
Design Verification Patterns

John Knudsen, Anders P. Ravn, and Arne Skou

Department of Computer Science
Aalborg University

Fredrik Bajers Vej 7E
DK-9220 Aalborg, Denmark

apr@cs.aau.dk

Abstract. Design Verification Patterns are formal specifications that
define the semantics of design patterns. For each design pattern, the cor-
responding verification pattern give a set of proof obligations. They must
be discharged for a correct implementation of the pattern. Additionally
there is a set of properties that may be used in the design and verification
of applications that employ the pattern. The concept is illustrated by ex-
amples from general software engineering and more specialised properties
for embedded software.

1 Introduction

Engineers design; thus software engineering is a discipline that systematizes
knowledge about procedures for designing software. This is evident from the
structure of Dines Bjørner’s volume on the subject [2]: After a careful analy-
sis of the application domain and a systematic elicitation of requirements, the
remaining task is design with implementation. Like in any other engineering dis-
cipline software design is based on reuse of patterns and well known components.
However, unlike other disciplines, software engineering does not systematically
use the patterns and components to analyse properties of the resulting system.
Software is generally built without systematic analyses. Throughout the Pro-
CoS project [8,14] it was the ambition to improve on this state of affairs, and
through numerous case studies, we demonstrated that is was feasible, see for
instance [24,23].

Yet, application of formal techniques have not spread dramatically, and it is
rather clear that it is so difficult that it will remain a specialist activity even
with better integrated notations like those developed in Oldenburg [21,13] and
at UNU/IIST [9,16]. Perhaps a remark from control engineering colleagues helps
to clarify, how difficult it is to work rigorously from basics: ”Either you choose
a PID controller or you have to get a PhD-controller.” Yet, we cannot expect
every engineer to have skills at a PhD level, therefore we must rely on standard
components that we know well, and where there are standard procedures for
tuning them and checking their properties. Design Verification Patterns is an
attempt at defining properties for the standard design patterns for software
engineering.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): Bjørner/Zhou Festschrift, LNCS 4700, pp. 399–413, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

400 J. Knudsen, A.P. Ravn, and A. Skou

The idea is rather natural, and one may wonder why it has not been done
already. Here it helps to look at history: In the 1990ies, software was coded
using languages like c, and systematic designs were very hard to discover in
the programs that resulted from this activity. Components were statements,
and analysis would be at a similar low level; it would focus on programming
language semantics and the corresponding program correctness theories as for
instance consolidated in Hoare and He’s ”Unified Theory of Programming” [11].

Since then, the demand for more software to increasingly efficient computers
that find applications in the most diverse areas - ubiquitous computing - means
that the level of abstraction is lifted. There is increased use of object oriented
languages and design notations like UML [25,7], beginning experiments with
reuse of components [28], and concern for architecture [1]. These ideas are com-
bined with formal techniques and gains increasing popularity through efforts of
Meyer [19], which are continued in tool developments like JML [3].

Thus, modern software relies on datatypes and common functions as embod-
ied in the standard class libraries of objected oriented programming languages.
A corresponding level of structuring constructs comes with the practical use of
design patterns [15,6]. They may be the ”PID”s for the practicing software en-
gineer, but what are their properties, and how may these properties be used to
analyze applications?

A Design Verification Pattern. As an introduction to properties of design
patterns, we may look at the ancestor to all design patterns: The procedure
pattern. A (side-effect free) procedure p has an input or value parameter x and
computes an output or result y:

p(value x ; result y)

With axiomatic semantics, we know that it may be fully specified in terms of
two predicates, a pre- and a post-condition: p.pre(x) and p.post(x , y), where
the pre-condition specifies the domain of the procedure, and the post-condition
specifies the effect in the form of an input-output relation.

