
Exact Learning of Finite Unions of Graph
Patterns from Queries

Rika Okada1,�, Satoshi Matsumoto2, Tomoyuki Uchida3, Yusuke Suzuki3,
and Takayoshi Shoudai4

1 Dept. of Computer and Media Technologies, Hiroshima City University, Japan
licca okada@toc.cs.hiroshima-cu.ac.jp

2 Dept. of Mathematical Sciences, Tokai University, Japan
matumoto@ss.u-tokai.ac.jp

3 Dept. of Intelligent Systems, Hiroshima City University, Japan
{uchida,y-suzuki}@cs.hiroshima-cu.ac.jp

4 Dept. of Informatics, Kyushu University, Japan
shoudai@i.kyushu-u.ac.jp

Abstract. A linear graph pattern is a labeled graph such that its ver-
tices have constant labels and its edges have either constant or mutually
distinct variable labels. An edge having a variable label is called a variable
and can be replaced with an arbitrary labeled graph. Let GP(C) be the
set of all linear graph patterns having a structural feature C like “having
a tree structure”, “having a two-terminal series parallel graph structure”
and so on. The graph language GLC(g) of a linear graph pattern g in
GP(C) is the set of all labeled graphs obtained from g by substituting
arbitrary labeled graphs having the structural feature C to all variables
in g. In this paper, for any set T∗ of m linear graph patterns in GP(C), we
present a query learning algorithm for finding a set S of linear graph pat-
terns in GP(C) with

⋃
g∈T∗

GLC(g) =
⋃

f∈S GLC(f) in polynomial time
using at most m + 1 equivalence queries and O(m(n + n2)) restricted
subset queries, where n is the maximum number of edges of counterex-
amples, if the number of labels of edges is infinite. Next we show that
finite sets of graph languages generated by linear graph patterns having
tree structures or two-terminal series parallel graph structures are not
learnable in polynomial time using restricted equivalence, membership
and subset queries.

1 Introduction

Many electronic data become accessible on Internet. Electronic data such as
HTML/XML files, bioinformatics and chemical compounds have graph struc-
tures but have no rigid structure. Hence, such data are called graph structured
data. Especially, graph structured data such as HTML/XML files having tree

� Rika Okada is currently working at Sanyo Girls’ Junior and Senior High School,
Hiroshima, Japan.

M. Hutter, R.A. Servedio, and E. Takimoto (Eds.): ALT 2007, LNAI 4754, pp. 298–312, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Exact Learning of Finite Unions of Graph Patterns from Queries 299

structures are called tree structured data. In the fields of data mining and knowl-
edge discovery, many researchers have developed techniques based on machine
learning for analyzing such graph structured data. If we can construct oracles
which answer any query in practical time, we can design efficient and effec-
tive data mining tools based on query learning algorithms using such oracles.
The purpose of our work is to present fundamental learning algorithms for data
mining from graph structured data. In this paper, we consider polynomial time
learnabilities of finite unions of graph patterns having structured variables, which
are knowledge representations for graph structured data, in exact learning model
of Angluin [2].

A linear graph pattern is defined as a labeled graph such that its vertices have
constant labels and its edges have either constant or mutually distinct variable
labels. An edge (u, v) having a variable label is called a variable, denoted by
〈u, v〉, and can be replaced with an arbitrary labeled graph. For example, in
Fig. 1, we give a linear graph pattern g having two variables 〈u1, u2〉 and 〈v1, v2〉
with variable labels x and y, respectively. In the figures of this paper, a variable
is represented by a box with lines to its elements. The numbers at these lines
indicate the order of the vertices of which a variable consists. The symbol inside
a box shows the label of the variable. We can obtain a new linear graph pattern
from a linear graph pattern g by substituting an arbitrary linear graph pattern
to a variable in g. For example, in Fig. 1, the labeled graph G3 is obtained from
the linear graph pattern g by replacing the variables 〈u1, u2〉 and 〈v1, v2〉 of g
with the labeled graphs G1 and G2, respectively.

Web documents like HTML/XML files are expressed by labeled graphs having
tree structures. In applications for electrical network and scheduling problems,
input data are formalized by labeled graphs having two-terminal series parallel
(TTSP for short) graph structures. In order to represent structural features of
graph structured data such as “having tree structures” and “having TTSP graph
structures”, we define simple Formal Graph System, which is a restricted class
of Formal Graph System (FGS for short) presented by Uchida et al. [15]. FGS
is a kind of logic programming systems which directly deals with graph patterns
instead of terms in first-order logic. A finite set of clauses on FGS is called
an FGS program. As examples of simple FGS programs, we give a simple FGS
program OT in Fig. 2 generating all ordered rooted trees and a simple FGS
program TTSP in Fig. 3 generating all TTSP graphs such as F1, F2, F3, F4,
and F5 in Fig. 3, where TTSP graphs are constructed by recursively applying
“series” and “parallel” operations (see [5]). For a simple FGS program Γ , let
GP(Γ) be the set of all linear graph patterns obtained from any labeled graph
generated by Γ by replacing some edges in it with mutually distinct variables,
that is, GP(Γ) contains all linear graph patterns with the graph structural feature
“generated by Γ”. The graph language GLΓ (g) of a linear graph pattern g in
GP(Γ) is the set of all labeled graphs whose graph structures are generated by Γ
and which are obtained from g by substituting arbitrary labeled graphs whose
graph structures are generated by Γ to all variables in g.

