
Parallelism Increases Iterative Learning Power

John Case and Samuel E. Moelius III

Department of Computer & Information Sciences
University of Delaware

103 Smith Hall
Newark, DE 19716

{case,moelius}@cis.udel.edu

Abstract. Iterative learning (It-learning) is a Gold-style learning model
in which each of a learner’s output conjectures may depend only upon
the learner’s current conjecture and the current input element. Two ex-
tensions of the It-learning model are considered, each of which involves
parallelism. The first is to run, in parallel, distinct instantiations of a
single learner on each input element. The second is to run, in parallel,
n individual learners incorporating the first extension, and to allow the
n learners to communicate their results. In most contexts, parallelism is
only a means of improving efficiency. However, as shown herein, learn-
ers incorporating the first extension are more powerful than It-learners,
and, collective learners resulting from the second extension increase in
learning power as n increases. Attention is paid to how one would actu-
ally implement a learner incorporating each extension. Parallelism is the
underlying mechanism employed.

1 Introduction

Iterative learning (It-learning) [Wie76, LZ96, CJLZ99, CCJS06, CM07a] is a
mathematical model of language learning in the style of Gold [Gol67].1 In this
model, the learner (commonly denoted by M, for machine) is an algorithmic
device that is repeatedly fed elements from an infinite sequence. The elements
of the sequence consist of numbers and, possibly, pauses (#). The set of all such
numbers represents a language. After being fed each element, the learner either:
outputs a conjecture, or diverges.2 A conjecture may be either: a grammar , pos-
sibly for the language represented by the sequence, or ‘?’.3 Most importantly, the
learner may only consider its current conjecture and the current input element
when forming a new conjecture.

For the remainder of this section, let M be a fixed learner. For now, M may be
thought of as an It-learner. Later in this section, we will treat M as a instance of

1 In this paper, we focus exclusively on language learning, as opposed to, say, function
learning [JORS99].

2 Intuitively, if a learner M diverges, then M goes into an infinite loop.
3 N.B. Outputting ‘?’ is not the same as diverging. Outputting ‘?’ requires only finitely

many steps; whereas, diverging requires infinitely many steps.

M. Hutter, R.A. Servedio, and E. Takimoto (Eds.): ALT 2007, LNAI 4754, pp. 49–63, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



50 J. Case and S.E. Moelius III

M0p0

x0

M1p1

x1

p2 Mj

xj

pj+1· · · pj

Fig. 1. The iterative learning process. The jth instantiation of learner M, Mj , is fed
the current conjecture pj and current input element xj . From these, Mj produces a
new conjecture pj+1.

a more general type of learner. Let x0, x1, ... be an arbitrary input sequence. Let
p0 be M’s initial conjecture (i.e., M’s conjecture having been fed no data), and,
for all j, let pj+1 be the result of Mj, where Mj is the computation performed by
running M on inputs pj and xj . In the event that Mj diverges, we let pj+1 = ⊥.
(By convention, p0 cannot be ⊥.) We shall refer to Mj as the jth instantiation
of M. See Figure 1.

An It-learner M is successful at learning the language represented by x0, x1,
... def⇔

– none of M0,M1, ... diverge (i.e., none of p1, p2, ... is ⊥);
– for some index j0, each of Mj0 ,Mj0+1, ... results in pj0+1; and ,
– pj0+1 correctly describes the language represented by x0, x1, ... .

We say that M identifies a language L, or, L is identifiable by M def⇔ M is
successful at learning L from any input sequence representing L.

The pattern languages are an example of a class of languages that are It-
learnable, i.e., there exists an It-learner capable of identifying every language
in the class. A pattern language is (by definition) the language generated by all
positive length substitution instances in a pattern (e.g., abXYcbbZXa, where the
variables/nonterminals are depicted in uppercase, and the constants/terminals
are depicted in lowercase). The pattern languages and their learnability were
first considered by Angluin [Ang80]. Since then, much work has been done on
the learnability of pattern languages [Sal94a, Sal94b, CJK+01] and finite unions
thereof [Shi83, Wri89, KMU95, BUV96]. The class of pattern languages, itself,
was shown to be It-learnable by Lange and Wiehagen [LW91]. Subsequently,
this result was extended by Case, et al. [CJLZ99] who showed that, for each
k, the class formed by taking the union of all choices of k pattern languages
is It-learnable. Nix [Nix83], as well as Shinohara and Arikawa [SA95], outline
interesting applications of pattern inference algorithms.

It-learning is a memory limited special case of the more general explanatory
learning (Ex-learning) [Gol67, JORS99]4 and behaviorally correct learning (Bc-
learning) [CL82, JORS99].5 Ex and Bc-learners are not , in general, limited

4 Ex-learning is the model that was actually studied by Gold [Gol67].
5 Other memory limited learning models are considered in [OSW86, FJO94, CJLZ99,

CCJS06].



Parallelism Increases Iterative Learning Power 51

to just the current conjecture and current input element when forming a new
conjecture. Rather, such learners can refer to conjectures and/or input elements
arbitrarily far into the past.6

Many It-learnable classes of languages are of practical interest. For example,
the pattern languages, mentioned above, are a class whose learnability has ap-
plications to problems in molecular biology [AMS+93, SSS+94, SA95]. There is
benefit in knowing that a class of languages is It-learnable, in that It-learners
satisfy the following informal property.

Property 1. Each element of an input sequence may be discarded (and any as-
sociated resources freed) immediately after the element is fed to the learner.