Analysing Properties. It is also clear that an implementer of p has an oblig-
ation to guarantee the post-condition, but only when one can rely on the pre-
condition. This is the basis for verifying correctness of the component p. From
our point of view, it is also the design verification pattern. The lemmas that can
be used in an application. Just before a call p(e, r), the application must assert
that the the procedure can relay on the pre-condition with e for x , p.pre[e/x].
Then, after the call, it is legitimate to assume the post-condition with a similar
substitution,p.post [e/x , r/y], and use it in an analysis of application properties.

Much research in verification has focused on the obligations of the implemen-
tors. We are less concerned with this, because with increasing reuse, components
are developed by specialists - the PhDs, who should be able to deal with the
task. In contrast, the components are used in many contexts, so the lemmas for-
mulated in the assert and assume conditions are a higher level start for verifying

Design Verification Patterns 401

applications. They may form the basis for harnessing theories for tool support
[17], a point we will return to in the concluding Section 4.related work.

Beyond Functional Aspects. In the more complex setting of objects or com-
ponents, the verification must go beyond pure functional properties as expressed
in the pre- post-condition paradigm. There is a state component as well that
enters in the post-condition and which satisfies some invariant. Furthermore,
many applications are reactive systems where the properties are protocols, that
is constraints on behaviours of concurrent processes. An additional aspect occurs
with embedded systems where real-time properties are important. In Section 2
we will introduce suitable notation for expressing such non-functional aspects,
before we exemplify in Section 3 with conventional design patterns and extends
it with a discussion of timing properties which are important for embedded soft-
ware systems.

2 Background

In the following we introduce verification patterns more formally after defin-
ing the notations that are used to define properties. Settling on notation is a
matter of preference, but it is important that the chosen notation conveniently
can express what is required and that it is well established so that it is easily
understood. The most widely used notation for design patterns today is UML
[25] so UML class diagrams are the syntax in the following. To enable formal
specification and reasoning, the UML diagrams must be given semantics. The
formalism chosen to serve this purpose is the CSP-OZ-DC combination of Olden-
burg [12,21,20] as elaborated in Hoenicke’s dissertation [13]. The CSP [10] part
hereof allows specification of processes, Object Z (OZ) [26] allows specification of
functional aspects for operations on objects, and Duration Calculus (DC) [31,30]
enables reasoning about time aspects.

OZ. Here, we are not going to go into syntactical and semantical details of OZ,
but just note that a class C corresponds to a Z schema, a method m to an
operation on the schema, and that an object o of the class C is a reference to a
value of the schema.

CSP. The communication events are elaborated such that a channel is associ-
ated with each public method and thereby with the corresponding schema oper-
ation. A method call to an object, say with input parameter x , actual argument
e, and output parameter y of type T , is written o.m!(x == e)?(y : T), cf. [13].
Otherwise, we have the usual syntax for CSP processes which syntactically are
added as constraints to OZ schemas, or in UML as constraints in a responsibility
part of a class or object. For convenience, we list the CSP operators:

P ::= STOP | SKIP | ce → P | P�P | P � P | P‖P | P ; P

402 J. Knudsen, A.P. Ravn, and A. Skou

where STOP is the deadlocked process, SKIP is the terminating process, ce → P
communicates event ce and continues as P , P�P is external choice, P � P is
non-deterministic choice, P‖P is parallel composition, and P ; P is sequential
composition. As usual, recursive definition of processes is allowed.

Duration Calculus. Duration Calculus formalizes dynamic systems properties.
The basis is the well-known time-domain model, where a system is described by a
collection of states which are functions of time (the non-negative real numbers).
The state names are here the variables in a given schema, which clearly vary
over time.

A behaviour of a system is thus an assignment of state functions to the names
of elementary states, An observation of a behavior is a restriction of such an
assignment to a bounded interval; it can be illustrated by a timing diagram.
Boolean values and thus the value of state predicates are by convention repre-
sented by 0 (false) and 1 (true).

