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Abstract. In this paper, we address the issue of learning nonlinearly separable
concepts with a kernel classifier in the situation where the data at hand are altered
by a uniform classification noise. Our proposed approach relies on the combina-
tion of the technique of random or deterministic projections with a classification
noise tolerant perceptron learning algorithm that assumes distributions defined
over finite-dimensional spaces. Provided a sufficient separation margin charac-
terizes the problem, this strategy makes it possible to envision the learning from
a noisy distribution in any separable Hilbert space, regardless of its dimension;
learning with any appropriate Mercer kernel is therefore possible. We prove that
the required sample complexity and running time of our algorithm is polynomial
in the classical PAC learning parameters. Numerical simulations on toy datasets
and on data from the UCI repository support the validity of our approach.

1 Introduction

For a couple of years, it has been known that kernel methods [1] provide a set of efficient
techniques and associated models for, among others, classification supported by strong
theoretical results (see, e.g. [2,3]), mainly based on margin criteria and the fact they
constitute a generalization of the well-studied class of linear separators.

Astonishingly enough however, there is, to our knowledge, very little work on the
issue of learning noisy distributions with kernel classifiers, a problem which is of great
interest if one aims at using kernel methods on real-world data. Assuming a uniform
classification noise process [4], the problem of learning from noisy distributions is a
key challenge in the situation where the feature space associated with the chosen kernel
is of infinite dimension, knowing that approaches to learn noisy linear classifiers in finite
dimension do exist [5,6,7,8].

In this work, we propose an algorithm to learn noisy distributions defined on gen-
eral Hilbert spaces (not necessarily finite dimensional) from a reasonable number of
data (where reasonable is specified later on); this algorithm combines the technique of
random projections with a known finite-dimensional noise-tolerant linear classifier.

The paper is organized as follows. In Section 2, the problem setting is depicted
together with the assumed classification noise model. Our strategy to learn kernel clas-
sifiers from noisy distributions is described in Section 3. Section 4 reports some con-
tributions related to the questions of learning noisy perceptrons and learning kernel
classifiers using projections methods. Numerical simulations carried out on synthetic
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datasets and on benchmark datasets from the UCI repository proving the effectiveness
of our approach are presented in Section 5.

2 Problem Setting and Main Result

Remark 1 (Binary classification in Hilbert spaces, zero-bias separating hyperplanes).
From now on, X denotes the input space, assumed to be a Hilbert space equipped
with an inner product denoted by ·. In addition, we will restrict our study to the binary
classification problem and the target space Y will henceforth always be {−1, +1}.

We additionally make the simplifying assumption of the existence of zero-bias sep-
arating hyperplanes (i.e. hyperplanes defined as w · x = 0).

2.1 Noisy Perceptrons in Finite Dimension

The Perceptron algorithm [9] (cf.
Input: S = {(x1, y1) . . . (xm, ym)}
Output: a linear classifier w

t ← 0,w0 ← 0
while there is i s.t. yiwt · xi ≤ 0 do

wt+1 ← wt + yixi/‖xi‖
t ← t + 1

end while
return w

Fig. 1. Perceptron algorithm

Fig. 1) is a well-studied greedy
strategy to derive a linear classi-
fier from a sample S = {(x1, y1)
. . . (xm, ym)} of m labeled pairs
(xi, yi) from X × Y assumed to
be drawn independently from an
unknown and fixed distribution D
over X × Y . If there exists a sep-
arating hyperplane w∗ ·x = 0 ac-
cording to which the label y of x
is set, i.e. y is set to +1 if w∗ ·x ≥ 0 and −1 otherwise1, then the Perceptron algorithm,
when given access to S, converges towards a hyperplane w that correctly separates S
and might with high probability exhibit good generalization properties [10].

We are interested in the possibility of learning linearly separable distributions on
which a random uniform classification noise, denoted as CN [4], has been applied, that
is, distributions where correct labels are flipped with some given probability η. In order
to tackle this problem, [5] has proposed a simple algorithmic strategy later exploited
by [6]: it consists in an iterative learning process built upon the Perceptron algorithm
where update vectors are computed as sample averages of training vectors fulfilling cer-
tain properties. The expectations of those update vectors guarantee the convergence of
the learning process and, thanks in part to Theorem 1 stated just below, it is guaranteed
with probability 1 − δ (δ ∈ (0, 1)) that whenever the dimension n of X is finite and
there exists a separating hyperplane of margin γ > 0, a polynomial number of training
data is sufficient for the sample averages to be close enough to their expectations; this,
in turn implies a polynomial running time complexity of the algorithm together with
a 1 − δ guarantees for a generalization error of ε. Here, polynomiality is defined with
respect to n, 1/δ, 1/ε, 1/γ and 1/(1 − 2η). Note that despite the availability of gener-
alization bounds for soft-margin SVM expressed in terms of margin and the values of

1 We assume a deterministic labelling of the data according to the target hyperplane w∗, i.e.
Pr(y = 1|x) = 1 or Pr(y = 1|x) = 0; a nondeterministic setting can be handled as well.
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Algorithm 1. RP-classifier
Input: • S = {(x1, y1) . . . (xm, ym)} in X × {−1, +1}

• n, projection dimension
Output: • a random projection π = π(S , n) : X → X ′, X ′ = span〈xi1 , . . . ,xin〉

• projection classifier f(x) = w · π(x), w ∈ X ′

learn an orthonormal random projection π : X → X ′

learn a linear classifier w from S = {(π(x1), y1) . . . (π(xm), ym)}
return π, w

slack variables, which account for possible classification errors, there is no result, to our
knowledge, which characterizes the solution obtained by solving the quadratic program
when the data is uniformly corrupted by classification noise. It is therefore not possible
to control beforehand the values of the slack variables, and, hence, the non-triviality of
the bounds (i.e. bounds with values lower than 1).

