A3) > R¬a(A4), Rb(A3) >
R¬b(A4), and A3 is preferred≺ to A4. In ALP-DP, conclusion-conclusion attacks are
preference dependent and (by definition) symmetric, and undercuts are preference in-
dependent. We can now instantiate a symmetric EAF with the arguments, their attacks,
and priority arguments claiming preferences and so d attacking pd attacks:

Definition 16. The sEAF (Args, Rpd, Rpi, Rd) for a theory (S, D) is defined as fol-
lows. Args is the set of arguments given by definition 10, and ∀A, B, C ∈ Args:

1. (C,(B, A)) ∈ Rd iff C concludes≺ and A is preferred≺ to B
2. (A, B),(B, A) ∈ Rpd iff A and B conclusion-conclusion attack
3. (A, B) ∈ Rpi iff A undercuts B

Note that it automatically follows that if(C,(B, A)), (C′,(A, B))∈Rd then(C, C′),(C′, C)
∈ Rpd, since:

Proposition 6. If C and C′ respectively conclude≺ and≺′, and A is preferred≺ to B,
B is preferred≺′ to A, then C and C′ conclusion-conclusion attack.
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Fig. 3. The sEAF for example 2

In ALP-DP, an argument A cannot defeat B if B undercuts A. Hence, we assume
the S-2-defeat relation (in definition 2) when evaluating the justified arguments of a
theory’s sEAF under all of the extensional semantics. For example 2’s sEAF in fig.3,
{C1, B1, B3, B5, A1, A3} is a subset of the single grounded, preferred, complete and
stable extension E. E additionally includes all composite arguments that can be con-
structed from C1, B1, B3, and B5 (so excluding self pd attacking arguments such as
B6 = [r5, r6], whose sub-arguments are B1 and B2). This follows from the following:

Proposition 7. A is sceptically/credulously justified iff all sub-arguments of A are
sceptically/credulously justified.

In [11], only the strict acceptability of A w.r.t. a set T is defined: every B that defeats
A must be strictly defeated by a C ∈ T , where defeat is defined w.r.t. the ordering
concluded by singleton priority arguments in T . This precludes ALP-DP from defining
acceptability of sets of arguments under the admissible, complete and preferred seman-
tics. In [11], the grounded extension of (S, D) is obtained by constructing the least
fixed point of the theory’s characteristic function defined in terms of strict acceptability.
Indeed, given proposition 5, the following can be shown to hold:

Proposition 8. Let G be the grounded extension of a theory (S, D) as defined in [11].
Let G′ be the grounded extension of the theory’s sEAF. Then:

1. G ⊆ G′

2. If A ∈ G′ and A /∈ G then A is a composite priority argument constructed from the
singleton priority arguments A1, . . . , An, where n > 1 and for i = 1 . . .n, Ai ∈ G

Example 3. Consider a theory’s arguments:
A = [guardian :⇒ sky ≺ bbc], B = [sun :⇒ bbc ≺ sky], C = [bbc :⇒ sun ≺
guardian], D = [sky :⇒ guardian ≺ sun], where x :⇒ y ≺ z is interpreted as x
states that y is less trustworthy than z. We have that:

A � B, C � D, A � (D ⇀ C), B � (C ⇀ D), C � (B ⇀ A), D � (A ⇀ B)
∅ is the grounded extension, and {A, C}, {B, D} the preferred extensions, each of
which represent the mutually supportive media outlets. Recall that in section 1 we
mentioned hierarchical argumentation frameworks [9] that would have difficulty for-
malising this kind of example because level n framework arguments cannot themselves
contribute to level n + 1 reasoning about their relative preferences.

5 Conclusions and Future Work

In this paper we have extended Dung’s abstract theory of argumentation to accommo-
date differing notions of conflict, and defeasible reasoning about preferences between
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arguments. We suggested that existing non-monotonic formalisms facilitating defeasi-
ble reasoning about priorities in the object language, can be formalised and extended
in our framework. To illustrate, we formalised and extended (by formalising accept-
ability under the full range of semantics) logic programming with defeasible priorities
[11]. We also showed how works such as [4] that assume pre-defined preference (value)
orderings on arguments, can now be extended to enable defeasible reasoning about pref-
erences. We believe that other related works (e.g. [1]) can also be formalised and sim-
ilarly extended in our framework. We also claim our work will facilitate development
of new formalisms addressing requirements for application of argumentation to single
agent reasoning, and argumentation based dialogues in which arguments supporting
statements are exchanged and evaluated. Argumentation is being applied to resolution
of variously defined notions of conflict arising within and amongst mental attitudes, in-
cluding beliefs, desires, goals, intentions e.t.c. Works such as [8],[10] and [2] illustrate
the need to reason about conflicting preferences arising in different contexts, as a result
of multiple perspectives, and when different criteria are applied to evaluate argument
strength. Finally, we mention current work on argument game proof theories for EAFs,
whereby the credulous-preferred and sceptical-grounded acceptability of an argument
A is determined by a regulated dispute between the proponent and opponent of A.
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Abstract. Conditional preference networks (CP-nets) are a simple approach to
the compact representation of preferences. In spite of their merit the application
of the ceteris paribus principle underlying them is too global and systematic and
sometimes leads to questionable incomparabilities. Moreover there is a natural
need for expressing default preferences that generally hold, together with more
specific ones that reverse them. This suggests the introduction of priorities for
handling preferences in a more local way. After providing the necessary back-
ground on CP-nets and identifying the representation issues, the paper presents
a logical encoding of preferences under the form of a partially ordered base of
logical formulas using a discrimin ordering of the preferences. It is shown that it
provides a better approximation of CP-nets than other approaches. This approx-
imation is faithful w.r.t. the strict preferences part of the CP-net and enables a
better control of the incomparabilites. Its computational cost remains polynomial
w.r.t. the size of the CP-net. The case of cyclic CP-nets is also discussed.

Keywords: Conditional preferences, logical representation, reasoning about pref-
erences, partial order, priority.

1 Introduction

Partially ordered information is naturally encountered in a variety of situations. Pieces
of knowledge or belief may not be equally reliable, and their levels of reliability, which
may be ordered in general when all the information comes from the same source, may
become incomparable in case of several sources. When representing preferences, sim-
ilar situations exist, especially in case of agents having different points of view. For
representing such information, partial order relations have to be defined between out-
comes, between formulas, and between sets of formulas in a compatible way (e. g.,
[11,1], etc). Various relations that may be more or less strong can be defined, which
lead to different inference relations of various strength.

The expression of preferences is in practice a matter of context and priority. Con-
ditional preferences networks (CP-nets for short; [2]) is a well-known framework for
the compact representation of preferences, where contextual preferences are specified
between incompletely specified situations in a ceteris paribus way, i.e. everything else
being equal. From a CP-net, a strict partial order can be obtained between completely
specified situations. Moreover, the preferential comparison of two completely speci-
fied situations is limited to the pairs for which it exists a path between them through
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a sequence of such situations, such that two successive situations differ only by one
“worsening flip”, the worsening being specified by the conditional preference tables of
the CP-net under the ceteris paribus assumption. However, approximating a CP-net may
be of interest in the general case for computational reasons. Besides, in spite of rather
versatile expressive capabilities, CP-nets use a uniform expression format, which does
not allow for the direct specification of default preferences. In [10], a possibilistic logic
framework has been advocated where formulas are associated with priorities, for rep-
resenting preferences. This setting uses complete preorders, which thus does not allow
for incomparabilities, and its computational cost remains apparently high. However, the
representation format allows for the specification of default preferences.

In the following we propose an original approach, based on partially ordered logical
formulas, that allows for incomparability and default preferences, but which is still able
to provide a faithful approximation of CP-nets, and which is computationally tractable.

After some definitions and notations given in Section 2, Section 3 first gives the
necessary background on CP-nets, before discussing their expressive power. Then, the
proposed approach is presented where the set of outcomes of a partially ordered set of
logical formulas are rank-ordered on the basis of Brewka’s preferred sub-theories [5].
In Section 4, an approximation of acyclic CP-nets in the logical framework is provided.
The approximation power of the approach when giving priority to parent nodes enables
to retrieve the associated CP-net-based partial order exactly, up to some incompara-
bilities that are turned into strict preferences. Section 5 points out the high quality of
the approximation. Then the approach is shown to apply to cyclic CP-nets as well in
Section 6, while Section 7 shows how the approach handles default preferences.

2 Definitions and Notations

Let V = {X1, · · · , Xl} be a set of l variables. Each variable Xi takes its values in a
domain denoted Dom(Xi) = {xi

1, · · · ,xi
mi
}. Let V ′ be a subset of V . An assignment

of V ′ is the result of giving a value in Dom(Xi) to each variable Xi in V ′. Asst(V ′) is
the set of all possible assignments to variables in V ′. In particular Asst(V ), denoted Ω,
is the set of all possible assignments of the variables in V . Each element in Ω, denoted
ω, is called an outcome. When dealing with binary variables, formulas of propositional
logic are denoted ϕ,φ,ψ, · · · . Mod(ϕ) denotes the set of outcomes satisfying ϕ.

Let� (resp.�) be a binary relation on a finite set A = {x, y, z, · · · } such that x � y
(resp. x � y) means that x is at least as preferred as (resp. strictly preferred to) y. x = y
means that both x � y and y � x hold, i.e. x and y are equally preferred. Lastly x ∼ y
means that neither x � y nor y � x holds, i.e. x and y are incomparable.
� is a partial preorder on A if and only if � is reflexive (x � x) and transitive (if

x � y and y � z then x � z). � is a partial order on A if and only if � is irreflexive
(x � x does not hold) and transitive. A partial order � may be defined from a partial
preorder � as x � y if x � y holds but y � x does not. A (pre-)order is asymmetric
if and only if ∀x, y ∈ A, if x � y holds then y � x does not. A preorder � on A is
complete if and only if all pairs are comparable i.e. ∀x, y ∈ A, we have x � y or y � x.

The set of the best/undominated (resp. worst) elements of A w.r.t.�, denoted max(A,

�) (resp. min(A,�)), is defined by {x|x ∈ A, �y ∈ A, y � x} (resp. {x|x ∈ A, �y ∈
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A,x � y}). The set of the best (resp. worst) elements of A w.r.t. a preorder � is
max(A,�) (resp. min(A,�)) where � is the strict order associated to �.

3 Partially Ordered Preference Statements

Different compact representations of partial preorders have been proposed in literature
[2,5,14,1]. In this paper due to space limitation, we only focus on two representations.

3.1 Conditional Preference Networks

Conditional preference networks (CP-nets for short) [2] are based on comparative con-
ditional statements, together with ceteris paribus principle. A CP-net is a directed graph-
ical representation of conditional preferences, where nodes represent variables and
edges express preference links between variables. When there exists a link from X
to Y , X is called a parent of Y . Pa(X) denotes the set of parents of a given node X . It
determines the user’s preferences over possible values of X . For the sake of simplicity,
we suppose that variables are binary. Preferences are expressed at each node by means
of a conditional preference table (CPT for short) such that:

– for root nodes Xi, the conditional preference table, denoted CPT (Xi), provides
the strict preference1 over xi and its negation ¬xi, other things being equal, i.e.
∀y ∈ Asst(Y ),xiy � ¬xiy where Y = V \{Xi}. This is the ceteris paribus
principle.

– For other nodes Xj , CPT (Xj) describes the preferences over xj and ¬xj other
things being equal given any assignment of Pa(Xj), i.e. xjzy � ¬xjzy, ∀z ∈
Asst(Pa(Xj)) and ∀y ∈ Asst(Y ) where Y = V \({Xj} ∪ Pa(Xj)). For each
assignment z of Pa(Xj) we write for short a statement of the form z : xj � ¬xj .
Note that this is a parent-dependent specification.

We define the size of a CP-net N as the number of conditional/unconditional prefer-
ences expressed in N .

Definition 1. A complete preorder � on Ω, called also preference ranking, satisfies a
CP-net N if and only if it satisfies each conditional preference expressed in N . In this
case, we say that the preference ranking� is consistent with N .

A CP-net N is consistent when there exists an asymmetric preference ranking that is
consistent with N . We mainly focus in this paper on acyclic CP-nets in order to ensure
their consistency. The case of cyclic CP-nets is discussed in Section 6.

Definition 2 (Preference entailment). Let N be a CP-net over a set of variables V ,
and ω,ω′ ∈ Ω. N entails that ω is strictly preferred to ω′, denoted ω �N ω′, if and
only if ω � ω′ holds in every preference ranking� that satisfies N .

1 We restrict ourselves to a complete order over xi and ¬xi as it is the case with CP-nets in
general. However this can be easily extended to a preorder as it is the case in Section 5.
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Indeed �N is the intersection of all preference rankings consistent with N . When
ω �N ω′ holds, we say that ω dominates ω′. The set of optimal outcomes of a CP-
net N is max(Ω,�N ). The preferential comparison in CP-nets is based on the no-
tion of worsening flip. A worsening flip is a change of the value of one variable in
an assignment in such a way that the new assignment is less preferred according to
the conditional preference table of that variable, and under ceteris paribus assumption,
w.r.t. the CP-net N . Then ω is preferred to ω′ w.r.t. N iff there is a chain of wors-
ening flips from ω to ω′. For instance VbPbSrCr �N VwPbSwCw because we have
VbPbSrCr �N VbPbSrCw �N VbPbSwCw �N VwPbSwCw, in the example below.

Example 1. (borrowed from [9]) Let N be a CP-net over a set of binary variables
V (vest), P (pant), S (shirt) and C (shoes) s.t. Dom(V ) = {Vb,Vw}, Dom(P ) =
{Pb, Pw}, Dom(S) = {Sr, Sw} and Dom(C) = {Cr, Cw}, where b, w and r stand
respectively for black, white and red. Fig. 1 gives the structure of N together with its
associated partial order. For the sake of readability we did not represent in this latter

Fig. 1. Example of CP-net

strict preferences induced by N that can also be deduced by transitivity. An edge from
an outcome ω to an outcome ω′ means that ω′ is preferred to ω, i.e. ω′ �N ω.

TCP-nets (T for tradeoff) [4] are an extension of CP-nets with variable importance
tradeoffs. They allow to express a (conditional) relative importance of a variable X
over another variable Y , interpreted as: “it is more important for us to see X getting
its most preferred value than to see Y getting its most preferred value”. For example
V is more important than P leads to the following additional preference statements:
VbPwSrCr � VwPbSrCr, VbPwSrCw � VwPbSrCw, VbPwSwCr � VwPbSwCr and
VbPwSwCw � VwPbSwCw.
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In CP-theories [14] (non graphical representations), preference statements are of the
form u : x � x′[S], where S ⊆ V \({X}∪Pa(X)). Let T = V \(S ∪{X}∪Pa(X)).
The preference statement u : x � x′[S] stands for “in the context u, x is preferred to
x′ irrespective to the values of S, other things being equal”, i.e. ∀t ∈ Asst(T ), ∀s, s′ ∈
Asst(S), tuxs � tux′s′, where u ∈ Asst(Pa(X)). Wilson [14] has shown that CP-
nets and TCP-nets are special cases of CP-theories.

In the above example, due to the structure of the CP-net and its associated preference
tables we have that VbPbSrCw �N VwPwSrCw, VbPwSrCw �N VwPwSrCw and
VwPbSrCw �N VwPwSrCw. But one may like to prefer Vw and Pw when Sr is true but
not Cr. More precisely we have Sr∧Cw : Vw∧Pw � Vb∨Pb. This means that we prefer
Vb to Vw, Pb to Pw unless Sr∧Cw is true in which case our preferences over values of V
and P are reversed. This situation cannot be captured by TCP-nets since they allow the
expression of priority between conditionally independent variables only. The preference
statement Sr ∧ Cw : Vw ∧ Pw � Vb ∨ Pb is more specific than both � : Vb � Vw and
� : Pb � Pw. Technically speaking, Sr ∧ Cw : Vw ∧ Pw � Vb ∨ Pb should be given
a higher priority over both � : Vb � Vw and � : Pb � Pw. In such a way we prefer
Vw ∧ Pw when Sr ∧ Cw is true and Vb and Pb in all other cases. The principle here
is to apply default reasoning to preference modeling, i.e. we have general preferences
(� : Vb � Vw and � : Pb � Pw) and a specific one Sr ∧ Cw : Vw ∧ Pw � Vb ∨ Pb.

Many approaches to default reasoning take advantage of an ordering for properly
handling specific contexts where plausible conclusions differ from the general ones.
The above concerns thus suggest the introduction of priorities associated with logical
formulas encoding preferences for introducing more flexibilities in their specification.

3.2 Partially Ordered Formulas

We represent prioritized formulas by means of a pair (Σ,�Σ) where Σ is a set of
propositional formulas and �Σ is a preorder on Σ. When �Σ is a partial preorder,
different criteria have been proposed in literature to rank-order the set of outcomes
[11,5,1]. For the purpose of this paper we only focus on Brewka’s proposal [5].

Definition 3 (Discrimin preferences). Let (Σ,�Σ) be a partially ordered base. Let
ω,ω′ ∈ Ω. Let Fω = {ϕ | ϕ ∈ Σ,ω |= ϕ} and Fω′ = {ϕ | ϕ ∈ Σ,ω′ |= ϕ}.

– ω �Ω,d ω′ iff ∀ϕ ∈ Fω\Fω′ , ∃ϕ′ ∈ Fω′\Fω such that ϕ′ �Σ ϕ.
– ω �Ω,d ω′ iff ∀ϕ ∈ Fω\Fω′ , ∃ϕ′ ∈ Fω′\Fω such that ϕ′ �Σ ϕ.
– ω =Ω,d ω′ iff both ω �Ω,d ω′ and ω′ �Ω,d ω hold.

When Fω ⊂ Fω′ we have ω �Ω,d ω′.

Example 2. Let A, B, C and D be four binary variables. Let (Σ,�Σ) with Σ = {a, b,
c, d} and �Σ= {b =Σ c, b �Σ d, c �Σ d, b �Σ a, c �Σ a}. Let ω0 = ab¬cd,
ω1 = a¬bcd, ω2 = abc¬d, ω3 = ¬abcd, ω4 = ¬ab¬cd, ω5 = a¬b¬cd. We have
Fω0 = {c}, Fω1 = {b}, Fω2 = {d}, Fω3 = {a}, Fω4 = {a, c} and Fω5 = {b, c}.
Then ω0 =Ω,d ω1, ω2 ∼Ω,d ω3 and ω4 �Ω,d ω5.

While in knowledge representation the main problem is the inference, preference repre-
sentation is concerned with comparing alternatives. The comparison of two alternatives
following Definition 3 is achieved in polynomial time [12].
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4 Approximation of Acyclic CP-Nets

Because of the exponential computational cost of dominance queries in CP-nets, several
authors have made proposals for approximating CP-nets (as further discussed in Section
5). Thus far a good (or faithful) approximation of a CP-net should only recover all strict
comparisons of the CP-net [9,6]. In this paper we strengthen the faithfulness criteria by
leaving open the possibility of recovering incomparabilities. We approximate a CP-net
by means of a set of partially ordered formulas that generates a partial preorder on the
set of outcomes following Definition 3. This approximation follows three steps:

1. Let X be a node in the CP-netN and CPT (X) be its associated conditional prefer-
ence table. For each assignment of Pa(X), ui : x � ¬x in CPT (X) we associate
a base made of one formula ¬ui ∨ x as follows ΣX,ui = {¬ui ∨ x}.

2. For each node X in the CP-net N , build ΣX =
⋃

i ΣX,ui where the bases ΣX,ui

have been obtained at the previous step. Then Σ =
⋃

X ΣX is the partially ordered
base associated with N .

3. A partial preorder�Σ on Σ is defined where each formula associated to a node is
strictly preferred to all formulas associated to its child nodes2. The idea underlying
this step is simple, any formula associated with a node is more important than
formulas associated with any child node. This is illustrated on our running example.

Example 3. (Ex. 1 cont’d) Σ = {Vb, Pb,¬Vw∨¬Pw∨Sr,¬Vb∨¬Pb∨Sr,¬Vb∨¬Pw∨
Sw,¬Vw ∨ ¬Pb ∨ Sw,¬Sw ∨ Cw,¬Sr ∨Cr} with �Σ= {Vb �Σ ¬Vw ∨ ¬Pw ∨ Sr,
Vb �Σ ¬Vb ∨ ¬Pb ∨ Sr, Vb �Σ ¬Vb ∨ ¬Pw ∨ Sw, Vb �Σ ¬Vw ∨ ¬Pb ∨ Sw,
Pb �Σ ¬Vw ∨ ¬Pw ∨ Sr, Pb �Σ ¬Vb ∨ ¬Pb ∨ Sr, Pb �Σ ¬Vb ∨ ¬Pw ∨ Sw,
Pb �Σ ¬Vw∨¬Pb∨Sw,¬Vw∨¬Pw∨Sr �Σ ¬Sw∨Cw,¬Vw∨¬Pw∨Sr �Σ ¬Sr∨Cr ,
¬Vb ∨ ¬Pb ∨ Sr �Σ ¬Sw ∨ Cw, ¬Vb ∨ ¬Pb ∨ Sr �Σ ¬Sr ∨ Cr,
¬Vb ∨ ¬Pw ∨ Sw �Σ ¬Sw ∨Cw, ¬Vb ∨ ¬Pw ∨ Sw �Σ ¬Sr ∨ Cr,
¬Vw ∨ ¬Pb ∨ Sw �Σ ¬Sw ∨Cw, ¬Vw ∨ ¬Pb ∨ Sw �Σ ¬Sr ∨ Cr}.

See Fig. 2. An edge from ψ ∼ ψ′ to ϕ ∼ ϕ′ means that ϕ and ϕ′ (resp. ψ and ψ′) are
incomparable w.r.t. �Σ but each one is strictly preferred to both ψ and ψ′ w.r.t. �Σ .

Remark 1. For the sake of simplicity, we focused in the above approximation on pref-
erence statements of the form u : x � ¬x used with CP-nets in general. This can be
extended to cover all other cases. If u : x ∼ ¬x then we add ¬u ∨ x and ¬u ∨ ¬x to
Σ. If u : x � ¬x (resp. u : x = ¬x) then we add ¬u ∨ x and ¬u ∨ ¬x to Σ, and
¬u∨x �Σ ¬u∨¬x (resp. ¬u∨x =Σ ¬u∨¬x) to �Σ . However a CP-net based on�
or = statements may be inconsistent even if it is acyclic. An example is given in Section
5. For this reason we focus in this section on strict preference statements together with
the initial hypothesis that CP-nets are acyclic.

The following proposition can be shown, which expresses that the partially ordered base
constructed from a CP-net N satisfies all ceteris paribus preferences induced byN .

2 Since usually CP-nets use local strict preference relations, �Σ is a partial order but we speak
about a partial preorder in order to keep the definitions general. See Section 5.
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Fig. 2. Partial preorder associated to Σ

Proposition 1 (Ceteris paribus preferences). Let N be an acyclic CP-net over a set
of variables V . Let X be a node inN and Y = V \({X}∪Pa(X)). Let (Σ,�Σ) be the
partially ordered base associated with N and �Ω,d be the partial order associated to
(Σ,�Σ) following Definition 3. Let u : x1 � x2 be a preference stated byN where u is
an assignment of Pa(X). Then for each assignement y of Y we have ux1y �Ω,d ux2y.

Example 4. (Example 1 continued) Let us consider the node S and the preference state-
ment Vw ∧Pb : Sw � Sr. Following ceteris paribus principle we have VwPbSwCr �N
VwPbSrCr and VwPbSwCw �N VwPbSrCw . Let us now compare these outcomes
w.r.t. (Σ,�Σ). Let ω4 = VwPbSwCw, ω5 = VwPbSwCr, ω6 = VwPbSrCw and
ω7 = VwPbSrCr. We have Fω5 = {Vb,¬Sw ∨ Cw} and Fω7 = {Vb,¬Vw ∨ ¬Pb ∨
Sw}. Fω5\Fω7 = {¬Sw ∨ Cw} and Fω7\Fω5 = {¬Vw ∨ ¬Pb ∨ Sw}. We have
¬Vw ∨ ¬Pb ∨ Sw �Σ ¬Sw ∨ Cw so ω5 �Ω,d ω7. Now Fω4 = {Vb} and Fω6 =
{Vb,¬Vw ∨ ¬Pb ∨ Sw,¬Sr ∨ Cr}. We have Fω4 ⊂ Fω6 so ω4 �Ω,d ω6.

It follows from Proposition 1 that the partially ordered base associated withN recovers
all strict preferences induced by N . Formally we have:

Proposition 2 (Strict preferences). Let N be an acyclic CP-net and (Σ,�Σ) be its
associated partially ordered base. Let �Ω,d be the partial order associated to (Σ,�Σ)
following Definition 3. Then, ∀ω,ω′ ∈ Ω, if ω �N ω′ then ω �Ω,d ω′.

Example 5. (Example 1 continued) Let ω2 = VwPwSrCw and ω7 = VwPbSrCr.
Following N we have ω7 �N ω2. We also have Fω2 = {Vb, Pb,¬Sr ∨ Cr} and
Fω7 = {Vb,¬Vw ∨¬Pb ∨ Sw}. Fω2\Fω7 = {Pb,¬Sr ∨Cr} and Fω7\Fω2 = {¬Vw ∨
¬Cb ∨ Sw}. We have Pb �Σ ¬Vw ∨ ¬Pb ∨ Sw so ω7 �Ω,d ω2. Fig. 3 gives the partial
order associated with (Σ,�Σ) following Definition 3.

Let us now examine what kind of comparisons of outcomes the partially ordered base
constructed above offers – except the fact already established in Proposition 2 that it
preserves all strict preferences induced by the CP-net.

Proposition 3. Let N be an acyclic CP-net and (Σ,�Σ) be its associated partially
ordered base. Let �Ω,d be the partial order associated with (Σ,�Σ) following Def. 3.

– ∀ω,ω′ ∈ Ω, if ω �Ω,d ω′ then (ω �N ω′ or ω ∼N ω′),
– ∀ω,ω′ ∈ Ω, if ω ∼Ω,d ω′ then ω ∼N ω′.
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Fig. 3. Partial order associated to (Σ, �Σ)

It follows from Proposition 3 that our approximation recovers some incomparabilities
induced by the CP-net. This result shows the good behavior of our approximation since
it not only recovers all strict comparabilities of the CP-net but also some incompara-
bilities (existing approximations proposed in literature only focus on recovering strict
comparabilities as further discussed in Section 5). But this result also raises natural
questions: why can we not recover all incomparabilities of the CP-net since we are us-
ing a partial preorder? Is it a limitation of the proposed approximation? We think that
this is not necessarily a limitation of our approximation. Rather it raises the question
of the representation of ceteris paribus preferences in CP-nets, where incomparability
remains between outcomes if one cannot go from one to the others by a succession
of one-variable flips for which strict preference holds w.r.t. the CP-net. For instance,
in our example of Fig. 1, the two outcomes VbPbSwCr and VwPbSwCw are incom-
parable. However, one may wonder if VbPbSwCr should not be given priority over
VwPbSwCw since VbPbSwCr falsifies preferences associated to child nodes S and C
while VwPbSwCw falsifies a preference associated to a parent node V. Indeed what
happens on parent nodes determines the preference at the child node level. Lastly, note
that our approximation doesn’t need any extra effort in time and space.

Proposition 4. Let N be an acyclic CP-net. The complexity of constructing (Σ,�Σ)
and comparing ω and ω′ w.r.t. (Σ,�Σ) is polynomial in the size ofN .

The idea of giving priority to parent nodes over child nodes has been advocated in
[2] and used in order to compute a complete order consistent with the CP-net. Our
approximation is also based on this idea. However we use a formal logical setting for
preference modeling. This allows to reason on general and specific preferences and is
compatible with ceteris paribus principle (whose application is no longer compulsory
anyway), as shown later in this paper.
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5 Related Works

Our approximation provides a partial preorder�Ω,d that recovers all strict preferences
induced by a CP-net offering a faithful approximation of CP-nets. It also recovers
some incomparabilities of the CP-net. Moreover all incomparabilities w.r.t. �Ω,d are
true in the CP-net, which means that our approximation is precise when two outcomes
are incomparable. Other approximations of CP-nets have also been proposed based on
weighted CSP [9] or answer sets optimization [6]. In these approaches a complete pre-
order is generated that recovers only strict preferences generated by the CP-net. In case
of CP-nets associated with strict partial orders, equalities of the complete preorder in
those approaches turn out to incomparablities in our approximation and conversely (see
also [10]). However since our approximation provides a partial preorder, it is closer to
CP-nets since it is more faithful to the incomparabilities in CP-nets. Let us consider the
CP-net depicted in Fig. 4.a. The partial preorder associated to this CP-net is given in
Fig. 4.b. Following the approximation given in [9] based on weighted CSP3, we asso-
ciate a weight to preferences associated to each node: the weight 1 (resp. 2 and 4) to
preferences of the node C (resp. S, (V and P)). Then we compute the penalty of each
outcome which is equal to the sum of weights of preferences that it falsifies. For exam-
ple penalty of VwPbSrCw is 7 because VwPbSrCw falsifies Vb � Vw , VwPb : Sw � Sr

and Sr : Cr � Cw. Indeed we get the complete preorder given in Fig. 4.c. Using our
approximation, we add ¬Sw ∨ Cr to Σ and ¬Sw ∨ Cw =Σ ¬Sw ∨ Cr to �Σ , where
(Σ,�Σ) is the partially ordered base given in Example 3. The associated partial pre-
order is given in Fig. 4.d. We can see that our approximation is more precise since it dis-
tinguishes incomparability and equality in the CP-net in contrast to [9] where incompa-
rability and equality are confused. For instance VbPwSwCr, VbPwSwCw, VwPbSwCr

and VwPbSwCw are equally preferred w.r.t. the weighted CSP, while we only have
VbPwSwCr = VbPwSwCw and VwPbSwCr = VwPbSwCw w.r.t. both the CP-net and
our approximation.

It is worth noticing that indifference in CP-nets may lead to an inconsistent CP-net
even if the graph is acyclic. Let N ′ be a CP-net over two variables A and B such that
A is a parent of B. Suppose that a = ¬a , a : b � ¬b and ¬a : ¬b � b [2]. Then we
have ab �N ′ a¬b =N ′ ¬a¬b �N ′ ¬ab =N ′ ab. We could use our approximation on
the example given in Fig. 4.a because the CP-net is consistent. Proposition 2 still holds
when a CP-net is consistent and based on preference statements of the form � and =.
Moreover our approximation recovers all equalities of the CP-net.

A CP-net preference statement of the form u : x � ¬x is encoded in our approx-
imation by means of a formula ¬u ∨ x. At the semantic level, this is interpreted as
each outcome satisfying ux is preferred to each outcome satisfying u¬x, i.e. ∀y, y′ ∈
Asst(Y ), ∀t, t′ ∈ Asst(T ) with Y, T ⊂ V \({X} ∪ Pa(X)), Y ∩ T = ∅ and Y ∪
T ∪ {X} ∪ Pa(X) = V , we have uxyt �Ω,d u¬xy′t′. If y = y′ and t = t′ then
ceteris paribus preferences are recovered. If y and y′ are any assignments in Asst(Y )
and t = t′ then we recover preference statements of CP-theories [14]. Indeed our ap-

3 Due to the lack of space we only recall the approximation proposed in [9]. Note however that it
is equivalent to the one proposed in [6]. Indeed the comparison presented in this section holds
also for that work.
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Fig. 4. A CP-net associated with a partial preorder

proximation also holds for CP-theories. The comparison of our approximation applied
to CP-theories and the one proposed in [15] is left for a further research.

Lastly McGeachie and Doyle [13] use numerical function values to model ceteris
paribus preferences, however their approach is computationally costly in general.

6 Cyclic CP-Nets

Brafman and Dimopoulos [3] addressed the case of cyclic CP-nets. Usually when a CP-
net is cyclic and inconsistent, we conclude that there is no optimal outcomes. However
in some cases, optimal solutions exist despite the fact that the CP-net is inconsistent.
The CP-net depicted in Fig. 5 is an example of such a case. The CP-net is inconsistent
but the outcomes a¬bc¬d and ¬ab¬cd are not dominated. Also abcd and ¬a¬b¬c¬d
are the worst outcomes. In order to overcome this problem, the authors replace the
strict preference relation � in CPT (.) by �. Indeed five classes of outcomes are ob-
tained and the following preorder is derived: a¬bc¬d ∼N ′′ ¬ab¬cd �N ′′ a¬bcd =N ′′

a¬b¬cd =N ′′ a¬b¬c¬d =N ′′ ab¬c¬d =N ′′ ab¬cd =N ′′ abc¬d =N ′′ ¬a¬bcd =N ′′

¬a¬b¬cd =N ′′ ¬a¬bc¬d =N ′′ ¬ab¬c¬d =N ′′ ¬abcd =N ′′ ¬abc¬d �N ′′ abcd
∼N ′′ ¬a¬b¬c¬d. This relaxation allows to recover best and worst outcomes.
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Fig. 5. A cyclic CP-net N ′′

In contrast to this approach, our approximation does not need any relaxation of �.
We have Σ′′ = {¬d ∨ ¬a, d ∨ a,¬a ∨ ¬b, a ∨ b,¬b ∨ ¬c, b ∨ c,¬c ∨ ¬d, c ∨ d} and
�Σ′′= {¬d ∨ ¬a ∼Σ′′ d ∨ a �Σ′′ ¬a ∨ ¬b ∼Σ′′ a ∨ b,¬a ∨ ¬b ∼Σ′′ a ∨ b �Σ′′

¬b ∨ ¬c ∼Σ′′ b ∨ c,¬b ∨ ¬c ∼Σ′′ b ∨ c �Σ′′ ¬c ∨ ¬d ∼Σ′′ c ∨ d,¬c ∨ ¬d ∼Σ′′

c∨ d �Σ′′ ¬d ∨¬a ∼Σ′′ d∨ a}. We use our approximation previously described. The
only difference is that the preference relation on formulas of Σ′′ is no longer transitive
but �Ω,d is still transitive. For example the outcomes ω7 = ¬abcd and ω11 = a¬bcd
are not directly comparable because we haveFω7\Fω11 = {¬b∨¬c} andFω11\Fω7 =
{¬d ∨ ¬a} and neither ¬d ∨ ¬a �Σ′′ ¬b ∨ ¬c nor ¬b ∨ ¬c �Σ′′ ¬d ∨ ¬a belongs
explicitly to �Σ′′ . Let ω8 = a¬b¬c¬d and ω9 = a¬b¬cd. We have that ω9 is preferred
to ω8 because Fω8\Fω9 = {c ∨ d}, Fω9\Fω8 = {¬d ∨ ¬a} and c ∨ d �Σ′′ ¬d ∨ ¬a
belongs to�Σ′′ . Following Definition 3 the best outcomes w.r.t. (Σ′′,�Σ′′) are¬ab¬cd
and a¬bc¬d while the worst ones are ¬a¬b¬c¬d and abcd.

7 General and Specific Preferences: An Example

Let us go back to the example presented in Section 3.1 that cannot be modelled by a
CP-net. This example can be handled in our setting by giving priority to the specific
preference Sr ∧ Cw : Vw ∧ Pw � Vb ∨ Pb over general preferences � : Vb � Vw and
� : Pb � Pw. Using our approximation, we can state this priority and provide a partial
preorder that approximates the original CP-net extended with this additional priority.
More precisely we have (Σ′,�Σ′) where Σ′ = Σ ∪ {¬Sr ∨ ¬Cw ∨ (Vw ∧ Pw)} and
�Σ′=�Σ ∪{¬Sr∨¬Cw∨(Vw∧Pw) �Σ Vb,¬Sr∨¬Cw∨(Vw∧Pw) �Σ Pb}, where
(Σ, �Σ) is given in Example 3. Following Definition 3, the partial preorder associated to
(Σ′,�Σ′) is VbPbSrCr �Ω,d VbPbSwCw �Ω,d VbPbSwCr �Ω,d VbPwSwCw ∼Ω,d

VwPbSwCw �Ω,d VwPbSwCr ∼Ω,d VbPwSwCr �Ω,d VbPwSrCr ∼Ω,d VwPbSrCr

�Ω,d VwPwSrCr �Ω,d VwPwSrCw �Ω,d VwPwSwCw �Ω,d VwPwSwCr �Ω,d

VbPbSrCw �Ω,d VbPwSrCw ∼Ω,d VwPbSrCw. We can check that in the context
Sr ∧ Cw, Vw ∧ Pw is preferred otherwise the ceteris paribus principle holds except
when an outcome violates a preference associated with a parent node.

Dimopoulos et al. [8] proposed an extension of TCP-nets where a variable can be
more important than its ancestors. This priority can be recovered in our framework by
stating that preferences associated with the child node are preferred to those associated
with its ancestors. Our framework is more general since the priority of a child over its
ancestors can be restricted to some local preferences only.
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8 Conclusion

The present work points out some expressiveness limitations of CP-nets and proposes
a logical framework for preference representation. The proposed logical representation
of partially ordered information offers a flexible manner for specifying preferences.
Indeed, in this approach there is a complete freedom on the priority that can be put on
formulas, and no such implicit priority in favor of parent nodes as in CP-nets.

Our proposed approach emphasizes issues related to the expressiveness of the repre-
sentation, still remaining computationally tractable. The expressiveness issues raised in
this paper offer a basis of comparison criteria to be considered together with computa-
tional complexity as in [7] when discussing the relative merits of different formalisms.
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Abstract. Problems of conceptual uncertainty have been dealt with in theories 
of formal logic. Such theories try to accommodate vagueness in two main ways. 
One is fuzzy logic that introduces degrees of truth. The other way of 
accommodating formal logic to vagueness is super valuations and its 
descendants. This paper studies a more inclusive class of reasoning support than 
formal logic. In the present approach, conceptual uncertainty, including 
vagueness is represented as higher order uncertainty. A taxonomy of epistemic 
and conceptual uncertainty is provided. Finally, implications of conceptual 
uncertainty for reasoning support systems are analyzed. 

1   Introduction 

The purpose of computer based support systems for reasoning such as argumentation, 
decision and negotiation is to facilitate reasoning by replacing mental operations with 
externalized procedures, operating on representations in a computer medium. The 
design and development of computer support for reasoning, therefore, presupposes 
that we can find suitable external representations and describe procedures for 
operating on them.  

A problem common to formal logic and more generally applicable reasoning 
procedures is the occurrence of conceptual uncertainty involving vagueness, 
fuzziness, ambiguity or open texture (Zadeh 1965, Fine 1975, Shapiro 2006). For 
instance, vagueness gives rise to problems of the law of excluded middle and of 
sorites paradoxes that are well known (Rolf 1981, Williamson and Graff 2002). If 
every proposition is true or false, is it true or false that France is hexagonal? If 0 
grains do not make a heap but 100.000 grains do, which is the number n such that n 
grains did not make a heap but n+1 did? Such questions remind us that we are 
thinking by means of a conceptual system whose borders are not definitely sealed.  

This paper studies the question: “How can computerized support systems for 
reasoning be accommodated to conceptual uncertainty? It asserts (1) Conceptual 
uncertainty is important for various types of reasoning such as argumentation, 
decision making and negotiations. (2) In reasoning supporting systems, conceptual 
uncertainty is representable as a second order uncertainty, directed towards the first 
order representations of matters of fact or courses of action. (3) There are five types 
or dimensions of uncertainty, two of them epistemic, three conceptual. The lens 
model of judgment theory confirms the taxonomy. (4) Conceptual and epistemic 
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uncertainty can clarify reasoning in judgment and decision making. (5) Computer 
tools supporting reasoning need to consider both epistemic and conceptual 
uncertainty. This implies a need for a multiplicity of computer support tools together 
with corresponding skills to handle them. 

2   Conceptual Uncertainty in Reasoning and Decision Making 

In processes of reasoning and argumentation processes, there can occur two kinds of 
uncertainty (Smithson 1989, 2004). One is epistemic uncertainty consisting in 
uncertainty about what the facts are and what follows from what we know. Epistemic 
uncertainty is often represented in the form of a probability distribution with well-
defined properties. Epistemic uncertainty is due to incompleteness of knowledge, i.e. 
ignorance.  

Conceptual uncertainty is due to incompleteness of meaning, or intention. Even if 
you knew every single fact about a place – climate, vegetation or geology – you might 
still be uncertain whether it is “suitable for hiking”. The latter uncertainty can only be 
reduced if we clarify whose hiking we are discussing and the preferences and abilities 
of those persons. 

Conceptual uncertainty affects the two major models of rationality in decision 
making, consequentialist rationality and deontological rationality. Consequentialists 
think of decisions as a selection of alternatives. In such decisions, there will be 
conceptual uncertainty pertaining to alternatives and to attributes. Which alternatives 
are there and which attributes should one evaluate?  

In deontological rationality, decisions are based on general principles such as laws, 
regulations, policies or instructions. Legal decision making is typical. In such 
decisions, conceptual uncertainty concerns which principles to apply and how to 
apply them, e.g. in case of conflicts between principles. 

3   Conceptual Uncertainty of Level n Is Represented at n+1  

Consider the type theory of Russell and Whitehead (Whitehead and Russell 1910). I 
will show how conceptual uncertainty relating to a factual assertion of the first level 
can be represented at the second level. Consider the assertion: 

 

The solar system has nine planets. 
 

This statement was held true from 1930 when Pluto was discovered up till August 
2006. Recently, however, Pluto has been found in peculiar company. The Kuiper belt, 
of which Pluto is a part, contains some 100 000 other objects. Some of them have the 
size of Pluto and one is actually larger. Pluto is very different from the other eight 
planets of the solar system.  

It is certain that Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and 
Neptune are planets. But there has for some time been uncertainty in the community 
of astronomers whether the judgment: 

 

Pluto is a planet. 
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is true or false. The uncertainty could stem from uncertainty about facts about Pluto or 
uncertainty about the conceptual delimitation of planethood. The uncertainty about 
the conceptual delimitation could not be resolved by knowledge about what the world 
is like. 

In 2006, astronomers faced two possible delimitations of “planet”. One conceptual 
decision might be to define “planet” is a way that excludes Pluto and the rest of the 
objects in the Kuiper belt. Another conceptualization would include Pluto, but then it 
is problematic whether other objects of the Kuiper belt should be included as well. 

The uncertainty about the planethood of Pluto could not be removed by a pure 
appeal to facts. It had to be removed in another way. The matter was settled by a 
decision at the XXVIth General Assembly of the International Astronomical Union 
(IAU) in August 2006 in Prague. The assembly had two options to define the concept 
of planet, one wider and one narrower. With a wider definition, based on a convention 
of 2005, the solar system would have contained twelve planets, including Pluto. But 
in 2006, the General Assembly of IAU settled for a narrower definition, stating that in 
the solar system, a planet is a celestial body that (1) is in orbit around the Sun, (2) has 
sufficient mass so that it assumes a hydrostatic equilibrium (nearly round) shape, and 
(3) has "cleared the neighborhood" around its orbit.  

Together with the presently known facts, this definition settles that Pluto is not a 
planet. The solar system now contains eight planets, in the sense of “planet” defined 
in 2006.  

The settling of the question whether Pluto is a planet is not of the same kind as the 
removal of other astronomical uncertainties or ignorance. Consider procedures for 
removing epistemic uncertainty about planets. In removing epistemic uncertainty, 
observations and inference from facts is used. The concept of “planet” is held fixed 
or, at least, not consciously elaborated upon. The planet Neptune was discovered in 
1846 as a result of mathematical prediction. Perturbations in the orbit of Uranus led 
astronomers to deduce Neptune's existence. Applying analogous methods, the 
astronomer Urbain Le Verrier in 1859 tried to deduce a planet “Vulcan” that would 
have caused perturbations in the orbit of Mercury. There were several reports about 
observations of “Vulcan” up to 1915, when Einstein successfully explained the 
apparent anomaly in Mercury's orbit. As Einstein’s explanation became accepted, the 
search for Vulcan was abandoned by astronomers.  

Instead, in removing the conceptual uncertainty of planet in 2006, a conceptual 
decision was needed. This decision was not an arbitrary one. It would have 
implications for the whole system of astronomical knowledge about the solar system 
and its planets. One cannot decide to redefine the concept of planet wider so as to 
include Pluto without also getting extra, unwanted, planets. Furthermore, had the 
wider definition been taken, the solar system might have come to include 53 presently 
known bodies in the solar system and possibly some hundreds of similar objects, 
presently unknown (Pluto Wikipedia 2006). 

In fact, the decision about the definition of “planet” has been contested. The U.S. 
state of New Mexico's House of Representatives passed a resolution declaring that 
Pluto will always be considered a planet while overhead of the state, with March 13th 
being known as "Pluto Planet Day". Local news report that the widow and daughter of 
Clyde Tombaugh, discoverer of Pluto in 1930, participated in a solemn ceremony to 
reinstate the planethood of Pluto. 
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The uncertainty about there being a planet “Vulcan” was an epistemic uncertainty. 
Knowledge about facts could eliminate the uncertainty, given the then prevailing 
sense of “planet”. The uncertainty about Pluto that was ended or postponed by the 
IAU in Prague in August 2006 could not be ended by an appeal to facts. A conceptual 
decision either reinstating the previous sense of “planet” or settling a new sense was 
necessary to eliminate the conceptual uncertainty relating to the planethood of Pluto. 

The uncertainty relating to the existence of a planet “Vulcan” is a first order 
uncertainty. The uncertainty concerns whether the facts are such as to make the 
following statement true: 

 

There is a planet between Mercury and the Sun. 
 

The uncertainty about the planethood of Pluto is a second order uncertainty. We can 
represent it as an uncertainty about which to choose of the following two ways of 
rendering the concept of planet.  

1. The predicate “planet” expresses the properties: (A) is in orbit around the Sun, (B) 
has sufficient mass so that it assumes a hydrostatic equilibrium (nearly round) 
shape. 

2. The predicate “planet” expresses the properties: (A) is in orbit around the Sun, (B) 
has sufficient mass so that it assumes a hydrostatic equilibrium (nearly round) 
shape, and (C) "cleared the neighborhood" around its orbit. 

The uncertainty about the planethood of Pluto can be represented as an uncertainty 
between the choice of 1 or 2 as ways to fixate the content of the predicate “planet”. 

Let me sum up some of the features of elaborations of epistemic versus conceptual 
uncertainty. (1) In science, epistemic uncertainty is diminished or removed ultimately 
by observation or experiment concerning putative facts together with inference from 
such. (2) Consequently, when epistemic uncertainty is removed, one obtains first 
order knowledge about facts or the implications of such knowledge. (3) In science, 
conceptual uncertainty is removed by decisions about the conceptual or 
representational system. (4) In a rational enterprise, such as science, decisions settling 
conceptual uncertainty are not arbitrary. They are made with considerations about 
consequences for large parts of a representational system of knowledge. (5) 
Consequently, in science, elaborations of conceptual uncertainty involve 
metacognition, i.e. knowledge and procedures involving our own system of 
knowledge. Such metacognition involves procedures of the logical second order. 

One can identify epistemic uncertainty about what we would need to establish in 
order to settle a matter holding the present conceptual system fixed. Or we can 
identify conceptual uncertainty about what we would need to establish in order to 
settle a matter relating to changes in our conceptual system, holding facts fixed. 
Epistemic and conceptual uncertainty are abstract dimensions – one might need to 
elaborate on both dimensions in a particular case. This distinction – and the facts it 
relies on – seem to be in conflict with attempts to model vagueness as a kind of 
epistemic uncertainty. (cf Williamson 1994)  

Similar considerations apply to normative systems such as law, regulations, policy, 
strategy or valuation. The two types of sources for uncertainty apply not only to 
cognition but also to values and norms. Administrative terminology draws on 
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compromises between science, folk wisdom, supposedly moral and religious 
commands, legal considerations, and political expediency. Conceptual elaborations 
might be called for in order to treat proper things in a proper manner. An example is 
the legal concept of death. When medical technology enabled hospitals to maintain a 
person’s bodily functions in spite of serious brain damage, legal decisions fixated the 
concept of death.   

Can we generalize our analysis about conceptual uncertainty? Conceptual 
uncertainty relating to choice is also representable at the second order. A 
consequentialist decision maker can be uncertain about the set of alternatives, the set 
of attributes and the methods for selecting an alternative, e.g. by compensatory, trade 
off methods or by non-compensatory methods, e.g. by some lexicographic method. A 
deontologist decision maker can be uncertain about which principles to select for 
application. Thus, conceptual uncertainty for a consequentialist and for a deontologist 
can be represented as something that needs to be settled by second order 
considerations. 

4   A Taxonomy of Epistemic and Conceptual Uncertainty 

We have claimed that epistemic uncertainty is absence of factual knowledge, i.e. 
knowledge of the first order, that would settle a question such as there being a planet 
“Vulcan” between Mercury and the Sun. We have claimed that conceptual uncertainty 
is the absence of knowledge of higher order that would settle a question such as Pluto 
being a planet. Such knowledge would need to rely on a fixation of the meaning of the 
predicate “planet”. 

Can the distinction we introduced be generalized to a theory of a more general 
distinction between kinds of uncertainty? I claim it can. There are, it seems, the 
following dimensions involved in solving any problem: 

A. What is the problem? Identify the target problem, i.e. find a formulation of a 
question that covers the desire to make up one’s mind. The question can be 
factual, mathematical, volitional, or preferential. 

B. On which factors does the problem depend? Identify the factors that 
potentially bear sufficient relevance to the target problem. This can be an 
unstructured list of factors that might contribute to settling the question 
expressing the target problem. 

C. What is the form of dependency? Identify the general form of influence that 
these factors bear to the target problem. This can, for instance, be an 
equational system, decomposing the dependency of the target vector into a set 
of equations with parameters and variables. 

D. What is the strength of dependency? Identify the direction and strength by 
which the factors contribute. If the representation is in the form of an 
equational system, this aspect involves settling the parameters occurring in 
the equations. 

E. What are the facts on which the solution to the problem rests? Identify the 
values of the variables expressing the factors of dependence. 

 



 Conceptual Uncertainty and Reasoning Tools 677 

Of these five dimensions of uncertainty, the first three A–C involve uncertainty of 
higher order and D and E involve uncertainty about facts, i.e. uncertainty of first 
order. 

5   Arguments for the Taxonomy 

Why these five and not three or seven dimensions of uncertainty?  It is connected to 
the way that modeling can provide answers to problems. One needs to articulate the 
problem (A), the factors (B) and dependencies (C) that may be of importance. Finally, 
facts about the world and about preferences or norms of decision makers will settle 
the question, i.e. (D) and (E). The dimensions A–E are what it takes to settle a 
problem (cf. Nickles 1981). 

The taxonomy clarifies the distinction between well structured problems and ill 
structured problems. Well structured problems are problems where A-C are settled 
while D and E need to be settled and there are known methods for settling D and E 
(Buckingham Shum 2003). Ill structured problems are open in some of the respects A, B 
or C. Those problems cannot be solved merely by an appeal to facts like D and E can.  

The taxonomy fits the lens model of judgment theory. The model studies a subject 
utilizing certain cues to pass judgment on an object or a state.  The cues can bear 
more or less ecological validity as indicators of the object/state. The subject may 
utilize these cues better or worse to achieve accuracy in her judgment. The accuracy 
can be represented as the product of ecological validity and cue utilization. The lens 
model has been applied to several types of judgment, from perceptual judgments via 
prognoses and predictions about the future (Payne 1993, Cooksey 1996, Hastie and 
Dawes 2001, Stewart 2000). The lens model can be used both descriptively and 
normatively. The cue utilization describes which weights a human judge or group of 
such lay to certain cues or indicators. If those weights are assigned in accordance with 
the ecological validity, one can achieve maximal accuracy in one’s judgment, i.e. 
maximal rate of agreement with the real object or state about which one passes 
judgment. 

The lens model represents a decomposition of our knowledge about facts and 
relations. The model can be expressed in two equations. One equation represents the 
ecological validity of the cues, i.e. how well knowledge of the cues would enable a 
judge to pass veridical judgment on the state of the object. The other equation 
represents the actual utilization of those cues by a human judge (or group of such). 

Interestingly, these two equations can normally be represented by two linear 
functions. The cues that indicate the state of the object can be measured on scales that 
often permit a regression analysis, resulting in a linear function. Often, such a linear 
function represents the maximal accuracy that any human judge can reach (Dawes 
and Corrigan 1974).  

A specific lens model, tied to an expert or group of experts forming judgment can 
be realized via the five dimensions of fixation. Any lens model will form a set of 
equations. Therefore, the five dimensions automatically apply. 
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6   Applications of the Taxonomy 

Below, I will show the applicability of the taxonomy of conceptual uncertainty. A 
first way in which conceptual uncertainty enters into decision making is via the 
articulation of the target problem. For instance, one may ask whether the target factor 
can be spatially, temporally or causally subdivided. In an evaluation of Swedish 
measures taken against eutrophication in the Baltic, an international expert committee 
divided the target area into: (1) The Swedish east coast, (2) The open Baltic proper, 
(3) The Swedish west coast, (4) The Bothnian Bay, and (5) The Bothnian Sea 
(Eutrophication of Swedish seas 2006). 

The division made is spatially and causally based. The Bothnian Bay and the 
Bothnian Sea do not seem to be affected of eutrophication. The mechanisms 
producing eutrophication and its consequences are different at the Swedish west coast 
were salt water prevents cyanobacterial blooms. A mixed set of measures is 
recommended and differences of causal mechanisms make different measures 
applicable at different places.  

Sometimes, the articulation of the target problem can be facilitated via an 
articulation of the underlying qualities of ideal and of worst-case alternatives 
(Hammond et al. 1999). By so doing, one can come to an understanding of the 
dimensions underlying the decision at hand. Consider, for instance, eutrophication of 
the Baltic, a development everyone considers undesirable. But what is there about it 
that makes it undesirable: the deterioration of incomes from fishing, the massive algal 
blooms in the coastal regions or massive loss of oxygen-dependent life in the Baltic? 
By spelling out such underlying dimensions of the problem, one can, possibly, 
discover various sets of measures, relevant in different time spans. 

A second way in which conceptual uncertainty enters is via the factors relevant to 
the target problem. One way to bring out factors of relevance uses top down 
procedures starting with definitions and other ways of making complex factors explicit.  
For instance, eutrophication is a concept that can be defined in a number of ways: 

 

Eutrophication, however, is a condition in an aquatic ecosystem where high nutrient 
concentrations stimulate the growth of algae, which leads to imbalanced functioning 
of the system, such as: (1) intense algal growth: excess of filamentous algae and 
phytoplankton blooms; (2) production of excess organic matter; (3) increase in 
oxygen consumption; (4) oxygen depletion with recurrent internal loading of 
nutrients; and (5) death of benthic organisms, including fish (HELCOM Stakeholder 
Conference on the Baltic Sea Action Plan 2006). 

 
Eutrophication is a process whereby water bodies, such as lakes, estuaries, or slow-
moving streams receive excess nutrients that stimulate excessive plant growth (algae, 
periphyton attached algae, and nuisance plants weeds). This enhanced plant growth, 
often called an algal bloom, reduces dissolved oxygen in the water when dead plant 
material decomposes and can cause other organisms to die (Eutrophication US 
Geological Survey 2006).  

 

Difference in wording may direct focus towards different aspects and point towards 
various solutions to a problem. We can compare the two underlying definitions: 
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HELCOM U.S.G.S. 
What kind of things can 
undergo eutrophication? 

an aquatic ecosystem water bodies 

What is the ontology of 
eutrophication? 

a condition with 
certain consequences 

process of delivery 
plus growth 

What characterizes the entity? high concentrations excess nutrients  

Fig. 1. Comparison between two definitions of Eutrophication, HELCOM vs. U.S.G.S. 

Eutrophication is in HELCOM something that befalls aquatic ecosystems and such 
systems are not strictly identifiable with water bodies as U.S.G.S does. An ecosystem 
is causally delimited while a water body is spatially and temporally delimited. 
Concentrations of nutrients as high or in excess both involve comparisons but perhaps 
with different units. A concentration can be high without being in excess and 
conversely. While HELCOM focuses on a condition with its effects, U.S.G.S. focuses 
on a causal process of nutrient delivery and growth effect. 

The slightly different definitions may open or close different possible activities to 
counter eutrophication. From the definitions, it would seem that HELCOM is 
committed to countermeasures for bringing concentrations down and preserving 
ecosystems, while U.S.G.S. might operate by introducing ecosystems consuming 
nutrients. 

A third way in which conceptual uncertainty enters into decision making is via the 
general structure of dependence.  As pointed out by Herbert Simon (Simon 1996, 
Chap. 8), our analysis and insight into complex systems rests on the assumption that 
they are nearly hierarchically decomposable. Most of his claims can be read as an 
epistemic or perhaps pragmatic claim about useful simplifications in causal system 
modeling (Agre 2003). For instance, in one example, he considers causal 
decomposability of the eutrophication process of Lake Erie. One way of representing 
eutrophication would be to build a complex simulation of interaction between grids in 
the lake, using equations to represent phosphate production and phosphate usage in 
each cell of the grid. Massive amounts of data about sewage plants and river mounds 
would be needed. Furthermore, predictions about growth of urban population, 
industry and agriculture would be needed in such a conception of modeling. 

Instead, Simon suggests a temporal decomposition into three kinds of sub 
processes, one of long term change, one of short term change and one of intermediate 
term change. The long-term change is, Simon claims, gradual and hardly noticeable 
during human life spans. It is not needed in the model. The fastest process is the 
eutrophication. Therefore, Simon suggests that modeling should disregard other 
dynamic aspects underlying the whole process that are ill understood. The resulting, 
simplified model focuses on the relation between phosphate input and eutrophication. 
Finally, he notes that phosphate levels in the parts of the lake are strongly 
intercorrelated, so models can disregard differences between grids. Furthermore, 
human activities related to sewage treatment are too gross to be finely modeled. 
Simon concludes that more finely granulated models are superfluous to “social 
purposes” (Simon 1997 p. 109–111). 
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In Simon’s example of a modeling process, decomposition serves the purpose of 
simplification of prediction with reasonable precision. “Our concern is not to forecast 
the future but (a) to understand the consequences of alternative possible futures, and 
(b) to understand which of these possible futures is associated with particular 
strategies or policy measures” (ib. p. 112). More interesting than prediction is 
sensitivity and an understanding of which the key variables are and what policy 
variables can have an effect, Simon holds.  

As Simon indicates, the dependencies could be rendered in a modeling  process 
with far more detail and with the ambition to predict. The general structure of 
dependence that Simon suggests has low granularity. Simon defends the lack of 
detail. We are ignorant about facts and causal relations, which make more fine-
grained predictions impossible. Hence, first order uncertainty about facts interacts 
with second order uncertainties and second order decisions about the granularity of 
the representing system. 

7   Computerized Tools for Judgment and Decisions 

Do the concepts epistemic and conceptual uncertainty with our taxonomy help 
develop reasoning skills and design support tools? If so, in what way? 

First, a complete computer support for reasoning skills must enable the 
representation and elaboration not only of epistemic uncertainty but also of 
conceptual uncertainty. Typically, decision support systems deal with the reduction of 
epistemic uncertainty only. Procedures for elaborating on epistemic support do not, by 
themselves, contribute to elaboration of conceptual uncertainty. But conceptual 
uncertainty is pervasive in decision making processes. We have already mentioned 
the conceptualization and selection of alternatives and attributes necessary in decision 
making.  

Second, conceptual uncertainty is of a higher order than an uncertainty about facts. 
The representation of such uncertainty can, in many cases, be performed via multiple 
representations, e.g. a multitude of decision trees or of a multitude of delimitations of 
an ambiguously described factor or a vaguely indicated relation. This feature of 
uncertainty is compatible with super valuation approaches that represent vagueness or 
ambiguity as sets of precise models. It is doubtful whether these considerations are 
compatible with fuzzy logic, fuzzy set theory or other one-dimensional ways of 
representing vagueness. An uncertainty concerning the definitions of “planet” fits 
super valuation approaches but not a graded approach between two extremes, typical 
of fuzzy logic approaches. 

Third, reasoning can involve rotations between procedures for elaborations on 
epistemic uncertainty and procedures for elaborating on conceptual uncertainty. For 
instance, a district attorney can be in doubt whether to press a charge of murder, 
manslaughter or severe assault. The burden of proof for the respective charges will 
differ. There is conceptual uncertainty about how to describe the deed together with 
epistemic uncertainty about what the facts of the case really are. Interaction between 
kinds of uncertainty obstructs sequential procedures for such rotation (But cf. Thagard 
1992). 
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Fourth, in reasoning with conceptual uncertainty, one needs to be able to elaborate 
on multiple representations simultaneously. A problem can be symbolized in various 
ways and a decision maker can be uncertain about the best ways to construct or select 
a representation. Especially, multiple parties in a reasoning process can opt for 
different representations that, nevertheless, make competing claims about being the 
best ways to represent the (unarticulated) problem at hand. Therefore, a computer 
based reasoning supporting system should allow comparison between various 
representations (Rolf 2006a, 2006b).  

 

Fig. 2. Athena Standard (left), showing tree graph with report viewer presenting text output. 
Athena Negotiator (right), showing outcome diagram for two-party negotiation (Rolf 2002). 

Human reasoning needs to be supported by multiple tools, providing multiple 
representations in order to represent conceptual uncertainty. 

Finally, a computer-based support system will function as a tool in many respects. 
Each tool is part of a toolbox. There is no universal tool for all kinds of reasoning 
support. The various subtypes of uncertainty may have to be elaborated upon with 
different tools. The use of each tool needs competence, i.e. procedural knowledge. 
The use of the whole toolbox involves an overview of the purposes to which each tool 
can be put. When a designer introduces a software package for reasoning support, 
therefore, it is desirable to bear in mind that someone needs to supply heuristics for 
applying each of the tools as well as the whole toolbox. 
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Abstract. In this paper, we deal with information exchange policies
that may exist in multi-agent systems in order to regulate exchanges of
information between agents. More precisely, we discuss two properties of
information exchange policies, that is the consistency and the complete-
ness. After having defined what consistency and completeness mean for
such policies, we propose two methods to deal with incomplete policies.

Keywords: completeness, information exchange policy, multi-agent
system.

1 Introduction

Multi-agent systems provide an interesting framework for modelling systems in
which some entities (atomic entities or complex ones) cooperate in order to fulfill
a common task or to achieve a common goal. In order to cooperate efficiently,
the entities, now called agents, have to exchange information, in particular in
order to have a common view of the environment and a common understanding
of the current situation.

In many systems, exchanges of information are not constrained and agents may
exchange any information they want to anybody. At the opposite, in many other
systems, information exchanges are ruled by a policy, in particular in order to sat-
isfy some security constraints, like confidentiality, or efficiency constraints (broad-
casting or peer-to-peer communication of relevant information). The so-called
“Systems of Systems” in defense area or in civil security area [1] are instances
of such multi-agent systems as well as any organisation of people and means like
companies. These systems have in common that they are made of systems (hu-
man or not, atomic or not) which are geographically distributed, independently
managed and which have to share information in a risky environment so that in-
formation exchanges between these systems must be compliant with a policy.

This present work deals with this last kind of systems. The illustrative example
we will take all along the paper is the example of a hierarchical company with
a boss and employees who exchange information relative to the materials used
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in the company. These exchanges must agree with a policy which, for instance,
imposes the diffusion of pertinent and useful information as soon as possible,
while respecting confidentiality restrictions.

An information exchange policy can then be seen as a regulation the agents
must satisfy and which specifies the information exchanges which are obligatory,
forbidden or permitted and under which conditions. But, in order to be useful,
such a policy, as any other regulation, must satisfy several properties and in
particular, it must be consistent and complete.

According to [2] which studies confidentiality policies, consistency allows to
avoid cases when the user has both the permission and the prohibition to know
something. More generally, according to [3] and [4], which study consistency of
general kind of regulations, consistency of regulation does not come to classical
consistency of a set of formulas. According to this work, a regulation is consistent
if there exists no possible situation in which it leads an agent to normative
contradictions or dilemmas also called in [15] contradictory conflicts (a given
behaviour is prescribed and not prescribed, or prohibited and not prohibited)
and contrary conflicts (a given behaviour is prescribed and prohibited). Following
this definition, consistency of security policies has then been be studied in [5].

If consistency of policies is a notion that has been rather well studied, com-
pleteness has, at the opposite, received much less attention. [2] proposes a defini-
tion of completeness between two confidentiality policies (for each piece of infor-
mation, the user must have either the permission to know it or the prohibition to
know it), definition which has been adapted in [7] for multilevel security policies.

Recently, focusing on information exchange policies, a definition of consistency
and a definition of completeness have been given in [6]. These definitions have
constituted a starting point for the present work and have been refined.

This paper is organised as follows.
Section 2 presents the logical formalism used to express information exchange

policies, the definition of consistency of such policies as well as the definition we
give of completeness. Section 3 focuses on the problem of reasoning with an in-
complete policy. Following the approach that has led to the CWA (Closed World
Assumption) in Database area [14], we will present some rules of completion that
can be used in order to complete an incomplete policy. Then, following [12], we
will define some default rules and we will prove the equivalence between these
two solutions. Section 4 is devoted to a discussion and extensions of this work
will be mentionned.

2 Information Exchange Policies

2.1 Preliminaries

We use the framework defined in [6] to represent a sharing policy. This logical
framework, L, is based upon a typed first order logic1. The alphabet of L will
1 We use a first order logic instead of a modal deontic logic mainly because imbricating

deontic modalities is not needed here. Furthermore, this allows us to use the results
on policies consistency provided in [3].
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be based on four distinct groups of symbols: constant symbols, variable symbols,
predicate symbols and function symbols. As we want to type the language, we
will distinguish different groups of symbols among those four categories.

Definition 1. We distinguish three sets of constants: ag-constants (constants
for agents), i-constants (constants for pieces of information), o-constants (other
constants) and we distinguish three sets of variables: ag-variables (variables for
agents), i-variables (variables for pieces of information), o-variables (other vari-
ables).

Definition 2. Predicate symbols are:

– D-predicates: unary predicates O, P, F and T (meaning respectively Obliga-
tory, Permitted, Forbidden, Tolerated).

– P-predicates: predicates used to express any kind of property on pieces of
information, agents, etc.

Definition 3. Functions symbols are:

– i-functions: used to represent properties about the pieces of information.
– not(.): unary-function used to represent object level negation.
– tell(.,.,.): function with three arguments representing the action of telling a

piece of information. tell(x, y, i) represents the event created by an agent x
making the action of telling y a piece of information i.

Definition 4. Terms are defined the following way :

– ag-term : ag-constant or ag-variable
– i-term : i-constants and i-variables are i-terms. If f is an i-function and

i1, ...in are i-terms then f(i1, ...in) is an i-term.
– d-term : If x and y are ag-terms and i is an i-term then tell(x, y, i) is a

d-term. Moreover, if d is a d-term then not(d) is a d-term too.
– o-term : o-constant or o-variable

Definition 5. Formulas of L are defined recursively as follows:

– Let d be a d-term. Then O(d), P (d), F (d) and T (d) are D-literals and for-
mulas of L.

– If t1, ...tn are terms (other than d-terms) and P a P-predicate then P (t1, ..., tn)
is a P-literal and a formula of L.

– Let F1 and F2 be formulas of L and x be a variable. Then ¬F1, F1 ∧ F2,
F1 ∨ F2, ∀x F1, ∃x F1, F1 → F2 and F1 ↔ F2 are formulas of L.

Example 1. We introduce here an example, that will be developped all along
the paper. Let us consider the following logical language L: a, b, c, Boss and
Employee are ag-constants and x and y are ag-variables. We can do the same for
i-terms, etc. Role(., .) is a P-predicate. Role(a,Boss) means that agent x plays
the role Boss. T opic(., .) is a P-predicate. T opic(i1, ExpRisk) means that the
piece of information i1 deals with topic ExpRisk (standing for Explosion Risk).
Agent(.) is a P-predicate. Agent(b) means that b is an agent. Receive(a, i1) is a
L-literal meaning that agent a receives the piece of information i1. O(tell(x, y, i))
is a D-literal meaning that agent x is obligated to tell agent y the piece of
information i.
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2.2 Information Exchange Policies

In this section, we define rules for an information sharing policy, within the above
logical language.

Definition 6. An information sharing policy is a set of formulas of L which
are conjunction of clauses l1 ∨ l2 ∨ ... ∨ ln such that:

– ln is the only positive literal and is a D-literal,
– ∀i ∈ {1, ..., n− 1}, li is a negative L-literal, P-literal or D-literal,
– if x is a variable in ln, then ∃i ∈ {1, ..., n − 1} such that li is a negative

literal and contains the variable x.