For a given observation interval [b, e] of a predicate P , the duration, denoted∫
P is simply the integral

∫ e
b P(t)dt ; it measures the fraction of time P holds in

the interval.
Duration terms are built from durations, logical variables and real numbers

and closed under arithmetic operators and arithmetic relations. Duration for-
mulas D are built from duration terms of Boolean type and closed under propo-
sitional connectives, the Interval Temporal Logic [22] ”chop” connective, and
quantification over rigid variables and variables of duration terms.

A duration formula D holds in [b, e] if it evaluates to true. For the predicate
P , it is obvious that it holds (almost everywhere) in the interval, just when the
duration

∫
P is equal to the length of the interval. The length is the duration of

the constant function 1 (
∫

1). This duration is often used, so it is abbreviated
(�), pronounced ‘the length’. The property that P holds is thus given by the
atomic formula

∫
P = �. This holds trivially for a point interval, so we consider

proper intervals of a positive length. These two properties are combined in the
abbreviation

�P� == (
∫

P = �) ∧ (� > 0)

read as ‘P holds’.
Given formulas D and E , the binary ”chop” connective can combine them to

D ; E which holds on [b, e] when there exists a m such that D holds on [b,m] and
E holds on [m, e]. A simple example is the valid equivalence �P� = �P� ; �P�.

With CSP, we include event based reasoning by defining that for an event ce,
the formula ↑ ce holds exactly when the event occurs at the beginning of the
interval. Thus we can specify an interval where ce does not occur in the open
interval by the counterexample formula

ce == ¬(� > 0 ; (↑ ce) ; � > 0))

Design Verification Patterns 403

2.1 Verification of Design Patters

In describing the relation between the syntactic language of UML and the se-
mantics of the formal description language package from Oldenburg, the CSP-
OZ-DC it is now possible to illustrate the idea of using verification patterns in
the software development process graphically, as seen in Figure 1.

Rely/Guarantee

Design
Pattern

Assert/Assume

Verification
Pattern

Application

Component

Application
Validator

Component
Validator

11

*

**

*

1

**

11

11

Design and Implementation Validation and Verification

Fig. 1. The framework of Component Based Development using Design Patterns and
Verification Patters

Figure 1 represents the framework for Component Based Development using
Design Patterns and Verification Patterns. The framework extend what is con-
sidered ordinary software development efforts by explicitly emphasising the use
of design patterns and by illustrating the associated validation possibilities that
verification patterns offer.

Design patterns are usually applied in a context similar to the one illustrated
in the Design and Implementation part of Figure 1. Design patterns provides
guides on how to develop good designs to well known design challenges and
components that must address one or more of these challenges can then be
designed using the respective design patterns. That the component is designed
and implemented using certain design patterns can be useful for the system
developer that later will embed the component in a system design. Most design
patterns, however, contains more useful information that can be exploited, as
illustrated in the Validation and Verification part of Figure 1. For each design
pattern a verification pattern, which is a range of rely/guarantee pairs, can be
specified reflecting the different aspects of the pattern. The specification can

404 J. Knudsen, A.P. Ravn, and A. Skou

be used either as test and verification of the component, or in a test driven
applicaition development process model as assert/assume pairs for verification,
monitoring or for developing tests.

2.2 Related Work

There is a rich literature on verification, and patterns are implicit in many proof
rules, yet the idea of combining architectural patterns with verification occurs, to
our knowledge for the first time in [4,5]. It develops application specific pattern
for collision avoidance. A somewhat similar idea is to develop refinement rules
or conditions for design patterns; this is explored in [18]. Finally we mention [27]
which approaches design patterns with the same mission to delimit the responsi-
bilities of the developer and define the rewards for the application programmer.
Their proposal for formalization, however, does not distinguish between aspects
and thus require coding behavioural properties as state invariants.