300 R. Okada et al.

�
�

�
�

�

��

�	

�

	

�
�

	

�

	

�

� �

�

��
�

��
�

�

	

� �

��
�

��
�

�

�
� �

�
�

�

� �

�

�
	

g G1 G2 G3

Fig. 1. Linear graph pattern g and labeled graphs G1, G2, G3 over Λ. In the figures in
this paper, a variable is represented by a box with lines to its elements. The numbers
at these lines indicate the order of the vertices of which a variable consists. The symbol
inside a box shows the label of the variable. In this figure, we omit the labels of vertices
except two labels s, t.

OT =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�� �� �
�

,

�� �� �� ��� �� � � ��	
 � �	
 � ��
� �
� ��

�
�

,

�� �� �� ��� �� � � ��	� � �	� � ��� �
� ��

	
�

	 ,

�� �� �� �� �	� � ����� �
� �

� ��
�

	� � �
��

�

	

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 2. Simple FGS program OT . The symbol o over internal vertices indicates that
the vertex has ordered children. The broken arrow shows that the order of the leaf
labeled with t is less than that of the leaf labeled with l.

In exact learning model of Angluin [2], a learning algorithm accesses to oracles,
which answer specific kinds of queries, and collects information about a target.
Let Γ be a simple FGS program and T∗ a subset of GP(Γ). A learning algorithm
is said to exactly identify the target set T∗ if it outputs a set of linear graph
patterns S ⊆ GP(Γ) such that the union of graph languages of all linear graph
patterns in S is equal to that in T∗ and halts, after it asks a certain number of
queries to oracles. In this paper, for a simple FGS program Γ and any set T∗ of
m linear graph patterns in GP(Γ), we present a query learning algorithm which
exactly identifies T∗ in polynomial time using at most m + 1 equivalence queries
and at most m(n + rn2) restricted subset queries, where n is the maximum
number of edges of counterexamples and r is the number of clauses in Γ (i.e., r
is a constant), if the number of labels of edges is infinite. Firstly, the algorithm
gets a counterexample hi (1 ≤ i ≤ m) as an answer of an equivalence query
for an empty set, that is, hi is a labeled graph generated by some linear graph

Exact Learning of Finite Unions of Graph Patterns from Queries 301

TTSP =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�� �� � ,
� � � ���� ��� � �� �	 �� �
 ��� �
 ��� � ,

�� � �� �	 �� �
 ��
 �
 ��
 �

 �

 ��

�

 �

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

s

t

s

t

s

t

s

t

s

t

F1 F2 F3 F4 F5

Fig. 3. Simple FGS program TTSP and TTSP graphs F1, F2, F3, F4, F5. In this
figure, we omit the labels of edges and vertices except two labels s and t of vertices.

pattern gi in T∗. Secondly, the algorithm recursively reconstructs hi by replacing
edges of hi with variables or subgraphs of hi generated by Γ with variables
and by asking a certain number of restricted subset queries. Next, asking an
equivalence query, the algorithm gets a new counterexample hj (1 ≤ j �= i ≤ m)
if the equivalence oracle does not answer “yes”. Finally, the algorithm halts, if
the algorithm exactly identifies T∗.

Next, we show that, by asking a certain number of restricted equivalence,
membership and subset queries, finite sets of linear graph patterns in GP(OT)
and GP(TTSP) are not learnable in polynomial time.

In [10], we already showed that any finite set of m linear graph patterns in
GP(OT) is exactly identifiable at most m + 1 equivalence queries and using at
most 2mn2 restricted subset queries, where n is the maximum number of edges
in counterexamples, if the number of labels of edges is infinite. The results of
this paper are improvements and extensions of the results in [10]. Moreover,
in [11], we considered polynomial time learnabilities of finite unions of non-
linear graph patterns having ordered tree structures, that is, ordered rooted
tree patterns in which variables are allowed to have the same variable labels.
In [11], we showed that any finite set of m graph patterns having ordered
tree structures is exactly identifiable using O(m2n4 + 1) superset queries and
O(m + 1) restricted equivalence queries, where n is the maximum number of
edges in counterexamples, if the number of labels of edges is infinite.

As for related works, the work [9,16] studied the learnabilities of graph struc-
tured patterns in the framework of polynomial time inductive inference. Also
the work [13,14] showed the classes of linear graph patterns in GP(OT) and lin-

302 R. Okada et al.

ear graph patterns in GP(TTSP) are polynomial time inductively inferable from
positive data, respectively. As an application, the work [12] proposed a tag tree
pattern, which is an extension of a linear graph pattern in GP(OT), and gave
a data mining method from tree structured data. As for other related works,
the works [1,3] show the exact learnability of tree structured patterns, which
are incomparable to linear graph patterns having tree structures, in the exact
learning model.

This paper is organized as follows: In Section 2, we formally define a linear
graph pattern as a labeled graph having structural variables, and then define its
graph language. Moreover, we briefly introduce a exact learning model treated in
this paper. In Section 3, we consider the learnabilities of finite unions of graph
languages of linear graph patterns in the framework of exact learning model.
In Section 4, we consider the insufficiency of learning of finite unions of some
graph languages of linear graph patterns in exact learning model. In Section 5,
we conclude this work and give future works.

2 Preliminaries

We introduced term graphs and term graph languages in [15] in order to develop
efficient graph algorithms for grammatically defined graph classes. In this sec-
tion, based on term graphs and term graph languages, we define labeled graph
patterns as graphs having structural variables, and then introduce their graph
languages. For a set S, |S| denotes the number of elements of S.