Clearly, Ex and Bc-learners do not satisfy Property 1. In general, an imple-
mentation of an Ex or Bc-learner would have to store each element of an input
sequence indefinitely. Thus, from a practical perspective, showing a class of lan-
guages to be It-learnable is far more desirable than showing it to be merely Ex
or Bc-learnable.

Herein, we consider two extensions of the It-learning model, each of which
involves parallelism. The first is to run, in parallel, distinct instantiations of a
single learner on each input element (see Section 1.1 below). We call a learner
incorporating this extension a 1-ParIt-learner . Our second extension is to run,
in parallel, n distinct learners incorporating the first extension, and to allow
the n learners to communicate their results (see Section 1.2 below).7 We call a
collective learner resulting from this latter extension, an n-ParIt-learner .

Each extension is described in further detail below.

1.1 First Extension

As mentioned previously, for an It-learner M to be successful at learning a lan-
guage, none of its instantiations M0,M1, ... may diverge. Thus, a most obvious
implementation of M would run Mj only after Mj−1 has converged. We can put
each such Mj squarely into one of two categories: those that need pj to compute
pj+1, and those that do not . For those that do not , there is no reason to wait
until Mj−1 has converged, nor is there reason to require that Mj−1 converge at
all.

Thus, our first extension is to allow M0,M1, ... to run in parallel. We do not
require that each of M0,M1, ... converge, as is required by It-learning. However,
we do require that if Mj needs pj to compute pj+1, and , Mj−1 diverges, then
Mj also diverges. This is an informal way of saying that M must be mono-
tonic [Win93]. This issue is discussed further in Section 1.2.

We call a learner incorporating our first extension a 1-ParIt-learner . We say
that such a learner is successful at learning the language represented by x0, x1, ...
def⇔ for some index j0,
6 Bc-learners differ from Ex-learners in that, beyond some point, all of the conjectures

output by a Bc-learner must correctly (semantically) describe the input language,
but those conjectures need not be (syntactically) identical.

7 The reader should not confuse this idea with team learning [JORS99].



52 J. Case and S.E. Moelius III

 = ^

(b)
(a)

Mj–2pj–2

xj–2

Mj–1pj–1

xj–1

Mjpj

xj

pj+1· · ·  /

Fig. 2. How a 1-ParIt-learner M may be implemented. Once Mj has converged (i.e.,
has resulted in something other than ⊥) (a), any previous instantiations of M that are
still running may be forcibly terminated (b).

– each of Mj0 ,Mj0+1, ... converges;
– each of Mj0 ,Mj0+1, ... results in pj0+1; and ,
– pj0+1 correctly describes the language represented by x0, x1, ... .

A 1-ParIt-learner may be implemented in the following manner. Successively,
for each j, start running Mj . Simultaneously, watch for each Mj that is currently
running to converge. Whenever j is such that Mj converges, forcibly terminate
any currently running instantiations of the form M0, ...,Mj−1. (The idea is that
once Mj has converged, the results of any previous instantiations of M are no
longer needed. See Figure 2.)

Clearly, a learner implemented in this way will not satisfy Property 1. How-
ever, if x0, x1, ... represents a language identifiable by M, then, for some index
j0, each of Mj0 ,Mj0+1, ... will converge. Thus, on such an input sequence, each
instantiation Mj will eventually either: converge or be forced to terminate. Once
either has occurred, the inputs of Mj may be discarded. As such, every 1-ParIt-
learner satisfies the following weakened version of Property 1.

Property 2. If an input sequence represents a language identifiable by the learner,
then each element of the sequence may be discarded eventually.

Clearly, Ex and Bc-learners do not satisfy even the weaker Property 2. Thus,
from a practical perspective, 1-ParIt-learners are more attractive than Ex or
Bc-learners.

Our first main result, Theorem 1 in Section 3, is that 1-ParIt-learners are
strictly more powerful than It-learners.

1.2 Second Extension

An obvious parallel generalization of the preceding ideas is to run, in parallel,
distinct, individual learners incorporating the first extension. Clearly, nothing is
gained if each such learner runs in isolation. But, if the learners are allowed to
communicate their results, then the resulting collective learner can actually be
more powerful than each of its individual learners.

For the remainder of this section, let n ≥ 1 be fixed, and let M0, ...,Mn−1 be
n learners incorporating the first extension. Let p0

i be Mi’s initial conjecture,
and, for each i < n, and each j, let pj+1

i be the result of Mj
i .



Parallelism Increases Iterative Learning Power 53

x0 xj

M1M
0

Mn–1M0

M0M
0 p0

p1

pn–1

p0

p1

pn–1

M1M
j

Mn–1Mj

M0M
j p0

p1

pn–1

p1

p1

p1

pj

pj

pj

pj+1

pj+1

pj+1

p0

p1

pn–1

p0

p0

p0

Fig. 3. A collective learner resulting from our second extension. For each i < n, and
each j, individual learner Mi may consider conjectures pj

0, ..., p
j
n−1 and input element

xj when forming conjecture pj+1
i .

Our second extension is to allow M0, ...,Mn−1 to run in parallel. For each
i < n, and each j, we allow Mj

i to consider pj
0, ..., p

j
n−1 and xj when forming

conjecture pj+1
i (see Figure 3). However, as in the 1-ary case, we require that

each Mi be monotonic.8 So, if Mj
i needs pj

i′ to compute pj+1
i , and , Mj−1

i′ di-
verges, then Mj

i also diverges. The following examples give some intuition as to
which strategies Mj

i may employ, and which strategies Mj
i may not employ, in

considering pj
0, ..., p

j
n−1. Exactly which such strategies Mj

i may employ is made
formal by Definition 2 in Section 3.