3 Patterns

We begin with one of the most used and most simple design patterns; the Single-
ton pattern. A good example of its application is the control module for a ship’s
rudders. A modern ship is controlled from several stations, but it is essential
that the rudders have one and only one common interface, such that clients that
needs access to the rudders access the same software unit. If different clients
have or create their own representation of the rudders, the representations are
hard, if not impossible to keep consistent. A correct instantiation of a Singleton
pattern eliminates such behaviour.

3.1 Singleton Pattern

The intent of the Singleton pattern is to ensure that there can only be one
instance of the Singleton class and to provide global access to this instance [6].

Singleton
− instance
� Singleton()
+ Instance()

Fig. 2. The Singleton pattern as an UML class diagram

Figure 2 shows the UML class diagram for the Singleton pattern. Note that
the instance attribute has a − prefix, indicating that it is private to the class,
i.e. only accessible through methods/operations of the class. For the Singleton
class a protected constructor operation, � Singleton(), is given and the public
operation + Instance().

Design Verification Patterns 405

The pattern description provide information that can be very useful in veri-
fying that an actual design or implementation actually is in accordance with the
intent of the pattern.

Implementation: A Singleton is usually implemented as a class with a protected
constructor as the only constructor. This should prevent external use of new to
generate more instances. The instance of the Singleton is created first time the
Instance() method is called. This call looks up the private instance attribute to
see if it exists, and if it is not an instance is created, assigned and returned to
the caller. For future calls the instance is returned.

Functional Verification Conditions: The Singleton pattern is a creational pat-
tern, where there as such is not much to verify. There is an invariant stating
that the instance reference is valid and that it is not changed unless it is null by
the Instance operation. The pre-condition for the Instance operation is trivially
true and the post-condition states that the result of the operations is a copy of
the reference to this instance.

Behavioural Verification Conditions: There is one specified behaviour

main == s .Instance!(y == s .instance) → main

When applying a singleton pattern with class s , we do not have to take any
special precautions, the assert is trivially true. At any point, we can assume
that there is at most one instance of the class and that this instance remains the
same, i.e. it is not overwritten. Thus combining the functional and behavioural
condition, we can prove that an application satisfies the property that

(s .Instance?y : Singleton → P(y))‖((s .Instance?y : Singleton → Q(y))

is equivalent with

(s .Instance?y : Singleton → (P(y))‖Q(y))

Thus, we can eliminate or introduce (using CSP laws) multiple calls of Instance.
The idea of exploiting a design using design patterns to extract verification

lemmas is in Example 1 made less abstract as the use of a Singleton patterns is
embedded in a design.

Example 1. On a modern ship the rudder can be manipulated and monitored
from various stations on the ship. Here it is relevant to consider the rudder
controller as a Singleton. In this example the rudder can be manipulated from
the ship bridge and from the machine room.

In Figure 3 the UML diagram illustrates a design where the classes Bridge
and Machine both have a RudderSingleton object. Although UML allows
specification of the arity between objects by annotating the edges between them,
in Figure 3 by 1’s at the RudderSingleton class, this only states that one Bridge

406 J. Knudsen, A.P. Ravn, and A. Skou

Bridge

RudderSingleton
− instance
� RudderSingleton()
+ Instance()

Machine
Command

Fig. 3. UML class diagram showing a rudder control design

object has one RudderSingleton and one Machine object should have one Rud-
derSingleton and not that it should be the same object. However, the verification
pattern allows us to deduce that.

Also, depending on the structure of the application, it may show us that the
Machine and the Bridge has simultaneous access to the rudders, and that may
lead to some conflicts about who controls the ship; but such a source conflict
is not handled by the Singleton pattern. It only ensures that there is a single
control object with atomic operations.

Timing Verification Condition: In embedded applications, the only timing con-
dition we can think of in connection with the Singleton pattern is the (worst
case) execution time for the method. It produces a rely condition, which is an
invariant that the application has to satisfy:

(↑ Instance ∧ � > 0) ; (↑ Instance) ⇒
∫

Active(p) ≥ WCETInstance

here, Active is for each process a state variable which is true exactly when
the process is executing. A naive formulation would use � for

∫
Active(p) but

that would assume a dedicated processor for each process. The Active variable
is manipulated by scheduling mechanisms which may be specified by duration
formulas [29].