Theorem 1 ([11]). If F = {fϕ(x)|ϕ ∈ Φ} has a pseudo-dimension of h and a range
R (i.e. |fϕ(x)| ≤ R for any ϕ and x), and if a random sample of M ≥ m0(h, R, δ, ε) =
8R2(2h ln 4R

ε
+ln 9

δ )
ε2 i.i.d examples are drawn from a fixed distribution, then with proba-

bility 1 − δ, the sample average of every indicator function fϕ(x) > α is within ε
R of

its expected value, and the sample average of every fϕ is within ε of its expected value.
(The pseudo-dimension of F is the VC dimension of {fϕ(x) > α|ϕ ∈ Φ ∧ α ∈ R}.)

2.2 Main Result: RP Classifiers and Infinite-Dimensional Spaces

h The question that naturally arises is whether it is possible to learn linear classifiers
from noisy distributions defined over infinite dimensional spaces with similar theoreti-
cal guarantees with respect to the polynomiality of sample and running time complexi-
ties. We answer to this question positively by exhibiting a family of learning algorithm
called random projection classifiers capable of doing so. Classifiers of this family learn
from a training sample S according to Algorithm 1: given a finite projection dimension
n, they first learn a projection π from X to a space X ′ spanned by n (randomly chosen)
vectors of S dimensional space and then, learn a finite dimensional noisy perceptron
from the labeled data projected according to π. An instantiation of RP-classifiers simply
consists in a choice of a random projection learning algorithm and of a (noise-tolerant)
linear classifier.

Let us more formally introduce some definitions and state our main result.

Remark 2 (Labeled Examples Normalization). In order to simplify the definitions and
the writing of the proofs we will use the handy transformation that consists in convert-
ing every labeled example (x, y) to yx/‖x‖. From now on, we will therefore consider
distributions and samples defined on X (instead of X × Y).

Note that the transformation does not change the difficulty of the problem and that
the search for a separating hyperplane between +1 and -1 classes boils down to the
search for a hyperplane w verifying w · x > 0.

Definition 1 ((γ, ε)-separable distributions Dγ,ε). For γ > 0, ε ∈ [0, 1), Dγ,ε is the
set of distributions on X such that for any D in Dγ,ε, there exists a unit vector w in X
such that Prx∼D[w · x < γ] ≤ ε.
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Definition 2 (CN distributions Uγ,η [4]). For η ∈ [0, 0.5), let the random transforma-
tion Uη map x to −x with probability η and leave it unchanged with probability 1 − η.
The set of distributions Uγ,η is defined as Uγ,η := Uη(Dγ,0).

Uniform classification noise may appear as a very limited model but learnability results
int this framework can be easily extended to more general noise model [12]. We can
now state our main result.

Theorem 2 (Dimension-Independent Learnability of Noisy Perceptrons). There are
an algorithm A and polynomials p(·, ·, ·, ·) and q(·, ·, ·, ·) such that the following holds.

∀ε ∈ (0, 1), ∀δ ∈ (0, 1), ∀γ > 0, ∀η ∈ [0, 0.5), ∀D ∈ Dγ,0, if a random sample S =
{x1, . . . ,xm} with m ≥ p(1

ε , 1
δ , 1

1−2η , 1
γ ) is drawn from Uη(D), then with probability

at least 1 − δ, A runs in time q(1
ε , 1

δ , 1
1−2η , 1

γ ) and the classifier f := A(S) output by
A has a generalization error Prx∼D(f(x) ≤ 0) bounded by ε.

3 Combining Random Projections and a Noise-Tolerant Algorithm

This section gives a proof of Theorem 2 by showing that an instance of RP-classifier
using a linear learning algorithm based on a specific perceptron update rule, Cnoise-
update, proposed by [8] and on properties of simple random projections proved by [13]
is capable of efficiently learning CN distributions (see Definition 2) independently of
the dimension of the input space.

The proof works in two steps. First (section 3.1) we show that Cnoise-update (Al-
gorithm 2) in finite dimension can tolerate a small amount of malicious noise and
still returns relevant update vectors. Then (section 3.2) thanks to properties of ran-
dom projections (see [13]) we show that they can be efficiently used to transform a
CN problem into one that meets the requirements of Cnoise-update (and Theorem 4
below).

3.1 Perceptron Learning with Mixed Noise

We suppose in this subsection that X is of finite dimension n. We make use of the
following definitions.

Definition 3 (Sample and population accuracies). Let w be a unit vector, D be a
distribution on X and S be a sample drawn from D. We say that w has sample accuracy
1 − ε on S and (population) accuracy 1 − ε′ if:

Prx∈S [w · x < 0] = ε, and Prx∼D [w · x < 0] = ε′.

Definition 4 (CN-consistency). A unit vector w∗ is CN-consistent on D ∈ Uγ,η if
Prx∼D [w∗ · x < γ] = η. It means w∗ makes no error on the noise free version of D.