Example 1. Mj
i may employ any of the following strategies in considering pj

0, ...,

pj
n−1.

(a) Mj
i does not wait for any of Mj−1

0 , ...,Mj−1
n−1 to converge; Mj

i uses just xj

to compute pj+1
i .

(b) Mj
i waits for Mj−1

i′ to converge. Then, Mj
i uses pj

i′ to compute pj+1
i .

(c) Mj
i waits for Mj−1

i′ to converge. Then, Mj
i performs some computable test

on pj
i′ , and, based on the outcome, either: uses just pj

i′ to compute pj+1
i ; or,

waits for Mj−1
i′′ to converge, and uses both pj

i′ and pj
i′′ to compute pj+1

i .
(d) Mj

i waits for each of Mj−1
0 , ...,Mj−1

n−1 to converge, in some predetermined
order. Then, Mj

i uses each of pj
0, ..., p

j
n−1 to compute pj+1

i .

Example 2. In general, Mj
i may not employ the following strategy in considering

pj
0, ..., p

j
n−1 when n ≥ 2.

(∗) Mj
i waits for any of Mj−1

0 , ...,Mj−1
n−1 to converge. Then, for that i′ < n such

that Mj−1
i′ converges first , Mj

i uses pj+1
i′ to compute pj+1

i .

Example 2 is revisited following Definition 2 in Section 3.
8 In this context, monotonicity is equivalent to continuity [Win93], since each Mj

i

operates on only finitely much data.



54 J. Case and S.E. Moelius III

xj–2 xj–1 xj

M1M
j–2

Mn–1Mj–2

M0M
j–2 p0

p1

pn–1

M1M
j–1

Mn–1Mj–1

M0M
j–1 p0

p1

pn–1

M1M
j

Mn–1Mj

M0M
j p0

p1

pn–1  = ^

 = ^

 = ^pj–1

pj–1

pj–1

pj

pj

pj

pj+1

pj+1

pj+1

(b)

 = ^
(a)

 /

 /

 /

 /

Fig. 4. How an n-ParIt-learner M = (M0, ..., Mn−1) may be implemented. Once each
of Mj

0, ..., M
j
n−1 has converged (a), any previous instantiations of M0, ..., Mn−1 that

are still running may be forcibly terminated (b).

Let M = (M0, ...,Mn−1). We call such a collective learner M an n-ParIt-
learner . We say that such a learner is successful at learning the language repre-
sented by x0, x1, ... def⇔ for some index j0, and each i < n,

– each of Mj0
i ,Mj0+1

i , ... converges;
– each of Mj0

i ,Mj0+1
i , ... results in pj0+1

i ; and ,
– pj0+1

i correctly describes the language represented by x0, x1, ... .

A strategy for running instantiations of an n-ParIt-learner can easily be gen-
eralized from the 1-ary case. Instantiations may be terminated using the follow-
ing strategy. Whenever j is such that each of Mj

0, ...,M
j
n−1 converges, forcibly

terminate any currently running instantiations of the form M0
i , ...,M

j−1
i , where

i < n. (The idea is that once each of Mj
0, ...,M

j
n−1 has converged, the results of

any previous instantiations of M0, ...,Mn−1 are no longer needed. See Figure 4.)
Clearly, if x0, x1, ... represents a language identifiable by M, then, for all but

finitely many j, each of Mj
0, ...,M

j
n−1 will converge. It follows that an n-ParIt-

learner implemented as described in the just previous paragraph satisfies Prop-
erty 2. Thus, from a practical perspective, n-ParIt-learners are more attractive
than Ex or Bc-learners.

Our second main result, Theorem 2 in Section 3, is that, for all n ≥ 1,
(n + 1)-ParIt-learners are strictly more powerful than n-ParIt-learners.

1.3 Summary of Results

Our results are summarized by the following diagram, where the arrows represent
proper inclusions.

It −→ 1-ParIt −→ 2-ParIt −→ · · ·



Parallelism Increases Iterative Learning Power 55

That is, 1-ParIt-learners are strictly more powerful than It-learners (Theo-
rem 1). Furthermore, for all n ≥ 1, (n + 1)-ParIt-learners are strictly more
powerful than n-ParIt-learners (Theorem 2). Thus, we think it fair to say: par-
allelism increases iterative learning power.

The remainder of this paper is organized as follows. Section 2 covers notation
and preliminaries. Section 3 gives the formal definition of n-ParIt-learning and
presents our results.

2 Notation and Preliminaries

Computability-theoretic concepts not explained below are treated in [Rog67].
N denotes the set of natural numbers, {0, 1, 2, . . .}. N?

def= N ∪ {?}. N?,⊥ def=
N?∪{⊥}. N#

def= N∪{#}. Lowercase Roman letters other than f , g, p, and q, with
or without decorations, range over elements of N. f and g will be used to denote
(possibly partial) functions of various types. The exact type of f and g will be
made clear whenever they are introduced. p and q, with or without decorations,
range over N?,⊥. p and q will be used to denote tuples whose elements are drawn
from N?,⊥. The size of p and q will be made clear whenever they are introduced.
For all n, all p ∈ N

n
?,⊥, and all i < n, (p)i denotes the ith element of p, where

the first element is considered the 0th. D0, D1, ... denotes a fixed, canonical
enumeration of all finite subsets of N such that D0 = ∅ [Rog67]. Uppercase
Roman letters, with or without decorations, range over all (finite and infinite)
subsets of N. L ranges over collections of subsets of N.