2.1 Linear Graph Patterns

Let Λ and X be infinite alphabets whose elements are called constant labels and
variable labels, respectively. We assume that Λ ∩ X = ∅. Let G = (V, E) be a
directed labeled graph consisting of a set V of vertices and a set E of edges such
that G has no loop but multiple edges are allowed. We denote by ψG a vertex
labeling assigning a constant label in Λ to each vertex in V and by ϕG an edge
labeling assigning either a constant label or a variable label in Λ ∪ X to each
edge in E. A graph pattern over Λ ∪ X obtained from G is defined as a triplet
g = (Vg, Eg, Hg) where Vg = V , Eg = {e ∈ E | ϕG(e) ∈ Λ} and Hg = E − Eg.
An element of Hg is called a variable. We note that ψg(u) = ψG(u) for each
vertex u ∈ Vg, ϕg(e) = ϕG(e) ∈ Λ for each edge e ∈ Eg and ϕg(h) = ϕG(h) ∈ X
for each variable h ∈ Hg. We use notations (u, v) and 〈s, t〉 to represent an
edge in Eg and a variable in Hg consisting of two vertices u, v and s, t in Vg,
respectively. Here after, since the background graph G can be easily found from
a triplet g = (Vg , Eg, Hg), we omit the description of the background graph
G. A graph pattern g over Λ ∪ X is said to be linear if all variables in g have
mutually distinct variable labels in X . In particular, a graph pattern over Λ∪X
with no variable is regarded as a (standard) labeled graph over Λ. We denote the
set of all linear graph patterns over Λ ∪ X by GPΛ∪X and the set of all labeled
graphs over Λ by GΛ. In this paper, we deal with only linear graph patterns over

Exact Learning of Finite Unions of Graph Patterns from Queries 303

Λ∪X , and then we call a linear graph pattern over Λ∪X a graph pattern, simply.
A graph pattern having no edge is said to be simple. A graph pattern g is said
to be primitive if g is a simple graph pattern consisting of two vertices and only
one variable, (i.e. |Vg| = 2, |Eg| = 0 and |Hg| = 1, where g = (Vg , Eg, Hg)).

Two graph patterns f = (Vf , Ef , Hf) and g = (Vg, Eg, Hg) are said to
be isomorphic, denoted by f ≡ g, if there is a bijection π from Vf to Vg, such
that (1) (u, v) ∈ Ef if and only if (π(u), π(v)) ∈ Eg, (2) ψf (u) = ψg(π(u)) for
each vertex u ∈ Vf and ϕf ((u, v)) = ϕg((π(u), π(v))) for each edge (u, v) ∈ Ef ,
and (3) 〈u, v〉 ∈ Hf if and only if 〈π(u), π(v)〉 ∈ Hg. A bijection π satisfying
(1)–(3) is called an isomorphism from f to g. Two isomorphic graph patterns
are considered to be identical.

Let f and g be graph patterns having at least two vertices. Let σ = [u, v]
be a pair of distinct vertices in g. The form x := [g, σ] is called a binding for
a variable label x in X . A new graph pattern, denoted by f{x := [g, σ]}, is
obtained by applying the binding x := [g, σ] to f in the following way: Let
e = 〈s, t〉 be a variable in f with the variable label x, i.e., ϕf (e) = x. Let g′

be a copy of g. And let u′ and v′ be the vertices of g′ corresponding to u and
v of g, respectively. For the variable e = 〈s, t〉, we attach g′ to f by removing
the variable e from f and identifying the vertices s and t with the vertices u′

and v′ of g′, respectively. For two bindings x := [g, [ug, vg]] and x := [f, [uf , vf]],
we write (x := [g, [ug, vg]]) ≡ (x := [f, [uf , vf]]) if there exists an isomorphism
π from g to f such that π(ug) = uf and π(vg) = vf . A substitution θ is a finite
set of bindings {x1 := [g1, σ1], x2 := [g2, σ2], . . . , xn := [gn, σn]}, where xi’s are
mutually distinct variable labels in X . For a graph pattern f and a substitution
θ, we denote by fθ the graph pattern obtained from f and θ by applying all
bindings in θ to f simultaneously. For example, for the graph pattern g in Fig. 1
and labeled graphs G1, G2, G3 in Fig. 1, G3 is isomorphic to the graph pattern
gθ obtained by applying θ = {x := [G1, [w1

1 , w1
2]], y := [G2, [w2

1 , w2
2]]} to g

(i.e., G3 ≡ gθ).
For graph patterns f and g, we write f � g if there exists a substitution θ

such that f ≡ gθ. Especially, we write f ≺ g if f � g and g �� f . For example,
for the graph patterns G3 and g given in Fig. 1, we can see that G3 ≺ g because
of G3 ≡ g{x := [G1, [w1

1 , w1
2]], y := [G2, [w2

1 , w2
2]]} and g �� G3.

2.2 Graph Languages over Λ

The purpose of this subsection is to define graph languages over an alphabet Λ
of infinitely many constant labels (i.e., |Λ| = ∞). First of all, in order to repre-
sent structural features of graph structured data like “having tree structures”,
“having TTSP graph structures” and so on, we introduce simple Formal Graph
System, which is a restricted class of Formal Graph System (FGS for short) pre-
sented by Uchida et al. [15]. FGS is a kind of logic programming systems which
directly deals with graph patterns instead of terms in first-order logic.