We recall that according to the following theorem [8], Cnoise-update, depicted in
Algorithm 2, when used in a perceptron-like iterative procedure, renders the learning of
CN-distributions possible in finite dimension.
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Algorithm 2. Cnoise-Update [8]
Input: S : training data, w: current weight vector, ν a nonnegative real value
Output: an update vector z

μ ← 1
|S|

∑

x∈S
x, μ′ ← 1

|S|
∑

x∈S∧w·x≤0

x

if w · μ ≤ ν ‖w‖ then
z ← μ

else

a ← w · μ − ν ‖w‖
w · μ − w · μ′ , b ← −w · μ′ + ν ‖w‖

w · μ − w · μ′ , z ← aμ′ + bμ

end if
if w · z > 0 then

z ← z − w
w · z
w · w /* projection step */

end if
return z

Theorem 3 ([8]). Let γ ∈ [0, 1], η ∈ [0, 0.5), ε ∈ (0, 1 − 2η]. Let D ∈ Uγ,η. If w∗ is
CN-consistent on D, if a random sample S of m ≥ m0

(
10(n + 1), 2, δ, εγ

4

)
examples

are drawn from D and if the perceptron algorithm uses update vectors from Cnoise-
Update(S,wt,

εγ
4 ) for more than 16

(εγ)2 updates on these points, then the wt with the

highest sample accuracy has accuracy at least 1 − η − ε with probability 1 − δ2.

The question that is of interest to us deals with a little bit more general situation than
simple CN noise. We would like to show that Cnoise-update is still applicable when,
in addition to being CN, the distribution on which it is called is also corrupted by mali-
cious noise [14], i.e. a noise process whose statistical properties cannot be exploited in
learning (this is an ‘incompressible’ noise). Envisioning this situation is motivated by
the projection step, which may introduce some amount of projection noise (cf. Theo-
rem 5), that we treat as malicious noise.

Of course, a limit on the amount of malicious noise must be enforced if some rea-
sonable generalization error is to be achieved. Working with distributions from Uγ,η we
therefore set θmax(γ, η) = γ(1−2η)

8 as the maximal amount tolerated by the algorithm.
For θ ≤ θmax, a minimal achievable error rate εmin(γ, η, θ) = 64θ

γ(1−η)( 1
8 −θ) will be our

limit3. Provided that the amount of malicious noise is lower than θmax, we show that
learning can be achieved for any error ε ≥ εmin(γ, η, θ). The proof non trivially extends
that of [8] and roughly follows its lines.

Definition 5 (Mixed-Noise distributions, Uγ,η θ). For θ ∈ [0, 1), let the random trans-
formation Uθ leave an input x unchanged with probability 1 − θ and change it to any
arbitrary x′ with probability θ (nothing can be said about x′). The set of distributions
Uγ,η,θ is defined as Uγ,η,θ := Uθ

(
Uη(Dγ,0)

)
.

2 For the remaining of the paper, ε is not the usual error parameter ε′ used in PAC, but ε′(1−2η).
3 Slightly larger amount of noise and smaller error rate could be theoretically targeted. But the

choices we have made suffice to our purpose.
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Remark 3 (CN and MN decomposition). For γ > 0, η ∈ [0, 0.5), θ ∈ [0, 1), the image
distribution Dγ,η,θ := Uθ

(
Uη(Dγ,0)

)
of Dγ,0 ∈ Dγ,0 is therefore a mixture of two

distributions: the first one, of weight 1−θ, is a CN distribution with noise η and margin
γ while nothing can be said about the second, of weight θ. This latter distribution will be
referred to as the malicious part (MN) of Dγ,η,θ. In order to account for the malicious
noise, we introduce the random variable θ : X → {0, 1} such that θ(x) = 1 if x is
altered by malicious noise and θ(x) = 0 otherwise.

From now on, we will use E [f(x)] for Ex∼D [f(x)] and Ê [f(x)] for Ex∈S [f(x)].

Lemma 1. Let γ > 0, η ∈ [0, 0.5) and δ ∈ (0, 1). Let θ ∈ [0, θmax(γ, η)) such that
εmin(γ, η, θ) < 1, ε ∈ (εmin(γ, η, θ), 1] and D ∈ Dγ,η,θ. Let m′ > 1. If a sample S
of size m ≥ m1(m′, γ, θ, ε, δ) = m′ 642

2(1−θ− εγ
64 )(εγ)2

ln 2
δ is drawn from D then, with

probability 1 − δ:

1.

∣∣∣∣∣
1
m

∑

x∈S
θ(x) − E [θ(x)]

∣∣∣∣∣ ≤ εγ

64
2. |{x ∈ S|θ(x) = 0}| > m′.

Proof. Simple Chernoff bounds arguments prove the inequalities. (It suffices to observe
that 1

m

∑
x∈S θ(x) = Ê [θ(x)] and

∑
x∈S θ(x) = m − |{x ∈ S|θ(x) = 0}|.) 
�

Definition 6 (CN-consistency on Mixed-Noise distributions). Letγ > 0, η ∈ [0, 0.5),
θ ∈ [0, θmax(γ, η)). Let D ∈ Uγ,η,θ. Let w∗ ∈ X . If Prx∼D [w∗ · x ≤ γ|θ(x) = 0] =
η then w∗ is said to be CN-consistent.

The next lemma says how much the added malicious noise modify the sample averages
on the CN part of a distribution.