3.2 Observer Pattern

A more intricate example is the Observer pattern. It is often used in embedded
systems to signal changes in an environment.

Intent: The intent of the observer pattern is to define a one to many dependency
on objects, so that when one object changes state, all its dependents are notified.

Motivation: Partitioning leads to a need to maintain consistency between objects
without tight coupling for reusability. Observers are updated when the subject
changes state. The key objects in the Observer pattern are observer and subject.
A subject may have any number of dependant observers, where all observers are
notified when the subject has changed state. The subject sends its notifications
without knowing its observers.

Design Verification Patterns 407

Subject

+ attach(in : Observer)
+ detach(in : Observer)
+ notify()

Observer

+ update()

ConcreteSubject
− subjectState
+ setState()
+ getState()

ConcreteObserver
− observerState
+ update()

for all o in observers
{o->Update()}

return subjectState
observerState =
subject->getState()

observers *

1 subject

Fig. 4. A UML class diagram of the Observer pattern

Structure: The class structure of the Observer pattern is illustrated by the class
diagram in Figure 4. The Observer pattern is modeled with the above mentioned
classes Subject and Observer as abstract classes with a directed association from
Subject to Observer, indicating that the subject is capable of calling the Update
operation on observer objects.The two abstract classes each have a concrete
counterpart, ConcreteSubject and ConcreteObserver, that inherit from the re-
spective abstract classes. Between the ConcreteSubject and ConcreteObserver
classes a directed association towards the ConcreteSubject lets concrete observer
objects call the getState operation on concrete subjects to get its state.

Participants: Subject knows its observers. Any number of observers can observe
a subject. Observer defines an updating interface for objects that should be
notified of changes in a subject. ConcreteSubject stores the state of interest to
the ConcreteObserver and sends a notification to its observers when the state is
changed. The ConcreteObserver maintains a reference to a ConcreteSubject ob-
ject and stores the state of it to stay consistent. A sequence diagram illustrating
interactions of the participants is given in Figure 5.

Verification Conditions for the Observer pattern: The structure of the
Observer pattern, as given in Figure 4, imply a CSP-OZ translation as in Figure
6 which gives the functional verification conditions. The Observer and Subject
classes are both specified as abstract classes with an association that is navigable
form Subject to Observer. The association implies a data structure in a Subject
object containing Observer objects. This is to register the objects that attach

408 J. Knudsen, A.P. Ravn, and A. Skou

cs:ConcreteSubject o1:Observer o2:Observer

setState()

notify()

update()

update()

getState()

getState()

Fig. 5. Interactions between the participants in the Observer pattern

themselves as observers. As the classes are declared abstract this is not really
going to be the case, but the concrete ”children” objects, objects of the classes
that inherit from the respective abstract classes have to posses these properties.

The classes ConcreteSubject and ConcreteObserver are the classes that in-
herit from respectively the Subject and Observer classes. The ConcreteObserver
is related to the ConcreteSubject by an association that is navigable towards
the ConcreteSubject. This means that a ConcreteObserver object will have an
attribute of type ConcreteSubject, which store the object to which it is attached.

In [6] the notify operation has a note which says that the operation should
implement a sequential call of the update operation on all attached observers.
The update operation in the Observer class has no attached specification, and do
as such only specify an interface to the concrete observer. Perhaps a use of the
UML interface class to represent the observer would have been more appropriate,
as the update operation is declared as abstract, leaving it to the inheriting classes
to implement the operation body.