Example 2. The rule ”If a boss receives a piece of information dealing with the
topic equipment checking, then it’s forbidden for him to say it to his employees”
is expressed with the following formula:

(R0) ∀(x, y, i) Role(x, Boss) ∧Role(y, Employee)

∧Receive(x, i) ∧ T opic(i, EqtChk)→ F (tell(x, y, i))

2.3 Consistency and Completeness of Policies

We note A the following set of axioms:

(Ax1) ∀x P (x) ↔ ¬O(not(x)) (Ax2) ∀x F (x) ↔ O(not(x))
(Ax3) ∀x T (x)↔ P (x) ∧ P (not(x)) (D) ∀x O(not(x)) → ¬O(x)

(NO) ∀x O(not2n(x)) ↔ O(x) (NP ) ∀x P (not2n(x)) ↔ P (x)

(NF ) ∀x F (not2n(x)) ↔ F (x)

Notation : Let A1, A2, and A3 be formulas of L. We will note:
A1 ⊗A2 instead of (A1 ∨A2) ∧ ¬(A1 ∧A2) and
A1⊗A2⊗A3 instead of (A1 ∨A2 ∨A3)∧ ¬(A1 ∧A2)∧ ¬(A2 ∧A3) ∧¬(A1 ∧A3).
This notation means that one and only one of the formulas Ai is true.

Theorem 1. ∀d d-term A |= O(d) ⊗ T (d)⊗ F (d)

Proof. ∀x, ¬T (x) ↔Ax3 ¬P (x)∨¬P (not(x)). Yet, ¬P (x) ↔Ax1 O(not(x)) ↔Ax2
F (x) and ¬P (not(x)) ↔Ax1 O(not2(x)) ↔NO O(x). Thus A |= ¬T (x) ↔ O(x)∨
F (x) and A |= O(x) ∨ T (x) ∨ F (x). Then, we have A |= ¬(O(d) ∧ T (d)), A |=
¬(O(d) ∧ F (d)) and A |= ¬(T (d) ∧ F (d)).

Definition 7. A formula or a set of formulas S is complete if and only if, for
all P-literal l, we have: S |= l or S |= ¬l.

Definition 8. A state of the world or a world, W , is a set of atomic formulas
of L without D-literals. If this set is complete, we speak about a complete world.

Let us note Dom the set of constraints that are supposed to be true in all worlds.



Reasoning with an Incomplete Information Exchange Policy 687

Definition 9. Let P be a policy defined as a set of formulas of L, and W a
complete world ruled by P. P is consistent in W (according to Dom) if and only
if (W ∧Dom ∧ P ∧A) is consistent.

Example 3. We take Dom = {}; Let us consider the following world W0
2:

W0 = {Agent(a), Agent(b),Role(a,Boss),Role(b, Employee)

Theme(i1, EqtChk), Theme(i2, ExpRisk),Receive(a, i2)}.

Let P0 be a policy containing one rule which is the rule (R0). (W0, Dom,P0,A)
is consistent. Thus, P0 is consistent in W0.

Definition 10. Let P be a policy. P is consistent (according to Dom) if and
only if there is no set of formulas f of L without D-literal such that (f ∧Dom)
is consistent and (P ∧A ∧ f ∧Dom) is inconsistent.

Proposition 1. P is consistent (according to Dom) if and only if for all com-
plete world W , P is consistent in W .

Proof. This can be proved by using contraposition.

Example 4. Let (R1) be the following rule: ”When an employee receives any
piece of information about equipment check, it’s tolerated for him to tell it to
another employee”. (R1) can be formalized in the following way:

(R1) ∀(x, y, i) Role(x, Employee) ∧Role(y, Employee)∧ ¬(x = y)

∧Receive(x, i) ∧ T opic(i, EqtChk)→ T (tell(x, y, i))

Let us consider the policy P1 containing rules (R0) and (R1). If we take f =
Role(a,Employee)∧Role(a,Boss), then (R0) allows us to infer F (tell(a, y, i2))
and (R1) to infer T (tell(a, y, i2)). Thus, we have a contradiction and P1 is not
consistent in W0 so not globally consistent.

Intuitively, for a given world, a policy is complete if it allows to deduce the
behaviour that any agent should have, according to any piece of information
and according to any other agent he could tell this piece of information. It could
be obligatory, forbidden or tolerated for the agent to say the piece of information
to the other agent.

Definition 11. Let P be a policy and W a complete world ruled by P. P is
complete for |= in W if and only if, for all X = (x, y, i)

If W |= Receive(x, i) ∧Agent(y) ∧ ¬(x = y) Then

(P ,W,A |= O(tell(X)) or P ,W,A |= F (tell(X)) or P ,W,A |= T (tell(X))

2 We will write in W only the positive literals for more readability. Each literal that
is not explicitely written in W will be considered as negative.
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This definition can be generalized and we can define a global completeness.

Definition 12. Let P be a policy. P is globally complete for |= if and only if
for all complete world W , P is complete for |= in W .

Example 5. We have W0 |= Receive(a, i2)∧Agent(b)∧¬(a = b) but P0,W0,A �
O(tell(a, b, i2)) and P0,W0,A � T (tell(a, b, i2)) and P0,W0,A � F (tell(a, b, i2)).
Thus, P0 is incomplete for |=.

Completeness is an important issue for a policy. For a given situation, with-
out any behaviour stipulated, any behaviour could be observed and thus conse-
quences could be quite important. With an incomplete policy, we could detect
the ”holes” of the policy and send them back to the policy designers so that
they can correct them or we could detect the ”holes” of the policy and allow
for those holes some default rules that could be applied to correct them. The
first solution could be quite irksome to be applied (the number of holes could be
quite important and thus correct them one by one quite long). Then, we put in
place the second solution.

3 Reasoning with Incomplete Policies

3.1 Completion Rules

In this paragraph, we present a solution which extends the CWA defined by
Reiter to complete first order databases.

According to CWA, if the database is incomplete for a literal l (i.e l is not de-
duced in the database), then it can be assumed that its negation (¬l) is deduced.
This rule is motivated by the assumption that a database is used to represent
the real world. Since in the real world, a fact is true or is false (i.e l ⊗ ¬l is a
tautology in first order logic) then a database must deduce a fact or it negation.

Here, given a d-term l, we are not interested in its truth value but in the fact
that a given policy deduces that it is obligatory, forbidden or tolerated. These
three cases are the only ones because axioms A imply O(l)⊗F (l)⊗T (l). Thus, if
the policy is incomplete for a literal l (i.e it does not deduce neither O(l) nor F (l)
nor T (l)) then it can only be completed by assuming that O(l) can be deduced,
or P (l) or F (l). This leads to the three completion rules which are described in
the following.

Furthermore, in order to be as general as possible, we define parametrized
completion rules so that the way of completing by O(l), P (l) or F (l) may depend
on some conditions. These conditions, denoted Ei in the following, will represent
properties about agents (e.g, agents having a specific role), information (pieces
of information dealing with a specific topic),etc.

Let P be a consistent policy and W be a complete world ruled by P .

Notation. For more readabilty, we will write ”P ,W incomplete for (x, y, i)” in-
stead of: W |= Receive(x, i)∧Agent(y)∧¬(x = y) and P ,W,A � O(tell(x, y, i))
and P ,W,A � T (tell(x, y, i)) and P ,W,A � F (tell(x, y, i)).
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Let E1, E2 and E3 be three formulas that depend on x and/or on y and/or
on i. We will write X instead of (x, y, i)

The three inference rules are:

(RE1)
P ,W incomplete for X, W |= E1(X)

F (tell(X))

(RE2)
P ,W incomplete for X, W |= E2(X)

T (tell(X))

(RE3)
P ,W incomplete for X, W |= E3(X)

O(tell(X)

We can complete an incomplete policy so that it is obligatory (RE1), forbidden
(RE2) or tolerated (RE3) for an agent to tell another agent a piece of information,
according to those three elements. We define here a new inference that we will
note |=∗. Rules of inference for |=∗ are the same as for |= but we add RE1 , RE2

and RE3 .
The next step is to verify that the policy is complete and consistent with this

new inference.
First of all, we have to extend the definition of completeness of a policy with

the inference |=∗.

Definition 13. Let P be a policy and W a complete world ruled by P. P is
complete for |=∗ in W if and only if for all X = (x, y, i), we have:

If W |= Receive(x, i) ∧Agent(y) ∧ ¬(x = y)Then

(P ,W,A |=∗ O(tell(X)) or P ,W,A |=∗ T (tell(X)) or P ,W,A |=∗ F (tell(X)))

This definition can be generalized.

Definition 14. Let P be a policy. P is globally complete if and only if for all
complete world W , P is complete in W .

Proposition 2. Let P be a policy and W a complete world ruled by P. P is
complete for |=∗ in W if and only if

∀X = (x, y, i),P ,W incomplete for X ⇒W |= E1(X) ∨ E2(X) ∨ E3(X))

Proof. This can be proved by reasoning with contraposition.

Example 6. E1(x, y, i) = T opic(i, EqtCheck), E2(x, y, i) = False, E3(x, y, i) =
T opic(i, ExpRisk). We have P0,W0 incomplete only for (a, b, i2). We have W0
|= E3(a, b, i2) so W0 |= (E1(a, b, i2) ∨ E2(a, b, i2) ∨ E3(a, b, i2)). Then the poliy
P0 is complete in W0.

Then, we have to extend the definition of consistency for the new inference.
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Definition 15. Let W be a complete a world and P a policy that is consistent
for |= in W 3. P is consistent for |=∗ in W (according to domain Dom) if and
only if W, Dom,P ,A is consistent for |=∗ (i.e W, Dom,P ,A �⊥).

Proposition 3. A policy P that is complete for |=∗ in a complete world W is
consistent for |=∗ in W (according to Dom) if and only if

∀X = (x, y, i) If P ,W incomplete for (x, y, i)Then

W |= ¬(E1(X) ∧E2(X)) ∧ ¬(E1(X) ∧ E3(X)) ∧ ¬(E2(X) ∧ E3(X))

Proof. This can be proved by reasoning with contraposition.

Example 7. We take E1(x, y, i) = T opic(i, EqtChk), E2(x, y, i) = False and
E3(x, y, i) = T opic(i, ExpRisk). We have verified that P0 is complete for |=∗ in
W0. P0,W0 is incomplete for (a, b, i2). For this triplet, we have W0 |= ¬(E1(a, b,
i2) ∧ E3(a, b, i2)). Thus, the policy P0 is consistent for |=∗ in W0.

Corollary 1. Let P be a policy and W a world ruled by P. P is consistent and
complete for |=∗ in W if and only if

∀X =(x, y, i)If P ,W incomplete for (x, y, i) Then W |= E1(X)⊗E2(X)⊗E3(X)

Definition 16. A policy P is globally consistent for |=∗ (according to Dom) if
and only if it is consistent for |=∗ in all complete world W where W ∧Dom is
consistent.

3.2 Default Rules

The three rules that we have just defined look similar to default logic defined by
Reiter in [12]. The aim of this section is to develop this aspect. As a reminder to
the default theory, one could read the chapter dedicated to default rules in [11].
Let P be a policy in a complete world W . We suppose that P is consistent in
W for |=. Let W ′ be the set of formulas defined by W ′ = P ∪W ∪A. We define
three default rules in W ′ and for that, we consider a triplet X = (x, y, i).

(d1)
Receive(x, i) ∧Agent(y) ∧ ¬(x = y) ∧ E1(X) : F (tell(X))

F (tell(X))

(d2)
Receive(x, i) ∧Agent(y) ∧ ¬(x = y) ∧ E2(X) : T (tell(X))

T (tell(X))

(d3)
Receive(x, i) ∧Agent(y) ∧ ¬(x = y) ∧ E3(X) : O(tell(X))

O(tell(X))

The default rule d1 can be read as following: ”If, in W ′, an agent x receives a
piece of information i, if y is another agent, if X = (x, y, i) are such that E1(X)

3 It’s not relevant to study a policy that is not consistent in W .
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is true, and if it is consistent to suppose that it is fordidden for x to say i to y,
then we consider that this fordidding is true in W ′”.

We note D = {d1, d2, d3}. dj (j ∈ {1, 2, 3}) is applicable if its prerequisite can
be infered in W ′ and if the negation of its justification cannot be infered in W ′.
We consider now the theory ∆ = (D,W ′) and we look at its possible extensions.

Proposition 4. The default theory ∆ = (D,W ′) has at least one consistent
extension.

Proof. ∆ = (D,W ′) is a closed normal default theory so we can use Reiter’s
theorem (theorem 3.1 in [12]) that says that ”Every closed normal default theory
has an extension”. Thus, as W ′ is consistent, we can deduce that this extension
is consistent.

Example 8. We build the three default rules with E1(x, y, i) = T opic(i, EqtChk),
E2(x, y, i) = False and E3(x, y, i) = T opic(i, ExpRisk). We have:

W ′
0 |= Receive(a, i2)∧Agent(b)∧¬(a = b)∧E3(a, b, i2) and W ′

0 � ¬O(tell(a, b,
i2)). The default rule d3 is then applicable for (a, b, i2). An extension of ∆0 =
(D,W ′

0) could be E∆0 = Th(W ′
0) ∪ {O(tell(a, b, i2)), P (tell(a, b, i2))}.

We use here the universal inference for default rules : Let ϕ be a formula of
L. W |=UNI,D ϕ if and only if ϕ belongs to every extension of (D,W ).

Proposition 5. Let P be a policy applied in a complete world W . We suppose
that P is consistent in W .
∆ = (D,W ′) has one and only one extension E∆ if and only if

∀X = (x, y, i)If P ,W incomplete for X Then

W |= ¬(E1(X) ∧E2(X)) ∧ ¬(E1(X) ∧ E3(X)) ∧ ¬(E2(X) ∧ E3(X)

Example 9. P ,W is incomplete only for X0 = (a, b, i2). We have W |= ¬(E1(X0)
∧ E2(X0)) ∧ ¬(E1(X0) ∧ E3(X0)) ∧ ¬(E2(X0) ∧ E3(X0) then E∆0 is the only
extension of ∆0.

Definition 17. Let P be a policy applied in a complete world W . P is consistent
for Dom in W for |=UNI,D if and only if (D,W ′ ∪Dom) has one and only one
extension.

Definition 18. Let P be a policy applied in a complete world W . P is complete
for |=UNI,D in W if and only if we have

∀X = (x, y, i) If W |= Receive(x, i) ∧Agent(y) ∧ ¬(x = y) Then

(W ′ |=UNI,D O(tell(X)) or W ′ |=UNI,D T (tell(X)) or W ′ |=UNI,D F (tell(X)))

Proposition 6. Let P be a policy applied in a complete world W . P is consistent
for Dom in W and is complete in W for |=UNI,D if and only if

∀X = (x, y, i)If P ,W incomplete for X Then W |= E1(X)⊗ E2(X)⊗ E3(X)

Example 10. For X0 = (a, b, i2), we have W0 |= E1(X0)⊗E2(X0)⊗E3(X0). P0
is consistent and complete in W0 pour |=UNI,D .
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3.3 Comparison

The two methods that we have just seen look very similar. The following propo-
sition shows their relation.

Proposition 7. Let W be a complete world and P a policy that rules W . For
all X = (x, y, i)

If W |= Receive(x, i) ∧Agent(y) ∧ ¬(x = y) Then

( P ,W,A |=∗ F (tell(X)) ⇔ W ′ |=UNI,D F (tell(X)) ∧
P ,W,A |=∗ T (tell(X)) ⇔ W ′ |=UNI,D T (tell(X)) ∧
P ,W,A |=∗ O(tell(X)) ⇔ W ′ |=UNI,D O(tell(X)) )

4 Discussion

After having given a logical framework and showed how to formalize a informa-
tion exchange policy within this framework, we have reminded of a definition of
consistency and we have defined what meant completeness for a policy. There-
fore, the issue was to deal with incomplete policies. In solution to that, we have
proposed two ways of completing a policy. One way is to use a new inference
with three inference rules that can be applied for elements for which the policy
is incomplete. The other one is to use the default theory and in particular three
default rules that can be applied as soon as they are not in contradiction with
what already exists. These default rules allow the construction of a new com-
plete policy. After having completed policies, we can check that the result is still
consistent. Finally, we prove that the methods results are equivalent. Indeed, in
a given situation, as soon as an agent will receive a piece of information, the
question will be to check if the policy deduces that it is obligatory, tolerated or
forbidden for him to tell that information to another agent. If the anwser is neg-
ative, then the question will be to check which condition Ii is true. If E1 (resp,
E2, E3) is true, then the agent will deduce that it is forbidden (resp, tolerated,
obligatory) to exchange this information. The condition on the Ii’s ensures that
the agent will deduce one of them.

This work could be extended in many directions.
First, we could extend it by adding the notion of time. As it is shown in

[10], this issue is very important when speaking about obligations. In our case,
the impact of time will be quite difficult to deal with. Actually, we will have
to consider different times : time the piece of information is created, time it is
received by an agent, time the obligation is created, time the agent makes the
action of telling the piece of information, time the obligation lasts.

Secondly, we could focus our attention on the so-called Receive predicate
and study its semantic in relation with the agent’s belief base revision. Indeed,
the obligations, prohibitions, tolerances expressed by the policy should not be
triggered by the arrival of a new piece of information in the agent’s base, but by
the computation of the “new” beliefs (i.e the ones which belong to the difference
between the base before and after the revision).
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Besides, it must be noticed that some properties other than consistency and
completeness could be studied. For instance, we could wonder if the notion of
correctness, as introduced in [8], is pertinent in our case. In that paper, the
authors introduce the notion of correctness of airport security regulation. In their
context, there are different organizations which do not have the same hierarchy
level but which create rules on the same topics (e.g, dangerous objects on board
a aircraft). The higher the hierarchy level of the organization is, the more general
the rule is. The lower hierarchy level organizations have to create sub-rules that
once all checked will validate the general rules. Correctness ensures that the
sub-rules fulfill the general rules.

Finally, this present work could be extented to any kind of regulations. Indeed,
it must be noticed that the idea which underlines the notion of completeness
studied here for information exchange policies could be used to characterize a
kind of ”local completeness” (completeness relatively to some particular situa-
tions) for any type of regulation. This notion of “local completeness” is rather
similar to the one already introduced in Database area. Indeed, as mentionned
in [13] and [9], some integrity constraints expressed on a database are in fact
rules about what the database should know. For instance, considering a database
of a multi-national company, the integrity constraint ”any employee has got a
phone number, a fax number or a mail adress” expresses in fact that, for any
employee known by the database, the database knows its phone number, its fax
number or its mail address. 4. As first mentionned by Reiter [13], this integrity
constraint expresses a kind of local completeness of the database. Defaults, as
reiter defined them, can be used in order to complete such a database in case of
incompleteness. For instance, one of the rules can be that if the database does
contain any required information (no phone number, no fax number, no mail
address) for a given employee but if the department that employee works in is
known, then it can be assumed that its phone number is the phone number of
its department.
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Abstract. We consider advanced policy description specifications in the
context of Answer Set Programming (ASP). Motivated by our applica-
tion scenario, we further extend an existing policy description language,
so that it allows for expressing preferences among sets of objects. This is
done by extending the concept of ordered disjunctions to cardinality con-
straints. We demonstrate that this extension is obtained by combining
existing ASP techniques and show how it allows for handling advanced
policy description specifications.

1 Introduction

The specification of policies and their enforcement plays a key role in advanced
system environments, where a large variety of events, conditions and actions are
to be executed and monitored. The development and analysis of a collection
of such policies can be rather complex, in particular, in view of their overall
consistency. To this end, a high-level policy description language called PDL
has been developed by Chomicki, Lobo and Naqvi [1] in the context of Network
management, through a mapping into Answer Set Programming (ASP;[2]).

A first extension of PDL lead to the description of PPDL language [4,3]. In
PPDL a policy is a set of event-condition-action rules describing how events
observed in a system, trigger actions to be executed, and a consistency monitors
is a set of rules of the form:

never a1 × . . .× an if C. (1)

meaning that actions named a1, . . . , an cannot be jointly executed. In case con-
dition C holds and actions a1, . . . , an have all been triggered by the policy ap-
plication, a1 should be preferably blocked, if this is not possible (i.e. a1 must
be performed), a2 should be blocked, . . . , then if all of a1, . . . , an−1 must be
performed, then an must be blocked.
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A rule as in (1) is mapped into ASP through LPOD [5] encoding as follows:

block(a1) × . . . × block(an) ← exec(a1), . . . , exec(an), C.
accept(A) ← not block(A). (2)

where block(ai) indicates conflicting actions that have to be blocked, exec(ai)
refers to actions triggered by the policy application, and accept(ai) tells us which
actions can be executed without any constraint violation.

As illustrated in [4], the introduction of user-preferences in PPDL monitor
rules enables users to tell the system in which order to enforce constraints on
the execution of actions triggered by the policy.

From the viewpoint of policy enforcement, it is often the case that an ordering
relation among users, resources and more generally, among objects on which
actions have to be executed, is to be expressed on sets of entities having certain
characteristics or being hierarchically organized.

As an example, consider the context of resource management: reliability of
a resource could be influenced by its use and (dynamically determined) per-
formance. Preference relation on actions involving resources has to be dynamic
too.1 Besides the dynamic nature of our logic-based approach, preferences on
sets are much more intuitive than static classification of objects. Formal aspects
related to the specification of preferential monitors in PPDL have been fully
addressed in [4,3] by appeal to LPOD programs.

Another interesting aspect is related to expressing a further ordering among
strategies (represented by monitor rules) for conflicts resolution.

We address these issues in the policy enforcement context by extending LPOD
to allow for ordered disjunctions of cardinality constraints and we call this ex-
tension S-LPOD. Moreover, we consider the preference relation on LPOD rules
introduced by Brewka et al. [6], by discussing some of its properties, and we
apply it to S-LPOD rules, resulting in so-called SR-LPOD programs.

Given our application-oriented motivation, we tried to keep our formal devel-
opment as conservative as possible in relying on existing approaches whenever
feasible. Fortunately, this is achievable in straightforward way due to the com-
positional nature of many ASP extensions.

2 Background

To begin, we recall the basic definitions of Logic Program with Ordered Dis-
junction (LPOD), as given in [5] and [6]. For basic definitions in Answer Set
Programming, we refer the reader to [2].

Given an alphabet P of propositional symbols, an LPOD-program is a finite
set of LPOD-rules of the form

c1 × . . .× cl ← a1, . . . , am, not b1, . . . , not bn. (3)

where each ai, bj, ck is a literal, that is, an atom p ∈ P or its negation ¬p
for 0 ≤ i ≤ m, 0 ≤ j ≤ n, and 0 ≤ k ≤ l If m = n = 0, then (3) is a
1 See Section 5 for further details related to this context.
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fact. If l = 1, then we have a normal rule. If l = 0, then (3) is an integrity
constraint. (cf. [2]) For a rule r as in (3), let head(r) = {c1, . . . , cl} be the head
of r and body(r) = {a1, . . . , am, not b1, . . . , not bn} be the body of r; and let
body+(r) = {a1, . . . , am} and body−(r) = {b1, . . . , bn}.

The “non-standard” part of such a rule is the ordered disjunction c1× . . .× cl

constituting its head. Given that the body literals are satisfied, its intuitive
reading is:

– if possible c1, but if c1 is impossible, then c2,
– . . .,
– if all of c1, . . . , cl−1 are impossible, then cl.

Each ck stands for a choice of rule (3). Note that the “×” connective is allowed
to appear in the head of rules only; it is used to define a preference relation that
allows to select some of the answer sets of a program by using ranking of literals
in the head of the rules, on the basis of a given strategy.

To this end, the semantics of an LPOD program is given in terms of a pref-
erence criterion over answer sets. The formal definition of answer sets in LPOD
is based on the concept of split programs [7]: Given a rule r as in (3), we define
for 1 ≤ k ≤ l the k-th option of r as the rule

rk = ck ← body(r), not c1, not c2, . . . , not ck−1.

Then, P ′ is some split program of an LPOD program P , if it is obtained from
P by replacing each rule in P by one of its options. With this concept, Brewka
defines in [5] an answer set of an LPOD program P as a consistent answer set
of some split program P ′ of P .

For defining preferred answer sets, Brewka [5] introduces the notion of degree
of satisfaction: An answer set S satisfies a rule as in (3)

– to degree 1, if body+(r) ⊆ S or body−(r) ∩ S = ∅, and otherwise,
– to degree d = min{k | ck ∈ S}.

The degree of rule r in answer set S is denoted by degS(r). Intuitively, the
degrees can thus be considered as penalties: the higher the degree, the less we
are satisfied about the choice. Brewka shows in [5] that every answer set satisfies
all program rules to some degree.

Degrees can be used in various ways for defining a preference relation over
answer sets. As an example, we give the definition for the well-known Pareto
criterion: An answer set S1 of an LPOD program P is Pareto-preferred to another
one S2 (S1 >p S2) if there is a rule r ∈ P such that degS1(r) < degS2(r) and
for no r′ ∈ P we have degS1(r′) > degS2(r′). Then, an answer set S of P is
Pareto-preferred among all answer sets, if there is no answer set S′ of P that is
Pareto-preferred to S.

For extending the expressive power of LPOD programs in view of our appli-
cation, we take advantage of the concept of cardinality constraint [8,9]. Syntac-
tically, a cardinality constraint is a complex literal of the form:

l {a1, . . . , am} u (4)
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where l and u are two integers giving a lower and upper bound, respectively, on
the number of satisfied literals within the constraint2. For a cardinality constraint
C as in (4), we let lit(C) denote its set of literals {a1, . . . , am} and let lb(C) = l
and ub(C) = u. C is satisfied by a set of literals S, if

lb(C) ≤ |lit(C) ∩ S| ≤ ub(C) .

Whenever bound l or u is missing, it is taken to be 0 or |lit(C)|, respectively. In
what follows, we restrict ourselves to cardinality constraints, C, such that 0 ≤
lb(C) ≤ ub(C) ≤ |lit(C)|. For defining answer sets of programs with cardinality
constraints, we follow the approach taken in [9].

3 From LPOD to S-LPOD

In what follows, we present a straightforward extension of LPOD that allows us
to express preferences on sets of atoms.

In policy enforcement contexts [4], it is rather unintuitive that the syntax
of rules of the form in (3) requires us to impose a total preference ordering
over actions (as with c1 × . . .× cj), in particular when objects on which actions
have to be executed (e.g. devices, users, etc.) are classified on the basis of some
given parameters. In similar cases, such total ordering may be unrealistic or even
unacceptable.

We thus need to introduce a syntactic variation to the rules of (3) in order
to accommodate partial preference orderings among actions, according to the
classification of objects involved.

Definition 1. An S-LPOD program consists of S-LPOD rules of the form

C1 × . . .× Cl ← A1, . . . , Am, not B1, . . . , not Bn (5)

where each Ai, Bj , Ck is a cardinality constraint for 0 ≤ i ≤ m, 0 ≤ j ≤ n, and
0 ≤ k ≤ l.

A single literal l can be represented by the cardinality constraint 1{l}, as we
illustrate below.

For a set of literals S and a cardinality constraint C, define the number of
literal of C that are in S as sel(C, S) = |S ∩ lit(C)|. Then, given a set of literals
S, the intuitive reading of the rule head of an S-LPOD rule as in (5) can be
given as follows:

– if lb(C1) ≤ sel(C1, S) ≤ ub(C1), then choose sel(C1, S) elements of lit(C1),
otherwise

– if lb(C2) ≤ sel(C2, S) ≤ ub(C2), then choose sel(C2, S) elements of lit(C2),
otherwise

– . . .
2 The interested reader may note that we confine ourselves to positive literals within

cardinality constraints. As detailed below, this is motivated by our application.
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– if lb(Cl) ≤ sel(Cl, S) ≤ ub(Cl), then choose sel(Cl, S) elements of lit(Cl),
– otherwise an incoherent situation is obtained.

The number of elements selected from the chosen cardinality constraint is
determined by S. It is nonetheless non-deterministic insofar that different choices
of S yield different selections.

The definition of an option as well as that of a split program carry over from
LPOD programs to S-LPOD programs. Answer sets of (split) programs with
cardinality constraints are defined as in [9]. Let us illustrate this by building
split programs of a S-LPOD along those definitions.

Example 1. Let program P consist of the rules:

r1 : 1{a, b}1 × {c, d, e}. r2 : 1{b, c, d} × 1{a, f}.

We obtain 4 split programs:

P ′
1 : 1{a, b}1. P ′

2 : 1{a, b}1.
1{b, c, d}. 1{a, f}← not 1{b, c, d}.

P ′
3 : {c, d, e}← not 1{a, b}1. P ′

4 : {c, d, e}← not 1{a, b}1.
1{b, c, d}. 1{a, f}← not 1{b, c, d}.

We obtain the following answer sets for program P 3:

{a}, {b}, {c}, {d}, {f}, {a, c}, {a, d}, {a, f}, {b, c}, {b, d},
{c, e}, {c, d}, {d, e}, {e, f}, {a, c, d}, {b, c, d}, {c, d, e}

Hence, as with standard LPOD programs, an answer set of an S-LPOD program
is simply an answer set of one of its split programs.

To complete the semantics of S-LPOD programs, we first have to account for
the definition of the degree of satisfaction:

Definition 2. A set of literals S satisfies a rule as in (5)

– to degree 1, if Ai is not satisfied by S for some 0 ≤ i ≤ m or Bj is satisfied
by S for some 0 ≤ j ≤ n, and otherwise,

– to degree d = min{k | lb(Ck) ≤ sel(Ck, S) ≤ ub(Ck)}.

As above, we denote the degree of rule r in answer set S as degS(r). As with
standard LPOD, our extended definition assures that if an answer set S of an
S-LPOD program exists, then S satisfies all rules of P to some degree.

As well, we can use the degree of satisfaction to induce different preference
criteria on the answer sets of an S-LPOD program. In particular, the criterion
of Pareto-preference given above carries over from LPOD to S-LPOD.

Example 2. Consider again the program P given in Example 1. All Pareto-
preferred answer sets satisfy both rules of program P with degree 1:

{a, c}, {a, d}, {b}, {b, c}, {b, d}, {a, c, d}, {b, c, d}.
3 Each of the answer set reported is an answer set of at least one of the split programs.

This is a necessary condition to be answer set of the original program [5].
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Thus, we can have more than one preferred answer set and each of them is also
an answer set of some split program of the original program.

Finally, let us show that S-LPOD is conservative insofar as it corresponds
to LPOD whenever we have no cardinality constraints. To see this, consider
rule (5), where each cardinality constraint is of the form 1{l} for some literal
l ∈ L:

1{c1} × . . .× 1{cl}← 1{a1}, . . . , 1{am}, not 1{b1}, . . . , not 1{bn}. (6)

A set of literals S satisfies such a rule r

– to degree 1, if 1{ai} is not satisfied by S for some 0 ≤ i ≤ m or 1{bj} is
satisfied by S for some 0 ≤ j ≤ n, and otherwise,

– to degree d = min{k | lb(ck) ≤ sel(ck, S) ≤ ub(ck)}.

In this special case, we have sel(l, S) = |S ∩ lit(l)| = |S ∩ {l}|, and lb(l) = 1
and ub(l) = |lit(l)|. While the first condition is equivalent to body+(r) ⊆ S or
body−(r) ∩ S = ∅, the latter gives d = min{k | 1 ≤ |S ∩ {l}| ≤ |lit(l)|}. In order
to respect the bounds 1 ≤ |S ∩ {l}| ≤ 1, we must have l ∈ S, so that the degree
of satisfaction of rule r is d = min{k | l ∈ S}, which is what we have in the
definition of degree of satisfaction for LPODs.

4 From S-LPOD to SR-LPOD

We have seen in Example 1 that S-LPOD programs may yield many answer sets,
among which one may still find a substantial number of preferred answer sets.
This is even more severe in practice. In fact, in practice, it is also very natural
to impose additional preferences among S-LPOD rules.

As before, it turns out that ASP-techniques can be composed in a quite
straightforward way in order to obtain an extension encompassing the desired
features. To this end, we take advantage of ordered logic program, being a pair
(P, <), where P is a logic program and < ⊆ P × P is a strict partial order.
Given, r1, r2 ∈ P , the relation r1 < r2 expresses that r2 has higher priority than
r1. Then, an SR-LPOD program is an ordered logic program (P, <), where P
is an S-LPOD program. As before, the formation of preferred answer sets can
be made precise in different ways. Among them, we follow the proposal in [6]
by using the extended definition of the Pareto-preference criteria proposed in [6,
Definition 9]: An answer set S1 of an LPOD program P is Pareto-preferred to
another one S2 wrt program P , written as S1 >pr S2, if

1. there is a rule r ∈ P such that degS1(r) < degS2(r) and
2. for each r′ ∈ P such that degS1(r′) > degS2(r′), there is some rule r′′ such

that r′ < r′′ and degS1(r′′) < degS2(r′′).

We found out that this definition is applicable to SR-LPOD4 and it allows us
to obtain a more fine-grained ordering on answer sets as with S-LPOD program,
4 The interested reader may note that we only consider static preferences among S-

LPOD rules, i.e. meta-preference statements of the form r1 < r2 with empty body.
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in that it may introduce additional preferences among answer sets that were
considered incomparable or equally preferred according to the original definition
of Pareto-preference criteria given in [5], even when preferences on sets of objects
are expressed.

We also show that the ordering relation on answer sets of an (S-)LPOD pro-
gram P is preserved if we add to P preferences on its (S-)LPOD rules. In fact,
the following proposition holds:

Proposition 1. Let S1 and S2 be answer sets of an (S-)LPOD program P . Then
S1 >p S2 implies S1 >rp S2

Proof. Let us suppose that S1 >rp S2 does not hold, and show that S1 >p S2
does not hold too. S1 >rp S2 does not hold if one of the properties in its definition
do not hold, i.e.

1. ∀r ∈ P, degS1(r) ≥ degS2(r)
2. ∃r′ ∈ P : degS1(r′) > degS2(r′) and ∀r′′ > r′, degS1(r′′) ≥ degS2(r′′).

In the first case, we can immediately conclude that S1 >p S2 does not hold by
the first part of the definition of preference relation >p.

In the second case, we have that whenever such r′ exists, degS1(r′) > degS2(r′)
holds, and thus S1 >p S2 by the second part of the definition of preference
relation >p.

Example 3. Let us consider the S-LPOD program P in Example 1. The order-
ing relation among the answer sets of P can be represented by considering the
following three sets:

AS1 = {{a, c}, {a, d}, {b}, {b, c}, {b, d}, {a, c, d}, {b, c, d}}
AS2 = {{a}, {c}, {d}, {a, f}, {c, e}, {c, d}, {d, e}, {c, d, e}}
AS3 = {{f}, {e, f}}

According to the ordering relation derived from the original definition of Pareto-
preference criteria in Section 2, we have Si > Sj > Sk for Si ∈ AS1, Sj ∈
AS2, Sk ∈ AS3. Two answer sets in the same partition are considered incompa-
rable or equally preferred.

If we add the meta-preference on S-LPOD rules of P expressed by r1 < r2, a
more fine-grained ordering is achieved and we can identify one partition more,
thus specializing the preference relation among previously incomparable answer
sets, as follows:

AS1 = {{a, c}, {a, d}, {b}, {b, c}, {b, d}, {a, c, d}, {b, c, d}}
AS2 = {{c}, {d}, {c, e}, {c, d}, {d, e}, {c, d, e}}
AS3 = {{a}, {a, f}} AS4 = {{f}, {e, f}}

where Si > Sj > Sk > Sl for Si ∈ AS1, Sj ∈ AS2, Sk ∈ AS3, Sl ∈ AS4.

One may argue that these new meta-preferences among S-LPOD rules do not
significantly change the solution, since the Pareto-preferred answer sets of P are
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the same. But suppose that there are integrity constraints preventing us from
considering any of the most preferred answer sets as a solution, e.g. the following
three constraints are added to program P :

rc1 : ← a, c. rc2 : ← b. rc3 : ← d.

As a result, all answer sets in AS1 are eliminated and some in AS2 are the
preferred ones; preference ordering among them has been refined by the new
preference relation among S-LPOD rules, so that the solution is reduced to
answer sets {c}, {c, e} as the preferred ones.

The following example illustrates how Pareto-preference including preferences
among rules can be meaningful even with simple LPOD programs.

Example 4. Let program Ppref consist of the LPOD rules:

r1 : a × c. rp1 : r3 > r1. rc1 : ← a, d.
r2 : b × d. rp2 : r4 > r1.
r3 : b × a. rp3 : r3 > r2.
r4 : d × c. rp4 : r4 > r2.

where rules rpi represent preference relations among rules rk of Ppref .
We can compute 16 split programs5 obtaining from them the following answer

sets for the original program Ppref :

S1 = {a, b, c} degS1(r1) = degS1(r2) = degS1(r3) = 1, degS1(r4) = 2
S2 = {b, c, d} degS2(r2) = degS2(r3) = degS2(r4) = 1, degS2(r1) = 2
S3 = {b, c} degS3(r1) = degS3(r4) = 2, degS3(r2) = degS3(r3) = 1

According to the Pareto-preference ordering, under LPOD semantics, S1 and
S2 are the preferred answer sets for Ppref ; moreover, S1 >p S3 and S2 >p S3.
The extended notion of preference relation on LPOD rules (expressed in rules
rpi , i = 1..4), gives us a more fine-grained ordering on answer sets S1 and S2
that were incomparable under the LPOD semantics, in that S2 >pr S1.

As a consequence, only S2 results being the Pareto-preferred answer set of
Ppref according to >pr ordering relation.

5 Application to Policy Enforcement

As illustrated in [4], PPDL is a rather simple, easy-to-grasp language allowing
to define policies and consistency mechanisms in a transparent and easy way by
keeping the so-called business logic outside the specific system representation.
PPDL specifications are directly mapped into ASP and can thus be computed
very efficiently by invoking performant ASP solvers [6].

Although the encoding of PPDL into LPOD proposed in [4] is intuitive and
computationally easy to be automatized, it requires us to impose a total pref-
erence ordering over actions to be blocked in a single constraint specification.
5 Note that only the coherent ones are used for computing solutions.
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Such a total ordering can be unrealistic or even unacceptable in applications,
as it would force us to specify all possible combinations of totally ordered list
of actions. We could need to group objects and consequently actions performed
on those objects, according to some common properties, thus adding a level of
non-determinism to the choice of which actions to block in order to solve a con-
flict but keeping the PPDL specification intuitive and the mapping into ASP
computationally simple. As an example, consider again a Resource Manager.
We may want to tell that a clerk should be prevented from accessing critical
resources, but resources availability is to be granted to managers6. The above
mentioned scenario suggests that we need to introduce a syntactic variation to
policy and monitor specification, in order to accommodate partial preference
orderings among sets of actions.

It is worth mentioning the fact that, in our policy specification, we allow only
positive atoms to appear in the constraints, as each literal represents an action
and we do not consider the case in which a set of events causes an action not to
be executed. Of course this is a possibility and things could be generalized, but
we don’t deal with this case here.

According to the LPOD extensions we investigated in Section 3 and 4, we
now extend the language of PPDL, mentioned in Section 1, into SR-PPDL, by
providing a more general definition of a monitor expressing preferences on sets of
actions that have to be blocked to solve conflicts arisen from policy enforcement.

Let 〈A, <〉 be a partially ordered set of actions. We define a level mapping �
as follows.

– �(a) = 1 iff ∃/a′, a′ < a.
– �(a) = i + 1 iff max{�(a′) : a′ < a} = i.

The level function partitions A into disjoint sets of actions: A = A1 ∪ . . . ∪ Ar,
where each Ai contains actions with the same preference level i and Ag ∩Al = ∅
for all g = l.

The preference relation defined by 〈A, <〉 can be expressed by the extended
syntax of SR-PPDL monitor rule (extending the one proposed in [4]) as follows:

r : never l1[A1]u1 × . . . × lr[Ar]ur if C. (7)

where each Ai represents a set of atoms {ai
1, a

i
2, . . . , a

i
m}, C is a Boolean condi-

tion and each element li[Ai]ui represents a cardinality constraint of the form in
Equation (4).

Given that Di is the set of actions in Ai triggered by the policy application, the
cardinality constraint C(Ai) = li{ai

1, a
i
2, . . . , a

i
m}ui is satisfied if li ≤ |Di| ≤ ui.

For each constraint C(Ai) that is satisfied, we define the set of actions to be
blocked Xi as the minimum subset of Di for which |Di − Xi| ≤ li − 1. As a
consequence, we have that, for each of these Xi, |Xi| = |Di| − li + 1.

Equation (7) tells us that when all cardinality constraints C(Ai), i = 1..r
are satisfied7, then actions in D1, actions in D2, . . . , actions in Dr cannot be
6 A complete example in this context will be detailed later on in this section.
7 Otherwise, if at least one of the C(Ai) is not satisfied, there is no conflict and rule

r of the form in Equation (7) is not triggered.
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executed together and, in case of constraint violation, |X1| actions in D1 should
be preferably blocked; if it is not possible, block |X2| actions in D2; . . . ; if all of
the actions in Dj, j = 1..r − 1 must be performed, block |Xr| actions in Dr.

In this way, the total ordering among conflicting actions to be blocked can
be released by admitting that actions at a certain level i in the head of an SR-
LPOD rule can be non-deterministically chosen from a set Di ⊆ Ai of equally
preferred actions triggered by the policy, given that C(Ai) is satisfied and all
other actions in Dj with lj ≤ |Dj | ≤ uj and level j < i, must be executed.

To express such non-determinism, we translate the SR-PPDL rule in Equa-
tion (7) into SR-LPOD by using cardinality constraints for each set of equally
preferred literals. Thus, according to the original PPDL encoding [4], given that

A1 ={a1
1, a

1
2, . . . , a

1
g} A2 ={a2

1, a
2
2, . . . , a

2
h} . . . Ar ={ar

1, a
r
2, . . . , a

r
m}

each rule of the form in Equation (7) will result into
∏

i=1..r(ui − li + 1) SR-
LPOD rules representing all possible combination of sets of elements in the head
of the SR-LPOD rules:

l1{block(a1
1), block(a1

2), . . . , block(a1
g)}l1 ×

l2{block(a2
1), block(a2

2), . . . , block(a2
h)}l2 ×

. . . ×
lr{block(ar

1), block(ar
2), . . . , block(ar

m)}lr ← l1{exec(a1
1), . . . , exec(a1

g)}l1,
l2{exec(a2

1), . . . , exec(a2
h)}l2,

. . .
lr{exec(ar

1), . . . , exec(ar
m)}lr, C.

. . .
u1{block(a1

1), block(a1
2), . . . , block(a1

g)}u1 ×
u2{block(a2

1), block(a2
2), . . . , block(a2

h)}u1 ×
. . . ×
ur{block(ar

1), block(ar
2), . . . , block(ar

m)}ur ← u1{exec(a1
1), . . . , exec(a1

g)}u1,
u2{exec(a2

1), . . . , exec(a2
h)}u2,

. . .
ur{exec(ar

1), . . . , exec(ar
m)}ur, C.

accept(A) ← exec(A), not block(A).
← block(A), not exec(A).

The last constraint has been introduced into the mapping from SR-PPDL to
SR-LPOD in order to assure that, in non-determinism induced by cardinality
constraints on sets, actions blocked are among those triggered by the policy.

Corresponding split programs are built in the same way as illustrated in Sec-
tion 2. This may generate a lot of possibilities, further reduced when we intro-
duce a preferential ordering of the form ri > rj where ri and rj are SR-PPDL
rules of the form in Equation (7). Combination of our LPOD extensions into the
high-level policy language is illustrated in the following example.

Example 5. Let us consider the problem of allocation of resources a, b, c and d
among two users, u1 and u2. Resources a and b are critical (actions corresponding
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to the assignment of a and b should be preferentially blocked in case conflicts
arise), user u2 is to be preferentially served over u1.

The corresponding monitor rules look like:

r1 : never 1[ass(u1,R)]1× 1[ass(u2,R)]1.
r2 : never 1[ass(U, a), ass(U, b)]2× 1[ass(U, c), ass(U, d)]2.

where U and R are grounded on the set of users and resources, respectively.
Suppose that the policy application yields user u1 to obtain resources b, c, d,

and user u2 to obtain resources a, b, c8 and u1 needs at least one resource among
b and c.

The resulting SR-LPOD program Psr−lpod is as follows:

r1
1 : 1{block(u1, b)}1× 1{block(u2, b)}1.

r2
1 : 1{block(u1, c)}1× 1{block(u2, c)}1.

r1
2 : 1{block(u1, a), block(u1, b)}1× 2{block(u1, c), block(u1, d)}2.

r2
2 : 2{block(u2, a), block(u2, b)}2× 1{block(u2, c), block(u2, d)}1.

← block(u1, b), block(u1, c).
← block(U,R), not exec(U,R), res(R), usr(U).
accept(U,R) ← not block(U,R), res(R), usr(U).

We obtain three answer sets of Psr−lpod:

S1 = {block(u1, b), block(u2, c)}
S2 = {block(u1, c), block(u1, d), block(u2, b), block(u2, c)}
S3 = {block(u1, b), block(u2, a), block(u2, b), block(u2, c)}

with S3 >p S1. Thus, S2 and S3 are the preferred answer sets for Psr−lpod in
terms of blocked assignments.

Suppose we now add a rule preference r2 > r1 on rules of the monitor. This
means that, in their grounded instances, each of the rules ri

2 is preferred to
each of the rules rj

1. According to relation >rp, we now have S3 >rp S1
9 and

S3 >rp S2, thus obtaining only S3 as the preferred answer set.
To accomplish specific systems requirements, additional constraints could be

added, such as that each user has to be assigned to at least one resource, or that
a resource cannot be assigned to two different users, thus restricting the set of
admissible solutions.

It’s easy to imagine that when a wide number of combinations are possible
according to how resources/users are grouped into sets, introducing a further
level of preferences on rules that determine (S-)LPOD preferences, can results
in more accurate solutions by reducing the set of Pareto-preferred solutions.

8 For simplicity, we focus on the consistency monitor specification omitting policy
rules. This does not change the way priorities are computed, cause not triggered
rules have degree equal to 1 by definition.

9 Note that the Pareto-preference relation >p is preserved.
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6 Conclusion

We have considered advanced policy description specifications based on advanced
semantics of Answer Set Programming. Our analysis is aimed at providing a
tool to enforce complex policy consistency mechanisms, enriched with qualita-
tive preferential information by using the high-level policy description language
PPDL investigated in [4]. To this end, we extended the logical formalism by al-
lowing ordered disjunctions over cardinality constraints and we used a rule-based
Pareto-preference criterion for distinguishing preferred answer sets. Next step is
to extend the PPDL language syntax in this direction, by mapping extended
monitor constructs of the resulting SR-PPDL into SR-LPOD.

We believe in the potential of high-level specification languages to control and
monitor complex systems efficiently. In fact, the proposed extension to qualita-
tive preference handling from policy and monitor enforcement perspectives could
enable us to find new contexts of application in other fields of AI.

Future work will address implementation issues: we want to adapt the com-
pilation technique proposed in [6] to our approach. Also, it is worthwhile to
check under which restrictions a specification can be compiled in a normal logic
program (without any need for genuine disjunctions).
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Abstract. We present a Hidden Markov Model that uses qualitative
order of magnitude probabilities for its states and transitions. We use
the resulting model to construct a formalization of qualitative spatio-
temporal events as random processes and utilize it to build high-level
natural language description of change. We use the resulting model to
show an example of foreseen usage of well-known prediction and recogni-
tion techniques used in Hidden Markov Models to perform useful queries
with the representation.

1 Introduction and Motivation

Hidden Markov Models (HMMs) have been successful in representing random
processes and acquiring useful characteristic in a mathematically tractable way
[14]. The model studies such processes by obtaining as input a discrete time
sequence representing the observable output emitted by the process over time
[16]. Using the model, it is possible to perform prediction and recognition tasks.
The stochastic model has been used in various applications such as face recog-
nition [2], speech recognition [18], spatio-temporal pattern recognition in image
processing [15] and Bioinformatics [12].

The mechanisms offered by HMMs are readily available if one can have (or
learn) the values associated with the probability distribution required to con-
struct the model. Although this is possible for many applications, this luxury
may not be available in many other applications and a complete specification of
the probability values of the events constituting the model is not achievable.

In this paper, we propose a qualitative Hidden Markov Model which uses
order of magnitude probabilities [7] instead of numerical probabilities to over-
come the difficulty of using HMMs in applications where numerical values of the
probability distributions are not obtainable.

One such domain of applications is that of qualitative spatio-temporal repre-
sentation and reasoning, which has flourished because the epistemic nature of
spatio-temporal information usually renders it vague and highly-dynamic, mak-
ing the numerical values of the attributes in concern mostly unknown. This is
why numerical approaches to reasoning about the spatio-temporal domain are
limited, and qualitative methods have prevailed [1].

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 707–718, 2007.
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The general skeleton of a qualitative representation consists of a model of real-
world objects as abstract entities, which take the form of points [5] or regions of
space [17]. The formalism then chooses one or more spatial features of interest
to be represented (e.g. topology [17] [5], orientation [10] or distance [13]) and
constructs a set of relations capturing all the possible interactions between two
abstract entities with respect to the chosen spatial feature [4].

Reasoning is carried out via queries that perform prediction and recognition
tasks, by studying the different relations that may hold among the objects at
different times [4].

Because uncertainty prevails in the spatio-temporal domain, incorporating
reasoning techniques that are capable of dealing with uncertain information has
been a focus in the qualitative spatio-temporal community. For example [9] in-
corporates fuzzy-sets in the formulation of the queries about the set of spatial
relations in order to accommodate vagueness, which although yields a robust way
to deal with uncertainty, has not been expanded to tackle predictive queries, and
is mainly concerned with recognitive queries. Also, [3] feeds the transitions be-
tween spatial relations as evidences to a Bayesian network, which in turn provides
the probabilities of future transitions. This work however, is limited to applica-
tions where it is possible to learn the numerical probabilities of the transitions
through some form of sensors, e.g. robot navigation [3].

In this paper, we apply the Qualitative Hidden Markov Model constructed to
the spatio-temporal domain and consequently use it to reason about motion by
constructing a qualitative HMM for a topology-based qualitative spatio-temporal
representation.

The paper is structured as follows. We begin in section 2 by an overview of
the spatio-temporal calculus on which our Qualitative HMM will be applied.
Section 3 reviews the concepts of order of magnitude probabilities which will be
used as the building blocks to our Qualitative HMM. In section 4, we present our
Qualitative HMM, HMMε, and equip it with a qualitative algorithm to perform
recognition tasks. In section 5, we show how HMMε can be used to model the
evolution of qualitative spatio-temporal relations between objects as they move.
In section 5.2, we show an example of possible reasoning techniques the model is
capable of carrying out. We conclude in section 6 by detailing our future work.

2 The RCC8 Calculus

A topology-based spatial theory which abstracts all physical entities to regions of
space whose exact size, shape and location are irrelevant, and uses the notion of
two regions being connected to construct a set of jointly-exhaustive and pairwise
disjoint (JEPD) 1 [4] qualitative spatial relations to hold between any two regions
[17]. For two regions x and y, the diadic relation C (x,y) (x is connected to y)
holds if regions x and y share some common parts. From this notion, eight
1 Meaning that together, the relations in the set represent all the possible interactions

with respect to the chosen spatial feature, and that no two relations in the set can
hold at the same time for the same spatial objects.
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topological relations have been defined. They are: DC(x,y) (x is discoonected
from y), EC(x,y) (x is externally connected to y), PO(x,y) (x partially overlaps
y), EQ(x,y) (x is equal to y), TPP(x,y) (x is a tangental proper part of y),
its inverse TPPI(x,y) (y is a tangental proper part of x ), NTPP(x,y) (x is a
non-tangental proper part of y), and NTPPI(x,y) (y is a non-tangental proper
part of x ). The complete RCC8 set is shown in figure 1. In this work, we use
the notation r [t,t+∆](x,y) to denote that RCC8 relation r holds between region
x and y during the interval [t,t+∆].

RCC8 possesses continuity properties captured by its conceptual neighborhood
graph (CNG) [8] shown in figure 2. The graph captures the notion of somewhat
similar relations possessing somewhat similar behavior. It can be seen from the
figure that any two relations are neighbors in a CNG if they can be directly trans-
formed into one another by a continuous deformation (i.e. decrease or increase of
size or distance) of the objects. For example, EC and PO are conceptual neigh-
bors; there exists a direct transformation that can change the relation between
two regions x and y from EC to PO and vice versa. On the other hand, DC and
PO are not conceptual neighbors, because the relation between two regions x

Fig. 1. The RCC8 Set

Fig. 2. The RCC8 Set Conceptual Neighborhood Graph
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and y to change from DC to PO or vice versa, the regions have to go through a
transformation which forces them to be externally connected (EC holds between
x and y) at some point in order for the transformation to take place.

3 A Theory of Qualitative Probabilities

[7] introduced a qualitative theory of probability to model causality and belief.
In this work, the order of magnitude of probability is used to represent degrees
of belief, rather than numerical values that describe that frequency of occurrence
of an event.

The formalism represents the probability of a proposition ω, P(ω), by a poly-
nomial function of one unknown, ε, an infinitesimally small positive number (0
< ε < 1). The rank κ of a proposition ω represents the degree of incremental
surprise or abnormality associated with finding ω to be true [7]. It is represented
by the power of the most significant ε-term in the polynomial representing P(ω)
(the lowest power of ε in the polynomial).

The idea behind infinitesimal representations is that P(ω) is of the same order
as εn where κ(ω) = n. In other words:

ε <
P (ω)
εn

≤ 1

Where εn is the most significant ε-term of the polynomial representing P(ω).
The ranking function κ(ω) is defined below:

κ(ω) =
{

min{n : limε→∞ P (ω)/εn = 0}, if P(ω)>0
∞, otherwise.

ε-semantics is useful because it provides an abstraction which only requires spec-
ifying the κ values of the propositions, which is an easier task than specifying
the exact probabilities associated with the occurrence of the proposition. The κ
values are in turn representative of the interval into which the probability falls.

Properties of the order of magnitude probabilities are directly extracted from
those of probability theory. There exists a mapping between the two which is
done by replacing the addition operators of probability theory by the min op-
erator, and multiplication by addition. We give below the properties that are
relevant to this work, along with their probability theory equivalents. For details
on how these properties are obtained, the reader may refer to [7].

κ(ϕ) = minω|=ϕ : P (ϕ) =
∑
ω|=ϕ

P (ω) (1)

κ(ϕ) = 0 ∨ κ(¬ϕ) = 0 : P (ϕ) + P (¬ϕ) = 1 (2)

κ(ψ|ϕ) = κ(ψ ∧ ϕ) − κ(ϕ) : P (ψ|ϕ) = P (ψ ∧ ϕ)/P (ϕ) (3)
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4 A Qualitative Hidden Markov Model

In what follows, we define the building blocks to constructing a Hidden Markov
Model which relies on the κ-values of propositions presented in section 3 instead
of numerical probabilities. The resulting model is a Qualitative Hidden Markov
Model, HMMε.

As in a classical HMM model, HMMε = (A, B, π) requires five elements for
its specification. They are defined below.

1. The States (Q)
The model defines N number of states, i.e. Q = q1, q2, ..., qN , deriving their
labels from the set of state alphabet S = s1, s2, ..., sN . The state q at time t
is denoted by: qt = si, where 1 ≤ i ≤ N .

2. The Alphabet (O)
Every state qi ∈ Q emits an output oi which is the only observable of
the model. This results in a sequence of emissions of the model ( O =
o1, o2, ..., oN ). The set of of all possible (and distinct) alphabet symbols V
= v1, v2, ..., vM is the domain from which every output oi ∈ O emitted by
state qi ∈ Q (where 1 ≤ i ≤ N) takes its value.

3. State Transitions Matrix (A)
A is an array storing the degrees of surprise associated with state j following
state i.

A = [aij |aij = κ(qt = sj |qt−1 = si)]

4. Observations Vector (B)
B is an array storing the degrees of surprise associated with observing output
j being produced from state i, independent of time.

B = [bi(j)|bi(j) = κ(ot = vj |qt = si)]

5. Initial Vector (π)
π is an array storing the initial degrees of surprise associated with the states
of the model.

π = [πi|πi = κ(q1 = si)]

4.1 Assumptions

HMMε adheres to the assumptions that a classical HMM adheres to as made
clear by the discussions below.

Markov Assumption. The Markov assumption states that the next state is
only dependent on the current state, with all the previous states being irrelevant.
The Markov Assumption for HMMε is expressed as given below:

κ(qt|qt−1, qt−2, ..., q1) = κ(qt|qt−1)
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Independence Assumption. States that the output observation at time t is
only dependent on the current state, with all the previous states, along with
their outputs being irrelevant to it.

κ(ot|ot−1, ot−2, ..., o1, qt, qt−1, ..., q1) = κ(ot|qt)

Markov Chain Assumptions. HMMε also adheres to the Markov chain as-
sumptions, which are formalized by reformulating the Markov chain assumptions
of classical HMMs via equation (1) given in section 3. The assumptions, along
with their HMMε formulations, are given below.

1. The sum of the emission degrees of surprise (κ values) for each state is equal
to 1. This is preserved by the property:
κ(V |qj) = minvi|= V κ(vi|qj) = 1

2. The sum of all the transition degrees of surprise (κ values) is 1, which is
preserved by the property:
κ(Q|Q) =minqi|= Q( minqj |= Q κ(qj |qi)) = 1

4.2 Reasoning: A Qualitative Decoding Algorithm

The power of classical HMMs stems from the algorithms associated with the
three problems HMMs solve, the evaluation, decoding and learning problems [14].
In this paper, we restrict our discussion to formulating a qualitative equivalent
to the algorithm associated with the decoding problem as the other problems
are part of our current research.

The Decoding Problem. Given the observation sequence o = o1, o2, ..., ot of
length t and a model λ=(A,B,π), the decoding problems is concerned with finding
the sequence of states q = q1, q2, ..., qt that was most likely to have produced the
observation sequence o (i.e. minimizes the degree of surprise that q was used to
generate o).

The Score Function. In order to evaluate candidate sequences of states, we
require a quantity representing the degree of surprise associated with the most-
likely sequence being one which ends with state qt = i. We denote this quantity
by δt(i).

δt(i) = minq1q2...,qtκ(q1...qt−1, o1...ot, qt = i) (4)

In order to use the score function to find the best sequence q, we should be be
able to answer the question: what is the degree of surprise associated with the
most-likely sequence being one which ends with state qt+1 being state j, given
that the degree of surprise associated with the most-likely sequence being one
which ends with state qt = i is δt(i)? The answer is found by induction on the
length of the sequence q as shown below.

σ(t+1)(j)= minπ1,...,πtκ(o1...ot,q1, ..., qt, ot+1,qt+1=j)
Substituting in Equation (3) of section 3:
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= minq1,...,qt [κ(ot+1,qt+1 = j | o1...ot, q1, ..., qt)+ κ(o1...ot,q1, ..., qt)]
Taking into account Markov and Independence assumptions
and redistributing the rest:
= minq1,...,qt [κ(ot+1,qt+1 = j | qt)+κ(o1...ot−1,q1, ..., qt−1, ot, qt)]
However, the sequence that minimized the degree of surprise was the
one that ended with state i and which was given by the equation 4.
This makes the above:
= mint[ κ(ot+1,qt+1 = j|qt = i) + minq1q2...,qtκ(q1...qt−1, o1...ot, qt = i)
= mint[ κ(ot+1,qt+1 = j|qt = i) + σt(i)]
= bj(ot+1) + mint [aij + σt(i)]

σt+1(j) = bj(ot+1) + mint[aij + σt(i)] (5)

A Qualitative Viterbi Algorithm. The algorithm keeps track of the argu-
ment which has minimized 5 at every time t and state j. For this, a vector �t(j) is
used. Hence, the qualitative viterbi algorithm can be described via the following
steps:

1. Initialization

σt(i) = πi + bi(o1), 1 ≤ i ≤ N (6)
�1(i) = 0 (7)

2. Recursion

σt(j) = bj(ot) + min1≤i≤N [aij + σt−1(i)] 2 ≤ t ≤ T, 1 ≤ j ≤ N (8)
�t(j) = argmin1≤i≤N [aij + σt−1(i)] 2 ≤ t ≤ T, 1 ≤ j ≤ N (9)

3. Termination

P ∗ = min1≤i≤N [σT (i)] (10)
q∗T = argmin1≤i≤N [σT (i)] (11)

4. Path (state sequence) Backtracking

q∗t = �t+1(q∗t+1) t = T − 1, T − 2, ..., 1 (12)

5 HMMε for a Qualitative Spatio-temporal Calculus

Given two objects, with one moving with respect to the other (e.g., a car c in a
highway h), topology can capture the possible spatial interactions between the
two objects using the RCC8 relations, where at any time, some relation r∈RCC8
must hold between c and h.

Because the RCC8 set adheres to the continuity constraints specified by its
conceptual neighborhood graph [8], motion will follow a specific set of patterns
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which abide by these constraints, and which can be identified in the absence of
uncertainty. In other words, motion will have to follow the transitions dictated
by the conceptual neighborhood graph of the RCC8 relations. Using this, it is
possible to construct natural language verbs describing the motion of the car
with respect to the highway during any interval [t, t+∆]. For instance, the car
can leave the highway during [t, t+∆], moving from NTPP(c,h) at t to DC(c,h)
at t+∆.

We would like to use HMMε to recognize high-level natural-language verbs of
change (e.g. leave in the above example) which take place between two regions
as they move, from the knowledge of a time-series of snapshots of the qualitative
spatial relations (RCC8 relations) that hold between the two regions at different
times. This will make possible recognizing the patterns which motion follows in
the presence of uncertainty by representing motion as a stochastic process. We
call the resulting model HMMstε, whose constituents are given below.

5.1 HMMstε

1. The Alphabet: Or the domain of the possible outputs, consists of RCC8
set = {DC, EC, PO, EQ, TPP, TPPI, NTPP, NTPPI} given in section 2,
which represents the possible spatial relations among two objects.

2. The States: The set of states Q is the set of motion verbs, which linguis-
tically describe the patterns that motion forms as two regions move with
respect to each other during a given interval, changing the topological rela-
tions that hold between them accordingly.

Using the RCC8 relations, [11] formulates a set of patterns describing the
motion of a moving object x with respect to another moving object y during
some interval [t, t + ∆]. We will use this set, MC, as the set of states for
HMMstε. It consists of the following patterns:

Leave x y (read as: x leaves y), Reach x y (x reaches y), Hit x y (x hits
y), Bounce x y (x bounces off of y), Peripheral x y (x moves alongside the
edge of y), Internal x y (x moves inside y), External x y (x moves outside y),
Expand x y (x increases in size to overpass y) and Shrink x y (x decreases
in size to be contained in y).

Every element mci ∈ MC is described by the predicates starts(mci, [t,
t+∆], x, y) and ends(mci, [t, t+∆], x, y), where starts(mci, [t, t+∆], x, y)
returns the spatial relations that can hold between spatio-temporal objects
x and y at the beginning of the interval [t, t+∆] during which the verb mci

correctly describes the change taking place, while ends(mci, [t, t + ∆], x, y)
gives the spatial relations that hold between spatio-temporal objects x and
y at the end of the interval [t, t + ∆]2.

The motion verbs are given in table 1. In the table, the rows correspond
to the RCC8 relation which belongs to the set starts(mci, [t, t + ∆], x, y)
while the column corresponds to the RCC8 relation which belongs to the set

2 The reader may refer to [11] for the formal definitions of the predicates and a more
detailed discussion on the construction of the set of patterns from RCC8.
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Table 1. The Set MC of Motion Classes

ends(mci, [t, t + ∆], x, y). Each intersection of a row and a column presents
the resulting motion class mci when the corresponding RCC8 relations at the
beginning and end of the interval hold. Elements of MC continuity properties
similar to those of RCC8, and hence, possess a conceptual neighborhood
structure [11].

3. Qualitative Emissions and Transitions:
The κ values for the emissions and transitions are obtained by using the
natural continuity properties possessed by the sets RCC8 and MC. More
specifically, we use the conceptual neighborhood structures of RCC8 and
MC to assign weights to spatio-temporal events defined in terms of RCC8
and MC. These weights represent the relative likelihood of the events, which
are inversely related to the degree of disbelief function (κ values) we will use
in the model to be constructed. In what follows, we take a closer look at this
likelihood function and how it relates to [7]’s degrees of disbelief.

Likelihood Function. We define, a weight function, ς, to represent the likeli-
hood of an event. ς can take one of the following forms:
(a) The likelihood of an RCC8 relation r being true between two objects

undergoing change, at the end of interval [t, t + ∆], which is the interval
where the verb mci is known to hold. The likelihood function, in this
case, returns the number of ways for which motion class mci can end
with RCC8 relation r for the interval [t, t + ∆].

Definition 1. ς(r,mci) = length[ends(mci,[t,t + ∆], x, y)]

(b) The likelihood of verb mcj to hold during interval [t + ∆,t + ∆ + γ],
which immediately follows the interval [t,t + ∆], with interval [t,t + ∆]
being the one during which verb mci was known to be true. The like-
lihood function, in this case, yields the number of ways for which verb
mcj can immediately follow verb mci, which is called, according to [11],
(contin pairs(mci,mcj)).

Definition 2. ς(mci,mcj) = length(contin pairs(mci,mcj))

Kappa Values. κ, i.e. the degree of disbelief in an event (or a set of events)
has the following inverse relation with the weight of the event ς:
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Property 1. ∀mci,mcj ,mck : ς(mci,mcj) ≤ ς(mci,mck) → κ(mci,mcj) ≥
κ (mci,mck)

Given a set of JEPD relations, RCC8, representing the alphabet of the model,
and a set of motion patterns MC, representing the states of the model,
algorithm calculate-κ allocates kappa values to the various transitions of the
HMM to be constructed.

The algorithm takes as input two sets, S1 and S2, which can either be
subsets of RCC8 or of MC, as illustrated below via examples.

The algorithm finds the set w by obtaining the elements with similar
weights (ς values) and assigning them similar κ values while making sure
that property 1 holds. Also, in both cases, the algorithm guarantees that the
minimum κ value allocated is 1, which guarantees that the HMM properties
hold (the sum of the emission probabilities for each state is 1 and the sum
of the transition probabilities of all the states is 1 3).

Algorithm: calculate-κ(S1,S2)
Input: Two sets S1, S2, ς(si, sj), ∀ si ∈ S1 ∧ sj ∈ S2
Output: A totally ordered set w: w ←((si, sj),κ(si|sj)), ∀ si ∈ S1∧ sj ∈ S2
Begin:

Create the set ws: ws ←((si, sj),ς(si, sj)), ∀ si ∈ S1∧ sj ∈ S2 ,totally
ordered based on ς(si, sj).
Set κ-counter = 1
∀wsl

∈ w: Create the set wsl
-similar such that:

wi-similar = {wsl
} ∪ { j ∈ ws ∧ ς(wsl

, sj) = ς(j, sj)}
∀e ∈wsl

-similar :
κ(e|sj) = κ-counter ++ , if ς(e, sj) = 0
= ∞, otherwise

Add ((e, sj), κ(e|sj)) to ws

End

4. Initial κ Values (κ0(q))
Represents the likelihood of each state being true at the first interval [0,t].
We assign the starting κ-values via a uniform distribution 4. κ0(q) ∀q ∈ Q
= k, where k is randomly generated.

5.2 Experiment: Decoding Spatio-temporal Knowledge

Problem: Spatio-temporal Decode
Given a sequence x = r1r2....rm of RCC8 relations, observed at the end of

intervals I1, I2, ...., Im respectively, where every interval is of fixed-length ∆.
Find the sequence of motion patterns p = p1p2....pm which maximizes the

likelihood of the observed sequence x (P(x,p)), i.e. minimizes κ(x, p).

3 Reminder: In the κ calculus, finding the sum corresponds to obtaining the min.
4 At the beginning of a stochastic process, all states have equal probabilities of occur-

rence. This changes as the system progresses through its states.
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The solution was implemented directly via the qualitative Viterbi algorithm
presented in section 4, by applying it to HMMstε of section 5 and testing its
results on artificially-generated sequences of RCC8 relations of various lengths.

Running the solution for 30 sequences of various lengths has given a 90-96%
accuracy rate, where accuracy is defined as the ratio of the correctly identified
most-likely sequence to the total number of sequences of the same length tested.

6 Conclusion and Future Work

We presented a framework for constructing a Qualitative HMM, which uses
order-of-magnitude instead of numerical probabilities to capture its transitions,
and equipped it with a qualitative equivalent of the Viterbi algorithm for decod-
ing stochastic processes.

We are currently working on equipping our model with the algorithms that
enable it to solve the evaluation and learning problems of standard HMMs, and
consequently giving it their recognitive and predictive power.
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Abstract. The planning and scheduling activities are viewed profoundly
important to generate successful plans and to maximize the utilization of
scarce resources. Moreover, real life planning problems often involve sev-
eral objectives that should be simultaneously optimized and real world
environment is usually characterized by uncertain and incontrollable in-
formation. Thus, finding feasible and efficient plans is a considerable chal-
lenge. In this respect, the Multi-Objective Resource-Constrained Project-
Scheduling problem (RCPSP) tries to schedule activities and allocate re-
sources in order to find an efficient course of actions to help the project
manager and to optimize several optimization criteria. In this research,
we are developing a new method based on Ant System meta-heuristic and
multi-objective concepts to raise the issue of the environment uncertainty
and to schedule activities. We implemented and ran it on various sizes of
the problem. Experimental results show that the CPU time is relatively
short. We have also developed a lower bound for each objective in order
to measure the degree of correctness of the obtained set of potentially ef-
ficient solutions. We have noticed that our set of potentially efficient so-
lutions is comparable with these lower bounds. Thus, the average gap of
the generated solutions is not far from the lower bounds.