Let Π be a set of unary predicate symbols and Σ a finite subset of Λ. An
atom is an expression of the form p(g), where p is a unary predicate symbol in
Π and g is a graph pattern over Σ ∪ X . For two atoms p(g) and q(f), we write

304 R. Okada et al.

UT =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�� �� � ,

�� �	 �� ��� �
 �
 ���

 ��

 ��
� �� ,

�� �	 �� ��� �
 �
 ���

 ��

 ��

 �
 ,

�� �	 �� �
 ��

 ��
�� �

 �

 ��

�
� �

�

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 4. Simple FGS program UT

p(g) ≡ q(f) if p = q and g ≡ f hold. Let A, B1, B2, . . . , Bn be atoms, where
n ≥ 0. Then, a graph rewriting rule is a clause of the form A ← B1, B2, . . . , Bn.
We call the atom A the head and the right part B1, B2, . . . , Bn the body of the
graph rewriting rule. For a graph pattern g = (Vg , Eg, Hg) and a variable
label x ∈ X , the number of variables of g labeled with x is denoted by o(g, x)
(i.e., o(g, x) = |{h ∈ Hg | ϕg(h) = x}|). Because any graph pattern is assumed
to be linear in this paper, we have o(g, x) = 1 if x appears in g, otherwise
o(g, x) = 0. A graph rewriting rule p(g) ← q1(f1), q2(f2), . . . , qn(fn) is said
to be simple if the following conditions (1)-(3) hold: (1) fi is primitive for any
i = 1, 2, . . . , n, (2) g consists of two vertices and the edge between them if n = 0,
otherwise g is simple, and (3) for any variable x ∈ X , o(g, x) = 1 if and only if
o(f1, x) + o(f2, x) + · · · + o(fn, x) = 1. A FGS program is a finite set of graph
rewriting rules. An FGS program Γ is said to be simple if any graph rewriting
rule in Γ is simple. For example, we give some simple FGS programs in Figs. 2–5.

We define substitutions for graph rewriting rules in a similar way to those in
logic programming [7]. For an atom p(g), a graph rewriting rule A ← B1, . . . , Bn

and a substitution θ, we define p(g)θ = p(gθ) and (A ← B1, . . . , Bn)θ = Aθ ←
B1θ, . . . , Bnθ. Let Γ be an FGS program. The relation Γ � C for a graph
rewriting rule C is inductively defined as follows.

(1) If C ∈ Γ , then Γ � C.
(2) If Γ � C, then Γ � Cθ for any substitution θ.
(3) If Γ � A ← B1, . . . , Bi, . . . , Bn and Γ � Bi ← C1, . . . , Cm,

then Γ � A ← B1, . . . , Bi−1, C1, . . . , Cm, Bi+1, . . . , Bn.

For an FGS program Γ and its predicate symbol p in Π , GL(Γ, p) denotes the
subset {g ∈ GΣ | Γ � p(g) ←} of GΣ . We say that a subset L ⊆ GΣ is an FGS
language if there exists an FGS program Γ and its predicate symbol p such
that L = GL(Γ, p). The FGS language GL(Γ, p) is simply denoted by GL(Γ)
if we need not clarify the predicate symbol p. For example, for the simple FGS
programs OT in Fig. 2, TTSP in Fig. 3, UT in Fig. 4 and MT = UT ∪ OT ∪ R
(here, R in Fig. 5), the FGS languages GL(OT , q), GL(TTSP , p), GL(UT , p)
and GL(MT , r) of OT , TTSP , UT and MT are the sets of all rooted ordered
trees, all TTSP graphs (see [5]), all rooted unordered trees, and all rooted mixed

Exact Learning of Finite Unions of Graph Patterns from Queries 305

R =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�� �
 �	� 	�� �� ��� 	 ,

�� �� ��� 	
� �� ��� 	 ,

�� �� �� ��� �� � � �	
� � �
� � �	�� �
�

�
�

,

�� �� �� ��� �� � � �	
� � �
� � �	�� �
�

�
�

,

�� �� �� ��� �� � � �	
� � �
� � �	�� �
�

�
�

,

�� �� �� ��� �� � � �	
� � �
� � �	�� �
�

�
�

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 5. Simple FGS program R

a

aa

aa

aa

a

,
g

ELΛ∪X (g) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a

aa

aa

aa

a

,

a

aa

aa

aa

b

,

a

aa

aa

aa

1

2

x

,

b

aa

aa

aa

a

,

b

aa

aa

aa

b

,

b

aa

aa

aa

1

2

x

,

aa

aa

aa

a

1

2

x

,

aa

aa

aa

b

1

2

x

,

x

aa

aa

aa

y

1

2

1

2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 6. The set ELΛ∪X (g) of all graph patterns over Λ ∪ X obtained from the labeled
graph g over {a} in case of Λ = {a, b}

trees each of whose internal vertices has ordered or unordered children (see [14]),
respectively.

Next, we construct graph languages over an infinite alphabet Λ from FGS
languages over Σ. For a labeled graph g ∈ GΣ , ELΛ∪X (g) and ELΛ(g) denote the
sets of all graph patterns over Λ ∪ X and all labeled graphs over Λ which are
obtained from g by ignoring all edge labels of g and relabeling all edges with
arbitrary labels in Λ ∪ X and Λ, respectively. When |Λ| = ∞, this indicates
that ELΛ∪X (g) and ELΛ(g) are infinite subsets of GPΛ∪X and GΛ, respectively. In
Fig. 6, as an example in case of Λ = {a, b}, we give the set ELΛ∪X (g) of all graph
patterns over Λ∪X obtained from the labeled graph g over {a}. For a simple FGS
program Γ , let GPΛ∪X (Γ) =

⋃
g∈GL(Γ) ELΛ∪X (g) and GΛ(Γ) =

⋃
g∈GL(Γ) ELΛ(g).

We denote all the finite subsets of GPΛ∪X (Γ) by FGPΛ∪X (Γ). For a simple FGS
program Γ and a graph pattern g ∈ GPΛ∪X (Γ), let LΛ(Γ, g) = {f ∈ GΛ(Γ) |
f � g} ⊆ GΛ and we call LΛ(Γ, g) the graph language of Γ and g. For a simple
FGS program Γ and a finite subset S of GPΛ∪X (Γ), we define LΛ(Γ, S) as the
union of graph languages of Γ and g ∈ S with respect to S (i.e., LΛ(Γ, S) =⋃

g∈S LΛ(Γ, g)) and we call it the graph language over Γ and S. In particular,
we assume that LΛ(Γ, φ) = φ.