〈·, ·〉 : N × N → N denotes any fixed, 1-1, onto, computable function. In some
cases, we will write A × B for {〈a, b〉 : a ∈ A ∧ b ∈ B}.

For all p and q, p 
 q def⇔ [p = ⊥ ∨ p = q]. For all n, and all p, q ∈ N
n
?,⊥,

p 
 q def⇔ (∀i < n)[(p)i 
 (q)i]. For all n, and all p ∈ N
n
?,⊥, |p|�=⊥ def= |{i < n :

(p)i �= ⊥}|. So, for example, |(0, 1, ⊥, ⊥, ?)|�=⊥ = 3.
ϕ0, ϕ1, ... denotes any fixed, acceptable numbering of all partial computable

functions of type N ⇀ N [Rog67]. For each i, we will treat ϕi as a total function
of type N → N⊥, where ⊥ denotes the value of a divergent computation.9 For
all i, Wi

def= {x ∈ N : ϕi(x) �= ⊥}. Thus, for all i, Wi is the ith recursively
enumerable set [Rog67].

N
∗
# denotes the set of all finite initial segments of total functions of type

N → N#. N
≤ω
# denotes the set of all (finite and infinite) initial segments of total

functions of type N → N#. λ denotes the empty initial segment. ρ, σ, and τ ,
with or without decorations, range over elements of N

∗
#.

For all f ∈ N
≤ω
# , content(f) def= {y ∈ N : (∃x)[f(x) = y]}. For all f ∈ N

≤ω
# and

L, f represents L def⇔ f is total and content(f) = L.10 For all σ, |σ| denotes the
length of σ, i.e., the number of elements in σ. For all f ∈ N

≤ω
# , and all n, f [n]

denotes the initial segment of f of length n, if it exists; f , otherwise. For all σ,
all f ∈ N

≤ω
# , and all i,

9 N.B. It cannot , in general, be determined whether ϕi(x) = ⊥, for arbitrary i and x.
10 Such an f is often called a text (for L) [JORS99].



56 J. Case and S.E. Moelius III

(σ � f)(i) def=

{
σ(i), if i < |σ|;
f(i − |σ|), otherwise. (1)

M will be used to denote partial computable functions of type N
∗
# ⇀ N

n
? , for

various n. However, as with ϕ0, ϕ1, ..., we will treat each M as a total function
of type N

∗
# → N

n
?,⊥. The exact type of M will be made clear whenever it is

introduced. For all n, all M : N
∗
# → N

n
?,⊥, all i < n, and all ρ, Mi(ρ) def=

(
M(ρ)

)
i
.

The following is the formal definition of It-learning.11

Definition 1

(a) For all M : N
∗
# → N?,⊥ and L, M It-identifies L ⇔ (i) and (ii) below.

(i) For all f representing L, there exist j and p ∈ N such that (∀j′ ≥ j)[
M(f [j′]) = p

]
and Wp = L.12

(ii) For all ρ, σ, and τ such that content(ρ) ∪ content(σ) ∪ content(τ) ⊆ L,
(α) and (β) below.
(α) M(ρ) �= ⊥.
(β) M(ρ) = M(σ) ⇒ M(ρ � τ) = M(σ � τ).

(b) For all M : N
∗
# → N?,⊥, It(M) = {L : M It-identifies L}.

(c) It = {L : (∃M : N
∗
# → N?,⊥)[L ⊆ It(M)]}.

Some of our proofs make use of the Operator Recursion Theorem (ORT)
[Cas74]. ORT represents a form of infinitary self-reference, similar to the way in
which Kleene’s Recursion Theorem [Rog67, page 214, problem 11-4] represents
a form of individual self-reference. That is, ORT provides a means of forming
an infinite computable sequence of programs e0, e1, ... such that each program ei

knows all programs in the sequence and its own index i. The sequence can also
be assumed monotone increasing. The first author gives a thorough explanation
of ORT in [Cas94].

3 Results

This section gives the formal definition of n-ParIt-learning and presents our re-
sults. Namely, this section shows that 1-ParIt-learners are strictly more powerful
than It-learners (Theorem 1). It also shows that, for all n ≥ 1, (n + 1)-ParIt-
learners are strictly more powerful than n-ParIt-learners (Theorem 2).

Definition 2. For all n ≥ 1, (a)-(c) below.

(a) For all M : N
∗
# → N

n
?,⊥ and L, M n-ParIt-identifies L ⇔ (i) and (ii)

below.
(i) For all f representing L, there exist j and p ∈ N

n such that (∀j′ ≥ j)
[M(f [j′]) = p] and (∀i < n)[W(p)i

= L].

11 It-learners are often given a formal definition more in line with their description in
Section 1. The definition given herein was inspired, in part, by the Myhill-Nerode
Theorem [DSW94]. A proof that this definition is equivalent to the more common
definition can be found in [CM07b].

12 Condition (a)(i) in Definition 1 is equivalent to: M Ex-identifies L [Gol67, JORS99].



Parallelism Increases Iterative Learning Power 57

(ii) (∀ρ, σ, τ)[M(ρ) 
 M(σ) ⇒ M(ρ � τ) 
 M(σ � τ)].
(b) For all M : N

∗
# → N

n
?,⊥, n-ParIt(M) = {L : M n-ParIt-identifies L}.

(c) n-ParIt = {L : (∃M : N
∗
# → N

n
?,⊥)[L ⊆ n-ParIt(M)]}.

Example 3 (Example 2 revisited). Suppose that M : N
∗
# → N

2
?,⊥, ρ, σ, p ∈ N

2
?,⊥,

and x are such that (a)-(e) below.