Lemma 2. Let γ > 0, η ∈ [0, 0.5) and δ ∈ (0, 1]. Let θ ∈ [0, θmax(γ, η)) such
that εmin(γ, η, θ) < 1 − 2η, and ε ∈ (εmin(γ, η, θ), 1 − 2η]. Let D ∈ Uγ,η,θ. Let
M (n, γ, η, θ, ε, δ) = m1

(
m0

(
10(n + 1), 2, 3δ

4 , εγ
16

)
, γ, θ, ε, δ

4

)
and w be a unit vec-

tor. If S is a sample of size m > M (n, γ, η, θ, ε, δ) drawn from D then, with probability
1 − δ, ∀R ∈ [−1, 1]:

∣∣∣Ê[(w · x)1l≤R(w · x)] − E[(w · x)1l≤R(w · x)]
∣∣∣ ≤ εγ

8

where 1l≤R(α) = 1 if α ≤ R and 0 otherwise.

Proof. By Lemma 1, we know that |{x ∈ S|θ(x) = 0}| > m0
(
10(n + 1), 2, 3δ

4 , εγ
16

)

with probability 1 − 3δ
4 . So, by Theorem 1, with probability 1 − 3δ

4 − δ
4 , ∀R ∈ [−1, 1]

∣∣∣Ê [(w · x)1l≤R(w · x)|θ(x) = 0] − E [(w · x)1l≤R(w · x)|θ(x) = 0]
∣∣∣ ≤ εγ

16
(1)
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In addition, we have
∣∣∣Ê[(w · x)1l≤R(w · x)] − E[(w · x)1l≤R(w · x)]

∣∣∣

=
∣∣∣Ê[(w · x)1l≤R(w · x)|θ(x) = 0] (Prx∈S [θ(x) = 0] − Prx∼D[θ(x) = 0])

+
(
Ê[(w · x)1l≤R(w · x)|θ(x) = 0] − E[(w · x)1l≤R(w · x)|θ(x) = 0]

)
Prx∼D[θ(x) = 0]

+ Ê[(w · x)1l≤R(w · x)|θ(x) = 1] (Prx∈S [θ(x) = 1] − Prx∼D[θ(x) = 1])

+
(
Ê[(w · x)1l≤R(w · x)|θ(x) = 1] − E[(w · x)1l≤R(w · x)|θ(x) = 1]

)
Prx∼D[θ(x) = 1]

∣∣∣

≤
∣∣∣Ê[(w · x)1l≤R(w · x)|θ(x) = 0]

∣∣∣ |Prx∈S[θ(x) = 0] − Prx∼D[θ(x) = 0]|
(≤ εγ

64 by lemma 1)

+
∣∣∣Ê[(w · x)1l≤R(w · x)|θ(x) = 0] − E[(w · x)1l≤R(w · x)|θ(x) = 0]

∣∣∣ Prx∼D[θ(x) = 0]

(≤ εγ
16 by equation 1)

+
∣∣∣Ê[(w · x)1l≤R(w · x)|θ(x) = 1]

∣∣∣ |Prx∈S [θ(x) = 1] − Prx∼D [θ(x) = 1]|
(≤ εγ

64 by lemma 1)

+
∣∣∣Ê[(w · x)1l≤R(w · x)|θ(x) = 1] − E[(w · x)1l≤R(w · x)|θ(x) = 1]

∣∣∣ Prx∼D[θ(x) = 1]

≤ 1 × εγ

64
+

ε

16
(1 − θ) + 1 × εγ

64
+ 2θ (with probability 1 − δ)

≤ 6ε

64
+ 2θ ≤ 2ε (according to the values of εmin and θmax)


�

The following lemma shows that a CN-consistent vector w∗ allows for a positive ex-
pectation of w∗ · x over a Mixed-Noise distribution.

Lemma 3. Let γ > 0, η ∈ [0, 0.5), θ ∈ [0, θmax(γ, η)). Suppose that D ∈ Uγ,η,θ. If
w∗ is CN-consistent on the CN-part of D, then E [w∗ · x] ≥ (1 − 2η) (1 − θ) γ − θ.

Proof.

E [w∗ · x] = E [w∗ · x|θ(x) = 0] Pr (θ(x) = 0) + E [w∗ · x|θ(x) = 1] Pr (θ(x) = 1)

= E [w∗ · x|θ(x) = 0] (1 − θ) + E [w∗ · x|θ(x) = 1] θ

≥ E [w∗ · x|θ(x) = 0] (1 − θ) − θ ≥ (1 − 2η) (1 − θ) γ − θ

It is easy to check that the lower bound is strictly positive. 
�

We will make use of the following lemma due to Bylander and extend it to the case of
Mixed-noise distributions.