306 R. Okada et al.

Let Γ be a simple FGS program, g a graph pattern in GPΛ∪X (Γ) and S in
FGPΛ∪X (Γ). Then, we consider the following property: LΛ(Γ, g) ⊆ LΛ(Γ, f) for
some f ∈ S if and only if LΛ(Γ, g) ⊆ LΛ(Γ, S). This property is important in
the learning of unions of graph languages and called compactness, which was
proposed in [4]. The following lemma shows that the graph language over a
simple FGS program Γ and S ∈ FGPΛ∪X (Γ) has compactness. We can prove the
following lemma by slightly modifying the proof of Lemma 1 in [10].

Lemma 1. Let Γ be a simple FGS program, S in FGPΛ∪X (Γ) and |Λ| infinite.
Then, for a graph pattern g in GPΛ∪X (Γ), LΛ(Γ, g) ⊆ LΛ(Γ, S) if and only if
there exists a graph pattern f in S with g � f .

In this paper, we consider polynomial time learnabilities of the class of graph
languages for a simple FGS program Γ and a finite subset S of GPΛ∪X (Γ). We
remark that we do not consider the learnabilities of FGS languages.

2.3 Learning Model

Let Γ be a simple FGS program. In what follows, let T∗ ⊆ GPΛ∪X (Γ) (i.e.,
T∗ ∈ FGPΛ∪X (Γ)) denotes a finite set of graph patterns to be identified, and we
say that T∗ is a target. In the exact learning model via queries due to Angluin [2],
learning algorithms can access to oracles that will answer queries about the
target T∗. In this paper, we consider the following queries.

1. Membership query: The input is a labeled graph g ∈ GΛ(Γ). The output is
yes if g ∈ LΛ(Γ, T∗), otherwise no. The oracle which answers the membership
query is called a membership oralce.

2. Subset query and Restricted subset query: The input of both queries
is a finite subset S of GPΛ∪X (Γ). The output of a subset query is yes if
LΛ(Γ, S) ⊆ LΛ(Γ, T∗), otherwise a labeled graph, called a counterexample,
in (LΛ(Γ, S) − LΛ(Γ, T∗)). The oracle which answers the subset query is
called a subset oracle. The output of a restricted subset query is yes if
LΛ(Γ, S) ⊆ LΛ(Γ, T∗), otherwise no. The oracle which answers the restricted
subset query is called a restricted subset oracle.

3. Equivalence query and Restricted equivalence query: The input of
both queries is a finite subset S of GPΛ∪X (Γ). The output of a equivalence
query is yes if LΛ(Γ, S) = LΛ(Γ, T∗), otherwise a labeled graph, called a
counterexample, in (LΛ(Γ, S) ∪ LΛ(Γ, T∗)) − (LΛ(Γ, S) ∩ LΛ(Γ, T∗)). The or-
acle which answers the equivalence query is called a equivalence oracle. The
output of a restricted equivalence query is yes if LΛ(Γ, S) = LΛ(Γ, T∗), oth-
erwise no. The oracle which answers the restricted equivalence query is called
a restricted equivalence oracle.

A learning algorithm A is said to exactly identify a target T∗ in polynomial time if
A outputs a set S ∈ FGPΛ∪X (Γ) in polynomial time with LΛ(Γ, S) = LΛ(Γ, T∗).

Exact Learning of Finite Unions of Graph Patterns from Queries 307

Algorithm Learn Union

Assumption: A simple FGS program Γ and a target T∗ ∈ FGPΛ∪X (Γ).
Given: Oracles for EquivT∗ and rSubT∗ for T∗.
Output: A set S ∈ FGPΛ∪X (Γ) with LΛ(Γ, S) = LΛ(Γ, T∗).

begin
1. S := ∅;
2. while EquivT∗(S) �= yes do
3. begin
4. Let g be a counterexample;
5. foreach edge e of g do
6. if rSubT∗({g/{e}}) = yes then g := g/{e};
7. repeat
8. foreach f ∈ {g′ | g �Γ g′} do
9. if rSubT∗({f}) = yes then begin g := f ; break end
10. until g does not change;
11. S := S ∪ {g}
12. end;
13. output S
end.

Fig. 7. Algorithm Learn Union

3 Learning Finite Unions of Graph Languages

In this section, for a fixed simple FGS program Γ , we consider the learnabilities
of finite unions of graph languages over Γ and S ∈ FGPΛ∪X (Γ) in the frame-
work of exact learning model. For a simple FGS program Γ and a target T∗ in
FGPΛ∪X (Γ), we present a polynomial time learning algorithm Learn Union in
Fig. 7 which outputs a set S in FGPΛ∪X (Γ) such that LΛ(Γ, S) = LΛ(Γ, T∗)
holds, by asking several queries to a restricted subset oracle, denoted by rSubT∗ ,
and an equivalence oracle, denoted by EquivT∗ . The formal definitions of nota-
tions used in Learn Union are stated later. We assume that |Λ| is infinite.

First, we consider the internal foreach-loop at lines 5 and 6 in the algorithm
Learn Union. For two graph patterns g = (Vg , Eg, Hg) and f in GPΛ∪X , we
write g � f if f is isomorphic to a graph pattern g′ obtained from g by replacing
an edge (u, v) ∈ Eg with a new variable 〈u, v〉 labeled with a new variable label in
X (i.e., g′ = (Vg , Eg −{(u, v)}, Hg ∪{〈u, v〉})). That is, f is a generalized graph
pattern of g such that g � f . In order to show the replaced edge (u, v) explicitly,
f is denoted by g/{(u, v)}. Let �∗ be the reflexive and transitive closure of �

on GPΛ∪X . Then, we have the following lemma.