(a) M(ρ) = M(σ) = p.
(b) |p|�=⊥ = 2.
(c) (p)0 �= (p)1.
(d) In the computation of M0(ρ � x), M0 waits for either of M0(ρ) or M1(ρ) to

converge. Then, for the i ≤ 1 such that Mi(ρ) converges first , M0(ρ � x) =
Mi(ρ). Similarly, in the computation of M0(σ � x), M0 waits for either of
M0(σ) or M1(σ) to converge. Then, for the i ≤ 1 such that Mi(σ) converges
first , M0(σ � x) = Mi(σ).

(e) In the computation of M(ρ), M0(ρ) converges before M1(ρ); in computation
of M(σ), M1(σ) converges before M0(σ).

Then, for all L, M does not 2-ParIt-identify L, i.e., M is not a 2-ParIt-learner.

Proof. By (a) above, M(ρ) 
 M(σ). By (c)-(e) above, M0(ρ � x) = (p)0 �=
(p)1 = M0(σ �x). Thus, by (b) above, M(ρ�x) �
 M(σ �x). But this contradicts
condition (a)(ii) in Definition 2. � (Example 3 )

Intuitively, the M described in Example 3 violates Definition 2 because: (1)
M makes use of, not just the value of a conjecture, but also the time used to
compute it; and, (2) the elements of N?,⊥ do not capture this information. To
overcome this difficulty would require that a learner be defined as object with a
more complex range than N

n
?,⊥. It would be interesting to explore generalizations

of Definition 2 that do this.
The following straightforward variant of It-learning is used in the proof of

Theorem 1.

Definition 3

(a) For all M : N
∗
# → N?,⊥ and L, M TotIt-identifies L ⇔ M It-identifies L,

and , for all ρ, M(ρ) �= ⊥.
(b) For all M : N

∗
# → N?,⊥, TotIt(M) = {L : M TotIt-identifies L}.

(c) TotIt = {L : (∃M : N
∗
# → N?,⊥)[L ⊆ TotIt(M)]}.

Recall that if a learner M It-identifies language L, then it is only required that
M(ρ) �= ⊥ for those ρ such that content(ρ) ⊆ L. However, if M TotIt-identifies
L, then, for all ρ, M(ρ) �= ⊥.

The following is a basic fact relating It and TotIt.

Proposition 1. For all L ∈ It, if N ∈ L, then L ∈ TotIt.

Proof. Straightforward. � (Proposition 1 )

The following lemma is used in the proof of Theorem 1.



58 J. Case and S.E. Moelius III

Lemma 1. Let L be the class of languages consisting of each L satisfying (a)-(c)
below.

(a) (∀e ∈ L)[ϕe(0) �= ⊥].
(b) {ϕe(0) : e ∈ L} is finite.
(c) L =

⋃
e ∈ L Wϕe(0).

Then, L ∈ It − TotIt.

Proof that L ∈ It. Let f : N → N be a 1-1, computable function such that, for
all a,

Wf(a) =
⋃

e ∈ Da

We. (2)

Let M : N
∗
# → N?,⊥ be such that M(λ) = f(0), and, for all ρ, a, and e, if

M(ρ) = f(a), then

M(ρ � e) =

⎧⎪⎪⎨
⎪⎪⎩

f(a), if ϕe(0) ∈ Da;
f(b), if ϕe(0) ∈ (N − Da),

where b is such that Db = Da ∪ {ϕe(0)};
⊥, if ϕe(0) = ⊥.

(3)

Clearly, L ⊆ It(M).

Proof that L �∈ TotIt. By way of contradiction, suppose that M : N
∗
# → N?,⊥

is such that L ⊆ TotIt(M). By ORT, there exist distinct ϕ-programs e0, e1, ...
such that, for all i and x,

We0 = {ej+2 : ϕej+2 (0) = e0}; (4)
We1 = {ej+2 : ϕej+2 (0) = e1}; (5)

ϕei+2(x) =

⎧⎨
⎩

e1, if i is least such that
M(e2 � · · · � ei+2) = M(e2 � · · · � ei+1);

e0, otherwise.
(6)

Consider the following cases.

Case (∀i)[ϕei+2(0) = e0]. Then, clearly, We0 = {ej+2 : j ∈ N} and We0 ∈ L.
By the case, for all i, M(e2 �· · ·�ei+2) �= M(e2 �· · ·�ei+1). But then, clearly,
We0 �∈ It(M).
Case (∃i)[ϕei+2 (0) = e1]. Then, clearly, We0 = {ej+2 : j �= i} and (∀j �= i)
[ϕej+2 (0) = e0]. Furthermore, We1 = {ei+2} and ϕei+2(0) = e1. Thus, We0 ∪
We1 and We0 are distinct languages in L. Let f and f− be as follows.

f = e2 � e3 � · · · . (7)
f− = e2 � e3 � · · · � ei+1 � ei+3 � ei+4 � · · · . (8)

Clearly, f represents We0 ∪ We1 , and f− represents We0 . Let k be such that
M(f [k]) ∈ N, M(f−[k]) ∈ N, and

(∀k′ ≥ k)
[
M(f [k′]) = M(f [k]) ∧ M(f−[k′]) = M(f−[k])

]
. (9)

From the case, it follows that M(f [k]) = M(f−[k]). But, clearly, this is a
contradiction. � (Lemma 1 )



Parallelism Increases Iterative Learning Power 59

Theorem 1. Let L be as in Lemma 1. Let L′ be such that L′ = L∪{N}. Then,
L′ ∈ 1-ParIt − It.