Keywords: Resource-Constrained Project-Scheduling problem, Ant
System, multiobjective optimization.

1 Introduction

The planning and scheduling of activities are important to generate good plans
and to maximize the utilization of scarce resources. The planning process consists
in generating feasible Course of Actions (COA), the so-called ‘plan’, that its
execution would allow the accomplishment of the tasks or activities. In this
respect, the Multi-Objective RCPSP tries to find suitable resources allocation
and optimize these objectives. This problem can be stated as a set of jobs or
tasks, related by successor and predecessor constraints and where each task
requires for its realization a various combination of resources/mode.
� A visiting professor at the school of engineering, American University of Sharjah,
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The RCPSP has various features as multi-mode, single mode, with non pre-
emptive or pre-emptive resources, renewable or non-renewable resources. This
problem was been widely studied in the single objective case, however, the multi-
objective version of the RCPSP is scant. Several approaches were developed to
solve uni-objective RCPSPs as Merkle et al. [8] [7] who applied an Ant Sys-
tem methods to solve the RCPS problem. Demeulemeester et al. [4] applied
a Branch-and-Bound procedure for the RCPSP. A Genetic Algorithm has also
been applied to solve the RCPSP [10]. For the multi-objective RCPSP, Belfares
et al. [3] developed a progressive resource allocation method based on the Tabu
Search meta-heuristic. Al-Fawzan and Haouari developed a method based on
Tabu Search to solve the RCPSP with two objectives: the makespan and robust-
ness [1].

In this paper, we develop a multi-objective RCPSP with a multi-mode fea-
ture and renewable resources. The objectives of the RCPSP are namely: the
minimization of the makespan Cmax, the minimization of the total cost and the
maximization of the probability of success.

For that, we develop an Ant System based approach based on multi-objective
concepts to schedule the set of tasks while assigning the suitable modes.

Our Multi-Objective Ant System Approach (MOASA) is based on the defi-
nition of a prefixed number of ants that operate in terms of the 3 objectives, it
iterates until reaching a stable set of potentially set of efficient solution. MOASA
was implemented in C++ language and runned on a large test-bed of problems
that covers RCPSPs sized from 6 to 250 tasks. We also developed a lower bound
for the RCPSP to frame the exact solutions and to evaluate our results. This
paper is organized as follows: section 2 describes the RCPSP with multiple objec-
tives and provides its mathematical formulation. Section 3 details the MOASA
with all its features. Our approach is illustrated with an example and various
computational results. section 4 is devoted to the development of the lower bound
and a comparison of the generated solutions and these lower bounds.

2 Problem Statements

The RCPSP can be stated as a set of tasks, related by successor and prede-
cessor constraints and where each task requires for it is realization a various
combination of resources, to be assigned to a set of resources of limited ca-
pacity, where each resources can be used by various tasks. A resource can be
human, material or financial and its availability is uncertain and is considered
as a non-deterministic variable. In this respect, the solution is to allocate the
necessary and available resources to the tasks over time optimizing several ob-
jectives and taking into account contingency aspect of the environment beside
the constraints of the problem. The problem can be represented as an oriented
graph, with tasks as nodes and precedence constraints as edges, such a graph
allows the possibility to specify the combination of resources and the precedence
constraint between tasks in figure (1). In this graph, the nodes identify tasks
and their resources’combinations and the edges represent the precedence rela-
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tionship between them. Indeed, task 2 can be achieved by using the combination
of resources R1 and R2 or R3 and R4. This can only been achieved if task 1 has
already been accomplished. The following notation accounts for the mathemat-
ical formulation of the RCPSP:

N : number of tasks.
ti: the task i.
k: number of resources.
Mi: number of modes that task i can be performed in.
|m|: number of resources of the mode m.
PRi: the set of predecessors of task i.
PSi: the set of successors of task i.
Rj : the available quantity of resource of type j.
rj : the resource of type j.
qijm: the quantity of resource of type j required to task i being

performed in mode m .
dim: the duration of task i being performed in mode m .
si: starting time of task i.
li: finishing time of task i with li= si + dim.
am

i : elementary action is the task ti being realized by the mode m.
COA: the courses of action {am

i ,i = 1,. . . ,N } .
CVj : the in-use costs of resource of type j.
cj : cost of resource j.
τij : the amount of pheromone where task i is realized by the resource j.
τ : is the pheromone matrix.
ηij : is a priori probability of availability of resource j used for task i.
Cmax: the makespan Cmax=Max

∑N
i=1 li.

Pij : the probability that resource j successfully realize task i.

xijm=
{ 1 if ti is realized by resource j using mode m.

0 otherwise.
f : number of ants.
PE: the set of potentially efficient solutions.

The mathematical formulation of the RCPSP is the following:

Minimize Cmax = Max

N∑
i=1

li (1)

Minimize

N∑
i=1

Mi∑
m=1

k∑
j=1

cij xijm (2)

Maximize 1/N
N∑

i=1

(
Mi∑

m=1

k∑
j=1

Pij xijm/

Mi∑
m=1

k∑
j=1

qijm) (3)
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Fig. 1. Structure of the RCPS problem

Subject to:

N∑
i=1

Mi∑
m=1

xijm qijm ≤ Rj , j = 1,. . . ,k. (4)

si ≥Maxp∈PRi(sp + (
Mp∑

m=1

(
k∑

j=1

xpjm/|m|) dpm)), i = 1,. . . ,N. (5)

Mi∑
m=1

1/|m|
k∑

j=1

xijm = 1, i = 1,. . . ,N. (6)

xijm ∈ {0, 1}, i = 1,. . . ,N, m = 1,. . . ,Mi, j = 1,. . . ,k. (7)

The multi-objective RCPSP consists in optimizing three objectives simultane-
ously:

- Minimize the makespan Cmax equation(1);
- Minimize the COA cost equation (2);
- Maximize the probability of success of the COA equation (3).

Under a set of constraints denoted by equations (4-7), the resources availability
constraint (4), means that each task i is performed by rik quantity of resource
k that can’t exceed the available quantity Rk. Equation (5) is the predecessor
constraint. It guarantees that each task i starts if all their predecessors PRi have
been finished. Constraint (6) ensures that each task i is required exactly by one
combination of resources. Constraint (7) represents the decision variables, where
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xij=
{ 1 if resource j contributes to the realization of task i.

0 otherwise.

A solution to this problem can viewed as sequences of synchronization tasks
and resources, where each sequence corresponds to the realization of a given
task ti by a combination of resources c, thus a sequence is an elementary action
ac

i= (ti, c).

3 An Ant Based Approach to Solve the Multi-objective
RCPS Problem

In an attempt to find a sequence of realizable actions that allow an efficient uti-
lization of scarce resources, while optimizing several objectives and predicting
unforeseen events, we devolop a new method based on the Ant System meta-
heuristics to optimize this problem. Thus, we have to solve an NP-hard multi-
objective optimization problem [6], That’s why, an ant algorithm is applied. The
parameters of the ant system approach for the RCPSP are adapted as follows:

– Pheromone trail: pheromone trail have a high influence during the con-
structive phase, for that, The trail τij corresponds to quantity of trail deposit
when task i is executed by resource j.

– Heuristic information: ηij is considered as a priori information and it is
computed by some heuristic function to indicate the desirabily of moving
from state i to state j. In our method, and due to the uncertain aspect
of the availability of the resources, the heuristic information indicates the
average of the probabilities of disponibility of resources j. Let us illustrate
with this example: suppose that the quantity available of resource j is q1 with
probability p1 and q2 with probability p2. Hence, the heuristic information
is:
ηj = ((p1 ∗ q1) + (p2 ∗ q2))/(q1 + q2).

– Transition rule: is a stochastic search function influences and stimulates
the ants’decisions during the construction process. This function is directed
(i) by available pheromone trail τij , (ii) by a heuristic function ηj and (iii)
by a specific data of the problem as the cost of the resource j: cj and the
processing time of the tasks i: dim.

Our method starts with no solution and then each ant builds a solution in n iter-
ations, where at each iteration one task is selected from the list of non-achieved
tasks to be realized by the a combination of resources. The choice of the re-
sources is guided and directed by the problem characteristics and the available
pheromone trail. And because we have to tackle a multi-objective combinatorial
optimization problem we are defined two ant colonies. One of them is about
optimizing a single objective: the ACS-time, and the other: ACS-cost tries to
optimize multiple objectives. Each ant of the first colony minimizes the total
duration of the project. However, the other ants of the second colony move in
the sense to search a solution with minimum cost and maximum probability of
success. In this respect, each colony has its own pheromone matrix and each ant
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of particular colony builds its own solution by using only the pheromone and
heuristic informations of its colony. The algorithm can be outlined in terms of
the following features :

1. Initialization phase: initiate the pheromone matrix. The initial amount of the
pheromone is initialized to small positive value τ0. We have used two pheromone
matrices:
- Pheromone matrix task-resource MI : given n tasks and m resources
τij =

{
τ0 if resource rj contributes to the realization of task ti.
0 otherwise.

τij =

⎛⎜⎝
τ0 ... 0 τ0
0 τ0 ... 0
0 ... 0 τ0
τ0 0 ... 0

⎞⎟⎠
- Pheromone matrix task-task MII : given n tasks
τiu=

{
τ0 if task tu is a floating task.
0 otherwise.

τiu =

⎛⎜⎝
0 ... τ0 τ0
τ0 0 ... 0
0 ... 0 τ0
τ0 0 ... 0

⎞⎟⎠
2. Construction phase : the two Ant colonies are activated simultaneously and
uses independent pheromone trails:
- the ACS-cost: the goal is to minimize the cost function and to maximize the
probability of success. Each ant of the colony uses the pheromone matrix MI

and applies the transition rule Pij to choose the suitable combination of the
resources j to be assigned to a given task i. The transition rule of assigning task
i to resource j is Pij = τij ∗ ηj/

∑
l∈ℵj

(τil ∗ ηl) where the ℵj is neighborhood set
of the combination of resources.
- the ACS-time: the goal is to minimize the total duration of the project (the
makespan) Cmax. Each ant chooses randomly the combination of resources to be
assigned to a task ti and simultaneously use the pheromone matrix MII and ap-
plies the transition rule Piu to obtain a neighbor by the selection of floating task
tu to be realized at the same period that ti. Where Piu = τiu/(du ∗

∑
v∈ℵi

τiv)
with ℵi is the set of neighborhood of taks i.

3. Updating phase : the two pheromone matrices are updated locally and globally.
- local update: during the construction phase and after building a solution, the
pheromone trail intensity decreases over time to avoid convergence of the algo-
rithm to local optimum and favoring the exploration of not visited areas of the
search space. τij = (1− ρ)τij , where ρ is a parameter determine the evaporation
rate.
- global update: this procedure is applied at the end of the construction phase.
Only the best solutions are allowed to deposit pheromone in order to generate
new solutions in the neighborhood of these preferred ones and to favorate the
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diversification. τij = τij + ρ(1/S∗), where S∗ is the best value for respective
matrix and objective.

4. Filtering process: this procedure is applied in order to select the potentially
efficient solutions. In other words, we eliminate all the dominated solutions and
we retain only the non dominated one.

3.1 The Algorithm

– Initialization:
- Initialize the pheromone matrix MI

- Initialize the pheromone matrix MII

- assigning the ants to the starting task
-Ψ : set of potentially efficient solutions(Ψ ← ∅)
-ψt: set of feasible solutions according to the ACS-time (ψt ← ∅)
-ψc: set of feasible solutions according to the ACS-cost (ψc ← ∅)
-m: number of ants of each colony

– Iterative Process:
at iteration i
Step 1:
-for each ant f
- Perform ACS-cost(f, MI)
- Perform ACS-time(f, MII)
- ψc ← ψc ∪ ψc

i

- ψt ← ψt ∪ ψt
i

end for each
- Ψ ← ψt ∪ ψc

Step 2:
- perform global updating
Step 3:
- filtrate Ψ in order to have only the set of potentially efficient solutions
Step 4:
- If stopping criterion is met, stop
- Else i ← i + 1 go to step 1.

3.2 An Exemple n = 6

We apply The MOASA on a RCPSP with 6 tasks n = 6 and 4 resources k = 4.
The inputs to the algorithm are reported in table (1) that contains a set

of tasks to be accomplish by various combinations of resources. For example,
task T2 can be processed by three possibilities of resources’combinations: the
first consists in using 3 unities of R1 combined with 2 unities of R3, the second
consists in using 3 unities of R2 combined with 2 unities of R4 and the thrid
consists in using 5 unities of R4.

Applying the Ant Algorithm to the example in table (1) and varying the
number of ants, we obtain the solutions enumerated below:
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Table 1. An RCPS problem with n = 6 and k = 4

Tasks combinations of resources and quantities

t1 R1(2),R2(1) R4(4) -
t2 R1(3),R3(2) R2(3),R4(2) R4(5)
t3 R1(2),R2(1) R3(3) -
t4 R3(2),R4(2) R1(4) -
t5 R2(3),R4(1) R3(2) -
t6 R1(1),R2(1) R4(2) -

number of ants CPU time(s) ACS-cost ACS-time

2 0

⎛⎝ 45
148
0.7

⎞⎠ ⎛⎝ 30
150
0.66

⎞⎠
5 0

⎛⎝ 45
148
0.71

⎞⎠ ⎛⎝ 30
150
0.65

⎞⎠
10 0

⎛⎝ 45
142
0.62

⎞⎠ ⎛⎝ 30
148
0.72

⎞⎠
30 1

⎛⎝ 45
124
0.63

⎞⎠ ⎛⎝ 30
150
0.72

⎞⎠
50 2

⎛⎝ 45
124
0.53

⎞⎠ ⎛⎝ 30
150
0.72

⎞⎠
100 5

⎛⎝ 45
135
0.38

⎞⎠ ⎛⎝ 30
150
0.66

⎞⎠

One of the solution obtained in table

⎛⎝ 30
150
0.66

⎞⎠ corresponds to ACS-time

algorithm.

The total duration of the project (the makespan):

Cmax= max
∑6

i=1 li=30.

The cost of the utilization of the resources by the tasks:∑6
i=1

∑4
j=1

∑Mi

m=1 cij xijm = 150.

The probability of success:

1/6
∑

i∈6(
∑

m∈Mi

∑
j∈4 Pijxijm/

∑
m∈Mi

∑
j∈4 qijm) = 66%
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3.3 Case Studies

In this section, we generate a set of case studies by using an algorithm of con-
struction and we give the numerical experiments which are evaluated by our new
method as summarized in the following table: in the following tables we report
the numerical results provided by our Ant based method:

Problems P1 P2 P3 P4 P5 P6 P7 P8 P9

Number of tasks 6 6 6 6 11 30 50 50 50
Number of resources 3 5 4 5 12 4 3 5 3
Avg.number.predecessors (1-2) (1-2) (1-2) (2-3) (1-3) (1-2) (1-2) (1-2) (2-3)
number of ants 5 5 10 10 10 10 10 10 5
CPU time(s) 0 0 0 1 1 4 5 5 2

Problems P10 P11 P12 P13 P14 P15 P16 P17 P18

Number of tasks 50 60 100 100 100 100 150 200 250
Number of resources 10 4 3 3 5 15 15 20 15
Avg.number.predecessors (1-2) (1-2) (1-2) (2-3) (2-3) (1-2) (1-2) (1-2) (1-2)
number of ants 10 10 10 5 10 10 10 10 10
CPU time(s) 6 10 19 4 8 8 35 60 59

3.4 A RCPSP with n = 100

Numerical experiments have shown that the obtained number of potentially
efficient solutions depends on the number of resources.

Tasks Resources number of ants |PE| CPU time(s)
100 5 10 4 8
100 15 10 6 9

Generally, when the number of resources rises, the number of resources’
combinations rises. Hence, the number of diversified potentially efficient solu-
tions becomes larger.

3.5 A RCPSP with n = 200

Let us consider a RCPSP with 200 tasks. When varying the number of resources,
we obtain the following table:

k number of ants |PE| CPU time(s)
1 50 1 914
5 50 9 932
8 50 11 941
15 50 14 895
20 50 16 1070
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Thus, the example of
(

n = 200
k = 1

)
is a classical RCPS problem that corressponds

to the single mode RCPS problem. Each task has only one execution mode for
that we have only one potentially efficient solution. However, the examples of
k = {5, 8, 15, 20} correspond to the multi-mode RCPS problem where each task
has several execution mode and where each mode has different value of the cost,
the probability of success and the processing time Cmax. For example, for k = 5
we have 9 potentially efficient solutions and for k = 20 we have 16 potentially
efficient solutions and this due to the increased number of execution mode or
resources’combination where the number of resources rises.

4 Lower Bound

Generally, for the NP -hard problem it is very difficult to find the optimal so-
lutions. Thus, the solutions obtained from the heuristic methods represents a
subset of the optimal ones. Hence, we employed the lower bound (LB) in order
to frame the optimal solution of the multi-objective RCPS problem and to cal-
culate the Gap: average deviations of the solutions generated by our algorithm
from the lower bound value.

Gap = (Sol − LB)/LB (8)

For that, we establish a lower bound on the makespan and the COA cost objec-
tives denoted respectively by α1 and α2.

The lower bound of the makespan α1 was selected to be the critical path
length of the problem, which is equal to the technological earliest completion
time [5] [9] and the lower bound of the cost α2 was obtained by relaxing the
resources availability constraint (9):

N∑
i=1

Mi∑
m=1

xijm qijm ≤ Rj , j = 1,. . . ,k. (9)

Table 2. Average deviations from the lower bound

Problems α1 α2 Gapα1 Gapα2

P3 8 124 0.12 0
P5 26 68 0.23 0.13
P6 56 702 0.08 0.13
P10 44 982 0.27 0.05
P11 115 1594 0.04 0.13
P15 299 2630 0.1 0.14
P16 289 4694 0.09 0.2
P17 395 6357 0.08 0.17
P18 519 6148 0.15 0.17

Avg. Gap 0.13 0.12
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We drive in the table (2), a series of numerical examples for different RCPSPs.
As shown in table (2), for the problem P3 the Gapα2 is null, so the solution
coincides with the lower bound α2. Hence, our algorithm generate the optimal
solution for the COA cost.

The deviation from the LB for the two objectives is relatively small, for the
objective α1 the average Gap is about 0.13 and for α2 the average Gap is about
0.12. This values are considerably interesting.

5 Conclusion

The multi-objective Resource-Constrained Project Scheduling Problem is an
NP -hard and hard constrained problem. If we consider several objectives, the
problem becomes more complex due to the existence of a set of efficient solutions
instead of a single optimal solution. We developed a new approach based on the
ant system metaheuristic, denoted by MOASA, in order to generate the set of
potentially efficient solutions. We defined a two ant colony system to handle the
multiplicity of the objectives. We implemented our algorithm in C++ language
and generated the solutions for problems varying from 6 to 250. We explored the
RCPSP with multiple objectives through a compuatational experiment. We have
also developed lower bounds for the problem and compared the generated results
of MOASA to the lower bound in order to measure the degree of correctness of
the obtained set of potentially efficient solutions.
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Extending Classical Planning to the Multi-agent

Case: A Game-Theoretic Approach
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Abstract. When several agents operate in a common environment, their
plans may interfere so that the predicted outcome of each plan may
be altered, even if it is composed of deterministic actions, only. Most
of the multi-agent planning frameworks either view the actions of the
other agents as exogeneous events or consider goal sharing cooperative
agents. In this paper, we depart from such frameworks and extend the
well-known single agent framework for classical planning to a multi-agent
one. Focusing on the two agents case, we show how valuable plans can be
characterized using game-theoretic notions, especially Nash equilibrium.

1 Introduction

In classical planning, one is interested in computing plans enabling an agent to
reach her goals when performed. Among the standard assumptions in classical
planning are that the initial state of the world is known by the agent, that each
possible action is deterministic and its outcome can be perfectly predicted, that
the goals are binary ones (i.e., each state of the world is either a fully satisfactory
one or is fully unsatisfactory), and that the world is static in the sense that the
only way to change it is to perform one of the agent’s actions (thus, not only
exogeneous events cannot take place but the world has no intrinsic dynamics).

More sophisticated planning frameworks are obtained by relaxing some of the
assumptions above. In particular, in conformant planning, goals are still binary
ones and the considered plans are unconditional ones, but it is not assumed that
the initial state of the world is fully known or that the available actions are
deterministic ones.

In this paper, we extend the classical planning setting to a multi-agent plan-
ning one. We consider a group of agents where each agent has its own actions
and goals. Agents operate in a common environment. In this new setting, the
standard assumptions of classical planning are made. Nevertheless, such asump-
tions (especially, the static world one and the deterministic actions one) are not
enough to allow an agent to predict how the world will evolve after her plan is
executed. Indeed, agents’ plans interaction introduces some uncertainty. Each
agent generally ignores which plans the other agents will point out and how her
plan will be interleaved with theirs. We suggest to handle this issue thanks to
concepts from game theory; in the new setting we put forward, we show how
any agent can achieve a strategic diagnosis of the scenario under consideration,
from its game representation.

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 731–742, 2007.
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Our approach to classical, yet multi-agent planning is meaningful in scenarios
where it is not possible to sense/observe during plan execution (a usual assump-
tion in classical planning), or when constraints (on time or ressources) prevent
from online re-planning. As a matter of example, consider autonomous high-
speed flying robots or infobots working on highly volatile markets. For the sake
of simplicity, we focus on the case where each agent knows the goals of each
agent from the group, as well as the set of all plans each agent can point out.
Those are standard assumptions in game theory. We also assume that the agents
have the possibility to coordinate, which means that they can decide to build a
common plan. In this case the uncertainty of the execution is removed. Let us
consider a (toy) example as an illustration:

Example 1. Two agents, a robot-painter and an robot-electrician, operate in a
single room. The bulb has to be changed (which is the goal of the electrician) and
the ceiling has to be painted (which is the goal of the painter). The electrician
has a new bulb and the painter the materials needed to paint the ceiling. Now,
there is a single ladder in the room (the ladder is thus a critical resource).
Furthermore, the painter needs some light in the room in order to make her job.
The electrician can achieve three actions: TLe (“take the ladder”), CB (“change
the bulb”), RLe (“release the ladder”); and the painter three actions: TLp (“take
the ladder”), P (“paint”), RLp (“release the ladder”) ; P succeeds only if CB has
been performed before. TLe and TLp succeed only if the ladder is available (i.e.,
it has been released before).

The following interactions can be easily envisioned:

– If the painter takes the ladder first, she will not be able to achieve her goal
(since the bulb has to be changed first); if she does not release the ladder,
then the electrician will not be able to achieve her goal.

– If the electrician takes the ladder first, she will be able to achieve her goal;
then, the painter will be able to achieve her goal if and only if the electrician
releases the ladder. Accordingly, if both agents coordinate so as to execute
the joint plan TLe.CB.RLe.TLp.P, then both agents will be satisfied.

The key questions we address in this paper are the two following ones: for each
agent of the group, what are her “best” plans? And does a given plan require
coordination to be achieved in a satisfying way? Focusing mainly on the two
agents case, we show how a game can be associated to any multi-agent planning
problem; accordingly, the “best” plans for a rational agent can be characterized
using game-theoretic notions, especially Nash equilibrium. We also identify the
scenarios for which a cooperation between agents is likely to occur and show
how many strategic information can be derived from the corresponding game.
We finally show that several important settings where interacting agents are con-
sidered can be cast in our framework, including conformant planning [13,6,7,12]
and Boolean games [10,9,8,3].
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2 A Framework for Multi-agent Classical Planning

We consider a group of agents N = {1, 2, . . . , k}, where each agent is identified
by an integer. Let S be a finite (and non-empty) set of (abstract) states. Let us
denote by s0 the initial state, assumed to be the actual state of the world. s0 is
known by each agent from N .

Each agent of N is associated to a finite set of available actions:

Definition 1. (action) An action α is a mapping from S to S. The set of
actions of agent i is denoted by Ai.

In the following, an action will be denoted by a small Greek letter. Note that
the previous definition means that actions are deterministic and fully executable.
This last assumption is not very demanding, since if one wants to model that an
action is not executable in a state s, then this can be typically represented by
an action that does not change the world when performed in s, i.e. α(s) = s, or
that leads to a “sink” state, i.e., α(s) = s⊥, with s⊥ a non-goal state such that
β(s⊥) = s⊥ for every action β.

From her set of available actions, each agent can build some plans:

Definition 2. (plan) Let A be a set of actions. A plan p on A is denoted by
a (possibly empty) sequence of actions of A, i.e., p = α1.α2. · · · .αn, where each
αi ∈ A. Semantically, it is a mapping from S to S, defined from sequential
composition of its actions, i.e., for any s ∈ S, p(s) = s if p = ε (the empty
sequence), and p(s) = αn(. . . (α1(s)) . . .) otherwise. The set of all plans on A is
denoted by A∗.

Let p = α1. · · · .αn be a plan. A subplan of p is a subsequence of it, i.e., p′ =
α′

1. · · · .α′
m is a subplan of p if and only if there exists a strictly increasing

mapping t from {1, . . . , m} to {1, . . . , n} s.t. ∀q ∈ {1, . . . , m}, α′
q = αt(q).

Let p′ = β1. · · · .βr be another plan. p.p′ denotes the concatenation of p and
p′, i.e., p.p′ = α1. · · · .αn.β1. · · · .βr.

Definition 3. (solution plan) Let Gi ⊆ S be the set of goal states for agent
i1. Let s0 ∈ S be the initial state. A plan p is a solution plan for i iff p(s0) ∈ Gi.

In many cases, it is reasonable to assume that only a non-empty subset Πi of
Ai∗ is envisioned by agent i; in particular, due to computational limitations,
plans whose length exceeds a given preset bound can be discarded. Nevertheless,
it makes sense to assume that Πi is closed under subplan, i.e., when a plan p
belongs to Πi, then every subplan of it belongs to Πi as well; in particular, the
empty plan ε always belongs to Πi.

We are now ready to define the notions of agent representation and of multi-
agent planning problem:

Definition 4. (agent representation) Each agent i ∈ N is characterized by a
triple A i = 〈Ai,Πi, Gi〉 consisting of a set of actions Ai, a set of plans Πi ⊆ Ai∗

and a set of goal states Gi.
1 We also write Gi(s) = 1 when s ∈ Gi and Gi(s) = 0 otherwise.
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Definition 5. (multi-agent planning problem) A multi-agent planning
problem (MAPP) for a set N of agents is a triple 〈S, s0, {A i | i ∈ N}〉 consisting
of a set of states S, an initial state s0 ∈ S and a set of agent’s representations
A i (one per agent).

When several plans operating on a common environment are furnished (one plan
per agent), the final course of events corresponding to their joint execution is one
of their shuffles, unless a coordination is achieved. We denote by ⊕ the mapping
from A∗ × A∗ to 2A∗

that associates to any pair of plans pi and pj , the set
containing all their shuffles:

Definition 6. (shuffle, shuffle set) Let pi =αi
1. · · · .αi

n ∈ Ai∗, pj = αj
1. · · · .αj

p

∈ Aj∗. Then pi ⊕ pj is the set of plans p which are permutations of pi.pj for which
both pi and pj are subplans. Each p is said to be a shuffle of pi and pj, and pi⊕ pj is
called the shuffle set of pi and pj.

Observe that⊕ is a permutative function (i.e., it is associative and commutative),
so the previous definitions of shuffle and shuffle set can readily be extended to the
case of more than 2 agents. Observe also that ε (the empty sequence) is a neutral
element for ⊕. Note that such an execution model based on plans shuffling is at
work in concrete MAS, like Open Real-Time Strategy Games, see [5].

Example 2. Let us consider again the scenario given in Example 1. Let us call
p1 the robot-electrician plan: TLe.CB and p2 the robot-painter plan: TLp.P.
Then p1 ⊕ p2 = {TLe.CB.TLp.P, TLe.TLp.CB.P, TLe.TLp.P.CB, TLp.TLe.P.CB,
TLp.P.TLe.CB, TLp.TLe.CB.P}.

In the deterministic single agent case, evaluating a plan is quite easy. It is enough
to look at the predicted state resulting from the (virtual) execution of the plan:
what the agent forsees is what she gets. Characterizing the best plans is an easy
task for the agent under consideration: the better the reached state, the better
the plan. In the non-deterministic single agent case, the agent has to consider
all possible reached states, and to aggregate their scores in order to evaluate
a plan (many aggregation functions can be used, e.g. min (Wald criterion) for
reflecting the behaviour of a pessimistic agent, or using expected utility when
the scores are quantitative ones and non-deterministic actions are given by sets
of probability distributions).

In the multi-agent (deterministic) case, which is the case we consider in this
paper, the situation is similar to the non-deterministic single agent case in the
sense that each agent has to consider all possible reached states in order to
evaluate her plans. The main difference comes from the nature of uncertainty: in
our setting, the uncertainty results from the interaction with the plans furnished
by the other agents. Accordingly, each agent has to exploit the fact that she
knows the other agents’ goals and feasible plans in order to figure out what
are her “best” plans. Contrastingly, in the non-deterministic single agent case,
the need for handling non-determinism mainly comes from the impossibility to
predict in a precise way the result of some actions, like “tossing a coin”.



Extending Classical Planning to the Multi-agent Case 735

Example 3. If the robot-painter from Example 1 puts forward the plan p =
TLp.P.RLp, she is only ensured that the actions of p will be executed in the
desired order. While she knows the electrician representation, she does not know
which plan the electrician will choose (indeed, the set of feasible plans is not
a singleton in general). Even if this set is a singleton, the painter still ignores
the execution ordering, i.e., how her plan will interact with the electrician’s one.
Suppose that the electrician puts forward the plan p′ = TLe.CB.RLe. The joint
plan that will be finally executed can be any plan from p ⊕ p′. The resulting
uncertainty dissapears whenever the two agents coordinate to put forward a
common plan p′′= TLp.P.RLp.TLe.CB.RLe.

In our setting, a key issue for each agent is to evaluate the interaction of her
plans with the plans of the other agents. Formally, this calls for an evaluation
of each shuffle set. To this purpose, we define the notion of satisfaction profile
(SP), which is an abstract, summarized, view of shuffle sets evaluation for all
the agents of the group. Let us explain how we construct a SP in the two agents
situation. Given a pair of plans pi ∈ Πi and pj ∈ Πj, each shuffle from the
shuffle set pi ⊕ pj is a plan built from the actions of both agents; the execution
of such a plan leads to a specific final state which is more or less satisfactory
for each agent. The evaluation of a plan depends on the state resulting from
its execution. We can depict the evaluation of this shuffle set by agent i using
a 2-axis representation associating a dot on coordinate (x,y) to a shuffle p iff
Gi(p(s0)) = x and Gj(p(s0)) = y. Note that such a representation can be easily
generalised to a n-player situation.

Definition 7. (satisfaction profile) Given a MAPP for a set N = {1, . . . , m}
of agents, with an initial state s0, a satisfaction profile (SP) for the shuffle set
p1⊕p2⊕ . . .⊕pm where each pi ∈ Πi (with i ∈ {1, . . . , m}) is a set SP (p1⊕p2⊕
. . .⊕pm) of vectors (x1, . . . ,xm) such that (x1, . . . ,xm) ∈ SP (p1⊕p2⊕. . .⊕pm) if
and only if ∃p ∈ p1⊕p2⊕. . .⊕pm such that for all i ∈ {1, . . . , m}, Gi(p(s0)) = xi.

When we consider only two agents i and j, the set of all possible SPs is given on
Figure 1.

Numerous conclusions can be drawn from such SPs. Thus, some SPs are clearly
better for an agent than other ones. Clearly, SP 2, where all shuffles lead to
states that agent i evaluates to 1, is more interesting for her than SP 10, where
all shuffles lead to non-goal states (i.e., states that agent i evaluates to 0). Let
us also consider SP 3: for each of the two agents, at least one shuffle leads to a
bad state (i.e., a non-goal state), and at least one shuffle leads to a goal state.
This SP also shows the existence of at least one win-win shuffle (leading to the
(1, 1) vector). In such a case, if both agents are rational ones (i.e., they act so as
to make the world change to a goal state), then they have to coordinate. Indeed,
coordination is a way to get rid of uncertainty. If the two agents i and j put
forward two plans pi ∈ Πi and pj ∈ Πj in an independent way, they risk that
the joint execution from pi ⊕ pj leads to a state evaluated as (1, 0) or as (0, 1),
in which case one of the two agents will be unsatisfied. Contrastingly, if they
coordinate and jointly put forward a plan corresponding to a win-win shuffle,
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Fig. 1. All possible SPs

they are guaranteed to be both satisfied. So, when a shuffle leads to SP 3, both
agents have interest in offering (and accepting) a coordination.

In absence of further information (especially, a probability distribution on the
shuffle set), it makes sense to classify all the SPs w.r.t. an ordered scale reflecting
the agent’s opportunities. Let us take the point of view of agent i and show how
the SPs can be gathered and ordered:

Always Satisfied. SPs 1, 2, 5. For all those SPs, agent i is ensured to reach
her goals even if agent j does not accept any coordination. This is the most
favourable case for agent i.

Mutual Interest. SPs 3, 4, 9, 13, 14. For any of those SPs, some joint execu-
tions do well and others do bad (for both agents), but they all share the
(1, 1) vector, meaning that if the two agents coordinate, they can both reach
their goals.

Dependence. SPs 8, 11. For those SPs, the evaluation of the shuffle set for
the other agent does not depend on the joint execution. This means that, a
priori, there is no “objective” reason for the other agent to accept/decline a
coordination in order to help agent i to reach her goal.

Antagonism. SPs 12, 15. Those SPs reflect more problematic scenarios than
the previous ones since the interests of the two agents are clearly distinct.
This means that if one is satisfied, then the other one is not (in particular
the coordination (1, 1) is never an option). In such cases, agent i can just
hope that the joint execution will be good for her.

Always Dissatisfied. SPs 6, 7, 10. In every course of event, agent i will be
dissatisfied (no joint execution allows the agent’s goals to be reached). Such
SPs are clearly the worst ones for agent i.

Our claim is that, in absence of further information, such a classification is
the most rational one. Hence, we consider that each agent i has the following
preferences on the evaluations of shuffle sets:
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Always Satisfied > Mutual Interest >

Dependence > Antagonism > Always Dissatisfied

where X > Y meaning that SPs of class X are strictly prefered to SPs of class
Y , and that all SPs in a given class are indifferent. We can easily encode such a
total pre-order in a concise way, using numbers. Thus, we write ei(pi⊕pj) = 4 if
and only if SP (pi ⊕ pj) ∈ Always Satisfied(i), . . ., ei(pi ⊕ pj) = 0 if and only
if SP (pi ⊕ pj) ∈ Always Dissatisfied(i) (see Table 1).

Table 1. SPs evaluation

Class Evaluation

Always Satisfied 4

Mutual Interest 3

Dependence 2

Antagonism 1

Always Dissatisfied 0

Such evaluations ei(pi ⊕ pj) can be roughly seen as utilities, but they do not
depend solely on the goals of agent i. Note also that the exact numbers that
are used are not really important, just the order matters (our setting is not
quantitative at all).

Note finally that, while the definitions to come will use those evaluations
ei(pi ⊕ pj) and ej(pi ⊕ pj), such definitions are still meaningful when other
evaluations are used. Thus, if one disagrees with the proposed scale, the following
definitions still apply (as soon as all the possible pairs of plans can be evaluated
and totally ordered by the agents).

3 Solving the Game and Generating Strategic Diagnoses

From the previous construction we are now able to associate to each shuffle set
an evaluation for each agent. This allows us to model the interaction between
agents’ plans as a game in strategic form. Note that extensive form game cannot
work here since it cannot handle the shuffle situation (more exactly, it would
lead to awful games in extensive form since there are too many possibilities).

Indeed, to each MAPP for a set of two agents N = {1, 2}, one can associate
a game in strategic form, defined by the set N of players, the set of strategies
for each player (the sets Π1 and Π2 of plans in our case), and by an evaluation
function for each player that associates an evaluation to each profile of strategies
(the evaluations e1(p1 ⊕ p2) and e2(p1 ⊕ p2) of each shuffle set p1 ⊕ p2 in our
case).

Example 4. Let us consider the following MAPP: 〈S, s0, {A i | i ∈ {1, 2}}〉. A 1

= 〈A1,Π1 = {p1, p
′
1}, G1〉. A 2 = 〈A2,Π2 = {p2, p

′
2}, G2〉. Suppose that the

obtained SPs are the ones given in Figure 2.
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We can now associate to this MAPP the game in strategic form given in
Table 2.

Table 2. Associated game

p2 p′
2

p1 (3,3) (0,4)

p′
1 (4,0) (1,1)

In such a setting there are several candidates for the notion of “best plan”.
One of them is based on the security level of the plans.2

Definition 8. (security level of a plan) Given a MAPP for N = {1, 2}, the
security level of a plan pi of an agent i (i ∈ N) facing the set Πj of plans of
agent j (j = i) is defined as the minimum evaluation of the shuffle set between
plan pi and a plan of player j, i.e.,

SΠj (pi) = min
pj∈Πj

ei(pi ⊕ pj).

From the security levels of plans of an agent one can define the security level of
the agent:

Definition 9. (security level of an agent) Given a MAPP for N = {1, 2},
the security level of agent i facing the set Πj of plans of agent j, is the greatest
security level of agent i’s plans, i.e.,

SΠj (i) = max
pi∈Πi

SΠj (pi).

A solution of the game associated to a given MAPP can be defined as a pair of
plans 〈p1 ∈ Π1, p2 ∈ Π2〉 such that p1 (resp. p2) maximizes the security level of
agent 1 (resp. 2) facing Π2 (resp. Π1).

Such a notion of solution makes sense in our framework since it can be roughly
seen as a worst case analysis of the strategic interaction. Indeed, SPs are a
(summarized view of the) set of possible results, and as the SP classification we

2 While we focus on the 2-agent case, the following notions can be straightforwardly
extended to the n-agent case.
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pointed out mainly relies on worst case analysis, it is sensible to use security
levels as well to compare shuffles.

Nevertheless, security levels do not take into account all agents’ opportunities.
A much more widely accepted concept of solution is Nash equilibrium [11].

Definition 10. (Nash equilibrium) Given a MAPP for N = {1, 2}, a pair of
plans 〈p1 ∈ Π1, p2 ∈ Π2〉 is a Nash equilibrium if none of the agents can get a
better evaluation by choosing another plan, i.e., 〈p1, p2〉 is a Nash equilibrium if
and only if �p ∈ Π1 s.t e1(p⊕ p2) > e1(p1 ⊕ p2) and �p ∈ Π2 s.t. e2(p1 ⊕ p) >
e2(p1 ⊕ p2).

Example 5. Let us step back to the game given in Table 2. And let us consider
the pair 〈p′1, p′2〉. Agent 1 has no incentive to deviate alone from this pair. Indeed,
〈p1, p

′
2〉 leads her to a less favorable situation (e1(p1⊕p′2) < e1(p′1⊕p′2)). Similarly,

〈p′1, p2〉 is clearly less profitable to agent 2 than 〈p′1, p′2〉. Thus, we can conclude
that 〈p′1, p′2〉 is a Nash equilibrium. It is easy to check that it is the only Nash
equilibrium of this game.

In our setting, as in the general case in game theory, it may happen that no Nash
equilibrium (in pure strategies) exists, or that several Nash equilibria exist. When
there are several Nash equilibria, other criteria, such as Pareto optimality,3 can
be used so as to discriminate them further. The following propositions give two
sufficient conditions for the existence of such equilibria.

Proposition 1. Let us consider a MAPP for two agents 1 and 2 such that
G1 = G2. Then the associated game exhibits a Nash equilibrium.

In particular, if the agents share the same goals and if there exists a joint plan
that can achieve one of these goals, then our model will point it out as a solution.

Proposition 2. Let us consider a MAPP for two agents 1 and 2. Let us denote
by G1,+ (resp. G2,+) the subset of G1 (resp. G2) of states reachable using plans
on A1 (resp. A2) and by G1,2,+ (resp. G2,1,+) the subset of G1 (resp. G2) of states
reachable using plans on A1 ∪A2. If G1,+ = G2,+ = ∅ and G1,2,+ = G2,1,+ = ∅,
then the game associated to MAPP exhibits a Nash equilibrium.

Note that, in our setting, the “prisoner’s dilemma” situation, a particular game
situation widely studied (see e.g. [1,2]), can also be reached. Like in Example 4
(see Table 2): 〈p′1, p′2〉 is a Nash equilibrium, but the pair 〈p1, p2〉 which Pareto-
dominates (i.e. is more profitable for both agents than) 〈p′1, p′2〉 is not a Nash
equilibrium (so each agent is tempted to use the other plan).

Interestingly, each of the two agents i and j involved in the MAPP under con-
sideration can derive a number of strategic information from the corresponding
game. Due to space limitations, let us only focus on the notions of robust plan,
synergetic effect and independence, successively
3 A vector Pareto-dominates another one if each of the components of the first one is

greater or equal to the corresponding component in the second one.
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– A plan pi for agent i is robust with respect to agent j if and only if its joint
execution with any plan from agent j is ensured to reach the goals of i. In
the game in strategic form, such a plan corresponds to a row (or a column)
for which all the evaluations for this agent are 4: ∀pj ∈ Πj , ei(pi ⊕ pj) = 4.
Clearly enough, such a plan maximizes the security level of agent i. If a
robust plan exists for agent i, then no coordination is needed with agent j.

– The existence of a synergy between the two agents can also be easily derived
from the game in strategic form. Indeed, a synergetic effect for agents i
and j is possible if and only if there exist pi ∈ Πi and pj ∈ Πj such that
ei(pi ⊕ pj) > maxp∈Πiei({p}) and ej(pi ⊕ pj) > maxp∈Πjej({p}). Clearly
enough, no synergetic effect is possible when at least one of the two agents
has a robust plan.

– A notion of independence between agents, reflecting the fact that no inter-
action occurs, can also be easily derived from the game in strategic form.
Indeed, the two agents are independent if and only if ∀pi ∈ Πi, ∀pj ∈
Πj , ei(pi ⊕ pj) = ei({pi}) and ej(pi ⊕ pj) = ej({pj}).

4 Generality of the Framework

4.1 Conformant Planning

In conformant planning (see e.g. [13,6,7,12]), one is interested in determining
whether a sequence of actions (i.e., a plan) is robust (or conformant), i.e., whether
it will achieve the goal for all possible contingencies.

Definition 11. (conformant planning)

– A non-deterministic action α over a finite and non-empty set S of states is
a mapping from S to 2S \ {∅}.

– A non-deterministic plan π on a set A of non-deterministic actions (over S)
is a finite sequence of elements of A.

– A trajectory for a non-deterministic plan π = α1. · · · . αn given an initial
state s0 ∈ S is a sequence of states s0, . . . , sn+1 s.t. for every i ∈ 0 . . .n,
si+1 ∈ αi(si).

– A non-deterministic plan π = α1. · · · .αn on A is conformant for a goal
G ⊆ S given an initial state s0 ∈ S if and only if for every trajectory
s0, . . . , sn+1 for π, sn+1 ∈ G.

This problem can be easily cast into our framework. The key idea is to consider
every possible trajectory attached to a non-deterministic plan as the result of
a possible shuffle with a plan supplied by a second agent who plays the role of
Mother Nature; consider the first action α of the plan and assume it has at most
k possible outcomes. In this case, the second agent’s plan will start with actions
α′

1, ...,α
′
k wher each α′

j is the void action if α has not been executed (which is
encoded using a specific fluent) and achieves the jth outcome of α otherwise. It
mainly remains to repeat it for every action of the first plan and to update the
second agent’s plan by concatening it with the subplan obtained at each step.



Extending Classical Planning to the Multi-agent Case 741

4.2 Boolean Games

Definition 12. (Boolean game)[10,9,8,3] A Boolean game is a 4-tuple G =
〈N,V,Π,Φ〉 where N = {1, · · · , n} is a set of agents, V is a set of propositional
variables (decision variables), Π : N → 2V a control assignment function that
induces a partition {π1, · · · , πn} of V with πi the set of variables controlled by
agent i, Φ = {φ1, · · · ,φn} a set of formulas.

For a player i ∈ N , a strategy is a truth assignment of her controlled variables
(i.e., a mapping from Π(i) to {0, 1}). A strategy profile consists of the assign-
ments of all the considered agents, and can be viewed as a truth assignment on
V (i.e., a mapping from V to {0, 1}). Agent i is satisfied by a strategy profile P
if and only if P is a model of φi.

We can cast this framework into our one by associating to each variable v ∈ V
a deterministic action v+ which sets variable v to 1. To each boolean game
G = 〈N,V,Π,Φ〉 we can associate a MAPP 〈S, s0, {A i | i ∈ N}〉 where S is the
set of all truth assignments on V , s0 is the truth assignment s.t. s0(v) = 0 for
all v ∈ V . For every agent i, Ai = {v+ | v ∈ πi}, Πi is the subset of plans from
Ai∗ such that every action has at most one occurrence in each plan and Gi is
the set of models of φi.

5 Related Work and Conclusion

While much work has been devoted for the past few years to multi-agent plan-
ning, they typically assume that agents share some common goals. Relaxing this
assumption has a major impact on the possible approaches to tackle the problem
and calls for game-theoretic notions.

A closely related approach to our own one is described in [4]. In this paper,
policies at the group level are evaluated w.r.t. each agent and the “best ones”
are characterized as Nash equilibria, as it is the case in our work. The approach
nevertheless departs from our own one by a number of aspects:

– The framework under consideration is planning under uncertainty with full
observability and not classical planning. Non-deterministic actions are con-
sidered and a set of possible initial states (and not a single state) is known
by each agent. Policies are mappings associating actions to states and not
linear plans (sequences of actions), and the quality of a plan is not binary in
essence (contrariwise to what happens in the classical framework).

– Policies at the group level are part of the input and policies at the agent level
are not (while possible plans at the group level are characterized as shuffles
from plans at the agent level in our setting).

– Finally, no notion of strategical diagnosis is considered (especially, the need
for coordination cannot be derived from the input since policies at the agent
level are not relevant).

In this work we have proposed a framework to model multi-agent planning
problems. This framework allows to draw strategic conclusions about specific



742 R. Ben Larbi, S. Konieczny, and P. Marquis

interactions, and also allows to solve many situations. A main point is to show
how each MAPP into consideration can be associated to a suitable representation
(SP) which can be evaluated (as a number), and this allows for exploiting easily
notions and results from game theory. As far as we know, there is no similar
notions of SP and evaluations in the literature. Representation and algorithmic
aspects are issues for further research.
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Abstract. Boolean games are a logical setting for representing static games in a
succinct way, taking advantage of the expressive power and conciseness of propo-
sitional logic. A Boolean game consists of a set of players, each of them controls
a set of propositional variables and has a specific goal expressed by a proposi-
tional formula. There is a lot of graphical structures hidden in a Boolean game:
the satisfaction of each player’s goal depends on players whose actions have an
influence on these goals. Even if these dependencies are not specific to Boolean
games, in this particular setting they give a way of finding simple characteriza-
tions of Nash equilibria and computing them.

1 Introduction

The framework of Boolean games [1,2,3,4] allows for expressing compactly static
games with binary preferences: each player of a Boolean game controls a set of propo-
sitional variables, and a player’s preferences is expressed by a plain propositional for-
mula.1 Thus, a player in a Boolean game has a dichotomous preference relation: either
her goal is satisfied or it is not. This restriction may appear at first glance unreasonable.
However, many concrete situations can be modelled as games where agents have di-
chotomous preferences. Furthermore, Boolean games can easily be extended to allow
for non-dichotomous preferences, represented in some compact language for preference
representation (see [5]).

Using the syntactical nature of goals, we can represent graphically the dependencies
between players: if the goal (and hence the satisfaction) of a player i depends on some
variables controlled by a player j, then i may need some action of j to see her goal
satisfied. This dependency betweeen players is a central notion in graphical games
[6,7] as well as in [8] – see Section 6. Representing these dependencies on a graph
will allow us to compute pure-strategy Nash equilibria in a much simpler way, without
enumerating all combinations of strategies.

After recalling some background on Boolean games in Section 2, we introduce in
Section 3 the notion of dependency graph between players in Boolean games. In Sec-
tion 4 we show how this graph can be exploited so as to find simple characterizations
Nash equilibria in Boolean games, and we generalize some of these results for non-
dichotomous preferences in Section 5. Related work and further issues are discussed in
Section 6.

1 We refer here to the version of Boolean games defined in [4], which generalizes the initial
proposal [1].

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 743–754, 2007.
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2 n-Players Boolean Games

For any finite set V = {a,b, . . .} of propositional variables, LV denotes the propositional
language built up from V , the Boolean constants � and ⊥, and the usual connectives.
Formulas of LV are denoted by ϕ,ψ etc. A literal is a variable x of V or the negation
of a variable. A term is a consistent conjunction of literals. A clause is a disjunction of
literals. If α is a term, then Lit(α) is the set of literals appearing in α. If ϕ ∈ LV , then
Var(ϕ) denotes the set of propositional variables appearing in ϕ.

2V is the set of the interpretations for V , with the usual convention that for M ∈ 2V

and x ∈ V , M gives the value true to x if x ∈ M and false otherwise. |= denotes the
consequence relation of classical propositional logic.

Let V ′ ⊆ V . A V ′-interpretation2, also said partial interpretation, is a truth assigne-
ment to each variable of V ′, that is, an element of 2V ′ . V ′- interpretations are denoted by
listing all variables of V ′, with a ¯ symbol when the variable is set to false: for instance,
let V ′ = {a,b,d}, then the V ′-interpretation M = {a,d} assigning a and d to true and b
to false is denoted by abd. ⊆ X , then

If {V1, . . . ,Vp} is a partition of V and {M1, . . . ,Mp} are partial interpretations, where
Mi ∈ 2Vi , (M1, . . . ,Mp) denotes the interpretation M1∪ . . .∪Mp.

Finally, we denote the partial instantiation of a formula ϕ by an X-interpretation MX

by: (ϕ)MX = ϕv∈MX←�,v∈X\MX←⊥.

Given a set of propositional variables V , a Boolean game on V is a n-players game3,
where the actions available to each player consist in assigning a truth value to each
variable in a given subset of V . The preferences of each player i are represented by a
propositional formula ϕi formed upon the variables in V .

Definition 1. A n-player Boolean game is a 4-tuple (N,V,π,Φ), where N={1,2, . . . ,n}
is a finite set of players (also called agents); V is a finite set of propositional variables;
π : N �→ 2V is a control assignment function; Φ = {ϕ1, . . . ,ϕn} is a set of goals, where
each ϕi is a satisfiable formula of LV .

The control assignment function π maps each player to the variables she controls. For
the ease of notation, the set of all the variables controlled by i is written πi instead of
π(i). Each variable is controlled by one and only one agent, that is, {π1, . . . ,πn} forms
a partition of V .

Definition 2. Let G = (N,V,π,Φ) be a Boolean game. A strategy for player i in G is a
πi-interpretation . The set of strategies for player i in G is Si = 2πi A strategy profile s
for G is a n-uple s = (s1,s2, . . . ,sn) where for all i, si ∈ Si. S = S1× . . .×Sn is the set of
all strategy profiles.

Note that since {π1, . . . ,πn} forms a partition of V , a strategy profile s is an inter-
pretation for V , i.e., s ∈ 2V . The following notations are usual in game theory. Let

2 Note that a V -interpretation is an interpretation.
3 In the original proposal [1], Boolean games are two-players zero-sum games. However the

model can easily be generalized to n players and non necessarily zero-sum games [4].
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s = (s1, . . . ,sn) be a strategy profile. For any non empty set of players I ⊆ N, the pro-
jection of s on I is defined by sI = (si)i∈I and s−I = sN\I . If I = {i}, we denote the
projection of s on {i} by si instead of s{i}; similarly, we note s−i instead of s−{i}. πI

denotes the set of the variables controlled by I, and π−I = πN\I . The set of strategies for
I ⊆ N is SI = ×i∈ISi. If s and s′ are two strategy profiles, (s−I ,s′I) denotes the strategy
profile obtained from s by replacing si with s′i for all i ∈ I.

The goal ϕi of player i is a compact representation of a dichotomous preference
relation, or equivalently, of a binary utility function ui : S→{0,1} defined by ui(s) = 0
if s |= ¬ϕi and ui(s) = 1 if s |= ϕi. s is at least as good as s′ for i, denoted by s �i s′, if
ui(s)≥ ui(s′), or equivalently, if s |= ¬ϕi implies s′ |= ¬ϕi; s is strictly better than s′ for
i, denoted by s�i s′, if ui(s) > ui(s′), or, equivalently, s |= ϕi and s′ |= ¬ϕi.

This choice of binary utilities implies a loss of generality, even if some interesting
problems have naturally dichotomous preferences. We relax this assumption in Section
5, where we consider generalized Boolean games with nondichotomous preferences
expressed in some logical language for compact preference representation, as in [5].

3 Dependencies Between Players

We now focus on the syntactical nature of goals, which may help us identifying some
game-theoretical notions, as pure-strategy Nash equilibria. Intuitively, if the goal ϕi of
player i does not involve any variable controlled by player j, then the satisfaction of i
does not depend directly on j. This is only a sufficient condition: it may be the case that
the syntactical expression of ϕi mentions a variable controlled by j, but that this variable
plays no role whatsoever in the satisfaction of ϕi, as variable y in ϕi = x∧ (y∨¬y). We
therefore use a stronger notion of formula-variable independence [9].

Definition 3. A propositional formula ϕ is independent from a propositional variable
x if there exists a formula ψ logically equivalent to ϕ and in which x does not appear.4

Definition 4. Let G = (N,V,π,Φ) be a Boolean game. The set of relevant variables
for a player i, denoted by RVG(i), is the set of all variables v ∈ V such that ϕi is not
independent from v.

For the sake of notation, the set of relevant variables for a given Boolean game G will
be denoted by RVi instead of RVG(i). We now easily define the relevant players for a
given player i as the set of players controlling at least one variable of RVi.

Definition 5. Let G = (N,V,π,Φ) be a Boolean game. The set of relevant players for
a player i, denoted by RPi, is the set of agents j ∈ N such that j controls at least one
relevant variable of i: RPi =

⋃
v∈RVi

π−1(v)5.

4 We have this equivalent semantical characterization of formula-variable independence [9]: ϕ
is independent from x if there exists an interpretation s such that s |= ϕ and switch(s,x) |= ϕ,
where switch(s,x) is obtained by switching the value of x in s, and leaving the values of other
variables unchanged.

5 Again, the set of relevant players for a Boolean game G should be denoted by RPG(i): for the
ease of notation we simply write RPi.
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Example 1. 3 friends (1, 2 and 3) are invited at a party. 1 wants to go at this party. 2
wants to go at the party if and only if 1 goes, whereas 3 wants to go there, and prefers
that 2 goes to, and 1 doesn’t. This situation can be modelled by the following Boolean
game G = (N,V,π,Φ), defined by V = {a,b,c}, with a means “1 goes at the party”,
the same for b and 2; and for c and 3; N = {1,2,3}, π1 = {a}, π2 = {b}, π3 = {c},
ϕ1 = a, ϕ2 = a↔ b and ϕ3 = ¬a∧b∧ c.

We can see that 1’s satisfaction depends only on herself, 2’s depends on 1 and herself,
whereas 3’s depends on 1, 2 and herself. So, we have: RV1 = {a}, RV2 = {a,b}, RV3 =
{a,b,c}, RP1 = {1}, RP2 = {1,2}, RP3 = {1,2,3}.

This relation between players can be seen as a directed graph containing a vertex for
each player, and an edge from i to j whenever j ∈ RPi, i.e. if j is a relevant player of i.

Definition 6. Let G = (N,V,π,Φ) be a Boolean game. The dependency graph of a
Boolean game G is the directed graph (but not necessariyly acyclic) P = 〈N,R〉, with
∀i, j ∈ N, (i, j) ∈ R (denoted by R(i, j)) if j ∈ RPi.

Thus, R(i) is the set of players from which i may need some action in order to be
satisfied: j ∈ R(i) if and only if j ∈ RPi. Remark however that j ∈ R(i) does not imply
that i needs some action by j to see her goal satisfied. For instance, if π1 = {a}, π2 = {b}
and ϕ1 = a∨b, then 1 ∈ R(2); however, 1 has a strategy for satisfying her goal (setting
a to true) and therefore does not have to rely on 2.

We denote by R∗ the transitive closure of R. R∗(i, j) means that there exists a path
from i to j in R. Then, R∗(i) represents all players who have a direct or indirect influence
on i. R∗−1(i) represents all players on which i has a direct or indirect influence.

Example 1, continued: The dependence graph P induced by G is depicted as follows:

1 2

3

We have R−1(1) = {1,2,3}, R−1(2) = {2,3}, R−1(3) = {3}.
R∗(1) = {1}, R∗(2) = {1,2} and R∗(3) = {1,2,3}.
R∗−1(1) = {1,2,3}, R∗−1(2) = {2,3} and R∗−1(3) = {3}.

We easily obtain the following:

Proposition 1. Every dependency graph represents at least one Boolean game.

We now introduce the notion of stable set. A stable set is a set B of nodes such that all
the edges from nodes in B get to another node in B. The set of relevant players of a
stable set B are the players in B.

Definition 7. Let G = (N,V,π,Φ) be a Boolean game. B ⊆ N is stable for R if and
only if R(B)⊆ B, i.e. ∀ j ∈ B, ∀i such that i ∈ R( j), then i ∈ B.

Clearly, ∅ and N are stable, and the set of stable sets for a Boolean game is closed
under union and intersection. These four properties actually fully characterize the set of
coalitions that correspond to the set of stable coalitions for a Boolean game (recall that
a coalition is a subset of N).
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Proposition 2. Let C ⊂ 2N. There exists a Boolean game G such that C is the set of
stable sets for G if and only if C satisfies the following four properties: 1. ∅ ∈ C ; 2.
N ∈ C ; 3. If B, B′ ∈ C then B∪B′ ∈ C ; 4. If B, B′ ∈ C then B∩B′ ∈ C .

We now define the projection of a Boolean game G on the set of players B⊆ N:

Definition 8. Let G = (N,V,π,Φ) be a Boolean game, and B⊆N a stable set for R. The
projection of G on B is defined by GB = (B,VB,πB,ΦB), where VB =∪i∈Bπi, πB : B→VB

such that πB(i) = {v|v ∈ πi}, and ΦB = {ϕi|i ∈ B}.

Proposition 3. If B is a stable set, GB = (B,VB,πB,ΦB) is a Boolean game.

Proof: Let GB = (B,VB,πB,ΦB). We have to check that every goal ϕi for i ∈ B is a
formula of LVB , or can be rewritted equivalently as a formula of LVB . Suppose than
∃i ∈ B, ∃v ∈Var(ϕi) such that v ∈VB. So, ∀ j ∈ B, v ∈ π j. Let k ∈N \B such that v ∈ πk.
We know that v ∈ Var(ϕi), so either ϕi is independent from v, and then is logically
equivalent to a formula in which v does not appear; or ϕi is not independent from v,
and in this case v ∈ RVi and by definition k ∈ RPi. So, k ∈ R(i), but k ∈ B: this is in
contradiction with the fact that B is stable. �

Example 2. Let G = (N,V,π,Φ) be the Boolean game defined by V = {a,b,c}, N =
{1,2,3}, π1 = {a}, π2 = {b}, π3 = {c}, ϕ1 = a↔ b, ϕ2 = a↔¬b and ϕ3 = ¬c.

We have: RV1={a,b}, RV2={a,b}, RV3={c}, RP1={1,2}, RP2={1,2}, RP3={3}.
The dependency graph P of G follows. The sets of players B = {1,2} and C = {3}

are stable. We can decompose G in 2 Boolean games:

1 2

3

– GB = (B,VB,πB,ΦB), with B = {1,2},VB = {a,b}, π1 = a, π2 =
b, ϕ1 = a↔ b, ϕ2 = a↔¬b.

– GC = (C,VC,πC,ΦC), with C = {3}, VC = {c}, π3 = c, ϕ3 =¬c.

4 Nash Equilibria

Pure-strategy Nash equilibria (PNE) for n-players Boolean games are defined exactly
as usual in game theory (see for instance [10]), having in mind that utility functions
are induced from players’ goals ϕ1, . . . ,ϕn. A PNE is a strategy profile such that each
player’s strategy is an optimal response to the other players’ strategies.

Definition 9. Let G = (N,V,π,Φ) be a Boolean game with N = {1, . . . ,n}.
s={s1, . . . ,sn} is a pure-strategy Nash equilibrium (PNE) if and only if ∀i∈{1, . . . ,n},
∀s′i ∈ Si, ui(s)≥ ui(s−i,s′i).

The following simple characterization of PNEs is straightforward from this definition
([4]): a strategy profile s is a pure-strategy Nash equilibrium for G iff for all i∈N, either
s |= ϕi or s−i |= ¬ϕi holds.

These definitions lead to some obvious properties of pure-strategy Nash equilibria:
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Proposition 4. Let G be a Boolean game. If ∀i ∈ N, i ∈ RPi then every s ∈ S is a PNE.

If the irreflexive part of the players’ dependency graph P of a game G is acyclic, (i.e. if
there is no cycle of length ≥ 2), then we can use a procedure inspired by the “forward
sweep procedure” [11] to find the pure-strategy Nash equilibria. Let us see this on an
example.

Example 1, continued: The irreflexive part of the dependency graph P of G is acyclic.
RP1 = {1}, so a strategy profile s = (s1,s2,s3) is a PNE only if 1’s goal is satisfied, i.e.,
s1 = a. Then, 2 can choose her strategy, because her goal depends only on her and on
1. Thus, s is a PNE only if (s1,s2) |= (ϕ2)s1 , i.e., s2 = b. Finally, 3 knows the strategies
of 1 and 2, and therefore she knows her goal will never be satisfied whatever she does.
Therefore, G has 2 PNEs: {abc,abc}.

Proposition 5. Let G be a Boolean game such that the irreflexive part of the depen-
dency graph P of G is acyclic. Then, G has a PNE. Moreover, s is a PNE of G if and
only if for every i ∈ N, either (sR∗(i)\{i},si) |= ϕi or sR∗(i)\{i} |= ¬ϕi.

Obviously, when the irreflexive part of the dependency graph is not acyclic, the exis-
tence of PNE is no longer guaranteed (still, a game with a cyclic dependency graph may
have a PNE, as shown in Example 3).

Proposition 5 leads to the following corollary:

Corollary 1. If G is a Boolean game such that ∀i ∈ N, RPi = {i}, then s is a PNE if
and only if ∀i, s |= ϕi.

If G is a Boolean game such that ∀i ∈N, ∃ j ∈N such that RPi = { j}, then s is a PNE
if and only if s |= ϕ j .

Proposition 6. Let G = (N,V,π,Φ) be a Boolean game, B⊆ N a stable set for R, and
GB the projection of G on B. If s is a PNE for G, then sB is a PNE for GB.

Example 3. Let G = (N,V,π,Φ) be the Boolean game defined by V = {a,b,c,d}, N =
{1,2,3,4}, π1 = {a}, π2 = {b}, π3 = {c}, π4 = {d}, ϕ1 = a↔ b, ϕ2 = b↔ c, ϕ3 =¬d,
and ϕ4 = d↔ (b∧c). We have: RP1 = {1,2}, RP2 = {2,3}, RP3 = {4}, RP4 = {2,3,4}.

The dependency graph P of G is the following:

1 2

3 4

The set of players B = {2,3,4} is stable. GB = (B,VB,πB,ΦB)
is a Boolean game, with VB = {b,c,d}, π2 = b, π3 = c, π4 = d,
ϕ2 = b↔ c, ϕ3 = ¬d, and ϕ4 = d ↔ (b∧ c).
G has 2 PNEs : {abcd,abcd}, and {bcd,bcd} are 2 PNEs of GB

(and in this case, GB has no other PNEs).

As we can see on Example 2, the converse is not always true: C = {3} is stable, and the
Boolean game GC = (C,VC,πC,ΦC) has a PNE : {c}, but the game G has no PNE.

However, there exist simple cases for which the converse is true.
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Proposition 7. Let B and B′ be two stable sets of players, and let GB and GB′ be the
two Boolean games associated. Suppose than sB is a PNE for GB and sB′ is a PNE for
GB′ such that ∀i ∈ B∩B′, sB,i = sB′,i, where sB,i represents the strategy of player i for
the game GB. Then, sB∪B′ is a PNE for GB∪B′ .

Example 4. Let G = (N,V,π,Φ) be the Boolean game defined by V = {a,b,c}, N =
{1,2,3}, π1 = {a}, π2 = {b}, π3 = {c}, ϕ1 = a↔ c, ϕ2 = b↔¬c, and ϕ3 = c. We have:
RP1 = {1,3}, RP2 = {2,3}, RP3 = {3}. The dependency graph P of G is drawn below.
The sets of players B = {1,3} and C = {2,3} are stable. We have two new Boolean
games.

1

2 3

– GB = (B,VB,πB,ΦB), with B = {1,3}, VB = {a,c}, π1 = a, π3 = c, ϕ1 =
a↔ c and ϕ3 = c. GB has one PNE : {ac} (denoted by sB = (sB,1,sB,3)).

– GC = (C,VC,πC,ΦC), with C = {2,3},VC = {b,c}, π2 = b, π3 = c, ϕ2 =
b↔¬c, ϕ3 = c. GC has one PNE : {bc} (denoted by sC = (sC,2,sC,3)).

B∩C = {3}. But we have sB,3 = sC,3 = c: GB∪C has one PNE: {abc}.

We can easily generalize Proposition 7, with p stable sets covering the set of players:

Proposition 8. Let G = (N,V,π,Φ) be a Boolean game, and let B1 . . .Bp be p stable
sets of players, such that B1∪ . . .∪Bp = N. Let GB1 , . . . ,GBp be the p Boolean games
associated. If ∃sB1 . . . sBp PNEs of GB1 , . . . ,GBp such that ∀i, j ∈ {1, . . . p}, ∀k ∈ Bi∩B j,
sBi,k = sB j ,k, then s = (sB1 , . . . ,sBp) is a PNE of G.

As shown in Example 4, splitting a Boolean game makes the computation of Nash
equilibria easier. If we try to compute Nash equilibria in the original game, we have to
check if either s |= ϕi or s−i |= ¬ϕi for each of the 8 strategy profiles s and for each of
the 3 players i. So, we have to make 12 verifications for each player (8 for each strategy
profile in order to verify s |= ϕi, and 4 for each s−i to verify s−i |= ¬ϕi), then 36 for the
game in the worst case. Meanwhile, the computation of PNEs once the game is split is
much easier: for GB, from Proposition 5, we have to make 6 verifications for player 1 (4
to compute (s1,s3) |= ϕ1, and 2 to compute s3 |=¬ϕ1); and only 2 for player 3 (because
R∗(3) \ {3} = ∅). So, we only have to do 8 verifications in the worst case to find the
PNEs of GB, and the same for GC, which has an equivalent configuration. As we have to
check if the instanciation of player 3’s variables are the same for PNEs of the 2 games,
we have to make 17 verifications to compute PNEs of the game G.

5 Generalization to Non-dichotomous Preferences

This choice of binary utilities (where agents can express only plain satisfaction or plain
dissatisfaction, with no intermediate levels) is a loss of generality. We would like now
to allow for associating an arbitrary preference relation on S with each player. A pref-
erence relation � is a reflexive, transitive and complete binary relation on S. The strict
preference� associated with � is defined as usual by s1 � s2 if and only if s1 � s2 and
not (s2 � s1). Given a propositional language L for compact preference representation,
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a L-Boolean game is defined a 4-uple G = (N,V,π,Φ), where N = {1, . . . ,n}, V , and π
are as before and Φ = 〈Φ1, . . . ,Φn〉, where for each i, Φi is a compact representation,
in L, of the preference relation �i of agent i on S. We let Pre fG = 〈�1, . . . ,�n〉. Re-
mark that if LP is the purely propositional preference representation language, where a
(dichotomous) preference is represented by a propositional formula, then LP-Boolean
games are just standard Boolean games as defined in Section 2. See [5] for several
families of L-Boolean games.

We now have to generalize the dependency graph between players from Boolean
games to L-Boolean games, for an arbitrary language L. Recall that, in Section 3, a
player i was dependent on a player j if her propositional goal ϕi was dependent of one
of the variables that j controls. Therefore, what we have to start with is generalizing
formula-variable dependence to a dependency notion between a preference relation (or
a syntactical input in a compact representation language from which this preference
relation can be induced) and a variable. Several definitions have been considered in
[12], in the more general case where preference relations are partial preorders. In the
specific case where preference relations are complete preorders, however, there seems
to be only one suitable definition: a preference relation � depends on a propositional
variable x if there exists at least one state where the agent is not indifferent between this
state and the state obtained by switching the value of x:

Definition 10. A preference relation� on 2V depends on a propositional variable x∈V
if there exists a s ∈ S such that switch(s,x)�i s or switch(s,x)≺i s.