Lemma 4 ([8])
Let γ > 0, η ∈ [0, 0.5), ε ∈ (0, 1 − 2η]. Let D ∈ Uγ,η. Let w be an arbitrary weight
vector. If w∗ is CN-consistent on D, and if w has accuracy 1 − η − ε, then:

(1 − 2η) E [(w∗ · x)1l≤0(w · x)] + ηE [w∗ · x]≥εγ (2)

(1 − 2η) E [(w · x)1l≤0(w · x)] + ηE [w · x] ≤0 (3)

Lemma 5. Let γ > 0, η ∈ [0, 0.5) and δ ∈ (0, 1]. Let θ ∈ [0, θmax(γ, η)) such that
εmin(γ, η, θ) < 4(1−2η)

3 , and ε ∈ (εmin(γ, η, θ), 4(1−2η)
3 ]. Let D ∈ Uγ,η,θ. Let w be
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an arbitrary weight vector and D ∈ Uγ,η,θ. If w∗ is CN-consistent on the CN part of
D, and if w has accuracy 1 − η − 3ε

4 on the CN part of D, then the following holds:

(1 − 2η) E [(w∗ · x)1l≤0(w · x)] + ηE [w∗ · x]≥5εγ

8
(4)

(1 − 2η) E [(w · x)1l≤0(w · x)] + ηE [w · x] ≤ηθ (5)

Proof. For the first inequality, we have:

(1 − 2η) E [(w∗ · x)1l≤0(w · x)] + ηE [w∗ · x]

= (1 − 2η) E [(w∗ · x)1l≤0(w · x)|θ(x) = 1] Pr [θ(x) = 1]

+ ηE [w∗ · x|θ(x) = 1] Pr [θ(x) = 1]

+ (1 − 2η) E [(w∗ · x)1l≤0(w · x)|θ(x) = 0] Pr [θ(x) = 0]

+ ηE [w∗ · x|θ(x) = 0] Pr [θ(x) = 0]

≥ (1 − θ)
3
4
εγ (by lemma 4 eq. 2)

+ (1 − 2η) E [(w∗ · x)1l≤0(w · x)|θ(x) = 1] Pr [θ(x) = 1]

+ ηE [w∗ · x| θ(x) = 1]Pr [θ(x) = 1]

≥ (1 − θ)
3
4
εγ − (1 − 2η) θ − ηθ

≥ (1 − θ)
3
4
εγ − (1 − η) θ ≥ 5εγ

8
(by definition of ε)

For the second inequality, we have:

(1 − 2η) E [(w · x)1l≤0(w · x)] + ηE [w · x]

= (1 − 2η) E [(w · x)1l≤0(w · x)|θ(x) = 1] Pr [θ(x) = 1]

+ ηE [w · x|θ(x) = 1] Pr [θ(x) = 1]

+ (1 − 2η) E [(w · x)1l≤0(w · x)|θ(x) = 0] Pr [θ(x) = 0]

+ ηE [w · x|θ(x) = 0] Pr [θ(x) = 0]

≤ 0 (by lemma 4 eq.3)

+ (1 − 2η) E [(w · x)1l≤0(w · x)|θ(x) = 1] Pr [θ(x) = 1]

+ ηE [w · x| θ(x) = 1]Pr [θ(x) = 1] ≤ 0 + ηθ 
�

We now state our core lemma. It says that, with high probability, Algorithm 2 outputs a
vector that can be used as an update vector in the Perceptron algorithm (cf. Fig. 1), that
is a vector erroneously classified by the current classifier but correctly classified by the
target hyperplane (i.e. the vector is noise free). Calling Algorithm 2 iteratively makes it
possible to learn a separating hyperplane from a mixed-noise distribution.

Lemma 6. Let γ > 0, η ∈ [0, 0.5) and δ ∈ (0, 1). Let θ ∈ [0, θmax(γ, η)) such that
εmin(γ, η, θ) < 4

3 (1 − η). Let D ∈ Uγ,η,θ and w∗ be the target hyperplane (CN-
consistent on the CN-part of D). ∀ε ∈

[
εmin(γ, η, θ), 4

3 (1 − η)
)
, for all input samples

S of size M(n, γ, η, θ, δ, ε), with probability at least 1 − δ, ∀w ∈ X if w has accuracy
at most 1−η− 3ε

4 on the CN-part of D then Cnoise-update (Algorithm 2), when given
inputs S, w, εγ

4 , outputs a vector z such that w · z ≤ 0 and w∗ · z ≥ εγ
4 .
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Proof. The projection step guarantees that w·z ≤ 0. We focus on the second inequality.

Case 1. Suppose that w · μ < ‖w‖ εγ
4 : z is set to μ by the algorithm, and, if needed, is

projected on the w hyperplane.
Every linear threshold function has accuracy at least η on the CN-part of D, so an

overall accuracy at least (1 − θ)η. w has accuracy on the CN-part of D of, at most,
1 − η − 3ε

4 and so an overall accuracy at most of 1 − (1 − θ)
(
η + 3ε

4

)
+ θ.

It is easy to check that

1 − (1 − θ)
(

3ε

4
+ η

)
+ θ ≥ (1 − θ)η ⇔ (1 − 2η) (1 − θ) γ − θ ≥ (1 − θ)

3ε

4
γ − (2γ + 1) θ,

and thus, from Lemma 3, E [w∗ · x] ≥ (1 − θ) 3ε
4 γ − (2γ + 1) θ. Because θ <

θmax(γ, η) and ε > εmin(γ, η, θ), we have E [w∗ · x] ≥ 5εγ
8 . Because of Lemma 2 and

because |S| ≥ M(n, γ, η, θ, δ, ε), we know that w∗ · z is, with probability 1− δ, within
εγ
8 of its expected value on the entire sample; hence we can conclude that w∗ · μ ≥ εγ

2 .
If w · μ < 0, then the lemma follows directly.
If 0 < w · μ < ‖w‖ εγ

4 , then z is set to μ and, if needed, projected to w. Let
z‖ = μ − z (z‖ is parallel to w). It follows that

w∗ · μ ≥ εγ

2
⇔ w∗ · z + w∗ · z‖ ≥ εγ

2
⇒ w∗ · z ≥ εγ

2
−

∥∥z‖
∥∥ ⇒ w∗ · z ≥ εγ

2
− ‖μ‖

⇒ w∗ · z ≥ εγ

4
.