Proof (Sketch) that L′ ∈ 1-ParIt. By Lemma 1, there exists M : N
∗
# → N?,⊥

such that L ⊆ It(M). Let z0 be such that ϕz0(0) = ⊥. Clearly, for all L ∈ L,
z0 �∈ L. Consider an M′ : N

∗
# → N?,⊥ described informally as follows. On any

given input sequence, M′ simulates M until, if ever, M′ is fed z0. Upon being
fed z0, M′ stops simulating M, and starts outputting a conjecture for N. Clearly,
for such an M′, L′ ⊆ 1-ParIt(M′).

Proof that L′ �∈ It. By way of contradiction, suppose that L′ ∈ It. Then, by
Proposition 1, L′ ∈ TotIt. Let M : N

∗
# → N?,⊥ be such that L′ ⊆ TotIt(M).

Then, L ⊂ L′ ⊆ TotIt(M). But this contradicts Lemma 1. ≈ � (Theorem 1 )

Theorem 2. Let n ≥ 1 be fixed. For each i < n, let zi be any fixed ϕ-program
such that Wϕzi

(0) = {〈i, zi〉}. Let Ln be the class of languages consisting of each
L ⊆ {0, ..., n − 1} × N satisfying either (a) or (b) below.

(a) (i) and (ii) below.
(i) L ∩ ({0, ..., n − 1} × {z0, ..., zn−1}) = ∅.
(ii) For each i < n, if E is such that E = {e ∈ N : 〈i, e〉 ∈ L}, then (α)-(γ)

below.
(α) (∀e ∈ E)[ϕe(0) ∈ N].
(β) {ϕe(0) : e ∈ E} is finite.
(γ) L =

⋃
e ∈ E Wϕe(0).

(b) There exists i < n such that (i) and (ii) below.
(i) L ∩ ({0, ..., n − 1} × {z0, ..., zn−1}) = {〈i, zi〉}.
(ii) If E is such that E = {e ∈ N : 〈i, e〉 ∈ L}, then (α)-(γ) as in (a)(ii)

above for this E.

Then, for all n ≥ 1, Ln+1 ∈ (n + 1)-ParIt − n-ParIt.

Proof (Sketch) that Ln+1 ∈ (n + 1)-ParIt. Let n ≥ 1 be fixed. Let f : N
2 → N

be a 1-1, computable function such that, for all j and a,

Wf(j,a) =
⋃

e ∈ Da

We. (10)

Let M : N
∗
# → N

n+1
?,⊥ be such that, for each i ≤ n, Mi(λ) = f(i, 0), and, for all

ρ, k, and e, Mi(ρ � 〈k, e〉) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mk(ρ), if e = zk;
Mj(ρ), if e �= zk ∧ [j �= i ∨ k �= i ∨ ϕe(0) ∈ Da],

where j and a are such that Mi(ρ) = f(j, a);
f(i, b), if e �= zk ∧ j = i ∧ k = i ∧ ϕe(0) ∈ (N − Da),

where j, a, and b are such that Mi(ρ) = f(j, a)
and Db = Da ∪ {ϕe(0)};

⊥, if e �= zk ∧
[
[j = i ∧ k = i ∧ ϕe(0) = ⊥] ∨ Mi(ρ) = ⊥

]
,

where j is such that Mi(ρ) = f(j, a), for some a.

(11)



60 J. Case and S.E. Moelius III

Stage s = 0.

1. For each i ≤ n, set ϕei+1(0) = e0.
2. Set W 1

e0 = {〈0, e1〉, ..., 〈n, en+1〉}.
3. Set ρ1 = 〈0, e1〉 � · · · � 〈n, en+1〉.

Stage s ≥ 1.

1. Find ρ′, if any , such that ρs ⊆ ρ′ ⊂ ρs � #ω and |M(ρ′)|�=⊥ = n.
2. For k from n down through −1, do:
Wait until, if ever , it is discovered that one of the following two conditions applies.
Cond. (α): (∃q : |q|�=⊥ = n − k)(∀σ ∈ {〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉, λ})

[q 
 M(ρ′ � σ � 〈k + 1, ef(s)+k+1〉 � · · · � 〈n, ef(s)+n〉)].
a. Set ϕef(s)+k

(0) = any ϕ-program p such that Wp = {〈k, ef(s)+k〉}.
b. Proceed to the next value of k.

Cond. (β): M(ρ′ � 〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉) �
 M(ρ′).
a. For each i ≤ k, set ϕef(s)+i

(0) = e0.
b. Set W s+1

e0 = W s
e0 ∪ {〈0, ef(s)〉, ..., 〈k, ef(s)+k〉}.

c. Set ρs+1 = ρ′ � 〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉.
d. Go to stage s + 1.

(Note that the iteration of the loop in which k = n is always exited. Also, note
that if k reaches the value −1, then the construction intentionally goes into an
infinite loop.)

Fig. 5. The behavior of ϕ-programs e0, e1, ... in the proof of Theorem 2

It can be shown that Ln+1 ⊆ (n + 1)-ParIt(M) (details omitted).

Proof that Ln+1 �∈ n-ParIt. By way of contradiction, suppose that n ≥ 1 and
M : N

∗
# → N

n
?,⊥ are such that Ln+1 ⊆ n-ParIt(M). Let f : N → N be such

that, for all s,
f(s) = s · (n + 1) + 1. (12)

By ORT, there exist distinct ϕ-programs e0, e1, ..., none of which are z0, ..., zn,
and whose behavior is as in Figure 5.