This definition extends naturally to inputs of preference representation languages: an
input Φ of a preference representation language L depends on x if the preference relation
� induced by Φ depends on x.

We are now in position of defining the dependency graph for a L-Boolean game:

Definition 11. Let G = (N,V,π,Φ) a L-Boolean game. The set of relevant variables
for a player i, denoted by RVi, is the set of all variables v ∈V such that Φi is dependent
on v. The set of relevant players for a player i, denoted by RPi, is the set of agents
j ∈ N such that j controls at least one relevant variable of i: RPi =

⋃
v∈RVi

π−1(v)

The dependency graph of a L-Boolean game is defined exactly as in Section 3.
These definitions do not depend on the language chosen for compact preference rep-

resentation. However, for the sake of illustration we give an example in which prefer-
ences are represented with prioritized goals (see [5]):

Definition 12. A prioritized goal base Σ is a collection 〈Σ1; . . . ; Σp〉 of sets of propo-
sitional formulas. Σ j represents the set of goals of priority j, with the convention that
the smaller j, the more prioritary the formulas in Σ j .

In this context, several criteria can be used in order to generate a preference relation
� from Σ. We choose here to stick to the leximin criterion (see [13,14,15]). In the
following, if s is an interpretation of 2V then we let Sat(s,Σ j) = {ϕ ∈ Σ j | s |= ϕ}.
Definition 13. Let Σ = 〈Σ1; . . . ;Σp〉, and let s and s′ be two interpretations of 2V .
The leximin preference relation is defined by: s �lex s′ iff ∃k ∈ {1, . . . , p} such that:
|Sat(s,Σk)|> |Sat(s′,Σk)| and ∀ j < k, |Sat(s,Σ j)|= |Sat(s′,Σ j)|.
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Note that �lex is a complete preference relation. Here is now an example within this
preference representation language:

Example 5. G = (N,V,π,Φ) where N = {1,2,3}, V = {a,b,c}, π1 = {a}, π2 = {b},
π3 = {c}, Σ1 = 〈a〉, Σ2 = 〈(b∨¬a);a〉 and Σ3 = 〈(c∨¬a);a〉. We draw below the
preference relations Pre f lex

G = 〈�lex
1 ,�lex

2 ,�lex
3 〉6.

P1
abc

abc

abc

abc

abc

abc

abc

abc

P2

abc

abc

abc

abc

abc

abc

abc

abc

P3

abc

abc

abc

abc

abc

abc

abc

abc

3 21
We have: RV1 = {a}, RV2 = {a,b}, RV3 = {a,c},
RP1 = {1}, RP2 = {1,2}, RP3 = {1,3}.

Definition 14. Let G = (N,V,π,Φ) be a L-Boolean game, and B ⊆ N a stable set for
R. The projection of G on B is defined by GB = (B,VB,πB,ΦB), where VB = ∪i∈Bπi,
πB(i) = {v|v ∈ πi}, and ΦB are the goals of players in B.

We can now generalize some properties found previously to these non-dichotomous
preferences. For example, Propositions 3, 5, 6, 7 and 8 can be easily generalized in this
framework.

Example 5, continued: The sets of players B = {1,2} and C = {1,3} are stable. We
have two new Boolean games:

GB = (B,VB,πB,ΦB), with B = {1,2}, VB =
{a,b}, π1 = a, π2 = b, Σ1 = 〈a〉, and
Σ2 = 〈(b∨¬a);a〉. The preference relations
Pre f lex

G = 〈�lex
1 ,�lex

2 〉 are drawn on the
right.

P1
ab

ab

ab

ab

P2

ab

ab

ab

ab

GB has one PNE : {ab} (denoted by sB = (sB,1,sB,2)).
GC = (C,VC,πC,ΦC), with C = {1,3}, VC =
{a,c}, π1 = a, π3 = c, Σ1 = 〈a〉 and
Σ3 = 〈(c∨¬a);a〉. The preference relations
Pre f lex

G = 〈�lex
1 ,�lex

3 〉 are drawn on the
right.

P1
ab

ab

ab

ab

P3

ac

ac

ac

ac

GC has one PNE : {ac} (denoted by sC = (sC,1,sC,3)).
B∩C = {1}. But we have sB,1 = sC,1 = a: GB∪C has one PNE: {abc}.

6 Arrows are oriented from more preferred to less preferred strategy profiles (s1 is preferred to
s2 is denoted by s1 → s2). To make the figures clearer, we do not draw edges that are obtained
from others by transitivity. The dotted arrows indicate the links taken into account in order to
compute Nash equilibria. For example, player 2 prefers abc to abc because |Sat(ab,Σ1

2)|= 1,
|Sat(ab,Σ2

2)| = 1 (both stratas of Σ2 are satisfied), and |Sat(ab,Σ1
2)| = 1, |Sat(ab,Σ2

2)| = 0
(only the first strata of Σ2 is satisfied).
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6 Conclusion

We have shown how the intuitive notion of dependency between players in a Boolean
game can be exploited so as to give simpler characterizations of pure-strategy Nash equi-
libria. Moreover, our properties not only hold for the standard version of Boolean game
(with propositional goals and dichotomous preferences) but also for generalized Boolean
games, where players’ preferences are expressed in a compact representation language.
Another class of games with dichotomous preferences shares a lot with Boolean games:
Qualitative Coalitional Games (QCG), introduced by [16]. In a QCG, each agent has a
set of goals, and is satisfied if one of her goals is achieved, but is indifferent on which
goal is, and on the number of goals achieved7. Thus agents have dichotomous prefer-
ences (as in the standard version of Boolean games - cf. Sections 2–4). A characteristic
function associates with each agent, or set of agents, the set of goals they can achieve.
The main difference between QCGs and BG is that characteristic functions in QCGs
are not monotonic, whereas utility functions are in Boolean games. However, we can
represent a QCG with monotonic characteristic function by a Boolean games.

Boolean games take place in a larger stream of work, that we may gather under the
generic name of compactly represented games. All frameworks for compactly repre-
sented games make use of notions of dependencies between players and/or actions that
have a lot in common with ours. Most of these frameworks, including [6,7,18], share the
following mode of representation of players’ utilities: the utility of a player i is described
by a table specifying a numerical value for each combination of values to each of the set
of variables that are relevant to i8. The representation of games with such utility tables is
called graphical normal form (GNF) in [8]. Dependency between players and variables
in such games naturally induce a dependency relation between players, in the same way
as we do (i depends on j if i’s utility table refers to a variable that is controlled by j).

Boolean games are very similar to these graphical games, except that the form cho-
sen for expressing compactly players’ preferences is logical. The logical form is some-
times exponentialy more compact than the graphical form: consider for instance the
dichotomous preference relation corresponding to the goal ϕ = x1⊕ . . .⊕ xp, where ⊕
is exclusive or. While the logical representation of uϕ is linear in p, its representation
by utility tables would be exponential in p, since each of the p variables is relevant
to the utility of the player. In the general case of non-dichotomous utility functions
or preference relations, the Boolean game framework, by allowing some flexibility on
the choice of the language for preference representation, is more general than that of
graphical games, where the format for expressing preferences is fixed. Moreover, solv-
ing games in logical form may benefit from the huge literature on SAT and related
algorithms for propositional logic.

The notion of dependency between players and variables in graphical games is used
for the very same purpose as our dependency graph, namely, to split up a game into a
set of interacting smaller games, which can solved more or less independently. [8] study
speficic restrictions on graphical games, either by bounding the size of players’ neigh-

7 In [17], QCGs are extended by allowing agents to have preferences over goals.
8 In multi-agent influence diagrams [6], a players’ utility is actually express in a more compact

way as the sum of local utilities, each corresponding to a smaller set of variables.
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bourhoods (the neighbourhood of a player i in a graphical game is the set of players
who potentially influence the utility of i), or by imposing that the dependency rela-
tion between players should be acyclic. They study the impact of such restrictions on
the complexity of checking the existence of a Nash equilibrium (or their computation).
Clearly, similar structural restrictions on Boolean games would probably allow for a
complexity fall with respect to the complexity results for the general case in [4]. This is
left for further study.

The work reported here is still preliminary and can be pursued in many other
directions.

First, apart of the structural restrictions mentioned just above, we may study the
impact of syntactical restrictions on propositional goals on the computation of Nash
equilibria and on the construction of the dependency graph. In [19], Sichman and Conte
introduced dependence graphs which can represent and/or dependencies9 on actions
needed to achieve an agent’s goal and on the agents who control these actions. In the
first case, this is similar to our set of relevant variables, and in the second case this
corresponds to our set of relevant players. Sichman and Conte’s ideas can be used for
introducing and/or dependencies in our framework, but using the syntactical form of the
goals. In [20], 3 notions of dependance are defined: the weak one is the same than our
(an agent i is dependent from a set of agents C if C can achieve i’s goal). The second
one, normal dependence, adds to weak dependence the condition that i cannot achieve
her goal by herself. Finally, the third one adds the fact that agents in C are the only ones
able to achive i’s goal. Following [19], [20] use an and-graph to reprensent weak/strong
dependence: for every coalition C, there is an and-edge from agent i, i ∈ C, to agent
j ∈ N if the agents in C can achieve the goal desired by the agent j. This notion of
dependence is the basis of their computation of admissible coalition under the do-ut-
des criterion (see [21]).

Second, while our Section 5 does not focus on particular language (prioritized goals
we used in an example just for the sake of illustration), we may want to study in further
detail the computation of Nash equilibria (using the structural properties of the game)
for some specific languages for preference representation (see [5] for the case of CP-
nets and prioritized goals). A particularly appealing language is that of weighted goals,
where a player’s utility function is represented using several propositional formulas,
each being attached with a numerical value (see [22]). This is especially interesting be-
cause this language generalizes the representation by utility tables in graphical games.

So far, Boolean games allow only for expressing static games (with simultaneous
moves by the players) and with complete information. Enriching Boolean games with
dynamicity and nature-driven uncertainty, as in multi-agent influence diagrams, is not
as simple as it looks at first glance, and is a challenging issue. Computing mixed strategy
Nash equilibria in Boolean games is another challenging issue.
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Abstract. Choquet or Sugeno fuzzy integrals are commonly used for
aggregating the results of different classifiers. However, both these inte-
grals belong to a more general class of fuzzy t-conorm integrals. In this
paper, we describe a framework of a fuzzy t-conorm integral and its use
for combining classifiers. We show the advantages of this approach to
classifier combining in several benchmark tests.
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1 Introduction

Combining several different classifiers in order to improve the quality of clas-
sification is a common approach today and many different methods have been
described in the literature. Out of these, fuzzy integral is often used. Although
there is a general class of fuzzy t-conorm integrals, introduced by Murofushi and
Sugeno [1], only two particular integrals (Choquet integral and Sugeno integral)
from this class are commonly used.

In this paper, we describe a framework of fuzzy t-conorm integral, investi-
gate which particular types of fuzzy t-conorm systems are useful for combining
classifiers, and perform tests on real data to show the performance of combining
classifiers by using fuzzy t-conorm integral.

The paper is structurred as follows: in Section 2, we introduce the formalism
needed for combining classifiers. Section 3 deals with fuzzy integrals and fuzzy
measures. Subsection 3.1 introduces the fuzzy t-conorm integral, Subsection 3.2
describes the way a fuzzy t-conorm integral can be used for combining classifiers,
and Subsection 3.3 investigates different t-conorm systems for integration and
considers which particular systems are useful for classifier combining. Section 4
contains experimental results, and finally, Section 5 then concludes the paper.
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2 Combining Classifiers

We define a classifier as a mapping φ : X → [0, 1]N , where X ⊆ IRn is a n-
dimensional feature space, and φ(x) = [µ1(x), . . . ,µN (x)] is a vector of “weights
of classification” of the pattern x to each class C1, . . . , CN . This type of classifier
is called measurement classifier [2] or possibilistic classifier [3] in the literature.

Whenever we want to use classifier combining to improve the quality of the
classification, first of all, we need to create a team of diverse classifiers φ1, . . . ,φk.
Most often, the team consists of classifiers of the same type, which differ only in
their parameters, dimensionality, or training sets – such a team is usually called
an ensemble of classifiers. The restriction to classifiers of the same type is not
essential, but it ensures that the classifiers’ outputs are consistent. Well-known
methods for ensemble creation are bagging [4], boosting [5], or multiple feature
subset (MFS) methods [6].

After we have constructed an ensemble of classifiers φ1, . . . ,φk, we have to use
some function A to aggregate the results of the individual classifiers to get the
final prediction, i.e. Φ(x) = A(φ1(x), . . . ,φk(x)), where Φ is the final aggregated
classifier. The output of an ensemble can be structured to a k×N matrix, called
decision profile (DP):

DP (x) =

⎛⎜⎜⎜⎝
φ1(x)
φ2(x)

...
φk(x)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
µ1,1(x) µ1,2(x) . . . µ1,N (x)
µ2,1(x) µ2,2(x) . . . µ2,N (x)

. . .
µk,1(x) µk,2(x) . . . µk,N (x)

⎞⎟⎟⎟⎠ , (1)

The i−th row of the DP (x) is an output of the corresponding classifier φi, and
the j−th column contains the weights of classification of x to the corresponding
class Cj given by all the classifiers.

Many methods for aggregating the ensemble of classifiers into one final clas-
sifier have been reported in the literature. A good overview of the commonly
used aggregation methods can be found in [3]. These methods comprise simple
arithmetic rules (voting, sum, product, maximum, minimum, average, weighted
average, cf. [3,7]), fuzzy integral [3,8], Dempster-Shafer fusion [3,9], second-level
classifiers [3], decision templates [3], and many others.

In this paper, we deal with the fuzzy integral for classifier combining. In
the literature, the Sugeno or Choquet integral are commonly used for classifier
aggregation, but there is also a more general framework for fuzzy integral by
Murofushi and Sugeno [1], which contains Sugeno and Choquet integral as a
special case. This framework is called fuzzy t-conorm integral, and is described
in the next section.

3 Fuzzy Integral and Fuzzy Measure

Through the rest of the paper, we use the following notation for common t-norms
and t-conorms:
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– Standard: x ∧S y = min(x, y),x ∨S y = max(x, y)
– �Lukasiewicz: x ∧L y = max(x + y − 1, 0),x ∨L y = min(x + y, 1)
– Product: x ∧P y = xy,x ∨P y = x + y − xy
– Drastic: x∧D y = x if y = 1, y if x = 1, and 0 otherwise; x∨D y = x if y = 0,

y if x = 0, and 1 otherwise.

In general, fuzzy integrals (see [10] for details) can be looked upon as ag-
gregation operators with respect to a fuzzy measure. The integrand (function
values to aggregate) is integrated with the the fuzzy measure (expressing the
importance of individual elements). A fuzzy measure is a generalization of the
classical probability measure (the difference is that it does not need to fulfil the
conditions of σ-additivity), and can be defined as follows:

Definition 1. Let X be a nonempty set, Ω a set of subsets of X, such that
∅, X ∈ Ω. A fuzzy measure over (X,Ω) is a function g : Ω → [0, 1], such that:

1. g(∅) = 0, g(X) = 1, and
2. if A,B ∈ Ω, A ⊆ B, then g(A) ≤ g(B).

The tuple (X,Ω, g) is called a fuzzy measure space.

If X = {x1, . . . ,xk} is a finite set with k elements and Ω is the power set (set
of all subsets) of X , then the fuzzy measure is determined by its 2k values.
Sugeno introduced the so-called λ-fuzzy measure [11], which needs only k values
g(x1) = g1, . . . , g(xk) = gk to be determined properly (these values are called
fuzzy densities), and the remaining values are computed using

g(A ∪B) = g(A) + g(B) + λg(A)g(B), (2)

where A,B ∈ Ω, A∩B = ∅, and λ is the only non-zero (if the fuzzy densities do
not sum to one; if they do, λ = 0) root greater than −1 of the equation

λ + 1 =
k∏

i=1

(1 + λgi). (3)

After we have defined a fuzzy measure, we can define the two commonly used
fuzzy integrals. These are Choquet fuzzy integral and Sugeno fuzzy integral.
Since for classifier combining X is a finite set, we restrict ourselves to so-called
simple functions:

Definition 2. A function f : X → [0, 1] is simple, if there exist n ∈ IN,
a1, . . . , an ∈ [0, 1], a1 ≤ a2 ≤ · · · ≤ an, and D1, . . . , Dn ⊆ X,Di ∩ Dj = ∅
for i = j, such that ∀x ∈ X :

f(x) =
n∑

i=1

ai1Di(x), (4)

where 1Di is the characteristic function of Di.
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Equivalent form of (4) is:

f(x) =
n∑

i=1

(ai − ai−1)1Ai(x), (5)

where a0 = 0 and Ai =
⋃n

j=i Dj.

Definition 3. Let g be a fuzzy measure from Def. 1, f a simple function with ai

and Ai ∈ Ω, i = 1, . . . n from Def. 2. Then the Sugeno integral of f with respect
to a fuzzy measure g, denoted as

∫
S fdg, is defined by:∫

S

fdg =
∨
S

n

i=1

(ai ∧S g(Ai)). (6)

Definition 4. Let g be a fuzzy measure from Def. 1, f be a simple function with
ai and Ai ∈ Ω, i = 1, . . . n from Def. 2. Then the Choquet integral of f with
respect to a fuzzy measure g, denoted as

∫
C fdg, is defined by:∫

C

fdg =
n∑

i=1

(ai − ai−1)g(Ai). (7)

3.1 The Fuzzy t-Conorm Integral

Although Sugeno and Choquet fuzzy integrals are used routinely in many appli-
cations, they belong to the class of the so-called fuzzy t-conorm integrals, which
were introduced in [1]. In this section, we present the framework of t-conorm
fuzzy integral for simple functions, following [10]. For details and further infor-
mation about the following definitions, refer to [1,10].

The individual types of fuzzy t-conorm integrals differ in the way how they
bind together the spaces of integrand, measure, and integral. To formalize this,
the spaces are linked together by the following definition.

Definition 5. Let ),⊥,⊥ be continuous t-conorms, each of which is either
Archimedean, or ∨S. Let ([0, 1],)), ([0, 1],⊥), and ([0, 1],⊥) denote the spaces
of values of integrand, measure, and integral, respectively. Let * : ([0, 1],)) ×
([0, 1],⊥)→ ([0, 1],⊥) be a non-decreasing operation in both variables satisfying
the following:

1. * is continuous on (0, 1]2,
2. a* x = 0 if and only if a = 0 or x = 0,
3. If x ⊥ y < 1, then ∀a ∈ [0, 1] : a* (x ⊥ y) = (a* x)⊥(a* y),
4. If a) b < 1, then ∀x ∈ [0, 1] : (a) b)* x = (a* x)⊥(b* x).

Then F = (),⊥,⊥,*) is called a t-conorm system for integration. If all the
three t-conorms ),⊥,⊥ are Archimedean, F is then called Archimedean.

Prior to defining the t-conorm integral for simple functions, we have to define
the pseudo-difference.
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Definition 6. Let ) be a t-conorm. An operation −� : [0, 1]2 → [0, 1], defined
as

a−� b = inf{c|b) c ≥ a}, (8)

is called pseudo-difference of a and b with respect to ).

Remark 1. Pseudo-difference is dual to the residue ⇒∧, defined as a ⇒∧ b =
sup{c|a ∧ c ≤ b}, ∧ being a t-norm.

Example 1. If ) = ∨S , then

a−∨S b =

{
a if a ≥ b

0 if a < b
(9)

Example 2. If ) = ∨L, then

a−∨L b = max(a− b, 0) (10)

Now we are ready to define fuzzy t-conorm integral.

Definition 7. Let (X,Ω, g) be a fuzzy measure space, F = (),⊥,⊥,*) a t-
conorm system for integration and f a simple function with ai and Ai, i = 1, . . . n
from Def. 2. The fuzzy t-conorm integral of f based on F with respect to g is
defined by: ∫

F
f * dg = ⊥n

i=1((ai −� ai−1)* g(Ai)). (11)

Example 3. For F = (∨S ,∨S ,∨S ,∧S), we get the Sugeno integral.

Example 4. For F = (∨L,∨L,∨L, ·), where · is the ordinary multiplication, we
get the Choquet integral.

3.2 Using Fuzzy Integral for Classifier Aggregation

Suppose we have a team of classifiers φ1, . . . ,φk : X → [0, 1]N and a t-conorm
system for integration F = (),⊥,⊥,*). For a given pattern x ∈ X , we organize
the outputs of the classifiers in the team to a decision profile (1) DP (x), and
for each class Cj , j = 1, . . . , N , we fuzzy-integrate the j-th column of DP (x),
resulting in the aggregated weight of the classification of x to the class Cj .

In this case, the space (universe) X from Def. 1 and 2 is the set of all classifiers,
i.e. X = {φ1, . . . ,φk}, and the j-th column of DP (x) is a simple function f :
X → ([0, 1],)).

To obtain ai, Di, Ai, i = 1, . . . , k from Def. 2, we sort the values in j-th column
of DP (x) in ascending order, and we denote the sorted values a1, . . . , ak. In
other words, a1 is the lowest weight of classification of x to Cj (acquired by
some classifier, which we will denote φ(1)), a2 the second lowest (acquired by
φ(2)), and so on.
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Using this notation, f(φ(i)) = ai, and moreover

f(x) =
k∑

i=1

ai1Di(x) =
k∑

i=1

(ai − ai−1)1Ai(x), (12)

where x ∈ X = {φ1, . . . ,φk}, and a0 = 0 ≤ a1 ≤ a2 ≤ · · · ≤ ak, Di = {φ(i)},
Ai =

⋃k
l=i Dl, which corresponds to Def. 2.

So far, we have properly determined the function f to integrate (integrand),
and the space of integrand values ([0, 1],)). Now we need to define a fuzzy
measure g. Again, let X = {φ1, . . . ,φk} be the universe, and let Ω be the power
set of X , and g : Ω → ([0, 1],⊥) a mapping satisfying Def. 1. In the rest of the
paper, we use the λ-fuzzy measure, but any other fuzzy measure could be used.

As can be seen from (11), we do not need all the 2k values of g for the
integration – only g(Ai), i = 1, . . . , k are needed. Let g be a λ-fuzzy measure,
defined in Section 3 (replacing gi by the permuted g(i)), where g(i) = g(φ(i)) ∈
[0, 1], i = 1, . . . , k represent the importance of individual classifiers. These values
are called fuzzy densities, and can be defined for example as g(i) = 1−Err(φi),
where Err(φi) denotes the error rate of classifier φi. To compute all the necessary
values of g, we use the following recursive approach based on (2), for l = k, . . . , 3:

g(Ak) = g(Dk) = g({φ(k)}) = g(k)

g(Al−1) = g(Dl−1 ∪Al) = g({φ(l−1), . . . ,φ(k)}) =
= g(Al) + g(l−1) + λg(Al)g(l−1)

. . .

g(A1) = g(D1 ∪A2) = g({φ(1), . . . ,φ(k)}) =
= g(A2) + g(1) + λg(A2)g(1)

(13)

Now, having properly identified the function to integrate f and the fuzzy
measure g, we can finally compute the fuzzy t-conorm integral of f based on
F , with respect to g, according to (11). The result of the integration is the
aggregated weight of the classification of x to the class Cj . The whole process is
summarized in Fig. 1.

3.3 Classification of t-Conorm Systems

The framework of fuzzy t-conorm integral provides many different types of fuzzy
integrals, depending on the t-conorm system for integration used. However, not
all combinations of t-conorms give t-conorm systems for integration, and more-
over, not all t-conorm systems for integration provide useful approach to com-
bining classifiers. In this section, we classify the t-conorm systems into classes,
and investigate each class in detail.

One important class of t-conorm systems are Archimedean systems, i.e. F =
(),⊥,⊥,*), where all the t-conorms are Archimedean. As noticed in [10], if F
is Archimedean, the corresponding fuzzy integral can be expressed as Choquet
integral (and hence it has nearly the same properties as the Choquet integral).
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Input: Team of classifiers φ1, . . . , φk, t-conorm system for integration F , fuzzy densities
g1, . . . , gk (e.g. gi = 1 − Err(φi)), pattern x to classify.
Output: Φ(x) = [µ1(x), . . . , µN (x)], i.e. a vector of weights of classification of x to all
the classes C1, . . . , CN .

1. Let each of the classifiers φ1, . . . , φk predict independently, resulting in a decision
profile DP (x), of the form (1).

2. If
∑k

i=1 gi = 1, set λ = 0, otherwise calculate λ as the only non-zero root greater
than −1 of the polynomial equation (2).

3. For j = 1, . . . , N aggregate the j-th column of DP (x) (i.e. weights of classification
of x to Cj from all the classifiers) using fuzzy t-conorm integral:

(a) Sort the values in the j-th column of DP (x) in ascending order, denoting
the sorted values a1, . . . , ak. The corresponding classifiers will be denoted
φ(1), . . . , φ(k), and the corresponding fuzzy densities g(1), . . . , g(k).

(b) Using (13), compute g(Ai), i = 1, . . . , k, where Ai = {φ(i), . . . , φ(k)}.
(c) Using (11), compute the aggregated weight of classification of x to class Cj :

µj(x) =

∫
F

f � dg = ⊥n
i=1((ai −� ai−1) � g(Ai)). (14)

4. End with output Φ(x) = [µ1(x), . . . , µN (x)].

Fig. 1. Aggregation of classifier team using fuzzy t-conorm integral with respect to a
λ-fuzzy measure

Let h�, h⊥, h⊥ denote the generators of ),⊥,⊥, respectively, then the following
holds: ∫

F
f * dg = h−1

⊥

[
min

(
h⊥(1),

∫
C

h� ◦ fd(h⊥ ◦ g)
)]

, (15)

where ◦ denotes function composition. Therefore, we will focus our attention to
non-Archimedean t-conorm systems in the rest of the paper.

From the non-Archimedean t-conorm systems (i.e. at least one of the t-
conorms is ∨S , and the rest is Archimenean), we will set aside systems with
) = ⊥. The reason for this is that if integral is regarded as mean value of in-
tegrands, then the spaces of integrand ([0, 1],)) and integral ([0, 1],⊥) must be
the same, i.e. ) = ⊥ (see [1,10] for details). However, this class of t-conorm
systems is not as large as it may seem, because of the following proposition.

Proposition 1. Let F = (),⊥,⊥,*) be a non-Archimedean t-conorm system
for integration, such that ) = ⊥, and * is not constant in the second argument
on (0,1]. Then ) =⊥= ⊥ = ∨S.

Proof. Since F is not Archimedean, i.e. at least one of ),⊥,⊥ is ∨S and the
rest is Archimedean, and ) = ⊥, there are only two situations possible:

– F = (),∨S ,),*), where ) is ∨S , or continuous Archimedean t-conorm.
Suppose that ) = ∨S , i.e. it is continuous and Archimedean. According to
Req. 3 from Def. 5, when x ∨S y < 1, then ∀a ∈ [0, 1]
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a* (x ∨S y) = (a* x)) (a* y). (16)

Let x = y < 1. Then (16) reduces to

a* x = (a* x)) (a* x). (17)

This conflicts with the fact that) is Archimedean, i.e. u)u > u ∀u ∈ (0, 1).
– F = (∨S ,⊥,∨S ,*), where ⊥ is ∨S , or continuous Archimedean t-conorm.

Suppose that ⊥ = ∨S , i.e. it is continuous and Archimedean. According to
Req. 3 from Def. 5, when x ⊥ y < 1, then ∀a ∈ [0, 1]

a* (x ⊥ y) = (a* x) ∨S (a* y). (18)

Let x = y, such that x ⊥ x < 1. Then (18) reduces to

a* (x ⊥ x) = a* x. (19)

Since ⊥ is Archimedean, this is with conflict with the fact that * is not
constant in the second argument on (0,1].

In both cases ) =⊥= ⊥ = ∨S , which proves the proposition. +,

We could still construct t-conorm systems for integration of the form F = (∨S ,⊥
,∨S ,*), with * constant in the second argument (because then (19) holds), i.e.,
in fact, integrals with no respect to the measure. However, this is not very useful.
Fuzzy t-conorm systems of the form F = (∨S ,∨S ,∨S ,*) are called ∨S-type
systems. The following proposition expresses that for ∨S-type systems, Req. 3
and 4 from Def. 5 are satisfied automatically.

Proposition 2. Let * : [0, 1] × [0, 1] → [0, 1] be a non-decreasing operation
satisfying requirements 1 and 2 from Def. 5. Then F = (∨S ,∨S ,∨S ,*) is a
t-conorm system for integration.

Proof. We have to prove the Req. 3 and 4 from Def. 5. Since the proof of the
latter is analogous to the proof of the former, we will prove only Req. 3, i.e.:
when x ∨S y < 1, then ∀a ∈ [0, 1] : a * (x ∨S y) = (a * x) ∨S (a * y). Without
loss of generality, we can assume that x ≤ y. This implies x ∨S y = y < 1,
and a * (x ∨S y) = a * y. Since * is non-decreasing, (a * x) ≤ (a * y), thus
(a* x) ∨S (a* y) = a* y, which proves the proposition. +,

Among ∨S-type systems, quasi-Sugeno systems, for which * = ∧, ∧ being a
t-norm, play an important role. However, not all t-norms can be used:

Proposition 3. F = (∨S ,∨S ,∨S ,∧), where ∧ is a t-norm, is a t-conorm system
for integration if and only if ∧ is continuous on (0, 1]2 and without zero divisors.

Proof. Recall that an element a ∈ (0, 1) is called a zero divisor of a t-norm ∧ if
there exists some x ∈ (0, 1), such that a ∧ x = 0. The implication ⇒ is trivial.
The other implication can be proved using Prop. 2 (with taking in mind that
a ∧ 0 = 0 for any t-norm ∧). +,
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For example the �Lukasiewicz or the drastic t-norms have zero divisors and hence
cannot be used in quasi-Sugeno systems. We can summarize the previous to
create the following classification of t-conorm systems for integration:

1. Archimedean systems – can be expressed using Choquet integral, with Cho-
quet integral as a special case.

2. Non-Archimedean systems
(a) Systems with ) = ⊥ – lead to ∨S-type systems, with quasi-Sugeno

systems as a special case (and Sugeno integral in particular).
(b) Systems with ) = ⊥ – do not express mean value of integrand.

4 Experiments

In this section, we present results of our experiments with quasi-Sugeno t-conorm
systems. The first experiment shows the advantage of quasi-Sugeno integral over
Sugeno integral, because we can fine-tune the t-norm ∧ for particular data. The
second experiment studies performance of quasi-Sugeno integral for “easy” data.

4.1 Experiment 1

In this scenario, we used quasi-Sugeno integral with Aczel-Alsina t-norm, i.e.
a t-conorm system F = (∨S ,∨S ,∨S ,∧AA

α ), and compared its performance for
different parameters of the t-norm on two datasets. The Aczel-Alsina t-norm [12]
with parameter α is defined as follows:

x ∧AA
α y =

⎧⎪⎨⎪⎩
x ∧D y if α = 0
x ∧S y if α = ∞
exp(−((− log x)α + (− log y)α)1/α) if α ∈ (0,∞)

(20)

For our experiment, we chose α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.5,
2, 3, and α = ∞ (which corresponds to the Sugeno integral). Since ∧D is not
continuous on (0, 1]2, α = 0 can not be used. The classifiers φ1, . . . ,φk were
Bayesian classifiers [13], which used all possible subsets of features (i.e. all possi-
ble 1-D Bayesian classifiers, 2-D, 3-D, and so on). The ensemble was aggregated
according to the algorithm in Fig. 1.

The results of the testing on two bechmark datasets, Phoneme (from the
Elena database, [14]) and Pima (from the UCI repository, [15]) datasets, are
shown in Fig. 2 and 3. The figures show average error rates (in %) ± standard
deviations of the aggregated classifiers, measured from 10-fold crossvalidation for
different α (solid line). The constant dashed line represents result of the unique,
non-combined Bayesian classifier which uses all features.

In the case of the Phoneme dataset, the lowest average error rate was achieved
by quasi-Sugeno system with ∧AA

0.6 – the improvement over non-combined classi-
fier was about 4% (proved as significant improvement by the two sample t-test
against the one-tailed alternative [achieved significance level was 0.00005]). For
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Fig. 2. Results for the Phoneme dataset. Solid line – ensemble aggregated using fuzzy
t-conorm integral with F = (∨S , ∨S, ∨S , ∧AA

α ), dashed line – non-combined classifier.

the Pima dataset, the improvement of about 1%, achieved by ∧AA
0.7 , did not prove

as statistically significant (significance level was 0.12).
What is even more important is that by using t-conorm integral (quasi-Sugeno

with Aczel-Alsina t-norm in this case) we can fine-tune the parameters to obtain
better results than those of the Sugeno integral. For both datasets, the improve-
ment over Sugeno integral was about 1%, all that achieved without increasing
the complexity of the algorithm. Although this improvement did not prove as
statistically significant, achieved significance level was 0.15.

4.2 Experiment 2

A common drawback of many methods for combining classifiers is that if the
data to classifiy are “easy”, then the aggregated classifier often achieves worse
results than a simple, non-combined classifier. In this experiment, we will show
that for easy data (represented by the 4-dimensional Iris dataset from [15]), we
can fine-tune the t-conorm system for integration, so that the performance of
the aggregated classifier is only a slightly worse than the performance of non-
combined classifier.

We created an ensemble of Bayesian classifiers using all possible subsets of
features, resulting in 15 different classifiers. We aggregated the ensemble using
quasi-Sugeno t-conorm integral with two different t-norms – Aczel-Alsina (which
approaches ∧D with α → 0), and Frank t-norm (which approaches ∧L with
α→∞), defined as:

x ∧F
α y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x ∧S y if α = 0
x ∧P y if α = 1
x ∧L y if α = ∞
logα

(
1 + (αx−1)(αy−1)

α−1

)
if α ∈ (0,∞),α = 1

(21)
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Fig. 3. Results for the Pima dataset. Solid line – ensemble aggregated using fuzzy
t-conorm integral with F = (∨S , ∨S, ∨S , ∧AA

α ), dashed line – non-combined classifier.

Fig. 4. Results for the Iris dataset. Solid line – ensemble aggregated using fuzzy t-
conorm integral with F = (∨S , ∨S, ∨S , ∧AA

α ) (left) or F = (∨S, ∨S , ∨S , ∧F
α ) (right),

dashed line – non-combined classifier.

In Fig. 4, the results for system with ∧AA
α for α = 0.1, 0.15, 0.2, 0.3, 0.4, 1, 3,

and α = ∞ (Sugeno integral), and ∧F
α for α = 0 (Sugeno integral), α = 0.01, 0.1,

1, 10, 100, 1000, 10000 are shown. We measured average error rates (in %) ±
standard deviations from 10-fold crossvalidation (solid line); the dashed line cor-
responds to the unique, non-combined Bayesian classifier which uses all features.

The Iris dataset contains only about 150 patterns, so the results of the cross-
validation have big variance. We can see that Sugeno integral achieves average
error rate about 12-14%. If we use quasi-Sugeno system with Frank t-norm, then
as the t-norm approaches ∧L, the average error rate decreases (∧L cannot be used
because it has zero divisors). Even better results were achieved by quasi-Sugeno
system with Aczel-Alsina t-norm approaching ∧D.
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5 Summary

In this paper, we described the fuzzy t-conorm integral and its use for com-
bining classifiers. Different classes of t-conorm systems for integration were dis-
cussed. We showed that although the framework of fuzzy t-conorm integral is
very general, only few t-conorm systems for integration can be used for combin-
ing classifiers (although the question which specific t-conorm system to use for a
specific application remains unresolved). Still the fuzzy t-conorm integral adds
additional degrees of freedom to classifier combining, and so it can provide more
succesful way to classifier combining than Sugeno or Choquet fuzzy integral.
That was confirmed also by tests on three benchmark datasets.
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Abstract. Weighted fuzzy logic programs increase the expressivity of
fuzzy logic programs by allowing the association of a significance weight
with each atom in the body of a fuzzy rule. In this paper, we propose
a prototype system for the practical integration of weighted fuzzy logic
programs with relational database systems in order to provide efficient
query answering services. In the system, a dynamic weighted fuzzy logic
program is a set of rules together with a set of database queries, fuzzifica-
tion transformations and fact derivation rules, which allow the provided
set of rules to be augmented with a set of fuzzy facts retrieved from
the underlying databases. The weights of the rules may be estimated by
a neural network-based machine learning process using some specially
designated for this purpose training database data.

1 Introduction

The handling of uncertainty is an important requirement for logic program-
ming because in some applications it is difficult to determine the precise truth
value of facts. Using fuzzy logic, logic programming can be provided with the
ability to reason with uncertain knowledge (e.g. [14], [9], [6]). Weighted fuzzy
logic programs [4], [2] are a further extension of fuzzy logic programming frame-
works which, by introducing significance weights, allow each atom in a rule
body to have a different importance. For example, the rule 1.0 : Happy(x) ←
∧̃((0.3; Rich(x)), (0.8;Healthy(x))) may model the fact that health is more im-
portant than wealth for the happiness of a person. The semantics of weighted
fuzzy logic programs have been studied within the model-theoretic and fixpoint
paradigms. Query answering is more elaborate than in classical logic because
all the alternative ways of inferencing a fact must be considered [9]. Based on
resolution and tabling methods [12], [5], a sound and complete top-down query
answering procedure for weighted fuzzy logic programs is outlined in [3].

� A. Chortaras is on a scholarship from the Onassis Public Benefit Foundation. This
work is partially funded by the X-Media and ASSIST projects, sponsored by the
European Comission under contract no. IST-FP6-26978 and IST-2002-027510 re-
spectively.

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 767–778, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



768 A. Chortaras, G. Stamou, and A. Stafylopatis

Despite the increased expressivity of weighted fuzzy logic programs, their use-
fulness can be exploited in practice only if they can be integrated with stores of
already existing knowledge so as to provide an additional inference service layer
upon them. In classical logic, database systems equipped with a rule language
and inference engine are known as deductive databases and datalog has been
used as the rule language, whose semantic relation with relational algebra is a
well-studied problem [13]. Because deductive databases are a mature field, even
in recent ontology-based systems, it is desirable to reduce an ontology-based
knowledge base to a (disjunctive) datalog program (e.g. [11], [7]), so that query
answering over the ontology can be performed using well-established deductive
database techniques.

Another important issue for the use of weighted fuzzy logic programs in such
a setting is the availability of techniques for computing the weights of the rules
so as to obtain programs that effectively describe the underlying knowledge.

Based on the two above-outlined directions, we propose a practical framework
for the integration of weighted fuzzy logic programs with relational database
systems, so that the databases may be used as the source of ground facts, on the
one hand for learning the weights and on the other for performing the knowledge
inferencing procedure modeled by the rules of a weighted fuzzy logic program.
The aim is to achieve this integration in a way as transparent as possible for the
user and without resorting to any intervention in the databases. The final goal
is to provide an effective query answering service over the integrated adaptable
weighted fuzzy logic program and database systems.

The rest of the paper is as follows: section 2 provides an overview of weighted
fuzzy logic programs, section 3 presents the way the database integration is
achieved, section 4 the overall system architecture and section 5 discusses the
rule adaptation process. Section 6 outlines an example use case and section 7
concludes the paper.

2 Weighted Fuzzy Logic Programs

2.1 Syntax and Semantics

A fuzzy atom is the formula p(u1, . . . ,un), where p is a fuzzy predicate and each
ui a variable or a constant. The truth and falsehood fuzzy atoms t and f are
special atoms that represent absolute truth and falsehood respectively. A fuzzy
atom A is subsumed by the fuzzy atom B (A - B) if there exists a substitution
of variables θ such that A = Bθ.

A weighted fuzzy logic program is a finite set of rules of the form

w : B ← ∧̃((w1;A1), . . . , (wn;An))

where B is a fuzzy atom excluding t and f , such that each variable that appears
in B appears also in at least one of the atoms Ai, i.e. the rule is safe. w ∈ [0, 1]
is the strength of the rule and each wi ∈ [0, 1] models the significance of Ai.

A fuzzy atom or rule that does not contain variables is ground and a rule
whose body includes only the truth and falsehood fuzzy atoms is a fuzzy fact.
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For convenience, for a rule R we write also s(R) instead of w, c(R) instead
of B, w(R) for the vector (w1, . . . , wn) and a(R) for the vector (A1, . . . , An).
The body of R is a weighted fuzzy conjunction, i.e. a conjunction in which the
higher the weight associated with an element is, the more that element affects
the value of the conjunction. We evaluate such a conjunction using a weighted
conjunction operator ∧̃[·], whose properties are presented in [4].

Let P be a weighted fuzzy logic program, UP its Herbrand universe (the set of
constants of P) and BP its Herbrand base (the set of ground atoms constructed
from the predicates of P and constants in UP). The inference base RB of a
ground fuzzy atom B is the set of all the ground rule instances of P that consist
of atoms from BP and have B as their head. A fuzzy interpretation of P is then
a mapping that maps each atom in BP to a truth value. The truth fuzzy atom
is mapped to 1, and the falsehood fuzzy atom to 0. The interpretation mapping
all atoms (except t) to 0 is denoted by I⊥.

We denote a ground rule by R, a ground fuzzy atom by A, and by AI its
truth value under I. If R is the rule w : B ← ∧̃((w1;A1), . . . , (wn;An)) and
I an interpretation, we write also aI(R) for the vector (AI

1, . . . , A
I
n) and cI(R)

instead of BI .
Given a weighted conjunction operator ∧̃[·], a t-norm T and an s-norm S (for

details see e.g. [8]), the interpretation I is a model of the weighted fuzzy logic
program P under (∧̃[·], T, S), if for all fuzzy ground atoms B ∈ BP we have (cf.
[9], [6])

BFTP (I) .= S
({

T (∧̃[w(R)](aI(R)), s(R))
}

R∈RB

)
≤ BI

The operator FTP defined in the above is the fuzzy immediate consequence
operator, which is continuous if ∧̃[·], T , S are continuous. According to fixpoint
theory FTP has a least fixpoint, which, if FTP is continuous, can be determined
by a process of ω iterative applications of FTP starting from I⊥. It follows that
P has a unique minimal model FMP , defined as the intended meaning of P
under (∧̃[·], T, S) and if FTP is continuous we have that FMP = FTP

↑ω.
In several cases (e.g. if P is has no recursive rules), FTP

↑ω may be reached in a
finite number of iterations. In general it may be impossible to reach FTP

↑ω in less
than ω steps, in which case the semantics of P are non-computable. To overcome
this difficulty we rely on a fixpoint approximation which is always computable.
To quantify the approximation we need an interpretation distance metric. Given
such a metric ρ, it can be shown (cf. [14]) that if FTP is continuous, either there
exists a k such that FMP = FTP

↑k, or for any ε > 0 there exists a k such that
ρ(FMP , FTP

↑n) < ε for n > k. Hence, an approximation of FTP
↑ω at any level

of accuracy is computable in k < ω steps. The relation between ε and k is in
general not known; for this reason, a practical criterion is to stop the iteration
whenever for some n and sufficiently low ε′ > 0 we get ρ(FTP

↑n+1, FTP
↑n) < ε′.

2.2 Query Answering

Query answering is performed by a computational procedure which, given a
weighted fuzzy logic program P and a fuzzy atom A, computes the answer to
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the query ?A by finding all the ground fuzzy atoms that are subsumed by A and
have a non-zero truth value in FMP . Given the preceding discussion we may be
able to answer a query only approximately: if A - A, then (A, v) is an ε-correct
answer to ?A for some ε > 0 if AFMP < v+ ε and a correct answer if AFMP = v.

In order to perform query answering with weighted fuzzy logic programs we
construct a resolution graph which models in a directed graph the dependen-
cies between the query and the program rules. The graph has a skeleton, i.e. a
tree that encodes the non-recursive rule dependencies. The tree is augmented
into a cyclic graph if the program contains recursive rules. Using the resolution
graph structure, [3] outlines a sound and complete query-answering algorithm
for weighted fuzzy logic programs. The algorithm terminates always by comput-
ing an ε-correct answer if a correct answer is not computable in finite time and
holds the intermediate results, that allow it to avoid entering into infinite chains
of computations, within the resolution graph.

The resolution graph G is constructed by creating first the root of its skeleton,
which coincides with A, and then by adding step by step new edges and nodes
by computing the inference base of each intermediate goal. The nodes are either
atom or rule nodes. An atom node is labeled by a fuzzy atom and a rule node
by a rule of the P possibly with some of its variables bound to constants. Each
atom node s has as child one rule node for each element in the inference base
of its label, and a rule node has one atom node child for each atom in its body.
If an atom node s is added in the graph whose label is subsumed by an already
existing atom node s′ in G, s is linked by an edge with s′ and no rule nodes are
added as its children. Each atom node with label the fuzzy atom A maintains
also a set of substitution-value pairs (θ, v) which store the truth value v (if v > 0)
that has been computed for the ground fuzzy atom Aθ.

Given an initial interpretation, G is evaluated bottom-up, starting from the
leaves of its skeleton and proceeding towards the root. During this process, the
substitution-value pairs for each node are computed by considering the already
completed computations of the children. If G is acyclic this process terminates
once the skeleton root is reached. Otherwise, an iterative evaluation of G may be
necessary in order to reach, or approximate the query answer. It can be proved
that the process is sound and complete so that for any substitution θ such that
A = Aθ there is a resolution graph G and an iterative valuation of it starting
from I⊥ such that (A, v) is either a correct or an ε-correct answer to ?A for any
ε > 0, where v is the value held in the root of G for substitution θ.

3 Databases and Fact Derivation

Following the classical logic programming paradigm, a weighted fuzzy logic pro-
gram P does no distinction between facts and rules, since the first are only a
special case of the second. In a database-oriented approach however it is useful
to be able to distinguish between facts and rules, since the same rules may be
used in combination with different data. Moreover, the data may change during
the lifetime of the databases without that the rules that describe them change.
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It is then desirable that the inference is always performed based on the actual
data present in the databases at the time the query is posed.

This requirement precludes the use of architectures in which exhaustive for-
ward inference is performed at the time the data is loaded from the databases
(e.g. [1] in the context of RDF querying for the Semantic Web). These sys-
tems typically create a knowledge repository which stores both the explicit in
the databases knowledge and the implicit knowledge inferred from the provided
rule set. Such a system can respond very quickly to a query since it has pre-
computed all the answers, but if the underlying databases are modified, the
knowledge repository needs to be updated or re-computed, which is in general a
high cost task.

As a result, our attempt here is to disentangle the rules from the facts of a
weighted fuzzy logic program, isolate the set of rules, and be able to define and
dynamically attach to it sets of facts obtained from some underlying databases.
Recall that a fuzzy fact is a rule of the form w : A ← ∧̃((w1; u), . . . , (wn; u))
where u is either t or f . However, a weight w′ = f(w,w1, . . . , wn) for some
function f may be computed, for which the above is equivalent to w′ : A← (1; t),
the preferred way to express a fact.

Given a database, our first aim is therefore to define a process that generates
from it a set of facts, semantically equivalent to fuzzy facts of the form v : A←
(1; t). This process involves two main steps: a) the definition and execution of a
database query Q, and b) the processing of the result of Q, the construction out
of it of one or more fuzzy ground atoms A and the computation for each one of
them of a truth value v in the interval [0, 1]. The second step in most cases will
involve a fuzzification of some crisp data obtained from the database.

The exact queries that should be executed on the databases and the subse-
quent transformations that the query results should undergo in order to produce
the desirable set of fuzzy facts is a procedure that must be manually crafted. For
this reason, in order to perform the fact derivation, the system we propose relies
on the first place on the existence of a set of database queries and fuzzifiers.
Making use of the definitions included in these sets, fact derivation rule sets for
the actual generation of the facts may then be defined. We describe now the
proposed language in which these sets can be defined.

Database Queries : Since we base our system on the relational database model,
the set of queries must be a set of queries expressed in the appropriate SQL
dialect supported by the underlying databases. Each query is defined as

Query[Database] = SQLExpression

This statement defines the query SQLExpression, which should be executed
on the database named Database. The query is assigned the name Query. The
result of the execution of SQLExpression can be regarded as a table whose
columns are defined in the SELECT part of SQLExpression. The i-the column
of the resulting table can be referenced by <Query : i>, or <Query : Column>
if Column is the name of the i-th column.

Fuzzifiers: A fuzzifier is a function that can be used for the fuzzification of
any crisp data obtained from the database. A fuzzifier is defined as a branched
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function
Name(V ar) = { Condition1 : Expression1 |

. . . |
Conditionn : Expressionn}

where Name is the name of the fuzzifier, V ar a variable name, and Conditioni

a condition for V ar that if satisfied, the computed value for V ar is the result
of the evaluation of the mathematical expression Expressioni. The expressivity
allowed in Expressioni depends on the implementation; in all cases it should
involve only the variable V ar.

Fuzzy Fact Derivation Rules: Given a set of database queries Q and a set of
fuzzifiers F , we define a set of database-dependent facts using expressions of the
form

Predicate(List) = Fuzzifier(Column)

where Predicate is the name of the fuzzy predicate for the newly constructed
facts, List is a comma separated list of constants or Columns, and Fuzzifier
is the name of a fuzzifier in F . Column is a column of the result of a database
query in Q. As we have already seen, if Query is a database query, <Query : i>
refers to the i-th column of the results table. In each fact definition, the Column
argument of Fuzzifier and all the Columns in List must refer to the same
query. Such a statement defines a set of facts: once the Query included in List
and/or Column is executed against the database, for each row of the resulting
table, a new fuzzy fact will be constructed, such that the arguments of Predicate
and Fuzzyfier are replaced by the respective column entries. More formally, for
the statement

Predicate(Ex1, . . . , Exn) = Fuzzifier(<Query : j>)

where Exi is either < Query : pi > or a constant ci, for each row r in the result
table of Query, the fuzzy fact

valj : Predicate(arg1, . . . , argn) ← (1; t)

is constructed, where valj = Fuzzifier(<Query : j>r), argi = <Query : pi>r

or argi = ci, and <Query : j>r is the value in the j-th column of row r. In
practice, a new fact needs to be constructed only if valj > 0. In the case that no
fuzzifier is needed, the simpler expression Predicate(List) = V alue will simply
assign the numerical value V alue as strength to all the constructed fuzzy facts.

Weighted Fuzzy Rules: In order to complete the presentation of the language
used in the system, we present also the syntax for writing weighted fuzzy rules.
The statement

s : Head(List) :− w1 : Body1(List1) & . . . & wn : Bodyn(Listn)

defines the rule s : Head(List)←∧̃((w1;Body1(List1)), . . . , (wn;Bodyn(Listn))),
whereList andListi are comma separated lists of constants andvariables such that
the rule is safe. Variable is considered to be any element that starts with an under-
score. The strength of the rule, or any of the weights in the body can be omitted if
they are equal to 1.
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4 System Architecture

From the above discussion, it follows that a weighted fuzzy logic program P
(which for convenience we will call also a set of weighted fuzzy rules in the
sequel) augmented with a set of database queries Q, a set of fuzzifiers F and
of fact derivations rules E is equivalent, for a given instance of the databases
involved in the elements of Q, to a dynamic weighted fuzzy logic program P∗

which consists of the rules in P and the facts derived from E as described before.
Hence, P∗ may be defined as the tuple (P ,Q,F , E). For practical reasons, and
because the same sets of queries, fuzzifiers may be used in several fact derivation
rule sets, and in its turn a set of fuzzy rules may be used in combination with
several fact derivation rule sets, it is useful to keep the several sets distinct, in
the form of libraries, and combine them each time as desired into new, custom,
dynamic programs. This is the approach followed by our system, which offers a
query-answering service on weighted fuzzy logic programs built upon a client-
server architecture.

The server is responsible for keeping and informing the client about the avail-
able sets Q, F , Ê and P̂ , where Q, F are as before, and Ê is the set of fuzzy fact
derivation rule sets and P̂ a set of weighted fuzzy rule sets. A user may then ask
a query on a dynamic weighted fuzzy logic program by sending to the server a
message of the form

QUERY (WC, T, S, epsilon) RuleSet FactSet1, ..., FactSetN Query

The tuple (WC, T, S, epsilon) contains the parameter values that will be used
for the computation of the answer: the first three correspond to the triple of
operators (∧̃[·], T, S) under which the semantics will be computed and epsilon
defines the level of desired accuracy in the case of a recursive program with non-
computable semantics. The available values for the operators WC, T, S may be
obtained from the user by asking the server. RuleSet and FactSet1, ..., FactSetN
define the actual dynamic program on which the query Query is posed. RuleSet
must belong to P̂ and FactSet1, ..., FactSetN to Ê and determine the fuzzy facts
with which RuleSet will be extended. Query is an expression of the form
Predicate(List), where List is a comma separated list of variables (anything that
starts with an underscore) or constants. As a response to the query, once the com-
putation has been completed, the client will receive a set of (Predicate(List′), v)
statements, which includes all the (ε-)correct answers to the query for which v > 0
and Predicate(List′) is a ground fuzzy atom subsumed by Predicate(List).

The server is made up from four main modules: The data library, the database
translation, the reasoning and the rule learning module. The rule learning will be
the subject of the next section. The data library module is the one that holds the
sets Q, F , Ê and P̂ . The translation module is responsible for communicating
with the underlying databases and deriving the necessary facts defined in Ê .
Finally, the reasoning module is the module that for each user query dynamically
constructs and evaluates the corresponding resolution graph so as to correctly
answer the query.
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As we have mentioned before, a pre-requisite for the system is that it should
answer each query by performing inference using the actual data present in
the database at the time of the query. This implies that each answering of a
query involves a number of databases accesses. A central performance issue for
the proposed system is therefore to determine the minimal number of database
accesses and amount of loaded data that is necessary to correctly answer a given
query. The näıve solution for the server is to get the FactSet1, ..., FactSetN
fact derivation rule sets, construct indiscriminately, by accessing the databases,
all the fuzzy facts defined in them, augment RuleSet with the new facts and
then execute the resolution algorithm on the augmented program, which is now
self-dependent and does not involve any database accesses. This is obviously not
an optimal approach because only a small part of the constructed facts may in
fact be needed to answer the query. A more efficient strategy for the server would
be to start the construction of the resolution graph for Query and whenever an
atom node is added in it with a predicate in its label that is defined in the fact
derivation rule sets, dynamically access the database in order to retrieve and
construct only the relevant facts.

In most cases this will be an attainable strategy. There is however a theoretical
complication, which a very simple example will illustrate.

Consider the set P of weighted fuzzy rules that consists of the two rules

1 : p(x)← ∧̃((0.8; r(x, y)), (0.2; s(y, z))) and 1 : q(x) ← (1; u(x))

and that the fact derivation rule set E contains statements for the construction
of facts for the predicates r, s and u. Assume that for the evaluation of the
semantics a triple of operators is used (∧̃[·], T, S) such that S is the �Lukasiewicz
s-norm Sluk(a1, a2) = min{1, a1 + a2} and suppose also that the facts that can
be derived from the database are only

0.5 : r(a, b) ← (1; t) and 1 : u(c)← (1; t)

It follows that the Herbrand universe of the resulting dynamic program (i.e.
of the program P augmented with the facts constructed using the rules in
E) is the set {a, b, c} and as a result, according to the definition of the mini-
mal model of a weighted fuzzy logic program, the correct answer to the query
?p(a) is (p(a), v) where v is the �Lukasiewicz s-norm of the values of the three
weighted conjunctions ∧̃((0.8; r(a, b)), (0.2; s(b, a))), ∧̃((0.8; r(a, b)), (0.2; s(b, b)))
and ∧̃((0.8; r(a, b)), (0.2; s(b, c))). However, the resolution graph built for ?p(a)
will consist of a root node for p(a) and at the next level of atom nodes it will
have one atom node for r(a, y) and one for s(y, z). Since the definitions for the
predicates r and s are in E the database access and fact derivation mechanism
will be invoked and as expected will generate only a fact for r(a, b). The existence
of the constant c is not known to the graph, hence the query will be answered
incorrectly by computing the s-norm of the values of the weighted conjunctions
∧̃((0.8; r(a, b)), (0.2; s(b, a))) and ∧̃((0.8; r(a, b)), (0.2; s(b, b))) only.

The problem is clearly that in general in order to compute the answer to the
query, the entire Herbrand universe must be known, which in our case trans-
lates into constructing using the fact derivation rule sets all the possible facts
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regardless of whether they ‘seem’ to be related with the query or not. Of course
this is an artificial example, which is unlikely to be encountered in real applica-
tions with well-designed databases and rule sets. However it demonstrates that
it is essential for the system to be able to determine (by a static analysis of the
program) whether it needs first to construct the entire set of facts in order to
answer a query or it can construct them only dynamically during the query-
answering process. It is easy to see that if every variable that appears in a rule
body appears in at least one atom with the highest weight in the rule or in the
rule head, the above-described problem cannot occur and facts can always be
retrieved dynamically as needed from the database.

5 Rule Learning

In the preceding discussion, we have assumed that the rule sets in P̂ are all
known and well-defined. In general, it is expected that these rule sets will be
defined by domain expects. However, it is quite unrealistic to expect that the
great number of parameters involved in the rules can be precisely and correctly
determined using the a priori domain knowledge of the experts. A rough estimate
for the values of the weights may in general be available, which will need to be
adapted using some training data, so that the logical theory represented by a
weighted fuzzy logic program describes well the actual data.

Machine learning techniques are useful in this respect and a neural network
based technique for the adaptation of the weights of weighted fuzzy logic pro-
grams is introduced in [2]. The adaptation is based on the minimization of the
square error between the truth value contained in a training dataset for a cer-
tain fuzzy atom, and the truth value computed for that atom by the rules of
a weighted fuzzy logic program. The minimization is performed by considering
independently each predicate p that appears in a weighted fuzzy logic program.
In particular, if Bp is the subset of the Herbrand base of a weighted fuzzy logic
program P that contains the ground atoms of predicate p, the optimal weights
of the rules that have in their heads an atom of predicate p are the ones that
minimize the quantity∑

B∈Bp

(
S
({

T (∧̃[w(R)](aI(R)), s(R))
}

R∈RB

)
−BI

)2
(1)

with respect to the weights w(R) and s(R). In order to use this expression
however, we need to determine the interpretation I, which serves as the source of
the training data. This is straightforward using the technique described in section
3. Since I may be seen as a program FI containing only facts, in particular a fact
v : B ← (1; t) if I maps B to a v > 0, we can define I as a database derivable set
of facts, using a specially designated for this purpose database. Since the minimal
model of FI is I, having determined the program FI we have determined also
the training interpretation I and so we can use the above expression.

The computation of the weights of each rule in a rule set of P̂ using the above
optimization process, is performed by the learning module of the server, which
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uses the functionality of the database translation module in order to construct
the training dataset described by FI . The learning is performed for each rule set
that is added to the server, using a designated set of database data in order to
derive the training facts following the rules in FI . We have to note that in order
to perform the training, FI must be a complete set of facts in the sense that
it must contain a fact derivation rule for each fuzzy atom that appears in the
body or the head of each rule we want to learn, so that (1) is well-defined. This
is a property that the designated for the training process dataset must have and
not the databases on which the inference will subsequently be performed, since
the role of the learned rules is precisely to apply the learned logical relations on
actual databases in order to draw new inferences.

6 Example

In order to illustrate the use of the system we outline a use case based on data
provided by the ASSIST project, which deals with the provision to medical
researchers of an environment to study cervical cancer based on patient records.

The available database has the form of a table with clinical data for several
patients. Among others, for each patient several personal data (e.g. age, ethnic
origin, number of children), health related information (e.g. years of smoking),
results of clinical tests (e.g, cytology, colposcopy, histology) and related genetical
information are kept.

Some examples of database queries, fuzzifiers, fact derivation rules as well as of
weighted fuzzy rules for this database are presented in figures 1-4. Based on them,
an example query is shown in figure 5. Note that the provided statements are
only fragmentary and their aim to illustrate the use and expressive capabilities
of the system.

Q PatientData[ASSIST DB] =
SELECT Vid, Age, Cytology, Colposcopy, Histology FROM Patients;

Q EthnicOriginCaucasian[ASSIST DB] =
SELECT Vid FROM Patients WHERE ETHNIC ORIGINE=’C’;

Q EthnicOriginAsian[ASSIST DB] =
SELECT Vid FROM Patients WHERE ETHNIC ORIGINE=’A’;

Fig. 1. Some database queries

f AgeYoung(x) = { x<25 : 1 | 25<=x && x<=50 : -1/25*(x-25)+1 | x>50 : 0 }
f AgeOld(x) = { x<50 : 0 | 50<=x && x<=75 : 1/25*(x-50) | x>75 : 1 }
f ThreeValueFuzzifier(x) = { x == 0 : 0 | x == 1 : 0.33 | x == 2 : 0.67 |

x == 3 : 1 }

Fig. 2. Some fuzzifiers
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Young(<Q PatientData:Vid>) = f AgeYoung(<Q PatientData:Age>)
Old(<Q PatientData:Vid>) = f AgeOld(<Q PatientData:Age>)
Caucasian(<Q EthnicOriginCaucasian:Vid>) = 1
HistologyResult(<Q PatientData:Vid>) =

f ThreeValueFuzzifier(<Q PatientData:Histology>)
ColposcopyResult(<Q PatientData:Vid>) =

f ThreeValueFuzzifier(<Q PatientData:Colposcopy>)

Fig. 3. Some fuzzy fact derivation rules from ASSIST Facts

%Highly abnormal histology and pap test results are indicative of invasive carcinoma
1.0 : InvasiveCarcinoma( x) :- HistologyResult( x)
1.0 : InvasiveCarcinoma( x) :- CytologyResult( x)
%Highly abnormal colposcopy results are a suspicion of invasion
0.6 : InvasiveCarcinoma( x) :- ColposcopyResult( x)
%Mildly abnormal pap test results are thought to be worrisome only if HPV is detected
Alarm( x) :- 0.7: CytologyResult( x) & HPVInfection( x)

Fig. 4. Some weighted fuzzy rules from ASSIST Program

QUERY (standard, minimum, maximum, 1e-10)
ASSIST Program ASSIST Facts Alarm( x)

Fig. 5. A query message

7 Conclusions

We have introduced a prototype system for the provision of inference and query
answering services based on the integration of weighted fuzzy logic programs with
relational database systems. The weighted fuzzy logic program models the knowl-
edge inference process and the databases act as the source of ground knowledge
for the inferencing and for the learning of the rule weights. A complete environ-
ment for defining the fact derivation process has been presented and to facilitate
its deployment the system has been built upon the client-server architecture.

Regarding future work, the system needs still to be tested with large scale
real data in order to assess its performance. At the implementation level, the
optimization of the resolution and database access algorithms need a detailed
study since it is clear that the practical usefulness of the system depends on the
efficiency of the implementation. Some optimization issues have already been
raised in the context of this paper.

At the semantic level, the main limitation of the system is that it is restricted
to rules without negation. We are currently working on the development of a
resolution process for programs that allow the use of negation as failure. This
extension will greatly enhance the expressivity of weighed fuzzy logic programs
and increase their potential to be used with real applications. The handling of
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missing information in the underlying databases is also a crucial issue. Currently
the system relies on the Closed World Assumption, which may be inappropriate
in several cases. The Kripke-Kleene or the Any-Word Assumption semantics [10]
are alternatives to be considered.
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Abstract. The problem of averaging outcomes under several scenar-
ios to form overall objective functions is of considerable importance in
decision support under uncertainty. The fuzzy operator defined as the
so-called Weighted OWA (WOWA) aggregation offers a well-suited ap-
proach to this problem. The WOWA aggregation, similar to the clas-
sical ordered weighted averaging (OWA), uses the preferential weights
assigned to the ordered values (i.e. to the worst value, the second worst
and so on) rather than to the specific criteria. This allows one to model
various preferences with respect to the risk. Simultaneously, importance
weighting of scenarios can be introduced. In this paper we analyze so-
lution procedures for optimization problems with the WOWA objective
function. A linear programming formulation is introduced for optimiza-
tion of the WOWA objective with monotonic preferential weights. Its
computational efficiency is analyzed.

1 Introduction

Consider a decision problem under uncertainty where the decision is based on the
maximization of a scalar (real valued) outcome. The final outcome is uncertain
and only its realizations under various scenarios are known. Exactly, for each
scenario Si (i = 1, . . . ,m) the corresponding outcome realization is given as a
function of the decision variables yi = fi(x). We are interested in larger outcomes
under each scenario. Hence, the decision under uncertainty can be considered a
multiple criteria optimization problem:

max { (f1(x), f2(x), . . . , fm(x)) : x ∈ F } (1)

where x denotes a vector of decision variables to be selected within the feasible set
F ⊂ Rq, of constraints under consideration and f(x) = (f1(x), f2(x), . . . , fm(x))
is a vector function that maps the feasible set F into the criterion space Rm.
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From the perspective of decisions under uncertainty, model (1) only specifies
that we are interested in maximization of all objective functions fi for i ∈ I =
{1, 2, . . . ,m}. In order to make it operational, one needs to assume some solution
concept specifying what it means to maximize multiple objective functions. The
solution concepts are defined by aggregation functions a : Rm → R. Thus the
multiple criteria problem (1) is replaced with the (scalar) maximization problem

max {a(f(x)) : x ∈ F}

The most commonly used aggregation is based on the weighted mean where
positive importance weights pi (i = 1, . . . ,m) are allocated to several scenarios

Ap(y) =
m∑

i=1

yipi (2)

The weights are typically normalized to the total 1 (
∑m

i=1 pi = 1) with pos-
sible interpretation as scenarios (subjective) probabilities. The weighted mean
allowing to define the importance of scenarios does not allow one to model the
decision maker’s preferences regarding distribution of outcomes. The latter is
crucial when aggregating various realizations of the same (uncertain) outcome
under several scenarios one needs to model risk averse preferences [7].

The preference weights can be effectively introduced within the fuzzy opti-
mization methodology with the so-called Ordered Weighted Averaging (OWA)
aggregation developed by Yager [15]. In the OWA aggregation the weights are
assigned to the ordered values (i.e. to the smallest value, the second smallest
and so on) rather than to the specific criteria. This guarantees a possibility to
model various preferences with respect to the risk. Since its introduction, the
OWA aggregation has been successfully applied to many fields of decision mak-
ing [18,19,6]. The weighting of the ordered outcome values causes that the OWA
optimization problem is nonlinear even for linear programming (LP) formulation
of the original constraints and criteria. Yager [16] has shown that the OWA opti-
mization can be converted into a mixed integer programming problem. We have
shown [10] that the OWA optimization with monotonic weights can be formed
as a standard linear program of higher dimension.

The OWA operator allows one to model various aggregation functions from
the maximum through the arithmetic mean to the minimum. Thus, it enables
modeling of various preferences from the optimistic to the pessimistic one. On the
other hand, the OWA does not allow one to allocate any importance weights to
specific scenarios. Actually, the weighted mean (2) cannot be expressed in terms
of the OWA aggregations. Torra [12] has incorporated importance weighting into
the OWA operator within the Weighted OWA (WOWA) aggregation introduced
as a particular case of Choquet integral using a distorted probability as the
measure. The WOWA average becomes the weighted mean in the case of equal
all the preference weights and it is reduced to the standard OWA average for
equal all the importance weights. Since its introduction, the WOWA operator
has been successfully applied to many fields of decision making [14] including
metadata aggregation problems [1].
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In this paper we analyze solution procedures for optimization problems with
the WOWA objective functions. A linear programming formulation is introduced
for optimization of the WOWA objective with increasing preferential weights
thus representing risk averse preferences. The paper is organized as follows. In
the next section we introduce formally the WOWA operator and derive some
alternative computational formula based on direct application of the preferential
weights to the conditional means according to the importance weights. In Section
3 we introduce the LP formulations for maximization of the WOWA aggregation
with increasing weights. Finally, in Section 4 we demonstrate computational
efficiency of the introduced models.

2 The Weighted OWA Aggregation

Let w = (w1, . . . , wm) be a weighting vector of dimension m such that wi ≥ 0
for i = 1, . . . ,m and

∑m
i=1 wi = 1. The corresponding OWA aggregation

of outcomes y = (y1, . . . , ym) can be mathematically formalized as follows
[15]. First, we introduce the ordering map Θ : Rm → Rm such that Θ(y) =
(θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ · · · ≥ θm(y) and there exists
a permutation τ of set I such that θi(y) = yτ(i) for i = 1, . . . ,m. Further, we
apply the weighted sum aggregation to ordered achievement vectors Θ(y), i.e.
the OWA aggregation has the following form:

Aw(y) =
m∑

i=1

wiθi(y) (3)

Yager [15] introduced a well appealing concept of the orness measure to char-
acterize the OWA operators. orness(w) =

∑m
i=1

m−i
m−1wi. For the max aggre-

gation representing the fuzzy ‘or’ operator with weights w = (1, 0, . . . , 0) one
gets orness(w) = 1 while for the min aggregation representing the fuzzy ‘and’
operator with weights w = (0, . . . , 0, 1) one has orness(w) = 0. For the average
(arithmetic mean) one gets orness((1/m, 1/m, . . . , 1/m)) = 1/2. Actually, one
may consider a complementary measure of andness defined as andness(w) =
1 − orness(w). OWA aggregations with orness smaller or equal 1/2 are treated
as and-like and they correspond to rather pessimistic (risk averse) preferences.