And the lemma again follows.

Case 2. Suppose instead that w · μ ≥ ‖w‖ εγ
4 . Let a ≥ 0 and b ≥ 0 be chosen so that

a w
‖w‖ · μ′ + b w

‖w‖ · μ = εγ
4 and a + b = 1. w · μ′ is negative and w

‖w‖ · μ ≥ εγ
4 in this

case, so such an a and b can always be chosen. Note that in this case, Cnoise-update
sets z to aμ′ + bμ and then projects z to the w hyperplane. Because w · z = ‖w‖ εγ

4
before z is projected to the w hyperplane, then the projection will decrease w∗ · z by at
most εγ

4 (recall that w∗ is a unit vector).

Note that a w
‖w‖ ·μ′ +b w

‖w‖ ·μ = aÊ
[(

w
‖w‖ · x

)
1l≤0(w · x)

]
+bÊ

[
w

‖w‖ · x
]

. Because,

by lemma 2, sample averages are, with probability 1 − δ, within εγ
8 of their expected

values, it follows that

aE

[(
w

‖w‖ · x
)

1l≤0(w · x)
]

+ bE

[
w

‖w‖ · x
]

≥ εγ

8
.

Lemma 5 implies that a′ = η
1−η and b′ = 1−2η

1−η results in a′E
[(

w
‖w‖ · x

)
1l≤0

(w · x)] + b′E[ w
‖w‖ · x] ≤ ηθ

1−η and so less than εγ
8 . So, it must be the case when

a ≤ η
1−η because a larger a would result in an expected value less than εγ

8 and a sample
average less than εγ

4 .
Lemma 5 also implies that choosing a′ = η

1−η and b′ = 1−2η
1−η results in a′E[(w∗ ·

x)1l≤0(w · x)] + b′E[w∗ · x] ≥ 5εγ
8
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Because a′ ≥ a and b′ ≤ b, and because Lemma 3 implies E [w∗ · x] ≥ 5εγ
8 , it

follows that aE[(w∗ ·x)1l≤0(w ·x)]+ bE[w∗ ·x] ≥ 5εγ
8 and aw∗ ·μ′ + bw∗ ·μ ≥ εγ

2 .
Thus, when z is projected onto hyperplane w, w∗ · z ≥ εγ

4 and w · z = 0. Conse-
quently a total of m examples, implies , with probability 1 − δ, that w∗ · z ≥ εγ

4 and
w · z ≤ 0 for the z computes by Cnoise-update. This proves the Lemma. 
�

We finally have the Theorem 4 for Mixed-Noise learnability using Cnoise-update.

Theorem 4. Let γ > 0, η ∈ [0, 0.5) and δ ∈ (0, 1). Let θ ∈ [0, θmax(γ, η)) such that
εmin(γ, η, θ) < 1−2η. Let D ∈ Uγ,η,θ and w∗ be the target hyperplane (CN-consistent
on the CN-part of D). ∀ε ∈ (εmin(γ, η, θ), 1−2η], ∀w ∈ X , when given inputs S of size
at least M(n, γ, η, θ, δ, ε), if the Perceptron algorithm uses update vectors from CNoise
update for more than 16

ε2γ2 updates, then the wi with the highest sample accuracy on
the CN-part has accuracy on the CN-part of D at least 1− η− ε with probability 1− δ.

Proof. By lemma 6, with probability 1−δ, whenever wi has accuracy at most 1−η− 3ε
4

on the CN-part of S then Cnoise-update(X,wi,
εγ
16 ) will return an update vector zi

such that w∗ · zi ≥ εγ
4 and wi · zi ≤ 0. The length of a sequence (z1, . . . , zl) where

each zi has εγ
4 separation, is at most 16

(εγ)2 [15,16]. Thus, if more than 16
(εγ)2 update

vectors are obtained, then at least one update vector must have less than εγ
4 separation,

which implies at least one w has more than 1 − η − 3εγ
4 accuracy on CN-part.

The sample accuracy of wi corresponds to the sample average of an indicator func-
tion. By Theorem 1, the indicator functions are covered with probability 1 − δ. So,
assuming that the situation is in the 1− δ region, the sample accuracy of each wi on the
CN-part of the distribution will be within εγ

16 of its expected value. Since at least one
wi will have 1 − η − 3ε

4 accuracy on the CN-part, this implies that its sample accuracy
on the CN-part is at least 1 − η − 13ε

16 . The accuracy on the distribution is more than
1 − (1 − θ)

(
η − 13ε

16

)
− θ < 1 − (1 − θ)

(
η − 13ε

16

)
− ε

32 . Any other wi with a better
sample accuracy will have accuracy of at least 1 − (1 − θ)

(
η − 13ε

16

)
− 5ε

32 and so an
accuracy on the CN-part of at least 1 − η − ε. 
�

Remark 4. An interpretation of the latter result is that distributions from Dγ,ε, for ε > 0
can also be learned if corrupted by classification noise. The extent to which the learning
can take place of course depends on the value of ε (which would play the role of θ in
the derivation made above).