Claim 1. For all s ≥ 1, if stage s is entered, then (a)-(c) below.
(a) (∀〈i, e〉 ∈ W s

e0
)[i ≤ n ∧ e �∈ {z0, ..., zn} ∧ ϕe(0) = e0].

(b) content(ρs) = W s
e0

.
(c) ρs � #ω represents W s

e0
.

Proof of Claim. (a) is clear by construction. (b) is proven by a straightforward
induction. (c) follows immediately from (b). � (Claim 1 )

Claim 2. For all s ≥ 1, if stage s is exited, then there exist ρ′ and ρ′′ such that
ρs ⊆ ρ′ ⊂ ρ′′ ⊆ ρs+1 and M(ρ′′) �
 M(ρ′).

Proof of Claim. Clear by construction. � (Claim 2 )



Parallelism Increases Iterative Learning Power 61

If every stage s is exited, then, by Claim 1(a) and Claim 2, We0 ∈ Ln+1 −
n-ParIt(M) (a contradiction). So, for the remainder of the proof, suppose that
stage s is entered but never exited.

If stage s is never exited because there is no ρ′ such that ρs ⊆ ρ′ ⊂ ρs � #ω

and |M(ρ′)|�=⊥ = n, then, by (a) and (c) of Claim 1, W s
e0

∈ Ln+1 −n-ParIt(M)
(a contradiction). So, suppose that stage s is never exited because there exists
k such that −1 ≤ k < n and (¬α) and (¬β) below.

(¬α) (∀q : |q|�=⊥ = n − k)(∃σ ∈ {〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉, λ})
[q �
 M(ρ′ � σ � 〈k + 1, ef(s)+k+1〉 � · · · � 〈n, ef(s)+n〉)].

(¬β) M(ρ′ � 〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉) 
 M(ρ′).

Claim 3.
M(ρ′ � 〈0, ef(s)〉� · · ·� 〈n, ef(s)+n〉) 
 M(ρ′ � 〈k+1, ef(s)+k+1〉� · · ·� 〈n, ef(s)+n〉).
Proof of Claim. Follows from (¬β). � (Claim 3 )

By the choice of k, there exists p such that |p|�=⊥ = n − k − 1 and

(∀σ ∈ {〈0, ef(s)〉 � · · · � 〈k + 1, ef(s)+k+1〉, λ})
[p 
 M(ρ′ � σ � 〈k + 2, ef(s)+k+2〉 � · · · � 〈n, ef(s)+n〉)].

(13)

Claim 4. p = M(ρ′ � 〈0, ef(s)〉 � · · · � 〈n, ef(s)+n〉).
Proof of Claim. By way of contradiction, suppose otherwise. By (13), it must be
the case that

p � M(ρ′ � 〈0, ef(s)〉 � · · · � 〈n, ef(s)+n〉). (14)

But (14) together with Claim 3 contradicts (¬α). � (Claim 4 )

Claim 5.
M(ρ′ � 〈0, ef(s)〉� · · ·� 〈n, ef(s)+n〉) 
 M(ρ′ � 〈k+2, ef(s)+k+2〉� · · ·� 〈n, ef(s)+n〉).
Proof of Claim. Immediate by Claim 4 and (13). � (Claim 5 )

Let p = ϕef(s)+k+1 (0). Thus, by construction, Wp = {〈k + 1, ef(s)+k+1〉}. Let
e′ �∈ {z0, ..., zn, e0, e1, ...} and p′ be as follows.

ϕe′ (0) = p′. (15)

Wp′ = { 〈k + 2, ef(s)+k+2〉, ..., 〈n, ef(s)+n〉,
〈0, ef(s)〉, ..., 〈k, ef(s)+k〉, 〈k + 1, e′〉 }.

(16)

Let L and L− be as follows.

L = W s
e0

∪ Wp ∪ Wp′ ∪ {〈k + 1, zk+1〉}. (17)
L− = W s

e0
∪ Wp′ ∪ {〈k + 1, zk+1〉}. (18)

Clearly, L and L− are distinct languages in Ln+1. Let g and g− be as follows.

g = ρ′ � 〈0, ef(s)〉 � · · · � 〈n, ef(s)+n〉
� 〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉 � 〈k + 1, e′〉 � 〈k + 1, zk+1〉 � #ω.

(19)

g− = ρ′ � 〈k + 2, ef(s)+k+2〉 � · · · � 〈n, ef(s)+n〉
� 〈0, ef(s)〉 � · · · � 〈k, ef(s)+k〉 � 〈k + 1, e′〉 � 〈k + 1, zk+1〉 � #ω.

(20)



62 J. Case and S.E. Moelius III

Clearly, g represents L, and g− represents L−. Let � be such that M(g[�]) ∈ N
n,

M(g−[�]) ∈ N
n, and

(∀�′ ≥ �)
[
M(g[�′]) = M(g[�]) ∧ M(g−[�′]) = M(g−[�])

]
. (21)

From Claim 5, and the fact that M(g[�]) ∈ N
n and M(g−[�]) ∈ N

n, it follows
that M(g[�]) = M(g−[�]). But, clearly, this is a contradiction. ≈ � (Theorem 2 )

Acknowledgments. We are grateful to several anonymous referees for their
meticulous reading of an earlier draft of this paper.