The OWA aggregations with increasing weights w1 ≤ w2 ≤ . . . ≤ wm define
an and-like OWA operator. Actually, the andness properties of the OWA oper-
ators with increasing weights are total in the sense that they remain valid for
any subaggregations defined by subsequences of their weights. Namely, for any
2 ≤ k ≤ m one gets

∑k
j=1

k−j
k−1wij ≤ 1

2 . Such total andness properties repre-
sent consequent risk averse preferences [7]. Therefore, we will refer to the OWA
aggregation with increasing weights as the risk averse OWA.

Let w = (w1, . . . , wm) be an m-dimensional vector of preferential weights such
that wi ≥ 0 for i = 1, . . . ,m and

∑m
i=1 wi = 1. Further, let p = (p1, . . . , pm) be

an m-dimensional vector of importance weights such that pi ≥ 0 for i = 1, . . . ,m
and

∑m
i=1 pi = 1. The corresponding Weighted OWA aggregation of outcomes

y = (y1, . . . , ym) is defined [12] as follows:
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Aw,p(y) =
m∑

i=1

ωiθi(y) with ωi = w∗(
∑
k≤i

pτ(k))− w∗(
∑
k<i

pτ(k)) (4)

where w∗ is an increasing function interpolating points ( i
m ,

∑
k≤i wk) together

with the point (0.0) and τ representing the ordering permutation for y (i.e.
yτ(i) = θi(y)). Moreover, function w∗ is required to be a straight line when
the point can be interpolated in this way. We will focus our analysis on the
piecewise linear interpolation function w∗ which is the simplest form of the
required interpolation.

The WOWA aggregation covers the standard weighted mean (2) with weights
pi as a special case of equal preference weights (wi = 1/m for i = 1, . . . ,m).
Actually, the WOWA operator is a particular case of Choquet integral using a
distorted probability as the measure [3].

Example 1. Consider outcome vectors y′ = (1, 3, 2, 4, 5) and y′′ = (1, 1, 2, 6, 4)
where individual outcomes correspond to five scenarios. While introducing pref-
erential weights w = (0.05, 0.1, 0.15, 0.2, 0.5) one may calculate the OWA aver-
ages: Aw(y′) = 0.05 · 5 + 0.1 · 4 + 0.15 · 3 + 0.2 · 2 + 0.5 · 1 = 2 and Aw(y′′) =
0.05 · 6 + 0.1 · 4 + 0.15 · 2 + 0.2 · 1 + 0.5 · 1 = 1.7. Further, let us introduce
importance weights p = (0.1, 0.1, 0.2, 0.5, 0.1) which means that results under
the third scenario are 2 times more important then those under scenario 1, 2 or
5, while the results under scenario 4 are even 5 times more important. To take
into account the importance weights in the WOWA aggregation (4) we introduce
piecewise linear function

w∗(ξ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.05ξ/0.2 for 0 ≤ ξ ≤ 0.2
0.05 + 0.10(ξ − 0.2)/0.2 for 0.2 < ξ ≤ 0.4
0.15 + 0.15(ξ − 0.4)/0.2 for 0.4 < ξ ≤ 0.6
0.3 + 0.2(ξ − 0.6)/0.2 for 0.6 < ξ ≤ 0.8
0.5 + 0.5(ξ − 0.8)/0.2 for 0.8 < ξ ≤ 1.0

and calculate weights ωi according to formula (4) as w∗ increments corresponding
to importance weights of the ordered outcomes, as illustrated in Fig. 1. In par-
ticular, one get ω1 = w∗(p5) = 0.025 and ω2 = w∗(p5 + p4)−w∗(p5) = 0.275 for
vector y′ while ω1 = w∗(p4) = 0.225 and ω2 = w∗(p4 + p5)−w∗(p4) = 0.075 for
vector y′′. Finally, Aw,p(y′) = 0.025·5+0.275·4+0.1·3+0.35·2+0.25·1 = 2.475
and Aw,p(y′′) = 0.225 · 6 + 0.075 · 4 + 0.2 · 2 + 0.25 · 1 + 0.25 · 1 = 2.55.

Note that one may alternatively compute the WOWA values by using the im-
portance weights to replicate corresponding scenarios and calculate then OWA
aggregations. In the case of our importance weights p we need to consider five
copies of scenario 4 and two copies of scenario 3 thus generating correspond-
ing vectors ỹ′ = (1, 3, 2, 2, 4, 4, 4, 4, 4, 5) and ỹ′′ = (1, 1, 2, 2, 6, 6, 6, 6, 6, 4) of ten
equally important outcomes. Original five preferential weights must be then ap-
plied respectively to the average of the two largest outcomes, the average of the
next two largest outcomes etc. Indeed, we get Aw,p(y′) = 0.05 ·4.5+0.1 ·4+0.15 ·
4+0.2·2.5+0.5·1.5 = 2.475 and Aw,p(y′′) = 0.05·6+0.1·6+0.15·5+0.2·2+0.5·1 =
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Fig. 1. Definition of weights ωi for Example 1: (a) vector y′, (b) vector y′′

2.55. We will further formalize this approach and take its advantages to build
the LP computational models.

Function w∗ can be defined by its generation function g with the formula w∗(α) =∫ α

0 g(ξ) dξ Introducing breakpoints βi =
∑

k≤i pτ(k) and β0 = 0 allows us to

express ωi =
∫ βi

0 g(ξ) dξ −
∫ βi−1

0 g(ξ) dξ =
∫ βi

βi−1
g(ξ) dξ and the entire WOWA

aggregation as

Aw,p(y) =
m∑

i=1

θi(y)
∫ βi

βi−1

g(ξ) dξ =
∫ 1

0
g(ξ)F

(−1)
y (ξ) dξ (5)

where F
(−1)
y is the stepwise function F

(−1)
y (ξ) = θi(y) for βi−1 < ξ ≤ βi. It

can also be mathematically formalized as follows. First, we introduce the right-
continuous cumulative distribution function (cdf):

Fy(d) =
m∑

i=1

piδi(d) where δi(d) =
{

1 if yi ≤ d
0 otherwise (6)

which for any real (outcome) value d provides the measure of outcomes smaller or
equal to d. Next, we introduce the quantile function F

(−1)
y = inf {η : Fy(η) ≥ ξ}

for 0 < ξ ≤ 1 as the left-continuous inverse of the cumulative distribution
function Fy, and finally F

(−1)
y (ξ) = F

(−1)
y (1− ξ).

Formula (5) provides the most general expression of the WOWA aggregation
allowing for expansion to continuous case. The original definition of WOWA
allows one to build various interpolation functions w∗ [13] thus to use different
generation functions g in formula (5). We have focused our analysis on the the
piecewise linear interpolation function w∗. Note, however, that the piecewise
linear functions may be built with various number of breakpoints, not necessarily



784 W. Ogryczak and T. Śliwiński

m. Thus, any nonlinear function can be well approximated by an piecewise linear
function with appropriate number of breakpoints. Therefore, we will consider
weights vectors w of dimension n not necessarily equal to m. Any such piecewise
linear interpolation function w∗ can be expressed with the stepwise generation
function g(ξ) = nwk for (k − 1)/n < ξ ≤ k/n, k = 1, . . . , n. This leads us to the
following specification of formula (5):

Aw,p(y) =
n∑

k=1

wkn

∫ k/n

(k−1)/n

F
(−1)
y (ξ) dξ =

n∑
k=1

wkn

∫ k/n

(k−1)/n

F (−1)
y (1−ξ) dξ (7)

Note that n
∫ k/n

(k−1)/n F
(−1)
y (ξ) dξ represents the average within the k-th por-

tion of 1/n largest outcomes, the corresponding conditional mean [9,11]. Hence,
formula (7) defines WOWA aggregations with preferential weights w as the cor-
responding OWA aggregation but applied to the conditional means calculated
according to the importance weights p instead of the original outcomes. Fig. 2 il-
lustrates application of formula (7) for computation of the WOWA aggregations
in Example 1.

1

0

1

2

3

4

5

6

× × × ×
×5w1 5w2 5w3 5w4

5w50 0.2 0.4 0.6 0.8 1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�� �� �� �� ��p5 p4 p2 p3 p1

F
(−1)
y′

�

�

�

�

�

(a) 1

0

1

2

3

4

5

6

× × × ×
×5w1 5w2 5w3 5w4

5w50 0.2 0.4 0.6 0.8 1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�� �� �� �� ��p4 p5 p3 p1 p2

F
(−1)
y′′

�

�

�

� �

(b)

Fig. 2. Formula (7) applied to calculations in Example 1: (a) vector y′, (b) vector y′′

We will treat formula (7) as a formal definition of the WOWA aggregation
of m-dimensional outcomes y defined by m-dimensional importance weights p
and n-dimensional preferential weights w. We will focus our analysis on the
WOWA aggregation defined by increasing weights w1 ≤ w2 ≤ . . . ≤ wn. Follow-
ing formula (7), maximization of such WOWA aggregation models risk averse
preferences since equally important unit of a smaller outcome is considered with
a larger weight. This is mathematically represented by the convexity of func-
tion w∗ as well as it may be viewed as andness of the WOWA operator [4] when
considered as the OWA defined via the regular increasing monotone (RIM) quan-
tifiers [17] (

∫ 1
0 w∗(ξ)dξ ≤ 0.5).
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3 The LP Model for WOWA Optimization

Formula (7) defines the WOWA value applying preferential weights wi to im-
portance weighted averages within quantile intervals. It may reformulated to use
the tail averages

Aw,p(y) =
n∑

k=1

nwk(L(y,p, 1− k − 1
n

)−L(y,p, 1− k

n
)) =

n∑
k=1

w′
kL(y,p,

k

n
) (8)

where L(y,p, ξ) is defined by left-tail integrating of F
(−1)
y , i.e.

L(y,p, 0) = 0 and L(y,p, ξ) =
∫ ξ

0
F (−1)

y (α)dα for 0 < ξ ≤ 1 (9)

while weights w′
k = n(wn−k+1 − wn−k) for k = 1, . . . , n− 1 and w′

n = nw1.
Graphs of functions L(y,p, ξ) (with respect to ξ) take the form of convex

piecewise linear curves, the so-called absolute Lorenz curves [8] connected to
the relation of the second order stochastic dominance (SSD). Therefore, formula
(8) relates the WOWA average to the SSD consistent risk measures based on
the tail means [5] provided that the importance weights are treated as scenario
probabilities.

Following (8), maximization of a risk averse WOWA aggregation defined by
increasing weights w1 ≤ w2 ≤ . . . ≤ wn

max{Aw,p(y) : y = f(x), x ∈ F} (10)

results in problem

max{
n∑

k=1

w′
kL(y,p,

k

n
) : y = f(x), x ∈ F}

with positive weights w′
k.

According to (9), values of function L(y,p, ξ) for any 0 ≤ ξ ≤ 1 can be given
by optimization:

L(y,p, ξ) = min
si

{
m∑

i=1

yisi :
m∑

i=1

si = ξ, 0 ≤ si ≤ pi ∀ i } (11)

The above problem is an LP for a given outcome vector y while it becomes non-
linear for y being a vector of variables. This difficulty can be overcome by taking
advantage of the LP dual to (11). Introducing dual variable t corresponding to
the equation

∑m
i=1 si = ξ and variables di corresponding to upper bounds on si

one gets the following LP dual expression of L(y,p, ξ)

L(y,p, ξ) = max
t,di

{ξt−
m∑

i=1

pidi : t− di ≤ yi, di ≥ 0 ∀ i} (12)
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Therefore, maximization of the WOWA aggregation (10) can be expressed as
follows

max
tk,dik,yi,xj

n∑
k=1

w′
k[

k

n
tk −

m∑
i=1

pidik]

s.t. tk − dik ≤ yi, dik ≥ 0 ∀ i, k
y = f(x), x ∈ F

Consider multiple criteria problems (1) with linear objective functions fi(x) =
cix and polyhedral feasible sets:

max{(y1, y2, . . . , ym)) : y = Cx, Ax = b, x >= 0} (13)

where C is an m×q matrix (consisting of rows ci), A is a given r×q matrix and
b = (b1, . . . , br)T is a given RHS vector. For such problems, we get the following
LP formulation of the WOWA maximization (10):

max
tk,dik,yi,xj

n∑
k=1

k

n
w′

ktk −
n∑

k=1

m∑
i=1

w′
kpidik (14)

s.t. Ax = b (15)
y −Cx = 0 (16)
dik ≥ tk − yi ∀ i, k (17)
dik ≥ 0 ∀ i, k; xj ≥ 0 ∀ j (18)

Model (14)–(18) is an LP problem with mn+m+n+q variables and mn+m+r
constraints. Thus, for problems with not too large number of scenarios (m) and
preferential weights (n) it can be solved directly. Note that WOWA model (14)–
(18) differs from the analogous deviational model for the OWA optimizations [10]
only due to coefficients within the objective function (14) and the possibility of
different values of m and n.

The number of constraints in problem (14)–(18) is similar to the number of
variables. Nevertheless, for the simplex approach it may be better to deal with
the dual of (14)–(18) than with the original problem. Note that variables dik

in the primal are represented with singleton columns. Hence, the corresponding
rows in the dual represent only simple upper bounds.

Introducing the dual variables: u = (ul)l=1,...,r, v = (vi)i=1,...,m and z =
(zik)i=1,...,m; k=1,...,n corresponding to the constraints (15), (16) and (17), re-
spectively, we get the following dual:

min
zik,vi,ul

ub

s.t. uA− vC >= 0

vi −
n∑

k=1

zik = 0 ∀ i

m∑
i=1

zik =
k

n
w′

k ∀ k

0 ≤ zik ≤ piw
′
k ∀ i, k

(19)
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The dual problem (19) contains: m+n+q structural constraints, r+m unbounded
variables and mn bounded variables. Since the average complexity of the sim-
plex method depends on the number of constraints, the dual model (19) can be
directly solved for quite large values of m and n. Moreover, the columns corre-
sponding to mn variables zik form the transportation/assignment matrix thus
allowing one to employ special techniques of the simplex SON algorithm [2] for
implicit handling of these variables. Such techniques increase dramatically effi-
ciency of the simplex method but they require a special tailored implementation.
We have not tested this approach within our initial computational experiments
based on the use of a general purpose LP code.

4 Computational Tests

In order to analyze the computational performances of the LP model for the
WOWA optimization, similarly to [10], we have solved randomly generated prob-
lems of portfolio optimization according to the (discrete) scenario analysis ap-
proach [6]. There is given a set of securities for an investment J = {1, 2, . . . , q}.
We assume, as usual, that for each security j ∈ J there is given a vector of
data (cij)i=1,...,m, where cij is the observed (or forecasted) rate of return of se-
curity j under scenario i (hereafter referred to as outcome). We consider discrete
distributions of returns defined by the finite set I = {1, 2, . . . ,m} of scenarios
with the assumption that each scenario can be assigned the importance weight
pi that can be seen as the subjective probability of the scenario. The outcome
data forms an m× q matrix C = (cij)i=1,...,m;j=1,...,q whose columns correspond
to securities while rows ci = (cij)j=1,2,...,q correspond to outcomes. Further, let
x = (xj)j=1,2,...,q denote the vector of decision variables defining a portfolio.
Each variable xj expresses the portion of the capital invested in the correspond-
ing security. Portfolio x generates outcomes

y = Cx = (c1x, c2x, . . . , cmx)

The portfolio selection problem can be considered as an LP problem with m
uniform objective functions fi(x) = cix =

∑q
j=1 cijxj to be maximized [6]:

max {Cx :
q∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , q}

Hence, our portfolio optimization problem can be considered a special case of
the multiple criteria problem and one may seek an optimal portfolio with some
criteria aggregation. Note that the aggregation must take into account the im-
portance of various scenarios thus allowing importance weights pi to be assigned
to several scenarios. Further the preferential weights wk must be increasing to
represent the risk averse preferences (more attention paid on improvement of
smaller outcomes). Thus we get the WOWA maximization problem

max {Aw,p(f(x)) :
q∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , q} (20)
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Our computational tests were based on the randomly generated problems
(20) with varying number q of securities (decision variables) and number m of
scenarios. The generation procedure worked as follows. First, for each security
j the maximum rate of return rj was generated as a random number uniformly
distributed in the interval [0.05, 0.15]. Next, this value was used to generate
specific outcomes cij (the rate of return under scenarios i) as random variables
uniformly distributed in the interval [−0.75rj, rj ]. Further, strictly increasing
and positive weights wk were generated. The weights were not normalized which
allowed us to define them by the corresponding increments δk = wk−wk−1. The
latter were generated as uniformly distributed random values in the range of 1.0
to 2.0, except from a few (5 on average) possibly larger increments ranged from
1.0 to n/3. Importance weights pi were generated according to the exponential
smoothing scheme, which assigns exponentially decreasing weights to older or
subjectively less probable scenarios: pi = α(1−α)i−1 for i = 1, 2, . . . ,m and the
parameter α is chosen for each test problem size separately to keep the value of
pm around 0.001.

We tested solution times for different size parameters m and q. The basic tests
were performed for the standard WOWA model with n = m. However, we also
analyzed the case of larger n for more detailed preferences modeling, as well as
the case of smaller n thus representing a rough preferences model. For each num-
ber of decision variables (securities) q and number of criteria (scenarios) m we
solved 10 randomly generated problems (20). All computations were performed
on a PC with the Pentium 1.7GHz processor employing the CPLEX 9.1 package.
The 120 seconds time limit was used in all the computations.

Table 1. Solution times [s] for the primal model (14)–(18)

Number of Number of variables (q)
scenarios (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1
50 1.8 2.5 3.5 4.0 4.1 4.0 3.9 4.0
100 55.7 77.4 89.5 2106.3 7117.7 – – –

In Tables 1 and 2 we show the solution times for the primal (14)–(18) and the
dual (19) forms of the computational model, being the averages of 10 randomly
generated problems. Upper index in front of the time value indicates the number
of tests among 10 that exceeded the time limit. The empty cell (minus sign) shows
that this occurred for all 10 instances. Both forms were solved by the CPLEX
code without taking advantages of the constraints structure specificity. The dual
form of the model performs much better in each tested problem size. It behaves
very well with increasing number of variables if the number of scenarios does
not exceed 100. Similarly, the model performs very well with increasing number
of scenarios if only the number of variables does not exceed 20.



On Decision Support Under Risk by the WOWA Optimization 789

Table 2. Solution times [s] for the dual model (19)

Number of Number of variables (q)
scenarios (m) 10 20 50 100 150 200 300 400

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1
50 0.1 0.1 0.4 0.7 0.9 1.0 1.5 1.9
100 0.7 1.0 3.4 19.5 24.9 30.0 33.6 38.9
150 2.3 3.5 7.9 80.2 – – – –
200 5.6 7.9 17.1 – – – – –
300 20.0 30.6 189.3 – – – – –
400 51.9 92.8 – – – – – –

Table 3. Solution times [s] for different numbers of preferential weights (m = 100,
q = 50)

Number of preferential weights (n)
3 5 10 20 50 100 150 200 300

0.0 0.1 0.1 0.4 3.3 3.4 2.6 3.6 6.5

Table 3 presents solution times for different numbers of the preferential weights
for problems with 100 scenarios and 50 variables. It can be noticed that the
computational efficiency can be improved by reducing the number of preferen-
tial weights which can be reasonable in non-automated decision making support
systems and actually provides very good results for portfolio optimization prob-
lems [5]. On the other hand increasing the number of preferential weights and
thus the number of breakpoints in the interpolation function does not induce
the massive increase in the computational complexity.

5 Concluding Remarks

The problem of averaging outcomes under several scenarios to form overall ob-
jective functions is of considerable importance in decision support under uncer-
tainty. The WOWA aggregation [12] represents such a universal tool allowing one
to take into account both the preferential weights allocated to ordered outcomes
and the importance weights allocated to several scenarios. The ordering opera-
tor used to define the WOWA aggregation is, in general, hard to implement. We
have shown that the WOWA aggregations with the increasing weights can be
modeled by introducing auxiliary linear constraints. Hence, an LP problem with
the risk averse WOWA aggregation can be formed as a standard linear program
and it can be further simplified by taking advantages of the LP duality.

Initial computational experiments show that the formulation enables to solve
effectively medium size problems. Actually, the number of 100 scenarios covered
by the dual approach to the LP model seems to be quite enough for most appli-
cations, including the fuzzy aggregations and decisions under risk. The problems
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have been solved directly by general purpose LP code. Taking advantages of the
constraints structure specificity may remarkably extend the solution capabilities.
In particular, the simplex SON algorithm [2] may be used for exploiting the LP
embedded network structure in the dual form of the model.
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Abstract. In this work, we address the transposition of a fragment of the mod-
eling of the Sociology of Organized Action to the fuzzy setting. We present two
different ways of developing fuzzy models in this context, that depend on the kind
of available data furnished by the user: one based on the extension principle and
another using fuzzy rule-based inference with similarity relations. We illustrate
our approach with an example from the sociology literature.

1 Introduction

Economics is mainly concerned with the creation of wealth, and games in this context
help to understand how economic actors can accumulate gains in a competitive environ-
ment, each actor following a methodological individualistic strategy [1]. On the other
hand, sociology is mainly concerned with the kinds of relationships that make human
beings build the societies in which they live, and social games study the relationships
that social actors can produce, resulting in a state of affairs in which each actor accepts
both his own position and the position of others.

Here we are interested in social games, inspired by a sociology theory called the
Sociology of Organized Action (SOA), or Strategic Analysis, initiated by M. Crozier
[2] and notably further developed by E. Friedberg, (see [3]). Crozier and Friedberg part
from the notion of limited rationality due to March and Simon and extract practical
consequences from it [6].

SOA addresses social organisations or, more generally, Systems of Concrete Actions
(SAC), that interact with an environment, pursue some goals, and manage means and
resources that are used by the members of the organisation according to some rules.

A SAC is composed of “numerous differentiated actors interacting in a non-trivial
way among each other” [3], and it defines an interaction context which structures and
motivates the cooperation among social actors. Any organization features regulation
phenomena that ensure its relative stability and the balance of social relationships (as
long as there is no change in the goals and means). This regulation is enacted by the
organization members, and SOA intends to explain how and why social actors behave
as they do.

According to SOA, the behaviour of a member of an organisation is fully explained
neither by the formal and informal rules, norms, etc. of the organisation, nor by each
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member individual particularities resulting from his history, nature, etc. Social actors
have a strategic behaviour, i.e., they perform actions with the intention to achieve some
goals, and each actor aims, as a meta-objective, at having enough power to preserve
or increase his autonomy and capacity of action. This power results from and is ex-
erted through the mastering of uncertainty zones (UZ), which are the resources that
are needed by other actors for their actions. The actor (or group of actors) that mas-
ters/controls an uncertainty zone sets its exchange rules, i.e., how well other actors can
access and use this particular resource.

UZs are the means of the power relationships between social actors, and a balance
results from the fact that each actor both controls some UZs and depends on some
others. Moreover, SOA assumes that each actor behaves strategically although he has
only bounded rationality capabilities [11].

SOA has been formalized in [10], and is employed in the interactive environment
SocLab (available at sourceforge.net), which allows the user to edit the structure of a
SAC and to simulate the behaviour of the social actors [8].

Human knowledge is usually imperfect, tainted with imprecision, vagueness and un-
certainty. That is specially true in what regards complex objects such as social orga-
nizations. To model and manipulate such knowledge computationally, it is important
to address these issues in order to lose as little of the original information as possible.
Fuzzy sets offers a very human-friendly means of modeling knowledge, and the opera-
tors provided by fuzzy sets theory are able to capture many of the ways human beings
manipulate knowledge. In this work, we address the transposition of the modeling of
SOA by [10] to the fuzzy setting using two different approaches, that depend on the
kind of available data furnished by the user: one is based on the extension principle and
the other on fuzzy rule-based inference with similarity relations.

This work is organized as follows. In Section 2, we present an example from the
sociology literature that will be used to illustrate the various issues addressed in the
remaining of the text. In Section 3, we present a fragment the modeling of SOA in [10]
and then in Section 4 we present our two fuzzy approaches to deal with this fragment.
Section 5 finally brings the conclusion.

2 Running Example

To illustrate how SOA analyses a system of concrete action and how we formalize this
analysis, let us consider a classical example from strategic analysis [12].

Travel-tours is a tour operator having two agencies, TRO1 and TRO2, both of them
situated in Trouville. These last months, the results of the TRO1 agency have increased,
whereas the ones of TRO2 agency remained stable, or even decreased. The regional
director decides to reward the TRO1 agency for its merits. He proposes then to regular-
ize the situation of Agnès, a secretary of the company and to affect her exclusively to
TRO1. She has been temporary employed by Travel-tours for several months, and even
if she is formally attached to TRO1, she works half time in each agency and is obliged to
move between the two jobs. Both Agnès and the TRO1 agency’s director, Paul, should
be glad with this proposal: Agnès would have a permanent job contract and would be
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relieved to split her work in two parts, whereas Paul would have a full-time secretary at
his disposal in TRO1.

However, both of them vigorously refuse the proposal. How should we understand
this situation ? An strategic analysis, by identifying the uncertainty zones, shows that
both Paul and Agnès are rationally right to be opposed to this organizational change,
because it would decrease their respective power.

Indeed, a more attentive analysis of the case reveals that TRO2 is more inventive than
TRO1 in designing travel packages, while TRO1 includes a very efficient commercial
staff; being aware of the TRO2 agency’s activity, the secretary provides information to
the director so that TRO1 takes full advantage of finalizing TRO2’s ideas. On the other
hand, for personal reasons, to get a steady job is not one of Agnès’ short-time objectives.
Moreover, she greatly appreciates that none of the TRO1 and TRO2 directors has the
possibility to exert a precise control on her work.

Thus the situation shift would increase the control of the director on the secretary’s
activities (something she does not want), and the director would lose the information
given by the secretary on TRO2 (something he does not want).

3 Formalization of a Fragment of SOA

The basic social game formalization, as given in [10], can be described by the 5-tuple
G =< A,R, effect,m, stake, payoff >, where:

– A = {a1, ..., aN} is a set of social actors.
– R = {r1, ..., rM} is a set of resources, each of which needed by one or more

actors in A and controlled by one actor in A; the state of a resource ri at a given
moment is denoted by si, and modeled by a value in the interval [−1, 1]. The overall
state of the game is defined by the state of all the resources, described by a vector
s = (s1, s2, ..., sM ) ∈ [−1, 1]M .

– m : R → A indicates which actor controls which resource; it is always assumed
that each actor controls at least one resource, and thus M ≥ N . The access of
each resource ri by its controller is bounded by its minimum and maximum val-
ues bi = [b_mini, b_maxi] ⊆ [−1, 1]. In the present implementation, a resource
is controlled by a single actor. Also, the bounds on the access to a resource are
constant values.

– effecti : A × [−1, 1] → [−10, 10] is a function that models how well an actor a
can access resource ri in its current state si. The worst and best possible accesses
are respectively modeled by -10 and +10.

– stake : A × R → [0, 10] is a function that expresses how important it is for an
actor to access a resource. Each actor distributes the same number of stake points
to the resources: ∀a ∈ A,

∑
ri∈R stake(a, ri) = 10. For a resource rk ∈ R,

stake(a, rk) = 0 means that a has no need for rk, whereas stake(a, rk) = 10
means that rk is the unique resource needed by a.

– payoff : A × [−1, 1]M → R is a function that expresses how much an actor is
comfortable with a state s of the game. A high payoff corresponds to a state where
the actor has a good quality of access to the resources that are important to him.
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At the moment, the implementation in SocLab of function payoff is restricted to

payoff(a, s) =
∑
ri∈R

stake(a, ri) ∗ effecti(a, si),

but other functions can be envisaged, such as non-linear combination functions, effect
functions regarding two or more resources conjointly, payoff functions in which stakes
do not play an explicit role, etc.

Note that stakes and effect are relevant in this framework, independently of func-
tion payoff using them or not, because many important concepts of SOA, as mod-
eled in [10], depend on such items. For instance, the relevance of a resource and the
autonomy/subordination of an actor depend on the stakes:

– relevance(r) =
∑

a∈A stake(a, r)
– autonomy(a) =

∑
ri∈R:m(r)=a stake(a, r)

– subordination(a) =
∑

ri∈R:m(r) �=a stake(a, r)

Functions autonomy and subordination are bounded in the interval (0, 10] and relevance
is bounded in (0, 10k] where k =| A |. Also, autonomy(a)+subordination(a) = 10.

In the formalization adopted here, some important concepts that depend on function
effect are for instance the force of a relation upon an actor, the relation of power
between actors, the consequent dependencies of an actor upon another, etc. Yet other
concepts, related to the accessibility of the resources, depend on the size of the interval
[b_mini, b_maxi] .

3.1 Playing a Social Game

The actor that controls a given resource is the one who decides the state of that resource.
An action of actor a is a vector of the form (mi)ri∈m−1(a), where mi is the move
to be applied to si (the current state of ri), and that move is feasible if si + mi ∈
[b_min, b_max]. A step of the game occurs when each actor has chosen a feasible move
mi for each resource ri that he controls, and the game goes from state (s1, s2, ..., sM )
to state (s1´, s2´, ..., sM´), where si´ = si + mi.

The game is repeated until it becomes stabilized, or stationary: each actor plays the
null action and no longer changes the state of the resources he controls. Such a state of
the game is considered a social equilibrium, a balanced situation that is satisfying and
accepted by all of the actors of the game. In most human organisations, social games
are positive sum games: each actor gets some profit from being cooperative with each
other, because others will also be cooperative in return. Thus, typical social equilibria
are Pareto maxima: each actor has a high satisfaction, and any increase of it would entail
a decrease of the satisfaction of another actor, and thus produce a situation that would
not be accepted by all the actors.

3.2 Implementation of the Travel-Tours Example

The formalisation of this case in [10] includes two actors A = {Director, Secretary},
and three resources R = {r1, r2, r3}, where r1 stands for the stability of the secretary’s
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job, r2 refers to the content of the secretary’s work, and r3 that represents the informa-
tion about the activities of TRO2 agency. The director masters resources r1 and r2 and
the secretary masters r3; therefore, the values of s1 and s2 are set by the director and
that of s3 is set by the secretary.

Table 1 presents the stakes that each actor place on the resources and the effects of
the resources’ states upon the actors (we also indicate which actor controls each of the
resources). For instance, concerning the information about TRO2 resource, the more
the secretary gives information, the best it is for the director, who uses this information
to improve the activity of TRO1 agency, but the worse it can be for herself if someone
from TRO2 discovers that she furnishes information to TRO1. The director puts a high
stake on this resource (as far as the social game is restricted to his relations with the
secretary) because bringing this information is the most important contribution of the
secretary to the agency, whereas giving or not the information does not have a high
effect on her. Similar considerations explain the values concerning the stability of the
job and control of work resources.

Table 1. Stakes and effects in the Travel-Tours case study (taken from [10])

stakes Director Secretary
r1 (D) 1 2
r2 (D) 2 7
r3 (S) 7 1

effects Director Secretary
r1 (D) 3s1 10s1

r2 (D) −3(s2)
2 7s2

r3 (S) 10s3 −2 | s3 |

From Table 1 we obtain relevance(r1)=3, relevance(r2)=9 and relevance(r3)=
8, autonomy(Director) = 3 (subordination(Director) = 7) and autonomy
(Secretary) = 1 (subordination(Secretary) = 9). We can directly state the pay-
off of each actor:

– payoff(Director) = 3s1 − 6(s2)2 + 70s3
– payoff(Secretary) = 20s1 + 49s2 − 2 | s3 |

The boundaries for the resources are given as b1 = [−.4, .4], b2 = [−.3, .7]andb3 =
[−.3, .8]. Some interesting states are

– the secretary’s optimum: sa == (.4, .7, 0) with payoff(Secretary) = 42.3 and
payoff(Director) = −1.7.

– the director’s optimum: sb = (.4, 0, .8) with payoff(Director) = 57.2 and
payoff(Secretary) = 6.4.

– a Pareto optimum: sc = (.4, .7, .8), with payoff(Director) = 54.3 and
payoff(Secretary) = 40.7.

4 A Fuzzy Modelization of SOA

The interest to allow fuzzyness in SOA is due in part to the fact that humans furnish
information, and perceive the information presented to them, imperfectly. In the stage
that SOA is insofar mathematically modeled by [10], fuzzy formalisms can be used
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to model vagueness in the definition of values of stakes and moves in the sates, of
functions such as effect and payoff , on the boundaries of the resources accessibility
and on functions depending on these items.

In the following, we present some basic definitions from the fuzzy systems literature
that are needed in the rest of the paper. We then present a fuzzy modeling to the problem
in two approaches whose choice depend on the type of available data. We illustrate both
approaches using the Travel-Tours example.

4.1 Basic Definitions and Notations

In this section we recall some basic definitions that are used in the rest of the paper
and provide some notation. Most of the definitions and remarks are well-known in the
literature.

In the rest of the paper, unless stated otherwise, we shall work with fuzzy subsets
of the real line, so the domain U below is assumed to be R. The core (respec. support)
of a fuzzy set A : U → [0, 1] is defined as core(A) = {x | A(x) = 1} (respec.
supp(A) = {x | A(x) > 0}). For any α ∈ [0, 1], the α-cut of A is defined as [A]α =
{x ∈ U | A(x) ≥ α}. A is said to be normalized when there exists x such that
A(x) = 1, and convex when for all x, y, z, if x ≤ y ≤ z, A(y) ≥ min(A(x), A(z)). A
linear by parts convex fuzzy set A, a trapezoid, is denoted as < a1, a2, a3, a4 > where
supp(A) = (a1, a4) and core(A) = [a2, a3]. When A is triangular, i.e. a2 = a3, the
notation is simplified to < a1, a2, a4 >. A normalized convex fuzzy set is called a fuzzy
interval.

Given any function f from X to Y , the extension principle permits us to extend f to
fuzzy sets. That is,

f̂(A)(y) = max
x∈X,f(x)=y

A(x)

This expression is extended easily into functions f : X1, . . . , XN → Y . For illustration,
when f is the sum, the extension principle permits us to compute the fuzzy sum of fuzzy
sets A and B:

CA⊕B(y) = sup
(x1,x2)/x1+x2=y

min(A(x1), B(x2)).

Operations on fuzzy sets are greatly simplified when their membership functions can
be expressed by means of two functions L,R : R+ → [0, 1], called shape functions,
and L (and likewise R) is such that (a) L(0) = 1, (b) ∀u > 0, L(u) < 1, (c) ∀u <
1, L(u) > 0, and (d) L(1) = 0 or [L(u) > 0, ∀u and L(∞) = 0]. A fuzzy interval A
is said to be of the LR type when its membership function can be defined with shape
functions L and R and four parameters (m,m) ∈ R2, α and β as [4]

A(x) =

⎧⎨⎩
L(m−x

α ) if x ≤ m
1, if m ≤ x ≤ m
R(x−m

β ), if x ≤ m

and is denoted by (m,m,α,β). The trapezoid fuzzy interval (m,m,α,β) is written in
our notation as < m− α,m,m,m + β >.
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Let A =< a1, a2, a3, a4 > and B =< b1, b2, b3, b4 > be two LR intervals and δ
be a (precise) constant in R. Using the properties of LR intervals, the fuzzy sum, fuzzy
subtraction, and the product by a precise constant are defined, in our notation, as

– A⊕B =< a1 + b1, a2 + b2, a3 + b3, a4 + b4 >
– A.B =< a1 − b4, a2 − b3, a3 − b2, a4 − b1 >
– A⊗ δ =< δa1, δa2, δa3, δa4 >

The fuzzy product of two LR intervals (the same for the division) is not necessarily
LR and to express it as LR one has to use some of the approximations proposed in the
literature [4].

4.2 Fuzzy Framework Using the Extension Principle

In the first fuzzy approach, constant values such as stakes, moves or alternatively new
values for resources states and boundaries, are simply allowed to be modeled by fuzzy
sets. The biggest concern in this case regards the restrictions that the SOA model used
here imposes on these values. In the following we analyze these issues.

– States
A state si in the non-fuzzy framework varies in interval [−1, 1]. We denote a fuzzy
state by s∗i , with membership function s∗i : [−1, 1]→ [0, 1].

– Stakes
A stake stake(a, r) in the non-fuzzy framework varies in interval [0, 10]. We denote
a fuzzy stake by stake∗(a, r), with membership function stake∗(a, r) : [0, 10] →
[0, 1]. The stakes add up to 10 for each actor a, so for the case of fuzzy stakes we im-
pose the restriction 10 ∈ core(F ), where F = stake∗(a, r1)⊕ ...⊕stake∗(a, rM ).

– Boundary values
The values bounding the accessibility of a resource by its own controlling actor,
[b_mini, b_maxi], vary in interval [−1, 1] in the non-fuzzy framework. We de-
note a lower fuzzy boundary by b_min∗

i , with membership function b_min∗
i :

[−1, 1] → [0, 1] and an upper fuzzy boundary by b_max∗
i , with membership func-

tion b_max∗
i : [−1, 1]→ [0, 1]. Let b_min∗

i =< a1, b1, c1, d1 > and b_max∗
i =<

a2, b2, c2, d2 >. Since b_mini ≤ b_maxi, in the case of fuzzy boundaries we
impose the restrictions (i) b1 ≤ a2, (ii) c1 ≤ b2 and (iii) d1 ≤ c2.

Functions that use these constants are extended in this fuzzy framework using the
extension principle. For example, functions relevance, autonomy and subordination
are easily extended substituting the sum operator by its fuzzy counterpart. Linear effect
functions are likewise easily extended and all these functions can be implemented
straightforwardly when the membership functions are LR [4]. However, non-linear func-
tions (e.g. effect2(Director, .)) having LR fuzzy sets as arguments do not necessarily
result in LR fuzzy sets. In this case, to get an efficient computation the best alternative is
to approximate the result by a LR fuzzy set. The same problem occurs in the computation
of the payoff function when both the effect functions and the stakes are fuzzy. Several
approximations are proposed in the literature for the product of fuzzy sets [4]; special
care would be required for more complex functions. Fortunately, the SOA framework
seems to need only reasonably simple functions for an acceptable formalization.
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For example, let us suppose we have fuzzy stakes 1∗, 2∗ and 7∗ as illustrated in
Figure 1. The payoff functions for the director and secretary described in 3.2 are given
in the fuzzy framework as

– payoff(Director) = 1∗ ⊗ (3 ⊗ s∗1)⊕ 2∗ ⊗ (−3 ⊗ (s∗2)
2)⊕ 7∗ ⊗ (10 ⊗ s∗3) =

< 0, 3, 6 > ⊗s∗1 . < 3, 6, 9 > ⊗(s∗2)
2 ⊕ < 60, 70, 80 > ⊗s∗3

– payoff(Secretary) = 2∗ ⊗ (10 ⊗ s∗1)⊕ 7∗ ⊗ (7 ⊗ s∗2)⊕ 1∗ ⊗ (−2⊗ | s∗3 |) =
< 10, 20, 30 > ⊗s∗1 ⊕ < 42, 49, 56 > ⊗s∗2 . < 0, 2, 4 > ⊗ | s∗3 |

1*       2*                                     7*

0       1       2      3       4       5      6       7       8       9       10

1

Fig. 1. Fuzzy stakes

Considering fuzzy stakes but non-fuzzy states, the payoff functions are reduced to

– payoff(Director) = < x, y, z >, where x = 60s3 − 9(s2)2, y = 3s1 + 70s3 −
6(s2)2, z = 6s1 + 80s3 − 3(s2)2.

– payoff(Secretary) = < o, p, q >, where o = 10s1 + 42(s2)2 − 4|s3|, p =
20s1 + 49(s2)2 − 2|s3|, q = 30s1 + 56(s2)2.

Results to some specific states are given in Table 2 below. Note that since the core
of the fuzzy stakes correspond to the precise values given in the crisp case, the core of
payoff results consequently correspond to the payoff values in the crisp case.

Table 2. Payoffs in the Travel-Tours example using the extension principle

state Director Secretary
sa = (.4, .7, 0) <-4.4, -1.7,.9> <33.4, 42.3, 51.2>
sb = (.4, 0, .8) <48, 57.2,66.4> <.8,6.4,12>
sc = (.4, .7, .8) <43.6, 54.3,64.9> <30.2,40.7,51.2>

A similar treatment is employed when we have fuzzy states and non-fuzzy stakes. For
instance, if instead of state (.4, .7, 0) we had state (.4, .7∗, 0) with .7∗ =< .6, .7, .8 >,
we would obtain < 37.4, 42.3, 47.2 > as the secretary’s payoff. However, the use of
functions such as (s2)2 would make it necessary to use an approximation if we wanted
to keep on using LR fuzzy sets; for example (.4, .7∗, 0) is linear whereas (.4, .7∗, 0)⊗
(.4, .7∗, 0) is not so. The same problem would happen when we have fuzzy stakes and
fuzzy states in the same function as explained above.
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4.3 Rule-Based Fuzzy Framework

Even though the expressions used to model the effect and payoff functions may be
mathematically simple, such as those employed in our example, it may not be so simple
for someone modeling a social organization to create them from scratch. When that is
the case, we propose to model such functions using a fuzzy rule-based approach. This
can be done using the framework proposed in [9] for the general case of multicriteria
decision making. Instead of describing the original method formally and then show
its application to the running example, we will explain the method as we develop the
example in the fuzzy framework.

First of all, now the payoff of an actor in our example will be given by a trade-off
between the effect of the state on the resources he controls (effectaut) and the effect
on the resources he depends on but does not control (effectsub):

payoff(a, s)=autonomy(a)⊗effectaut(a, s)⊕subordination(a)⊗effectsub(a, s),

where s is the state vector. We propose to obtain the values for effectaut and effectsub

functions through the use of fuzzy rule bases.
Let us consider a simple rule base implementation. Here, each resource can be in

one of three following states - opposing, neutral or cooperative, denoted by O, N and
C - according to the orientation of the control by the actor mastering that resource. As
for the effect of the state of a resource upon an actor of the game, it can be extremely
bad (EB), very bad (V B), bad (B), null (N ), good (G), very good (V G) or extremely
good (EG). In each of the rule bases, the input variables refer to the states of resources,
whereas the output one (either effectaut or effectsub) refers to the effect of the state
of those resources on an actor. The fuzzy terms relative to the input and output linguistic
terms used in the example are given in Figure 2. In Tables 3 and 4 we bring the rule
bases relative to the director and the secretary respectively.

1-1 0 .8-.8

N CO

1

100

EB          VB             B      N     G              VG           EG

542 6 8

1

a) b)

Fig. 2. Fuzzy terms for the effect rule bases: a) input and b) output variables

In order to infer the values of effectaut and effectsub from the rule bases, we pro-
pose to use the mechanism presented in [7] that employs gradual rules with similarity
relations. The knowledge base is interpreted as a set of gradual rules, in the sense of
[5], using residuated implication operators to perform the inference. Thus, a rule “If
x is Ai then y is Bi” induces a fuzzy relation between input and output values which
is defined as Ri(x, y) = (Ai →� Bi)(x, y) = Ai(x) →� Bi(y), where →� is a
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Table 3. Rule bases for the director

effectaut

s2|s1 O N C

C B B B
N B N G
O B B B

effectsub

s3 O N C

EB N EG

Table 4. Rule bases for the secretary

effectsub

s2|s1 O N C

C G VG EG
N B N G
O EB VB B

effectaut

s3 O N C

B N B

residuated implication operator. The output of a a set of gradual rules K in the case of
precise input value x0, as in our problem, is given by output(K, {x0}) = RK(x0, y) =
mini∈I B′

i(y), where B′
i(y) = αi →� Bi(y), and αi = Ai(x0) is the compatibility of

the rule premise with the input.
If the i-th rule is given as “If x1 is Ai1 and ... and xk is Aik then y is Bi”, input x0 is

in fact a vector and we have αi = min(Ai1(x01 ), ..., Aik(x0k
)). This formalism has a

very important restriction: if there exists an input x such that two rules R1 and R2 are
fired with α1 = α2 = 1 then we must have ∃y, B1(y) = B2(y) = 1 to guarantee that
the result is consistent, i.e. that output(K, {x0}) is normalized for every acceptable
x0. Following [9], here inference is performed using Goguen residuated implication
operator, defined as a→�Πb = 1 if a ≤ b and a→�Πb = b/a otherwise.

For example, let us consider the subordination effect on the secretary for state sa =
(.4, .7, 0). Fuzzy terms C and N are addressed for input variable s1 = .4 and the
same happens with s2 = .7. Therefore, four rules are fired, addressing output terms
{N,G,V G,EG}. Since we obtain α = .5 for rules with output V G and EG and
α = .125 for those with N and G, an inconsistent result is produced.

To deal with an inconsistency, following [7], we make the fuzzy output terms less
specific by the use of a similarity relation. From a result coming from [5], we only need
to make consistent the terms that are the furthest apart from each other. Thus, in our
example with sa = (.4, .7, 0), we only need to consider N and EG.

The application of a similarity relation S on a fuzzy term A, denoted by S◦A, creates
a “larger” term approximately_A. Formally, we have

(S ◦A)(x) = supy∈U min(S(x, y), A(y)).

Here, we use the linear similarity relation family Sλ(x, y) = max(0, 1−λ−1 · |x− y|),
where λ > 0.

In our example with sa = (.4, .7, 0), the smallest parameter that makes N and EG
compatible with each other, given the values for s1 and s2, is λ = 2.27; consequently
effectsub(Secretary, sa) = < 5.7, 7.8, 8.2 > (see Figure 3).
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1
N                                        EG

Fig. 3. Inference of fuzzy gradual rules and similarity relations

The result of the inference for effectaut(Secretary, sa) is obtained straightfor-
wardly as N =< 4, 5, 6 >. We finally compute the secretary’s payoff for sa as payoff=
1⊗ effectaut⊕ 9⊗ effectsub =< 55.5, 75.7, 80.4 > . The results for the states con-
sidered the Travel-Tours example are given in Table 5 below.

Table 5. Payoffs in the Travel-Tours example using rule bases

state Director Secretary
sa = (.4, .7, 0) <41.8, 49.3, 58.2> <55.5, 75.7, 80.4>
sb = (.4, 0, .8) <71, 86.5, 88> <47, 53.5, 59>
sc = (.4, .7, .8) <69.8, 84.3, 86.2> <53.5, 74.7, 79.4>

With the rule bases and fuzzy terms used here we obtained the same behaviour as in
the crisp case: state sa is good for the secretary but bad for the director (considering his
other payoffs), whereas sb is very good for the director but not so good for the secretary
(considering her other payoffs), and state sc is a compromise.

Note that the results obtained using the extension principle are compatible with those
obtained through the rule-based one: the preference order induced on states sa, sb and
sc, in what regards the secretary and the director, is the same in the two approaches
even though the specific numerical values differ. Moreover, in both approaches there
is no need to compare the numerical values issued for the secretary and director, as
preconized by the foundations of welfare economics after the 30s, based on ordinal and
interpersonally non-comparable utility information [13].

5 Conclusion

We presented here two approaches to extend a fragment modeling the Sociology of
Organized Action to the fuzzy framework. The first approach is useful when it is possi-
ble to express assessments directly through mathematical expressions, and is modeled
using the extension principle. A drawback of this approach is that functions involving
non-linearities have to be approximated to make computation efficient. The other ap-
proach employs fuzzy rule bases and is useful when the assessments can only be given
in qualitative means.
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As future work, we intend to address the cases in which i) a resource can be con-
trolled by more than one actor and ii) an actor can be responsible for the limits on a
resource controlled by someone else. We also intend to address the modeling of the
strategies of actors according to a bounded rationality, important in the implementation
of social games.
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Abstract. The aim of the paper is to extend the Savage like axiomatiza-
tion of possibilistic preference functionals in qualitative decision theory
to conditional acts, so as to make a step towards the dynamic decision
setting. To this end, the de Finetti style approach to conditional possi-
bility recently advocated by Coletti and Vantaggi is exploited, extending
to conditional acts the basic axioms pertaining to conditional events.

1 Introduction

The natural counterparts to the expected utility criterion is the pair of possi-
bilistic optimistic and pessimistic criteria, originally introduced by Yager [21]
and Whalen [19] respectively. These criteria were axiomatized in the setting of
Von-Neuman and Morgenstern theory, based on the comparison of possibilistic
lotteries by Dubois et al. [7] and in the Savagean setting of acts under uncertainty
by Dubois Prade and Sabbadin [10]. Later on, Giang and Shenoy [13] introduced
a possibilistic criterion without pessimism nor optimism assumptions, using a
bipolar qualitative scale concatenating the possibility and necessity scales. In
this setting, each act is evaluated by a pair of qualitative values. The criterion
is like the pessimistic one when all potential consequences are bad, and like the
optimistic ones where all consequences are good. More recently Paul Weng [20]
showed how to axiomatize this criterion in the Savage setting. All the above
works propose a foundation to qualitative decision making in a static world. But
the important issue of a qualitative decision theory when new input information
can be received was left open.

In classical decision theory, this question turns out to be an easy one because
of the sure thing principle. When the input information is obtained under the
form of a true event A, the expected utility of acts comes down to restricting
the acts to states of nature where this event is true, making the consequences
outside A of all acts identical, regardless of what these common consequences
are. Namely, if the preference relation indexed by the sure event is representable
by an expected utility, then the same holds for the preference relation indexed
by the event A, whenever the conditioning event A is not null. It comes down to
changing the subjective probability into a conditional probability. This method

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 803–815, 2007.
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can fail when the possible event A is null, that is, indifferent to the constant
zero.

The issue of conditional qualitative criteria is more difficult, because in possi-
bility theory the sure thing principle fails. As a consequence, the axiomatization
of conditional possibilistic criteria must be reconsidered from scratch. It can be
done either using a set of conditional preference relations on acts, or using a
single preference relation on conditional acts. In the first approach, preference
relations are indexed by an event that represents the information context in
which the decision takes place. Additional axioms must be found in order to
explain how preference relations indexed by different events can interplay. In the
second approach one considers any act that takes place in a given information
context. From an uncertainty-theoretic point of view it comes down to studying
conditional set-functions not as a derived notion built from the unconditional
ones, but as a primitive notion. This approach to uncertainty measures is the one
adopted by de Finetti for probability theory, in order to allow for conditioning
on hypothetical events with probability zero. This is the path followed in this
paper. Recently Coletti and Vantaggi [2,3] introduced this approach in qualita-
tive possibility theory, thus extending to the conditional setting the comparative
possibility relation first proposed by Lewis [17], and retrieved by Dubois [6] as
an ordinal account of Zadeh’s possibility theory [22] in the spirit of compara-
tive probability also originally proposed by de Finetti. The merit of qualitative
conditional possibility after Coletti and Vantaggi is to provide an answer to
conditioning on non-empty events of possibility zero, thus capturing a more gen-
eral concept of conditioning (including some other proposals already studied in
literature).

The aim of this paper is to bridge the gap between qualitative conditional
possibility and the axiomatization of possibilistic preference functionals, thus
paving the way toward possibilistic decision under uncertainty in a dynamic
epistemic environment.

2 Decision-Theoretic Approach to Possibility Theory

A decision problem under uncertainty will be cast in the usual framework: we
consider set S of states and a set X of potential consequences of decisions. States
encode possible situations, states of affairs, etc. An act is viewed as a mapping
f from the state space to the consequence set, namely, in each state s ∈ S, an
act f produces a well-defined result f(s) ∈ X . The decision maker must rank
acts without knowing what is the current state of the world in a precise way.
In qualitative decision theory, S is finite, and so is generally X . n will denote
the number of states in S. The consequences of an act can often be ranked in
terms of their relative appeal: some consequences are judged better than others.
This is often modeled by means of a numerical utility function u which assigns
to each consequence x ∈ X a utility value u(x) ∈ IR.

The most widely found assumption is that there is a probability distribution p
on S, and the most usual decision rule is based on the expected utility criterion.
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When no information about the current state is available, the maximin criterion
ranks acts according to its worst consequence:

W−
u (f) = min

s∈S
u(f(s)). (1)

Clearly this criterion has the major defect of being extremely pessimistic. Abso-
lute qualitative approaches rely on extensions of Wald’s criterion. The possibilis-
tic qualitative criterion is based on a utility function u on X and a possibility dis-
tribution π on S [22], both mapping on the same totally ordered scale L. The or-
dinal value π(s) represents the relative plausibility of state s. Here, L is equipped
with its involutive order-reversing map n; in particular n(1L) = 0L,n(0L) = 1L.
So, n(π(s)) represents the degree of potential surprise in case the state of the
world is s [18]. In particular, n(π(s)) = 1L for impossible states. A pessimistic
criterion W−

π,u(f) is proposed [19,9] of the form :

W−
π,u(f) = min

s∈S
max(n(π(s)),u(f(s))) (2)

The value of W−
π,u(f) is small as soon as there exists a highly plausible state

(n(π(s)) = 0L) with low utility value. This criterion is actually a prioritized
extension of the Wald maximin criterion W−

u (f). The latter is recovered in case
of total ignorance, ie. when π(s) = 1L for all s ∈ S. The decisions are again
made according to the merits of acts in their worst consequences, now restricted
to the most plausible states defined by a compromise between belief and utility
expressed in the min-max expression.

The optimistic counterpart to this criterion [22,21] is:

W+
π,u(f) = max

s∈S
min(π(s),u(f(s))). (3)

The optimistic and pessimistic possibilistic criteria are particular cases of a
more general criterion based on the Sugeno integral (see [14]):

Sγ,u(f) = max
λ∈L

min(λ, γ(Fλ)) (4)

where Fλ = {s ∈ S,u(f(s)) ≥ λ}, γ is a monotonic set function that reflects the
decision-maker’s attitude in front of uncertainty: γ(A) is the degree of confidence
in event A. The possibilistic criterion W+

π,u is obtained when γ is the possibility
measure based on π (γ(A) = maxs∈A π(s)), and W−

π,u is obtained when γ is the
corresponding necessity measure (γ(A) = mins/∈A n(π(s))) 1).

We consider Sugeno integral and possibilistic criteria in the scope of Savage
theory. Let us denote � a complete and transitive preference relation among acts
of XS : � will denote its strict part (f � g ⇐⇒ f � g and ¬(g � f)) and �
will denote its symmetric part (f � g ⇐⇒ f � g and g � f).

We denote fAh the act identical to f on a subset A and to h on its com-
plementary: ∀s, fAh(s) = f(s) if s ∈ A, h(s) if s /∈ A. The possibilistic criteria
W+

π,u and W−
π,u satisfy a weak version of the sure-thing principle:

1 Indeed, it is easy to show that Sγ,u(f) = maxs∈S min(u(f(s)),γ(Fu(f(s)))) is equal
to mins∈S max(u(f(s)),γ(Fu(f(s)))), where Fλ = {s ∈ S, u(f(s)) > λ} [14].
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Axiom WP2: ∀A, ∀f, g, h, h′, fAh � gAh⇒ fAh′ � gAh′.

Let us denote by �P the utility ordering of consequences that derives from
�: x �P y ⇐⇒ fx � fy. where fx (resp. fy) is the constant act that concludes
to consequence x (resp. y) for any state.

The rankings of acts obtained by a Sugeno integral satisfy the following weak
version of Savage postulate P3:

Axiom WP3: ∀A ⊆ S, ∀x, y ∈ X , ∀f,x �P y implies xAf � yAf.

But the converse may be false for events the plausibility of which is lower
than the utility degree of x and y (the plausibility degree of A is in this case so
negligible with respect to the utility of x and y that A is considered as null in
this context).

The basic properties of Sugeno integrals exploit disjunctive and conjunctive
combinations of acts. Let act f ∧ g be the one always producing the worst con-
sequences of f and g in each state, while f ∨ g always makes the best of them:

f ∧ g(s) = f(s) if g(s) �P f(s) and g(s) otherwise (5)

f ∨ g(s) = f(s) if f(s) �P g(s) and g(s) otherwise (6)

They are union and intersection of fuzzy sets viewed as acts. Obviously,Sγ,u(f∧ g)
≤ min(Sγ,u(f), Sγ,u(g)) and Sγ,u(f ∨ g) ≥ max(Sγ,u(f), Sγ,u(g)) from weak
Pareto monotonicity. These properties hold with equality whenever f or g is a con-
stant act and are then characteristic of Sugeno integrals for monotonic aggregation
operators [16]. Actually, these properties can be expressed by means of axioms,
called restricted conjunctive and disjunctive dominance (RCD and RDD) on the
preference structure (XS ,�):
– Axiom RCD: if f is a constant act, f � h and g � h imply f ∧ g � h
– Axiom RDD: if f is a constant act, h � f and h � g imply h � f ∨ g.

For instance, RCD means that limiting from above the potential utility values of
an act g, that is better than another one h, to a constant value that is better than
the utility of act h, still yields an act better than h. This is in contradiction with
expected utility theory and strongly counterintuitive in the context of economic
theory, with a continuous consequence set X . However the range of validity of
qualitative decision theory is precisely when both X and S are finite and steps
in the finite value scale are far from each other.

This setting enables the axiomatization of Sugeno integrals in the style of
Savage to be carried out. The following representation theorem holds:

Theorem 1 [11]: A preference structure (XS ,�) is a non-trivial weak order
that satisfies WP3, RCD and RDD if and only if there exists a finite chain
of preference levels L, an L-valued monotonic set-function γ, and an L-valued
utility function u on X , such that f � g if and only if Sγ,u(f) ≥ Sγ,u(g).

The pessimistic criterion W−
π,u(f) can be axiomatized by strengthening axiom

RCD into conjunctive dominance as follows [10]:
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Axiom CD: ∀f, g, h, f � h and g � h imply f ∧ g � h.

Changing RDD into CD implies that the set-function γ is a necessity measure
[10] and so, Sγ,u(f) = W−

π,u(f) for some possibility distribution π. Similarly, the
criterion W+

π,u(f) can be axiomatized by strengthening axiom RDD into disjunc-
tive dominance as follows:

Axiom DD: ∀f, g, h, h � f and h � g imply h � f ∨ g.

Changing RCD into DD implies that the set-function γ is a possibility measure
and so, Sγ,u(f) = W+

π,u(f) for some possibility distribution π. In order to figure
out why axiom CD leads to a pessimistic criterion, let us notice here that CD
can be equivalently replaced by the following property:

(PESS )∀A ⊆ S, ∀f, g, fAg � g implies g � gAf. (7)

Similarly, the following optimistic counterpart to (7) can serve as a substitute
to axiom DD for the representation of criterion W+

π,u:

(OPT )∀A ⊆ S, ∀f, g, g � fAg implies gAf � g. (8)

3 Qualitative Conditional Possibility

The notion of conditioning in possibility theory is a problem of long-standing
interest. Starting from a triangular norm (t-norm) T various definitions of T -
conditional possibility have been given [8]. In the following we use the axiomatic
definition proposed in [1], restricted to the t-norm minimum:

Definition 1. Let S = {s1, ..., sn} be a state space and E = B × H where B
is a finite algebra of subsets of S, H ⊆ B \ {∅} an additive class of non-empty
subsets of S (closed with respect to finite unions). A function Π : E → [0, 1] is
a qualitative conditional possibility if it satisfies the following properties:

1. Π(E|H) = Π(E ∧H |H), for every E ∈ B and H ∈ H;
2. Π(·|H) is a possibility measure, for every H ∈ H;
3. ∀H,E ∧H ∈ H and E,F ∈ B,Π(E ∧ F |H) = min (Π(E|H),Π(F |E ∧H)) .

Condition 2 requires that, for every conditioning event H ∈ H, the function
Π(·|H) is a possibility, so it is normalized. A characterization of qualitative
conditional possibilities in terms of a class of unconditional possibilities on the
algebra B was given in [2]. An analogous result for T-conditional possibility,
with T a strictly increasing t-norm, is in [12] and it is in the same line as
the characterization theorem of conditional probabilities in de Finetti approach
[5]. In both cases the conditional possibility Π(·|H) is not singled-out by the
possibility of its conditioning event H , but its value is ruled by the values of other
possibilities Π(·|E ∧ H), for suitable events E. It turns out that a conditional
possibility cannot always be derived from just one “unconditional” possibility.
The value Π(E|H) follows directly from Π(E ∧H) and Π(H) just in the case
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Π(E ∧H) < Π(H). Note that in such a case Definition 1 coincides with the one
given by Dubois and Prade in [8], which is based on the minimum specificity
principle and consists in taking for Π(E|H) the greatest solution to the equation
Π(E ∧H) = min{x,Π(H)}, that is Π(E ∧H) when Π(E ∧H) < Π(H) and 1L

otherwise. Definition 1 is more general than the latter.
For example, consider the following conditional possibility on E = B×{H,Ω},

with S = {s1, s2, s3} and H = s1 ∨ s2 :

Π({s1}) = Π({s2}) = 0.2; Π({s1}|H) = 0.6. (9)

Note that the rules of possibility theory imply Π(s1 ∨ s2) = 0.2 and π(s3) =
Π(F ) = 1, where s3 ∈ F ∈ B. Similarly, the conditional constraint implies
π(s2|H) = Π(H |H) = 1. Let Π0 = Π|Ω. It is a solution to both constraints
in (9) but the equation Π0(s1) = min(x,Π0(s1 ∨ s2)) does not define a unique
conditional possibility. The solution to system (9) is a pair of unconditional pos-
sibilities (i.e. {Π0,Π1}, where π1(s1) = 0.6;π1(s2) = 1;π1(s3) = 0). Moreover,
Π1 is the unique solution to Π({s1}|H) = 0.6 on referential H .

Characterizations of ordinal relations � on a set of conditional events E =
B × H representable by qualitative conditional possibilities Π (i.e. for any
A|H,B|K ∈ E, A|H � B|K ↔ Π(A|H) ≤ Π(B|K)) have been provided in
[3,4]. In the sequel we recall the main results.

Definition 2. A binary relation � on conditional events A|H ∈ E is called
comparative conditional possibility iff the following conditions hold:

1. � is a weak order;
2. for any H,K ∈ H, ∅|H ∼ ∅|K ≺ H |H ∼ K|K;
3. for any A,B ∈ B and H,B ∧H ∈ H, A ∧B|H � A|B ∧H and moreover if

either A ∧B|H ≺ B|H or B|H ∼ H |H, then A ∧B|H ∼ A|B ∧H;
4. for any H ∈ H and any A,B,C ∈ B, A|H � B|H ⇒ (A∨C)|H � (B∨C)|H.

Condition (3) requires that in the context of the new information “B” the degree
of belief in an event A cannot be less than the degree of belief in A ∧ B before
supposing that B occurs. Moreover, if the new information B is less surprising
than A ∧ B in the context H , or even totally unsurprising, the occurrence of
B cannot change the degree of belief in A in the context H . Condition (4) is
essentially the one proposed by Dubois [6], just rewritten conditioned on the
hypothesis H . Moreover, condition (4) is equivalent (see [3]), under transitivity,
to A|H � B|K and C|H � D|K ⇒ (A ∨ C)|H � (B ∨D)|K.

Theorem 1. [3]: For a binary relation � on E = B×H the following statements
are equivalent:

i. � is a comparative conditional possibility;
ii. there exists a qualitative conditional possibility Π on E representing �.

Obviously, among the comparative conditional possibilities there are also the or-
dinal relations representable by conditional possibilities satisfying the minimum
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specificity principle, more precisely those satisfying a reinforcement of condition
3 of Definition 2, that is

(sc) for every A,B ∈ B and H,B ∧ H ∈ H, (A ∧ B)|H � A|(B ∧ H) and
moreover if A ∧B ∧H = ∅ and (A ∧B)|H ∼ B|H , then A|(B ∧H) ∼ H |H .

4 Qualitative Conditional Possibilistic Preference
Functional: Optimistic Case

Let S be a finite set of states, B be the power set of S and H ⊆ B \ {∅} be an
additive class containing S.2

Given a set of consequences X , a conditional act f |H is formed by a pair:
an act f and an event H ∈ H. The event H in f |H is not just representing a
given fact, but it is an uncertain hypothetical event whose truth value may be
unknown. It expresses the idea of choosing decision f in case H were true, not
actually doing it when H occurs. It differs from an unconditional act of the form
fHg even if the value of f |H and fHg is equal to f(s) ∈ X for any state s ∈ H .
Indeed, for s ∈ H , the value of f |H is undetermined (following the terminology
of de Finetti).

Let x∗ and x∗ be the best and the worst consequences (according to a given
preference) in X . Moreover the event E ∈ B is in bijection with the binary act
taking the best value x∗ when E is true and the worst value x∗ when E is false.

A qualitative conditional decision model consists of a conditional possibility
Π : B×H→ L, a utility function u on the consequences in X with u(x∗) = 1L

and u(x∗) = 0L. A conditional possibilistic optimistic criterion takes the form:

v∗(f |H) = max
s∈H

{min{u(f(s)),Π(s|H)}} .

Note that the above model is such that, for any H ∈ H,

v∗(x∗|H) = max
s∈H

min{u(x∗),Π(s|H)} = max
s∈H

Π(s|H) = Π(H |H) = 1 = u(x∗)

and v∗(x∗|H) = maxs∈H min{u(x∗),Π(s|H)} = u(x∗) = 0 = Π(∅|H).

4.1 Axioms for the Qualitative Conditional Model: Optimistic Case

Given a preference on the set of conditional acts f |H with consequences on X ,
we consider the following conditions:

1. � is a non-trivial weak order on F = XS ×H;
2. for any consequences x, y ∈ X such that x >p y and for any H,K ∈ H one

has

y|H ∼ y|K and y|H ≺ x|H ;

2 This assumption could be dropped.
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3. (WP3) if x, y are consequences in X such that x ≥p y, then (yAh)|H �
(xAh)|H for any act h and any A ∈ B and H ∈ H;

4. (OPT) for any f |H, g|H and for any A ∈ H
(fAg)|H ≺ f |H ⇒ f |H � (gAf)|H

5. (RCD) for any constant act fx

f |H ≺ g|H and f |H ≺ fx|H ⇒ f |H ≺ (g ∧ fx)|H ;

6. for any x, y ∈ X such that x >p y and for any A,B ∈ B and H,B ∧H ∈ H,
(x(A ∧B)y)|H � (xAy)|B ∧H

and moreover if (x(A ∧B)y)|H ≺ (xBy)|H or (xBy)|H ∼ x|H, then

(xA ∧By)|H ∼ (xAy)|B ∧H.

Conditions 1,3,4,5 are trivial generalizations of axioms proposed in qualitative
possibilistic decision theory. Conditions 2 and 6 compare conditional acts with
different conditioning events and are generalizations of those proposed in Defini-
tion 2 [3] for comparative conditional possibility. Note that the approach reduces
to axioms of qualitative possibilistic decision theory when fixing the conditioning
event. Condition 2 is useful to compare constant acts with different conditioning
events, stating that the merit of a constant act is not affected by the conditioning
event. Note that condition 6 is actually a reinforcement of the axiom proposed
in [3], by requiring its validity for all the conditional binary acts, i.e. conditional
acts of the form (xAy)|H having, when H is true, two consequences x >p y ∈ X ,
more precisely x when A is true and y when A is false. Actually, condition 6
involves all the pairs of constant acts x >p y. The first part of the condition
suggests the decision-maker always prefers a more precise context (B ∧H) for
the act involving event A. Indeed, conditional act (x(A∧B)y)|H is risky since a
bad consequence obtains when A ∧Bc occurs, while this possibility is ruled out
by act (xAy)|B ∧H , in the context B ∧H . The second part of condition 6 can
be explained as follows: if improving consequence y into x on A ∧Bc makes the
act (x(A ∧B)y)|H more attractive, assuming B is true in the context H makes
act x(A ∧ B)y indifferent to xAy. Moreover, the same conclusion is reached if,
in context H , event B is considered so likely that act xBy is like the constant
act fx.

It is easy to see that the conditional possibilistic optimistic criterion satisfies
these properties:

Proposition 1. A conditional optimistic criterion induces a preference relation
satisfying conditions 1 to 6.

Proof. Condition 1 holds since v∗ is valued on a totally ordered scale. The va-
lidity of conditions 3, 4, 5 follows from [10]. Conditions 2, 6 follow from [3].

Since � is a total preorder on F , its restriction to constant acts induces the same
type of relation ≥p on X . Thus, among the consequences we can find the best
and the worst acts, denoted by x∗ and x∗, respectively. Now we can reconstruct
the conditional possibilistic optimistic criterion using the following steps:
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Lemma 1. Let � be a preference relation on F satisfying conditions 1, 3, 4.
Then, (fAg)|H ≺ f |H ⇒ f |H � (hAf)|H for any h.

Proof. If (fAg)|H ≺ f |H , then (fAx∗)|H ≺ f |H .
Suppose there exists an act h such that (hAf)|H ≺ f |H . Then (x∗Af)|H �
(hAf)|H ≺ f |H , so a contradiction for condition 4 (OPT) arises.

The two results in the sequel are trivial generalizations of the ones given for the
unconditional case in [10]

Lemma 2. Let � be a preference relation on F satisfying conditions 1, 3, 4. If
h = f ∨ g, then h|H ∼ f |H or h|H ∼ g|H.