In the next section, we show how random projections can help us reduce a problem
of learning from a possibly infinite dimensional CN distribution to a problem of finite
Mixed-Noise distribution where the parameters of the Mixed-Noise distribution can be
controlled. This will directly give a proof to Theorem 2.

3.2 Random Projections and Separable Distributions

Here, we do not make the assumption that X is finite-dimensional.

Theorem 5 ([13]). Let D ∈ Dγ,0. For a random sample S = {x1, . . . ,xn} from D, let
π(S) : X → span〈S〉 be the orthogonal projection on the space spanned by x1, . . . ,xn.
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If a sample S of size n ≥ 8
θ [ 1

γ2 +ln 1
δ ] is drawn according to D then with probability

at least 1 − δ, the mapping π = π(S) is such that ∃w Prx∼D [w · π(x) > γ/2] < θ on
span〈S〉 ⊆ X .

This theorem says a random projection can transform a linearly separable distribution
into an almost linearly separable one defined in a finite dimensional space. We can
therefore consider that such a transformation incurs a projection noise; this noise should
possess some exploitable regularities for learning, but we leave the characterization of
these regularities for a future work and apprehend in the sequel this projection noise as
malicious. In RP-classifier, the vectors used to define π are selected randomly within
the training set.

Corollary 1 (of Theorem 2). Let γ > 0, η ∈ [0, 0.5) and D ∈ Uγ,η. ∀ε ∈ (0, 1 −
2η], ∀δ ∈ (0, 1], if a sample S of m > M( K

εγ(1−2η)

[
1
γ2 + ln 2

δ

]
, γ

2 , η, δ
2 , ε

2 ) examples

drawn from D is input to RP-classifier, then with probability 1 − δ RP-classifier
outputs a classifier with accuracy at least 1 − η − ε. (K > 0 is a universal constant.)

Proof. Fix γ, η, D ∈ Uγ,η and ε. Fix θ = γε(1−2η)
2080 .

First, it is straightforward to check that θ ≤ θmax(γ, η), εmin ≤ min( ε
2 , 1−2η) and,

since θ ≤ εmin(γ, η, θ), θ ≤ ε
2 . (The assumptions of Theorem 4 hold true.)

By Theorem 5, choosing n = 8
θ [ 1

γ2 + ln 2
δ ] guarantees with probability 1 − δ

2 , that
the projection D′ of D onto a random subspace of dimension n is a distribution having
a CN part of weight 1 − θ and another part of weight θ corrupted by projection noise.
D′ can therefore be considered as an element of U γ

2 ,η,θ4.
By Theorem 4, using m examples (with m set as in the Theorem) allows with prob-

ability 1 − δ
2 the learning algorithm that iteratively calls Cnoise-update to return in

polynomial time a classifier with accuracy at least ε
2 on the CN-part of the distribution.

Therefore, the accuracy of the classifier on the examples drawn from D is, with
probability 1 − δ

2 − δ
2 = 1 − δ, at least 1 − (1 − θ) ε

2 − θ ≥ 1 − ε
2 − δ

2 = 1 − δ.
Theorem 2 now follows. 
�

Remark 5. We could also learn with an initial malicious noise θinit less than θmax. In
this case, the maximum amount of noise added by random projections must obviously
be less than θmax − θinit.

Remark 6. Random projections based on the Johnson-Lindenstrauss lemma could be
directly combined with a CN-noise tolerant perceptron to achieve the same kind of
learnability results. It however requires numerous data resamplings and the resulting
sample and time complexities are very high.

4 Related Work

Learning from a noisy sample of data implies that the linear problem at hand might not
necessarily be consistent, that is, some linear constraints might contradict others. In that

4 The choices of θ and n give K = 2080 × 8.
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Fig. 2. Error rates on UCI datasets with random projections, KPCA and KGS projection with
different amount of classification noise; 1-standard deviation error bars are shown

case, as stated before, the problem at hand boils down to that of finding an approximate
solution to a linear program such that a minimal number of constraints are violated,
which is know as an NP-hard problem (see, e.g., [17]).

In order to cope with this problem, and leverage the classical perceptron learning
rule to render it tolerant to noise classification, one line of approaches has mainly been
exploited. It relies on exploiting the statistical regularities in the studied distribution
by computing various sample averages as it is presented here; this makes it possible to
‘erase’ the classification noise. As for Bylander’s algorithms [5,8], whose analysis we
have just extended, the other notable contributions are those of [6] and [7]. However,
they tackle a different aspect of the problem of learning noisy distributions and are
more focused on showing that, in finite dimensional spaces, the running time of their
algorithms can be lowered to something that depends on log 1/γ instead of 1/γ.

Regarding the use of kernel projections to tackle classification problems, the Kernel
Projection Machine of [18] has to be mentioned. It is based on the use of Kernel PCA
as a feature extraction step. The main points of this interesting work are a proof on the
regularizing properties of KPCA and the fact that it gives a practical model selection
procedure. However, the question of learning noisy distributions is not addressed.

Freund and Schapire [19] provide data-dependent bounds for the voted kernel per-
ceptron that support some robustness against outliers. However, as for SVM, it is not
clear whether this algorithm is tolerant to ’systematic’ uniform classification noise.

Cesa-Bianchi and al. in [20] propose bounds for online perceptron on non-separable
data. However, the authors specifiy that their algorithms tolerate only a low rate of non-
linearly separable examples and thus are not valid for uniform classification noise.