Lemma 2. For graph patterns g, g1, g2 ∈ GPΛ∪X , if g �∗ g1 and g �∗ g2, then
there exists a graph pattern g′ ∈ GPΛ∪X such that g1 �∗ g′ and g2 �∗ g′ hold.

Proof. Since g�∗ g1, there exists a subset I1 = {eg1,1, eg1,2, . . . , eg1,k} of Eg such
that g/{eg1,1}/{eg1,2}/ . . . /{eg1,k} ≡ g1 holds, where Eg is the set of edges in

308 R. Okada et al.

g g1 g2 h1 h2

Fig. 8. Graph patterns g, g1, g2, h1, h2

g. Moreover, there exists also a subset I2 = {eg2,1, eg2,2, . . . , eg2,r} of Eg such
that g/{eg2,1}/{eg2,2}/ . . . /{eg2,r} ≡ g2 holds. For a set I1 ∪I2 = {e1, e2, . . . , es}
(s ≤ k + r) and g′ ≡ g/{e1}/{e2}/ . . . /{es}, we have g1 �∗ g′ and g2 �∗ g′. �

This lemma shows that the binary relation � over GPΛ∪X has the Church-Rosser
property. We can easily prove the following lemma.

Lemma 3. For two graph patterns g, f in GPΛ∪X , we have g � f if g �∗ f .

For a graph pattern g given after executing the internal foreach-loop at lines 5
and 6 in the algorithm Learn Union, from Lemma 2, we can see that LΛ(Γ, g) ⊆
LΛ(Γ, T∗) and LΛ(Γ, g/{e}) �⊆ LΛ(Γ, T∗) for any edge e in g. Then, by modifying
the proof of Lemma 3 in [10], we can prove the following lemma.

Lemma 4. Let Γ be a simple FGS program, g = (Vg, Eg, Hg) a graph pat-
tern in GPΛ∪X (Γ) and S in FGPΛ∪X (Γ). If LΛ(Γ, g) ⊆ LΛ(Γ, S) and LΛ(Γ, g/
{e}) �⊆ LΛ(Γ, S) for any edge e ∈ Eg, then there exists a graph pattern g′ =
(Vg′ , Eg′ , Hg′) in S such that g � g′ and |Eg| = |Eg′ | hold.

Second, we consider the internal repeat-loop between lines 7 and 10 in the algo-
rithm Learn Union. Let Γ be a simple FGS program. Let g be a graph pattern
in GPΛ∪X (Γ), g′ a graph pattern in GPΛ∪X and x a variable label appearing in
g′. We write g �Γ g′ if there exists a graph rewriting rule D in Γ such that
g ≡ g′{x := [h, σ]}, that is, if g is a graph pattern obtained from g′ by replacing
the variable having the variable label x with h, where h is a simple graph pattern
appearing in the head of D. For example, for graph patterns g, g1, g2 given in
Fig. 8, we have g1 �TTSP g and g2 �TTSP g (i.e., g1 ≡ g{x := [h1, (u1, u2)]} and
g2 ≡ g{x := [h2, (u1, u2)]}), from the second and the third graph rewriting rules
in TTSP , where h1, h2 are simple graph patterns given in Fig. 8 and TTSP is
the simple FGS program in Fig. 3.

For graph patterns g, g′ ∈ GPΛ∪X (Γ), if g �Γ g′ then g′ is a generalized graph
pattern of g such that g � g′. Therefore we have the following lemma.

Lemma 5. Let Γ be a simple FGS program. For two graph patterns g, g′ in
GPΛ∪X (Γ), if g �Γ g′ holds then g � g′ holds.

Exact Learning of Finite Unions of Graph Patterns from Queries 309

For a graph pattern g given after executing the internal repeat-loop between lines
7 and 10 in the algorithm Learn Union, we can see that LΛ(Γ, f) �⊆ LΛ(Γ, T∗)
for any graph pattern f ∈ GPΛ∪X (Γ) with g �Γ f .

Lemma 6. Let Γ be a simple FGS program. Let g = (Vg, Eg, Hg) be a graph
pattern in GPΛ∪X (Γ) and S a set in FGPΛ∪X (Γ) such that there exists a graph
pattern g′ = (Vg′ , Eg′ , Hg′) in S with g � g′ and |Eg| = |Eg′ |. Then, if
LΛ(Γ, f) �⊆ LΛ(Γ, S) for any graph pattern f ∈ GPΛ∪X (Γ) with g �Γ f , then
g ≡ g′ holds.

Proof. Since g � g′ holds, there exists a substitution θ = {x1 := [f1, σ1], x2 :=
[f2, σ2], . . . , xn := [fn, σn]} such that g ≡ g′θ holds. Since |Eg| = |Eg′ |, |Hg| ≥
|Hg′ | holds. We assume that |Hg| > |Hg′ | holds. Then, we can see that there
exists a binding x� := [f�, σ�] in θ such that |Vf�

| ≥ 2, |Ef�
| = 0 and |Hf�

| ≥ 2
hold, where f� = (Vf�

, Ef�
, Hf�

). Hence, since g′ ∈ GPΛ∪X (Γ), there exists a
substitution θ′ such that g ≡ g′θ �Γ g′θ′ ∈ GPΛ∪X (Γ) holds. Since from Lemma
5, g � g′θ′ � g′ ∈ S holds, we have LΛ(L, g) ⊆ LΛ(L, g′θ′) ⊆ LΛ(L, g′). This is
a contradiction. Thus, we can see that |Hg| = |Hg′ |. We have g ≡ g′. �

Let Γ be a simple FGS program. For two sets P, Q ∈ FGPΛ∪X (Γ), if there exists
a graph pattern f ∈ Q such that f � g for any g ∈ P , we write P � Q. If P � Q
and Q �� P , then we write P � Q. Then, from the above lemmas, the following
theorem holds.