Lemma 3. Let � be a preference relation on F satisfying conditions 1, 3, 4, 5.
If h = f ∧ fx, where fx is a constant act with value x, then h|H ∼ f |H or
h|H ∼ fx|H.

The next step retrieves a comparative conditional possibility on events:

Theorem 2. Let � be a preference relation on F satisfying conditions 1 to 6.
Then the restriction of � on the acts of the form x∗Ex∗|H with E ∈ B and
H ∈ H is a comparative conditional possibility.

Proof. We consider the bijection introduced in [11] between acts of the form
x∗Ex∗ and events E, where x∗ and x∗ are the best and the worst consequences
(according to a given preference) in X . It follows from condition 2 that, for any
H,K ∈ H, ∅|H ∼ ∅|K ≺ H |H ∼ K|K. Condition 1 implies that the restriction
of � is a non-trivial weak order on the set of conditional events E|H ∈ B×H.

From condition 6 it follows that A ∧B|H � A|B ∧H , for any A,B ∈ B and
H,B ∧ H ∈ H. Moreover, when A ∧ B|H ≺ B|H or B|H ∼ H |H , it follows
A ∧B|H ∼ A|B ∧H .

Taking condition 4 into play, and letting f = x∗Bx∗, g = x∗Ax∗ and h =
x∗Acx∗ one has fAg = x∗(A ∧B)x∗, and hAf = x∗(Ac ∧B)x∗, then condition
4 implies that if (A∧B)|H ≺ B|H , then by Lemma 1 Ac ∧B|H ∼ B|H . Hence,
A ∧ B|H ∼ B|H or Ac ∧ B|H ∼ B|H , which is equivalent under monotonicity
to A|H � B|H ⇒ A ∨ C|H � B ∨ C|H (see [6]).

Corollary 1. Let � be a preference relation on F satisfying conditions 1 to 6.
Then the restriction of � on the acts of the form x∗Ex∗|H with E ∈ B and
H ∈ H is representable by a qualitative conditional possibility.

Proof. From Theorem 2 it follows that the restriction of a preference relation
on the conditional events, which satisfies condition 1 to 6, is a comparative
conditional possibility, then the main result in [3] implies that it is representable
by a qualitative conditional possibility.

Theorem 3. Let S be a finite set of states, B be the power set of S and H ⊆
B \ {∅} an additive class of events such that S ∈ H. Let � be a preference over
F = XS ×H, which satisfies conditions 1 to 6. Then, there exists a finite totally
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ordered scale L, a utility function u : X → L, a qualitative conditional possibility
Π : B×H→ L, and a function V : F → L, which represents �. Moreover V is
of the form

V (f |H) = max
s∈S

{min{u(f(s)),Π(s|H)}} .

Proof. 1. Building a utility scale Since F is finite, from condition 1 it follows
that there exists a function V that represents �, taking values in a finite lin-
ear ordered scale L with smallest and the greatest values 0L and 1L, respec-
tively. The value associated to the conditional act f |H (and to its equivalent
acts) is V (f |H). Since S ∈ H, take a constant act fx and let u(x) = V (fx).
Moreover, due to point-wise preference u(x∗) = 0L and u(x∗) = 1L. By con-
dition 2, since fx|H ∼ fx|K, for any H,K ∈ H (and so fx ∼ fx|S), it follows
that, for any H ∈ H,V (fx|H) = u(x) 3.

2. Building a qualitative conditional possibility The construction of a qualitative
conditional possibility Π(·|·) on (x∗Ax∗)|H follows from Theorem 2 and
Corollary 1.

3. Computation of the utilities of acts of the form xEy|H Consider a condi-
tional act of the form (xEx∗)|H = (x∗Ex∗) ∧ fx|H , from Lemma 3 one has
(xEx∗)|H ∼ (x∗Ex∗)|H or (xEx∗)|H ∼ fx|H , then, (see point 1 of the
proof)

V (xEx∗|H) = V (x∗Ex∗|H) = Π(E|H) or V (xEx∗|H) = V (fx|H) = u(x).

Since (xEx∗)|H � (x∗Ex∗)|H and (xEx∗)|H � fx|H , then

V (xEx∗|H) = min{u(x),Π(E|H)}.

A conditional binary act (xEy)|H , with x ≥p y (without loss of generality),
can be written as ((xEx∗) ∨ fy|H and by Lemma 2 it follows (xEy)|H ∼
(xEx∗)|H or (xEy)|H ∼ fy|H , moreover (xEx∗)|H � (xEy)|H and y|H �
(xEy)|H , hence

V (xEy|H) = max{V (xEx∗|H),V (fy|H)} = max{V (xEx∗|H),u(y)}.

More generally, by decomposing any act through its value on states s, we
get f |H =

∨
s∈H f(s){s}x∗|H , then it follows

V (f |H) = max
s∈H

{V (f(s){s}x∗|H)} = max
s∈S

min{Π(s|H),u(f(s))}}.

Note that we can also write V (f |H) = maxs∈H min{Π(s|H),u(f(s))}} since
Π(s|H) = 0 if s ∈ H .

3 If S �∈ H, consider Ho =
∨

H∈H H and put, for any constant act fx, u(x) = V (fx|Ho).
Thus, as in the previous case, u(x∗) = 0L and u(x∗) = 1L and again from condition
2 it follows V (fx|H) = u(x).
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4.2 Conditional Possibilistic Preference Functional: The Pessimistic
Case

A pessimistic qualitative possibilistic criterion presupposes a conditional ne-
cessity function N : B × H → L, a utility u on the consequences in X with
u(x∗) = 1L and u(x∗) = 0L. A conditional pessimistic criterion is of the form:

v∗(f |H) = min
s∈H

max(u(f(s)), N({s}c|H)).

Note that the above functional is such that, for any H ∈ H,

v∗(x∗|H) = min
s∈H

max{u(x∗), N({s}c|H)} = u(x∗) = 1 = N(H |H)

and v∗(x∗|H) = mins∈H max{u(x∗), N({s}c|H)} = mins∈H N({s}c|H) = 0.
Directly axiomatizing the pessimistic qualitative possibilistic criterion would

require a drastic modification of condition 6 since the latter extends proper-
ties of conditional possibility orderings, not necessity orderings. It cannot be
done here for lack of space. However, the necessity function can be expressed as
N({s}c|H) = n(π(s|H)) where n(·) is the order reversing map in L. Then the
pessimistic criterion can be expressed in terms of an expression close to the one
of the optimistic criterion, since

n(v∗(f |H)) = max
s∈H

min(n(u(f(s))), π(s|H))

which lays bare its meaning: v∗(f |H) is all the higher as there is no plausible
state with high disutility n(u(f(s)). So it maybe axiomatized by directly from
pessimism axioms, preserving condition 6, and constructing a max-min disutility
preferential D(f | H) = n(v∗(f |H)) from a disutility function δ = n(u) on X
such that δ(x∗) = 0L and δ(x∗) = 1L. The connection between a generalization
of the specific condition introduced in [4] for comparative conditional necessities
and the above model needs to be analyzed.

5 Conclusion

This paper takes a first step toward extending the scope of qualitative deci-
sion theory to conditional events, thus making it possible to update qualitative
optimistic and pessimistic preference functionals. The rescaling function for the
representation of uncertainty is rather simple since only the most plausible states
allowed by the context induced by the new information are mapped to the top
value of the scale. However conditioning on a null event may end up with a
different possibiity distribution. Our results are only a first step, and several
improvements could be envisaged

– Condition 6 is expressed in terms of binary acts, and is formally a copy of
conditional possibility ordering axioms. It would be much more convincing
to derive this condition from an axiom involving general acts.
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– As the meaning of conditional acts f |H may look difficult to grasp, it may
sound more natural to axiomatize the conditional criteria in the setting of
a preference relation indexed by the context, like ≺H (H not empty). For
instance, f ≺H g may be another way of denoting f |H ≺ g|H [15]. But
clearly, encoding the statement f |A ≺ g|B using relations of the form ≺H is
not obvious, and the language of conditional acts is likely to be richer.

Among more advanced lines of further research that can be considered, the
extension of the framework to more general set-functions, the application of
these criteria to qualitative Markov decision processes and the study of dynamic
consistency can be envisaged.
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Abstract. In possibility theory, the degree of inconsistency is commonly used
to measure the level of conflict in information from multiple sources after merg-
ing, especially conjunctive merging. However, as shown in [HL05,Liu06b], this
measure alone is not enough when pairs of uncertain information have the same
degree of inconsistency, since it is not possible to tell which pair contains in-
formation that is actually better, in the sense that the two pieces of information
in one pair agree with each other more than the information does in other pairs.
In this paper, we investigate what additional measures can be used to judge the
closeness between two pieces of uncertain information. We deploy the concept
of distance between betting commitments developed in DS theory in [Liu06a],
since possibility theory can be viewed as a special case of DS theory. We present
properties that reveal the interconnections and differences between the degree of
inconsistency and the distance between betting commitments. We also discuss
how to use these two measures together to guide the possible selection of various
merging operators in possibility theory.

1 Introduction

Pieces of uncertain information that come from different sources often do not agree with
each other completely. There can be many reasons for this, such as, inaccuracy in sensor
data reading, natural errors occurring in experiments, and unreliability of sources. When
inconsistent information needs to be merged, assessing the degree of conflict among
information plays a crucial role when deciding which combination mode would suit the
best [DP94].

In possibility theory, the two basic combination modes are conjunctive and disjunc-
tive, each of which has some specific merging operators. Some conjunctive operators
also have reinforcement effects and they are more suitable to combine information that
is highly consistent. In general, conjunctive operators are advised to combine infor-
mation that is reliable and consistent and disjunctive operators are advised to merge
inconsistent information [BDKP02]. The degree of inconsistency of merged informa-
tion is widely used to judge how consistent that two (or multiple) pieces of possibilistic
information are. Clearly, this value is not sufficient when multiple pairs of uncertain
information have the same degree of inconsistency. We need additional approaches to
measuring the degree of agreement (or conflict) between two pieces of possibilistic
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information in order to accurately decide which merging operator is more suitable, es-
pecially when an reinforcement operator is to be used.

In this paper, we take the advantage that possibility theory can be regarded as a
special case of Dempster-Shafer theory and investigate how the degree of agreement
(or conflict) between possibilistic uncertain information can be assessed by the concept
of distance between betting commitments proposed in [Liu06a]. We particularly study
the relationships between these two measures and are able to provide the following
findings.

First, when a pair of possibilistic uncertain information is totally contradictory with
each other, both measures give the same result, i.e., the maximum value of conflict.
Second, when a pair of possibilistic uncertain information appears to be consistent, i.e.,
the degree of inconsistency is zero, the range of values of the distance between bet-
ting commitments can vary from zero to almost one. This finding is important since it
tells that these two measures reveal two different aspects of the information involved.
Third, when the degree of inconsistency is sufficiently large, the distance between bet-
ting commitments increases proportionally, that is the latter is a function of the former.
Based on these findings, we are able to provide a set of more detailed guidelines as
which conjunctive (or reinforcement) merging operator is more suitable for combining
a given pair of uncertain information.

We will proceed as follows: in Section 2, we review the basics in possibility theory
and DS theory and their connections. In Section 3, we investigate the relationships
between the degree of inconsistency and the distance between betting commitments. In
Section 4, we first review the general guidelines about how to select a merging operator
in possibility theory (or possibilistic logic), we then provide a set of refined guidelines
for this purpose. Finally in Section 5, we summarize the main contributions of the paper.

2 Preliminaries

2.1 Possibility Theory

Possibility theory (or possibilistic logic) is a popular choice for representing uncertain
information (or knowledge) ([DP82,BDP97], etc). At the semantic level, a basic func-
tion in possibility theory is a possibility distribution denoted as π which assigns each
possible world in set Ω a value in [0, 1] (or a set of graded values).

From a possibility distribution, a possibility measure (denoted as Π) and a necessity
measure (denoted as N ) can be derived as

Π(A) = max({π(ω)|ω ∈ A}) and N(A) = 1−Π(Ā), Ā = Ω \A (1)

The former estimates to what extent the true event is believed to be in the subset and
the latter evaluates the degree of necessity that the subset is true.

For a given π, if there exists ω0 ∈ Ω such that π(ω0) = 1, then π is said to be
normal, otherwise, π is not normal. The value 1−maxω∈Ωπ(ω) is called the degree of
inconsistency of the information (or possibility distribution).

In possibility theory, the two families of merging operators are conjunctive and
disjunctive. Examples of conjunctive operators are min, product and linear product
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and an example of disjunctive operator is max. Given two possibility distributions
π1 and π2, the semantic results of applying these operators are ∀ω ∈ Ω, πmin(ω) =
min(π1(ω), π2(ω)), π×(ω) = π1(ω) × π2(ω), π⊗(ω) = max(0, π1(ω) + π2(ω) − 1),
and πmax(ω) = max(π1(ω), π2(ω)), where we use × and ⊗ for product and linear
product operators respectively.

2.2 Basics of Dempster-Shafer Theory

In the Dempster-Shafer theory of evidence (DS theory) [Sha76], a piece of uncertain in-
formation is represented by a basic probability assignment (or called a mass function)
m on a set (Ω) containing mutually exclusive and exhaustive solutions to a question. Ω
is called the frame of discernment.

A mass function m : 2Ω → [0, 1] satisfies m(∅) = 0 and
∑

A⊆Ω m(A) = 1 (though
condition m(∅) = 0 is not strictly required in the Transferable Belief Model (TBM)
[SK94]).

From m, a belief function, Bel(A) : 2Ω→[0, 1] is defined as Bel(A)=ΣB⊆Am(B).
When m(A) > 0, A is referred to as a focal element of the belief function (by abuse
of language, we simply say A is a focal element of mass function m in the rest of
the paper). A plausibility function Pl : 2Ω → [0, 1] from m is defined as Pl(A) =
ΣB∩A �=∅m(B).

Two mass functions from distinct sources are usually combined using Dempster’s
combination rule. The rule is stated as follows.

Definition 1. Let m1 and m2 be mass functions, and let m1 ⊕ m2 be the combined
mass function.

m1 ⊕m2(C) =
ΣA∩B=C (m1(A)×m2(B))

1−ΣA∩B=∅ (m1(A)×m2(B))

when ΣA∩B=∅ (m1(A)×m2(B)) = 1.∑
B∩C=∅ m1(B)m2(C) is the mass of the combined belief assigned to the emptyset

before normalization and we denote it as m⊕(∅). In the following, whenever we use
m⊕(∅), we always associate it with this explanation unless otherwise explicitly stated.

Definition 2. [Sme04] Let m be a mass function on Ω. Its associated pignistic proba-
bility function BetPm : Ω → [0, 1] is defined as

BetPm(ω) =
∑

A⊆Ω,ω∈A

m(A)
|A|

where |A| is the cardinality of subset A.

The transformation from m to BetPm is called the pignistic transformation. In the
original definition [Sme04], when m(∅) = 0, m(A) is replaced by m(A)

1−m(∅) in the above
definition. Furthermore, BetPm(A) =

∑
ω∈A BetPm(ω) for A ⊆ Ω.
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Definition 3. ([Liu06a]) Let m1 and m2 be two mass functions on frame Ω and let
BetPm1 and BetPm2 be their corresponding pignistic probability functions respec-
tively. Then

difBetPm2
m1

= maxA⊆Ω(|BetPm1(A)− BetPm2(A)|)
is called the distance between betting commitments of the two mass functions.

Value (|BetPm1(A)−BetPm2(A)|) is the difference between betting commitments to A
from the two sources. The distance of betting commitments is therefore the maximum
extent of the differences between betting commitments to all the subsets. difBetPm2

m1
is

simplified as difBetP when there is no confusion as which two mass functions are being
compared.

2.3 DS Theory Versus Possibility Theory

It has long been recognized that possibility theory is a special case of DS theory in the
sense that from a possibility distribution, a mass function with nested focal elements can
be recovered from it (e.g., [DP82]). In this case, a belief function is a necessity measure
and a plausibility function is a possibility measure. The actual procedure to recover a
mass function (and hence a belief function) is stated in the following definition.

Definition 4. ([DP82,DP88]) Let π be a possibility distribution on frame of discern-
ment Ω and be normal. Let the set of values π(ωi) be {αi|i = 1, ..., p} and they are
arranged as α1 = 1 ≥ α2 ≥ α3, ...,≥ αp > 0 and αp+1 = 0. Let

1. Ai = {ω|π(ω) ≥ αi} for i = 1, 2, ..., p, then subsets A1, A2, .., Ap are nested;
2. m(Ai) = π(ωi)− π(ωi+1) for i = 1, 2, ..., p, where ωi ∈ Ai,ωi+1 ∈ Ai+1.

Then m is a mass function recovered from π with focal elements Ai (i = 1..., p).

Example 1. Let π be a possibility distribution on Ω = {ω1, ...,ω4} where

π(ω1) = 0.7, π2(ω2) = 1.0, π2(ω3) = 0.8, π2(ω4) = 0.7

Then the focal elements are A1 = {ω2}, A2 = {ω2,ω3}, and A3 = Ω. The corre-
sponding mass function is m(A1) = 0.2, m(A2) = 0.1, and m(A3) = 0.7.

3 Relationship Between Inc(π), difBetP and m⊕(∅)

Since Inc(π), difBetP and m⊕(∅) are developed for measuring inconsistency/conflict
in possibility theory and DS theory respectively, and these two theories have some in-
terconnections, we study formally the relationships among these three values.

Proposition 1. ([Liu06b]) Let π be a possibility distribution on frame of discernment
Ω and be normal. Let BetPm be the pignistic probability function of the corresponding
mass function m derived from π. Then BetPm(ωi) ≥ BetPm(ωj) iff π(ωi) ≥ π(ωj).

This proposition says that the more plausible a possible world is, the more betting com-
mitment it carries. It is consistent with the ordinal faithfulness [Dub06] where a proba-
bility distribution preserves the ordering of possibilities of elementary events1.

1 It should be noted that in [Dub06], ordinal faithfulness refers to the preservation of the ordering
of elementary events after transforming a probability distribution to a possibility distribution.
Since obtaining BetPm from a π satisfies this feature, we think it is worth to mention it here.
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Example 2. (Con’t Example 1) Following Example 1, the pignistic probability function
for the given possibility distribution is

BetPm(ω1) = 0.7/4; BetPm(ω2) = 0.2 + 0.1/2 + 0.7/4;
BetPm(ω3) = 0.1/2 + 0.7/4; BetPm(ω4) = 0.7/4.

That is BetPm(ω2) > BetPm(ω3) > BetPm(ω1) = BetPm(ω4) which is consistent
with the ordering of π(ω2) > π(ω3) > π(ω1) = π(ω4).

Proposition 2. Let π1 and π2 be two possibility distributions on frame of discernment
Ω and be normal. Let πmin, π× and π⊗ be their merged results using the min, the
product, and the linear product operators respectively. Then the following properties
hold

Inc(πmin) = 1 iff Inc(π×) = 1 iff Inc(π⊗) = 1

Inc(πmin) = 0 iff Inc(π×) = 0 iff Inc(π⊗) = 0

The proof of this proposition is straightforward and it enables us to prove the following
propositions by using the min as the representative of conjunctive operators.

Proposition 3. ([Liu06b]) Let π1 and π2 be two possibility distributions on Ω and be
normal. Let π∧ be their conjunctively merged possibility distribution. Assume m1 and
m2 are the mass functions derived from π1 and π2 respectively. Then the following
properties hold

1. Inc(π∧) = 0 iff m⊕(∅) = 0
2. Inc(π∧) = 1 iff m⊕(∅) = 1
3. Inc(π∧) > 0 iff m⊕(∅) > 0

If we have two pairs of possibility distributions and we use π1
∧ and π2

∧ to denote their
conjunctively merged possibility distributions, then Inc(π1

∧) ≥ Inc(π2
∧) does not imply

m1
⊕(∅) ≥ m2

⊕(∅) in general, where m1
⊕ and m2

⊕ are the combined mass functions from
the two pairs of mass functions derived from corresponding possibility distributions.
This is demonstrated by Example 4 (in Section 4) where the two sets of possibility dis-
tributions have the same degree of inconsistency (0.2) but with different values assigned
to the emptyset after combination (0.07 versus 0.23).

Proposition 4. Let π1 and π2 be two possibility distributions and normal and let their
conjunctively combined possibility distribution be π∧. Furthermore, let m1 and m2 be
their corresponding mass functions. Then we have the following property

Inc(π∧) = 1 iff difBetPm2
m1

= 1

Proof. We take π∧ = πmin below without losing generality (see Proposition 2).
We first prove that Inc(π) = 1 implies difBetPm2

m1
= 1.

Let π1 and π2 be two possibility distributions, whereπmin is the conjunctively merged
distribution using min. When Inc(πmin) = 1, π1 and π2 are totally inconsistent, then for
any ω ∈ Ω either π1(ω) = 0 or π2(ω) = 0 or both. Let Ap and Aq be the largest focal
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elements of m1 and m2 respectively, then Ap ∩ Aq = ∅, and both BetPm1(Ap) = 1
and BetPm2(Aq) = 1 hold. So we have BetPm1(Ap) − BetPm2(Ap) = 1, since we
must have BetPm2(Ap) = 0 when BetPm2(Aq) = 1 (remember BetP is a probability
function). Therefore difBetPm2

m1
= 1 must be true.

Next, we prove that difBetPm2
m1

= 1 implying Inc(π) = 1. When difBetPm2
m1

= 1,
there exists a subset A ⊂ Ω such that BetPm2(A) = 1 and BetPm1(A) = 0 (or vise
versa). This means that A is the largest focal element for m2 which implies ∀ω ∈ A,
π2(ω) = 0 and ∀ω ∈ A, π2(ω) = 0. On the other hand, BetPm1(A) = 0 tells us that
∀ω ∈ A, π1(ω) = 0. Therefore, we have
∀ω ∈ A, πmin(ω) = min(π1(ω), π2(ω)) = 0, since π1(ω) = 0, and
∀ω ∈ A, πmin(ω) = min(π1(ω), π2(ω)) = 0, since π2(ω) = 0.
That is ∀ω ∈ Ω, πmin(ω) = 0. So Inc(πmin) = 1, and so is Inc(π∧) = 1. /

Propositions 3 and 4 together tell us that if two pieces of information contradict with
each other completely, any of the three measures (i.e., Inc(π), m⊕(∅), or difBetPm2

m1
) is

sufficient to quantitatively justify it.
In general, Inc(π∧) = 0 ⇒ difBetPm2

m1
= 0 does not hold as shown below.

Example 3. Let two possibility distributions be

π1(ω1) = 1.0, π1(ω2) = 0.1, π1(ω3) = 1.0, π1(ω4) = 0.8;

π2(ω1) = 1.0, π2(ω2) = 0.9, π2(ω3) = 0.2, π2(ω4) = 0.1.

Then the degree of inconsistency between them is 0 if they are merged conjunctively.
Their corresponding mass functions are

m1({ω1,ω3}) = 0.2,m1({ω1,ω3,ω4}) = 0.7,m1({Ω}) = 0.1;

m2({ω1}) = 0.1,m2({ω1,ω2}) = 0.7,m2({ω1,ω2,ω3}) = 0.1,m2({Ω}) = 0.1.

As we can see at least BetPm2(ω2) − BetPm1(ω2) > 0, so difBetPm2
m1

= 0 does not
hold.

Proposition 5. Let π1 and π2 be two possibility distributions on Ω and normal, and let
their conjunctively combined possibility distribution be π∧. Furthermore, let m1 and
m2 be their corresponding mass functions. When Inc(π∧) = 0 we have

0 ≤ difBetPm2
m1
≤ (n− 1)

n
,where n = |Ω| .

Proof. When two possibility distributions π1 and π2 are identical, Inc(π∧) = 0 must
be true. Also, they generate the same mass function, and the same pignistic probability
function, so difBetPm2

m1
= 0 holds in this situation. We have shown that difBetPm2

m1
> 0

is possible when Inc(π∧) = 0 in Example 3, therefore, 0 ≤ difBetPm2
m1

is true for any
pair of possibility distributions when Inc(π∧) = 0.

Now, we prove that difBetPm2
m1
≤ (n−1)

n .
Inc(π∧) = 0 implies that there is at least one ω ∈ Ω such that π1(ω) = 1 and

π2(ω) = 1.
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First, we consider a situation where there is only one element in Ω, denoted as ω1
such that π1(ω1) = 1 and π2(ω1) = 1. We further assume that for all ωi ∈ Ω, π1(ωi) =
0 if ωi = ω1 and π2(ωi) = 1. Then the two mass functions from these two possibility
distributions are m1({ω1}) = 1 and m2(Ω) = 1. Therefore

difBetPm2
m1

=
(n− 1)

n

because BetPm1(Ω \ {ω1}) = 0 and BetPm2(Ω \ {ω1}) = (n−1)
n .

Before proving that for any two possibility distributions that difBetPm2
m1
≤ (n−1)

n
holds, we need to prove that for a positive integer n > 2, the following inequality is
true

n− 1
n

>
n− 2
n− 1

This is obvious since (n− 1)2 > n(n− 2). Therefore, we have

n− 1
n

>
n− 2
n− 1

>
n− 3
n− 2

> ... >
1
2

(2)

Next, we proof that for any π1 and π2 with their Inc(π∧) = 0, difBetPm2
m1
≤ (n−1)

n .
For this case, we still assume that π1(ω1) = 1 and π2(ω1) = 1, because we have the

assumption Inc(π) = 0 which means ∃w ∈ Ω, such that π1(ω) = π2(ω) = 1. Without
losing generality, we assume that BetPm2(w1) ≤ BetPm1(w1) (since m1 and m2 are
symmetric) and we can also assume that there exists a subset A such that difBetPm2

m1
=

BetPm2(A)−BetPm1(A) holds (otherwise if difBetPm2
m1

=BetPm1(A
′
)−BetPm2(A

′
),

we let A = Ω \ A
′

and the equation still holds). Let the sets of focal elements for m2
be A1, .., Ap where A1 ⊂ A2 ⊂ ... ⊂ Ap and let A′

p = Ap \ {ω1}, we get

BetPm2(A
′
p) =

|A1| − 1
|A1|

m2(A1) + ... +
|Ap| − 1

Ap
m2(Ap)

≤ |Ap| − 1
Ap

m2(A1) + ... +
|Ap| − 1

Ap
m2(Ap)(see Equation 2)

=
|Ap| − 1

Ap
(m2(A1) + ... + m2(Ap))

≤ |Ap| − 1
Ap

, (since m2(A1) + ... + m2(Ap) ≤ 1)

≤ n− 1
n

(because Ap ⊆ Ω, where |Ω| = n) (3)

Then BetPm2(A′
p) is the largest value possible among all BetPm2(B) where B ⊆

Ω \ {ω1}.
When w1 ∈ A, we have

difBetPm2
m1

= BetPm2(A)− BetPm1(A)
= BetPm2(A \ {w1}) + BetPm2({w1})
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−BetPm1(A \ {w1})− BetPm1({w1})
≤ BetPm2(A \ {w1})− BetPm1(A \ {w1})

≤ BetPm2(A
′
p)− 0 ≤ n− 1

n
(4)

When w1 ∈ A, difBetPm2
m1

= BetPm2(A) − BetPm1(A) ≤ BetPm2(A
′
p) − 0 ≤ n−1

n .
That is, difBetPm2

m1
≤ n−1

n is true for any two possibility distributions. /

This proposition is important, since it tells us that two apparently totally consistent
possibility distributions can be very different when we measure their distances between
betting commitments to subsets. This means that the two distributions can have very
different degrees of possibility assigned to some elements, though they totally agree on
some other elements. Therefore, using Inc(π∧) alone may not be accurate enough when
assessing how consistent (close) that two possibility distributions are.

Proposition 6. Let π1 and π2 be two possibility distributions and normal, and let their
conjunctively combined possibility distribution be π∧. Furthermore, let m1 and m2 be
their corresponding mass functions. When Inc(π∧) = ε where ε is sufficiently large (like
0.8), we have

difBetPm2
m1
≥ 2ε− 1

Proof. First we assume that the values of π1(ω) for all ω ∈ Ω are arranged as (see
Definition 4)

1 ≥ α1 ≥ ... ≥ αi... ≥ αn > 0

Let αi be the smallest value in the above sequence such that αi > 1 − ε, based on
Definition 4, we have a focal element Ai for m1 as

Ai = {w|π1(w) ≥ αi}

If the other focal elements obtained before Ai are A1, ..., Ai−1, then according to Defi-
nition 4, we have

Σi
j=1m1(Aj) = (1−α1)+ (α1−α2)+ ...+(αi−1 −αi) = 1−αi > 1− (1− ε) = ε

By Definition 2, we have BetPm1(Ai)≥Σi
j=1m1(Aj) > ε, since Ai ⊂ Ai+1, ..., Ai

⊂ An where Ai+1, ..., An are the remaining focal elements for m1.
Similarly, for π2, there is a subset Bj such that BetPm2(Bj) > ε. Because Inc(π∧) =

ε, Ai∩Bj = ∅must hold (otherwise, there is a ω ∈ Ai∩Bj where min(π1(ω), π2(ω)) >
1− ε, so Inc(π∧) < ε which contradict the original assumption).

Given that BetPm2 is a probability function, BetPm2(Ai) ≤ 1−ε must hold (because
BetPm2(Bj) > ε and Ai ∩Bj = ∅). Therefore, we have

BetPm1(Ai)− BetPm2(Ai) ≥ ε− (1− ε) = 2ε− 1

Since difBetPm2
m1
≥ BetPm1(Ai)− BetPm2(Ai) (see Definition 3), we have eventu-

ally difBetPm2
m1
≥ 2ε− 1. /

This proposition is meaningful when ε ≥ 0.5 and it states that the distance between
betting commitments increases along with the increase of the degree of inconsistency.
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4 Merging Operators Selection Criteria

4.1 Merging Operators in Possibility Theory

The fundamental classes of merging operators in possibility theory (or possibilistic
logic) are conjunctive and disjunctive operators. Typical conjunctive operators are
minimum (min(π1(ω), π2(ω))), product (π1(ω) × π2(ω)), and linear product (max(π1
(ω) +π2(ω) − 1, 0)), and their dual are the maximum, the probabilistic sum (π1(ω)
+π2(ω) − π1(ω)π2(ω)), and the bounded sum (min(1, π1(ω)π2(ω))). All these con-
junctive and disjunctive operators are associative, so merging n possibility distributions
can be done recursively, provided that there are no normalizations for the intermediate
merging results.

Since some of these operators have special characteristics, two specialized classes of
merging operators are further defined in [BDKP02], they are respectively idempotent
and reinforcement operators. For example, the product and the linear product operators
are also reinforcement operators, and minimum and maximum are idempotent operators.
Furthermore, some adaptive operators were proposed which aim at integrating both
conjunctive and disjunctive operators when neither of them alone is suitable for merging.

As discussed in [BDKP02], these five classes of operators are suitable for different
situations. The conjunctive operators are used when it is believed that all the sources
are reliable and these sources agree with each other. When there is a strong agreement
among the sources, reinforcement operators are more suitable. On the other hand, the
disjunctive operators are applied when it is believed that some sources are reliable but
it is not known which of these sources are and when there is a high degree of conflict
among sources. Idempotent operators can deal with redundant information where re-
peated information is only counted once. Since disjunctive operators are too cautious
for merging sources with a low level of inconsistency, adaptive operators are suggested
to integrate the behaviour of both conjunctive and disjunctive operators.

Among the three named conjunctive operators, it is well recognized ([DP01]) that
the product operator is equivalent to the Dempster’s combination rule for the computa-
tion of the plausibility of singletons. Therefore, the condition of applying Dempster’s
rule shall apply to this operator as well, i.e., the information comes from distinct or
independent sources.

Although the above analysis provides a general guideline as which operator is suit-
able for what situation, there are no quantitative measures judging precisely when a
particular operator should be selected. For example, what value of inconsistency is re-
garded as a lower degree of inconsistency?

We are interested in whether it is possible to provide some quantitative approaches to
serving this purpose based on properties we have shown in the previous section, and hence
we propose the following guidelines to recommend how to select a merging operator.

4.2 Merging Operators Selection Criteria

In the following, we use× and⊗ to denote the product and the linear product operators.

Definition 5. Let π1 and π2 be two possibility distributions and m1 and m2 be their
corresponding mass functions. When Inc(π∧) = 0,
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– if difBetPm1
m2

= 0, then operator⊗ is recommended if the information is from inde-
pendent (distinct) sources; otherwise, operator min is recommended,

– if 0 < difBetPm1
m2

< ε1, then operator× is recommended if the information is from
independent (distinct) sources; otherwise, operator min is recommended,

– if ε1 ≤ difBetPm1
m2

< ε2, then operator × can be applied with caution if the infor-
mation is from independent (distinct) sources; otherwise, operator min is recom-
mended,

– if ε2 ≤ difBetPm1
m2

, then operator min is recommended.

where ε1 is sufficiently small (e.g., 0.3) and ε2 is sufficiently large (e.g., 0.8).

This definition shows that when Inc(π∧) = 0, we do not have to arbitrarily choose a
conjunctive operator, the difBetPm1

m2
value provides additional information as whether a

high reinforcement operator is more suitable. For example, when difBetPm1
m2

= 0, it is
more advisable to use ⊗ than × because the information is highly consistent. As stated
in [DP94], the condition of choosing such a reinforcement operator is the independence
of sources of information. When this condition cannot be guaranteed, min would be a
safer option to use.

Definition 6. Let π1 and π2 be two possibility distributions and m1 and m2 be their
corresponding mass functions. When 0 < Inc(π∧) < ε,

– if difBetPm1
m2

< ε1, then operator × is recommended if the information is from
independent (distinct) sources; otherwise, operator min is recommended,

– if ε1 ≤ difBetPm1
m2

< ε2, then operator × can be applied with caution if the infor-
mation is from independent (distinct) sources; otherwise, operator min is recom-
mended,

– if ε2 ≤ difBetPm1
m2

, then operator min is recommended.

where ε is sufficiently small (e.g., 0.2), and ε1 and ε2 are as defined in Definition 5.

Example 4. let two pairs of possibility distributions be as given below.

π1
1(ω1) = 0.7, π1

1(ω2) = 0.8, π1
1(ω3) = 1.0, π1

1(ω4) = 0.6;

π1
2(ω1) = 1.0, π1

2(ω2) = 0.9, π1
2(ω3) = 0.7, π1

2(ω4) = 0.6.

and
π2

1(ω1) = 0.1, π2
1(ω2) = 0.8, π2

1(ω3) = 1.0, π2
1(ω4) = 0.1;

π2
2(ω1) = 1.0, π2

2(ω2) = 0.9, π2
2(ω3) = 0.2, π2

2(ω4) = 0.1.

We use π1
∧ and π2

∧ to denote the combined possibility distributions from the two pairs
using min. Their degrees of inconsistency are the same, Inc(π1

∧) = Inc(π2
∧) = 0.2 and

this value suggests the application of a conjunctive operator based on Definition 6.
The corresponding mass functions from the two pairs of possibility distributions are

m1
1({ω3}) = 0.2,m1

1({ω2,ω3}) = 0.1,m1
1({ω1,ω2,ω3}) = 0.1,m1

1({Ω}) = 0.6;

m1
2({ω1}) = 0.1,m1

2({ω1,ω2}) = 0.2,m1
2({ω1,ω2,ω3}) = 0.1,m1

2({Ω}) = 0.6;
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and
m2

1({ω3}) = 0.2,m2
1({ω2,ω3}) = 0.7,m2

1({Ω}) = 0.1;

m2
2({ω1}) = 0.1,m2

2({ω1,ω2}) = 0.7,m2
2({ω1,ω2,ω3}) = 0.1,m2

2({Ω}) = 0.1.

For the first pair of mass functions, we have difBetP
m1

2
m1

1
= 0.25, while for the 2nd pair

we get difBetP
m2

2
m2

1
= 0.525. These two pairs show an obvious difference in difBetP

values. The possibility distributions in the first pair are more consistent with each other
than the two in the 2nd pair. However, this information is not reflected by Inc(π∧).

According to Definition 6, the first pair can be combined with the product operator
(×) if the sources of information are distinct while it is better to merge the second pair
with the minimum operator.

Definition 7. Let π1 and π2 be two possibility distributions and m1 and m2 be their
corresponding mass functions. When Inc(π∧) ≥ ε then a disjunctive operator is recom-
mended to merge π1 and π2, where ε is sufficiently large, e.g., 0.8.

Example 5. Let two possibility distributions be

π1(ω1) = 0.1, π1(ω2) = 0.2, π1(ω3) = 1.0, π1(ω4) = 0.1;

π2(ω1) = 1.0, π2(ω2) = 0.2, π2(ω3) = 0.2, π2(ω4) = 0.1.

Let π∧ be the possibility distribution combining π1 and π2 with min, then the degree of
inconsistency is Inc(π∧) = 0.8 which suggests a high degree of inconsistency. There-
fore, the conjunctive operators are unlikely to be used.

On the other hand, the two corresponding mass functions from the possibility distri-
butions are

m1({ω3}) = 0.8,m1({ω2,ω3}) = 0.1,m1({Ω}) = 0.1;

m2({ω1}) = 0.8,m2({ω1,ω2,ω3}) = 0.1,m2({Ω}) = 0.1;

and difBetPm2
m1

= 0.72 which also hints a strong conflict among the two pieces of infor-
mation.

The grey area that the above three definitions did not cover is when ε1 ≤ Inc(π∧) ≤ ε2,
such that ε1 = 0.3, ε2 = 0.8. In our future work, we will further investigate what other
measures are needed in order to select a suitable merging operator for this situation.

5 Conclusion

In this paper, we have shown that additional approaches to measuring conflict among
pieces of uncertain information are needed since the only measure used in possibility
theory, e.g., the degree of inconsistency, is not sufficient.

We have studied how the distance between betting commitments developed in DS
theory can be used to measure the inconsistency among pieces of uncertain information
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in possibility theory. We have also established a set of properties to show the relation-
ship between the degree of inconsistency and the distance between betting commit-
ments between a pair of uncertain information. We conclude that these two measures
tell us different aspects of the information and both values should be used to select a
suitable merging operator. This investigation can be taken as the refinement of general
discussions on merging operators selection in [BDKP02].

As pointed out in the paper, there is a grey area where it is not clear which merging
operator is best suited. One of our future work is to explore other additional measures
to see if some quantitative measures can be proposed to deal with these cases.
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Abstract. Possibilistic logic provides a convenient tool for dealing with
inconsistency and handling uncertainty. In this paper, we propose pos-
sibilistic description logics as an extension of description logics. We give
semantics and syntax of possibilistic description logics. We then define
two inference services in possibilistic description logics. Since possibilistic
inference suffers from the drowning problem, we consider a drowning-free
variant of possibilistic inference, called linear order inference. Finally, we
implement the algorithms for inference services in possibilistic descrip-
tion logics using KAON2 reasoner.

1 Introduction

Dealing with uncertainty in the Semantic Web has been recognized as an im-
portant problem in the recent decades. Two important classes of languages for
representing uncertainty are probabilistic logic and possibilistic logic. Arguably,
another important class of language for representing uncertainty is fuzzy set the-
ory or fuzzy logic. Many approaches have been proposed to extend description
logics with probabilistic reasoning, such as approaches reported in [12,10]. The
work on fuzzy extension of ontology languages has also received a lot of attention
(e.g., [18,17]). By contrast, there is relatively few work on combining possibilistic
logic and description logic.

Possibilistic logic [5] or possibility theory offers a convenient tool for handling
uncertain or prioritized formulas and coping with inconsistency. It is very pow-
erful to represent partial or incomplete knowledge [4]. There are two different
kinds of possibility theory: one is qualitative and the other is quantitative. Qual-
itative possibility theory is closely related to default theories and belief revision
[7,3] while quantitative possibility can be related to probability theory and can
be viewed as a special case of belief function [8].

The application of possibilistic logic to deal with uncertainty in the Semantic
Web is first studied in [13] and is then discussed in [6]. When we obtain an
ontology using ontology learning techniques, the axioms of the ontology are often
attached with confidence degrees and the learned ontology may be inconsistent
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Table 1. Semantics of ALC-concepts

Constructor Syntax Semantics

top � ∆I

bottom ⊥ ∅
concept name CN CNI ⊆ ∆I

general negation (C) ¬C ∆I \ CI

conjunction C � D CI ∩ DI

disjunction (U) C � D CI ∪ DI

exists restriction (E) ∃R.C {x ∈ ∆I | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
value restriction ∀R.C {x ∈ ∆I | ∀y.〈x, y〉 ∈ RI → y ∈ CI}

[11]. In this case, possibilistic logic provides a flexible framework to interpret the
confidence values and to reason with the inconsistent ontology under uncertainty.

However, there exist problems which need further discussion. First, there is no
formal definition of the semantics of possibilistic description logics. The semantic
extension of possibilistic description logic is not trivial because we need negation
of axioms to define the necessity measure from a possibility distribution. However,
negation of axioms are not allowed in description logics. Second, there is no
implementation of possibilistic inference in description logics.

In this paper, we present a possibilistic extension of description logics. We first
give the syntax and semantics of possibilistic logics. We then define two infer-
ence services in possibilistic description logics. Since possibilistic inference suffers
from the drowning problem, we consider a drowning-free variant of possibilistic
inference, called linear order inference. Finally, we implement the algorithms for
inference services in possibilistic description logics using KAON2 reasoner.

The rest of this paper proceeds as follows. Preliminaries on possibilistic logic
and description logics are given in Section 2. Both syntax and semantics of
possibilistic description logics are provided in Section 3. The inference services
in possibilistic description logics are also given. After that, we provide algorithms
for implementing reasoning problems in Section 4. Finally, we report preliminary
results on implementation in Section 5.

2 Preliminaries

2.1 Description Logics

Due to the limitation of space, we do not provide a detailed introduction of
Description Logics (DLs), but rather point the reader to [1]. A DL knowledge
base Σ = (T ,A) consists a set T (TBox) of concepts axioms1 and a setA (ABox)
of individual axioms. Concept axioms have the form C - D where C and D are
(possibly complex) concept descriptions. The ABox contains concept assertions
of the form a : C where C is a concept and a is an individual name, and role

1 TBox could contain some role axioms, for some expressive DLs such as SHOIQ [14].
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assertions of the form 〈a, b〉 : R, where R is a role, and a and b are individual
names. A concept description (or simply concept) of the smallest propositionally
closed DL ALC is defined by the following syntactic rules, where CN is a concept
name, R is a role, C, C1 and C2 are concept descriptions:

� |⊥ | CN |¬C1 |C1 + C2 |C1 , C2 |∃R.C |∀R.C.

An interpretation I = (∆I , ·I) consists of the domain of the interpretation ∆I

(a non-empty set) and the interpretation function ·I , which maps each concept
name CN to a set CNI ⊆ ∆I , each role name RN to a binary relation RNI ⊆
∆I×∆I and each individual a to an object in the domain aI . The interpretation
function can be extended to give semantics to concept descriptions (see Table 1).
An interpretation I satisfies a concept axiom C - D (a concept assertion a : C
and a role assertion 〈a, b〉 : R, resp.) if CI ⊆ DI (aI ∈ CI and 〈aI , bI〉 ∈ RI

resp.). An interpretation I satisfies a knowledge base Σ if it satisfies all axioms
in Σ; in this case, we say I is an interpretation of Σ. A knowledge base is
consistent if it has an interpretation. A concept is unsatisfiable in Σ iff it is
interpreted as an empty set by all the interpretation of Σ.

Most DLs are fragments of classical first-order predicate logic (FOL). An ALC
knowledge bases can be translated to a L2 (the decidable fragment of FOL with
no function symbols and only 2 variables [16]) theory. For example, the concept
axiom C - D+∃R.E can be translated into the following L2 axiom: ∀x(φC (x) →
φD(x) ∧ ∃y(φR(x, y) ∧ φE(y))), where φC ,φD,φE are unary predicates and φR

is a binary predicate.

2.2 Possibilistic Logic

Possibilistic logic [5] is a weighted logic where each classical logic formula is
associated with a number in (0, 1]. Semantically, the most basic and impor-
tant notion is possibility distribution π: Ω → [0, 1], where Ω is the set of all
classical interpretations. π(ω) represents the degree of compatibility of inter-
pretation ω with available beliefs. From possibility distribution π, two mea-
sures can be determined, one is the possibility degree of formula φ, defined
as Π(φ) = max{π(ω) : ω |= φ}, the other is the necessity or certainty degree of
formula φ, defined as N(φ) = 1−Π(¬φ).

At syntactical level, a possibilistic formula is a pair (φ,α) consisting of a
classical logic formula φ and a degree α expressing certainty or priority. A pos-
sibilistic knowledge base is the set of possibilistic formulas of the form B =
{(φi,αi) : i = 1, ..., n}. The classical base associated with B, denoted B∗, is
defined as B∗ = {φi|(φi,αi) ∈ B}. A possibilistic knowledge base is consistent
iff its classical base is consistent.

Given a possibilistic knowledge base B and α∈(0, 1], the α-cut (strict α-cut)
of B is B≥α = {φ∈B∗|(φ,β)∈B and β≥α} (B>α = {φ∈B∗|(φ,β)∈B and β>α}).
The inconsistency degree of B, denoted Inc(B), is defined as Inc(B) = max{αi :
B≥αi is inconsistent}.

There are two possible definitions of inference in possibilistic logic.
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Definition 1. Let B be a possibilistic knowledge base.

– A formula φ is said to be a plausible consequence of B, denoted by B0P φ,
iff B>Inc(B) 0 φ.

– A formula φ is said to be a possibilistic consequence of B to degree α, denoted
by B0π(φ,α), iff the following conditions hold: (1) B≥α is consistent, (2)
B≥α0φ, (3) ∀β>α, B≥β 0 φ.

According to Definition 1, an inconsistent possibilistic knowledge base can non-
trivially infer conclusion, so it is inconsistency tolerent. However, it suffers from
the “drowning problem” [2]. That is, given an inconsistent possibilistic knowledge
base B, formulas whose certainty degrees are not larger than Inc(B) are com-
pletely useless for nontrivial deductions. For instance, let B = {(p, 0.9), (¬p, 0.8),
(r, 0.6), (q, 0.7)}, it is clear that B is equivalent to B = {(p, 0.9), (¬p, 0.8)} be-
cause Inc(B) = 0.8. So (q, 0.7) and (r, 0.6) are not used in the possibilistic
inference.

Several variants of possibilistic inference have been proposed to avoid the
drowning effect. One of them, called linear order inference, is defined as follows.

Definition 2. Let B = {(φi,αi) : i = 1, ..., n} be a possibilistic knowledge base.
Suppose βj (j = 1, ..., k) are all distinct weights appearing in B such that β1 >
β2 > ... > βk. Let ΣB = (S1, ..., Sk), where Si = {φl : (φl,αl)∈B,αl = βi}, and
ΣLO,B =

⋃k
i=1 S

′
i, where S

′
i is defined by S

′
i = Si if Si∪

⋃i−1
j=1 S

′
j is consistent, ∅

otherwise. A formula φ is said to be a linear consequence of B, denoted B 0LO φ,
iff ΣLO,B 0 φ.
The linear order approach does not stop at the inconsistency degree of possibilis-
tic knowledge base B. It takes into account of formulas whose certainty degrees
are less than the inconsistency degree.

3 Possibilistic Description Logics

3.1 Syntax

The syntax of possibilistic DL is based on the syntax of classical DL. A possi-
bilistic axiom is a pair (φ,α) consisting of an axiom φ and a weight α∈(0, 1]. A
possibilistic TBox (resp., ABox) is a finite set of possibilistic axioms (φ,α), where
φ is an TBox (resp., ABox) axoim. A possibilistic DL knowledge base B = (T ,A)
consists of a possibilistic TBox T and a possibilistic ABox A. We use T ∗ to de-
note the classical DL axioms associated with T , i.e., T ∗ = {φi : (φi,αi)∈T } (A∗

can be defined similarly). The classical base B∗ of a possibilistic DL knowledge
base is B∗ = (T ∗,A∗). A possibilistic DL knowledge base B is inconsistent if and
only if B∗ is inconsistent.

Given a possibilistic DL knowledge base B = (T ,A) and α∈(0, 1], the α-cut
of T is T≥α = {φ∈B∗|(φ,β)∈T and β≥α} (the α-cut of A, denoted as A≥α, can
be defined similarly). The strict α-cut of T (resp., A) can be defined similarly
as the strict cut in possibilistic logic. The α-cut (resp., strict α-cut) of B is
B≥α = (T≥α,A≥α) (resp., B>α = (T>α,A>α)). The inconsistency degree of B,
denoted Inc(B), is defined as Inc(B) = max{αi : B≥αi is inconsistent}.
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We use the following example as a running example throughout this paper.

Example 1. Suppose we have a possibilistic DL knowledge base B = (T ,A),
where T = {(Eatfish-Swim, 0.6), (Bird-Fly, 0.8), (HasW ing-Bird, 0.95)}
and A = {(Bird (chirpy), 1), (HasW ing(tweety), 1), (¬Fly(tweety), 1)}. The
TBox T states that it is rather certain that birds can fly and it is almost certain
that something with wing is a bird. The ABox A states that it is certain that
tweety has wing and it cannot fly, and chirpy is a bird. Let α = 0.8. We then
have B≥0.8 = (T≥0.8,A≥0.8), where T≥0.8 = {Bird-Fly, HasW ing-Bird} and
A≥0.8 = {HasW ing(tweety),¬Fly(tweety), Bird(chirpy)}. It is clear that B≥α

is inconsistent. Now let α = 0.95. Then B≥α = (T≥0.95,A≥0.95), where T≥0.95 =
{HasW ing-Bird} and A≥0.95 = {HasW ing(tweety), ¬Fly(tweety), Bird
(chirpy)}. So B≥α is consistent. Therefore, Inc(B) = 0.8.

3.2 Semantics

The semantics of possibilistic DL is defined by a possibility distribution π over
the set I of all classical description logic interpretations, i.e., π : I → [0, 1].
π(I) represents the degree of compatibility of interpretation I with available
information. For two interpretations I1 and I2, π(I1) > π(I2) means that I1
is preferred to I2 according to the available information. Given a possibility
distribution π, we can define the possibility measure Π and necessity measure
N as follows: Π(φ) = max{π(I) : I ∈ I, I |= φ} and N(φ) = 1 − max{π(I) :
I |=φ}2. Unlike possibilistic logic, the necessary measure cannot be not defined
by the possibility measure because the negation of an axiom is not defined in
traditional DLs. However, given a DL axiom φ, let us define the negation of φ as
¬φ = ∃(C+¬D) if φ = C-D and ¬φ = ¬C(a) if φ = C(a), where ∃(C+¬D) is
an existence axiom (see the discussion of negation of a DL axiom in [9]), then it is
easy to check that N(φ) = 1−Π(¬φ). Given two possibility distributions π and
π′, we say that π is more specific (or more informative) than π′ iff π(I) ≤ π′(I)
for all I ∈ Ω. A possibility distribution π satisfies a possibilistic axiom (φ,α),
denoted π |= (φ,α), iff N(φ)≥α. It satisfies a possibilistic DL knowledge base B,
denoted π |= B, iff it satisfies all the possibilistic axioms in B.

Given a possibilistic DL knowledge base B = 〈T ,A〉, we can define a possibil-
ity distribution from it as follows: for all I ∈ I,

πB(I) =
{

1 if ∀φi∈T ∗ ∪ A∗, I |= φi,
1 − max{αi|I �|= φi, (φi, αi) ∈ T ∪ A} otherwise.

(1)

As in possibilistic logic, we can also show that the possibility distribution de-
fined by Equation 1 is the least specific possibility distribution satisfying B. Let
us consider Example 1 again. I = 〈∆I , ·I〉 is an interpretation, where ∆I =
{tweety, chirpy} and BirdI={tweety, chirpy}, FlyI ={chirpy}, and HasW ingI

= {tweety}. It is clear that I satisfies all the axioms except Bird-Fly (whose
weight is 0.8), so πB(I) = 0.2.

2 The definition of necessity measure is pointed out by one of the reviewers.
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Let us give some properties of the possibility distribution defined by
Equation (1).

Theorem 1. Let B be a possibilistic DL knowledge base and πB be the possibility
distribution obtained by Equation (1). Then B is consistent if and only if there
exists an interpretation I such that πB(I) = 1.

Proposition 1. Let B be a possibilistic DL knowledge base and πB be the pos-
sibility distribution obtained by Equation 1. Then Inc(B) = 1−maxI∈IπB(I).

3.3 Possibilistic Inference in Possibilistic DLs

We consider the following inference services in possibilistic DLs.

– Instance checking: an individual a is a plausible instance of a concept C
with respect to a possibilistic DL knowledge base B, written B |=P C(a), if
B>Inc(B) |= C(a).

– Instance checking with necessity degree: an individual a is an instance of
a concept C to degree α with respect to B, written B |=π (C(a),α), if the
following conditions hold: (1) B≥α is consistent, (2) B≥α |= C(a), (3) for all
β>α, B≥β |=C(a).

– Instance checking with necessity degree: an individual a is an instance of
a concept C to degree α with respect to B, written B |=π (C(a),α), if the
following conditions hold: (1) B≥α is consistent, (2) B≥α |= C(a), (3) for all
β>α, B≥β |=C(a).

– Subsumption with necessity degree: a concept C is subsumed by a concept
D to a degree α with respect to a possibilistic DL knowledge base B, written
B |=π (C-D,α), if the following conditions hold: (1) B≥α is consistent, (2)
B≥α |= C-D, (3) for all β>α, B≥β |=C-D.

We illustrate the inference services by reconsidering Example 1.

Example 2. (Example 1 continued) According to Example 1, we have Inc(B) =
0.8 and B>0.8 = (T>0.8,A>0.8), where T>0.8 = {HasW ing-Bird} and A>0.8 =
{HasW ing(tweety),¬Fly (tweety), Bird(chirpy)}. Since B>0.8 |=Bird(tweety),
we can infer that tweety is plausible to be a bird from B. Furthermore, since
B≥0.95 |= Bird(tweety) and B≥1 |=Bird(tweety), we have B |=π (Bird(tweety),
0.95). That is, we are almost certain that tweety is a bird.

3.4 Linear Order Inference in Possibilistic DLs

Possibilistic inference in possibilistic DL inherits the drowning effect of possi-
bilistic inference in possibilistic logic. We adapt and generalize the linear order
inference to deal with the drowning problem.

Definition 3. Let B = (T ,A) be a possibilistic DL knowledge base. Suppose βj

(j = 1, ..., k) are all distinct weights appearing in B such that β1 > β2 > ... > βk.
Let B′ = ∪T ∪ A. Let ΣB = (S1, ...,Sk), where Si = {(φl,αl) : (φl,αl)∈B′,αl =
βi}, and ΣLO,B =

⋃k
i=1 S

′
i , where S ′

i is defined by S ′
i = Si if Si ∪

⋃i−1
j=1 S

′
j is

consistent, ∅ otherwise. Let φ be a query of the form C(a) or C-D. Then
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Algorithm 1. Compute the inconsistency degree
Data: B = 〈T , A〉, where T ∪ A = {(φi, αi) : αi ∈ (0, 1], i = 1, ..., n}, where n is

the number of axioms in the testing ontology B;
Result: The inconsistency degree d
begin

b := 0 // b is the begin pointer of the binary search
m := 0 // m is the middle pointer of the binary search
d := 0.0 // The initial value of inconsistency degree d is set to be 0.0
W = Asc(α1, ..., αn)
W (−1) = 0.0 // The special element −1 of W is set to be 0.0
e := |W | − 1 // e is the end pointer of the binary search
if B≥W (0) is consistent then

d:=0.0

else
while b ≤ e do

if b = e then
return b

m := �(b + e)/2�
if B≥W (m) is consistent then

e := m − 1

else
b := m + 1

d := W (b)

end

– φ is said to be a consequence of B w.r.t the linear order policy, denoted
B 0LO φ, iff (ΣLO,B)∗ 0 φ.

– φ is said to be a weighted consequence of B to a degree α w.r.t the linear
order policy, denoted B 0LO (φ,α), iff ΣLO,B 0π (φ,α).

In Definition 3, we not only define the consequence of a possibilistic DL knowl-
edge base w.r.t the linear order policy, but also the weighted consequence of it.
The weighted consequence of B is based on the possibilistic inference.

Example 3. (Example 1 continued) Let φ = Eatfish-Swim. According to Ex-
ample 2, φ is not a consequence of B w.r.t. the possibilistic inference. Since
ΣB = (S1,S2,S3,S4), where S1 = A, S2 = {(HasW ing-Bird, 0.95)}, S3 =
{(Bird-Fly, 0.8)} and S4={(Eatfish-Swim, 0.6)}, we have ΣLO,B =S1∪S2∪S4.
It is easy to check that B 0LO (Eatfish-Swim, 0.6).

4 Algorithms for Inference in Possibilistic DLs

We give algorithms for the inference in possibilistic DLs.
Algorithm 1 computes the inconsistency degree of a possibilistic DL knowledge

base using a binary search. The function Asc takes a finite set of numbers in
(0, 1] as input and returns a vector which contains those distinct numbers in the
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Algorithm 2. Possibilistic inference with certainty degrees
Data: B = 〈T , A〉, where T ∪ A = {(φi, αi) : αi ∈ (0, 1], i = 1, ..., n}; a DL axiom

φ.
Result: The certainty degree w associated with a query φ
begin

m := 0
w := 0.0 // The initial certainty degree of φ is set to be 0.0
W = Asc(α1, ..., αn)
W (−1) = 0.0
e := |W | − 1
compute l such that W (l) = Inc(B) //Inc(B) is computed by Algorithm 1
b := l + 1
if B≥W (b) |= φ then

while b ≤ e do
if b = e then

return b
m := �(b + e)/2�
if B≥W (m) �|=φ then

e := m − 1

else
b := m + 1

w := W (b)

end

set in an ascending order. For example, Asc(0.2, 0.3, 0.3, 0.1) = (0.1, 0.2, 0.3). Let
W = (β1, ...,βn) is a vector consisting of n distinct numbers, then W (i) denotes
βi. If the returned inconsistency degree is 0, that is W (−1) = 0, it shows the
ontology to be queried is consistent.

Since Algorithm 1 is based on binary search, to compute the inconsistency
degree, it is easy to check that the algorithm requires at most �log2n�+1 satis-
fiability check using a DL reasoner.

Algorithm 2 returns the necessity degree of an axiom inferred from a possi-
bilistic DL knowledge base w.r.t the possibilistic inference. We compute the in-
consistency degree of the input ontology. If the axiom is a plausible consequence
of a possibilistic DL knowledge base, then we compute its necessity degree using
a binary search (see the first “if” condition). Otherwise, its necessity degree is
0, i.e., the default value given to w. Note that our algorithm is different from
the algorithm given in [15] for computing the necessity of a formula in possibilis-
tic logic (this algorithm needs to compute the negation of a formula, which is
computationally hard in DLs according to [9]). We consider only subsumption
checking here. However, the algorithm can be easily extended to reduce instance
checking as well.

In Algorithm 3, we call Algorithm 1 and Algorithm 2 to compute the certainty
degree of the query φ w.r.t the linear order inference. In the “while” loop, the
first “if” condition checks if the inconsistency degree is greater than 0 and then
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Algorithm 3. Linear order inference with certainty degrees
Data: B = 〈T , A〉, where T ∪ A = {(φi, αi) : αi ∈ (0, 1], i = 1, ..., n}; a DL axiom

φ.
Result: The certainty degree w associated with a query φ
begin

d := 0.0 // The initial inconsistency degree is set to be 0.0
w := 0.0 // The initial certainty degree of φ is set to be 0.0
hasAnswer := false
W = Asc(α1, ..., αn)
e := |W | − 1 // e is a global variable to pass values to the subroutines
while !hasAnswer do

if d > 0 then
e := d − 1
B := B \ B=d

W := W \ d

d := alg1(B), where alg1 is Algorithm 1
if B>d |= φ then

hasAnswer := true

if d ≤ 0 then
break

if hasAnswer then
w := alg2(B, φ), where alg2 is Algorithm 2

end

delete the axioms whose necessity degrees are equal to the inconsistency degree.
After that, we call Algorithm 1 to compute the inconsistency degree of the
initial knowledge base or knowledge base obtained from the first “if” loop. Then
the second “if” condition checks if the axiom is a plausible consequence of the
possibilistic DL knowledge base and end the “while” loop if the answer is positive.
The final “if” condition simply tests if the possibilistic DL knowledge base is
consistent or not and terminate the “while” loop if the answer is positive. Finally,
we compute the certainty degree of φ by calling Algorithm 2. This algorithm need
to call polynomial times of satisfiability check using a DL reasoner.

Algorithms 2 and 3 compute inference with certainty degree because it is more
difficult to obtain the certainty degree of an inferred axiom. They can be easily
revised to compute plausible consequence. Because of the page limit, we do not
provide the details here.

Proposition 2. Let B be a possibilistic DL knowledge base and φ be a DL ax-
iom. Deciding whether B |=P φ requires �log2n�+1 satisfiability check using a
DL reasoner, where n is the number of distinct certainty degrees in B. Further-
more, deciding whether B |=π (φ,α) requires at most �log2n�+�log2n − l�+1
satisfiability check using a DL reasoner, where where n is the number of distinct
certainty degrees in B and l is the inconsistency degree of B.
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5 Implementation and Results

To test our algorithms, we have implemented them in Java using KAON23. All
tests were performed on a laptop computer with a 1.7GHz Intel processor, 1 GB
of RAM, running Windows XP Service Pack 2. Sun’s Java 1.5.0 Update 6 is
used, and the virtual memory of the Java virtual machine was limited to 800M.

5.1 Results

We use ontologies miniTambis4 and proton 100 all5 as test data. The first ontol-
ogy contains more than 170 concepts, 35 properties, 172 axioms and 30 unsatisfi-
able concepts. The second ontology has 175 concepts, 266 properties, 3 unsatisfi-
able concepts and about 1100 axioms. Both ontologies are consistent but contain
some unsatisfiable concepts. We added some instances to the unsatisfiable con-
cepts to make the ontology inconsistent. We get possibilistic DL knowledge bases
from miniTambis and proton 100 all by randomly attaching certainty degrees to
them and using a separate ontology to store the information on the certain de-
grees. Given a set of certainty degrees W = (w1, w2, ..., wn), wi ∈ (0, 1], i =
1, ..., n, an automatic mechanism is applied to randomly choose a certainty de-
gree wi for each axiom in the ontology to be queried.

In Table 2, some results based on the two ontologies above are given, where
|W | means the number of different certainty degrees for testing. The rows cor-
responding to Algorithm 2 and Algorithm 3 describe the time spending on a
specific reasoning task which is instance checking, i.e., the third row shows the
time spent by executing Algorithm 2 and the last row is for Algorithm 3. For
each column in an ontology, we randomly attach the certainty degrees to axioms
in the ontology and give the time spending on a specific reasoning task. There-
fore, different columns gives results for different possibilistic DL knowledge bases
which may generate from the same ontology.

According to the table, in some cases, the time spent on query by Algorithm
2 and Algorithm 3 is almost the same (see columns 1 and 2 for miniTambis).
For example, when the axiom φ to be queried can be inferred by BInc(B). In
other cases, it takes much more time for Algorithm 3 to return the result than
Algorithm 2. For example, see columns 3 for miniTambis, it takes 2 seconds to

Table 2. The results from Algorithm 2 and Algorithm 3

Ontology miniTambis proton 100 all

|W | 10 30 10 30

Algorithm 2 (s) 6 8 2 10 16 9 13 8 5 11 5 6 9 12 8 13
Algorithm 3 (s) 6 9 12 23 16 8 33 44 5 10 15 12 8 12 19 24

3 http://kaon2.semanticweb.org/
4 http://www.mindswap.org/2005/debugging/ontologies/
5 http://wasp.cs.vu.nl/knowledgeweb/d2163/learning.html
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get result from Algorithm 2 and 12 second from Algorithm 3. This is because
Algorithm 2 stops when B≥W (d) |= φ is not satisfied. But for Algorithm 3, it will
not stop until B≥W (d) |= φ is satisfied, or no more inconsistency degree can be
found.

6 Related Work

Our work differs from existing work on extending description logics by possi-
bilistic logic in following points: (1) we provided semantics of the possibilistic
description logic, (2) we considered two inference services and give algorithms
for computing the consequences of the inference, (3) we proposed a linear order
inference which is a drowning-free variant of possibilistic inference and provided
algorithm for it, (4) we implemented the proposed algorithm and provided for
evaluation results.

Other approaches that extend description logics with uncertainty reasoning
are probabilistic description logics [12,10] and fuzzy extension of description
logics (e.g., [18,17]). The main difference between possibilistic extension and
probabilistic extension lies in the fact that possibilistic logic is a qualitative
representation of uncertainty, whilst probabilistic extension is on quantitative
aspects of uncertainty. Furthermore, possibilistic DLs can be used to deal with
inconsistency and probabilistic DLs are not used for this purpose. Arguably,
fuzzy description logics can be used to deal with uncertainty. In possibilistic
DLs, the truth value of an axiom is still two-valued, whilst in fuzzy DLs, the
truth value of an axiom is multi-valued.

7 Conclusions and Future Work

We gave a possibilistic extension of description logics in this paper. We first
defined syntax and semantics of possibilistic description logics. Then we con-
sider inference problems in our logics: possibilistic inference and linear order
inference. Algorithms were given to check the inference and we implemented the
algorithms. As far as we know, this is the first work which discusses how to
implement possibilistic description logics. Finally, we report some preliminary
but encouraging experimental results.

The algorithms for possibilistic inference of our logics proposed in this paper
is independent of DL reasoner. In our future work, we plan to give more efficient
reasoning approaches by generalizing the resolution-based reasoning approach for
KAON2. Another future work is that we may interpret the concept axioms by
possibilistic conditioning and explore the nonmonotonic feature of possibilistic
description logics.
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Abstract. This paper addresses the issue of measuring similarity be-
tween pieces of uncertain information in the framework of possibility
theory. In a first part, natural properties of such functions are proposed
and a survey of the few existing measures is presented. Then, a new
measure so-called Information Affinity is proposed to overcome the lim-
its of the existing ones. The proposed function is based on two measures,
namely, a classical informative distance, e.g. Manhattan distance which
evaluates the difference, degree by degree, between two normalized pos-
sibility distributions and the well known inconsistency measure which
assesses the conflict between the two possibility distributions. Some po-
tential applications of the proposed measure are also mentioned in this
paper.

Keywords: Possibility theory, Similarity, Divergence measure, Distance,
Inconsistency measure.

1 Introduction

Most of real-world decision problems are faced with uncertainty. Uncertainty
about values of given variables (e.g. the type of a detected target in military
applications, the disease affecting a patient in medical applications, etc.) can
result from some errors and hence from non-reliability (in the case of sensors)
or from different background knowledge (in the case of agents: doctors, etc.). As
a consequence, it is possible to obtain different uncertain pieces of information
about a given value from different sources. Obviously, comparing these pieces of
information could be very interesting to support decision making.

Comparing pieces of uncertain information given by several sources has at-
tracted a lot of attention for a long time. For instance, we can mention the
well-known Euclidean and KL-divergence [17] for comparing probability distri-
butions. Another distance has been proposed by Chan and al. [4] for bounding
probabilistic belief change. Moving to belief function theory [20], several distance
measures between bodies of evidence deserve to be mentioned. Some distances

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 840–852, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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have been proposed as measures of performance (MOP) of identification algo-
rithms [8] [14]. Another distance was used for the optimization of the parame-
ters of a belief k -nearest neighbor classifier [26]. In [21], the authors proposed a
distance for the quantification of errors resulting from basic probability assign-
ment approximations. Similarity measures between two fuzzy sets A and B have
been also proposed in the literature [6] [9] [23] [24]. For instance, in the work by
Bouchon-Meunier and al. [3], the authors proposed a similarity measure between
fuzzy sets as an extension of Tversky’s model on crisp sets [22]. The measure
was then used to develop an image search engine.

Contrary to probability, belief function and fuzzy set theories, few works are
dedicated to distance measures in possibility theory despite its popularity. Hence,
in this paper, we will focus on measures for the comparison of uncertain infor-
mation represented by possibility distributions. In a first part, we will study the
few existing works and show their limits, then, we will propose a new similarity
measure, so-called Information Affinity which satisfies very natural properties.
Our measure would be useful in many real-world applications where the uncer-
tainty is modeled by means of possibility theory. For instance, it could be used
as a critical parameter for distance based possibilistic machine learning algo-
rithms, it could also be used for the evaluation of possibilistic classifiers, for the
comparison of expert opinions, etc.

The rest of the paper is organized as follows: Section 2 starts by giving the
necessary background concerning possibility theory. Section 3 provides differ-
ent properties that a similarity measure should satisfy. Section 4 represents an
overview of the existing similarity measures within the possibilistic setting with
detailed examples and critics. The definition and the contrast of the new Infor-
mation Affinity measure with existing measures are proposed in Section 5. Some
potential applications of the proposed measure are shown in Section 6. Finally,
Section 7 concludes the paper.