Behavioural Verification Condition The original specification of the Observer
pattern do not provide any information on the events of a process encapsulating
the pattern. The behaviour that is guaranteed is

main
c= Subject .setState → Subject .Notify → (‖x : o • x .Update → SKIP); main

The purpose of the observer pattern is as stated to notify observers of state
changes to some subject. This assumption can be analyzed by investigating

Design Verification Patterns 409

Subject

method attach, detach[o? : Observer]
chan update

local chan notify

observers : P Observer

Init

observers = ∅

com attach

Δ (observers)
o? : Observer

observers ′ = observers ∪ o?

com detach

Δ (observers)
o? : Observer

observers ′ = observers\{o?}

effect notify

Δ()
observers : P Observer

∀ x ∈ observers • update.x

Observer

method update

ConcreteSubject

inherit Subject

method setState[s? : O]
method getState[s! : O]

subjectState : O

com setState

Δ (subjectState)
s? : O

subjectState ′ = s?

com getState

Δ()
s! : O

s!′ = subjectState

enable notify

s?

s? �= subjectState

ConcreteObserver

inherit Observer

chan getState[s? : O]

subject : ConcreteSubject

observerState : O

com update

Δ(observerState)
subject : ConcreteSubject

observerState ′ = getState.subject

Fig. 6. The structure of the observer pattern as CSP-OZ schemata

possible method call sequences. For observers o1, . . . , on and a concrete subject
object cs a state change must be recognized as following sequence:

cs .Attach(o1); cs .Attach(o3); . . . ;
cs .setState(); cs .Notify(); o1.Update(); o2.Update();

410 J. Knudsen, A.P. Ravn, and A. Skou

Popular descriptions of the pattern indirectly let readers assume that the
consistency is guaranteed by the proposed design and the design pattern is mo-
tivated by a need to keep observer states consistent with subject states. Yet, the
design pattern description puts no constraints on observers’ getState() calls on
the subject. This may lead to inconsistency. If os is a slow observer attached
to cs , a concrete subject and os as a data logger must register all states of the
subject, the following possible sequence shows that os is not dependable:

. . . ; cs .setState(); cs .Notify(); os .Update(); . . . ; cs .setState(); cs .getState()

As observed in the above sequence, it is possible that the state of the subject
changes before the observers have finished updating. The description and struc-
ture of the observer pattern as stated above has data pull characteristics, where
for i.e. embedded systems and control systems data push characteristics might
be more relevant.

The problem of data push versus data pull of the observer pattern was already
addressed in [6], where it is noted that modifying the Update() method to take
the subject state as parameter actually would convert the pull characteristics to
push characteristics. Such a change to the pattern allow a stronger assumption
on the relation between subject state and observer state. We have the sequence
after interested objects have been attached:

. . . ; cs .setState(); cs .Notify(); o1.Update(subjectState);
o2.Update (subjectState); . . .

and
cs .subjectState = o1.observerState = . . . = on .observerState

Timing Verification Conditions The observer pattern corresponds to an aperi-
odic task in a hard-real time setting, and it is well known that no guarantees
can be given for handling all events of such a task. One has to assume that it is
sporadic, that is the application has to guarantee a minimum interarrival time
T , as formulated in the invariant:

(↑ setState ∧ � > 0) ; (↑ setState) ⇒ � ≥ T

Furthermore, the worst case execution time for Update leads to a further as-
sumption on the application analogous with the one for the Singleton Pattern,
and finally, the number of attached tasks must be used to define an assumption
linking T and the worst case execution time for the set of Updates.

If the ConcreteObserver is designed according to the data pull variant of the
Observer Pattern, following constraint must hold to ensure consistency between
a concrete subject and concrete observers:

(↑ Update ∧ � = 0) ; (Update ∧ getState) ; (↑ getState ∧ � = 0) ⇒ � ≤ T

It says that the elapsed time between two consecutive Update, getState events
is less than mimnimum interarrival time.