Theorem 1. Let Γ be a simple FGS program. The algorithm Learn Union in
Fig. 7 exactly identifies any set T∗ ∈ FGPΛ∪X (Γ) in polynomial time using at
most m+1 equivalence queries and at most m(n+rn2) restricted subset queries,
where m = |T∗|, n is the maximum number of edges of counterexamples and
r = |Γ |, if the number of labels of edges is infinite.

Proof. We consider the i-th iteration from the line 2 to the line 12 of the al-
gorithm Learn Union, where i ≥ 1. Let Si be a hypothesis given to EquivT∗
at the line 2 of Learn Union and gi = (Vi, Ei, Hi) a counterexample given at
the line 4 of Learn Union. Assume that S0 = ∅. In a similar way to Lemmas
6 and 7 in [10], from Lemmas 1, 3, 4 and 6, we can prove that for every i ≥ 1,
gi ∈ LΛ(Γ, T∗), Si−1 � T∗ and Si−1 � Si hold. Hence, we can see that the algo-
rithm Learn Union correctly outputs a set S such that LΛ(Γ, S) = LΛ(Γ, T∗),
and that Learn Union terminates in polynomial time.

Next, we consider the numbers of restricted subset queries and equivalence
queries. In the loop of the lines 5-6, Learn Union uses at most |Ei| restricted
subset queries. Moreover, the loop of the lines 7-10 uses at most |Γ | × |Ei|2
restricted subset queries. The while-loop from the line 2 to the line 12 is repeated
at most |T∗| times. Therefore, Learn Union uses at most m(n+ rn2) restricted
subset queries and at most m + 1 equivalence queries, where m = |T∗|, n the
maximum number of edges of counterexamples and r = |Γ |, if the number of
labels of edges is infinite. �

310 R. Okada et al.

Let FMT = FGPΛ∪X (MT), FUT = FGPΛ∪X (UT), FOT = FGPΛ∪X (OT) and
FTTSP = FGPΛ∪X (TTSP). From the definitions of MT and �MT , we can reduce
the number of restricted subset queries as the following corollary.

Corollary 1. Any set T∗ ∈ FMT is exactly identified in polynomial time us-
ing at most m + 1 equivalence queries and at most m(n + 3n2) restricted subset
queries, where m = |T∗| and n is the maximum number of edges of counterex-
amples, if the number of labels of edges is infinite.

Moreover, since GPΛ∪X (UT), GPΛ∪X (OT) and GPΛ∪X (TTSP) are closed with
respect to the binary relations �UT , �OT and �TTSP , respectively, we have the
following corollary.

Corollary 2. The algorithm Learn Union in Fig. 7 exactly identifies any fi-
nite set T∗ of either FUT , FOT or FTTSP in polynomial time using at most
m+1 equivalence queries and at most m(n+n2) restricted subset queries, where
m = |T∗| and n is the maximum number of edges of counterexamples, if the
number of labels of edges is infinite.

4 Hardness Results on the Learnability

In this section, we show the insufficiency of learning of FUT , FOT , FMT and
FTTSP in exact learning model. For a graph pattern g = (Vg, Eg, Hg), the sum
of numbers of edges and variables in g is called the size of g, i.e., |g| = |Eg|+|Hg|.

Lemma 7. (László Lovász [8]) Let Wn be the number of all rooted unordered
unlabeled trees of size n. Then, 2n+1 < Wn < 4n+1, where n ≥ 5.

From the above lemma, if |Λ| ≥ 1, then the number of rooted unordered (ordered,
mixed) trees of size n is greater than 2n+1. The following lemma is known to
show the insufficiency of learning in exact learning model.

Lemma 8. (Angluin [2]) Suppose the hypothesis space contains a class of dis-
tinct sets L1, . . . , LN . If there exists a set L∩ in the hypothesis space such that
for any pair of distinct indices i, j (1 ≤ i, j ≤ N), L∩ = Li ∩ Lj, then any
algorithm that exactly identifies each of the hypotheses Li using restricted equiv-
alence, membership, and subset queries must make at least N − 1 queries in the
worst case.

By Lemmas 7 and 8, we have the following Theorems 2 and 3.

Theorem 2. Let F be either FUT , FOT or FMT and Fn the collection of all
sets in F each of which contains only graph patterns of size n. Then, any learn-
ing algorithm that exactly identifies all sets in Fn using restricted equivalence,
membership and subset queries must make greater than 2n+1 queries in the worst
case, where |Λ| ≥ 1 and n ≥ 5.

Proof. We prove the insufficiently of learning for FUT . In a similar way to it,
we can prove the insufficiently of learning for FOT and FMT . We denote by

Exact Learning of Finite Unions of Graph Patterns from Queries 311

Sn the class of singleton sets of rooted unordered trees of size n. The class Sn

is a subclass of FUT and for any L and L′ in Sn, L ∩ L′ = ∅. Since the empty
set LΛ(UT , ∅) = ∅ is a hypothesis in FUT , by Lemmas 7 and 8, any learning
algorithm that exactly identifies all the finite sets of rooted unordered term
trees of size n using restricted equivalence, membership and subset queries must
make more than 2n+1 queries in the worst case, even when |Λ| = 1. �

Theorem 3. Any learning algorithm that exactly identifies all sets in FTTSP
each of which contains only graph patterns of size n, using restricted equivalence,
membership and subset queries, must make greater than 2

n
2 queries in the worst

case, where |Λ| ≥ 1 and n ≥ 10.