2 Possibility Theory

Possibility theory represents a non-classical theory (distinct from probability
theory), first introduced by Zadeh [25] and then developed by several authors
(e.g., Dubois and Prade [7]). In this section, we will give a brief recalling on
possibility theory.

Possibility distribution
Given a universe of discourse Ω = {ω1, ω2, ..., ωn}, a fundamental concept of
possibility theory is the possibility distribution denoted by π. π corresponds to
a function which associates to each element ωi from the universe of discourse
Ω a value from a bounded and linearly ordered valuation set (L,<). This value
is called a possibility degree: it encodes our knowledge on the real world. Note
that, in possibility theory, the scale can be numerical (e.g. L=[0,1]): in this case
we have numerical possibility degrees from the interval [0,1] and hence we are
dealing with the quantitative setting of the theory. In the qualitative setting, it
is the ordering between the different possible values that is important.
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By convention, π(ωi) = 1 means that it is fully possible that ωi is the real
world, π(ωi) = 0 means that ωi cannot be the real world (is impossible). Flexi-
bility is modeled by allowing to give a possibility degree from ]0,1[. In possibility
theory, extreme cases of knowledge are given by:

- Complete knowledge: ∃ωi, π(ωi) = 1 and ∀ ωj = ωi, π(ωj) = 0.
- Total ignorance: ∀ ωi ∈ Ω, π(ωi) = 1 (all values in Ω are possible).

Possibility and Necessity measures
A Possibility measure is one of the fundamental concepts in possibility theory.
From a possibility distribution, two dual measures can be derived: Possibility
and Necessity measures. Given a possibility distribution π on the universe of
discourse Ω, the corresponding possibility and necessity measures of any event
A ⊆ 2Ω are, respectively, determined by the formulas: Π(A) = maxω∈A π(ω)
and N(A) = minω/∈A (1−π(ω)) = 1−Π(A). Π(A) evaluates at which level A is
consistent with our knowledge represented by π while N(A) evaluates at which
level A is certainly implied by our knowledge represented by π.

Normalization
A possibility distribution π is said to be normalized if there exists at least one
state ωi ∈ Ω which is totally possible (i.e. maxω∈Ω{π(ω)} = π(ωi)=1). In the
case of sub-normalized π,

Inc(π) = 1−max
ω∈Ω

{π(ω)} (1)

is called the inconsistency degree of π. It is clear that, for normalized π,
maxω∈Ω{π(ω)} = 1, hence Inc(π)=0. The measure Inc is very useful in assess-
ing the degree of conflict between two distributions π1 and π2 which is given by
Inc(π1 ∧ π2). We take the ∧ as the minimum operator. Obviously, when π1 ∧ π2
gives a sub-normalized possibility distribution, it indicates that there is a con-
flict between π1 and π2 (Inc(π1 ∧ π2) ∈]0, 1]). On the other hand, when π1 ∧ π2
is normalized, there is no conflict and hence Inc(π1 ∧ π2) = 0.

Non-specificity
The degree of information uncertainty of a possibility distribution is called
non-specificity and it can be measured by the so-called U-uncertainty crite-
rion [10]. Given a permutation of the degrees of a possibility distribution π =
〈π(1), π(2), ..., π(n)〉 such that π(1) ≥ π(2) ≥ ... ≥ π(n), the U-uncertainty of π,
is given by the formula:

U(π) =
n∑

i=2

(π(i) − π(i+1)) log2 i + (1− π(1)) log2 n (2)

where π(n+1) = 0 by convention [11]. Note that the range of U is [0, log2 n].
U(π) = 0 is obtained for the case of complete knowledge (no uncertainty) and
U(π) = log2 n is reached for instance in the case of total ignorance. Note also
that the second term of the equation, i.e., (1 − π(1)) log2 n generalizes U for
sub-normalized π.
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For the sake of simplicity, for the rest of the paper, a possibility distribution π
on a finite set Ω = {ω1,ω2, ...,ωn} will be denoted by π[π(ω1), π(ω2), ..., π(ωn)].

3 Natural Properties for a Possibilistic Similarity
Measure

Let π1 and π2 be two normalized possibility distributions on the same universe
of discourse Ω. A similarity measure is any function s(π1, π2) satisfying the fol-
lowing six properties:

Property 1. Non-negativity s(π1, π2) ≥ 0.
Property 2. Symmetry s(π1, π2) = s(π2, π1).
Property 3. Upper bound and Non-degeneracy
If the range of s is the interval [0,1], then the upper bound of s is equal to 1.
Formally, ∀ πi, s(πi, πi) = 1. So, s is maximal iff the arguments of s are identical.
Property 4. Lower bound
The lower bound of s is equal to 0. s(π1, π2) = 0 should be obtained only when
we have to compare maximally contradictory possibility distributions. More for-
mally, s(π1, π2) = 0 holds iff ∀ωi ∈ Ω,
i) π1(ωi) ∈ {0, 1} and π2(ωi) ∈ {0, 1},
ii) and π2(ωi) = 1− π1(ωi)
Item i) means that π1 and π2 should be binary. Now, since in this paper we only
deal with normalized possibility distributions, items i) and ii) imply:
iii) ∃ ωq ∈ Ω s.t. π1(ωq) = 1
iv) ∃ ωp ∈ Ω s.t. π1(ωp) = 0

The following example illustrates properties (3) and (4):

Example 1. Let X be a variable with an unknown value and let Ω = {ω1,ω2,ω3,
ω4} be the set representing the possible values of X. Let us take the possibil-
ity distribution representing the total knowledge on X given by an agent, i.e.,
π1[1, 0, 0, 0].

Thus, the most similar possibility distribution to π1 according to Property
3 is π2[1, 0, 0, 0] (the best case) and according to Property 4, the least similar
possibility distribution to π1 is π3[0, 1, 1, 1] (the worst case). In the above ex-
ample, intuitively, the opinion of an agent who totally ignores the value of X,
(i.e, π4[1, 1, 1, 1]) is closer to π1 than π3. In fact, π4 is in agreement with π1
that ω1 is fully possible but not for the remaining ωi, on the other hand, π3
does not agree with π1 on any ωi. Moreover, since π4 is fully consistent with π1
(Inc(π1 ∧ π4) = 0), it will be considered more close to π1 than other possibility
distribution πj satisfying Inc(π1 ∧ πj) = 1.

Finally, in the case of equally inconsistent opinions with π1, e.g., π5[0, 1, 1, 0]
and π6[0, 1, 0, 0], the distribution having the smallest simple difference (degree by
degree) will be considered the closest to π1. Hence, π6 is closer to π1 than π5. In
fact, both π5 and π6 completely disagree with π1 that ω1 is the value of X, but π6
agrees with π1 that ω3 and ω4 are impossible while π5 considers ω3 as possible.
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Property 5. Inclusion
If ∀ωi ∈ Ω, π1(ωi) ≤ π2(ωi) and π2(ωi) ≤ π3(ωi), which by definition means
that π1 is more specific than π2 which is in turn more specific than π3, we obtain:
s(π1, π2)≥s(π1, π3).

Property 6. Permutation
Suppose we have four possibility distributions π1, π2, π3 and π4 such that
s(π1, π2)>s(π3, π4). Suppose that ∀j = 1..4, and ωp,ωq ∈ Ω, we have π′

j(ωp) =
πj(ωq) and π′

j(ωq) = πj(ωp), hence we should obtain s(π′
1, π

′
2)>s(π′

3, π
′
4).

4 Measuring Similarity of Possibilistic Uncertain
Information

Measuring similarity of uncertainty based information has attracted a lot of
attention in probability theory [4,17], in belief function theory [8,14,21,26], in
fuzzy set theory [3,6,9,23,24] and in credal set theory [1]. This is not the case
for possibilistic uncertain information, in fact, few works have been done in this
direction. Let us present, chronologically, some of these measures and show their
weaknesses in expressing information divergence between any given two agents
(or sensors) who are expressing their opinions (or measures), especially, in the
form of possibility distributions.

4.1 Information Closeness

The first paper, especially dedicated to the problem of measuring information
similarity between two possibility distributions was the one of Higashi and Klir
in 1983 [11]. They proposed an information variation based measure which they
called information closeness denoted by G. Function G is computed using their
U -uncertainty measure [10] (Equation (2)) and it is applicable to any pair of
normalized possibility distributions. The less the value of G is, the more the
information are similar (G behaves as a distance measure).

Definition 1. Let π1 and π2 be two possibility distributions on the same uni-
verse of discourse Ω. The information closeness G between π1 and π2 is defined
as:

G(π1, π2) = g(π1, π1 ∨ π2) + g(π2, π1 ∨ π2) (3)

where g(πi, πj) = U(πj)− U(πi). ∨ is taken as the maximum operator and U is
the non-specificity measure given by Equation (2). Consequently, function G can
be written as G(π1, π2) = 2 ∗ U(π1 ∨ π2)− U(π1)− U(π2).

Example 2. Consider the following distributions π1, π2, π3 and π4 over Ω =
{ω1, ω2, ω3, ω4}: π1[1, 0.5, 0.3, 0.7], π2[1, 0, 0, 0], π3[0.9, 1, 0.3, 0.7],
π4[0, 1, 0.3, 0.7]. Let us try to find an order expressing which from the infor-
mation given by π2, π3 and π4 is closer to π1. G(π1, π2) = 1.12, G(π1, π3) =
0.52, G(π1, π4) = 1.08. According to G, π3 is the closest to π1 and π4 is closer
to π1 than π2.
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The dissimilarity measure G does not satisfy Property 4. In fact, G(πi, πj) should
take its maximum value ∀ πi, πj satisfying items i) to iv) (see Property 4 ).

Example 3. Let us consider these distributions: π1[1, 0, 0, 0], π2[0, 1, 1, 1],
π3[0, 1, 0, 1] and π4[1, 0, 1, 0] . Clearly, π1 = 1−π2 and π3 = 1−π4. Hence, G
should take its maximum value when comparing π1 and π2 as well as π3 and π4.
Nevertheless, according to G, we obtain: G(π1, π2) = 2∗ log2(4)− log2(3) = 2.41,
G(π3, π4) = 2 ∗ log2(4) − 2 ∗ log2(2) = 2. It means that π3 and π4 are more
similar to each others than π1 and π2 are, which is contrary to what we expect:
G(π1, π2) should be maximal and equal to G(π3, π4).

4.2 Sangüesa et al. Distance

In a work by Sangüesa et al. [19] focusing on learning possibilistic causal net-
works, the authors proposed a modified version of a distance measure [18] be-
tween two possibility distributions for DAG (Directed Acyclic Graph) learning
and evaluation. This is done by measuring the distance (which must be mini-
mized) between the possibility distribution implied by a DAG and the one un-
derlying the database. This idea is based on the interpretation of independence
as information similarity.

Definition 2. Given two possibility distributions π1 and π2 on the same uni-
verse of discourse Ω. The distance between π1 and π2 is defined as the non-
specificity of the distribution difference

distance(π1, π2) = U(|π1 − π2|) (4)

This measure gives different results from the previous one.

Example 4. If we take the same distributions π1, π2, π3 and π4 of Example
2, we obtain: distance(π1, π2) = U([0, 0.5, 0.3, 0.7]) = 1.27, distance(π1, π3) =
U([0.1, 0.5, 0, 0]) = 1.1, distance(π1, π4) = U([1, 0.5, 0, 0]) = 0.5. Hence accord-
ing to this measure, π2 remains the farthest but π4 becomes the closest to π1.

This measure has a serious problem when the distribution difference (|π1 − π2|)
is sub-normalized (which occurs most of the time). Indeed, it is in this situ-
ation that the second term of Equation (2) will be considered. If we concen-
trate in Equation (2), we can notice that measuring the non-specificity of a
sub-normalized distribution π comes down to measure the non-specificity of its
normalized distribution π′ s.t π′(ωi) = π(ωi) + 1 −maxω∈Ω{π(ω)}. Obviously,
this normalization scheme is not suited for the proposed distance. The following
example shows this weakness:

Example 5. Let us consider the following three possibility distributions:
π1[1, 0, 0, 0], π2[1, 0, 0, 0], π3[0, 1, 1, 1], π4[1, 1, 0, 0]. Clearly, π2 is
the closest possible distribution to π1 (the best case) while π3 is the farthest
distribution (the worst case). Nevertheless, the distance measure does not agree:
distance(π1, π2) = U([0, 0, 0, 0]) = 2 (maximum)
distance(π1, π3) = U([1, 1, 1, 1]) = 2 (maximum)
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distance(π1, π4) = U([0, 1, 0, 0]) = 0 (minimum)
Hence, π1 and π2 are maximally distant from each other which violates Property
4. Property 3 is also violated since, according to the example, π1 and π4 are
maximally similar to each other.

4.3 Information Divergence

A possibilistic analogy to the probabilistic measure of divergence was proposed
by Kroupa [16]. The author has used the Choquet integral [5] as an aggregation
operator of the possibility degrees characterizing the, generally, sub-normalized
distribution difference (πd = |π1(ωi)− π2(ωi)|, i=1..n) of any two normal distri-
butions π1 and π2.

Definition 3. Given two possibility distributions π1 and π2 on the same uni-
verse of discourse Ω, the measure of divergence D(π1|π2) is defined as the discrete
Choquet integral of the degrees of πd:

D(π1|π2) =
n∑

i=1

πd(ωσ(i))[Π1(Aσ(i))−Π1(Aσ(i+1))] (5)

where σ is a permutation of indices such that πd(ωσ(i)) ≤ ... ≤ πd(ωσ(n)) and
Aσ(i) = {ωσ(i), ...,ωσ(n)}, i=1..n and Aσ(n+1) = 0.

Example 6. Considering the distributions of Example 2, the application of the
divergence measure gives:
D(π1|π2) = 0.49, D(π1|π3) = 0.3, D(π1|π4) = 1.
Again, we obtain a different order from Example 2 and Example 4: π3 is the
closest to π1 and π4 is the farthest.

Clearly, the measure D is not symmetric. Moreover, given any possibility distri-
bution πi, the proposed information divergence measure gives the maximum
divergence degree (Equal to 1) for all possibility distributions πj satisfying
Inc(πi ∧ πj) = 1, in other words, when the distribution difference πd is nor-
malized. Hence, we can no longer discriminate between these πj ’s. Example 7
emphasizes this limit:

Example 7. Let us consider the same distributions π1 and π4 of the previous
example. Let us consider π5[0, 1, 1, 1]. D(π1|π5) = D(π1|π4) = 1. We can
conclude that this measure is not enough discriminatory since π4 appears closer
to π1 than π5 was.

5 Information Affinity: A New Possibilistic Similarity
Measure

Considering the aforementioned weaknesses related to the existing measures of
divergence between possibility distributions, we will propose a new measure that
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overcomes these drawbacks. The proposed measure takes into account a classical
informative distance along with the well known inconsistency measure. Among
the classical informative distance functions (Manhattan, Euclidean, Chebyshev,
Sorensen, etc.) we choose the Manhattan distance: a simple distance which,
when combined with the inconsistency measure, satisfies the expected properties
mentioned in Section 3.

The choice of combining these two criteria is justified by the fact that neither
the distance measure nor the inconsistency measure, taken separately, allows us
to decide about the closest distribution to a given one (Example 8 emphasizes
this problem). More formally, let us consider three possibility distributions π1,
π2 and π3. Our aim is to determine which, from π2 and π3, is closer to π1. In
the case of equal conflict, i.e., Inc(π1 ∧ π2) = Inc(π1 ∧ π3), it is the classical
distance that will decide about the closest distribution. In the same way, when
we have equal distances, i.e., d(π1, π2) = d(π1, π3), it is the turn of the conflict
(inconsistency) measure to decide about the closest distribution, i.e., the less
conflicting will be the closest.

Example 8. Let us consider the following possibility distributions: π1[1, 0, 0, 0],
π2[0.4, 1, 0.8, 0.5], π3[0.2, 1, 1, 0.7]. If we use a classical distance measure (e.g.
Manhattan distance), we obtain, d(π1,π2)=d(π1,π3)= 2.9

4 = 0.725. Hence, we can
not decide wether π2 or π3 is closer to π1. We can obtain similar situations even
when using another distance (Euclidean, Chebyshev, etc.).

Let us now consider the following possibility distributions:

π′
1[1, 0, 0, 0], π′

2[0, 1, 0, 0], π′
3[0, 1, 1, 1].

We have Inc(π′
1, π

′
2) = Inc(π′

1, π
′
3) = 1. Again, we can not decide which from π′

2
and π′

3 is closer to π′
1.

Definition 4. Let π1 and π2 be two possibility distributions on the same uni-
verse of discourse Ω. We define a measure InfoAff(π1, π2) as follows:

InfoAff(π1, π2) = 1− d(π1, π2) + Inc(π1 ∧ π2)
2

(6)

where d(π1, π2) = 1
n

∑n
i=1 |π1(ωi) − π2(ωi)| represents the Manhattan distance

between π1 and π2 and Inc(π1 ∧ π2) tells us about the degree of conflict between
the two distributions (see Equation (1)). Note that the 1

2 value is necessary to
obtain the required range [0,1].

Two possibility distributions π1 and π2 are said to have a strong affinity (resp.
weak affinity) if InfoAff(π1, π2) = 1 (resp. InfoAff(π1, π2) = 0).

Proposition 1. The InfoAff measure satisfies the six properties.

Proofs
Property 1. Non-negativity:
By definition, 0 ≤ d(a, b) ≤ 1. Moreover, 0 ≤ Inc(a, b) ≤ 1 (possibility de-
grees ∈ [0,1]). ⇒ 0 ≤ d(a,b)+Inc(a,b)

2 ≤ 1 ⇒ 0 ≤ 1 − d(a,b)+Inc(a,b)
2 ≤ 1 ⇒

InfoAff(a, b) ≥ 0.
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Property 2. Symmetry:

InfoAff(b, a) = 1− d(b,a)+Inc(b∧a)
2 = 1− d(a,b)+Inc(a∧b)

2 =InfoAff(a, b).

Property 3. Upper bound and Non-degeneracy:

∀ b = a, InfoAff(a, b) = InfoAff(a, a) = 1− d(a,a)+Inc(a∧a)
2 = 1− (0+0)

2 = 1.
Note that in the case of b = a, Inc(a ∧ b) could be equal to 0 but in any case we
have d(a, b) = 0, consequently, InfoAff(a, b) could not be equal to 1.
Moreover, InfoAff(a, b) = 1 occurs in the following two cases:
Case 1: When d(a, b) = 0 and Inc(a, b) = 0, which occurs only when a = b.
Case 2: When d(a, b) = −Inc(a, b) which is impossible because d(a, b) ≥ 0 and
Inc(a, b) ≥ 0.

Property 4. Lower bound:

InfoAff(a, b) = 0 ⇔ d(a,b)+Inc(a∧b)
2 = 1⇔ d(a, b) + Inc(a ∧ b) = 2.

Since max(d(a, b)) = 1 and max(Inc(a, b)) = 1, then obviously we have d(a, b) =
1 and Inc(a, b) = 1. These two equalities, simultaneously hold, only when a and
b are maximally contradictory, i.e, when a and b simultaneously satisfy all the
following conditions: i) a and b are binary possibility distributions, ii) nor a
neither b could represent total ignorance, iii) a and b should be normalized and
iv) b is the negation (the complement) of a (see Property 4).

Property 5. Inclusion:

If a is more specific than b which is in turn more specific then c, automatically, we
can conclude that a, b and c are fully consistent with each others (they all share
at least one state which is fully possible), i.e., Inc(a,b)=Inc(a,c)=Inc(b,c)=1.
Moreover, it is obvious to see that d(a,b)≤d(a,c). So, 1− d(a,b)+1

2 ≥ 1− d(a,c)+1
2

⇒ InfoAff(a, b) ≥ InfoAff(a, c).

Property 6. Permutation:

Suppose that we have InfoAff(a, b) > InfoAff(c, d). Hence a’, b’, c’ and d’
are possibility distributions obtained by permuting elements having the same in-
dexes in a, b, c and d. Since we are computing d and Inc degree by degree, the
pairwise permutation of the elements has no effect on d and Inc. So we obtain
d(a,b)=d(a’,b’) and Inc(c,d)=Inc(c’,d’) ⇒ InfoAff(a′, b′) ≥ InfoAff(c′, d′).

Example 9. Let us revisit each one of the examples listed above and see the
results given by our measure for these same examples:

Examples 2, 4 and 6: π1[1, 0.5, 0.3, 0.7], π2[1, 0, 0, 0], π3[0.9, 1, 0.3, 0.7],
π4[0, 1, 0.3, 0.7].

InfoAff(π1, π2) = 0.82, InfoAff(π1, π3) = 0.88, InfoAff(π1, π4) = 0.66.
Hence, π3 is the closest to π1 and π4 is the farthest: a different order from the
ones obtained in Example 2 and 4. Note that our measure gives the same order,
for this example, as the one given by the divergence measure.
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Example 3: π1[1, 0, 0, 0], π2[0, 1, 1, 1], π3[0, 1, 0, 1], π4[1, 0, 1, 0] .
InfoAff(π1, π2) = 0, InfoAff(π3, π4) = 0. InfoAff is minimal for both
cases: a different result from the one obtained in Example 3.

Example 5: π1[1, 0, 0, 0], π2[1, 0, 0, 0], π3[0, 1, 1, 1].
InfoAff(π1, π2) = 1, InfoAff(π1, π3) = 0. Hence, π2 is the closest possible
distribution to π1 and π3 represents the worst case. Again, we obtain a different
result from the one of Example 5. Still with Example 5, if we take possibility
distributions π4[0, 1, 1, 0] and π5[0, 1, 0, 0], we obtain InfoAff(π1, π4) = 0.125
and InfoAff(π1, π5) = 0.25. Hence, π5 is closer to π1 than π4.

To finish, Example 8: π1[1, 0, 0, 0], π2[0.4, 1, 0.8, 0.5], π3[0.2, 1, 1, 0.7].
InfoAff(π1, π2) = 0.33, InfoAff(π1, π3) = 0.16,⇒ π2 is closer to π1 than π3.
If we take: π′

1[1, 0, 0, 0], π′
2[0, 1, 0, 0], π′

3[0, 1, 1, 1].
InfoAff(π′

1, π
′
2) = 0.25, InfoAff(π′

1, π
′
3) = 0, ⇒ π′

2 is closer to π′
1 than π′

3.

6 Practical Applications of Information Affinity

We mention some fields in which Information Affinity measure could be useful.

6.1 Machine Learning: Classification and Clustering

The proposed information affinity measure could be used in many classification
and clustering algorithms, especially in those using possibility theory as a tool
for dealing with existing uncertainty in the learning process [12] [13]. For in-
stance, InfoAff could be used as the basis of an attribute selection measure for
inducing decision trees from imprecisely labeled data. More formally, it will allow
to select the attribute that, when chosen, will provide partitions of the train-
ing set containing maximally similar instances, i.e, instances having as much
as possible similar possibility distributions on their classes. Still in classification
problems, InfoAff could be also used in most of distance based classifiers which
are induced from imprecise data, e.g. k-nearest neighbor classifiers, genetic al-
gorithms, artificial immune recognition systems, etc. Likewise, InfoAff could
be used in possibilistic clustering [15] as the distance criterion which will allow
to decide about the belonging or not of an instance to a given cluster which is
characterized by a possibility distribution.

6.2 Evaluation of Possibilistic Classifiers

The use of our measure does not only comply with learning, it could also be
used in the evaluation of possibilistic classifiers. Recall that within a possibilistic
classifier, the classification result is given in the form of a possibility distribution
(πres) on the different possible classes of the problem (Ω = {C1, C2, ..., Cn}).

Generally, the well known percentage of correct classification (PCC) is used to
evaluate classifiers (PCC = nbr_well_classified_inst

total_nbr_classified_inst × 100). In the possibilistic
setting, it is used as follows: it chooses for each classified instance the class having
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the highest possibility degree (equal to 1). If more than one class is obtained, then
one of them is chosen randomly. The obtained class is considered as the class of
the testing instance. Consequently, nbr_well_classified_inst corresponds to
the number of testing instances for which the class obtained by the possibilistic
classifier (the more plausible class) is the same as the real class.The limitation
of this adaptation of the PCC criterion to the possibilistic setting, is that it
chooses randomly one of the more plausible classes which may miss-classify some
instances. Moreover, even when there is only one more plausible class, focusing
on that class and ignoring the rest of the classes (classes with possibility degrees
different from 1) is problematic. In fact, ignoring the rest of the degrees implies
ignoring a part of the information given by the resulting possibility distribution
(πres).

So, a solution is to define an affinity based criterion PCC_Aff (Equation
(7)) which takes into account the mean affinity relative to all the classified test-
ing instances: the average of the similarities between the resulting possibility
distribution (πres) and the real (completely sure) possibility distribution (πj)
of each classified instance Ij , j = 1..n. When PCC_Aff is close to 100%, the
classifier is good whereas when it falls to 0%, it is considered as a bad classifier.

PCC_Aff =

∑n
j=1 InfoAff(πres, πj)

total_nbr_classified_inst
× 100 (7)

Note that an alternative PCC criterion for possibilistic classifiers, more precisely,
for possibilistic decision trees was proposed in [2]. The so-called Qualitative PCC
denoted by Q_PCC is different from PCC_Aff : the former is based on an
Euclidean distance between the real (completely sure) possibility distribution of
each classified instance and its resulting qualitative possibility distribution which
is induced from the leximin-leximax ordering on the different classes given by
the tree.

6.3 Comparing Opinions and Sensor Measures

In many situations, comparing opinions of different agents supports decision
making. For instance, suppose we have a group of candidates taking part in a
competitive entry examination. Each candidate will be asked questions. Some
flexibility is offered to the candidates which will allow them to give a possibility
degree for each proposed response instead of giving a precise response. The final
best candidate will be the one giving possibility distributions which are the
most similar to the true responses (possibility distributions corresponding to
completely sure knowledge).

Another interesting use of the Information Affinity measure appears for sensor
diagnosis. Suppose that we have many sensors measuring a given variable. These
sensors are allowed to give measures with some errors, consequently, one can
represent their outputs as possibility distributions over the different possible
values of the variable under study. Suppose that we are sure that a given sensor s0
is reliable (a new installed sensor). One should compare measures (the possibility
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distributions) given by the different sensors with the one given by s0 and reject
or replace those giving different measures to a certain extent.

7 Conclusion

This paper focuses on measuring the similarity between possibilistic uncertain
information. One should note that, contrary to what has been done in other un-
certainty formalisms, few works have been done in this direction for the case of
possibility theory. After proposing some natural properties of a similarity mea-
sure between possibility distributions, after studying some few existing measures
and showing their limits by examples, we have proposed a new similarity mea-
sure which takes its roots from both the measure of inconsistency and a classical
distance. We have contrasted our measure with the existing ones and have shown
that it represents a reliable measure which recovers the limits of the few existing
ones. Potential applications of the proposed measure have been mentioned in
the end of the paper.
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Abstract. We face the problem of constructing a model which is suited
for an effective evaluation of the quality of a health–care provider: to this
purpose, we focus on some relevant indicators characterizing the various
services run by the provider. We rely on a fuzzy modeling approach by
using the interpretation (in terms of coherent conditional probability) of
a membership function of a fuzzy set as a suitable likelihood.

Keywords: Health-care services, efficiency, fuzzy modeling.

1 Introduction

Our aim is to realize, by focusing on some relevant aspects, a model which is
suited for an effective evaluation of the quality of a health–care provider, e.g.
clinical department, day hospital, etc..

We refer to the term “efficient”, that can be looked on as a fuzzy concept.
If the health–care provider runs several services (e.g.: supply of clinical tests,
delivering of medical therapies, etc.), the efficiency of every service can be de-
fined and characterized by a certain number k of key “indicators” (e.g.: waiting
time necessary to get the required clinical test, cost of treatment per outpatient
episode, etc.): denote by Xj the j-th indicator, which is then a component of
the vector X = (X1, X2, . . . , Xk).

Using the interpretation of membership of a fuzzy set as a suitable likelihood
(the main points of this approach are reported in Sections 2.1 and 2.2), we can
ask all the medical staff (e.g., the doctors) to claim their (subjective) judgment
on a given service. Considering the event E = “a doctor claims efficient the
service” and x ranging over a subset of the cartesian product of the ranges of
X1, X2, . . . , Xk (i.e. over all possible realizations of the vector X), we assign
the membership function µE(x) by taking it equal to the probability of the
conditional event E|{X = x}. This probability is assessed through the following
procedure: the doctors of the medical staff are required to evaluate the degree

K. Mellouli (Ed.): ECSQARU 2007, LNAI 4724, pp. 853–864, 2007.
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of efficiency of the service (given X = x) by a number between 0 and 1, so we
get a vector (d1, d2, . . . , dn) (where n is the number of doctors); then, putting

d =
d1 + d2 + . . . + dn

n
,

we assess P (E|{X = x}) = d .
The same procedure can be applied to patients to find the analogous member-

ship function µF (x) as a conditional probability, by considering, now, the event
F = “a patient claims efficient the service”.

An important setup of the model can be reached by relying on the concept
of similarity (recalled in Section 2.3): once the two membership functions µE(x)
and µF (x) are assessed, we may check whether they are “similar” more than a
given threshold, and only in this case decide to proceed with their “aggregation”;
otherwise it may be interesting to go back to the interviews to doctors and
patients to try to explain the reasons for this gap (or, alternatively, to shed light
on how to choose a suitable procedure of aggregation).

A convex combination µG(x) of the two membership functions µE(x) and
µF (x) turns out to be a coherent extension – see Section 2.2 – of the above
conditional probability P (·|·) assessed on the set{

E|{X = x} , F |{X = x}
}

to a “new” conditional event G|{X = x}, with G such that E ∧F ⊆ G ⊆ E ∨F .
We can then obtain a fuzzy model relative to all services of the provider as a
weighted mean of the memberships µG(x) measuring the efficiency of all different
services.

Finally, denoting by f
(s)
x the relative frequency, for the patients attending

the service s, of the realization x, and by µ
(s)
G (x) the relevant membership, we

can measure the efficiency of the provider by means of the “expected value”
(balanced score)

h =
∑

s

gs

∑
x

f (s)
x µ

(s)
G (x) ,

where each gs is a suitable “weight” relative to the service s in the health–care
provider.

In the last Section we give preliminary results concerning an exploratory case
study: we thank dr. Alessandra Campolongo and dr. Alessandro Angeli for their
valuable help in the collection of data.

2 Previous Results

2.1 Fuzzy Sets and Conditional Probability

We refer to the state of information (at a given moment) of a real (or fictitious)
person that will be denoted by “You”. If X is a (not necessarily numerical)
quantity with range CX , let Ax be, for any x ∈ CX , the event {X = x}. The
family {Ax}x∈Cx is obviously a partition of the certain event Ω = CX .
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Now, let ϕX be any property related to the quantity X : from a pragmatic
point of view, it is natural to think that You have some information about
possible values of X , which allows You to refer to a suitable membership function
of the fuzzy subset of “elements of CX with the property ϕX”.

For example, if X is a numerical quantity and ϕX is the property “small”,
for You the membership function µϕ(x) may be put equal to 1 for values x of X
less than a given x1, while it is put equal to 0 for values greater than x2 ; then
it is taken as decreasing from 1 to 0 in the interval from x1 to x2 : this choice
of the membership function implies that, for You, elements of CX less than x1
have the property ϕX , while those greater than x2 do not.

So the real problem is that You are doubtful (and so uncertain) on having or
not the property ϕX those elements of CX between x1 and x2 . Then the interest
is in fact directed toward conditional events such as E|Ax, where x ranges over
the interval from x1 to x2 , with
E={You claim that X has the property ϕX} , Ax={the value of X is x}.

It follows that, while You may assign to each of these conditional events a degree
of belief (subjective probability) P (E|Ax), You must not assign a degree of belief
1−P (E|Ax) to the event E under the assumption Ac

x (the value of X is not x),
since an additivity rule with respect to the conditioning events does not hold. In
other words, it seems sensible to identify the values of the membership function
µϕ(x) with suitable conditional probabilities. In particular, putting

Ho = {X is greater than x2} , H1 = {X is less than x1},
one has that E and Ho are incompatible and that H1 implies E, so that, by the
rules of a conditional probability, P (E|Ho) = 0 and P (E|H1) = 1.

Notice that this conditional probability P (E|Ax) is directly introduced as
a function on the set of conditional events (and without assuming any given
algebraic structure). Is that possible? In the usual (Kolmorogovian) approach
to conditional probability the answer is NO, since the introduction of P (E|Ax)
would require the consideration (and the assessment) of P (E ∧ Ax) and P (Ax)
(assuming positivity of the latter). But this could not be a simple task: in fact
in this context the only sensible procedure is to assign directly P (E|Ax) . For
example, it is possible to assign the (conditional) probability that “You claim
this number is small” knowing its value x, but not necessarily the probability
that “The number has the value x” (not to mention that, for many choices of the
quantity X , the corresponding probability can be equal to zero). These problems
are easily by–passed in our framework.

2.2 Coherent Conditional Probability

Our approach to probability (expounded, e.g., in [3] and [4]: see also the book
[6]) is based on coherence (a concept that goes back to de Finetti [11]). The
starting point is a synthesis of the available information, expressed by one or
more events : to this purpose, the concept of event must be given its more general
meaning, i.e. it must not be looked on just as a possible outcome (a subset of
the so–called “sample space”), but expressed by a proposition. Moreover, events
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play a two–fold role, since we must consider not only those events which are
the direct object of study, but also those which represent the relevant “state of
information”: in fact a “bunch” of conditional events, together with a relevant
“partial” assessment of conditional probability, are the objects that allow to
manage specific (conditional) situations and to update degrees of belief on the
basis of the evidence.

The role of coherence is in fact that of ruling an extension process, starting
from the classic axioms for a conditional probability. Given a set C = G × Bo of
conditional events E|H such that G is a Boolean algebra and B ⊆ G is closed with
respect to (finite) logical sums, and putting Bo = B \ {∅} , then P : C → [0, 1] is
such that

(i) P (H |H) = 1, for every H ∈ Bo ,
(ii) P (·|H) is a (finitely additive) probability on G for any given H ∈ Bo ,
(iii) P

(
(E ∧ A)|H

)
= P (E|H) · P

(
A|(E ∧ H)

)
, for every E, A ∈ G and E,

E ∧H ∈ Bo.
A peculiarity (which entails a large flexibility in the management of any kind

of uncertainty) of this approach to conditional probability is that, due to its
direct assignment as a whole, the knowledge (or the assessment) of the “joint”
and “marginal” unconditional probabilities P (E ∧H) and P (H) is not required;
moreover, the conditioning event H (which must be a possible event) may have
zero probability.

A conditional probability P is defined on G × Bo : however it is possible,
through the concept of coherence, to handle also those situations where we need
to assess P on an arbitrary set of conditional events C = {E1|H1, . . . , En|Hn}.

Definition. The assessment P (·|·) on C is coherent if there exists C′ ⊃ C, with
C′ = G × Bo (G Boolean algebra and B ⊆ G closed with respect to logical sums)
such that P can be extended from C to C′ as a conditional probability.

Concerning coherence, another fundamental result is the following.

Theorem. Let K be any family of conditional events, and take an arbitrary
family C ⊆ K. Let P be an assessment on C; then there exists a (possibly not
unique) coherent extension of P to K if and only if P is coherent on C.

Coherence of conditional assessments can be ruled by a fundamental charac-
terization theorem, which is based on checking the compatibility of a suitable
sequence of linear systems: for the sake of brevity, we avoid here any detail or
deepening, and we just mention that a coherent conditional probability on an
arbitrary family C can be characterized by suitably representing it (in any finite
subset F of C) by means of a class {Pα} of coherent unconditional probabilities
giving rise to the so-called zero-layers (indexed by α ). See, e.g., the book [6],
and for a concrete application – to medical diagnosis – see [5].

Finally, notice that what is usually emphasized in the relevant literature –
when a conditional probability P (E|H) is taken into account – is only the fact
that P (·|H) is a probability for any given H : this is a very restrictive (and mis-
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leading) view of conditional probability, corresponding trivially to just a modifi-
cation of the so-called “sample space” Ω. It is instead essential to regard also the
conditioning event H as a “variable”, i.e. the “status” of H in E|H is not just
that of something representing a given fact , but that of an (uncertain) event
(like E) for which the knowledge of its truth value is not required. In other
words, even if beliefs may come from various sources, they can be treated in the
same way, since the relevant conditioning events (including both statistical data
and also – to use Zadeh’s [18] terminology – perception–based information) can
always be considered as being assumed propositions.

Roughly speaking, looking on a coherent conditional probability – acting as a
membership function – as a general non-additive “uncertainty” measure m(·) =
P (E| ·) of the conditioning events amounts to referring to what in the statistical
jargon is called “likelihood”, with its various “ad hoc” extensions from a point
function to a set function. The problem is that without a clear, precise and
rigorous mathematical frame, the likelihood “per se” is not a proper tool to deal
with statistical inference and to manage partial and vague information (these
aspects are discussed more deeply in [8]).

2.3 Similarity

For a deepening of our approach to fuzzy sets and for other relevant formal
definitions, see [7], where we show not only how to define fuzzy subsets, but we
also introduce in a very natural way the counterparts of the basic continuous T -
norms and the corresponding dual T -conorms, bound to the former by coherence.

In the sequel, a fuzzy subset of CX (relative to the property ϕ) will be iden-
tified with its membership function µϕ(x) = P (E|Ax) and denoted by E∗

ϕ.
We recall now the following definition of similarity, taken from [2], where the

term “resemblance” is used. For more details, see [17].
Let F(CX) be the family of fuzzy subsets E∗

π of CX . A similarity S is a
mapping

S : F(CX)×F(CX) −→ [0, 1]

such that
1. (Symmetry) S(E∗

ϕ, E
∗
ψ) = S(E∗

ψ, E
∗
ϕ);

2. (Reflexivity) S(E∗
ϕ, E

∗
ϕ) = 1.

Proposition ([17]). Given any two fuzzy subsets E∗
ϕ and E∗

ψ of CX , with

µϕ(·) = P (Eϕ|·) , µψ(·) = P (Eψ |·) ,

let P (Eϕ ∧Eψ|Ax) be a relevant coherent assessment. Then any coherent exten-
sion of P (·|·) to the conditional event (Eϕ ∧ Eψ)|(Eϕ ∨Eψ) is a similarity.

The existence of such a function is warranted by the fundamental extension
Theorem recalled in Section 2.2. The semantic behind this choice is the following:
the more two fuzzy subsets are considered to be similar, the more if You claim
at least one of the two corresponding properties You are willing to claim both
properties.
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How to compute S(E∗
ϕ, E

∗
ψ)? Given µϕ(·) = P (Eϕ|·) and µψ(·) = P (Eψ|·),

the membership functions µϕ∪ψ(·) and µϕ∩ψ(·) of the fuzzy sets (E∗
ψ ∪E∗

ϕ) and
(E∗

ψ ∩ E∗
ϕ) (corresponding to a T –conorm and a dual T –norm, see [7]) arise as

coherent extensions of the assessment P given on {Eψ|Ax , Eϕ|Ax : Ax ∈ CX} .
Then, given a conditional probability P (·|·) on AX ×Ao

X (which gives rise to
a class {Pα} of coherent unconditional probabilities, see Section 2.2), we have
(for simplicity we refer to a finite CX)

S(E∗
ϕ, E

∗
ψ) =

∑
x µϕ∩ψ(x)λα(x)∑
x µϕ∪ψ(x)λα(x)

(1)

where λα(x) = Pα(Ax), with α the zero-layer of the event Eψ ∨ Eϕ.
Notice that (contrary to what happens in the classic fuzzy framework) this

approach to similarity is able to take into account – through the probability
values λα(x) – possible different “weights” of the values x.

In [17] it is shown how some classic similarity functions (the most used in
applications and proposed in the relevant literature) are related to the above
formula involving conditional probability.

Given a T –norm, the T –transitivity property for a similarity S reads as
follows:

S(E∗
ϕ, E

∗
ψ) ≥ T (S(E∗

ϕ, E
∗
ν ), S(E∗

ν , E
∗
ψ)),

for any E∗
ϕ, E

∗
ψ, E

∗
ν ∈ L(CX). The similarity S does not generally satisfy the

T-transitivity property for some suitable T-norm, for example for T = min.
However, the similarity S given by (1) satisfies the T-transitivity property for

T=TL (�Lukasiewicz T-norm), i.e.

S(E∗
ϕ, E

∗
ψ) ≥ max{0 , S(E∗

ϕ, E
∗
ν ) + S(E∗

ν , E
∗
ψ)− 1}

for any E∗
ϕ,E∗

ψ,E∗
ν ∈ L(CX), as proved in [17].

Concerning transitivity a relevant reference is [9].

3 Measuring the Quality of Health–Care Services

Judgments about the present or future quality of health-care services are usually
made on the basis of observations about the performance of providers. As far
as we know, in the relevant literature there seems to be lack of consensus about
the way of measuring the quality of services, and how such an important notion
should be meaningfully formalized. We cite here only a few papers, such as [1],
[12], [13], [14], [15], [16].

We start by pointing out that we refer to an health–care organization that has
a governing body, an organized medical staff, a professional staff and inpatient
facilities, and provides medical, nursing, and related services for ill and injured
patients 24 hours per day, seven days per week.

Let us consider a vector X = (X1, X2, . . . , Xk) relative to the performance
of a specific service of a health–care provider. For example, referring to the



Measuring the Quality of Health-Care Services 859

treatment of stroke in a neuroscience department and using the notation in-
troduced in Section 1, as key indicators (with respect to a given period) of
the efficiency of this department we may single–out, e.g., X1 =“number of pa-
tients rehabilitated”, X2 =“number of patients treated with platelet inhibitor”,
X3 =“average duration of stay”, X4 =“number of patients treated with antico-
agulants”, X5 =“number of patients dead within 30 days”,..., and so on.

We denote by x a possible realization of the vector X . Clearly, x belongs to
a subset C of the cartesian product of the ranges of X1, X2, . . . , Xk.

To construct a membership function relative to the efficiency of a given service
we may, for each possible – observed or assumed – x , ask the members of the
medical staff how much they are willing to claim the service efficient, given the
value x. Considering the event E = “a doctor claims efficient the service”, the
membership function µE(x) is assigned by taking it equal to the probability of
the conditional event E|{X = x}, and this probability is assessed through the
procedure explained in the Introduction.

The same procedure can be applied to the patients to find the analogous
membership function µF (x), so that

µE(x) = P
(
E|{X = x}

)
, x ∈ C (2)

µF (x) = P
(
F |{X = x}

)
, x ∈ C . (3)

Once the two membership functions µE(x) and µF (x) are assessed, we pro-
ceed with a suitable “aggregation” to measure the overall (with respect to both
doctors and patients) efficiency of the service.

What do we mean by “suitable”? Of course, it involves the policy of the
hospital (for some services it can be more important the point of view of doctors
than that of patients, for others the situation can be opposite).

In other words, we should consider an event G such that

E ∧ F ⊆ G ⊆ E ∨ F.

It could be interpreted as “something in between” with respect to either a com-
plete agreement in the judgments of (the “average”) doctor and patient (this
situation corresponds to the intersection E ∧ F ), or a situation (corresponding
to the union E ∨ F ) in which at least one of them (possibly both) claims the
efficiency of the relevant service. Our interpretation of this event should corre-
spond to a “fair referee” (or expert) that, being aware of what doctor and patient
claim, has a “calibrated” opinion. In particular, when both doctor and patient
claim the efficiency of the service, the expert does so as well, while if he claims
its efficiency, it means that either doctor or patient (possibly both) agree with
this claim.

So the real problem is to assess coherently the probability (conditional to
{X = x}) of the event G representing the aggregation, i.e. a syntactic one. Put

P (E|{X = x}) = e , P (F |{X = x}) = f ; (4)
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then it can be easily proved that coherent assessments of the probabilities P (V )
and P (U), with V = (E ∧ F )|{X = x} and U = (E ∨ F )|{X = x}, must satisfy
the following inequalities

max{e + f − 1, 0} ≤ P (V ) ≤ min{e, f} ,

max{e, f} ≤ P (U) ≤ min{e + f, 1} .

Then, coherence entails

max{e + f − 1, 0} ≤ P (G|{X = x}) ≤ min{e + f, 1} .

For simplicity and taking into account the above discussion we can assess

P (G|{X = x}) = γµE(x) + (1− γ)µF (x) (5)

with γ ∈ [0, 1]. This amounts to introducing the “aggregated” membership func-
tion µG(x) = P (G|{X = x}) as a convex combination. By solving a relevant
linear system (as recalled in Section 2), it can be proved that the assessment
(5) is coherent, i.e. it is a coherent extension of the two initial assessments –
relative to doctors and patients – of the conditional probabilities P (E|{X = x})
and P (F |{X = x}).

Denoting by fx the relative frequency of the realization x , we can measure
the efficiency Es of the service s by the formula

Es =
∑

x

fxµG(x) =
∑

x

P (X = x)P (G|{X = x}) ; (6)

notice that it represents the probability of the “fuzzy event” G.
Finally, the efficiency of the health–care provider can be computed by means

of the balanced score, as explained in the final part of the Introduction. Here
again, as in the case of choosing the weights (for each given service) relative to
doctors or patients, the choice of each gs relative to the different services depends
on the specific situations concerning the given provider.

4 An Exploratory Case Study: Preliminary Results

Our preliminary study refers to an exploratory design involving both “norma-
tive” and “descriptive” aspects. First of all, we realized that doctors and patients
were quite reluctant to give a numerical estimate of the degree of efficiency (of
a given service, and assuming a value x of the key indicators’ vector). It is more
natural for them to face direct questions requiring “crisp” answers about both
efficiency (that may depend, for example, on the importance given to a com-
ponent of the vector x) and inefficiency (giving more importance, possibly, to
another component of x). In fact, the second question concerning inefficiency
has been posed to “measure” (in a sense) the reliability of the first answer con-
cerning efficiency. So the descriptive aspects (the real behavior of interviewed
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persons in front of a questionnaire) do not seem to conflict with the normative
rule that a fuzzy concept and its negation are not complementary.

Then, for a given service and for each interviewed person we have four possible
answer concerning the pair

(efficient, inefficient),
that is: (YES, NO), (YES, YES), (NO, NO), (NO, YES). We interpret the first
and the last answer as representing, respectively, the maximum degree (equal to
1) or the minimum degree (equal to 0) of efficiency. On the other hand, for the
two pairs (YES, YES) and (NO, NO) we can choose either to assign a degree 1/2
to both answers, or (giving different “weights” to positive or negative answer)
to assign a degree 3/4 to (YES, YES) and a degree 1/4 to (NO, NO).

Our data have been collected in the department of neurology of the hospital
“Fatebenefratelli” in Rome. The results of the evaluations of doctors’ and pa-
tients’ memberships µE(x) and µF (x), with reference to four services denoted
by A, B – two kinds of ENG (electroneurography) – and C, D – two kinds of
EMG (electromyography) – are reported in Table 1 and 2, respectively for the
choice interpreted as

Table 1. Case (i)

Doctor’s Membership µE(x) Patient’s Membership µF (x)

Ax = tw × ts A B C D A B C D

[0, 15] × [0, 10] 0.9286 0.5714 0.8750 0.7500 0.6842 0.8611 0.7778 0.8684

[15, 30] × [0, 10] 0.7857 0.7143 0.8125 1.0000 0.6579 0.6944 0.6667 0.4737

[30, 60] × [0, 10] 0.7143 0.6429 0.5625 0.6667 0.2368 0.2500 0.1667 0.3421

[60, 120] × [0, 10] 0.2143 0.0714 0.4375 0.3333 0.2632 0.3333 0.2778 0.3684

[> 120] × [0, 10] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[0, 15] × [10, 15] 0.7857 0.5714 0.7500 0.6667 0.8684 0.8333 0.8333 0.9474

[15, 30] × [10, 15] 0.7857 0.8571 0.7500 0.9167 0.7632 0.8333 0.7500 0.8158

[30, 60] × [10, 15] 0.3571 0.2857 0.3125 0.4167 0.6579 0.6389 0.6111 0.5263

[60, 120] × [10, 15] 0.2143 0.2143 0.3125 0.4167 0.6579 0.5833 0.5000 0.5526

[> 120] × [10, 15] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[0, 15] × [15, 20] 0.5000 0.4286 0.6875 0.6667 0.8158 0.8611 0.7778 0.9211

[15, 30] × [15, 20] 0.5714 0.6429 0.8125 0.8333 0.8158 0.8333 0.8824 0.9474

[30, 60] × [15, 20] 0.3571 0.4286 0.5000 0.4167 0.4474 0.4444 0.4167 0.3947

[60, 120] × [15, 20] 0.0000 0.0000 0.1250 0.1667 0.2895 0.3889 0.3611 0.3158

[> 120] × [15, 20] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[0, 15] × [20, 30] 0.5000 0.4286 0.6875 0.6667 0.7368 0.8889 0.7500 0.7632

[15, 30] × [20, 30] 0.4286 0.5000 0.8125 0.6667 0.5000 0.8611 0.6111 0.8421

[30, 60] × [20, 30] 0.3571 0.3571 0.4375 0.3333 0.3421 0.5833 0.4722 0.3947

[60, 120] × [20, 30] 0.1429 0.1429 0.3750 0.2500 0.2632 0.2778 0.3056 0.1842

[> 120] × [20, 30] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[0, 15] × [> 30] 0.3571 0.4286 0.4375 0.5000 0.8158 0.6667 0.5556 0.7368

[15, 30] × [> 30] 0.3571 0.4286 0.3125 0.5000 0.6579 0.6111 0.5000 0.6053

[30, 60] × [> 30] 0.2143 0.2857 0.5000 0.4167 0.3421 0.3333 0.3333 0.2632

[60, 120] × [> 30] 0.0000 0.2857 0.0625 0.0000 0.2105 0.1667 0.2778 0.3158

[> 120] × [> 30] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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(i) “degree 1/2 for both (YES, YES) and (NO, NO)”

or the choice interpreted as

(ii) “degree 3/4 for (YES, YES) and degree 1/4 for (NO, NO)”.

As key indicators we have taken tw (waiting time before the coverage of the ser-
vice) and ts (duration of the service). The corresponding notation (first column
in each table) to single–out the pair (tw, ts) is of the kind [a, b]× [c, d].

In Table 3 we report the empirical probability distribution (which is not
necessarily uniform, as in the classic fuzzy approach) of the events Ax (two–
dimensional vectors whose components are tw and ts). This distribution is ob-
tained as the observed frequency of the aforementioned pairs.

The values of the probabilities of the Ax’s are necessary to compute similarity
between µE(x) and µF (x), according to formula (1), Section 2.3: the properties ϕ
and ψ correspond to the efficiency claimed, respectively, by doctors and patients,
and as norm and conorm we choose, respectively, the classic min and max; notice
that zero–layers here are not involved, since the event Eψ ∨ Eϕ has positive

Table 2. Case (ii)

Doctor’s Membership µE(x) Patient’s Membership µF (x)

Ax = tw × ts A B C D A B C D

[0, 15] × [0, 10] 0.8929 0.5714 0.8750 0.7083 0.7632 0.8472 0.8333 0.8816

[15, 30] × [0, 10] 0.8214 0.7857 0.7813 1.0000 0.5921 0.6528 0.5833 0.3947

[30, 60] × [0, 10] 0.6429 0.6071 0.5938 0.7500 0.2500 0.2083 0.1389 0.2763

[60, 120] × [0, 10] 0.1786 0.1071 0.4688 0.3333 0.2368 0.2500 0.1944 0.3158

[> 120] × [0, 10] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[0, 15] × [10, 15] 0.7500 0.5714 0.7500 0.6667 0.8816 0.8333 0.8889 0.9737

[15, 30] × [10, 15] 0.8214 0.9286 0.8125 0.9583 0.7763 0.8056 0.7639 0.8026

[30, 60] × [10, 15] 0.4643 0.3571 0.3438 0.5417 0.6184 0.5417 0.5833 0.4211

[60, 120] × [10, 15] 0.3214 0.2500 0.4063 0.5417 0.6974 0.5694 0.5278 0.5395

[> 120] × [10, 15] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[0, 15] × [15, 20] 0.6071 0.5714 0.7813 0.6667 0.7763 0.8194 0.8056 0.9079

[15, 30] × [15, 20] 0.7143 0.7500 0.8438 0.9167 0.8289 0.8611 0.9412 0.9474

[30, 60] × [15, 20] 0.5357 0.5000 0.5625 0.5417 0.3816 0.3889 0.3472 0.3026

[60, 120] × [15, 20] 0.0000 0.0000 0.1250 0.1667 0.2500 0.3611 0.2917 0.2632

[> 120] × [15, 20] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[0, 15] × [20, 30] 0.6071 0.5714 0.7813 0.6667 0.7368 0.8611 0.7639 0.7237

[15, 30] × [20, 30] 0.5000 0.6071 0.7813 0.7500 0.4605 0.8472 0.6389 0.7895

[30, 60] × [20, 30] 0.4643 0.3929 0.4063 0.3333 0.2763 0.4583 0.4028 0.3026

[60, 120] × [20, 30] 0.1429 0.1429 0.3125 0.2083 0.2632 0.2222 0.2639 0.1711

[> 120] × [20, 30] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[0, 15] × [> 30] 0.3214 0.5000 0.5313 0.5833 0.7500 0.5833 0.5000 0.6842

[15, 30] × [> 30] 0.4643 0.5000 0.3438 0.5000 0.5921 0.5278 0.4444 0.5658

[30, 60] × [> 30] 0.2500 0.3571 0.4375 0.5417 0.3026 0.2778 0.2222 0.1842

[60, 120] × [> 30] 0.0000 0.2857 0.0313 0.0000 0.1579 0.1389 0.2222 0.2368

[> 120] × [> 30] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 3. Distribution of P (Ax)

Ax = tw × ts A B C D

[0, 15] × [0, 10] 0.2000 0.1481 0.1667 0.1111

[15, 30] × [0, 10] 0.0000 0.0000 0.0000 0.0370

[30, 60] × [0, 10] 0.4000 0.5556 0.1667 0.0370

[60, 120] × [0, 10] 0.2000 0.0741 0.4583 0.4815

[> 120] × [0, 10] 0.0800 0.0741 0.0000 0.0370

[0, 15] × [10, 15] 0.0000 0.0000 0.0417 0.0370

[15, 30] × [10, 15] 0.0000 0.0000 0.0000 0.0370

[30, 60] × [10, 15] 0.0400 0.1111 0.0000 0.0370

[60, 120] × [10, 15] 0.0400 0.0370 0.0417 0.0741

[> 120] × [10, 15] 0.0000 0.0000 0.0000 0.0370

[0, 15] × [15, 20] 0.0000 0.0000 0.0417 0.0000

[15, 30] × [15, 20] 0.0000 0.0000 0.0000 0.0000

[30, 60] × [15, 20] 0.0000 0.0000 0.0000 0.0370

[60, 120] × [15, 20] 0.0400 0.0000 0.0833 0.0370

[> 120] × [15, 20] 0.0000 0.0000 0.0000 0.0000

[0, 15] × [20, 30] 0.0000 0.0000 0.0000 0.0000

[> 15] × [> 20] 0.0000 0.0000 0.0000 0.0000

Table 4. Similarity

A B C D

Case (i) 0.5053 1.0000 0.7425 0.7974

Case (ii) 0.6385 0.4706 0.6226 0.8114

probability. The four values of the similarity S(E∗
ϕ, F

∗
ψ) for the cases (i) and (ii)

are reported in Table 4. Notice that all the values are greater than 0.47 and that
the greatest similarity (“on the average”) is that of case (i): so from now on (due
also to lack of space) we will consider only the case (i).

Similarity between pairs of services A, B, C, D can be considered to show
that min-transitivity (as recalled at the end of Section 2) does not hold. A
simple computation based on formula (1) gives, e.g.,

S(B,C) = 0.6952 , S(C,D) = 0.7681

(with an obvious meaning of the symbols), while S(B,D) = 0.5191, so that

S(B,D) < min{S(B,C) , S(C,D)} .

Finally, according to the number of doctors and patients involved, we can
evaluate “calibrated” memberships µG(x), for the four services, by choosing the
coefficient γ appearing in formula (5) equal, for example, to 1/5 (of course, differ-
ent values could be obtained by different choices of the coefficient γ – depending
on possible different judgments concerning the relevance of the opinions of doc-
tors and patients, besides the trivial aspect concerning their numbers – but we
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do not deem it useful to broaden our discussion on this). These values of µG(x)
are inserted into formula (6), so we get an evaluation of the efficiency of the four
services, that is

EA = 0.6465 , EB = 0.6904 , EC = 0.7151 , ED = 0.6805 .
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Abstract. We propose a method which, given a document to be clas-
sified, automatically generates an ordered set of appropriate descriptors
extracted from a thesaurus. The method creates a Bayesian network to
model the thesaurus and uses probabilistic inference to select the set of
descriptors having high posterior probability of being relevant given the
available evidence (the document to be classified). We apply the method
to the classification of parliamentary initiatives in the regional Parlia-
ment of Andalucía at Spain from the Eurovoc thesaurus.

1 Introduction

To improve organizational aspects and facilitate fast access to relevant informa-
tion relative to a particular subject, document collections from many organiza-
tions are classified according to their content using a set of descriptors extracted
from some kind of controlled vocabulary or thesaurus. For example, most of the
parliaments in Europe use a thesaurus called Eurovoc to classify parliamentary
initiatives, the Food and Agricultural Organization (FAO) employs Agrovoc to
categorize its documents, and the National Library of Medicine (NLM) uses
MeSH to index articles from biomedical journals. The process of assigning de-
scriptors in the thesaurus to the documents is almost always carried out manually
by a team of expert documentalists. The objective of this work is the develop-
ment of a computerized tool to assist the human experts in this process.

So, the scope of the paper is automatic subject indexing from a controlled
vocabulary [6,10] and hierarchical text classification [11,14]. However, given the
critical nature of this task in many contexts, it is not realistic to try to design
a completely automatic classification process, and final human supervision will
always be required.

An important characteristic of the model that we are going to propose is that
no training is required. We shall exploit only the hierarchical and equivalence
relationships among the descriptors in the thesaurus. This is an advantage be-
cause the model may be used with almost any thesaurus and without having
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preclassified documents (in a large hierarchy, the amount of preclassified doc-
ument necessary for training may be huge). On the other hand, this is also a
weakness because any kind of information not considered in the thesaurus (e.g.
other synonymy relations, specific information handled by documentalists,...)
will not be taken into account. Consequently, we cannot expect very high rates
of success in comparison with classifiers that are built starting from training data
[3,5,9,13]. In this sense our proposal is more similar to the work in [1,2], where
a method to populate an initially empty taxonomy is proposed. The working
hypothesis is that a documentalist would prefer to confirm or discard a given
classification hypothesis proposed by the system rather than examining all the
possible alternatives.

Another important characteristic of our model is that is based on Bayesian
networks. To the best of our knowledge, no Bayesian network-based models other
than naive Bayes have been proposed to deal with this kind of problems [7]. We
create a Bayesian network to model the hierarchical and equivalence relationships
in the thesaurus. Then, given a document to classify, its terms are instantiated
in the network and a probabilistic inference algorithm computes the posterior
probabilities of the descriptors in the thesaurus.

In Section 2 we describe the proposed Bayesian network model of a thesaurus.
The experimental evaluation is explained in Section 3. Finally, Section 4 contains
the final remarks and some proposals for future work.

2 The Bayesian Network Model of a Thesaurus

In this section we shall first describe the general structure of a thesaurus and
next the basic Bayesian network model that we propose to represent it, including
the graphical structure, the conditional probabilities, the inference mechanism
and some implementation details, and later a possible improvement. We assume
that the reader has at least a basic background on Bayesian networks [12].

2.1 Thesaurus Structure

Any thesaurus comprises descriptors or indexing terms, non-descriptors or en-
try terms and semantic relationships, which may be equivalence, hierarchical
and associative relationships. Descriptors are words or expressions which de-
note in unambiguous fashion the constituent concepts of the field covered by the
thesaurus, whereas non-descriptors are words or expressions which in natural
language denote the same or a more or less equivalent concept as a descriptor
in the language of the thesaurus.

The equivalence relationship between descriptors and non-descriptors in fact
covers relationships of several types: genuine synonymy, near-synonymy, anto-
nymy and inclusion, when a descriptor embraces one or more specific concepts
which are given the status of non-descriptors because they are not often used. It
is usually represented by the abbreviations “UF” (Used For), between the descrip-
tor and the non-descriptor(s) it represents, and “USE” between a non-descriptor
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and the descriptor which takes its place. The hierarchical relationship between
descriptors is shown by the abbreviations: “NT” (Narrower Term) between a
generic descriptor and a more specific descriptor, and “BT” (Broader Term) be-
tween a specific descriptor and a more generic descriptor. Descriptors which do
not contain other more specific descriptors are called basic descriptors; otherwise
they are called complex descriptors. Descriptors which are not contained in any
other broader descriptors are top descriptors. Sometimes a few descriptors may
be polyhierarchical (they have more than one broader descriptor). This means
that the hierarchical relationships do not form a tree but a graph. The associa-
tive relationship, shown by the abbreviation “RT” (Related Term), relates two
descriptors that do not meet the criteria for an equivalence nor a hierarchical
relationship. It is used to suggest another descriptor that would be helpful for
the thesaurus user to search by. In this work we shall not consider associative
relationships.

Example. Eurovoc is a multilingual thesaurus covering the fields in which the
European Communities are active. Figure 1 displays the BT relationships be-
tween some descriptors of Eurovoc and the USE relationships between the non-
descriptors and these descriptors. There are two complex descriptors, abortion
and birth control, and four basic descriptors, illegal abortion, therapeutic abor-
tion, contraception and sterilisation. The associated non-descriptors are: legal
abortion, termination of pregnancy and voluntary termination of pregnancy for
abortion; birth spacing for birth control; and tubal ligation and vasectomy for
sterilisation.

D:abortion
D:sterilisationND:vasectomy termination of

pregnancy

ND:voluntary ND:termination
abortion

ND:legal
D:contraception ND:tubal

    ligation of pregnancy
ND:birth

spacing
D:birth
control

D:therapeutic
abortion

D:illegal
abortion

Fig. 1. BT (bold lines) and USE (normal lines) relationships for the descriptors and
non-descriptors in the example about abortion

2.2 Basic Network Structure

In order to develop a Bayesian network (BN) for modeling a thesaurus, a naive
approach would be to use a type of representation as the one in Fig. 1, contain-
ing descriptor and non-descriptor nodes, then adding term nodes representing
the words in the thesaurus and connecting them with the descriptor and non-
descriptor nodes that contain these words. This would result in a network struc-
ture as the one displayed in Fig. 2. The problem with this type of topology is that
each descriptor node receives two or three kinds of arcs with different meaning
(those from its non-descriptor nodes and those from its term nodes in the case of
basic descriptor nodes and, for the case of complex descriptor nodes, also those
arcs from the narrower descriptor nodes that they contain). As this would make
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much more difficult the process of assigning the associated conditional proba-
bility distributions to the nodes, we propose a different topology. The idea is to
distinguish between a concept and the descriptor and non-descriptors used to
represent it.

Each concept, labeled identically as the descriptor representing it, will be
a node in the network. We shall also distinguish between basic and complex
concepts: the former do not contain other concepts, whereas the later are com-
posed of other concepts (either basic or complex). Each descriptor and each
non-descriptor in the thesaurus will also be nodes in the network. All the words
or terms appearing in either a descriptor or a non-descriptor will be term nodes.

D:abortion
D:sterilisationND:vasectomy termination of

pregnancy

ND:voluntary ND:termination
abortion

ND:legal
D:contraception ND:tubal

    ligation of pregnancy
ND:birth

spacing
D:birth
control

D:therapeutic
abortion

D:illegal
abortion

contraception     ligationtubalvasectomy sterilisation voluntary termination spacingbirthcontroltherapeuticillegalabortionlegalpregnancy

Fig. 2. Preliminary Bayesian network in the example about abortion

There is an arc from each term node to each descriptor and/or non-descriptor
node containing it. There are also arcs from each non-descriptor node to the asso-
ciated concept node (these arcs correspond with the USE relationships), as well
as from the descriptor node representing the concept to the concept node itself.

As the complex concepts, in addition to its own specific information (descrip-
tors and non-descriptors), are also containers of other concepts, for each complex
concept we shall also create a duplicate (virtual) descriptor node which will re-
ceive the influence of the concepts contained in the complex concept. Therefore,
there is an arc from each concept node which is not associated with a top descrip-
tor to the virtual descriptor node associated with the broader complex concept(s)
containing it (these arcs correspond with the BT relationships), as well as an arc
going from each virtual descriptor node to its corresponding complex concept
node.

We shall denote T the set of term nodes, DE and ND the sets of descriptor
and non-descriptor nodes, respectively, C the set of concept nodes and V the
set of virtual descriptor nodes. All the nodes will represent binary random vari-
ables. The domain of each variable is: {t+, t−} ∀T ∈ T ; {de+, de−} ∀DE ∈ DE ;
{nd+, nd−} ∀ND ∈ ND; {c+, c−} ∀C ∈ C; {v+, v−} ∀V ∈ V . For term nodes,
their values indicate whether the term appear in the document to be classified.
For descriptor and non-descriptor nodes, the values represent whether the cor-
responding descriptor or non-descriptor may be associated with the document.
For concept nodes the values mean whether the concept is appropriate/relevant
to classify the document. Pa(X) will represent the parent set of a node X in the
graph. The network topology that we are proposing is completely determined
by specifying the parent set of each node: for each term node T ∈ T , Pa(T )
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is the empty set; for each descriptor and non-descriptor node DE ∈ DE and
ND ∈ ND, Pa(DE) and Pa(ND) are in both cases the set of term nodes asso-
ciated with the words that appear in DE and ND, respectively; for each concept
node C ∈ C, Pa(C) is the set of descriptor and non-descriptor nodes that define
the concept and, in the case of complex concept nodes, also its associated virtual
descriptor node, VC ; finally, for each virtual descriptor node V ∈ V , Pa(V ) is the
set of concept nodes (either basic or complex) contained in the corresponding
complex concept.

For the previous example the corresponding subnetwork is shown in Fig. 3.
The nodes labeled with D and ND are descriptor and non-descriptor nodes,
respectively. The nodes labeled with C are concept nodes and those labeled with
V are virtual descriptor nodes. The remaining nodes are term nodes.

D:abortion
D:sterilisationND:vasectomy termination of

pregnancy

ND:voluntary ND:termination
abortion

ND:legal
D:contraception ND:tubal

    ligation of pregnancy
ND:birth

spacing
D:birth
control

D:therapeutic
abortion

D:illegal
abortion

contraception     ligationtubalvasectomy sterilisation voluntary termination spacingbirthcontroltherapeuticillegalabortionlegalpregnancy

C:abortion

V:abortion

C:therapeutic
abortion

C:illegal
abortion

control
C:birth

V:birth
control

C:sterilisationC:contraception

Fig. 3. Bayesian network in the example about abortion

2.3 Types of Conditional Probability Distributions

The probability distributions that must be specified are the prior probabilities
for term nodes, p(t+), and the following conditional probabilities: for descriptor
and non-descriptor nodes, p(de+|pa(DE)) and p(nd+|pa(ND)) respectively, for
concept nodes, p(c+|pa(C)), and for virtual descriptor nodes, p(v+|pa(V )). In all
the cases pa(X) represents a configuration of the parent set Pa(X) of the node X .

For the prior probabilities of term nodes we propose using a constant value,
p(t+) = p0, ∀T ∈ T (although we shall see later that this is not an important
issue at all).

As the treatment of the descriptor and non-descriptor nodes will the same, in
order to simplify the exposition, from now on we will denote D = DE ∪ND and
we will refer to both descriptor and non-descriptor nodes as descriptor nodes.
An element in D will be denoted as D. For the conditional probabilities of a
descriptor node D given the terms that it contains, p(d+|pa(D)), we propose
using a canonical additive model [4], employed in the information retrieval field:

∀D ∈ D, p(d+|pa(D)) =
∑

T∈R(pa(D))

w(T,D) , (1)
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where w(T,D) is the weight associated to each term T belonging to the de-
scriptor D. R(pa(D)) is the subset of parents of D which are observed in the
configuration pa(D), i.e., R(pa(D)) = {T ∈ Pa(D) | t+ ∈ pa(D)}. So, the more
parents of D are observed the greater its probability of relevance. These weights
can be defined in any way, the only restrictions are that w(T,D) ≥ 0 and∑

T∈Pa(D) w(T,D) ≤ 1.
For the conditional probabilities of each concept node C given the descriptor

nodes that define the concept and its virtual descriptor node (in the case of
complex concept nodes), p(c+|pa(C)), it is not appropriate to use the previous
additive model, because each descriptor alone is supposed to be able to represent
the concept, and this behaviour cannot be obtained using an additive model. So,
we propose to use another kind of canonical model, namely an OR gate [12]:

∀C ∈ C, p(c+|pa(C)) = 1−
∏

D∈R(pa(C))

(1− w(D,C)) . (2)

R(pa(C)) = {D ∈ Pa(C) | d+ ∈ pa(C)} and w(D,C) is the probability that the
descriptor D alone (the other descriptors being non relevant) makes concept C
relevant, with 0 ≤ w(D,C) ≤ 1.