Finally, the empirical study of [21] provides some insights on how random projec-
tions might be useful for classification. No sample and running time complexity results
are given and the question of learning with noise is not addressed.

5 Numerical Simulations

UCI Datasets. We carried out numerical simulations on benchmark datasets from the
UCI repository preprocessed and made available by Gunnar Rätsch5. For each problem
(Banana, Breast Cancer, Diabetes, German, Heart), we have 100 training and 100 test

5 http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm



340 G. Stempfel and L. Ralaivola

samples. All these problems contain a few hundred training examples, which is far from
what the theoretical results require to get interesting accuracy and confidence.

We have tested three projection procedures: random, Kernel PCA (KPCA), Kernel
Gram-Schmidt (KGS) [22]. This latter projection is sometimes referred to as a ‘sparse
version of Kernel PCA’ (note that KPCA and KGS are deterministic projections and
that RP-classifier is not a random-projection learning algorithm anymore). In order to
cope with the non separability of the problems, we have used Gaussian kernels, and
thus infinite-dimensional spaces, whose widths have been set to the best value for SVM
classification as reported on Gunnar Rätsch’s website.

In our protocol, we have corrupted the data with classification noises of rates 0.0,
0,05, 0.10, 0.15, 0.20, 0.25, 0.30. Instead of carrying out a cumbersome cross-validation
procedure, we provide the algorithm RP-classifier with the actual value of η.

To determine the right projection size we resort to the same cross-validation proce-
dure as in [23], trying subspace sizes of 2 to 200. The results obtained are summarized
on Figure 2. We observe that classifiers produced on a dataset with no extra noise have
an accuracy a little lower than that of the classifiers tested by Gunnar Rätsch, with a very
reasonable variance. We additionally note that, when the classification noise amount ar-
tificially grows, the achieved accuracy decreases very weakly and the variance grows
rather slowly. It is particularly striking since again, the sample complexities used are
far from meeting the theoretical requirements; moreover, it is interesting to see that the
results are good even if no separation margin exists. We can also note that when the
actual values of the accuracies (not reported here for sake of space) are compared, KGS
and KPCA roughly achieve the same accuracies and both are a little (not significantly
though) better than random projection. Eventually, the main conclusion from the nu-
merical simulations is that RP-classifier has a very satisfactory behavior on real data.

Toy Problems. We have carried out additional simulations on five 2-dimensional toy
problems. Due to space limitations however, we only discuss and show the learning
results for three of them6 (cf. Figure 3). Here, we have used the KGS projection since
due to the uniform distribution of points on [−10; 10] × [−10; 10], random projections
provide exactly the same results. For each problem, we have produced 50 train sets and
50 test sets of 2000 examples each. Note that we do not impose any separation margin.

We have altered the data with 5 different amounts of noise (from 0.0 to 0.40), 12
Gaussian kernel width (from 10.0 to 0.25) and 12 projection dimensions (from 5 to
200) have been tested and for each problem and for each noise rate, we have selected
the couple which minimizes the error rate of the produced classifier (proceeding as
above). Figure 3 depicts the learning results obtained with a noise rate of 0.20.

The essential point showed by these simulations is that, again, RP-classifier is very
effective in learning from noisy nonlinear distributions. Numerically (the numerical
results are not reported here due to space limitations), we have observed that our algo-
rithm can tolerate noise levels as high as 0.4 and still provide small error rates (around
10%). Finally, our simulations show that the algorithm is tolerant to classification noise
and thus illustrate our theoretical results, while extending already existing experiments
to this particular framework of learning.

6 Full results are available at http://hal.archives-ouvertes.fr/hal-00137941



Learning Kernel Perceptrons on Noisy Data Using Random Projections 341

Fig. 3. Toy problems: first row show the clean concepts with black disks being of class +1 and
white ones of class -1. Second row shows the concept learned by RP-classifier with a uniform
classification noise rate of 0.20 and KGS projection.

6 Conclusion and Outlook

In this paper, we have given theoretical results on the learnability of kernel perceptrons
when faced to classification noise. The keypoint is that this result is independent of
the dimension of the kernel feature space. In fact, it is the use of finite-dimensional
projections having good generalization that allows us to transform a possibly infinite
dimensional problem into a finite dimension one that, in turn, we tackle with Bylan-
der’s noise tolerant perceptron algorithm. This algorithm is shown to be robust to some
additional ‘projection noise’ provided the sample complexity are adjusted in a suitable
way. A better characterization of the projection noise, more intelligent than ’malicious’,
could, in a future work, allow us to use projection dimensions appreciably smaller. Sev-
eral simulation results support the soundness of our approach. Note that the random
projection procedure using Johnson-Lindenstrauss lemma, described in [13], could be
associated with RP-learn and would lead to lower sample and time complexities for the
perceptron learning step.

Several questions are raised by this work. Among them, the question about the gen-
eralization properties of the Kernel Gram-Schmidt projector: we think tight general-
ization bounds can be exhibited in the framework of PAC Bayesian bounds, by ex-
ploiting, in particular, the sparseness of this projection. Resorting again to the PAC
Bayesian framework it might be interesting to work on generalization bound on noisy
projection classifiers, which would potentially provide a way to automatically esti-
mate a reasonable projection dimension and noise level. Finally, we have been recently
working on the harder problem of learning optimal separating hyperplane from noisy
distributions.
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