5 Conclusion

We have considered polynomial time learnabilities of finite unions of graph struc-
tured datasets in exact learning model of Angluin [2]. In order to represent struc-
tural features of graph structured data, we have given a linear graph pattern with
structural features such as “having tree structures” and “having TTSP graph
structures” by using Formal Graph System given in [15]. Then, for a simple FGS
program Γ , we have shown that any set T∗ of m linear graph patterns is exactly
identified in polynomial time using at most m+1 equivalence queries and at most
m(n + rn2) restricted subset queries, where n is the maximum number of edges
of counterexamples and r = |Γ |, if the number of labels of edges is infinite. Next,
as a negative result, we show that finite sets of linear graph patterns having tree
structures and two-terminal series parallel graph structures are not learnable in
polynomial time using restricted equivalence, membership and subset queries.

As future works, we will consider polynomial time learnabilities of finite unions
of graph patterns having structural features generated by non-simple FGS pro-
grams such as planar graphs, balanced binary trees, complete graphs. We con-
clude by summarizing our results and remained open problems in Table 1.

Table 1. Our results and remained open problems

polynomial time
exact learning

polynomial time inductive inference
from positive data

FGPΛ∪X (Γ)
FTTSP
FMT Yes[This Work] Open
FUT
FOT Yes[10] Yes[6] (for 2 unions)

FGPΛ∪X (Δ) Open Open
FEXGPΛ∪X (OT) Yes[11] Open
FEXGPΛ∪X (Δ) Open Open

Here, Γ and Δ are a simple FGS program and a (non-simple) FGS program,
respectively. FEXGPΛ∪X (OT) denotes the finite sets of (non-linear) graph pat-
terns with ordered tree structures generated by the simple FGS program OT .

312 R. Okada et al.

References

1. Amoth, T.R., Cull, P., Tadepalli, P.: On exact learning of unordered tree patterns.
Machine Learning 44, 211–243 (2001)

2. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)
3. Arimura, H., Sakamoto, H., Arikawa, S.: Efficient learning of semi-structured data

from queries. In: Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS
(LNAI), vol. 2225, pp. 315–331. Springer, Heidelberg (2001)

4. Arimura, H., Shinohara, T., Otsuki, S.: Polynomial time algorithm for finding finite
unions of tree pattern languages. In: Proc. NIL-91. LNCS (LNAI), vol. 659, pp.
118–131. Springer, Heidelberg (1993)

5. Duffin, R.J.: Topology of series parallel networks. J. Math. Anal. Appl. 10, 303–318
(1965)

6. Hirashima, H., Suzuki, Y., Matsumoto, S., Uchida, T., Nakamura, Y.: Polynomial
time inductive inference of unions of two term tree languages. In: Proc. ILP’06,
pp. 92–94 (2006) (short papers)

7. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

8. Lovász, L.: Combinatorial Problems and Exercises. ch. Two classical enumeration
problems in graph theory. North-Holland Publishing Company (1979)

9. Matsumoto, S., Hayashi, Y., Shoudai, T.: Polynomial time inductive inference of
regular term tree languages from positive data. In: ALT 1997. LNCS (LNAI),
vol. 1316, pp. 212–227. Springer, Heidelberg (1997)

10. Matsumoto, S., Shoudai, T., Miyahara, T., Uchida, T.: Learning of finite unions of
tree patterns with internal structured variables from queries. In: McKay, B., Slaney,
J.K. (eds.) AI 2002: Advances in Artificial Intelligence. LNCS (LNAI), vol. 2557,
pp. 523–534. Springer, Heidelberg (2002)

11. Matsumoto, S., Suzuki, Y., Shoudai, T., Miyahara, T., Uchida, T.: Learning of
finite unions of tree patterns with repeated internal structured variables from
queries. In: Gavaldá, R., Jantke, K.P., Takimoto, E. (eds.) ALT 2003. LNCS
(LNAI), vol. 2842, pp. 144–158. Springer, Heidelberg (2003)

12. Miyahara, T., Suzuki, Y., Shoudai, T., Uchida, T., Takahashi, K., Ueda, H.: Dis-
covery of frequent tag tree patterns in semistructured web documents. In: Chen,
M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 341–355.
Springer, Heidelberg (2002)

13. Suzuki, Y., Akanuma, R., Shoudai, T., Miyahara, T., Uchida, T.: Polynomial
time inductive inference of ordered tree patterns with internal structured vari-
ables from positive data. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS
(LNAI), vol. 2375, pp. 169–184. Springer, Heidelberg (2002)

14. Takami, R., Suzuki, Y., Uchida, T., Shoudai, T., Nakamura, Y.: Polynomial time
inductive inference of TTSP graph languages from positive data. In: Kramer, S.,
Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 366–383. Springer,
Heidelberg (2005)

15. Uchida, T., Shoudai, T., Miyano, S.: Parallel algorithm for refutation tree problem
on formal graph systems. IEICE Transactions on Information and Systems E78-
D(2), 99–112 (1995)

16. Yamasaki, H., Shoudai, T.: A polynomial time algorithm for finding linear inter-
val graph patterns. In: Proc. TAMC-2007. LNCS, vol. 4484, pp. 67–78. Springer,
Heidelberg (2007)

	Exact Learning of Finite Unions of Graph Patterns from Queries
	Introduction
	Preliminaries
	Linear Graph Patterns
	Graph Languages over Λ
	Learning Model

	Learning Finite Unions of Graph Languages
	Hardness Results on the Learnability
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