For the conditional probabilities of each virtual descriptor node V given the
concept nodes it comprises, p(v+|pa(V )), we can use again the previous additive
canonical model, because the more relevant are all the concepts contained in
the complex concept associated to V , the more clearly this broader concept is
appropriate:

∀V ∈ V , p(v+|pa(V )) =
∑

C∈R(pa(V ))

w(C,V ) . (3)

R(pa(V )) = {C ∈ Pa(V ) | c+ ∈ pa(V )} and w(C,V ) is the weight of the concept
C in V , with w(C,V ) ≥ 0 and

∑
C∈Pa(V ) w(C,V ) ≤ 1.

2.4 Quantifying the Conditional Probabilities

To define the weight of a term in a descriptor, w(T,D), we propose a normalized
tf-idf scheme:

w(T,D) =
tf(T,D) ∗ idf(T )∑

T ′∈Pa(D) tf(T ′, D) ∗ idf(T ′)
.

The inverse descriptor frequency of a term, idf(T ), is

idf(T ) = ln
(

m

n(T )

)
,

where n(T ) is the number of descriptors and non-descriptors in the thesaurus
that contain the term T and m is the total number of descriptors and non-
descriptors. The term frequency of a term in a descriptor, tf(T,D), is the number
of times that this term appears in the descriptor (which will be almost always
equal to 1, because the descriptors usually contain very few words).
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For the weights of the descriptors in the concepts, w(D,C), a reasonable choice
is a value near 1.0, because any descriptor associated with a concept represents it
perfectly (descriptors and non-descriptors associated with a concept are assumed
to be synonymous in the language of the thesaurus). In the experiments we have
used w(D,C) = 0.9, in order to discriminate between concepts having a different
number of descriptors that match with the document to be classified.

Finally, for the weights of the component concepts in each virtual descriptor,
w(C,V ), we propose to use uniform weights (there is no reason to believe that a
concept is more important than another one with respect to the broader concept
containing them). Therefore:

w(C,V ) =
1

|Pa(V )| .

2.5 Inference

Given a document Q to be classified/indexed, the process is first to instantiate
in the network the term nodes corresponding to the words appearing in Q as
observed and the remaining term nodes as not observed. Let q be such a config-
uration of the term nodes in T . Then we propagate this information through the
network and compute the posterior probabilities of the concept nodes, p(c+|q).
Finally, the descriptors associated with the concept nodes having greater poste-
rior probability are used to classify the document.

To compute the posterior probabilities of the concept nodes, we can take ad-
vantage of both the network topology and the canonical models being considered.
As all the term nodes are instantiated to either observed or non-observed, then
all the descriptor nodes which are parents of a concept (including the associated
virtual descriptor if it exists) are conditionally independent given q. In this case,
taking into account that the canonical model for the concept nodes is an OR
gate, we can compute these probabilities as follows [12]:

p(c+|q) = 1−
∏

D∈Pa(C)

(
1− w(D,C)p(d+|q)

)
.

As the weights w(D,C) are all equal to 0.9, we have:

p(c+|q) = 1−
∏

D∈Pa(C)

(
1− 0.9p(d+|q)

)
. (4)

The probabilities of the (non virtual) descriptor nodes can be calculated,
according to the additive model being used, as follows [4]:

p(d+|q) =
∑

T∈Pa(D)

w(T,D)p(t+|q) .

As p(t+|q) = 1 ∀T ∈ Pa(D) ∩Q and p(t+|q) = 0 ∀T ∈ Pa(D) \Q, we obtain:

p(d+|q) =
∑

T∈Pa(D)∩Q

w(T,D) . (5)
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The computation of the posterior probabilities of the virtual descriptor nodes
is also very simple, using again the properties of the additive canonical model
considered:

p(v+|q) =
1

|Pa(V )|
∑

C∈Pa(V )

p(c+|q) . (6)

This computation can be carried out as soon as the posterior probabilities of all
the concept nodes included in V are known.

Therefore, we compute first the posterior probabilities of all the descriptor
nodes using (5), then the posterior probabilities of the basic concept nodes
(which have no virtual descriptor) using (4). Next, we can compute in a top-
down manner the posterior probabilities of the virtual descriptor nodes and the
complex concept nodes using (6) and (4), respectively.

2.6 Implementing the Model

In this section we shall study in more detail how to implement in an efficient
way the proposed model. We start from the term nodes associated with the
words appearing in the document to be classified. For each one of them, we
accumulate the weights of these term nodes in the descriptor nodes contain-
ing them. After this process, each visited descriptor node D contains the value
v[D] =

∑
T∈Pa(D)∩Q w(T,D), i.e. p(d+|q), according to (5) (the posterior prob-

ability of the non visited descriptor nodes is equal to zero).
Next, starting from each of the visited descriptor nodes, we visit the concept

node containing it and compute the product
∏

D∈Pa(C) (1− 0.9v[D]) progres-
sively. After this step each visited basic concept node contains, according to (4),
the value v[C] = 1− p(c+|q) (the non visited basic concept nodes have a poste-
rior probability equal to zero) and each visited complex concept node contains
the value v[C] = (1 − p(c+|q))/(1 − 0.9p(v+

c |q)), because the contribution of its
virtual descriptor node has not been computed yet.

Finally, we traverse the subgraph induced by the set of visited concept nodes
and their descendants in a topological ordering (parents before children). If the
visited node is a basic concept node C, we directly compute p(c+|q) (by set-
ting v[C] = 1 − v[C]). If the visited node is a virtual node V , we compute its
probability by adding the values already computed for its parent concept nodes
and dividing by the number of parents, according to (6). If the visited node is a
complex concept node C, we compute its probability by subtracting from 1 the
value obtained by multiplying its stored value and the value already computed
for its associated virtual node, v[C] = 1 − v[C](1 − 0.9v[VC ]). It can be easily
seen that the complexity of this process is linear in the number of arcs in the
graph1. It is worth mentioning that the actual implementation manages the BN
implicitly, i.e. the Bayesian network is never explicitly constructed; instead, we
directly use the BT, NT and USE relationships in the thesaurus, augmented
1 More precisely, the complexity is linear in the number of arcs of the subgraph induced

by the term nodes appearing in the document Q and their descendant nodes.
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with two inverted file-like structures to store, for each word in the thesaurus, the
lists of descriptors and non-descriptors that contain it.

2.7 Taking Degree of Coverage into Account

There is another dimension of the concepts in a thesaurus with respect to the
document to be classified that we have not considered yet. We call this property
the coverage of a concept with respect to a document, which tries to discriminate
between concepts which are almost surely relevant for the document: if two
concepts are initially considered equally relevant to classify a document but one
of them includes more descriptors appearing in the document than the other,
the former should be preferable. This strategy is motivated by the common
guidelines being used to manually classify documents: we should use the most
specific concepts available to bring out the main focus of a document and, if the
document covers several specific concepts, then we should use as many specific
concepts from different subtrees as required by the content of the document.
However, when several specific concepts are needed that fall within the same
subtree structure, the broader concept should be assigned instead.

Using the previous Bayesian network model, if, for instance, the three con-
cepts which are included into a broader concept are completely relevant for a
given document, then this broader concept also becomes completely relevant and
therefore the four concepts would be (wrongly) assigned to the document.

To overcome this problem, we shall define the coverage of a concept C, cov(C),
as the set of concepts which are ancestors of C in the Bayesian network, together
with C itself, i.e. all the concepts which are specializations (at different levels
of granularity) of C. For example, the coverage of the concept birth control are
the concepts abortion, contraception, sterilisation, illegal abortion, therapeutic
abortion and birth control. Roughly speaking, the degree of coverage of a concept
with respect to a document is the proportion of the document which is within
the coverage of the concept. More concretely, ∀C ∈ C, let us define Ant(C) =
{T ∈ T | ∃B ∈ cov(C), ∃D ∈ Pa(B) and T ∈ Pa(D)}. In words, Ant(C) is
the set of terms in the thesaurus which are part of a descriptor associated to
a concept in the coverage of C. We formally define the degree of coverage of a
concept C with respect to a document Q, dc(C,Q), as:

dc(C,Q) =

∑
T∈Ant(C)∩Q idf(T )∑

T∈Q idf(T )
.

The decision about what descriptors to assign to a document should be made,
not only depending on the probability of relevance of the concepts but also in
terms of the degree of coverage of these concepts.

In order to formally include these ideas in the model, we shall think in terms of
Decision theory, by defining a utility function based on the degree of coverage and
then computing the expected utility of assigning a concept to a document. Those
concepts having higher expected utility will be used to classify the document.
If we define the utility of assigning the concept C to the document Q when
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C is truly relevant as dc(C,Q), and the utility of assigning C to Q when C is
not relevant as zero, then the expected utility of assigning C to Q is simply
p(c+|q)× dc(C,Q).

3 Experimental Evaluation

Our experiments have been carried out using a data base provided by the Parlia-
ment of Andalucía at Spain, containing 7933 parliamentary initiatives manually
classified using descriptors from an adapted version of the Eurovoc thesaurus.
This version contains 5080 descriptors, 6975 non-descriptors and 7120 distinct
words (excluding stopwords)2. The average number of assigned descriptors per
initiative is 3.8. We have not used the full text of the initiatives but only a short
summary (typically two or three lines of text). As our aim is not a complete but
only a partial automation of the classification process, the selected performance
measures have been the average recall-precision curve and the average 11-point
precision3, which are frequently used for category-ranking classifiers [14].

We have experimented with two alternatives: (1) the basic Bayesian network
alone (BN) and (2) using coverage (BN+C). Moreover, each of these options has
been tested with and without using stemming, although we always use stopword
removal. The recall-precision curves of the four alternatives are displayed in Fig.
4, whereas the average 11-point precision values are shown in Table 1. With
respect to the efficiency of the inference process, all the 7933 initiatives were
classified in around 10 seconds on a computer equipped with an Intel Core2 duo
2GHz processor.

In order to assess the quality of the proposed BN-based models, we have also
experimentally compared them with two simple benchmark methods. The first
one [8,15] ranks concepts for a document based on word matching between the
document and the lexical information associated to the concepts in the the-
saurus, using a conventional vector space model (VSM) and the cosine measure:
each document to be classified is considered as a query against a “document
collection” where each “document”, representing a concept, is indexed using the
words appearing in the descriptor and non-descriptors which are associated with
the concept. This approach uses only the lexical information, while topological
(hierarchical) information is neglected. A second approach which also exploits
the hierarchical information (HVSM) [1,2] is based on the idea that the meaning
of a concept in the thesaurus is a specialization of the meaning of the broader
concepts containing it4. Therefore, all the words appearing in the descriptors
and non-descriptors of the broader concepts of a given concept are also used
to index the “document” associated with this concept. The results obtained by

2 The BN representing the thesaurus contains more than 25000 nodes.
3 The precision values are interpolated at 11 points at which the recall values are 0.0,

0.1,. . ., 1.0, and then averaged.
4 In the language of our Bayesian network model, these broader concepts would be

the descendants of the concept being considered.
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Fig. 4. Average recall-precision curves

Table 1. Average 11-point precision for the different experiments

Using stemming Without using stemming
BN+s BN+C+s VSM+s HVSM+s BN BN+C VSM HVSM

0.3123 0.3466 0.1798 0.1582 0.2841 0.3123 0.1478 0.1361

these two benchmark models, once again with and without using stemming, are
also displayed in Fig. 4 and Table 1.

Several conclusions may be obtained from these experiments: first, as the
BN-based models always provide much better results than both the simple and
hierarchical vector space models, it seems that the Bayesian network approach is
useful in this classification problem. Second, stemming is also recommendable in
this context, because its use always improves the results. Third, using coverage is
clearly advantageous. Fourth, concerning the vector space model, in this case the
use of the hierarchical information is self-defeating and produces results worse
than those of the simple VSM5. Finally, the model performance is in general quite
acceptable, specially at lower points of recall, reaching a precision near 70%.

4 Concluding Remarks

We have developed a Bayesian network-based model for hierarchical classifica-
tion of documents from a thesaurus. The experimental results obtained using a
large set of parliamentary initiatives from the Parliament of Andalucía and the
Eurovoc thesaurus are encouraging, specially if we consider that no training data
5 This contrasts with the results obtained in [1] in the context of hierarchical clas-

sification of documents into web directories, where the hierarchical VSM generally
outperformed the simple VSM.
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are used to build the model, and outperform those of the two simple benchmark
methods considered.

For future research, we are planning to improve the model in three different
ways: first, by considering the context of the terms/descriptors appearing in a
document. The idea is to avoid assigning to a document a descriptor whose
appearance may be incidental or their meaning within the document being quite
different from the intended meaning within the thesaurus. Second, by taking also
into account the associative relationships between descriptors in the thesaurus.
Third, by integrating the model within a more general scheme where training
data, in the form of preclassified documents, may also be used.
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Abstract. This paper describes an approach for the use of genetic programming 
(GP) in classification problems and it is evaluated on the automatic 
classification problem of pollen cell images. In this work, a new reproduction 
scheme and a new fitness evaluation scheme are proposed as advanced 
techniques for GP classification applications. Also an effective set of pollen cell 
image features is defined for cell images. Experiments were performed on 
Bangor/Aberystwyth Pollen Image Database and the algorithm is evaluated on 
challenging test configurations. We reached at 96 % success rate on the average 
together with significant improvement in the speed of convergence. 

Keywords: Genetic programming, cell classification, classifier design, pollen 
classification. 

1   Introduction 

Genetic programming (GP) is an automatic programming approach which is relatively 
recent and fast developing, especially to solve optimization problems. The solutions 
to the problem are represented as computer programs which are obtained by using 
Darwin’s principle of natural selection and recombination. In short, GP becomes a 
powerful method to solve the NP hard problems by using the capabilities of 
evolutionary search [1]. 

As in [3,4,5,6] GP was applied successfully to many real-world applications. Some 
of these approaches use dynamic class labels. Early works for GP-classification 
employed only simple mathematical expressions to embed in the result programs. Then 
in addition to these simple expressions, conditional operators, arithmetic operators, 
high-level mathematical operators and some heuristics were also used as in [2].  

Automatic labeling of pollens is not a new problem since pollen cells play a major 
role in many areas, such as study of allergic reactions in medicine [7] and palaeo-
environmental reconstruction [8]. Traditionally, the classification problem of pollen 
cells is treated as a multi-class problem and it is solved by applying minimum 
distance classifier either in pixel domain or on some sub-space. Also in [9] neural 
network models are proposed for the problem. Some of the features used in common 
are coefficients obtained from co-occurrence matrices, gray level run length statistics, 
measurements obtained from neighboring dependencies and simple first order 
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statistics. In [7] Rodriguez et. al. reached to %90 success rate by using similar shape 
and brightness features.  

We propose a new GP classification strategy for binary pollen cell classification 
problems. The basic idea is the conversion of the numeric output of a genetic program 
classifier into class labels by using new fitness evaluation and reproduction schemes 
based on BigBang-BigCrunch method [10]. In reproduction operation, one individual 
of the current population is selected according to its fitness value; the better the 
fitness value of an individual the higher the probability to be selected for the next 
generation. BB-BC algorithm has two important stages; first stage (Big Bang) creates 
the initial population randomly and the candidate solutions are spread all over the 
search space in a uniform manner, and the next stage (Big Crunch) is a convergence 
operator that the output is derived by calculating the center of mass. New candidates 
are calculated around the center of mass by adding or subtracting normally distributed 
random numbers whose values are decreased at each of the iterations. The algorithm 
is iterated until a certain criterion is accomplished. Section 2.4 provides more detailed 
information about the BB-BC method based reproduction scheme. We obtain %96 
success rate on average with this new GP classifier design.  

Organization of the paper is as follows; Section 2 describes the overall design of 
the proposed GP algorithm and provides an analysis about using GP as a classifier. 
The process of the feature extraction is defined in Section 3. Section 4 presents the 
experimental setup and finally in Section 5 and 6, the results and the concluding 
remarks are given. 

2   Genetic Programming Based Classification 

In this approach, we use a tree-based structure to represent genetic programs. The 
ramped half-and-half method is employed to generate initial programs [1]. For 
selection, the proportional selection mechanism is employed and traditional one point 
cross-over is used for reproduction together with point-mutation.  

In this section we address the other aspects of the GP learning/evolutionary system: 
selection of the terminal set, selection of the function set, construction of the fitness 
measure and selection of the input parameters and determination of the termination 
strategy. 

2.1   Terminal Set 

The terminals used in this application can be sub-divided into two groups; Image 
features and Real constants.   

In this work, we use statistical features in various orders to build the variable 
terminal set.  Although the use of domain-specific knowledge may be beneficial, we 
don’t prefer to use any considering the computational burden of hand-crafted 
processes and increase in data-dependency. Section 3 provides a detailed description 
for the features used in this work. 

We have also used a set of constant positive real numbers. The number of the 
constant terminals in a tree of an individual is determined probabilistically in run-time 
by considering a limit value. Constants are sampled from a uniform distribution. 
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2.2   Function Set 

The function set and terminal set must have closure property: which means that each 
function must accept input values and return output values which belong to the 
interval defined by terminal set. As in [1] traditionally exceptions in mathematical 
functions are avoided by defining protected functions that are the constrained version 
of the original formulation.  

We use three types of function sets; Arithmetic operations (+,-,*,÷ (protected)), 
Mathematical functions (sin,cos), and Conditional functions (min,max,if). 

The conditional functions min and max take two real values and compares them 
and return the selected value. The other conditional operator “if” takes four 
arguments. First two are used for the conditional part of the ‘if’ expression. The other 
two are the results to be returned according to the result of the comparison. The “if” 
function allows a program to contain various expressions in different regions of the 
feature space, thus allows discontinuous programs, rather than insisting on continuous 
or smooth functions. Furthermore, since the algorithm is used for binary classes, it 
can be expected that “min” and “max” functions may appear frequently in the 
resultant programs since the binary class separation would consist of many decisions. 

2.3   Fitness Function  

GP is guided by the fitness function to search for the most efficient computer program 
to solve a given problem. To calculate the classification accuracy of a genetic 
program, one needs to determine how to translate the program output into a class 
label. Because of the evolved genetic program has a numeric output value, it needs to 
be translated into class labels. For binary classification scheme this class labels are 
determined by 1’s and 0’s referring ‘found’ and ‘not-found’ respectively. To avoid 
slow convergence, in GP these labels should be determined by considering the design 
parameters, especially the range of constants used.  

GP tries to find a nonlinear classifier for the input data in a supervised scheme. In 
theory, it would asymptotically reach to the exact classifier with the assumption of 
having unlimited resource (space and time) and using only Boolean logic operators. 
However, obtaining complex functions by using only Boolean operators would 
require great number of iterations and huge individual representations, so in practice 
high level functions are used directly. As it can be expected, this would bring some 
constraints in the search space. Also, it is quite probable that the GP algorithm would 
spend too much time to be able to relieve the negative effects of using such kind of 
high level functions. 

In classification, a set of feature is mapped to a class label. First class labels and 
variables are encoded as  real numbers and then the the classifier is expected to solve 
these M non-linear equations; 

1 1 2 2 3 3 N N 1

1 1 2 2 3 3 N N 2

1 1 2 2 3 3 N N M

w .x   w .x   w .x   ...  w .x  = C  

w .x   w .x   w .x   ...  w .x  = C    

.....

w .x   w .x   w .x   ...  w .x  = C

                                       (1) 
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where wi’s stand for weights, xi’s are the features, ’s are the function expressions 
and Ci’s are class labels.  

Asymptotically the exact weight expressions of the features and the function 
expressions would be found, but in practice only an approximation can be obtained. 
Thus it would be more justifiable to modify the representation of individuals given in 
Eq.1 as a nonlinear function; 

            ε<),,....,,( 21 Cxxxf N                                               (2) 

After from this brief analysis of GP as a classifier, now we can review the goal of 
the search process of GP as finding the optimum f() that will be valid for all training 
samples with minimum error. In the literature all GP classifiers use the number of 
matches as the measure of the quality of the individual [1-12]. In our design, we 
modify this evaluation criterion as the total distance of the inner class samples; thus, at 
the end of the training, we expect to find a discriminant which represents all these inner 
class points with minimum error. The fitness of an individual is computed as in Eq.3; 

+
=

η)(

1
)(

Ierrors
Ifitness                                              (3) 

where I is the individual in question and   denotes a pre-defined constant.  

2.4   Reproduction Scheme 

Reproduction scheme is determined according to the characteristics of the problem 
and the design issues of the GP algorithm. Generally elitism works with satisfactory 
performance for classification purposes. Although it gives satisfactory results, we 
propose an improved version of the Big Bang-Big Crunch [BB-BC] algorithm [10] to 
increase the performance of the search. Simply the BB-BC method is based on 
intermediate local searches over the best member of the population. Thus if the 
individual improves, then this improved one passes to the next generation together 
with the best solution. In our approach, we adopt this method to the classification case 
and in addition to the local searches around constants we expand the definition and do 
multiple local searches among grouped similar elements of an individual. We group 
elements of an individual as constants, terminals, variables and functions. The search 
around constants was performed as described in the definition of the BB-BC and we 
have used gauss distribution where the variance =1. For variables and functions we 
have used point-mutation on variable and function vectors. We execute local search 
50 times for constants and 30 times for the others at each of the iterations. Adding 
such kind of intermediate searches around best-found result enables us to search the 
space around best solution by concentrating only on a single dimension and without 
affecting the traditional progress of the genetic evolution. 

3   Feature Extraction 

Quality of the features is critical for the performance of a classifier, and especially for 
image classifiers. The quality of a feature refers to that the feature should represent 



882 A. Akyol, Y. Yaslan, and O.K. Erol 

some distinctive characteristics of the data. The number of features, is related with the 
phenomena of curse of dimensionality, and the cost of the extraction process are the 
other two main issues that one should consider while designing an effective feature 
set. By considering all these issues we built an automatic feature extractor for cell 
images to find 13 features for each sample. Most of these features are common ones 
in image processing applications as in [11]. In the remaining of the section first the 
pre-processing work is defined to make the data ready to extract the features and later 
the features are explained.  

The pollen cells are expected to have texture information since first and second 
order statistics features are obtained from intensity values. In order to extract the first 
order statistics of pollen cells, the background of the images must be eliminated and 
the entire cell region must be determined. Thus, some well-known image processing 
algorithms are applied to the database to segment the cell region. A sample from the 
training dataset, Polypodium Vulgare, is shown in Fig1. Then an edge detection 
algorithm is applied and the gaps occurred in the boundaries are filled to find the 
boundary of the cell. After, the resultant image is dilated and the interior gaps are 
filled. Although the cell object is almost completely segmented, still there may be 
some other objects connected to the borders. To remove these effects object images 
are smoothed. Thus we obtain the texture region to be defined by the features. 

 

Fig. 1. Left: Original cell image  Right: Detected cell image 

After all pollen cells are detected; the area, the fourth moment and the entropy of 
the pollen cell are calculated. The area of the cell is the number of the pixels in the 
detected cell region. The fourth moment gives the information about the sharpness of 
the histogram of the cell image which is a distinctive property for different cell types. 
Moreover, uniformity of the histogram of the cell image is obtained by entropy 
calculation.  The last feature is obtained by using Gabor filter as detailed in [11]. 

However, the first order statistics provide information related to the gray level 
distribution of the image, but it is not possible to obtain information about the relative 
positions of the various gray levels in the image. Hence, the features based on second 
order statistics and defined in co-occurrence matrices are extracted. 

The co-occurrence matrix is calculated by using the relative distance among the 
pixels and their relative orientation. The orientation is denoted by  and the relative 
distance is denoted by d. The orientation is quantized in three directions; horizontal, 
diagonal and vertical. Two dimensional histograms are defined by using d and  as; 

( )
pairs possible of# total

)I,(I es with valud distanceat  pairs of #
),(,),( 21

21)0deg( ==±= IndmIInmIP       (4) 

where Pdeg(0)(i,j) is the (i,j) th element  of the co-occurrence matrix for degree 0, 
I(m,n) is the gray level of  the (m,n)th pixel. Similarly;  
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Features based on co-occurrence matrices are calculated by selecting  as 0o, 45o 
and 90o and d as 2 where 0o is the horizontal, 45o is the diagonal and 90o is the vertical 
directions of the image pixels. Next, basing on this matrix these additional features 
were extracted for each angle used in co-occurrence matrix.  

 
Contrast (CON): The measure of local grey level variations are calculated. For each 
angle contrast of the co-occurrence matrix is evaluated as; 

                1 1 1
2
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                                       (6) 

where Ng =256 (I(m,n)  {0,1,2….255} ) 
 

Inverse Difference Moment (IDF): This feature gives high values for low-contrast 
images. The feature is extracted as; 
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Angular Second Moment (ASM): The smoothness of the image can be extracted by 
using angular second moment feature thus defined as; 

1 1
2

0 0

( ( , ) )
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i j

A S M P i j
− −

= =

=                                           (8) 

Whole set of features used in the experiments are listed in Table1 together with their 
labels; 

Table 1. List of features together with their labels 

X1   Contrast for degree(0) X8   Inverse difference moment for degree(90) 
X2   Inverse difference moment for degree(0) X9   Angular second moment for degree(90) 
X3   Angular second moment for degree(0) X10 The area of the pollen cell 
X4 Contrast for degree(45) X11 Fourth moment of the pollen cell 
X5   Inverse difference moment for degree(45) X12 Entropy of the pollen cell 
X6   Angular second moment for degree(45) X13 Gabor filter feature 
X7   Contrast for degree(90)   

As the last stage of feature extraction we normalize each feature in their own space 
into an interval which is common for all features. 

4   Experimental Setup 

In our experiments we have worked on the cell image database of 
Bangor/Aberystwyth Pollen Image Database[12]. The database contains huge number 
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of pollen cell images of 80x100 spatial resolution1. Four types of pollen images were 
used for classification, Figures (3, 4, and 5). 

50 samples for each class were used for training purposes and 200 images were 
extracted for test purposes. Thus, we used totally 250 images from the database for 
each class. 13 features were extracted for each image. Since GP classifier defines a 
stochastic process, we employed five independent runs to determine the result of an 
experiment and the results were obtained by averaging the best of five independent 
runs. Each run was executed along a fixed number of iterations (generations) with the 
parameters listed in Table2. 

Table 2. GP Parameters of Training Experiments 

 
Population size 80 Initial Function Number 20 
Crossover rate  0.85 Depth 8 
Mutation rate 0,25 Maximum Constant 5.0 
Generation number 1500 Functions Add,Subt,Mul,Div,Max,Min 

 

 

      

Fig. 2. Training images from Quercus robor(QR) pollen type 

 

      

Fig. 3. Training images from Alnus glutenosa pollen type 

 

     

Fig. 4. Training images from Polypodium vulgare pollen type 

                                                           
1 Since the database was built by automatic segmentation of the cell images, there are some 

outliers that are quite far from representing a cell. We have discarded such samples in our 
experiments. 



 A Genetic Programming Classifier Design Approach for Cell Images 885 

     

Fig. 5. Training images from Conopodium majus pollen type 

5   Test Results  

In this section, first the result graphics regarding the performance of the designed GP 
algorithm are presented. Then, the effect of the proposed reproduction scheme is 
evaluated. Next, the results of the experiments are presented as in the form of 
confusion matrices. Lastly, the performance is compared with past works. 

An efficient evolutionary algorithm is expected to converge to better solutions and 
never lose good candidates [13]. In Fig. 6 (a) and (b) fitness values of best solutions 
that were found at each iteration of an execution is figured out for Quercus robor and 
Polypodium vulgare pollen types respectively. 
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Fig. 6. Error versus generations for a) Quercus robor b) Polypodium vulgare 

As it can be seen from Fig. 6 (a) and (b) the GP with BB-BC method converges to 
optimal solution much faster than the traditional selection mechanism. 

In Fig. 7, the effects of the proposed reproduction scheme are illustrated. The test 
results of the two algorithms applied to Quercus robor and Polypodium vulgare 
classes are shown in separate rows. Each row consists of two graphics. The left one is 
consists of the test results of the traditional elitist reproduction method and the right 
one is obtained from the proposed reproduction scheme. 

In Fig.7, the x axis corresponds to each test image and the y axis denotes the labels 
assigned by the classifier. As aforementioned, to avoid slow convergence, the class 
labels are determined considering the parameters of the algorithm. In this experiment 
we consider 0 and 5 values referring ‘not-found’ and ‘found’ class labels. As it can be 
seen from the figures, the new approach improves the convergence of the test results 
to the true values. However the results of the traditional elitist method may increase 
false classification probability. 
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Fig. 7. Effects of the reproduction schemes for classification. (First columns are with    elitism 
and the second ones are with BBBC). 

The classification results during the experiments are obtained by averaging the best 
of the 5 independent runs. The results for each evolved programs for every classes 
have similar classification performance.  In Table3 performance of the training results 
for each reproduction type is shown. 

Table 3. Training performances for conventional and proposed reproduction scheme 

Training Performance Conventional Reproduction Proposed Reproduction 

Quercus robor 92 % 96% 

Alnus glutenosa 96 % 96% 

Podium vulgare 100 % 100% 

Conopodium majus 98 % 100 % 
 

As shown in Table3 the training performance for BB-BC method is minimum 
96%. This means that only two samples of the 50 training images are misclassified. 

We did binary class experiments, so the results are shown in the form of confusion 
matrix as in Table4. The confusion matrix contains the results of the test sets of each 
class type that are applied to the found classifiers of the classes. In the confusion 
matrix the rows correspond to the true class of the cell and the columns correspond to 
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the predicted classes. The results for proposed method and conventional method are 
given in the same matrix. First results in each cell correspond to the proposed method 
and the others correspond to the conventional method. For example the cell row 4, 
column 1 means that 0% of the Conopodium majus misclassified as Quercus robor by 
using the proposed reproduction method. On the other hand 1.2% of the Conopodium 
majus misclassified as Quercus robor by using the conventional reproduction method. 
Similarly the cell row 3, column 3 means that 99.42% of the Podium vulgare 
correctly classified as Podium vulgare by using the proposed reproduction scheme. 
Table4 shows that the successful classification performance is about 96% on average 
while the misclassification is nearly 0%. 

Table 4. Confusion Matrix of the results for proposed reproduction scheme versus conventional 
reproduction scheme 

 
Classification Proposed / 

Conventional 
Quercus 

robor(%) 
Alnus 

glutenosa(%) 
Podium 

vulgare(%) 
Conopodium 

majus (%) 

Quercus robor 96.4  / 90.8 0.4 / 0.4   0.58 / 0 0.096 / 0.4 

Alnus glutenosa 0.4 / 1.2  96 / 99.2 0 /0.58 0 /0.4 

Podium vulgare 0 / 0  0 / 0  99.42 / 100 0 / 0 

Conopodium majus 0 / 1.2  0 / 0 0 / 0 99.6 / 97.6 
 

As illustrated in Table4 the true classification and the false classification performance 
for the traditional reproduction scheme is nearly same to the proposed method. However 
the proposed scheme has significant increase in the time of convergence since it allows 
to use distinct class labels and local search around good candidates.  

In Table5 an evolved GP program by using the proposed reproduction scheme for 
Quercus robor image class is represented. The program implies the proposed features 
with some constants and can accurately classify the image type with small false 
classification. 

Table 5. Evolved GP by using proposed reproduction scheme 

 

6   Conclusion 

In this study, we worked on the problem of automated classification of cell images. 
First, an effective set of image features are extracted. Although most of the features 
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are the ones commonly used in literature, the combination of them were considered as 
an effective feature set definition for such kind of image classification problems. 
After data pre-processing, then we have designed a GP algorithm for the classification 
of image samples. In our design, we have addressed some drawbacks of traditional 
usage of GP in classification problems while suggesting a new fitness calculation 
scheme and a new reproduction method to overcome these drawbacks. Results 
showed that the proposed design of the algorithm improves the performance of the 
cell image classification considerably. 
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Abstract. This article discusses a potential application of radio frequency 
identification (RFID) and collaborative filtering for targeted advertising in 
grocery stores. Every day hundreds of items in grocery stores are marked down 
for promotional purposes. Whether these promotions are effective or not 
depends primarily on whether the customers are aware of them or not, and 
secondarily whether the customers are interested in the products or not. 
Currently, the companies are incapable of influencing the customers’ decision-
making process while they are shopping. However, the capabilities of RFID 
technology enable us to transfer the recommendation systems of e-commerce to 
grocery stores. In our model, using RFID technology, we get real time 
information about the products placed in the cart during the shopping process. 
Based on that information we inform the customer about those promotions in 
which the customer is likely to be interested in. The selection of the product 
advertised is a dynamic decision making process since it is based on the 
information of the products placed inside the cart while customer is shopping. 
Collaborative filtering will be used for the identification of the advertised 
product and Bayesian networks will be used for the application of collaborative 
filtering. We are assuming a scenario where all products have RFID tags, and 
grocery carts are equipped with RFID readers and screens that would display 
the relevant promotions. 

Keywords: RFID, targeted advertising, Bayesian networks, learning Bayesian 
networks, collaborative filtering. 

1   Introduction 

Love it or hate it, grocery shopping occupies a significant amount of time of your life.  
It may seem as a straightforward task—all you need is just a shopping list. However, 
almost 60% of household supermarket purchases are unplanned and the result of in 
store decisions [Inman and Winer, 1999]. Even having a shopping list is sometimes 
not enough. The huge variety of products offered turns the grocery stores into 
labyrinths, so you have to be cautious not to get lost between the aisles as you search 
for the products on your list. By the time you find the item you are looking for, you 
may be overwhelmed to see how many different brands offer the same item. 
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Grocery basket selection can be thought as a reflection of customers’ needs. 
Ideally, the products selected should represent the results of a comparison made by 
the customer based on the price and quality aspects of the products. Considering the 
nature of a simple grocery-shopping trip described earlier, a careful selection of 
products requires the devotion of a significant amount of time and energy on the 
customers’ side. On the contrary, modern life imposes time constraints on the 
customers, which make them unwilling to spend any more time for grocery shopping 
than is necessary. As a result, the explosion of the size of product assortments (more 
than 100,000 references in a large hypermarket) no longer allows for a clear 
identification of differences in quality and prices inside the product mix [Bruno and 
Pache, 2005]. 

The situation on the retailers’ side is also not very promising. The competition 
between the grocery stores is increasing every day, forcing the retailers to find new 
ways to influence the purchase decisions of the customers. Today a huge variety of 
methods to track and analyze the customers’ behavior in e-commerce systems is 
available. For instance, amazon.com makes real-time recommendations (Customers 
who bought this item also bought…) to its customers based on the information of the 
products that have been put in a shopping cart or reviewed by the customer. However, 
in traditional retail stores, such systems are not used, and, therefore, the customer’s 
behavior is considered as a black box” [Decker, 2003]. 

As a way to affect the consumers’ purchase decisions and to introduce new 
products, the shelf configurations of the stores are periodically rearranged. Although 
this might help the retailers to find the optimal allocation of the products, it bothers 
the customers for not being able to find the products they are looking for. 

Another way to influence the customers’ purchase decisions is to do promotions. 
Every day hundreds of items inside the grocery stores are advertised as an effort to 
trigger the demand of customers for those products on promotion. Whether these 
special offers will become a subject of interest to customers primarily depends on 
whether the customers are aware of them or not. Studies suggest that more than half 
of the shoppers who purchased an item that was on sale were unaware that the price 
was reduced [Mittal, 1994]. To inform the customers about your ongoing promotions 
you may increase the rate of your advertisements, which will increase your costs 
significantly. 

Advertisements and promotions are two effective ways to influence sales. 
However, an advertisement of a promotion will be more successful, if the promotion 
is particularly advertised to those shoppers who are likely to be interested in the offer. 
Clearly, the purchase of a product on promotion by an informed customer does not 
only show the success of the promotion; it is also a valid indicator of customers’ 
interest in that particular product. Thus, the success of a promotion secondarily 
depends on whether a customer is interested in that product or not. 

In order to understand the underlying patterns of customers’ purchase decisions, 
most grocery stores identify its customers through customer loyalty cards via which 
they keep track of the products purchased by the customer. Based on this information 
they tailor promotions to individual customers by giving discount coupons at the 
checkout. However, these promotions happen after the shopping is over which 
tremendously reduces the impact of the promotion on the sale. The companies are 
mostly incapable of influencing the customers’ decision making process when they 
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are shopping since the data about the customers’ shopping behavior is only available 
after the decisions are made, i.e., after the shopping is over. 

As a way to interact with the customer during the shopping, grocery stores install 
kiosks from which customers can get information about the ongoing promotions and 
the products displayed. However, stress and time pressure potentially force a 
customer to fully concentrate on the original task where the customer is not willing or 
able to learn the operation of a complex shopping support system [Schneider, 2004]. 

Having considered all of this, the e-commerce seem to have a huge advantage over 
traditional grocery shopping because of their capability to make targeted advertising 
at the same time as the consumer is shopping. Inspired by the real-time 
recommendation systems of e-commerce we should be looking for ways to transfer 
the methods of e-commerce systems to the current state of grocery shopping. The 
capability of RFID technology to identify individual products and collect real time 
data about the customer behavior inside a store makes a new model for the traditional 
grocery shopping feasible. 

An outline of the remainder of the paper is as follows. In Section 2, we introduce 
the RFID technology and describe its capabilities in the domain of operations 
management. In section 3, we discuss ‘collaborative filtering’ as a way to identify our 
recommendations based on the customers’ preferences and describe our proposed 
model for the grocery stores. This model promises to enable the grocery stores to 
make real time targeted advertising. In order to illustrate the working mechanism of 
our model we are going to use the data set available for the Netflix prize competition. 
The details of the data set used are described in section 4. Using WinMine toolkit a 
Bayesian net will be learned from the data set used. As the next step, using the table 
distributions learned with WinMine, the same BN will be built in Hugin, a 
commercial software, which allows us to predict the customers’ preferences of the 
movies based on the given information. In section 5, we illustrate the use of our 
model via different cases. Finally, in section 6, we summarize and conclude. 

2   Radio Frequency Identification 

Radio Frequency Identification (RFID) is a generic term for a variety of technologies 
that use radio waves to automatically identify individual items” [Cavoukian, 2004]. 
This technology known for over 50 years, prepares to have its real bang in the 
business world after its potential for commercial applications has been realized. The 
capability of identifying individual products, ability to track the products through the 
processes, differentiates RFID from its preceding alternatives; but the real and huge 
potential of RFID systems is hidden in the massive amount of data that is captured by 
RFID systems. 

An RFID system consists of two basic parts: a tag and a reader. Readers, 
depending upon design and technology used, may be a read-only or a read-write 
device [Finkenzeller, 1999]. They capture the information stored or gathered by the 
tag. The RFID tags can be either active or passive, depending whether they have their 
own power supply or not. Active RFID tags offer superior performance. Because they 
are connected to their own battery, they can be read at a much higher range-from 
several kilometers away. However, they are larger and more expensive. Passive tags 



892 E.N. Cinicioglu, P.P. Shenoy, and C. Kocabasoglu 

have no power source and no on-tag transmitter, which gives them a range of less 
than 10-meters and makes them sensitive to environmental constraints [Cavoukian, 
2004]. 

Among the automatic identification systems, barcode technology has been the 
leader for over 20 years. Nevertheless, with the decreasing cost of the RFID tags, 
companies have begun to favor RFID systems over barcode technology. Although it is 
a fact that the reduced costs of the RFID tags have contributed a lot to the present 
popularity of the RFID systems, this is not the main motive why the RFID systems 
are preferred over barcodes. In Table 1, we illustrate the potential benefits that 
companies may achieve in their operation management activities by using RFID 
systems instead of the barcodes. 

Table 1. The potential benefits of RFID systems in operations management activities 

 Barcode RFID Potential benefit of RFIDs 
Data capturing 
capacity 

A barcode can hold only 
around 1000 characters 
of data. [Mital, 2003] 

Up to 128,000 characters in an 
RFID chip [Mital, 2003]. 

The superior data capturing capacity of RFID 
systems offers enough room for a unique serial 
number, expiration date or other pertinent 
information [Sweeney, 2005] 
-This is a serious drawback of bar codes compared 
to the RFID systems since in RFID systems 
information is specific to that individual item 
[Cavoukian, 2004]. 

Cost The barcode system is 
still a much cheaper 
identification system 
than the RFID 
technology and the 
experts predict that it 
will remain to be so. 

Today Passive RFIDs sell for 
less than 50 cents in high 
volumes, and analysts predict 
they’ll sell for five cents in high 
volumes by the end of this 
decade [Dipert, 2005]. 

Tags are reusable and have very long lives, so in 
supply chain operations where containers are 
continually reused, there would be no need to re-
label the containers, saving on manpower and other 
costs associated with label production and fixing 
[Hopwood, 2005]. 

Processing times Only one item can be 
read at a time because of 
the line of sight 
technology required. 
-The existence of dirt or 
dust can avoid the 
reading barcodes. 

RFID tags can be read in harsh 
environments such as snow, fog, 
etc. with a reading distance 
ranging from 50 feet to 100 
meters and beyond [Cavoukian, 
2004]  

The processing times of items increases 
significantly, when bar code systems are in use. 

The query of 
components and 
subassemblies 

Requires positioning the 
cases so that the labels 
can be read by the 
scanners 
-line of sight reading is 
required 

Automatic check that all items 
from the bill of material 
-are received 
-are placed in the right location 
-RFID does not require 
positioning the cases 

Convenience in order processing 
-helps to decrease the labor costs 
-reduce the order preparation times [Rutner, 2004] 

A valid source of 
information in 
order 
preparation and 
processing 

not applicable How much time a worker spends 
on the preparation of a particular 
item can be measured 

Management could use this data for 
-setting benchmarks 
-evaluating employees 
-planning labor requirements 
[Rutner, 2004] 
 

Prevention of 
Spoilage 

not applicable Sensor-equipped tags can 
monitor the environment 
surrounding perishable items 
and maintain a history of 
environmental changes 

RFID systems can be used 
-to detect potential spoilage conditions [Curtin, 
2005] 
-to identify the causes of spoilage 

Prevention of 
Theft 

not applicable The capability to locate every 
individual product within the 
inventory 

Provides a tremendous opportunity for companies 
to prevent theft 

Prevention of 
Shrinkage 

Real time data is not 
available 

Automatic collection of real 
time data 

-the automatic collection of real time data prevents 
the shrinkage problem, and if not, makes the data 
available to detect the cause of shrinkage 
-better replenishments decisions can be made since 
accurate data are readily available with RFID [Lee, 
2004] 

Prevention of 
Stockouts 

Captures information on 
how much is sold form 
each product 

Captures information about the 
real time data of the current 
inventory (how much is sold, 
how much is missing) 

The ability of RFID systems to prevent and detect 
when theft and/or shrinkage is present, makes the 
data more accurate thus preventing the occurrence 
of stockouts 
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The use of RFID systems in commercial applications is an emerging trend and 
RFID is ready to place itself as the dominant technology used in real word 
applications. However, the importance of RFID technology is not just limited by the 
convenience it provides. More importantly, RFID systems create massive amounts of 
data, which gives the ability to track and trace materials at the case-level within the 
supply chain, and at the item level from manufacturing to post sales. Therefore, the 
real question to be answered is: How can we transform this massive amount of data 
into managerially useful information? 

3   Collaborative Filtering 

As mentioned earlier the real potential of RFID systems is hidden in the massive 
amount of data collected through RFID. This application is a perfect illustration of 
that. We can use the RFID technology for getting real time information about the 
consumer behavior as they are shopping and that may enable us to inform the 
customer about the promotions in store in which the customer is likely to be 
interested. Using RFID we can get information about the products a customer is 
placing in his shopping basket, and using collaborative filtering we can advertise 
those products on promotion which the customer is more likely to be interested based 
on what is already in the customer’s shopping basket. 

Collaborative filtering, first introduced by Resnick et al. (1994), is defined as 
predicting preferences of an active user given a database of preferences of other users 
[Mild, 2002]. Depending on the technology used, recommendation systems are 
classified in two classes, content-based filtering (CBF) and collaborative filtering 
(CF). Content-based methods make recommendations by analyzing the description of 
the items that have been rated by the user and the description of items to be 
recommended [Pazzani, 1999]. The main difference between collaborative filtering 
and content-based filtering is that CF does not rely on the content descriptions of the 
items, but depends purely on preferences expressed by a set of users [Yu et al, 2004]. 
Since collaborative filtering does not depend on error-prone machine analysis of 
content, it has significant advantages over traditional content-based filtering (ability to 
filter any type of content, etc.) [Herlocker et al., 2000].  

Popescul et al. [2001] describe a unified collaborative and content-based system. 
de Campos et al. [2006] describe a Bayesian network model for hybrid collaborative 
and content-based filtering. Adomavicius and Tuzhilin [2005] survey the field of 
collaborative, content-based, and hybrid recommender systems. Zhang and Callan 
[2001] developed an algorithm for setting dissemination thresholds while filtering 
documents. Linden et al. [2003] compare traditional collaborative filtering, cluster 
models and search based models with their method item-item collaborative filtering. 

In e-commerce, collaborative filtering is widely used as a tool for targeted 
advertising. Using the capabilities of RFID, we might be able to transfer this method 
to traditional retail stores and base the advertisements on real-time data. 

The technique used in collaborative filtering is based either on explicit or implicit 
voting. The data sets in explicit voting contain users explicit preference ratings for 
products. Implicit voting refers to interpreting user behavior or selections to impute a 
vote or preference [Breese et al., 1998]. Our case is an example of implicit voting, 
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since our model will use binary choice data that identifies whether a product is placed 
in cart or not. 

The model we are proposing is as follows. All products in a grocery store are 
equipped with RFID tags. The carts in the grocery store are equipped with RFID 
scanners, which are utilized to collect information about the products that are placed 
in a customers’ cart. In each cart, there is also a screen where the promotions are 
displayed. The basic idea of our model is to inform the customer about those products 
on promotion that the customer is likely to be interested in buying based on the 
products already in the cart. The selection of the product advertised is a dynamic 
decision making process since it is based on the information of the products placed 
inside the cart while customer is shopping. Collaborative filtering will be used for the 
identification of the advertised product and Bayesian networks will be used for the 
application of collaborative filtering. 

At the beginning of the shopping process, there are no products in the cart. At this 
stage, the system can just display those products on promotion that have the highest 
marginal probabilities. As the customer places products in the cart, the system can 
display those products that the customer is likely to be interested in purchasing based 
on items in the cart. 

4   Dataset 

The proposed model above requires data captured through RFID systems for the 
different market baskets of the customers. Since we did not have access to a grocery 
basket dataset, we decided to use the publicly available Netflix prize competition1 
dataset to illustrate our application [Netflix, 2007]. While it is not quite the same, we 
were able to convert the Netflix dataset to a basket dataset with movies as the 
products instead of grocery items. 

The training data set of the Netflix prize competition constitutes of 17,770 files, 
one per movie.  Each file contains customer ID, the rating given by the customer, and 
the date of the rating. The ratings are on a scale from 1 to 5, 5 as being the best rating 
possible. For the analysis done in this paper, 1,695 movie files from this training data 
set have been chosen on a random basis. These separate data files are merged into a 
big data set where the ratings for the movies are sorted based on the customer ID and 
the date has been dropped out. 

The goal of our model is to predict the products that the customer may be 
interested in based on the products that (s)he has placed in the cart. Trying to interpret 
the customers’ behavior suggests the need for implicit voting instead of a detailed 1 to 
5 rating scale. Hence, we transformed our data set into a new data set where the 
ratings 3, 4 and 5 are replaced by 1’s as an indicator of the movies being in a user’s 
basket. If the customer has rated the movie as 1 or 2 or has not rated the movie at all, 
then the movie rating is replaced with a zero, which means that it is not in the cart. 
Here we are assuming that the movies not rated by the customer are movies that are 
not in the customer’s cart. 
                                                           
1 The Netflix prize competition seeks to substantially improve the accuracy of predictions about 

how much someone is going to love a movie based on the ratings of the movies they have 
already seen. 
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In a grocery store, there are literally hundreds of thousands of different products. 
For the problem of finding associations between the products that are in carts, we 
need to aggregate the products. For example, tomato sauce may be sold in different 
brands, different sizes, different packaging, etc., and all of these need to be 
aggregated into a single product. 2 The problem of finding a good aggregation can be 
a difficult one. We need to decide on a number of aggregated products, and a 
technique to do the aggregation. Cluster analysis from multivariate statistics is one 
method that can be used for doing the aggregation. The optimal number of aggregated 
products is an empirical question, and an approximate number can be found by 
experimentation. 

After transformation of the data to the desired format, the next step was to select 
the movies that are going to be used for creating a Bayes net. In order to select the 
movies from different groupings we used cluster analysis. The FASTCLUS procedure 
in SAS was used for cluster analysis, where we limited the maximum number of 
clusters obtained to thirty3. As a result, we obtained thirty different clusters and chose 
one movie from each cluster on a random basis. The final data set used to build the 
Bayes Net constitutes of the movie preferences of 65,535 users for the thirty movies 
selected. The set of movies selected appears in the Bayes net model shown in Figure 1 
below. 

Our motivation for learning a Bayes Net is to find the predictive relationships 
between the movies based on the movies liked or disliked by the customer. WinMine 
[Heckerman et al., 2000], a tool developed at Microsoft Research, is used to learn a 
Bayes Net. Using WinMine, the data is divided into a training set and a test set. We 
performed a 70/30 train/test split and had 45,874 training cases and 19,661 test cases.  
All of the variables are used as input-output variables (both predicted and used to 
predict). To set the granularity of the Bayesian network learnt by WinMine, a factor 
called kappa is used, which is a number between 0 and 1. As kappa approaches 1, the 
model becomes very dense. Since our model is already quite dense, we decreased the 
value of kappa from its default value of 0.01 to 0.00001. The resulting BN is given in 
Figure 1. 

The accuracy of the learned model on the test set is evaluated using the log score 

Score(x1, …, xN) = 
  

log
2

p(x
i
| model)i=1

N∑
nN

, where n is the number of variables in X, 

and N is the number of cases in the test set. Our model results in a log score of 
−0.4169, meaning on average, the log probability that each variable assigns to the 
given value in the test case, given the values of all other variables, is −0.4169, which 
translates to a probability of 0.75. Using WinMine we can also compare the difference 
between the provided model and the marginal model. A positive difference is desired 
between the provided model and the marginal model, signifying that the model out-
performs the marginal model on the test set. In the same way that a regression model  
 

                                                           
2 In the first iteration, we selected 33 movies that had a large number of user ratings (without 

doing cluster analysis) and used it to learn a Bayes net. However, that was not very effective 
in predicting the baskets of users in the test set (lift over marginal was about 0.04364). 

3 We did not attempt to determine an optimal (or an approximate) number here. We picked 
thirty for convenience. Since we obtained good results, we did not experiment with other 
numbers. 
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Fig. 1. A Bayes net for 30 movies from the Netflix prize dataset 

is more accurate than a simple baseline model chosen in the form of a mean 
dependent value, the “lift over marginal” log score provides information on how well 
the model fits the data. The lift over marginal log score in our model is 0.1302, which 
suggests the performance of our model is quite good. If we ignored the products in the 
cart and used the marginals for prediction, the average probability of the correct 
prediction is 0.68 (or log score of –0.5471). Using the products in the cart, the average 
probability of correct prediction improves to 0.75 (or log score of –0.4169) resulting 
in a lift over marginal log score of (–0.4169)–(–0.5471) = 0.1302. There are many 
ways of evaluating collaborative filtering recommender systems (Herlocker et al, 
2004), and the lift over marginal is a good conservative measure of effectiveness for 
our application. 

5   A Case Study 

In the previous section we have illustrated how a BN can be learned using the 
WinMine toolkit. Using the probability tables constructed by WinMine, we 
constructed the same Bayes Net in Hugin, a commercial software. The conditional 
probability table used for the movie ‘Lord of the Rings: The Two Towers’ is 
illustrated in Table 2 below.  
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Table 2. The conditional probability table for Lord of the Rings: The Two Towers 

Lord of the Rings: The Two Towers 
Forrest 
Gump 

0 1 

Titanic 0 1 0 1 
X-Men 
United 

0 1 0 1 0 1 0 1 

Indiana 
Jones 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

0 0.88 0.76 0.53 0.21 0.83 0.59 0.37 0.16 0.80 0.52 0.33 0.13 0.70 0.41 0.27 0.10 
1 0.12 0.24 0.47 0.79 0.17 0.41 0.63 0.84 0.20 0.48 0.67 0.87 0.30 0.59 0.73 0.90 

 
The advantage of using Hugin is that we are able to enter evidence to the BN and 

update all probabilities accordingly using the ‘sum normal’ propagation method. In 
addition to that, the ‘max normal’ propagation method allows us to find states to the 
most probable configuration. The state of node with the most probable configuration 
is given the value of 100. The values for all other states are the relative values of the 
probability of the most probable configuration in comparison to the most probable 
configuration. 

By using the sum-propagate normal propagation method without entering any 
evidence, we obtain the marginal probabilities for all the movies in the BN. The results 
suggest that for the state ‘1’ the movie ‘The Green Mile’ has the highest marginal 
probability 40.57%, and ‘Duplex’ has the lowest marginal probability 5.23%. 

Suppose we want to predict whether a specific customer is going to like the movie 
Forrest Gump or not. Without having any information about the customers’ previous 
movie preferences the marginal probability for the state ‘1’ is 40.43% and the state for 
the most probable configuration is ‘0’. Suppose we get the information that the 
customer rented the movie A Few Good Men and liked it. Accordingly, the posterior 
marginal for Forrest Gump increases to 69.75%, the most likely state is still ‘0’. Next, 
suppose we get the information that the customer also liked The Wizard of Oz. The 
posterior marginal probability for Forrest Gump increases to 90.13% and the most 
likely state changes to ‘1’. The results for this case are summarized in Table 3 below. 

As our second case, consider a scenario where we need to choose between the two 
movies Mona Lisa Smile and Lord of the Rings: The Two Towers to recommend to the 
customer. The initial most likely state is ‘0’ for both movies. Based on their marginal 
probabilities, which are given in Table 4 below, Lord of the Rings: The Two Towers 
should be chosen for recommendation, since it has a much higher marginal 
probability for the state ‘1’. 

Suppose we receive information about movie preferences of the customer to whom 
we are going to make the recommendation. Learning that the customer liked Pay It 
Forward, Something’s Gotta Give, Two Weeks Notice and Titanic with the particular 
order given, changes the posterior marginal probabilities. Until we obtain the 
information that the customer liked Something’s Gotta Give, the marginal 
probabilities indicate that Lord of the Rings should be chosen for recommendation. 
After subsequent observations, Mona Lisa Smile takes the lead for recommendation. 
At the point where we learn that the customer liked Two Weeks Notice, the most 
likely state for Mona Lisa Smile becomes ‘1’ where for Lord of the Rings it is ‘0’ still. 
After we get the information that the customer also liked the movie Titanic the most 
likely state for both of the movies becomes ‘1’. The details of posterior marginal 
probabilities and the most likely states are given in Table 4 above. 



898 E.N. Cinicioglu, P.P. Shenoy, and C. Kocabasoglu 

Table 3. Posterior probabilities and most likely state for Forrest Gump 

Information & Rating Marginal Most likely state 
Prior 40.43% 0 

A Few Good Men = 1 69.75% 0 
Wizard of Oz =1 90.13% 1 

Table 4. Posterior probabilities and most likely states for Mona Lisa Smile and Lord of the 
Rings: The Two Towers 

 Mona Lisa Smile 
Lord of the Rings: The 

Two Towers 

Information & Rating Marginal 
Most 
likely 
state 

Marginal 
Most 
likely 
state 

Prior 19.28% 0 33.85% 0 
Pay It Forward = 1 36.86% 0 48.08% 0 

Something’s Gotta Give = 1 63.05% 0 61.37% 0 
Two Weeks Notice = 1 72.22% 1 63.23% 0 

Titanic = 1  76.00% 1 67.38% 1 

6   Conclusions and Summary 

We have proposed a system using RFID and collaborative filtering for targeting 
advertising in grocery stores. We have illustrated the use of such a system using the 
Netflix prize competition dataset. 

The proposed model promises to influence the customers’ decision-making process 
while shopping, which will increase the success of the promotions. Also, it is very 
important to notice that the contribution we will get through the proposed model is 
not just limited by the improvement of promotions. Transferring the methods of e-
commerce to actual retail stores through real time data collection with RFID may give 
us insight about the operational problems such as the optimal placing of products 
inside a store. Also, many grocery stores have data on users using loyalty cards. The 
longitudinal information about these users can be used to further improve the 
effectiveness of our system. For the next stage of this research, the proposed model 
will be constructed using real grocery data. 
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1   Introduction: Intelligent Systems and Problems of Knowledge 
Assessment  

An intelligent system is based on an extended quantity of knowledge related to a 
certain field of problems. This knowledge is organised as a set of rules that allows the 
system to inference based on the available data. This knowledge –based methodology 
used in problem solving and more generally in system design has been an 
evolutionary change in Artificial Intelligence. The consequences of this change are 
very important since the traditional form of a program (data + algorithm = program) 
has been replaced by a new architecture, which has as its core a knowledge base and 
an inference engine under the form: 

Knowledge + Inference = System 

The specific problem that we have to solve is the construction of an intelligent 
system, which will be able to evaluate and classify student according to some 
features, which will be extracted from their answers, into different levels of 
knowledge. The results are based on a research carried out on high school students 
and related to the wider field of Mathematics.  The classification problem of educated 
people in different knowledge levels, the study of the transition between these levels 
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as well as the notional change  that takes place when a student  stops using a   naïve 
(wrong) model  and starts  using a  scientific (right)  model,   are three of the most 
important problems in Cognitive Science. A great number of researchers have 
proposed different methodologies for knowledge acquisition in different scientific 
fields (Maths, Physics, etc) based on computational and Artificial Intelligence 
models[8]. Artificial Intelligence methodologies present great interest in theoretic 
level since they can deal effectively with complexity and fuzziness, which are two of 
the most important problems in system theory, strongly bound to reality. 

In this specific application, analysis starts with the processing of the answers to 
carefully selected and formed questionnaires   which are filled by students. Certain 
features are extracted out of this analysis that lead to the classification into levels of 
five different theme sections: Arithmetic, Algebra, Applications Space Perception, 
and Probabilities and Data.  Next, based on this analysis and rule-based knowledge 
the student classification   takes place. Basically the problems that needs to be solved 
is the automatic classification of students in different levels, using fuzzy logic and 
artificial neural nets techniques and aiming at creating a system that unifies symbolic 
and arithmetic processing.  For further research, we could note the use experts’ 
knowledge in order to improve the knowledge of educated people (which means 
transition to a higher level), study the dynamic evolution of the population of 
educated people and model the changes that take place.  Based on the fact that the 
problem to be solved is a assessment problem, for which there is no specific theory 
and its data enclose uncertainty (the problem is not purely computational, there is no 
mathematical solution and the data are not completely known), we can say that use of 
an intelligent system is appropriate and leads to the construction of a useful tool for 
student classification in different levels. 

The questionnaires that are filled up by students include the aforementioned five 
theme sections.  Each theme section includes four questions, each one corresponding 
to one of the following levels of knowledge: Single-Structural (SS), Multi-Structural 
(MS), Relational (R) and Abstractive(S).  It should be noted here that the question 
that corresponds to the Abstractive level cannot be answered by students of the certain 
age, and consequently we can say that each theme section has three questions. In 
addition, if a student does not answer any of the three questions in a theme section, 
he/she is classified in the Pre-Structural (PS) level.   

2  Description of the SOM Algorithm Grading System Modelling 

The aim of the automatic grading system is the simulation of the teacher’s grading 
system. The answers of the students to the five theme sections are decided into two 
different categories: Controversial Answers (CA) and Non –Controversial (NCA). 
Non-Controversial answers are the answers we can be based on in order to classify 
the student in a level without any uncertainty [1].  For example, if a student gave the 
following answers to the section that corresponds to Algebra:  

Q4. Wrong,   Q5. Wrong,   Q6. Wrong 
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Then the student is classifies into the Multi-Structural level in Algebra, without 
any controversy again.  However, there are some answers base on which we cannot 
conclude to an automatic classification, and we have to take under consideration other 
factors (in the same way a teacher acts when grading a students answers). For 
example if a student answers:  

Q4. Wrong,   Q5. Right,   Q6. Wrong 

Then his/her classification into a level of knowledge is not straightforward as it 
was on the examples mention above. 

The automated grading system that was developed is illustrated in Fig. 1. The 
neural network specifies the level of each student in each theme section in cases of 
Non -Controversial answers.  In cases on Controversial  answers we have developed 
two fuzzy systems, since the classification is not obvious  and trying to simulate  the 
teacher’s way of grading , taking under consideration numerous factors. This way, we 
take advantage of the    symbolic knowledge of system experts and more specific the 
rule-based knowledge [2].  The first of the two fuzzy systems is implemented based 
on some statistical analysis and the analysis of some factors such as the Rigour 
according to which the grading of the certain answer will be done. The second fuzzy 
system extracts the level of knowledge at each theme section taking into account the 
Rigour (which the previous system’s output) and the answers given to the questions of 
the specific theme section. Next, the final level is determined for each student based 
on the results (outputs) of the above systems. 

 

Fig.  1. Grading Modelling System 

Then the student is classified into the Pre-Structural level in Algebra without any 
controversy.  It his/her answers are: 

Q4. Right,   Q5. Right,   Q6. Wrong 
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into two categories: Controversial and Non-Controversial [3].  For the first category, 
Table 1. was used in order to extract the results. In the specific application, an 
algorithmic method could also be used for the extraction of the final result. However, 
based on the fact that we are interested in the extension and application of the 
developed system in more complicated problems (i.e. we will ask the system to grade 
the answer using a grade between 1 and 10 or 100), the use of the table is the most 
appropriate. The Non-Controversial answers are illustrated in Table 1. We have used 
0 to symbolize the wrong answer, 1 for the right answer and 2 for invalid answer 
(case where the student does not answer). 

Table 1.  Classification based on Non - Controversial answers 

SYMBOL ANSWERS KNOWLEDGE LEVEL 
000 WRONG – WRONG – WRONG  Pre-Structural 
100 RIGHT – WRONG – WRONG Single-Structural  
110 RIGHT –RIGHT - WRONG Multi-Structural 
111 RIGHT – RIGHT  - RIGHT Relational  
222 INVALID – INVALID - INVALID Pre-Structural 
220 INVALID – INVALID - WRONG Pre-Structural 
202 INVALID – WRONG - INVALID Pre-Structural 
200  INVALID – WRONG - WRONG Pre-Structural 
122 RIGHT – INVALID - INVALID Single-Structural 
120 RIGHT – INVALID - WRONG Single-Structural 
112 RIGHT – RIGHT - INVALID Multi-Structural 
102 RIGHT – WRONG - INVALID Single-Structural 
022 WRONG – INVALID - INVALID Pre-Structural 
002 WRONG – WRONG - INVALID Pre-Structural 
020 WRONG – INVALID - WRONG Pre-Structural 

4   tudent Level Determination System for S ach Theme Section: 
Controversial Answers 

In the previous section we referred to the cases where the classification of the students 
into knowledge levels is done based on their answer without any uncertainty.  In this 
section we will refer to the Controversial cases where the student classification in 
some level cannot be done without any uncertainty [5]. For the evaluation of these 
answers we will consider the following factors (that correspond to the factor that the 
teachers take into account when dealing with controversial cases):  

E

3   Student Level Determination System for ach Theme Section: 
Non-Controversial Answers 

In the previous section we briefly described the procedure that was followed in order 
to implement the automated classification of students into levels of knowledge.  We 
mentioned that the students’ answers, in the five different theme sections, are divided 

E
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2. The number of void answers, which is the number of question that were left 
unanswered by the student. This factor is considered since it affects the student’s 
evaluation. If, for example, we want to grade a controversial answer (e,g  case 
Q4. WRONG, Q5. RIGHT, Q6. RIGHT)  and the student has a great number of 
unanswered questions, this means that probably the student is not answering the 
questions randomly, but he/she answers the question seriously. We conclude that 
probably the wrong answer in Q.4 is wrong due to carelessness, since the right 
answers in Q.5 and Q.6 (which are obviously much harder to answer that Q.4) are 
not given by chance.  Consequently the student can be classified in the Relational 
level in the specific theme section.. 

3. Child level, meaning the general impression the student makes.  

Controversial cases occur when a right answer follows a wrong one.  These cases are 
12 in total, as it is presented in the following table (Table 2): 

Table 2. Controversial answers description 

SYMBOL ANSWERS KNOWLEDGE LEVEL 
001 WRONG – WRONG - RIGHT ? 
010 WRONG – RIGHT - WRONG ? 
011 WRONG – RIGHT - RIGHT ? 
101 RIGHT – WRONG - RIGHT ? 
221 INVALID – INVALID - RIGHT ? 
212 INVALID – RIGHT - INVALID ? 
211 INVALID – RIGHT - RIGHT ? 
210 INVALID – RIGHT - WRONG ? 
121 RIGHT – INVALID - RIGHT ? 
021 WRONG – INVALID - RIGHT ? 
012 WRONG – RIGHT - INVALID ? 
201 INVALID – WRONG - RIGHT ? 

 
 

In general, we can say that the selection of the level in cases of the controversial 
answers is different depending on the student. It is affected by the student’s answers 
to previous questions, the number of questions that are left unanswered and the level 
of the question. In order to model the controversial cases there have been designed 
and implemented two fuzzy systems, that are analytically described in the next 
sections [6]. 

4.1   Rigor Grading Determination Subsystem  

The first system evaluates the Rigor according to which the student will be graded.  
Rigor is a number between 0 and 1 and it is used for the classification of student in 
knowledge levels.  The system has three inputs and one output. The inputs are factors 
that affect the grading of each controversial answer: number of unanswered question, 
question level and child level [8].  The output is one: the Rigor. The question level is 
evaluated according to the answers of other students to this question. The more the 

1. The difficulty of the certain subject that obviously affects its grading. 
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to interpret the student answers in values between 0 and 10 we apply the following 
formula: 

         Results = α + β + γ + δ 
where α  is  the number  of  right  answers,  β is the number of last right answer, γ  is 
the number of first right answer δ is the number of void answers. The controversial 
answers can only have two values otherwise they are not controversial. ( ). The 
greatest number we can have is 10 and the least 4. 

a ≤ 2

The second input of the system is the student level in the theme section under 
consideration. The output of the two fuzzy systems, in combination with the output of 
the neural network, determines the levels of the students in the five theme sections.  

 The output values are between 0 and 3.  ) corresponds to Pre-Structural level, 1 to 
Single-Structural, 2 to Multi-Structural and 3 to Relational.  The rules that associate 
the inputs with the outputs are the following:  

1. If Rigor is HIGH then the Level is LOW. 
2. If Rigor is AVERAGE then the Level is MEDIUM. 
3. If Rigor is LOW then the Level is HIGH. 
4. If the Answers are FEW then the Level is LOW. 
5. If the Answers are ENOUGH then the Level is MEDIUM. 
6. If the Answers are MANY then the Level is HIGH. 

5   Final Level Determination 

Up to now, we have determined the levels of knowledge of students in five different 
theme sections. Based on these levels we will determine the final overall level. The 
final level is a number between 0 and 3 that corresponds to one of the four knowledge 
levels. In the previous sections we described the procedure of level determination 
based on the theme sections.  The procedure that follows next investigates the 
students’ answers according to knowledge levels rather than theme sections [11]. The 
degrees of trust will specify at what point the student under investigation belongs to 
each level. The degree of trust is number between 0 and 1.   

The system was divided into four parts, each one associating the number of given 
answers to the number that we believe it belongs to the specific level (Fig.  4.). 

 The degrees of trust are three: one for the Single-Structural, one for the Multi-
Structural and one for the Relational. For the Pre-Structural there is no degree of trust 
because it always equals 1 since there are not any questions or answers and 
additionally it is the lowest level and consequently there can be no degree of trust less 
than 1.    Next, having 3 degrees of trust we decide on the final level by taking the 
average. The average is taken according to the level. Having o 1 for the Pre-
Structural, 2 for the Multi-Structural and 3 for the Relational we get:  

ε = + +
+ +

1 2 31 2 3

1 2 3

C C C
C C C

, 

ε ε ε is  the  final  level  .   can be a decimal number.  For example  if where = 15. , 
then the student is uniformly classified between Single-Structural and Multi-
Structural Level. 
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None Few Much Very
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Fig.  4. Number of answers in the specific level 

Fig.  5.   SStudents per Leevel Graph 

 

6   Case Study: The Solo Program  

The SOLO program is the interface that contains a powerful intelligent engine that 
uses an educational diagnostic tool, which basically manages the data of the class and 
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the students [7]. It is very simple and easy to use, providing help support. Below are 
stated some selections provided by the interface:  

Students per Level: With this selection the user is provided in 2D or 3D graph the 
distribution on the students depending on the level the students are (Fig. 5). 
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