Design Verification Patterns 411

3.3 Summary

We have illustrated that it is feasible to specify both functional, behavioural and
timing conditions that form design verification patterns. A few other patterns
have been investigated and give similar reasonably succinct conditions. Yet, there
is much more work to do. Some particularly interesting questions are to what
extent the verification patterns can be made complete for a given design pattern,
that is they give a precise characterization of the pattern. For the functional and
behavioural properties, we think they can be made complete, however, we are
not sure that that can be done for the timing properties, because these are
dependent on the underlying execution platforms.

4 Conclusion

We have developed the concept of a verification pattern, the semantic twin to
syntactic design patterns. They are based on conventional rely-guarantee con-
ditions for an implementation which are used as assert-assume lemmas for the
application that uses them. The concept has been illustrated with functional,
behavioural and timing specifications for conventional patterns.

Discussion. The application of Design Patterns in practical design of embed-
ded systems is still at a early stage but as the complexity increase and the object
oriented paradigm gains ground in this field, so will the application of technolo-
gies known from this field. A substantial part of the research in Design Patterns
has focus on efficient solutions to architectural design challenges, and although
designers of embedded systems are faced with such challenges also, more ef-
fort on researching Design Patterns for the special challenges that characterise
embedded systems is needed.

In a case study of control software for marine diesel engines, that spurred our
research of Verification Design Patterns, we encountered behavioral challenges
typically encountered in control engineering that could be candidates for Design
Patterns and Verification Design Patterns in embedded software systems.

One such challenge was the modelling of the JetAssist, a system that assist a
turbo charger in optimizing the the fuel consumption and reduce CO2 emission
levels. For the JetAssist the specification explicitly stated that the system should
have a hysteresis behaviour, i.e. the behavior of the system must by increasing
and decreasing temperature, in respective overlapping intervals displaying differ-
ent temperatures. That is, by measuring the temperature alone, is is not possible
to predict the behavior of the JetAssist. Hysteresis is known from a variety of
control and processing systems. Around this hysteresis pattern we found a num-
ber of well-known conventional patterns, exemplified by those described in this
paper. It was clear to us that if we are to prove proerties of the JetAssist in a way
that is comprehensible to engineers, we would have to structure the arguments
- thus the patterns.

412 J. Knudsen, A.P. Ravn, and A. Skou

Acknowledgement. The first author wishes to thank CISS for funding his
work on the topic, and menbers of the ”Correct System Design” group, in par-
ticular Professor Olderog, for hospitality during extended stays. The second and
third author acknowledge the inspiration fromk CISS’ industrial collaborators
to pursue this line of research.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley, Reading (1999)

2. Bjørner, D.: Software Engineering. In: Bjørner, D. (ed.) Domains, Requirements
and Software Design. Texts in Theoretical Computer Science, vol. 3, Springer,
Heidelberg (2006)

3. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced spec-
ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006)

4. Damm, W., Hungar, H., Olderog, E.-R.: On the verification of cooperating traffic
agents. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2003. LNCS, vol. 3188, pp. 77–110. Springer, Heidelberg (2004)

5. Damm, W., Hungar, H., Olderog, E.-R.: Verification of cooperating travel agents.
International Journal of Control 79(5), 395–421 (2006)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
Reading (1995)

7. Object Management Group. Unified Modeling Language: Superstructure,
version 2.0, final adopted specification, http://www.omg.org/uml/, formal/
05-07-04, 2005

8. He, J., Hoare, C.A.R., Fränzle, M., Müller-Olm, M., Olderog, E.-R., Schenke, M.,
Hansen, M.R., Ravn, A.P., Rischel, H.: Provably correct systems. In: Langmaack,
H., de Roever, W.-P., Vytopil, J. (eds.) Formal Techniques in Real-Time and Fault-
Tolerant Systems. LNCS, vol. 863, pp. 288–335. Springer, Heidelberg (1994)

9. He, J., Li, X., Liu, Z.: rCOS: A refinement calculus for object systems. Theoretical
Computer Science 365(1-2), 109–142 (2006)

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

11. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Engle-
wood Cliffs (1998)