References

[AMS+93] Arikawa, S., Miyano, S., Shinohara, A., Kuhara, S., Mukouchi, Y., Shino-
hara, T.: A machine discovery from amino-acid-sequences by decision trees
over regular patterns. New Generation Computing 11, 361–375 (1993)

[Ang80] Angluin, D.: Finding patterns common to a set of strings. Journal of Com-
puter and System Sciences 21, 46–62 (1980)

[BUV96] Brazma, A., Ukkonen, E., Vilo, J.: Discovering unbounded unions of regu-
lar pattern languages from positive examples. In: Nagamochi, H., Suri, S.,
Igarashi, Y., Miyano, S., Asano, T. (eds.) ISAAC 1996. LNCS, vol. 1178,
Springer, Heidelberg (1996)

[Cas74] Case, J.: Periodicity in generations of automata. Mathematical Systems
Theory 8, 15–32 (1974)

[Cas94] Case, J.: Infinitary self-reference in learning theory. Journal of Experimental
and Theoretical Artificial Intelligence 6, 3–16 (1994)

[CCJS06] Carlucci, L., Case, J., Jain, S., Stephan, F.: Memory-limited U-shaped
learning. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI),
vol. 4005, pp. 244–258. Springer, Heidelberg (2006)

[CJK+01] Case, J., Jain, S., Kaufmann, S., Sharma, A., Stephan, F.: Predictive learn-
ing models for concept drift. Theoretical Computer Science, Special Issue
for ALT’98, 268, 323–349 (2001)

[CJLZ99] Case, J., Jain, S., Lange, S., Zeugmann, T.: Incremental concept learning
for bounded data mining. Information and Computation 152, 74–110 (1999)

[CL82] Case, J., Lynes, C.: Machine inductive inference and language identification.
In: Nielsen, M., Schmidt, E.M. (eds.) Automata, Languages, and Program-
ming. LNCS, vol. 140, pp. 107–115. Springer, Heidelberg (1982)

[CM07a] Case, J., Moelius, S.E.: U-shaped, iterative, and iterative-with-counter
learning. In: COLT 2007. LNCS(LNAI), vol. 4539, pp. 172–186. Springer,
Berlin (2007)

[CM07b] Case, J., Moelius, S.E.: U-shaped, iterative, and iterative-with-counter
learning (expanded version). Technical report, University of Delaware
(2007), Available at http://www.cis.udel.edu/∼moelius/publications

[DSW94] Davis, M., Sigal, R., Weyuker, E.: Computability, Complexity, and Lan-
guages, 2nd edn. Academic Press, London (1994)

[FJO94] Fulk, M., Jain, S., Osherson, D.: Open problems in Systems That Learn.
Journal of Computer and System Sciences 49(3), 589–604 (1994)

[Gol67] Gold, E.: Language identification in the limit. Information and Control 10,
447–474 (1967)

http://www.cis.udel.edu/~moelius/publications


Parallelism Increases Iterative Learning Power 63

[JORS99] Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An
Introduction to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)

[KMU95] Kilpeläinen, P., Mannila, H., Ukkonen, E.: MDL learning of unions of sim-
ple pattern languages from positive examples. In: Vitányi, P.M.B. (ed.)
EuroCOLT 1995. LNCS, vol. 904, pp. 252–260. Springer, Heidelberg (1995)

[LW91] Lange, S., Wiehagen, R.: Polynomial time inference of arbitrary pattern
languages. New Generation Computing 8, 361–370 (1991)

[LZ96] Lange, S., Zeugmann, T.: Incremental learning from positive data. Journal
of Computer and System Sciences 53, 88–103 (1996)

[Nix83] Nix, R.: Editing by examples. Technical Report 280, Department of Com-
puter Science, Yale University, New Haven, CT, USA (1983)

[OSW86] Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction
to Learning Theory for Cognitive and Computer Scientists. MIT Press,
Cambridge (1986)

[Rog67] Rogers, H.: Theory of Recursive Functions and Effective Computability.
MIT Press, Cambridge (1967) (Reprinted, MIT Press, 1987)

[SA95] Shinohara, T., Arikawa, A.: Pattern inference. In: Lange, S., Jantke, K.P.
(eds.) Algorithmic Learning for Knowledge-Based Systems. LNCS, vol. 961,
pp. 259–291. Springer, Heidelberg (1995)

[Sal94a] Salomaa, A.: Patterns (The Formal Language Theory Column). EATCS
Bulletin 54, 46–62 (1994)

[Sal94b] Salomaa, A.: Return to patterns (The Formal Language Theory Column).
EATCS Bulletin 55, 144–157 (1994)

[Shi83] Shinohara, T.: Inferring unions of two pattern languages. Bulletin of Infor-
matics and Cybernetics 20, 83–88 (1983)

[SSS+94] Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S.,
Arikawa, S.: Knowledge acquisition from amino acid sequences by ma-
chine learning system BONSAI. Trans. Information Processing Society of
Japan 35, 2009–2018 (1994)

[Wie76] Wiehagen, R.: Limes-erkennung rekursiver funktionen durch spezielle
strategien. Electronische Informationverarbeitung und Kybernetik 12, 93–
99 (1976)

[Win93] Winskel, G.: The Formal Semantics of Programming Languages: An In-
troduction. In: Foundations of Computing Series, MIT Press, Cambridge
(1993)

[Wri89] Wright, K.: Identification of unions of languages drawn from an identifiable
class. In: Rivest, R., Haussler, D., Warmuth, M. (eds.) Proceedings of the
Second Annual Workshop on Computational Learning Theory, Santa Cruz,
California, pp. 328–333. Morgan Kaufmann, San Francisco (1989)


	Parallelism Increases Iterative Learning Power
	Introduction
	First Extension
	Second Extension
	Summary of Results

	Notation and Preliminaries
	Results



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /MTEX
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