12. Hoenicke, J., Olderog, E.-R.: Combining Specification Techniques for Processes
Data and Time. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335,
pp. 245–266. Springer, Heidelberg (2002)

13. Hoenicke, J.: Combination of Processes, Data, and Time. PhD thesis, Fachbereich
Informatik Universitt Oldenburg (2006)

14. Langmaack, H., Ravn, A.P.: The procos project: Provably correct systems. In:
Bowen, J. (ed.) Towards Verified Systems. Real-Time Safety Critical Systems, ch.
Appendix B. vol. 2, Elsevier, Amsterdam (1994)

15. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process, 2nd edn. Prentice-Hall, Englewood
Cliffs (2001)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://www.omg.org/uml/, formal/05-07-04, 2005
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.omg.org/uml/, formal/05-07-04, 2005

Design Verification Patterns 413

16. Liu, Z., He, J., Li, X.: rCOS: A relational calculus of components. In: Mathematical
Frameworks for Component Software, pp. 207–238. World Scientific, Singapore
(2006)

17. Liu, Z., Mencl, V., Ravn, A.P., Yang, L.: Harnessing theories for tool support.
In: Proceedings of International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA 2006), November 2006 (2006) (An
extended version is found as UNU-IIST Technical Report 335, August 2006)

18. Long, Q., Qiu, Z., Liu, Z., Shao, L., He, J.: POST: a case study for an incremental
development in rCOS. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS,
vol. 3722, pp. 485–500. Springer, Heidelberg (2005)

19. Meyer, B.: Object-oriented software construction, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1997)

20. Meyer, R., Faber, J., Rybalchenko, A.: Model checking duration calculus: A prac-
tical approach. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006.
LNCS, vol. 4281, pp. 332–346. Springer, Heidelberg (2006)

21. Möller, M., Olderog, E.-R., Rasch, H., Wehrheim, H.: Linking CSP-OZ with UML
and Java: A case study. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004.
LNCS, vol. 2999, Springer, Heidelberg (2004)

22. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Com-
puter 18(2), 10–19 (1985)

23. Olderog, E.-R., Ravn, A.P., Skakkebæk, J.U.: Refining system requirements to
program specifications (chapter 5). In: Heitmeyer, C., Mandrioli, D. (eds.) For-
mal Methods in Real-Time Systems. Trends in Software-Engineering, pp. 107–134.
Wiley, Chichester (1996)

24. Rischel, H., Cuellar, J., Mørk, S., Ravn, A.P., Wildgruber, I.: Development of
safety-critical real-time systems. In: Bartosek, M., Staudek, J., Wiedermann, J.
(eds.) SOFSEM 1995. LNCS, vol. 1012, pp. 206–235. Springer, Heidelberg (1995)

25. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modelling Language Reference
Manual. Addison-Wesley, Reading (1999)

26. Smith, G.: The Object-Z specification language. Kluwer Academic Publishers, Nor-
well, MA, USA (2000)

27. Soundarajan, N., Hallstrom, J.O.: Responsibilities and rewards: specifying design
patterns. In: Proceedings 26th International Conference on Software Engineering,
ICSE 2004, May 2004, pp. 666–675. IEEE Computer Society Press, Los Alamitos
(2004)

28. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Reading (1997)

29. Zhou, C., Hansen, M.R., Ravn, A.P., Rischel, H.: Duration specifications for shared
processors. In: Vytopil, J. (ed.) Formal Techniques in Real-Time and Fault-Tolerant
Systems. LNCS, vol. 571, pp. 21–32. Springer, Heidelberg (1991)

30. Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time
Systems. In: Monographs in Theoretical Computer Science. An EATCS Series,
Springer, Heidelberg (2004)

31. Zhou, C.C., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information
Processing Letters 40(5), 269–276 (1991)

	Design Verification Patterns
	Introduction
	Background
	Verification of Design Patters
	Related Work

	Patterns
	Singleton Pattern
	Observer Pattern
	Summary

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

